
Learning-based Run-time Power and Energy
Management of Multi/Many-core Systems: Current

and Future Trends

Amit Kumar Singh*, Charles Leech, Basireddy Karunakar Reddy, Bashir M.
Al-Hashimi, Geoff V. Merrett

School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK;
Emails: {a.k.singh, cl19g10, krb1g15, bmah, gvm}@ecs.soton.ac.uk

*corresponding author: Amit Kumar Singh

Address:

University of Southampton

School of Electronics and Computer Science

University Road

Southampton, Hampshire, SO17 1BJ, UK

Office : (+44) 23 8059 3119

Fax : (+44) 23 8059 2901

Email : a.k.singh@soton.ac.uk

Date of Receiving: to be completed by the Editor

Date of Acceptance: to be completed by the Editor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/161395779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Learning-based Run-time Power and Energy
Management of Multi/Many-core Systems: Current

and Future Trends

Amit Kumar Singh, Charles Leech, Basireddy Karunakar Reddy, Bashir M. Al-Hashimi, Geoff V.
Merrett

Abstract– Multi/Many-core systems are prevalent in several application domains targeting different scales
of computing such as embedded and cloud computing. These systems are able to fulfil the ever-increasing
performance requirements by exploiting their parallel processing capabilities. However, effective
power/energy management is required during system operations due to several reasons such as to increase
the operational time of battery operated systems, reduce the energy cost of datacenters, and improve thermal
efficiency and reliability. This article provides an extensive survey of learning-based run-time power/energy
management approaches. The survey includes a taxonomy of the learning-based approaches. These
approaches perform design-time and/or run-time power/energy management by employing some learning
principles such as reinforcement learning. The survey also highlights the trends followed by the
learning-based run-time power management approaches, their upcoming trends and open research
challenges.

Keywords– Multi/many-core systems, power/energy optimization, run-time, machine learning



1 INTRODUCTION

Multi/many-core systems are becoming prevalent for various domains such as embedded and high perfor-
mance computing (HPC). These systems provide increased parallelism by performing parallel execution of
tasks on various cores [1]. This leads to high performance and thus helps to achieve increased performance
requirements of modern computing systems. Chip manufacturers have developed several multi/many-core
processors, e.g., Samsung’s Exynos 8-core processor [2], Intel’s Teraflop 80-core processor [3], AMD’s
Opteron 16-core processor [4], Tilera’s TILE-Gx family 100-core processor [5], and Kalray’s MPPA 256-
core processor [6]. Depending upon the number of cores in the chip, they are connected by a shared bus or
on-chip interconnection network [7–9]. These many-core processors are being exploited in various applica-
tion domains to realize efficient many-core systems. It is also expected that higher number of cores will be
integrated within a chip with technological advancements [10].

For these systems, usually, the applications need to be partitioned (parallelized) into multiple tasks that
can be executed concurrently on different cores. Such partitioning is referred to as functional partitioning and
can be furnished with the help of state-of-the-art application parallelization tools, e.g., MPSoC Application
Programming Studio (MAPS) [11] and MNEMEE project tool-chain [12], and/or manual analysis. This pro-
cedure requires detailed application knowledge and involves finding the tasks, adding synchronization and
inter-task communication in the tasks, management of the memory hierarchy communication and checking
of the parallelized code (tasks) to ensure for correct functionality [13]. In case the multi/many-core system
is heterogeneous, i.e. contains different types of cores, a task binding process that specifies the core types on
them the task can be allocated along with the cost of allocation is required [14]. To compute the allocation
cost, the binding process analyses the implementation costs (e.g., performance, power and resource utiliza-
tion) of each task on different supported core types such as general purpose processor (GPP), digital signal
processor (DSP) and coarse grain re-configurable hardware.

Power and energy efficient execution of applications on multi/many-core systems is desired in order
to enhance operational time of battery-powered systems or energy cost of HPC datacenters. From several
decades, enormous efforts have been put to optimize energy at circuit, architecture and system levels. The
optimization of energy during application execution concerns to system level efforts. These efforts have
tried to optimize energy by employing three essential ingredients: mapping [15–17], dynamic voltage and
frequency scaling (DVFS) [18–21], and dynamic power management (DPM) [22–26]. The mapping defines
assignment and ordering of the tasks and their communications onto resources of multi/many-core system
in view of some optimization criteria such as compute performance and energy consumption. In DVFS, the
voltage/frequency of the cores is adjusted dynamically to save energy consumption while meeting certain
level of performance. The DPM process shuts down the cores when they are inactive. Several principles have
been followed for shutting the cores down, for example, greedy approach where a core enters into sleep mode
as soon as processing on the core is finished and timeout approach that enters the core into sleep mode after
certain time of idleness if no request is received within that time. Out of mapping, DVFS and DPM, they have
been applied individually and in combinations as well, e.g., mapping in [15,16] and both mapping and DVFS
in [27, 28].

While optimizing power and energy consumption during execution, the timing requirements of applica-
tions need to be satisfied. Different types of timing requirements are imposed depending upon the kind of
target system, e.g., hard real-time and soft real-time systems [29]. Examples of hard real-time systems are
time critical systems such as automotive engine and flight control software. In soft real-time systems such as
video processing and HPC datacenters, the deadline violations can be tolerated. There has also been energy
optimization efforts of mixed criticality systems, where part of the system has hard real-time requirement and
rest has soft real-time requirement. Example of such a system is aeroplane, where cockpit system part has
hard real-time requirement due to its safety critical issues and the parts in the passenger area such as lighting
and television screen have soft real-time requirement.

Machine learning based power and energy optimization during multi/many-core system operation (i.e. at
run-time) has gain significant attention over the last decade, although it exists since 1959. It provides learning
ability to systems without being explicitly programmed. With respect to power and energy optimization, the



Hard Real-time
 (e.g., safety critical systems)

Dynamic Resource Allocation
(Centralized, Distributed or Hierarchical Resource Management) 

 Hybrid
(semi-dynamic)

Soft Real-time
 (e.g., video streaming for television)

Deterministic 
Admission Control 

 Market
Inspired

 Bio 
Inspired

Non-deterministic 
Admission Control 

Best 
Effort

Deadline 
Distribution 

Learning-based Run-time Power/Energy Management 
(in Many-core systems, e.g. embedded and datacenters)

Supervised/Regression based Learning Reinforcement Learning

Dynamic Resource Allocation
(Centralized, Distributed or Hierarchical Resource Management) 

Hard Real-time
(e.g., safety critical systems)

Semi-dynamic

Soft Real-time & Best Effort
(e.g., video streaming for television)

Fully-dynamic Semi-dynamic Fully-dynamic

Learning-based Run-time Power/Energy Management 
(in Many-core systems, e.g. embedded and datacenters)

Model-based Learning Reinforcement Learning

Figure 1: A taxonomy of learning based run-time power and energy management approaches.

learned information over time is used to predict appropriate mapping, DVFS or DPM policy to be applied
for future execution. Such learning is helpful to make data driven predictions/decisions, where prediction
models can be derived from sample inputs. Despite the fact that several articles have been published and
significant progress has been made for machine learning based power and energy optimization of multi/many-
core systems, there still remains many open questions and research challenges.

1.1 Learning-based Run-time Power and Energy Management Challenges

It is well known that the design space to map tasks on cores increases exponentially with the number of tasks
and cores. Therefore, for large size problems, the learning based approach has the challenge to predict the
most energy efficient mapping during application execution and adapt to the predicted mapping. Further, since
modern cores possess DVFS capability, the prediction of appropriate voltage/frequency level is required dur-
ing application execution in the view of optimizing energy consumption and satisfying timing requirement.
However, finding the best energy efficient voltage/frequency level at run-time involves the challenge to per-
form accurate predictions within a short amount of time. Similar challenges exist to apply DPM. Additionally,
while considering mapping and DVFS together, the prediction step needs to identify both the mappings and
DVFS levels during execution, which adds further complexity as two aspects need to considered jointly.

1.2 Classification of Learning-based Run-time Power and Energy Management Strategies

Learning-based run-time power and energy management strategies can be classified with a number of tax-
onomies, e.g., criticality (hard or soft real-time), optimization ingredient (mapping, DVFS, and DPM), em-
ployed learning principles, etc. Broadly, the classification can be done based on learning principle and other
taxonomies can be included at some hierarchy in the learning principle based classification. For example,
model-based (supervised/regression) learning can be used to find appropriate run-time mapping or DVFS
level while trying to satisfy soft real-time requirements. Figure 1 shows classification of learning based
power/energy management strategies based on the employed principle. The model-based learning approaches
perform offline analysis to derive the system behaviour for all the possible inputs and use the appropriate ba-
haviour at run-time depending upon the input. In reinforcement learning, the system behaviour is learnt at
run-time during execution and predictions are made based on the current system status.

Paper Organization: Section 2 and Section 3 cover analysis and elaboration of model-based and re-
inforcement learning approaches, respectively. A comparative study of strategies falling into different cat-
egories has been performed into Section 4. Section 5 provides the upcoming trends that could be followed
as the future research and open research challenges for learning based run-time power/energy management
approaches. Finally, Section 6 provides some concluding remarks.

