
Network of Excellence on High Performance and Embedded Architecture and Compilation

THE HIPEAC VISION
Marc Duranton, Sami Yehia, Bjorn De Sutter, Koen De Bosschere,

Albert Cohen, Babak Falsafi, Georgi Gaydadjiev,
Manolis Katevenis, Jonas Maebe, Harm Munk, Nacho Navarro,

Alex Ramirez, Olivier Temam, Mateo Valero

The HiPEAC vision 1

Contents 1

Executive Summary 3

Introduction 5

1. Trends and Challenges 7
 Societal Challenges for ICT 8
 Energy 8
 Transport and Mobility 8
 Health 9
 Aging population 9
 Environment 9
 Productivity 9
 Safety 9

 Application trends 10
 Future ICT trends 10
 Ubiquitous access 10
 Personalized services 10
 Delocalized computing and storage 10
 Massive data processing systems 11
 High-quality virtual reality 11
 Intelligent sensing 11
 High-performance real-time embedded computing 11
 Innovative example applications 12
 Domestic robot 12
 The car of the future 12
 Telepresence 12
 Aerospace and avionics 13
 Human++ 13
 Computational science 13
 Smart camera networks 14
 Realistic games 14

 Business trends 15
 Industry de-verticalization 15
 More than Moore 16
 Less is Moore 17
 Convergence 17
 The economics of collaboration 18
 Infrastructure as a service – cloud computing 18

 Technological constraints 20
 Hardware has become more fl exible than software 20
 Power defi nes performance 21
 Communication defi nes performance 21
 ASICs are becoming unaffordable 22
 Worst-case design for ASICs leads to bankruptcy 22
 Systems will rely on unreliable components 23
 Time is relevant 23
 Computing systems are continuously under attack 24
 Parallelism seems to be too complex for humans 24
 One day, Moore’s law will end 25

 Technical challenges 26
 Performance 27
 Performance/€, performance/Watt/€ 27
 Power and energy 28
 Managing system complexity 28
 Security 29
 Reliability 29
 Timing predictability 30

2. HiPEAC vision 31

 Keep it simple for humans 32
 Keep it simple for the software developer 32
 Keep it simple for the hardware developer 35
 Keep it simple for the system engineer 37

 Let the computer do the hard work 38
 Electronic Design Automation 39
 Automatic Design Space Exploration 40
 Effective automatic parallelization 40
 Self-adaptation 41

 If all above is not enough it is probably time
 to start thinking differently 41

 Impact on the applications 42
 Domestic robots 42
 The car of the future 43
 Telepresence 44
 Aerospace and avionics 44
 Human++ 45
 Computational science 45
 Smart camera networks 46
 Realistic games 46

3. Recommendations 47

 Strengths 48

 Weaknesses 48

 Opportunities 49

 Threats 50

 Research objectives 50
 Design space exploration 51
 Concurrent programming models and auto-parallelization 52
 Electronic Design Automation 52
 Design of optimized components 52
 Self-adaptive systems 53
 Virtualization 53

Conclusion 54

References 55

Contents

The HiPEAC vision2

Project Acronym: HiPEAC
Project full title: High Performance and Embedded Architecture and Compilation
Grant agreement no: ICT- 217068

DELIVERABLE 3.5

The Authors
Marc Duranton, NXP, The Netherlands
Sami Yehia, THALES Research & Technology, France
Bjorn De Sutter, Ghent University, Belgium
Koen De Bosschere, Ghent University, Belgium
Albert Cohen, INRIA Saclay, France
Babak Falsafi , EFPL, Switzerland
Georgi Gaydadjiev, TU Delft, The Netherlands
Manolis Katevenis, Forth, Greece
Jonas Maebe, Ghent University, Belgium
Harm Munk, NXP, The Netherlands
Nacho Navarro, UPC & BCS, Spain
Alex Ramirez, UPC & BCS, Spain,
Olivier Temam, INRIA Saclay, France
Mateo Valero, UPC & BCS, Spain

The HiPEAC vision 3

Executive Summary

Information & Communication Technology had a tremendous
impact on everyday life over the past decades. In the future
it will undoubtedly remain one of the major technologies for
taking on societal challenges shaping Europe, its values, and
its global competitiveness. The aim of the HiPEAC vision is to
establish a bridge between these societal challenges and major
paradigm shifts accompanied by technical challenges that the
computing industry needs to tackle.

The HiPEAC vision is based on seven grand challenges facing
our society in decades to come, as put forward by the Euro-
pean Commission: energy, transport and mobility, health, aging
population, environment, productivity, and safety. In order to
address these challenges, several technologies and applications
will have to be pushed beyond their existing state-of-the-art, or
even be reinvented completely.

Information Technology application trends and innovative ap-
plications evolve in parallel with societal challenges. The trends
include the seemingly unstoppable demand for ubiquitous
access, personalized services, and high-quality virtual reality.
At the same time, we observe the decoupling of computing
and storage together with an exponential growth of massive
data processing centers. In terms of applications domestic ro-
bots, autonomous transportation vehicles, computational sci-
ence, aerospace and avionics, smart camera networks, realistic
games, telepresence systems, and the Human++ are all exam-
ples of solutions that aim to address future societal challenges.

The development of these applications is infl uenced by busi-
ness trends such as cost pressure, restructuring of the industry,
service-oriented business models and offl oading the customer’s
hardware via “cloud computing”. Other important aspects are
the converging of functionality on devices of various sizes and
shapes, and collaborative “free” development.

However, several technological obstacles block the path the
computing industry has to take in order for these applications
to become drivers of the 21st century. The following statements
summarize major obstacles our industry needs to overcome:
1. Hardware has become more fl exible than software;
2. Power defi nes performance;
3. Communication defi nes performance;
4. Application-specifi c integrated circuits (ASIC) are becoming

unaffordable;
5. Worst-case design for ASICs leads to bankruptcy;
6. Systems will have to rely on unreliable components;
7. Time is relevant;
8. Computing systems are continuously under attack;
9. Parallelism seems to be too complex for humans;
10. One day, Moore’s law will end.

These technological roadblocks or constraints lead to technical
challenges that can be summarized as improvements in sev-
en key areas: performance, performance/€ and performance/
Watt/€, power and energy, managing system complexity, secu-
rity, reliability, and timing predictability.

The HiPEAC vision explains how the HiPEAC community can
work on these challenges.

The central creed of the HiPEAC vision is: keep it simple for hu-
mans, and let the computer do the hard work. This leads to a
world in which end users do not have to worry about platform
technicalities, where 90% of the programmers are only con-
cerned with programming productivity and can use the most
appropriate domain-specifi c languages for application develop-
ment, and where only 10% of the trained computer scientists
have to worry about effi ciency and performance.

Similarly, a majority of hardware developers will use a compo-
nent-based hardware design approach by composing function-
al blocks with standardized interfaces, some of them possibly
automatically generated. Such blocks include various proces-
sor and memory organizations, domain-specifi c accelerators
and fl exible low-cost interconnects. Analogous to the software
community, a small group of architects will design and optimize
these basic components. Systems built from these components
will be heterogeneous for performance and power effi ciency
reasons.

The HiPEAC vision4

Finally, system engineers will be able to depend on a virtual-
ization layer between software and physical hardware, helping
them to transparently combine legacy software with heteroge-
neous and quickly changing hardware.

In tandem with these human efforts, computers will do the
hard work of (i) exploring the design space in search of an ap-
propriate system architecture; of (ii) generating that system
architecture automatically with electronic design automation
tools; of (iii) automatically parallelizing the applications written
in domain-specifi c languages; and of (iv) dynamically adapting
the hardware and software to varying environmental conditions
such as temperature, varying workloads, and dynamic faults.
Systems will monitor their operation at run time in order to
repair and heal themselves where possible.

The HiPEAC vision also reminds us of the fact that one day
the past and current technology scaling trends will come to an
end, and when that day arrives we should be ready to con-
tinue advancing the computing systems domain in other ways.
Therefore our vision suggests the exploration of emerging al-
ternatives to traditional CMOS technology and novel system
architectures based on them.

Finally this document presents a Strengths, Weaknesses, Op-
portunities, and Threats (SWOT) analysis of computing systems
in Europe, and makes six recommendations for research objec-
tives that will help to bring to fruition the HiPEAC vision. These
are:
1. Design of optimized components;
2. Electronic Design Automation (EDA);
3. Design Space Exploration (DSE);
4. Concurrent programming models and auto-parallelization;
5. Self-adaptive systems;
6. Virtualization.

This vision document has been created by and for the HiPEAC
community. Furthermore it is based on traditional European
strengths in embedded systems. It offers a number of directions
in which European computing systems research can generate
impact on the computing systems industry in Europe.

Executive Summary

This HiPEAC vision is intended for all stakeholders in the comput-
ing industry, the European Commission, public authorities and all
research actors in academia and industry in the fi elds of embedded
systems, computer architecture and compilers.

The executive summary of this document targets decision makers
and summarizes the major factors and trends that shape evolu-
tions in the HiPEAC areas. It describes the societal and economic
challenges ahead that affect or can be affected by the computing
industry. It is essential for all decision makers to understand the
implications of the different paradigm shifts in the fi eld, including
multi-core processors, parallelism, increasing complexity, and mo-
bile convergence, and how they relate to the upcoming challenges
and future application constraints and requirements.

The more detailed trends and vision sections of this document tar-
get all industrials, academics and political actors, and in general
all readers interested in the subject. The goal of these sections is
to detail the challenges facing society and this particular sector
of industry, and to map these challenges to solutions in terms of
emerging key developments.

The last part of this document consists of recommendations for
realizing the objectives of the vision, both for the HiPEAC commu-
nity and for Europe. It therefore focuses on the gaps between the
current developments and the directions proposed by the vision
section. This part is mainly targeted at policy makers and the whole
HiPEAC community.

Target audience of this document

The HiPEAC vision 5

Introduction

European Information & Communication Technology (ICT) re-
search and development helped to solve many societal chal-
lenges by providing ever more computing power together
with new applications that exploited these increasing process-
ing capabilities. Numerous examples of the profound impact
the computing industry had can be seen in medical imaging,
chemical modeling for the development of new drugs, the
Internet, business process automation, mobile communica-
tion, computer-aided design, computer-aided manufacturing,
climate simulation and weather prediction, automotive safety,
and many more.

Advances in these areas were only possible because of the
exponential growth in computing performance and power ef-
fi ciency over the last decades. By comparison, if the aviation
industry had made the same progress between 1982 and 2008,
we would now fl y from Brussels to New York in less than a sec-
ond. Unfortunately, several evolutions are now threatening to
bring an end to the exponential growth path of the computer
industry.

Until the early 90s, the computer industry’s progress was mainly
driven by a steadily improving process technology. It enabled
signifi cant speed as well as area improvements and on-die tran-
sistor budget growth at manageable power and power density
costs. As a result, easily programmable uniprocessor architec-
tures and the associated sequential execution model utilized by
applications dominated the vast majority of the semiconductor
industry.

One notable exception was the embedded systems domain,
where the combination of multiple computing engines in con-
sumer electronic devices was already common practice. An-
other exception was the high-performance computing domain,
where large scale parallel processing made use of dedicated
and costly supercomputer centers. Of course, both of these
domains also enjoyed the advantages offered by an improving
process technology.

From the late 90s on, however, two signifi cant evolutions led
to a major paradigm shift in the computing industry. In the
fi rst place the relative improvements resulting from shrinking
process technology became gradually smaller, and fundamen-
tal laws of physics applicable to process technology started to
constrain the frequency increases and indicate that any future
increase in frequency or transistor density will necessarily result
in prohibitive power consumption and power density.

Secondly, consumer electronic markets, and therefore indus-
tries, started to converge. Digital watches and pagers evolved
into powerful personal digital assistants (PDA) and smart-
phones, and desktop and laptop computers were recently re-
duced to netbooks. The resulting devices demand ever more
computational capabilities at decreasing power budgets and
within stricter thermal constraints. In pursuit of the continued
exponential performance increase that the markets expect,
these confl icting trends led all major processor designers to em-
brace the traditionally embedded paradigm of multi-core de-
vices and special-purpose computational engines for general-
purpose computing platforms.

In the past decade, industrial developments were driven by mo-
bile applications such as cell phones and by connectivity to the
Internet. These were the applications that appealed the most to
the general public and fueled the growth of the ICT industry.
In the future, however, we expect to see less and less of such
“killer applications”: ICT will become as common in everyday
life as, e.g., electrical energy and kitchen appliances. Today,
most people already spend a lot of time with their PDAs, MP3-
players and smartphones. This will intensify competition on a
global scale and will drive a trend towards specialization. Even
though globalization is supposed to break down borders, we
expect to see clear demographic divisions, each with its own
area of expertise. Europe has to capitalize on its own strengths
in this global economy.

Today, Europe is facing many new challenges with respect to
energy consumption, mobility, health, aging population, en-
vironment, productivity, safety, and, more recently, the world-
wide economic crisis. The role of the ICT industry in addressing
these challenges is as crucial as it was ever before. The afore-
mentioned trends have, however, made this role much more
challenging to fulfi ll. The two major trends, multi-core parallel-
ism and mobile convergence, have pushed the semiconductor
industry to revise several previously established research areas
and priorities.

In particular, parallelism and power dissipation have to become
fi rst class citizens in the design fl ow and design tools, from the
application level down to the hardware. This in turn requires
that we completely rethink current design tools and methods,
especially in the light of the ever-increasing complexity of de-
vices. Additionally, these concerns now both span the entire
computing spectrum, from the mobile segment up to the data
centers.

The HiPEAC vision6

The challenges arising from this paradigm shift, along with
others such as reliability and the design space explosion, are
exacerbated by the increasing industrial and application re-
quirements. We nevertheless see them as opportunities for the
European industry, especially given our historical leadership in
the domains of embedded systems and low power electronics.
However, to take advantage of these opportunities in the de-
cade ahead, we require a vision to drive actions.

The HiPEAC Network of Excellence groups the leading Euro-
pean industrial enterprises and academic institutions in the
domain of high-performance and embedded architectures and
compilers. The network has 348 members affi liated to 74 lead-
ing European universities and 37 multinational and European
companies. This group of experts is therefore ideally positioned
to identify the challenges and to mobilize the efforts required
to tackle them.

The goal of this document is to discern the major societal chal-
lenges together with technical constraints as well as applica-
tion and business trends, in order to relate them to technical
challenges in computing systems. The vision then explains how
to tackle the technical challenges in a global framework. This
framework then leads to concrete recommendations on re-
search areas where more effort is required.

The HiPEAC community produced a fi rst technical roadmap docu-
ment in 2007. The current document complements it by a more
global integrated vision, taking into account societal challenges,
business trends, application trends and technological constraints.
This activity was kicked off during the HiPEAC 2008 conference in
January 2008.

It was followed by a survey that was sent to all HiPEAC clusters and
task forces. The clusters discussed the survey at their spring cluster
meeting, and produced their report by the end of June 2008.

The 13 HiPEAC clusters and task forces are:
• Multi-core architecture;
• Programming models and operating systems;
• Adaptive compilation;
• Interconnects;
• Reconfi gurable computing;
• Design methodology and tools;
• Binary translation and virtualization;
• Simulation platform;
• Compilation platform;
• Task force low power;
• Task force applications;
• Task force reliability and availability;
• Task force education and training.

During the ACACES 2008 summer school, the industrial partici-
pants and the teachers of the school held a brainstorming session
based on this report. This material was further supplemented by
the personal vision of a number of HiPEAC members. This resulted
in about 100 pages of raw material.

This material was analyzed, restructured, complemented and
shaped during several workshops and teleconferences, and
through numerous email exchanges and updates of the document
by members of the HiPEAC community, under the supervision of
an editorial board.

The ACACES Summer School 2009 gave the opportunity to the
industrial participants and the teachers to brainstorm about the
Strengths, Weaknesses, Opportunities and Threats (SWOT) that
Europe is facing in the domain of Information & Communication
Technology. The results were analyzed, complemented and includ-
ed in the recommendations.

Approach taken

Introduction

The HiPEAC vision 7

1. Trends & Challenges

The HiPEAC vision builds on several foundations in the form of challeng-
es, trends, and constraints. The fi rst foundation are the European grand
societal challenges.

Secondly, we look into application trends and some future applications
that can help in meeting these societal challenges.

Both of these foundations are situated outside the core competences of
the HiPEAC community, but they help in illustrating the larger context in
which HiPEAC operates.

The third foundation are general business trends in the computing sys-
tems industry and their consequences.

Finally, we consider technological evolutions and constraints that pose
challenges and limitations with which our community has to deal, leading
to a list of core technical challenges.

The HiPEAC vision8

Societal Challenges for ICT
The main purpose of Information and Communication Tech-
nologies (ICT) is to make the world a better place to live in for
everyone. For decades to come, we consider the following
seven essential societal grand challenges [ISTAG], which have
deep implications for ICT.

Energy
Our society is using more energy than ever before, with the
majority of our current energy sources being non-renewable.
Moreover, their use has a signifi cant and detrimental impact
on the environment. Solving the energy challenge depends
on a two-pronged approach. On the one hand, we need re-
search into safe, sustainable alternatives to our current en-
ergy sources. On the other hand, we also have to signifi cantly
reduce our overall energy consumption.

Currently computing is estimated to consume the same
amount of energy as civil aviation, which is about 2% of the
global energy consumption. This energy consumption corre-
sponds to a production of, for example, 60g CO2 per hour a
desktop computer is turned on. Along similar lines, a single
Google query is said to produce 7g of CO2. Making comput-
ing itself more energy-effi cient will therefore already contrib-
ute to the energy challenge.

Even though computers consume a lot of power, in partic-
ular in the data centers, some reports [Wehner2008] state
that they globally contribute to energy saving (up to 4x their
CO2 emission) due to on-line media, e-commerce, video
conferencing and teleworking. Teleworking reduces physical
transport, and therefore energy. Similarly, videoconferencing
reduces business trips. E-commerce also has a signifi cant im-
pact. Electronic forms and administrative documents reduce
the volume of postal mail.

An even greater indirect impact can be expected from en-
ergy optimizations in other aspects of life and economy, by
introducing electronic alternatives for other energy-consum-
ing physical activities, and by enabling the optimization of
energy-hungry processes of all sorts.

Transport and Mobility
Modern society critically depends on inexpensive, safe and
fast modes of transportation. In many industrialized areas of
the world mobility is a real nightmare: it is an environmental
hazard, the average speed is very low, and it kills thousands
of people every year.

ICT can help with solving the mobility challenge by optimizing
and controlling traffi c fl ows, by making them safer through
more active safety features, or by avoiding them altogether,
e.g., through the creation of virtual meeting places.

1. Trends and Challenges

The HiPEAC vision 9

Health
The use of advanced technologies is essential to further
improve health care. There is a great need for devices that
monitor the health and assist healing processes, for equip-
ment to effectively identify diseases in an early stage, and
for advanced research into new cures and improving existing
treatments.

ICT is indispensable in this process, e.g., by speeding up the
design of new drugs such as personalized drugs, by enabling
personal genome mapping, by controlling global pandemics
and by enabling economically viable health monitoring.

