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The Big Picture

The Chair for Embedded Systems (CES) at the Karlsruhe Institute of Technology (KIT)
provided me with a productive research environment within which to complete my thesis.
Currently, the focus at the CES for architecture and design lie in multi-core systems, de-
pendability, and low power. This includes, for instance, both adaptive and self-organizing
on-chip systems as well as leveraging dark silicon to achieve thermal/dependability goals.

As with any work of this nature, this thesis builds upon the foundation laid by past ex-
plorations and has benefited from various collaborations. My initial work in the realm of
distributed run-time adaptive management was done during my Diploma thesis [CES1],
which developed AdNoC, an adaptive Network-on-Chip architecture. This work also man-
ifested itself in two publications of the CES: In [CES2], the adaptive Network-on-Chip
router architecture is presented, and in ROAdNoC [CES3] the corresponding distributed
monitoring infrastructure. Al Faruque et al subsequently published their landmark paper
ADAM [CES4] for the CES introducing agent-based resource management to multi-core
systems, and thereby overcoming growing scalability concerns.

The developed concepts were then incorporated and expanded in the Digital On-demand
Computing Organism (DodOrg) project. This collaboration between Computer- and
Electrical-Engineering departments at the KIT (including the CES) along with the Em-
bedded Systems department of the University of Frankfurt, aimed to create a computing
architecture inspired by processes occurring in nature [CES5] [CES6]. Initially the con-
tribution of the CES focused on power management. This was later extended to also
include thermal management (TAPE [CES7]). This was realized through the application
of economic principles to agent-based management. The DodOrg project itself was part
of a wider initiative, the Priority Program (Schwerpunktprogramm, SPP) 1183, “Organic
Computing”, of the German Research Foundation (DFG).

The CES also played a pivotal role in the creation of a further Priority Program, the DFG
SPP 1500“Dependable Embedded Systems”. This ongoing SPP deals with the growing de-
pendability concerns in nano-scale CMOS [CES8] due to aging effects, high power densities,
high process variation, etc. The SPP 1500 unifies various individual projects throughout
Germany, working together to identify future trends and to model/quantify and improve
dependability [CES9]. An example of the challenges it aims to address is managing the
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viii 0. The Big Picture

aforementioned dark silicon [CES10]. The projects cover a wide scope: spanning from the
architecture level over the OS level to the compiler level. The SPP 1500 also cooperates
with NSF Variability Expedition, a US initiative for the development of variability-aware
software for nano-scale devices. One of the contributions of the CES is the VirTherm-3D
project – in collaboration with TU Munich (TUM) [CES11]. In it, mulit-core adaptivity is
employed in order to achieve dependability in a 3D layered architecture. The VirTherm-
3D project is also responsible for the joint hardware platform available to all SPP 1500
members.

The CES is also involved in multiple sub-projects of the DFG Transregional Collaborative
Research Center (TCRC) 89 “Invasive Computing”. This ambitous undertaking of KIT,
TUM, together with the Friedrich Alexander University in Erlangen (FAU) has set its goal
to facilitate self-adaptive and resource-aware programming by unifying new programming
concepts, languages, compilers, operating systems together with a customized multi-core
architecture [CES12]. The key idea therein being that programs are given the possibility
to spread compution of code fragments over a dynamic area in a multi-core system – in
a sense “invading” additonal resources. This results in a high degree of paralellism. One
of the contributions of the CES is an agent-based approach that manages computational
resources and facilitates coordination of invasion [CES13] in a distributed manner, thus
maintaining scalability.
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Abstract

Today’s fabrication technology, operating at technology nodes of 22 nm and below, allows
the integration of several billion transistors on a single chip. A major drawback of the
high integration density, is the resulting increase in power per chip area. This power
density directly results in elevated on-chip temperatures. The small structure sizes also
lead to a number of reliability issues, of which the most concerning are again dependent
on temperature. Examples of such issues are electromigration and NBTI (“Negative Bias
Temperature Instability”) aging mechanisms. Recently, NBTI has emerged as the most
dominant in current technologies.

Initially, this thesis addresses the reliability issues from a thermal perspective, focusing
mostly on NBTI. This includes an explanation and analysis of models developed together
with our partners from the semiconductor industry, in order to show the relationship
between reliability and temperature. Additionally multiple thermal management strategies
are examined in order to analyze their effects on reliability. This analysis shows that it is
possible to double chip lifetime by choosing the suitable thermal management strategy.

Subsequently, multiple novel methods for on-chip thermal management are introduced
aiming to optimize thermal properties. This includes both methods for reducing peak
temperatures as well as for reducing both spatial and temporal thermal variation. The
State-of-the-Art divides thermal management methods into two classes: so-called reac-
tive methods act when a given temperature threshold is hit; proactive methods, on the
other hand, rely on thermal or statistical models to make predictions on expected future
temperatures, and act based on these predictions (i.e. before a threshold is hit).

The presented methods are first applied to the processor microarchitecture. Here, the
Control-Based Optimization of Load-Balancing (COOL) is examined whose goal it is to
distribute computational activity among individual components of a processor in order to
minimize both peak temperatures and thermal variations. This is realized by partitioning
a component and performing a self-optimizing assignment of computational activity to
each component part.

Next, thermal management methods for multi-core processors are presented and analyzed.
These are designed to exhibit a high degree of scalability to remain applicable to computer

xi



xii 0. Abstract

architectures with a high number of processing cores. This means avoiding a central
“bottleneck” and reducing communication and computational overhead. The underlying
mechanism employed is an agent-based system that operates distributed over the chip.
Thus the problem complexity can be reduced by exploiting locality when making thermal
management decisions.
The most important methods, that were developed are the following:

• Thermal-Aware Agent-Based Power Economy (TAPE): A completely decentralized
approach where each processor core is assigned a power budget. This budget is
traded by agents of neighboring cores based on supply and demand (i.e. how much
power is currently being used to run application tasks and how much additional
power is available). The temperature influences this trading by increasing the cost
of the power budget. The power budget can be distributed throughout the entire
chip through propagation from core to core over multiple successive trading intervals.

• Economic Learning for Thermal-Aware Power Budgeting (EcoLe): A hierarchical
approach where power budget is distributed among clusters. In this context, a cluster
is a grouping of a subset of cores located in a defined continuous region of the chip.
Agents acting at cluster-level are responsible for both the power budget within the
cluster as well as providing information to higher hierarchy levels which can in turn
disseminate this information among other clusters. This allows exploiting locality for
management decisions within a cluster while also retaining access to global system
knowledge (e.g. the temperature distribution).

Analysis of the methods is done partially through simulation and partially through im-
plementation on an FPGA-based hardware platform whose thermal behavior is captured
using both on-chip sensors and an infrared thermal camera. This allows evaluation of the
methods under real operating conditions. On average, the methods for multi-core archi-
tectures achieve a reduction of peak temperature by 15◦C with only a small decrease in
performance. The method optimizing the microarchitecture reduces the peak temperature
by 13◦C. This reduction is slightly smaller, as a smaller area footprint of the processor is
affected. Through these methods, chip lifetime can be increased by at least a factor of
two.
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Zusammenfassung

Heutige Fertigungstechnologien, welche Strukturgrößen von 22 nm und darunter haben,
erlauben es, mehrere Milliarden Transistoren auf einem einzelnen Chip zu integrieren.
Ein großer Nachteil hoher Integrationsdichte ist es, dass sich der Leistungsverbrauch pro
Chipfläche ebenfalls erhöht (“Leistungsdichte”), was direkt steigende Temperaturen auf
dem Chip mit sich bringt. Mit kleinen Strukturgrößen treten auch eine Reihe von Zuver-
lässigkeitsproblemen auf, von denen die mit den gravierendsten Auswirkungen wiederum
von der Temperatur abhängig sind. Als Beispiel hierfür gelten z.B. Elektromigration und
NBTI (“Negative Bias Temperature Instability”), von denen vor allem letzteres in jüngster
Zeit immer häufiger in den Vordergrund rückt. Die vorgestellte Arbeit befasst sich zunächst
mit diesen Zuverlässigkeitsproblemen und setzt dabei einen Schwerpunkt auf NBTI. Dies-
bezüglich werden die von uns, in Zusammenarbeit mit unserem industriellen Partner en-
twickelten Modelle erläutert und analysiert, um das Verhältnis zwischen Temperatur und
Zuverlässigkeit zu verdeutlichen. Weiterhin werden verschiedene Temperaturmanagement-
Strategien und deren Auswirkungen auf die Zuverlässigkeit der Chips untersucht. Hierbei
wird gezeigt, dass es möglich ist, durch eine geeignete Temperaturmanagement-Strategie
die Lebensdauer von Chips zu verdoppeln.

Zunächst werden mehrere neue Methoden zum Management der Chiptemperatur vorgestellt,
mit dem Ziel Temperatureigenschaften zu optimieren. Dies betrifft sowohl Methoden zur
Senkung der Höchsttemperatur wie auch Methoden zur Reduzierung der räumlichen und
zeitlichen Variation der Temperatur. Der Stand der Forschung teilt entsprechende Meth-
oden in zwei Klassen auf: sogenannte reaktive Methoden agieren wenn ein vorgegebener
Temperaturschwellwert übertroffen wird; proaktive Methoden setzen hingegen auf ther-
mische oder statistische Modelle um Vorhersagen über zu erwartende Temperaturen zu
treffen und agieren dann, um den vorhergesagten Zustand zu vermeiden. Zunächst wer-
den die vorgestellten Methoden angewandt auf der Mikroarchitektur eines Prozessors.
In diesem Rahmen wird ein Verfahren (Control-Based Optimization of Load-Balancing,
COOL) vorgestellt welches zum Ziel hat, die Rechenaktivität auf individuelle Komponen-
ten des Prozessors zu verteilen, so dass sich dessen Höchsttemperatur wie auch dessen Tem-
peraturvariationen minimieren. Dies erfolgt durch eine Partitionierung einer Komponente
und einer selbst-optimierenden Zuweisung der Rechenaktivität an diese Teilkomponenten.

Des Weiteren werden Methoden für Multiprozessorsystemen vorgestellt und analysiert.
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xiv 0. Zusammenfassung

Diese sind dazu konzipiert, einen hohen Grad an Skalierbarkeit zu erzielen, um auf Ar-
chitekturen mit einer Vielzahl von Prozessorkernen anwendbar zu bleiben, d.h. ohne einen
(zentralen)“Flaschenhals”zu haben bzgl. sowohl Kommunikations- als auch Rechenaufwand.
Der zugrunde liegende Mechanismus hierfür ist ein agenten-basiertes System, welches über
den gesamten Chip verteilt arbeitet. Dadurch wird die Problemkomplexität durch die Aus-
nutzung von Lokalität auf einem kleineren Suchraum reduziert. Die wichtigsten Methoden,
welche entwickelt wurden:

• Thermal-Aware Agent-Based Power Economy (TAPE): Ein komplett dezentrales
Verfahren, in welchem jeder Prozessorkern ein Energiebudget zugewiesen bekommt.
Dieses Budget wird dann, basierend auf Angebot und Nachfrage (d.h. wie viel En-
ergie gerade gebraucht wird um Anwendungen auszuführen bzw. wie viel Energie
verfügbar ist) zwischen benachbarten Kernen getauscht. Die Temperatur beeinflusst
diesen Austausch durch eine Erhöhung der Kosten der Energie. Durch mehrere
aufeinander folgende Tauschintervalle ist es möglich, Energiebudgets von Kern zu
Kern über den gesamten Chip zu propagieren.

• Economic Learning for Thermal-Aware Power Budgeting (EcoLe): Ein hierarchis-
ches Verfahren welches Energiebudgets auf Clusterebene verteilt. Hierbei bezeichnet
ein Cluster eine Gruppierung von einer Menge von Kernen innerhalb eines definierten
Bereichs des Chips. Agenten, welche einen Cluster verwalten, sind dafür zuständig
sowohl das Energiebudget in ihrem Cluster zu verteilen, als auch den Informa-
tionsaustausch über höher gelegene Hierarchieebenen mit entsprechenden Agenten
anderer Cluster durchzuführen. Somit kann auch hierbei räumliche Lokalität aus-
genutzt werden und das System hat dennoch Zugriff auf die globalen Temperaturin-
formationen der höheren Ebenen.

Die Analyse der Verfahren verlief teilweise durch Simulationen, teilweise aber auch durch
eine Implementation auf einer FPGA-basierten Hardwareplattform, dessen thermisches
Verhalten von einer Infrarotkamera erfasst wurde. So war es möglich, die Verfahren unter
realen Bedingungen zu evaluieren. Die Verfahren erzielen im Durchschnitt eine Senkung
der Höchsttemperaturen um etwa 15◦C bei geringer Steigerung der Laufzeiteffizienz (ver-
gleichbare Verfahren benötigen 44% mehr Laufzeit). Bei der Optimierung der Mikroar-
chitektur werden die Höchsttemperaturen im Durchschnitt um 13◦C gesenkt (die Reduk-
tion ist hier etwas geringer, da die betroffene Chipfläche insgesamt kleiner ist als bei dem
Management von Multiprozessorsystemen), ohne Erhöhung der Laufzeit. Die Lebensdauer
des Chips wird durch die Verfahren um mindestens einen Faktor zwei erhöht.
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1. Introduction

Temperature has long been a limiting factor in electronics, defining boundaries on per-
formance and power consumption as well as limiting dependable operation. This holds
particularly true in current VLSI design where the market demands ever-increasing per-
formance. Temperature management is a means for dealing with these limits and pushing
the performance envelope by altering power consumption or increasing heat dissipation.
The first line of defense lies in packaging design. Adding a heat sink greatly increases
heat dissipation – even more so the use of active cooling methods, e.g. using fans or liquid
cooling. While designing these physical means for removing heat from a chip are indis-
pensable, the means themselves are often limited due to cost or area constraints. As the
power per area grows, e.g. cooling fans have increased in both size and in their own power
consumption, incurring high energy cost. This particularly presents a problem in systems
where space is severely limited, e.g. as is the case in embedded systems. All this makes it
necessary to add another layer of temperature management: system-level Dynamic Ther-
mal Management (DTM) with the goal of managing temperature by controlling the power
usage of a chip during runtime. This need for DTM is continually rising as temperatures
and dependability concerns increase, largely due to the effects of technology scaling.

In 1965, G. Moore published his seminal work predicting the trend in sizing and complexity
of semiconductor devices. Often referred to as Moore’s law, this prediction calls for the
doubling of the number of transistors every two years [91]. It remains valid until the present
day as feature sizes have steadily shrunk over the past decades. Technology scaling has
opened up the path to ever increasingly complex systems. The large amount of transistors
available allow placing multiple processors or even whole systems consisting of several
components joined together by an on-chip network on a single chip, for instance.

The exponential growth comes at a price due to the pitfalls that accompany small structure
sizes. These structures are inherently less robust and as a result, more susceptible to failure
than larger ones. Small cracks or erosions that were unnoticeable at the micrometer level
are catastrophic regarding failures in nano-scale devices. These defects can occur during
the manufacturing process, but may also occur due to degradation over time caused by
temperature-dependent aging effects. The small structures are also plagued by a great
deal of variability. While the absolute variance has remained the same or decreased, it is
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2 1. Introduction

its relative impact that is concerning. While size variations of a few nm were negligible
in larger structures (i.e. > 45 nm), these can have a great impact as sizes fall below 20
nm. Device characteristics are no longer deterministic at design time, necessitating wider
safety margins to deal with the expected range of characteristics.

The problems arising from both aging-effects as well variability are compounded by the
decrease in voltage bias. Where a large potential difference may be able to compensate
some of these effects (e.g. when developing defects increase resistance and thereby reduce
currents), a small voltage bias fails a lot sooner. Since the difference between supply and
threshold voltages is also shrinking, the potential barrier hindering charge carriers is lower.
As a result safety margins are considerably reduced, thereby for instance decreasing the
critical chargeQcrit of a circuit and increasing susceptibility to soft errors. In a sense, this is
a double edged sword. While on the one hand a higher voltage is able to compensate device
degradation, on the other it also accelerates its effects by increasing power consumption
and thereby temperature.

While in general the power consumption of a specific design decreases when moving from
one technology node to the next, the power densities can increase dramatically due to
the decrease in occupied area. Typically, however, designs in smaller technology nodes
also contain more features – either the designs are inherently more complex or contain
duplications (as is the case in multi-core architectures) – and thereby also increase the
overall power consumption, especially if these also target higher frequencies. Together this
means elevated temperatures which can threaten dependability.

There is also a great deal of complexity incurred when managing systems running on
designs consisting of billions of transistors. This creates a high-dimensional problem space
where solutions are sought for problems that are inherently complex – many management
problems, i.e. assigning resources, already being in the realm of NP-hard problems. This
calls for solutions which offer a large degree of scalability, oftentimes based on heuristics
which aim to find approximations for optimal solutions where finding optimal solutions is
not feasible.
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Figure 1.1.: Trends in number of transistors and feature size. Each point from the CPU
DB represents a unique processor.
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1.1. A Closer Look at Processor Trends

The Stanford CPU DB [7] affords us with a repository of statistics on a large portion
of current and past processors. Additionally, the International Technology Roadmap for
Semiconductors (ITRS) regularly publishes predictions on the future of semiconductor
devices. Together, these sources provide data which can give many insights on technology
development and future trends. From a thermal perspective it is of particular interest how
these trends affect the power consumption of a chip.
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Figure 1.2.: Trends in Thermal Design Power (TDP) and supply voltage (Vdd)

Concerning general scalability, Figure 1.1 corroborates the validity of Moore’s law. The
amount of transistors has indeed experienced an exponential growth. The same holds
true for the used feature sizes over time, although these are limited to discrete values
corresponding to technology nodes. As we can see, the ITRS predicts this trend to continue
into the future. More importantly, when considering temperature is how technology scaling
affects Thermal Design Power (TDP). TDP is a metric supplied by chip manufacturers
that represents the power consumed when the chip is under maximum workload. This
serves as a guide for designers of temperature management by giving the maximum power
that needs to be removed from the chip when transferred into heat. As can be seen, the
TDP underwent exponential growth up until around 2005, but has since begun to level
out in its maximum. Why this is the case is explained in conjunction with the discussion
of voltage below. It is also evident that current processors exhibit a wide spectrum of
TDPs, especially compared to past generations. This demonstrates a current trend of
diversification of processors as many now specifically target low power (for battery-powered
mobile devices, for instance) while others target high performance.

