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PREFACE

Aeronautical and space propulsion systems structures technology has been the

mission of the Structures Division at the NASA Lewis Research Center for many

years. We have carried out both fundamental and applied research projects in

pursuit of that mission. We have worked cooperatively with members of the in-

dustrial and academic communities in order to strengthen our ties to both the

discipline rigors found in university research and the needs of industrial

design engineers. It is from this perspective that we have prepared the mate-

rial for this symposium. And we hope to transfer our technology beyond our
usual industrial partners.

The technology required for the reliable, high-performance, lightweight struc-

tures needed for aerospace propulsion is among the most complex and challeng-

ing facing the design engineer. We provide a comprehensive review of the sta-

tus of the technology, a review of our recent contributions, and a flavor of

the directions for the future. The symposium is meant to be, as informative as

possible, with the intent to establish new and broader lines for technology

transfer. We encourage continued interaction and the chance to exchange infor-

mation, ideas, and problems with the intention of improving the capability of
aerospace propulsion systems.

Our two-day symposium and exposition, LST '88, is expected to attract 300 tech-

nologists from all walks of structurally related engineering. The 83 techni-

cal contributions have been created by over I00 authors who are respected

authorities in their fields. Fifty percent of these are NASA civil servants,

and twenty-five percent are on-site contractors and grantees, National

Research Council associates, Institute for Computational Mechanics in Propul-

sion (ICOMP) associates, and U.S. Army Aviation Research and Technology Activi-

ty (AVSCOM) personnel. The balance are from industry and academia.

It is a well-rounded symposium, and the proceedings should be a valuable re-

source for several years to come. The format is easy to access and extract

information from. Each topic within a presentation is self-contained on a sin-

gle page. The topic title appears at the top of the page followed by an ex-

tended figure caption, and the figure is located at the bottom of the page.

Considerable effort has been expended in streamlining the presentations and

freeing them of extraneous information so as to make them clear to the poten-

tial user - YOU. References are cited for more detailed followup of a particu-

lar topic. 0n-site personnel are also willing to lend assistance in answering

questions and resolving problems that need clarification.

Lester D. Nichols

Chief, Structures Division

NASA Lewis Research Center
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VIBRATION CONTROL

SESSION OVERVIEW

Louis J. Kiraly
Structural Dynamics Branch
NASA Lewis Research Center

We require that turbomachinery be as light in weight as possible in order to

maximize flight system performance. The structural members are necessarily

flexible in nature, which means that they can vibrate in complex ways during

normal mission cycles. If a component is designed to be too flexible, vibra-

tion levels can be damaging unless the vibrations can be controlled in some

way. In effect, vibration control methods allow designers to trade off weight

and stiffness aspects of turbomachinery components with various vibration con-

trol strategies to optimize overall system performance.

With turbomachinery, large rotational kinetic energies can couple with vibra-

tion modes and result in large vibrations or dynamic instabilities. This is

also true for dynamic unbalancing and aero coupled blade vibrations. The

rotating components can contribute as much as 50 percent to a propulsion sys-

tems weight; the induced vibrations can be very large.

Traditional vibration control methods have involved passive devices such as

squeeze films to minimize rotor-shaft vibrations and frictional or aerodynamic

damping to control blade vibrations. This session presents some newer, poten-

tially better methods. Our session begins with a discussion of nonlinear

impact dampers which can be designed to control blade vibrations. Other blade

vibration control methods involving aerodynamic damping are discussed in the

aeroelasticity session. We proceed with a discussion of the nonlinear vibra-

tions of rotor-shaft systems. The session concludes with discussions of

actively controlled vibrations for rotor systems for both steady-state and

transient rotor vibrations. Our poster session describes a passive electromag-

netic damper for controlling shaft vibrations which can be readily extended to
be an active device.

Active methods for controlling rotor vibrations will result in substantial sys-

tem weight and performance improvements. One early estimate predicts weight

decreases of over I0 percent coupled with performance increases of over

5 percent when active methods are used for design of new propulsion systems.

Careful tradeoffs between system weight and control system complexity will be
required as these new methods become available.
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SURVEY OF IMPACT DAMPER PERFORMANCE

Gerald V. Brown

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

The impact damper is a simple device in which inelastic collisions can produce

high damping in vibrating systems over a wide range of frequencies. But it is

hard to analyze because the inelastic impacts make the system nonlinear. Fifty

years of study of special cases have failed to produce an overall picture of

the complex behavior of this physically simple system. Previous predictions

of its damping have been limited to narrow regimes of behavior.

The present study obtains an overall picture by utilizing time-history solu-

tions of the system motion for the oscillator in free decay. The impactor

behavior depends very strongly on oscillator amplitude, and free decay can sam-

ple the full range of behavior from an infinite number of impacts per cycle at

high amplitude to no impacts at low amplitude. This overall picture cannot be

obtained by analysis of steady-state forced response. Yet the predictions are

relevant to forced response behavior when the damping is relatively light.

Three major regimes of impactor behavior are shown to exist: (i) a low ampli-

tude range, with less than one impact per cycle and very low impact damping,

(2) a useful middle amplitude range with at least one, but a finite number, of

impacts per half cycle and good impact damping, and (3) a high amplitude range

with progressively decreasing damping and an infinite number of impacts in

each half cycle. For light damping the impact contribution to the damping in

the middle range is (i) proportional to the impactor mass, (2) additive to the

proportional damping of the oscillator, (3) a strong but unique function of

the vibration amplitude, (4) proportional to i - ¢, where ¢ is the coeffi-

cient of restitution, and (5) very roughly inversely proportional to the

amplitude. The system exhibits jump phenomena and period doublings which may

be precursors of chaotic states. An impactor with 2 percent of the mass of

the oscillator can produce a loss factor near 0.i, a very substantial level of

damping for aerospace systems.

I-3



SYSTEMSCHEMATICANDDECAYRATE

A harmonic oscillator containing a loose particle, or impactor, is represented
below. Collisions at either wall are described by a coefficient of restitution
model. External proportional damping is included in the analysis.

Whenthe oscillator is released from rest at an initial displacement (measured

in units of the impactor gap), the amplitude of oscillation decays as shown in

the right-hand figure. The decay is not exponential, but instead approximates

the linear decay of a dry friction damped system. Decay curves for three val-

ues of the impactor mass p (expressed as a fraction of the oscillator's mass)

are shown. The damping fraction of the oscillator is 4- The behavior of the

impactor at six values of amplitude is shown on the following pages.
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IMPACTORBEHAVIORFORAMPLITUDEGREATERTHANTHEIMPACTGAP

At high amplitudes the impactor bouncesan infinite numberof times on one
side of its cavity (like a ball bouncing to rest) before crossing to the other
side. This is shownat the left where the impactor position is measured rela-
tive to the cavity walls. Time is measuredin nondimensional units. Whenthe
amplitude decreases sufficiently, a finite numberof impacts occurs in each
half cycle (below a nondimensional amplitude of about 5 for the parameters
used). An example with three impacts per side is displayed in the figure on
the right. The number of impacts maybe even on one side and odd on the other,
as shown in the bottom figure.
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_MPACTOR BEHAVIOR ATAMPLITUDES BELOW ONE

When the amplitude becomes small enough that only one impact occurs in each

half cycle, very good damping is obtained. Rather surprisingly, the impacts

need not be equally spaced in time, as shown in the figure on the left. The

plots show the absolute displacement of the impactor and of both walls in order

to clearly reveal the asymmetrical behavior. At somewhat smaller amplitude,

the system locks into a symmetrical pattern of equally spaced impacts and pro-

duces its best damping (figure at right). At still lower amplitude, impacts

in each half cycle become impossible (bottom figure), and the damping falls

abruptly.
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LOSS FACTOR AND ITS PROPORTIONALITY TO IMPACTOR MASS

The loss factor (the fraction of oscillator energy dissipated per radian) is

plotted as a function of amplitude for three values of impactor mass fraction

in the left-hand figure. Note that at the amplitude where the best damping

occurs, an impactor with only 2 percent of the mass of the oscillator can dis-

sipate nearly i0 percent of the oscillator's energy per radian, or about

50 percent of the energy in one cycle. This level of damping is substantial

compared to that normally encountered in many aerospace systems and could,

therefore, have a major effect in suppressing resonant vibrations and vibration

instabilities. If the loss factor is divided by the impactor mass fraction

and plotted as a function of amplitude, as in the right-hand figure, it can be

seen that damping is rather closely proportional to impactor mass fraction.
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ADDITIVITY OF IMPACT DAMPING AND PROPORTIONAL DAMPING

Whether the contributions of impact damping and proportional damping are simply

additive should be questioned in a nonlinear system. However, for the light

to moderate damping regime explored herein, these contributions are additive,

as shown below. The loss factor is shown at the left for several values of

the proportional damping of the oscillator. On the right, the loss factor

corresponding to proportional damping has been subtracted from each curve to

yield the contribution due to the impactor alone, and a single curve results,

proving additivity.
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ORIGINAL PAGE IS

OF POOR QUALITY.

DAMPING DEPENDENCE ON AMPLITUDE AND RESTITUTION COEFFICIENT

It has been known that the loss factor due to impact damping, like that of dry

friction damping, is roughly inversely proportional to amplitude. The plot on

the left shows the degree of deviation from that dependence. The ordinate

variable is amplitude times the specific loss factor, which for exact inverse

proportionality would plot as a horizontal straight line. For the amplitude

range between 0.I and i0, the ordinate lies within about 30 percent of its

mean value. A similar plot on the right shows the dependence on the restitu-

tion coefficient, and the replot at the bottom shows that damping is reasonably

proportional to one minus the restitution coefficient.
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IMPACT PHASE, JUMP PHENOMENA, AND CHAOS

The figure at the upper left shows, for a very slow decay, exactly when impact

occurs during each half cycle as a function of amplitude. At some amplitudes

the impacts appear to be random; at others they are so regular that the circles

representing their impact times merge to produce smooth continuous lines in

the plot. In several places such a line splits into two (moving in the direc-

tion of increasing amplitude), and a period doubling occurs, suggesting that

the random-looking regions are chaotic. A comparison of the upper right and

lower left figures, in which the same amplitude range is traversed very slowly

in opposite directions, reveals a type of jump phenomenon. The lower right

figure shows impact phase angle for an impactor of useful mass over a large

amplitude range which includes the infinite-bounce region.
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CONCLUSIONS

Designed to operate near the most favorable amplitude, the impact damper pro-

vides very substantial damping per unit mass. An impactor with 2 percent of

the mass of the oscillator can provide a loss factor of nearly I0 percent, a

very high level for aerospace systems.

The free decay study provides a comprehensive picture of the extremely varied

behavior exhibited by the impact damper. This behavior ranges from periodic

motion to period doubling, jump phenomena, and chaos.

The damping provided is approximately predictable, since the free decay study

has shown that the loss factor is proportional to the impactor mass fraction

and to i - c (where c is the coefficient of restitution), and is roughly

inversely proportional to the nondimensional amplitude.

CONCLUSIONS

• EXCELLENTDAMPING PERUNIT MASS

• FREEDECAYPROVIDESCOMPREHENSIVEPICTURE

• DAMPINGIS PROPORTIONALTO
IMPACTORMASS

-1--_

l/AMPLITUDE

• SYSTEMEXHIBITS

PERIODICBEHAVIOR
PERIODDOUBLING
JUMP PHENOMENA
CHAOS

CD-88-32699
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ABSTRACT

A procedure is developed to determine approximate periodic solutions of autonomous and
non-autonomous systems. The trignometic collocation method (TCM) is formalized to allow for

the analysis analysis of relatively small order systems directly in physical coordinates. The TCM is
extended to large order systems by utilizing modal analysis in a component mode synthesis
strategy. The procedure was coded and verified by several check cases. Numerical results for two

small order mechanical systems and one large order rotor dynamic system are presented. The
method allows for the possibility of approximating periodic responses for large order forced and
self excited nonlinear systems.

NOMENCLATURE

a0

ai,b_
A_,tf
C

c
D
f
F

fi
K
lg
m
N
n
fi

q

qb

Qs
Qb
R

r,l

r
s
t
T

Fourier static coef. vector

Fourier cosine, sine coef. vector
state matrices
vector of Fourier coef.

matrix of collocation values

tridiagonal matrix
state function vector
state force vector

damping matrix
stiffness matrix
mass matrix
no. of harmonics

no. of collocation points
no. of modes
truncated no. of modes

physical coordinate vector

nonlinear subvector of q

linear system force vector

nonlinear force vector

norm

right, left displacement vectors
right modal matrix
connectivity matrix
time

fundamental period
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T
x

y,z

GREEK

transformation matrix

state vector

state right, left vectors

/iij
Z.

rl
tO

Kronecker delta

eigenvalue

modal coordinate

fundamental frequency

SUPERSCRIPT

o

T

collocation values

d/dt
transpose

INTRODUCTION

Nonlinear phenomena of many forms are clearly present in all complicated machinery. The
future development and advancements in these machines depends strongly on our ability to
identify, understand, model, analyze and design with these various nonlinear mechanisms present.
Transient and steady state analysis capabilities are required with direct numerical integration,
presently the most popular tool. This work presents a method based on trignometric collocation for
approximating periodic solutions of forced systems and for locating limit cycles of self excited
systems. The use of modal analysis allows the method to be extended to large order systems.

Previous work on the steady state response of systems which include nonlinear
components is limited except by direct numerical integration. This can be very time consuming,
especially for large order systems, and is not particularly economical in parametric design
applications. It is really the only option available for transient analysis, however, and also serves
as a useful means for verifying final designs.

Some quantitative methods for steady state analysis of nonlinear systems include
perturbation techniques, describing function procedures, harmonic balance procedures, and
methods of weighted residuals. Perturbation techniques (Nayfeh, 1981) have a limited range of
applicability due primarily to high algebraic complexity for large order systems. They also require
the introduction of a small parameter, thus restricting the solution validity to systems with weak
nonlinearities. Describing function methods (Atherton, 1982) are a good choice for many problems
since they can accommodate non-analytic nonlinearities. They can be used, however, only when
higher harmonics are small compared to the fundamental component.

The harmonic balance method, (Hagedom, 1982), has been recently applied to the analysis

of engineering systems ( Yamauchi, 1983; Saito, 1985) and the preliminary results indicate that the
method may be quite effective. An alternate approach is the use of methods of weighted residuals
which have been used quite extensively in the past to solve nonlinear boundary value problems.
Some of these methods, which have been extended to the problem of determining periodic

response, include Galerkin's method (Urabe, 1965; Urabe and Reiter, 1966; Stokes, 1972) and the
Trignometric Collocation method (Samoilenko and Ronto, 1979).

The primary objective of this work is to formulate the mathematical procedures for the
analysis of periodic motion in nonlinear systems. The proposed procedure involves a coupling of
the Trignometric Collocation method (TCM) with modal analysis techniques, thereby effecting a
substantial reduction in the number of unknown quantifies in the iterative part of the solution

process.
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MATHEMATICAL DEVELOPMENT

The focus of this research is on the TCM that was developed and formalized by Ronto
(Samoilenko and Ronto, 1979) with applicability to small order systems. Described below are the
essential features of the procedure for both non-autonomous and autonomous systems.

Trignometric Collocation Method

Many engineering systems can be modelled by a set of n nonlinear ordinary differential
equations of the non-autonomous form

x = f(x,t) (1)

where the RHS is continuous and periodic with a period T. It is required to determine a
periodic solution x(t) of Eq. (I). It is assumed that the required solution can be approximated by a
finite trigonometric series:

Ill

xo ,Z[
j=l

cos(jo)t) + I_ sin(j_)] (2)

where co is is the fundamental frequency. The unknown coefficients of the above series can be
ordered into a vector,

Ci = (a0, al, bl, a2, b2 ..... am, bm) T (3)

corresponding to each variable xi.

The collocation method essentially consists of substituting the assumed solution form, Eq.
(2), into the system state, Eq. (1), and requiring that the equations be identically satisfied at a
specified number of points, N. This gives rise to N,n nonlinear algebraic equations which must

be solved to obtain the unknown coefficients. For a unique solution, the following inequality
must be satisfied

N > (2m + 1) (4)

Rigorous investigations of the applicability and foundation of the TCM have been carried out by
Ronto (Samoilenko and Ronto, 1979), and only the formalism of the procedure is presented here.

The state variables can be evaluated at the collocation points in terms of the unknown
coefficients leading to the form:

O •

xI = T ci (5)

where,

•

Xj ( Xi (to)' Xi (tl)' ..... , Xi (IN))T= (6)

is a vector of values of the trignometric polynomial at the collocation points. The array T is an N *
( 2m + 1 ) transformation matrix whose elements are defined as:
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1 j=lTij cos [ (i- 1) jn / N ] j = 2, 4, ... (7)

sin [ (i-l) (j-l) n/N ] j = 3, 5, ...

The derivative of each state variable can be expressed in a trignometric series and is

obtained by differentiation of Eq. (2). Hence, the following relation, which is similar to Eq. (5), is
obtained:

O •

X i = coT D c i (8)

The array D is a (2m + 1 ) square tridiagonal matrix of the form:

0

0 +1

-1 0
0 +2

-2 0

0 +m

-m 0

(9)

and the elements are given by,

Di,i+ 1 = -Di+l, i = i / 2, i = 2, 3 ........ (2m)

The requirement that the set of system state equations, Eq. (1), be satisfied exactly at N
collocation points leads to N algebraic equations of the form:

coT D ei = fi(_T ¢i,tk) (10)

where fi is the vector of the ith function evaluated at the N collocation time points. Hence, the

collocation process yields N*n nonlinear algebraic equations in the (2m + 1 ) * n unknown
coefficients. These equations are then solved using a secant method from standard subroutine

packages of IMSL.

If the system state equations are autonomous, then Eq. (1) may be written as

x = f(x) (11)
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The frequency or frequencies of self-oscillation for such systems are unknown a priori. The
analysis procedure is essentially the same as in the non-autonomous systems and leads to a set of
nonlinear algebraic equations,

toT D c i "- fi(T ci) (12)

The number of unknown quantifies is increased by one, the unknown frequency, to [ (2m+l)*n +

1 ], and the number of collocation points must satisfy the following inequality to assure a unique
solution

N > (2m+l) + 1 (13)

Hence, this situation is a case of non-linear least squares and cannot be solved by the secant
method used for non-autonomous systems. An IMSL developed procedure, however, based on the
Levinberg-Marquardt algorithm for nonliunear curve-fitting can be applied to the autonomous
problem and has succesfully yielded satisfactory results, for several problems.

Rotor System Equations

The equations of motion for a typical multi-shaft flexible rotor system can be written in the
second order form

oo •

Mq + £)q + _Kq = QS + Qb(_b, qb) (13)

or equivalently in the first order form

_Ax + _Bx =F (14)

where

QS
q} , F= { }x = tq Qb

and

o]B = (15)
0

The linear forces of the system are included in the vector Q and the nonlinear component forces are

included in the sparse vector Qb. A direct application of the TCM to a large order system such as
Eq. (14) would almost always be computationally untenable. Thus, to obtain a mathematical model

that is sufficiently small for the TCM to be effective, it is necessary to reduce the order of the
original model.

It is propsosed here to develop a procedure to analyze the periodic motion of large order
structural systems with nonlinear supports or pseudo supports by using the TCM in conjunction
with modal analysis. This algorithm will reduce the original problem to a set of nonlinear algebraic
equations involving only the physical coordinates which are associated with the nonlinear
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supports. This would normally result in a susbstantial reduction in order hopefully rendering the
TCM computationaUy tenable.

The connectivity between the nonlinear coordinates and the system displacement is

specified by the connecticity matrix S and can be written as

b
q (t) = __S q(t) (16)

where qb is the displacement vector associated with the coordinates of the nonlinear supports. The
connectivity matrix S is a sparse matrix consisting mostly of zero elements and a few unity
elements that ensure that the displacements in the nonlinear supports are identical with the

displacements at the corresponding connection points of the linear system. Hence, Eq. (16) is a
statement of geometric displacement compatibility for the system.

Modal Analysis

The A and B arrays of Eq. (14) are not generally symmetric, thus both the right

eigenvectors Yi and adjoint left eigenvectors z i must be evaluated for use in a modal expansion.
These two sets of vectors satisfy the biorthoganality conditions

T Ay i = R. 5.. a)
Zj- l ij (17)

T
BYi = "_'R'5 b)Zj -- 1 1 IJ

where R i is the system norm associated with the eigenvalue _-i.

With the state vector defined in Eqs. (15), the system eigenvectors are of the form

{ _qri } { _'i li }
Yi = r i , Zi = li (18)

where r i and !i are the right and left displacement eigenvectors associated with the physical

coordinate vector q. The state response of Eq. (14) is represented by the modal expansion

2n

x = E Yi rli (19)
i=l

where Tli is the ith modal coordinate. Substitution of Eq. (19) into Eq. (14) and premultiplication

by zi T , using the biorthogonality conditions of Eq. (17), yield the 2n equations

• 1 iT QS
1_i - _'i 1_i = R_. i ( + Qb ) i = 1, 2, ..... 2n (20)

1

These equations are still coupled due to the nonlinear force vector Qb. For a large order system, it
is not normally necessary nor is it feasible to retain all the modal information when determining the

system steady state response. Usually only n lower modes are retained in the modal expansion of
Eq. (19), thus there are correspondingly n equations in Eq. (20).
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•SOLUTION PROCEDURE

Following the TCM procedure, periodic solution forms are assumed for the system
physical coordinates, the nonlinear subset of the system physical coordinates, and the generalized
coordinates in the modal expansion, i.e.,

j=l

a)

m

¢= _ + Z[ _ cos(0)jt)+ _ sin(_t)] b) (21)
j=l

m

rl = _ + Z[ a_cos(ojt)+ b_sin(_t)]
j=l

c)

By choosing N equally spaced collocation points and evaluating the variables of Eq. (21) at these
time points, the following set of relations is obtained

Oq = I C a)

%b = !Cb b) (22)

oq = I Eu c)

where the ith column of C corresponds to the variable qi (t) evaluated at each of the N collocation

points. The ith typical column of C is defined by Eq. (3). Similar definitions apply for the arrays of
Eqs. (22 b,c).

The unknown coefficient arrays (._,Cb,C_I) are dependent and are related through the

geometric displacement relation of Eq. (16) and the modal expansion of Eq. (19). From Eqs. (22
a,b) and (16),

I C b = I C ST (23)

and by utilizing the form of the system fight vectors, Eq. (18), the modal expansion for the system

physical coordinates may be written as

q = L ri _i -- r T! (24)
i=l

Thus, from Eq. (22a) and (24) the following relation between physical coordinate and normal
coordinate Fourier coefficients is obtained:

I C = T _ rT (25)
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The substitution of this constraint relation into Eq. (23) gives

Cb = _ rT _T (26)

The next step in establishing the solution is to apply the TCM procedure to the set of

pseudo modal equations, Eq. (20). Utilizing the equivalent form of Eqs. (5) and (8), Eq. (20) may
be written as

where:

T D ci'q -_T CiTI = °f i (27)

1
Of. n

t R.
1

! r QS Qbi ( (tl) + (tl))

iTi ( Q (tN) + Qb (tN))

(28)

The elements of the of i vector are the RHS values of Eq. (20) evaluated at the collocation points,

and are functions of the nonlinear displacements qb and velocities qb.

Equation (27) can be rearranged to the form

Ci_ = [ (0)D- _i I )-1 ( IT _D-1 ] IT ofi (29)

i = 1, 2 ..... n

which is a typical column of the array of modal coordinate Fourier coefficients, Crl. The

combination of relations (29) with Eq. (26) results in a set of nonlinear algebraic equations in terms

of Fourier coefficients for the physical coordinate subset qb.Thus, the size of the problem has

been substantitally reduced and the location of a solution is computationally more feasible.

The iterative procedure for estimating the Fourier coefficients Cb can be summarized in the

following steps:

1. Choose a starting value for C b.

2. Compute oqb using Eq. (22 b).

3. Compute _ using Eqs. (19).

4. Evaluate and update the value for C b using Eq. (26).

5. Check convergence between steps 1. and 4.

The procedure involves the solution of a set of nonlinear equations and its success depends upon
the effectiveness of the numerical routine utilized. The optimization routine based on the secant
method from the IMSL subroutine library proved to be very effective with convergence being
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achieved for a wide variety of starting points. The error norm in the algebraic equations appears to
be a reasonable measure of the solution accuracy.

NUMERICAL EXAMPLES

The results of analyzing three example systems are presented below. The first two are
relatively small order systems and are analyzed directly in terms of physical coordinates. The third

example is a larger order dual shaft rotor system that utilizes modal analysis in conjunction with the
TCM.

Journal - Hydrodynamic Bearing System

Consider a single rotating journal on a hydrodynamic bearing as illustrated in Fig. 1. With
reference to this figure, O is the bearing center, C is the geometric center of the journal, and c
represents the radial beating clearance. The mass center of the journal is assumed to be displaced
from the geometric center by the cg offset e. During rotation this offset gives rise to a rotating
unbalance force which is synchronous with journal spin frequency. The converging wedge that
arises due to the eccentricity of the journal gives rise to a pressure field in the fluid film that
supports the load.

The nondimensionalized equations of motion of the journal assume the form:

i*e

v = Fr cost_ + F t sint_ + u cos(t+_) + g
ee

w = F r sint_ - F t cost_ + u sin (t+[_)

(30)

In these equations, v and w represent the nondimensional displacement coordinates of the journal
center with respect to a fixed reference frame. The quantities g and u represent the gravity and
unbalance parameters, and Fr and F t represent the radial and tangential fluid film force components
acting on the journal.

Using short beating theory, Reynolds equation can be integrated to obtain closed form
expressions for the plain journal bearing force components, e.g. (Holmes, 1960). Thus,

F r = -B[ }x(l+2e2)E + 2e2(1-2_)]
( 1 - e 2 )5/2 ( 1 - e2 )2

(31)

F t = +B [ .-.-4e_ + _e(1-2@) ]
( 1 - e 2 )2 2 ( 1 - ¢2 )5/2

where, e = ( v 2 + ,v 2 )1/2 , _ = arctan ( w / v ) '_

and B is a _eadng parameter that is dependent on the fluid viscosity, and geometry of the bearing.

Clearly F r and F t are highly nonlinear functions of the response variables. Typically, the

journal equations, Eqs. (30) are linearized about the static equilibrium position. The resulting linear
response corresponds to an elliptical orbit centered at the equilibrium position. Application of the
TCM to this problem can yield an orbit which is quite different the linearized response as displayed
in Fig. 2.
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An interestingfactrevealedby theTCM isthatthe higherharmonics in theresponse of the

journal may not be negligible as contrasted with many nonlinear problems. In the results presented,
at least 8 harmonics were required to obtain close agreement between the TCM and numerical

integration. In this case, many analytical procedures, such as the Describing Function Method,
which neglect harmonics above the fundamental would not adequately describe the dynamics of the

journal.

Flow Induced Vibration

Consider the problem of quasi-steady analysis of the transverse galloping of a long prism of

square cross-section (Blevins, 1977; Parkinson and Smith, 1964).The equation of motion for the
single degree-of-freedom oscillator is

,, U 2y + 2_y" + y -- n cf (32)

where U is the non-dimensional velocity of wind and y is the non-dimensional vibration

displacement. The non-dimensional aerodynamic force coefficient cf is obtained by experimental

measurements in a wind tunnel and can be approximated by a polynomial in ct, the angle of attack,

or equivalently (y" / U).

= [AUy, B C D 1cf n _. (y.)3 + _._ (y.)5 _ ___ (y.)7 (33)

From a curve-fit to experimental values, A = 2.69, B = 168, C = 6270, D = 59,900 (for a
Reynolds number = 22,300) ; n is a mass parameter, which is a function of the prism dimensions

and the density of air, _ is the linear viscous damping coefficient.
The second-order nonlinear autonomous equation (32) has been shown to exhibit self-

excited oscillations and an analysis by the method of averaging was carded out by (Parkinson,
1964). It was found that the amplitude (A1) vs wind velocity curves for various values of the

damping coefficient collapse into a single curve if normalized by nA1 / 2_.
The first harmonic amplitudes obtained by the application of TCM are shown in Fig. 3.

As is evident from the figure, the response exhibits a hysteresis loop. A choice of different initial

guesses helped the procedure converge to the multiple solution points. It is identical to the figure in
Parkinson and Smith (1964) and indicates that the collocation procedure developed here is valid for

problems with multiple solution points.

Dual Shaft Rotor System

The dual-shaft rotor system with configuration shown in Fig. 4 includes a nonlinear

bearing at station 6 and excited by rotating unbalance in shaft 1 and a static side load at station 6.
Rotor (1,2) is modelled as a (6,4) station, (24,16) degree - of - freedom, (5,3) element assembly
with stations as indicated in Fig. 4. Detailed rotor configuration data is provided in (Nelson and
Alam, 1983). The rotating assemblies are connected to a rigid foundation by linear bearings at
stations 1 and 7 and are interconnected by a linear bearing between stations 4 and 10. A nonlinear

bearing with cubic stiffness variation and linear viscous damping connects shaft 1 to the rigid
foundation at station 6. The nonlinear bearing force components are given by the relations:
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where

s/in.

v

Fy =-(klr + kzr3)r - c_v

W . CwWFz =-(klr + kzr3) r

r = (v2 + w 2 )1/2

(34)

, and k 1 = 50,000 lbf/in, k 3 = 50 *10 9 lbf/in 3, and cv = Cw = 20 lbf-

The unbalance distribution of the rotating assembly consists of a single concentrated
unbalance at station 2 with a cg eccentricity of 0.95 mils. In addition, a static side load acts on the
system at station 6. Shaft 1 spins at 80,000 Rpm and shaft 2 co-rotates at 120,000 Rpm.

It should be noted that the linear subsystem is not totally constrained. Thus, an "artificial support"
is added at station 6 to eliminate a singularity. This influence is then subsequently removed from
the model by subtracting its influence in the nonlinear forces. A value of 10,000 lbf / in at station 6

was arbitrarily selected for this system. The nonlinear radial force versus displacement is shown in
Fig. 5. The linear bearing stiffnesses are 150,000, 50,000, and 100,000 lbf/in at station 1, 4-10,
and 7 respectively.

Displacement orbits, as determined using the TCM procedure, for this system are plotted in Fig. 6
for two stations and a side load of 100 lbf acting in the negative z direction. The orbit distortion
clearly indicates the presence of higher harmonics in the response.

CONCLUSIONS

A numeric-analytic procedure based on the trignometric collocation method has been

developed and implemented for estimating the periodic response of engineering systems. The
procedure allows for estimating periodic forced response and for locating limit cycles of self-
excited systems. A component mode synthesis strategy coupled with the TCM extends the method
to large order system application.

Three example analyses are presented. Two of small order in physical coordinates and the
third on larger order using the modal strategy. Preliminary indications are that this method may be
very effective in estimating the periodic response of both small and large order systems. Additional
work is required to further test its generality, to handle systems with subharmonic response and, to
ascertain the stability of the located periodic responses. Study on the speed and accuracy of the
necessary computational work should also lead to improvement in the utility of the approach.
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PIEZOELECTRIC PUSHERS FOR ACTIVE VIBRATION CONTROL

OF ROTATING MACHINERY
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ABSTRACT

The active control of rotordynamic vibrations and stability by magnetic bear-

ings and electromagnetic shakers has been discussed extensively in the litera-

ture. These devices, though effective, are usually large in volume and add

significant weight to the stator. The use of piezoelectric pushers may provide

similar degrees of effectiveness in light, compact packages.

Tests are currently being conducted at the NASA Lewis Research Center with

piezoelectric pusher-based active vibration control. The paper presents

results from tests performed on the NASA test rig as preliminary verification

of the related theory.
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*Texas A&M University, College Station, Texas.

1-29



MODELOFPIEZOELECTRICPUSHER

A piezoelectric pusher consists of a stack of piezoelectric ceramic disks that
expands in response to an applied voltage. The extension and force of the
pusher depends on the number and thickness of the disks and on the cross sec-
tional area of the disks, respectively.

The ideal model consists of a prescribed displacement =, which is proportional
to the input voltage, and a spring representing the stiffness of the stack.
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DEFLECTION VERSUS INPUT VOLTAGE

The figure shows a typical voltage versus tip displacement plot for the pusher

in the previous figure. The curve in this plot provides an approximate

description of the internal displacement _ versus voltage relation, since the

tip is unloaded and since the preload spring in the previous figure is very

light (114 Ib/in.). Therefore, it is assumed that the voltage sensitivity for

is SA = -1448 V/in.

INPUT
VOLTAGE,

V

SATURATEt 4-

-2

%_,_4t ",I- RETRACTION

-1

-4

EXTENSION

T,p EFLECT,ON,

_ "-_.'_
I SATURATE

CD-88-32860

1-31



DEFLECTION VERSUS LOAD

Load deflection characteristics of the pushers, were obtained by securing each

one in a solid cylinder, applying the load W, which produces reaction R on

the protruding tip of the pusher, and then measuring the tip deflection.

Repeated tests with three separate pushers yielded an average stiffness of

approximately 20 000 ib/in.
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TESTRIG

This figure shows a simple sketch of the test rig, which consists of a 1-in.-
diameter shaft, a 24-in.-long, 5.l-in. diameter, 3.15-ib overhung disk, and
two squirrel-cage-mounted ball bearings. The outboard bearing is externally
forced by an orthogonal pair of piezoelectric pushers, which are, in turn,
positioned opposite the two eddy-current displacement probes d3 and d4.
The uncoupled, velocity feedback control law used is

= -G' d4=hor hor

= -G' d3=ver ver

where G' represents a gain factor.
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FEEDBACKCIRCUIT

This figure outlines how effective damping can be calculated once the probe
and actuator sensitivities and actuator stiffness are known. The horizontal
and vertical active damping were set equal in this arrangement, that is,
CA = 1.57G ib sec/in., where G is the amplifier gain.
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SUBSTITUTING THE DATA VA = SAG'(J = 0.44 SD(8.6 x 10 -4cJ)G

RESULTS IN

OR

SACA ¢J= SO x G(3.8 x 10 -4)cJ

KA

CA = 3.8 x 10 -4SD x G x KA= 1.57 × G Ib sec/in.
SA
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TESTVIBRATIONAMPLITUDESFORPROBESdI AND d2

The rotor was carefully balanced and then intentionally unbalanced by a known
amount (0.14 oz in.), in order to comparethe test results with those predicted
by an unbalance response computer program. The top figure shows the test
vibration amplitudes versus speed plots for the disk probe dI. The family of
curves is generated by switching amplifier gains in the feedback circuit and
calculating effective damping according to the feedback relationships. The
bottom figure shows the test vibration amplitudes for disk probe d2.
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COMPUTEDVIBRATIONAMPLITUDESFORPROBEdI OR d2

This figure showsthe computer simulation results for either probe dI or d2.
Although the test results show less damping than the predicted results exhibit,
the trends are very similar, and the test damping is still approximately
(57 Ib sec/in.).
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TESTVIBRATIONAMPLITUDESFORPROBESd3 AND d4

The top figure shows the test vibration amplitudes for the bearing housing
probe d3. The bottom figure shows the test vibration amplitudes for the bear-
ing housing probe d4.
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COMPUTEDVIBRATIONAMPLITUDESFORPROBEd3 OR d4

This figure showsthe computer simulation results for either probe d3 or
The results again indicate that the equation in the feedback circuit over-
predicts the active damping. However, the pushers do provide approximately
(80.0 ib sec/in.) damping at the highest amplifier gain setting.
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AIRCRAFT TURBINE ENGINE (T-64)

Computer simulations were performed to estimate the pusher stroke and force

requirements for providing useful levels of damping in actual turbomachinery.

The engine in this figure consists of a power turbine drive shaft supported

by two rolling-element bearings which rotate concentrically inside a hollow

gas-generator drive up to 17 000 rpm. There are four rolling-element bear-

ings associated with the gas-generator turbine that runs between i0 500 to

18 230 rpm. The power turbine drive shaft has a span of 55.5 in. and weighs

91.5 lb. The gas-generator driveshaft is 44.2 in. long and weighs 112 lb.
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MODESHAPEPLOTS

The plots below show the lowest, undampedforward mode, the lowest, undamped
backward whirl mode, and the second, forward whirl modefor the finite-element
model of each set. The upper plot is the power turbine, and the lower is the
gas generator. The gas generator participation in the first, forward whirl
modeis very small, but it predominates in the first, backward whirl mode. The
plot for second, forward whirl modeshows participation of both power turbine
and gas generator motion.

FIRST FORWARD WHIRL

FIR

SECOND FORWARD WHIRL
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POWERTURBINESTEADYRESPONSE

This figure shows an unbalance response plot at the outboard end of the gas
generator (node 36). The system is excited by out-of-phase unbalances of
0.25 oz in. at nodes 8 and 20. The damper is located at the right bearing of
the power turbine (node 21). The results show that a I00 Ib sec/in, damping
value can significantly attenuate vibration at all critical speeds.
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PRESCRIBEDPUSHERDISPLACEMENT

This figure shows the internal displacement = of the pusher damper.for the
previous unbalance response run..These results are based on = = -CZ/K, where
C is the active damping value, Z is the velocity of the pusher attachment
point (node 21), and K, the assumedpusher stiffness, is 25 000 ib/in. Note
that the maximuminternal displacement of the pusher with C = I00 is about
4 mils.
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REQUIREDPUSHERFORCEVERSUSSPEED

The plot shows pusher force (pusher stiffness times (Z - =) versus speed) for
the previous unbalance response run. The maximumpusher force with C = i00 is
approximately I00 lb.
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POWERTURBINESTEADYRESPONSE

This figure showsthe sameresponse as in the previous case. However, the
damper is now located at the outboard bearing of the gas generator, that is, at
node 36. At this location the damper is ineffective in controlling the lowest
mode. This results because the gas generator does not participate in this
mode, as shownin the modeshape plots.
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VARIATIONOFREALPARTVERSUSCROSS-COUPLEDSTIFFNESS

This rotor-bearing system is unstable if the damper is removedand an Alford
type cross couple stiffness of i000 Ib/in. is applied at node 37. The unstable
eigenvalue is 3.3 sec-I at 12 390 rpm. This figure shows the real part of the
sameeigenvalue when a 100-1b sec/in.-damper is installed at node 35. The
previously unstable modeis seen to be stable even with a cross-coupled stiff-
ness of i0 000 ib/in.
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SUMMARY

This presentation has examined the potential use of piezoelectric pushers for
active control of rotor-bearing system vibrations. The results showedsignifi-
cant levels of active damping contributed by the pushers (50 to 80 ib sec/in.)
and very good agreement between vibration response trends predicted by theory
and measuredon the rig. Finite-element computer simulations showed that sig-
nificant improvements in rotor stability and unbalance response could be
achieved with an active damping of i00 Ib sec/in., which requires a pusher with
displacement of about 4 mils, force of i00 ib, and a stiffness of 25 000 Ib/in.

. PIEZOELECTRIC PUSHERS APPLIED TO ACTIVE CONTROL OF ROTOR-BEARING

SYSTEM VIBRATIONS

• TESTING CONDUCTED AT NASA LEWIS SHOWED SIGNIFICANT LEVELS OF

ACTIVE DAMPING

• COMPUTER SIMULATIONS SHOWED PIEZOELECTRIC PUSHERS EFFECTIVELY

CONTROLLED VIBRATION IN ENGINES.

CD-88-32879
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N 8-23230

ACTIVE CONTROL AND SYSTEM IDENTIFICATION

OF ROTORDYNAMIC STRUCTURE

M. L. Adams

Department of Mechanical and Aerospace Engineering
Case Western Reserve University

Cleveland, Ohio

ABSTRACT

Two general topics are currently at the forefront of investigations by present-

ly active researchers working on problems in the dynamics of rotating machin-

ery. These two topics are Active Control and System Identification, both of

which are being actively researched at Case Western Reserve University

(CWRU). Four current CWRU research projects are summarized in this paper:

(i) Active control of rotor system dynamics, this work being performed on site

at NASA Lewis by the CWRU rotordynamics research team, (2) Attenuation of ro-

tor vibration using controlled-pressure hydrostatic bearings, (3) A new seal

test facility at CWRU for measuring isotropic and anisotropic linear rotordy-

namic characteristics, and (4) The use of rotordynamic instability thresholds

to accurately measure bearing rotordynamic characteristics.
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ACTIVE CONTROL RIG 

This test rig has been recently installed at NASA Lewis Research Center to per- 
form a wide variety of experimental studies on techniques for actively control- 
ling rotor system dynamics. The rig is shown here with four independently 
controllable electromagnetic shakers. Other types of servomechanisms are also 
presently being designed for use in this rig, including a magnetic bearing. 
This test facility is fully operational except for establishing the best type 
of servomechanism for delivering the controlled input forces. 

In parallel with perfecting this general purpose test facility, we are also 
developing mathematical and conputational approaches for the controller. Pub- 
lished work in recent years have focused on control approaches based upon 
detailed a priori dynamic characteristics of the rotor system and these 
approaches has been successfully demonstrated in laboratory test setups. The 
approaches being researched at CWRU are focused on optimization (i.e., minimi- 
zation) methods, not requiring a priori dynamic characteristics and thus are 
potentially much more robust and automatically adaptable to system changes and.- 
uncertainties in applications outside the laboratory. 
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ATTENUATION OF ROTOR VIBRATION USING CONTROLLED-PRESSURE

HYDROSTATIC SQUEEZE-FILM DAMPERS

The use of fluid-film hydrostatic bearings to minimize flexible rotor vibra-

tion is a practical design approach with potential advantages. Computational

results of the first phase of this work has been recently published by Adams

and Zahloul (1987) and are summarized in the illustrations here. Essentially,

the results demonstrate the degree of system controlled variability which

could typically be provided on a variety of rotating machinery through the use

of controlled-pressure hydrostatic bearings. The case shown below is based on

a single controlled supply pressure, common to all hydrostatic bearing pock-

ets. More elaborate scenarios would provide even more controllability.
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NEWGENERALPURPOSETESTFACILITY AT CWRUFORMEASURING
SEALANDBEARINGROTORDYNAMICCHARACTERISTICS

The illustration below is a schematic of a new test facility at CWRUfor sys-
tem identification research pertaining to both seals and bearings. The design
of the apparatus is quite uniqueand the most advanced in its field, see Adams
and Makay (1983). A controlled rotor vibration circular orbit is provided us-
ing the double-spool shaft configuration shown. The spindle is designed with
an adjustable eccentricity (0-60 mils) between the inner and outer spindle cen-
terlines. This provides independent control over spin speed and vibration
orbit using two variable speed drives, and permits experimental studies in both
linear and nonlinear regimes of any seal or bearing tested. This facility
also contains an eighteen stage centrifugal pumpwith a design output of 50
gpmat 450 psi. This pumpis used to subject tested seals to actual pressure/
flow conditions of the intended application.

Assembly Layout of Rotor Support Component Test Apparatus
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THE USE OF ROTORDYNAMIC INSTABILITY THRESHOLDS TO ACCURATELY

MEASURE BEARING ROTORDYNAMIC CHARACTERISTICS

A re-examination of rotor-bearing dynanic instability has led to a fresh ap-

proach that has been shown to significantly improve the measurement accuracy

of journal bearing rotordynamic coefficients. The approach uses a two-degree-

of-freedom system and has two major parts. First, bearing stiffness coeffici-

ents are measured using static loading. Second, measured orbital motion at an

adjustable threshold speed is used to extract the bearing damping coefficients

by inverting the associated Eigen problem. Below is shown the test rig design

for this new experimental method. Detailed treatment is given by Adams and

Rashidi (1985) and Rashidi and Adams (1988).
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ELECTROMAGNETIC DAMPERS FOR CRYOGENIC APPLICATIONS

Gerald V. Brown and Eliseo DiRusso

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

Cryogenic turbomachinery of the type used to pump high-pressure liquid hydro-

gen at -423 °F and liquid oxygen at -297 °F to the main engines of the space

shuttle are subjected to lateral rotor vibrations from unbalance forces and

transient loads. Conventional dampers which utilize viscous fluids such as

bearing lubricating oil cannot be used in turbopumps because the bearing com-

partments are filled with either liquid hydrogen or liquid oxygen. Liquid oxy-

gen and liquid hydrogen have a viscosity comparable to air and, therefore, are

not effective in viscous dampers.

Electromagnetic dampers are currently being explored at Lewis Research Center

as a means of providing damping in cryogenic turbopumps because their damping

effectiveness increases as temperature decreases and because they are compat-

ible with the liquid hydrogen or liquid oxygen in the turbopumps. Therefore,

these dampers make effective use of the cold environment inherent in cryogenic

turbopumps.
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OVERVIEW

ELECTROMAGNETIC DAMPER

Electromagnetic dampers are being explored at the Lewis Research Center as a

means of damping rotor vibrations in cryogenic turbopumps. Use of this damper

in turbopumps can extend bearing life and can lead to more reliable, less

costly turbopumps.

• DAMPING IS ACHIEVED BY GENERATING AN ELECTRICAL CURRENT AND DISSIPATING
THE ENERGY AS HEAT.

• APPLICATION--SPACE SHUTTLE MAIN ENGINE TURBOPUMPS

• BENEFITS

-- CAN TOLERATE LESS ACCURATE ROTOR BALANCE

-- INCREASES BEARING LIFE

-- PROVIDES MORE LATITUDE IN ROTOR DESIGN

C_8_31_2
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WHY USE ELECTROMAGNETIC DAMPERS IN TURBOPUMPS?

Choices of damping methods for cryogenic turbopumps are limited because of the

cold temperatures and the very low viscosity of cryogenic fluids. Electro-

magnetic dampers are very desirable for turbopump applications because they

are compatible with cryogenic fluids and because their effectiveness is

enhanced at the low cryogenic temperatures.

• VISCOUS DAMPERS REQUIRE HIGH VISCOSITY FLUIDS

(INCOMPATIBLE WITH TURBOPUMP FLUIDS).

• FLUIDS FOUND IN TURBOPUMPS HAVE VERY LOW VISCOSITY

(COMPARABLE TO AIR).

• ELECTROMAGNETIC DAMPER EFFECTIVENESS IS GREATLY ENHANCED AT CRYOGENIC

TEMPERATURES.

• ELECTROMAGNETIC DAMPERS ARE COMPATIBLE WITH TURBOPUMP FLUIDS.

CD-88-31903
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HIGH-PRESSURE OXYGEN TURBOPUMP 

Shown in the figure is a typical turbopump used in the space shuttle main 
engines to pump liquid hydrogen and liquid oxygen to the space shuttle main 
engines. These pumps have been plagued with rotor vibration problems and 
short bearing life. 
Research Center to help solve these problems. 

Electromagnetic dampers are being explored at Lewis 

CD-88-31904 
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ELECTROMAGNETIC DAMPER SCHEMATIC 

This figure shows a schematic of an electromagnetic damper. This type of 
damper converts energy from an unwanted mechanical vibration to an electrical 
current and dissipates the energy as heat. It is particularly well suited to 
the cold environment found in turbopumps because their damping effectiveness 
increases at low temperatures. 
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POSTER PRESENTATION 

HIGH-PRESSURE OXYGEN TURBOPUMP 

This picture shows a high-pressure liquid oxygen turbopump of the type used in 
the space shuttle main engines. 
which are submerged in liquid oxygen; hence conventional viscous dampers using 
lubricating o i l s  cannot be used for damping purposes. Electromagnetic dampers 
are being explored as a means of providing damping in these pumps. 
electromagnetic dampers in these pumps could provide greater flexibility in 
the design of turbopump rotors and also could permit less precision in 
balancing the rotor. 

These pumps have rigidly mounted bearings 

Use of 

CD-88-31904 
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ELECTROMAGNETICDAMPERSCHEMATIC

This figure shows a typical schematic of an electromagnetic damper. The prin-
ciple elements of the damperare permanentmagnets, copper coil, and magnetic
iron. The coil (nonrotating) is rigidly attached to the bearing housing. Lat-
eral vibration of the bearing housing produces a coil motion, as shown in the
figure. This motion causes the coil conductors to cut the flux lines of the
permanentmagnets, thereby generating a current in the coil. The current
flowing in the coil causes the coil to heat up. This heat is dissipated in
the liquid oxygen, thereby providing dampingfor the vibrating bearing housing.
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TUNED ELECTRICAL CIRCUIT SCHEMATIC

In order to maximize the current generated in the coil, a capacitor is placed

in series with the coil. This forms a series circuit with resistance, capaci-

tance, and inductances, as shown in the figure. The resistance is the coil

resistance, and the inductance is the coil inductance. This circuit can be

tuned such that the current flowing in the coil is maximized at the frequency

of the vibrating shaft. The tuning is accomplished by selecting the capaci-

tance such that the electronic circuit has a resonant frequency equal to the

mechanical shaft vibration. Tuning the electronic circuit to the mechanical

vibration frequency thus maximizes the effectiveness of the damper.
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CURRENT INDUCED IN COIL VERSUS FREQUENCY - ROOM TEMPERATURE

This figure shows the current generated versus frequency for typical tuned and

untuned circuits at room temperature. This illustrates that at room tempera-

ture there is a negligible difference between the tuned and untuned circuits.