Aging population
Thanks to advances in health care, life expectancy has in-
creased considerably over the last century, and continues to
do so even today. As a result, the need for health care and
independent living support, such as household robots and
advanced home automation, is growing signifi cantly. ICT is at
the heart of progress in these areas.

Environment
The modern way of living, combined with the size of the
world population, creates an ecological footprint that is larger
than what the Earth can sustain. Since it is unlikely that the
fi rst world population will want to give up their living stan-
dard or that the world’s population will soon shrink spontane-
ously, we have to fi nd ways to reduce the ecological footprint
of humans.

ICT can assist in protecting the environment by controlling
and optimizing our impact, for example by using camera net-
works to monitor crops and to apply pesticides only on those
specifi c plants that need them, by continuously monitoring
environmental parameters, by optimizing the effi ciency of
engines, by reducing or optimizing the traffi c, by enabling
faster research into more environment-friendly plastics, and
in numerous other ways.

Productivity
In order to produce more goods at a lower price or in order to
produce them more quickly, economies have to continuously
improve the productivity of their industrial and non-industrial
processes. In doing so, they can also remain at the forefront
of global competition. ICT enables productivity enhance-
ments in all sectors of the economy and will continue to do
so in the foreseeable future.

Safety
Many safety-critical systems are or will be controlled by in-
formation systems. Creating such systems requires effective
dealing with failing components, with timing constraints and
with the correctness of functional specifi cations at design
time.

Advancements in ICT also enable society at large to protect
itself in an ever more connected world, by empowering indi-
viduals to better protect their privacy and personal life from
incursions, and by providing law enforcement with sophisti-
cated analysis and forensic means. The same applies to na-
tional defense.

1. Trends and Challenges

The HiPEAC vision10

Future ICT trends
We envision at least the following major trends in the use of
ICT during the following decade.

Ubiquitous access
Users want to have ubiquitous access to all of their data,
both personal and professional. For example, music, video,
blogs, documents, and messages must follow the users in
their home from room to room and on the move in the car,
at work, or when visiting friends. The way and user interface
through which this data is accessed may however differ de-
pending on the situation, and so may the devices used. These
include, but are not limited to, desktop computers, laptops,
netbooks, PDAs, cell phones, smart picture frames, Internet
radios, and connected TV sets. Since these different platforms
may be built using completely dissimilar technologies, such as
different processors, operating systems, or applications, it is
important to agree on high quality standards that will allow
for information interchange and synchronization between all
these devices.

Personalized services
We expect services to become more and more personalized,
both in private and professional life. Our preferences will be
taken into account when accessing remote web-based ser-
vices. Other examples are personalized traffi c advice, search
engines that take our preferences and geographical location
into account, music and video sources presenting media fi t-
ting our personal taste and in the format that best suits our
mobile video device, and usability adaptations for disabled
people.
Personalized video content distribution is another case of ever
increasing importance. Video streams can be adapted to the
viewer’s point of view, to his or her personal taste, to a cus-
tom angle in case of a multi-camera recording, to the viewer’s
location, to the image quality of the display, or to his or her
consumer profi le with respect to the advertisements shown
around a sports fi eld.

Delocalized computing and storage
As explained in the previous sections, users want to access
those personalized services everywhere and through a large
diversity of hardware clients. Users thus request services
that require access to both private and public data, but they
are not interested to know from where the data is fetched
and where the computations are performed. Quality of ex-
perience is the only criterion that counts. YouTube, Google
GMail, Flickr and Second Life are good examples of this evo-
lution. The user does not know the physical location of the
data and computations anymore, which may be data centers,
within access networks, client devices or still other locations.

Application trends
The continued high-speed evolution of ICT enables new ap-
plications and helps creating new business opportunities. One
of the key aspects of these future applications, from a user
perspective, is the way in which the user interacts with com-
puting systems. Essentially, the interfaces with the computers
become richer and much more implicit, in the sense that the
user is often not aware of the fact that he is interacting with
a computer. This is known as “the disappearing computer”
[Streit2005].
This second part of our vision lists a number of application
trends that we envision for the next decade. This list is by no
means exhaustive. Its main purpose is to establish a list of
technical application requirements for future applications. We
start with an outline of potential future ICT trends continued
with a list of innovative future applications.

1. Trends and Challenges

The HiPEAC vision 11

already started in Japan, for example in the form of software
that enables the creation of music videos with a virtual singer
[Vocaloid].
It is obvious that these techniques will also allow new ways of
communication, for example by reducing the need to travel
for physical meetings.

Intelligent sensing
Many unmanned systems, security systems, robots, and mon-
itoring devices are limited by their ability to sense, model or
analyze their surrounding environment. Adding more intel-
ligence to sensors and allowing embedded systems to au-
tonomously analyze and react to surrounding events in real
time, will enable building more services, comfort and secure
systems and will minimize human risks in situations requiring
dangerous manipulations in hard-to-access or hostile environ-
ments. As a result, we will see the emergence of “smart”
cities, buildings, and homes. In the future we also envision
advanced sensor networks or so-called “smart dusts”, where
clouds of tiny sensors will simply be dropped in locations of
interest to perform a variety of monitoring and sensing ap-
plications.
Less automated, but at least equally important, are tele-ma-
nipulators or robots that enable remote manual tasks. Com-
bined with high-quality haptic feedback, it opens the path to,
e.g., telesurgery.

High-performance real-time embedded computing
Embedded computing has long ago outgrown simple micro-
controllers and dedicated systems. Many embedded systems
already employ high-performance multi-core systems, mostly
in the consumer electronics domain (e.g. signal processing,
multimedia).
Future control applications will continue this trend not just
for typical consumer functionality, but also for safety and
security applications. They will do so, for example, by per-
forming complex analyses on data gathered with intelligent
sensors, and by initiating appropriate responses to dangerous
phenomena. Application domains for such systems are the
automotive domain, as well as the aerospace and avionics
domains. Future avionic systems will be equipped with so-
phisticated on-board radar systems, collision-detection, more
intelligent navigation and mission control systems, and intel-
ligent communication to better assist the pilots in diffi cult
fl ight situations, and thus to increase safety. Manufacturing
technology will also increasingly need high-end vision analysis
and high-speed robot control.
In all cases, high performance and real time requirements are
combined with requirements to low power, low temperature,
high dependability, and low cost.

Massive data processing systems
We envision that three important types of data processing
systems will coexist:
• Centralized cloud computing is a natural evolution of cur-

rent data centers and supercomputers. The computing
and storage resources belong to companies that sell these
services, or trade them for information, including private
information such as a profi le for advertisements. However,
mounting energy-related concerns require investigating
the use of “greener data centers”. One promising ap-
proach, in which Europe can lead, is using large numbers
of effi cient embedded cores, as these may provide better
performance/watt/ than traditional microprocessors [Asa-
novic2006, Katz2009].

• Peer-to-Peer (P2P) computing is a more distributed form
of cloud computing, where most of the computing ele-
ments and storage belongs to individuals as opposed to
large companies. Resources are located throughout a large
network so as to distribute the load as evenly as possible.
This model is very well suited to optimally exploit network
bandwidth, and can also be used for harvesting unused
computation cycles and storage space. It continues the de-
centralization trends initiated by the transition from cen-
tralized telephone switches to the Internet, but at a logical
rather than at a physical level. Some companies already use
this technique for TV distribution, in order to avoid over-
loading single servers and network connections.

• Personal computing follows from ICT trends that provide
end users with increasingly more storage capacity, net-
work bandwidth, and computation power in their personal
devices and at home. These come in the form of large,
networked hard drives, fi ber-to-the-home, and massively
parallel graphical processing units (GPUs). Hence many
people may simply use their “personal supercomputers”,
accessible from anywhere, rather than some form of cloud
computing. We might even envision a future where people
convert their excess photovoltaic or other power into com-
puting cycles instead of selling it to the power grid, and
then sell these cycles as computation resources, while us-
ing the dissipated power to heat their houses.

High-quality virtual reality
In the near future, graphic processors will be able to ren-
der photorealistic views, even of people, in real time
[CEATEC2008]. The latest generations of GPUs can already
render virtual actors with almost photorealistic quality in real
time, tracking the movements as captured by a webcam.
These avatars, together with virtual actors, will enable new
high-quality virtual reality (HQVR) applications, new ways to
create content, and new forms of expression. This trend has

1. Trends and Challenges

The HiPEAC vision12

Innovative example applications
The above trends manifest themselves in a number of con-
crete applications that clearly contribute to the societal chal-
lenges.

Domestic robot
An obvious application of the domestic robot would be tak-
ing care of routine housekeeping tasks. In case of elderly or
disabled people, the domestic robot could even enable them
to live independently, thereby increasing the availability of
assisted living. A humanoid form seems to be the most ap-
propriate for smooth integration into current houses without
drastic changes in their structure or organization. This poses
major challenges for sensors, processing and interfacing. It
also requires the robots to run several radically different types
of demanding computations, such as artifi cial intelligence
and video image processing, many of which need to be per-
formed in real time to guarantee safe operation.

Furthermore, the robots will have to continuously adapt to
changes in their operating environment and the tasks at
hand. For example, depending on the time of day and the
room in which they operate, the lighting will be different,
as will the tasks they have to carry out and potentially even
the users they have to assist. Furthermore, the reliability and
autonomy of the robots needs to be guaranteed, for example
when for some reason the power socket cannot be reached
or when there is a power outage. In that case, non-essential
tasks such as house cleaning can be disabled to save energy
for life-saving tasks that must remain available, such as ad-
ministering drugs or food, and calling for aid.
As such, domestic robots can clearly play an important role
in dealing with the aging population. The domestic robot is
currently a priority for the Japanese government [Bekey2008]
and we expect that a strong social demand for domestic ro-
bots will be a solid driver for computing systems research and
business in the future.

The car of the future
Cars can be equipped with autopilots. In order to drive safely
and quickly to their destination, cars can stay in touch with a
central traffi c control system that provides personalized traf-
fi c information for each car, such that, e.g., not all cars going
from A to B will take the same route in case of congestion.
Cars can also contact neighboring cars to negotiate local traf-
fi c decisions like who yields at a crossing. Autonomous vehi-
cles can also be used by children, disabled people, the elderly
or people that are otherwise not allowed to drive a car, or that
are not willing to drive themselves because, e.g., they want
to work/relax while traveling. Furthermore, autonomous ve-
hicles can be used unmanned to transport goods.

Advanced Driver Assistance Systems (ADAS) that combine
high-end sensors enable a new generation of active safety
systems that can dramatically improve the safety of pedes-
trians. ADAS systems require extreme computation perfor-
mance at low power and, at the same time, must adhere to
high safety standards. Stereovision, sensor fusion, reliable ob-
ject recognition and motion detection in complex scenes are
just a few of the most demanding applications that can help
to reduce the number of accidents. Similar requirements are
found in aerospace safety systems.
Clearly the automation and optimization of traffi c on our
roads can help in saving energy, reducing air pollution, in-
creasing productivity, and improving safety.

Telepresence
A killer application for HQVR could be realistic telepresence,
creating the impression of being physically present in another
place. This could be achieved with high-resolution displays,
possibly in 3D, with multi-view camera systems, and with low-
latency connections. For example, at each participating site of
a video-conference, a circle of participants around a meeting
table can consist of some real participants and of a set of
displays that show the remote participants from the point of
view of the in situ participants. This way, participant A would
see two participants B & C that participate from two different
physical locations but are seated adjacent to each other in the
virtual meeting as if they were facing each other when they
have a conversation. At the same time, participants B & C will
effectively face each other on their respective displays.
Such an application requires 3D modeling of all in situ par-
ticipants, 3D rendering of all remote participants at all sites,
and a communication and management infrastructure that
manages the virtual world: who is sitting where, what back-
ground images are transmitted, the amount of detail to be
transmitted, etc.
Typical applications of such systems are virtual meetings, ad-
vanced interactive simulators, virtual family gatherings, virtual
travel, gaming, telesurgery, etc. In the future, these applica-
tions might be combined with, e.g., automated translation
between different languages spoken during a telepresence
session.
While relatively simple instances of such systems are currently
designed and researched, many possible features and imple-
mentation options remain to be explored. For example, where
will most of the processing take place? In centralized serv-
ers feeding images to thin set-top boxes? Or will fat set-top
boxes at each participating site perform this task? What will
the related business model of such systems look like? Are the
participants displayed in a virtual environment or in a realistic
environment? What happens if a participant stands up and
walks out? Will he or she disappear in between two displays
of the virtual meeting? How will the systems handle multiple

1. Trends and Challenges

The HiPEAC vision 13

participants at the same physical site? With multiple multi-
view cameras? With multiple display circles?
Telepresence applications clearly contribute to overcome the
challenges of mobility, aging population, and productivity. By
saving on physical transportation of the participants, telepres-
ence can also reduce energy consumption [Cisco].

Aerospace and avionics
Aerospace and avionics systems will undergo a continued
evolution towards tighter integration of electronics to in-
crease safety and comfort. Future systems, both in the air and
on the ground, will be equipped with sophisticated on-board
radar systems, collision-detection, more intelligent navigation
and mission control systems, and intelligent communication
to better assist pilots in diffi cult fl ight situations in order to
increase safety. Highly parallel on-board real-time computer
systems will enable new classes of fl ight control systems that
further increase safety in critical situations.

While on the one hand this is a continuation of ongoing au-
tomation in the aerospace and avionics industry, on the other
hand it ushers in a new era in which many more decisions
will be taken while airborne instead of before takeoff. This
will lead to less strict a priori constraints, which will in turn
lead to more effi cient routes and procedures. As such, these
new applications will help with the challenges of safety, the
environment, and mobility.

Future space missions will be equipped with ever more com-
plex on-board experiments and high-precision measurement
equipment. Satellite-based systems will be getting more so-
phisticated sensors and communications systems, enabling
new application domains, such as better surveillance and mo-
bile terrestrial broadband communications.

To make this evolution economically viable, all devices that
are launched should behave very reliably over a long period
of time and should be light to limit launching costs. Achiev-
ing both goals will require new experimentation and applica-
tion devices to include more reliability-enhancing features. By
implementing those features in computing electronics them-
selves by means of adaptability and redundancy instead of
using mechanical shields, we can save weight and thereby
reduce launch costs. Furthermore, to increase the lifetime of
devices and to optimize their use during their lifetime, their
processing capabilities will become more fl exible, enabling
the uploading of new or updated applications.

Human++
A fascinating example of advanced intelligent sensing could
be the augmented human, or the Human++. More and more,
implants and body extensions will overcome limitations of the
human body. For example, complex micro-electronic implants
will restore senses for disabled people, as in case of cochlear
implants or bionic eyes. Other implants will control internal
body functions, for example by releasing hormones such as
insulin precisely when they are needed, or by detecting epi-
leptic seizures and releasing medicine in time to avoid the
most dangerous stages of a seizure.
Exoskeletons will enable people to work more productively,
for example by offering them fi ner gesture control. In order
to steer the actuators in such exoskeletons, electronics will be
connected to the human brain and nervous systems through
interfaces that require no conscious interaction by the user
[Velliste2008]. Augmented reality devices such as glasses and
hearing aids, or recording and analyzing devices [GC3], can
also help healthy people in their daily life.
Human++ can clearly help in meeting the challenges relat-
ing to health and the aging population. It can also help to
improve productivity.

Computational science
Computational science is also called the third mode of sci-
ence (in silico) [GC3]. It creates detailed mathematical models
that simulate physical phenomena such as chemical reactions,
seismic waves, nuclear reactions, and the behavior of biologi-
cal systems, people and even fi nancial markets. A common
characteristic of all these applications is that the precision is
mostly limited by the available computing power. More com-
puting power allows using more detailed models leading to
more precise results. E.g. in global climate modeling, results
are more precise if not only the atmosphere and the oceans,
but also the rainforests, deserts and cities are modeled. Com-
puting all these coupled models, however, requires an insa-
tiable amount of fl oating-point computing power.

Today’s supercomputers offer petafl op-scale sustained perfor-
mance but this is not yet suffi cient to run the most advanced
models in different disciplines, nor does it allow us to run the
algorithms at the desired granularity. The next challenge is to
develop exascale computing with exafl op-scale performance.
Exascale computing differs from the cloud in the sense that
exascale computing typically involves very large parallel ap-
plications, whereas the cloud typically refers to running many
(often smaller) applications in parallel. Both types of comput-
ing will have to be supported by appropriate software and
hardware, although large fractions of that software and hard-
ware should be common.

1. Trends and Challenges

The HiPEAC vision14

The impact of computational science is huge. It enables the
development of personalized drugs, limits the number of ex-
periments on animals, allows for accurate long term weather
predictions, helps us to better understand climate change,
and it might pave the way to anticipate health care based
on detailed DNA screening. Computers for computational
science have always been at the forefront of computing in
the sense that most high-performance techniques were fi rst
developed for supercomputers before they became available
in commodity computing (vector processing, high speed in-
terconnects, parallel and distributed processing).

Computational science defi nitely helps in solving the energy
and health challenges.

Smart camera networks
Right now, camera networks involving dozens or even hun-
dreds of cameras are being installed for improving security
and safety in public spaces and buildings and for monitor-
ing traffi c. Companies are already envisaging “general pur-
pose” home camera networks that could be used for a variety
of purposes such as elderly care, home automation and of
course security and safety. At the European level, there is a
strong push to introduce cameras and other sensors into cars,
for improving traffi c safety through assisted driving. Finally,
camera technology is introduced in a wide range of special-
ized applications, such as precision agriculture, where crops
are monitored to limit the use of pesticides.

In many of these emerging applications, it is impossible for
a human to inspect or interpret all available video streams.
Instead, in the future computers will analyze the streams and
present only relevant information to the operator or take ap-
propriate actions autonomously.

When camera networks grow to hundreds of cameras, the
classical paradigm of processing video streams on central-
ized dedicated servers will break down because the com-
munication and processing bandwidth does not scale suffi -
ciently with the size of the camera networks. Smart cameras
cooperating in so-called distributed camera systems are the
emerging solution to these problems. They analyze the video
data and send condensed meta-data streams to servers and
to each other, possibly along with a selection of useful video
streams. This solution scales better because each new camera
adds additional distributed processing power to the network.
However, several challenges remain, e.g., the development
of mechanisms for privacy protection, as well as the develop-
ment of hardware/software platforms that enable both pro-
ductive programming and power-effi cient execution.

The latter is particularly important for wireless cameras that
offer many advantages such as easier ad hoc installation.

Just like video processing in future cars and in future domestic
robots will have to adapt to changing circumstances, so will
the software that analyses video streams. An example is when
the operation mode of a camera network monitoring a large
crowd has to switch from statistical crowd motion detection
to following individual suspects.

Clearly smart camera networks can help with societal chal-
lenges, including safety, productivity and the environment.

Realistic games
According to the European Software Association [ESA], the
computer and video game industry’s revenue topped $22
billion in 2008. Gaming is a quickly growing industry and it
is currently a huge driver for innovations in computing sys-
tems. GPUs now belong to the most powerful computing
engines, already taking full advantage of the many-core road-
map. Gaming will defi nitely be one of the future “killer ap-
plications” for high-end multi-core processors, and we expect
gaming to remain one of the driving forces for our industry.