The voltage of a processor determines how fast parasitic capacitances can be charged and
thus determines how fast, e.g. logic gates can operate. Smaller feature sizes result in
smaller capacitances, meaning a given design will require less voltage to operate at the
same speed compared to larger feature sizes. As a result, the required voltage for a given
feature size depends on the desired frequency. Initially, as can be seen in Figure 1.2, supply
voltage (Vdd) was fixed at 5 V. Theoretically this convention would have allowed ever-
increasing frequencies, but fixing the voltage became less and less feasible as the number
of transistors grew causing power consumption to explode.
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Figure 1.3.: Trends in operating frequency and typical number of cores per design

Typically voltage by itself scales with the square root of feature size. However, the demand
for extra performance has historically called for an increase in operating frequency which
again means increasing the reduced voltage. Thus, the voltage decrease from one tech-
nology node to the next has typically been reduced, i.e. the potentially attainable voltage
decrease was sacrificed for the sake of performance. An interesting change happens in Fig-
ure 1.3 after 2005. As can be seen, at this time frequency begins to rise at a much lower
rate. At the same time processors begin to incorporate multiple cores. This paradigm
shift represents the beginning of the multi-core era where increased performance demands
are additionally met through parallelization. This was made necessary to avoid hitting a
power wall where the produced power is unable to be dissipated as heat.

As a continuation of this trend the ITRS predicts the number of cores to double each 18
months [11] analog to Moore’s predicted doubling of transistors. Current front runners
in this domain include the Intel Single-chip Cloud Computer (SCC) with 48 cores [10]
and the Tilera TILE-Gx family of processors with up to 72 cores [51]. Future multi-
core architectures are predicted to integrate thousands of cores [26] on a single chip. The
performance of these architectures will depend largely on the amount of parallelization that
can be achieved which is limited by Amdahl’s law [59]. Theoretically, a large improvement
is possible in terms of performance per Watt for highly parallelizable applications.

The most relevant trend when regarding temperature is the development of power densities
over time. Figure 1.4 depicts the average worst-case power densities, i.e. the average power
density on chip when under a worst-case workload. The presented graph is similar to that
of TDP, indicating that overall chip area has largely remained the same. Power densities
also grew continuously until around 2005.

To achieve a complete picture of predicted future trends, however, it is necessary to adopt
a more differentiated view of processor technologies. To this effect, the ITRS defines two
processor classifications: high-performance and cost-performance.

For high-performance processors, the severe increase in power density that was predicted at
that time has failed to come into effect. Instead, due to the aforementioned paradigm shift
to multi-cores along with the research into new technologies (high-k dielectrics, FinFET),
power densities have stopped increasing and are predicted by the IRTS to level out around
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Figure 1.4.: Development of power density over time calculated using data from [7] and
ITRS [11] predicted future stabilization of power density

0.42 W/mm2 in the coming years. While this is true on average, a higher integration
density can still result in higher peak power densities. For instance, these can range from
around 2 W/mm2 in the 65 nm technology node to 7.2 W/mm2 for 45 nm [81].

Unfortunately, although it is possible to manufacture high-performance processors with
little or no increase in power density, this comes with inhibitive design and production
costs that are contrary to ubiquitous computing demands. As such, a large number of
future processors will instead be optimized for cost-performance. For these, the future
trend in Figure 1.4 predicts further rise in power density. This in itself presents a number
of challenges to hardware-software co-design to be able to utilize a chip to its full poten-
tial – for instance leveraging supply voltage with dark silicon [111]. Regardless whether
power densities increase or not, the growing susceptibility of small structure sizes mean
thermal management will still grow in importance from a dependability viewpoint. Only
the employed strategies may shift to favor ones that minimize long-term aging effects.

More recently, 3D chip architectures have emerged to increase performance per chip area.
So far, the most common manufacturing technique involves multiple individual chip layers
stacked on top of each other and connected through Through Silicon Vias (TSVs). Unfor-
tunately, surface power densities are compounded in these 3D architectures. In the general
case, heat must first travel through multiple layers before reaching the heat sink, which is
only located at the top most layer.

1.2. Key Challenges

Dependable system operation has long been expected from hardware. In this context,
dependability is a property that encompasses both reliability and availability. That is,
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6 1. Introduction

execution is expected to terminate correctly and resources are expected to remain available
throughout the lifetime of a chip. The temperature-dependent aging effects typically first
threaten reliable operation. These gradually degrade device parameters, altering their
operating characteristics, e.g. such as circuit delay. Eventually, they may lead to failures
of components and thereby limit their availability.

Typically DTM techniques target optimizing performance within given thermal constraints.
Little work has been done examining the effects of different thermal management strate-
gies on system lifetime. Intuitively, any form of thermal management will reduce most
temperature-dependent aging effects. Thus, constraining temperatures has the added
bonus of increased general dependability. Not all strategies are equal, though. One that
achieves the highest performance may not necessarily be the same one that minimizes
aging. Moreover, reducing one aging mechanism may result in worsening the effects of
another.

• Therefore, it is necessary to bridge the gap between thermal management
and dependability. In this scope, considering the effects of temperature on mul-
tiple aging mechanisms is required to determine the overall lifetime of a chip. In
particular this means analyzing thermal management strategies and their effect on
aging mechanisms. This can be used to determine situations where minimizing one
aging effect will worsen another, for instance as is the case with Negative Bias Tem-
perature Instability (NBTI) and thermal cycling.

As mentioned, the main consideration of DTM is keeping temperatures within predefined
bounds which are deemed to be a safe range. When optimizing for performance, the system
generally operates at maximum allowable power that keeps temperatures as close to a
specified fixed threshold as possible. This is far from optimal when targeting dependability,
however. New strategies need to be developed that reduce temperature, ideally with little
impact on performance.

• Management strategies targeting dependability to increase system lifetime must min-
imize aging effects. From a thermal standpoint this means a shift from optimizing
performance within thermal constraints to optimizing temperature while keeping
performance constraints. This entails both reducing peak temperatures as well as
thermal gradients, as both can have a negative impact on dependability (cf. Chap-
ter 3).

Processors in the multi-core era offer a great deal of potential for dynamic thermal man-
agement. Apart from traditional methods such as Dynamic Voltage and Frequency Scaling
(DVFS), they allow controlling the power density distribution through the migration of
tasks to cores. Management problems such as these are typically computationally expen-
sive. Even when considering single cores, in its simplest form, the assignment of tasks
reduces to the np-hard1 knapsack problem [27]. Expanded to multiple cores, it becomes
the even more complex multiple knapsack problem. In this sense, general thermal man-

1While determining if a solution to the knapsack problem exists is np-complete, finding the solution itself
is np-hard
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1.2. Key Challenges 7

agement through task mapping can be expressed as the following:

maximize :
m∑
i=1

n∑
j=1

pi,jxi,j ,

subject to : MAXm
i=1T (

n∑
j=1

xi,j) < Tmax,

xi,j ∈ {0, 1} (1.1)

when mapping n tasks to m cores. xi,j = 1 if task j is mapped to core i. pi,j is the
value of mapping task j to core i, i.e. in terms of performance. Here, T is a tempera-
ture function which determines the temperature of each core (i.e. for a static mapping
this would correspond to a steady-state temperature). In reality, of course, determining
temperatures is more difficult, as heat is also conducted to and from the surroundings
of a core. Furthermore, when performing dynamic thermal management, the knapsack
problem needs to be solved periodically during runtime. This also entails continuously
updating the temperature function. In practice, this requires either the use of models for
predicting future temperatures or continuous observational feedback and control.

Typically, State-of-the-Art thermal management is done by a central instance. This creates
both a central point of failure as well as a communication bottleneck. To be able to make
DTM decisions, the central instance must be kept up-to-date on the state of each core,
which requires continuous transmission of temperature data. The only way to deal with
these problems is shifting DTM to novel distributed techniques.

Even with the large communication overhead, the major advantage of a central instance
is the availability of global system knowledge. It will have information about all tasks
and all cores and their current state, e.g. temperature, currently running tasks, etc. As
such, a central instance always has more potential for finding optimal solutions than a
distributed one. However, the algorithmic complexity rapidly grows, as architectures with
several cores running several tasks create a large problem space. Centralized approaches
quickly become infeasible even when using a heuristic solution.

A major challenge is thus finding a way to efficiently provide access to global system
knowledge while reducing problem complexity – combining the benefits of a centralized
approach with those of distributed ones.

• Novel management techniques are required which scale to large multi-core ar-
chitectures. These techniques should be distributed to reduce bottlenecks (both in
communication as well as computation) and avoid having a central point of failure.
Furthermore, techniques for distributing and aggregating system knowledge need
to be developed to allow distributed DTM to achieve a similar quality as is pos-
sible in centralized ones. A general obstacle hindering the adoption of distributed
techniques is the difficulty to verify their stability. It is thus necessary to analyze
these techniques in this respect to guarantee that the individual instances do not
contradict each other in their actions. Local optimizations should not lead to e.g.
localized temperature minima that diverge too far from, and thus prevent, a global
optimization.

• Furthermore, emerging 3D architectures exacerbate all temperature problems.
Herein, the challenge lies in adapting DTM techniques for planar multi-core archi-
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8 1. Introduction

tectures to ones with multiple layers stacked on top of each other. This requires
consideration of the high vertical heat conductance.

While DTM has been a necessity for some time, the above challenges reflect the change
in requirements brought on by the recent trends in semiconductor devices and the shift in
focus from performance optimization to increasing dependability – all while dealing with
the complexity of large-scale multi-core architectures.

1.3. Thesis Contribution

In the scope of this thesis, the above key concerns are addressed with the following:

• This thesis presents an overview of the effects of temperature on key reliability con-
cerns, covering the most dominant aging mechanism as well as timing errors. Here
particular emphasis is placed on the analysis of Negative Bias Temperature Instabil-
ity (NBTI). The studied effects are then used to evaluate the overall effect of thermal
management on system lifetime.

• Thermal management is in essence a control problem. Temperatures are observed
by the DTM infrastructure which in turn changes system configuration. This can
either occur as a reaction to the observed temperatures directly, or proactively by
considering predicting temperatures based on observations. Using control-theory
principles, a management method is presented which optimizes temperatures using
extremum-seeking control to drive the output temperature function of a system to a
minimum.

• Scalability is addressed using a fully distributed agent-based system to manage tem-
perature. This system is based on economic principles to distribute a limited power
budget among the cores of a multi-core architecture. It exploits the concept of local-
ity, making management decisions only in local regions in order to keep the problem
space small. Additionally, an analysis of stability is presented to be able to guarantee
proper functionality.

• The fully distributed approach is augmented by a hierarchical one. This has been
designed with the goal of facilitating access to global system knowledge while sac-
rificing as little locality as possible. The approach also contains a basic learning
technique to be able to increase knowledge about local thermal states. Additionally,
this approach is extended to cover the realm of 3D multi-core architectures.

1.4. Thesis Structure and Overview

The rest of this thesis is organized into five chapters; each one dedicated to its own facet
of thermal analysis and management. First, Chapter 2 examines the basics of the tem-
perature development and analysis techniques employed in today’s systems. This includes
a look at the physics underlying heat generation and heat transfer. The analysis section
focuses on different forms of temperature measurement – from on-chip sensors to infrared
thermal cameras – and thermal simulation techniques. Additionally, an overview of ther-
mal management techniques in multi-core architectures is presented including a glimpse
into 3D architectures and their particular thermal caveats.

8



1.4. Thesis Structure and Overview 9

Chapter 3 explores the link between chip temperature and key reliability concerns. Initially,
an overview of some of the most pressing temperature-related aging effects is given. In this
context, particular focus is given to Negative Bias Temperature Instability (NBTI) which
includes our own models. Afterwards, the effect of thermal management on dependability
is examined by taking different DTM strategies and quantifying their impact on chip
lifetime. The content of this chapter is based on and expanded from my work in [56] and
[15].

Chapter 4 examines thermal temperature from a control-theoretic standpoint and presents
an approach for optimizing temperature that first appeared in [44]. This approach specifi-
cally targets microarchitectural components where the performance overhead of migrating
computation can be kept low. Analysis is performed using measurements of an FPGA-
based implementation as well as through simulation of an implementation in a superscalar
register file.

Chapter 5 carries thermal management concepts into the realm of multi-core systems.
This chapter presents two proactive thermal management approaches. The first of these
is a fully distributed approach based on the economic principle of supply and demand.
The second is a hierarchical approach based on auctions that encompasses rudimentary
learning. This approach also deals with the challenge of managing temperature in 3D multi-
core architectures. The approaches were first introduced in [43] and [45], respectively.

Chapter 6 presents a summary of this thesis and provides an outlook into future work.

9





2. Thermal Basics and Related Work

Before analyzing the effects of temperature on dependability, it is first necessary to examine
the thermal characteristics of a chip. It must be clear how and where heat is created and
how it spreads. In this chapter we take a look at these issues and present both theoretical
and experimental methods for quantifying these characteristics.

Temperature distribution itself is a well-studied topic, and its development over time can
be expressed by the first law of thermodynamics: a change in system temperature is equal
to the amount of heat energy supplied/removed to the system (Q) plus the work (W ) done
by the system. In semiconductor devices, this work equates to power consumption. In the
form of a differential equation, the first law of thermodynamics is the following [30]:

dT = δQ+ δW (2.1)

For CMOS circuits, the power consumption consists of both dynamic and static power,
which are dominated by switching and leakage power, respectively. Switching power, which
is expressed as [87]

Pswitch = αCfv2, (2.2)

is determined by the load capacitance C of a circuit, the operating frequency f , and the
voltage V . Here α is an activity factor that states the fraction of the capacitance affected,
i.e. which logic gates of the circuit are switching and what fraction of C they represent.

It becomes evident from Equation 2.2 what parameters can be adjusted to perform thermal
management based on switching power. Since it factors in quadratically, reducing voltage
is the most efficient way of reducing temperature. Reducing activity is possible by changing
the physical hardware design or distributing activity over a larger area1. Of course, these
parameters exhibit interdependencies. For instance voltage and frequency have a quasi-
linear relationship since the voltage determines how fast capacitances can be charged.
Thus a given frequency will have a minimum required voltage and a given voltage will
have a maximum possible frequency.

1Technically, we are still dealing with volumes, but assuming the height of a circuit’s layers are constant,
it is simpler to regard the power density as power per area.
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12 2. Thermal Basics and Related Work

Unlike dynamic power, leakage power for a given circuit and fabrication technology depends
primarily on voltage. The most prevalent source of leakage power consumption is due to
subthreshold leakage currents. In current technologies the difference between VDD and the
threshold voltage Vth is reduced in an effort to reduce Pswitch. This has the side effect that
it also reduces the potential barrier preventing leakage currents flowing from VDD to VSS
(Gnd) when the transistor is in the subthreshold region, i.e. VGS < Vth. The percentage
of power dissipated as leakage is becoming more and more, having recently surpassed
switching power in magnitude [79]. Of course, the small structure sizes themselves also
play a role. The reduced channel width increases the electric field between source and
drain. It also means that subthreshold leakage currents must only travel a small distance
to pass through the transistor.

These currents can be modeled as a diode with the following equation [119]

isub = is(e
qV/kT − 1) (2.3)

where is is the reverse saturation current, V the diode voltage, q electronic charge, and k
is Boltzmann’s constant. As can be seen, leakage currents themselves are also temperature
dependent. A common rule of thumb is that leakage current doubles for every 10◦C [107].
This can lead to a feedback loop resulting in a so-called thermal runaway scenario: in-
creasing temperatures results in a rise in leakage power which in turn causes temperatures
to increase further [14].

Additionally, other leakage currents also contribute to the overall leakage power consump-
tion, for instance gate leakage. Gate leakage is similar to subthreshold leakage, only with
currents flowing from the gate to the source/drain or substrate. These currents are the
result of various tunneling effects [29]. Gate leakage is reduced through the introduction of
high-κ metal gates, where the standard dielectric SiO2 is replaced with another that has
a high dielectric constant. This results in a weaker electric field between gate and bulk.

Not all materials generate the same temperatures through power consumption. The
amount of heat energy required to raise the temperature one degree (i.e. J/K) is given
by a material’s heat capacity. This can be given, for instance, as a volume-specific heat
capacity J ·m−3 ·K−1 which is near constant2 for a particular material at temperatures
relevant when observing chip temperatures.

There are three types of heat transfer affecting stationary bodies: conduction, convection,
and radiation. Conduction occurs in physically connected substances through the inter-
action of molecules. Heat is transferred when vibrating molecules relinquish energy to
stimulate vibrations in surrounding molecules. Conductivity (k) is a material property
expressing its ability to conduct heat, expressed in Wm−1K−1. This can be used to deter-
mine the rate of heat passing through a given area, i.e. the heat flux (Φq), which is dQ/dt
per area. Convection is the transfer of heat through fluid motion, e.g. in air or coolant
liquid flowing around a heat sink. With radiation, heat is emitted and absorbed as energy
in the electromagnetic spectrum. An overview of heat transfer is given in Figure 2.1.

When examining on-chip temperatures, the major heat transfer method of concern is
conduction. As chips are typically surrounded by packaging, often including a heat sink,
the chips are shielded from direct convection and heat radiation. To serve their purpose

2The heat capacity approaches 0 when temperatures approach absolute zero.
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Figure 2.1.: Schematic diagram illustrating forms of heat transfer

of removing heat from the chip, heat sinks must have a high thermal conductivity k. As
a result they are near isothermal, abstracting away convection- and radiation-based heat
transfer as a fixed thermal sink to the ambient temperature.

Since heat production and conduction are physical processes, there are always latencies
involved. How a system reacts to a change in power consumption can be expressed as
a step response. This step response is proportional to ±e−t/τ (± depending on whether
cooling or heating). Here, τ is the so-called thermal constant which determines the rate of
heating/cooling (cf. Chapter 4.4 for more details). The asymptote that the step response
nears is the so-called steady state temperature that is reached when the heat generated
in the system and the heat dissipating from it reach an equilibrium. This quantity is
determined for a fixed power profile, e.g. assuming constant power consumption. In theory,
reaching the steady state temperature requires infinite time. However, in practice chip
temperatures can be said to reach the steady state in finite time due to the exponential
nature of the step response and the finite precision of thermal measurements. In our
experiments, this was typically in the order of minutes.

Heat conduction together with spatial variances in power consumption within the chip
results in thermal gradients ∇T . These can negatively influence dependability as will be
seen in Chapter 3.

2.1. Thermal Simulation

Often, it becomes necessary to perform offline analysis of thermal behavior. This is par-
ticularly relevant during the design phase, for instance when determining the TDP which
serves as a guide for developing cooling solutions, or performing thermal-aware layouting of
system components on a chip in order to avoid a spatial concentration of thermal hotspots.
Since it is not feasible to manufacture chips with all possible configurations, this step is
done using thermal simulations.