2 SUPERVISED MODEL-BASED LEARNING

The aim of model-based learning is to make predictions about future responses based on evidence in the
presence of uncertainty. Supervised machine learning is a collective terms for a group of algorithms that
perform predictive modeling to establish a relationship between a set of predictor (independent) variables and
a target (dependent) variable. In this section, each of the algorithms is introduced and discussed in the context



of learning-based run-time power or energy management strategies. Following this, the modeling approaches
are grouped by the optimization and control methods that they employ, those of mapping, DVFS and DPM,
which are introduced in section 1.

2.1 Model-based learning Approaches

Most of the supervised machine learning algorithms can be engineered to operate as either classification or
regression techniques:

• Classification techniques predict discrete responses - for example, whether an email is genuine or spam,
or whether a tumor is cancerous or benign. Classification models classify input data into categories.
Typical applications include medical imaging, speech recognition, and credit scoring.

• Regression techniques predict continuous responses - for example, changes in temperature or fluc-
tuations in power demand. Typical applications include electricity load forecasting and algorithmic
trading.

2.1.1 Generalized Linear Models

The most common group of predictive algorithms used for learning-based run-time management are Gen-
eralized Linear Models (GLM). This term encompasses the majority of empirically and analytically derived
models of performance or power commonly derived for prediction in management systems. Ordinary Least
Squares (OLS) is an example of a GLM algorithm and is based on a linear combination of the predictor
variables in the form of a hypothesis function and is defined as;

ŷ(ω, x) = ω0 +
n∑

i=1

ωixi (1)

The coefficients ωi are established using a series of j training samples (xi,j , yj)i=1...n,j=1...m with i predictor
variables. The OLS process minimizes the mean-squared prediction error E(ω) of the model, expressed as:

E(ω) =
m∑
j=1

(fω(xj)− yj)2 (2)

Future target values ŷ are predicted given new data xn+1. Figure 2a illustrates how a OLS regression function
is calculated from the training data points such that the mean-squared error is minimized.

GLM models can be built using many different algorithms besides OLS. Ridge regression addresses some
of the problems of OLS by imposing a penalty on the size of coefficients and therefore the ridge coefficients
minimize a penalized residual sum of squares. Further alternatives include Lasso, least angle and Bayesian
regression, Orthogonal Matching Pursuit (OMP), the perceptron, passive aggressive algorithms and polyno-
mial regression. Logistic regression is a GLM algorithm used for classification rather than regression. Also
known in literature as logit regression, maximum-entropy classification (MaxEnt) or the log-linear classifier,
in this model, the probabilities describing the possible outcomes of a single trial are modeled using a logistic
function.

2.1.2 Support Vector Machines

Support vector machines (SVMs) are a set of supervised learning methods that construct a hyperplane or set
of hyperplanes in a high-dimensional space, which can be used for classification, regression or other tasks
such as outlier detection.

In Support Vector Classification (SVC), the model is a representation of the examples points in space,
mapped so that the separate categories are divided by a clear gap that is as wide as possible. A good separation
is achieved by the hyperplane that has the largest distance to the nearest training-data point of any class (the



0.5 0.0 0.5 1.0 1.5 2.0

5

0

5

10

15

20

25

(a) Regression Example

4 2 0 2 4

6

4

2

0

2

4

6

(b) Classification Example

Figure 2: Graphical examples of model-based learning approaches for (a) linear regression and (b) support
vector machine classification.

functional margin). The larger the margin the lower the generalization error of the classifier. New data points
are mapped into that same space and predicted to belong to a category based on which side of the gap they
fall. The model is trained using a dataset of n points in the form (~x1, y1), . . . , (~xn, yn) where yi are either
1 or −1, each indicating the class to which the point ~xi belongs. Each ~xi is a p-dimensional vector. The
maximum-margin hyperplane that divides the group of points ~xi for which yi = 1 from the group of points
for which yi = −1, is defined so that the distance between the hyperplane and the nearest point ~xi from either
group is maximized. Any hyperplane can be written as the set of points ~x satisfying ~w · ~x− b = 0 where ~w is
the normal vector to the hyperplane. Figure 2b illustrates the output of the SVC process with the hyperplane
(solid line) and the functional margins (dashed lines) shown. The training data points are shown with the
bounding points highlighted.

Support Vector Regression (SVR) uses the same principles as the SVC, but in this case the intention
is to develop a function and hyperplane that minimizes deviation of yi for all training data [30]. As with
classification, the algorithm takes input vectors X and y, but in this case y is expected to have floating point
values instead of integer values. The model produced depends only on a subset of the training data, because
the cost function for building the model ignores any training data close to the model prediction.

SVMs have several advantages. They are effective in high dimensional spaces, even in cases where
the number of dimensions is greater than the number of samples. They use a subset of training points in the
decision function (called support vectors), so are memory efficient. They are versatile because different kernel
functions can be specified for the decision function in order to classify data more appropriately. However,
if the number of features is much greater than the number of samples, the method is likely to give poor
performances. Also, SVMs do not directly provide probability estimates, these must be calculated using
expensive cross-validation methods.

2.1.3 Naive Bayes

Naive Bayes is a simple technique for performing classification and can build models that assign class labels
to instances of features where the class labels are identified from some finite set. Bayes methods are a set
of supervised learning algorithms based on applying Bayes theorem with the “naive” assumption of indepen-
dence between every pair of features. Given a class variable y and a dependent feature vector x1 through xn,
Bayes’ theorem states the following relationship:

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
(3)



Since P (x1, . . . , xn) is constant given the input, we can use the following classification rule:

ŷ = argmax
y
P (y)

n∏
i=1

P (xi | y) (4)

As a result, the classification task is essentially the assignment of the maximum a posteriori (MAP) class
given the vector xi and the prior of class assignments to yi [31]. An advantage of naive Bayes is that it
only requires a small number of training data to estimate the parameters necessary for classification. Naive
Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables
(features/predictors) in a learning problem.

2.1.4 Neural Networks

Neural networks (NNs) build a computational model based on a large collection of connected units called
artificial neurons, analogous to axons in a biological brain. Connections between neurons carry an activation
signal which can also be weighted to affect the strength of connections and the likelihood of activation.
Neural networks must be trained from examples, rather than explicitly programmed, and excel in areas where
the solution or feature detection is difficult to express in a traditional computer program. With sufficient
training, NN can expose complex and hidden relationships that are difficult to characterize using rule-based
programming. Typically, neurons are connected in layers, and signals travel from the input, to the output
layer. Back propagation is the use of forward stimulation to modify connection weights, and is done to train
the network using training data with known correct outputs. Increasing the number of hidden units in an
NN leads to better representational power and the ability to model more complex functions, but increases the
amount of training data and time required to arrive at accurate models.

If trained for too long, NNs can become overfitted and the model will include characteristics of outliers
from the sample data, yielding an approximation with excellent accuracy on training examples, yet poor
performance on further data from the same distribution. Overfitting can be prevented by reserving part of the
data as a test set to such that unbiased estimate of the NN’s accuracy. However, the model accuracy can be
degraded as a result of holding aside training data for error estimation as it reduces the number of samples
used for training which may be required. Cross validation is a mechanism to overcome this whereby the
data set is divided into N equal-sized folds with N NN model is built instead of just a single. Each NN is
trained on N1 folds and tested on the remaining fold, therefore the test fold for each NN differs from the other
models [32].

2.2 Model-based learning for Run-time Management

In the context of run-time learning and management, modeling enables prediction of the current and fu-
ture states of a system. This can include physical quantities, such as power, temperature and energy, or the
specific properties of applications, such as performance, latency and accuracy. When applying specific re-
quirements or constraints to these properties, models can been used to determine the system configuration
that will minimize power consumption and maximize performance before execution, including control over
parallelism, DVFS and DPM settings. The model-based learning approaches that have been used in literature
are discussed, divided into three main control methods; task mapping (including parallelism/multi-threading
control), DVFS and DPM. Categorization of existing literature is shown in Table 1. Many model-based ap-
proaches use multiple control methods in conjunction to achieve power/energy and performance optimization,
with mapping applied first and then DVFS or DPM refinements made afterwards.

2.2.1 Task Mapping and Parallelism

Model-based learning is commonly employed to build power and performance models of applications exe-
cuting on platforms to predict the optimal mapping of an application’s tasks to processors and determine the
level of parallelism that should be created.



Table 1: Classification of existing model-based run-time learning techniques for power and energy manage-
ment

Domain Reference DPM DVFS Mapping

Embedded/Desktop

[32, 33] X
[34–36] X
[31, 37] X X

[38] X X
[39–42] X X

Datacenters/HPC
[39, 43] X X

[44] X X
[45–47] X X

The first approaches to determine the required level of parallelism and task mapping using GLMs were
empirically derived using Amdahl’s Law [48]. However, this fails to capture inter-thread communication,
data dependence synchronizations and hardware contentions that lead to sub-optimal scaling. Modeling ap-
proaches have been developed to characterize these penalties with feedback-driven threading for homoge-
neous architectures [49] and Scale-Up/Scale-Out for heterogeneous architectures [38]. In the latter, scale-out
refers to thread-level parallelism [50] and scale-up to the adaptive thread-core mapping enabled by hetero-
geneous cores. These processes are characterized by two orthogonal functions, which are derived from a
combination of empirical modeling and fitting of additional coefficients via linear regression [38]. Similarly,
composite models can be constructed, with a combination of an empirically-derived component and a GLM
component. These are designed to characterize the system whilst also mitigate the modeling error that arises
from unknown factors. In [34], a holistic and resource-agnostic scalability model is developed in order to
determine the degree of parallelism to assign to each task. The model is based on predicting speed-up from
Amdahl’s Law, with consideration given to the aforementioned parallelism penalties, however in addition it
employs linear regression to analyze the speed-up properties of particular task in order to assign the correct
level of parallelism.