It can be expected that at least some games will bridge the
gap between virtual worlds and the real world. For example,
at some point a player might be playing in front of his PC
display, but at another point in the same game he might go
searching for other players in this hometown, continuing
some mode of the game on his PDA with Bluetooth and GPS
support. Such games will need to support a very wide range
of devices. This contrasts with existing games for which a
large fraction of the implementation effort is spent on imple-
menting device-specifi c features and optimizations.

Gaming does not directly address one of the societal chal-
lenges, but together with the entertainment industry it con-
tributes to the cultural evolution of our society. It also helps
people to enjoy their leisure time and improves their well-
being.

1. Trends and Challenges

The HiPEAC vision 15

Business trends
Current business trends, independent of the economic down-
turn, have a deep impact on ICT. The economic downturn only
speeds up those trends, deepening the short-term and middle-
term impact. This section describes the most important recent
business trends in ICT.

Industry de-verticalization
The semiconductor industry is slowly changing from a high-tech
into a commodity industry: chips and circuits are everywhere
and need to be low cost. This will have wide raning implica-
tions, and what happened to the steel industry could repeat
itself for the silicon industry. We observe industrial restructur-
ing or “de-verticalization”: instead of having companies con-
trolling the complete product value chain, the trend is to split
big conglomerates into smaller companies, each of them more
specialized in their competence domain. For example, big com-
panies are spinning off their semiconductor divisions, and the
semiconductor divisions spin off the IP creation, integration and
foundry, thus becoming “fabless” or “fablight”. Examples are
Siemens, Philips, and, in the past, Thomson.

Consolidation by merging and acquisition also allows compa-
nies to gain critical mass in their competence area, sometimes
leading to quasi monopolies. One of the reasons is cost pres-
sure: only the leader or the second in a market can really break
even.

A horizontal market implies more exchanges between compa-
nies and more cost pressure for each of them. An ecosystem
is required to come to a product. Sharing of IP, tools, software
and foundries are driving an economy of scale. Standardization
and cooperation on defi ning common interfaces is mandatory,
such that different pieces can be integrated smoothly when
building a fi nal product.

At least two side effects can result from this approach: higher
cost pressure offsets the advantages of the economy of scale,
and fi nal products are less optimized. Both side effects are
caused by the same fundamental reason: each design level in
a system is optimized to maximize benefi ts for all of its target
uses, but not for any particular end product. In other words,
all design levels are optimized locally rather than globally. In
an integrated approach, not applying a local optimization to
an isolated level or applying that optimization differently could
lead to a better global optimization. Furthermore, interoperabil-
ity and communication add extra layers, and therefore costs.
Those costs can be of a fi nancial nature, or they may come in
the form of lower performance or lower power effi ciency.

1. Trends and Challenges

The HiPEAC vision16

More than Moore
Moore’s Law has driven the semiconductor industry for de-
cades, resulting in extremely fast processors, huge memory
sizes and increasing communication bandwidth. During those
decades, ever more demanding applications exploited these
growing resources almost as soon as they arrived on the mar-
ket. These applications were developed to do so because the
International Technology Roadmap for Semiconductors (ITRS)
and Moore’s Law told them when those resources would be-
come available. So during the last decades, computing systems
were designed that refl ected the CMOS technology push re-
sulting from Moore’s Law, as well as the application pull from
ever more demanding applications. A major paradigm shift is
taking place now, however, both in the technology push and
in the application pull. The result of this paradigm shift has
been called the “More than Moore” era by many authors; see
for example [MtM].

From the point of view of the technology push, two observa-
tions have to be made. First of all, the cost levels for system-
on-chip development in advanced CMOS technology are go-
ing through the roof, for reasons described in more detail in
later sections. Secondly, the continuing miniaturization will
have to end Moore’s Law one day in the not so distant future.

From the application pull perspective, it has become clear that
consumers and society have by and large lost interest in new
generations of applications and devices that only feature more
computational power than their previous generation. For im-
proving the consumer experience, and for solving the societal
challenges, radically new devices are needed that are more
closely integrated in every-day life, and these require sensors,
mechatronics, analog- and mixed-signal electronics, ultra-
low-power or high-voltage technologies to be integrated with
CMOS technology.

Devices that embed multiple technologies are instances of the
“More than Moore” approach: combining generic CMOS-
technology with new technologies for building more innova-
tive, dedicated, smarter and customer-tailored solutions. This
new era of added-value systems will certainly trigger innova-
tion, including new methodologies for architecting, model-
ing, designing, characterizing, and collaborating between the
domains required for the various technologies combined in a
“More than Moore” system.

The “More Moore” race towards ever-larger numbers of tran-
sistors per chip and the “More than Moore” trend to inte-
grate multiple technologies on silicon are complementary to
achieve common goals such as application-driven solutions,
better system integration, cost optimization, and time to
market. Some companies will continue to follow the “More
Moore” approach, while others will shift towards the “More
than Moore” approach. This will drive industry into a direction
of more diversity and wider ecosystems.

1. Trends and Challenges

The Emerging IT platform (Courtesy J. Rabaey, UC Berkeley)

The HiPEAC vision 17

Convergence
Another business trend is convergence: TVs and set-top-boxes
share more and more functionality with PCs and even have ac-
cess to the Internet and Web 2.0 content. Telecom companies
are proposing IP access to their customers, and broadcast com-
panies are challenged by IP providers who deliver TV programs
over IP (ADSL). End users want to restrict the number of different
providers, and expect to have voice, data, TV and movies acces-
sible both on their wired and wireless devices.

When using devices compliant with Internet standards, TV view-
ers can now have full access to all of its contents and to cloud
computing. TV shows can be recorded on a Network Attached
Storage or NAS device, or be displayed from YouTube. The TV
and other devices such as mobile phones, can also access all the
user’s pictures and music.

The convergence mainly relies on common standards and pro-
tocols such as DLNA, Web standards, Web 2.0, and scripting
languages, and not so much on closed proprietary software. As
a result, the hardware platform on which applications run is be-
coming irrelevant: commonly used ISAs like x86 are not compul-
sory anymore, so other ISAs like ARM can also be used where
benefi cial. End users care more about their user experience, in-
cluding access to the web, email, their pictures and movies, etc.,
than they care about a platform supporting all these services.

Today, most desktop and laptop computers are based on the
x86 architecture, while mobile phones use the ARM architec-
ture, and high end game consoles use the PowerPC architec-
ture. The main factor preventing architectures other than x86
to be used for desktops and laptops is the operating system. If
Microsoft Windows were ported to different processor architec-
tures such as the ARM architecture, the market could change.
Other OSes, like Apple’s Mac OS X and Google’s Android, could
also challenge the desktop market, thanks to their support for
the ARM architecture in the mobile domains.

Legacy software for the desktop and laptop can be an important
roadblock for the adoption of different ISAs and OSes. Emula-
tion of another ISA is still costly in terms of performance, but has
now reached a level of practical usability. For example, Apple’s
Mac OS X running on the Intel architecture can execute native
PowerPC binaries with no signifi cant user hurdle.

Another convergence is optimally making use of the hardware’s
heterogeneous processing resources, for example by better
dividing tasks between the CPU and the GPU where the GPU
is the number cruncher, and the CPU serves as the orchestra-
tor. Common software development in OpenCL [OpenCL] and
GrandCentral [Grandcentral] tool fl ows will help to defi ne appli-
cations that can effi ciently use all the hardware resources avail-
able on the device, including multi-core CPUs and GPUs.

1. Trends and Challenges

Less is Moore
Together with the “More than Moore” trend, we observe
another trend fueled by Moore’s law: people no longer only
want more features and better performance, but are increas-
ingly interested in devices with the same performance level at
a lower price. This is particularly true for personal computers.
The sudden boom of netbooks, based on low cost and lower
performance processors such as Intel Atom or ARM proces-
sors, is an example of this new direction. People notice that
these devices offer enough performance for everyday tasks
such as editing documents, listening to music and watching
movies on the go.

The limited processor performance also reduces power con-
sumption and therefore improves mobility. For example, net-
books have up to 12h autonomy, much better than laptops.
Due to their lower price, they also open new markets, allow-
ing better access to ICT for developing countries as was tried
in the One Laptop Per Child project.

This trend also has an impact on software, as it now needs to
be optimized to run smoothly on devices with less hardware
resources. Contrary to previous versions, new operating sys-
tem releases seem to be less compute-intensive. This can be
seen in comparing the minimum requirements of Microsoft’s
Windows 7 to those of Microsoft’s Vista, and Apple’s Snow
Leopard OS also claims improvements in the OS internals
rather than new features. This trend extended the lifetime of
Windows XP, and gave rise to a wider introduction of Linux
on consumer notebooks.

This trend is also leading to computers specifi cally designed
to have extreme low power consumption. The appearance of
ARM-based netbooks on the market demonstrates that even
the once sacred ISA compatibility is sacrifi ced now. This cre-
ates excellent opportunities for Europe.

The HiPEAC vision18

The economics of collaboration
The Internet has boosted the appearance of new commu-
nities and collaborative work. People are contributing their
time and sharing knowledge and expertise with others like
never before. This phenomenon is increasingly visible in all
ICT domains:
• In the software fi eld, Linux and gcc are two prominent

examples. A state-of-the-art operating system and com-
piler have been built, and are offered under free licenses as
the result of tremendous work by hundreds of specialists.
The developer community groups a diverse crowd of inde-
pendent contributors, company employees, and students.
Apart from fi nancial advantages, contributors are motivat-
ed by factors such as reputation, social visibility, ethics, the
raw technical challenge, and the eventual technical advan-
tage.

• In terms of expert knowledge, Wikipedia has caused the
disappearance of Microsoft Encyclopaedia (Encarta). The
Web 2.0 evolution has brought about a boom in terms
of content creation by end users. Free, community-built
content-management software such as Drupal also plays
an important role in this development.

• Regarding social culture, YouTube and other portals make
available video and music offered by their authors under
so-called Copyleft licenses, which allow freedom to use
and redistribute contents.

All this community-generated content has grown thanks to
the use of novel licensing terms such as the GNU General
Public License (GPL) and the Creative-Commons Copyleft li-
cense. These licenses focus on the protection of the freedom
to use, modify and redistribute content rather than on limit-
ing their exploitation rights.

This has led to increased competition both in the software
and in the content generation markets. At the same time
it enables more reuse and stimulates investing resources in
opening niche markets that would otherwise be too unprofi t-
able to enter. Moreover, people want to share and exchange
their creations, resulting in more demand for interoperability.

User-generated content and independent publishers repre-
sent an increasingly important share of the media available on
the Internet, resulting in increased competition for publishing
houses. This trend also redefi nes the communication, storage
and computation balance over the network.

Infrastructure as a service –
cloud computing
Another business trend is the evolution towards providing ser-
vices instead of only hardware. The main fi nancial advantage
is to have continuous revenue, instead of “one shot” at the
sale of the product. After-sales revenue has also decreased
because nowadays most consumer devices are designed to
be discarded rather than repaired, and product lifetime has
also been reduced to continuously follow the latest fashion
trends for, e.g., mobile phones. The fact that most modern
consumer devices are not really repairable has a bad impact
on the environment, but it also fuels the recycling business.

The infrastructure service model requires the provider to have
a large ICT infrastructure that enables simultaneously serving
a large number of customers. If the service is offering process-
ing power, the large scale is also a way to reduce peak load.
This can be done by exploiting the fact that not all users will
require peak performance at the same time, if necessary by
providing dedicated billing policies that encourages users to
adapt their usage profi le so as to spread peak consumption.
It is then better to have a shared and common infrastructure
that is dimensioned for average load, as opposed to having
many unused resources at the customer side due to over-di-
mensioning to cope with sparse peak requests.

Processing power and storage services, such as for indexing
the web or administrating sales, are also increasingly offered
to end-users. Google fi rst provided storage with Gmail and
later on for applications, Amazon now provides computing
power, and there are many other recent examples. Together
with ubiquitous connectivity, this leads to “cloud comput-
ing”: data and resources from the end user will be stored
somewhere on the cloud of servers of a company providing
services.

When the cloud provides storage and processing power, the
end-user terminal device can be reduced to input, output and
connectivity functionality and can therefore become inex-
pensive. This model has already started with mobile phones,
where the cost for the user is primarily in the subscription and
not in the hardware of the terminal itself.

We even see this model being considered for high-end gam-
ing [AMD], where a set of servers generates high-end graph-
ics and delivers them to a rather low-cost terminal. This model
could also be an answer to unlicensed software use and mul-
timedia content: the game software will run on the server and
will never be downloaded to the client. For media, streaming-
only could deliver similar benefi ts.

1. Trends and Challenges

The HiPEAC vision 19

However, this model has several implications:
• The client should always be connected to the cloud’s servers.
• Compression techniques or high-bandwidth connections

are required (mainly for high-defi nition video and gaming)
• The customer should trust the provider if he/she stores pri-

vate data on the provider’s cloud.
• The cloud should be reliable 24/24, 7/7, 365/365.

As of 2009, companies like Google, Microsoft and Amazon
still face problems in this regard with, for example, web ser-
vices going down.

The necessity to be constantly connected accompanied by
privacy concerns may hamper the success of this approach:
“computing centres” were inevitable in the 80’s, but the per-
sonal computer restored the individual users’ freedom. These
two opposites consisting of resources centralized at the pro-
vider with a dumb client, versus a provider only providing the
pipes and other computing and storage resources belonging
to the customer, still have to be considered.

Therefore, companies are looking more and more into pro-
viding services. IBM is a good example for the professional
market, while Apple is an example for the consumer market
with its online store integrated in iTunes. Console providers
also add connectivity to their hardware devices to allow on-
line services. Connectivity also allows upgrading the device’s
software, thereby providing the user with a “new” device
without changing the hardware.

1. Trends and Challenges

The HiPEAC vision20

Technological constraints
This section gives an overview of the key technological evo-
lutions and limitations that we need to overcome in order to
realize the applications of the future in an economically feasible
manner.

Hardware has become more flex-
ible than software
This trend is also called the hardware-software paradox. It is a
consequence of the fact that the economic lifetime of software
is much longer than the economic lifetime of hardware. Rather
than looking for software to run on a given hardware platform,
end users are now looking for hardware that can run their exist-
ing and extremely complex software systems. Porting software
to a completely new hardware platform is often very expensive,
can lead to instability, and in some cases requires re-certifi cation
of the software.

At the same time, hardware is evolving at an unprecedented
pace. The number of cores and instruction set extensions in-
creases with every new generation, requiring changes in the
software to effectively exploit the new features. Only the latest
software is able to take full advantage of the latest hardware
improvements, while older software benefi ts much less from
them.

As a result, customers are increasingly less inclined to buy sys-
tems based on the latest processors, as these provide little or
no benefi t when running their existing applications. This is par-
ticularly true for the latest multi-core processors given the many
existing single-threaded applications.

1. Trends and Challenges

The HiPEAC vision 21

Power defines performance
Moore’s law and the associated doubling of the number of
transistors per IC every process generation, has until recently
always been accompanied by a corresponding reduction in
supply voltage, keeping the power envelope fairly stable. Un-
fortunately, voltage scaling is becoming less and less effective,
because further reducing the supply voltage leads to increased
leakage power, offsetting the savings in switching power. At
the same time, the ITRS projects that integration will continue
due to smaller feature sizes for at least another fi ve generations
[ITRS]. Therefore, while future chips are likely to feature many
cores, only a fraction of the chip will likely be active at any given
time to maintain a reasonable power envelope.

Since it will not be possible to use all cores at once, it makes
little sense to make them all identical. As a result, functional
and micro-architectural heterogeneity is becoming a promising
direction for both embedded and server chips to meet demands
in terms of power, performance, and reliability. This approach
enables taking full advantage of the additional transistors that
become available thanks to Moore’s Law.

Heterogeneous processors are already widely used in embed-
ded applications for power and chip real-estate reasons. In the
future, heterogeneity may be the only approach to mitigate
power-related challenges, even if real-estate no longer poses
any signifi cant problems. For example, Intel’s TCP/IP processor
is two orders of magnitude more power-effi cient when running
a TCP/IP stack at the same performance as a Pentium-based
processor [Borkar2004].

Energy effi ciency is a major issue for mobile terminals because
it determines autonomy, but it is also very important in other
domains: national telecom providers are typically the second
largest electricity consumers after railway operators, and the
CO

2 impact of data centers is increasing continuously.

Communication defines performance
Communication and computation go hand in hand. Commu-
nication — or, in other words, data transfers — is essential at
three levels: between a processor and its memory; among mul-
tiple processors in a system; and between processing systems
and input/output (I/O) devices. As transistors and processors be-
come smaller, the relative distance of communication increases,
and hence so does its relative cost. At the fi rst level, as the
number of megabytes of memory per processor increases, so
does memory access time measured in processor clock cycles.
Caches mitigate this problem to some extent, but at a com-
plexity cost. At the second level, with more processors on a
chip or in a system, traditional buses no longer suffi ce. Switches
and interconnection networks are needed, and they come at a
non-negligible cost. At the third level, chip and system I/O is a
primary component of system cost, both in terms of power dis-
sipation and of wiring area or system volume.

Because of the high cost of communication, locality becomes
essential. However, communication and locality management
are expensive in terms of programmer time. Programmers pre-
fer the shared memory programming models, whereby they
view all data as readily available and accessible by address at a
constant cost, independent of its current location. Real multi-
processor memory however has to be distributed for perfor-
mance reasons. Yet, we prefer not to burden programmers
with managing locality and transfers: in case of coherent caches
hardware is responsible for these tasks, and modern research
into run-time software enables implementing more sophisti-
cated locality algorithms than those available when relying on
hardware alone.

The system not only has to communicate with various mem-
ory hierarchies, but also has to exchange data with the out-
side world. This external communication also requires large
amounts of bandwidth for most applications. For example, a
stream of High Defi nition images at 120 fps leads to bandwidth
requirements of about 740 MB/s. This is more than transferring
the content of a CD in one second.

1. Trends and Challenges

The HiPEAC vision22

ASICs are becoming unaffordable
The non-recurring engineering (NRE) costs of complex appli-
cation-specifi c integrated circuits (ASICs) and Systems on a
Chip (SoCs) are rising dramatically. This development is primar-
ily caused by the exponential growth of requirements and use
cases they have to support, and the climbing costs of creat-
ing masks for new manufacturing technologies. The ESIA 2008
Competitiveness Report [ESIA2008] illustrates this trend. In ad-
dition to the cost of managing the complexity of the design
itself, verifi cation and validation are also becoming increasingly
expensive. Finally, the integration and software development
costs also have to be taken into account.

These costs have to be recuperated via income earned by sell-
ing chips. However, the price per unit cannot be raised due
to strong competition and pressure from customers. As a re-
sult, the development costs can only be recovered by selling
large quantities of these complex ASICs. ASICs are by defi ni-
tion, however, application-specifi c and are often tuned to the
requirements of a few big customers. Therefore, they cannot be
used “as is” for multiple applications or customers. This leads
to a deadlock: the market for these chips may not be large
enough to amortize the NRE costs. That is, of course, unless
newer technologies help to drastically reduce these costs.