In essence, all simulators aim to solve Equation 2.1, however doing so at a molecular level
is not possible, in particular when performing transient simulations. Determining temper-
ature distributions is a computationally intensive task and as a result certain abstractions
need to be made. A balance between desired accuracy and computation needs to be found.
And, while different simulation methods are designed to exhibit different accuracies and

13



14 2. Thermal Basics and Related Work

computational overhead, it is not possible to rank them on these properties per se as they
depend largely on the accuracy and complexity of their input data. In fact a great deal
hinges on this data, and much of the difficulties encountered when performing thermal
simulation stems from obtaining detailed traces of power consumption and area layout.

Finite-Element Analysis (FEA) [65] can potentially offer the highest accuracy in thermal
simulation. Here, the input is a geometry CAD file of arbitrary complexity. The employed
software then performs a numerical analysis to approximate the solutions of the differential
equation. An example FEA is presented in Section 2.3, which shows both a detailed and
abstract finite element analysis. The detailed simulation utilizes the layout and structure
of the metal layers, where the abstract one combines multiple chip structures into an
abstract rectangular component.
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Figure 2.2.: RC equivalent circuit for coarse-
grained thermal simulation

HotSpot [63] is a thermal simulation tool of-
ten employed for abstract simulations. Its
approach for solving Equation 2.1 is to de-
fine an RC equivalent circuit. The capacitor
(C) represents heat stored (i.e. the temper-
ature) in a given volume and corresponds to
the heat capacity. The resistors (R) repre-
sents the heat conduction from one volume
to neighboring adjacent ones, i.e. R ∝ 1/k.
In practice, the height of a given chip layer
is fixed. The volume is then again given
as a rectangular component or block. Fig-
ure 2.2 shows an example RC circuit for two
blocks consuming power. At this abstrac-
tion level, each block has a single averaged
power value and a single temperature out-
put, regardless of the actual distribution of
power consumption within each block.

2.2. Thermal measurement

Performing DTM at runtime requires knowledge of the temperature distribution. Ther-
mal measurements are a key requirement for determining the temperature development
of a running system. The most common measurements are taken using on-chip sensors.
Depending on the requirements different measurement techniques exist. The simplest way
is to use the thermal sensors that are available in modern processors. These are typ-
ically implemented as thermal diode sensors [89] that have a varying voltage based on
temperature. In these types of sensors, their voltage is compared to a reference voltage.
This difference is then used to determine temperature. Typical thermal diodes have an
accuracy of ±1K [103]. However, they also have limitations. Their implementation con-
sumes significant area and power by requiring an analog to digital converter to compare
voltages. For instance, ±1K accurate measurements in [103] correspond to 2 W power
consumption. Diode placement is also fixed at design time. The sensor will not be able
to measure the temperature of thermal hotspots outside of its proximity if there are high
thermal gradients.

14



2.2. Thermal measurement 15

Another effect that can be exploited to construct thermal sensors is the dependency of
propagation delay on temperature. For instance, in [123, 37] a 20◦C increase of temper-
ature results in 5-6% increase in the interconnect delay. Thus, by measuring the delay,
temperature can be inferred. While these sensors are less accurate than thermal diodes,
a major advantage is that they can be placed arbitrarily when measuring temperatures
on an FPGA. An example implementation of these softsensors is presented in the next
section. Further details on the temperature-dependence of delay and how it affects timing
errors is given in Chapter 3.1.7.

For testing purposes, the most accurate and fine-grained measurements can be obtained
using external infrared thermography [102]. However, this approach is limited to analysis
and cannot be employed in production chips. It also requires altering the physical prop-
erties of the chip somewhat, e.g. by removing the packaging. An example of a thermal
imaging setup is presented in Section 2.2.2.

2.2.1. Soft On-Chip Sensor

Since temperature changes delays, a way to measure temperature is to measure the speed of
an asynchronous circuit. A common method is to use a Ring Oscillator (RO) and calibrate
its output using a reference temperature measurement. This establishes a direct relation
between temperature and oscillation frequency [4]. A ring oscillator consists of a feedback
loop consisting of n inverters, where n = 2k + 1, k ∈ N. An odd number of inverters are
required for the RO output to toggle at each oscillation. An example RO is depicted in
Figure 2.3. The frequency of a ring oscillator depends on number of delay elements n and
the temperature-dependent propagation delay of a single inverter ∆ti. The approximate
frequency can be given as fRO = 1

2·n·∆ti . To measure the frequency, the RO output is used
to increment a counter. After a fixed period, i.e. determined by a fixed reference clock, the
value of the counter represents the frequency and can be used to determine temperature.
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... Counter

n

Figure 2.3.: Ring Oscillator consisting of an odd num-
ber n of inverters

For examining the soft sensors,
we implemented various configura-
tions of ring oscillators. Unfortu-
nately, ring oscillator frequency is
not only dependent on tempera-
ture. Changes in voltage will also
influence the frequency. This can
be observed in Figure 2.4 where
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Figure 2.6.: RO frequency normalized to voltage and corresponding temperature

jumps in the ring oscillator frequency correlate to Voltage levels (Figure 2.5) obtained
from the Xilinx System Monitor. In this example, the lowest and middle voltages corre-
spond to a 200MHz and 100MHz toggle rate respectively in a design using slices only. The
highest voltage corresponds to an idle system without any switching activity. The changes
in voltage are a result of changes in the overall chip resistance. Temperature variance in
this experiment is 2◦C. In the evaluation, the maximum voltage difference of 6 mV results
in a 0.7% change in RO frequency whereas the maximum change in temperature of 2◦C
results in a 0.09% change in frequency, meaning the effect of voltage on the RO is about
one order of magnitude higher than that of temperature. According to [47], the effect of
voltage on the ring oscillator delay is proportional to

VDD
(VDD − Vth)α

(2.4)

where VDD and Vth are the supply and threshold voltages, respectively, and α ∈ [0, 1].
In order to compensate the effect of different voltages, we experimentally determine the
factor by which Equation 2.4 changes the ring oscillator frequency. This is done separately
for each individual voltage allowing all ring oscillator frequencies to be normalized to one
voltage, and thus removing the dependency of the ring oscillator on voltage. An example
of the graph in Figure 2.4 normalized to one voltage is shown in Figure 2.6, along with
the temperature measured by the thermal camera.

When using a ring oscillator to estimate temperature, its parameters can be adjusted in
order to achieve higher accuracy or precision, for instance by using different numbers of
delay elements. Having more delay elements will increase the overall delay of one oscillation
and thus increase the temperature sensitivity of the ring oscillator. The above evaluations
have all employed ring oscillators comprised of 100 delay elements. Figure 2.9 shows the
effects of reducing the number of delay elements to 24.
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The number of delay elements also influences the effectiveness of the second parameter, the
sampling interval. The longer the sampling interval, the less susceptible the ring oscillator
is to measurement noise. This is shown in Figure 2.10 in which a RO with 100 delay
elements is used that is sampled every two seconds. The overall measurements are much
smoother than using a 0.5s sampling interval (Figure 2.7), however a few peaks still remain.
It should be noted that the magnitude of these peaks is comparable to those present using
a 0.5s sampling interval, however their occurrence rate is considerably lower and they can
be removed by applying a median filter.

2.2.1.1. Temperature Sensors of the Intel SCC

In the course of our temperature exploration, we also performed experiments on Intel’s
Single Chip Cloud computer [10]. This 48 core research platform is designed to provide
insight into the benefits and limitations of future multi-core architectures. The SCC ar-
chitecture is divided into 24 tiles, each encompassing two cores. Every tile holds two
performance counters. As they adhere to the properties described in Section 2.2.1, these
can, and have been employed, as temperature sensors [40, 71].

Unfortunately, the sensors are subject to a great deal of noise. This is illustrated in
Figure 2.11, which presents the distributions of readings of three example sensors of the
SCC. In this experiment, all cores are placed under the same computational stress in order
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Figure 2.11.: RO sensor readings of different cores at a measured reference temperature

to create a temperature distribution that is as uniform as possible. All readings are taken
in reference to the measured chip temperature. While the correlation between temperature
and average sensor reading is evident, there is also a large overlap between readings at
different temperatures. As a result, single readings cannot be used alone to determine the
temperature.

The readings of each sensor are in different ranges and must be calibrated separately.
A possible solution is to take the average of multiple readings. This creates additional
overhead and it will take longer to determine temperatures. Since the sensors are also
voltage dependent, this calibration must be done for all available voltages.

2.2.2. Infrared Thermal Cameras

DIAS Pyroview 380L
compact infrared 
thermal camera

Xilinx Virtex2
test FPGA with

packaging removed 
for thermal

measurements

Figure 2.12.: Experimentation
measurement setup
using thermal camera

Infrared cameras provide a means of obtaining a de-
tailed map of the temperature distribution across an
object. Before being able to analyze a given chip, it
is necessary to remove everything obscuring the radi-
ated heat. Unfortunately, this means removing any
cooling infrastructure which may be in place (e.g. a
heat sink or fan). The packaging itself is usually de-
signed (i.e. assuming a metal packaging) to spread
heat as uniformly as possible over the chip. Thus
it needs to be circumvented as well. Generally, re-
moving the packaging is no easy task, often requir-
ing, for example, chemical etching of the protective
housing to reach the actual chip – while taking care
not to damage the wiring connecting the chip to a
board (PCB). Fortunately, recent flip-chip packaging
removes these wires and connects the metal layers of
the chip directly to a PCB through a ball grid array.
As a result, only the reverse side (i.e. the side of the
silicon die without logic) is exposed to the packag-
ing. This facilitates the removal of the packaging to
expose the reverse side of the chip, which can then be analyzed through an infrared camera
to obtain the temperature distribution of the chip along with its development over time.

In our lab we employ a DIAS Pyroview 380L infrared camera [3] which accurately (±1◦C)
measures temperatures of structure sizes down to 50 µm. The setup is shown in Figure 2.12.

18



2.3. Examining the Microarchitecture: SRAM Cell 19

The emissivity of the tested material is one of the key aspects to consider in any infrared
measurement. It represents the percentage of heat that can be emitted in the infrared
spectrum from the surface of a material compared to so-called ideal black bodies whose
emissivity is defined as 1.0. For a silicon die, the emissivity is between 0.75 and 0.9,
depending on how smooth the surface is. Before performing measurements, it is thus
necessary to first determine the correct emissivity. This is done by applying a coating
with a known emissivity in the desired spectrum to a part of the die and comparing the
calibrating the temperature of the silicon to that of the coating, as seen in Figure 2.13.
For our camera we used masking tape for this purpose, as its emissivity in the range of the
camera (8–14 µm wavelengths) is known to be 0.9 [52]. Masking tape also has the desirable
property of being easily removed, making it less obtrusive than, for instance, black paint.
Once the emissivity is determined, the camera software can compensate accordingly. The
second consideration is expressed in Figure 2.13. Often, polished metals are also reflective
in the infrared spectrum. Care must be taken that no infrared emissions from outside heat
sources are in the proximity of the examined chip.

Metal surface

Tn

Blackbody coating

Tn

Tk <Tn

Tn

Emissivity
Reflection

Detector

Figure 2.13.: Emissivity of metal surface vs.
that of a surface with a (near)
black body coating. Tk and Tn

are compared to calibrate de-
tector

One question that remains open is how re-
alistic the temperatures measured from the
back of the silicon die are compared to the
temperatures at the metal layers and how
much removing the packaging changes the
temperature distribution. The finite ele-
ment analysis presented in Section 2.3 ex-
amines this by presenting a simulation of
an abstract chip, both with and without a
metal heat spreader. As can be seen, the
temperatures obtained from the back of the
altered chip remain representative of the
temperatures generated at the chip’s metal
layers.

2.3. Examining the Microar-
chitecture: SRAM Cell

All microarchitectural components together determine the power distribution of a chip.
However the contribution of individual components needs to be analyzed in order to find
a suitable abstraction level for thermal analysis.

Figure 2.14.: Thin-film layout of 6-T SRAM
cell modeled in magic [75].

Figure 2.14 shows the general layout of a
thin SRAM cell consisting of two invert-
ers and two NMOS access transistors. It is
modeled using magic VLSI layout tool [75]
using its design rule checking to verify lay-
out constraints (e.g. keeping the minimum
required distance between structures). To
obtain equal rise and fall times in an in-
verter, the gate channel width of the PMOS
transistors is typically larger to compensate
for the decreased mobility of the majority
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carriers (i.e. holes) compared to NMOS transistors (i.e. electrons) [119]. Here, for simplic-
ity, both PMOS and NMOS devices have the same dimensions.

To analyze the impact of a single microarchitectural component, a CAD geometry file
was created based on the SRAM cell layout and sizings obtained from [2]. This served
as the input for finite element analysis. Figure 2.15 shows the result for four adjacent
cells. The supplied power consumption in the metal layers is 1 GW/kg, which amounts
to approximately 2.25 W/mm2. There is less than 1 K difference between the maximum
and minimum temperatures, which includes the silicon layer. The highest temperature of
the simulation is located in VSS lines on the outside of the cells. This results from the
smaller contact area between the VSS lines and the silicon surface compared to the other
metal lines. However, this is only the case on the outer edges of the combined SRAM cells,
since the VSS lines are shared between adjacent cells. Thus, adding more cells will result
in more contacts to the silicon, and thereby create a more even temperature distribution,
e.g. with the VSS temperature being similar to the other metal lines. This can be seen
with the VSS line in the middle of the metal 3 layer.

The overhead of thermal simulations of individual components makes this simulation ap-
proach unsuitable for larger systems, since the FEA would require considerable compu-
tation time. Instead, abstractions must be made. Figure 2.16 shows the FEA of the
temperature of an entire chip where one square section is assumed to consist of SRAM
cells with a uniform power distribution, equivalent to being filled with SRAM cells with
the same power consumption as in Figure 2.15. Additionally, Figure 2.17 replaces the cop-
per heat sink of Figure 2.16, leaving the silicon die exposed to air similar to the thermal
camera setup presented in Section 2.2. Heat transfer in the air “block” is subject to both
conduction and convection. Following key observations can be made:

Observation 1 Despite heat conductance being considerably higher in copper than silicon,
only a small amount of heat is transfered horizontally in the chip’s metal layers due
to their small height (2 µm). In particular, the vertical conduction into the silicon
layer is significantly higher.
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Figure 2.17.: Copper heat spreader is re-
placed by air

Observation 2 The copper heat spreader is very effective at distributing the temperature
to the extent that it is nearly isothermal. This means that the surface of the silicon
die to which it is attached is also mostly at the same temperature. In fact, the largest
effect different components of the chip have on each other in terms of mutual heating
is through the heat spreader, i.e. by raising its temperature. The temperature of the
die surface depends on how effective the heat spreader (and attached heat sink) are at
dissipating heat from the die. Here the boundary condition of 330 K on the bottom
surface of the heat spreader is fixed.

Observation 3 The temperature on the silicon surface opposite the metal layers is repre-
sentative of the temperature distribution on the metal layers when the heat spreader
is removed (replaced by air). And, while there is more heat conducted vertically in
the silicon block than in the metal layer, it is only enough to blur the temperature
distribution seen on the metal layer, not distort it entirely. As a result temperature
measurements taken with an infrared thermal camera observing the bottom side of
the silicon die show a realistic picture of the temperature distribution.

2.4. Multi-Core Systems

FEA Summary:

Figures 2.16,2.17

Metal layer (Cu) 2 µm
Die layer (Si) 150 µm
Die area 1 mm × 1 mm

Multi-core systems offer an additional di-
mension to reducing power densities. While
DVFS focuses on reducing the power con-
sumed over a fixed area, multiple cores can
be used to spread a given activity over a
larger area through migration.

2.4.1. Related Work: Thermal
Management in Multi-Core Sys-
tems

Traditionally, dynamic thermal management (DTM) is implemented using dynamic voltage
and frequency scaling (DVFS) [58] in order to reduce the power consumption and thereby
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22 2. Thermal Basics and Related Work

also reducing the generated heat. However, besides DVFS, multi-core architectures addi-
tionally have the potential for managing on-chip temperatures by distributing workloads
throughout the chip by means of task migration [43]. Early approaches utilize a centralized
reactive approach that migrates tasks to cooler cores once a predefined thermal threshold
is reached on a core [97]. This approach has gradually given way to centralized proactive
schemes [36, 35, 127] which use predictions based on thermal models [36, 127] and online
learning [35] in order to migrate tasks before a predefined temperature threshold is hit.
However, all centralized approaches have in common that they suffer from poor scalabil-
ity [43], as finding an optimal task distribution is an NP-hard problem and thus grows
considerably in complexity with the number of cores. This will especially be a problem
considering future multi-core architectures with hundreds and even thousands of cores [26].
Additionally, relying on a central instance also introduces a central point of failure within
the system.

To deal with this, decentralized semi-proactive approaches such as [43] have emerged for
deployment in future multi-core architectures. There, so-called power units are propagated
across the chip by trading with adjacent cores based on what is identified as local supply
(available power units) and demand (computational requirements). The approach is semi-
proactive since while the temperature is distributed across the chip proactively, actual
power trading is reactionary as it is done depending on the current temperature as opposed
to future predictions.

2.4.2. 3D Architectures

PE PE

Tile PE PE I/O

Through-
Silicon 

Via

PE PE

PE PE PE I/O

Physical Network 
Connection

PE PE

PE PE PE I/O

...

PE

PE

PE

PE

PE

Stack

Hot 
PE

PE

PE – Processing Element

Figure 2.18.: Example of a layered 3D multi-core architecture

While stacked 3D architectures have been shown to have increased performance compared
to their 2D counterparts [24] – especially with regard to the throughput and latencies of
the communication architecture [50, 72] – they are much more prone to excessive heating
as the heat needs to dissipate through multiple layers before reaching the heat sink [24, 99].

Activity migration is particularly effective in 3D multi-core architectures where a task
running on a particular core has a significant effect on surrounding cores, especially in the
vertical direction. To motivate this, we briefly examine a simplified analysis of tempera-
tures in 3D architectures:
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Figure 2.19.: Measurement of temperatures in one layer for 3D thermal analysis

Device Summary:

Figure 2.19

Die area 1.4 cm × 1.4 cm
Layer height 500 µm
Metal layer 1%
(% of total height)

Conductivity:
Si 100 W/mK
Cu 400 W/mK

Here, to analyze the thermal behavior of a
homogeneous 3D layered architecture, the
thermal distribution of each layer is mea-
sured individually using a thermal infrared
camera. An example of such a measurement
is shown in Figure 2.19 a), where an area
of homogeneous computation is located in
the bottom left, while the rest of the chip
is idle with the resulting measured tempera-
ture values shown in Figure 2.19 b). Assum-
ing this measurement represents the lower
layer, layer 0, of a 3D architecture consist-
ing of two layers, the heat conduction to an idle upper layer, layer 1, can be calculated
using the thermal conduction/capacitance of the layers with respect to one another, re-
sulting in the temperature distribution of Figure 2.19 c) in layer 1. Here the thermal
conductivity of Silicon is assumed to be 100 W/mK, and that of copper to be 400 W/mK.
The metal layer is assumed to take up 1% of the die height. If assuming both layers utilize
identical computation temperature peaks will increase significantly as shown in Figure 2.19
d).