Coarse-grain mapping of applications to computational resources can be driven by regression-based learn-
ing [42]. The approach uses OLS approaches to build a model of the energy/performance trade-offs between
using different computing resources in a heterogeneous system for a particular task. The task is mapped on
a computing resource at run-time based on the minimum energy consumption for a given application perfor-
mance requirement. Parallelism within each resource is not considered because of the particular platform.

On the other hand, approaches that target HPC and datacenter systems consider task-level parallelism
an essential component of their predictive models. These approaches considered modeling the system in
order to perform Dynamic Concurrency Throttling (DCT) [39] and thread packing [40], processes which
we include as part of mapping. Curtis-Maury et al. [39] consider an IPC-based linear regression solution
trained from samples of the power-performance adaptation search space collected from real workloads. They
derive a performance prediction model which dynamically adjusts DCT, DVFS, and thread placement at the
granularity of program phases.

In order to more accurately and generically predict performance improvements for changes in mapping,
GLMs can leverage performance monitoring counters (PMCs) which are built into the hardware architecture
[32,35]. This approach is portable across many applications as it only relies on information form the hardware.
Furthermore, metrics such as instructions-per-cycle (IPC) and processor utilization can be used to predict
performance and build linear models across many platforms [39]. Pack & Cap is an example of a model-
based approach to control mapping which relies on PMC data [40]. Furthermore, it is different to other
approaches in that it employs a multinomial logistic regression (MLR) classifier to make optimal DVFS and
thread packing control decisions in order to maximize performance within a power budget. The addition of
thread packing to DVFS as a control knob increases the range of feasible power constraints by an average of



21% when compared to DVFS alone and reduces workload energy consumption by an average of 51.6%.
SVC models can also be found in run-time management scheme and used to classify tasks or programs

as suitable for particular functional units in a heterogeneous architecture. Wen et al. [36] develop an OpenCL
task scheduling scheme to map kernels from multiple programs on CPU/GPU heterogeneous platforms. At
run-time, it determines which kernels are likely to best utilize a device from a performance model that predicts
a kernel’s speedup based on its static code structure. Naive Bayes has also been used in power management
to build power-performance model and perform classification [31]. In the context of this work, the goal is
to devise a power management policy for issuing DVFS commands on a CMP system that minimize the
total energy dissipation based on the load conditions and workload characteristics [37]. The motivation
for utilizing a Bayesian classifier is to reduce the overhead of the power management activities which are
performed regularly to determine and assign DVFS settings for each processor core in the system.

The use of Artificial Neural Networks (ANN) for modeling and prediction in run-time management sys-
tem is not common, given the extensive training time and large volume of data that is required to achieve
an accurate model, as discussed in 2.1.4. However, ANNs can have a role to play in the static components
of a hierarchical system such as modeling the behavior of applications as in [32]. A resource allocation
framework is created composed of per-application ANN performance models and a global resource manager.
Shared system resources are periodically redistributed between applications at fixed decision-making inter-
vals. Each application model’s its performance as a function of its allocated resources and recent behavior,
using an ensemble of ANNs to learn an approximation of this function. Past program behavior and allocated
resource amounts are presented at the input units, and performance predictions are obtained from the out-
put units [32]. The drawback of these model is the training of the NN weights which can only be done by
performing successive passes over training examples.

2.2.2 DVFS

DVFS is used to control the performance/throughput of tasks by adjusting the operating frequency of the
processor. Dynamic power dissipation is reduced as a result and energy can be saved if further voltage
scaling occurs. The power and performance relationship is often modeled to enable prediction of the optimal
DVFS settings. A basic model can be built from understanding of the underlying physical characteristics of
the static and dynamic power dissipation of components and how these are affected by frequency and voltage
or empirically from experimentation using training samples. The later may be done with the aid of hardware
performance statistics such as IPC [39] or PMCs [40, 41]. The former uses multivariate linear regression to
estimate specific coefficients for the hardware event rates of a particular configuration in order to determine
the required DCT and DVFS settings. The Pack & Cap [40] approach makes use of L1-regularization to
select the most relevant PMC metrics automatically and a multinomial logistic regression (MLR) classifier to
determine the DCT and DVFS settings that maximize performance under a power constraint by selecting the
output with the highest probability.

Yang et al. [42] use hypotheses about the affect of frequency and voltage on the current and latency for
each resource in a heterogeneous platform as the basis for their power/performance model which is used to de-
termine the most energy efficient resource to execute on and the DVFS settings to apply given a performance
requirement. This model is trained using a OLS linear regression technique at the beginning of application
execution. Although it can be done a run-time, it does not change over the remainder of the application so it
cannot adapt to changes in application behavior. In a similar way, Juan et al. [33] use constrained-polynomial
(positive polynomial) functions to learn the relationship between performance and power and build a model
based on frequency and utilization. Additional energy reduction is achieved through additional DPM tech-
niques including turbo-mode and near-threshold operation in what they call extended-range DVFS.

A Bayesian classification approach to DVFS setting is used by Jung et al. [31, 37] in the prediction of
power and performance. The predicted state is used to look up the optimal power management action from
a pre-computed policy lookup table. The motivation for using this form of model is the reduced overhead of
prediction in the power manager (PM) and as a result can provide energy savings for even rapidly and widely
varying workloads.



2.2.3 DPM

DPM process are often driven by predictions from models in conjunction with mapping or DVFS actions.
DPM can be achieved through migration in heterogeneous to resources with different power/performance
operating points [38, 42] or by power gating CPU cores in homogeneous multi/many-core systems [32, 40].
These two processes are captured as Scale-Up and Scale-Out by Ma et al. [38] who perform DPM and map-
ping on a heterogeneous architecture based on prediction from GLM performance and power models with
additional heuristic scheduling. Cochran et al. [40] propose a similar approach for performance optimization
under a power budget with PARSEC benchmarks on a homogeneous CMP through a combination of thread
packing to control parallelism and DVFS setting to reduce power.

2.3 Model-based Management in Datacenters

Model-based approaches, including supervised machine learning, have been used to increase energy effi-
ciency in server [51] and datacenter [43] platforms. Mapping, DVFS and DPM techniques have all been em-
ployed such as workload consolidation, which aims to reduce the number of active processing resources and
as result reduce the power consumption and heat dissipation [45]. Modeling the effect of these management
processes is even more important as the hardware in datacenters becomes increasingly heterogeneous [43].
In this situation, power and performance must be modeled for all the settings of each resource as well as the
partitioning of workloads across multiple resources. Wu et al. use linear regression to build a model of a het-
erogeneous CPU and FPGA platform, with support for workload partitioning [43], from both compile-time
and run-time profiling, and use it to for run-time average power estimation. Lama et al. [46] apply machine
learning to build fuzzy power and performance models to capture non-linear system behavior and drive a
model predictive control framework. This self-adaptive modeling allows them to capture time-varying re-
lationships between application performance and allocation of resources for dynamic and bursty workloads.
Distributed controllers coordinate with each other to allocate resources and meet the service level agreements
of applications.

3 REINFORCEMENT LEARNING

3.1 Introduction to Reinforcement Learning

Reinforcement learning (RL) is a machine intelligence approach that has been applied in many different
areas. It mimics one of the most common learning styles in natural life. The machine learns to achieve a goal
by trial-and-error interaction with a dynamic environment. RL algorithms are developed to find the optimal
solution to sequential decision problem, and have been proven effective in a variety of problems from different
areas [21]. RL is inspired by the trial-and-error method humans used for making decisions for millions of
years. In RL, the agent interacts with the system (Fig. 3).

The general learning model consists of:

• An agent

• A finite state space S

• A set of available actions A for the agent

• A reward function R: S X A→ R

The goal of RL is to find the best actions under different states such that by following those best actions, the
agent can optimize the long-term reward. It is achieved by learning a policy, i.e. a mapping between the states
and the actions.

Q-learning is one of the most popular algorithms that perform reinforcement learning. At each step of
interaction with the environment, the agent observes the environment and issues an action based on the system
state. By performing the action, the system moves from one state to another. The new state gives the agent



Agent

System

State	(s) Action	(a)

Reward	(r)	or	
Penalty	(p)

Figure 3: Agent-system interaction in RL. The systems is characterized by state s. The action α is taken by
an agent to change the state, with resulting outcomes r or p and new state s’

a reward (a real or natural number) or punishment (a negative reward) which indicates the value of the state
transition. The agent keeps a value function for each state-action pair, which represents the expected long-
term reward if the system starts from state s, taking action a, and thereafter following a policy. Based on
this value function, the agent decides which action should be taken in current state to achieve the maximum
long-term rewards. The core of the Q-learning algorithm is a value iteration update of the value function.
The Q-value for each state-action pair is initially chosen by the designer and later, it is updated each time an
action is issued and a reward is received, based on the following expression.