Fortunately, every cloud has a silver lining. As it happens, the
multi-core roadmap is creating new opportunities for special-
ized accelerators. In the past, general-purpose processor speed
increased exponentially, so an ASIC would quickly lose its per-
formance advantage. Recently, however, this processor trend
has considerably slowed down. As a result, the performance
benefi ts offered by ASICs can now be amortized over a longer
period of time [Pfi ster2007].

Worst-case design for ASICs
leads to bankruptcy
Current chips for consumer applications are designed to func-
tion even in the worst-case scenario: at the lowest voltage,
the worst process technology corner and the highest tem-
perature. Chip binning, i.e., sorting chips after fabrication
according to capabilities, is usually not performed because
the testing costs outweigh the income from selling the chips.
Microprocessors are an exception to this rule, as the selling
price of these chips is so high that the binning cost is relatively
low. Nevertheless, even for microprocessors chip binning is
only applied for a few parameters, such as stable clock fre-
quency, and not yet for others, such as correctly functioning
cache size.

The practical upshot is that most consumer chips are over-
dimensioned. In most realistic cases typical use is far from the
worst case, and this gap is even widening with the use of very
dense technologies at 45 nm and below, because of process
variability. The increasing complexity of SoCs is also a factor
that widens the gap due to the composition of margins. If the
architecture and design methodologies do not change, we
will eventually end up with such large overheads that it will
become economically infeasible to produce any more chips.

New design methodologies and architectures will be required
to cope with this problem. For example, the “Razor” concept
[Ernst2004, Blaauw2008] is one solution. In this case errors
are allowed to occur from time to time when typical condi-
tions are not met, but they are detected and subsequently
corrected. Alternative methods are using active feedback and
quality of service assessments in the SoC. One very important
issue is that most of the techniques currently under develop-
ment decrease the system’s predictability, and thereby also
any hard real-time characteristics it may have had.

1. Trends and Challenges

The HiPEAC vision 23

Systems will rely on unreliable
components
The extremely small feature sizes mean that transistors and
wires are no longer going to behave in the way we are used
to. Projections for transistor characteristics in future fabrica-
tion processes indicate that scaling will lead to dramatically
reduced transistor and wire reliability. Radiation-induced soft
errors in latches and SRAMs, gate-oxide wear-out and elec-
tromigration with smaller feature sizes, device performance
variability due to limitations in lithography, and voltage and
temperature fl uctuation are all likely to affect future scaling.

An important consequence is that the variability of differ-
ent parameters such as speed and leakage is quite high and
changing over time. Sporadic errors, a.k.a. soft errors and ag-
ing problems, are consequently becoming so common that
new techniques need to be developed to handle them. This
development has only just started; in the near future, reli-
able systems will have to be designed using unreliable com-
ponents [Borkar2005].

For Europe, this evolution is an opportunity since it can ap-
ply its extensive knowledge of high-availability systems in the
commodity market.

Time is relevant
Many innovations in computing systems have only focused on
overall or peak performance, while ignoring any form of tim-
ing guarantees. In the best case, an abstract time notion was
used in the time complexity analysis of an algorithm. Com-
mon computing languages today do not even expose the
notion of time, and most hardware innovations have been
targeting best-effort performance. Examples are the intro-
duction of caches, various kinds of predictors, out-of-order
processing and lately multi-core processors [Lee2006]. Classic
optimizations in compilers also go for best-effort optimiza-
tions, not for on-time computations.

While this is not a problem for scientifi c applications, it pos-
es a major hurdle for systems that have to interact with the
physical world. Examples are embedded systems, consumer
systems such as video processing in TV sets, and games.

Embedded systems are generally interfacing with the real
world, where time is often a crucial factor, either to sample
the environment or to react to it as in, e.g., a car ABS sys-
tem. This is different from most computer systems that have
a keyboard and displays as interfaces, where users are used
to small periods of unresponsiveness. Nevertheless, even in
this latter situation, explicitly taking time into account will im-
prove the user experience.

The time factor is also of paramount importance for the “dis-
appearing computer”, a.k.a. ambient intelligence. In this case
the computer has to completely blend in with the physical
world, and therefore must fully operate in real time.

Even for scientifi c applications time starts to matter. Parallel
tasks should ideally have the same execution time in order to
minimize synchronization delays and maximize throughput.
Execution time estimates for a variety of cores and algorithms
are indispensible metrics for this optimization process.

Many other trends and constraints also directly affect this top-
ic. Ubiquitous parallelism challenges the design fl ows for a
whole class of systems where design-time predictability is the
default assumption. Process variations and transient errors are
interfering with real-time behavior.

Operating systems, run-time systems, compilation fl ows and
programming languages have been designed to harness the
complexity of concurrent reactive systems while preserving
real-time and safety guarantees, for example through the use
of synchronous languages. Current evolutions however re-
quire that predictability and performance be reconciled with
the architecture and hardware sides as well. In turn, this will
likely trigger cross-cutting changes in the design of software
stacks for predictable systems.

1. Trends and Challenges

The HiPEAC vision24

Computing systems are
continuously under attack
As is clear from the application trends, private data will be
stored on devices that are also used to access public data and
to run third-party software. This data includes truly private
information, like banking accounts, agendas, address books,
and health records, as well as personally licensed data. Such
data can be stored on personal or on third-party devices. An
example of the latter case could be a company that rents out
CPU time or storage space as part of a cloud. As such, the
private data can also include code with sensitive IP embed-
ded in it.

As a result, many types of sensitive data will be present si-
multaneously on multiple, worldwide interconnected devices.
The need for security and protection is therefore larger than
ever. Two broad categories of protection need to be provided.
First, private data stored or handled on a private device needs
to be protected from inspection, copying or tampering by
malicious third-party applications running on the same de-
vice. For such cases, the protection is commonly known as
protection against malicious code: the device is private and
hence trusted, but the third-party code running on it is not.

Secondly, private data stored or handled on third-party de-
vices needs to be protected from inspection, copying or tam-
pering by those third-party devices or by third-party software
running on them. This case is commonly referred to as the
malicious host case, in which a user entrusts his own private
code and data to an un-trusted third-party host environment.

Parallelism seems to be too com-
plex for humans
Unmanaged parallelism is the root of all evil in distributed
systems. Programming parallel applications with basic con-
currency primitives, be it on shared or distributed memory
models, breaks all rules of software composition. This leads
to non-determinism, debugging and testing nightmares, and
does not allow for architectural optimizations. Even special-
ists struggle to comprehend the behavior of parallel systems
with formal models and dynamic analysis tools. Alternative
recent concurrency primitives, such as transactional memory,
suffer from other problems such as immaturity and a lack of
scalability.

Hence, most programmers should not be required to directly
care about the details of parallelism, but should merely have
to specify the partitioning of their sub-problems into inde-
pendent tasks, along with their causal relations. Composable
formalisms and language abstractions already exist that offer
exactly this functionality. Some of these techniques are very
expressive; some lead to ineffi ciencies in mapping the exposed
concurrency to individual targets. There are huge challenges
and diffi cult tradeoffs to be explored in the design of such
abstractions, and in the associated architectures, compilation,
and run-time support to make them scalable and effi cient.

Effective software engineering practices cannot and should
not let the programmers worry about the details of parallel-
ism. They should only focus on correctness and programmer
productivity. Performance optimizations, including the exploi-
tation of concurrency on a parallel or distributed platform,
should be done by automatic tools. David Patterson talks in
this context about the productivity layer that is used by 90%
of the programmers and the effi ciency layer that is used by
10% of the programmers [Patterson2008].

Except for specifi c high-performance computing applications
— where a small fraction of the programmers are experts in
parallel computing and the applications are fairly small — and
for the design-space exploration of special-purpose systems,
the quest for effi ciency and scalability should never limit de-
sign productivity.

1. Trends and Challenges

The HiPEAC vision 25

1. Trends and Challenges

One day, Moore’s law will end
The dissipation bottleneck, which slowed the progress of clock
frequency scaling and shifted computing systems towards
multi-core processors, was a reminder that the smooth evolu-
tion of technology we have enjoyed for decades may not last
forever. Therefore, investigating alternative architectures, pro-
gramming models and technologies, stems from a very practi-
cal, if not industrial, concern to anticipate drastic changes in
order to be ready when needs be. For instance, research on
parallelizing compilers and parallel programming models has in-
tensifi ed only when multi-core processors became mainstream,
and it is not yet mature in spite of strong industry needs.

The original Von Neumann model has been a relatively nice fi t
for the technology evolutions of the past four decades. Howev-
er, it is hard to neglect the fact that this model is under growing
pressure. The memory bottleneck occurred fi rst, followed by
the instruction fl ow bottleneck (branches), and more recently
by the power dissipation bottleneck. As a result of the power
dissipation bottleneck, processors hit the frequency wall and ar-
chitects shifted their focus to multi-core architectures. The pro-
gramming bottleneck of multi-core architectures raises doubts
on our ability to take advantage of many-core architectures,
and it is not even clear that power dissipation limitations will
allow the usage of all transistors and thus all the cores avail-
able on a chip at the same time. More recently, the reliability
bottleneck involving defects and faults brings on a whole new
set of challenges. It is also unclear whether it will still be pos-
sible to precisely lay out billions of transistors, possibly forcing
chip designers to contemplate more regular structures or learn
to tolerate structural irregularities.

Architects have attempted to meet all these challenges and
preserve the appearance of a Von Neumann-like architecture.
However, the proposed solutions progressively erode perfor-
mance scalability up to the point that it may now make sense
to investigate alternative architectures and programming mod-
els better suited to cope with technology evolution, and which
intrinsically embrace all these properties/constraints rather than
attempt to hide them.

For instance probabilistic-based transistors that leverage rather
than attempt to hide the unreliability of ultra small ultra-low-
power devices, promise very signifi cant gains in power, but re-
quire to completely revisit even the algorithmic foundation of a
large range of tasks [Palem05].

Similarly, neuromorphic architectures, pioneered by Carver
Mead [Mead89], promise special-purpose architectures that are
intrinsically tolerant to defects and faults.

Even if alternative architectures and programming models can
cope with increasingly constrained CMOS or even silicon-based
circuits for some time, we know that there are physical limits to
the reduction of transistor size. Therefore, there is a need for in-
vestigating not only alternative architectures and programming
models, but also alternative technologies.

There is a vast range of possible alternative technologies. A
non-exhaustive list includes nanotubes, molecular computing,
spintronics, quantum computing, chemical computing, biologi-
cal cells or neurons for computing [Vas97]. A distinct possibil-
ity is that not one particular technology will prevail, but that
several will co-exist for the different tasks they are best suited
for. One can for instance envision a future in which quantum
computing is used for cryptography and for solving a few NP-
hard problems, while neuron-based architectures are used for
machine-learning based tasks.

Another possibility is that a particular technology will prevail,
but it would be extremely diffi cult to anticipate the winning
technology. As a result, it is diffi cult to start investigating novel
architectures and programming models capable to cope with
the properties of this novel technology. One way to proceed is
to abstract several common properties among a large range of
technologies. That enables shielding the architecture and pro-
gramming language researcher from the speculative nature of
technology evolution.

For instance, one can note that, whether future technologies
will be ultra-small CMOS transistors, nanotubes, or even indi-
vidual molecules or biological cells, these elementary compo-
nents all share several common properties: they come in great
numbers, they won’t be much faster or may even be way slow-
er than current transistors, long connections will be slower than
short ones, they may be hard to precisely lay out and connect,
and they may be faulty.

Once one starts going down that path, it is almost irresistible to
observe that nature has found, with the brain, a way to lever-
age billions of components with similar properties to successful-
ly implement many complex information processing tasks. Simi-
larly, organic computing stems form the self-organization and
autonomic properties of biological organisms [Schmeck2005].

The HiPEAC vision26

Technical challenges
In order to meet the requirements of future applications, the
identifi ed technical constraints mandate drastic changes in
computer architecture, compiler and run-time technology.

Architectures need to address the constraint that power de-
fi nes performance. The most power-effi cient architectures are a
combination of complex, simple and specialized cores, but the
optimal combinations and their processing elements and inter-
connect architectures still remain to be determined. Moreover,
this design space heavily depends on the target applications. To
achieve higher performance, system developers cannot rely on
technology scaling any longer and will have to exploit multi-core
architectures instead. However, as mentioned earlier, handling
concurrency only at the software layer is a very diffi cult task. To
facilitate this, adequate architectural and run-time system sup-
port still needs to be developed in addition to advanced tools.

Moreover, system-level solutions for optimizing power effi cien-
cy make it signifi cantly more diffi cult to meet the predictability
and composability requirements. These requirements are very
important for many existing and future multi-threaded applica-
tions, but the currently used worst-case execution time (WCET)
analyses do not deliver anymore in these situations. A new
generation of approaches, models and tools will have to be
designed to support and meet the requirements of multi-core
programming, predictability and composability. Again a holistic
hardware/software scenario is envisioned. More precisely, fu-
ture, power-aware architectures shall make the necessary in-
formation available and expose the right set of hooks to the
compiler and the run-time system. With these means at hand
and adherence to compile-time guidelines, novel run-time sys-
tems will be able to take the correct decisions in terms of power
optimization.

Just like we will need system-level solutions to obtain accept-
able power effi ciency, we will also need system-level solutions
to ensure reliable execution. Hardware should detect soft errors
and provide support for bypassing or re-execution. Because the
number of hard defects will be relatively high and will possibly
increase during the system’s lifetime, simply abandoning or re-
placing coarse-grain defective parts will not work anymore. In-
stead, more fl exible solutions are required that enable adapting
running software to evolving hardware properties.

With respect to productivity, which can be improved through
reuse and portability, the fact that software is now more expen-
sive than hardware requires software developers to stop target-
ing specifi c hardware. This is, however, very hard in practice
because existing compilers have a hard time taking full advan-
tage of recent architectures. To overcome this diffi culty, new
tool fl ows have to be designed that can automatically exploit
all available resources offered by any target hardware while still
allowing the programmer to code for a given platform, leading
to true portable performance.

Failure in pushing the state of the art in these areas may lead
to stagnation or decreasing market opportunities, even in the
short term. The seven challenges that we identifi ed are the fol-
lowing:
1. Performance;
2. Performance/€ and performance/Watt/€;
3. Power and energy;
4. Manageable system complexity;
5. Security;
6. Reliability;
7. Timing predictability.

1. Trends and Challenges

The HiPEAC vision 27

1. Trends and Challenges

Performance
Throughout the history of computing systems, applications
have been developed that demanded ever more performance,
and this will not change in the foreseeable future. All of the
earlier described applications require extremely large amounts
of processing power.

Until recently, the hardware side has provided us with constant
performance increases via successive generations of proces-
sor cores delivering ever higher single-thread performance in
accordance with Moore’s law. Thanks to increasing clock fre-
quencies, improved micro-architectural features, and improved
compiler techniques, successive generations of cores and their
compilers have always been able to keep up with the perfor-
mance requirements of applications. This happened even for
applications that were mostly single-threaded, albeit at the
expense of huge amounts of transistors and increasing power
consumption to deliver the required instruction-level and data-
level parallelism.

Hence, until recently meeting these requirements did not man-
date major changes with respect to software development. In-
stead, it suffi ced to wait for newer generations of processors
and compilers that provided programmers with the required
performance improvements on a silver platter. Unfortunately
this performance scaling trend has come to an end. Single-core
performance increases at a much slower pace now, and the use
of parallelism is the only way forward. Existing research into ef-
fi cient and high performance architectures and infrastructures,
which has (except for the last years) always relied on the old
scaling trend, has not yet provided us with appropriate solu-
tions for the performance problems we are currently facing.
In particular, hardware research has to be linked closer with
research in compilers and other tools to enable the actual har-
nessing of potential performance gains offered by improved
parallel hardware.

Performance/€,
performance/Watt/€
Due to the current downturn of economy, the constraint of
cost becomes more critical than ever. In tethered devices, per-
formance per Euro is key, as demonstrated by the emergence
of low-cost computers such as Atom-based or ARM-based
netbooks. For mobile devices, the criterion of choice is perfor-
mance per Watt per Euro: enough performance to run most
applications, but with a long autonomy and at a low price.

Due to the rising operational costs of energy and cooling, and
because chip packaging costs contribute signifi cantly to the
fi nal costs of hot-running chips, the criterion of performance
per Watt per Euro has also become key for cloud computing
clusters. As previously pointed out, more and more consumers
prefer the right price for reasonable performance, rather than
the best performance at all costs. Companies are also looking
to reduce their ICT infrastructure costs, potentially leading to
new business models based on renting out computing power
and storage space.

The HiPEAC vision28

Managing system complexity
Besides performance increases, we also see signifi cant increases
in system complexity. The reason is not only that systems are
composed of more and more hardware and software compo-
nents of various origins, but also that they are interconnected
with other systems. The impact of a local modifi cation can be
drastic at system level, and understanding all implications of a
modifi cation becomes increasingly hard for humans. We enter
an era where the number of parallel threads in a data center
will be in the millions. This matches the number of transistors
in a core.

Some of the major technical aspects of managing system com-
plexity relate to composability, portability, reuse and productivity.

Composability in this context refers to whether separately de-
signed and developed applications and components can be
combined into systems that operate, for all of the applications,
as expected. For example, in future cars, manufacturers would
like to combine many applications on as few processors as pos-
sible, while still keeping all the above requirements in mind. Ide-
ally, manufactures would like to be able to plug in a large variety
of services using a limited range of shared components. That
would enable them to differentiate their products more easily
between different service and luxury levels. Similar reasoning
holds for many other future applications. One of the main chal-
lenges related to composability is the fact that physical time is
not composable, and that the existing models to deal with paral-
lelism are mostly non-composable either. Recent techniques that
try to deal with this issue, such as transactional memory, are far
from being mature enough at this point in time.

Many concrete instances of the aforementioned applications are
niche products. In order to enable their development, design,
and manufacturing in economically feasible ways, it is key to
increase productivity during all these phases. Two requirements
to achieve higher productivity are portability and reuse. Enabling
the reuse of hardware and software components in multiple ap-
plications will open up much larger markets for the individual
components, as will the possibility to run software components
on diverse ranges of hardware components. The latter implies
that software should be portable and also composable.

Recent techniques to obtain higher productivity include the use
of bytecode and process virtual machines, such as Java bytecode
and Java Virtual Machines. Their use in heterogeneous systems
has been limited, however.

1. Trends and Challenges

Power and energy
All of the described future applications require high energy ef-
fi ciency, either because they run on batteries and require good
autonomy or because of energy, packaging and cooling costs,
or both. In cars, for example, processors are packaged in rub-
ber coatings through which it is diffi cult to dissipate much heat.
Moreover a number of digital processes in future cars will con-
tinue to run when the engine is turned off; hence they should
consume minimal energy. Body implants obviously cannot gen-
erate a lot of heat either, and require a longer autonomy. Do-
mestic robots also entail high autonomy, both to avoid day-time
recharging and to survive power outages.

In the past, energy effi ciency improvements were obtained
through shrinking transistor sizes, through coarse-grain run-
time system techniques such as dynamic frequency scaling and
the corresponding voltage scaling, and through fi ne-grained
circuit techniques such as clock and power gating. Further-
more, where no adequate programmable alternatives were
available, ASIC and ASIP designs were developed to obtain sat-
isfactory power effi ciency. Today, power scaling offers diminish-
ing returns, leakage power is increasing at a rapid pace, and the
NRE costs of ASICs and ASIPs are making them economically
unviable.