Also, the current is low.
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CURRENTINDUCEDIN COILVERSUSFREQUENCY- LIQUID NITROGENLOWTEMPERATURE

This figure showsthe current generated versus frequency for tuned and untuned
circuits at liquid nitrogen temperature (-321 °F). At the tuned frequency,

the current output is much higher for the tuned circuit than for the untuned

circuit. This illustrates the effectiveness of the damper at cryogenic

temperatures.

CURRENT
INDUCED
IN COIL

I
I
I

I
!
I
I
I
I
l
l
l

/

UNTUNED CIRCUIT

I ......... TUNED CIRCUIT

I
500

FREQUENCY,Hz
CD-88-31908

1-62



O'D Tr_'L'P..T _ "r" • r'_'_q

OF POOR QUal,IT_

ELECTROMAGNETIC DAMPER TEST APPARATUS - LIQUID NITROGEN

This figure shows a rig which is used for conducting electromagnetic damper

experiments in simulated cryogenic turbopump conditions. The electromagnetic

damper is submerged in liquid nitrogen at -321 °F. Vibration of the lower

bearing housing is induced by unbalancing the rotor disk. Damper performance

is evaluated by measuring lateral shaft displacements (shaft orbits) and pro-

cessing these data in a computer to get synchronous rotor response and damping
ratio.

• MAGN(
CARRIER
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SUMMARY

Research on electromagnetic damping for cryogenic applications is being

explored at Lewis Research Center. The program is oriented towards providing

new damping methods for cryogenic turbopump rotors of the type used in the

space shuttle main engines. Research to date has shown that this type of

damper must be electronically tuned to the frequency of the mechanical vibra-

tion in order to be effective as a damper. This is accomplished by forming a

series "resistive, inductive, capacitive circuit" and selecting the capaci-

tance such that the circuit is tuned to the frequency of the mechanical vibra-

tion. Research testing of the tuned cryogenic electromagnetic damper is

planned for the near future.
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PARALLEL COMPUTING

SESSION OVERVIEW

Louis J. Kiraly

Structural Dynamics Branch
NASA Lewis Research Center

Our knowledge of the physical processes that interplay within the complex

dynamic environs of modern turbomachinery exceeds our ability to compute their

overall effect. We can analyze aspects of most of the important processes

effects, but we cannot readily compute their overall impact on system response.

We cannot design an engine mathematically today - we need experimental versions

to "adjust" our mathematical models. There are several reasons for this.

First of all, we do not always understand the physical interactions between

processes such as those between thermal effects on basic material properties,

the coupled aero-structural response of blades made from such materials, and

the coupling of such blade vibrations with net rotor-shaft system response.

Understanding of physical process interactions like these requires further

study. Secondly, we are unable to adequately numerically simulate many funda-

mental processes. Much of this conference addresses these first two problems

with development of numerical simulations of the most significant engine phe-

nomena. The third and final problem is one of even being able to compute

those processes which we understand and which we can reasonably simulate. The

computing problem can rapidly exceed the capacity of today's computers. These

complex problems become so large that they will only be solved by breaking

them into parts which can be simultaneously solved in parallel computer sys-

tems. This session deals with some initial work to develop needed parallel

computing methods for structures.

Generally, there are three areas of interest. First, there may be fundamen-

tally new approaches for solving traditional problems which "map" well onto

parallel computers - with great increases in computing speed and efficiency.

The talks on multigrid analysis and parallel eigenvalue extraction are in this

first category. Secondly, tools are needed to help formulate and construct

parallel computing programs which, by their very nature, can be exceedingly

complex and difficult to manage. The presentation on adapting high-level

language programs using data flow and the poster session for doing graphical

computations in parallel are in this second category. The third area of inter-

est involves making use of our current huge investment in existing single-

processor mathematical methods and models (such as finite-element models) and

our need to adapt these models to the parallel processing. The presentation

of iterative finite-element solvers is in this category.

These are only the first steps toward the eventual coupling of complex physi-

cal system models which will enable "mathematical" engine system design as

well as the detailed study of various interactions within engine systems.
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MULTIGRID FOR STRUCTURES ANALYSIS

Albert F. Kascak

U.S. Army Aviation Research and Technology Activity - AVSCOM

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

In structural analysis the amount of computational time necessary for a solu-

tion is proportional to the number of degrees of freedom times the bandwidth

squared. In implicit time analysis, this solution must be calculated at each

discrete point in time. If, in addition, the problem is nonlinear, then this

solution must be iterated at each point in time. If the bandwidth is large,

the size of the problem that can be analyzed is severely limited.

The multigrid method is a possible algorithm that can make this solution much

more computationally efficient. This method has been used for years in compu-

tational fluid mechanics. It works on the fact that relaxation is very effi-

cient on the high-frequency components of the solution (nearest-neighbor

interactions) but is not very efficient on the low-frequency components of the

solution (far interactions). The multigrid method relaxes the solution on a

particular model until the residual stops changing, which indicates that the

solution contains the higher frequency components. A coarse model is then gen-

erated and relaxed for the lower frequency components of the solution. These

lower frequency components are then interpolated to the fine model.

In computational fluid mechanics the equations are usually expressed as finite

differences. A coarse model is generated by just doubling the grid size and

using a Green's integral theorem to obtain the forcing function on the coarse

grid. Linear interpolation is used to transfer the lower frequency solution

back to the fine grid.

In structural dynamics the equations are usually expressed as finite elements.

Neighbor elements need not be connected. The process of condensing a fine

model into a coarse model and interpolating the low-frequency solution to the

fine model will be studied in this work.
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OBJECTIVE

The objective of this work is to use an implicit time march solution to study

nonlinear structural dynamics. The work will be done in three phases. The

first phase, a beam structure, will have application in a multishaft, combined

lateral, torsional, and axial rotordynamic analysis. The second phase, a plate

structure, will have application in bladed disk vibration with coulomb damping.

The third phase, a full three-dimensional structure, will have application in

space structures.

To aid the reader, a symbols list has been included in the appendix.

IMPLICIT TIME MARCH SOLUTION OF NONLINEAR STRUCTURAL DYNAMICS

• BEAM--MULTISHAFT, COMBINEDLATERAL,TORSIONAL,AND AXIAL ANALYSIS
• PLATE--BLADEVIBRATIONWITH COULOMBDAMPING

• THREE-DIMENSIONALSPACESTRUCTURESANALYSIS

CD-88-32936
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NUMERICALINTEGRATION

The numerical integration method is based on a Nordsieck-like method. The
displacement, velocity, and acceleration are defined at an initial time. A
modified Taylor series is used to calculate the displacement, velocity, and
acceleration at the advanced time. The Lagrange remainder term, the time
derivative of the acceleration, is calculated from the equations of motion
at the advanced time. The constants _ and _ are determined so that the
method is stable as time approaches infinity.

This method of integration for a first-order differential equation is Gear's
method (Gear, 1971). Zeleznik showedthat this method could be used on higher
order equations (private communication with F.J. Zeleznik at NASALewis
Research Center in 1979). Kascak (1980) showed that for a third-order inte-
grator used on a linear second-order differential equation the method is
unconditionally stable.

LET R(t)BE AN n ELEMENT VECTOR OF NODAL DISPLACEMENTS AND

V(t) =1_ Aft) =

MODIFIED TAYLOR SERIES

1 A(0)t 2 + 1 c_(_,)t 3
R(t) = R(0) + V(O)t +_- _.

V(t) =V(0) + A(0)t + ½ 13,_(_,)t2

A(t)=A(O)+/_(E,)t

WHERE

o<_,<t

AND a AND 13ARE DETERMINEDSO THAT THEMETHOD IS NUMERI-

CALLY STABLE AS t - oo

CD-88-32937
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NUMERICALSTABILITY

The numerical stability of the integration method can be examined by substi-
tuting the displacement, velocity, and acceleration into the linear equations
of motion, and solving for the time derivative of the acceleration. As time
approaches infinity the dominate term on each side of the equation has the
stiffness matrix as a premultiplier. The time derivative of the acceleration
is proportional to the initial acceleration divided by the time. If the time
derivative is substituted into the modified Taylor series and if = is set to
3 and B is set to 2, then the acceleration is zero and the velocity is con-
stant. The eigenvalues becomezero and one.

MA+CV +KR=F

( 1 K)" IM 1 t2K) A(O) - (C + tK)V(O) - KR(O)tM+ 15t2c+lot 3 A(E,) =F- +tC+_-6

AS t -°°

R = RIO)+ VlOlt

(V =v(O)+ 1-g a

LET a=3 AND I_=2

• R = R(0)+ V(0)t V =V(0) A = 0

0D-88-32938
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ITERATIVESOLUTION

If the initial displacement, velocity, and acceleration, and an initial esti-
mate of the time derivative of the acceleration are given, then estimates of
the advanced displacement, velocity, and acceleration are given by using the
modified Taylor series. If a correction to the estimate of the time derivative
of the acceleration is given, then new estimates of the displacement, velocity,
and acceleration are given by the modified Taylor series. The correction to
the time derivative of the acceleration can be found from the equations of
motion.

GIVEN R(O), V(O), A(O), AND ,_(E,)~,_ (0)

21__ 1 _{O)t3THEN R(0) = R(O) + V(O)t + A(O)t2 + _.

V(0) = V(O) + A(O)t + 1 i5,_(O)t2

A (0) : A(O) + ,_(O)t

R(t) : R(0) + 1 nA%t3
6

V(t) = V (0) + 113A_t 2

A(t) = A(0) + ARt

LET

THEN

CD-88-32939
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NONLINEAREQUATIONSOFMOTION

The nonlinear equations of motion are the sumof both the static and dynamic
forces for each element. As such, the equations are functions of the displace-
ment, velocity, acceleration, and time. If the modified Taylor series is
substituted into the equations of motion using the iterative form, then the
equations of motion becomea function of the correction to the time derivative
of the acceleration.

0 = F(R,V, A,t)

WHERE F IS AN n ELEMENTVECTOR SUM OF THE STATIC AND DYNAMIC FORCES

THEN

0 = F(R(O)+6"ic_t 3,v(O)+ 2113A_t2' A(O)+ A_to t/

OR

CD-88-32940
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LINEARIZEDEQUATIONSOFMOTION

To solve for the correction, the equations of motion are linearized about the
estimated values. The instantaneous stiffness, damping, and massare defined
by the various partial derivatives with respect to displacement, velocity, and
acceleration. If the linearization is donenumerically, the stiffness, damp-
ing, and massdo not have to be calculated. The numerical differentiation of
the correction to the time derivative of the acceleration is all that is
needed.

This solution procedure is equivalent to the Newton-Raphsontechnique. The
numerical differentiation and the solution of the linearized equations of
motion are computationally time consuming, although straight forward. The
multigrid technique could bepotentially orders of magnitudes faster. The
linearized equations of motion will be the basis for generating a coarse model
from a fine model.

WHERE

0 = F(0) - BA,_

F(0): F(R(0),V(0),A (0),t)

:i ot3K+ 1 13t2C+ tMB

i

K:-0F C:'aF M:-0F

• BA,_--F(0)

CD-88-32941
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STRUCTURAL CONDENSATION

If the linearized equation set is partitioned into nodes belonging to a coarse

model (upper partition) and the nodes that are eliminated from the fine model

(lower partition), then structural condensation can be used to solve for the

coarse model. In addition, the structural condensation process can be used to

interpolate the solution from the coarse model to the fine model. If the higher

frequency part of the solution is found on the fine model and the lower fre-

quency part of the solution is found on the coarse model, then the resultant

forces must be zero. Thus the solution for the nodes eliminated from the fine

model can be found.

IB22JLAA2J

-1 (f) -1 (f)
(BII-BI2B22B21)AA I:F I -BI2B22F2

-1 [ (f) • )A,_2: B22_F2 - B21AA I

-1 F(C) (_) -1 (f)LET B(c) = Bll - B12B22B21, = F - B12B22F2

•. B(c)A,_I : F(C)

_f) -i •IF F 0 = Z_,A2 (INTERPOLATOR): : -B22B21AA I

CD-88-32942
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FINE-TO-COARSE AND COARSE-T0-FINE MODEL TRANSFORMATIONS

The fine-to-coarse model transformation is a rectangular matrix that averages

the force from the fine model to the coarse model. The upper partition is an

identity matrix, and the lower partition is defined in the structural condensa-

tion process. The coarse-to-fine transformation interpolates the correction of

the time derivative of the acceleration from the coarse to fine model. In the

symmetric case, the fine-to-coarse transformation is the transpose of the

coarse-to-fine transformation.

FINE-TO-COARSE MODEL TRANSFORMATION

I@: -I

-B22B21

= AA =@AA 1

COARSE-TO-FINE MODEL TRANSFORMATION

[I' -2] F(C) eF(f)i-BI2B2 = :B= I

• BAR: F(f) = BB@A/_1:0F (f)

OR

B(C)A/_I: F(c)

CD-88-32943
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NONLINEARCONDENSATION

The nonlinear condensation process transforms the independent variables from
the coarse model to the fine model and the dependent variables from the fine
to coarse model. Thus the resultant forces are relaxed on the coarse model.
This would only require the inversion of a diagonal matrix. The corrections
on the coarse model are then interpolated to the fine model. The lineariza-
tion of the equations of motion are not needed in the solution process, but
are needed only to define the transformations.

0 = F(A,_) = o: eF(_AA1)

RELAXATION

O=SF (f)-DAA I = A/_ I:D-IF (c)

CD-88-32944
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LOCAL STRUCTURAL CONDENSATION

The linearization of the equations of motion and the structural condensation

process requires a considerable amount of computational time. Multigrid via

relaxation is most efficient on nearest neighbor interactions. Thus only a

partial linearization of the equations of motion is necessary. The equations

of motion have to be linearized only with respect to the node under considera-

tion and its nearest neighbors. Applying condensation to this local inter-

action model results in local structural condensation. In the case of a beam,

this linearization results in a block tridiagonal matrix and the structural

condensation results in a coarse model in which every other node is removed

from the fine model.

\
)

I

i

\

B IS BLOCK TRIDIAGONAL--INCLUDES NEAREST NEIGHBOR INTERACTION,

NEGLECTS FAR INTERACTION

CD-88-32945

1-77



BEAM EXAMPLE

If the tridiagonal equation set is reordered so that the even numbers are in

the upper partition for both the fine and coarse model and the odd numbers are

in the lower partition for the fine model, then the structural condensation has

a simple form. In the reordered equation set, the block matrices on the diago-

nal of the partitions are diagonal. The inversions of these block matrices

are trivial.

ZlW 1

U2Z2W 2

U3Z3W 3

U4Z4W 4

UsZsW5

U6Z6W6

U7Z7W7
U8Z8W8

_ U9Z9

E-hl E-h.
z4_._..,'Ju4w,__.,,'

I

(,"'_Z 6 I(,_U6W6

Z8_ U8W8

O

_v1 f--,j z1

0,w l,,O
UsW5 I Z 5

_ u,w,ICh
U9 _ Z9

,'- • -

AA 1
i

i •
IAA2
! .

i AA3

_A4

AA 5

AA 6

AA 7

AA 8

AA 9

I+"
AAA

rAA_

IAA_

IAA_

IAA_

IAA7

IAAo

P i

_21

I-_ I

r41

= l'c,I
J

%1

r7 1

rsl

_FQI

!r2

i r4
i

F6

F8

F1

F3

i P

It7

i P

Iv(}
_ .

BA/_ = F(f)

B21

CD-88-32946
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SOLUTION OF BEAM EXAMPLE

The solution for the nonidentity partition of both transformations is tridiag-
onal. For the fine-to-coarse transformation, the nonidentity partition is also

lower triangular. For the coarse-to-fine transformation, the nonidentity par-
tition is also upper triangular.

-I
-B22B21 :

--TI

$2T2(_

S3T3

-I
TL : -Z2L_IW2L_I

-i
SL : -Z2L_IU2L_I

-I
- B12B22--

-XIYI

X2Y2_

X3Y3

_X4Y 4

-I
XL : -U2LZ2L_I

-i
YL : -W2LZ2L+I

-I
BII- BI2B22B21 :

- (c) (c)

Z 1 W1
(c) (c) (c)

U2 Z2 W2

(c)(c)(<,1
U3 Z3 W3 I

(c)
Z L : Z2L + XLW2L_I + YLU2L+I

(c)
UL : XLU2L_I

(c)
WL = YLW2L+I

•(c) .(c)
AA2L_I: SLAAL_I+ TLAAL

(c)
FL :F2L+ XLF2L-I+ YLF2L+I CD-88-32947
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ACCELERATION PARAMETER

Normally the relaxation technique can be improved by using a weighted average

of the previous and present calculated values of the corrections to the solu-

tion (overrelaxation). The rate of convergence of the high-frequency compo-

nents can be improved at the expense of the low-frequency components. For

this improvement, an estimate of the highest frequency eigenvalue is needed.

The Rayleigh quotient is a good method to estimate the highest eigenvalue (at

least in the symmetric case). In addition the highest eigenvalue should be a

strong function of the nearest neighbors, therefore local linearization could

be used in the Rayleigh quotient.

,E(,_) IS BASED ON LOCAL COEFFICIENTS

(_ _) T D (A _')

THIS IS THE RAYLEIGH QUOTIENT

CD-88-32948
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MULTIGRIDMETHOD

In sun_nary, the multigrid method for structural dynamics is performed as fol-
lows. First relax the equations of motion on the fine grid to obtain the high-
frequency componentsof the solution. Then calculate the norm of the residual
on the fine model. Next check to see that the norm is small enough for a
solution. If not, check to see if the normhas changed significantly from the
previous iteration. If the norm has changed, then relax the solution until
the norm stops changing. This indicates that the high-frequency componentson
this model have been found.

To find the lower frequency componentsof the solution, use the local struc-
tural condensation to generate a coarse model. On the coarse model, use relax-
ation to generate the lower frequency componentsof the solution. These lower
frequency componentsare interpolated to the fine grid where the norm of the
residual is calculated. Based on this norm, either a solution is found, more
relaxation is needed, or a coarser model is needed. The process is repeated
until a solution is found.

• RELAX ON FINE GRID TO GET HIGH-FREQUENCY COMPONENT

• CALCULATE RESIDUAL ON FINE GRID

• CHECK RESIDUAL FOR SOLUTION

• CHECK CHANGE IN RESIDUAL FOR CHANGE IN GRID

• STATIC CONDENSE TO COARSE GRID

• RELAX ON COARSE GRID TO GET LOW-FREQUENCY COMPONENT

• INTERPOLATE LOW-FREQUENCY TO FINE GRID

CD-88-32950

PHYSICAL MODEL

FINE MODEL

COARSE MODEL
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MULTIGRID ANALYSIS APPLIED TO

TRANSMISSION DYNAMICS

Complete transmission dynamic analyses are rare in the open literature. David

and Mitchell (1986) have used a modal balance technique. The problem with

modal techniques is that the nonlinearities cause the set of modes not to be

closed. This results in side bands around the tooth passing frequency. There-

fore, the solutions may not always include all of the important modes. Also,

superfluous modes tend to overwhelm the solution technique. The time march

multigrid method should eliminate these problems.
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TRANSMISSIONDYNAMICANALYSIS

Transmission dynamics is a case of nonlinear structural dynamics. Physically
a transmission is composedof gears, shafts, bearings, seals, and a case. The
case and the shafts can be modeled by finite element methods. The bearings and
seals are modeled by special programs developed in tribology and other areas.
Gear interactions are developed for somekinds of gears, but not for others.
Thus a transmission can be modeled by a number of linear and nonlinear finite
elements. As a first approximation, a transmission can be modeled as a beam
structure. The transmission can be analyzed as a multishaft, combined lateral,
torsional, and axial rotordynamic system.

PHYSICALMODEL NONLINEARFINITEELEMENTMODEL

CD-88-32952
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SPECIAL FEATURES

Special features complicate the dynamic analysis of transmissions. Gyroscopic

and gear forces cause nonlinear lateral and torsional coupling. Gear-tooth

passing frequencies are high-frequency forcing functions and, therefore, imply

a need for a fine structural model. Gear-gear interactions cause the system

to have a wide bandwidth.

• GYROSCOPIC AND GEAR FORCES CAUSE NONLINEAR LATERAL AND TORSIONAL

COUPLING

• GEARTOOTH PASSING FREQUENCIES ARE HIGHFREQUENCY FORCING FUNCTIONS--

IMPLIES NEED FOR FINE STRUCTURAL MODEL

• GEARGEAR INTERACTIONS CAUSE WIDE BAND WIDTH

CD-88-32953
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GEARTOOTHINTERACTION

Consider gear tooth interaction. For any gear set, the line of force does not
pass through the gear centers. In the case of spur gears any perturbation of
the radial force will result in a perturbation of the tangential force and vice
versa. In the case of helical or spiral gears any perturbation of the radial
force will result in perturbations of both the axial and tangential force.
These perturbations result in a nonlinear coupling between the axial, tangen-
tial, and radial directions.

SPUR GEAR HELICAL GEAR

IF r=F ttan_ I Fr=Fttan_ Fr=F ttan_/ =_
F,= Gt / Gt

- -- r

Fa = Ft ta"_"_

CD-88-32954
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GEARTOOTHMODEL

Consider the gear tooth interactions of a spur gear set. The contact point
varies as the angle of the gear set varies. Machining errors cause the contact
point to move. High torque can cause the teeth to bend. The number of teeth
in contact varies as the torque varies. Negative torque can result in back-
lash. The force must be transmitted through the contact point. All these
effects cause nonlinear time varying interactions between the spur gears set.
For the other kind of gears the interaction is more complicated. Thus, gear
tooth interactions cause high-frequency forcing functions on the structure.

_- LINE OF ACTION

/ ")

CD-88-32955
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TYPICALTRANSMISSION

In a typical transmission there are manygear sets. Each of these gear sets
causes one location on the structure to interact with another point on the
structure. Thus, far interactions are important and the structural model has
a wide bandwidth.

m

!

I

CD-88-32956
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POTENTIALIMPACT

The multigrid method, although used for years in fluid dynamics, now offers a
new approach to nonlinear structural dynamics. The computing time does not
depend on the cube of the number of degrees of freedom. Thus, dramatic reduc-
tions in computing time are possible. In addition, the relaxation process is
applicable to parallel computation. Thus, the method is very attractive for
future computers.

• NEW APPROACH TO NONLINEAR STRUCTURAL DYNAMIC SIMULATION

• DRAMATIC REDUCTION IN COMPUTING TIME

• APPLICABLE TO PARALLEL COMPUTERS

CD-88-32957
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APPENDIX - SYMBOLS

acceleration vector

linearized coefficient matrix

damping matrix

diagonal matrix

force vector

gear torque

stiffness matrix

mass matrix

number of degrees of freedom

displacement vector

pitch radius of gear

block matrix used in _ (beam solution)

block matrix used in _ (beam solution)

time

block matrix on lower diagonal of B

velocity vector

block matrix on upper diagonal of B

block matrix used in ® (beam solution)

block matrix used in ® (beam solution)

block matrix on diagonal of B

constant, modifying Taylor series

constant, modifying Taylor series

weighting factor used in overrelaxation

coarse-to-fine transformation

helical gear angle

highest eigenvalue

value between 0 and t
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fine-to-coarse transformation

pressure angle

Subscripts:

a axial

L node number

r radial

t tangential

Superscripts:

c coarse model

f fine model

T transpose

• time derivative

(0) estimated value
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PARALLEL COMPUTER METHODS FOR EIGENVALUE EXTRACTION

Fred Akl

Department of Civil Engineering

Ohio University

Athens, Ohio

ABSTRACT

This paper presents a new numerical algorithm for the solution of large-order

eigenproblems typically encountered in linear elastic finite element systems.

The architecture of parallel processing is used in the algorithm to achieve

increased speed and efficiency of calculations. The algorithm is based on the

frontal technique for the solution of linear simultaneous equations and the

modified subspace eigenanalysis method for the solution of the eigenproblem.

Assembly, elimination, and back-substitution of degrees-of-freedom are per-

formed concurrently by using a number of fronts. All fronts converge to

and diverge from a predefined global front during elimination and back-

substitution, respectively. In the meantime, reduction of the stiffness and

mass matrices required by the modified subspace method can be completed during

the convergence/divergence cycle, and an estimate of the required eigenpairs

can be obtained. Successive cycles of convergence and divergence are repeated

until the desired accuracy of calculations is achieved. The advantages of

this new algorithm in parallel computer architecture are discussed.

*NASA Resident Research Associate. Work funded by NASA grant NAG3-762

(monitor: L.J. Kiraly) and performed on-site at the Lewis Research Center for

the Structural Dynamics Branch.
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GENERALIZEDEIGENPROBLEM

Newparallel algorithm for the solution of large-scale eigenproblems in
finite element applications

Assumptions

(I) Linear elastic finite element models
2

(2) n lower order eigenpairs are required, i.e., e1

(3) [K] is positive-definite

(4) [M] is semipositive definite

2 2
_<o_2 _< ... _0n

[K][_] = [M][_] [_]

N- DEGREES OF FREEDOM

REQUIRED n EIGENPAIRS, n _ N

[K] POSITIVE-DEFINITE

CD-88-31668
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PARALLELARCHITECTURE

Consider a parallel computer with (m+l) processors (tasks).

Designate the first processor as a global processor (task).

Designate the remaining m-processors as domain processors (tasks).

A finite element model can be divided into a number of domains equal to m.

A star architecture (or tree) is the first to be investigated.

FINITE ELEMENTMODEL
SUBDIVIDED INTO m DOMAINS

®

STAR ARCHITECTURE

DOMAIN

®

CD-88-31669
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MAJORCOMPUTATIONALTASKS

Three major steps of large computational requirements

(I) Creation of element stiffness and massmatrices

(2) Extraction of a set of eigenpairs

(3) Solution of a set of simultaneous linear equations

The merits of selecting the modified subspace method for step 2 and the
frontal solution for step 3 are discussed in the next viewgraphs.

[K] [_] = [M] [_] [_]

(1) CREATIONOF Ke AND M e

(2) EIGENSOLUTION(MODIFIED SUBSPACE)

(3) EQUATIONSOLVER(FRONTALSOLUTION)

CD-88-31670
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MODIFIEDSUBSPACEMETHOD

The Modified SubspaceMethod iterates simultaneously for a subset of eigenpairs
[_,_2] of the generalized eigenproblem:

(i) Let [V]I be n starting eigenvectors.

(2) Operate on each [V]_ as follows:

IV]* [K] -I [K]-I[B]£,£+I = [M][V]£ = £ = 1,2,3, . . .

(3) Modify [V]£+I to increase convergence rate by one third on average

[v]_+ I + [v]£+I - s_[v]_

where B£ = 0 for £ = i and £ > Ii

B£ = 0.5 (l+r__l)/_ _ i < £ _ ii

r__ I are the interval points of the llth order Labatoo rule [-i, i]

(4) Project K and M onto the required subspace.

(5) Solve the auxiliary eigenproblem to obtain [Q]£+I and [_]£+i o

(6) An improved set of eigenvectors [V]£+ I can be obtained.

2
(7) Test for convergence on _ . Repeat steps 2 to 6 until desired accuracy

is achieved, n

[K]_,+ 1 = _e[V]*tT I[K][V]_'+ 1

[M]_+ 1 = _e[V]*tT 1[M][V],_+ 1

AUXILIARY EIGENPROBLEM

[K]_+ l[Q]e+ 1 = [M]_+ I[Q]e+ l[KJe+ 1

IMPROVED EIGENVECTORS

=
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RATE OF CONVERGENCE

Rate of convergence of the modified subspace is 33 percent faster on aver-

age compared to the classical subspace method.

The figure shows typical behavior.

Most computations are performed on an element-by-element basis.

BASIC SUBSPACE

MODIFIED SUBSPACE

2
o_i

2
_On+l

2

2
_n+l

2
1-/_eUn+ 1

TOLERANCE
LEVEL,

tol

102

1 E
10-2

10-4 --

10-6 --

10-8 --

10-10 --

10-12 --

10-14

___ BASIC ALGORITHM c4 MODIFIED ALGORITHM

2_ c = C4 c c c

LAMPED

",,2 "_''_ 2
I I I I I "1
2 4 6 8 10 12

NUMBER OF ITERATIONS

CONVERGENCE OF k 2 AND k 4 FOR SQUARE PLATE CD-88-31672
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FRONTALSOLUTION

(i) Gauss elimination technique

(2) Underlying philosophy based on processing of elements one by one

(3) Simultaneous assembly and elimination of variables

(4) The optimum frontal width at most equal to the optimum bandwidth

(5) Numbering of nodes - no impact on optimality; numbering of elements -
important to minimize the frontal width

(6) More efficient for solid elements and elements with midside nodes

(7) Requires a prefront to determine last appearance of each node

(8) Lends itself to parallel solutions

WITHIN EACH DOMAIN

kij

biq ',- biq- --
kss

CD-88-31673
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DOMAIN PROCESSING

Multitasking on the Cray supercomputer provides tools for implementing the

frontal solution concurrently within a number of domains. Assembly and elimi-

nation for the i-th domain is assigned to a task (processor). Simultaneous

assembly and elimination of variables within the domains is performed in paral-

lel tasks until the domain fronts reach their respective global fronts. How-

ever, it is instructive to analyze the set of simultaneous equations for the

i-th domain assuming that the domain stiffness matrix and right-hand sides are

fully assembled before Gauss elimination is performed.

For domain i

[K][V]£+ I = [B]£ at iteration

Elimination gives

UdV d + KdV F = Bd

KF VF = BF

where Ud upper _ matrix for domain i

Vd variables within domain i

VF variables along global front of domain i

Bd and BF are right-hand sides for domain variables and global fronts,

respectively.

r- GLOBALFRONT
/

/ FOR DOMAIN i
/

I/ \\\

//.,/

o Lv j
i-th DOMAIN

Ud V_ + Kd V; = Bd
li

KF VF " BF
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m

KFF =E KF

m

BFF =E BF

GLOBAL FRONTS

where m = total numbers of domains

KFF VFF = BFF

Solution for VFF is then obtained by using the frontal solution on the global

* back-substitution for V dfronts. Since VFF is a superset of all V F ,
follows concurrently within the domains.

KFF = E KF

BFF = E;BF

WHERE m = TOTAL NUMBER OF DOMAINS

KFFVFF = BFF

CD-88-31675
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IMPLEMENTATION

Successful implementation of the new parallel algorithm depends on

(i) Maximizing the efficiency of communication links between the

task and the domains

(2) Minimizing sequential computational steps

(3) Multithreaded I/0

global

DOMAIN TASKi

DATA, Ke,MeV_e

B_=MeV,?

ASSEMBLYELIMINATION
(ELIMINATIONOF B
IN RESOLUTION)

....... .1__

0 KF :BF

J.

WAIT FOR GLOBALTASK

I
*e i

BACK-SUBSTITUTIONVk+ 1

*e j, *e eVt+l Ve+l-,SeV k

K;=fV;_lKV;+_

Md = fV;I1MV;+1

I
WAIT FOR GLOBALTASK

_r

I =VI+IQV_+I oe

GLOBALTASK

KF AND BF

VFF

I GLOBAL DATA I

WAIT FORDOMAINS

KFF- KF,

KFFVFF= BFF

m

BFF= _ BF

K_ AND M_

Q,_

CONVERGENCE

WAIT FOR I= DOMAINS

+
m m

K'= EKe, M'= EMil

K'Q = M "Q_

TEST CONVERGENCE

t

®
FALSE

i-i00



CONCLUSIONS

Parallel solution method for eigenvalue extraction for linear elastic finite

element models has been successfully implemented on the Cray supercomputer by

using the multitasking environment. Preliminary results are encouraging and

extensive testing of the new algorithm is currently progressing. The new algo-

rithm enhances the speed-up of similar sequential solution methods. Both the

frontal method for the solution of the set of simultaneous equations arising

in finite element problems and the modified subspace method for the solution

of a subset of eigenpairs offer a new algorithm which has been efficiently

parallelized. The parallel tasks are associated with recognizable finite ele-

ment domains rather than dissected blocks of abstract equations. Moreover, the

complexity of data management and data flow normally associated with parallel

solution methods is avoided in this new algorithm.
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N88-23234

ADAPTING HIGH-LEVEL LANGUAGE PROGRAMS FOR PARALLEL
PROCESSING USING DATA FLOW

Hilda M. Standley
Department of Computer Science and Engineering

Toledo, Ohio

ABSTRACT

EASY-FLOW, a very high-level data flow language, is introduced for the purpose
of adapting programs written in a conventional high-level language to a parallel
environment. The level of parallelism provided is of the large-grained variety in which
parallel activities take place between subprograms or processes. A program written in
EASY-FLOW is a set of subprogram calls as units, structured by iteration, branching,
and distribution constructs. A data flow graph may be deduced from an EASY-FLOW
program. All permissible schedulings of executions within the graph are dictated by the
data dependencies between units.

NASA Lewis Research Center Grant # NAG 3-699.
Technical Monitor: L. J. Kiraly
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SOFTWARETO FACILITATE PARALLELISM

Parallel software technology continues to lag behind parallel hardware
technology. Synchronization and communication problems have been solved at the
hardware level to the degree to enable several multiprocessor systems to be offered
commercially. Software is required to provide for the efficient utilization of these
multiprocessor systems. Three areas must be addressed in a parallel software solution:
(1) the determination of potential parallelism, (2) partitioning the programs into processes
or tasks, each of which may be assigned to a single processor, and (3) scheduling the
program partitions to execute in a cooperative fashion.

(1) DETERMINE POTENTIAL

PARALLELISM

(2) PARTITION A PROGRAM

(3) SCHEDULE PROGRAM PARTITIONS

i-i04



DATA FLOW

The data flow schema of parallel computation (Agerwala, 1982) offers at the
same time a model of software and hardware. Data values flow between nodes
representing operations in a data flow graph. Data flowing into operations serve as
operands. Input data values are consumed by an operation and result values output and
directed to other operations for which they serve as operands. Execution is completely
data driven. The presence,of all data, values required as operands triggers the execution
of an operation. A single operation may be low-level (for example, an addition) or
high-level (for example, the execution of a subprogram) (Babb, 1984).

P "= (Q + R) * (Z- W)

Q R Z W
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LANGUAGE DESIGN PROJECT GOALS

The language design project, resulting in EASY-FLOW (Standley, 1987), has
three goals: to develop a language (1) to expose potential parallelism both implicitly and
explicitly, at the large-grained level or below (referred to as "variable resolution"), (2) to
provide for the continued use of the magnitude of software in existence with only minor
modifications, and (3) to require very little retraining of conventional language

programmers.

TO EXPOSE PARALLELISM

TO USE CURRENT SOFTWARE WITH

ONLY MINOR

MODIFICATIONS

TO NECESSITATE VERY LITTLE

RETRAINING OF

CONVENTIONAL LANGUAGE

PROGRAMMERS
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STRUCTURING UNITS WITHIN AN EASY-FLOW PROGRAM

An EASY-FLOW program is specified as a hierarchy of units. Each unit consists
of a substructure of units, a reference to an external unit, or it is atomic. An atomic unit
is a call to a subprogram expressed in a conventional, high-level language such as
FORTRAN or C.

Constructs in the EASY-FLOW language are used to specify the subunits (if any)
in a unit and the relationships between them. Lists of "input values" and "output values"
associated with each unit may be used to determine the data dependencies between units
and can consequently be used in establishing the proper scheduling of unit executions.

EASY-FLOW offers the minimal set of language constructs required for the flow
of control: sequencing (SUBPROGRAM call), branching (IF-THEN-ELSE), and looping
(ITER for iteration). One additional construct, DISTRIBUTE, provides an explicit
notation for parallelism.

- SUBPROGRAM CALL

- IF-THEN-ELSE

- ITER

- DISTRIBUTE

1-107



THE EASY-FLOW PROGRAM

The language constructs provide a framework within which one or more units
may be placed. Multiple units appearing within a structure are termed a "unit set." Each
unit is enclosed within an input list and an output list pair, stating the names of the data
values required as "operands" and produced as results, respectively. A data flow graph
may be constructed by the EASY-FLOW language processor from the data dependencies
determined by these input/output pairs.

MAIN PROGRAM:

DECLARATIONS:

UNIT

ENDUNIT

UNIT

IF

THEN

ELSE

ENDUNIT

UNIT

ENDUNIT
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EXAMPLE PROGRAM, MAXTWO

The example program, MAXTWO, calculates the maximum of the values of the
two functions, f and g, at a point X. Four names for data values are declared having type
"real." The program consists of one unit, called MAIN, with one input value, X, and one
output value, RESULT. The body of the MAIN unit is a unit set consisting of three units,
each having a call to a subprogram as its body, for calculating functions f(X), g(X), and
max(f(X),g(X)). These three units may appear in any order. Three subprograms F, G,
and MAX (assumed to be written in a conventional language) must be supplied in order
to complete the program.

MAXTWO:

declare: real X,FX,GX,RESULT
unit MAIN:

input: X
unit CALCF:

into: X => X

subprogram F(X,FX)
outof:FX => FX

endunit CALCF

unit CALCG:

into: X => X

subprogram G(X,GX)
outof:GX => GX

endunit CALCG

unit FINDMAX:

into: FX => FX

GX => GX

subprogram MAX(FX,GX,

RESULT)
outof:RESULT=>RESULT

endunit FINDMAX

output: RESULT
endunit MAIN
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THE EASY-FLOW LANGUAGE PROCESSOR

The EASY-FLOW language processing system constructs a data flow graph from
the program and partitions and assigns code for execution based upon the nature of the
target machine. If the target machine is a uniprocessor, a topological sort on the nodes in
the data flow graph determines an appropriate, although not necessarily unique, unit
execution sequence. For a multiprocessor system, the partitioning and assignment may
be directed by the data flow graph. The language processing system must also provide
for the "sanitizing" of the traditional language subprograms, removing references to
global variables, for example.

EASY-FLOW LANGUAGE PROCESSOR

- CONSTRUCTS DATA-FLOW GRAPH

PARTITIONS AND ALLOCATES UNIT

EXECUTION BASED UPON TARGET

ARCHITECTURE

"SANITIZES" TRADITIONAL LANGUAGE

SUBPROGRAMS
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ITERATIVE FINITE ELEMENT SOLVER ON TRANSPUTER NETWORKS*

Albert Danial and James Watson

Sparta, Inc.
Huntsville AL 35805

ABSTRACT

Iterative methods have been proven effective in obtaining solutions to
large, sparse systems of linear equations such as those generated by

finite element and finite difference methods. In addition to being
efficient on sequential computers, iterative methods have inherent

parallelism that suggests a strong potential for acceleration using
parallel processing computer networks. These factors make iterative

methods ideal candidates for parallel finite element/finite difference

solvers. Here, we describe the parallelism inherent in the Conjugate

Gradient method and discuss the initial results of a parallel

implementation on a network of twelve transputers.

The high efficiencies obtained (a speed-up of 11.2 was gained with 12

processors) indicate that significant speed-up can be achieved with larger

transputer arrays if communication overhead can be kept low. To this

effect, we suggest a method of communication that allows large,

dynamically reconfigurable transputer arrays to exchange data in log4 N
steps for N processors.

PRECEDING PAGE BLANK NOT FILMED

*Work done for the Sturctural Dynamics Branch under NASA Contract

NAS3- ; technical monitor: Louis J. Kiraly.
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Introduction

As part of a NASA innovative research grant to develop a transputer-based
finite element computing engine, researchers at SPARTA have investigated
techniques and computing methods which show promise for efficient parallel
execution. Here, we discuss recent work done to evaluate a parallel
implementation of the Conjugate Gradient (CG) method on a network of
transputers. Preconditioning is implied in the context of finite element
applications, but is beyond the scope of this presentation. For direct
factorization methods, see [George, et al, 1986], and for polynomial
preconditioning, see [Allen, 1987].

The CG method has several attributes that make it attractive for solving

finite element problems• It is robust even for poorly-conditioned

problems, requires less memory than direct methods since there is no

matrix fill-in, and works well for widely banded problems such as those

created by three dimensional models• In addition, the CG method is well

suited to adaptive analysis methods which slightly modify the stiffness
matrix after each solution until descretization errors are minimized. In

this case, rather than completely resolving the modified system of
equations, the CG method can use the most recent solution as an excellent

initial guess and will consequently converge quickly. Finally, because of

its heavy usage of inherently parallel matrix-vector and vector-vector

operations, the CG method shows great potential for efficient concurrent

processing.

Here we describe the parallelism inherent to the method, demonstrate why
communication determines efficiency, discuss our transputer implementation

and show how transputers can be used in massive arrays before
communication becomes a problem. Using the fractional summation method
described here, we predict that a 1024 transputer network rated at 1.5

gigaflops, could attain a speed-up of 929 and provide a sustained

computational rate on the order of 1 gigaflop.

CG Method for Solving Finite Element Problems

• Robust for poorly conditioned problems

Lower memory requirements than direct methods

• Ideal solution method for adaptive analysis

• Efficient for widely banded, 3-D problems

Computations are completely parallel

Twelve Transputer Implementation

• Speed-up of 11.2 obtained; higher possible

• Efficiency depends on method of communication

CG Method + Transputers + Link Switcher =
Gflop Finite Element Solver

Dynamically reconfigurable arrays allow efficient
communication

• Could attain near-linear speed-up with thousands

of processors rated with Gflops of power.
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Conjugate Gradient Method

The CG method can be described by 18 single operation steps.
given below, use the following notation:

These steps,

[A] = stiffness matrix

{b!o : force vector
{x_ = initial guess at

a displacement vector

{x} : displacement vector

(the solution)

{p},{r},{s},{t} = work vectors

a,_,u,v,w : scalars
k = iteration counter

i •

2.

3.

4.

5.

6.

7.

8.

9.

10

11

12

13

14

15

16

17

18

19

k = 0

{p}O : [A] {x}°

[r} ° : {b} - [p}O

{p}O = {r}O

{s}k = [A] {p}k

uk = {r}k*{r} k

vk = {p}k*{s}k

k k/ k= u v

{t} k = ak*{p} k

{x} k+l = {x} k + {t} k

Stop if ll{t}kll<tolerance

{s} k : wk*{s} k

{r} k+l : {r} k - {s} k

vk+1 = {r}k+1*{r} k+l

_k = vk+l/uk

{p]k = Bk,{p}k

{p}k+l = {r}k+1 + {p}k

increment k

matrix-vector multiply

vector subtraction

vector equivalence

matrix-vector multiply

vector dot product

vector dot product

scalar division

vector scaling

vector addition

vector comparison

vector scaling

vector subtraction

vector dot product

scalar division

vector scaling

vector addition

Go to step 5.

The following operations are performed at each iteration:

1 Matrix-vector multiplication

3 Vector dot products

3 Vector scalings
3 Vector additions

1 Vector comparison

Each one of these computations can be performed in parallel.
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Parallelism in the Conjugate Gradient Method

The single most time consuming step is the matrix-vector multiply at step
5. Fortunately, it is also the operation most easily performed in
parallel: each node receives a horizontal slice of the stiffness matrix

and a complete copy of the {p} vector, then independently multiplies the
matrix slice with the corresponding terms in {p} to obtain a partial

solution for {s}. The vast majority of the remaining steps involve other

vector operations, so a first glance might suggest that the algorithm is
trivial to complete in parallel since the vectors can be divided up among

the processors to be operated on concurrently.

This is only partially true on a local-memory processing network, however,
since there are data dependencies between steps that require the

prQcessors to exchange data. After each processor computes its segment of

{s} at step 5 for example, it can only perform one or two vmore steps
before it needs a complete copy of {s} or a complete sum for v_ to perform

the vector scaling at step 9. This type of data dependency (where each
processor has a fraction of a value yet requires the sum of all fractions

on every processor to continue), the only type encountered in the CG
method, is resolved by a process called fractional summation. As its name

implies, each processor simultaneously sends, receives and sums individual
fractions of the value, preferably in a well-coordinated manner, until

each processor has the complete sum. These communication steps can impede

performance of a parallel CG solver, and must proceed as quickly as

possible. The formula and graph below illustrate the effects of
communicate time on speed-up.

T
C

T
P

= Time spent communicating

= Time spent executing parallel
tasks (all compute time in

CG method)

N - Number of processors

Speed-up =

N

T
C

T
P

D.

0
¢D
(2.
U)

+ 1

Speed-Ups for Various Ratios of Overhead

1oo
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0
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Tcfl'p=.O01
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Tc/Tp=. 1
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Transputer Network and Test Problem

The parallel processing network we used to implement the CG method

consisted of twelve INMOS T414 transputers as shown below. Each

transputer has 256 Kbytes of local RAM memory and four links capable of

transferring data to other transputers at a rate of 10 Mbits/second.

A simple test problem consisted of a 2-D square plate subdivided into 81

isoparametric, four-node elements yielding 200 degrees of freedom. The

lower left corner of the plate was pinned, the lower right corner

constrained from vertical motion and the top right corner had a horizontal

applied load.

Although the stiffness matrix was tightly banded, the implemented CG code
carried all matrix and vector operations out in full, as if the matrix
were dense.

TWELVE TRANSPUTER NETWORK

ARRANGED IN A DOUBLE-RING GRID

m

i

<
J

sl_4m_

_EACH BOX

REPRESENT$

ONE T414

"_ TRANSPUTERWITH 2511 Kb_OO

OF RAM

TEST PROBLEM

_{
200 degrees of freedom
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Results

Three versions of the CG method were implemented: a fully sequential

version to provide a reference for performance, a parallel version written

with Adnet (a high-level communications environment) and a second parallel

version using direct, hardcoded communications that sent messages around

a ring. The programs all stopped after 73 iterations, when changes to the

displacement vector were less than a tolerance of 0.00001. The execution

times are tabulated and shown graphically below.

Method: Sequential

Number of

Processors

Parallel with

Adnet

Sec. (speed up)

Parallel without

Adnet

Sec. (speed up)

1 102.2

4 26.61 (3.84)
5 22.53 (4.54)

6 19.60 (5.21)

7 17.91 (5.71)
8 16.22 (6.30)
9 14.98 (6.82)

I0 14.14 (7.22)
ii 13.29 (7.69)

12 12.87 (7.94) 9.13 (11.2)

Despite the impressive speed-up obtained, a timing analysis of the data
exchanges showed that still higher speed-ups are possible. When done

independently, the data exchanges around the processor ring take less than
one-thousandth of the time calculations require, indicating that

efficiencies of 0.989, or a speed-up of 11.87, should be possible on the

network of twelve transputers. Further analyses of our implementation are

being conducted to pinpoint the causes for the sub-optimum run times.

EXECUTION TIME AND SPEED UP VERSUS NUMBER

OF PROCESSORS FOR THE TEST PROBLEM

30

20

N
N 15
Z
0

10-
O
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X

I.U 5-

0 I4 1o 2
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Fractional Summation on a Large, Dynamically Reconfigurable Network

If every processor in a network were directly connected to all other

processors, fractional summation would be trivial -- each node would

simply send its fraction out on every out-link and collect fractions from

other nodes from its in-links. Few parallel processors, however, have

more than 10 links, so direct connection schemes can only be used on small

networks. Networks of indirectly connected processors perform fractional

summation in a series of transmit and receive steps and can spend

considerable amounts of time communicating. Large networks require more

communication steps than small networks, making high speed-ups

increasingly difficult to obtain. The table below lists the number of

communication steps required to perform a fractional summation on several

types of network topologies.

N = Number of processors

S = Number of steps required for
fractional summation

Topology

Ring

Double-ring

grid

Shuffled

exchange

[Allen, 1987]

Hypercube

Dynamically

reconfigurable

transputer array

S

N-1

2log 2 N

log 2 N

log N
4

Number of steps
required if

N = 1024

1023

64

20

10

5
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Example of Fractional Summation on a Dynamically Reconfigurable Network

Although transputers have only four links each, programmable link
switches such as the INMOS C004 and the Unisys Switch Slice allow programs

to change the network configuration during execution. Configuration

changes can be made in one microsecond and can take place while the

processors are busy computing, so negligible overhead is incurred. These

link switches are extremely powerful devices and make possible several

advanced types of network data distribution, one of which is fractional

summation on a dynamically reconfigurable network. The basic idea behind

this kind of fractional summation is to group together small islands of

directly connected processors, allow them to exchange values, then
reshuffle the processor connections so that each processor is relinked

with a completely different set of processors. In this manner, the number

of communication steps required will be reduced to _ N where L isthe number of links each processor uses to exchange a!I+L)

The example below illustrates how a network of 16 transputers connected to

a programmable link switch can perform a fractional summation in two

steps.

STEP 1

Network configuration: Fully connected sets
of four processors. Set J contains the
processors whose ID's satisfy the integer
division equation

ID
J= 4

The sums on each
processor will then be:

Node 0:0+1+2+3

Node 1:0+1+2+3
Node 2:0+1+2+3

Node 3:0+1+2+3

Node 4:4+5+6+7
Node 5:4+5+6+7

Node 6:4+5+6+7

Node 7:4+5+6+7
Node 8:8+9+10+11

Node 9:8+9+10+11

Node 10:8+9+10+11
Node 11:8+9+10+11

Node 12:12+13+14+15

Node 13:12+13+14+15
Node 14:12+13+14+15

Node 15:12+13+14+15
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Example of Fractional Summationon a Dynamically Reconfigurable Network
(Continued)

Here, only three of the four links on each transputer are being used
(L=3). A free link is reserved on each node to allow the node to send
control information to the link switches, or to some master transputer
which controls the network configuration. If a timing scheme is used to
control link switchings, all four links can be used (L=4) and the number
of communication steps will be reduced to log5 N.