Q(si, ai)← Q(si, ai) + α (ri + γ ∗max
a′

Q(s′, a′)−Q(si, ai)) (5)

In the above expression, ri is the reward given at time i, and 0≤α≤1 is the learning rates which may be the
same value for all pairs. The discount factor γ is a value between 0 and 1, and s′ and a′ are the next state and
action after taking ai, respectively. The next time when state s is visited again, the action with the maximum
Q-value will be chosen. As a model-free learning algorithm, it is not necessary for the Q-learning agent to
have any prior information about the system, such as the transition probability from one state to another.
Thus, it is a highly adaptive and flexible algorithm.

Q-learning is originally designed to find the policy for a Markov Decision Process (MDP). It is proved
that the Q-learning is able to find the optimal policy when the learning rate is reduced to 0 at an appropriate
rate, given the condition that the environment is MDP. However, it is important to point out that a computing
system for power/energy management is typically non-Markovian. Therefore, it is not guaranteed that Q-
learning will find the optimal policy in case of such problems.

3.2 Reinforcement Learning for Run-time Management

System level power/energy management must consider the uncertainty and variability that comes from the
environment, application and hardware. Statically optimized resource and power management are not likely to
achieve the best performance when the input characteristics are changing. As a result reinforcement learning
has been used for DPM [22–26], DVFS [18–21,52], or combination of DPM, DVFS and mapping [28,53,54]
in embedded, desktop and datacenter domains. A detailed classification of existing RL based approaches for
power/energy management is given Table 2.

3.3 Mapping with DPM or DVFS

Ye et al. [54] claims that existing learning based DPM is not dedicated to power reduction in multi-core
processors. Further, they address this issue by including task allocation into their Q-learning based DPM
framework. As the multi-core processors offer flexibility in assigning tasks to any processor core, it helps in
partially controlling idle periods for power savings. This technique judiciously allocates the tasks to cores
which offer a better trade-off between power consumption and system performance. To further achieve better
power savings, core temperatures are integrated into DPM framework as the temperature has profound impact
on leakage power consumption. The simulation-based approach is used for evaluating the effectiveness of
their approach.



Table 2: Classification of existing reinforcement learning based techniques for power/energy management

Domain Ref. DPM DVFS Mapping

Embedded/Desktop

[22–26] X
[18–21, 52] X

[53] X X
[54] X X
[28] X X

Datacenters
[55–58] X
[59, 60] X X

To improve the energy efficiency and thermal aspects (average and peak temperature, and thermal cycling)
in multi-core systems, a Q-learning based approach for DVFS and POSIX thread allocation is proposed
in [28]. It simultaneously optimizes the temperature and energy consumption with reduced learning space
by employing a two-stage hierarchical approach: a heuristic-based thread allocation at a longer time interval
to improve thermal cycling, followed by a learning-based DVFS at a much finer interval to improve average
temperature, peak temperature and energy consumption. This approach is evaluated on nVidias Tegra SoC,
featuring four ARM Cortex-A15 cores, running Linux with set of applications from MiBench [61], PARSEC
[62] and SPLASH-2 [63].

3.4 DVFS

Reinforcement learning based approaches have been widely used for energy minimization through DVFS
[18–21, 52]. Shen et al. [18] proposed an approach for simultaneous temperature, performance and energy
(TPE) management. It dynamically selects the processor’s voltage and frequency to achieve the required
balance among energy, performance and temperature of the processor. This approach models the processor’s
energy as convex function, which first decreases and then increases with the frequency. Further, performance
and temperature are modelled as concave and convex functions increasing with the normalized frequency.
The relation among temperature, performance and energy based on the above observations determines the
possible trade-off space of the TPE management. Their environment state is a vector of four components,
(f, T, IPS, µ) representing the clock frequency, the temperature, the instructions per second (IPS) and the
CPU intensiveness, respectively. The TPE controller offers two modes: free and constrained. Free mode
allows user to explore the trade-off by tuning the weight coefficients in the penalty function and constrained
mode lets the user to set constraints to two out of the three parameters in T, P and E, while optimizing the third
one. The approach is validated on Dell Precision T3400 workstation with Intel Core 2 Duo E8400 Processor
running Linux.

Juan et al. [19] present a semi-supervised reinforcement learning (RL) based approach for performing
dynamic voltage and frequency scaling (DVFS) to efficiently utilize the available on-chip power budget while
maximizing the performance. Further, an evaluation and comparison among core-only, uncore-only and
cooperative core/uncore DVFS control for performance boosting is discussed for the first time along with a
“reverse” DVFS technique for maximizing performance under power constraints. The semi-supervised RL
separates the centralized agent into several “distributed” agents, and arrange a supervisor to coordinate the
actions among agents to best exploit the power budget for the performance increase. This helps in reducing
the exponential growth of state complexity and maintains a linear complexity with the number of cores. The
targeted architecture is a symmetric, NoC-based CMP containing 16 tiles, and each tile has a Pentium4 core,
a private L1 cache, a shared L2 cache and an on-chip router. The evaluation with a wide spectrum of parallel,
multi-threaded applications shows an average 10.9% improvement in program execution time while satisfying
given power constraints.

The emerging multi-task/thread applications generally have complicated execution causality and task-
level dependencies, and the execution states of one core would affect other cores in a multi-core system. To



globally optimize the policy of voltage/frequency selection for improving energy efficiency in such scenar-
ios, a core-level modular RL (MLR) based online DVFS, which explicitly considers the relationship between
different cores, is proposed in [21]. This approach distributively applies modular Q-learning (MQL), one of
the most commonly used MRL algorithm, to each core to learn the system behaviour. MQL decomposes the
state-space into several much smaller modules and integrates multiple modules in an agent (DVFS controller
of each core) to select actions based on more than its own state. At each learning-epoch, DVFS controller
collects necessary information required by every module from the corresponding cores in the system and
passes it into associated modules to learn and update their Q-table. As each module has its own Q-table
and updates independently, a mediator is used in an agent to arbitrate the solutions reported by each module.
Furthermore, task-dependency information of applications, collected from static-time workload characteriza-
tion or dynamic profiling, is used to help efficiently create and associate most useful modules to each core
which incurs only linear cost in core count. Experiments conducted on a homogeneous system with 4, 16, 32
and 64-cores (implemented in JADE full-system simulator [64]) running realistic applications from COSMIC
benchmark suite [65], show up to 28% energy savings compared to individual-learning method.

Considering the future many-core systems, an On-line Distributed RL (OD-RL) based DVFS control al-
gorithm to improve performance under power constraints is discussed in [52]. At the finer grain, a per-core
RL method is used to learn the optimal control policy of the voltage/frequency levels that maximizes the per-
formance under the budget. At the coarser grain, an efficient global power budget reallocation algorithm is
used to maximize the overall performance. Spatially, distributed RL works on each core locally and indepen-
dently, while the budget re-allocator reallocates the budget among all the cores. Temporally, distributed RL
operates at every control epoch, while the budget re-allocator executes everyM epochs. This approach is val-
idated using Sniper simulator with PARSEC and SPLASH-2 multi-threaded benchmark suites. Experimental
results show up to 98% less budget overshoot, up to 44.3x better throughput per over-the-budget energy, up
to 23% higher energy efficiency and two orders of magnitude speedup over existing techniques [66, 67].

3.5 DPM

Learning-based DPM techniques have been proved to be effective in reducing power consumption [22–26].
An on-line learning algorithm in [25] dynamically selects the best DPM policies from a set of candidate
policies called experts. Each expert has a weight factor, the value of which indicates the benefit gained if
the correspondent expert was chosen during the last idle period. The one with the highest value will control
the device for the next idle period. Prabha et al. [26] propose a similar approach using a different learning
algorithm. The expert-based machine learning algorithm is able to find an appropriate DPM policy in short
time without any prior workload information. However, it cannot explore the power-performance trade-offs
effectively.

The traditional Q-learning algorithm provides a model-free solution for the MDP with a provable conver-
gence to the optimal solution. However, in a non-markovian environment or a partially observable Markovian
environment [68, 69], Q-learning is capable of achieving the same performance as other reference learning
algorithms at the cost of slower convergence (number of epochs for the Q-values becoming stable). To ad-
dress this issue, Liu et al. [22] propose a system level power management based on enhanced Q-learning to
improve the convergence speed. It adopts the method in [70] and enhances the performance of traditional
Q-learning by exploiting the sub-modularity and monotonic structure in the cost function of a power manage-
ment system. The enhancement restricts the search space of Q-learning algorithm to policies whose action
is non-decreasing to the number of waiting requests, which helped in improving power consumption and la-
tency by 40% and 90%, respectively, compared to traditional Q-learning. Further, it can adapt to changing
performance constraint during run-time and converge to a policy that delivers just enough performance with
minimum power consumption within 50 updates. Their experimental results show up to 30% and 60% reduc-
tion in power consumption for synthetic and real workloads, respectively, when compared against existing
expert-based power management technique [71].

The reinforcement learning technique is applied to multi-cores in Ye and Xu [2012] and shown superior
than the distributed power managers using Tan et al. [2009]. All the core states and actions are encoded and
the learning function is approximated using the back-propagation neural network (BPNN) [54]. Tasks are



assumed independent, thus their policy is able to not only determine the power mode, but also assign each
task to a specific core. However, task assignment (context scheduling) has other considerations, such as data
locality, that greatly affect the performance in real environments. Besides, scalability is still a problem for its
time complexity O(n2).