The HiPEAC vision 29

Security
All described future applications will make use of wireless com-
munications. Hence they all are possible targets of remote at-
tacks. In Human++ body implants and domestic robots, security
is critical to defend against direct attacks on a person’s well be-
ing and against privacy invasions. Privacy is also a concern in
telepresence applications, as is intrusion. It is not hard to imag-
ine how fraud can take place in a telepresence setting in which
virtual reality image synthesis recreates images of participants
rather than showing plain video images of the real persons that
are believed to participate.

In applications such as the autonomous vehicle and in many
wireless consumer electronics, security is also needed to protect
safety-critical and operation-critical parts of the systems from
user-controlled applications.

In these contexts and in the context of offl oaded computing,
protection against malicious host and malicious code attacks
still poses signifi cant challenges, in part because this protection
has to work in the context of other constraints and trends. For
example, it is currently still an open question what is the best
way to distribute applications. The distribution format should be
abstract enough to provide portable performance and it should
at the same time provide enough protection to defend against a
wide range of attacks. On the one hand performance portabil-
ity, i.e., the capability to effi ciently exploit very different types
of hardware without requiring target-dependent programming,
necessitates applications to be programmed on top of abstract
interfaces with high-level, easy-to-interpret semantics, and to be
distributed in the format of those interfaces. Protection, on the
other hand, requires the distributed code to contain a minimum
amount of information that may be exploited by attackers. Ad-
ditionally, all techniques developed and supported to meet these
requirements in the malicious host context can also be abused
by malicious code to remain undetected. As such, providing ad-
equate software and data protection is a daunting challenge.

Modern network security systems should adapt in real time and
provide the adequate level of security services on-demand. A
system should support plenty of network security perimeters
and their highly dynamic nature caused by actors such as mobile
users, network guests, or external partners with whom data is
shared.

Until today, the above security challenges have largely been met
by isolating processes from each other. By running the most criti-
cal processes on separate devices, they are effectively shielded
from less secure software running on other system. Given the
aforementioned challenges and trends, the principle of isolating
applications by isolating the devices on which they run cannot
be maintained. Instead, new solutions have to be developed.

1. Trends and Challenges

Reliability
To safeguard users, future applications have to be absolutely re-
liable. For example, safety features in cars, airplanes or rockets
need to behave as expected. The same holds for body implants
and clearly for, e.g., telesurgery as an application of telepres-
ence.

Several techniques are used today to guarantee that systems be-
have reliably. Hardware components have their design validated
before going into production, and they are tested when they
leave the factory and during deployment. This testing is per-
formed using built-in tests of various kinds. When specifi c com-
ponents fail, they or the total system are replaced by new ones.
Some components include reliability-improving features such
as larger noise margins, error-correcting/error-detecting codes,
and temperature monitoring combined with dynamic voltage
and frequency scaling. Most if not all of these features operate
within specifi c layers of a system design, such as the process
technology level, the circuit level or the OS level.

These solutions of detecting and replacing failing components
or systems, and of improving reliability within isolated layers,
works because the number of faults to be expected and the
number of parameters to be monitored at deployment time
are relatively low, and because fabrication and design costs as
well as and run-time overheads are affordable. Obviously, the
latter depends on the context: many existing reliability tech-
niques have only been applied in the context of mainframe su-
percomputers, because that is the only context in which they
make economic sense. However, as technology scales, variability
and degradation in transistor performance will make systems
less reliable. Building reliable systems using existing techniques
is hence becoming increasingly complex and costly; the price of
system power consumption and performance is getting higher,
while the costs for designing, manufacturing, and testing also
increase dramatically. Consequently, we need to develop new
hardware and software techniques for reliability if we want to
address and alleviate the above costs.

For safety-critical hardware and software verifi cation and diag-
nostic tools are used, but to a large extent verifi cation is still a
manual and extremely expensive process.

The HiPEAC vision30

Timing predictability
Most future applications require hard real-time behavior for at
least part of their operation. For domestic robots, cars, planes,
telesurgery, and Human++ implants, it is clearly necessary to im-
pose limitations on the delay between sensing and giving the
appropriate response.

Today, many tools exist for worst-case execution time analysis.
They are used to estimate upper bounds on the execution time
of rather simple software components. These methods currently
work rather well because they can deal with largely determin-
istic, small, usually single-threaded software components that
are isolated from each other. In future multi-threaded and multi-
core platforms, accurately predicting execution time becomes
an even harder challenge, both for real-time and for high-per-
formance computing systems.

In addition, execution time estimates are becoming increasingly
important outside the real-time domain too. For parallel ap-
plications, it is important that all processes running in parallel
have the same execution time in order to maximally exploit the
parallel resources of the platform, and limit the synchronization
overhead. Especially on heterogeneous multi-cores, being able
to accurately estimate execution times is crucial for performance
optimization.

1. Trends and Challenges

The HiPEAC vision 31

2. HiPEAC Vision

This chapter provides an overview of technical directions in which re-
search should move to enable the realization of the Future Applications
required for dealing with grand societal challenges, taking into account
the technological constraints listed above.

Our approach starts from the observation that the design space, and
hence the complexity, keeps expanding while the requirements become
increasingly stringent. This holds for both the hardware and the software
fi elds. Therefore, we are reaching a level that is nearly unmanageable for
humans. If we want to continue designing ever more complex systems,
we have to minimize the burden imposed on the humans involved in this
process, and delegate as much as possible to automated aids.

We have opted for a vision that can be summarized as keep it simple for
humans, and let the computer do the hard work.

Furthermore, we also have to think out of the box by inventing and
investigating new directions to start preparing for the post-Moore era by
considering non-traditional approaches such as radically different new
programming models, new technologies, More-than-Moore techniques
or non-CMOS based computational structures.

The HiPEAC vision32

Keep it simple for humans
To enable humans to drive the
process and to manage the
complexity, we primarily have
to increase the abstraction level
of the manipulated hardware
and software objects. Howev-
er, we propose domain-specifi c
objects rather than very generic
objects, because they are more
concrete and understandable
and also easier to instantiate and optimize by computers. In
order to do so, two main developments are required:

1. Simplify system complexity such that the systems become
understandable and manageable by human programmers,
developers, designers, and architects.

2. Use human intellect for those purposes it is best suited for,
including reasoning about the application, the algorithms,
and the system itself, and have it provide the most relevant
information to the compiler/system.

We now discuss three profi les of humans involved in the design
and maintenance of computing systems: the software develop-
ers, the hardware developers, and the system people, i.e., the
professionals building and maintaining the systems.

Keep it simple for the software
developer
One of the grand challenges facing IT according to Gartner is
to increase programmer productivity 100-fold [Gartner08]. It is
immediately clear that traditional parallel programming models
are not going to be very helpful in reaching that goal. Parallel
programming languages aim at increasing the performance of
code, not the productivity of the programmer. What is needed
are ways to raise the programming abstraction level dramati-
cally, such that the complexity becomes easier to manage.

Traditional parallel programming languages should be consid-
ered as the machine language of the multi-core computing sys-
tems. In this day and age, most programmers do not know the
assembly programming of the machine they are programming
thanks to the abstractions offered by high-level languages.
Similarly, explicit parallelism expressions should be invisible to
most programmers. Traditional parallel programming languag-
es therefore cannot be the ultimate solution for the multi-core
programming problem. At best they can be a stopgap solution
until we fi nd better ways to program multi-core systems.

The programming paradigm should provide programmers with
a high-level, simple but complete set of means to express the
applications they wish to write in a natural manner, possibly
also expressing their concurrency. The compiler and the run-
time system will then be able to schedule the code and to ex-
ploit every bit of the available parallelism based on the software
developer’s directives, the targeted architecture and the current
status of the underlying parallel hardware.

High-level domain-specifi c tools and languages will be key to
increasing programmer productivity. Existing examples are da-
tabases, MATLAB, scripting languages, and more. All these ap-
proaches enable raising the level of abstraction even further
when compared to one-language-to-rule-them-all-approaches.
The above languages are becoming increasingly popular, and
not only as scripting languages for web applications: more
and more scientists and engineers evaluate their ideas using
dynamic, (conceptually) interpreted languages such as Python,
Ruby and Perl instead of writing their applications in C/C++ and
compiling them.

Visual development environments, where applications are de-
fi ned and programmed mainly by composing elements with
mouse clicks and with very little textual input, are maturing
rapidly. Such environments allow even the casual developers to
create complex applications quite easily without writing long
textual programs.

In line with this vision, we believe that it is important to make a
clear distinction between end users, productivity programmers
and effi ciency programmers as shown in Figure 1.

2. HiPEAC Vision

The HiPEAC vision 33

End users should never be confronted with the technical details
of a platform. They are only interested in solving their everyday
problems by means of applications they buy in a software store.
For them it is irrelevant if the real execution platform consists of
a single-core or a multi-core processor. They are generally not
trained computer scientists.

Among the trained computer scientists, about 90% are devel-
oping applications using high-level tools and languages. They
are called productivity programmers. Time to market and cor-
rectness are their primary concerns.

We believe that the programming languages and tools will have
to have the following three characteristics.

1. Domain-specifi c languages and tools will be designed spe-
cifi cally for particular application domains, and will support
the programmer during the programming process. General-
purpose languages will always require more programmer ef-
fort than domain-specifi c languages to solve a problem in a
particular domain. Examples of such languages are SQL for
data storage and retrieval, and MATLAB for signal process-
ing algorithms.

2. Express concurrency rather than parallelism. Parallelism is
the result of exploiting concurrency on a parallel platform,
just like IPC (instructions per cycle) is the result of the exploi-
tation of ILP (instruction-level parallelism) on a given plat-
form. A concurrent algorithm can perfectly well execute on
a single core, but in that case will not exploit any parallelism.
The goal of a programming model should be to express con-
currency in a platform-independent way, but not to express
parallelism. The compiler and the run-time system should
then decide on how to exploit this concurrency in a parallel
execution.

 Automatic extraction of concurrency from legacy code is a
very diffi cult task that has led to many disappointing results.
Maybe dynamic analysis and speculative multi-threading

could still offer some promising solutions in this area. In the
predictable future, we expect that automatic parallelization
will not be able to extract many kinds of concurrency from
legacy code. We therefore conclude that future applications
should not be specifi ed anymore in hard-to-parallelize se-
quential programming languages such as C.

 It is generally considered more pragmatic to abandon the
hard-to-parallelize sequential languages and to let the paral-
lelizing compiler operate on a concurrent specifi cation. An
example of such a specifi cation is the expression of function-
al semantics using abstract data types and structures with
higher-level algorithms or skeletons, such as the popular
map-reduce model [Dean2004]. Datafl ow languages such
as Kahn process networks have the most classical form of
deterministic concurrent semantics. They are valued for this
property in major application domains such as safety-critical
embedded systems, signal processing and stream-comput-
ing, and coordination and scripting languages.

 Therefore, domain-specifi c languages or language exten-
sions need to be developed that allow the programmer to
express what he knows about the application in a declarative
way in order to provide a relevant description for the com-
piler and the run-time system that will map the application
description to the parallel hardware and manage it during
execution. Raising the abstraction level makes extracting se-
mantic information, such as concurrency information, from
the programs easier. This information will be passed on to
compilers, run-time systems and hardware in order to map
the program to parallel activities, select appropriate cores,
validate timing constraints, perform optimizations, etc.

 A very important characteristic of future programming lan-
guages is that they should be able to provide portable per-
formance, meaning that the same code should run effi cient-
ly on a large variety of computing platforms, while optimally
exploiting the available hardware resources. Obviously, the
type of concurrency must match the resources of the target
architecture with respect to connectivity and locality param-
eters; if this is not the case, the mapping will be sub-optimal.

 It is clear that an approach in which code is tuned to run
on a particular platform is by defi nition not portable and
therefore not viable in the long term, since the cost of port-
ing it to new hardware generations becomes prohibitively
high. It is important to realize that programming models do
not only have an entry cost in the form of the effort needed
to port an application to a particular programming model,
but also an exit cost that includes the cost to undo all the
changes, and to port the application to a different program-
ming model.

2. HiPEAC Vision

Figure 1: HiPEAC software vision

The HiPEAC vision34

 In this respect, future tool chains will support the program-
mer by giving feedback about the (lack of) concurrency that
it is able to extract from the software. This feedback will be
hardware-independent, but it might be structured along the
different types of concurrency at the instruction level, data
level, or thread level, and it might be limited to specifi c types
of corresponding parallelism support in which the program-
mer has expressed interest. This expression of interest can
be explicit but should not be so. For example, the simple
fact that compiler backends are being employed for specifi c
kinds of parallel hardware only, can inform the compiler
front-end of the types of concurrency it should try to extract
and give feedback on.

 Getting early feedback on available concurrency, rather than
on available parallelism, will allow a programmer to increase
his or her productivity. Since the feedback is not based on
actual executions of software on parallel hardware, it will be
easier to interpret by the programmer, and it will be avail-
able even before the software is fi nished, i.e., before a fully
functional program has been written. This is similar to the
feedback a programmer can get on-the-fl y from integrated
development environments such as Eclipse about syntactical
and semantic errors or in the code he or she is typing. That
feedback is currently limited to relatively simple things such
as the use of dangling pointers, the lack of necessary excep-
tion handlers, unused data objects, and uninitialized vari-
ables. In the HiPEAC vision, the amount of feedback should
be extended to also include information about the available
concurrency or the lack thereof.

3. The time parameter has to be present very early on in the
system defi nition, so as to allow for improved behavior. For
example, instead of optimizing for best effort, optimizing
for “on-time” could lead to lower power consumption, less
storage, etc. For real-time systems, having time as a fi rst
class citizen both in the design of the hardware and software
will ease verifi cation and validation.

 A practical approach in this case could be to develop new
computational models, in which execution time can be spec-
ifi ed as a constraint on the code. E.g., function foo should
be executed in 10 ms. It is then up to the run-time system
to use hardware resources such as parallel, previously idle,
accelerators in such a way that this constraint is met. Being
able to specify time seems to be an essential requirement to
realize portable performance on a variety of heterogeneous
multi-core systems.

Finally, the remaining 10% of trained computer scientists will
be concerned with performance, power, run-time manage-
ment, security, reliability and meeting the real-time require-
ments, i.e., with the challenges presented earlier on. They are
called the effi ciency programmers and they are at the heart of
the computing systems software community. They will develop
the compilers, tools and programming languages, and they can
only do so by working together intimately with computer archi-
tects and system developers. HiPEAC programmers represent
such a community and have to come up with effi cient parallel
and distributed programming languages.

Given the large number of sequential programming languag-
es, we believe that there are no reasons to assume that there
will eventually be one single parallel programming model or
language in the future. We rather believe that there is room
for several such languages: parallel languages, distributed lan-
guages, coordination languages, …

The approach of this section can help with addressing the con-
straints Parallelism seems to be too complex for humans and
hardware has become more fl exible than software.

2. HiPEAC Vision

The HiPEAC vision 35

Keep it simple for the hardware
developer
Just as it will be necessary to increase the abstraction level for
programmers in order to cope with the complexity of modern
information processing systems, hardware designers will also
have to cope with additional complexity. Future systems will
therefore be built from standard reusable components like
cores, memories, and interconnects as shown in Figure 2. This
component-based design methodology will be applicable at
different levels, from the gate level to the rack level.

Similar to high-level software design, most computing systems
will be designed using high-level design tools and visual devel-
opment environments. Computing systems will be built from
modules with well-defi ned interfaces, individually validated
and tested. Building complex systems is simplifi ed by selecting
hardware or software library components and letting the tools
take care of the mapping and potential optimizations. Standard
interfaces introduce overheads in the system design, in terms
of performance loss, or power/area increase. Therefore, before
fi nalizing a design, dedicated tools might break down the in-
terfaces between modules in order to improve performance
through global optimization, rather than only focusing on lo-
cal optimizations. For example, for certain application domains,
caches, and even fl oating-point units, can be shared by several
cores. The synthesis tools and design space exploration systems
could perform such optimizations. The applied transformations
will lead to the blurring of processors, which will be less and
less individually distinguishable. As such, full-system optimiza-
tion will overcome many of the ineffi ciencies that were intro-
duced by the component-based design methodologies.

The increasing non-recurring engineering (NRE) cost of Sys-
tems-on-Chip (SoC) requires that they be sold in larger quanti-
ties so this additional cost can be amortized. This can lead to
a decrease of the diversity of designed chips, while the market
still requires different kinds of SoCs, specialized for various ap-

plication domains. A technology called System in Package (SiP)
can help to solve this dilemma. In a SiP, each die uses the tech-
nology most suited to its functionality such as analog, digital,
and is interconnected either in two or in three dimensions. The
latter is called 3D stacking, allowing for higher density of inte-
gration than with standard chips.

Research challenges in this domain are reducing costs, and ex-
ploring new technology for interconnects, for example in the
form of a wireless Network-on-Chip (RF-NoC). The fl exible com-
position of various components while avoiding the high cost of
making new masks for IC fabrication is a potential answer to
ASICs becoming unaffordable. The ESIA 2008 competitiveness
report also explains this trend on page 42 (“D4 The increasing
importance of multi-layer, multi-chip solutions”) [ESIA2008].
Besides the potential use in SiPs, the module approach is al-
ready used in several systems at the chip level such as the Nota
proposal from Nokia [Nota] but not at the die level.

We again encounter an inverted pyramid, depicted in Figure 3.

End users represent the vast majority of the population coming
into contact with computing systems, and they do not need to
know anything about the complexity of the underlying system.
All they want (and need) is for the system to work. Next up
are the high-level designers, whose main concern is productiv-
ity, combining predefi ned blocks such as processors, IP blocks,
interconnects, chips, and boards. Many of these designers do
not know the architectural nor micro-architectural details of the
components they are integrating, and cannot spend their time
optimizing them for performance, power, or cost. Instead they
rely on automated tools to approximate these goals as much as
possible.

One particular case is embedded systems integration where real-
time guarantees are required for the total system design while
the critical and less critical components are sharing resources.
This type of “mixed criticality systems” needs new design veri-

2. HiPEAC Vision

Figure 2: Component-based hardware design at different levels

 Figure 3: HiPEAC hardware vision

The HiPEAC vision36

fi cation technologies that must adhere to rigid verifi cation and
certifi cation standards that apply to, e.g., transport or medical
systems.

Finally, we have a small set of people who make the productivity
layer possible by designing the different components, and by
developing the high-end tools that automatically do most of the
job. Architects and effi ciency designers are primarily concerned
with the defi nition and shaping of libraries of components, their
interconnection methods, their combination and placement,
and the overall system organization and effi cient interfacing
with the rest of the system. Architects can only do so while
working closely with developers of programming languages,
compilers, run-time systems, and automated tools, and require
assistance themselves from advanced software and tools. They
have to come up with effi cient, technology-aware processing
elements, memory organizations, interconnect infrastructures,
and novel I/O components.