The methods and equipment described here can be used to assemble a massive

CG solver capable of obtaining three orders of magnitude of speed-up, and

sustaining on the order of one gigaflop of double precision computations.

An array of 1024 T800 transputers with 1 Mbyte of RAM connected by 196

programmable link switches, should be able to run a CG algorithm with an

overhead fraction (Tc/Tp) between 0.0001 and 0.001.

These overhead fractions correspond to a speed-up range from 506 to 929.

STEP 2

Network configuration: Fully connected sets of
four processors. Set J contains the processors
[J, J +4, J +2(4), J +3(4)]

F

F

After Step 2, all of the
processors will have
the complete sum:

Node 0: 0+1+2+3+4+5+6+7+8+

9+10+11+12+13+14+15
Node 1: 0+1+2+3+4+5+6+7+8+

9+10+11+12+13+14+15

Node 2: 0+1+2+3+4+5+6+7+8+

9+10+11+12+13+14+15
Node 3: 0+1+2+3+4+5+6+7+8+

9+10+11+12+13+14+15

Node 4: 0+1+2+3+4+5+6+7+8+
9+10+11+12+13+14+15

l

e

e

Node 15: 0+1+2+3+4+5+6+7+8+

9+10+11+12+13+14+15
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Conclusion

The parallel CGmethod has all the attributes of an ideal finite element
solver: its computations are completely parallel enabling many processors
to obtain large speed-ups; its iterative nature makes it the solution
method of choice for adaptive analysis, where small refinements to the
stiffness matrix only require few additional computations to obtain a new

solution; and finally, the matrices can be stored in compact form since
the method does not fill them in as direct methods do.

The only overhead incurred in the parallel CG method is the communication
time it takes to resolve data dependencies. It was demonstrated that even

inefficient ring communication schemes could attain high speed-ups - our
code ran 11.2 times faster on 12 transputers than it did on one. Speed-up

for the CG method is inversely proportional to the time spent

communicating during fractional summation, so large networks must have

efficient methods of exchanging data in order to maintain high speed-ups.

Programmable link switches, devices that permit connections between

transputers to be made through software control, can be used in large

transputer networks to distribute data faster than any other local-memory

MIMD architecture. This permits larger networks to operate at a given

communicate-to-compute ratio. This permits large networks of transputers

to operate at the same overhead levels as much smaller, hardwired

networks. Fractional summation on a dynamically reconfigurable

network was shown to require only log4 N communication steps - half the

number a hypercube of the same size needs. The resulting reduction in

communication overhead should enable more than one thousand transputers to

run parallel CG code with an efficiency above 90%. At the current price

of a 1 Mbyte T800 transputer rated at 1.5 megaflops, a 1 gigaflop finite
element solver could be built for less than $1,000.000.

CG Method Excellent for Parallel Finite Element Solvers

• Computations are completely parallel

• Natural solution technique for adaptive analysis
• Can solve larger problems than direct methods in the same amount of RAM

Results for 12 Transputer Implementation

• Speed-up of 11.2 obtained; many improvements possible
• Demonstrated that efficiency depends on fraction of communication

time to compute time

Dynamically Reconfigurable Transputer Arrays

• Reduce communication overhead

• Permit thousand-processor networks to function efficiently
• Could make possible a Gflop finite element machine for less than $1,000,000

1-122



References

lo Allen, R., 1987, "Matrix/Vector Multiplication and the Conjugate
Gradient Algorithm on Transputers," presented at the Occam Users

Group Meeting, September 29, 1987, Chicago, IL.

o George, A. et al., 1986, "Sparse Cholesky Factorization on a Local

Memory Multiprocessor," Oak Ridge National Laboratory TM-9962, Oak
Ridge, TN.

1-123



N88-23236

MULTIPROCESSOR GRAPHICS COMPUTATION AND

DISPLAY USING TRANSPUTERS

Graham K. Ellis*

Structural Dynamics Branch

Institute for Computational Mechanics in Propulsion

NASA Lewis Research Center

ABSTRACT

The transputer parallel processing lab at NASA Lewis Research Center consists

of 69 processors (transputers) that can be connected into various networks for

use in general purpose concurrent processing applications. The main goal of

the lab is to develop concurrent scientific and engineering application pro-

grams that will take advantage of the computational speed increases available

on a parallel processing system over a sequential processing system.

Because many scientific and engineering applications of interest generate large

volumes of raw data, it is often convenient to display results in a graphic

format. Since the analyses are performed on the transputer system, a package

of graphics manipulation and display routines has been developed to also run

on that system. This reduces the need for transferring data to other systems

for viewing and postprocessing.

The transputer multiprocessor graphics display program uses techniques that

would be of value in almost any concurrent application. Some of the topics

studied in the lab include interprocessor communication time versus computation

time, handling and simulation of global variables on processors with only

local memory, and process synchronization.

The current implementation of the graphics program uses two processors to per-

form all of the graphics computations. The display processor board performs

the low-level, device coordinate scan-conversion tasks and drives a CRT moni-

tor. This low-level operating environment is normally transparent to the

applications programmer although, if necessary, graphics applications can be

developed using the low-level routines. The applications programmer normally

interfaces with the other processor, the two-dimensional processor. At this

level, all graphics operations can be performed in a two-dimensional world

space. Standard two-dimensional operations such as rotation, translation, and

scaling can be performed using the provided routines. Other routines allow

multiple windows to be manipulated individually and allow screens and windows

to be double buffered for smooth animation.

*Senior Research Associate (work funded under Space Act Agreement

C99066G).
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Future enhancements to the graphics system will include extensions to three-

dimensional space. This would probably involve adding one or more processors

to the current two in order to keep drawing speeds sufficiently fast.

1-126



OVERVIEW

WHAT IS A TRANSPUTER?

A transputer is a microcomputer with its own local memory and with links that

can be used to connect it to other transputers. A transputer can be used in a

single processor system, or in networks to build high-performance concurrent

systems. The following figure was adapted from INMOS (1986).

IMS T800

I FLOATINGPOINT UNIT I

+ a2

SYSTEM
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INTERFACE
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PROCESSOR
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BENEFITSOFTRANSPUTERS- FLEXIBLECONNECTIONARCHITECTURE

Transputers can be used to build low-cost, high-speed concurrent networks.
Flexible connection architecture allows optimum configuration for a wide range
of problems. The following figure was adapted from INMOS(1986).

t IF- ---_ ..... 1
I I

I
TRANSPUTER I

I I
I
I
I
I

_TRANSPUTER I

l [ TRANSPUTER

CD-88-32005
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TRANSPUTERPARALLELPROCESSINGLABORATORYFACILITIES

The transputer parallel processing laboratory facilities include the following:

(I) Forty 32-bit floating point transputers with 256 KBytes memoryper
transputer

(2) Twenty-seven 16-bit integer processors - 24 with 8 KBytes of high-speed
memoryand 3 with 64 KBytes of high-speed memory

(3) One 32-bit transputer-based medium-performancegraphics display board with
512 by 512 pixel resolution and capable of displaying 256 out of 262 144
colors at one time

(4) One32-bit transputer-based development board with 2 MBytes of memory.
The development board plugs into the IBM PCslot. System development
software is run on this board.

TEXT MONITOR

ITEXT SCREEN]

PC BASED
DEVELOPMENTSYSTEM

GRAPHICSMONITOR

ol ol
TRANSPUTERCABINETS

CD-88-32006
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BENEFITSOFMULTIPROCESSORGRAPHICSCOMPUTATIONS

• ALLOWSANALYSISAND POST PROCESSINGTO BE PERFORMEDON ONE SYSTEM

• USES MULTIPROCESSINGTECHNIQUESFOR INCREASEDPERFORMANCE

• TECHNIQUESDEVELOPEDSHOW HOW CAREFULANALYSIS OF COMPUTATION
VERSUS COMMUNICATIONCAN BE USED FOR DETERMINING PERFORMANCEOF
CONCURRENTALGORITHMS

CD-88-32007
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POSTER PRESENTATION

WHAT IS A TRANSPUTER?

A transputer is a microcomputer with its own local memory and with links that

can be used to connect one transputer to another transputer.

A typical member of the transputer family is a single-chip very large scale

integration (VLSI) device that contains a processor, memory, and serial links

for point-to-point communication between transputers. A transputer can be used

in a single processor system or in networks to build high-performance concur-

rent systems (INMOS, 1986).

Some of the transputers currently available include a 16-bit transputer with

four serial links and 2K of on-chip memory; a 32-bit transputer with four

serial links and 2K of on-chip memory; and a 32-bit transputer with four serial

links, 4K of on-chip memory, and a built-in floating point unit. The serial

links can transfer data at i0 or 20 Mbit/sec.

The block diagram of the floating point version of the transputer chip is shown

below.
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PROGRAMMING NETWORKS OF TRANSPUTERS

Transputers can be programmed in high-level languages such as FORTRAN, C, and

Pascal. To take full advantage of concurrent programming capabilities, trans-

puters can be programmed in 0ccam. 0ccam takes advantage of the multitasking

and communication features built into the transputer architecture.

The Occam software building block is the process. A system is designed as an

interconnected set of processors. Each process communicates to other processes

through point-to-point channels. Process-to-process communication is automati-

cally synchronized without user intervention.

The following figure shows three processes that are running on either a single

processor or a network of three processors. The 0ccam code fragments show how

easy it is to change the mapping from a single transputer to a network of

transputers.

PAR
P_)
Q,)
R,)

A PROGRAM ON
A SINGLE TRANSPUTER

PLACEDPAR
PROCESSOR0

P()
PROCESSOR1

O()
PROCESSOR2

R()

u

THE SAME PROGRAM ON
THREE TRANSPUTERS

CD-88-32008

1-132



TRANSPUTERPARALLELPROCESSINGLABORATORYFACILITIES

The transputer parallel processing laboratory facilities consist of the hard-
ware and software described below. All of this equipment can fit on a desktop
and requires no special cooling or power.

HARDWARE

• IBM AT-COMPATIBLE PC THAT ACTS AS THE SYSTEM FILM SERVER

• ONE 32-BIT TRANSPUTER DEVELOPMENT SYSTEM WITH 2M DRAM (PLUGS INTO
PC SLOT)

• FORTY 32-BIT FLOATING-POINT TRANSPUTERS WITH 256K DRAM PER TRANSPUTER
FOR A TOTAL OF IOM

• TWENTY-SEVEN 16-BIT TRANSPUTERS-24 WITH 8K SRAM AND 3 WITH 64K SRAM

• ONE GRAPHICS BOARD CONTAINING ONE 32-BIT TRANSPUTER, 512K PROGRAM
MEMORY, 512K DUAL-PORT VIDEO MEMORY, AND A HIGH-PERFORMANCE COLOR
LOOK-UP TABLE CAPABLE OF DISPLAYING 256 OUT OF 262 144 COLORS AT ONE TIME

• ONE HIGH-PERFORMANCE MULTIFREQUENCY RGB ANALOG MONITOR

SOFTWARE

• TRANSPUTER DEVELOPMENT SYSTEM (TDS) CONTAINING EDITOR, VARIOUS
UTILITIES, AND AN EMBEDDED OCCAM COMPILER

• TWO VERSIONS OF PARALLEL C, AND STAND-ALONE OCCAM, C, AND FORTRAN
COMPILERS c.A,..,csMO.ITO.

TEXT MONITOR

PC BASED CD-88-32009

DEVELOPMENT SYSTEM
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TRANSPUTER CABINETS WITH ASSOCIATED GRAPHICS DISPLAY MONITOR 

The transputer cabinets are desktop size and can easily hold 80 or more trans- 
puters. Note the backplane wiring which can be changed to create various pro- 
cessor interconnection architectures. 

CD-88-32010 

ORlGINAL PAGE IS 
OF POOR QUALFTX 

1-134 



This photograph shows a typical transputer board. It contains four processors 
(transputers) each with 256 KBytes of memory. 

CD-88-32011 
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TRANSPUTERGRAPHICSSYSTEM:
USERINTERFACEPROCEDURES

Applications programmersmakecalls to graphics routines provided in the pack-
age. The code is not available as a library, but the source code is included
in any applications program. The user is insulated from any of the details of
the graphics system, and only high-level graphics function calls are required.

The user defines a model in two-dimensional, real-coordinate space. Window
size and placement on the screen is controlled in normalized device coordinates
(screen size is from 0 to i on each axis). Multiple windows are allowed. The
user can generate a global transformation matrix to perform scaling, rotation,
and translation of the model data base.

GRAPHICS

TRANSFORMATIONS

SCALE

ROTATE

TRANSLATE

MAKE.IDENTITY

COMBINE.TRANSFORMATIONS

TRANSFORM.POINTS

MAP.TO.SCREEN.COORDS

SCREENANDWINDOW
MANIPULATION

SET.WINDOW.2D

SET.VIEWPORT.2D

ACTIVATE.VIEWPORT

DISPLAY.VIEWPORT

RELATIVEAND ABSOLUTE

COORDINATECOMMANDS

MOVE.REL.2D

POINT.REL.2D

LINE.REL.2D

MOVE.ABS.2D

POINT.ABS.2D

LINE.ABS.2D

DRAWINGCOMMANDS

CLIP.LINE.2D

CLIP.POINT.2D

DRAW.LINE.2D

DRAW.RECTANGLE.2D

DRAW.POLYGON.2D

DRAW.CIRCLE.2D

DRAW.ARC.2D

CD-88-32012
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GRAPHICSDISPLAYSYSTEMARCHITECTURE

The current implementation of the graphics display system uses two processors.

The two-dimensional world processor converts the user's model from two-

dimensional world space to device coordinates. The appropriate commands are

sent to the graphics display board in device coordinates, and the picture is

displayed on the graphics CRT.

CRT

DATA
FROM

APPLICATION--'--_
PROGRAM

TWO-
DIMENSIONAL

WORLD
PROCESSOR

GRAPHICS
DISPLAY
BOARD

CD-88-32013
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TWO-DIMENSIONALWORLDPROCESSOR

The two-dimensional world processor converts the user's model from two-
dimensional world space to normalized device coordinates. The user specifies
all the drawing commandsusing two-dimensional world coordinates. Viewport
sizing is performed in normalized device coordinates. The conversion to device
coordinates is transparent to an application programmer. Multiple windows are
allowed. Maintenance of global window parameters is transparent to the user.
Copies of global window parameters are kept on both the two-dimensional world
processor and the graphics board since there is no shared memoryon this
system.

DATA
FROM

APPLICATION
PROGRAM J PICTURE I

DEFINITIONIN WORLD
COORDINATES

NORMALIZED

DEVICE
COORDINATES

Y

=

WORLD
WINDOW

VIEWPORT

Z?
1

Ymax WINDOW

Xmax

CD-88-32014
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COMPUTATIONANDCOMMUNICATIONPERFORMANCE

The architecture of the graphics display system is primarily dictated by compu-
tation versus communication times. Since there is only one transputer driving
the video memory,a comparison must be madeof the time to remotely (on another
processor) perform a computation, communicatethe computed data to the display
board, and copy the result into video memoryto the time to compute it on the
display board and put it into video memory.

For the case of line scan conversion, the communication time dictates. For
this reason, scan-conversion tasks are performed on the display board's proces-
sor. Since most drawings use multiple straight lines, a pipeline of two pro-
cessors is currently being used for the graphics system.

The following table shows the actual timings* for the graphics operations.

Note that it is quicker to use the normal graphics board commandsto draw a
line (14 887 _sec) compared to precomputing the line on another processor and
sending that data to the graphics board for display (36 399 _sec).

OPERATIONS PERFORMED TIME,*

#sec

SCAN CONVERT LINE FROM (0,0) TO (511,511) 7 933

SEND LINE DATA TO DISPLAY BOARD 12 512

SEND DATA AND DISPLAY 28 400

SCAN CONVERT, SEND DATA, AND DISPLAY 36 339

GRAPHICS BOARD DRAW LINE COMMAND 14 887

GRAPHICS BOARD FAST DRAW LINE COMMAND 3 542

*TIMINGS TYPICALLYVARY UP TO0.1 PERCENT.

CD-88-32015
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SUMMARY

A package of two-dimensional graphics routines has been developed to run on a
transputer-based parallel processing system. These routines have been designed
to enable applications programmers to easily generate and display results from
the transputer network in a graphic format.

The graphics procedures have been designed for the lowest possible network com-
munication overhead for increased performance. The routines have also been
designed for ease of use and to present an intuitive approach to generating
graphics on the transputer parallel processing system.

REFERENCES

INMOS,Oct. 1986, Transputer Reference Manual, INMOS Corporation, P.O. Box

16000, Colorado Springs, CO 80935.
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DYNAMIC SYSTEMS

SESSION OVERVIEW

Louis J. Kiraly

Structural Dynamics Branch
NASA Lewis Research Center

The objectives of work performed in the Structural Dynamics Branch under the

general area of dynamic systems are to analyze and verify the dynamics of

interfacing systems, and to develop concepts and methods for motion control in

microgravity environs. Past and present research topics and applications have

included modal analysis, system identification, microgravity robotics, space

mechanisms, space station power systems, blade loss transient dynamics, SPI00

engine, NASP seals, and tethered satellites.

This session will include presentations on several of these subjects. Two of

the formal and one poster presentation are directly related to microgravity

robotics. The first outlines the current Structures Division project which

deals with the mechanism and robotics technology needed to physically move pay-

loads around in a space laboratory while not disturbing the microgravity envi-

ronment. The second will highlight a unique effort to reduce the reaction

forces at the base of a robot by using optimal control of redundant degrees-

of-freedom of the robot. One of the poster presentations will describe the

experimental hardware being set up to demonstrate the ability to reduce base

reaction forces and moments on a manipulator for microgravity application. The

formal presentation will describe the experimental hardware being set up to

demonstrate the ability to reduce base reaction forces and moments on a

manipulator for microgravity application.

One formal and one poster presentation is related to NASA Lewis research in

roller drive mechanisms for space applications. The formal presentation will

describe analysis and testing of one roller drive designed to take advantage

of its attributes for a satellite application. The poster presentation will

show the activity underway to characterize materials for use in roller drives

designed to operate in space. Two other very interesting poster presentations
will be included in this session.

Mr. Posta's session deals with some unique approaches for measuring blade

vibrations in rotors using uniquely digital methods.

The final poster session overview is related to microgravity robotics. It has

application to robot arms which are long or flexible and require accurate

position control.
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Several of the papers in this session stem from somewhatdifferent sources than
the aerospace propulsion system structures technology of the rest of this sym-
posium. However, the audience will find that muchof the technology is simi-
lar and that the goal of reliable, lightweight, high-performance systems for
aerospace mission use is unchanged.

SESSION OVERVIEW

• L J KIRALY CHIEF STRUCTURAL DYNAMICS BRANCH NASA

MICROGRAVITY MECHANISMS AND ROBOTICS PROGRAM
• D A ROHN, STRUCTURAL DYNAMICS BRANCH, NASA

BASE REACTION OPTIMIZATION OF MANIPULATORS WITH REDUNDANT KINEMATICS

• C L CHUNG, CARNEGIE MELLON UNIVERSITY, PITTSBURGH PA
• S DESA, CARNEGIE MELLON UNIVERSITY PITTSBURGH, PA

EVALUATION OF A HIGHTORQUE BACKLASHFREE ROLLER ACTUATOR

• B M STEINETZ, STRUCTURAL DYNAMICS BRANCH NASA

LOWCOST OPTICAL DATA ACQUISITION SYSTEM FOR BLADEVIBRATION MEASUREMENT

(POSTER)
• S J POSTA STRUCTURAL DYNAMICS BRANCH NASA

ROLLER DRIVE MATERIALS PERFORMANCE (POSTER)
• D A ROHN, STRUCTURAL DYNAMICS BRANCH NASA

MICROGRAVITY MANIPULATOR DEMONSTRATION (POSTER)
• A BRUSH SVERDRUP TECHNOLOGY INC

ACCURATE POSITIONING OF LONG FLEXIBLE ARMS (POSTER)
• M J MALACHOWSKI, CCE ROBOTICS BERKELEY CA

CD-88-33094
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N88-23237

MICROGRAVITY MECHANISMS AND ROBOTICS PROGRAM

Douglas A. Rohn

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

NASA plans to provide the scientific community with a microgravity laboratory

aboard the space station. Using and maintaining the microgravity environment

will require, among other things, careful attention to experimental apparatus

mechanisms and laboratory robotic manipulators. This presentation describes a

technology development effort toward that end.

Since a variety of experiments that require microgravity also require or would

benefit from motion or manipulation, techniques are needed to restrict these

motions and motion-producing forces from disturbing the microgravity environ-

ment. The requirement is twofold: low-acceleration, smooth motion and reac-

tion limitation. This program applies structural dynamics and unique roller

traction drive technology to mitigating the problems of current mechanical

motion control systems. The program objective is to develop the technology for

providing acceleration control within and around space experiments by smooth,

reactionless motion and manipulation. A series of subtasks have been initi-

ated, including verifying needs and requirements, evaluating roller drives,

developing reactionless mechanism technology, optimizing dynamic performance,

and developing microgravity and reactionless manipulation. The products of

this research will also be applicable to mechanism and robotic needs in other

NASA space missions.
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SPACE PLATFORMS 

Current and future NASA missions involve the development and operation of com- 
plex space vehicles and platforms. 
pose, they must all deal with the environment found away from Earth's surface, 
namely, reduced gravity, vacuum atmosphere, and increased radiation. In fact, 
some missions, for example the space station, will have as a primary purpose 
the utilization of this environment. 

Although each of these has a different pur- 

Furthermore many of these space vehicles and platforms include in their struc- 
tural and mechanical design a large number of "moving parts" - as evidenced 
by the space station artist's concept showing manipulator arms, pointing 
antenna, solar trackers, and numerous other actuators, drives, and latches. 
Similarly the pressurized modules will contain numerous mechanisms. 
bination of environment and moving parts requires new technology. 

This com- 

The microgravity mechanisms and robotics program involves mechanisms and 
robotic technology related to the scientific use of the microgravity 
environment. 

ENVl RON M ENT: 
MICROGRAVITY 
VACUUM 
RADIATION 

MOVING PARTS: 
ROBOTSlMANlPULATORS 
STRUCTURAL JOINTS 
MECHANISMS 

CD-88-31817 
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NEEDS

NASA plans to provide the scientific community with a space station micro-

gravity laboratory. Managing the laboratory's microgravity environment will

require meaningful standards and technology for conducting experiments in

microgravity. Many experiments that require microgravity also involve

mechanical motions. Experiments conducted external to the laboratory or on a

free-flyer will require remote manipulation capabilities. Furthermore some

experiments would benefit from common laboratory equipment that requires han-

dling or scanning motions. New technology is required to ensure that these

motions within experiments or the robotic manipulator motions and reaction

forces do not negate the microgravity environment of the experiment itself or

those of other experiments in the laboratory.

One should be aware that the term "microgravity" is generally not used lit-

erally (i.e., 10 -6 go, where go equals the acceleration due to gravity at the

Earth's surface). It refers to the fact that in low Earth orbit on a typical

space platform, the gravity or acceleration field is not "zero g" but rather

reduced gravity, nominally in the range 10-2 go to 10-7 go" The exact ampli-

tude, and equally important the frequency spectrum, depend on solar pressure,

atmospheric drag, the gravity gradient, astronaut motions, attitude control

thrusters, rotating machinery, etc.

• MANY MICROGRAVITY EXPERIMENTS REQUIRE INTERNAL "MOTIONS'

• OTHER MECHANICAL MOTIONS WILL OCCUR AROUND EXPERIMENTS

-- EXPERIMENT MANIPULATION

-- LABORATORY EQUIPMENT HANDLING
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CHALLENGE

Basically the problem breaks down into two key issues. The first is moving an

item, such as a protein crystal in a vial, such that it never experiences

greater than some low level of acceleration. The second involves limiting the

reaction forces produced when a relatively large object is moved at relatively

high acceleration rates. These reactions are transmitted to the mechanisms or

robot support structure and, depending on the structure's mass, stiffness, and

damping characteristics, will set up an acceleration field that might be

harmful to other experiments and processes.

These issues are difficult to resolve in general since many mechanisms have

problems with backlash, friction, vibration, imprecision, and lack of reaction

control. Furthermore a space experimenter may not have mechanism expertise;

thus the Lewis Structures Division has undertaken this program.

• KEY MOTION CONTROL ISSUES INVOLVE MOVING AN ITEM SO THAT

--IT NEVER EXPERIENCES GREATER THAN MICROGRAVITY ACCELERATIONS

--ITS MOTIONPRODUCING REACTIONS DO NOT DISTURB THE SURROUNDING
ACCELERATION ENVIRONMENT

• TECHNOLOGY ADVANCEMENT

-- SOLVE PROBLEMS WITH EXISTING MECHANISMS

-- PROVIDE MOTION CONTROL TECHNOLOGY FOR SCIENTISTS

CD-88-31819
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OBJECTIVE

The objective of the microgravity mechanismsand robotics program is to
develop technology to provide acceleration control by smooth, reactionless
motion and manipulation. The immediate intended use of the results is in
space experiments hardware. However, the whole field of space mechanisms,
robotic actuators, and precision mechanismsin general can benefit.

The program addresses the needs and problems through the application of roller
drive and structural dynamics technologies. Roller drives are beneficial to
mechanismsand robotic joints because of their unique zero backlash, negligi-
ble torque ripple, nonlubricated operation, high torsional stiffness, and com-
pactness. By combining these attributes with dynamic modeling, vibration
analysis, and trajectory optimization, an analytical and experimental tech-
nology base is being developed for use across the full range from experimental
mechanismsto manipulators to autonomousspace laboratory robots.

• DEVELOP THE TECHNOLOGY TO PROVIDE ACCELERATION CONTROL BY SMOOTH
REACTIONLESS MOTION AND MANIPULATION THROUGH THE APPLICATION OF
ROLLER DRIVE AND STRUCTURAL DYNAMICS TECHNOLOGY

-- ROLLER DRIVE MECHANISMS OFFER ZERO BACKLASH, NEGLIGIBLE TORQUE
RIPPLE HIGH TORSIONAL STIFFNESS NONLUBRICATED OPERATION
AND COMPACTNESS

-- STRUCTURAL DYNAMICS INCLUDES DYNAMIC MODELING TRAJECTORY
OPTIMIZATION VIBRATION ANALYSIS AND REACTION COMPENSATION

CD-88-31820
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APPROACH

The solution to the general problem of smooth, reactionless motion is
approached through a combination of analysis and experimentation. The subtasks
of the project are listed here. Uponcompletion of these subtasks a technology
base will be in place for future reactionless microgravity mechanismsand
robotic systems.

• QUANTIFYAND ANALYZEREQUIREMENTS

• EVALUATEROLLERDRIVE CONCEPTSFOR APPLICATIONTO EXPERIMENT

APPARATUSES

• STUDY REACTIONLESSMECHANISMS IN ORDERTO DEVELOPAND DEMONSTRATE
TECHNOLOGY

• ANALYZEDYNAMICS AND KINEMATICSFOR OPTIMUM PERFORMANCE

• DEVELOPMICROGRAVITYAND REACTIONLESSMANIPULATIONTECHNOLOGYON
MULTI-DOFTEST BED

CD-88-31821
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IDENTIFICATIONOFREQUIREMENTS

The first step has been to quantify the needs and physical requirements for

reactionless microgravity mechanisms and robotic manipulators. Two need

avenues are being pursued: motion and mechanism needs within space experiment

apparatuses and manipulation needs within the space station laboratory module.

Analysis of experiment mechanism needs includes identifying actual mass,

velocity, and distance parameters, as well as studying the transmissibility of

forces and accelerations within experiment racks and the entire facility.

Robot manipulation can include laboratory housekeeping functions in addition

to actual experiment operation, thus offering savings in crew time and

enhancing experiment productivity.

The output of this task will be a set of requirements to guide this program's

technology development and future system design.

SPACE STATION
LABORATORY MODULE

RACK /_

PROPOSED

MICROGRAVITY
LABORATORY ROBOT

EXPERIMENTMECHANISMS

• ANALYZE EXPERIMENT

APPARATUS

• IDENTIFY PHYSICAL NEEDS

ROBOTICMANIPULATION

• ASSESS NEEDSAND BENEFITS

• DEFINE INTEGRATIONAND
INTERFACEREQUIREMENTS

CD-88-31822
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ROLLER DRIVE EVALUATION 

The use of roller traction drives in mechanisms is a key part of this investi- 
gation. Rig tests are being used to determine lubrication suitability in a 
vacuum, or other experimental atmospheres, contact forces required, and 
fineness of control. Design studies are analyzing traction drive concepts for 
use in the full range from individual experiment mechanisms to robotic manipu- 
lation systems. Methods that compensate for momentum and dynamic reactions, 
which also exploit traction drives' unique smooth operation for motion 
control, will be incorporated. 

DETERMINE SUITABILITY, MEASURE PERFORMANCE, AND EXPLOIT CHARACTERISTICS 

EXPERIMENT 
TORQUE/THRUST 

RACTlONlNORMAL LOAD 

BR 

TEST 'ROLLERS 
(EXTERNAL OR INTERNAL 

MISALIGNMENT POSITIONER 

ANALYSIS 

GIMBAL 

DESIGN CONCEPTS 

TORQUE, 
In.-lb 

- 
L L O W  b y  I HYSTERESIS 

100 

-150 
- a  - 4  0 4 8 

ANGULAR DEFLECTION, arc-sec 
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REACTIONLESSMECHANISMTECHNOLOGY

A single-degree-of-freedom roller-driven translating device is being studied
as a reactionless mechanism. This mechanismis representative of linear
motion devices that maybe required to translate a heating element or a cooling
manifold in an experiment requiring a rapid quench.

An example is the rapid solidification of molten materials, where a sample
must be rapidly cooled while it remains in a microgravity environment. To
pull it out of a furnace and place it in a quenching chamberwould obviously
cause accelerations to be placed on the sample. An alternative is to move the
furnace out of the way and quickly bring a quenching block in its place while
the sample is motionless. This requires a mechanismthat can translate the
equipment without allowing reaction forces to be transmitted back into the
support structure and thus show up as accelerations.

Other reactionless concepts and techniques will be evaluated and developed for
more specific applications.

• DEVELOP TECHNIQUES FOR SMOOTH, REACTIONLESS, RAPID MOTION FOR
MICROGRAVITY EXPERIMENTS REQUIRING INTERNAL MOTION

K///

I

DRIVE |
MOTOR_

I,

I

'x,

"//

I

_ MECHANISM
PLATFORMv

/
/

-- LINEAR ROLLER DRIVE
DESIGNED FOR NOMINAL

MOTION (MASS, SPEED,
AND DISTANCE)

-- CONCEPTS, TECHNIQUES, AND
PROTOTYPES WILL BE STUDIED

" FOR SPECIFIC APPLICATIONS

_'>-ANGULAR

CD-88-31824
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DYNAMIC ANALYSIS AND OPTIMIZATION

Kinematic and dynamic analyses are being developed to model reaction compensa-

tion techniques useful in mechanisms such as translators and multiple-degree-

of-freedom systems. Emphasis has been placed on the control of reaction forces

through the novel use of redundant degrees of freedom for momentum compensation

and on other mechanical compensation devices.

Although much of the program involves hardware issues, we are also studying

optimization techniques, reaction-force minimization strategies, and actuator

controls that exploit hardware capabilities. A portion of this work will be

presented separately in this symposium.

,, DEVELOPSTRATEGIESFOR MINIMIZING DYNAMIC BASE REACTIONSAND
END-EFFECTORACCELERATIONS

- KINEMATIC/DYNAMICMODELING

-REACTION MINIMIZATION STRATEGY

- TRAJECTORYOPTIMIZATION

-JOINT ACTUATORDYNAMICS AND CONTROL

CD-88-31825

1-152



MULTI-DOF"MICROGRAVITY"MANIPULATIONEXPERIMENTS

A multiple-degree-of-freedom (DOF) experimental test bed is being developed in
order to study how structural dynamics, reaction compensation, and low-
acceleration handling analyses interact with manipulator flexibility, roller
joint dynamics, actuator control, and end-effector accuracy phenomena. The
overall objective is to physically develop, demonstrate, and evaluate models,
strategies, and mechanismsfor manipulation in a microgravity laboratory. The
first phase of this activity, involving reaction compensation and Oak Ridge
National Laboratory (ORNL)-designed two-DOFroller-driven joints, is the
subject of a poster presentation in this symposium.

Conceptual development on an advanced test bed includes consideration of

low-acceleration handling, structural interactions, and actuator and end-

effector research. Technology developed here and throughout the program will

be channeled into future microgravity robot system definition.

• DEVELOP, DEMONSTRATE, AND EVALUATE DRIVE MECHANISMS, OPTIMIZATION

STRATEGIES, AND CONTROL MODELS FOR MANIPULATION IN A MICROGRAVITY

LABORATORY

END-EFFECTORJJ_

_.-----_YA,/_ _ YAW

...... TELEROBOTIC

_,_ MANIPULATOR

JO,NTS
6-DOF
FORCEAND

_ MOMENT
_" TRANSDUCER

-- REACTION COMPENSATION

-- LOW-ACCELERATION

HANDLING

-- DYNAMIC/STRUCTURAL

INTERACTIONS; VIBRATION

-- ACTUATOR TECHNOLOGY

-- END-EFFECTORS

-- PRECISION AND ACCURACY

-- MICROGRAVITY SYSTEM
DEFINITION

CD-88-31826
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NASA TELEROBOTIC RESEARCH 

Much of the technology developed in this program can be used in other mecha- 
nism and robotics programs, particularly the telerobotics technology research 
at NASA Langley and the telerobotics development for space station use at NASA 
Goddard. ORNL, under NASA Langley sponsorship, has developed a space tele- 
robot concept and tested baseline joints that take advantage of the roller 
drive‘s stiffness and lack of  torque ripple and particularly of its zero back- 
lash. 
traction drive technology and will be used in this program’s manipulation 
experiments. 

The pitchlyaw joint was designed by ORNL using Lewis-developed roller 

BENCH-TEST PITCHNAW JOINT 
BASELINED WITH ROLLER DRIVE 

DIFFERENTIAL 

OAK RIDGE NATIONAL LABORATORY’S 
SPACE TELEROBOT CONCEPT 

CD-86-31827 
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MICROGRAVITYMECHANISMSANDROBOTICSTECHNOLOGY

The primary goal of this program is to produce the motion control tools neces-
sary to enhanceand enable a particular NASAmission: space-laboratory-based
microgravity experiments. To that end, a spectrum of technology is being and
will be produced that is focused in the disciplines of precision mechanisms
and robotics. This core technology will be applicable to future mechanismand

'robotics efforts in the Lewis Research Center's Structures Division.

RATIONALE:

• RESPONDTO MICROGRAVITY
EXPERIMENTNEEDS

APPROACH:

• APPLY STRUCTURAL,
MECHANICAL,AND
SYSTEMSTECHNOLOGIES

GOAL:

• DEVELOPTECHNOLOGY

FUTURE:

• SPIN OFF TO MECHANISM AND
ROBOTICNEEDS IN OTHER
NASA SPACE MISSIONS

FOCUS:

NASA
MISSIONS

PRECISION
MECHANISMS

ROBOTICS

CD-88-31828
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BASE REACTION OPTIMIZATION OF MANIPULATORS

WITH REDUNDANT KINEMATICS

C.L. Chung and S. Desa
Department of Mechanical Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Manipulators used in space applications are operated under microgravity

conditions. Base reactions of space manipulator are directly exerted on the supporting

space structure. It is desirable to make these reactions as small as possible in order to

reduce their influence on the dynamics of the supporting space structure. Furthermore,

in delicate experiments conducted in space, the test specimen would have to be

moved carefully without subjecting it to excessive accelerations and jerks. It follows

that minimization of base reactions and limitation of end-effector accelerations and

jerks are important objectives for space manipulators.

In this presentation, a trajectory generation method for space manipulators is

introduced. The approach developed employs a manipulator with redundant

kinematics. The method is implemented in two steps. First, the end-effector trajectory

is developed to satisfy motion requirements. Next, the joint trajectories are developed

to minimize base reactions. This presentation describes the analytical development of

the method, and presents an example to illustrate the method.

p_EDiNG PA6_ BLANK NOT F]LMEO

Work done under NASA Lewis grant NAG3-811.
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Types of Manipulators

Manipulators can be categorized according to their degrees of freedom into two

groups: nonredundant and redundant. Nonredundant manipulators have the minimum

number of degrees of freedom required to follow a general trajectory. If a manipulator

has more than the minimum number of degrees of freedom required to perform a task,

then it is called a redundant manipulator.

Manipulators

non-redundant redundant

2 DOF Manipulator 3 DOF Manipulator

(I degree of redundancy)

b X,

8A_E
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Space Manipulator of NASA

Manipulators used in space are operated under microgravity conditions. Base

reactions of a space manipulator are directly exerted on the supporting space

structure. It is desirable to make the reactions as small as possible in order to reduce

their influence on the dynamics of the space structures. Besides the requirement of

small base reactions, delicate experiments conducted in space require that test

specimens be moved carefully without subjecting them to excessive accelerations and

jerks.

(_ ,i B (._;_cl),

• desire to move specimens without excessive acceleration

• require base reactions (-fo , No ) to be as small as possible
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Problem Statement

The trajectory problem for redundant manipulators which we are going to address has

two requirements: (1) to move a redundant manipulator according to task

specifications; (2) to minimize base reactions ( N o and F o ) transmitted by

manipulators to the base during motion.

A (dtor'l;n_)

No _" _ '

a/m^,_

A Planar Redundant Manipulator

• plan end-effector trajectory to satisfy _-"celeration
constraint

• determine joint trajectories that MINIMIZE BASE REACTIONS
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Proposed Approach

The trajecotry planning problem can be approached by splitting the problem into two

parts. This enables us to deal with the end-effector trajectory and joint trajectories

separately. The first part generates the end-effector trajectory that satisfies task

specifications. The second part obtains joint space solution that minimizes base

reactions.

ParL2

Determination of end-effector trajectory

Finding joint trajectories that minimize
base reactions
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Part 1: End-effector Trajectory Generation

The first part of the approach deals with the generation of end-effector trajectory, r(t) to

satisfy certain task specifications. The task specifications of interest are total distance

of the straight-line path (DT), maximum acceleration of end-effector trajectory (amax),

and total time of task (T).

IDEA:

==>

effector_ _

ctory that meets//

1. D T "total distance of the straight path

2. amax : max. acceleration of the path

3. T • time to accomplish the task

E_Eette_r,_

[ (t)
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Point-to-point Motion

A point-to-point motion is considered as the motion of an end effector moving from a

specified initial position to a specified final position. A simple way to execute this

motion is to move the origin of a coordinate frame fixed to the end effector along a

straight-line path that connects the two points.

• accomplish by a straight linefrom A to B

v(t) . dE) (speed along the straight path)
dt
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End-effector Trajectory Description

One of the requirements in planning end-effector trajectory is to have zero velocity at

initial and final positions. Cycloid curve which satisfies this requirement can be used to

describe the linear speed of the end-effector trajectory. Furthermore, it has smooth

kinematics properties and can be defined by using only three constants (a, b, c).

Cycloid: v(p) = b(1 - cos p) vc_)l _

L/\t(p) = a( p- c sin p)

P is the parameter.

p = 0 ( starting position)

p = 2_ ( end position)
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Determination of a, b, and c

The three constants a, b, and c can be determined by forcing cycloid function to satisfy

three motion constraints. By solving the following three equations, we can obtain the

valus for the constants.

Total Time of Task • T -- 2 _ a

Total Distance • DT = 2=a b ( 1 + 0.5 c)

Max. Acceleration:

lamaxl = b/a(1-c2)'0"5

From above 3 eqns. ,=> a, b, c
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Part 2: Determination of Joint Trajectories

The basic idea of proposed approach is to pose the inverse kinematics problem as an

optimization problem with a cost function that measures the base reactions. The

approach begins by partitioning the joint variable vector, q into 2 portions. Then the

Jacobian matrix is partitioned into a nonsingular square Jacobian matrix and a

submatrix. Using these partitioned matrices, we are able to represent the motion of all

the joints in terms of an optimization parameter matrix. The unique joint space solution

can be determined by finding the optimal parameter matrix for the optimization

problem.

Recall

1_ = J_l (1)

Ste_ l : Partition g & =l

_q J_

/\ . /%
gm gr #m -r

(tJml _ 0)

_,#12_EL"Express gm &-qm in terms Of gr and _tr

Clm = gl (_lr) (2)

-'Clm= g2 (gr'-qr) (3)

•_,P,I2_&: Setup a cost function, Jc(gr gr)

minimize Jc

min(Jc) => -qr, J_r => _m' gm
c'a_3)
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Part 2 Determination of Joint Trajectories (cont'd)

For the purpose of optimization,

where

_r = .G I(t)

f(t) ,, [1, t, t2 ...... tk ]T

(3 = constant coefficient matrix

For this problem:

To minimize base reactions,

Loca/ Cost Function" Jc = FIT Q

where FI -I_j_ol

B

.Q :positive definite weighting matrix
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Algorithm of the Proposed Approach

An algorithm of the proposed approach and a computer program written in Pascal

have been developed to implement this methodology. The flowchart below illustrates

the basic algorithm.

_ begin .j_

I "'_'n°c'°'°'°I,.0o,

_n go toext segment

divide end-effector

trajectory into

segments

initial configuration

I F,,,c..m,ocostIfunction, J=
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Illustrative Example

A 4 degrees of freedom spatial manipulator as shown below is studied. It has three

links with lengths of 11,12, and 13 respectively. For point-to-point spatial motion, three

degrees of freedom are required. Therefore, one degree of redundancy is available.

The reference frame XbYbZ b is fixed at the base. Link 1 is mounted to the supporting

structure and the other two links are each driven by a differential drive mechanism

which has two outputs that rotate about orthogonal axes. For the purpose of kinematic

and dynamic analyses, this mechanism can be considered as two intersecting revolute

joints.

Llnk 1

Z4

A 4 DOF Traction-Drive Manipulator
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Results of Example : Optimal Cost Function

Using the algorithm developed in this research, the time history of cost function given

by J - RTQ R ( Q - identity matrix) is shown in Figure 2.

I1.00

1.00

Optimal BaseReactionsCost Func_on
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End-effector Trajectory

The end-effector trajectory defined by cycloid curve is shown in the figures below.
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Optimal Joint Trajectory

A typical joint trajectory that minimizes base reactions is shown in the figure. This figure

shows that using the proposed approach, we can obtain smooth joint trajectory.
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Conclusions

In this presentation we have shown how kinematic redundancy can be employed in

planning joint trajectories to minimize base reactions exerted by the manipulator on

the supporting space structure. The results of the example show that small base

reactions are exerted on the space structure. The major advantage of this approach is

no special restrictions are imposed on the cost function. The disadvantage is that it is

computationally intensive because an optimization routine is required to find the

optimal joint trajectories.

1+)

(-)

We have obtained a workable approach for this
problem.

It can handle cost functions which include dynamics
relatively easily.

The approach is computationally intensive,
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EVALUATION OF A HIGH-TORQUE BACKLASH-FREE ROLLER ACTUATOR

Bruce M. Steinetz

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

NASA Lewis Research Center recently began a research program to investigate

mechanism positioning systems that would be suitable for space vehicles. High-

torque-density efficient systems are required that operate smoothly without

mechanical backlash and without liquid lubrication systems. Roller drives

inherently have many of these required properties because power is transmitted

through continuously rolling drive elements. The roller-driven mechanisms

investigated range from a smooth dry-running drive designed for the Space

Station alpha joint (Loewenthal and Schuller, 1986) to a backlash-free traction

robot joint tested in NASA's telerobotic research program (Kuban and Williams,

1987).

This paper presents results of a test program that evaluated the stiffness,

accuracy, and torque ripple of a 16:1, 320-ft-lb planetary roller drive for a

potential space vehicle actuator application.

The drive's planet roller supporting structure and bearings were found to be

the largest contributors to overall drive compliance (reciprocal of stiffness),

accounting for more than half of the total. In comparison, the traction roller

contacts contributed only 9 percent of the drive compliance based on an experi-

mentally verified stiffness model. The drive exhibited no backlash although

8 arc sec of hysteresis deflection were recorded because of microcreep within

the contact under torque load. Because of these load-dependent displacements,

some form of feedback control would be required for arc-second positioning

applications. Torque ripple tests showed the drive to be extremely smooth,

actually providing some damping of input torsional oscillations.
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INVESTIGATIONOBJECTIVES

Under a cooperative program with industry, a 16:1, 320-ft-lb output torque
roller actuator was evaluated experimentally (Steinetz et al., 1986) to deter-
mine its potential suitability as a high-torque space vehicle actuator, such as
for a control momentgyro (CMG)gimbal drive. Analytical predictions of the
torsional stiffness of the drive were comparedwith static torsional stiffness
measurements,and "torsionally soft" drive componentswere identified. Data
were also obtained on the drive's zero backlash, torque ripple, hysteresis
characteristics, and positional accuracy performance.

• EVALUATESUITABILITY OF ROLLERDRIVE TECHNOLOGYFOR
POTENTIALSPACEACTUATORAPPLICATION

• DETERMINEDRIVE'STORQUERIPPLE, HYSTERESIS, POSITIONING
ERROR,BACKLASH,AND CREEP CHARACTERISTICS

• ANALYTICALLYMODELDRIVESYSTEMTORSIONALSTIFFNESSAND
EXPERIMENTALLYIDENTIFY "TORSIONALLY SOFT" COMPONENTS

• EVALUATEDRY PERFORMANCEOF GOLD ION-PLATED ROLLERS

CD-88-31899
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ULTRAPRECISETRACTIONROLLERFEEDMECHANISM

Roller actuators have been used in positioning mechanismswhere gear or ball
screw systems could not be used as in this ultraprecise traction roller feed
mechanismof the Lawrence Livermore Laboratory (Bryan, 1979). In this device a
traction roller drives a translating traction bar that positions the parts to
0.2-_in. accuracy using a closed-loop laser interferometry feedback control
system.

_'_ _-DRIVE ROLIER

L_"_"'_OAD/'_- " '

TR_:T_ON BAR

,OLE..OLLE.
DRIVE MOTOR-/"

[ACCURACY0.2/_in. (0.05 arc sec)]

CD-88-31637
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26:l CONTROL MOMENT GYRO ROLLER-GEAR DRIVE 

An exceptional output torsional stiffness of 500 000 ft-lb/rad was demonstra- 
ted in this combined roller-gear drive designed and built for a satellite con- 
trol moment gyro application (General Electric, 1972). 
the rollers and gears transmit the load in parallel, combining in a compact 
package the excellent torsional stiffness and backlash-free behavior of trac- 
tion rollers with the high-torque carrying capability of gears. 

In this drive design 
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I PROTOTYPE SPACE VEHICLE ROLLER ACTUATOR 

Critical prototype drive system design requirements include a minimum drive 
torsional stiffness of 250 000 ft-lb/rad at the output, a low weight, and a 
minimum design life of 1600 hr. Maximizing the drive's torsional stiffness 
while minimizing the drive weight and achieving the required life were the 
paramount considerations guiding the design. Structural design tradeoffs and 
material selections were consistent with flight hardware requirements. 

The drive was designed to operate without liquid lubrication with a design 
traction coefficient of 0.1, which is at least 20 percent below the maximum 
available traction coefficient of the gold-ion-plated sun rollers against their 
steel first-row planet rollers (Spalvins and Buzek, 1981). A layer of gold, 
7.8 pin. thick, was ion plated onto the sun roller surface as a dry film lubri- 
cant to prevent the sun and first-row planet rollers from cold welding in the 
vacuum environment. Life limitation in this design is one of wear of the gold 
layer. Based on NASA sliding friction data (Spalvins, 19851, the gold thick- 
ness was determined for a minimum of 1600 hr of operation. 

The drive is nominally 9.84 in. in diameter by 8.66 in. in length and weighs 
22.1 lb. This compact Nasvytis planetary drive (Nasvytis, 1966) packages well 
in the small design envelope. 

CD-88-31639 
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16:1 ROLLERACTUATORTESTUNIT

The servomotor-driven input shaft transmits torque to the two halves of the sun
roller through two sets of ball-ramp loading devices. The sun roller, in turn,
drives five stepped first-row planets that drive five second-row planets.
These outer planets carry the torque to the ring roller attached to the output
shaft. Becauseof the double-end geometry of the rollers, ten, twenty, and
then ten parallel contact paths occur, respectively, at successive contacts.
The numberof planet rollers per row, number of rows, and relative step sizes
are design parameters to be optimized for a given application.

The torque loading mechanismincreases the normal load between the conically
shaped rollers in direct proportion to the applied torque by causing inward
axial motion of the sun roller halves. The potential for slip is not only
eliminated by incorporating a roller loading mechanism, but also the normal
loads on the rollers do not have to be set at maximumat all times, thereby
extending coating wear life and minimizing frictional losses.

INPUT SHAFT

SUN
ROLLER
HALVES

SECONDROW OF
PLANET ROLLER',

CYLINDRICAL
ROLLERBEARINGS

FIRST ROW
OF PLANET
ROLLERS

AUTOMATIC
LOADING
MECHANISM

SPIDER
CAGE

RING ROLLER SHAFT

CD-88-31640
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PREDICTEDDRIVECOMPLIANCE

The torsional stiffness of the drive (or its reciprocal, compliance) was ana-
lytically determined by modeling each of the drive's major components. The
compliance of each element was found and is presented as a percentage of the
total drive compliance. The spider cage support structure, planet bearings,
and input shaft torque loader mechanismwere the major contributors to the
drive compliance. The traction contact compliance analyzed using a comprehen-
sive technique developed at NASALewis (Rohnand Loewenthal, 1985) contributed
only 9 percent to the overall drive compliance.