A policy called Multi-level Reinforcement Learning (MLRL) that is much more scalable in efficiency
and effectiveness for multi-cores is proposed in [23]. The multilevel paradigm, having coarsening and
uncoarsening phases, is first proposed in Karypis et al. [1999] for circuit partitioning and then applied to
other VLSI problems. The coarsening phase does recursive clustering of elements until the problem size is
small enough to be solved. Then, in the uncoarsening phase, the coarsened elements are de-clustered by
applying the refinement algorithm. A coarse solution is produced between the two phases. Coarsening phase
generates a good approximation of the original problems, so better initial solutions can be obtained and makes
refinement algorithms more effective due to local problems with smaller sizes in the uncoarsening phase.

The multilevel paradigm is exploited to compress the searching space, speed-up the convergence rate,
and result in O(nlogn) time complexity for n cores. Target architecture is a multiprocessor system, ARM
Cortex-A9 MPCore, containing n homogeneous cores and m threads per core, which can simultaneously
execute n × m contexts. The workload characteristics are assumed unknown in advance; it may comprise
several single- or multi-threaded programs. Simulation results, using Multi2Sim [72] and the power simulator
McPAT [73], show that their policy runs 53% faster and outperforms the state-of-the-art work [54] with 13.6%
energy savings and 2.7% latency penalty on average for the SPLASH-2 benchmarks while the performance
penalty is close to zero.

The above approaches, including the enhanced Q-learning which is a model-free RL requiring no knowl-
edge of state transition probability functions, needs knowledge of state action spaces and reward function.
The enhanced Q-learning based DPM learns a policy online by identifying which action is the best for a cer-
tain system state, based on the reward or penalty (cost) received. In this way, the approach does not depend
on any pre-designed experts, and can achieve a much wider range of power-latency trade-offs. However,
as this is based on a discrete-time model of the stochastic process, it suffers from the following limitations:
(i) the discrete-time controller has relatively high overhead to make frequent and regular decisions, and (ii)
discrete-time controller may not make timely decisions for fast state changes.

As a solution to the above problems, Wang et al. [24] presented an online adaptive DPM technique based
on the model-free RL method, which requires no prior knowledge of the state transition probability function
and the reward function. Furthermore, this approach can perform policy learning and power management in
a continuous-time and event-driven manner to learn a desirable timeout policy (optimal DPM policy when
the service requests inter-arrival times are stationary but non-exponentially distributed [74], which derives
optimal timeout value using MDP methods). It also utilizes the enhanced temporal difference (TD(λ)) learn-
ing algorithm for semi-MDP (SMDP) [75] in order to accelerate convergence and alleviate the reliance on
the Markovian property. TD(λ) is more robust in non-Markovian cases as it seamlessly combines the simple
one-step TD algorithm and the Monte Carlo method and has fast learning rate. Workload prediction is incor-
porated in this work to provide partial information about service requester (SR) state for the RL algorithm.
Specifically, an online Bayesian classifier [28] is chosen as the workload predictor because of its relatively
high prediction accuracy, low implementation cost, and the fact that the information it provides comes with
a certain degree of certainty due to the use of posterior probability [28]. Further, it uses only two actions
“keep sleep” and “wake-up”, instead of time-out policy to reduce state-action pairs of RL and improves the
convergence speed using multiple-update initialization, dynamic action sets, and locally randomized action
selection techniques. The experiments are performed considering two different devices: a hard disk drive
(HDD) and a wireless adapter card (WLAN card) on both synthesized and real workloads traces. Without
sacrificing any latency, it achieves a maximum 18.6% saving in power dissipation compared to the reference
expert-based approach proposed in [71]. Alternatively, the maximum latency saving without any power con-
sumption increase is 73% compared to the existing best-of-bread DPM techniques. This method works only
for single-core systems having single device without DVFS capability.



3.6 DVFS with DPM

As discussed above, DPM and DVFS has proven to be effective techniques for reducing power/energy con-
sumption. Both DPM and DVFS provide a set of control knobs for run-time power management. From this
perspective, both are fundamentally same. While the DVFS is usually found as the power control knob for
CMOS digital ICs, such as micro-controllers or microprocessors, during the active time; the DPM is usu-
ally for the peripheral devices, such as the hard disk drives and network interface, or for microprocessors
running interactive applications accompanied with long idle intervals. Shen et al. [53] considers both DPM
and DVFS as power management and propose a novel approach for system level power management using
enhanced Q-learning. This technique considers the peripheral device (an interactive system that processes the
I/O requests generated by software applications) and the microprocessor. Experiments for power manage-
ment of peripheral devices are done using a simulated HDD with synthetic and real workloads. Furthermore,
microprocessor power management approach, Q-learning based DVFS controller, is evaluated on a Dell Pre-
cision T3400 workstation with Intel Core 2 Duo E8400 Processor with applications from MiBench [61] and
MediaBench [76]. The result showed that, compared to existing machine learning approaches, their power
management technique is more flexible in adapting to different workload and hardware, and provides a wider
range of power-performance trade-off.

3.7 Reinforcement Learning in Datacenters

Reinforcement learning based power management techniques have been proved to be effective to reduce
energy costs in datacenters [56–60]. These learning based approaches are used for resource/workload con-
solidation, which involves turning off under-utilized/sleep servers to save power, and resource allocation.
Fundamentally, resource/workload consolidation can be seen as DPM with mapping.

A localized version of online RL for resource allocation is presented in [56–58]. The RL module observes
the application’s local state, the local number of servers allocated by the arbiter, and the reward specified by
the local Service Level Agreement (SLA). Considering the scalability of look-up table based Q-learning,
severe approximations have been made by representing the application state solely by current mean arrival
rate of page requests, and ignoring other sensor readings (e.g. mean response times, queue lengths, number
of customers, etc.). Further, to improve the initial performance of the arbiter’s policy, a heuristic initialization
is employed. However, these approaches work well for simple systems running simple applications with less
state variables and needs certain amount of exploration of actions believed to be suboptimal. To address this
issue, Tesauro et al. [58] proposed a hybrid method combining the advantages of both explicit model-based
methods and model-free RL. This approach involves offline training of RL module, instead of online training,
on data collected while an externally supplied initial policy (e.g., based on an approximate queuing model)
makes management decisions in the system.

Lin et al. [59] discussed a power management technique which does both the job dispatching and resource
consolidation. The job dispatch is performed at a finer interval than the resource consolidation based on
the job arrival time and the server resource availability, while the the resource consolidation decision on a
fixed-length time slot basis. The proposed approach was verified by simulations using real Google cluster
data traces. Further, Farahnakian et al. [60] proposed a Q-learning based dynamic Virtual Machine (VM)
consolidation method to optimize the number of active hosts according to the current resources utilization.
The method intelligently decides on when to switch a host into the active or sleep power mode through a
learning agent which learns host power mode detection policy.

4 COMPARATIVE STUDY

This section presents a comparative study of various machine learning based approaches



bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim
fe

rre
t

flu
id

an
im

at
e

fre
qm

in
e

ra
yt

ra
ce

st
re

am
cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

Ave
ra

ge
0

20

40

60

80

100
E
n
e
rg

y
 (

kJ
)

DVFS + Thread Packing DVFS + 1 Thread Fixed DVFS + 2 Threads Fixed

Figure 4: Comparison of energy consumption for benchmarks with and without thread-packing on a homo-
geneous CMP, reprinted from [40].

Figure 5: Energy consumption of an edge detection filter executing on the different processing elements of a
heterogeneous multiprocessor over a range of performance constraints [42].

4.1 Comparison of Model-based learning Approaches

Figure 4 shows that energy savings can be achieved by combining DVFS and adaptive thread mapping on a
homogeneous CMP with the aid of an MLR classifier [40]. The experiments are conducted across a series
of PARSEC benchmarks. In the first experiment (DVFS + Thread Packing), the thread packing technique
is used to dynamically adjust the number of threads to meet a changing power budget, with DVFS settings
applied on top. The second (DVFS + 1 Thread Fixed) and third (DVFS + 2 Threads Fixed) experiments use a
fixed one and two threads respectively and so must rely on predicted DVFS settings alone. For the majority of
cases, thread packing increases the range of achievable power constraints over DVFS alone. Given that DPM
techniques to shutdown cores has not been applied, the one thread fixed case consumes a lot more energy due
to the static power consumption of the idle cores. The thread packing experiment is able to utilize all four
cores when the power budget allows and the performance gain from this outweighs the increase in dynamic
power.

In addition, Figure 5 shows that learning the power/performance trade-offs for each processing resource
of a heterogeneous system enables prediction of the optimal mapping and DVFS settings. A linear regression



-15

-10

-5

0

5

10

15

Barnes FMM LU Ocean Radiosity Radix Water-Nq Water-Sp

En
er

gy
 S

av
in

gs
 (

%
)

RL MLRL[basic] MLRL[RBF] MLRL[RBF+VDBE] GOLD BPNN

Figure 6: Comparison of energy savings achieved by various DPM techniques for SPLASH benchmark ap-
plications. Extracted from [23].

model is built from training data and used to predict the power and performance of an edge detection filter for
particular mapping and DVFS settings on the heterogeneous CPU/DSP/FPGA platform [42]. The run-time
management system implemented will switch the mapping of the filter between resources if the performance
requirement changes to ensure optimal energy consumption per frame. The combination of mapping and
adaptive DVFS setting (black line) produces a lower energy consumption for the entire range of performance
levels when compared to static mapping of the filter to any of the individual resources on the platform. For
the CPU and DSP experiments, the ondemand Linux governor selects the DVFS settings for each frame and
the three FPGA experiments operate at fixed frequencies of 10, 50 and 100 MHz for FPGA LP, FPGA MP
and FPGA HP respectively.

