1,513 research outputs found

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout

    Addressing Manufacturing Challenges in NoC-based ULSI Designs

    Full text link
    Hernández Luz, C. (2012). Addressing Manufacturing Challenges in NoC-based ULSI Designs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1669

    CoMeT: An Integrated Interval Thermal Simulation Toolchain for 2D, 2.5 D, and 3D Processor-Memory Systems

    Get PDF
    Processing cores and the accompanying main memory working in tandem enable the modern processors. Dissipating heat produced from computation, memory access remains a significant problem for processors. Therefore, processor thermal management continues to be an active research topic. Most thermal management research takes place using simulations, given the challenges of measuring temperature in real processors. Since core and memory are fabricated on separate packages in most existing processors, with the memory having lower power densities, thermal management research in processors has primarily focused on the cores. Memory bandwidth limitations associated with 2D processors lead to high-density 2.5D and 3D packaging technology. 2.5D packaging places cores and memory on the same package. 3D packaging technology takes it further by stacking layers of memory on the top of cores themselves. Such packagings significantly increase the power density, making processors prone to heating. Therefore, mitigating thermal issues in high-density processors (packaged with stacked memory) becomes an even more pressing problem. However, given the lack of thermal modeling for memories in existing interval thermal simulation toolchains, they are unsuitable for studying thermal management for high-density processors. To address this issue, we present CoMeT, the first integrated Core and Memory interval Thermal simulation toolchain. CoMeT comprehensively supports thermal simulation of high- and low-density processors corresponding to four different core-memory configurations - off-chip DDR memory, off-chip 3D memory, 2.5D, and 3D. CoMeT supports several novel features that facilitate overlying system research. Compared to an equivalent state-of-the-art core-only toolchain, CoMeT adds only a ~5% simulation-time overhead. The source code of CoMeT has been made open for public use under the MIT license.Comment: https://github.com/marg-tools/CoMe

    Energy-Efficient and Reliable Computing in Dark Silicon Era

    Get PDF
    Dark silicon denotes the phenomenon that, due to thermal and power constraints, the fraction of transistors that can operate at full frequency is decreasing in each technology generation. Moore’s law and Dennard scaling had been backed and coupled appropriately for five decades to bring commensurate exponential performance via single core and later muti-core design. However, recalculating Dennard scaling for recent small technology sizes shows that current ongoing multi-core growth is demanding exponential thermal design power to achieve linear performance increase. This process hits a power wall where raises the amount of dark or dim silicon on future multi/many-core chips more and more. Furthermore, from another perspective, by increasing the number of transistors on the area of a single chip and susceptibility to internal defects alongside aging phenomena, which also is exacerbated by high chip thermal density, monitoring and managing the chip reliability before and after its activation is becoming a necessity. The proposed approaches and experimental investigations in this thesis focus on two main tracks: 1) power awareness and 2) reliability awareness in dark silicon era, where later these two tracks will combine together. In the first track, the main goal is to increase the level of returns in terms of main important features in chip design, such as performance and throughput, while maximum power limit is honored. In fact, we show that by managing the power while having dark silicon, all the traditional benefits that could be achieved by proceeding in Moore’s law can be also achieved in the dark silicon era, however, with a lower amount. Via the track of reliability awareness in dark silicon era, we show that dark silicon can be considered as an opportunity to be exploited for different instances of benefits, namely life-time increase and online testing. We discuss how dark silicon can be exploited to guarantee the system lifetime to be above a certain target value and, furthermore, how dark silicon can be exploited to apply low cost non-intrusive online testing on the cores. After the demonstration of power and reliability awareness while having dark silicon, two approaches will be discussed as the case study where the power and reliability awareness are combined together. The first approach demonstrates how chip reliability can be used as a supplementary metric for power-reliability management. While the second approach provides a trade-off between workload performance and system reliability by simultaneously honoring the given power budget and target reliability

    Thermal Management for Dependable On-Chip Systems

    Get PDF
    This thesis addresses the dependability issues in on-chip systems from a thermal perspective. This includes an explanation and analysis of models to show the relationship between dependability and tempature. Additionally, multiple novel methods for on-chip thermal management are introduced aiming to optimize thermal properties. Analysis of the methods is done through simulation and through infrared thermal camera measurements

    Fine-grained or coarse-grained? Strategies for implementing parallel genetic algorithms in a programmable neuromorphic platform

    Get PDF
    Genetic Algorithm (GA) is one of popular heuristic-based optimization methods that attracts engineers and scientists for many years. With the advancement of multi- and many-core technologies, GAs are transformed into more powerful tools by parallelising their core processes. This paper describes a feasibility study of implementing parallel GAs (pGAs) on a SpiNNaker. As a many-core neuromorphic platform, SpiNNaker offers a possibility to scale-up a parallelised algorithm, such as a pGA, whilst offering low power consumption on its processing and communication overhead. However, due to its small packets distribution mechanism and constrained processing resources, parallelising processes of a GA in SpiNNaker is challenging. In this paper we show how a pGA can be implemented on SpiNNaker and analyse its performance. Due to inherently numerous parameter and classification of pGAs, we evaluate only the most common aspects of a pGA and use some artificial benchmarking test functions. The experiments produced some promising results that may lead to further developments of massively parallel GAs on SpiNNaker

    Learning-based run-time power and energy management of multi/many-core systems: current and future trends

    Get PDF
    Multi/Many-core systems are prevalent in several application domains targeting different scales of computing such as embedded and cloud computing. These systems are able to fulfil the everincreasing performance requirements by exploiting their parallel processing capabilities. However, effective power/energy management is required during system operations due to several reasons such as to increase the operational time of battery operated systems, reduce the energy cost of datacenters, and improve thermal efficiency and reliability. This article provides an extensive survey of learning-based run-time power/energy management approaches. The survey includes a taxonomy of the learning-based approaches. These approaches perform design-time and/or run-time power/energy management by employing some learning principles such as reinforcement learning. The survey also highlights the trends followed by the learning-based run-time power management approaches, their upcoming trends and open research challenges
    • …
    corecore