Adding the elemental compliances and taking the inverse resulted in an overall
predicted drive torsional stiffness at the output shaft of 500 000 ft-lb/rad -
twice the design target stiffness value.

SPIDER _TRACTION
CAGE_ CONTACTS

33%
9%

4%

OUTPUT
SHAFT, 2O/o

OUTER
HOUSING

SPIDER

CAGE .....,
PLATE-"

11%

PLANET
BEARINGSJ

23%

18%

INPUT
SHAFT

CD-88-31641
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ROLLER ACTUATOR OUTPUT STIFFNESS AND HYSTERESlS

The drive's static torsional stiffness and hysteresis were measured at the

output shaft. The slope of this curve reveals a torsional stiffness of

170 000 ft-lb/rad. This stiffness is just over two-thirds of the design value,

or one-third of the predicted value.

Note, however, that the slope of the curve is constant across the zero torque

line indicating that no backlash is present - a decided benefit for mechanism

control systems that typically must position a load around a desired set point.

Backlash would appear in this trace as a horizontal or "zero stiffness" line.

Inelastic displacements from contact microslip resulted in a small 8-arc-sec

hysteresis loss during torque reversals. With feedback control systems, which

are standard for these types of space vehicle actuators, this small hysteresis

is considered acceptable.
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MAIN SOURCES OF STRUCTURAL COMPLIANCE

Individual stiffness measurements of key drive components were made to investi-

gate the discrepancy between the measured and predicted drive system stiff-

nesses. The two largest contributors to drive compliance are the spider-cage

support structure and the second-row planet support bearings. The stiffness of

the spider cage was measured while installed in the drive by applying a static

torque to the output shaft and measuring the angular deflection of the spider-

cage about the centerline of the drive. The measured spider-cage support

stiffness reflected to the output shaft was approximately half that predicted

analytically using the simple beam model. Evidently, a detailed finite element

model would be needed to provide better stiffness estimates for the relatively

complicated spider cage.

Radial stiffness measurements of four of the drive's cylindrical roller planet

bearings were made in a specially designed loading fixture with the same setup

that exists in the second-row planet rollers. Near zero load, the measured

radial stiffness of the cylindrical roller bearing was less than a third of

that predicted by standard roller bearing theory (Harris, 1966) because of an

experimentally observed settling-in phenomenon not reflected by the bearing
deflection model.

CYLINDRICAL
ROLLER BEARINGS

..... SPIDER
CAGE

CD-88-31643
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DRIVE SYSTEM STIFFNESS

The measured stiffnesses of the spider-cage support structure and the planet

bearings were used in place of their original predictions (left bar shown in

figure) to recalculate an overall predicted drive stiffness at zero-torque

load. This stiffness of 270 000 ft-lb/rad is now 60 percent higher than that

measured for the drive system.

Because of manufacturing tolerances in bearing post locations, it is possible

the bearings on the test drive are out of perfect position. Thus, at initial

load application only one or two of the supports may be, in fact, loaded. In

view of this nonideal load sharing, a decrease in the effective planet bearing

system stiffness would be expected. For instance, if it were assumed that only

two of the five bearing supports were active at the initially applied torques,

then the effective bearing support compliance would increase by a factor of

2.5, resulting in a recalculated drive stiffness of 170 000 ft-lb/rad (center

bar shown). This stiffness agrees exactly with that measured.

Based on these results, drive stiffness improvements resulting from a redesign

of the second-row planet support structure were analytically considered.

Machining the spider cage from beryllium with more rigid connections for

planet bearing posts would be expected to improve this component stiffness by

90 percent. Using preloaded, or line-to-line fit cylindrical roller bearings

would remove the initial "setting in" behavior observed, giving an appreciable

higher stiffness at zero load (zero drive torque).
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VERIFICATION OF TRACTION COMPLIANCE/HYSTERESIS MODEL

To corroborate the traction contact compliance analysis procedure, tests on a

simple roller configuration were conducted at NASA Lewis. The apparatus con-

sisted of a 3-in.-diameter crowned roller normally loaded against a flat plate.

Static torque applied to the roller caused small angular displacements (result-

ing from tangential straining of the contact) as plotted here.

The measured and predicted contact stiffness agree well validating the analysis

technique used for the overall drive. The general shapes of the curves also

agree well indicating that the model accounts accurately for small inelastic

microslip occurring in the contact resulting in the 0.7-arc-sec hysteresis
losses shown.
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ROLLERACTUATORTORQUERIPPLE

Tests were conducted to approximately determine the torsional ripple/attenuation
characteristics of the roller actuator. A variable-speed dc motor drove the
high-speed shaft of the actuator while steady torsional loads were applied to
the output shaft.

The variations of roller actuator input and output torque signatures for one
complete output shaft revolution are shownhere. The actuator was driven at
I0 percent of maximumspeed and at three torque levels corresponding to 15, 25,
and 31 percent of maximumtorque at 50 percent preload. Torque ripple is shown
as a percent variation (plus or minus) of the noted steady-state torque. The
input torque varied approximately 7 to 8 percent while the output torque varied
on the order of 0.3 percent. If no attenuation (damping) was present, then
input and output torque percent fluctuations would be expected to be about the
same. This suggests that the drive does not excite or amplify torsional oscil-
lations but, in fact, helps to attenuate vibration through coulombic damping.
The traces shownwere taken with prerun rollers having less than perfect sur-
face condition. Thus, these traces are considered to represent a conservative
view of the smooth torque-transmitting capability of the test drive.

DESIGN
TORQUE

INPUT_OUTPUT

mmmLmlllllll
INPUT

INPUT_OUTPUT

II]llllliiilil

CD-88-31646

1-186



OPEN-LOOPPOSITIONALACCURACY

A simple test was devised to determine the positional accuracy of the test
drive under load in an open-loop control mode (point A to point B and back to
point A). Tests were conducted by driving the input precisely 64 revolutions
under four steady torque load levels at constant speed in one direction. The
system was then "unwound" by rotating the input shaft back to its initial posi-
tion while maintaining torque in the samedirection. Dividing the difference
in output shaft angular position before and after rotation by the 8 (128 input
revolutions/drive ratio) total output rotations made, results in the percent
angular error shown.

These small errors in reproducing commandedinput position are caused by two
unavoidable characteristics of roller drives. The phenomenonof rolling creep
under torque loads is the major contributor to open-loop positional inaccuracy.
As each pair of rollers roll over each other under a steady torque, there is a
small relative speed difference which is seen at the output as lost motion. At
low torques, or whenthe drive operates unloaded, very small kinematic errors
due to imperfectly ground rollers (diameter tolerance, out-of-roundness, lob-
ing, waviness, etc.) can be present. Hence, for critical point-to-point
positioning applications the control system must be closed loop in order to
feedback output position whenusing roller actuators. This is not uncommonfor
such precision positioning mechanisms.
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SUMMARY AND CONCLUSIONS

The suitability of roller drive technology for key space vehicle actuator needs

has been shown. The drive system evaluated herein exhibited many required fea-

tures of precision positioning mechanisms, including absence of mechanical

backlash with minimum hysteresis, high-torque capability in a small, light-

weight package, and the ability to run smoothly and operate without a liquid

lubrication system.

The absence of mechanical backlash or deadband improves the resolution of the

system under load-reversal conditions and simplifies the control system. The

planetary drive configuration packs a high ratio in a small design envelope.

The smooth running and attenuating characteristics are ideal for sensitive min-

imum vibration positioning applications. The traction rollers have inherently

high torsional stiffness (important for high system bandwidth) since torque is

transmitted through tangential shearing of the traction interface. Overall

drive system stiffness, however, was compromised by support structure compli-

ance. Operating the drive dry with only a thin gold film applied to the

traction surfaces prevents cold welding of the rollers in a space vacuum envi-

ronment and eliminates the need for cumbersome liquid lubrication systems that

must pass difficult space qualifications tests.

• ROLLER ACTUATOR EXHIBITS ZERO BACKLASH WITH ARC SEC

HYSTERESIS ERROR

• INPUT TORQUE RIPPLE IS ATTENUATED BY COULOMBIC DAMPING

• ROLLERS HAVE INHERENTLY HIGH TORSIONAL STIFFNESS
COMPROMISED BY STRUCTURAL COMPLIANCE

• GOLD FILM LUBRICATION APPEARS FEASIBLE

CD-88-31648
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N88-23240

LOW-COST OPTICAL DATA ACQUISITION SYSTEM

FOR BLADE VIBRATION MEASUREMENT

Stephen J. Posta

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

A low-cost optical data acquisition system was designed to measure deflection

of vibrating rotor blade tips. The basic principle of the new design is to

record in memory raw data (a set of blade arrival times) and to perform all

processing by software after a run. This approach yields a simple and inexpen-

sive system with much less hardware than required for an earlier design

developed for this application.

Functional elements of the system were breadboarded and operated satisfactorily

during rotor simulations on the bench and during a data collection run with a

two-blade rotor in the Lewis spin rig.

Software was written to demonstrate the sorting and processing of data stored

in the system control computer after retrieval from the data acquisition

system. The demonstration produced an accurate graphical display of deflection

versus time.
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OVERVI EW

FEATURES

, MEASURES DEFLECTION OF VIBRATING ROTOR BLADE TIPS.

• FACILITATES PROCESSING AND ANALYSIS BECAUSE DATA ARE DIGITAL.

• PROVIDES COMPLETE VIBRATION RECORDS FOR EACH ROTOR BLADE.

• ELIMINATES CALIBRATION PROBLEMS INHERENT TO STRAIN GAGE SYSTEMS.

CD-88-31874
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FUNCTIONAL ELEMENTS

• FIXED OPTICAL PROBES SENSE BLADE PASSAGE.

• DATA ACQUISITION BOARDS RECEIVE AND STORE NEW DATA (A SET OF BLADE

ARRIVAL TIMES).

• A CONTROL COMPUTER SORTS AND PROCESSES DATA INTO USABLE FORM.

• A CONTROL BOARD PROVIDES THE INTERFACE BETWEEN DATA ACQUISITION BOARDS

AND THE CONTROL COMPUTER.

CD-88-31875
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POSTER PRESENTATION

OPTICAL DATA ACQUISITION SYSTEM

The optical data acquisition system comprises a set of fixed optical probes

that sense blade passage, data acquisition boards that receive and store in

memory the raw data (a set of blade arrival times), a control computer that

sorts the data into a usable form after each data collection run, and a control

board that provides the interface between the data acquisition boards and the

control computer.

Design details for this system are reported in Posta and Brown (1986). A

relatively more complex and costly earlier design was described in Brown

et al. (1984) and Lawrence and Meyn (1984).
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OPTICAL PROBE 

Each probe contains a high-resolution optical, reflective sensor and associated 
support electronics. 
matched photodetector in a single package. 
the LED is focused at the blade tips. As a blade edge passes by the probe at 
high speed, the event is detected, converted to a transistor-transitor logic 
(TTL)-compatible signal, and sent to a data acquisition board, where it is 
stored in memory. 

The sensor is a focused light-emitting diode (LED) and 
A visible light beam emitted by 

CD-88-31877 
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OPTICAL PROBE INSTALLATION IN SPIN RIG 

A probe assembly containing three optical probes is located at each of 16 
viewing ports equally spaced around the perimeter of the spin rig case. 
probe monitors the position of the blade tip leading edge, another monitors 
the blade tip midchord, and the third monitors the blade tip trailing edge. 
In this manner bending, torsion, and camber vibration modes can be identified. 
A single additional probe senses the start of each revolution with the passage 
of a timing mark on the rotor shaft. 

One 

OPTICAL PROBE ASSEMBLY 

+-TRAILING-EDGE 
PROBE 

LMIDCHORD 
I PROBE 

I 
LLEADING-EDGE 

PROBE 

OPTICAL PROBE INSTALLATI0 N 
IN SPIN RIG 
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DATA ACQUISITION BOARD MEMORY LOGIC

Blade detection pulses from a probe correspond to blade arrival times measured

from the start of each data collection run. These pulses latch the count from

a high-speed wraparound counter located on the system control board and begin

writing the count into the current memory address. In this manner the blade

arrival times are "time stamped" into memory.
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DATA ACQUISITION BOARD INPUT CIRCUIT

A system with fewer data acquisition boards and fewer components can be

designed if each board accepts data from more than one optical probe. This is

possible because the pulses from any probe are relatively widely spaced in

time, in contrast to the temporal variation of any pulse due to blade vibra-

tion. The signals from one or more other probes can be interspersed if a

known ordering of the pulses is maintained. This approach does not reduce the

total memory size but saves substantial duplication of other components, such

as counters and latches. A board configuration having four optical probe

inputs was chosen because it allows a maximum deflection of 140 mils, which

exceeds the performance of the earlier designed system in this area.

One pair of probes (viewing ports 0 and 2) is separated from the other pair

(viewing ports 4 and 6) by input gates GI a_d G2. This allows optional delay

to be added to signals from one probe pair. The signals from both probe pairs

are combined at output gate G3 and appear at the output of this gate as a com-

posite train of interspersed blade deflection pulses. Depending on the rotor

configuration, delay may be required to separate probe signals that are

coincident or overlap in time.
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CONTROLBOARD

The control board has control circuits for interfacing the data acquisition
boards with an external computer during the acquisition, storage, and retrieval
phases of a data collection run. A section of the board records the time when
each rotor revolution begins, as monitored by a separate optical probe. This
information is used in measuring rotor speed. The master clock and high-speed
wraparound counter are also located on this board.

ROTOR SHAFT
PROBE INPUT

SYSTEM _ DATA

CONTROL CONTROL ACQUISITION
',OMPUTER BOARD BOARDS

CONTROL _,/

CLOCK

,, CONTROL ,,,
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COMPARISONOFSYSTEMS

The low-cost system retains the important performance characteristics of an
earlier designed system. Maximumallowable blade tip deflection, deflection
resolution, maximum(unaliased) frequency, and frequency resolution are equal
to or better than those of an earlier designed system. The low-cost system
requires fewer circuit boards, each with a significantly reduced component
count than previous designs.

The need for frequency synthesizers is eliminated by "time stamping" the blade
arrival times measuredfrom the start of a data collection run rather than
those measuredfrom the start of each revolution.

MAXIMUM ALLOWABLEBLADETIP DEFLECTIONAND
DEFLECTIONRESOLUTION

ROTORDIAMETER,20 in.

SYSTEM NUMBER ROTATIONAL MAXIMUM DEFLECTION

OF SPEED, ALLOWABLE RESOLUTION

ROTOR rpm DEFLECTION, rail

BLADES .+ mU

EARLIER DESIGN ANY NUMBER 15 000 z102 TO 1257 z0.B TO 9,8

3 000 o102 TO 1257 aO.B TO 9.8

15000 140 0.80

3 000 140 .16

15000 3927 .80

3 O_@ 392"7 .16

LOW-COST 56

DESIGN

2

IGAM lie SET OVER TIHIS RANGEBY SOF'_ARE CHANGEOF SYNTHESIZER FREQUENCY.

SYSTEM CHARACTERISTICS

56 BLADES,15000 rpm

SYSTEM CHARACTERISTICS

MEMORY SIZE PER BOARD

NUMBER OF DATA BOAROS

SAMPLE TIME, t. ,_xc

(TIME FOR BLADE n TO GET FROM

PORT N TO PORT (N + 2))

SAMPLE RATE, f, Hz

MEMORY PER BLADE,

MEMORY SIZE x NUMBER OF BOARDS)NUMBER OF BLADES

TIME TO FILL MEMORY, T, sec,

MEMORY PER BLADE" /

" __-_ _ /
FREQUENCY RESOLUTION, I/T, Hz

MAXIMUM UNAUASED FREQUENCY, f/2, Hz

SYSTEM

EARLIER DESIGN LOW-COST DESIGN

40968-BIT WORDS I

15

4OOO

1170 WORDS

0,292

3.42

2OO0

16 384 16-BIT WORDS

4

25O

4000

1170 WORDS

0.292

3.42

20_
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HARDWARE REQUIREMENTS

REQUIREMENT SYSTEM

EARLIER DESIGN LOW-COST DESIGN

DATA ACQUISITION BOARDS

TOTAL NUMBER OF BOARDS,

PORTS x PROBES PER PORT "_

IC's PER BOARD

TOTAL IC's

CPU

FIFO

EPROM

DRAM

SRAM

161_2 = 32 16x24 = 8

68 30

2178 240

32 x 1=32 0

32 x 1=32 0

32 x 2=64 O

'32 x 8=256 0

32 x 2=64 b8 x 4=32

CONTROL BOARD

NUMBER OF BOARDS 2 1

IC's PER BOARD BOARD 1, 97; 43

BOARD 2.44

TOTAL IC's 141 43

FREQUENCY SYNTHESIZER 2 NONE

aTOTAL MEMORY, I MEOASIT

bTOTAL MEMORY, 2 MEGAIRTS
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ROLLER DRIVE MATERIALS PERFORMANCE

Douglas A. Rohn

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

Roller drives offer several beneficial characteristics in servomechanism appli-

cations. The best use of these inherent qualities in a given design is often

dependent on the performance of the materials chosen for traction rollers.

This presentation outlines roller traction performance basics, a test program

at Lewis to measure performance, and the need for and typical use of the
information.

Smooth rollers can transmit torque when pressed together in a rolling con-

tact. The amount of torque depends directly on the available traction coeffi-

cient and indirectly on the normal load capacity of the roller materials.

Durability and life are related to both rolling element fatigue and wear.

Application of roller drives to space mechanisms requires this performance

data under typical traction conditions in suitable environments, for example,
vacuu.ql.

A test rig has been designed and fabricated to develop this information.

Parametric conditions and specimen materials have been chosen so that the

resulting data and understanding will be valuable to the design and develop-

ment of advanced, roller-driven space mechanisms, from precision positioning

devices to telerobot joints.
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OVERVI EW

BENEFICIAL CHARACTERISTICS OF ROLLER TRACTION DRIVES

Roller drives offer several beneficial characteristics in servomechanism

applications. Potential aerospace applications include antenna or solar array

positioners, control moment gyro actuators, and robotic joints. In these and
similar applications the zero backlash, low torque ripple, high stiffness,

high efficiency, and ability to run without liquid lubrication of roller trac-
tion drives are important. Application of these inherent qualities to a given

aerospace mechanism often depends on the roller material performance, in terms

of available traction coefficient, load capacity, and wear rate under the

design conditions.

INCREASING
MATERIAL

PERFORMANCE
DEPENDENCE

1
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[ NONJAMMING

SMOOTH& QUIET; NEGLIGIBLETORQUERIPPLE

I NEARLYINFINITE POSITIONRESOLUTION

I ZERO BACKLASH
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FRICTION AND WEAR OF SEVERAL POLYMERS

Particularly in the case of space mechanisms, performance in the thermal-

vacuum environment is critical. A large body of friction and wear data exists

for sliding contact in air, as well as a fair amount for sliding in vacuum.

Comparatively less information is available for rolling traction contacts

(i.e., rolling and sliding) in air and very little for traction in a vacuum.

Extrapolation from sliding to traction contacts is generally possible; how-

ever, exact condition data are preferred. In addition, the differences in

performance in air and vacuum can be quite large.
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ENVIRONMENTSIMULATIONROLLERCONTACTPERFORMANCERIG

An experimental program is under way at NASALewis to evaluate materials and
coatings for application to roller drives in space mechanisms. Central to

this effort is a test rig which properly duplicates conditions to provide val-

uable data for understanding rolling traction performance phenomena and to

support current and future space mechanism projects.

TORQUE/THRUST TRANSDUCER"
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rNORMAL LOAD GIMBAL
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POSTER PRESENTATION

BENEFICIAL CHARACTERISTICS OF ROLLER TRACTION DRIVES

An interesting class of mechanisms utilize traction as the means to transfer

torque. Applications range from dry contacts, such as the locomotive wheel

against the rail and elastomer-coated rollers in paper handling equipment, to

lubricated contacts in industrial adjustable-speed traction drives (Loewenthal
et al., 1983).

As power transmissions, few mechanical drives match the low noise, smooth

torque transfer characteristics, high speed capability, and speed regulating

accuracy of traction drives. For servo drive system applications, their abil-

ity to provide a smooth transfer of motion with relatively low hysteresis

losses and high torsional stiffness while producing no detectable "backlash"

upon direction reversal are obviously beneficial qualities. (Loewenthal
et al., 1985).

These characteristics are inherent in the nature of roller traction drives

(i.e., smooth rollers running against other smooth rollers). However, the

degree to which the characteristics can be put to use depends on the perform-
ance of the roller materials.

INCREASING
MATERIAL

PERFORMANCE
DEPENDENCE

1

DRY-RUNNINGABILITY (SOLID FILMS/SELF-LUBEPOLYMERS)

J HIGH TORSIONALSTIFFNESS

LOW SLIDING; HIGH EFFICIENCY

HIGH SPEEDCAPABILITY __1

[ NONJAMMING
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[ ZEROBACKLASH
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TRACTION CURVE

A simple roller traction drive consists of a pair of rollers pressed together

with a normal load N. The traction force T capable of being transmitted

through the contact is a function of many parameters: normal load, rolling

speed U, temperature, materials, and lubricants, when present. The relation-

ship between these factors is typically shown by a set of traction curves.

The speed variation between traction rollers due to torque transfer is gen-

erally referred to as creep (Loewenthal and Zaretsky, 1985). The traction

coefficient is typically plotted against this value for a variety of speeds,

temperatures, loads, etc. The shape of any one of the family of curves follows

the range boundary lines of this figure.

Roller drives are designed to operate in the linear ascending portion of the

traction curve at some point below the peak. Operating creep rates range from

0.i to 0.2 percent for dry contacts or those lubricated with traction fluids

at low speeds, to 3 or 4 percent for lightly loaded, high-speed contacts lubri-

cated with mineral oils. This speed difference is not due to slip between

driver and driven roller but is, in fact, the accumulated lost motion due to

the tangential stretching and compressing motion or compliance occurring at

the roller contact interface. A "locked" or "zero slip" region exists at the

leading edge of the contact, and only at the peak traction point (i.e., point

of impending slip) will this region completely disappear. In the case of a

lubricated contact, lost motion due to viscous shear of the lubricant film in

the contact is also added.

TRACTION CURVE
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TRACTIONCAPACITYOFPOLYMERROLLERS

The torque and power capacity of roller traction drive contacts are dependent
on the material combination's peak available traction coefficient and the
amount of normal load sustained before failure. The failure modesof lubri-
cated roller drive contacts are very similar to those of ball and roller bear-
ings. Rolling-element fatigue, or pitting, is the likely modewhen the quality
of lubrication is good. Whenthe lubrication quality is not good, and also in
the case of dry-contact roller drives, the failure modeshifts from fatigue to
one that is predominantly wear.

Dry-running contacts, whether of polymer rollers or solid lubricant films, are
obviously advantageous where liquid lubrication is impractical. The traction
coefficient and particularly the load capacity of somecommercial polymers are
surprisingly high. Data shownhere were generated in air, with a polymer
roller running against a steel roller (Tevaarwerk, 1985).
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FRICTIONANDWEAROF SEVERALPOLYMERS

In order to makeuse of polymer rollers in space mechanismapplications, their
friction and wear properties must be known in representative environments. At
present, data exist only for contacts undergoing full sliding. Data for sev-
eral representative commercial and experimental polymers in air and vacuumare
presented here (Fusaro, 1987).
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FRICTIONOFGOLD-PLATED440C

Another promising roller drive material combination is steel rollers with soft
metal films (lead, silver, and gold) or hardfaced coatings (TiN and TIC).
These materials serve as solid lubricants or extremely wear-resistant barriers
(respectively) between the rollers which would otherwise cold weld in the
nonoxidative vacuumenvironment. The data shownhere (Spalvins, 1985) display
friction as well as wear life information for gold in vacuum. Friction
increases dramatically when the initial coating layer wears off and the 440C
substrate is rapidly damaged.

This and the previous data charts illustrate typical available data, which are
primarily for full sliding. Performance data in terms of traction coefficient,
load capacity, and wear rate for all materials in a roller traction contact
(combined sliding and rolling) under air, vacuum, and other environmental
conditions are needed for roller drive space mechanismdesign.
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ENVIRONMENTSIMULATIONROLLERCONTACTPERFORMANCERIG CAPABILITIES

An in-house program is under way to determine roller contact performance in
nonatmospheric environments. Understanding the data and phenomenawill sup-
port efforts in Lewis' Microgravity Mechanismsand Robotics Program, as well
as in the space station, telerobotics research, and future space missions.

A rig has been designed and is being fabricated to satisfy the experimental
criteria outlined here. Data on rolling traction contacts in a vacuumare
essentially nonexistent today. Proposed specimenmaterials include the full
range, from liquid lubricated Steel, to solid film coatings, to polymers, and
to ion-plated or vapor-deposited hardface materials.

PARAMETERS:

• LONGITUDINAL AND SIDE-SLIP TRACTION (ROLLING/SLIDING)

• AIR, VACUUM, GAS
• 200 Ib NORMAL LOAD, 500 rpm, 600 in.-Ib

OUTPUT DATA:

• TRACTION COEFFICIENT
• LOAD CAPACITY
• WEAR RATE
• EFFECTS OF MISALIGNMENT

SPECIMENS:

• SOLID ROLLERS
-- METALLIC
-- POLYMER

• COATINGS/FILMS
-- ION-PLATED METALS
-- HARDFACED LAYERS
-- POLYMERS
-- ELASTOMERS

• LIQUID LUBRICANTS

CD-88-31967
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ENVIRONMENTSIMULATIONROLLERCONTACTPERFORMANCERIG

An illustration of the rig concept is shownhere. Test rollers are supported
in vacuum-rated rotary feedthroughs and surrounded by a chamberwhich can be
evacuated to 10-6 torr or filled with suitable gases at or below ambient pres-
sure. A dc variable-speed motor provides rotation, and a magnetic particle
brake absorbs power for longitudinal traction torque transfer testing. A more
sensitive method of testing, side-slip traction (where the rollers are deliber-
ately misaligned and the axial thrust is a measure of traction force), can
also be accommodated. Misalignment is also a potential source of power loss
in an actual roller drive mechanism; thus its effects on torque transfer will
also be studied. Short-term, accelerated wear measurementswill be possible.
Presently planned future additions to the rig include the meansto heat and
cool the rollers to represent thermal conditions.

TORQUE/THRUST TRANSDUCER-
CHAMBER

L.LOAD GIMBAL

DRIVE MOTOR

TEST ROLLERS (EXTERNAL OR INTERNAL CONTACT)
, I I

MISALIGNMENT POSITIONER
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SPACESTATIONROTARYJOINTPINCHROLLERDRIVECONCEPT

The data from this effort have been used to develop a concept for the space
station powermodule alpha joint. Loewenthal and Schuller (1986) demonstrated
the feasibility of a pinch roller drive. Several performance advantages rela-
tive to gears were noted, including overtorque or jamming protection, inherent
acceptability to dry or self-lubricating materials, ease of manufacture, and in
situ assembly and maintenance. Data to predict wear rates were extracted from
plasma-nitrided steel gear data in vacuumand from pin-on-disk, I00 percent
sliding data for polyimides in vacuum. While use of such data was madecon-
servatively, actual rolling traction capacity and wear data are certainly
required before committing to space flight hardware fabrication.

TRACTION PINCH 1-_ r DRIVE MOTOR
ROLLERS _

.oTAT,.G<, STAT,O.AnY
STRUCTURE 8- TO 15-ft _ \ J STRUCTURE
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ALPHACORREC-
_TRANSITION TION ANGLE

TRUSS

WEAR LIFE ESTIMATE:

• 76 mm DIAMETER ROLLERS

• 50_m EXP POLYIMIDE COATING

• > 16yr SERVICE LIFE
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ORNL BENCH-TEST TELEROBOT JOINT WITH ROLLER DRIVE DIFFERENTIAL 

Another application of advanced roller drive actuators is in robot manipulator 
joints. The Oak Ridge National Laboratory (ORNL) developed a design for a lab- 
oratory and ultimately a space telerobot system (Kuban and Williams, 1987). 
Critical to its performance is a differential pitchlyaw joint, having high 
torque in a compact volume, low loss, ability to operate in space, and zero 
backlash. A roller drive design was selected to meet these needs. High roller 
load capacity and reasonably high traction coefficient are both desirable to 
minimize the size of the joint while still carrying the required torque. Low 
wear is important for long life. Ion-plated gold on hardened steel was 
selected as the initial material combination. Data from the Roller Drive 
Material Performance Program are essential to this and other advanced roller 
drive mechanism designs. 

DESIGN 
REQUIREMENTS 

HIGH TORQUE/ 
LOW LOSS 

DRYNACUUM 
OPERATION 

ZERO 
BACKLASH 
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SUMMARY

Roller drives offer several beneficial characteristics in servomechanism

applications. The best use of these inherent qualities in a given design is

often dependent on the performance of the materials chosen for traction

rollers. Application of roller drives to space mechanisms requires this

performance data under typical traction conditions in suitable environments.

An experimental program is under way to develop this information. Parametric

conditions and specimen materials have been chosen so that the resulting data

and understanding will be valuable to the design and development of advanced,

roller space mechanisms, from precision positioning devices to telerobot

joints.
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N88-23242

MICROGRAVITY MANIPULATOR DEMONSTRATION*

Andrew S. Brush

Sverdrup Technology, Inc.

(Lewis Research Center Group)
NASA Lewis Research Center

ABSTRACT

A test rig is being prepared that will be used to demonstrate and evaluate

approaches to limiting manipulator base reactions in microgravity environ-

ments. The demonstration will include a 4-degrees-of-freedom (DOF) arm, con-

trol computing facilities, and a base reaction measurement system.

*Work performed on-site for the Structural Dynamics Branch under contract

NAS3-24105 (task order 5232; monitor: Douglas A. Rohn).
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OVERVIEW

REACTION FOR SPECIFIED END-EFFECTOR PATH

In order to curtail the accelerations imparted to spacecraft by space experi-

mental activities, schemes have been developed for reducing the reactions at

the bases of robotic devices used for manipulation and motion on space plat-

forms. These call for the application of robotic joints combining smooth oper-

ation with zero backlash, to reduce vibration, and the use of path optimization

strategies to control base reactions due to gross motion. Although there is

theoretical and numerical evidence that these concepts are valid, a hardware

demonstration is desirable.

ARBITRARY PATH,
GEAR DRIVE

OPTIMIZED PATH,
ROLLER DRIVE

REACTION,
RCRT

TIME
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MICROGRAVITYMANIPULATORDEMONSTRATOR
LABORATORYSETUP

The Microgravity Manipulator Demonstration will contain four main elements:

(i) A 4-DOFrobotic arm utilizing traction-driven joints. These joints are
expected to cause minimumvibration and have insignificant backlash.

(2) Data processing hardware based on VME bus architecture employing Motorola

68020 processors to implement arm control. In addition to providing

closed-loop position and velocity control, processing capability will be

available for path-optimization programs. Control software will be made

as modular as possible to facilitate parallel processing. The bus archi-

tecture will allow future expansion through addition of processor or data

acquisition boards.

(3) Optimization strategies that will select the best trajectory through

joint space for a required end effector path in order to have minimum

base reaction. These algorithms will be interchangeable modules in the

control software to allow easy switching of optimization methods.

(4) A base reaction measurement system that will allow quantitative determina-

tion of the differences in reaction levels between optimized and unopti-

mized trajectories.

This demonstration will contribute valuable test data for developers of path

optimization strategies, provide experience with programming techniques for

integrating position control and trajectory optimization, and leave a reaction

measurement test bed that will be useful to future microgravity robotics
research.

6-DOF FORCE/MOMENT TRANSDUCER 32-BIT COMPUTER SYSTEM
OPERATORINTERFACE

CD-88-31730
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POSTER PRESENTATION

OBJECTIVES

The Microgravity Manipulator Demonstration is being developed in order to

facilitate assessment of hardware, software, and theoretical approaches to pro-

viding a manipulation capability for space microgravity experimentation.

The demonstration will provide quantitative evaluation of strategies for limit-

ing manipulator base reactions and allow Lewis personnel to develop a knowl-

edge base of experience with robotic controls for reduction of base reactions.

Increased practical experience in this field is essential to the implementa-

tion of reaction-limited robotics in space.

The demonstration will also provide the opportunity to evaluate traction-

driven robot joints.

• DEMONSTRATE (PROOF OF CONCEPT) PATH OPTIMIZATION

FOR LIMITING REACTIONS DUE TO MANIPULATOR MOTION

• DEVELOP AND EVALUATE CONTROL PROGRAMS FOR

MICROGRAVITY MANIPULATORS

• EVALUATE TRACTION DRIVE JOINT TECHNOLOGY

CD-88-31731
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APPROACH

The test rig must be able to provide all capabilities required to meet the
objectives stated previously. This will require

(I) A multi-DOF robot arm

(2) Software implementing optimization strategies to reduce base reactions

(3) A data processing facility capable of providing full control of the arm,
managing data acquisition, and running optimization programs under test

(4) A modular approach to control software that will allow easy substitution
of different strategies for accomplishing the objectives of robot control

(5) A means of measuring the reactions at the base of the robot in order to
evaluate the success of the reaction-limiting scheme

• MULTI-DOF MANIPULATOR ARM UTILIZING 2-DOF TRACTION JOINTS

• STRATEGY TO OPTIMIZE JOINT TRAJECTORIES TO MINIMIZE BASE REACTIONS

• HIGH-SPEED, 32-BIT, MULTIPROCESSOR CONTROL HARDWARE

• MODULAR CONTROL SOFTWARE

• MEASUREMENT OF BASE REACTIONS

CD-88-31734
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LABORATORYSETUP

The Microgravity Manipulator Demonstration will contain four main elements:

(i) A &-DOFrobotic arm using traction-driven joints. These joints are
expected to cause minimumvibration and have insignificant backlash.

(2) Data processing hardware based on VME bus architecture employing Motorola

68020 processors to implement arm control. In addition to providing

closed-loop position and velocity control, processing capability will be

available for path-optimization programs. Control software will be made

as modular as possible to facilitate parallel processing. The bus archi-

tecture will allow future expansion through addition of processor or data

acquisition boards.

(3) Optimization strategies that will select the best trajectory through

joint space for a required end effector path in order to have minimum

base reaction. These algorithms will be interchangeable modules in the

control software to allow easy switching of optimization methods.

(4) A base reaction measurement system that will allow quantitative determina-

tion of the differences in reaction levels between optimized and unopti-

mized trajectories.

6-DOF FORCE/MOMENT TRANSDUCER 32-BIT COMPUTER SYSTEM

OPERATORINTERFACE
CD-88-31730
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TESTPLAN

Oncethe control system is satisfactorily debugged, strategies for minimiza-
tion of base reactions will be evaluated by executing point-to-point motions
of the end effector using standard and optimized trajectories in the joint
space. The measuredbase reactions will be comparedto determine the extent
to which dynamic forces are mitigated.

REACTION

MAGNITUDE,

RCRT

/- UNOPTIMIZED

/- OPTIMIZATION STRATEGY "A"
/

/ /-OPTIMIZATION STRATEGY "B"
/ /

__// /_"_fw .--_

' /

TIME
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BASEREACTIONMEASUREMENT- PERSPECTIVE

Until researchers becameinterested in experiments that take advantage of the
low acceleration levels available in on-orbit spacecraft, there was no particu-
lar concern over the possible effects of small accelerations due to forces
imparted by experiments or associated manipulators. Designers of the EURECA
space platform discovered that they wanted to know the characteristics of the
acceleration caused by each experiment that would fly on EURECA,so that they
could asses the effects on other experiments. They were not able to develop a
suitable 6-DOFforce-moment transducer, however, so they recorded vibration
levels at the attachment points of each experiment and calculated the forces
using their knowledge of the dynamics of the experiment frame and the support-
ing structure. This was not an accurate method because of the estimation
involved in determining the dynamic characteristics of the structures.

Some6-DOFtransducers have been developed that are apparently suitable for dy-
namic measurementof robot base reactions to the desired accuracy. The direct
measurementof reactions is preferable and will be used in the demonstration.

• SMALL SPACECRAFT ACCELERATIONS NOT A MAJOR CONCERN UNTIL THE ADVENT

OF laG EXPERIMENTS

• REDUCING SOURCES OF FORCE IMPROVES laG ENVIRONMENT

• HOW CAN WE MEASURE SMALL DYNAMIC FORCES?

• ACCELEROMETERS--REQUIRE PRECISE KNOWLEDGE OF DYNAMIC OF TEST ARTICLE
AND SUPPORTING STRUCTURE

• DIRECT MEASUREMENT OF FORCE USING 6DOF TRANSDUCER

CD-88-31732
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SIX-DOFTRANSDUCERCONSTRUCTION

The construction of a 6-DOFtransducer involves constructing a structure with
predictable stiffness to forces applied at the attachment point and then
instrumenting it to determine the strain or displacement in enough (six mini-
mum)directions to fully determine the load.

Strut-type transducers attempt to resolve all forces and momentsinto purely
axial loads in struts supporting an attachment flange (load application point).

Onepopular type of robust transducer uses eight flexures to measure the hori-
zontal and vertical forces in perpendicular planes. This type maybe stiff
and strong but will have more crosstalk than a strut-type transducer.

Any shape of flexure maybe used, as long as at least six orthogonal compo-
nents of displacement can be measuredwith sufficient resolution. The previ-
ous types of fixtures are successful because they contain areas of high enough
strains to allow use of electrical resistance strain gages.

High-precision displacement measurementtechniques may present opportunities
to use unconventional flexure designs.

STRUT TYPE TRANSDUCER MULTIPLE FLEXURE

TRANSDUCER
CD-88-31735
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BASEREACTIONMEASUREMENT- DATAREDUCTION

Measurementof forces arising from the motions of the manipulator and its pay-
load are complicated in an earth-bound laboratory by the presence of static
loads due to gravity. In the case of a manipulator, the static momentsin the
plane of the floor (Mx and My) are determined by a nonlinear function of the
joint angles. This static componentof the measured load must be subtracted
from the total measured reaction:

Rt(t,@) = Rd(t) + Rs(e)

where Rs(e) must be known for all possible points in the joint space.

The interpolation error caused by using a lookup table with a reasonable
numberof points (<I0 000) will be excessive, so we need to develop an equa-
tion for the Rs(e). This equation is a function of e, having as parameters
the massdistribution of the arm segments. Wewill eliminate having to esti-
mate the massdistributions by fitting an equation of the proper form to exper-
imental data.

The present demonstration does not include real-time feedback of reaction, but
this maybe possible if processing resources are sufficient.

• STATIC BASE FORCES DUE TO GRAVITY MUST BE IGNORED

• GRAVITY MOMENT IS A NONLINEAR FUNCTION OF JOINT ANGLES

• NEED TO KNOW GRAVITY MOMENT AT ALL POINTS IN JOINT SPACE

• LOOKUP TABLE IS IMPRACTICAL

• PARAMETERS IN EQUATIONS CANNOT BE EXACTLY DETERMINED ANALYTICALLY

• ANSWER: USE PARAMETER IDENTIFICATION TECHNIQUES

• EQUATIONS ARE COMPUTATION INTENSIVE...
REAL-TIME REACTION FEEDBACK MAY REQUIRE ADDITIONAL PROCESSOR

CD-88-31736
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CONCLUSIONSANDBENEFITS

This demonstration will provide proof of concepts that will reduce robot base
reactions by optimizing joint trajectory. Additionally, it will contribute
experience with controls and hardware for microgravity manipulation to a knowl-
edge base that will benefit designers of hardware for space experiments.

The force measurementsystem and computer system will be available after the
4-DOFdemonstration for research using other types of manipulators.

• KNOWLEDGE BASE WILL BENEFIT DESIGNERS WHO REQUIRE

REACTION LIMITATION

• FORCE MEASUREMENT SYSTEM AND CONTROL DATA FACILITY

WILL BE AVAILABLE TO TEST FUTURE MANIPULATORS AND

ACTUATORS

CD-88-31737
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N88-'23243

ACCURATE POSITIONING OF LONG, FLEXIBLE ARM'S*

Michael J. Malachowski

CCE-Robotics

Berkeley, CA 94709

ABSTRACT

An articulated robotic manipulator (ARM) system is being designed for space

applications. It will be physically lightweight, slender, and flexible com-

pared to typical ground-based robot systems. When manipulating unknown masses

with long flexible segments, it is difficult, using standard means, to accu-

rately determine the position of the end tips of these ARM's. The problem is

how to quickly and accurately position long, flexible ARM's.

This presentation summarizes the work being done on a concept utilizing an

infinitely stiff laser beam for position reference. The laser beam is projec-

ted along the segments of the ARM, and the position is sensed by the beam rider

modules (BRM) mounted on the distal ends of the segments. The BRM concept is

the heart of the system. It utilizes a combination of lateral displacements,

and rotational and distance measurement sensors. These determine the relative

position of the two ends of the segments with respect to each other in six

degrees of freedom. The BRM measurement devices contain microprocessor con-

trolled data acquisition and active positioning components. We use an indi-

rect adaptive controller which senses this information to accurately control

the position of the ARM.

The goal of the project is to design a space rated sensor, control, and manipu-

lator assembly. This ARM will have a 10-m reach and will be capable of posi-

tioning payloads of up to i00 kg with millimeteric accuracy.

*Work performed under NASA Contract NAS3-25197.
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OVERVIEW

LASER BEAM RIGID BODY POSITIONING CONCEPT

There are numerous uses for articulated robotic manipulators (ARM's) with long

reaches and large load carrying capacities. The difficulty is that any mate-

rial beam with length L will bend when a perpendicular force is applied at

the end. This will displace the end tip by an amount d from its expected

position.

When manipulating an ARM, there are two ways of dealing with this problem.

The first is to make the beam so stiff that, for the forces involved, the value

d is less than the positioning accuracy required. Therefore, d can be

ignored. The difficulty with this approach is that a massive beam is required

to obtain this rigidity. The second approach is to calculate the value of d

for any particular displacement force. In general, such calculations are dif-

ficult and dependent upon the value of the payload mass. This method works

best when the payload is kept constant.

We circumvent these problems by using a perfectly straight, infinitely rigid

laser light reference beam. We measure in real time the displacement vector

d between the segment end tip and the laser reference beam.

/////////_//SSf LAS ER BEAM / / _- EN D-TIP

I LASER I' ........................... _,_,,_u__:_5-- CENTER
_///////////S CONCENTRIC WITH SEGMENT J

SEGMENT

FORCE

_/J//,///Y/'///'Sf_ LASER BEAM _-_

ill _ i) _'_ ))_ "JI.-,I-_._.l..L_ ))_ ))))))) ) ) )))) ))))))/--T'-

/ LASERI.................. - .... MiSMA'rO.
/J/J/J/J/IlIA j_d = END-TIP
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ARMCONFIGURATION

From this concept we have designed a two-segment ARM. The shoulder articula-
tion rotates and elevates. Concentric with the shoulder is a beampositioning
unit which movessimularly. Both of these are independently attached to the
base reference point. BRMIprovides the vector position of the elbow with
respect to the base reference point.

The rotation of the elbow articulation is monitored by a high-resolution
encoder. This information is used to define the elbow laser reference point
for the second segment. BRM2provides the vector position of the wrist with
respect to the elbow reference point.

A series of vector coordinate transformations is used to provide the position
of the wrist end tip with respect to the base reference point. Thus, we are
able to accurately specify the wrist end-tip position in real time.

/ \
ELBOW / .- _-- MOTOR/ENCODER

/ ,,"'_" t ASSEMBLY

PROXIMAL .,_'_ .,_ < "_--LASER MODULE II

ACTUATOR SEGMENT --_" '_... '""_ _.,_
DRIVEN MIRROR -'_.,_" /_.,_/\ "'--_\_f "_%_, .r DISTAL SEGMENT
ROTATIONAL _" /_.__" _-BEAM _\

ELEVATION -_ /_ ,._" DETECTOR"_,. "_--_,..

/ /"_J_-,_;:_/_" _%. "_. BEAM DETECTOR
I (J,_;::_ r" "_\ ,_', MODULE II;

\\ _/_ ///SHOULDER LASER BEAM__-''_''_/
/ ....... """' _ _ ._/_--7,,,o,o.(Y/ ,,

I lJ_-LASERMODULEI WRIST '\ _ /___l HAND
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INDIRECTADAPTIVECONTROLSCHEME

The end-tip position information serves two functions. The first function is
to dynamically control the behavior of the ARM. An indirect adaptive control-
ler is used to monitor the end-tip positions. Using the d vector infor-
mation, it stimulates the actuators which force the ARMto behave in a
predictable manner. The second function is to define points in the work enve-
lopes such that the ARMcan move the payload from one position to another.
Such movementcan be either point to point or along a predefined path.

ANGULAR
DESIRED POSITION ARM POSITION/ ]
ANGULAR OF LASER LASER POSITON I

POSITION, BEAM, MISMATCH, I

TRANSFER SEGMENT | CONTROLLER
FUNCTION: LENGTH /
_C TO _L /

i

=I IDENTIFIER =

'1ARM DEFLECTION,]

I I U2(L't) +

I
I I i..2_1 1

ARM MODEL, MA

CONTROLINPUT: TORQUE T APPLIED TO BASEOF ARM

OUTPUTSTO BECONTROLLED: 1. POSITION OF ARM END TIP

2. DEFLECTIONOF ARM END TIP

• LASERMEASURESARM DEFLECTIONAT END TIP

• TORQUEMEASURED (KNOWN) AT ARM BASE

• THESE TWO MEASUREMENTSUSED TO FINE TUNE ARM MODEL WHICH IS USED
TO FINE TUNE ARM CONTROLLER

CD-88-31935

ARM
END-TIP

POSITION,
Y(L,t)
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POSTER PRESENTATION

LASER BEAM RIGID BODY POSITIONING CONCEPT

Assume a physical cantilever segment of length L. A force F perpendicular

to the central axis of the segment will cause a displacement d. The magni-
tude of d is proportional to F and to the "stiffness" of the segment.

Typically, robotic manipulators use short stiff segments to minimize d, pre-

ferably to a point where it can be neglected during operation. A long segment

can be defined as a segment which has a value of d that becomes significant
during normal operation and, therefore, cannot be neglected. Since, in

general, the prediction or calculation of d is difficult, accurate position-

ing of long, flexible segments in real time is difficult. Our concept utilizes

the fact that a light beam is perfectly rigid. Thus, the light beam serves as
an axis of absolute reference. The value d is the distance between the

light beam and the segment's distal end-tip position. Since, by using our

methods, we can measure this value in "real time," accurate positioning of

long, flexible segments becomes feasible.

Real time is the sampling frequency required to observe the effects of induced

modal contributions. Currently, we are conducting experiments to determine

the validity of our modal analytical model. Preliminary calculations indicate

that contributions beyond the first three modes are negligible.

//JJ//////// LASER BEAM i ,_ END-TIP
LASER iI................. _............ >,,,,_-_J__--" CENTER

/J/////JJJ/ll CONCENTRIC WITH SEGMENT

- SEGMENT -

'I///////////
j LASER

J///////////,

FORCE

LASERBEAM _._

• LASER BEAM IS NORMALLYCONCENTRICWITH SEGMENT

• APPLIED FORCEDISTORTS SEGMENTAND CAUSESEND-TIP MISMATCH d

CD-88-31924
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BEAM RIDER MODULE DEFINES SIX DEGREES OF FREEDOM

A two-segment ARM configuration maximizes the work space envelope. To accu-

rately position the wrist end-tip platform of such an ARM in space requires

the definition of six degrees of freedom. Although a variety of coordinate

systems will meet this criterion, the one we choose is based upon our laser

reference beam. A first point is determined by the values XI, YI, and Z. A

second point along the beam is defined by X 2 and Y2" The angular value of

rotation, about the Z-axis, defines the sixth degree of freedom. Together

these values are used to uniquely specify the positions of the beam rider

module (BRM) on the laser reference beam. It is the purpose of the BRM to

determine the mismatch between the laser reference beam and the segment end

tip, the vector d. This value is then used to accurately position the ARM.

YI

_,f_LASER REFERENCE

BEAM S

X1 X2

-_ '_----"_ Z
DISTANCE

ROTATION

,, FIVE LINEARDEGREESOF FREEDOM

• ONE ROTATIONALDEGREEOF FREEDOM

CD-88-31925
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X-Y DETECTORCONFIGURATIONS

Four planar detectors were selected for evaluations. The first is the
quadrant detector, with and without a central orifice. In operation, analog
circuitry is used to detect beammovement;the detector is physically trans-
lated such that the laser reference beamis kept centered in the quadrant.
The amount of translation correlates to the X or Y values of the coordinate
system. The second is the rectangular matrix detector. Digital circuitry is
used to process the detector information and provide an X-Y coordinate of the
beamspot. Significant amounts of digital signal processor (DSP) is required
for this configuration; it was determined that this detector would be feasible
only at very low (30 Hz) frequencies. The third is the annular matrix. This
schemarequires significant DSP, as does the rectangular matrix, and is not,
generally, commercially available. Fourth is the lateral effects diode. This
detector uses analog circuitry to rapidly provide an X and Y value. It
appears to have sufficient resolution for our purposes. The major drawbacks
are its high cost and its lack of linearity.