Every one of these library components faces a number of unre-
solved challenges in the foreseeable future:

• General-purpose processor architecture: a range of such
cores will be needed, from simple ones for power and area
effi ciency to complex ones for sequential code performance
improvements required by Amdahl’s law, and from scalar to
wide vectors for varying amounts of data parallelism. Opti-
mization for power and reliability are whole new games, as
opposed to optimization for performance as seen in previous
decades.

• Domain-specifi c accelerators: a large spectrum of such cores
will be required, including vector, graphics, digital signal
processing (DSP), encryption, networking, pattern matching,
and other accelerators. Each domain can benefi t from its own
hardware optimizations, with power, performance, and reli-
ability or combinations thereof being primary concerns. The
extensive use of accelerators automatically leads to heteroge-
neous domain-specifi c architectures.

• Memory architecture: as discussed earlier, communication,
including processor-memory communication, is expensive.
Consequently, a central concern in all parallel systems is im-
proving locality, through all means possible. Caches are one
method to do so, but there is still signifi cant room for im-
provements in coherence, placement, update, and prefetch-
ing protocols and techniques. Directly addressable local
memory, so-called scratchpad memory, with explicit commu-
nication through remote DMA control is another method for
managing locality. Memory consistency, synchronization and
timing support are other critical dimensions where hardware
support can improve performance.

• Component interconnection: the more components there are
in a system, the higher the importance of the interconnect
characteristics. Chip-to-chip connections already account for
a major portion of system cost in terms of pins, wires, board
area, and power consumption to drive them. Intra-chip com-
munication is quickly turning to Networks-on-Chip (NoC) for
solutions; however, NoCs still require large areas and a lot
of power, while exhibiting defi ciencies in quality of service,
latency, guarantees, etc. Glueless interfacing between cores,
memories and interconnects is another open problem.

• Reconfi gurable architectures: Reconfi gurable multi-core ar-
chitectures can help with solving the problem of hardware
fl exibility without excessive NRE and process mask costs; in
addition, they can be very useful for reliability in the presence
of dynamic faults. The current state of the art barely scratches
the surface of the potential offered by such fl exible systems.

Future systems will be heterogeneous. Paradoxically, the ‘keep it
simple for humans’ vision naturally leads to heterogeneous sys-
tems. Component-based hardware design naturally invites the
hardware designer to design heterogeneous systems. On top of
this designed heterogeneity, increasing process variability will in-
troduce additional heterogeneity in the chip fabrication process.
As a result of this variability, fabricated systems and components
will operate at different performance/power points according to
probabilistic laws, including even some completely dysfunctional
components. Furthermore, the appearance of multiple domain-
specifi c languages will lead to applications that are built from
differently expressed software components. At fi rst sight, this
increase in complexity might look like a step backward, but this
is not necessarily the case.

As power and power effi ciency become the issue in designing
future systems, new computational concepts start to emerge.
It is well known that using special-purpose hardware to solve
domain-specifi c problems can be much more effi cient. Due to
the increasing NRE costs, it is desirable to design systems for
domains of applications rather than for single applications. The
relative low volume of ASICs and the high cost to prototype and
validate such systems suggests designing custom processors or
accelerators that address specifi c domain requirements rather
than specifi c requirements of individual applications. Typically,
the tradeoff between the degree of programmability and the
effi ciency of the accelerators is at the heart of this challenge,
with general-purpose processors lying at one end of the spec-
trum, and non-programmable accelerators at the other. GPUs
are in the middle of the spectrum, providing an order of mag-
nitude better performance than general-purpose hardware for
the same use while still being useful for solving non-graphical
computation tasks when they fi t the provided hardware [Cuda,
OpenCL].

2. HiPEAC Vision

The HiPEAC vision 37

Integrating different types of architectures on the same die
seems to be a very attractive way for achieving signifi cantly bet-
ter performance for a given power budget, assuming we under-
stand the class of applications that may run on that die. To cope
with Amdahl’s law, at least two types of cores are required: cores
for fast sequential processing that cannot be parallelized, and
cores optimized for exploiting parallelism. Generic coprocessors,
helping with memory management, task dispatching and acti-
vation, data access, and system control can signifi cantly improve
global performance. Generic tasks, such as data decoding/en-
coding, can be mapped onto more specialized cores, increas-
ing the effi ciency without compromising the general-purpose
nature of the system. All of this comes to no surprise: nature has
discovered millions of years ago that heterogeneity leads to a
more stable and energy-effi cient ecosystem.

Keep it simple for the system
engineer
Given the growing heterogeneity of multi-core processors both
in the number of cores and in the number of ISAs, it is clear that
the statically optimized binary executable will have a hard time
providing optimal performance on a wide variety of systems.
Instead, run-time systems will need to adapt software to the
available number of cores and accelerators, to failed compo-
nents and other applications competing for resources, etc. Since
such adaptations are done at run time they must be done ef-
fi ciently, preferably with assistance from the compiler.

In order to keep all this complexity manageable for the software
developers and system people, and to give hardware designers
the freedom to continue innovating in diverging ways, we need
an isolation layer between the software and hardware, i.e., a
virtualization layer as shown in Figure 4. Depending on whether
this virtualization layer sits above or below the operating system,
we talk about process virtualization or system virtualization, re-
spectively. In this vision, the use of binary executables as distribu-
tion format for applications should be abandoned and replaced
with an intermediate code enriched with meta-data. This code
format should be fl exible enough to allow for:
1. effi cient translation into a number of physical ISAs;
2. effi cient exploitation of parallelism;
3. easy extensibility with extra features.
Virtualization serves two purposes: on the one hand, the vir-
tualization layer can be seen as a separate platform to develop
code for. A well-designed virtual platform will take advantage of
the features of the underlying hardware/software, even if these
features change throughout the execution or were unknown
at the time an application was developed. On the other hand,
virtualization can be used to emulate one platform on top of an-
other. This ensures compatibility for legacy applications, and can
also add extra functionality such as resource isolation by running
different applications inside isolated virtualized environments.

In both cases, the key complexity issues are limited to a single
component, the virtualization layer. These issues therefore be-
come easier to manage. The design of the virtualization layer
will, however, include many challenges of its own, such as the
choice of appropriate abstractions, the communication channels
between the virtual machine and the software running on top
of it, and the kinds of meta-information to include in clients of
the virtual machine.

2. HiPEAC Vision

The HiPEAC vision38

The timing requirement can then be realized during system inte-
gration, when software is mapped onto hardware. For real-time
systems, considering time as a core property in the design of
both the hardware and the software will ease the verifi cation
and validation, and hence simplify the work of the system in-
tegrator. For software, traditional programming languages do
not embed a notion of time. Timing information is only an af-
terthought, dealt with by real-time kernels, leading to a night-
mare for system developers and for validation. Adding time
requirements early on in the software development cycle will
enable tools to optimize for it, and to choose the right hardware
implementation. For example, most systems are optimized for
best effort, while the optimum could be on-time scheduling,
resulting in fewer hardware resources. A time-aware virtualiza-
tion layer will ensure that the requirements are fulfi lled at run
time, avoiding increased complexity for system developers and
during validation.

Let the computer do
the hard work
This section gives an overview
of the ways in which the com-
puter can help humans with
the hard work. More than ever,
the computing system industry
is facing the confl icting chal-
lenges of achieving computing
effi ciency, of adapting features
to markets and various custom-
ers, and of reducing time to
market and development costs.
By adapting, modifying or adding specifi c features to generic ar-
chitectures, customized systems allow savings in silicon area and
power effi ciency, and they enable us to meet high performance
requirements and constraints. If the future will be heterogene-
ous, it is paramount that the different components of such het-
erogeneous systems can be designed and produced effi ciently.

 “Letting the computer do the hard work” might be considered
dangerous by some: we might give up on the fi ne understand-
ing of how systems work because they will be too complex and
will be built by computers. While it is debatable whether this
will be problematic or not, it does not even need to be the case.
Computers can also be limited to assisting with the logical steps
required to reach the fi nal system, for example formal verifi ca-
tion can prove the correctness of a process and explicitly list the
steps of the required proof.

From the hardware point of view, SoCs have hundreds of mil-
lions of transistors, and a complete system integrates several
chips. Up to now, complexity management consists of increasing
the number of abstraction levels: after manipulating transistor
parameters, tools enable designers to manipulate sets of transis-
tors or gates, and so on until the building elements become the
processor itself with its memories and peripherals. By increasing
the abstraction level from transistors to processors, the process
of building complex devices is kept manageable for a human
designer, even if the size of teams to build SoCs increased over
time. However, each level of abstraction decreases the overall
effi ciency of the system due to complex dependencies between
abstraction layers that are not taken into account during intra-
layer optimizations.

2. HiPEAC Vision

Figure 4: Role of virtualization in the HiPEAC vision

The HiPEAC vision 39

As the performance improvements of individual cores have be-
come much smaller during the past years, the overhead, not
only in terms of performance, but also in terms of power and
predictability, is not compensated anymore. So the method of
solving all problems by simply adding additional abstraction lay-
ers is no longer feasible. Moreover, when designing and optimiz-
ing an architecture in terms of power, area or other criteria, the
number of parameters is so high and the design space so large,
complex and irregular, that it is almost impossible to fi nd an
optimal solution manually. Hence, techniques and tools to au-
tomate architectural design space exploration (DSE) have been
introduced to fi nd optimized designs in complex design spaces.
In a sense, DSE automates the design of systems.

From the software point of view, the abstraction level has also
been increased: assembly programming is rarely used anymore
compared to the vast amounts of compiled code. Nowadays op-
timizing compilers are the primary means to produce executable
code from high-level languages quickly and automatically while
satisfying multiple requirements such as correctness, perform-
ance and code size for a broad range of programs and architec-
tures. However, even state-of-the-art static compilers sometimes
fail to produce high-quality code due to large irregular optimi-
zation spaces, complex interactions with underlying hardware,
lack of run-time information and inability to dynamically adapt
to varying program and system behavior. Hence, iterative feed-
back-directed compilation has been introduced to automate
program optimization and the development of retargetable op-
timizing compilers. At the system level, it is important that hard-
ware and software optimizations are not performed in isolation
but that full system optimization is aimed at and combined with
the adaptive self-healing, self-organizing and self-optimizing
mechanisms.

Figure 5 shows the different hard tasks that can be delegated
to a computer. The ultimate goal of all the tasks is to optimize
the non-functional metrics of the list of challenges that we have
identifi ed.

Electronic Design Automation
Electronic design automation (EDA) methodologies and tools
are key enablers for improved design effi ciency concerning com-
puting systems. In the light of moving towards higher density
technology nodes in the time frame of this vision, there is an
urgent need for higher design productivity.

EDA is currently aiming at a new abstraction level: Electronic
System Level (ESL). ESL focuses on system design aspects beyond
RTL such as effi cient HW/SW modeling and partitioning, map-
ping applications to MPSoC (Multi-Processor System-on-Chip)
architectures, and ASIP design. While ESL is currently driven by
the embedded systems design community, there are numer-
ous opportunities for cross-fertilization with techniques that
originate from within the high-performance community, such as
fast simulation and effi cient compilation techniques. Similarly,
the high-performance community could benefi t from the ad-
vanced design techniques that were developed for the embed-
ded world.

EDA defi nitely helps to solve the problem of ASICs becoming
unaffordable.

2. HiPEAC Vision

Figure 5: Hard tasks that can be delegated to the computer

The HiPEAC vision40

Automatic Design Space
Exploration
In order to explore the immense computer architecture and
compiler design spaces, intuition and experience may not be
good enough to quickly reach good enough/optimal designs.
Automated DSE can support the designer in this task by au-
tomatically exploring and pointing to good designs, both with
respect to architecture features and compiler techniques such as
code transformations and the order in which they are applied.
For modern computing systems, the combined architecture and
compiler space is immense — with 10100 design points being no
exception — and the evaluation of a single design point takes a
lot of time because in theory it encompasses the simulation of
an entire application on a given system.

Challenges in the DSE area are:

1. Since the total design space is now so huge, improved heu-
ristics are needed to effi ciently cull the design space in search
for a good solution. The challenge is to fi nd effi cient search
strategies in combinatorial optimization spaces, determining
how to characterize such spaces and how to enable the re-
use of design and optimization knowledge among different
architectures, compilers, programs, and run-time behaviors.

2. Besides parametric design space exploration by which an
optimal solution is searched in a parameter space, hetero-
geneous multi-core systems also require structural design
space exploration where complete structures such as inter-
connects, memory hierarchies, and accelerators are replaced
and evaluated. Changing the structure of the system also
requires changes to the complete tool chain in order to gen-
erate optimized code for the next system architecture. One
of the challenges is to solve all compatibility, modularity, and
concurrency issues so as to allow all architectural options to
be explored fully automatically.

3. Identifying correlations between architectures, run-time sys-
tems and compilers in relation to how they interact and in-
fl uence performance. Automatic exploration should provide
feedback to help understand why certain designs perform
better than others, and predictive models need to be built to
accelerate further explorations.

DSE directly contributes to addressing most of the technical
challenges.

Effective automatic parallelization
Since we believe that the application programmer should mostly
be concerned with correctness and productivity, and the com-
puter should take care of the non-functional aspects of code
such as performance, power, reliable and secure execution,
the mostly non-functional task of parallelization should also be
taken care of by the compiler rather than the programmer. For
this purpose, automatic parallelization for domain-specifi c lan-
guages is indispensable.

Identifying concurrency in legacy code, either manually or au-
tomatically, is extremely cumbersome. Besides, for many legacy
applications it is a non-issue as these applications already run
fi ne as sequential processes on existing hardware. For new ap-
plications, the choice of the development environment is crucial.
Domain-specifi c languages should be seen as an opportunity to
provide the software and compiler development community
with appropriate means to express concurrency and to auto-
matically or semi-automatically extract parallelism.

After identifying the concurrency, it has to be exploited as paral-
lelism. A very important aspect here is the level at which con-
currency manifests itself, as this determines the granularity of
parallelism. For example, it can be quite impossible to obtain
performance benefi ts from mapping a certain fi ne-grained data-
parallel kernel onto thread-level parallelism of a multi-core proc-
essor, while the same fi ne-grained parallelism can yield huge
speedups on single-instruction-multiple-data (SIMD) architec-
tures such as graphics processors.

The automatic extraction of concurrency and mapping it onto
parallel hardware will be a two-phase approach, a.k.a. split com-
pilation, where at least some time-consuming hardware-inde-
pendent code analyses will be performed by a static compiler
to extract concurrency. Subsequently, a dynamic compiler will
perform the hardware-dependent transformations required to
exploit the available parallelism based on the results of these
concurrency analyses.

In such an approach, the fi rst phase might be hardware-in-
dependent, but is not necessarily independent of the second
phase. Depending on which tools will be used in the second
phase, the fi rst phase might need to extract different kinds of
information. It will then be the responsibility of the fi rst phase to
produce the necessary meta-data in byte code or native code for
the second phase, and to present the programmer with feed-
back on the available concurrency or the lack thereof.

Automatic parallelization defi nitely contributes to resolve the
constraint that parallelism seems to be too complex for humans.

2. HiPEAC Vision

The HiPEAC vision 41

Self-adaptation
Ever more diversifi ed and dynamic execution environments re-
quire applications, run-time environments, operating systems
and reconfi gurable architectures to continuously adjust their
behavior based on changing circumstances. These changes may
relate to platform capabilities, hardware variability, energy avail-
ability, security considerations, network availability, environ-
mental conditions such as temperature, and many other issues.

For example, think of a cell phone that was left in a car in the
summer, and heated up to 60°C. For this type of situation,
run-time solutions should be embedded to cope with extreme
conditions, and help the system to provide minimal basic func-
tionality, even in the presence of failing high-performance com-
ponents, all the while maintaining real-time guarantees.

With respect to protection against attacks, a system that is ca-
pable of detecting that it is not being observed by potential
intruders can choose to run unprotected code rather than code
that includes a lot of obfuscation overhead. When the system
detects potential intrusion, it can defend itself by switching to
obfuscated code.

This level of adaptability is only possible if the appropriate se-
mantic information is made available at run time at all levels.
This ranges from the software level, where opportunities for
concurrency have to be specifi ed, over to the system level where
information about attacks and workload are being produced, to
the physical hardware, where information about the reliability
of the hardware and about operating temperature needs to be
available. All this information has to be made available through
a transparent monitoring framework. Such a framework has to
be vertically integrated into the system, collecting information
at each level and bringing it all together. This information can
then be used by clients to adjust their behavior, to verify other
components, to collect statistics and to trace errors.

Radically new approaches based on collective optimization,
statistical analysis, machine learning, continuous profi ling, run-
time adaptation, self-tuning and optimization are needed to
tackle this challenge.

Self-adaptivity helps dealing with the constraint that hardware
has become more fl exible than software, that systems are con-
tinuously under attack, and that worst case design leads to
bankruptcy.

If all above is not enough
it is probably time to start
thinking differently
The previous directions for solving the challenges are mainly
extrapolations of existing methods, still relying on architectures
with processors, interconnect and memories organized as con-
ceptual Von Neumann systems, even if under the hood most of
them are not Von Neumann architectures anymore. Moreover,
in those solutions, the architectures were programmed explicitly
with languages that more or less describe the succession of op-
erations to be performed. However, to solve future challenges it
might also be possible to start thinking more out-of-the-box. In
nature, there are plenty of data processing systems that do not
follow the structure of a computer, even a parallel one. Trying to
understand how they process data and how their approach can
be implemented in silicon-based systems can open new horizons.

For example, to solve the power issue, reversible computing of-
fers the theoretically ultimate answer. Neural systems are highly
parallel systems but they do not require a parallel computer lan-
guage to perform useful tasks. Similarly, drastic technology con-
straints for CMOS architectures are often seen as a diffi cult if
not deadly issue for the computing community. However, they
should also be considered as a tremendous opportunity to imag-
ine drastically different architectures, to shift to alternative tech-
nologies, and to start designing systems for radically different
purposes than just computing.

Alternative reasoning need not be restricted to the elementary
computing elements; it can also apply to the systems themselves.

On the one hand, researchers from the architecture/program-
ming domain are too often solely focused on performance, and
they often miss application opportunities where they could lever-
age their knowledge for novel applications. For instance, archi-
tects could have anticipated way in advance when cost-effective
hardware would be capable of performing real-time MPEG en-
coding, leading to hardware-based video recorders. There prob-
ably exist countless further applications that researchers from our
or other domains could anticipate.

On the other hand, systems can do far more than compute tasks.
Distributed control and collective behavior could breed self-or-
ganizing and self-healing properties. Such systems can be used
for surveillance applications, as in so-called smart dust or smart
sensors, for improving the quality of life or work in smart spaces -
smart town, building, room - or for 3D rendering (e.g., Claytron-
ics) and a vast range of yet unforeseen applications, and propose
an entirely different approach for system design, management
and application.

We also need to think differently about synergies between differ-
ent technologies, and interfaces between them. For example, the
Human++ could pave the way of interfacing biological carbon-
based systems with silicon-based sensors or processing modules.

2. HiPEAC Vision

The HiPEAC vision42

Impact on the applications
In this section, we discuss the potential impact of the directions
and paradigms presented in the HiPEAC vision on the future
applications, to determine how this vision can help to enable
said applications.