Due to the relatively large die height of 500 µm, this example exhibits more horizontal
heat conduction than more compact layers for 3D stacking. Also, the layers are assumed
to be directly on top of each other. The characteristics of temperature distribution can be
improved significantly through the use of TSVs (s. Section ) and interface materials. While
these are not considered in this motivation, they are for the 3D evaluation in Chapter 5.
However, the main observation of localized elevated temperature when computation is
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layered on top of other computation, remains valid.
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Figure 2.20.: Emulation of 3D temperature distribution on 2D FPGA

Emulating the thermal conditions of a 3D architecture on two-dimensional chips enables
the analysis of 3D thermal management using conventional hardware. Figure 2.20 presents
an approach where simulated 3D layers can be used to influence the temperature of a single
additional layer running on an FPGA. The output of the simulation is used to control
heating elements (e.g. Peltier devices [39]) corresponding to the total heat generated by
multiple upper layers. Of course, such approaches are limited in granularity and cannot
encompass the full range of temperature distribution that can be present across one layer.

2.4.2.1. Related Work: Thermal Management in 3D Architectures

Since elevated temperatures are a key concern in 3D architectures, a number of techniques
have appeared specifically targeting 3D thermal management [104]. First are static design
time approaches which increase heat dissipation by altering the physical characteristics
of the chip. This can be accomplished by different means including thermal aware floor-
planing [32] and advanced techniques such as thermal TSVs [33] and microfluids [38, 105].
While these approaches are able to lower temperatures, they may not be a sufficient re-
placement for dynamic thermal management but simply delay its invocation and are unable
to deliver optimal results when unpredictable scenarios, such as bursts in computational
load due to user interaction or varying input data, occur.

Dynamic approaches on the other hand rely on reducing the power consumption at thermal
hot spots through DVFS and power gating. Additionally, multi-core architectures have the
opportunity to divert the power consumption away from thermal hot spots through run-
time task migration. This technique is particularly effective in 3D multi-core architectures
where a task running on a particular core has a significant effect on surrounding cores,
especially in the vertical direction.

State-of-the-art dynamic thermal management approaches also differ in when they are
invoked. Simple reactive threshold based approaches react when a preset temperature has
been reached. As such they fail to consider the costs of thermal management such as the
task migration overhead. Proactive approaches, on the other hand, act before a threshold
is reached, thereby avoiding thermal hot spots all together. These approaches are typically
based on stochastic models or on-line learning.

Ayse K. Coskun et al [34] propose a reactive dynamic thermal management scheme for 3D
multicore architectures. They identify task remapping as a key solution to thermal prob-
lems in 3D environments because of the severe performance hits that measurements like
straightforward DVFS or clock gating (stalling) of hot cores come with. They consider a
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homogeneous stack of UltraSPARC cores and do not state how task migration is triggered,
i.e. if from a central instance or how such a controlling instance would be organized. A
number of migration strategies are proposed and evaluated: The simplest strategy swaps
the task from the highest-temperature core with the one on the coolest core, while the
so-called “adaptive-random” policy takes thermal histories of each core into account to
make more effective remapping decisions. The “Adapt3D” policy is designed to address
the characteristics of 3D systems, most importantly, the correlation of the temperature of
vertically stacked chips.

Therefore, stack (cylinder)3 temperatures are considered for remapping decisions over in-
dividual core temperatures. This work does not consider scalability concerns for large
systems because no distributed controlling scheme is introduced. Additionally, commu-
nication volume and –latency is not taken into account and task remapping cost is not
modeled despite the fact that each task remapping is assumed to constantly require 1ms.
Zhou et al [128] presented a reactive OS-level task scheduling approach to thermal man-
agement for 3D systems. They augmented a Linux 2.6 kernel to schedule tasks so to avoid
hardware DTM measurement invocations such as DVFS and do not require any hardware
changes. Thermal correlation in vertically overlapping cores is considered and their work
focuses around tasks as causes for thermal issues. Each task is considered to cause thermal
stress to the cores, and thus, cores that cause a large amount of thermal stress are consid-
ered hot tasks while computationally inexpensive tasks that cause less thermal stress are
considered to be cold tasks. Consequently, hot tasks are assigned less time slices than cold
tasks by the scheduling algorithm. They also shorten time slice length from a proposed
10-200ms interval to a 8ms interval, which comes with increased scheduling overhead (con-
text switches) but allows for finer-grain decisions to address thermal problems. Both the
target core and the executed task are chosen at each scheduling interval. They consider
only small (2x2x2) chip arrays and make no assumptions on interconnection architecture
or task migration requirements.

To overcome the shortcomings of previous approaches, Changyun Zhu et al [129] con-
sider dynamic thermal management in 3D architectures not as an emergency measurement
whose invocation should be avoided as much as possible, but rather find that because large
3D systems are likely to operate continuously close to the thermal threshold, thermal man-
agement needs to be invoked continuously on a regular basis. Therefore, thermal manage-
ment techniques that come with a severe performance overhead are considered impractical.
Specifically, they stress the importance on global decision making because they find local
considerations insufficient (which is not proven in experiments). As a consequence, their
work proposes a proactive global thermal budgeting algorithm that optimizes for chip per-
formance under a constraint of peak temperature. Additionally, they regard the operation
of different cores in a heterogeneous environment at different voltage and frequency lev-
els being key to effective dynamic thermal management because of the different thermal
characteristics of different cores.

They guide thermal management through the calculation of the thermal-impact-per-per-
formance-gain (TIP), which allows optimizing the performance for a given thermal budget.
Another guideline for DTM favors the mapping of demanding tasks to cores with a higher
thermal efficiency. These guidelines have been implemented in ThermOS, a solution con-

3a stack or cylinder is a connected subset of cores that vertically overlap each other, ranging from the
topmost to the lowermost layer
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sisting of hardware-based temperature and workload monitoring and an augmented Linux
2.6 kernel that maps and schedules tasks following guidelines derived from these considera-
tions. Each core does run-time DVFS triggered by a thermal budget calculation, resulting
in a proactive thermal management. They claim that DVFS comes with little hardware
overhead as most modern CPUs are already equipped with DVFS units. Only additional
power supply wiring is required. Last-resort emergency clock throttling is done for cores
exceeding a thermal threshold value. Considering an application of the outlined approach
to a large system consisting of hundreds of cores, a major drawback of this work is the lack
of scalability considerations for large systems. Additionally, the availability of fine-grain
DVFS in each core is unlikely to hold in large systems for cost and complexity reasons.

2.5. Summary

Although grounded in the basic laws of thermodynamics, the study of temperature and
heat distribution remains multifaceted. The level of thermal details relies on the compo-
nent of interest in the system. Examining the microarchitecture requires a fine-grained
analysis which is able to capture all of the intricacies of small features. These can be more
of a hindrance than an asset in larger views, i.e. of entire multi-core architectures where it
is more beneficial to use less detailed thermal distributions, e.g. assuming one temperature
value per core. Both in simulation and measurement, proper abstractions need to found
between the desired accuracy and complexity.

The basis for all dynamic thermal management techniques lies in controlling the power
consumption per area. This can be done in two ways: first by reducing the power and
second by increasing the area where power is consumed. Power can be reduced by changing
the voltage and frequency. The area can be increased by periodically migrating switching
activity form one area to another, for instance using task migration when performing DTM
at core-level.

DTM techniques can be classified into two categories. The simpler ones, so-called reactive
techniques, rely on a predefined temperature threshold and perform thermal management
only once the threshold has been hit. In contrast, proactive techniques predict future
temperatures based on current and past measurements using thermal models or statisti-
cal methods. DTM is then done based on these predictions. Proactive management is
able to reduce temperatures more than their reactive counterparts, but also require more
calculations and may perform DTM more frequently than reactive techniques.
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3. On Temperature-related
Dependability

As previously mentioned, dependable operation depends on two factors. The first of these
is reliability. For a system to be deemed reliable, it must produce the correct output for
a given input. In a general sense, system noise, e.g. as voltage or timing fluctuations,
threatens reliable operation. Additionally, individual failures, e.g. resulting in stuck-at
faults, prevent reliability. Failures are also responsible for the second factor of depend-
ability: the availability. A system is no longer available, once it does not produce output
for any input. Any reliability degradation may eventually lead to diminished availability.
In the following, different temperature-dependent mechanisms are described that threaten
reliability by increasing susceptibility to noise or by inducing failures, as presented in [56].

3.1. Reliability Concerns from a Thermal Perspective

In the broad sense, temperature has two ways to impact the dependability of a system:
timing errors and aging effects. Timing errors are often transient due to spatial thermal
gradients and thus do not directly impact system lifetime. However, some aging effects
such as NBTI can increase the system’s susceptibility to timing errors. Aging effects in
general degrade system performance and ultimately lead to system failure. All aging effects
rely on physical processes which degrade a chip over time. As such they have an Arrhenius
relation to temperature [120] and their temperature dependence can be expressed as:

Ae−Ea/kT (3.1)

where A is the frequency factor (i.e. the number of collisions per second), Ea is the activa-
tion energy of the particular process, and k the Bolzmann constant. The main differenti-
ating factor between the temperature-dependence of each process is the activation energy.
For aging effects, it is often possible to determine a Mean Time To Failure (MTTF) based
on models parameterized with experimental data. When dealing with dependability, it is
not enough to view the mean effect. Additionally, the distribution of the effect must also
be taken into account. In the following, some of the most prominent reliability concerns
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are outlined individually. This includes the most dominant aging effects as well as timing
errors.

3.1.1. Electromigration

Through the movement of ions in the metal layers of CMOS circuits, metal interconnects
are gradually eroded over time. This effect – referred to as electromigration – ultimately
leads to a failure of the interconnect. Regarding temperature, both peak temperatures
and thermal gradients influence the degree of electromigration.

Electromigration Model

Electromigration is commonly modeled using Black’s equation [93, 25]:

MTTF = AJ−neq/(kT ) (3.2)

where A is a constant, J the current density; n is the technology parameter, q the activation
energy, and k is the Boltzmann constant. The MTTF due to electromigration is further
affected by spatial thermal gradients [93]. Along with Equation 3.2, it is modified to the
following:

MTTF = AJ−neq/(k(T+∆Tjoule)) (3.3)

where Tjoule represents the joule heating, i.e. the temperature obtained through local
power consumption and not through conduction. While Equation 3.3 gives the mean time
to failure, it does not provide us with a variance of electromigration. According to [110],
the variance of electromigration is also temperature dependent and is given as:

σ2 = 2.3
1

k2
(
1

θ
− 1

T
)2σ2

q

where σ2
q is the variance of the activation energy q and θ the iso-kinetic temperature with

θ ≈ 300 K according to [48].

3.1.2. Negative Bias Temperature Instability

NBTI is caused by traps near the interface layer between the silicon die and the gate
dielectric of PMOS transistors [108]. While NBTI is not yet fully understood, it is believed
that two types of traps contribute to the overall effect. On the one hand, pre-existing filled
traps are found in the dielectric which are emptied under voltage stress, and on the other,
interface traps are generated by the break-down of Si-H bonds located at the Si-SiO2

interface. NBTI is becoming more noticeable as transistor sizes decrease due to the overall
decrease in the number of molecules which increases the significance of individual traps
effected by NBTI.

NBTI manifests itself in a circuit through an increase in gate threshold voltages, and thus
induces a delay into circuit running at a fixed voltage. Since different transistors may be
affected differently by NBTI, timing errors can occur and result in transient faults. These
can be overcome by either increasing the voltage – which will accelerate aging effects – or
by running the system at lower frequencies – which may violate performance constraints.
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NBTI Models Our NBTI models which we have obtained together with our industrial
partner are based on measured data which is extrapolated using different model assump-
tions. The most commonly used NBTI model is based on a reaction-diffusion model [13]
with exponential time dependency. Using sample data from 65nm to 22nm, we arrive at
the following equation:

< ∆Vth >= 0.05 · e−1500/T · V 4
dd · t1/6 · d1/6 (3.4)

where < ∆Vth > is the expected mean Vth, Vdd is the supply voltage, T is the temperature
in K, and d is the duty cycle.

According to [118] the reaction-diffusion model given by Equation 3.4 becomes inaccurate
over long time intervals. Instead, they claim that the trapping-detrapping model, with
its logarithmic time dependency, more closely represents the shift in Vth. By fitting the
measured data to this model, we obtain:

< ∆Vth >= 0.05 · e−1500/T · V 4
dd · d1/6 ·A · log(1 + Ct) (3.5)

where A = 0.856 and C = 0.0163. As can be seen in Figure 3.6, the trapping-detrapping
model (Equation 3.5) results in a 45% lower shift in Vth than the reaction-diffusion model
after one year.

From the data, it can be observed that the variance of the shift in threshold voltage
increases with both the value of ∆Vth and with the decrease in transistor size. The resulting
standard deviation is as follows:

σ =

√
2.52 · 10−19 ·∆V th

W · L
for transistors of length L and widthW . How this affects circuits can be seen in Figures 3.1-
3.2 and 3.4-3.5, showing the shift in Vth and its standard deviation in a latch (representing
computational logic) and in an SRAM cell (representing memory). It can be seen that
the variance in the SRAM cell is considerably larger compared to the latch at the same
technology node. This is due to the fact that the SRAM transistors are smaller than those
of latches.

3.1.2.1. Understanding Traps

As briefly mentioned previously, two types of traps are responsible for NBTI.

Interface traps are generated between the silicon and the gate dielectric, i.e. at the Si−
SiO2 interface. During manufacturing, hydrogen atoms are introduced at this layer
in order to stabilize the surface [55]. This process covalently bonds Si surface atoms
to h, leaving it chemically inert. This is known as hydrogen passivation. When
under negative biased voltage stress Vgs < 0, the vertical electric field beneath the
transistor gate paired with thermal vibrations can cause these Si − H bonds to
break. Resulting are dangling bonds Six which are electrically charged and slightly
counteract the electric field.

Freed H+ atoms have two different possibilities. The first is diffusion into the oxide
layer. This can occur either in its atomic form (h diffusion) or on a molecular level
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Figure 3.7.: NBTI affects PMOS transistors at the Si − SiO2 interface as well as in the
gate oxide

when two hydrogen atoms combine (H2 diffusion). The difference between these two
manifests in the time dependency resulting from different diffusion rates. The t1/6

commonly used in reaction-diffusion models, e.g. as in Equation 3.4, corresponds to
H2 diffusion only [85], ignoring the slower hDiffusion (∝ t1/4). This overestimates
total diffusion and, as a result, also NBTI. As a second possibility, the H+ may
re-bond with a Six and repassivate the surface. This reaction is responsible for the
long-term recovery effect of NBTI.

An example of an interface trap is shown in Figure 3.7. The number of possible
interface traps NIT is limited by the total number of Si−H bonds.

Pre-existing Oxide traps , also known as hole traps, are the result of vacancies in the
oxide layer. Unlike in a crystalline structure, the amorphous oxide layer exhibits
large variations in local bonding [82]. In PMOS transistors, holes are the majority
carrier which flow when the transistor is conducting. When these holes enter the
gate dielectric, again due to the vertical electric field, they may encounter oxide
traps. Once holes have filled the traps, they result in a weakening of the electric
field. As the name suggests, these traps are pre-existing, that is they are a result
of the manufacturing process. Trapping holes when under voltage stress and the
subsequent recovery when the stress is removed, are both significantly faster than
the generation/recovery of interface traps [85]. The number of trapped holes is
represented as NHT .

Under accelerated aging conditions, i.e. when voltage stress is increased, additional
oxide traps will form over time. This effect has been shown to be negligible under
nominal VDD [85].

Since both kinds of traps reduce the electric field, they both manifest themselves as an
increase in the threshold voltage Vth. The change in threshold voltage ∆Vth is directly
proportional to the total number of both kinds of traps [69].

3.1.2.2. Modeling Short-term NBTI Degradation

The NBTI model given in Equation 3.4 is effective when determining the expected effects
of NBTI over long time scales, e.g. days, weeks, out even years. However, it does not
explicitly model the recovery effect but instead includes it implicitly as an average change
to the monotonously increasing aging effect. When examining smaller time scales, this is
no longer accurate.
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One way to model the reaction-diffusion
process of NBTI is by creating an RC cir-
cuit that mimics its behavior. An initial
example of such a circuit is given in Fig-
ure 3.9. Here, the formation of traps is mod-
eled by the discharging of a capacitor. In
essence, the voltage of the capacitor repre-
sents the number of potential traps that can
be formed. That is, for a starting voltage
V0, the number of traps is proportional to
V0−V (t). As it corresponds to the number
of traps [69], V0 − V (t) is also proportional
to the shift in threshold voltage ∆Vth. For simplicity, the starting voltage V0 is normalized
to one.

Whether the circuit is in stress phase is determined by the PMOS transistor which has the
stress signal of the corresponding transistor being modeled as their input. Resistors are
used to regulate the diffusion rate of the capacitor charge and should therefore correspond
to the diffusion rate of hydrogen from the gate interface.

This model has two shortcomings: first, just like the model given by Equation 3.4 it does
not address the recovery effect and also only models interface trap generation. Second,
the time dependency of discharging a capacitor is given as:

V (t) = V0e
− 1
RC

t (3.6)

which of course does not result in the same ∝ t1/6 time dependency as Equation 3.4. While
this can still be used as a piecewise approximation of interface trap generation, properly
modeling the time dependency will require changing the timing properties of the resistor.

To do this, it is necessary to revisit the underlying physical models and determine where the
time dependency comes from. As stated, the change in threshold voltage is proportional
to the number of traps formed, ∆Vth ∝ (NIT +NHT ) ∝ (V0 − Vtot(t)). [69] gives the time
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dependency for NIT . Apart from the diffusion rate of hydrogen, the rate of interface trap
generation is also dependent on the total number of Si−H bonds and the current number
of traps. That is, V0 and V0 − V (t), respectively.

It has been noted, however, that considering only interface traps is not sufficient when
exploring very short time scales [85]. Fortunately, the time dependency in Equation 3.6
correspond to that of hole trapping in preexisting oxide traps [69]. Modeling these remains
discharging a capacitor over a resistor.