QUADRANT RECTANGULAR ANNULAR LATERAL
DETECTOR MATRIX MATRIX EFFECTS
ANALOG DIGITAL DIGITAL ANALOG

2 x 2 500 x 500 200 x 200 2000 x 2000

• DIFFERENT DETECTORSHAVEDIFFERENTRESOLUTIONS

• DETECTORSREQUIREANALOGOR DIGITAL PROCESSING

C D-88-31926
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LATERALEFFECTSDIODE

The output of the lateral effects diode is run through a multistage analog
signal processor. The first stage isolates the diode from the processor.
Ideally, only the magnitude of the charge produced by the light beamis sam-
pied. This is because any current flow decreases the resolution of the detec-
tor. Resolutions are on the order of I part in 2000 of the length of the
detectors. The outputs from the four edges are added, subtracted, and divided
in such a manner that +X and +Y locations of the beamare represented by the
output voltages from the processor. The frequency response of the system is
limited by capacitance factors, which depend upon the size of the diode.
Responseson the order of hundreds of kilohertz should be possible.

LATERAL
EFFECTS
DIODE

I SIGNAL [PROCESSOR ,= X AND YCOORDINATES

• SIGNAL FROM LATERAL EFFECTS DIODE CONVERTED TO X AND Y COORDINATES

• THIS INFORMATION USED BY INDIRECT ADAPTIVE CONTROLLER TO POSITION ARM

CD-88-31927
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NONMOVING,FOUR-DEGREE-OF-FREEDOMDEFININGSCHEMA

A BRMusing the lateral effect (LE) diodes would use a beamsplitter to parti-
tion the beam's energy between detectors. Variation on this schemecan be
used to define further degrees of freedom. For example, using a retroflector
in the location of LE diode 2 would result in a laser beamretracing the path
of the original beamfor use with a laser interferometer. The reflected por-
tion of this beamwould be used to excite LE diode 2 and, therefore, provide
information on coordinates X2 and Y2"

BEAM SPLITTER

J J J ]1 ) J_ _J] J) ]J ; J])]JJ) ) )) 1)) ))l_]_)) J)))))) )_))_

LASER REFERENCE _ /

SEAM _ v /_""_¢_'_LATERAL

_,....._..__ X2'Y2 EFFECTS

DIODES

J _ _LATERAL EFFECTS
I,,"- _ DIODE

X1,Y1

• DETECTOR ASSEMBLIES ATTACHED TO SEGMENT

• DEFLECTION OF SEGMENT CAUSES CHANGE IN POSITION OF LASER BEAM ON DIODE

CD-88-31928

1-237



ACTIVEPOSITIONINGQUADRANTDETECTOR

A BRMcan be madeby using a pair of quadrant detectors and a retroflector.
The BRassembly fits within the segment and is translated in the XI,Y I and
X2,Y2 directions. The beamis retroflected back down the tube. Whenthe
segment is displaced, the beammovesfrom the detector centers. The unbal-
anced output signal produced is used in a feedback loop to drive a motor and
reposition the diodes. The detector and associated circuitry is analog and
therefore has a high frequency response. The difficulty is in the design of a
motor with matching high frequency response characteristics.

DETECTORJ _- BEAM \ _-MIRROR\
RIDER \
ASSEMBLY _ SEGMENT

• BEAM RIDER ASSEMBLY FITS INSIDE SEGMENT

• ASSEMBLY HOLDS QUADRANT DETECTORS AND MIRRORS ASSEMBLY

• LINEAR MOTORS BETWEEN ASSEMBLY AND SEGMENT POSITION ASSEMBLY TO REMAIN

COLINEAR WITH LASER REFERENCE BEAM

CD-88-31929
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ACTIVEPOSITIONINGLINEARMOTOR

A linear actuator, such as a voice coil, was determined to be a good candidate
for the BRMbecause of its high frequency response. The major drawback of the
voice coil actuator is that it has insufficient linear travel. To extend the
travel, we designed an actuator which has serial sets of coils. Sequential or
simultaneous excitations of the coils provide the desired linear travel. The
coil driver can drive 256 coils with a positive or negative current. The
value of the current in each coil is set by a multiplexing unit which addresses
each coil uniquely by using an 8-bit code. The drive value is stored until
reset. The wave from generator determines which value is placed on which
address line. The wave form can be generated by a computer and represents a
standing wave. The most appropriate standing wave to promote the desired
movementis generated and sent to the linear actuator. The centering of the
quadrant detector terminates the movement.

• LINEAR MOTOR DRIVEN BY COIL DRIVER

• DRIVING WAVE FORM CAN BE TAILOREDTO
ANY DESIREDWAVE SHAPE

WIRE COILS

LASER_ _ __:::_:CM_G__!)__1i

I I

!

WAVE FORM I WAVE SHAPE

GENERATOR l=

SAMPLE ___WAVE

SHAPES

CD-88-31930
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DISTANCEMEASURINGEQUIPMENT- LASERINTERFEROMETER

A laser interferometer is being used as our distance measuring equipment.
However, because this instrument measures incremental rather than absolute dis-
tance, an initialization is required prior to operation. During operation the
incident reference beamand the return beamenter the interferometer. The
interference fringes produced by changes in distance are counted and used to
indicate the distance traveled. Alternative schemesusing time of flight and
resonant cavity length modemeasurementare also under consideration.

'r - ..--BEAM SPLITTER

//" / • /

,' = QUADRANT
/ FEED BACK/ DETECTOR POSITIONING
LASER MIRROR
INTERFEROMETER TRANSLATESAND

ROTATESON TWO AXES

• QUADRANTDETECTORSENDS FEEDBACKTO POSITIONING MIRROR TO ASSURE
CORRECTPOSITIONINGOF BEAM ON INTERFEROMETER

• LASERINTERFEROMETERDETERMINESTOTAL DISTANCETRAVELEDBY LASER

• RESULTIS ACCURATEDETECTIONOFANYCHANGEIN LENGTHOFARMDUETOAPPLIED
LOADOR OTHEREFFECTS

CD-88-31931
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ROTATIONALMEASURINGEQUIPMENT- BEAMPOLARIZATION

The rotational measurementequipment (RME)will makeuse of the polarized
laser beam. An analyzer on the distal portion of the segment is used to ana-
lyze the beam. As an analyzer rotates around the reference beamtowards 90° ,
the magnitude of the transmitted beamis reduced towards extinction. The RME
module uses a detector to monitor beamintensity. The detector and analyzer
are mounted on a motor encoder unit. The motor is controlled by detector
output in such a manner that it rotates to provide maximumoutput. The
required amount of rotation is measuredby the encoder. This value can then
be used for positioning the ARM.

UNPOLARIZED POLARIZED LASER BEAM

....................... J ] I IJ IlJ)I I I I ) I i i ) I I I I ) } ) ) I ) ) ) b_]lY,Tj_'i'D-j'_]

I/ POLARIZINtG _-!"
,'POLARiZiNG FiLTE.-- -"Z " I

FILTER _ ANALYZER L
ASSEMBLY

_DETECTOR

ZIJI=ENCODER
_ Ldc MOTOR

L FEEDBACK
LOOP

• ARM ROTATION DETECTED USING POLARIZING FILTERS

• dc MOTOR ROTATES ANALYZER ASSEMBLY UNTIL DETECTOR READS MAXIMUM
INTENSITY

CD-88-31932
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ACTIVEBEAMRETROFLECTORASSEMBLY

The use of a conventional interferometer setup requires the reflection of the
incident beamback to the interferometer. If only a linear movementalong the
Z-axis is allowed, a corner cube or retroflector maybe used. However, because
in our application lateral displacement of the distal segment is possible, an
active positioning device is required to keep the reflected laser beamaimed
at the interferometer. A quadrant detector with a central orifice is placed
in front of the interferometer. The output of the detector is used to drive
the mirror moverangularly and correctly center the beam. Whenthe angular
movementexceeds a limit value, the mirror is translated. This arrangement
allows the use of this schemafor large values of d.

LASERBEAM

• FOUR LINEARACTUATORADJUST DETECTOR
FOR OPTIMUM ANGLEOF RECEPTION

• ENTIREMIRROR POSITIONING MECHANISM
MAY TRANSLATEIN X AND Y DIRECTIONS

LINEAR 1
ACTUATORS
(4)

x-Y
_'--;/I i TRANSLATION

I MECHANISM
DETECTOR
PIVOT POINT-"

( /

MIRRORj"

VOICE
COIL-"
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ARMCONFIGURATION

The ARMconsists of two articulations, two segments, and a wrist platform.
The shoulder articulation rotates about two axes and is connected to the elbow
by the proximal segment. The elbow rotates on one axis and is connected to
the wrist by the distal segment. The hand, manipulator, or end effectors
mount on the wrist platform. Because of temperature changes, the segments in
our current design will change length as materials expand or contract. Our
concepts are compatible with future designs which would use extensible
segments.

•," \
ELBOW/' I _,"- MOTORIENCODER

I ,,"_" '_ ASSEMBLY

PROXIMAL j_-_1_" _, <. "_'_--LASER MODULE II

ACTUATOR SEGMENT_._ f_.. ,%,<_ x
DRIVEN MIRROR ----#_7 _,:.,,I/\ '"--_\_'_/' "_'_.. I--- DISTAL SEGMENT
ROTATIONAL /.._" .-_ "-BEAM _x "%_._
ELEVATION "_ _ .'_"_ DETECTOR_... "x_.

N.-'\
,/ /._'/_,"/-,_ _%. "x_. BEAM DETECTOR

{ _/'_ r" _ _,,_MODULEII 7

' S SHOULDER LASER BEAM ""'- "" "

L___ ,
IIIIII _ I

r_ l/_i ,/I WRIST \ _ r "-_ HA
I " ...-P LASER MODULE I \ / ND

I rlL_L-=J__j
FEATURES: • LASERBEAM IS "INFINITE STIFFNESS" REFERENCEFOR FLEXIBLE

STRUCTURE

• DETECTORSAND MIRROR DRIVESUNDERMICROPROCESSORCONTROL
TO TRACKARM DEFLECTIONS

IMPACT: • LOCATIONOF END ARM IS KNOWNWITHIN 1 mm AT 10 m RADIUS
• POSITION, VELOCITY,ACCELERATION,AND FORCEOUTPUTSFOR ARM

CONTROLAND REAL-TIME TRAJECTORYMANAGEMENT CD-88-31934
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INDIRECTADAPTIVECONTROLSCHEME

In order to design a controller for a system, one must have an accurate model
of the system. In the case of the ARM,we assume that its model consists of a
finite numberof linear, ordinary differential equations. The driving term, or
input, to this model is torque applied to the base of the ARM,and the
response, or output, is the end-tip position of the ARM. Wewill employ an
identifier to determine the number of modeswhich must be included in the
model and the model parameters (e.g., damping coefficients) required. The
identifier takes input (torque) and output (end-tip position) measurementsand
uses those to estimate the values of the coefficients in the differential equa-
tions which composethe model. From the model the actual controller is con-
structed. The controller variables becomefunctions of the identifier's ARM
parameter estimates; as the identifier obtains better estimates of the ARM's
parameters the controller becomesmore finely tuned to the ARM. Any changes
in the ARM'scharacteristics (e.g., a change in arm segment material compli-
ance due to heating or cooling) will be sensed by the identifier. The identi-
fier then changes the corresponding variables in the in-line controller. This
provides continuous smooth operation of the overall system. An identifier
linked to an in-line controller is referred to as an indirect adaptive control
scheme.

IDENTIFIER

DESIRED
ANGULAR
POSITION,

_c

ANGULAR
POSITION ARM POSITION/

OF LASER LASER POSITON i
BEAM, MISMATCH, ARM DEFLECTION, |

I I ! . ,,
TRANSFER SEGMENT I CONTROLLER _________ !
FUNCTION: LENGTH ] ARM MODEL, M A

_'C TO _'L_

CONTROL INPUT: TORQUE T APPLIED TO BASE OF ARM

OUTPUTS TO BE CONTROLLED: 1. POSITION OF ARM END TIP

2. DEFLECTION OF ARM END TiP

• LASER MEASURES ARM DEFLECTION AT END TIP

• TORQUE MEASURED (KNOWN) AT ARM BASE

• THESE TWO MEASUREMENTS USED TO FINE TUNE ARM MODEL WHICH IS USED

TO FINE TUNE ARM CONTROLLER
CD-88-31935

ARM
END-TIP
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AEROELASTICITY

SESSION OVERVIEW

Louis J. Kiraly

Structural Dynamics Branch
NASA Lewis Research Center

The first two papers in this session deal with aeroelastic methods and unsteady

aerodynamics of turborotors and propfans. The first paper presents develop-

ment of aeroelastic analysis methods, excluding mistuning, and validates the

methods by comparing theoretical and experimental results. The second paper

addresses the development of two-dimensional and three-dimensional time march-

ing transonic potential flow methods for propfans. The third paper presents

comprehensive wind tunnel data on propfan aeroelasticity. The fourth paper

presents some preliminary ideas on forced response analysis being developed

for turbomachinery. The fifth and sixth papers deal with nonlinear aerodynam-

ics applicable to stall flutter analysis. The fifth paper presents reduced

order models for nonlinear dynamics. The sixth paper applies viscous flow

(Navier-Stokes) equations to stall flutter analysis.
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N88-23244

DEVELOPMENT OF AEROELASTIC ANALYSIS METHODS FOR TURBOROTORS AND

PROPFANS - INCLUDING MISTUNING

Krishna Rao V. Kaza

Structural Dynamics Branch
NASA Lewis Research Center

INTRODUCTION

The NASA Lewis aeroelastic research program is focused on unstalled and

stalled flutter, forced response, and whirl flutter of turborotors and prop-

fans. The basic research effort was started 6 years ago as a continuation of

the ATE (Aeroelasticity of Turbine Engines) Program. The objectives of the

effort are to understand the physical phenomena of cascade flutter and response

including blade mistuning (also called detuning or mode localization). By

starting with simple aeroelastic models and then progressively improving the

models, aeroelastic prediction capability has been significantly improved and

the role of mistuning has become well understood.

While this basic research effort was in progress, a propfan wind tunnel model

(the SR-5, with I0 titanium blades) fluttered unexpectedly during a perform-

ance test. The basic aeroelastic research program was then redirected and

focused on propfans in an effort to understand the physics of the instability

phenomenon and to develop required analysis methods. The redirected program

has been supplemented by a balanced experimental effort. The experiments have

been specifically designed to clarify the physics of flutter, to guide the

development of analytical models, and to provide quality data for validating

the analysis methods. The unique features of propfan blades, such as their

significant blade sweep and twist and their thinness and low aspect ratio, put

additional demands on basic technology disciplines, such as two-dimensional

and three-dimensional steady and unsteady aerodynamics in subsonic, transonic,

and supersonic flow regimes; structural dynamics modeling of composite blades;

geometric nonlinear theory of elasticity; linear and nonlinear Coriolis

effects; and passive and active control of flutter and response. Furthermore

the aeroelastic models with their refined aerodynamic and structural models

have imposed additional demands on computer power (speed and memory). New

analytical models in unsteady aerodynamics, structural dynamics, and aeroelas-

ticity have been conceived that exploit the capabilities of the Cray-XMP super-

computer. Some of these models have been completed and some are in progress.

These new models have been incorporated in a general-purpose computer program,

ASTROP (Aeroelastic STability and Response Of Propulsion Systems). A part of

the ASTROP program has been validated by comparing theoretical and experimen-

tal results for single-rotation (SR) propfans. More recently the ASTROP code

has been extended to calculate the forced response of propfan blades in yawed

flow, including blade mistuning.
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This presentation briefly reviews the aeroelastic models employed in the basic
research effort, describes the focused propfan aeroelastic program, and
presents an overview of the ASTROPcode. It also outlines the flutter and
forced-response models employed in ASTROP,presents predicted results from
these models, and validates the models by comparing predicted and measured
data.

Future research in aeroelasticity will include more emphasis on computational
aeroelasticity with two- and three-dimensional full velocity potential models
and Euler and Navier-Stokes aerodynamic models to clarify transonic flow
effects, on dynamic stall, and on the reverse thrust effects of both single-
rotation and counterrotation propfans and turborotors. This effort will be
supplementedwith balanced wind tunnel tests to validate the new methods.
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TYPICALSECTIONFLUTTERANDRESPONSEMODEL(MISER2)

A research program was begun about 6 years ago to improve the basic understand-
ing of blade mistuning effects on aeroelastic stability and response and to
explore the possibility of using mistuning as a passive response control.
This program was started with simplified aeroelastic models, and the models
were progressively improved. The first aeroelastic model (Kaza and Kielb,
1982; Kielb and Kaza, 1983; and Busby et al., 1985) was based on a two-
degrees-of-freedom structural dynamic model with plunging and pitching motion
of each blade and arbitrary frequency mistuning and on four two-dimensional
cascade aerodynamic models. The results from this aeroelastic model showed
that the bending and torsion coupling has a significant effect on cascade flut-
ter and that frequency mistuning has a beneficial effect on flutter in all the
flow regimes addressed and has either a beneficial or adverse effect on forced
response. Furthermore these simple models were used as benchmarks for check-
ing more complicated subsequent models.

• STRUCTURAL DYNAMICS MODEL
PLUNGING AND PITCHING MOTION OF EACH BLADE
ARBITRARY FREQUENCY MISTUNING

• TWODIMENSIONAL UNSTEADY CASCADE AERODYNAMIC MODELS

INCOMPRESSIBLE FLOW (WHITEHEAD, 1960)
SUBSONIC FLOW (SMITH, 1973; RAO AND JONES, 1975)
SUPERSONIC FLOW (ADAMCZYK AND GOLDSTEIN, 1978)
SUPERSONIC FLOW WITH SHOCKS (GOLDSTEIN, BRAUN, ADAMCZYK 1977)

• SOLUTION METHOD--FREQUENCY DOMAIN METHOD

CD-88-31788
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BLADED-DISKFLUTTERMODEL

This model is designed to account for the effects of structural coupling
between the blades and the elastic, inertial, and aerodynamic coupling between
the bending and torsional motions of each individual blade on the vibration
and flutter characteristics of mistuned bladed-disk assemblies. These objec-
tives are accomplished in two phases (Kaza and Kielb, 1984 and 1985). Each
blade is represented by an Euler-Bernoulli beamwith normal modesof a nonro-
tating beam. The disk is represented by a circular plate. The structural
dynamic model is obtained by a component-modesynthesis approach. The general-
ized aerodynamic loads are obtained from two-dimensional theory in a stripwise
fashion. The parametric results showedthat the beneficial effect of frequency
mistuning on flutter is unaffected by either the structural coupling between
the blades or the additional bending and torsion coupling of each individual
blade. Also, it was identified that the pretwist introduces strong coupling
between the disk bending and blade chordwise motions.

• STRUCTURALDYNAMIC MODEL
-BEAM NONROTATINGMODESFOR EACH BLADE
- PLATEMODESFOR DISK
- COMPONENTMODESYNTHESIS
- FREQUENCYMISTUNING

• AERODYNAMICMODEL
- STRIPWISEAPPROACH
-TWO-DIMENSIONAL SUBSONICAND SUPERSONICCASCADETHEORY

• SOLUTIONMETHOD--FREQUENCYDOMAIN SOLUTION

CD-88-31789
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WHYFOCUSEDPROPFANAEROELASTICRESEARCH?

Flutter occurred unexpectedly during a performance test on the SR-5wind tun-
nel model, a single-rotation model with i0 titanium blades. This flutter was
not predicted before the test by the existing helicopter blade flutter analy-
sis code. Becauseof the unique features of the propfans listed below, it was
decided that the existing aeroelastic technology for conventional propellers,
turbofans, or helicopters was not adequate. It was also recognized that devel-
oping new aeroelastic methods requires newmodels in basic disciplines such
as two-dimensional and three-dimensional, steady and unsteady (stalled and
unstalled) aerodynamics in subsonic, transonic, and supersonic flow regimes
and modeling of composite blades and tailored experiments to guide the analyti-
cal model development and to validate the theory.

• THIN BLADES(FLEXIBLE),CENTRIFUGALLOADS(LARGEDEFLECTIONS)--GEOMETRIC
NONLINEARTHEORYOF ELASTICITYAND CORIOLISFORCES

• SUBSONIC,TRANSONIC,ANDPOSSIBLYSUPERSONICMACHNUMBERS;LOWASPECT
RATIO; AND LARGE SWEEP--THREE-DIMENSIONALSTEADY AND UNSTEADY
AERODYNAMICTHEORY

• HIGHSWEEPANDTWIST--COUPLEDBLADEVIBRATORYBENDINGANDTORSIONMODES
AND STRUCTURALCOUPLINGBETWEENBLADES

• 8 TO 10 BLADES--AERODYNAMICCOUPLINGBETWEENBLADES(CASCADEEFFECTS)

• COUPLINGBETWEENAFT AND REARROTORS
- THREE-DIMENSIONALSTEADYAND UNSTEADYAERODYNAMICTHEORY
-TIME DOMAIN AEROELASTICMODEL

CD-88-31790
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IDEALIZEDSWEPT-BEAMAEROELASTICMODELFORPROPFANS

The main purpose of the beammodel was to predict the flutter speed of the
SR-5wind tunnel model and to clarify the mechanismof the flutter phenome-
non. For expeditious results the beammodel (Kaza and Kielb, 1984) was modi-
fied to account for blade sweep in an approximate manner as shown in the
left-hand graph below. Since the unsteady aerodynamic models for swept blades
were not available at that time, the two-dimensional cascade aerodynamic theory
was modified to account for blade sweepby using similarity laws. The disk is
assumedto be rigid. The predicted flutter boundary is comparedwith the meas-
ured one in the right-hand graph. The measuredand calculated flutter bound-
ary trends and flutter frequencies are in agreement (Mehmedet al., 1982).
Although not shownin the figure, the observed flutter modeand the measured
interblade phaseangle agree well with the theory. But the analytical results
depend on the users' judgment in selecting effective blade sweepand blade
elastic axis position. However, this model wasvery useful in conducting
parametric studies to clarify the flutter mechanism.
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AEROELASTIC STABILITY AND RESPONSE OF PROPULSION SYSTEMS (ASTROP)

The preliminary investigation (both experimental and theoretical) of the SR-5

flutter clearly demonstrated that more refined aeroelastic prediction methods

are needed so that propfans can be designed for maximum efficiency and safety.

At the same time these methods should have the flexibility to incorporate new

and future models in basic disciplines and have the capability to analyze new

propfan concepts. With this in mind we have begun the development of a compre-

hensive aeroelastic program, ASTROP, as shown below. The current status of the

various modules in the program is also shown. In all the ASTROP structural

dynamic models the Coriolis forces are neglected because these forces were

shown by Subrahmanyam et al. (1986) to have negligible effect on vibration for

thin blades. The first module, ASTROP2, and the subsonic flutter (with and

without mistuning) portion of second module, ASTROP3, have been completed and

validated (Kaza et al., 1987a and 1987b). Extensive parametric results, which

are believed to be useful for propfan designers, are also presented in these
references.
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APPLICATION OF ASTROP3 CODE FOR INVESTIGATING FLUTTER

OF A COMPOSITE SR PROPFAN MODEL

Tile ASTROP3 code uses three-dimensional subsonic steady and unsteady cascade

aerodynamics (Williams and Hwang, 1986) and a NASTRAN finite element model to

represent the blade structure. The equivalent anisotropic material properties

for each finite element are generated by using a preprocessor code, COBSTRAN,

developed by Chamis (1981). The effect of centrifugal loads and steady-state

airloads on the steady-state geometry of a composite wind tunnel model

(SR3C-X2) blade is shown in the left-hand graph. The aerodynamic cascade

effects (or the effect of blade number) on the eigenvalues are shown in the

right-hand graph. Both centrifugal loads and aerodynamic loads untwist the

blades, and this untwist increases with rotational speed. It is evident that

the cascade effect is very significant on the real part of the eigenvalue and

hence on stability.
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COMPARISON OF MEASURED AND CALCULATED FLUTTER

BOUNDARIES FOR SR3C-X2 PROPFAN MODEL

Theoretical flutter results obtained from the ASTROP3 code have been correlated

in the graph below with flutter data on a wind tunnel propfan model, SR3C-X2,
with composite blades (Mehmed and Kaza, 1986). Theoretical results include

the effects of centrifugal loads and steady-state airloads. The theory does
reasonably well in predicting flutter speeds and boundary slopes. However,
the difference between the calculated and measured flutter Mach numbers is

greater for the four-blade case than for the eight-blade case. This implies
that the theory may be overcorrecting for aerodynamic cascade effects with

four blades. Calculated interblade phase angles at flutter (not shown) also

compared well with measured values. However, calculated flutter frequencies
were about 8 percent higher than measured.
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EVALUATION OF TWO-DIMENSIONAL UNSTEADY AERODYNAMIC THEORY

FOR PROPFAN FLUTTER PREDICTION

So that the validity of two-dimensional aerodynamic theory and the associated

sweep correction could be assessed, the real part of the eigenvalue of the

critical mode was calculated by using both ASTROP2 and ASTROP3. The results

are compared in the graph below, which also shows the measured flutter Mach

number. The two-dimensional theory is shown to be less accurate than the

three-dimensional theory in predicting flutter Mach number for this case. Cor-

relative studies (not shown) of measured and calculated flutter boundaries

were also conducted by varying Mach number, blade sweep, rotational speed, and

blade setting angle. The correlation varied from poor to good. The expected

conservative nature of the two-dimensional theory sometimes did not prevail,

possibly because of the arbitrary nature of the reference line employed in the

strip method and the associated sweep correction.
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PROPFAN BLADE MISTUNING MODELS

Blade mistuning affects vibration, flutter, and forced response of turbomachin-

ery rotors and so is a current research topic. Its effects on propfan flutter

were investigated analytically and experimentally. Schematics of an eight-

blade mistuned rotor used in formulating the analytical model and blade ply

directions used in constructing the wind tunnel model are shown below. The

analytical model, which is more general than the wind tunnel model, is based

on the normal modes of a rotating composite blade and on subsonic unsteady

lifting-surface aerodynamic theory. The natural frequencies and mode shapes

of the SR3C-X2 and X3 model blades differed because of the ply angle varia-

tions between the blades. The first-mode frequencies of both blades were very

close and insensitive to ply angles. However, the average second-mode fre-

quency of the SR3C-3 blade was about 12 percent higher than that of the -X2

blade. More details can be found in Kaza et al. (1987b).
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COMPARISON OF MEASURED AND CALCULATED FLUTTER BOUNDARIES

FOR TUNED AND MISTUNED PROPFAN MODELS

Measured and calculated results for the tuned rotor SR3C-X2 and the mistuned

rotor SR3C-X2/SR3C-3 are compared in the figure. The calculations for each

rotor were made with the calculated modes and frequencies, except that the

measured second-mode frequency was substituted for the calculated one. The

calculated flutter Mach numbers for the SR3C-X2 were lower than the measured

ones for all rotational speeds. The agreement would be better if the effects

of steady airloads and structural damping were included in the calculations.

The agreement of the mixed rotor is better but would become unconservative if

steady airloads and structural damping were included in the theory. However,

the overall agreement between theory and experiment is more than satisfactory.

Finally the comparison of flutter boundaries for the SR3C-X2 and SR3C-3 prop-

fans shows that a laminated composite propfan can be tailored to optimize its

flutter speed by selecting the proper ply angles.
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A new feature of the ASTROP3 code that has just been completed (Kaza et al., 
1988) is the capability to perform a modal forced-response vibration analysis 
that includes structural and aerodynamic mistuning of aerodynamically excited 
propfans. The figure depicts a single-rotation, advanced propfan wind tunnel 
model (the SR-5 with 10 metallic blades) operating in a generally uniform, 
steady inflow field and inclined at a small angle with respect to the axis of 
rotation. Although the absolute inflow field is constant, rotating the prop- 
fan results in velocities with oscillatory components relative to the blades. 
Under such conditions ASTROP3 is able to determine the oscillatory loading dis- 
tributions over the propfan blades at various excitation frequencies and to 
calculate the vibratory displacements and stresses of the propfan. The figure 
shows measured and calculated one-per-revolution vibratory stress amplitudes 
for the SR-5 blade. 
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COMPARISONOFMEASUREDANDCALCULATEDFLUTTERBOUNDARIES
OF SR-5WINDTUNNELMODEL

Another new feature of the ASTROP3code that is in development is the capa-
bility to calculate flutter when the helical Machnumber of the flow is
supersonic. The aerodynamic code was developed by M.H. Williams of Purdue
University (personal communication). This new feature of ASTROP3is being
evaluated by applying it to the SR-5 wind tunnel model since the helical flut-
ter Machnumberat the tip is near unity, or above, for most of the data.
Measuredand calculated flutter Machnumbersare shown for three rotational
speeds at a blade setting angle of 69.3° at the three-quarter radius. The
calculated meanangle of attack of the blade is also shown. The experimental
flutter Machnumberrange was 0.86 to 0.96, with the meanangle varying from
3.07° to Ii.57 °. The difference between the calculated and measured flutter
Machnumbersincreased with increasing meanangle of attack. The maximumdif-
ference between theory and experiment was 16.7 percent at 6800 rpm. This is
not surprising because a blade with substantial sweepand meanangle of attack
is operating in transonic flow. Even though the blade is thin, this kind of a
disagreement is expected because of the "transonic dip" (drop in flutter Mach
number) phenomenonassociated with substantial blade sweep. To shed further
light on the transonic dip phenomenonfor thin airfoils, a further investiga-
tion has been conducted (Srivastava, et al., 1988).
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N88-23245

2-D AND 3-D TIME MARCHING TRANSONIC POTENTIAL

METHOD FOR PROPFANS

Marc H. Williams
School of Aeronautics and Astronautics

Purdue University
West Lafayette, IN

FLOW

ABSTRACT

Prediction of aeroelastic behavior is possible only if adequate methods are available for

the prediction of the unsteady aerodynamic loads that result from vibration and/or inflow

disturbances. The aerodynamic analysis of propfans is complicated by several factors: the

inherent three dimensionality of the flow field; the presence of strong compressibility effects at

cruise Mach numbers; the importance of aerodynamic coupling between blades; and the

inherently unsteady interactions between a rotor and the rest of the vehicle (e.g. the wing,

nascelle, pylon or a second counter-rotating blade row.)

Previous work under this grant has led to the development of a general three-dimensional

lifting surface code based on linear small disturbance theory and the assumption of simple

hann0nic fields (Williams and Hwang, 1986) While this method has proven to be successful in

predicting propfan flutter (Kaza et. al., 1987a,b), it is restricted to single rotation configurations

and does not include the effects of transonic nonlinearities.

Therefore recent efforts have concentrated on the development of aerodynamic tools for

the analysis of rotors at transonic speeds, and of configurations involving relative rotation.

Basically three distinct approaches have been taken: (1), extension of the lifting surface method

of Williams and Hwang (1986) to relative rotation; (2) development of a time marching linear

potential method for counter rotation; and (3) development of 2 and 3 dimensional finite volume

potential flow schemes for single rotation. Results from each of these approaches will be

described.

Work done under NASA Grant NAG3-499; monitor: K.R.V. Kaza.
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Propeller Velocity Field Predictions

The lifting surface method described in Williams and Hwang (1986) has been modified to
give the velocity field surrounding a rotor. A detailed validation study was made using extensive
LDV measurements taken by Sundar and Sullivan (1986) on a low speed 2 bladed propeller.
The figure shows the configuration and the predicted and measured radial velocities at a station
one radius downstream from the tip. The agr_ment is excellent, even near the tip vortex cores.

The slight phase shift is thought to be due to the neglect of vortex roll-up in the mathematical
model.
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Wing Prop Interaction

The lifting surface method has been used to predict the unsteady loads on a tractor
mounted wing-prop system. In this figure, the first three harmonics of the spanwise loading on
the wing are shown (the wing is at zero incidence.) The zeroth harmonic agrees reasonably well
with measured mean loads, though unsteady experimental data is not available for the higher
harmonics.

We plan to apply this scheme to the prediction of generalized forces for aeroelastic flutter
and forced response analysis with relative rotation.
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Time Marching Linearlzed Counter Rotation Analysis

A time marching panel method was developed, Chen and Williams (1987), to study the
unsteady loads on counter rotating propellers. Substantial unsteady load fluctuations were found
on both the front and rear blade rows. These fluctuations were not well predicted by a quasi-
steady analysis (Lesieutre and Sullivan, 1986), though the mean loads agree. Details are in Chert
(1987).
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2-D Transonic Cascade Analysis

A 2-D time marching method has been developed using a finite volume discretization of
the nonlinear potential flow equation. The scheme is an extension of the work by Shankar et. al.
(1985) to cascades. The method captures shockwaves, as indicated in the figure below. Verdon
(1982) used a very fine grid near the shock for better resolution, while our shock is smeared by
the course grid.
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Interblade Phasing and Multiple Passage

The time marching scheme uses a time shearing method described by Giles (1987) to
account for interblade phase lag. This can require modeling more than one passage. The
calculation shown below used two passages, because of the large interblade phase angle. To
avoid this a method is being developed to allow arbitrary phase angles in a single passage
model.
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Supersonic Cascades

The full potential analysis can be used at both subsonic and supersonic speeds. Shown
below is the steady upper surface pressure distribution on a semi-circular arc blade at Mach 1.3,
with a comparison to linear theory. This cascade has a subsonic leading edge. Some minor code
modifications (in progress) are required to allow supersonic leading edges.
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Three Dimensional Full Potential Analysis

The time marching algorithm described for cascades has been implemented in three
dinaensions as well. Results have been obtained for relatively simple configurations. The case

shown below is a rotating helical channel with a uniform axial flow. A constriction is placed in
the channel to simulate a rotating blade, and the resulting steady pressure distribution is plotted
at three spanwise locations. The analysis is now being extended to realistic rotor geometries.
The code uses a fully moving grid network, so application to vibrating blades should be

straightforward.
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PROPFAN MODEL WIND TUNNEL AEROELASTIC RESEARCH RESULTS

Oral Mehmed

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

The propfan offers the excellent propulsive efficiency of the conventional

turboprop, but extended out to flight speeds from Mach 0.7 to 0.8. It is the

thinness and sweep of propfan blades which provide the aeroacoustic gains of

the propfan over lower sweep conventional turboprops. The aeroacoustic

requirements of propfans also have resulted in twisted blades of low aspect

ratio and high solidity, operating in high subsonic and transonic flow

conditions. Then, the structural requirements of propfans have resulted in

blades made of composite materials. All these characteristics make the struc-

tural design of propfans more complex than that of conventional propellers.

To develop reliable technology for the structural design of these advanced

propellers NASA has been conducting both experimental and analytical research

in aeroelastics. This research is addressing the unconventional structural

and aerodynamic characteristics of advanced propellers and is being used to

improve existing and develop new aeroelastic analyses.

This short article will describe some of the single rotation propfan model

wind tunnel aeroelastic findings from the experimental part of this research

program. These findings include results for unstalled or classical flutter,

blade response from separated flow excitations, and blade response from aero-

dynamic excitations at angled inflow conditions. A more comprehensive and

detailed explanation of the experimental results that are given in this

article can be found in the references.
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PROPFAN AEROELASTIC TECHNOLOGY DEVELOPMENT

The development of propfan aeroelastic technology is being accomplished by

developing theoretically based design methods and conducting propfan model

experiments. As shown s_hematically on top, this combination is being used

successfully to verify that reliable propfan design methods are devel-

oped. The research areas being investigated include flutter and aerodynamic

forced excitation. The bottom figure illustrates the flight conditions where

these phenomena usually are of concern. For separated flow excitations, it is

at zero and low flight speeds, at operating conditions of high forward and

reverse thrust. For unstalled or classical flutter, it is at high flight

speeds. Whereas, for forced excitations due to angled inflow and the other

sources shown, it is at both low and high flight speeds.
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PROPFAN MODELS USED FOR AEROELASTIC EXPERIMENTS 

Aeroelastic research experiments were started in 1981 with single rotation (SR) 
propfan models. Shown below are some of the blade shapes that have been used 
and wind tunnel installation photos of two of the models. All the models are 
of two foot rotor diameter. The SR2, SR3, and SR5 blades are made of metal, 
and have 0, 45, and 60 degrees of geometric tip sweep, respectively. The SR2C 
and the SR3C blades have the same geometry as the corresponding metal blades 
but are made of graphite/epoxy material. More will be said about the SR3C 
blades on the next page. The SR7A blade is the first aeroelastic propfan 
model to be designed and tested. It has the same structural dynamics and aero- 
dynamics as a nine foot diameter propfan demo blade that was flight tested in 
April, 1987. The SR7A blade consists of a metal spar, for the blade shank 
and core, and a composite shell over the spar. This construction is similar 
to that of the nine foot demo blade. All together we have competed about 
1000 hours of wind tunnel aeroelastic SR model tests. 

SR2 
SRZC 

BLADES (8) SR3 
SR3C-3 

SR3C-XZ 

CD-88-32989 
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TAILORED AEROELASTIC D E S I G N  WITH COMPOSITE MATERIAL 

The SR3C-X2 blade was designed to flutter and the SR3C-3 blade was designed 
to be stable. The use of composite material for the blade construction made 
these tailored aeroelastic designs possible. Both blades are made from a 
layered buildup of graphite/epoxy unidirectional tape or p l y  material. The 
two models are identical except for the orientation of some of the plys. The 
figure illustrates how the blades differed in construction. The ply fiber 
direction variation provided a difference in stiffness and mode shapes between 
the blades. Both models were wind tunnel tested and performed as designed. 
Some of these test results are given on the following pages. 

SR3C BLADE SHAPE PLY DIRECTIONS 

MODEL PLY DIRECTION PERCENT TOTAL PLYS 

SR3C-3 0" 80 
+45" 20 

SR3C-X2 0 "  80 * 22Y2 20 

PLY DIRECTION 
VARIATION 

9 
STIFFNESS, 

MODE SHAPE 
VARIATION 

CD-88-32990 
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SR5 MODEL FLUTTER CHARACTERISTICS 

The first experience with propfan unstalled (classical) flutter occurred 
unexpectedly at the Lewis 8 x 6 - Foot Wind Tunnel with the highly swept SR5 
model. No flutter was experienced with the less swept SR2 and SR3 models 
during similar aerodynamic tests previously completed. When the flutter was 
discovered it was not understood. So the SR5 test was then redirected to 
investigate what type of flutter was occurring and what factors were causing 
the blade to flutter. Strobed video pictures taken during flutter showed a 
coupled bending and torsion motion occurring. 
gage signals indicated the blades locked into a system mode, vibrating at a 
common frequency and with a common phase angle between blades. 
ured flutter conditions, shown in the figure on the left, the following is 
observed. A decrease in stability occurred both with an increase in blade 
number and an increase in blade pitch angle. The flutter occurred at relative 
tip Mach numbers of about one, and at conditions of both high and low blade 
loading, including windmilling. The test data and analytical studies led to 
the conclusion that it was classical flutter, and that the aerodynamic cou- 
pling between blades, known as cascade effects, and blade sweep had to be 
included in propfan flutter analysis. The figure on the right shows the 
measured flutter frequency variation with rotational speed. The measured 
flutter frequencies fell very close to the predicted first natural blade mode 
frequencies. 

At flutter the blade strain 

From the meas- 

MEASURED FLUTTER FREQUENCY 
CONFIGURATION 350 

2P ORDER LINE 
0 

250 

MEASURED FLUTTER CONDITIONS 

RELATIVE TIP 
MACH NUMBER 



SR3C-X2MODELFLUTTERCHARACTERISTICS

After the SR5flutter experiment another flutter experiment was planned and

conducted to validate new flutter analyses that had been developed (Mehmed,

1982; Elchuri, 1983; Turnburg, 1983) at NASA and industry. The SR3C-X2 model,

described earlier, was intentionally designed to flutter at subsonic relative

velocities for this experiment. The figures below give some of the measured

flutter results. The trends shown in the top and lower left figures agree

with those found with SRS. That is, a decrease in stability occurs with an

increase in blade number and with increasing blade angle. Note, as with SRS,

the flutter here also occurred at the windmilling condition. Not shown, but

reported by Mehmed and Kaza (1986), the flutter occurred at relative tip Mach

numbers between 0.77 and 0.86 with eight blades, and between 0.80 and 0.90

with four blades. The lower right figure shows the flutter frequency for

SR3C-X2 was between the predicted first two blade natural modes. It was seen

on the previous page that the SR5 flutter frequency was much closer to the

first natural blade mode. This difference is due to the larger blade-to-air

mass ratio of SR5 than SR3C-X2, 115 and 33, respectively. The flutter data

from the SR3C-X2 model provided validation of and confidence in the classical

flutter analyses developed for propfans after the SR5 flutter experiment.
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CLASSICALFLUTTER- PERSPECTIVE

The classical flutter phenomenondiscovered with a very highly swept propfan
model, SRS, was fortuitous. It led to the development of reliable classical
flutter analyses for propfans. Both the SR7aeroelastic model and the large
scale demopropfan have been operated without flutter, as indicated in the
chart. Another flutter experiment with a counter rotation (CR) model has
recently been completed at Lewis, and will help the development of flutter
analyses for CRpropfans.

CLASSICALFLUTTER-PERSPECTIVE

• DISCOVERED WITH SR5

• NEWLY DEVELOPED FLUTTER ANALYSES VERIFIED WITH SR3C-X2 AND SR3C-3

• SR7 AEROELASTIC MODEL (2-FT DIAMETER) CLEARED TO 0.9 MACH AT LEWIS

• SR7 DEMO BLADE (9-FT DIAMETER) CLEARED TO 0.83 MACH AT MODANE AND TO

0.89 MACH AT 28,000 FT IN FLIGHT

• FLUTTER EXPERIMENT WITH A CR MODEL COMPLETED AT LEWIS (DEC. 1987)

- TO INVESTIGATE THE IMPORTANCE OF ROTORINTERACTIONS ON CLASSICAL FLUTTER

CD-88-32994
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PROPFANBLADEVIBRATIONSIN RESPONSETOSEPARATED
FLOWAT ZEROFORWARDVELOCITY

The figures below display vibratory response strain gage data for three prop-
fan models of different sweep. The excitations are from separated flow excita-
tions and critical speeds. The test conditions are zero forward velocity,
zero thrust axis tilt, and a blade setting angle of 32 degrees. The left and
right figures showbending stress data measuredat blade locations inboard and
near the tip, respectively. Also, data from two different facilities are com-
pared in each figure. It is seen that the straight blade model (SR2) has the
largest response, the next higher sweepmodel (SR3) has a lower response, and
the most highly swept model (SRS) has the lowest response. This trend agrees
at both blade measurementlocations. The data from the two facilities shows
good consistency.

PROPFANBLADE VIBRATIONS IN RESPONSETO SEPARATED
FLOW AT ZERO FORWARD VELOCITY
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PROPFANBLADEVIBRATIONSIN RESPONSETO SEPARATED
FLOWWITHFORWARDVELOCITY

This figure is similar to the one on the previous page, except it shows the
effect of forward velocity on blade vibratory response. The figure compares
the blade response at forward velocities of 0 and 0.I Mach, for a blade set-
ting angle of 36 degrees. It is seen at both velocity conditions that the
swept blades have a lower vibratory response than the straight blades, and
that a significant decrease in blade stress occurs with forward velocity.
This is expected, since forward velocity causes a decrease in the blade angle
of attack and a corresponding decrease in separated flow.

PROPFAN BLADEVIBRATIONS IN RESPONSETO SEPARATED
FLOW WITH FORWARDVELOCITY
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SR2CANDSR3CPROPFANFORCEDRESPONSEIN ANGLEDFLOW

The figures show the measured IP strain sensitivity variation with power
coefficient for the straight SR2Cand the swept SR3C-3composite propfan
models. Themeasurementswere madewith the propeller thrust axis inclined
to the freestream, both in an isolated nacelle and on a wing in a tractor
configuration. Strain sensitivity is defined as the amplitude of the IP
strain componentper unit excitation factor. Excitation factor (E.F.) is
proportional to the product of the thrust axis tilt and the freestream dynamic
pressure, and the IP strain componentvaries linearly with both of these
parameters. The figures show that the installation on the wing causes a
greater blade response than the isolated configuration. This is due to the
increased angular inflow into the propeller rotor from the wing flowfield.
The figures also show that the swept blade has less strain sensitivity than
the straight blade at most of the operation conditions.

SR2CANDSR3C-3PROPFANFORCEDRESPONSEIN ANGLEDFLOW
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SR7A MEASURED NATURAL FREQUENCIES AND MODE SHAPES 
I 

I The bench measured natural 
the natural mode shapes of a SR7A aeroelastic model blade are shown in the 
figure on top. 
represent constant displacement contours. All the modes involves a coupling 
of the flatwise, edgewise, and torsion motion, but the mode is identified by 
its predominant component of motion. The measured natural frequency variation 
with rotational speed is shown in the bottom figure for a blade angle at 3/4R 
of 32 degrees. 
angle of 57.6 degrees are also shown. 
stiffer than the actual blade for the 1E and the 2F modes, and stiffer yet for 
the 1T mode, but less stiff for the 1F mode at the high rpm point. 

frequencies and corresponding hologram photos of 

The whitest fringes represent nodes and the black fringes 

Calculated natural frequencies using MSC NASTRAN for a blade 
The analytical model is slightly 

BENCH MEASURED 

BLADE SERIAL NUMBER 15 

1F 
155 Hz 

1E 
324 Hz 

2F 
381 Hz 

1T 
557 Hz 

3F 2T 4F 
645 Hz 930 Hz 1008 Hz 

CD-88-32998 
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SR7APROPFANMODELFORCEDRESPONSEIN ANGLEDINFLOW

The SR7Aaeroelastic model had no classical flutter and the blade vibratory
response followed expected trends. The top figure shows the total vibratory
peak strain amplitude variation with shaft power for an isolated nacelle
configuration. The strains showa linear increase with power for both the
mid-blade and tip bending gages, except at 325 shp. These points at 325 shp
are near the IE/3P critical speed crossing and have a significant IE amplitude
component. The IP strain is the major componentof the total vibratory strain
at the other conditions. The bottom figure shows the IP vibratory strain
sensitivity (defined on the previous page) with shaft power. The greatest
strain sensitivity occurs at the lowest Machnumber (0.6). The strain
sensitivity increases with shaft power but at Mach0.6 it falls after an
initial rise.
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SUHMARY

The complex characteristics of propfans required the development of new aero-

elastic technology for their design. To help develop this technology experi-

ments were conducted with propfan sub-scale models. The objectives were to

understand the aeroelastic phenomena of propfans, to provide a data base, and

to develop and verify aeroelastic analyses. Full scale flight testing has

demonstrated the successful propfan designs developed from this experimental

and analytical research program.

• CLASSICALFLUTTER

-IS UNDERSTOODANDCANBEAVOIOEDTHROUGHOESIGN

• SEPARATEDFLOWEXCITATION

- NO STALLFLUTTEROCCURREDWITHTHESWEPTMODELS
- HIGHERSWEEPREDUCESRESPONSE
- FORWARDVELOCITYREDUCESRESPONSE

• FORCEDEXCITATIONATANGLEDINFLOW
- HIGHERSWEEPREDUCESRESPONSE
- WINGINSTALLATIONINCREASED1PSTRAINSENSITIVITYOVERTHATOFISOLATED

BY ABOUTTWOTIMES
- THE1PSTRAINSENSITIVITYINCREASEDWITHSHAFTPOWERIN THEBLADEDESIGN

RANGE

• GENERAL

- SWEPTBLADESEXHIBITLESSFORCEDRESPONSETHANSTRAIGHTBLAOES

- THE AEROELASTICMODELPERFORMEDASPREDICTEDBY ANALYSES

- COMPOSITEMATERIALCANBE USEDTOTAILORTHEAEROELASTICDESIGNOF
PROPFANS
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AEROELASTIC FORCED RESPONSE ANALYSIS OF TURBOMACHINERY*

Todd E. Smith

Sverdrup Technology, Inc.

(Lewis Research Center Group)
NASA Lewis Research Center

ABSTRACT

The Structural Dynamics Branch is currently involved in the development of

predictive tools for application to vibration problems within engine struc-

tures. This brief article outlines the research activity currently under way

to predict the aeroelastic forced response of fan, compressor, and turbine

components.

There are currently no analytical methods for predicting the forced response

behavior of turbomachinery components. Traditionally, the blade Campbell dia-

gram has been used to determine if a resonant frequency will interfere with an

engine order excitation. This technique has proven very successful over the

past few decades, but the push for higher stage loading and lighter engine

weight raises many forced response problems. The goal of this new research is

to create a system which will enable a designer to analytically predict fan,

compressor, and turbine blade response due to the many inherent sources of

excitation.

The Forced Response Prediction System (FREPS) is being created as an analyti-

cal tool for turbomachinery forced response. This system combines many of the

traditional structural and aeroelastic system models with the more recent ad-

vanced unsteady aerodynamic models. The initial emphasis of this project is

to develop methods for predicting unsteady blade loads due to flow field dis-

turbances which result within rotating blade rows.