Domestic robots
As discussed before, domestic robots will perform a myriad of
tasks, which will differ from user to user, from room to room,
from time to time. Important parts of the tasks will likely be ar-
tifi cial intelligence and camera image processing. These have to
happen in real time for safety and for quality of service reasons.
This requires very high performance systems. Furthermore, to
increase the autonomy of the robot, the processing needs to be
power-effi cient. That will imply, amongst others, that depend-
ing on the particular situation and task of the robot, less or
more complex image processing has to be performed. As indi-
cated before, such power-effi cient processing capabilities can
only be delivered through heterogeneous, many-core comput-
ing devices. The proposed vision makes this possible as follows:

1. Domain-specifi c programming languages enable the AI de-
velopers and the image processing developers to operate
most effi ciently within their own domain without requiring
them to have a deep understanding of the underlying hard-
ware and the underlying design-time or run-time software
support.

2. Having time-aware languages that support the notion of
concurrency rather than parallelism will further increase
their effi ciency. Improving the tool chain’s ability to special-
ize the program to each target and execution context will
also help.

3. The use of virtualization will enable programmers to develop
independently of specifi c hardware targets, thus enlarging
the market for the developed software.

4. As such, the development of domestic robot software be-
comes more effi cient, up to the point where the develop-
ment of niche applications for very specifi c circumstances
(that would otherwise imply too small markets) becomes
economically viable.

5. By enabling the design of programmable computing com-
ponents that support the same virtual bytecode interface,
these components can easily be composed into many-core
distributed robot processing systems. The result is that a
de-verticalized market for robots is created in which robot
designers can easily combine components, up to the point
where robot extensions become available that are add-ons
to basic robot frameworks.

6. This creates a larger market for robot components, and al-
lows specifi c robots to (1) be designed for specifi c environ-
ments, (2) to be adapted cheaply to changing environments
such as people that move to different locations or live longer.

2. HiPEAC Vision

The HiPEAC vision 43

7. The availability of multiple components that support the
same interface, albeit at different performance levels for dif-
ferent applications or application kernels, enables the run-
time management to migrate critical tasks from failing com-
ponents to correctly operating components, thus increasing
the reliability of the device and offering a graceful degrada-
tion period in which the luxury functionality of the devices
might be disabled, but in which life-saving functionality is
still operating correctly.

8. With the run-time techniques proposed in this vision, the
robot will be able to optimize, at any point in time, its com-
puting resource usage for the particular situation at hand.
Because of virtualization and run-time load balancing tech-
niques, a minimal design can be built that switches dynami-
cally between different operating modes in time (time-multi-
plexing so to speak) without needing to be designed as the
sum of all possible modes. Moreover, adaptive self-learning
techniques in the robot can optimize its operation over time
as it learns the habits of the people it is assisting.

As a result, software designers, hardware designers and robot
integrators can achieve higher productivity in designing and
building robots as well as being able to target and operate
in larger markets. At the same time the resulting designs will
be cheaper for end users, both in terms of buying cost and in
terms of total cost of ownership, and they will provide longer
autonomy and higher reliability without sacrifi cing quality of
service. Without the directions and paradigms proposed in this
vision, it is hard to imagine such an evolution.

The car of the future
Today’s cars already contain numerous processors to run numer-
ous applications. Top-end cars contain processors for engine
control and normal driving control, processors for active safety
mechanisms such as ABS (anti-lock braking systems) or ESC
(electronic stability control), processors for car features such as
controlling air-conditioning, parking aids, night vision, windows
and doors, processors for the multimedia system including GPS,
digital radio, DVD players, ... In current designs, these applica-
tions are isolated from each other by running them on separate
processors. Clearly, this is a very expensive, infl exible solution,
which does not scale.

When more and more electronic features will be added in the
future, the software of those applications will be executed on
much fewer processors, each running multiple applications.
Some of these processors will run safety-critical software in
hard real time, while others will run non-critical, soft real-time
software.

Both the design of these processors and the design of the soft-
ware running on top of them will benefi t from the technical
paradigms presented in this vision. As with domestic robots,
hardware and software reuse will be improved, as will the pro-
ductivity with which they are designed and implemented, for
example by allowing domain experts to use their own domain-
specifi c programming languages. We expect that open plat-
forms will be created based on different aspects of this vision,
that will result in multiple cars with a wide range of supported
(luxury) features.

Such platforms that facilitate the combination of different soft-
ware components for design-time differentiation of built cars
will also facilitate updates to the software during a car’s lifetime.
It can be expected that during a car’s lifetime, developments
in software-controlled applications such as engine effi ciency
or automatic traffi c sign recognition will occur. As an example
of this, consider the optimization of the Toyota Prius engine
control by means of recurrent neural networks developed by
Prokhorov [Prokhorov]. This improved the fuel effi ciency of the
Prius with 17%, using a simple software update.

The different design-time and run-time tools outlined in this
vision will enable maintainers to perform updates fully auto-
matically or semi-automatically. In the latter case, driver input
can be taken into account, e.g., to prioritize the non-critical
applications that are available but cannot be installed together.

Another step is to combine safety-critical real-time applications
and non-critical applications on the same processors. Virtualiza-
tion can play an important role here, to isolate different applica-
tions from each other and to guarantee real-time performance
for those applications that need it.

2. HiPEAC Vision

The HiPEAC vision44

Telepresence
Many questions about how telepresence systems will operate in
the future are currently unanswered. Will systems be based on
thin clients with very limited processing power or on more ex-
pensive and powerful fat clients? How much processing will be
carried out on centralized servers? Maybe the market will slowly
evolve between different systems. Maybe multiple systems will
co-exist, for example with one system for the consumer mar-
ket and another for the professional market, which has differ-
ent quality requirements. Alternatively, service providers could
provide different quality levels to different consumers, which
require different types of client devices and different amounts
of centralized processing. In short, many different approaches
are likely to co-exist over time.

Developing the necessary hardware components and devices
that can handle the processing demands of telepresence sys-
tems, as well as the necessary software that runs on top of
them will be too expensive if that hardware and software can
only be used in specifi c systems with specifi c setups and opera-
tion modes.

The HiPEAC vision provides adequate means to avoid this prob-
lem, as it proposes strategies that enable developing software
independently of the specifi c hardware setup, and provides the
means to develop components that can be used in a wide range
of systems. Furthermore, the run-time techniques for managing
software running on hardware components such as virtualiza-
tion, self-observation / adaption / checking / monitoring, etc.
will enable load-balancing between client-side computing and
centralized computing on servers, thus easing the support for
a multitude of business models and service levels for different
users.

Aerospace and avionics
Postponing many decisions to fl ight-time in order to optimize
the effi ciency of routes and procedures, seems to make it hard-
er to validate the decision making process and to prove it cor-
rect and safe, and hence it will make it harder to certify new
designs.

However, by allowing the developers of that decision process to
work with domain-specifi c tools and by allowing them to de-
velop for a virtual platform, that does not change over time and
remains the same for all plane designs, the validation and certi-
fi cation will become simpler and more cost-effective. Moreover,
this might allow for simpler decision processes to be validated
and certifi ed early on during the lifetime of an airplane, and
more complex ones later on. This is fundamentally not all that
different from the engine control of the Toyota Prius being up-
dated when it enters the dealer’s garage for maintenance, al-
beit the safety criteria being stricter for aerospace and avionics.
Also, giving the developers a means to express the time param-
eter in the description of their systems will further enhance the
predictability and safety of the system when used in combina-
tion with appropriate validation and mapping tools.

Furthermore, it might also allow airplane designers and build-
ers to replace individual components by other, improved ones
during the airplane’s lifetime, which would then save large
amounts of money, as no large stacks of original components
need to be stocked for long periods of time.

For space missions and devices that get launched into space, the
vision supports the assembly of devices from components that
can more easily be reprogrammed and reconfi gured. As such,
the individual hardware components can serve to some extent
as backups for each other, and redundancy can be implement-
ed at the system level, where it can be done more effi ciently
than at the individual component level. The whole-system EDA
tools that perform the vertical integration and whole-system
optimization will take care of this.

2. HiPEAC Vision

The HiPEAC vision 45

Human++
As with domestic robots, implants in human bodies and exten-
sions to those bodies will have to operate under a variety of
circumstances, performing a wide range of tasks. Those circum-
stances and tasks depend on the patient at hand, on his or her
disease, handicap, job, etc.

Developing specifi c solutions from scratch for each patient is
not economically feasible. Still, all solutions have to be very en-
ergy effi cient in order to increase their autonomy and limit heat
emission. In advanced uses, one may design systems capable
of simulating the behavior of millions of neurons in real time
under tight resource constraints. Such challenges will feed a
never-ending quest for performance/Watt and performance/
Joule, leveraging very specifi c and multi-disciplinary domain
knowledge.

Reuse and customization, both of hardware and software de-
signs, and optimizations late during the design, i.e., when spe-
cifi c combinations of hardware and software have been cre-
ated for specifi c patients, are therefore paramount. Clearly the
HiPEAC vision supports such productive designs and assembly
of components into customized systems. Furthermore, adap-
tive components, either in hardware or in software, will enable
adapting to changing patient conditions, e.g., to learn patient-
specifi c brain functioning and the appropriate responses to
patient-specifi c inputs.

Computational science
Just like datacenters, supercomputers are composed of compo-
nents (containers, racks, blades, interconnects, storage, cooling
units, etc.). At this point there is not much difference to tra-
ditional datacenters. The biggest difference is in the workload,
which is a single application in case of a supercomputer.

Given the nature of these workloads, most programmers are
currently working at the effi ciency layer as performance is the
only metric that really counts in supercomputing. However,
also in this area, there is a clear need to look for more abstract
domain-specifi c frameworks and toolboxes for expressing the
algorithms that need to be executed. Such toolboxes make
the algorithms more portable between different systems, they
speed up program development, and they hide the intricacies
of parallelizing computational kernels. Current models such as
MPI are too low level, and therefore inadequate to deal with
future exascale systems with millions of cores, especially when
several of them fail during the execution of an application.

We expect that, according to the principles and paradigms of
this HiPEAC vision, future domain experts will be able to prac-
tice computational science within their own domain. Today’s
scientists either need to become domain experts in parallel
programming languages themselves or they need to rely on
the limited capabilities of software toolboxes that were pro-
grammed by their colleagues to solve particular problems on
particular hardware platforms. In the future, they will instead
be able to write new applications in their own domain-specifi c
language. Next, tools developed by the HiPEAC community will
make sure these applications run well on the exascale comput-
ers that this community will also develop.

As a result, computational science will have a much more gen-
tle learning curve for scientists in many other disciplines. Con-
sequently, this domain will open up to many more scientists
and it will be able to evolve at a much faster rate, not being
slowed down by the huge efforts it currently takes to port exist-
ing scientifi c code bases to new platforms or new applications.
An example of a relatively novel new application is fi nancial risk
analysis. Many other new applications will follow. That way, this
vision will help growing the fi eld of computational science.

2. HiPEAC Vision

The HiPEAC vision46

Smart camera networks
Smart camera networks can be used for a large variety of moni-
toring tasks being performed under varying conditions. Also,
the tasks and hence the applications running on the individual
cameras might change at deployment time.

It is likely that different applications will feature different sub-
algorithms, so-called software kernels, featuring different kinds
of concurrency. Hence different hardware designs are optimal
for different applications. However, designing hardware com-
ponents such as individual cores and accelerators that will only
be used for one (niche) smart camera application is economi-
cally infeasible. Likewise, writing software kernels that will only
be used in one application is very expensive, in particular if this
has to be redone for each possible accelerator design.

The HiPEAC vision of using virtualization will increase both the
market for developed software and the market for developed
hardware components. It will also make life easier for the smart
camera network maintainer, as it will allow him to add new
cameras to a network of different manufacturers and with dif-
ferent features, as long as they support the same virtual inter-
face.

Moreover, the reconfi guration, customization and run-time ad-
aptation techniques will facilitate the switching between tasks
during the deployment of smart camera networks.

Realistic games
At least some future games will involve multiple devices, with
differing computational power and different functionalities.
These devices might also be running other applications that
have to be kept isolated from games, for example because of
security reasons. Consider, e.g., devices accessing mobile com-
munication networks and running downloaded game software.
Obviously, the network operator does not want his network to
be vulnerable to incursions by the downloaded software.

Moreover, games will have to run on a much wider range of
hardware devices. Whereas today’s games are programmed
for a single platform such as Microsoft’s Xbox, Sony’s Playsta-
tion 3, or the Nintendo DS, or where their implementation in-
volves a very large porting effort to target multiple platforms,
the HiPEAC vision supports more productive programming with
portable performance. Virtualization, domain-specifi c program-
ming languages, and component-based hardware design. Con-
sequently it will help to create a larger, more competitive mar-
ket for gaming devices and games.

As entertainment in general and gaming in particular has al-
ways been a technology driver, we expect this larger, more
competitive market to benefi t other markets and technology
progress as well.

2. HiPEAC Vision

The HiPEAC vision 47

3. Recommendations

Before indicating research objectives, we present a SWOT (Strengths,
Weaknesses, Opportunities, and Threats) analysis of Europe’s ICT industry
and research. The results from this analysis, will assist in shaping future
research objectives.

The HiPEAC vision48

Strengths
During the past decades, the European ICT industry has created
a strong embedded ecosystem, which spans the entire spec-
trum from low power VLSI technologies to consumer products.

In the semiconductor and processing elements fi eld, compa-
nies such as ARM, ST, NXP, Infi neon, etc. are leading compa-
nies in the domain of embedded systems, and have very strong
presence in the European and worldwide embedded market.
Validation and real-time processing are aspects in which the
European industry has particularly excelled.

At the end of the value chain of this ecosystem, large end-user
European companies have a strong market presence in differ-
ent domains such as in the automotive industry (Volkswagen,
Renault-Nissan, Peugeot-Citroën, Fiat, Daimler, ...), the aero-
space and defense industry (Airbus, Dassault, Thales, ..) and the
telecommunication industry (Orange, Vodafone, Nokia, Sony
Ericsson, …). These large industries heavily depend on and in-
fl uence the technologies produced by the semiconductor and
associated tools industries. They also rely on a strong portfolio
of SMEs that strengthen the technical and innovative offers in
the market.

Weaknesses
European Computing Research is characterized by a weak link
between academia and industry, especially at the graduate
level. Companies in the United States value PhD degrees much
more than European companies which often favor newly grad-
uated engineers over PhD graduates. This leads to a brain drain
of excellent computing systems researchers and PhD graduates
trained in Europe to other countries where their skills are val-
ued more, or to different economic sectors like banking. As
a consequence, some of the successful research conducted in
Europe ends up in non-EU products or does not make it into a
product at all.

From an industrial point of view, Europe lacks very visible truly
pan-European industrial players in the HiPEAC domain, espe-
cially compared to the USA. This severely reduces the potential
synergies and impact of these industries. Furthermore, the Eu-
ropean ICT industry misses a major high-performance world-
wide general-purpose computing company such as HP, Intel or
IBM in the USA. Main components for general-purpose com-
puters, such as microprocessors, GPUs, and memories are also
produced outside Europe.

At the research level, European research in computing systems
is lacking international visibility due to the absence of a suf-
fi cient number of highly visible computer engineering depart-
ments. Furthermore, several major and competitive computing
systems conferences are mainly controlled by American univer-
sities who use them as a tenuring mechanism for their own
graduates, making it more diffi cult for Europeans to get their
work published there.

The lack of open source tools in the computing systems do-
main (for example synthesis tools) is a weakness of European
research in the HiPEAC domain. Hardware development is miss-
ing the same kind of ecosystem that exists for the open source
software, which allows small groups, start-ups, universities and
individuals to have a signifi cant contribution to the innovation
in the hardware domain: open source CAD tools are not widely
usable, FPGA validation platforms are expensive and not easily
available and testing ideas on real silicon is still a marathon that
also requires solid fi nancial background.

All these weaknesses are linked together: perhaps because
computing systems is not considered as a strategic domain, no
truely pan-European company in this fi eld has emerged. This
may explain the lack of European industrialization of Europe-
an research results and the weak links between industry and
universities. Consequently, Europe lacks internationally visible
computer engineering departments.

3. Recommendations

The HiPEAC vision 49

Opportunities
As paradoxical as it may appear, several challenges that society
is facing are at the same time also huge opportunities for the
research and industry in ICT. For example, the aging population
challenge will require the development of integrated health
management systems and of support systems that allow people
to stay longer in their home. The European expertise in low-
power and embedded systems and its SME ecosystem is an as-
set for tackling other grand challenges like environment, energy
and mobility.

Disruptive technologies such as cloud computing and conver-
gence of HPC and embedded computing represent huge op-
portunities for Europe. The trend of more distributed systems,
integrated in the environment using a mix of technologies such
as the “More than Moore” approach, could be benefi cial to the
European semiconductor industry, which has a lot of expertise
in the wide range of required technologies.

The cultural diversity of Europe creates opportunities for Europe
in a global world that will not necessarily be dominated by non-
European companies and institutions anymore. European com-
panies are more sensitive to cultural differences that might be-
come important in developing new markets all over the world.

From an educational perspective, it is worth noting that, as
of 2008, 210 European universities are rated among the top
500 universities in the Shanghai Jiao Tong University ranking
[ARWU], this is more than the United States of America (190
universities). The European university system thus benefi ts from
a very strong educational taskforce and a highly competitive
undergraduate and graduate educational system. Additionally,
European research traditions and different educational policies
installed at national levels and at the European level help with
establishing longer-term research as well as a stronger analyti-
cal approach in the ICT research area. The ongoing bachelor-
master transformation will hopefully further strengthen the
European educational system.

Finally it is worth noting that the proximity of Europe to the
Middle East, the Russian Federation and Africa represents a
huge market opportunity and should not be neglected.

It is also worth noting that the language diversity in Europe is
a handicap to attract bright international students to graduate
programs. Furthermore, the lack of command of the English
language by graduates in some countries is also hampering in-
ternational networking and collaboration.

3. Recommendations

The HiPEAC vision50

Threats
The labor cost as well as the inertia caused by administrative
overhead and IP regulations signifi cantly hampers the European
industry.

Currently most, if not all, high-end and middle-end general-
purpose processor technology is developed in the USA. China
is also developing its own hardware, of which the Loongson
processor is the best-known example. With the development of
low-power processors such as the Intel Atom in the USA, Eu-
rope risks ending up without any semiconductor industry left,
neither in the high-performance nor in the embedded domain.

At the political level, Europe does not consider computing sys-
tems a strategic technology, unlike other technologies such as
energy, aerospace and automotive technology. We should not
forget that most other major economies treat computing sys-
tems as a strategic technology, even under control of national
security agencies as in the USA. Computing systems technology
is at the basis of almost all other strategic areas, including de-
fense equipment and satellite control. Export restrictions could
one day limit European ambitions in these areas, especially if
Europe would become completely fabless.

The lack of venture capitalist culture and policy contributes to
the brain drain: it is much harder for a PhD graduate in Europe
to attempt to build his own startup to industrialize the results
of his research. More generally, bureaucracy and administrative
procedures in some countries are preventing or killing several
new initiatives. As a result, Europe’s big industry tends to follow
rather than to lead as far as new opportunities are concerned.