The modified full NBTI modeling circuit is given in Figure 3.8. Diodes are added in order
to limit the direction of current, and to avoid that, e.g., the two trap capacitors CHT and
CIT influence each other. Since all currents leaving the circuit are reintroduced, the total
amount of charge in the circuit always stays the same. In this circuit, the number of total
traps, i.e. NIT and NHT are lumped together to form one voltage Vtot. The percentage of
each type of trap is determined by the size of the capacitor chosen for each one.

A further issue that needs to be addressed is the modeling of the temperature-dependence
of NBTI, which the circuit does not consider by default. Fortunately, SPICE provides first
and second order temperature parameters to determine the temperature-dependency of
resistor resistance. These two terms need to be configured so that the resistor approximates
the Arrhenius relation from Equation 3.1. For all practical purposes this approximation
is sufficient, but will exhibit considerable error in extreme cases, e.g. near absolute zero.

When modeled in SPICE, the NBTI RC circuit can be directly simulated along with the
transistors being examined. An implementation of the model is given in Appendix A.

3.1.3. Positive Bias Temperature Instability

Analog to NBTI in PMOS transistors, Positive Bias Temperature Instability (PBTI),
affects NMOS devices, due to their positive gate-to-source voltage bias. Instead of hole
trapping, the main source of PBTI is electron trapping [125], i.e. corresponding to the
majority carrier in NMOS. Typically, the shift in Vth PBTI is an order of magnitude lower
than NBTI [19] in conventional devices withe a SiO2 gate dielectric. With the introduction
of High-k dielectrics, PBTI becomes more prominent [69]. This mainly due to the increased
electron trapping in the high-κ insulator.

3.1.4. Hot Carrier Injection

Similar to NBTI, Hot Carrier Injection (HCI) based degradation is caused by traps at the
interface to the gate dielectric. Here, carriers are accelerated in the MOSFET channel by
the horizontal electric field between source and drain. These carriers are referred to as hot
if they have sufficient energy to cause impact ionization, forming an electron hole pair in
the silicon layer. Through coulomb scattering, these can be injected into the oxide where
they break Si−h bonds. While this is the main contributing factor additional mechanisms
also contribute to HCI degradation. These are individual electrons that escape directly into
the oxide, minority carriers from secondary impact ionization, and due to direct tunneling
effects [120]

A main characterizing difference compared to NBTI lies in which electric field is responsible
for the effect [84]. Since transistor channel width is decreasing with technology scaling,
the strength of the horizontal electric field is increasing. Combined with the adoption of
high-κ metal gates reducing the vertical fields, the impact of HCI will continue to grow in
importance compared to NBTI.
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3.1.5. Time Dependent Dielectric Breakdown

Unlike the previous aging mechanisms, Time Dependent Dielectric Breakdown (TDDB)
has only a minor degradation impact on device characteristics (i.e. expressed through a
shift in Vth). Instead, its outcome is complete device failure. The process behind TDDB
takes place in two phases [66]. TDDB first occurs through the gradual deterioration of
the gate dielectric through the filling of pre-existing oxide traps along with the creation of
new oxide traps[100]. As such, the mechanisms behind TDDB correspond to those behind
NBTI. The amassing trap densities in the oxide can then lead to a percolation effect, i.e.
the clustering behavior of random processes, resulting in the so-called runaway phase [66].
This ultimately leads to a conducting path formed through the gate oxide. The time to
breakdown tBD can be modeled as [109]:

tBD = τ0(T )e
G(T )
κ (3.7)

where τ0(T ) is the Arrhenius dependency of TDDB, and G(T ) ∝ 1/kT . The time to
breakdown is directly related to the strength of the electric field between gate and bulk
as can be seen by its dependency on the oxide permittivity κ. The use of high-κ gate
dielectrics decrease the effect of TDDB accordingly.

3.1.6. Thermal Cycling

Periodic phases of heating and cooling – often referred to as thermal cycling – can add
additional thermal stress on system materials even at low temperatures as only the tem-
perature range is relevant and not the absolute temperature. Unfortunately, thermal
management techniques themselves often induce thermal cycling as a means of reducing
peak temperatures.

Thermal cycling is commonly modeled using the Coffin-Manson equation [114]:

N = C(
1

∆T
)q (3.8)

where N is the expected number of cycles until a system failure occurs, ∆T is the change
in temperature and C is a material constant. q ∈ [1, 3] represents the Coffin-Mason
exponent which is determined through experiments. In particular, the lifetime degradation
to thermal cycling is not dependent on the cycling rate, but instead only on the difference
between the maximum and minimum temperature and the number of total cycles.

3.1.7. Timing errors

Varying temperatures across a chip will also result in varying timing properties. If the
temperatures vary considerably, timing errors can occur. This is especially the case for
components that span over large areas of the chip. For instance, the clock tree has been
proven to be particularly vulnerable to spatial thermal gradients which induce uneven
interconnect delay. The resulting clock skew problems induce timing errors[31].

To analyze the general effect of temperature on the timing of circuits, we need to examine
its effect on individual transistor delay. Unfortunately, the effect of temperature on delay
is not a direct linear relationship. The delay is however directly related to the drain current
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ID – the higher the current, the faster it can charge subsequent capacitances driven by
transistor output, and thereby reduce circuit delay. As a result, any change in delay is
not only dependent on temperature but also in the nature of the circuit. An empirical
approximation of drain current can be given by the following alpha power law [106].

ID =
W

2L
µ(T )Cox(VGS − Vth(T ))α (3.9)

where Cox is the gate capacitance, W and L are the gate dimensions. Typical values of
alpha vary in the interval [1, 2] [106] and differ between NMOS and PMOS. As can be seen
there are two factors which are dependent on temperature: first the carrier mobility µ and
the threshold voltage Vth.

BSIM [1] presents us with models describing MOSFET behavior. In the current BSIM6.1,
the temperature-dependence of µ and Vth is given as follows1:

µ(T ) = µ0(
T

T0
)βµ (3.10)

Vth(T ) = Vth(T0) + γ((
T

T0
)βVth − 1) (3.11)

with the mobility temperature exponent βµ and the threshold voltage temperature coeffi-
cient γ, which are generally both negative. The default values in BSIM6.1 are: βµ = −1.5,
βVth = 1 (i.e. no effect), γ = −0.11V . As temperatures rise from the nominal temperature
T0, both µ and Vth decrease.

Revisiting Equation 3.9, we see that here, µ and Vth have opposing effects. Whereas
decreasing the mobility also decreases the drain current, decreasing Vth increases ID. For a
fixed system, whether the overall change in ID is dominated by its relation to the change in
Vth or to the change in µ depends on VGS−Vth(T ), i.e. is determined by what supply voltage
is applied. It has been shown that a temperature insensitive voltage VTIV exists [21] where,
if VSS = VTIV , temperature has no effect on delay when considering normal operating
conditions (i.e. under 125◦C), as the temperature effects of µ and Vth cancel each other
out in ID. For higher voltages, VSS > VTIV , the circuit is under normal temperature
dependence [121] where the mobility effects are dominant, and temperature increases cause
higher delays. At the same time, VSS < VTIV causes reverse temperature dependence [121]
where Vth(T ) is dominant and higher temperatures decrease delays. Through the use of
high-κ gate dielectrics, VTIV increases. It is around 0.4 V in 45 nm [122].

Additionally, variations of timing can be the result of the aforementioned aging effects.
For instance, the increase of Vth over time due to NBTI also results in an increase in delay.
Since these aging effects are hardly uniformly distributed, delays of individual transistors
are affected differently. Of course it should be mentioned that not all changes in delay can
or will result in timing errors. Errors depend highly on the circuit and whether it is on a
critical path.

1Assuming default channel length temperature dependence of 0 Vm, as well as zero body-bias
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Figure 3.10.: Degradation of reliability over time due to NBTI quantified by SNM

3.2. Aging Effects and Reliability: Analysis of Effects on
SRAM

This section takes a closer look at the effects of temperature-dependent aging mechanisms
on specific circuits through an exemplary analysis of the effects on a standard 6-T SRAM
Cell. Each cell consists of two cross-coupled CMOS inverters – made up of one PMOS and
one NMOS transistor – and two NMOS access transistors [15]. The focus of this analysis
is limited to NBTI. Thus, aging primarily affects the PMOS transistors.

The Static Noise Margin (SNM) is an often employed metric for expressing the reliability
of an SRAM cell. It illustrates the resiliency of an SRAM cell against voltage noise and
provides a design margin for avoiding failures. A design can compensate for any SNM above
zero by increasing the sensitivity of the SRAM sense amplifier. Thus the sense amplifier is
typically designed to meet desired yield criteria (e.g. six sigma [22]) considering the SNM.

The SNM is measured from the so-called butterfly curve that describes the transfer char-
acteristics of the SRAM cell. Figure 3.10(a) depicts the read SNM of a 22 nm six transistor
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(6-T) SRAM cell, with the SNM being equal to the length of the side of the square lo-
cated between the two curves. Since there can be both an upper and a lower square, the
smaller one of the two is taken to determine the SNM. A and B represent the outputs of
the inverters of the 6-T SRAM cell. VA(VB) plots the output voltage resulting from a
voltage sweep in B from 0 to VDD. VB(VA) is the voltage in B when VA sweeps from 0
to VDD, with VDD here being 1 V. The SNM was calculated using SPICE, together with
the 22 nm Predictive Technology Model (PTM) [126]. A threshold voltage increase in the
PMOS transistors due to NBTI degrades the SNM and consequently increases SRAM cell
susceptibility to noise – decreasing reliability. Fig 3.10 (b, c and d) show the potential
impact of NBTI on the reliability of an SRAM cell over years under different voltage stress
scenarios. In this context, the percentage of time where voltage stress is applied is referred
to as the duty cycle λ. Since the inverters are cross-coupled, if the PMOS transistor of
one is under stress, the other is not, and vice versa. Thus the duty cycle of the individual
PMOS transistors are λ1 = λ and λ2 = 1− λ, respectively.

When both PMOS transistors are subject to equal stress, as is the case in Figure 3.10 (b),
both experience comparable degradation. This results in a symmetric decline in the upper
and lower halves of the butterfly curve. The opposite is the case for λ = 0% in Figure 3.10
(c). Due to the uneven degradation, one half of the butterfly curve degrades faster than
the other, resulting in an overall faster decrease of the SNM.

λ=40% λ=0%

λ=50%
3D histograms of SNM degradation over
time simulated using Monte Carlo sim-
ulation of process variation. The 
"Percentage" axis shows how many 
samples fall into each histogram interval 
of 0.01 V. Each simulation consists of 
1000 samples. Simulation is done 
through our technology simulator built
on top of SPICE.

 0%

 5%

10%

15%

20%

25%

0
1

2
3

4
5

6
7

8

00.10.20.30.4

0
5

10
15
20
25

A
g
e
 [ye

a
rs]

SNM [Volt]

P
er

ce
nt

ag
e

0
1

2
3

4
5

6
7

8

00.10.20.30.4

0
5

10
15
20
25

A
g
e
 [ye

a
rs]

SNM [Volt]

P
er

ce
nt

ag
e

 0%

 5%

10%

15%

20%

25%

0
0

1
2

3
4

5
6

7
8

0.10.20.30.4

0
5

10
15
20
25

A
g
e
 [ye

a
rs]

SNM [Volt]

P
er

ce
nt

ag
e

 0%

 5%

10%

15%

20%

25%

Figure 3.11.: SNM degradation considering process variation

The SNM degradation becomes even more critical when accounting for transistor variabil-
ity. Fig 3.11 shows the effect of process variation on the SNM for the same duty cycles λ
as Fig 3.10, as a 3D histogram of Monte Carlo simulations at discrete time intervals. It
can be seen that although the mean SNM degradation for λ = 0% is only about 40% after
eight years, some SRAM cells are already failing, and the number of low SNM values close
to zero is also not negligible. In this low range, the SRAM cell is much more susceptible to
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38 3. On Temperature-related Dependability

DC voltage noise, which can result in a reduction of VDD of up to 20% [16]. In contrast,
Fig 3.11(e) and (f) show the histogram of the SNM over time considering process variation
at the 45 nm and 32 nm technology nodes, respectively, for the worst-case λ = 0%. It
can be seen that there is little divergence from the mean SNM, showing the higher overall
resilience of larger nodes.

3.3. Tackling Dependability Through Thermal Management

As becomes evident in Section 3.1, different dependability concerns need to be addressed
using different – often contradictory – methods. For instance, the increase in threshold
voltage due to NBTI can be avoided by increasing the system voltage. This, however,
increases both dynamic and leakage power and, in turn, also increases temperature, re-
sulting in an increase in aging due to electromigration. Conversely, lowering the system
voltage reduces electromigration, but increases a system’s susceptibility to a shift of the
threshold voltage. Both effects can be reduced by a reduction of frequency, however this
is often undesirable due to loss of performance.

3.3.1. Aging Budgeting

Assuming a multi-core system S, we define the aging budget of each core i ∈ S as Bi =
{Bi,∆Vth,i, n̂i}, where Bi represents the effect of aging due to electromigration and NBTI,
and is given as the time it takes for the dependability of a system to fall below a threshold
at a reference temperature Tr and voltage Vr. n̂i is the expected number of thermal
cycles to failure for a normalized temperature difference ∆̂T . ∆Vth,i is the estimated mean
shift in threshold voltage due to NBTI. It is regarded in addition to Bi in order to be
able to react to changes in threshold voltage induced delay before a core failure occurs.
Since aging takes place over long time periods, the aging budget only needs to be updated
relatively infrequently, e.g. once per day. However, short-term thermal management is still
a necessity in order to keep peak temperatures below a given threshold.

To enable aging budgeting based on temperature, it is assumed that thermal sensors are
deployed throughout the system. In the short-term (e.g. every few ms) these are used
to perform thermal management as well as collect statistics which are used to adjust the
aging budget. For Bi and ∆Vth,i it is sufficient to record the average of the temperature
terms (the e terms) and use these together with the models from Section 3.1 to calculate
the change in the aging budget. When implemented, the e terms can be pre-computed
for all temperatures achievable through thermal sensors (i.e. which typically have a res-
olution around 1◦C) and stored in memory. For electromigration, the difference of the
average temperatures of neighboring (i.e. adjacent) cores must also be recorded in order
to incorporate spatial thermal gradients.

Adjusting n̂i is a little more complex. To observe thermal cycles, it is necessary to examine
whether the change in temperature over time dT/dt is either negative or positive. If
dT/dt changes from positive to negative, a maximum temperature Tmax has been reached.
As soon as dT/dt becomes positive again, Tmin has been reached. This is regarded as
one thermal cycle with ∆T = Tmax − Tmin. Assuming that the normalized temperature
difference of a thermal cycle ∆̂T = 1, one thermal cycle with ∆T corresponds to (∆T )q

normalized thermal cycles at ∆̂T . The number of normalized thermal cycles are then
totaled and used when updating the aging budget.
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3.3. Tackling Dependability Through Thermal Management 39

3.3.2. Correcting Aging Budget at Runtime

In order to be able to perform corrections to the aging budget, it is necessary to ob-
serve the system state at runtime. This can be accomplished by deploying various aging
sensors throughout the system. These sensors can empower on-chip systems to quantify
the amount of aging induced by the major effects such as NBTI before it appears. It is
expected that such sensors will be present in future microprocessors for use as real-time
aging monitors. Intel, for instance, has developed a technology code-named Foxton, which
measures the amount of propagation delay along specific critical signal paths within a
microprocessor [8]. An interesting approach introduced by [12] proposed a new sensor
integrated inside a flip-flop for predicting NBTI-induced PMOS aging. A novel sensor
design able to predict aging induced by NBTI is proposed in [74] based on measuring the
threshold voltage difference between an NBTI stressed and an NBTI unstressed MOSFET
device using an inverter chain and a phase comparator. While the presence of aging sensors
is not a requirement of our approach, they can serve to enhance its effectiveness.

3.3.3. Power Profiles

As a method for controlling temperatures with regard to long-term aging effects, we define
various power profiles which determine allowed power dissipation of each core.

Idle: The idle power profile is used when no application is running on a core. If available,
clock and or power gating should be applied to the core.

Low Performance (LP): From a dependability viewpoint, it is most beneficial to per-
form computation on cores running at low voltages and low temperatures at the cost of
performance. Thus, if performance constraints allow, cores are set to the LP profile and
limited to low voltages and frequencies. This is e.g. the case for low-priority non-critical
applications. Furthermore, applications which offer a high degree of parallelism can also
be run in the LP profile even while keeping performance constraints if the application is
executed on multiple cores.

While the LP profile still produces higher temperatures than the idle profile, if a core is
not running an application between two periods at the LP power profile it is not always
beneficial to change to the idle profile due to the competing effects of e.g. NBTI, electro-
migration and thermal cycling. Once the B or n̂ terms of the aging budget fall under a
specified threshold, cores are automatically limited to the LP profile even if this results in
performance constraints not being met.

High Performance (HP): In general, it is desirable to spread computation across all
cores and run these at low frequencies and voltages. However, it is often the case that an
application cannot be parallelized and must run on a single core at a high frequency in
order to meet performance needs. When running in the high performance power profile,
applications must be frequently migrated so that peak temperatures are reduced and the
negative effects of NBTI are reduced. Ideally, between periods of running at the HP profile,
a core is either running at the Idle or LP profile. This is controlled by the short-term aging
budget.

High Performance - Low Dependability (HPLD): Once the Vth term of a core’s
energy budget sinks below a threshold, it is no longer able to reliably run at the HP power
profile. In order to continue to be able to run at a high frequency, it is necessary to increase
the voltage. While this measure is needed to meet performance demands, it unfortunately
also accelerates the further aging process.
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40 3. On Temperature-related Dependability

3.3.4. Thermal Management

Thermal management is determined by the aging budget together with the power profiles
and temperature measurements. How the thermal management is performed depends on
what strategy is employed, as outlined below.

Greedy Strategy: When using the greedy strategy, all HP executions are run on a two
core subset of all cores H ⊂ {i}. Once the aging budget no longer allows HP execution,
the core is then blocked for high performance applications and removed from H allowing
it to only run applications requiring the LP power profile. A new core is then added to
H. What happens once there are no cores left for HP execution depends on which terms
in the aging budget have fallen under a threshold. If it is ∆Vth, the process continues
using the HPLD power profile. For B and n̂i, however, the cores remain in the LP profile
and performance constraints can no longer be met. The benefit of this approach is that
core failures do not occur for all cores during one short time interval, but instead the
cores lose their capabilities successively and temporally distributed. However, limiting the
HP applications to a small number of cores can result in higher temperatures and thus
accelerated aging.