The use of advanced computational aerodynamic models is enabling the prediction

of motion-independent airfoil unsteady loads which occur due to aerodynamic

excitations. For example, the aerodynamic loads induced by viscous wake pass-

ing and downstream potential-field fluctuations can now be predicted by using

these computational fluid dynamic codes.

The application of advanced unsteady aerodynamics codes also permits the pre-

diction of the motion-dependent, unsteady blade loads which occur within com-

plex (thick, highly cambered) blade passages. This capability allows for the

estimation of the unsteady pressure field within oscillating turbine blade cas-

cades at a variety of flow Mach numbers.

*Work performed on-site at the Lewis Research Center for the Structural

Dynamics Branch under contract NAS3-24105.
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An initial application of this predictive system is to determine the aeroelas-

tic behavior of the space shuttle main engine (SSME) oxygen pump turbine

blades. These blades have had a history of fatigue failures, and the aerody-

namic loads caused by the turbine vanes, struts, and cooling jets may be con-

tributing to the high vibratory stresses.

STRUCTURALDYNAMICS

AERODYNAMICS

CD-88-31809
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AEROELASTICPHENOMENA

The aeroelastician is concerned with the manner in which elastic structures
respond whenplaced within a flowing fluid. In particular, the stability and
forced response of the structure must be determined. Stability problems are
generally not encountered within turbomachinery because this is usually a con-
straint during initial design studies. Forced response is typically a long-
term problem because there are presently no useful design tools available.

Aeroelastic stability of a structure is assured if there are no unstable self-
excited vibratory modespresent at the standard operating conditions. The
presence of sufficient aerodynamic dampingwithin an oscillating cascade of
blades will determine if stable or unstable motion results.

The aeroelastic forced response analysis attempts to predict the manner (dis-
placements, phase relationships) in which the structure responds to flow field
disturbances.
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TURBOMACHINERYFORCEDRESPONSE- TRADITIONALMETHODS

The frequency-speed behavior of turbomachinery blades is customarily used to
determine if a forced response problem may exist for the component. The oper-
ating line interferences with resonant blade frequencies and engine order exci-
tations in a Campbell diagram are used to makea yes or no decision about
forced response problems. An example of such a determination is demonstrated
in Moss and Smith (1987). This traditional approach does not predict the
actual blade response to such excitations, but it does give an indication of
the possibility of having a significant blade response.

This research will provide a forced response calculation procedure which will
estimate the magnitude and phase of blade motion induced by the flow field dis-
turbances. Knowledgeof the airfoil forced response may then be used to infer
magnitude of vibratory stresses and fatigue characteristics through application
of standard Goodmandiagram techniques.

AEROELASTIC EQUATION OF MOTION

Mq + Col + Kq = A(q,t) + F(t)

STRUCTURALMODEL MOTION.DEPENDENT
AERODYNAMIC

LOADS

MOTION-INDEPENDENT
AERODYNAMIC

LOADS

CD-88-31811
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FORCED RESPONSE PREDICTION SYSTEM - FREPS

The FREPS system couples the aeroelastic equations of motion for a cascaded

blade row. This system uses the aeroelastic system models developed during the

last decade and the advanced aerodynamic models developed more recently.

A general aeroelastic equation of motion is presented below. This equation

models the structural characteristics of the system (left-hand side) along with

the forcing function (right-hand side). The structural characteristics may

include structural damping, mistuning, etc. The forcing functions are due to

two sources: motion-dependent forces and motion-independent, flow-induced
forces.

The FREPS system uses unsteady aerodynamic analysis to predict the motion-

dependent forces in complex blade passages. This system also uses empirical

models and correlations to define the influence of the motion-independent aero-

dynamically induced loads.

AERODYNAMIC

EXCITATIONS
• UPSTREAM; VISCOUS

WAKE SHEDDING

• DOWNSTREAM,POTENTIALFIELD
DISTURBANCES

• BLADESECONDARYFLOW
PHENOMENA

• COMPRESSORSURGE/
ROTATINGSTALL

• INLET FLOW FIELD DISTORTION
TURBULENCE

MECHANICAL
EXCITATIONS

• BLADETIPCASING
CONTACT

• ROTORDISK FLEXIBILITY

• SHAFT AND GEARMESH
EXCITATIONS

• FOREIGNOBJECT
DAMAGE
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SOURCES OF UNSTEADY BLADE LOADS

The typical rotating turbine blade is subjected to many mechanical and aerody-

namic forcing functions. Mechanical vibrations may be transmitted through the

supporting structures (disk, bearings, etc.) to result in unsteady blade loads.

Aerodynamic unsteadiness due to the aerodynamic interaction within a rotor-

stator pair generates significant unsteady loads. Unlike the mechanical

sources which may occur during specific portions of operation, the aerodynamic

forcing functions are always present. This research is chiefly concerned with

developing methods to estimate the effect of these aerodynamically induced

unsteady loads on blade response.
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UNSTEADINESS DUE TO AERODYNAMIC INTERACTION

The presence of adjacent rotating and stationary blade rows is inherently a

source of complex, nonsteady flow conditions. Two of the more dominant aerody-

namic interaction effects are due to the viscous wake shedding and the

pressure-field interaction problem. A complete experimental study of these two

interaction effects has been reported by Dring et al. (1982).

The upstream blade row generates a viscous wake flow disturbance which is con-

vected downstream to a blade row moving relative to the wake. As the wake

passes through the downstream blade passage, it distorts and causes unsteady

surface pressures, which lead to unsteady loads. The wake shedding influence

may persist far downstream within the machine.

The aft blade row represents a blockage to the primary flow field, which causes

a fluctuation in the pressure field. This pressure field unsteadiness affects

the flow characteristics within the upstream blade row. The influence of the

pressure field interaction diminishes rapidly as the axial spacing is
increased.

STEADY MEAN FLOW ANALYSIS
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UNSTEADINESSDUETOOSCILLATINGBLADEMOTION

The traditional small-disturbance strip theories are not applicable for pre-
dicting the unsteady flow in thick, camberedturbine blade passages. Newly
developed aerodynamic tools (Verdon and Caspar, 1984) are being used to predict
the steady and unsteady pressures and loads caused by turbine blade airfoil
oscillations. These aerodynamic models allow for the prediction of unsteady
flow behavior over a range of subsonic and transonic flow conditions.
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AEROELASTIC SYSTEM MODELS

The modeling techniques for the structural response of the system to the aero-

dynamic excitation is based on a wide range of structural models ranging from

simple two-DOF lumped parameter models, to cascaded blade models, up to highly

refined finite-element modal analysis techniques. Example applications of

these aeroelastic models have been presented by Kielb and Kaza (1982) and Kaza

et al. (1987).

• FREPSSYSTEMCOUPLESAEROELASTICUNSTEADYAERODYNAMIC,AND
FORCINGFUNCTIONMODELS

• EMPHASIS ON DEVELOPMENTOF CORRELATIONSTO MODEL
AERODYNAMICFORCINGFUNCTIONS

• ADVANCESIN CFD ARE REQUIREDTO BETTERMODEL AERODYNAMIC
INTERACTIONBETWEENBLADEROWS

CD-88-31895

1-295



SUMMARY

An introduction has been presented to the research activity under way to enable
the prediction of turbomachinery aeroelastic forced response. An effort is
being made to assemble a computer program (FREPS)which incorporates the aero-
elastic structural models, unsteady aerodynamic models, and forcing function
models. The structural and aerodynamic models are currently well developed.
The forcing function models are currently at a primitive level.

A significant activity has begun to identify the forcing functions due to sta-
tor-rotor aerodynamic interaction. This is a formidable task which requires
the use of advanced computational fluid dynamic programs. The results from
these CFDpredictions will be combined into "semiempirical" correlations which
are more amenablefor inclusion within the aeroelastic analysis models.
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REDUCED ORDER MODELS FOR NONLINEAR AERODYNAMICS
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ABSTRACT

Reduced order models are needed for reliable, accurate and efficient

prediction of aerodynamic forces to analyze fluid-structure interaction
problems in turbomachinery including prop fans. The phenomenological
models, though efficient, require a large amount of experimental data for

verification and are not always accurate. The models based on first principles
of fluid mechanics, such as Navier-Stokes methods, are accurate but

computationally expensive and difficult to integrate with structural
mechanics models to obtain an interdisciplinary prediction capability. In the
present work, a finite difference, time marching Navier-Stokes code is
validated for unsteady airfoil motion by comparing with classical potential
flow results. The Navier-Stokes code is then analyzed for calculation of
primitive and exact estimates of eigenvalues and eigenvectors associated with
fluid-airfoil interaction. A variational formulation for the Euler equations and
Navier-Stokes equations will be the basis for reduction of order through an
eigenvector transformation. This will help identify and exploit the
relationships between the simpler phenomenological models and those based
on first principles of fluid mechanics.
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Analysis of fluid-structure interaction problems in turbomachinery requires an
accurate knowledge of fluid properties and forces (Dowell, 1978). Some unique
features of propfans preclude the use of existing aeroelastic technology of
conventional propellers, turbofans and helicopters. The accurate and efficient
prediction of aerodynamic forces in nonlinear regimes, such as separated, transonic
flows, is important for aeroelastic analysis of propfans (especially stall flutter, whirl
flutter).

THE NEED FOR REDUCED ORDER MODELS

-Accurate prediction of aerodynamic forces is required

for aeroelastic response and flutter analysis

-Low angles of attack - linear relationship

-High angles of attack - nonlinear relationship

stall and dynamic stall

separated flow

-Theoretical Approaches
-Methods - Navier-Stokes

discrete vortex

zonal methods

-Limitations computationally expensive

lack of generality
difficult to use in routine aeroelastic

analysis

-Reduced Order Models

-Methods - empirical / semi-empirical

new methods based on first principles

-Advantages computationally fast

easily used in routine aeroelastic

analysis
allow for various airfoil motions and

flow conditions
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The nonlinear relationship between lift (also moment) and angle of attack is

modelled in various ways. The easiest and most popular way is curve-fitting
experimental data with algebraic or transcendental functions which represent
qualitative approximations to physical behavior. Ordinary differential equations are
also used to represent the lift-angle of attack relationship. These models are derived
empirically or semi-empirically and have no direct relation to first principles of
fluid mechanics.

The Navier-Stokes methods and Euler methods to calculate flow over airfoilsare based

on finite difference and/or finite elements techniques and involve a large number

of degrees of freedom, depending on the gridlclcments setup. The nonlinear
equations of fluid mechanics arc solved with linearized solution methods, such as

approximate factorization,alternate direction implicit procedure, etc. Reduction in

the number of degrees of freedom can be achieved by identifyingthe important or
dominant modes and then writing the system of equations in terms of these modes.

AD HOC MODELS

Different ways to model nonlinearity in
and moment.

-corrected angle of attack methods.
-time-delay methods, synthesis

procedures.
-ordinary differential equation

methods.

lift

FIRST PRINCIPLE MODELS

Flow over airfoils calculated using Navier-
Stokes methods or Euler methods.

Identify/recognize the important or

dominant modes. Write the system of
equations in terms of dominant modes.
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For development of a reduced order model, a Navier-Stokes code capable of
calculating unsteady, transonic and separated flows for different airfoil motions,
such as pitching and plunging, was required. A finite difference, time marching
code developed by Sankar and Tang (1985) was selected. This code solves the unsteady,
two-dimensional Navier-Stokes equations on a body-fitted moving coordinate system

in a strong conservative form using the ADI procedure. The convective terms are
treated implicitly and the viscous terms are treated explicitly. The code was modified
to include step change response. The results from the code for inviscid flow were in

reasonable agreement with classical potential flow results.

NAVIER-STOKES CODE
MATHEMATICAL FORMULATION

(x,y,t) --> (_,rl,x)

= _(x,y,t), rl = rl(x,y,t), x = x(t)

Transformed Navier-Stokes

qx+ F_ + G rl = _ + 11

Equations:

where q= (p, flu, pv, e)

F =_pu, pu2+p, puv,

G = ( pv, puv, pv2+p,

u(e+p))

v(e+p))

R = ( 0, Xxx, "_xy' R4)

S = ( 0, "l:xy , "Cyy, 84)

R 4 = u Xxx + v Xxy + K (ae)x

S 4 = U qTxy + V _yy + K (a2)y

1-302



Variational formulations not only concentrate all of the intrinsic features of the
problem ( governing equations, boundary conditions, initial conditions and
constraints) in a single functional, but also provide a natural means for
approximation. In solid mechanics, a variational formulation is easy to obtain.
However, in fluid mechanics, use of an Eulerian reference frame and the

nonlinearity in the expression for conservation of momentum make a variational
formulation very difficult to obtain. Extremization of an energy functional has been
formulated in the literature (Oden and Reddy, 1983, Girault and Raviart, 1986, Temam,
1984) for the cases listed below. The approximate variational formulations are used in
methods of weighted residuals, collocation methods, Galerkin's method, least-squares
methods and semi-discrete methods.

VARIATIONAL FORMULATIONS

-Inviscid potential flow

-incompressible flow (linear elliptic p.d.e.).

-compressible

-subsonic

-transonic

flow

(small-disturbance equation).

(slender body assumption).

-Euler equations

-unsteady, compressible form.

-Navier-Stokes

-Stokes' problem.

-steady, incompressible

-unsteady, incompressible

-stream

equations

N-S equations.

N-S equations.

function-vorticity formulation.
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To determine primitive modes, the airfoil is oscillated at different frequencies about
several steady angles of attack with various amplitudes of oscillation. Primitive modes
are amplitudes and phase differences for (p, pu, pv, e) over the entire grid. For the
Euler Solution, the primitive modes are independent of oscillation amplitude,

sufficiently far away from the airfoil.

To detrmine exact modes, an eigenvalue problem is formulated for the Navier-Stokes
code. This eigenproblem is then solved to determine the exact eigenvalues and

eigenmodes.

EIGENVALUE PROBLEM FORMULATION

qx + F_ + Gn = Rg + S n

F, G,R,S are functions of q .

Substitute q = q + q

q • steady state value, q • small perturbation.

qx- dQ__ q
dqq

A _t
Substitute q = q e

kx_ dQ kx
_qe -----_ qe

dq q
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A is a sparse, real, nonsymmetric matrix of order N, where
N = 4 x total number of grid points.

_- 24000.

The state of the art software available for an eigenvalue calculation is NOT capable of
storing a 24000 x 24000 matrix or utilizing the sparsity and nonsymmetry of the
present problem for obtaining a solution in a reasonable computer time. A procedure
was developed to exploit the sparsity of the matrix for storage and calculation
purposes. A modified Lanczos recursive procedure with no reonhogonalization is
used to calculate eigenvalues (Cullum and Willoughby, 1986). These eigenvalues are
found to be independent of the starting vectors used in the recursion.

Below are shown preliminary results from this eigenvalue calculation for different
values of explicit and implicit damping in the Navier-Stokes code for NACA 0012

airfoil at M = 0.8, o_ = 0 using the Euler equations. The addition of artficial damping to

the governing equations in the N-S code appears to change unstable eigenvalues into
stable ones. Also the N-S code was able to calculate the time history of flow over the
airfoil with artificial damping, but failed without this damping.

Eigenvalues for NACA 0012 at M = 0.8, a = 0.
(Euler Solution)
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Transformation of the system from physical coordinates to modal coordinates using
the classical or approximate variational formulation for flow over an airfoil can be
done as shown below. The dominant eigenmodes are used for this transformation.
This transformation reduces the order of the fluid-airfoil system. For example, a
single modal coordinate equation can then be compared to a simple
phenomenological model represented by an ordinary differential equation.

CONSTRUCTION OF REDUCED ORDER MODEL
USING EIGENVALUES AND VARIATIONAL

PRINCIPLE

Variational principle
coordinates:

in physical

Eigenvector

Variational

f[L(q)XSq> at = 0

transformation:

{q} = [E] {a}

principle in modal

f[L(a)] [E] _Sa) dt = 0

(set all a i = o for i • N)

coordinates:
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From the preliminary results obtained in the present research effort, fluid-structure
interaction problems can be analyzed using the modal behavior of the fluid. There is
a strong relationship between the eigenvalues associated with the fluid and the
damping present in the N-S code. Further study of eigenmodes will help understand
the complex fluid-structure interaction on a modal basis and offers substantial
potential for solving various other problems involving fluid forces.

SUMMARY OF RESULTS TO DATE

Survey of empirical and
reduced order models.

semi-empirical

Validation of N-S code for transient time

responses.

Formulation of the eigenvalue problem using
the finite difference code and calculation

procedure for eigenvalues.

Assessment of potential for reduction of order
using primitive modes and exact eigenmodes.
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APPLICATION OF NAVIER-STOKES ANALYSIS TO STALL FLUTTER*

J.C. Wu, R. Srivastava, and L.N. Sankar

Georgia Institute of Technology
Atlanta, GA

ABSTRACT

A solution procedure has been developed to investigate the two-dimensional,

one- or two-degree-of-freedom flutter characteristics of arbitrary airfoils.

This procedure requires a simultaneous integration in time of the solid and

fluid equations of motion. The fluid equations of motion are the unsteady com-

pressible Navier-Stokes equations, solved in a body-fitted, moving coordinate

system using an approximate factorization scheme. The solid equations of

motion are integrated in time using an Euler implicit scheme. Flutter is said

to occur if small disturbances imposed on the airfoil attitude lead to diver-

gent oscillatory motions at subsequent times.

The flutter characteristics of airfoils in subsonic speed at high angles of

attack and airfoils in high subsonic and transonic speeds at low angles of

attack are investigated. The stall flutter characteristics were also predicted

using the same procedure. Results of a number of cases are included and com-

pared with numerical and experimental data where available. The effects of

mass ratio, initial perturbation, mean angle of attack, viscosity, and shape

and thickness, on the flutter boundary are also investigated.

*This work was performed under NASA Grant NAG 3-730. The authors acknowl-

edge Drs. K.R.V. Kaza and T.S.R. Reddy for the technical discussions and their

suggestions.
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GOVERNINGEQUATIONS

The fluid equations of motion used in the present formulation are the compres-
sible Navier-Stokes equations. These equations are written below in a conserv-
ative form. These are solved in a body-fitted, moving coordinate system using
an appropriate factorization scheme.

_tq + 5zE + 6yF = Re-I(_xR + 6yS)

WHERE

q_

1 F=r v1 R=Fo1pu pu2 + p / puv | Txx

L.uvi l.v,÷Pl i'.y,
L,,(e+ P)J Lv(e+ P)j LR4j

S _

STRUCTURAL MODEL FOR 2-DOF SYSTEM

0

7xy

7"yy

S4
C0--M-32610

The structural dynamic model considered is a 2-DOF (pitching and plunging

motion) system. An Euler implicit scheme was used to integrate the structural

governing equation. The fluid and the solid equations were simultaneously

integrated in time to monitor how lift, moment, and drag vary with time.

_y

----_ L!

ELASTICAXISJ "ibah -

b _

_L

$S CENTER

X ii

C0-•_32611

GOVERNING EQUATION OF THE 2-OOF STRUCTURAL MODEL

I_ + Sh"+ g_,-I- K_o_= M(t)

mh' + S_ + ghh+ Khh = -L(t)

• EULER IMPLICIT SCHEME FOR I1, h', etc.

hTM_h n hn+l_2h n+h n-1
_--_, h'=

A t At 2

n LEVELI CL(t)' CM(t)

AERODYNAMIC ISOLVER

n+l LEVELJr _(t), _(t),h(t), h(t)

' iI STRUCTURAL DYNAMIC

[SOLVER
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COMPARISONSOFUNSTEADYAIRLOADSONA NACA0012
AIRFOIL EXPERIENCINGDYNAMICSTALL

The present Navier-Stokes solver is able to obtain time-accurate results in
highly separated flows. The lift, drag, and momenthysteresis loops are shown
here and comparedwith experiments by McAlister et al (1982). The case is
shownof a NACA0012 airfoil oscillating in pitch with the meanangle of oscil-
lation 15 degrees and I0 degrees of amplitude of oscillation. The solver cor-
rectly predicts (i) the near-linear increase in lift during the upstroke;
(2) the dynamic stall which causes rapid variations in lift, drag, and moment
alike; and (3) the post stall recovery phase of the flow during the downstroke.

DRAGCOEFF.

MOMENT COEFF.

1.2 --

0.6

0.0

M==0.283, Re=3.45x106, kb=0.151

PRESENT
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0.0 ____ ___,..._

-0.1 --

-0.2

-0.3

-0.4 -- _/

_o.55. I I [ [10.0 15.0 20.0 25.0
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2.5 --

2.0

1.5
LIFT COEFF.

1.0

0.5

o.o :'__ I I
5.0 10.0 15.0 20.0 25.0
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VARIATIONOF LIFT ANDPITCHINGMOMENTCOEFFICIENT
FORPLUNGINGMOTION

The present code's ability to handle unsteady, transonic flows in a time-
accurate manner is illustrated in the figure below. The case is shownof a
NACA64A010airfoil oscillating sinusoidally in plunge at a free stream Mach
numberof 0.8 at zero meanangle of attack. The lift and pitching momenthis-
tory are plotted as a function of phase, and are comparedwith the Euler calcu-
lations performed by Steger (1978). Very good agreement is observed between
the two solvers.

NACA64A010 AIRFOIL

h = - M= sin (1°) sin ((_t)
M,,, = 0.8, or=O, kb= 0.2

PRESENT(EULER)
STEGER(EULER)

o,°r-/_
oo_r/ \
ooo_

c, -oo_- _ ,_

::l,O,r,,,
0 60 120 180 240 300 360

CM

0.010

0.005

0.000

-0.005

-0.010

-0.015
0 60 120 180 240 300 360

PLUNGEANGLE, DEG
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EFFECTSOFAIRFOIL-AIRMASSRATIOONFLUTTERSPEED

The present technique for the prediction of stall flutter was validated for
transonic flutter calculations where reliable numerical solutions exist. The
airfoil is a NACA64A006airfoil at a free stream Machnumber 0.85, and the
flow was assumedto be inviscid. The flutter speed predicted by the present
theory is plotted as a function of the airfoil-alr mass ratio (Wuet al.,
1987). For comparison, the results from the LTRAN2and UTRANS2(Ballahus,
1978) and UTRANS2 (Farret al., 1974) codes are shown. It is seen that the

Euler results agree very well with the prediction of the UTRANS2 code, while

only a qualitative agreement between the present results and the LTRAN2 code
could be found.

FLUTTER
SPEED

U/b_.

10

2
0

------ UTRANS2

I-I PRESENT(EULER)
-- LTRAN2

NACA64A006 AIRFOIL

ah = - 0.5
X,_= 0.25
r(_= 0.5

_h/_,_ = 0.2
M_ = 0.85

I I I
100 200 300

AIRFOIL-AIR MASS RATIO, #
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RESPONSESOFTHE2-DOFSOLID-FLUIDSYSTEMAS A
FUNCTIONOFTIME

The following figure illustrates the time responses of a 2-DOFflutter calcula-
tion. The flow is assumedto be inviscid at free stream Machnumber 0.85. A
NACA64A006airfoil was released after the forced sinusoidal oscillation and
was allowed to follow pitching and plunging motions dictated by the structural
dynamic equations. By parametrically varying the airfoil air mass ratio during
this phase of the calculations, it led to dampedoscillations, neutral oscilla-
tions, stable oscillations, or divergent (flutter) oscillations.
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EFFECTSOFVISCOSITYONTHETIME RESPONSE

The effect of flow viscosity on the flutter characteristics for a 2-DOFsystem
was studied using the present solver operating in the Navier-Stokes mode. The
airfoil is a NACA64A006airfoil at a free stream Machnumber 0.85. Viscous
solution corresponds to a Reynolds numberof 9x106. The flutter boundaries
predicted by the viscous and inviscid calculations were within 2 percent of
each other, which means that in high Reynolds number transonic flutter studies,
inviscid calculations would suffice.
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TIMERESPONSESOFA 2-DOF SYSTEM

EXPERIENCING STALL FLUTTER

The stall flutter calculations are carried out using the Navier-Stokes/struc-

rural dynamics solver. The case considered was a NACA 0012 airfoil, initially

subjected to a sinusoidal pitching oscillation between 5 and 25 degrees. Dur-

ing the downstroke, around 23.8 degrees, the airfoil was released and was

allowed to follow a pitching and plunging motion dictated by the structural

dynamic equations. Two dimensionless speeds V*, 4 and 8, were considered.

At the lower speed, the airfoil began to undergo a damped sinusoidal oscilla-

tion and reached a stable condition eventually. The time history for the

speed V* equal to 8, however, showed a rapidly growing oscillating motion

indicative of dynamic stall flutter.
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COMPARISONOFCALCULATEDFLUTTERBOUNDARIES

A comparison of flutter boundaries with the boundaries obtained by various
codes presented by Bendikson et al. (1987) is shownbelow. Twoartificial vis-
cosity models were used in the present calculations (Reddy et al., 1988).
The artificial viscosity in the present code is based on pressure gradient. In
model i, the pressure gradient was scaled by a constant coefficient, whereas
in model 2, it was scaled by the spectral radius.

The rotational effects of the flow behind the shock wave have strong effect on
the transonic flutter speed, depending on the chordwise location of the shock.
Neglecting the flow rotation effects results in predicting a higher flutter
speed.
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EFFECTOFMEANANGLEOFATTACK,INITIAL PERTURBATION,
ANDVISCOSITYONTHEFLUTTERBOUNDARY

The effect of initial perturbation, meanangle of attack, and viscosity are
shownin the figure below.

The effects of initial conditions, meanangle of attack, and viscosity on the
minima of the transonic dip seemnegligible. However, they have a significant
effect away from the dip. Similar results for meanangle of attack were
obtained by Edwardset al. (1983).
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EFFECTOFAIRFOIL SHAPE AND THICKNESS ON THE

FLUTTER BOUNDARY

The blade thickness and shape dictate the location and strength of shock,

thereby affecting the flutter boundary. The transonic dip shifts to higher

Mach numbers for symmetric airfoils with decreasing airfoil thickness to chord

ratios. For very thin cambered airfoils, the transonic dip occurs at lower
Mach numbers.

This effect is shown in this figure.
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p.= 60.0 r= = 1.865

- O

1

I [ -'h_"_ 't_" I
.75 .80 .85 .90 .95

MACH NUMBER,M

LINEARSUBSONICTHEORY
NACA16-010 AIRFOIL
NACA16-004 AIRFOIL

NACA16-(1.3)(04) AIRFOIL
NASA16-(1.3)(2.6) AIRFOIL
(PROPFANAIRFOIL)

CD-88-32621

1-319



FLUTTERBOUNDARYFORA SIMULATEDSR5TYPICAL
SECTIONSTRUCTURALMODEL

This figure shows the predicted flutter boundary of a simulated typical section

model of an SR5 propfan blade. The flutter Mach number predicted by the pres-

ent code is about _.5 percent lower than that predicted by linear theory and

experiment. This difference could be attributed to the simplified aeroelastic

model used in the present analysis.

1.0

FLUTTER
SPEED
INDEX, .S

VF/(b_a_/"_ )

0
.7

mm_ LINEARSUBSONICTHEORY
PRESENTCODE
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COMPUTATIONAL METHODS FOR DYNAMICS

SESSION OVERVIEW

Louis J. Kiraly

Structural Dynamics Branch
NASA Lewis Research Center

Session 12 consists of four presentations related to computational methods for

dynamics. In the first presentation a direct solution procedure for computing

aeroelastic stability of propfans will be presented. This procedure, which is

demonstrated using a tuned and mistuned assembly of propfan blades, has advan-

tages over conventional computational methods because convergence is reached
with only one-half the number of iterations.

The second presentation pertains to the characterization of stiffness and damp-

ing properties in structural connections. In this research, the process of

combining substructuring methods with parameter identification procedures is

developed. Improvements in connection properties are computed in terms of

physical parameters so that the physical characteristics of the connections
can be better understood.

The third presentation features a formulation for optimal shape design of elas-

tic bodies. The formulation, which is based on the finite element method,

relocates the body boundary nodes so that stresses and strains are minimized.

The optimization executes automatically, alternating between evaluating element

stress-strain levels and reshaping the body to the optimality criterion.

The final presentation addresses the forced response of propfan blades in yawed

flow. In this work, forced response is computed by combining modal models of

the blades with unsteady aerodynamic loads. An emphasis is placed on the

method for computing resulting vibratory blade stresses.
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A COMPUTATIONAL PROCEDURE FOR AUTOMATED FLUTTER ANALYSIS

Durbha V. Murthy*

University of Toledo

Toledo, Ohio 43606

ABSTRACT

A direct solution procedure for computing the flutter Mach number and the flut-

ter frequency is applied to the aeroelastic analysis of propfans. The proce-

dure uses a finite element structural model and an unsteady aerodynamic model

based on a three-dimensional, subsonic, compressible lifting-surface theory.

An approximation to the Jacobian matrix that improves the efficiency of the

iterative process is presented. The Jacobian matrix is indirectly approximated

from approximate derivatives of the flutter matrix. Examples are used to

illustrate the convergence properties. The direct solution procedure facili-

tates the automated flutter analysis and contributes to the efficient use of

computer time as well as the analyst's time. Further details of the numerical

procedure are given by Murthy and Kaza (1987).

*NASA Resident Research Associate.
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MOTIVATION

Flutter of propfans and other types of turbomachinery blading is an important
phenomenonthat has generated considerable interest. Flutter prevention has
been a significant factor in the design of propfan blades. Flutter prevention
is also significant for turbomachinery, particularly for unshrouded blades.
With the recent advances in computer technology, automated design of propfan
and turbomachinery blades by using optimization techniques has becomepracti-
cal. Design optimization employing flutter constraints requires repeated solu-
tion of the aeroelastic equations of motion to obtain the flutter parameters
as the design is updated. For the optimization to be performed in a realistic
period of time an automated flutter analysis capability is essential. It is
also desirable for the analysis to be computationally efficient in order to
keep the central processing unit (CPU) time and the turnaround time within rea-
sonable limits. Automated flutter analysis can also shorten the nonautomated
design process by reducing the analyst's time.

WHY AUTOMATED FLUTTER ANALYSIS?

• ESSENTIAL FOR REPEATED EXECUTION

OF FLUTTER ANALYSIS CODE

OPTIMIZATION
FLUTTER
ANALYSIS

• ALSO USEFUL IN NONAUTOMATED DESIGN PROCESS

CD-88-31710
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FORMULATIONOFFLUTTERANALYSISPROBLEM

The computational procedure to be presented is applied to the analytical formu-
lation described in detail by Kaza, et al. (1987a, 1987b). This formulation
is applicable to the flutter analysis of a single-rotor propfan containing an
arbitrary number of blades rotating at a fixed speed in an axial flow. The
structure is modeled by finite elements. The aerodynamic model (Williams and
Hwang,1986) is based on a three-dimensional, subsonic, compressible
lifting-surface theory.

For simplicity, the effect of steady deformations due to aerodynamic loads on
the flutter boundary is neglected. The error introduced by ignoring the steady
aerodynamic deformations is shownin Kaza, et al. (1987a) to be small enough to
produce an approximate flutter point. In particular, the effect of the steady
aerodynamic deformations on the flutter Machnumber is not very significant.
Thus the approximate flutter analysis neglecting steady aerodynamic deforma-
tions is suitable for use in design optimization procedures that require
repeated efficient execution of the flutter analysis. The optimal design can
be easily checked for the flutter condition by using the refined flutter analy-
sis with steady deformations and the conventional procedure.

The propfan is assumedto have identical groups of blades symmetrically distri-
buted about a rigid disk. The iinearized aeroeiastic equations of motion are
then uncoupled for different intergroup phase angle modes _r- The flutter
Machnumberfor the propfan is then the lowest Machnumberat which one of the
intergroup phase angle modesbecomesunstable.

[Mo](ql + [Ko]Iql = [A(M,_)]Iq I

[Mg]

[Ko]

Iql

GENERALIZED MASS MATRIX

GENERALIZED STIFFNESS MATRIX

GENERALIZED COORDINATE VECTOR

[A(M,oo)] GENERALIZED AERODYNAMIC MATRIX

[A(M,_)] IS USUALLY VALID ONLY FOR'SIMPLE HARMONIC MOTION

CD-88-31711
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CONVENTIONALPROPFANFLUTTERANALYSIS

The conventional procedure for obtaining the flutter Mach number MF and fre-

quency _F is as follows. The aerodynamic matrix is evaluated at an assumed

Mach number MF, an assumed frequency _F, and an assumed interblade phase

angle aF, and then the flutter equation is solved for all the eigenvalues _2.

This procedure has been implemented for propfans in a program called ASTROP3.

In general, these eigenvalues are complex. The real and imaginary parts of

i_ represent the effective damping and frequency, respectively. The assumed

frequency is varied until it is equal to the frequency corresponding to the

eigenvalue with the least effective damping. This frequency matching forms the

inner iteration. When this iteration reaches convergence, the Mach number is

varied until the effective damping of the eigenvalue corresponding to the

matched frequency is equal to zero. This forms the outer iteration. The flut-

ter Mach number and the flutter frequency are obtained at the convergence of

the outer iteration.

The conventional procedure cannot be reliably automated because it requires

that the identity or ordering of the eigenvalues be preserved over a wide range

of assumed frequencies and Mach numbers. Most eigensolution routines do not

compute the eigenvalues in any particular order, and the sorting of eigenvalues

by frequency or magnitude does not usually preserve the continuity. Loss of

continuity necessitates user intervention and complicates the automated analy-

sis. A direct solution of the flutter equation that alleviates these problems

is proposed and described. It views the flutter equation as an inplicit

double-eigenvalue problem.

i INPUT ROTATIONAL SPEED AND BLADE GEOMETRY OR GEOMETRIES I

RUN FINITE ELEMENT PROGRAM TO GET STEADY.STATE ]
GEOMETRY UNDER CENTRIFUGAL LOADS I

RUN FINITE ELEMENT PROGRAM TO GET FREQUENCIES
AND MODE SHAPES OF INTEREST

_1 ASSUME M F, eF J-I

.I ASSUME _F J-I

I CALCULATE UNSTEADY AERODYNAMIC LOANS I

FORMULATE AND SOLVE COMPLEX EIGENVALUE PROBLEM I

CHANGE _F NO _ii__

CHANGE M F NO

tTC_

[ PRINT MF,_F l

• NEEDS EIGENVALUE TRACKIN.O AND IS THUS DIFFICULT TO AUTOMATE

• REQUIRES DOUSLE ITERATION (INNER.OUTER LOOPS)

• NEEDS AS MANY EIGENVALUES AS THERE ARE MODES
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DIRECTSOLUTIONOFFLUTTEREQUATION

Whenthe dependenceof the aerodynamic matrix on the assumedMachnumber and
frequency is considered explicitly, the flutter equation can be viewed as an
implicit double-eigenvalue problem. In general, the aerodynamic matrix [A(MF,
_F] is a transcendental function of the assumedfrequency and Machnumber.
Only real values of MF and _F are of interest. The two eigenvalues MF
and _F are coupled since the aerodynamic matrix is complex.

Wenow have two equations in two unknowns,MF and _F" These equations can
be solved by any of the methods for solving a system of nonlinear equations.
Whenthey are solved for MF and _F, no further iterations are required for
the purpose of matching assumedand computedquantities. This procedure is
illustrated below. Once MF and _F are found, inverse iteration can be
used to find the flutter mode.

IF M F IS THE FLUTTER MACH NUMBER AND _F THE FLUTTER FREQUENCY,

[e]Iqo/= [01

WHERE

[B] = - _2[Mg] + [Kg] - [A(MF,uF) ]

FOR A NONTRIVIAL FLUTTER MODE, WE HAVE

detI-_o2[Mg] + [Kg]- [A(MF,_OF)]I = O

LET

D = detI-_o_[Mg ] + [Kg]- [A(MF,.F)]I

= DR(MF,.F) + iDI(MF,_OF)

WHERE DR AND DI ARE THE REAL AND IMAGINARY PARTS OF THE CHARACTERISTIC
DETERMINANT D, RESPECTIVELY. THEN AT FLUTTER CONDITION

DR(MF,_OF)= O

DI(MF,_F) = 0
CD-88-31713
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PROPFANFLUTTERANALYSISBY DIRECTSOLUTION

In contrast to the conventional procedure the direct solution outlined here

eliminates the need to track eigenvalues to determine the flutter point• In

addition to this important benefit the double iteration on the complex eigen-

solution is replaced by a single solution of a system of two real nonlinear

equations. The Mach number and frequency are varied simultaneously in this

procedure rather than one at a time as in the conventional procedure. Thus the

flutter Mach number and the flutter frequency are determined simultaneously.

The formulation of a transcendental double-eigenvalue problem in preference to

a linear single-eigenvalue problem may seem to defeat the objective of

increased efficiency, even if it is more suitable for automation, However, the

price to be paid is not as great as it may seem. The transcendental eigenvalue

problem needs to be solved for only one set of eigenvalues in most cases,

whereas the linear eigenvalue problem has to be repeatedly solved for all the

eigenvalues, which are equal in number to the number of assumed mode shapes•

The direct solution may not find the lowest flutter Mach number if more than

one structural mode were to flutter in the Mach number and frequency range of

interest for the selected intergroup phase angle mode• Under these circum-

stances one will be forced to search the entire range of interest for the roots

MF and _F, starting with different initial guesses. This is not amenable to

an efficient automated procedure. However, it is expected that these circum-

stances will rarely occur for tuned or alternately mistuned propfans. This is

not a major limitation for two other reasons: (i) the frequency interval in

which flutter occurs is usually determined early in the design phase and (2)

the search domain can be considerably reduced after a few orienting runs.

I INPUT ROTATIONALSPEEDAND BLADEGEOMETRYOR GEOMETRIES J

RUN FINITE ELEMENTPROGRAMTO GET STEADY-STATE
GEOMETRYUNDERCENTRIFUGALLOADS

I ASS°M M,,--, I

CA'O°LATEUNST.QYAERDQ AM,OLOADSI

I FORMULATEFLUTTERMATRIX AND GET NEW MF AND _F I

PRINT I"NO FLUTTERFOR OF"

NO N_

NO

I PRINT MF,. F }

* ELIMINATESEIGENVALUETRACKING

• REQUIRESONLYSINGLEITERATION

• REQUIRESSOLUTIONOF ONLYONE SET OF M AND. co-.-_,7_,
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NUMERICALMETHODSFORDIRECTSOLUTION

The flutter Machnumber and flutter frequency MF and _F may be solved for
by Newton's method. The iterative schemefor Newton's method is

IMFI= _ [jk ]-I

_F (k)

D R

DI l(k)

where k is the iteration number and [JK] is the Jacobian matrix given by

DkR,MF

[Jk ] = [DkI,M F

DkR,_F]

Dkl,mFJ

The Jacobian [Jk] is expensive to compute because the evaluation of the aerody-

namic matrix [Ak] is computationally intensive. Several quasi-Newton algo-

rithms that approximate the Jacobian in various ways are available.

NEWTON'S METHOD :

"- - [Jk] - 1

OOF (k+l) OOF (k) DI (k)

[Jk] EXPENSIVE TO COMPUTE

QUASI-NEWTON METHODS:

[Jk] APPROXIMATED IN VARIOUS WAYS

CD-88-31715
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A BETTERQUASI-NEWTONMETHOD

A quasi-Newton algorithm is proposed that is more efficient than the algorithms
currently available for determining the flutter Machnumberand the flutter
frequency. The numerical schemeis based on the hypothesis that approximating
the derivatives of the flutter matrix [Bk] provides a more accurate approxima-
tion to the Jacobian matrix [Jk] than directly approximating the derivatives of

the characteristic determinant. The numerical scheme based on this hypothesis

approaches Newton's method in its superior convergence characteristics with

the same cost per iteration as the secant method.

The derivatives [Bk],MF and [Bk],_F of the flutter matrix are approximated by

following a reasoning similar to that employed in deriving Broyden's method

(Johnston, 1982). Let AM k = MF(k_I) - MF(k) and _k = _F(k-l) - _F(k)" The

derivatives are approximated in the direction of the last move to satisfy

[Bk-l] = [Bk] + [Bk],MF " AMk + [Bk],m F " Amk

and are assumed to be unchanged in the direction orthogonal to the last move.

APPROACH

• APPROXIMATE THE JACOBIAN INDIRECTLY BY APPROXIMATING

THE DERIVATIVES OF THE FLUTTER MATRIX

• UPDATE THE DERIVATIVES OF THE FLUTTER MATRIX ONLY IN THE

DIRECTION OF THE LAST MOVE

RESULT

• A QUASI-NEWTON METHOD MORE LIKE NEWTON'S METHOD

THAN OTHERS

• THE FLUTTER MODE ALMOST A BYPRODUCT

CD-88-31716
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EFFICIENCY OF NUMERICAL PROCEDURE

The direct solution procedure was demonstrated by performing flutter boundary

calculations at various rotational speeds for two propfan rotor configurations.

The first configuration consisted of eight identical blades. The second con-

figuration was an alternately mistuned rotor with eight blades.

The typical progress of iteration, for initial guesses for flutter Mach number

and flutter frequency of 0.5 and 310 Hz, respectively, with the direct solution

procedure and the conventional procedure, is shown in the first table. Recall

that the conventional procedure relies on user interaction and judgment. The

progress of iteration shown for the conventional procedure is typical. The

direct solution procedure, in addition to being suitable for automation, is

also more efficient as evidenced by the considerably smaller number of analysis

steps. Thus both the CPU time and the analyst's time are considerably reduced

by using the direct solution procedure.

The results show that a fair initial guess would converge to the "exact" flut-

ter point after about 5 to i0 flutter matrix evaluations. The second table

shows the CPU times on the Cray-XMP required to obtain the flutter boundary for

good initial guesses and poor initial guesses. The CPU times for one flutter

eigenvalue analysis at a given set of Mach number and assumed frequency are

also shown for comparison. With a good initial guess the flutter Mach number

and the flutter frequency can be obtained for two or three times the cost of a

single eigenanalysis. The direct solution procedure is much less expensive in

terms of CPU time as well as analyst's time than the conventional procedure,

although precise comparisons have not been made.

PROGRESS OF ITERATION

(5280 rpm; BLADE SETTING ANGLE AT 0.75 RADIUS, 61.6°; _r=225 °)

COUNT CONVENTIONALPROCEDURE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

FLUTTER
MACH

NUMBER,
M

0.500

1
.700

1
.616

l
.64O
.640
.640
.641
.641

a.641

FLUTI'ER
FREQUENCY,

b,P,

Hz

310.0
267.5
268.9
268.9
268.9
299.8
298.9
298.9
286.3
290.1
290.5
290.4
292.9
293.9
294.0
293.9
294.1
294.1

DIRECTSOLUTIONPROCEDURE

FLUTTER
MACH

NUMBER,
M

0.500

FLUTTER
FREQUENCY,

Hz

310.0
.499 310.0
.500 313.0
.701 289.7
.590 287.7
.641 293.6
.642 294.1
.641 294.1

a.641 294.1

aConverged.

CD-88-31717
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CPU TIME FOR AUTOMATEDFLUTTERANALYSIS

TUNED ROTORb--8BLADES;
6 MODES/BLADE;5280 rpm; _r=225 °

MISTUNEDROTORC--8BLADES;4 GROUPS;
TWO MODES/BLADE;5190 rpm; _r=90 °

EIGENSOLUTION
AT A SINGLE

SET OF MACH
NUMBER M

AND
FREQUENCYoo

DIRECT SOLUTIONTO FIND
MF AND OOF

GOOD POOR
INITIAL INITIAL
GUESSa GUESSa

CPU TIME, SEC

4.332

10.020

10.356
(M =0.7O;
_=310 Hz)

22.084
(M = 0.65;
oo=310 Hz)

22.146
(M=0.45;

= 340 Hz)

31.970
(M=O.5;
oo= 340 Hz)

alNITIALGUESSESAREGIVENIN PARENTHESES.
b"EXACT"MF=0.641AND"EXACT"_F=294 Hz.
C"EXACT"MF=0.718AND"EXACT"OOF=285Hz.

CD-88-31718
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ACCURACY OF JACOBIAN

So that the accuracy of the approximate Jacobian could be judged, the nonlinear

equations were solved by Newton's method, by the present numerical procedure,

and by alternative quasi-Newton methods such as the multipoint secant method

(implemented in IMSL routine ZSCNT), the modified Powell algorithm (implemented

in IMSL routine ZSPOW), and Broyden's method (Johnston, 1982). For the cases

tested, the present procedure outperformed all three alternative methods in

terms of efficiency. Even though the characteristic determinant Dk is never

calculated in the present procedure, the variation of the absolute value of

D k with each iteration is shown in the graph so that the procedure can be com-

pared with Newton's method and the multipoint secant method. For these cases,

the "exact" flutter Mach number was 0.641, the "exact" flutter frequency was

294 Hz, and the initial values for M F and _F were 0.65 and 330 Hz,

respectively. The determinant value has been scaled so that 1.0 _ DO _ i0.0,

where DO is the characteristic determinant at the beginning of iteration.

The iteration history for the current numerical procedure closely resembles

that for Newton's method, indicating the accuracy of the approximation pro-

posed here for the Jacobian matrix. In contrast, the secant approximation for

the Jacobian matrix requires almost double the number of iterations.

5280 rpm; BLADE SETTING ANGLE AT 0.75 RADIUS, 61.6°; _r=225 °

ABSOLUTE
VALUE OF
FLUTTER

DETERMINANT,
IDkl

1.6

.8

.4

[] NEWTON'S METHOD

-- _ _ SECANT METHOD
N PROCEDURE

1 2 3 4 5 6 7

NUMBEROF ITERATIONS, k

CD-88-31719
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RANGEOF CONVERGENCE

The range of convergence is an important factor in any iterative procedure
since it has an important effect on how closely the initial solution must
approximate the final solution. The graph on the left shows the numberof
flutter matrix evaluations required for convergence; the initial guesses for
MF are varied and the initial guess for _F is fixed at 310 Hz. The range of
Machnumberconvergence is from 0.2 to 0.8. The graph on the right similarly
shows the numberof flutter matrix evaluations required for convergence; the
initial guess for MF is fixed at 0.65 and the initial guesses for _F are
varied. The frequency range of convergence with the direct solution procedure,
230 to 350 Hz, is slightly larger than that with the secant method. From
these graphs it can be stated that the present procedure has a large range of
convergence.

16

NUMBER OF 121"

FLUTTER MATRIX 8zEVALUATIONS FOR
CONVERGENCE

4

0
.2

r-I SECANT METHOD

Z_ DIRECT SOLUTION PROCEDURE

"EXACT" MF -_

.4 .

ASSUMED FLUTTER

MACH NUMBER, MF

I
.8

I "EXACT" _F

i i $1 i
230 270 310 350

ASSUMED FLUTTER

FREQUENCY, _F, Hz

CD-88-31720
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SUMMARY

A direct solution of the equations of motion is demonstrated to be a reliable

automated flutter analysis procedure if steady aerodynamic deformations are

ignored. The direct solution procedure replaces the inner-outer iteration loop

of the conventional procedure by a single iteration loop. A numerical proce-

dure, based on an accurate and efficient approximation to the Jacobian matrix,

is presented. The procedure is straightforward in concept, and results for

test cases show good convergence properties. Since the procedure is iterative,

it is particularly suitable for design optimization. As the optimal design is

evolved, the flutter solution is expected to change incrementally from design

to design, so that the previous solution provides good estimates for the cur-
rent solution.

• DEVELOPED A QUASI-NEWTON METHOD FOR

DETERMINANT ITERATION

• AUTOMATED THE PROPFAN FLUTTER ANALYSIS BY

DIRECT SOLUTION

• DEMONSTRATED GOODCONVERGENCEAND EFFICIENCY OF

DIRECT SOLUTION METHOD WITH ADVANCED AERODYNAMIC

MODEL

CD-88-31721
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CHARACTERIZATION OF STRUCTURAL CONNECTIONS

FOR MULTICOMPONENT SYSTEMS

Charles Lawrence and Arthur A. Huckelbridge

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

The inability to adequately model connections has limited the ability to pre-

dict overall system dynamic response. Connections between structural compo-

nents are often mechanically complex and difficult to model analytically.

Improved analytical models for connections are needed to improve system dynamic

predictions. This research explores combining component mode synthesis methods

for coupling structural components with parameter identification procedures

for improving the analytical modeling of the connections (Hucklebridge, 1987;

and Lawrence, 1988). Improvements in the connection stiffness and damping

properties are computed in terms of physical stiffness and damping parameters,

so the physical characteristics of the connections can be better understood,

in addition to providing improved input for the system model.

*Case Western Reserve University.
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OBJECTIVES AND APPROACH

Analytical models of structural systems do not normally produce characteris-

tics that agree with those obtained from experiments. The discrepancy can

often be attributed to structural properties such as connection damping and

stiffness, which are extremely difficult to characterize, while their

influence on structural response predictions is profound.