The language diversity in Europe is a handicap to attract bright
international students. Of those that come, many will return
to their home country after graduation. As European students
increasingly lack interest in computing, the European compa-
nies will have more diffi culties to hire top talents. Furthermore,
the lack of command of the English language by graduates in
some countries is also hampering international networking and
collaboration.

Research objectives
The HiPEAC vision is summarized in Figure 6 and Figure 7.

We believe that in order to manage the complexity of future
computing systems consisting of hundreds of heterogeneous
cores, we should make a distinction between three groups of
stakeholders. End users who are buying hardware and software
for example in a store or on the Internet are by far the larg-
est group. For them, installing and using hardware and soft-
ware should be just plug-and-play, completely hassle-free. They
should be completely oblivious of the kind of hardware and
software they are using. This should be comparable to the type
of alloy used in the engine of a car, undeniably very important
for the car manufacturer, but infi nitely less important for the
end-user than the features of the in-car entertainment system.
For the end user, there is no distinction between hardware and
software, there is only the system.

The second group is working at the productivity layer; these
are the product designers who mostly care about correctness,
but less about the non-functional properties of a system. For
this group, design time and time to market are the most impor-
tant criteria once design constraints (e.g. power, real-time) have
been met. The faster a correctly working system can be built,
the better. The magic word at this level is abstraction. The more
we can abstract the low level details of the implementation, the
better. At the software level, we radically propose the use of
domain-specifi c languages that enable expressing concurrency
and timing in a way that is familiar to the designer. At the hard-
ware level we propose the use of component-based hardware
design, from the transistor level to the rack level. This will lead
to less optimized systems, but it will dramatically reduce the
complexity of the design, and therefore improve the time-to-
market of the product.

Finally, there are the engineers working at the effi ciency layer.
At the hardware level, they are implementing the (optimized)
building blocks for the component-based design. This hardware

Figure 6 Productivity and effi ciency layers in hardware and software design

3. Recommendations

The HiPEAC vision 51

Design space exploration
Design space exploration is about automatically optimizing
a system for non-functional metrics as listed under the chal-
lenges. Design space exploration searches for the best design
point in a high-dimensional design space. The dimensions of
the design space can be either parametric (such as cache size),
or structural (such as the number and types of cores). Design
space exploration is a global optimization technique that can
automatically generate optimized domain-specifi c solutions. Ef-
fective design space exploration should not only explore the
hardware design space, but also the software design space (a
different hardware architecture might require a different algo-
rithmic solution, or different compiler optimizations).

Key issues are:
• Design space exploration for massively heterogeneous multi-

core designs, i.e. selecting the optimal heterogeneous multi-
core system for a given workload. This requires modular
simulators, and a parametric and structural design space.

• The development of effi cient search strategies in combinato-
rial optimization spaces, and the building of predictive mod-
els to guide the search.

• Combined hardware/software exploration, i.e. support for
co-evolution of hardware and software. Identifying the ap-
propriate software design space, and the development of
tunable compilers.

• Multi-objective optimization for two or more of the techni-
cal challenges, e.g., not only for best-effort performance but
also for on-time performance.

will be able to adapt itself, for example by switching off unused
parts and by migrating activity across the systems to avoid hot
spots or to deal with failing components. At the software level,
the engineers are designing parallel and distributed program-
ming languages that are to be considered the machine lan-
guage in the multi-core era. They also take care of the runtime
systems and virtual machines. One of the major challenges for
software is portable performance, meaning that platform-neu-
tral software adapts itself to the hardware resources available
on a given platform.

The main research focus of the HiPEAC community is on the
effi ciency layer. It also produces some of the tools for the pro-
ductivity layer. Of course, it also uses its own productivity tools
when working on the basic components of the effi ciency layer.

This HiPEAC vision can be realized by the use of domain-spe-
cifi c, concurrent, and timing-aware systems, component-based
hardware and software design, self-adaptation and portable
performance. The use of these techniques leads to shorter de-
sign cycles but this does not come for free: the resulting sys-
tems may be less-than-optimal. To compensate for this, we pro-
pose to use global optimization techniques that eliminate the
overhead from the extra abstraction layers and from additional
interfaces.

In order to realize the HiPEAC vision, we propose six research
objectives. They all take the technology trends into account, and
support the HiPEAC vision. They are described in more detail
below.

Figure 7: General recommendations and their relations

3. Recommendations

The HiPEAC vision52

Concurrent programming models
and auto-parallelization
The holy grail of the multi-core era is automatic parallelization
of code. Rather than starting from legacy C code, we propose
to start from platform-neutral domain-specifi c, timing-aware
and concurrent languages. The auto-parallelizer must be able
to convert concurrency into parallelism, and exploit the parallel
resources that are available in a given hardware platform, ef-
fectively realizing portable performance.

The automatic mapping will be a two-phase approach, a.k.a.
split compilation. The fi rst, static, hardware-independent phase
will extract concurrency information from the code and give
feedback to the programmer about the available concurrency
or lack thereof. The second, possibly dynamic, hardware-de-
pendent phase, will then map that concurrency on the available
parallel hardware. In this approach, the fi rst phase is hardware-
independent, but is not necessarily independent of the second
phase. Depending on the tools or mapping techniques that will
be used in the second phase, the fi rst phase might need to
extract different kinds of information.

Key issues are:
• The design of truly platform-neutral concurrent, domain-

specifi c, timing-aware languages. Although not per se a
HiPEAC activity, language designers might need our help to
come up with concepts that are amenable to parallelization.

• The design of a tool fl ow that allows the extraction of all
necessary concurrency information to exploit all possible par-
allelism. The static fi rst phase of the split compilation needs
to be made retargetable to the dynamic second phase.

• How to give to programmers the most useful feedback con-
cerning the concurrency in their applications.

• The development of second-phase techniques for automati-
cally mapping concurrency to a multitude of parallel hard-
ware structures, including reconfi gurable fabrics, graphical
processing units, and accelerators of all kinds. Portable per-
formance.

Electronic Design Automation
Component-based design requires tools that enable productiv-
ity designers to compose their design starting from a high level
functional description. EDA technology is a key factor in reach-
ing higher design productivity of future heterogeneous multi-
core systems.

EDA is currently aiming at a new abstraction level: Electronic
System Level (ESL). ESL focuses on system design aspects be-
yond RTL such as effi cient HW/SW modeling and partitioning,
mapping applications to MPSoC architectures, and ASIP design.

Key issues are:
• Component-based design, from the basic building blocks up

to the complete datacenter.
• Accurate and fast evaluation of performance, power con-

sumption and temperature of the resulting system.
• Manageable simulation, validation and certifi cation time.
• Automatic generation of hardware accelerators from high-

level specifi cations.
• The design of self-adaptive systems.

Design of optimized components
Component-based design can only be productive if it can build
upon an extensive set of well-designed and fully-debugged
components. In the hardware domain, they are called IP-blocks;
in the software domain, we call them libraries. These compo-
nents should on the one hand be optimized for the function
they were designed for, and on the other hand they should be
general enough to be applicable in a wide range of applica-
tions. This dilemma might lead to suboptimal solutions, which
is the price one has to pay for a faster time to market.

Key issues are:
• General-purpose processor architecture: optimization for

power and reliability.
• Correct selection and architecture of domain-specifi c accel-

erators.
• Improvements of the memory architecture.
• New components interconnection systems.
• Effi cient reconfi gurable architectures.

3. Recommendations

The HiPEAC vision 53

Virtualization
Virtualization is a basic technique that separates workloads
from the physical hardware. It allows for running legacy soft-
ware on new hardware, for dynamically adapting applications
to changing hardware resources, and for isolating software do-
mains (to do dedicated resource provisioning, or for security).

Key issues are:
• Effi cient virtualization of heterogeneous multi-core systems,

or how to create a virtual architecture for a multitude of het-
erogeneous platforms, including accelerators. Modular virtu-
alization frameworks.

• Performance models for virtualized workloads, essential for,
a.o., scheduling virtualized workloads. Hardware/software
support for dynamic instrumentation, monitoring and opti-
mization.

• Real-time guarantees in virtual environments, validation, cer-
tifi cation.

Self-adaptive systems
Three aspects of future computing systems will show variability
over time and space. The available hardware will vary because
of wear-out, process variability, reconfi guration and monitoring
local heat production. Furthermore, the environment in which
the system operates will change. Physical properties, such as
temperature, will change and affect the operation of the de-
vices, as well as other properties that form inputs to the applica-
tions running on the devices, such as changing light conditions
around a smart camera. More virtual changes will also occur,
such as when previously undisturbed systems become the tar-
get of a security invasion. Furthermore, we have seen many ap-
plications where the applications themselves, i.e., the software
running on the devices, changes because different functionality
is needed at different points in time.

Since optimizing these computing systems for all worst-case
scenarios of the three aspects is not feasible, we have to start
developing systems that adapt dynamically to changing condi-
tions. This requires a large investment in methodologies and
tools.

Key issues for these methodologies are that they should support
• An integrated approach for all three kinds (hardware, soft-

ware, environment) of changing variables.
• System-wide approaches for global adaptation and optimi-

zations rather than local adaptation and optimization.
• Appropriate split between static compilation phases and dy-

namic, adaptive phases.

3. Recommendations

The HiPEAC vision54

This document describes the HiPEAC vision. It starts by listing the
grand societal challenges, the application and business trends, and
the ten technical constraints ahead of us:

1. Hardware has become more fl exible than software;
2. Power defi nes performance;
3. Communication defi nes performance;
4. ASICs are becoming unaffordable;
5. Worst-case design for ASICs leads to bankruptcy;
6. Systems will rely on unreliable components;
7. Time is relevant;
8. Computing systems are continuously under attack;
9. Parallelism seems to be too complex for humans;
10. One day, Moore’s law will end.

These lead to technical challenges that can be summarized as im-
provements in seven areas: Performance, Performance/€ and per-
formance/Watt/€, Power and energy, Managing system complex-
ity, Security, Reliability, and Timing predictability.

From these challenges, trends and constraints follows the HiPEAC
vision: keep it simple for humans, and let the computer do the
hard work. This leads to a world in which end users do not have
to worry about technicalities of platforms, where 90% of the pro-
grammers and hardware designers only care about productivity
in designing software and hardware, and were only 10% of the
trained computer scientists have to worry about effi ciency and per-
formance.

Systems will be heterogeneous for performance and power rea-
sons, and computers will be used to specialize and optimize the
system beyond the component level.

Besides the tasks for the humans, computers will do the hard
work of searching for a good enough system architecture through
design space exploration, generating it automatically using EDA
tools, automatically parallelizing applications written in domain-
specifi c languages, and make sure the system can automatically
adapt to varying operating conditions.

Finally, the vision also reminds us that one day scaling will end,
and that we should be ready by then to continue advancing the
computing systems domain. Therefore it is suggested to start look-
ing into upcoming alternatives, and to start building systems with
them, in order to be ready when needed.

The vision concludes with a set of recommendations, areas in which
research is needed to support the HiPEAC vision. These areas are,
in no particular order: adaptive systems, concurrent programming
models and auto-parallelization, the design of optimized compo-
nents, design space exploration, electronic design automation, and
virtualization.

This document does defi nitely not offer “silver bullet” solutions for
the identifi ed problems and challenges, but it does offer a number
of directions in which European computing systems research can
progress.

The described vision has been created by and for the HiPEAC
community. By working in accordance with this common vision,
European collaboration will become the most natural option for
computing systems research. This vision can also focus the Euro-
pean research capacity to a smaller number of research objectives,
thereby creating communities with enough critical mass to force
real breakthroughs in the different areas.

Conclusion

3. Recommendations

The HiPEAC vision 55

References

[AMD] AMD Supercomputer To Deliver Next-Generation Games

and Applications Entirely Through the Cloud available

at http://www.amd.com/us-en/Corporate/VirtualPress-

Room/0,,51_104_543~129743,00.html

[Asanovic2006] Asanovic, Krste and Bodik, Ras and Catanzaro, Bryan Chris-

topher and Gebis, Joseph James and Husbands, Parry and

Keutzer, Kurt and Patterson, David A. and Plishker, William

Lester and Shalf, John and Williams, Samuel Webb and Yelick,

Katherine A. The Landscape of Parallel Computing Research: A

View from Berkeley, EECS Department, University of California,

Berkeley, 2006.

[Bekey2008] The Status of Robotics, Bekey, G.; Junku Yuh; Robotics &

Automation Magazine, IEEE Volume 15, Issue 1, March 2008

Page(s):80 - 86

[Blaauw2008] David Blaauw, Sudherssen Kalaiselvan, Kevin Lai, Wei-Hsiang

Ma, Sanjay Pant, Carlos Tokunaga, Shidhartha Das, David Bull,

“RazorII: In-Situ Error Detection and Correction for PVT and

SER tolerance,” IEEE International Solid-State Circuits Confer-

ence (ISSCC), February 2008

[Borkar2004] Shekhar Y. Borkar: Microarchitecture and Design Challenges for

Gigascale Integration.37th Annual International Symposium

on Microarchitecture (MICRO-37 2004), 4-8 December 2004,

Portland, OR, USA. IEEE Computer Society 2004, ISBN 0-7695-

2126-6

[Borkar2005] Shekhar Y. Borkar: Designing reliable systems from unreliable

components: The challenges of transistor variability and degra-

dation. IEEE Micro, 25(6):10–16, 2005.

[CEATEC2008] Richard Bergman, AMD HD graphics technology accelerates

the convergence of Digital Consumer Electronics and PCs,

CEATEC 2008, October 2008. http://gl.ict.usc.edu/Research/

DigitalEmily/ or http://technology.timesonline.co.uk/tol/news/

tech_and_web/article4557935.ece

[Cisco] http://www.cisco.com/en/US/netsol/ns340/ns394/ns430/index.

html

[Cuda] http://www.nvidia.com/object/cuda_develop.html and http://

www.khronos.org/opencl/

[Dean2004] Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplifi ed Data

Processing on Large Clusters. OSDI 2004: 137-150

[Ernst2004] Daniel Ernst, Shidhartha Das, Seokwoo Lee, David Blaauw,

Todd Austin, Trevor Mudge, Nam Sung Kim, Krisztian Flautner.

“Razor: Circuit-Level Correction of Timing Errors for Low-Power

Operation”. IEEE Micro, 24(6):10-20, November 2004.

[ESA] http://www.theesa.com/newsroom/release_detail.

asp?releaseID=44

[ESIA2008] Mastering Innovation Shaping the Future, ESIA 2008 Com-

petitiveness Report, ESIA European Semiconductor Industry

Association, 2008.

[FCOT05] Grigori Fursin and Albert Cohen and Michael O’Boyle and Oli-

ver Temam, A Practical Method For Quickly Evaluating Program

Optimizations, Proceedings of the 1st International Conference

on High Performance Embedded Architectures & Compilers

(HiPEAC 2005), LNCS 3793, pages 29-46, 2005.

[Gartner08] Gartner, Inc, Gartner Identifi es Seven Grand Challenges Facing

IT, April 2008.

[GC3] GC3 in Grand Challenges in Computing Research 2008, avail-

able at http://www.ukcrc.org.uk/grand_challenges/index.cfm

[Grandcentral] http://www.apple.com/macosx/snowleopard/

[ISTAG] Shaping Europe’s Future through ICT, ISTAG, March 2006.

[ITRS] International Technology Roadmap for Semiconductors, http://

www.itrs.net/Links/2007ITRS/LinkedFiles/AP/AP_Paper.pdf

[Katz2009] Randy H. Katz, Tech Titans Building Boom, IEEE Spectrum,

46(2):40-54, Feb 2009.

[Lee2006] Edward A. Lee, The Future of Embedded Software (Powerpoint

presentation) May 22-24, 2006, Artemis Annual Conference,

Graz, Austria. Available at http://ptolemy.berkeley.edu/presen-

tations/index.htm

[Mead89] Mead, C. 1989 Analog VLSI and Neural Systems. Addison-

Wesley Longman Publishing Co., Inc.[MtM] Innova-

tions in the ‘More than Moore’ era, René Penning de Vries, EE

Times Europe, 06/30/2009. http://www.eetimes.eu/218102043

[Muller2004] C. Müller-Schloer, C. von der Malsburg, R. P. Würtz: Organic

computing. Informatik Spektrum, 27(4):332–336, 2004.

[Nota] http://www.notaworld.org

[OpenCL] http://www.khronos.org/opencl/

[Palem05] Palem, K. V. 2005. Energy Aware Computing through Proba-

bilistic Switching: A Study of Limits. IEEE Trans. Comput. 54, 9

(Sep. 2005), 1123-1137.

[Patterson2008] David Patterson, Parallel Computing Landscape: A View from

Berkeley, keynote at SC08, November 2008.

[Pfi ster2007] Gregory Pfi ster, IPDPS 2007 Panel Position: Is the Multi-Core

Roadmap going to Live Up to its Promises? IDPDS, 2007.

[Prokhorov2008] D. Prokhorov, Toyota Prius HEV neurocontrol. In proceedings of

the International Joint Conference on Neural Networks, 2007,

p. 2129 - 2134.

[Schmeck2005] H. Schmeck: Organic computing – A new vision for distributed

embedded systems. Proc. of the Eighth IEEE International Sym-

posium on Object-Oriented Real-Time Distributed Computing

(ISORC 2005), IEEE CS Press, 201–203, 2005.

[Streit2005] Norbert Streit, Paddy Nixon, The disappearing computer, Com-

munications of the ACM March 2005/Vol. 48, No. 3 33-35.

[Vas97] Cotofana, S., Vassiliadis, S. 1997. Low Weight and Fan-In Neu-

ral Networks for Basic Arithmetic Operations. In 15th IMACS

World Congress 1997 on Scientifi c Computation, Modelling

and Applied Mathematics, volume 4 Artifi cial Intelligence and

Computer Science, 227—232

[Velliste2008] Meel Velliste, Sagi Perel, M. Chance Spalding, Andrew S. Whit-

ford and Andrew B. Schwartz, Cortical control of a prosthetic

arm for self-feeding, Nature, 2008

[Vocaloid] http://en.wikipedia.org/wiki/Vocaloid

[Whener2008] Michael Wehner, Leonid Oliker, and John Shalf Towards Ultra-

High Resolution Models of Climate and Weather International

Journal of High Performance Computing Applications 2008 22:

149-165. or http://www.lbl.gov/Science-Articles/Archive/NE-

climate-predictions.html

The HiPEAC vision56

Acknowledgements

The authors are indebted to several people who contributed to this
document over the last year:

• As reviewers: Mladen Berekovic, Christian Bertin, Angelos Bilas,
Attila Bilgic, Grigori Fursin, Avi Mendelson, Aly Syed, Alasdair
Rawsthorne.

• All HiPEAC clusters and task forces.
• The teachers and company delegates at the ACACES 2008 and

2009 summer schools.
• The whole HiPEAC community.
• And last but not least, the European Commission, which trig-

gered and sponsored this work through the HiPEAC2 project
(Grant agreement no: ICT- 217068).

The HiPEAC vision 57

info@HiPEAC.net
http://www.HiPEAC.net/roadmap