Balanced Strategy: In the balanced strategy, all cores are in H and high performance
applications are initially mapped to the core with the highest aging budget. This allows
aging to occur more evenly across the chip. The downside of this strategy is that all cores
will reach the aging budget threshold at which HP executions switch to the HPLD profile,
as well as all cores failing at approximately the same time.

Adaptive Strategy: This strategy employs a mixture of the two previous ones. In it, the
size of H is adapted over time depending on the current state of the system. Whether a
core is in H depends on which factor of the aging budget is more expected to cause failure.
If Bi is more critical, core i is inserted into H. Once n̂i becomes critical, it is removed.
Note, however, that until all n̂i fall under a determined threshold, it is necessary to have
at least two cores in H, even if all n̂i are more critical than all Bi. In this case, the two
cores with the highest absolute n̂i are chosen.

Regardless of the employed strategy, the thermal management always reacts when the
peak temperature of a core reaches a threshold.

Algorithm 1 presents an additional outline of one time-step of the adaptive strategy. First,
while waiting for the time-step to complete, temperatures are continuously monitored
(Lines 3-10). For each thermal cycle – when the temperature reaches its minimum –
the number of normalized thermal cycles corresponding to the temperature differnce is
added to the total number of thermal cycles in this time-step. Additionally, the average
temperature is calculated to be used in the aging models. Second, the current aging budget
and the set of cores allowing HP execution, H, are updated from time t to t + 1, based
on the monitor data of the first step (Lines 13-25). In Line 14, the available aging budget
components are decreased for each core. If these are now below the thresholds, the core is
removed from H. If they are above the thresholds the core is added.

3.4. Experimental Setup and Results

In order to evaluate our approach we first analyze the temperature characteristics of vari-
ous applications of the SPEC2000 and SPEC2006 benchmark suite using the SimAlpha [42]
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Algorithm 1 Aging Budgeting with Adaptive Strategy

Input: minimum threshold for n̂i: n̂τ
Input: cores i, initial n̂i,0 = n̂i at t = 0
Input: Bi = {Bi,∆Vth,i, n̂i},H at time t
Output: Bi = {Bi,∆Vth,i, n̂i},H at time t+ 1

1 begin
2 ni = 0

Tmax,i = Tmin,i = mi,0

while time 6= t+ 1 do
3 foreach sensor measurement mi,l do
4 if temperature maximum then
5 Tmax,i = mi

6 end
7 if temperature minimum then
8 Tmin,i = mi

ni = ni + (Tmax,i − Tmin,i)q
9 end

10 Tavg,i = (
∑

lmi,l)/l

11 end

12 end
13 foreach i do
14 n̂i = n̂i − ni

Bi = Bi − EM NBTI(Tavg,i)
∆Vth,i = ∆Vth,i + NBTI(Tavg,i)
if ((t+ 1)/(n̂i,0 − n̂i)) · n̂i < Bi or n̂i < n̂τ then

15 if i ∈ H then
16 H = H \ {i}
17 end
18 “

19 else
20 if i /∈ H then
21 H = H ∪ {i}
22 end

23 end

24 end
25 return Bi, H
26 end

instruction level simulator combined with power values from McPAT [80] as input to the
HotSpot thermal simulator [63]. We assume register files and cache accesses are evenly
distributed using a technique such as [44], and therefore assume an even distribution of
temperature inside the components. We further assume that a subset of the applications
requires the high performance power profile (e.g. running at 2 GHz) and the rest are simu-
lated at a low frequency and voltage akin to the low performance power profile (e.g. running
at 800 MHz). These simulations are then used to develop a thermal profile for HP, LP,
and HPLD applications. Using these thermal profiles we perform a random simulation for
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Figure 3.12.: Time to failure of individual cores for different approaches

each of the presented strategies to find the distribution of failures over time assuming a
16 core multi-core system with the number of applications simultaneously requiring a high
performance profile varying uniformly from 1 to 10.

The results of the simulation runs are shown in Figure 3.12, which compares the core
failures of the three presented strategies with the case where thermal management is only
done to avoid peak temperature thresholds and not based on the aging budget. As can be
seen, the greedy strategy performs worst out of all four. This is due to the limited number
of cores in the set of HP cores H constantly reaching a higher temperature than when
more cores are in H. The balanced strategy, on the other hand, outperforms even the
adaptive strategy in terms of dependability. However this comes at a cost: the balanced
strategy is no longer able to meet performance constraints. In fact, the balanced strategy
is no longer able to meet performance constraints in all runs on average after 1.95 years,
whereas the adaptive strategy is able to meet performance constraints (until the last core
fails) in 58% of all runs. In the remaining 42%, performance constraints are met until 7.62
years, on average.

Figure 3.13 shows the cumulative failures for one run of the approach while running 1
high-performance application requiring the HP power profile. It can be seen that, while
the balanced strategy outperforms the adaptive strategy on average, the time to the overall
system failure is still higher for the adaptive strategy in this case. As the number of HP
applications increases, however, the time from the first core failure to last core failure
decreases, and the last failure of the adaptive strategy is generally before that of the
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Figure 3.13.: Cumulative failures for different strategies

balanced one. Additionally, a higher HP application count also results in shorter lifetimes
in the case of not performing thermal management targeted at dependability. Overall, the
adaptive strategy achieves an increase in chip lifetime by a factor of 2.1 (on average) while
keeping performance constraints.

It should be reiterated that these gains come entirely through control of temperature stress
at the system level and are thus able to reduce multiple aging mechanisms at once – in
particular by slowing electro-chemical processes. This approach is largely independent of
microarchitecture-level approaches which aim to control voltage stress for specific aging
mechanisms in specific components (provided these approaches do not increase temper-
ature). For instance, [77] and [15] deal with voltage stress in SRAM and register files,
respectively. Both have negligible impact on temperature since they are active infre-
quently (e.g. cell flipping occurs once per day in [77]). As such, the presented temperature
management can be used to complement the microarchitecture-level approaches.

3.5. Summary

Manufacturing process advancements that enable nano-scale fabrication (i.e. with feature
sizes of 45 nm and below) produce devices plagued by dependability issues. From a ther-
mal perspective, the predominant issues are aging mechanisms such as NBTI, PBTI, HCI
degradation, electromigration and TDDB occurring during device lifetime. As these are
all electro-chemical processes, their rate is temperature-dependent in accordance with Ar-
rhenius law. Higher temperatures accelerate reactions and thereby increase aging. While

43



44 3. On Temperature-related Dependability

it is impossible to stop these effects at reasonable temperatures (i.e. above absolute zero),
reducing temperature will at least delay them. Thermal management is expected to play
a key role in ensuring that on-chip systems maintain dependable operation for as long as
possible.

From a system point of view, the choice in thermal management strategy can have a
considerable impact on lifetime degradation to aging mechanisms. For instance, using
the presented adaptive strategy, it is possible to double lifetime expectancy in a multi-core
system while being able to meet all deadlines. Longer operating times are also possible, but
require DTM to perform a trade-off between maximizing lifetime and keeping performance
constraints.
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4. Control of Thermal Systems

A system undergoing thermal management is an example of a so-called Observer-Controller
architecture. That is, an output value of the system is constantly observed to provide
feedback to a controlling instance, that in turn changes the system configuration. This
can be expressed as a classical control model as shown in Figure 4.1. When applied
to thermal management, the system’s output value is temperature. An example system
configuration U might be, for instance, a DVFS setting or a task mapping.

set
+ control system

sensor

ε U

outputobservation

ε - error, U - controller output

Figure 4.1.: Generic control system

In general, thermal management techniques
can be divided into two categories: those
whose goal is optimizing performance while
keeping thermal constraints, and those aim-
ing to optimize temperature under perfor-
mance constraints. The key differences of
these is highlighted in the next two sections.

4.1. Optimizing Performance

By far the most common type of thermal
management is done by setting temperature
constraints and optimizing for performance within them. Control systems are typically
only effective if they are able to avoid oscillations that can bring the system out of a sta-
ble operating point. However, what this means is dependent on the type of optimization
being done. For instance, when performing thermal management through task or activity
migration but optimizing for performance, it is beneficial to avoid performing frequent mi-
grations if migration overhead is high. This may result in a large oscillation of temperature.
However, it is these oscillations that allow optimization of performance. It is important
to note here that thermal oscillations are an essential part of thermal management. In
fact thermal management using activity migration relies on oscillations in temperature:
activity is migrated away from hot components to allow these to cool – at which point they
can execute new activity and heat up again. For these types of oscillations it is merely
important that they are constrained. Mostly this is done by limiting the allowed peak
temperature to a given threshold.
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4.2. Optimizing Temperature

Optimizing for temperature is a more specialized approach employed when it is necessary
to minimize temperatures or variations of temperature. This allows maximizing system
lifetime from the perspective of thermal dependability concerns (cf. Chapter 3) but comes
at the cost of performance. Generally trivial solutions to thermal optimization exists that
are, however, counter productive. As an example, a system employing dynamic voltage and
frequency scaling (DVFS) to optimize temperature would simply run at as low a frequency
as possible. As this is not practical, usually constraints on performance degradation are
given.

An example of using control-based optimization of temperature through periodic migration
of computational activity is presented in Section 4.3. The performance overhead here is
mainly incurred through the overhead of activity migration. Thus optimizing for temper-
ature may call for very frequent migrations which in turn increase the overhead affecting
performance.

4.3. COOL: Control-based Optimization Of Load-balancing
for Thermal Behavior

In COOL [44], an approach is presented that aims to optimize a system’s temperature.
As previously stated, this generally comes at the cost of a loss of performance guarantees,
unless the cost of performing activity migration is negligible.

Figure 4.2 shows an example where such an approach is beneficial: by controlling the
activity of a register file. Activity in the register file in Figure 4.2 is controlled by limiting
the write accesses to a subset of the registers (in the example: component R) of the register
file through the register renaming unit. Thus, activity migration is performed through the
renaming unit by limiting write accesses to a different subset of registers (e.g. component
L). There may be some read accesses to the now idle component (R). However, as shown
in Section 4.6.1, these are infrequent across all observed benchmarks. Figure 4.2 shows
two different rates of activity migration in a register file with two components: a) using
infrequent migration, and b) using frequent migrations. Case b) is able to reduce thermal
variations between the two components but, due to mutual heating resulting from the
thermal conductivity between the components and insufficient cooling periods, it may
lead to higher peak temperatures if the migrations are too frequent.1 Case a) on the
other hand, has a lower peak temperature, but a higher thermal variation. Our goal is
to balance the load between components by finding the optimal rate of activity migration
which minimizes the temperature T and dT/dx for a given workload.

4.4. Activity and Thermal Models

In order to formulate the properties of the thermal impact of activity migration, we examine
the case where activity is migrated between two homogeneous components. To express
the properties mathematically, we first assume an ideal system, i.e. where the overhead of
activity migration is considered to be zero, and in the evaluation we apply our approach

1What is deemed as “too frequent” is highly dependent on what the components are. In the case
of the register file, this is around more frequent then once every 15K execution cycles.
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Timet0 t1 t2 t3 t4

a) Slow migration
rate ( f ): higher
thermal variance,
lower peak
temperature

idle idle active idleactive idle activeidle activeidle

active idle activeidle active idle activeidleidle idle

b) Fast migration
rate ( f ): lower
thermal variance, 
higher peak
temperature

w r w r w r w r

w rw rw rw r

hot

cool
r r r

r

All components of 
the register file 
are idle

w/r access is directed 
to “L” component of 
register file; Activity is 
limited to “L”

a) Activity remains on “L”, 
thermal variance increases
b) Activity is migrated through 
redirection of w  accesses; 
Some legacy r remain

a) Activity migrates to 
“R”
b) Activity migrates to 
“L” again, thermal 
variance remains low

a) Peak 
temperature is
lower since all 
legacy R operations 
have finished

L R L R L R L R L R

L RL RL RL RL R

Δt

f =1/(Δt)

f =1/(2·Δt) 

Figure 4.2.: Example scenario of activity migration in register file components and possible
effects on temperature.

using both real thermal measurements (obtained from a thermal camera) and thermal
simulations and we account for incurred performance penalty. Furthermore, only within
this section, it is assumed that the power consumption is constant during execution. The
ideal activity on the two components can thus be modeled using the heaviside function Θ.

Θ(x) =
{0, x < 0

1, x ≥ 0
(4.1)

with the execution on each component modeled as Θ1(f, t) := Θ(sin 2πft) and Θ2(f, t) :=
Θ(− sin 2πft), respectively, with the migration rate f determining the frequency of activity
migrations. The thermal development over time is then the step response for Θ, R(Θ) as
is shown in Figure 4.3, and can be expressed as

R(Θ) ≡ T (t) = Sn + (T (n)− Sn)e−t/a(n)

where T (n) is the initial temperature at a change in Θ, Sn is the steady state temperature
after the change in Θ, and a(n) controls the rate of heating/cooling. If Tn < Sn, the
component is heating up, and if Tn > Sn, it is cooling. This corresponds to the solution of
the differential equation of the first law of thermodynamics ([c ·m · dTdt = P ·Θ+ Q̇], c ·m is

the thermal capacity, P is the power consumption, and Q̇ is the heat transferred to or from
the system) under the assumption that the two components are symmetrical (i.e. both
generate the same amount of heat). To calculate the thermal properties, it is necessary to
examine the temperatures of both components T1 and T2. For each different value of f ,
we can use these temperatures to determine the peak and average temperatures, as well
as the thermal variation between the two components for thermal balancing. As can be
seen in Figure 4.3, these different migration rates f will result in different Tmax and Tmin,
allowing us to optimize thermal behavior – and thereby chip reliability and lifetime – by
finding an optimal f . To accomplish this, we employ the principles of extremum-seeking
control.

4.5. Application of Extremum-Seeking Control

Control theory deals with the control of dynamic systems using a feedback loop to drive
a system into a desired state. Akin to the goal of optimizing the temperature/thermal
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Figure 4.3.: Ideal activity migration and resulting temperature considering homogeneous
components

balancing, the model of extremum-seeking control, also referred to as self-optimizing con-
trol, is exploited in order to optimize the output function g of a system as long as this
function has an extremum value (minimum/maximum) and is at least differentiable two
times (g ∈ C2). Its notable difference to standard control theory is that it does not rely on
a predetermined set point, i.e. a predetermined value for the output function to reach, but
instead, it aims to drive the output function to an extreme value, e.g. to a minimum, and
is thus particularly suited for the challenge of minimizing peak temperatures and thermal
variations. To fulfill this goal, the controller controls components of an on-chip proces-
sor architecture. The output function g of the components is based on the temperature
measured during runtime, as shown in the right part of Figure 4.4. In order to influence
this temperature function, the controller changes the activity migration rate between the
components. By observing how this change affects the temperature function, the controller
can adapt the activity migration rate to drive the temperature function to a minimum.

According to Taylor’s theorem, we can approximate f around a neighborhood a as:

g(f) ≈ g(a) + g′(a)(f − a) +
g′′(a)

2
(f − a)2 + ε (4.2)

with an error term ε. Since we are interested in finding the extremum of the output function
(e.g. the minimum temperature), we choose a such that g(a) is a minimum/maximum, and
therefore g′(a) = 0.

In summary, our extremum-seeking control works as follows: assuming the output function
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of the system g(f) can be expressed as Equation 4.2 with an error ε, passing g(f) through
a high-pass “washout” filter will filter out the constant term g(a). Likewise, the low-pass
filter serves the purpose of filtering out the error ε, which can be seen as high-frequency
noise. The result is an approximation for g′′(a), which is given in [17]:

f̂ ≈ −kbg
′′(a)

2
f̃ (4.3)

where f̃ is the estimation error (a− f̂), k is the adaptation gain of the low-pass filter, b the
amplitude of the probing signal used for modulation. This is then employed to determine
the changed input rate f to the activity migration in order to drive the output function
towards g(a).

First we examine the case of optimal thermal balancing, in which the goal is to keep the
system temperature as steady as possible, i.e. having a minimal thermal gradient between
the two components, and avoiding thermal cycling. This is the case when the largest
difference between the temperature of the first component, T1, and the temperature on
the second, T2, is minimal.

g(f) = max∆t
(T1(t, f)− T2(t, f))

dx
(4.4)

Applying extremum-seeking control of Equation 4.3 shows that an optimal thermal balanc-
ing occurs when f →∞, or in other words, when activity migration is applied as frequent
as possible. However, that is not feasible for practical thermal management, since too
frequently applied migrations will negatively impact system performance. As such, when
only optimizing for thermal balancing, we need to additionally specify an upper bound for
f . Furthermore, a system optimized only for thermal balancing does not necessarily have
the best overall thermal characteristics (i.e. it may still exhibit a high peak temperature
whose negative effects on chip reliability and lifetime may outweigh the gain in reliability
through minimizing thermal variations). This is a result of the latency of heating and
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cooling, i.e. there is not sufficient time for cooling if the component is only idle momen-
tarily resulting in a system where the components being controlled are constantly heating
up.

It is thus necessary to consider the additional thermal properties, i.e. the average and peak
temperatures. We can express the average temperature as:

g(f) =
1

2
(

∑
t T1(t, f)

∆t
+

∑
t T2(t, f)

∆t
) (4.5)

Likewise, to optimize peak temperatures we consider

g(f) = max∆t(T1(t, f), T2(t, f)) (4.6)

In practice, all three of these factors must be considered, and hence, the output function is
a weighted combination of Equations 4.4, 4.5, and 4.6 with respective weights. However,
in our experiments we found a correlation between average and peak temperatures (see
Figure 4.10), making it sufficient to only optimize for peak temperatures and thermal
balancing. This is typically the case when the components occupy a small chip area
footprint, due to thermal conductance within the components. If both the area of the
components is large and activity is focused on a small part of the components (e.g as may
be the case if a component is an entire core, and not only a part of its microarchitecture),
however, the average and peak temperatures may no longer be correlated to each other
and the average temperature must be taken into consideration and included in the output
function. Determining the weight values (α) is device-specific, and as such they must be
obtained using an architecture-dependent device exploration. In Figure 4.4, the weight is
given by α which determines the ratio of optimization between the peak temperature and
thermal balancing.

Our approach can be implemented using either online or offline optimization depending on
how much a priori knowledge is available, i.e. if the activity during runtime is known, the
optimal migration strategy can be obtained by running our approach offline and applying
the devised strategy for runtime activity migration. If this is not possible, e.g. due to
non-deterministic activity resulting from different application inputs or user behavior, the
optimization of the migration strategy can be accomplished online using our controller.
While the online approach is more flexible, it also requires additional hardware resources
to implement our controller.