4.2 Comparison of Reinforcement learning Approaches

This section compares the results obtained by reinforcement learning approaches for DPM and DVFS on
multi-core systems. Figure 6, extracted from [23], compares six DPM techniques: the original reinforcement
learning policy (RL), MLRL without enhancement technique (MLRL[basic]), MLRL with GGAP-RBF [77]
without VDBE-softmax [78] (MLRL[RBF]), MLRL with all the enhancement techniques (MLRL[RBF+VDBE]),
the golden reference (GOLD), and the BPNN policy (BPNN). The RL policy has least energy saving due to its
large state space (at least 2n) as it directly encodes the power states. For MLRL[basic], the state space is still
large on the root node; many samples are needed for n states and n actions, but the agent seldom tries other
actions using ε-greedy. This leads to higher energy saving than BPNN (10.99% > 5.71%), demonstrating
that the proposed multilevel paradigm is more effective than directly applying function approximation with
BPNN. The function approximation MLRL[RBF] achieves energy saving similar to MLRL[basic] (10.99%
11.31%) and close to the upper bound. Finally, combining VDBE-softmax scheme further saves more energy
(11.31% to 13.58%). Furthermore, it has been reported that the performance penalty of MLRL[RBF+VDBE]
is close to zero and energy savings are close to GOLD (14.66%).

Figure 7 shows comparison of energy consumption of four DVFS approaches with two different switching
intervals: predictive [79], learning-based [53], ondemand [80], learning transfer-based [20]. The energy
values are normalized with respect to learning transfer-based approach. Among all these approaches, learning
transfer-based approach achieves better energy savings (up to 38 %) and is efficient to adapt to workload
and performance variations within the application (intra) and across the applications (inter). Moreover, as
per the observations made in [20], both predictive and learning-based approaches fail to meet application
performance requirement despite their energy savings.



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Predictive Learning Ondemand Learning Transfer

N
o

rm
al

iz
ed

 E
n

er
gy

Interval 1000 Interval 2000

Figure 7: Comparison of normalized energy consumption of various DVFS approaches. Extracted from [20].

5 UPCOMING TRENDS FOR FUTURE RESEARCH AND OPEN
CHALLENGES

This section highlights some of the upcoming trends and challenges to be faced to take the learning-based
run-time power/energy management approaches for multi/many-cores into the next era.

5.1 Distributed Reinforcement Learning

The literature indicates that many reinforcement learning (RL) algorithms exist to find near-optimal solutions
in polynomial time. These algorithms have been applied for single core systems or multi-core systems with
small number of cores. Since the number of states increases exponentially with the number of cores, the RL
method is known to be non-scalable. An explosion in the state space (number of states) takes place for large
scale problems and thus they become very expensive to use at run-time. Therefore, efficient and scalable RL
algorithms are desired for large scale many-core systems with hundreds of cores.

In order to address the scalability issues imposed by centralized resource management in many-core
systems, distributed or hierarchical management has been employed [29, 81]. In distributed management,
each core is checked independently to make management decisions, whereas the cores are grouped into
multiple clusters in hierarchical management and each cluster is managed by a local manager. It is evident
that hierarchical approach exploits feature of both the centralized and distributed approaches.

Similar to resource management, distributed reinforcement learning is desired to address the scalability
issues [52]. In order to reduce the learning complexity, a hierarchical reinforcement learning can be explored,
which can provide trade-off between solution quality and computational complexity. The parameters of the
hierarchical approach (e.g. cluster size) can be adjusted to achieve several trade-off points, which can be used
to optimize energy consumption.

5.2 Learning-based Multi-objective Optimization

We have shown that learning-based power/energy optimization of multi/many-core systems has been exten-
sively focused. However, along with the power/energy, modern multi/many-core systems need to be opti-
mized for several other metrics, e.g. temperature, reliability, fault-tolerance, and security. The temperature is
optimized to improve reliability, reduce the cooling cost of many-core based HPC datacenters and mitigate
its effect on performance and leakage power. Reliability is to be optimized to increase the mean time to
failure of a system. However, in case a fault has happened, optimization need to be performed to achieve
fault-tolerance. Optimization for security has become an important concern due to possible attack in the com-
munication channels of connected devices and their interaction with untrusted devices. All these requirements
indicate the need for multi-objective optimization.



It has also been observed that learning-based approaches have been used to optimize one metric, e.g.
performance while satisfying power budget requirement [52]. In future, it is expected that the requirements to
jointly optimize for several performance metrics will grow. Towards it, some progress has already been made,
e.g., three metrics execution time, energy consumption and temperature are optimized in [82]. However,
in [82], learning-based optimization is not employed. Since learning-based approaches have tremendous
potential for optimizations, they should be explored to perform multi-objective optimization.

It is evident that optimization for multiple objectives will increase the design space and thus the learning
time. Therefore, the design space needs to be efficiently pruned so that Pareto-fronts for several conflicting
objectives can be derived quickly at run-time. In order to maintain a low complexity, the learning process can
be bounded by an upper limit on the exploration time.

5.3 Learning-based Optimization for Diverse Application Domains

In addition to multi/many-core systems, learning-based optimization can be performed for several application
domains. In fact, it has already be explored for some application domains. For example, a reinforcement
learning approach for self optimizing memory controllers [83], learning-based energy management in a hybrid
electric vehicles [84] and learning approaches for manufacturing [85]. Such diversity for application domains
indicates that, machine learning is effective across a wide spectrum of application domains.

Based on the above, it is expected that machine learning is going to prevail for the design and optimization
of systems for various application domains. Several companies have already started projecting the potential
of machine learning, e.g., ARM’s DynamIQ technology based processors will include dedicated processor
instructions for machine learning and are expected to deliver up to a 50x boost in performance over the
next 3-5 years relative to Cortex-A73-based systems today. These evidences indicate widespread adoption of
machine learning approaches for future computing systems.

6 CONCLUSION

This paper provides a survey of learning-based run-time power and energy management strategies for multi/many-
core systems. Specially, model-based and reinforcement learning approaches optimizing for energy consump-
tion is embedded systems, desktop systems and HPC datacenters are surveyed and compared. Based on the
analysis of the surveyed and compared learning-based strategies, upcoming trends and open challenges are
identified. The research directions highlighted in this survey are expected to advance in future due to potential
of learning-based approaches, which will also help to address the open challenges. These advances will need
to explore efficient machine learning strategies to take the learning-based approaches for multi/many-core
systems into the next era of computing.

ACKNOWLEDGEMENTS

This work was supported in parts by the EPSRC Grant EP/L000563/1 and the PRiME Programme Grant
EP/K034448/1 (www.prime-project.org). Experimental data used in this paper can be found at DOI:
http://doi.org/10.5258/SOTON/D0109.



REFERENCES

[1] A. Jerraya, H. Tenhunen, and W. Wolf, “Guest Editors’ Introduction: Multiprocessor Systems-on-
Chips,” Computer, no. 7, pp. 36–40, 2005.

[2] “Exynos 5 Octa (5422).” www.samsung.com/exynos/, 2016.

[3] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob,
S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, “An 80-Tile 1.28TFLOPS Network-on-Chip in
65nm CMOS,” in Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), pp. 98–
589, 2007.

[4] AMD, “AMD Opteron 6000 series processors,” 2011. http://www.amd.com/en-
us/products/server/opteron/6000 (Last visited: 12 February, 2016).

[5] TILE-Gx, “First 100-core Processor with the New TILE-Gx Family,” 2009. http://www.tilera.com/
(Last visited: 12 February, 2016).

[6] B. D. De Dinechin, D. Van Amstel, M. Poulhiès, and G. Lager, “Time-critical computing on a single-
chip massively parallel processor,” in Proceedings of IEEE Conference on Design, Automation and Test
in Europe (DATE), pp. 1–6, 2014.

[7] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,” Computer, no. 1, pp. 70–78,
2002.

[8] F. Worm, P. Ienne, P. Thiran, and G. De Micheli, “An adaptive low-power transmission scheme for on-
chip networks,” in Proceedings of IEEE/ACM/IFIP Conference on Hardware/Software Codesign and
System Synthesis (ISSS+CODES), pp. 92–100, 2002.

[9] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of Network-on-chip,” ACM Com-
put. Surv., no. 1, 2006.

[10] S. Borkar, “Thousand core chips: a technology perspective,” in Proceedings of ACM Design Automation
Conference (DAC), pp. 746–749, 2007.

[11] J. Ceng, J. Castrillon, W. Sheng, H. Scharwächter, R. Leupers, G. Ascheid, H. Meyr, T. Isshiki, and
H. Kunieda, “MAPS: an integrated framework for MPSoC application parallelization,” in Proceedings
of ACM Design Automation Conference (DAC), pp. 754–759, 2008.

[12] A. Mallik et al., “MNEMEE - An Automated Toolflow for Parallelization and Memory Management in
MPSoC Platforms,” in Proceedings of ACM Design Automation Conference (DAC), 2011.

[13] G. Martin, “Overview of the mpsoc design challenge,” in Proceedings of ACM Design Automation
Conference (DAC), pp. 274 –279, 2006.