OBJECTIVE

• DEVELOP IMPROVED ANALYTICAL MODELS FOR STRUCTURAL CONNECTIONS

• IDENTIFY CONNECTION STIFFNESS AND DAMPING PROPERTIES FROM SYSTEM
MODAL DATA

• DETERMINE CONNECTION PROPERTIES IN TERMS OF PHYSICAL PARAMETERS

• USE SUBSTRUCTURING METHODS FOR MODELING EFFICIENCY AND INCORPORATION
OF MODAL COMPONENTS

APPROACH

• DEVELOP COUPLED SYSTEM EQUATIONS FROM MIXED SUBSTRUCTURES

• OBTAIN BOTH PREDICTED AND MEASURED MODAL DATA FOR SYSTEM

• MINIMIZE DIFFERENCE BETWEEN MEASURED AND PREDICTED SYSTEM CHARACTER

ISTICS BY OPTIMAL SELECTION OF CONNECTION PARAMETERS

CD-88-31843
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JOINT STIFFNESS EFFECTS ON DISPLACEMENTS 

The effect of connection flexibility on steady-state displacements, and fre- 
quencies and mode shapes, was assessed for the GE-A7-B4 advanced propfan 
blade. Results indicate that connection flexibility is significant, and in 
order to insure accuracy, connection flexibility must be precisely 
characterized. 
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COMPONENT COUPLING

The approach used for developing the coupled system equations of motion used

component models represented through the use of finite elements or with modal

data. Component modal data may be obtained from experiment or from a reduced

finite-element model. Once the system equations of motion are constructed,

they can be used to predict the system frequencies and mode shapes. These

modal data are then used in conjunction with the experimentally measured modal

parameters to identify the connection properties.

UI DISPLACEMENT DEGREES OF FREEDOM (DOF)
FOR COMPONENT I

UII DISPLACEMENT DOF FOR

COMPONENT II

UC DISPLACEMENT DOF FOR

CONNECTION

b BOUNDARY DOF

UCn
\

°,J\ \ /
/ __ '- UII

I C j/ t C II
Ub,Uib ,--UIIb,Ub
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PARAMETERIDENTIFICATIONPROCEDURE

Parameter identification methods that incorporate optimization strategies can

be classified into three groups: least squares, weighted least squares, and

Bayesian estimation. With the least squares method, the set of parameters

that minimizes the difference between the measured and predicted response is

computed. The weighted least squares method incorporates a weight, indicating

the relative confidence in the measured data. The Bayesian method permits

specification of the randomness of the connection parameters as well as the

confidence in the measured data.

THE WEIGHTED SQUAREDDIFFERENCEBETWEENTHE PREDICTEDAND MEASURED
CHARACTERISTICSIS

IFI = [W] (It,1 - [CI) 2

SETTING THE DERIVATIVETO ZEROAND EXPANDINGTHE PREDICTEDSYSTEM
CHARACTERISTICSIN A TAYLORSERIES,THE CONNECTIONPROPERTIESARE SOLVED
FOR ITERATIVELYFROM

[rl = [rlES x + (IS] X [W] [S]) - 1 [S] X [W] ([C,I - ICIEST)

[cl

[w]

[s]

Jr/

MEASUREDAND COMPUTEDSYSTEMFREQUENCIESAND MODE SHAPES

WEIGHTING MATRIX

a[cl/a[rl
CONNECTIONSTIFFNESSESAND DAMPING
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SYSTEMDYNAMICSPARAMETERIDENTIFICATIONPROGRAM

A general FORTRANcomputer code was developed for incorporating the component
coupling and parameter identification procedures. Componentsare represented
by fixed or free interface modesand can include residual flexibilities. Cou-
pling is through flexible or rigid connections. Dampingis added to the sys-
tem through the use of viscous dampers. The experimental data used for the
parameter identification include complex eigenvalues (frequency and damping)
and modeshapevalues.

COMPONENT DATA

FREQUENCIES _.._'-,_
FIXED/FREE MODES ___
RESIDUALS --- _

,- RIGID CONNECTIONS

_ ,' //'- FLEXIBLE
' /7' / CONNECTIONS

/,/, /

./ / / / ,:/ / J_
"/...'//,/L_^_/x
/,. ///i ,i_,,_ N _-v,scous

J

EXPERIMENTAL FREQUENCIES, MODAL DAMPING, MODE SHAPES, AND WEIGHT FACTORS

CD-88-31847

1-342



ROTATING STRUCTURAL DYNAMICS RIG 

The rotating structural dynamics (RSD) rig at NASA Lewis was used to evaluate 
the component coupling and parameter identification algorithms. The RSD rig, 
which was designed to simulate actual engine structures, is used to study 
active rotor control and system dynamics (component interaction) problems. 
The rig components, although considerably simpler than a real turbine engine's 
compounds, were scaled to simulate an actual engine's structural dynamics 
response characteristics. 

CD-88- 3 1848 
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PARTITIONINGOF SYSTEM

The objective of the parameter identification was to determine the stiffnesses
of the bearing support that connects each end of the rotor to the support
frame. To accomplish this, the RSDrig was divided into two components: the
rotor support frame, and the rotor.

1

4 5 11

27

136 _ir31 x39

SUPPORT FRAME
FINITE-ELEMENT

MODE1

MODE6

ROTOR MODAL

COMPONENT

COMPONENT A --I, um u"'_"""P"NENTB
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COUPLED SYSTEM ANALYSIS

The coupled system frequencies are plotted along with the measured frequen-

cies. The predicted frequencies were computed for different values of bearing

support stiffness to determine the effect that the supports have on the system
frequencies. When three system frequencies are used, the cage stiffness is

identified as 5750 ib/in. This value is in good agreement with the measured
stiffness of 5050 Ib/in.
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DAMPED COUPLED SYSTEM

This sample problem is presented to demonstrate identification of connection

damping. For this problem a finite-element model was used to generate simu-

lated experimental data. The model consists of three planar elastic beams

connected at their ends with revolute (pinned) connections. Each of the con-

nections is connected to ground by linear, translational springs and viscous

dampers.

THREE COMPONENTCOUPLEDSYSTEM (EI=IO ,_,p=0.10, ,_L=I.0)

PINNED CONNECTION

// (TYPICAL)
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DIFFERENCESBETWEENCOMPUTEDANDEXPERIMENTALPROPERTIES

Dampingand stiffness connection properties were identified for a range of

damping levels. The flatness of the curves demonstrates the insensitivity of

the identified connection stiffness and damping to the level of damping. Even

near critical damping, the properties are computed accurately.
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ASSESSMENTOFEXPERIMENTALERROR

A Monte Carlo simulation was used to assess the accuracy of the parameter iden-
tification for various degrees of experimental error. Plots displaying the
probability of achieving a precision level are shownbelow. As the deviation
in the measureddata increases, the probability of achieving a given level of
precision decreases.
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THREE-COMPONENT SYSTEM WITH FRICTION DAMPING

The connections in many structural systems contain nonlinearities such as fric-

tion. For multidegree of freedom systems it is virtually impossible to iden-

tify and characterize all the complexities that can exist in the connections.

Often, a simplifying assumption is made that the connection damping can be

adequately described by linear viscous dampers even though other types of

damping exist in the connection.

_- FRICTION

_o o = o,!: oo o_ o o ,o
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EVALUATION OF VISCOUS DAMPING MODEL

Equivalent viscous damping ratios were computed for various levels of friction

damping. The performance of the identified models was assessed by comparing

transient responses of the identified models to those from the experimental

models. The responses from the identified and experimental models were evalu-

ated by comparing peak response, settling time, and RMS error.

S m

MAGNITUDE 4 --

2--

i ] I
.05 .10 .15

TIME, sec

TRANSIENT RESPONSE

6 --

4

2

I
.2O

t MODELEXPERIMENTAL
COMPUTED

0 100 200 300

FREQUENCY

FREQUENCY RESPONSE

CD-88-31855

1-350



SUMMARY AND CONCLUSIONS

Identification of structural dynamic systems is effectively performed by com-

bining substructuring methods with parameter identification techniques. When

substructuring methods, such as component mode synthesis, are used, the com-

plexity of the identification problem is greatly reduced. Components and

intercomponent structural connection properties are identified and evaluated

independently, thus drastically decreasing the magnitude of the identification

problem.

• IDENTIFICATIONOF STANDARDCONNECTIONIS EFFECTIVELYPERFORMEDBY

COMBINING SUBSTRUCTURINGMETHODSWITH PARAMETERSIDENTIFICATION
TECHNIQUES

• MODALTEST DATA ARE EFFECTIVEFOR IDENTIFYINGSTIFFNESSAND DAMPING
PROPERTIESOF COMPONENTCONNECTIONS.

• THEPARAMETERIDENTIFICATIONIS IMPROVEDWHENTHEQUALITYANDQUANTITYOF
EXPERIMENTALDATA ARE INCREASED.

• SMALL AMOUNTS OF NONLINEARITYCANBE APPROXIMATEDWITH VISCOUSLY
DAMPED MODELS.
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ABSTRACT

This study is concemed with development of a variational formulation and a
procedure for computational solution for the shape optimal design of a two-dimensional
linear elastic body, using a mixed finite element discretization. Shape optimal design is a
problem that has interested many researchers in the last fifteen years. The subject has
been surveyed in a number of review articles, see e.g. Haftka and Grandhi [11].

Zienkiewicz and Campbell [ see, e.g. 12 ], were among the first to approach this
problem using finite element methods. Subsequently this method has been applied widely
to problems in shape optimal design[see, e.g.2,3,13- 15], but only with mixed success.
The finite element method based on the displacement formulation has two main
disadvantages, (1) the increase of finite element error that results from mesh distortion
during shape redesign, and (2) in some situations, a lack of sufficient precision in the
prediction of stresses and strains at the boundary and internal nodes. There are some
methods one can consider to overcome these difficulties. Some investigators have
applied the Boundary Element Method[see, e.g.16 - 18]. While the BEM has proved to be
very useful and looks promising in certain applications of shape optimal design, for
problems that require numerous evaluations of state variables in the domain (objective

function = maxx_ f_F(u,e), for example) the BEM loses some of its advantages, also at the

current stage of development it lacks the generality provided by FEM in structural analysis.
• xrl,-z.,.:'- ,.t,_ u'_'xx _--_1.:_,,..:_ .1..= A,-,.._,_;. ........,-,,=_-hr-v.1re,=,= e.g. 1 O ], xx,,h_.r,=._,_,_itlvltyY_" JLIIIIIL LIL_ JL'I '-lVI *I[.)_,.)IJL%.,I3.LIUII_, I.JLL%,_ UL%.JI.JLJ.&Lt/I L_.,_.,, x.., ,, .,_*_ _ .........

expressions are defined in terms of domain integrals rather than boundary integrals
(thereby avoiding the evaluation of state variables at the boundary ), provides for improved
accuracy in the numerical calculation of sensitivities. Also recently, Haber proposed an
Eulerian - Lagrangian formulation based on the mutual Reissner energy [see, e.g. 20],
where the shape optimization problem can be formulated in an arbitrary initial domain as a
means to overcome the difficulties inherited from shape redesign.

In this work another approach is considered. With the development of automatic
mesh generation and optimization techniques[see, e.g.7] the first of the cited disadvantages
of FEM is avoided. Mixed finite element methods[see, e.g.8] that may provide for
accurate computation of stresses and strains at the element nodes appears to be a natural
approach to resolve the other difficulty. These considerations are brought together in the
developments reported here, to demonstrate a more effective approach to the overall
treatment of shape optimal design.
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EXAMPLES OF SHAPE OPTIMIZATION PROBLEMS

For simplicity let us consider plane linearly elastic smlctures to find the optimal
shape using the mixed t-mite element formulation together with an automatic mesh
generation method based on the elliptic differential equations. Two model problems
shown in the figure are solved by the present method to demonstrate its effectiveness. It is
noted that the fillet optimal shape design problem (Model B) is a standard one, but is one of
the most difficult problems because of sharp design change at the left edge of the design

boundary.

F2
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0.10
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F d

Jk

0.05 m

r

0 0 0 0 0 1) 0 0
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DIFFICULTIES OF SHAPE OPTIMIZATION PROBLEMS

The difficulty of the shape optimization problem is large design changes lead to
significant changes of the corresponding finite element model of the structure during an
optimization process. If the final, that is, optimal shape is known, it is possible to set the
initial f'mite element model very close to the optimum. In this case, design change does not
imply large change of f'mite element models, and then it is possible to avoid distorted finite
elements which yield significant approximation errors and sometimes even negative values
of the Jacobian of the isoparametric transformation. It is natural that the optimal shape is
not known a priori, and then it is necessary to establish a shape optimization method to deal

with large design change. Finite element approximation errors are strongly dependent
upon the size and shape of finite elements. Errors are generally very large in regions
where stresses are rapidly varying. In most shape optimization problems, stresses are

varying rapidly at the end points of the design boundary where shape also changes rapidly.
Furthermore, if shape change is large, this almost automatically yields distortion of t-mite
elements, i.e. generation of unnecessary approximation errors. Figure (a) shows the
distribution of finite element approximation error in a similar problem to Model A, while
Figure (b) indicates a pathology in shape optimization.

(a) Finite Element Approximation Error Distribution

I I I I

(b) Oscillation of the Design Boundary ( by. C. Fleury )
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FORMULATION OF THE DESIGN PROBLEM

The optimal shape design problem is defined by minimizing the maximum value of

a local criterion F(u,e) stated by the displacement u and the linearized swain tensor e,

subject to the state equations which represent equilibrium, constitutive relation, and
boundary conditions. Here D represents the design variable to describe the shape of the

design boundary.

MinD Maxx_f_ F(u(x),e(x))

subject to

the resource constraint _df_- A< 0
f2

the equilibrium equations div Z

the strain - displacement relations

+f=O, Z=Z T inf_
1

e=_(Vu+uV) inf)_

the stress - strain relation Z = E : e in f_

the traction boundary condition n Z = t on Ft

the displacement boundary condition u = 0 on Fu
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MIXED FINITE ELEMENT FORMULATION

If the displacement method is applied in finite element analysis, strain and stress

components are computed at each Gaussian integration point to form element stiffness
matrices and load vectors. However, values of stress components must be obtained at the

nodes on the design boundary for the shape optimization problems. Thus an extrapolation
method must be introduced to obtain nodal values of stress components. For example, if
the least squares method is applied to obtain nodal values, it cannot provide sufficiently

accurate values in the region that stress gradient is high. Furthermore, it becomes very
inaccurate if distorted irregular finite elements exist in a finite element model. To avoid
such problems, we here apply a mixed formulation that computes nodal values of
displacements, strains, and stresses, directly without applying an extrapolation method.

4

2
QUAD4

8 degrees of freedom per node {Ux,Uy,exx,eyy,_txy,(Yxx,(Yyy,Gxy} T

_4
Ux = cz=l UxcxNcz(_,rl), etc

2_4
exx = a=l exxaNa(_ 'ri)' etc

4

(Yxx = ]_o_=1 CrxxaN0_(_,T1), etc

1
Noc(_,T1) = _- (l+_o¢_)(l+Tlcxq), 0_=1,...,4
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OPTIMALITY CONDITIONS

Transferring the original shape optimization problem to the upper-bound

formulation Mind [5 subject to the above constraints and the additional one F(u,e) - [5 _<0

in f_, the Lagrange multiplier method implies the necessary condition for optimality as
shown in below.

Equilibrium Equations

f{_V_Sv+SvV):Z - _Sv.f] dr2 -

f2

+ f[6e:(Ee + _T:{_Vu+uV)e}]df2 = 0,

1
Z)I I

f2

u=0 on Fu.

Adjoint Problems

5{_Vv+vV):_Z + _,(_--_ • _Se + _uF.Su) }d_

f_

+ fe:(E:_Se- 5Z)+ T:(_V_u+SuV)- 5e)} d_ = 0

f2

Optimality Condition due to Variation by Shape Change

I (Z:e+A)(O.n)dF=O, A(;df2-A)=O, 0<_A, ;df_-A<O

Fd _

Normality Condition

_,d_ = 1,

f_

X(F(u,e) - [5) = 0, 0_<X, F(u,e) - [5_<0, in f2
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chart.

SOLUTION PROCEDURE : OPTIMIZATION ALGORITHM

Solution procedure for the shape optimization is described in the following flow

Pro_am Flow Chart

o_

READ INITIAL DATA :

Initial Geometry
Load Condition

Material Properties
Number of Iterations

_tc ........

_=_

L_alcul _IC newsten size.

a_ Generate Finite ElementMesh
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Finite Element Analysis

¼

Adjoint Field Finite El. Analysis

Objective Function
Constraint Function

I S isn d7 I

Math. Prog. Subroutine :

Compute Search Vector

( based on the opt. cond.)

yes

"vt' 2
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MESH GENERATION METHOD • ELLIPTIC MESH GENERATOR

At each design iteration, a new finite element mesh is reconstructed using the elliptic
mesh generation method. In most of shape optimization practice, finite element meshes are
not regenerated, but are modified during the optimization process. Because of the method
applied for modification of the initial finite element mesh, unnecessary element distortion

is, in general, generated in each iteration. Element distortion can become so large it can
actually destroy accuracy of the finite element approximations, and then yield
unsatisfactory results in shape optimization. To avoid this difficulty, it is better to
regenerate a finite element mesh at each design stage despite of expense required. Here the
elliptic mesh generation method is used that generates almost orthogonal meshes using only
the data of the boundary of the domain occupied by a structure. If the boundary is
represented by a set of spline curves, it is possible to represent the design boundary by

several spline functions defined by the location 0o_, o_=1 ..... O_max, of the so-called control

points without loss of generality.

Elliptic Mesh Generation Method

V(DV_) =-P(_,q) and V(DVTI)=-Q(_,TI)

.b .a

where V = l;_.+ j_-_,(x,y)arethe physicalcoordinates,and (_,_)arethe

mesh coordinates.

I I I I I I I
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EXAMPLE : MODEL A

Model Problem A is to find the optimally shaped hole in a biaxially loaded linearly
elastic thin plate. Starting from a rectangular hole, the optimal shape of the hole is
obtained for the loading condition which yields an elliptic hole as the optimum. Applying
the symmetry condition, only a quarter part of the plate is discretized by 110 QUAD4
elements together with 11 control points on the design boundary for shape optimization.

The minimum admissible area of the hole prescribed by the user is restricted to A=0.16m 2.

Iteration history and the optimal shape are given in the figure. The first three redesigns
rapidly reduce the maximum value of the von Mises equivalent stress from 6.6 to 3.3,
while the optimum obtained after 23 iterations is about 2.8.

7.0-
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2.0

1.0

0

Objective Function

i I I

10 20 30

Iteration

5

Iteration 1
Iteration 23
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EXAMPLE : MODEL B

For f'mding the optimal shape for a linearly elastic fillet, the domain is discretized by

126 QUAD4 elements together with 14 control points on the design boundary. In this
case, the objective function F is the von Mises equivalent stress. Assuming that the

maximum allowable area of the fillet is restricted to A=1.135 x 10-2m 2, an optimal shape is
obtained. The maximum value of the equivalent stress becomes very stable after 15 design
iterations, and its minimum is achieved at the 24th iteration. This means that optimization
and finite element remeshing is performed 24 times. First 10 iterations give rapid
reduction of the maximum value of the stress. The maximum von Mises stress in the final
fillet obtained is less than half of the maximum stress of the initial structure.
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I_ II I I I I I I I
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FINAL REMARKS

The development presented introduces a general form of mixed formulation for the
optimal shape design problem, and the associated optimality conditions are easily obtained
without resorting to highly daborate mathematical developments. Also the physical
significance of the adjoint problem comes out to be clearly defined with this formulation.

In the examples presented, an elliptical automatic mesh generator assuring an
orthogonal finite element mesh at the domain boundary [ see, e.g. 7] was used at each
shape redesign. Although this procedure might seem to be computationally a very
expensive procedure, actually it guarantees a good accuracy for the discrete model with an
increase on computational time of less than 5% of the actual time required for the finite
element analysis.

The numerical examples presented demonstrates the stability of the procedure.
Problems commonly encountered in shape optimization arising from the development of
instabilities in the design boundary definition were largely avoided. As is to be expected,
however, this improvement is accomplished at the expense of the increase in cost of
computation as compared to the simple displacement formulation.

SHAPE OPTIMIZATION

1. Mixed Finite Element Methods for Analysis

2. Automatic Remeshing Scheme by
Elliptic Mesh Generation Methods

o Optimality Conditions are Obtained by the Upper Bound
Method

4. Demonstration by Numerical Examples
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MODAL FORCED RESPONSE OF PROPFANS IN YAWED FLOW*

G.V. Narayanan

Sverdrup Technology, Inc.

(Lewis Research Center Group)
NASA Lewis Research Center

ABSTRACT

This research is part of the ongoing NASA Lewis aeroelastic research program

on propfans. A modal forced response method for propfans in yawed flow is pre-

sented here. This capability now exists in the Aeroelastic Stability and

Response of Propfan (ASTROP3) code that has been developed at NASA Lewis.

The ASTROP3 code by Kaza et al. (1987) uses three-dimensional steady and

unsteady cascade aerodynamics by Williams and Hwang (1986) and a NASTRAN finite

element model to represent the blade structure. In addition, many utility

programs exist in ASTROP3 that help in both the preprocessing of the NASTRAN

model and the postprocessing of modal response results. This presentation

will highlight the postprocessing work that computes the blade vibratory

displacements and stresses in yawed flow.

Code validation for obtaining the blade vibratory displacements and stresses

using this method was done successfully by comparing one-per-rev measured

blade vibratory stresses and calculated values for two single-rotation propfan

models. Data from the SR5 model with i0 blades and SR3 model with 8 blades

are used for the code validation. The correlation between theory and experi-

ment is good.

Orid[_AL PAGE IS

DJE _OOR QUALITY

PRECEDINO PA_p, trt,a_l_ rant FILMED

*Work performed on-site at the Lewis Research Center for the Structural

Dynamics Branch.
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INTRODUCTION

The presentation will give a description of the propfan models and outline a

method of calculating modal forced response of propfans in yawed flow. In par-

ticular, the discussion will be on the postprocessing routines developed and

implemented for computing vibratory displacements and stresses in ASTROP3. In

addition, the comparison of measured and calculated stresses for the SR5 and

SR3 propfan models will be presented for selected cases.

• PROPFANMODELDESCRIPTION

• MODALFORCEDRESPONSEMETHODIN ASTROP3

• POSTPROCESSINGROUTINES

• COMPARISONOF MEASUREDAND CALCULATEDRESULTS

C0-88-32829
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PROBLEM DEFINITION 

The models considered for analyses are the SR5 propfan with 10 blades and the 
SR3 propfan with 8 blades. 
titanium. The SRS propfan installation in the Lewis 8- by 6-foot wind tunnel 
is shown below at the left. For these propfans, the given parameters in the 
analysis are the inflow angle, the rotor speed, the wind tunnel velocity of 
air, and the blade pitch setting angle. 
stresses are solved for in the analysis. 

In both these propfans, the blades are made of 

The blade vibratory displacements and 

SR5 PROPFAN 

PROBLEM DEFINITION 
MODELS 

MODELS SR5 (10 BLADES) 
SR3 (8 BLADES) 
TITANIUM 

GIVEN PARAMETERS INFLOW ANGLE 
ROTOR SPEED 
TUNNEL VELOCITY 
BLADE PITCH SETTING ANGLE 

CALCULATED PARAMETERS BLADE VIBRATORY DISPLACEMENTS 
AND STRESSES 

CD-88-32830 

CD-88-32831 
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FLOWCHARTOFMODALFORCEDRESPONSEANALYSIS

The modal forced response analysis consists of eight steps, as shown in the
blocks below. In step I, finite element analysis is used to obtain steady-
state deflections and the differential stiffness matrix (Lawrence and Kielb,
1984). In step 2, the differential stiffness matrix generated in step i is
used to determine the blade natural frequencies and modeshapes in the deformed
state. In step 3, the generalized equations of motion are formulated for the
system. In step 4, the calculation of the airloads distribution over the rota-
ting blades inclined at a unit yaw angle is done (Williams and Hwang, 1986).
In step 5, the solution of the generalized coordinate values for the given
operating conditions is obtained. Thesevalues are referred to as modal par-
ticipation factors. In steps 6 and 7, the physical displacements and finite
element stresses are retrieved by appropriate modal summation using modal par-
ticipation factors. Lastly, in step 8, the finite element stresses are trans-
formed into normal and shear stresses along the measuredblade strain gage
directions. Steps I through 5 have been discussed by Kaza et al. (1988).
Steps 6 through 8 will be discussed in detail in this presentation.

STEP1
GEOMETRICNONLINEAR
STRUCTURALANALYSIS
OF BLADE(S)

STEP2
NATURALFREQUENCIES
AND MODESHAPESIN
DEFORMEDCONFIGURATION

STEP3
MODALMETHOD
FORMULATION

I--_1 STEP7

STEP6 FINITE ELEMENT
PHYSICALDISPLACEMENTS STRESSES

STEP5
GENERALIZED
COORDINATEVECTOR

STEP4
LOADINGDISTRIBUTION
OVERBLADESAT UNIT
YAW ANGLE

STEP8
STRESSESALONG
STRAIN GAGE
DIRECTIONS

CD-88-32832
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COORDINATE SYSTEMS

The global coordinate system used in ASTROP3 is shown at the left. The global

X-axis is along the propeller thrust axis. The blade plane of rotation is the

Y-Z plane. The physical displacements along X-, Y-, and Z-axes are represented

by u, v, and w, respectively. A typical triangular finite element is shown on

the blade at the left. The stresses on the finite element are in the local

element coordinate system. This is shown in the figure on the right. Normal

and shear element stresses in the local x- and y-axes directions are repre-

sented by Oxx, _yy, and _, respectively.

GLOBAL COORDINATE SYSTEM

Y,V

U cos _,-_ /u

U sin ¢_,'/_

X,g

HRUST AXIS

U = INFLOWVELOCITY
/ 9 = ROTORSPEED

= INFLOWANGLE

_ Z,w

LOCAL ELEMENT COORDINATE SYSTEM

7

_ryy

CD-88-32834
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PHYSICALDISPLACEMENT

The physical displacements on the blade can be obtained by appropriate summa-
tion of the modal displacements using participation factors {(qj),j=I,NM} as
modal weights. The summationsof the modal displacements are written in mathe-
matical form below. A routine called TOTADexists in ASTROP3that performs
this set of calculations. Depending on the need, one can obtain either ampli-
tude or phase of physical displacement at a grid, or both of these values.

PHYSICAL DISPLACEMENTS ON BLADE

NM

Ui = _ qJUijj=

NM

Vi = 1=_1qj Vij

NM

Wi = i_ 1 ql Wij

WHERE i=GRID NUMBER AND J= MODE NUMBER

CD-88-32835

PARAMETERS

NM NUMBER OF MODES

qj GENERALIZED COORDINATE VALUES FOR MODE j

(uij,, vij, wij) MODAL DISPLACEMENT VECTOR AT GRID i FOR MODE j

CD-88-32836
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ELEMENT STRESS

Similar to physical displacements, the element stresses on the blade can be

obtained by appropriate summation of the modal stresses using participation

factors {(qj),j=I,NM} as modal weights. The summations of the modal stresses
are written in mathematical form below. A routine called CESTRS exists in

ASTROP3 that performs this set of calculations. An associated routine, called

RDSTRS, has been developed to read the modal stresses on the blade for all
modes.

ELEMENTSTRESSESON BLADE

NM

(O'xx) E = i_ 1 qJ (O'xx)jE

NM

(oyy)E=j= 1"J

NM

WHERE j= MODENUMBERAND E=ELEMENTNUMBER

PARAMETERS

CD-88-32837

NM NUMBEROF MODES

qj GENERALIZEDCOORDINATEVALUESFORMODE j

(#xx)_, (Oyy)E,(_')E, -, MODALSTRESSESON FINITEELEMENT E FORMODE J

C0-88-32838

1-373



CALCULATEDELEMENTAVERAGESTRESSIN GAGEDIRECTION

Let g represent a uniaxial strain gage located on the blade in a direction
that makesangle eg with the global Y-axis. The figures below show the ele-
ment stress and gage directions. It can be noted that the gage location may
not coincide with the centroid of any of the finite elements of the blade. In
such a case, the finite elements surrounding gage g are identified from the
geometry of the blade. For the element surrounding gage g, element stresses
are transformed to be in the gage direction. The stress transformation rela-
tions are also given below. These transformed stresses are used to compute an
element average stress in the gage direction. A routine called GAGESTexists
in ASTROP3that performs the computation of normal and shear stresses in strain
gage directions. The stress averaging of the calculated element stresses in
the strain gage direction is done in ASTROP3by CESTRSroutine.

,---GLOBAL
/ AXIS

LOCAL
AXIS

\ GAGE DIRECTION

\ 0 = - (OE- Og)
x_, _ 0

1

ELEMENTE-_ OgJ/-GAGE LOCATION

Y

WHERE 0 = ANGLEBETWEENELEMENTx-AXISANDGAGEDIRECTION

CD-B8-32839

ELEMENT STRESS IN STRAIN GAGE DIRECTIONS AVERAGE ELEMENT STRESS IN GAGE DIRECTION

(Orxx)E - (O'yy)E
(O'n)_ - (O'xx)E + (ayy)E + COS (20) + (T) E sin (20)

2 2

(7)_ (#xx)E _ (ffyy)E sin (20) -(7) E c0s (20)
2

(On)g -- (NE_-)E= 1

('r)g = (NE-_E=I

CD-88-32840

WHERE NE= NUMBEROFELEMENTSSURROUNDINGGAGE g

CD-88-32841
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COMPARISON OF MEASURED AND CALCULATED STRESSES

For the SR5 propfan model, the normal stresses on an inboard strain gage for

two inflow angles are used for comparison of measured and calculated stresses.

Also, the calculated stresses for four strain gages are compared with experi-

mental values for the SR3 propfan model. The calculated values for SR5 are

lower than the experimental values by 20 to 50 percent, whereas the calculated

values for SR3 are higher than the experimental values by i0 to 50 percent

except for strain gage 2.

1P
VIBRATORY

STRESS,
a, psi

SR5 PROPFAN

(MACH=0o36 rpm=6000, #3/4R=60.8)

10000

800O

6000

4000

2O00

/

/'

/

/

• /

_J

I I I
0 4 8 12 16

INFLOWANGLE,

--.-- MEASURED
-D- CALCULATED

SR3 PROPFAN

(MACH=0.353, rpm=8000, /33/4R=48.9, @=8°)

4UUU

3000

1P

VIBRATORY 2000
STRESS,

(7,psi

1000

(b

m

I I I T
1 2 3 4

STRAIN_AGE NUMBER

STRAIN
GAGE

--5

SR3

• MEASURED
DCALCULATED
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SUMMARY

A method for the computation of vibratory displacements and stresses for

propfans in yawed flow is presented. This capability now exists in ASTROP3.

, MODALFORCEDRESPONSEANALYSISFORPROPFANSIN YAWEDFLOWDEVELOPED

• USES 3-D STEADYAND UNSTEADYCASCADEAERODYNAMICS

• CALCULATESBLADEVIBRATORYDISPLACEMENTSAND STRESSES

• PART OFASTROP3CODE

CD-88-328,:4
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STRUCTURAL DYNAH I CS CODE APPL I CAT IONS

SESS I ON OVERV I EW

Krishna Rao V. Kaza

Structrual Dynamics Branch
NASA Lewis Research Center

The first two presenters of this session have applied aeroelastic codes for

stability analyses. The first paper deals with the stability analysis of an

advanced, large-scale propfan. A computer code based on three-dimensional,

subsonic, unsteady, lifting surface aerodynamic theory is used to examine the

propfan's stability at a cruise condition of Mach 0.8 and 1700 rpm. The sec-

ond paper presents a flutter analysis of the NASA Lewis supersonic through-

flow fan. Lane's formulation of unsteady pressure distribution on an oscillat-

ing two-dimensional flat plate cascade in supersonic axial flow was developed

into a computer code and incorporated with an existing aeroeiastic code for

the analysis. The last presenter will describe the development of a methodol-

ogy for the analysis of stall flutter of propfans and its implementation within

an aeroelasticity code. This stall flutter analysis uses empirical dynamic

stall aerodynamic models and a finite element structural model. Calculated

results are correlated with a propfan model's stall flutter data.

TYPES OF AEROELASTICITYPROBLEMSSTUDIED

• STABILITYOF A LARGESCALEPROPFAN (AUGUST)

• SUPERSONICAXIAL FLOW FAN FLUTTER (RAMSEY)

• STALL FLUTTERANALYSISOF PROPFANS (REDDY)

CD-88-32626
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STRUCTURALDYNAMICSCODEAPPLICATIONS

This session has two papers dealing in the dynamic characterization of rotating
blades and one paper involving computational methods. The first presenter will
discuss predicting blade natural frequencies of single crystal turbopumpblades
in order to find possible critical engine order excitations. The second pre-
senter will discuss a code restructuring program called Parafrase that aids in
the optimization of codes for implementation with parallel processing machines.
The last presenter will describe techniques used for the nonlinear analysis of
rotating flexible blades with MSC/NASTRAN.

GENERALDYNAMIC PROBLEMSSTUDIED

• SSME SINGLE-CRYSTALTURBINE BLADEDYNAMICS (MOSS)

• PARAFRASERESTRUCTURINGOF FORTRANCODEFOR PARALLELPROCESSING

(WADHWA)

• ANALYSISOF ROTATINGFLEXIBLEBLADESUSING MSC/NASTRAN(ERNST)

CD-88-32627
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VIBRATION AND FLUTTER ANALYSIS OF

THE SR-7L LARGE-SCALE PROPFAN

Richard August*

Sverdrup Technology, Inc.

(Lewis Research Center Group)
NASA Lewis Research Center

ABSTRACT

One of the major research and technology programs at NASA Lewis Research

Center is the Advanced Turboprop Program. The goal of this effort is the

development of turboprop (also known as propfan) propulsion systems that would

have significant gains in fuel economy over turbofans without sacrificing air-

craft performance. An important phase of this program is the Large-Scale

Advance Propfan Program (LAP). This program involves the development and both

ground and flight testing of a complete eight-bladed, 2.7-m- (9-ft-) diameter

rotor system.

The SR-7L advanced turboprop blade used in the LAP program is designed for a

Mach number of 0.80 at an altitude of 10.7 km (35 000 ft). It uses a number of

unique design features, such as thin, highly swept and twisted, composite mate-

rial blades of low aspect ratio and high disc solidity, to improve propeller

performance. Recent research efforts at Lewis have focused on these proper-

ties, particularly with respect to improved structural modeling and aeroelastic

analysis of the bladed propfan assemblies. Some areas where new analytical

techniques have been implemented include composite blade modeling, nonlinear

displacement analysis, and three-dimensional, aeroelastic analysis.

This paper presents a structural and aeroelastic analysis of the SR-7L

advanced turboprop incorporating the aforementioned techniques. Analyses were

conducted for selected cases at different blade pitch angles, blade support

conditions, rotational speeds, free-stream Mach numbers, and number of blades.

A finite element model of the final blade design was used to determine the

blade's vibration behavior and its sensitivity to support stiffness. A com-

puter code recently developed at Lewis, which was based on three-dimensional,

subsonic, unsteady lifting surface aerodynamic theory, was used for the aero-

elastic analysis to examine the blade's stability at a cruise condition of

Mach 0.8 at 1700 rpm. The results showed that the calculated frequencies and

mode shapes obtained with this model agreed well with the published experi-

mental data and that the blade is stable for that operating point.

*Work performed on-site at the Lewis Research Center for the Structural

Dynamics Branch.
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SR-7L FLUTTER ANALYSIS DESCRIPTION

The analysis procedure consisted of using the blade's finite element model to

obtain the vibration characteristics at the design rotational speed and then

conducting aeroelastic studies to determine unstalled flutter stability at the

design condition. The finite element code MSC/NASTRAN was used extensively to

calculate the vibration characteristics of the blade using techniques suggested

by Lawrence et al. (1984, 1987). The calculated frequencies and mode shapes

were then used in conjunction _ith the computer program ASTROP (Aeroelastic

STability and Response Of Propulsion Systems), a recently developed modal

flutter code, for the aeroelastic stability studies (Kaza, 1987).

GRID GEOMETRY ___

ELEMENTCONNECTIVITY
MATERIALPROPERTIES
ROTATIONALSPEED

AIR DENSITY
MACH NUMBER
NUMBEROF BLADES

MSC/NASTRANsoL64 INONLINEARDISPLACEMENT
ANALYSIS

DIFFERENTIALMASS AND
STIFFNESS MATRICES

MSC/NASTRAN
SOL 63

NORMALMODESANALYSIS

FREQUENCIES
MODE SHAPES

ASTROP
FLUTTERANALYSIS SYSTEM EIGENVALUES

CD-88-32302
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SR-7L FINITE ELEMENT MODEL DESCRIPTION

The NASTRAN finite element model used in this study is based on the final

SR-7L design. The blade geometry and airfoil data were obtained from the

engineering design drawings. The composite material properties were calculated

by a micromechanics approach using available fiber and matrix properties

obtained from actual testing of the material. Shell, adhesive, spar, and

shell filler material were combined using the composite blade structure analy-

sis (COBSTRAN) program to produce monolithic shell elements (Aiello and Chi,

1987). The finite element model has 261 nodes, 449 triangular shell elements

(NASTRAN element CTRIA3), and 5 bar elements (NASTRAN element CBAR). Bar ele-

ments were used to model the blade shank. Multipoint constraint cards that

couple the displacement of prescribed gird points were used to define the

shank-blade interface. The blade constraints were modeled by using spring ele-

ments attached to the base of the blade shank. A total of four degrees of

freedom for the shank base were allowed: translation along the pitch change

axis, bending rotations in and out of the plane of rotation, and rotation

about the blade's pitch change axis. The blade shank was completely fixed for

translation out of the plane of rotation and normal to the blade's rotation

vector and pitch change axis (Chou, S., 1986, "SR-TL Turboprop Blade Finite

Element Model," Sverdrup internal communication).

261 NODES
449 CTRIA3ELEMENTS

5 CBARELEMENTS

X

I

_.._.._,ROTATION ABOUT
PITCH CHANGEAXIS

KR3

/ _ ROTATION

I I
| TRANSLATIONALONG_''-.

TION _ BLADESPAN
<>

SHANKCONSTRAINTMODELSHOWINGVARIOUS

SUPPORTSTIFFNESSES,KR. '

.-BLADE SHANKMODELED
BY BAR ELEMENT

CD-88-32303
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SR-7L CALCULATEDMODESHAPESANDFREQUENCIES

Since aeroelastic analyses are sensitive to blade frequencies and modeshapes,
it is important that the blade finite element model and analysis accurately
reflect the blade's modal characteristics. To establish the validity of the
finite element blade model, it was necessary to show that calculated frequen-
cies agreed well with experimental values. Consequently, frequencies and
corresponding modeshapes were calculated at 1200 rpm over a range of blade
setting angles from 35° to 60 ° , and were compared with those given by Turnberg

(1986 handout of SR-7L test results distributed at the Advanced Turboprop Work-

shop, NASA Lewis Research Center). It should be noted that the calculated

frequencies do not include the effect of steady airloads.

The blade's first mode is seen to be predominantly a first bending mode with

no nodal lines and fairly evenly spaced contours in the upper half of the

blade. The second mode is predominantly a first edgewise mode, with most of

the motion occurring near the tip in the chordwise direction. The third mode

can be classified as the second bending mode since there is a generally chord-

wise nodal line near the tip. The fourth mode can be classified as the first

torsion mode since there is a midchord nodal line.

CONTOURPLOTS

FIRSTSENDING
38.10Hz

FIRSTEDGEWISE
86.89Hz

"+

i

SECONDBENDING
101.0Hz

FIRSTTORSION
160.9Hz

CD-SR-32304

"ANIMATED" MODE SHAPES

-J

FIRSTBENDING FIRSTEDGEWISE SECONDBENDING

T

FIRSTTORSION
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ACCURACY OF CALCULATED SR-TL FREQUENCIES

A comparison of the measured and calculated frequencies shows that there is

very good agreement for the first mode (i.e., first bending) over the entire

range of blade setting angles. A comparison of the fourth mode frequencies

(i.e., first torsion) similarly shows acceptable agreement. However, there is

not a good match on the second mode, first edgewise, nor on the third mode,

second bending. For both cases, the calculated frequencies were higher than

the measured frequencies.

FREQUENCY,
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,,o_:-'°--_--°'-'°--_f°= ___-
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SR-7L CALCULATED FREQUENCIES VERSUS SUPPORT STIFFNESS

The values suggested by Sullivan et al. (1987) for the original model of the

blade support stiffnesses were used to make parametric runs to examine the

effect of varying these stiffnesses on natural frequencies and mode shapes.

Each stiffness value was varied individually while the other values were held

constant. Variation of the in-plane bending rotation support stiffness KRI

had little effect. The first two modes did have noticeable changes, but only

over three orders of magnitude of stiffness changes. The pitching axis sup-

port stiffness KR3 and spanwise translational support stiffness had virtually

no effect on the frequencies. However, the out-of-plane bending rotation

support stiffness KR2 greatly affected the frequency values for the first

edgewise mode. Frequencies for the first and second bending modes and for the

first torsional modes were relatively unaffected. The edgewise mode could be

selected to be the second, third, or fourth mode, depending on the out-of-plane

bending stiffness value.
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SR-7L BLADEMODALDISPLACEMENTSVERSUSSUPPORTSTIFFNESS

Examining the three-quarters radius chord modal displacement as viewed down
the blade span helps characterize the modeshape. For relatively low values
of KR2, the second modeis clearly the first edgewise modesince the motion
is nearly all in the chordwise direction. The first and third modescan be
characterized as the first and second bending modesfrom the amount of blade
normal displacements. The second modefrom the first crossover region (KR2=
1.514xi06 m-N/rad) still has a fair degree of chordwise motion, although the
leading edge area does have a someblade normal motion. Note that the third
modenow also contains a degree of chordwise motion. At the second crossover
region (KR2= 1.13xlO8 m-N/rad), the secondmodecan be classified a bending
modebecause of the predominate blade normal displacements. The third modeis
clearly the first torsional mode, whereas the fourth modeappears to be the
first edgewise modebecause of the chordwise motion at the leading edge.

The originally suggested values for KR2 cause the second and third modesto
occur in a transition region between the first edgewise and second bending
modes. This helps to account for the difference between the experimental and
calculated second and third modefrequencies. The experimental edgewise mode
is much lower than the calculated one, reflecting that mode's strong sensitiv-
ity to the support stiffness. The narrow range of values for the calculated
second and third modes, and even for the experimental third mode, also illus-
trate the effect of the support stiffness within the crossover region.
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Y J
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SR-7L CALCULATEDFREQUENCIESVERSUSTUNEDSUPPORT

From the parametric studies, values for the support stiffnesses were selected
so that a "tuned support" model was developed. This was done in an attempt to
give the best overall agreement between the calculated and measured frequen-
cies. It was decided to try to soften the support stiffnesses since the edge-
wise, secondbending, and torsional frequencies were too high. The value of
KRI was chosenat 4.52xi05 m-N/rad because this seemedto be the minimumvalue
above which there were very little changes in the blade frequencies. The
value of KR2 was chosen slightly lower at 9.04xi05 m-N/rad because this was
the value that gave the best agreement with the experimental edgewise mode
without greatly affecting the other three modes. Since the KR3 value seemed
to have very little effect on the frequencies, it was purposely chosen to be
very low (l.13x102 m-N/rad). The effect of the softer support springs are
immediately evident. The first modefrequencies are slightly lower. However,
the second, third, and fourth modesshowmuchbetter agreement than before,
especially near the operational blade setting angle of 58°.
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SR-7L CALCULATEDFREQUENCIESVERSUSDESIGNSPEED

Parametric studies using the two models were done to examine the effect of
rotating speed on natural frequencies for the two models. Because of the
softer support, frequencies for the tuned model are generally slightly lower
(<i0 percent) than for the original model. For the three modesthat most
affect flutter, first torsion and first and second bending, there is generally
better agreement between calculated and measuredresults at the design speed
(1700 rpm) using the original model. Conversely, at 1200 rpm, the tuned,
softer support showedbetter agreement.

A possible explanation for the difference is that at the higher speed the blade
shank had seated itself better, resulting in a stiffer support. This is sup-
ported by the fact that the measured frequencies showeda greater degree of
change between the two test speeds than the frequencies calculated by either of
the finite element models. This type of nonlinear support would be impossible
to model accurately over a wide range of speeds using linear spring elements.
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SR-7L FLUTTERCURVES

The modal flutter code ASTROP3was used to calculate the aerodynamic damping.
This code is a normal mode analysis method that was developed for the analysis

of propulsion blading. It is based on three-dimensional, subsonic (the Mach

number of relative flow is less than unity), unsteady aerodynamics as described

by Williams and Hwang (1986). However, for the SR-7L configuration at a design

free-stream Mach number of 0.80 and a rotational speed of 1700 rpm, the Mach

number of relative flow at the tip is greater than one. To calculate the

unsteady aerodynamics for supersonic Mach numbers, Kaza et al. (1987) have

further extended the aerodynamic model.

The cascade aeroelastic stability is determined by solving the eigenvalue

problem for the dynamic system. System damping and damped frequency are repre-

sented by the real and imaginary parts of the complex eigenvalue, respectively.

Flutter occurs when the real part of the eigenvalue is greater than zero.

Aerodynamic damping at the design speed is predicted as a function of free-

stream Mach number. Aerodynamic damping values for free-stream Mach numbers

greater than 0.8 were also calculated and included so that the available flut-

ter margin for the SR-7L propfan could be estimated. The values shown are for

the most unstable SR-TL interblade phase angles for both the original and tuned

support condition, respectively. The blade was stable for both cases at the

design point of Mach 0.8 and 1700 rpm at an altitude of 10.66 km (35 000 ft).

There was also very little difference in the most unstable interblade phase

angle identified. The predicted values are considered to be conservative,

since neither material nor friction damping due to the hub constraint has been

included in the analysis. Additional system damping would only have a stabi-

lizing effect. From these results, it is concluded that the SR-7L propfan is

free from flutter at the design point.
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COMPARISON WITH A TWO-DIMENSIONAL AEROELASTIC CODE

The ASTROP3 damping ratio results for the original stiffness model were

compared with those given by Hirschbein et'al. (1987). That study used a

modal flutter aerocode solver, ACA, available in COSMIC/NASTRAN. The ACA code

utilizes the two-dimensional, subsonic cascade aerodynamic theory of Jones and

Rao applied in a strip theory manner (Elchuri et ai.,1985). The calculated

damping values are qualitatively similar: the first mode being much more sta-

ble than either the second or third modes, and the third mode showing the

least damping. A direct comparison of the values for the critical damping

cannot be made because of differences in the aerodynamic theories used, as

well as two slightly different blade designs. The finite element blade model

used by Hirschbein is based on a preliminary blade design and has higher third

and fourth mode (second bending and first torsion) frequencies, 111.6 and

160.7 Hz versus 97.9 and 137.0 Hz, respectively, than the final blade design.
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CASCADE EFFECTS ON SR-7L STABILITY

To illustrate the effects of cascade aerodynamics on flutter, parametric stud-

ies were made varying the number of blades in the propfan assembly. The

effect of the number of blades on modal damping is significant, with the first

and third mode aerodynamic damping decreasing by 25 and 16 percent, respec-

tively. The destabilizing influence of the cascade effect is demonstrated as

the least stable interblade phase angle shifts to the right with increased

blading. The critical frequency is also reduced with increased blading.
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SUMMARYOFRESULTS

I. Bending and torsional frequencies were generally insensitive to the
support stiffness used. However, the blade edgewise frequencies were particu-
larly sensitive to the out-of-plane support stiffness used.

2. With the exception of the edgewise mode, there was generally good
agreement between calculated and experimental frequencies at the design speed.
From the available test information, it appeared as if the blade hub constraint
stiffness acted in a nonlinear manner with respect to rotational speed. This
madeit difficult to model the bla_!e constraint condition with linear spring
elements over a wide range of speeds.

3. The blade was stable at its design point of Mach0.8 and 1700 rpm at an
altitude of 10.66 km (35 000 ft). The analysis did not consider any structural
damping, which would have a beneficial effect on stability.

4. Somecomponentsof the blade support stiffness values had little effect
on the calculated aerodynamic damping. This would imply that modeling efforts
should be concentrated most on matching the in-plane and out-of-plane bending
stiffnesses and obtaining reasonably close values (within i0 percent) for the
bending and torsional modes.

5. Cascadeeffects were found to be considerable at the design point for
configurations from 2 to i0 blades, although an increase in the numberof
blades from 8 to I0 did not cause an instability for the configuration ana-
lyzed.
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SUPERSONIC AXIAL-FL0W FAN FLUTTER

John K. Ramsey

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

The development of a supersonic axial-flow compressor has been the subject of

a limited amount of research over the past 32 years (Ferri, 1956; Klapproth,

1961; and Savage et al., 1961). During the middle 1970's a supersonic axial-

flow compressor was constructed, but it encountered a blade failure before

reaching its design point (Breugelmans, 1975). Many reached the conclusion

that the supersonic axial-flow compressor was a very difficult, if not practi-

cally impossible, design problem. However, recent renewed interest in super-

sonic and hypersonic flight vehicles have rekindled interest in the supersonic

axial-flow fan. For example, a research project to design, build, and conduct

experiments on a single-stage supersonic axial-flow fan is now underway at the

NASA Lewis Research Center (Schmidt et al., 1987; and Wood et al., 1987).

Although past experimentation on this type of compressor has been rather

sparse, some useful analytical technology has been developed. One example is

in the area of aeroelastic stability. Since the aeroelastic stability of the

NASA supersonic through-flow fan was a concern, an analytical capability was

needed to predict the unsteady aerodynamic loading. Consequently, a computer

code based on Lane's (1957) formulation was developed for the case of super-

sonic axial flow (Ramsey and Kielb, 1987). This presentation will discuss

this code and its application to the flutter analysis of the NASA Lewis super-

sonic through-flow fan.