It is important to differentiate between heterogeneous and homogeneous components. Ho-
mogeneous components use the same amount of switching activity (and occupy the same
area footprint) for computation and thereby produce equal amounts of heat. In this case
migration is applied between the components with each component being active for the
same time duration. In the general case, the components are heterogeneous and con-
sume different amounts of power and/or occupy a different amount of area, and, therefore,
generate different amounts of heat. To optimize thermal behavior, these heterogeneous
components must therefore be active for different amounts of time. The activity can thus
be modeled using an extension of Equation 4.1, using two components as an example:

Θ1(f, β, t) := Θ(sin 2πft+ β) and

Θ2(f, β, t) := Θ(− sin 2πft− β)
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where β ∈ [0, 1). As a result, Θ1 and Θ2 are alternatingly active for the intervals f
2 (1 + β)

and f
2 (1 − β), respectively, and β = 0 corresponds to the heterogeneous case. With-

out loss of generality, Θ2 represents the component with increased computation time,
i.e. the component that generates less heat. The values for β are optimized offline with
the extremum-seeking controller using a fixed f .

4.5.1. Extension to higher-dimensional problem space

To cover a larger range of architectures, i.e. architectures with more than two components
and one activity, the above example must be extended to the multi-dimensional case with
n components and m activities. This can be accomplished by using a chain of extremum-
seeking controllers [41], each responsible for deciding when to migrate activity from one
component. An example of such a controller chain is shown in Figure 4.5 and described
in Algorithm 2. The inputs of a component are averaged between extremum-seeking con-
trollers it shares with adjacent components, i.e. components located physically next to
each other. Thus, in assuming a two-dimensional mesh architecture, each component will
have between two and four inputs depending on its location (e.g. if it is somewhere in the
middle or at the border).
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Figure 4.5.: Chaining of multiple extremum-seeking controllers

Here, the migration rate is no longer fixed, but instead each activity τj , j ∈ {1, ..,m} has
its distinct migration rate fτj . Thus each of the n cores has as its inputs f of the activity
currently running on the component. For instance, Componenti, i ∈ {1, .., n} will have the
inputs fi,τj if activity τj is running. Each component can have up to m inputs as shown
in Figure 4.5. For each activity migration, the activity is migrated from the component
it is running on and placed to the queue of the activity dispatcher which chooses a new
component to migrate the activity to.
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Algorithm 2 COOLChain: Chained extremum-seeking control at time t

Input: Set of m Activities: {τj}
Input: set of n components: {Ci}
Input: Initial allocation at time t: Aij(t) = {τj → Ci}
Input: Corresponding migration rates fτj (t)
Output: Modified migration rates fτj (t+ 1)
Output: Modified allocation: Aij(t+ 1)

27 begin
28 foreach Controller Ck do
29 foreach Input Ci′ ⊂ {Ci} do
30 Get sensor data Ti′(t) foreach Activity τj′ ∈ A(i′j) do
31 // Using Equation 4.3:

tildefτj′ = Ck(fτj′ , Ti′(t))

32 end

33 end

34 l =MAXi f̃τj′ ∆f =VECTORm (0..0) ∆fl = f̃τj′
35 end
36 foreach Ci do
37 foreach Input from Ck do
38 {fτj (t+ 1)} = {fτj (t)}+ ∆f
39 end

40 end
41 foreach Activity τ ∈ {τj} do
42 if fτ = n · t, n ∈ N then
43 Aij(t+ 1) = Aij(t) \ {τ} dispatcherQueue.add(τ)
44 end

45 end
46 foreach activity τ in dispatcherQueue do
47 Cĩ ← getNextComponent(policy) Aij(t+ 1) = Aij(t) ∪ {τ → Cĩ}
48 end

49 end

There are two parameters which influence the effectiveness of the chained controller.

• The first one is the policy of the activity dispatcher. Where it decides to migrate
activity to is dependent on the weight α (see Figure 4.4). For instance, when opti-
mizing for spatial thermal variation, it is most efficient to migrate an activity to the
coolest core in the region (where the variation is maximal).

• Second, in the general case where there is more than one activity scheduled on
a component, it must be decided how

∑
(∆f) influences the individual fτ . For

homogeneous activity workloads, we simply reduce the maximum fτ . However for
heterogeneous workloads, the load also needs to be considered. Thus, assuming that
a normalized load parameter Lτ is known (i.e. through performance counters), the
fτ is reduced where Lτ · fτ is maximal.

Due to the properties of extremum-seeking control, we are able to manage on-chip temper-
atures, minimizing both peak temperatures and thermal variations. In the following we
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analyze the effectiveness of the application of COOL for thermal optimization in different
systems. First we analyze the effect of activity migration in FPGA-based systems which
enable us to obtain detailed thermal measurements. Subsequently, as one possible applica-
tion example, we apply our approach to the register file of a superscalar microarchitecture
in an ASIC and analyze its effectiveness using thermal simulation.

4.6. Thermal Analysis

To analyze the COOL control-based temperature optimization using real measurements,
a thermal camera is used to monitor the infrared emissions from a die. Using Xilinx
Virtex-II and Virtex-5 FPGAs we are able to examine the effects of various values for f
which determine how often the activity is migrated between two switching regions. The
on-chip temperature distributions are observed using a DIAS Pyroview 380L compact
infrared thermal camera [3]. The utilized infrared camera is able to measure the emitted
temperatures from the FPGA die with an accuracy of (±1◦C).
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Figure 4.6.: Infrared image of 77.5 MHz ac-
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The implemented designs on the tested FPGAs emulate two computational components by
means of switching activity using Toggle-Flip Flops (T-FFs) in rectangular regions on the
FPGA, representing the worst-case of switching activity. Each of these components can be
in one of two states: active or idle. A running component consumes 100% switching power
(a normalized value corresponding to the average switching activity of that component),
and, in our implementation, an idle component is clock gated, consuming 0% switching
power. Activity migration is performed by swapping the states of the two components, i.e.
the active component is clock gated and becomes idle, whereas the clock of the idle compo-
nent is enabled, making it active. While the FPGA chip is unable to produce temperatures
as high as ASIC chips of current technology nodes may reach, the concepts presented can
be used at any technology node and are equally applicable to higher temperatures, as is
seen in Section 4.6.1.
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Device Characteristics:

Virtex-II XC2VP30
77.5 MHz

Virtex 5 XC5VLX110T
400 MHz

We begin our evaluation using the Virtex-II
FPGA and examining the effects of various
values for f which determine how often the
activity is migrated between the two emu-
lated cores, each consisting of 1000 T-FFs.
The thermal images of two of these runs are
shown in Figures 4.6 and 4.8. The temper-
ature scale of the two images is generated
dynamically based on the total temperature range, and is therefore not consistent between
the two images. In Figure 4.6, the activity migration frequency, given by the angular
frequency f from Section 4.4, is the maximum possible with the task switching cores after
every cycle. As such power consumption and heat production are as balanced as possi-
ble, resulting in a symmetric thermal image. In Figure 4.8, however, the switching of the
task between the cores is less frequent, allowing one of the cores to cool down while the
other heats up. This results in an asymmetric thermal distribution. It should additionally
be noted that the idle core cannot cool down completely to the ambient temperature,
as it is still affected by heat conducted from the active core, as well as by static power
consumption, e.g. due to leakage power.

Figures 4.7 and 4.9 show the temperatures of the two cores over time for two activity
migration frequencies – once after every cycle and once after every 10 million cycles,
corresponding to around once every 13 ns and 130 ms, respectively when running at 77.5
MHz. Both runs show a steady increase in both the maximum and minimum temperatures
over time as the system gradually heats up towards the steady state temperatures of the
individual runs. However, it can be seen that, in the case with the optimal thermal
balancing (Figure 4.7), the peak temperature is greater than in the other cases. This is
largely due to the heat conducted from the active core to the idle one and that the idle
core does not have enough time to cool down during one cycle. In this case, optimizing
the system for only thermal balancing will result in the worst case for peak temperature.
This observation also holds true for the four core Virtex-5 case below, as well as in the
register file in Section 4.6.1.

The temperature values given for the input f in Figures 4.7-4.9 present an insight on the
observability and controllability of the system. Through the observed temperatures, we
are directly able to infer the current system state set by the input frequency f by regarding
the periods of heating/cooling in each core. Likewise, changing the input f will result in
a predictable change in the system output function.

The analysis of the effects of the chosen f (i.e. without using the controller) on the thermal
characteristics of the chip are summarized in Figure 4.10. We can see that optimizing for
peak temperature corresponds to an optimization for average temperature, i.e. here the f
resulting in the lowest peak temperature will also have the lowest average temperature.
As such, we limit our optimization to peak temperatures and thermal balancing. Since
the maximum thermal variation, which quantifies the degree of thermal balancing, ranges
from 0 to 1.6◦C, we choose α = 1/30 (see Figure 4.4) such that the impact of thermal
balancing is comparable to that of peak temperatures. The obtained weight can then be
used in the extremum-seeking controller to optimize activity migration at runtime.
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Figure 4.10.: b) Summary of thermal characteristics for various activity migration rates f .

Since the input to the controller is discrete, the continuous Laplace is replaced by the dis-
crete z-transform. The rate of control is limited by the camera frequency (50 Hz), meaning
that changing the activity migration rate can at most be done whenever new temperatures
are observed. However, it is also necessary to wait for multiple temperature measurements
in order to accurately regard the current state and its relation to the extremum g(a), and
especially also in order to decrease the effect of measurement noise. Through our thermal
measurements, we have determined that for our evaluation platform, a rate of control of
once per second is sufficient since the heating of the chip to the peak temperature takes
several minutes (between 5 and 10 minutes depending on ambient temperature). However,
if a system requires more dynamic thermal management, and has faster on-chip thermal
sensors (e.g. reading a thermal sensor takes 54ms in [20]), the rate of control can be in the
range of milliseconds (e.g. once every 10-100ms).

Figure 4.11 a) shows the application of the controller implementation on our evaluation
platform. After the interval of one second, determined by the rate of control, the controller
performs a change to the input f . Initially, the thermal balancing component of the output
function is the deciding factor, and thus the input is changed by increasing the frequency
of activity migrations in order to achieve a better thermal balancing. At the second
controller iteration at t = 2s, the peak temperature has risen above the peak temperature
of the previous input f , resulting in the next input decreasing the migration frequency.
This process continues until the optimal f is reached, decreasing the peak temperature in
the example scenario by 6.3% (◦C) compared to only optimizing for thermal balancing.
It should be noted, however, that due to the monotonous increase in peak temperature
during the initial heating phase, the extremum-seeking control drives the output function
towards local maxima/minima. If this is no longer optimal, once the initial heating phase
is complete, the controller will again change the input f towards the global optimal state.
The initial heating phase is shown here in order to illustrate the dynamics of the approach,
since in the worst-case scenario (and in particular since the total activity is constant,
i.e. not application dependent), f will become constant. In Figure 4.11 b), the change in f
over multiple control intervals is shown in terms of activity migrations per second, which
illustrates the convergence of the controller towards an optimal f .
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For the evaluation with the Virtex-5, we examine the temperatures after several minutes of
operation when the thermal state of the system has stabilized to the steady state temper-
ature. At this point, the peak/average temperatures and max thermal variation no longer
changes (except for noise temperature variations). Since the temperature has stabilized,
optimizing for f will result in a fixed value. For instance, when using the extremum-seeking
controller to find optimal values with the 2000 T-FF design, the resulting f is 4.167 Hz
(once every 96 M cycles), with a peak temperature of 58.2◦C and a thermal variation
of 0.98◦C, a reduction of 9◦C and 5◦C, respectively. Table 4.1 shows a summary of the
thermal characteristics of several evaluation runs.

To evaluate the multi-dimensional problem with multiple components, we have imple-
mented a four component version of the 2000 T-FF Virtex-5 design running two activities,
τ1 and τ2. Each activity has its own corresponding f value, fτ1 and fτ2 . The thermal
exploration of this setup is shown in Figures 4.12 and 4.13. When regarding peak temper-
atures in Figure 4.12, we can see two effects which contribute to the peak temperature.
The first is that a high migration rate results in higher temperatures, analogous to the
two component system. The other is that a correlation between fτ1 and fτ2 can result in
more mutual heating. Thermal gradients, however, are still mostly dependent on f , with
larger values (and thus lower migration rates) resulting in higher gradients. The maximum
peak temperature measured is 65.8◦C, and the maximum thermal variation 1.5◦C. In our
approach, the thermal optimization for four components consists of four controllers, each
with two inputs and two outputs. When starting from the worst case (fτ1 = fτ2 = 1),
the COOL first results in an increase in both f values. The increase of both is slightly
different resulting from the different controllers and shifting the peak temperature away
from the center in Figure 4.12 (i.e. where there are higher peak temperatures resulting
from correlated values of f). The resulting values for f obtained are fτ1 = 5.2 Hz (once
every 76.8M cycles), and fτ2 = 15.625 Hz (once every 25.6M cycles) with an overall peak
temperature of 63.1◦C and thermal variation of 0.84◦C.

In summary, the analysis presented in this section shows the runtime behavior of our ap-
proach measured using an infrared thermal camera. This provides us with a verification of
the concepts presented in Section 5.5, showing that there is an optimal activity migration
rate f and that our controller is able to determine that. We achieve a reduction of peak
temperature of 9◦C and a reduction in thermal variation from 6◦C to 1◦C by optimiz-
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FPGA T-FFs Clock Migration Rate f TA Tmax Tavg ∆T
[106 s−1] [s−1] [◦C] [◦C] [◦C] [◦C]

Virtex-II 1000 77.5 77.5× 106 29.0 34.15 32.60 0.12

7.75 29.0 32.08 30.90 0.64

3.875 29.0 31.96 30.70 0.78

1.938 29.0 31.36 30.75 0.96

0.969 29.0 32.14 31.00 1.06

0.484 29.0 32.01 30.70 1.13

Virtex-5 2000 400 50× 103 29.4 57.62 56.43 0.40

1× 103 29.4 56.10 55.30 0.46

500 29.4 55.80 54.93 0.49

196 29.4 55.46 54.60 0.46

50 32.0 64.91 57.50 0.64

1 32.0 57.90 55.50 2.74

0.5 32.0 57.64 55.22 3.06

0.196 32.0 58.40 55.54 3.10

4000 400 50× 103 29.5 68.70 67.28 0.51

1× 103 29.5 68.16 66.70 0.76

500 29.5 68.16 66.31 0.80

196 29.5 67.12 65.63 0.71

Table 4.1.: Summary of Thermal Behavior (peak temperature and thermal variation)

ing f in the case of two components in a Virtex-5 FPGA. When more components and
activities are considered, the reductions achieved are lower due to the overall increase in
activity, however the controller is still able to reduce temperatures to the minimums seen
in Figures 4.12 and 4.13.

4.6.1. A Look at Specific Components: The Register File

The analysis has thus far focused on a generalized concept of components. To demonstrate
the application of the approach, additional experiments focus on one of the parts of a
processor that traditionally exhibits the highest power densities [54]: the register file.
This section takes a brief look at the analysis of COOL applied to the register file of a
superscalar architecture.

As an example superscalar architecture, the Alpha 21464 processor [98] has 32 architecture
registers and a larger number of physical registers (e.g. 40 registers). In addition to this, 8
shadow registers are reserved for the operating system. Regarding register access patterns,
experiments for different applications from the SPEC 2006 and SPEC 2000 [6] benchmark
suites reveal the following: Due to the unbalanced access to the register file, the majority
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of heat often builds up in a small section. This can be seen in the simulated thermal map
in Figure 4.14(a). Additionally, not all the registers are used at a certain point of time and
the average occupancy of the register file is relatively low across the benchmarks2. About
half of the physical registers in the register file are not occupied in around 90% of clock

2In spite of this observation, it is worthy to note that decreasing the register file size too much
would have a severe impact on the performance, and thus an extensive exploration of the
benchmarks is highly needed.
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cycles. This observation is consistent with related work [61, 96, 90].
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Figure 4.14.: Simulated thermal maps of the register file
(RF) with total 80 registers for the gzip
benchmark (a) Base case and (b) after ap-
plying the extremum-seeking controller

The aforementioned observa-
tions motivate the use of an
extremum-seeking controller to
migrate the activity of a set of
registers that are responsible
for the thermal hotspots.

The most straightforward way
to realize two components for
activity migration is to sim-
ply duplicate the register file.
This additional area overhead
may not be desirable, due to
area limitations, or even pos-
sible, as it requires changing

the physical chip design. Another way to realize two components is by dividing the ex-
isting register file into two. This is done logically by limiting the access of the renaming
unit (IntMap) to only part of the register file during each interval, i.e. corresponding to
the example presented in Figure 4.2. Practically, this results in only half of the physical
registers being available to IntMap at any point of time during execution. Unfortunately,
reducing the effective size of the register file results in a loss of performance. The impact on
the performance degradation is expected to be low, however, (as presented later: around
1.4% increase in execution time) due to the observation that at least half of the physical
registers are not occupied during the majority of the execution time.

The extremum-seeking controller migrates the activity between the unused half (the cool
region) and the occupied half (the hot region) of the physical registers. The optimal
migration rate (f) required for migrating between the active and idle region are computed
offline. It is necessary to note that f is not the same for each benchmark as shown in
Table 4.2 and it highly depends on the utilization of the register file of each application.

Due to its small size which limits its observability under the infrared camera, the analysis
of the register file components is simulated.

Table 4.2 summarizes the temperature results achieved for various applications of the
SPEC benchmark suites. As seen, the peak temperature reduction after implementing our
approach reaches up to 21◦C and, on average, around 13◦C and 11◦C for the SEC 2006 and
SPEC 2000 benchmark suite, respectively. On the other hand, the activity migration rate
derived from the extremum-seeking controller effectively minimizes the thermal variation.
Compared to the Base version, the thermal variation has been reduced, on average, by 64%
and 62% for the SEC 2006 and SPEC 2000 benchmark suite, respectively. It also achieves
better results compared to State-of-the-Art techniques. For instance, the thermal variation
inside the register file has been decreased, on average, by 38% and 49% in comparison to
“Odd Even”[73] and “Bank Switching”[96] approaches, respectively.