[14] L. Smit, G. Smit, J. Hurink, H. Broersma, D. Paulusma, and P. Wolkotte, “Run-time mapping of ap-
plications to a heterogeneous reconfigurable tiled system on chip architecture,” in Proceedings of IEEE
International Conference on Field-Programmable Technology (FPT), pp. 421–424, 2004.

[15] J. Hu and R. Marculescu, “Energy-aware mapping for tile-based NoC architectures under performance
constraints,” in Proceedings of IEEE Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 233–239, 2003.

[16] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-aware heuristics for run-time
task mapping on NoC-based MPSoC platforms,” J. Syst. Archit., pp. 242–255, 2010.



[17] S. Kaushik, A. K. Singh, W. Jigang, and T. Srikanthan, “Run-time computation and communication
aware mapping heuristic for noc-based heterogeneous mpsoc platforms,” in IEEE International Sympo-
sium on Parallel Architectures, Algorithms and Programming (PAAP), pp. 203–207, 2011.

[18] H. Shen, J. Lu, and Q. Qiu, “Learning based dvfs for simultaneous temperature, performance and energy
management,” in Quality Electronic Design (ISQED), 2012 13th International Symposium on, pp. 747–
754, IEEE, 2012.

[19] D.-C. Juan and D. Marculescu, “Power-aware performance increase via core/uncore reinforcement con-
trol for chip-multiprocessors,” in Proceedings of the 2012 ACM/IEEE international symposium on Low
power electronics and design, pp. 97–102, ACM, 2012.

[20] R. A. Shafik, S. Yang, A. Das, L. A. Maeda-Nunez, G. V. Merrett, and B. M. Al-Hashimi, “Learning
transfer-based adaptive energy minimization in embedded systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 35, no. 6, pp. 877–890, 2016.

[21] Z. Wang, Z. Tian, J. Xu, R. K. Maeda, H. Li, P. Yang, Z. Wang, L. H. Duong, Z. Wang, and X. Chen,
“Modular reinforcement learning for self-adaptive energy efficiency optimization in multicore system,”
in Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific, pp. 684–689, IEEE,
2017.

[22] W. Liu, Y. Tan, and Q. Qiu, “Enhanced q-learning algorithm for dynamic power management with
performance constraint,” in Proceedings of the Conference on Design, Automation and Test in Europe,
pp. 602–605, European Design and Automation Association, 2010.

[23] G.-Y. Pan, J.-Y. Jou, and B.-C. Lai, “Scalable power management using multilevel reinforcement learn-
ing for multiprocessors,” ACM Transactions on Design Automation of Electronic Systems (TODAES),
vol. 19, no. 4, p. 33, 2014.

[24] Y. Wang and M. Pedram, “Model-free reinforcement learning and bayesian classification in system-level
power management,” IEEE Transactions on Computers, vol. 65, no. 12, pp. 3713–3726, 2016.

[25] G. Dhiman and T. S. Rosing, “Dynamic power management using machine learning,” in Proceedings of
the 2006 IEEE/ACM international conference on Computer-aided design, pp. 747–754, ACM, 2006.

[26] V. L. Prabha and E. C. Monie, “Hardware architecture of reinforcement learning scheme for dynamic
power management in embedded systems,” EURASIP Journal on Embedded Systems, vol. 2007, no. 1,
pp. 1–1, 2007.

[27] A. K. Singh, A. Das, and A. Kumar, “Energy Optimization by Exploiting Execution Slacks in Stream-
ing Applications on Multiprocessor Systems,” in Proceedings of ACM Design Automation Conference
(DAC), pp. 115:1–115:7, 2013.

[28] A. Das, B. M. Al-Hashimi, and G. V. Merrett, “Adaptive and hierarchical runtime manager for energy-
aware thermal management of embedded systems,” ACM Transactions on Embedded Computing Sys-
tems (TECS), vol. 15, no. 2, p. 24, 2016.

[29] A. K. Singh, P. Dziurzanski, H. R. Mendis, and L. S. Indrusiak, “A survey and comparative study
of hard and soft real-time dynamic resource allocation strategies for multi-/many-core systems,” ACM
Computing Surveys (CSUR), vol. 50, no. 2, p. 24, 2017.

[30] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and Computing,
vol. 14, pp. 199–222, Aug. 2004.

[31] H. Jung and M. Pedram, “Improving the efficiency of power management techniques by using bayesian
classification,” in 9th International Symposium on Quality Electronic Design (isqed 2008), pp. 178–183,
March 2008.



[32] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management of multiple interacting resources
in chip multiprocessors: A machine learning approach,” in Proceedings of the 41st Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 41, (Washington, DC, USA), pp. 318–329,
IEEE Computer Society, 2008.

[33] D.-C. Juan, S. Garg, J. Park, and D. Marculescu, “Learning the optimal operating point for many-core
systems with extended range voltage/frequency scaling,” in Proceedings of the Ninth IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS ’13,
(Piscataway, NJ, USA), pp. 8:1–8:10, IEEE Press, 2013.

[34] S. Sridharan, G. Gupta, and G. S. Sohi, “Adaptive, efficient, parallel execution of parallel programs,” in
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’14, (New York, NY, USA), pp. 169–180, ACM, 2014.

[35] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer, “Scheduling heterogeneous multi-
cores through performance impact estimation (pie),” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ISCA ’12, (Washington, DC, USA), pp. 213–224, IEEE Com-
puter Society, 2012.

[36] Y. Wen, Z. Wang, and M. F. P. O’Boyle, “Smart multi-task scheduling for opencl programs on cpu/gpu
heterogeneous platforms,” in 2014 21st International Conference on High Performance Computing
(HiPC), pp. 1–10, Dec 2014.

[37] H. Jung and M. Pedram, “Supervised learning based power management for multicore processors,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, pp. 1395–1408,
Sept 2010.

[38] J. Ma, G. Yan, Y. Han, and X. Li, “An analytical framework for estimating scale-out and scale-up power
efficiency of heterogeneous manycores,” IEEE Transactions on Computers, vol. 65, pp. 367–381, Feb
2016.

[39] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R. de Supinski, and M. Schulz, “Pre-
diction models for multi-dimensional power-performance optimization on many cores,” in Proceedings
of the 17th International Conference on Parallel Architectures and Compilation Techniques, pp. 250–
259, 2008.

[40] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap: Adaptive dvfs and thread packing
under power caps,” in Proceedings of the 44th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO-44, (New York, NY, USA), pp. 175–185, ACM, 2011.

[41] H. Sasaki, S. Imamura, and K. Inoue, “Coordinated power-performance optimization in manycores,”
in Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Tech-
niques, pp. 51–61, Sept 2013.

[42] S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis, and B. M. Al-Hashimi, “Adaptive
energy minimization of embedded heterogeneous systems using regression-based learning,” in 2015
25th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS),
pp. 103–110, Sept 2015.

[43] Y. Wu, D. S. Nikolopoulos, and R. Woods, “Runtime support for adaptive power capping on heteroge-
neous socs,” in 2016 International Conference on Embedded Computer Systems: Architectures, Model-
ing and Simulation (SAMOS), pp. 71–78, July 2016.

[44] H. Shen and Q. Qiu, “Contention aware frequency scaling on cmps with guaranteed quality of service,”
in 2014 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1–6, March 2014.



[45] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No ”power” struggles: Coordinated
multi-level power management for the data center,” in Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS XIII, (New
York, NY, USA), pp. 48–59, ACM, 2008.

[46] P. Lama, Y. Guo, C. Jiang, and X. Zhou, “Autonomic performance and power control for co-located
web applications in virtualized datacenters,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, pp. 1289–1302, May 2016.

[47] M. A. H. Monil, R. Qasim, and R. M. Rahman, “Energy-aware vm consolidation approach using com-
bination of heuristics and migration control,” in Ninth International Conference on Digital Information
Management (ICDIM 2014), pp. 74–79, Sept 2014.

[48] D. H. Woo and H.-H. S. Lee, “Extending amdahl’s law for energy-efficient computing in the many-core
era,” Computer, vol. 41, pp. 24–31, Dec. 2008.

[49] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-driven threading: Power-efficient and high-
performance execution of multi-threaded workloads on cmps,” in Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
XIII, (New York, NY, USA), pp. 277–286, ACM, 2008.

[50] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S. Id-
gunji, E. Ozer, and B. Falsafi, “Scale-out processors,” in 2012 39th Annual International Symposium on
Computer Architecture (ISCA), pp. 500–511, June 2012.

[51] J. Ng, X. Wang, A. K. Singh, and T. Mak, “Defragmentation for efficient runtime resource management
in noc-based many-core systems,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 11, pp. 3359–3372, 2016.

[52] Z. Chen and D. Marculescu, “Distributed reinforcement learning for power limited many-core system
performance optimization,” in Proceedings of the 2015 Design, Automation & Test in Europe Confer-
ence & Exhibition, pp. 1521–1526, EDA Consortium, 2015.

[53] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving autonomous power management using reinforce-
ment learning,” ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 18,
no. 2, p. 24, 2013.

[54] R. Ye and Q. Xu, “Learning-based power management for multicore processors via idle period manip-
ulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 7, pp. 1043–1055, 2014.

[55] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid reinforcement learning approach to auto-
nomic resource allocation,” in Autonomic Computing, 2006. ICAC’06. IEEE International Conference
on, pp. 65–73, IEEE, 2006.