The flutter analysis was performed by incorporating this code into an existing

aeroelastic code and applying it to the NASA blade. The analysis (Kielb and

Ramsey, 1988) predicted the blades to be unstable at supersonic relative veloc-

ities. As a consequence, the rotor blades were redesigned by reducing the

aspect ratio to bring the through-flow fan into the stable operating range.
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UNSTEADY AERODYNAMIC MODEL

Lane's (1957) formulation for the unsteady pressure distribution was used to

calculate the unsteady aerodynamic loads. This formulation considers a cascade

of two-dimensional flat plates with arbitrary stagger (provided the locus of

blade leading edges is located ahead of the Mach lines) and arbitrary inter-

blade phase angle. The upper figure shows the cascade geometry, and the lower

figure defines the airfoil unsteady pressure distribution.

CASCADEGEOMETRY
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COMPUTER CODE VERIFICATION - PITCHING MOTION

The pressure distribution and lift and moment coefficients due to torsional

motion were compared with Nagashima and Whitehead's (1977) published results.

Close agreement can be seen.
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COMPUTER CODE VERIFICATION - PLUNGING MOTION

It would have been ideal to compare the lift and moment plunging coefficients

with those of Nishiyama and Kikuchi (1973). However, it was felt that the pub-

lished graphs were too small to accurately digitize. Therefore, the plunging

coefficients obtained from this code were compared to those of Jordan (1953)

for an isolated airfoil in supersonic axial flow. Close agreement can be seen.
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STRUCTURAL MODEL

The classical typical section is used to model the structure. Each airfoil is

assumed to be a two-degree-of-freedom oscillator supported by bending and tor-

sional springs. The airfoil is assumed to be rigid in the chordwise direction.

Coupling between bending and torsional motions is modeled through the offset

distance between the center of gravity and the "elastic axis."
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ORIGINALDESIGN- 73.3-PERCENT SPAN

The NASA blade is much higher in solidity and lower in stagger angle than typi-

cal fan stages. However, the airfoil cross section is similar to that of con-

ventional fan blades. The first mode is primarily bending, and the second mode

is primarily torsion. The physical properties of the 73.3-percent span loca-

tion were chosen as being representative and were used in the flutter analysis.

NUMBER OF BLADES ............................. 58
MASS RATIO.................................. 456.2
RADIUS OF GYRATION(MIDCHORD) ................ 0.431
STAGGERANGLE, deg ............................. 28
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AXIAL MACH NUMBER ......................... 2.300
RELATIVEMACH NUMBER....................... 2.606
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FLUTTER ANALYSIS

The flutter analysis was performed by incorporating this unsteady aerodynamic

code into an existing aeroelastic code that solves the stability problem. The

aeroelastic code was then applied to the NASA through-flow fan blade (Kielb

and Ramsey, 1988). The analysis predicted that the through-flow fan would be

torsionally unstable at supersonic relative velocities. As a result, the

blade aspect ratio was reduced in the final design to bring the rotor into the

stable operating range.
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SUMMARY

Lane's (1957) analytical formulation, of the unsteady pressure distribution on
an oscillating two-dimensional flat plate cascade in supersonic axial flow, has
been developed into a computer code. This unsteady aerodynamic code has shown
good agreementwith other published data. This code has also been incorporated
into an existing aeroelastic code to analyze the NASALewis supersonic through-
flow fan design. A more sophisticated aerodynamic model that takes into
account blade camber and/or thickness is being considered as a follow-on to
this work.

• LANE'S (1957) FORMULATION HAS BEEN DEVELOPED INTO AN UNSTEADY
AERODYNAMIC CODE

• THE UNSTEADY AERODYNAMIC CODE HAS SHOWN GOOD AGREEMENT WITH
PREVIOUSLY PUBLISHED DATA

• THE UNSTEADY AERODYNAMIC CODEHAS BEEN INCORPORATED INTO AN AEROELASTIC
CODE

• AN UNSTEADY AERODYNAMIC MODEL THAT INCLUDES THICKNESS AND/OR CAMBER

EFFECTS IS BEING CONSIDERED FOR FUTURE WORK

CD-88-32914
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APPENDIX - SYMBOLS

2BYl

speed of sound

elastic axis position

semi-chord

chord

lift coefficient due to plunging motion

lift coefficient due to pitching motion

moment coefficient due to plunging motion

moment coefficient due to pitching motion

plunging displacement

imaginary unit

imaginary part of ()

Bessel function of the first kind of order 0

reduced frequency based on chord, _c/U

bending stiffness

torsional stiffness

aerodynamic lift

Mach number

aerodynamic moment

pressure on lower surface of airfoil

pressure on upper surface of airfoil

real part of ()

blade spacing

time

free-stream velocity

streamwise coordinate

1-401



xo

Y

£n

P

Y

l[]

x/c coordinate of pitching axis with respect to the leading edge

transverse coordinate

complex amplitude of incidence

Cn = i if n = O; Cn = 2 if n Z I

dummy variable of integration

KM/B 2 = _c/B2ao

air density at free stream

interblade phase angle

complex amplitude of dimensionless pressure difference

a + 2_Mx I

angular frequency

unit step function
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STALL FLUTTER ANALYSIS OF PROPFANS

T.S.R. Reddy*
Structural Dynamics Branch

NASA Lewis Reasearch Center

ABSTRACT

Stall flutter is a self-excited limit cycle oscillation triggered by separa-

tion of flow during part of every cycle of oscillation. Under takeoff condi-

tions, the propfan blades may operate at high angles of attack and have the

potential to stall flutter. The aerodynamic phenomenon associated with an air-

foil oscillating into and out of stall is called dynamic stall. The forces

generated in dynamic stall are an order of magnitude greater than the forces
in separated flow with no vibration.

The present research is aimed at developing methods for the analysis of stall

flutter of propfans and the computer implementation of these methods in the

general purpose computer program, ASTROP - Aeroelastic STability and Response

Of Propulsion systems.

Prediction of forces during dynamic stall has been a continuing research

effort. The methods vary from solving the basic equations of fluid mechanics

(purely theoretical) to fitting the analysis to direct measurement (empirical).

The empirical methods take less time to implement and are able to quantita-

tively produce the dynamic stall effects. However, they require extensive

experimentation and data before a model is developed. In addition, they do

not provide any information about the physics of the flow. On the other hand,

the purely theoretical methods are computationally expensive and not preferred

for preliminary design work.

This report briefly reviews the dynamic stall analysis methods, and presents

the application of two empirical models to the stall flutter analysis and cor-

relation with experimental data of a propfan.

eRECEDING PAG/_ BLANK NOT F/L_FA)

*(The University of Toledo, Department of Mechanical Engineering, Toledo,

Ohio 43606) and NASA Resident Research Associate.
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PURPOSE 

To obtain maximum aerodynamic and acoustic performance, the trend in high 
speed propeller design has been toward thin, swept blades. These new designs 
are called propfans. A research program to establish the required technology 
for successful design of propfans is in progress at the NASA Lewis Research 
Center. Analysis of stall flutter, that may occur at takeoff conditions, is 
part of this research program. This involves the evaluation of the stall flut- 
ter analysis methods for propfans and the development of new analysis methods. 

PURPOSE 
* THICK AIRFOILS * 4 STRAIGHT BLADES * LIGHT DISK LOADING (70-15 SHPlD2) * 2-D, SUBSONIC, ISOLATED AERO 
j ,  HIGH AR BLADES-BEAM BEHAVIOR * EMPIRICAL MODELS 

MACH 0.6 DESIGN 

* 8-10 SWEPT, VERY THIN BLADES 
* HIGH DISK LOADING (30-40 SHPID') 
* 3-0, TRANSONIC, CASCADE AERO, 

AREA-RULED SPINNER 
& CONTOURED NACELLE 

* LOW AR BLADES-PLATE DYNAMICS * EMPIRICAL TO CFD MODELS 
CD-88-32756 
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OBJECTIVES

The objectives of the research are to (i) develop stall flutter analysis meth-

ods for propfans, (2) verify the analyses with experimental data, and (3)

implement the analyses in the general purpose aeroelastic analysis program

ASTROP - Aeroelastic STability and Response of Propulsion systems.

• DEVELOP STALL FLUTTER ANALYSIS METHODS FOR PROPFANS

• CORRELATE WITH EXPERIMENTAL DATA

• IMPLEMENT IN ASTROP CODE

CD-88-32757
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TYPESOF STATICSTALL

Three types of static stall or separation under static conditions have been
identified (McCullough and Gault, 1951). They are (i) the trailing edge stall,
(2) leading edge stall, and (3) thin airfoil stall. In trailing edge stall
the boundary layer separation progresses gradually forward from the trailing
edge and there is a gradual loss of lift. Leading edge stall is identified by
the burst of the leading edge separation bubble when the stall angle is reached
and is associated with sudden loss of lift. In the thin-airfoil stall, a sepa-
ration bubble originates near the leading edge and elongates as the angle of
attack is increased. This type of stall is associated with gradual loss of
lift. These three types of stall occur for airfoils with thickness-to-chord
ratios (t/c) greater than 0.15, 0.09 to 0.15, and less than 0.09 respectively.
Propfans have airfoils in the t/c range of 0.02 to 0.04, and hence are assumed
to exhibit thin airfoil stall.

(1) TRAILING EDGE
(2) LEADINGEDGE
(3) THIN-AIRFOIL

'i L

//
ANGLEOF ATTACK,

CD-88-32758
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DYNAMICSTALLEVENTSONANOSCILLATINGAIRFOIL

Dynamic stall refers to the aerodynamic phenomenaof an airfoil oscillating
into and out of stall. The predominant feature (McCroskey, 1981) is the shed-
ding of a vortex-like disturbance from the leading edge, which alters the
chordwise pressure distribution. This vortex movesdownstreamat about 35 to
40 percent of free stream velocity. The unsteady forces due to the passage of
this vortex are muchgreater than the corresponding static values.
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IMPORTANT EFFECTS OF DYNAMIC STALL

Three important effects resulting from dynamic stall are (I) flow separation

is delayed to an angle beyond the static stall angle (stall delay); (2) the

forces and moments are an order of magnitude larger than the static values

(overshoot); (3) the variation of the forces versus angle of attack shows hys-

teresis. Stall flutter, a self-excited limit cycle oscillation can occur if

hysteresis leads to negative damping. The magnitude of these effects depend

on the airfoil shape, Mach number, and Reynold's number of the flow over the

airfoil and on amplitude and frequency of oscillation.
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COEFFICIENT,

CL

_ STALL DELAY

ow,  oo,[_-i--

4
7 _- STATICDATA

/
/

/
/

MOMENT

COEFFICIENT,
Cm

_ _-" NEGATIVEDAMPING

ANGLE OF ATTACK,
CD-88-32760

1-410



STALLFLUTTERANALYSISMETHODS

Twocomponentsare needed to analyze stall flutter--an aerodynamic stall model
and a structural model. The aerodynamic models available to analyze dynamic
stall vary from solving the basic fluid mechanicsequations to fitting analy-
sis to experimental data (Reddyand Kaza, 1987). The Navier-Stokes Solvers
(NSS), vortex methods, and zonal methods attempt to solve the fluid mechanics
equations in their fundamental form by numerical techniques with varying
degrees of simplifications and assumptions. Thesemodels require a signifi-
cant amount of computer time. In the empirical models an analytical fit is
attempted to approximately reproduce wind tunnel data. The empirical models
take less computer time and can be used in a routine aeroelastic analysis
though they are not able to give the complete picture of the flow. The struc-
tural models vary from a two-degree-of-freedom typical section model to a
finite element model with a large number of degrees of freedom.

I WIND TUNNEL DATA(WTD)

I EMPIRICALMODELS _.BASEDON WTD

I EMPIRICALMODELSBASEDON NSS

t
i NAVIER-STOKESSOLVER(NSS)

I VORTEXMETHODSZONALMETHODS

I STALL FLUTTERANALYSIS I

_____ AERODYNAMICMODEL
i

STRUCTURALlMODEL

q TYPICALSECTION]MODEL

BEAMMODEL

__[ FINITE ELEMENT ]MODEL

C0-88-32761

1-411



SR2 PROPFAN MODEL 

A propfan model SR2 exhibited stall flutter type behavior at static thrust con- 
dition in wind tunnel testing (Smith, 1985). This propfan has 8 unswept metal- 
lic blades with NACA 16 series airfoils for 45 percent of the span and NACA 65 
series airfoils for 37 percent of the span. The thickness ratio (t/b), twist 
( A @ ) ,  design lift coefficient ( C L D ) ,  and planform (b/D) distribution are 
established to provide for high efficiency. 

VARIATION OF PROPELLER DESIGN PARAMETERS WITH 
BLADE RADIUS FOR THE UNSWEPT SR-2 PROPELLER 

I 2 4  
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I I I I 
? . 4  . 6  . 8  1.0 
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APPROACH

Two empirical aerodynamic stall models, model A and B, and a finite element
structural model were selected to analyze the SR2propfan stall flutter.
Model A uses fewer parameters in modeling the dynamic stall than does model B.
A single blade is considered for the analysis. Normal modeanalysis is used
in formulating the governing equations of motion. The aerodynamic forces are
calculated at a selected numberof stations (strips) and integrated to obtain
the total generalized forces on the blade. Combinedmomentum-bladeelement
theory is used to calculate the induced velocity.

AERO-DYNAMIC MODEL: STRIP THEORY WITH EMPIRICAL

DYNAMIC STALL MODELS

MODEL A (GORMONT, 1973): TWO PARAMETERS GIVEN
AS FUNCTION OF MACH NUMBER AND AIRFOIL THICKNESS
TO CHORD RATIO.

MODEL B (GANGWANI, 1983): ANALYTICAL FIT WITH 24
PARAMETERS

STRUCTURAL MODEL

FINITE ELEMENT STRUCTURAL MODEL

SOLUTION METHOD

INTEGRATION IN TIME

FINITE ELEMENT
STRUCTURALMODEL
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CALCULATEDNATURALFREQUENCIESANDMODESHAPES

The variation of the calculated first four natural frequencies with rotational
speed is shownin the diagram below. The COSMICNASTRANprogram with triangu-
lar elements (CTRIA2)was used for the analysis. The first two calculated nat-
ural frequencies agreed well with the measuredbench values whereas the third
and fourth showedabout 8 to 13 percent error. The frequencies show the effect
of centrifugal force, the effect being higher for first, second, and forth
modesthan for third mode. The first four modeshapes calculated with blade
setting angle, _, equal to 56.77°, using COSMIC-NASTRAN,showed that the
first modeis ist bending, the second modeis second bending, the third mode
is ist torsion modeand the fourth modeis third bending.
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STALLFLUTTERRESPONSEWITHDYNAMICSTALLMODELA

The operating condition considered for the analysis is 8500 rpm at zero free
stream velocity, that is static thrust condition. Four modesare used in the
analysis.

The figure on the right shows the variation of the first normal coordinate
with time. The response shows that the first normal coordinate, which is pre-
dominantly bending, is converging to a steady value for the three setting
angles considered (20, 25, and 30), thereby indicating stable oscillations.
The response of the second and fourth normal coordinates showedstable oscilla-
tions.

The response of the third normal coordinate, (shown on the left) which is pre-
dominantly torsion, shows a converging trend for $ = 20° . A limit cycle

oscillation is predicted at _ = 25 °, and a diverging oscillation at _ = 30 ° .

The calculated frequency of the limit cycle oscillation is 617 Hz. This is

qualitatively in agreement with the experimental data which showed a very high

response at B = 31.8 ° at a frequency of 600 Hz.

The analysis indicated that the stall flutter response for this propfan is

essentially a single degree of freedom response, since the modes are uncoupled.
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COMPARISONOFTHERESPONSEOFDYNAMICSTALLMODELSA ANDB

The response calculated from the dynamic stall models, model A and model B, is
comparednext. The rotational speed is 8500 and the setting angle is 20°.
Free stream velocity is zero. Both the models predicted the sametype of
response.
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STALLFLUTTERRESPONSEWITHDYNAMICSTALLMODELA

The operating condition considered for the analysis is 8500 rpm at zero free
stream velocity, that is static thrust condition. Four modesare used in the
analysis.

The figure on the right shows the variation of the first normal coordinate
with time. The response shows that the first normal coordinate, which is pre-
dominantly bending, is converging to a steady value for the three setting
angles considered (20, 25, and 30), thereby indicating stable oscillations.
The response of the second and fourth normal coordinates showedstable oscilla-
tions.

The response of the third normal coordinate, (shownon the left) which is pre-
dominantly torsion, shows a converging trend for _ = 20° . A limit cycle

oscillation is predicted at _ = 25 °, and a diverging oscillation at _ = 30 °

The calculated frequency of the limit cycle oscillation is 617 Hz. This is

qualitatively in agreement with the experimental data which showed a very high

response at B = 31.8 ° at a frequency of 600 Hz.

The analysis indicated that the stall flutter response for this propfan is

essentially a single degree of freedom response, since the modes are uncoupled.
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COMPARISONOFTHERESPONSEOFDYNAMICSTALLMODELSA ANDB

The response calculated from the dynamic stall models, model A and model B, is
comparednext. The rotational speed is 8500 and the setting angle is 20° .
Free stream velocity is zero. Both the models predicted the same type of

response.

AMPLITUDE

MODELA
MODELB

= 8500 rprn
Moo=O
_,=20 °

0,060 m

.040 m

.020 _,-

°t
- ,020

0

I I
20 40

RESPONSE OF THE FIRST NORMAL MODE

0.010

.005

0

- .005

- .010
0

I I
5 10

TIME IN (_t) RADIANS

RESPONSE OF THE THIRD NORMAL MODE

CD-88-32766

1-416



LOGARITHMICDECREMENTCOMPARISON

A study of the variation of logarithmic decrement with the blade pitch angle
as predicted by both the dynamic stall models showed that both models predict
the sametype of behavior. However, it is seen that model B predicts the stall
angle at a higher value than that predicted by model A.
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SUMMARY

The two empirical dynamic stall models employed in the stall flutter analysis
of the SR2propfan predicted the setting angle, mode, and the frequency as
that observed in the experiment. However, they failed to give any detail of
the flow at the dynamic stall condtions. A comparison of the response obtained
with three empirical models, not presented here, showedthat the response
depends on the empirical model used. A computational fluid dynamics approach
is planned to better understand the physics of the flow and the dynamic stall
phenomenonof propfan airfoils.

. ONLYQUALITATIVEPREDICTIONPOSSIBLEWITH EMPIRICAL MODELS

* PREDICTEDRESPONSESENSITIVETO EMPIRICAL MODEL

• RANGEOFVALIDITYOFEMPIRICALMODELSRESTRICTEDBYTHEEXPERIMENTALDATA

USEDTO DEVELOPTHE MODEL

• COMPUTATIONALFLUID DYNAMICS (CFD)APPROACHESARE REQUIREDTO PREDICT
PHYSICSOF FLOW AND DYNAMIC STALL PHENOMENONOF PROPFANAIRFOILS
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SSME SINGLE-CRYSTAL TURBINE BLADE DYNAMICS

Larry A. Moss*

Sverdrup Technology, Inc.

(Lewis Research Center Group)
NASA Lewis Research Center

ABSTRACT

There are many concerns surrounding the current directionally solidified (DS)

blades for the first-stage rotor of the space shuttle main engine (SSME)

high-pressure fuel turbopump (HPFTP). The blades' design life goal of 55

launches is not being met. The blade life has been shortened primarily by

fatigue cracking. One method of lengthening blade life is by substituting

single-crystal (SC) material. Past experience and current applications in com-

mercial and military aviation have shown the feasibility of using SC material.

Research was conducted at Lewis to predict the SC blade natural frequencies

and to find possible critical engine-order excitations. The effort was both

experimental and analytical. Experiments were used to validate the analytical

procedures. Bench experiments for SC blades at different crystal orientations

were conducted to determine their nonrotating natural frequencies and mode

shapes. These results were compared with the analytical results to confirm

the validity of the MSC/NASTRAN model.

The analytical effort examined the blades' dynamic characteristics with

respect to crystal orientations under typical operating conditions. Additional

investigations attempted to determine the crystal orientation that would most

effectively avoid critical engine-order excitations.

The conclusions developed from the analyses and tests were as follows:

I. The MSC/NASTRAN blade model successfully predicts the nonrotating

natural frequencies and mode shapes of the SC blades.

2. From a dynamics viewpoint the SC blade is an improvement over the

DS blade. No new engine-order interferences were introduced with the material

substitution.

3. The engine-order interferences of the SC blades can be minimized

by changing the crystal orientation.

*Work performed on-site at the Lewis Research Center for the Structural

Dynamics Branch.
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SSME HIGH-PRESSURE FUEL TURBOPUMP AND FIRST-STAGE TURBINE BLADE 

Sixty-three blades are mounted within the first-stage rotor of the SSME 
high-pressure fuel turbopump (HPFTP), as shown below. The mounted blades have 
a tip diameter of approximately 11 in. The blade consists of four sections; 
airfoil, platform, shank, and fir tree. The airfoil is highly cambered and 
the cross section is nearly constant along the slightly twisted blade span. 
The four-lobed fir tree section mates with the rotor. 

\ 
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MATERIALORIENTATIONOFSINGLE-CRYSTALBLADE

TheSCmaterial orientation is determined from Laue x-ray diffraction tech-

niques. Polar projections of the material's <iii> axis are developed. The

<iii> axis is referenced within the HPFTP blade according to its projected

rotation and tilt angles. The tilt angle is referenced according to the <iii>

axis projection on the X-Y plane of the blade. Positive rotation is measured

counterclockwise from the blade chord (leading edge to trailing edge) with

respect to the trailing edge, as shown below.

A cylindrical coordinate system was defined to specify the crystal orientation

in the blade analyses. The variation in the single-crystal orientation was

accommodated by supplying the appropriate direction cosines for the material

coordinate system.

\

POLAR PROJECTION, <111>

/ '_ ROTATION ANGL_,4_o__

TOP VIEW

CRYSTAL
GROWTH
DIRECTION,

<001>

LEADING
EDGE _"

TILT ANGLE,J

POLAR PROJECTION, <111>

7

_ TRAILING EDGE
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EXPERIMENTAL FREQUENCIES AND MODE SHAPES 

The blade attachment to the actual rotor was simulated by brazing the SC 
blades in a stainless steel mounting block as shown in the photograph. Each 
blade tested had a different crystal orientation. The tests were conducted at 
nonrotating, room-temperature conditions. Two experimental methods were used 
to identify the modal frequencies and to approximate the mode shapes of the SC 
blades. These methods involved a modal analyzer and interferometry. Experi- 
mental modal frequencies between 0 and 25 000 Hz determined from the modal ana- 
lyzer are shown in the graph. 
shown in a later figure. 

Mode shapes determined by interferometry are 
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MSC/NASTRANFINITEELEMENTMODEL

MSC/NASTRANwasused to perform the analysis (Joseph, 1981). Thefinite ele-
mentmodelshownbelowconsists of 1025solid eight-node hexahedronelements
with three degreesof freedomper node. Thebaseof the blade was fully con-
strained at the center of its uppermostfir tree attachmentlobe. The in-disk
span length wasdefined from this attachmentpoint to the blade tip. The
in-disk span length wasassumedto simulate the blade's span length under
actual rotor conditions.

A geometricnonlinear, large-displacement, static analysis wasused to deter-
mine the steady-state displacementsof the blade under centrifugal and thermal
loading. Thena normalmodesanalysis wasperformedon the geometryto
estimate the blade's natural frequencies andmodeshapes.

1575 NODES i

1025 ELEMENTS J
3 DOF/NODE ]
FULL BASE CONSTRAINT t

AIRFOIL
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PLATFORM

Y
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EXPERIMENTAL AND ANALYTICAL FREQUENCIES AND MODE SHAPES 

The experimental mode shapes and frequencies for one SC orientation blade are 
shown below. Even though these modes are not pure beam modes, they can be 
classified by using beam terminology. Mode 1 proved to be first bending in 
the flatwise direction. 
modes appear similar because of the blade's high camber. Data from the modal 
analyzer indicated mode 2 to be first torsion and mode 3 to be bending in the 
edgewise direction. Mode 4 was second bending. Mode 5 appeared to be the 
lyre mode, and mode 6 (not shown) was a tip mode. 

Modes 2 and 3 were difficult to distinguish. The two 

The analytical results from the same blade had excellent agreement with the 
interferometry results, shown below. The first five mode shapes duplicated the 
holograms. The modal frequencies were within 6 percent of the experimental 
results . 
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PARAMETRIC STUDY OF CRYSTAL ORIENTATION

A parametric study was performed on the SC blades to investigate the effect of

crystal orientation on the blades' natural frequencies. The figure graphi-

cally represents frequency as a function of rotation angle for three distinct

tilt angles. The effects of crystal orientations on the nonrotating first

blade mode are shown. The analyses of SC material were conducted at both non-

rotating room-temperature conditions and operating conditions.
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CAMPBELL DIAGRAM

Attempts were made to find an orientation that would eliminate or minimize the

critical engine-order excitations. The Campbell diagram below shows that

orienting the <lll> axis in the chordwise direction (90 ° tilt angle) reduced

the number of critical excitations when compared with the DS blade. This is a

beneficial effect of SC bladlng.
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SUMMARY

An MSC/NASTRAN finite element blade model successfully determined the natural

blade modes of single-crystal SSME turbopump blades. The SC blade dynamic

characteristics were further analyzed with respect to crystal orientation

under typical operating conditions. From a dynamics viewpoint the SC blade

was an improvement over the DS blade. No new engine-order interferences were

introduced with the material substitution. Additional studies proved that the

engine-order interferences can be minimized by changing the blades' crystal
orientation.

• SC BLADES'NATURAL MODES WERE PREDICTEDBY MSC/NASTRAN.

• NO NEW ENGINE-ORDERINTERFERENCESWERE INTRODUCEDWITH THE SC
MATERIAL SUBSTITUTION.

• BLADEINTERFERENCESWERE MINIMIZED BY OPTIMUM SC ORIENTATIONS.
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PARAFRASE RESTRUCTURING OF FORTRAN CODE FOR PARALLEL PROCESSING*

Atul Wadhwa

Sverdrup Technology, Inc.

(Lewis Research Center Group)
NASA Lewis Research Center

ABSTRACT

Because of the existence of large and cumbersome computer codes, there is a

need to find new and more efficient ways of performing structural computations.

Today, there is a heavy emphasis on emerging parallel processing methods. A

research effort is in progress at NASA Lewis to develop these methods to reduce

time and cost of program execution. Restructuring FORTRAN codes to take advan-

tage of parallel processing architecture is a part of this effort. An auto-

matic code restructurer, Parafrase, is used to meet th{s effort. Parafrase,

developed at the University of Illinois, transforms a FORTRAN code, subroutine

by subroutine, into a parallel code for a vector and/or shared-memory multi-

processor system. Parafrase is not a compiler; it transforms a code and pro-

vides information for a vector or concurrent process.

Parafrase uses a data dependency to reveal parallelism among instructions.

The data dependency test distinguishes between recurrences and statements that

can be directly vectorized or parallelized. A number of transformations are

required to build a data dependency graph.

The purpose of this presentation is to give an overview of the Parafrase

restructuring approach. Specifically, key aspects of the Parafrase program

(such as data dependence tests and machine-dependent transformations) will be
discussed.

*Work performed on-site at the Lewis Research Center for the Structural

Dynamics Branch.
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ELEMENTS OF PARALLEL PROCESSING

Some current computer software packages written in sequential codes (i.e.,

existing FORTRAN) have an undesirable turnaround time. Parallel processing

can minimize execution time by employing vector or concurrent events in the

computing process. The most common terms characterizing parallel processing

are vector and multiprocessing.

In vector processing a loop can be vectorized if each statement of the loop

can be executed for the entire index set of the loop before executing the next

statement and producing the same result. Multiprocessing refers to a system

with two or more processors. There are basically two types of multiprocessing

systems, a shared-memory system and a message-passing system. In the shared-

memory system, all the processors exchange information through the shared-

memory; while in the message-passing system, each processor has its own private

memory, and each can communicate and synchronize with others through some net-

work connection.

PARALLEL PROCESSING

PIPELINEPROCESSING MULTIPROCESSING

VECTOROPERATION SHARED- OR DISTRIBUTED-MEMORY
SYSTEM SYSTEM

CD-88-31937

VECTOR PROCESSING

SERIAL PROCESS

DO 10 I = 1,N

A(I) = a(I) + C(I)

e(I) = N'C(I)

10 CONTINUE

VECTOR PROCESS

A(I:N) = B(I:N) + C(I:N)

B(I:N) = N*C(I:N)

MULTIPROCESSING

MEMORYMODULES

INTERCONNECTINGNETWORK [

__
SHARED-MEMORYSYSTEM

INTERCONNECTINGNETWORK

MESSAGE-PASSINGSYSTEM
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PARAFRASE: AN AUTOMATIC CODE RESTRUCTURER

Parafrase is a restructuring tool that transforms a code, subroutine by sub-

routine, to take advantage of the parallelism available in a particular machine

(Kuck et al., 1984). Parafrase accepts an input program in FORTRAN, analyzes

its data dependency, then targets the detected parallelism on vector processor

(Single Execution Array (SEA)) or multiprocessor (Multiple Execution Scalar

(MES)). To determine if a loop can be parallelized, Parafrase builds a graph

of the data dependencies; the nodes represent program statements and the edges

represent data and control dependencies. Parafrase output is useful in analyz-

ing and evaluating parallel programs.

I FORTRAN I

CODE OPTIMIZATION
FOR

DATA DEPENDENCY TEST

MACHINE-DEPENDENT
OPTIMIZATION

SINGLE EXECUTION ARRAY MULTI EXECUTION SCALAR
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DATADEPENDENCYTEST

Detecting parallelism in a code requires data dependency testing, which reveals
information about data computation and use in the program. The data dependency
test determines whether or not a statement uses a value that was computedon
previous iteration. There are four types of dependencies: flow, antidepend-
ence, output dependence, and control dependence (Wolfe, 1982). These depend-
encies must be considered to detect recurrences.

$1: A(I) = B(I) + C(I)

$2: D(I)= A(I) + 5

$3: C(I + 1) = A(I) + B(I)

$4: IF D(I) > 10 THEN

$5: C(I + 1) = B(I) + 5

< FLOW DEPENDENCE

ANTIDEPENDENCE

OUTPUT DEPENDENCE

.----C

CONTROL DEPENDENCE

CD-88-31940
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TRANSFORMATIONFORDATADEPENDENCETEST

Parafrase uses a data dependency test to detect parallelism. A number of
machine-independent passes are required to build an effective data dependency
graph. Someof the important passes are as follows: DOloop normalization,
induction variable substitution, statement forward substitution, and dead-code
elimination.

A NUMBER OF TRANSFORMATIONS ARE REQUIRED TO BUILD A DATA DEPENDENCY
GRAPH. THESE TRANSFORMATIONS ARE MACHINE-INDEPENDENT TRANSFORMATIONS.
SOME OF THE IMPORTANT PASSES ARE

1. DO-LOOP NORMALIZATION

2. INDUCTION VARIABLE SUBSTITUTION

3. STATEMENT FORWARD SUBSTITUTION

4. DEAD-CODE ELIMINATION
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DOLOOPNORMALIZATION

The first of machine-independent passes is the DO-loop normalization (Polychro-
nopolus, 1986). A DOloop normalization transforms loops in such a way that
the induction variables of each loop increase by one, starting from one, to
someupper bound. Every old induction variable within the loop is replaced by
the new induction variable.

ORIGINAL CODE

DO 20 I = 1,100

NI=I

DO 10 J = 1,.100,3

NI=NI+2

X(J) = Y(J)*Z(NI)

Y(J + 1)= Y(J) + Z(NI)

X(J) = X(J) + Y(J)

10 CONT

20 CONT

REVISED CODE #1

DO 20 I = 1,100

NI=I

DO 10 J = 1,(100 + 2)/3

NI=NI+2

X(J*3 - 2) = Y(J*3 - 2)*Z(NI)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(NI)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - _2)

10 CONT

20 CONT

CD-88-31942

1-436



INDUCTIONVARIABLESUBSTITUTION

Induction variables are used inside loops to simplify subscripts to linear
functions of loop index variables. Detection and elimination of these vari-
ables reduce the number of operations. This transformation mayalso allow vec-
torization and parallelization of the loop, which would have been impossible
because of the dependencecycle (when two statements are closely coupled).
The discovery of induction variables is required since the data dependency
test needs the array subscripts to be in terms of the loop index variables.

REVISED CODE #1 REVISED CODE #2

DO 20 I = 1,100

NI=I

DO 10 J = 1,(100 + 2)/3

NI = NI + 2

X(J*3 -2) = Y(J_*3- 2)*Z(NI)

Y((J*3- 2)+ 1)= Y(3*,J- 2)+ z(m)

X(J*3- 2) = X(J*3- 2) + Y(J*3 - 2)

10 CONT

20 CONT

DO20 I = 1,100

NI=I

DO 10 J = 1,(100 + 2)/3

NI = I + 2*J

X(J*3 - 2) = Y(J*3 - 2)*Z(NI)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(NI)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - 2)

10 CONT

20 CONT
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STATEMENT FORWARD SUBSTITUTION

A statement forward substitution replaces integer expressions and constants

into subscripts. A scalar variable that is assigned a value, and is used in

subscript, is replaced by an expression. The statement forward substitution

eliminates the need for compiler or user temporaries. This transformation

provides more information for the data dependency test.

a

REVISED CODE #2

DO 20 I= 1,100

NI=I

DO 10 J = 1,(100 + 2)13

NI = I + 2*J

X(J*3 - 2) = Y(J*3 - 2)*Z(NI)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(NI)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - 2)

10 CONT

20 CONT

REVISED CODE #3

DO 20 I = 1,100

NI=I

DO 10 J = 1,(100 + 2)13

NI = I + 2*J

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - 2)

10 CONT

20 CONT
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DEAD-CODEELIMINATION

The dead-code elimination removes the statements whose output is never used.
This transformation reduces the numberof computations by eliminating unneces-
sary calculations. These transformations convert as manysubscripts as pos-
sible to a linear function of DOloop induction variables.

REVISED CODE #3

DO 20 1= 1,100

NI=I

DO 10 J = 1,(100 + 2)/3

NI = I + 2*J

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2_)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - 2)

i0 CONT

20 CONT

REVISED CODE #4

DO20 I = 1,100

DO 10 J = 1,(100 + 2)13

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) -- Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

10 CONT

20 CONT
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VECTORIZATION AND PARALLELIZATION

After building the data dependency graph, Parafrase starts restructuring a code

from serial to parallel form. If the data dependency relation prevents loop

vectorization or parallelization, then several machine-dependent transforma-

tions on the loop would be attempted. Loop interchanging and loop fission are

two of the important passes.

AFTER BUILDING A DATA DEPENDENCY GRAPH, PARAFRASE STARTS TO RESTRUCTURE
THE PROGRAM FROM SERIAL TO PARALLEL FORM. FOR THESE TRANSFORMATIONS A

NUMBER OF PASSES ARE TARGETED FOR A VECTOR (SINGLE EXECUTION ARRAY) OR
A MULTIPROCESSOR (MULTI-EXECUTION SCALAR) SYSTEM. TWO OF THESE PASSES ARE
AS FOLLOWS:

1. LOOP INTERCHANGING

2. LOOP FISSION

a) INSIDE-OUT LOOP DISTRIBUTION

b) DO-LOOP SPREADING
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LOOPINTERCHANGING

The first transformation is loop interchanging, a switching of inner and outer
loops. Loop interchanging maybe used to vectorize the inner loop or to paral-
lelize the outer loop. Loop interchanging is impossible when two or more
statements of the loop are dependent with "<" and ">" directions.

REVISED CODE #4 REVISED CODE #5

DO 20 I = 1,100

DO 10 J = 1,(100 + 2)13

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

10 CONT

20 CONT

DO 10 J = 1,102/3

DO 20 I = 1,100

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

20 CONT

10 CONT
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INSIDE-OUTLOOPDISTRIBUTION

Someloops can be divided into two or more loops, a process knownas loop fis-
sion. If the statement forward substitution does not remove the data depend-
ence cycle, then the loop fission maybe allowed to vectorize or parallelize a
part of the loop. Inside-out loop distribution is used for the case of the
vector operation machine (Allen and Kennedy, 1982), and Doall Loop Distribu-
tion is used for the multiprocess machine.

REVISED CODE #4

DO 20 I = 1,100

DO 10 J = 1,(100 + 2)/3

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - 2)

10 CONT

20 CONT

FINAL REVISED VECTOR CODE

DO 20 J = 1,100

DO 10 I= 1,102/3

X(J*3- 2)= Y(J*3- 2)*Z(I + 2*J)

10 CONT

DO 10 J = 1,102/3

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

20 CONT

10 CONT
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DOALLLOOPDISTRIBUTION

Doall loop distribution for a multiprocessor machine is a spreading of the
loop iteration across multiple processors. This transformation detects if
each loop iteration can be executed independently of the others.

REVISED CODE//5

DO 10 J = 1,102/3

DO 20 I = 1,100

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

10 CONT

20 CONT

FINAL REVISED CONCURRENT CODE

DOALL30 J = 1,102/3

DO 10 I = 1,100

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

10 CONT

30 CONT

DOALL 30 J = 1,102/3

DO 20 I = 1,100

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

20 CONT

30 CONT
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APPLICATION

Parafrase was used to restructure a rotor dynamics SOLVE subroutine, as well
as initialization INIT subroutine. The estimate of speedup values has been

computed by Parafrase. The restructured subroutines were executed on CFT, a

CRAY compiler, which detected more vector operations than the original code.

SPEEDUP COMPARED WITH NUMBER OF VECTOR PROCESSORS

-- 4 m

SPEEDUP
(Sp)

SEQUENTIAL 1

I I I I I I I
5 10 15 20 25 30 35 0
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(SOLVEROUTINE)

I m
m

VECTOR
SEQUENTIAL

I I I I I I I
5 10 15 20 25 30 35

NUMBEROF PROCESSORS(p)

ROTOR RUB DYNAMICS

(INIT ROUTINE)
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SPEEDUPOFA RESTRUCTUREDCODE

Kuck, et al., has applied Parafrase to EISPACKsubroutines, an eigenvalue/
eigenvector conjecture. After restructuring them, Parafrase calculated the
speedup values of subroutines.

SPEEDUPVALUESOBTAINEDBY KUCK'S
GROUP ON EISPAK

SUBROUTINENAME

ELMBAK
ELMHES
ETRAN
TRED1
TRED2
CBABK2
COMBAK
CORTB
CORTH
BANDV

NUMBEROF
PROCESSORS,

32

31.9
31.7
29.3
31.0
18.3
30.0
31.9
32.0
32.0
'Zl
vl.O

NUMBEROF
PROCESSORS,

256

242.0
33.6
71.3

235.0
36.5
53.5

248.5
254.0
252.0
98.0

NUMBEROF
PROCESSORS

2048

668.0
33.6
84.5

240.0
39.5
57.4

721.0
1250.0
501.0
98.0

.J

CD-88-31959

1-445



SUMMARY

Most existing code compilers take advantage of parallel processing, but don't

perform code restructuring. To achieve effective and efficient use of parallel

processing architecture, existing codes have to be restructured. Parafrase is

a FORTRAN code-restructuring tool. It is not a compiler. It produces informa-

tion for vector or shared-memory processing systems. Parafrase has been

applied to subroutines of the Rotor Rub Dynamics code. The restructured out-

put code has been executed on a CRAY compiler, which found more vector opera-

tions than the original code.

• TO ACHIEVE FAST EXECUTION RESTRUCTURING OF A SEQUENTIAL CODE IS NEEDED
FOR PARALLEL PROCESSING

• PARAFRASE CAN BE USED AS A RESTRUCTURING TOOL

• PARAFRASE OPTIMIZES A CODE FOR THE DATA DEPENDENCY TEST

• THE OUTPUT OF PARAFRASE CAN BE MODIFIED FOR VECTOR OR SHAREDMEMORY

ARCHITECTURE
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N88-23259

ANALYSIS OF ROTATING FLEXIBLE BLADES USING MSC/NASTRAN

Michael A, Ernst

Structural Dynamics Branch
NASA Lewis Research Center

ABSTRACT

This presentation gives an overview of the use of MSC/NASTRAN in the analysis

of rotating flexible blades (Lawrence, et al., 1987). The geometrically non-

linear analysis using NASTRAN Solution Sequence 64 is discussed along with the

determination of frequencies and mode shapes using Solution Sequence 63. Items

unique to rotating blade analyses, such as setting angle, centrifugal softening
effects, and hub flexibility, are emphasized.
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PROPFAN 

Because of the potential for very high propulsive efficiency at cruise speeds 
up to Mach 0.8, advanced forms of the propeller, called propfans, are being 
seriously considered for aircraft propulsion. To obtain maximum aerodynamic 
and acoustic performance, the trend in advanced high speed propeller design has 
been toward thin, swept blades of complicated structural design. A research 
program to establish the required technology for successful design of propfans 
is in progress at the NASA Lewis Research Center (Mikkelson, et al, 1984 and 
Strack, et al, 1981). 

CD-88-32814 
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STRUCTURALMODEL

Part of the AdvancedTurboprop Program effort is to understand and predict the
structural and dynamic behavior of these blades. The analysis of rotating
flexible blades, such as compressor and turboprop blades, often requires com-
plex procedures, including geometrically nonlinear (large-displacement) analy-
sis and frequency and modeshape determination. In performing these analyses,
and in modeling the complex geometries and material properties nf the blades,
finite element (F.E.) computer programs typically are used.

/-TIP MIDCHORD NODE
I

PITCH AXIS-..1

ROTATIONAL

AXIS
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OBJECTIVE

The objectives in performing such analyses include the prediction of steady-
state deflections and stresses under centrifugal forces, the generation of data
for constructing Campbell diagrams (plots of frequency with respect to rota-
tional speed), and the provision of modal data for use in flutter calculations.

. STRUCTURAL ANALYSIS OF TURBOPROP BLADES

• STEADYSTATE DISPLACEMENTS

• FREQUENCIES

• MODE SHAPES

CD-88-32816
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APPROACH

NASTRANis particularly well-suited to this purpose because of its ability to
compute steady-state displacements with its geometrically nonlinear analysis
capabilities, and to use those results for subsequent normal-modes analyses
(McCormick, 1983).

• FINITE ELEMENTANALYSIS USING NASTRAN

• STEADYSTATE DISPLACEMENT(SOLUTIONSEQUENCE64)

• EIGENSOLUTION(SOLUTIONSEQUENCE63)

CD- B8.32fl 17
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PROCEDURE

The computation of steady-state displacements, frequencies, and modeshapes of
flexible rotating blades requires that two NASTRANSolution sequencesbe run.
First, a large-displacement analysis is run using NASTRANSolution Sequence64.
This solution sequence performs a large-displacement analysis on the rotating
blade, computessteady-state displacements and stresses, and then stores the
blade final stiffness and mass matrices in a database. Following the large-
displacement analysis, the frequencies and modeshapes are computed using Solu-
tion Sequence63. This solution sequence computes the modal parameters from
the final massand stiffness matrices which were computedduring the Solu-
tion 64 run (Lawrence, et al, 1987).

i FINITE ELEMENT MESH I

CENTRIFUGAL SOFTENING
RPM

HUB FLEXIBILITY

BLADE SETTING ANGLE

SOLUTION 64

NONLINEAR
DISPLACEMENT

ANALYSIS
STEADY-STATE DISPLACEMENT

TRANSFER MASS AND STIFFNESS MATRICES

SOLUTION 63

J,
FREQUENCIES AND MODE SHAPES

CD-88-32818

1-454



TYPICAL NONLINEAR DEFLECTION CURVE FOR FLEXIBLE BLADE

Experience has shown that a large-displacement analysis is required because the

blades are relatively flexible and normally deflect considerably under centrif-

ugal forces (Lawrence and Kielb, 1984).

TIP MIDCHORD

DEFLECTION,

% SPAN

4

3

2

I

I
0 2500 5000 7500 10 000

BLADE ROTATIONAL SPEED, RPM

CD 88-32819

1-455



TYPICAL FLEXIBLE BLADE CAMPBELL DIAGRAM

A typical plot demonstrating the variation in natural frequencies with rota-

tional speed is shown.
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CENTRIFUGALSOFTENING

Whenperforming the large-displacement analysis, NASTRANwill automatically
consider the increment in load by updating the centrifugal loads based on the
deformed position of the blade. Although this approach will work for the
large-displacement analysis, the softening terms must still be inserted into
the stiffness matrix when a subsequent normal-modesanalysis is performed. If
the softening term -_2M is not included in the stiffness matrix that is
transferred from the Solution 64 to the Solution 63 analysis, the frequencies
will be computed incorrectly.

T
k

I
M

_U

ku=_2_'M

ku=S22(R+u)M

(k-_2M)u=_2RM
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EFFECTONNATURALFREQUENCIESDUETO CENTRIFUGALSOFTENING

To demonstrate the effect that the softening terms have on the natural frequen-
cies, a steel plate (6 in. by 2 in. by 0.i0 in.) was analyzed. In this figure,
two sets of frequencies are plotted; one for the plate lying in the plane of
rotation, and the other lying perpendicular to the plane of rotation. For the
latter case the softening terms have a significant effect on the plate's first
bending modefrequency. This is understandable since both the softening terms
and the bending modemotion are in the plane of rotation. For actual blades,
which have more complexity in their geometries than the steel plate, the cen-
trifugal softening will have someinfluence on all of the modes, and therefore,
will need to be included in all of the normal-modesanalyses.
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ALTERINGBLADESETTINGANGLE

To obtain the steady-state displacements, frequencies, and modeshapes when the
blade is rotating at a new speed, both the large-displacement and normal-modes
analysis need to be rerun. In addition to changing the blade rotational speed,
the blade setting angle generally has to be adjusted. To implement a change in
the setting angle, the entire blade can be rotated by defining the blade geome-
try in a new coordinate system via the CORD2Rcard.

INPUT DATA CARD CORD2R

(McCORMICK, 1983)

Z

L Uz

a i

C _' Ux

! IA

P
_ Uy

FORMAT

1 2 3 4 5 6 7 8 9 10
I I I I I I __ | _ I _ _

coRo2RIC,DI.,OI.,IA21_I_1I_21B_IA0Cl
CORD2RI 3 I 17 I-2.911.010.013.610.011.01 1231

+23 I 5.2 11.0 1-2.9 I

_Y
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HUB FLEXIBILITY

Ernst and Lawrence, 1987, have shown that base flexibility can have a signifi-

cant effect on steady-state displacements, frequencies, and mode shapes. The

blade chosen for their study was the 0.175 scale model of the GE-A7-B4, shown

below. A series of nonlinear static and dynamic analyses were conducted on the

blade for both rigid and flexible hub configurations. Results indicated that

hub flexibility is significant in the nonlinear static and dynamic analyses of

the GE-A7-B4, and that in order to insure accuracy in analyses of other blades,

hub flexibility should always be considered.

z

l Oz(B),Uz(3)

X _-'----,--'_Uy(2),Oy(5)"
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CD-88-32824

1-460



EFFECT OF HUB FLEXIBILITY ON LEADING-EDGE TIP DISPLACEMENTS

The figure below presents the magnitude of leading-edge tip displacements ver-

sus rotational speed for the 2-ft diameter GE-A7-B4 blade model, with both

rigid and flexible hubs. At low rpm, the flexible hub has little effect on the

static displacement. However, at greater than 4000 rpm, the influence of the
flexible hub becomes notable.
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EFFECT OF HUB FLEXIBILITY ON MODAL FREQUENCIES

The figure below presents the first bending, second bending, first torsional,

and third bending eigenvalues for the 2-ft diameter GE-A7-B4 blade model at

various rpm, in both rigid hub and flexible hub configurations. Although the

first bending and first torsional frequencies seem to be unaffected by the

flexible hub, there is an appreciable discrepancy between the flexible hub and

the rigid hub configurations relating to the second bending and third bending

frequencies. Also, the first edgewise mode was seen between the second bending

and first torsional modes of the flexible hub, whereas the first edgewise mode

was not seen for the rigid hub in lower frequency range.
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SUMMARY

NASTRAN is a valuable tool in the large-displacement and dynamic analyses of

Propfan blades. However, in order to insure accurate results, the user must

account for the following: an updated global stiffness matrix with the appro-

priate centrifugal softening terms before proceeding with the Solution 63

dynamic analysis; a proper blade setting angle for each of the respective rota-

tional speeds at which the blade is being analyzed; and the effects due to hub

flexibility.

NASTRAN IS AN EFFECTIVE TOOL FOR THE ANALYSIS OF PROPFAN BLADES.

CENTRIFUGAL SOFTENING TERMS ARE IMPORTANT IN THE STIFFNESS MATRIX OF

NASTRAN'S SOLUTION SEQUENCE 63.

PROPFAN BLADES NEED TO BE MODELED WITH THE APPROPRIATE BLADE

SETTING ANGLE.

IN ORDER TO INSURE ACCURACY IN THE ANALYSES OF PROPFAN BLADES, HUB

FLEXIBILITY SHOULD ALWAYS BE CONSIDERED.
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