[56] J. L. Berral, Í. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavaldà, and J. Torres, “Towards energy-aware
scheduling in data centers using machine learning,” in Proceedings of the 1st International Conference
on energy-Efficient Computing and Networking, pp. 215–224, ACM, 2010.

[57] G. Tesauro et al., “Online resource allocation using decompositional reinforcement learning,” in AAAI,
vol. 5, pp. 886–891, 2005.

[58] G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart, “Utility-function-driven resource allocation in
autonomic systems,” in Autonomic Computing, 2005. ICAC 2005. Proceedings. Second International
Conference on, pp. 342–343, IEEE, 2005.



[59] X. Lin, Y. Wang, and M. Pedram, “A reinforcement learning-based power management framework for
green computing data centers,” in Cloud Engineering (IC2E), 2016 IEEE International Conference on,
pp. 135–138, IEEE, 2016.

[60] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual machines consolidation in cloud
data centers using reinforcement learning,” in Parallel, Distributed and Network-Based Processing
(PDP), 2014 22nd Euromicro International Conference on, pp. 500–507, IEEE, 2014.

[61] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “MiBench: A
free, commercially representative embedded benchmark suite,” in Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop on, pp. 3–14, IEEE, 2001.

[62] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-multiprocessors,” in Proceedings of
the 5th Annual Workshop on Modeling, Benchmarking and Simulation, vol. 2011, 2009.

[63] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 programs: Characterization
and methodological considerations,” in ACM SIGARCH Computer Architecture News, vol. 23, pp. 24–
36, ACM, 1995.

[64] R. K. Maeda, P. Yang, X. Wu, Z. Wang, J. Xu, Z. Wang, H. Li, L. H. Duong, and Z. Wang, “Jade:
a heterogeneous multiprocessor system simulation platform using recorded and statistical application
models,” in Proceedings of the 1st International Workshop on Advanced Interconnect Solutions and
Technologies for Emerging Computing Systems, p. 8, ACM, 2016.

[65] Z. Wang, W. Liu, J. Xu, B. Li, R. Iyer, R. Illikkal, X. Wu, W. H. Mow, and W. Ye, “A case study on the
communication and computation behaviors of real applications in noc-based mpsocs,” in VLSI (ISVLSI),
2014 IEEE Computer Society Annual Symposium on, pp. 480–485, IEEE, 2014.

[66] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An analysis of efficient multi-core
global power management policies: Maximizing performance for a given power budget,” in Proceed-
ings of the 39th annual IEEE/ACM international symposium on microarchitecture, pp. 347–358, IEEE
Computer Society, 2006.

[67] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread scheduling and global power
management for heterogeneous many-core architectures,” in Proceedings of the 19th international con-
ference on Parallel architectures and compilation techniques, pp. 29–40, ACM, 2010.

[68] M. D. Pendrith and C. Sammut, On reinforcement learning of control actions in noisy and non-
Markovian domains. Citeseer, 1994.

[69] K. Sikorski and T. Balch, “Model-based and model-free learning in markovian and non-markovian
environments,” in Proceedings of Agents-2001 Workshop on Learning Agents, 2001.

[70] D. V. Djonin and V. Krishnamurthy, “V-blast power and rate control under delay constraints in marko-
vian fading channels-optimality of monotonic policies,” in Information Theory, 2006 IEEE International
Symposium on, pp. 2099–2103, IEEE, 2006.

[71] G. Dhiman and T. S. Rosing, “Dynamic power management using machine learning,” in Proceedings
of the 2006 IEEE/ACM International Conference on Computer-aided Design, ICCAD ’06, (New York,
NY, USA), pp. 747–754, ACM, 2006.

[72] R. Ubal, J. Sahuquillo, S. Petit, and P. López, “Multi2sim: A simulation framework to evaluate
multicore-multithread processors,” in IEEE 19th International Symposium on Computer Architecture
and High Performance computing, page (s), pp. 62–68, Citeseer, 2007.



[73] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “Mcpat: an integrated
power, area, and timing modeling framework for multicore and manycore architectures,” in Microarchi-
tecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pp. 469–480, IEEE,
2009.

[74] T. Simunic, L. Benini, P. Glynn, and G. De Micheli, “Event-driven power management,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 7, pp. 840–857,
2001.

[75] S. J. Bradtke and M. O. Duff, “Reinforcement learning methods for continuous-time markov decision
problems,” Advances in neural information processing systems, pp. 393–400, 1995.

[76] “MediaBench.” http://euler.slu.edu/?fritts/mediabench/.

[77] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized growing and pruning rbf (ggap-
rbf) neural network for function approximation,” IEEE Transactions on Neural Networks, vol. 16, no. 1,
pp. 57–67, 2005.

[78] M. Tokic and G. Palm, “Value-difference based exploration: Adaptive control between epsilon-greedy
and softmax.,” in KI, pp. 335–346, Springer, 2011.

[79] K. Choi, R. Soma, and M. Pedram, “Dynamic voltage and frequency scaling based on workload decom-
position,” in Proceedings of the 2004 international symposium on Low power electronics and design,
pp. 174–179, ACM, 2004.

[80] V. Pallipadi and A. Starikovskiy, “The ondemand governor,” in Proceedings of the Linux Symposium,
vol. 2, pp. 215–230, sn, 2006.

[81] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on Multi/Many-core Systems: Survey of
Current and Emerging Trends,” in Proceedings of ACM Design Automation Conference (DAC), pp. 1:1–
1:10, 2013.

[82] H. F. Sheikh and I. Ahmad, “Efficient heuristics for joint optimization of performance, energy, and
temperature in allocating tasks to multi-core processors,” in IEEE International Green Computing Con-
ference (IGCC), pp. 1–8, 2014.

[83] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing memory controllers: A reinforce-
ment learning approach,” in Computer Architecture, 2008. ISCA’08. 35th International Symposium on,
pp. 39–50, IEEE, 2008.

[84] X. Lin, P. Bogdan, N. Chang, and M. Pedram, “Machine learning-based energy management in a hybrid
electric vehicle to minimize total operating cost,” in Computer-Aided Design (ICCAD), 2015 IEEE/ACM
International Conference on, pp. 627–634, IEEE, 2015.

[85] L. Monostori, A. Márkus, H. Van Brussel, and E. Westkämpfer, “Machine learning approaches to man-
ufacturing,” CIRP Annals-Manufacturing Technology, vol. 45, no. 2, 1996.



7 BIOGRAPHIES

Amit Kumar Singh received the B.Tech. degree in Electronics Engineering from Indian Institute of Technol-
ogy (Indian School of Mines), Dhanbad, India, in 2006, and the Ph.D. degree from the School of Computer
Engineering, Nanyang Technological University (NTU), Singapore, in 2013. He was with HCL Technolo-
gies, India for year and half before starting his PhD at NTU, Singapore, in 2008. He worked as a post-doctoral
researcher at National University of Singapore (NUS) from 2012 to 2014 and at University of York, UK from
2014 to 2016. Currently, he is working as senior research fellow at University of Southampton, UK. His cur-
rent research interests include system level design-time and run-time optimizations of 2D and 3D multi-core
systems with focus on performance, energy, temperature, and reliability. He has published over 45 papers in
the above areas in leading international journals/conferences. Dr. Singh was the receipt of ISORC 2016 Best
Paper Award, PDP 2015 Best Paper Award, HiPEAC Paper Award, and GLSVLSI 2014 Best Paper Candi-
date. He has served on the TPC of IEEE/ACM conferences like ISED, MES, NoCArc and ESTIMedia.

Charles Leech is currently a Senior Research Assistant working for the PRiME Project in the Department
of Electronics and Computer Science at the University of Southampton where he is completing is PhD and
received a BEng Hons degree in Electronic Engineering. His focus is on the development of a cross-layer
framework for run-time management and system-level approximate computing on embedded platforms. His
work also includes power and performance optimisation of next-generation applications, including computer
vision, on heterogeneous many-core systems.

Basireddy Karunakar Reddy received his M.Tech. degree in Microelectronics and VLSI from Indian In-
stitute of Technology (IIT), Hyderabad, India in 2015. He is a Ph.D. student in Electronic and Electrical
Engineering at the University of Southampton. His research interests include design-time and run-time opti-
mization of performance and energy in many-core heterogeneous systems.

Bashir M. Al-Hashimi is an ARM Professor of Computer Engineering, Dean of the Faculty of Physical
Sciences and Engineering, and the Co-Director of the ARM-ECS Research Centre, University of Southamp-
ton, Southampton, U.K. He has published over 380 technical papers. His current research interests include
methods, algorithms, and design automation tools for low-power design and test of embedded computing
systems. He has authored or co-authored five books and has graduated 35 Ph.D. students.

Geoff V. Merrett received the B.Eng. degree (Hons.) in electronic engineering and the Ph.D. degree from the
University of Southampton, Southampton, U.K., in 2004 and 2009, respectively. He is currently an Associate
Professor in electronic systems with the University of Southampton. His current research interests include
low-power and energy harvesting aspects of embedded & mobile systems. He has published over 100 articles
in journals/conferences in the above areas. Dr. Merrett was the General Chair of the Energy Neutral Sensing
Systems Workshop from 2013 to 2015. He is a fellow of the The Higher Education Academy.