Overhead: for controlling the thermal behavior of the register file, the extremum-seeking
optimization was applied offline for each application as it is possible to estimate the register
file utilization by analyzing the application scenario. Thus, the only overhead that comes
with COOL is the overhead from the controller implemented in the IntMap component
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SPEC 2000 SPEC 2006

Benchmark Migr. Rate f Peak T T Red. Benchmark Migr. Rate f Peak T T Red.
[103 s−1] [K] [T] [103 s−1] [K] [K]

vortex 20 332 10.8 libquantum 100 340 20.9
gcc 100 331 10.4 hmmer 0.5 332.3 12.6
bzip 2 332.8 13.7 sjeng 100 322.8 3
mcf 4 330 2.3 specrand 2 336 17.3
gzip 20 334 18.9
parser 2 328.7 10

average 4.42 average 1.59

Table 4.2.: Optimal activity migration rates and corresponding temperatures/temperature
reductions.

of the Alpha processor. Towards investigating the overhead of the employed controller,
we designed it in VHDL and synthesized it using the Synopsys Design Compiler with
the 65nm TSMC technology library [9]. The required area is 826 µm2. More precisely,
the controller increases the area of IntMap by only 1%. From the power perspective, the
controller leads to an increase of the dynamic power and leakage of IntMap by 4.6% and
0.02% respectively.

On average, the incurred performance penalty is 1.4% with a maximum overhead of 6%.

4.7. Summary

Dynamic thermal management that targets optimizing temperature instead of performance
under thermal constraints had a higher potential for reducing temperatures and thermal
gradients. This results in increased dependability. However, temperature-optimizing DTM
is only feasible when the incurred performance overhead is constrained. This limits its
applicability.

Load balancing through activity migration is a powerful means to optimize the thermal
behavior of on-chip systems. COOL utilizes the concept of extremum-seeking control and
applies it to dynamic thermal management for components of an on-chip microarchitecture.
Thermal imaging analysis shows a reduction of peak temperatures by 9◦C and a reduction
of thermal spatial variation from 6◦C to 1◦C in an FPGA chip, and shows that the
activity migration rates derived from the controller are optimal with respect to minimizing
peak temperature and thermal spatial variation. When applying our approach to the
register file of a superscalar ASIC microarchitecture, we are able to achieve a reduction
of peak temperatures compared to a State-of-the-Art approach for register file thermal
management (with an average peak temperature reduction of 13◦C) while at the same
time reducing thermal variation by 49% (which increases the lifetime of a system) at a
performance loss of only 1.4%.

While the presented approach lends itself to temperature optimization in microarchitec-
tural components, the performance overhead of task migration limits its applicability to
multi-core architectures. These will require more lightweight DTM solutions which scale to
large system sizes. The problem of multi-core DTM will be addressed in the next chapter.
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5. Proactive Techniques for Multi-Core
Systems

5.1. Thermal Management and Multiple Cores

As discussed in the previous chapter, thermal management fundamentally consists of in-
fluencing the power distribution over time and area in order to reduce power densities.
Through their increased number of components, multi-core systems offer a great deal of
freedom for spreading computation over larger areas. In particular, this is accomplished
due to the possibility of task migration between cores.

5.2. On the Importance of Scalability

Figure 5.1.: Central management and scal-
ability

Given the growing number of cores present
in today’s multi-core architectures, with
numbers approaching the thousands [26],
the problem of distributing computation
over a chip becomes increasingly complex.
Task mapping itself is a NP-hard prob-
lem [49], which is compounded by requir-
ing runtime re-mapping to address dynamic
thermal management over time.

Considering the central approach in Fig-
ure 5.1, we see that all cores must communi-
cate with the central manager, resulting in a
high communication volume and a commu-
nication bottleneck. While the central approach can potentially achieve the best thermal
management, as it retains global knowledge, it must be considered that finding an optimal
task mapping is an NP-hard problem and thus it grows considerably in complexity with
the number of cores.
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62 5. Proactive Techniques for Multi-Core Systems

5.2.1. Related Work: Distributed Decision Making

When dealing with the growing number of cores in a multi-core architecture, it becomes
necessary to make decisions –e.g. task mapping, resource allocation, etc. – in a distributed
fashion in order for these to be able to scale with increasing system size. To this effect,
local entities, hereafter referred to as agents [68], calculate these decisions for a designated
region (i.e. a core or cluster of cores) while organizing themselves with other agents.
In order to maximize scalability, a completely decentralized approach can be used [43].
This approach greatly reduces computational complexity. However if system knowledge
needs to be propagated through the system, this approach may even lead to even more
communicational overhead than the centralized approach.

The work done in [101, 49], have presented agent-based approaches for task mapping in
2D multi-core architectures. Both these approaches use clustering techniques to limit the
mapping problem space. The agents map tasks inside of the resulting clusters based on
a heuristic. The focus in both lies in optimizing communication distances and neither
thermal effects nor communication in 3D architectures are considered.

Additionally to these static approaches, there has also been work done in incorporating
learning techniques in order to improve decision making. In [88], Martinez et al. present a
resource management for multi-core architectures which uses a machine learning mecha-
nism. These include using reinforcement learning and artificial neural networks (ANN) to
make decisions for DRAM scheduling whereas only the reinforcement learning is done by
“intelligent agents” with the ANN requiring a central instance. Furthermore, the agents
act independently from each other with each agent only managing its own resource.

Intelligent agents have also been deployed in a more cooperative manner in the balancing
of resources in grid computing [28, 115]. Of these, [115] presents an overview of various
negotiation models between the agents, such as an auction model and a game theory
based model whereas [28] presents an approach using a genetic algorithm and quantifies
the results. These show that the agent approach is highly scalable in the grid context
and achieves comparable performance to a centralized approach in terms of application
execution times.

5.2.2. Agents and Agent Systems

In order to deal with this growing complexity needed to manage multi-core architectures,
new approaches have been proposed for system design. With the autonomic comput-
ing initiative introduced by IBM [62], there has been a consent that future systems will
need to be self-configuring and self-optimizing. That is, system components must con-
figure themselves and optimize their resource usage independently. Therefore, the self-x
properties that are employed in the system may facilitate DTM in a pro-active manner.
Agent-based systems are one of the most promising ways of realizing these properties. The
power distribution approaches presented in this chapter, [43, 45], are among the first to
apply agent-based systems to achieve runtime DTM. They are inspired by the techniques
deployed in agent-based computational economics [117].

Since the term agent, is not well-defined, we instead formulate their required properties.
As such, an agent system is composed of agents with the following inherent properties:

Scalable As mentioned above, scalability is the main goal which the agent system sets out
to attain. This is not directly a property of individual agents, but instead one of the
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5.3. TAPE - Thermal-aware Agent-based Power Economy 63

overall agent system. However, it does set limitations on individual agent behavior.
As a result, the following properties need to adhere to specified constraints.

Situated Agents possess either a physical or logical area for which they are responsible.
The agent acts on behalf of this area. Examples include one agent per core, one agent
per cluster of cores, or one agent per microarchitectural component (as discussed in
the previous chapter).

Social Agents must be able to communicate between each other to disseminate system
knowledge and information on their own actions.

Proactive There is always some latency associated with the communication required to for
implementing agents’ social behavior, especially when multiple agents are involved.
It is not beneficial for agents to only act once a problem has been identified (e.g.
elevated temperatures or advanced aging).

Reactive While actions performed are ideally proactive, agents are still required to react
to outside stimuli. These are quantified by sensors which supply the agents with
data. Since proactivity is also a desired property, the agent system does not activate
as a result of these stimuli, but is instead always active and only adapts its proactive
strategy based on an analysis of the supplied data. Additionally, each agent must
also react to information it receives from other agents with which it communicates.

Light-weight Agents must exhibit small computational and memory footprints. This is in
part to facilitate the scalability of the agent system, but also to minimize the intru-
siveness of agents implemented in software that compete with tasks for resources.

For achieving scalable management, the topology of the agent system can be a limiting fac-
tor. Topologies with communication and computational bottlenecks (e.g. star topologies)
should be avoided. At the same time communication paths should be kept low. Of course,
these two goals can be contradictory. There is always a trade-off between scalability and
dissemination or aggregation of system knowledge that facilitates thermal management.

5.3. TAPE - Thermal-aware Agent-based Power Economy

This section presents a highly scalable distributed agent-based power distribution ap-
proach, (TAPE [43]), which focuses on distributing power and the resulting heat evenly
over a multi-core architecture. The approach incorporates thermal penalties in the agent
negotiation to deal pro-actively with potentially developing thermal hotspots explicitly.

5.4. Problem Formulation

Given a multi-core architecture M made up of tiles n ∈ M , we define a region Rj as the
area covered by a rectangular connected subset of M (i.e. groups of adjacent tiles forming
rectangles), then, using the principles described in Chapter 2, temperature T (t1, r) for
r ∈ Rj at time t1 can be expressed as:

T (t1, r) = kh

∫ t1

0
P (r, t)dt−

∫ t1

0
Q̇Rj (t)dt+ T (0, r) (5.1)

where P (r, t) is the power used at r at time t, Q̇Rj is the heat transfer rate to and from
Rj , h is the thickness of the silicon layer, T (0, r) is the temperature at time 0, and k is a
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unit constant. We aim to minimize the temperature of a region by avoiding power being
concentrated in smaller regions,

∀j, k: |Rj | < |Rk| ⇒
∫
Rj

P (r, t)dr <

∫
Rk

P (r, t)dr (5.2)

and by spreading power equally over regions of the same area A, that is minimizing
maxRiT (t, r).

∀Ri: |Ri| = A: maxRiT (t, r) = maxRi

∫
Ri

P (r, t)dr (5.3)

5.5. System Models

In this section we present the models of different parts for our complete multi-core archi-
tecture where we have used our proposed agent-based runtime DTM scheme. We assume
our multi-core architecture is made up of tiles consisting mainly of a PE, a communication
element, an agent for power negotiation, and a power management unit (see Fig. 5.2). A
task is considered to be a computational entity running on the PE of a tile. There can be
multiple tasks running simultaneously on each PE.

• Each task (taski) has a gate parameter αz,i = avg(
gz,i

cz,i·gz,tot ) for each PE type PEz
(i.e. considering heterogeneous PEs), where gz,i are the number of gates switched
when running taski on PEz, cz,i are the cycles it takes to run taski on PEz, and gz,tot
is the total amount of gates in PEz. It specifies the percentage of gate switches per
cycle required on an average when running taski on a PEz.

• Furthermore, it is assumed that each task has a deadline Dtaski as well as a limit for
the execution time measured in cycles: 0 < cz,i ≤ max(cz,i).

5.5.1. Determining Power Budgets

For each PE inside a tile, the given power budget limits the processing that can be ac-
complished. This power budget is measured in the number of power units available in a
tile which define the amount of power the tile is allowed to consume. Using the simplified
power formula for CMOS gates: P = k1αz,iCPEzV

2f + k2V Ileak, we may observe the in-
fluence of the power budget (k1 and k2 are constant). Since Ileak and CPEz are assumed
to be constant for PEz, the parameters that the agents can change are limited to V and
f . These two parameters are roughly proportional to each other and there is a maximum
f for a given V . Furthermore, in our particular model it is assumed that V is limited to n
discrete values, while f can have any value achievable by a Digital Clock Manager (DCM).

For a PE to be able to run a task, it must be running at a minimum frequency of fmin so
that Dtaski ≥ f−1

min · max(cz,i). Since a given frequency has a minimum required voltage
(frequency and voltage being roughly linearly proportional), the voltage is set to the lowest
voltage above the minimum available in the tile’s power profile. Thus, a power unit is
defined by the frequency it is able to achieve on PEz. The characteristics of our
power budgeting are explained below.

• The power unit granularity grz is defined by the amount of power units needed
to run at a given frequency f0. If coarse-grained power units are used, i.e. when one
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power unit is able to achieve a higher frequency relative to f0, less power units are
required to run at f0 (making trading, see below, less complex) but may allocate more
power than is actually needed. On the other hand, using fine-grained power units,
i.e. those only able to achieve low frequencies, allows more precise power allocation
but results in more complexity by requiring more trading. A measure for the power
unit granularity grz for PEz can be given as:

grz =

∑
i power units per taski

# of tasks
(5.4)

We then use grz to define the relative PE factor ξz which describes the power unit
utilization of PEz relative to other PEs (PEz′ , z 6= z′). This value is used later to
calculate the buy and sell values (see Section 5.6.2)), and allows our approach to be
used for heterogeneous multi-core architectures. Assuming there are N total PEs,
ξz is defined as follows:

ξz =
(N − 1) · grz∑

z′ grz′
(5.5)

• The task parameter αz,i can reduce the number of power units required to achieve
a given frequency f0. To be able to determine the average αz,i, first the worst case
number of power units are allocated (αz,i = 1). The power usage is then measured
and averaged over time.

• The longest execution time measured max(cz,i) along with its deadline Dtaski

determine the required frequency f0. The longest execution time measured has no
worst case scenario known a priori. For each missed task deadline, the exceeding
time must be added to the current longest execution time measured. The frequency
must then be changed accordingly.

5.6. Agent-based Power Economy

Before incorporating the models presented in the previous section into our approach, we
first introduce our novel agent-based power economy for managing a runtime DTM, cor-
responding to the definition given in Section 5.2.2. The definition of an agent motivated
by [117] is given below:

Definition of TAPE Agents:

An agent in TAPE is a situated computational entity that acts autonomously and flexibly
on the behalf of others. For our approach it is necessary to situate our agents at the same
level as at which power management is done. Since TAPE performs power management
and runtime DTM at tile level, each tile also has a single agent. Agents act autonomously
in order to accomplish a common goal (in our case evenly distributing power) and are
not dependent on other agents (although they react to the actions of each other). In
particular, there is no higher instance controlling the agents. An agent is considered
flexible when it is responsive (i.e. responds to input from other agents), proactive, and
social (i.e. communicates with other agents). In a nutshell, TAPE agents implement these
properties with each of them acting on behalf of one tile. Plus, an agent trades power
units with the agents of adjacent tiles using the agent negotiation presented below.
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1. Agent calculates its buy and sell values [Alg. 3: 4, 20]
2. Values are modified by thermal penalty and running tasks

(temperature is measured by a local sensor) [Alg. 3: 5, 21]

3. If Equation 5.7 is fulfilled, units are transferred to the
neighbor with the highest sell - buy value [Alg. 3: 6-19]

4. If values have changed, neighboring agents are informed

[Alg. 3: 22-23]

Figure 5.2.: Functionality of an agent during negotiation

Benefits of using Agents:

Agents exhibiting the above properties may be able to individually distribute power units
between tiles of a multi-core architecture through local trade, i.e. only with their neighbors.
They may exhibit an emergent behavior, i.e. many agents individually following simple
rules are able to accomplish the power distribution when working together on a local basis
only. As the hardware and software overhead of individual agents does not grow with
system size (unlike the CI used in [113, 35, 124, 57]), agent-based approaches are highly
scalable for next generation thousand-core chips [26]. The proactive characteristics of
agents allow our DTM to proactively minimize the possibility of thermal hotspots during
execution time compared to [113, 35, 124, 57]. To the best of our knowledge, current usage
of agents in multi-core architectures so far has been limited to task mapping [49].

5.6.1. Agent Negotiation

Our agents are able to negotiate with their immediate neighbors in all directions (e.g. 4
neighbors in the North, South, East, and West directions for a multi-core architecture
having a regular 2D Mesh topology) to optimize power budgets.

Initially, a predefined number of power units are distributed evenly (depending on the PE
factor ξz in heterogeneous multi-core architectures) among all agents. Each of these power
units belong to one of the following two categories: • used units are currently deployed
by the PE to run tasks, i.e. used units are used to set the tile’s frequency and voltage as
specified above (Section 5.5.1), and • free units are power units available on a tile, but
not currently needed by the tile to run its allocated tasks since the required frequency and
voltage are already set by used units. These units are used by each agent to calculate
buy and sell values for trading power units. These buy and sell values are not constant
but vary depending on the supply/demand of power units calculated by each agent. The
underlying main concept is that it becomes increasingly difficult to obtain power units if
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there are already many power units being used in a local area (high demand) even though
there is no defined upper bound, as agents at the edge of a local area will trade with
immediate neighboring agents outside this local area. This whole model may be compared
to the classical supply/demand model of computational economics.

An overview of the agent negotiation is given in Fig. 5.2,5.3, and in Alg. 3. At each time
interval (see Section 5.7 for details of the time interval), the agent first calculates its base
buy and sell values. The calculation of these values at agent n is given as follows (Alg. 3,
L. 4-5):

sell : selln = wu,s · usedn + wf,s · freen
buy : buyn = wu,b · usedn − wf,b · freen + γ

(5.6)

where, freen and usedn are the number of free and used power units respectively, wi,j are
weight parameters, and γ is a normalized offset parameter. freen may also be negative if
new power units are required to execute a new task (see Section 5.6.3).

Once the base buy and sell values have been determined, these are then decreased based on
the current temperature of the tile and increased based on the currently executing tasks.
The final values are given as follows:

• Buy modifier:
buyn= buyn − ab · Tn (Alg. 3, L. 6)
Here, ab is the normalizing factor showing the relationship between the tempera-
ture and the power units. The modifier of the buy value ensures that it becomes
increasingly difficult for an agent whose tile has a high temperature to acquire ad-
ditional power units. The modifier is only applied once the temperature reaches a
given minimum temperature T0 (a pro-active behavior) above which the modifier is
to be applied as Tn is measured in degrees above T0 and is referred to as the thermal
penalty.

• Sell modifier:
selln= selln +

∑
taski

pi − as · Tn (Alg. 3, L. 7)
The sell modifier at the same time decreases the sell value when temperatures in-
creases (thermal penalty) making it more likely that neighboring agents buy power
units (again, the thermal penalty is only applied once the tile temperature surpasses
the given minimum temperature T0). At the same time, it also considers the running
tasks taski (with the weights pi dependent on the task execution time characteristics
i.e. hard real-time constraints). This ensures that power units are first traded by
tiles running fewer tasks or tasks with no hard real-time constraints.

It should be noted that afore mentioned thermal penalties are specific to temperature re-
duction. This may not always be the only thermal goal. It may happen that a minimum
temperature is also desired in order to keep the system in an optimal operating range
and to further reduce thermal cycling (i.e. in addition to balancing tasks). Fortunately,
the thermal penalty can trivially be extended to the general case by applying an addi-
tional thermal penalty proportional to the temperature difference below a corresponding
threshold.

The neighbors of a specific tile n, i.e. all tiles adjacent to n, are informed when its modified
buy/sell values have changed over time. The neighboring tiles then store the updated
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Figure 5.3.: Sequence of the agent negotiation (for simplicity only 1 dimension is shown)

buy/sell values locally in order to minimize redundant communication. At the next trade
time (i.e. after waiting the rest of their given interval time, see Section 5.7), the agents
within the tiles compare their own resulting modified buy/sell values with the buy/sell
values they have obtained from their neighbors (i ∈ N) to establish where more power
units are needed and where there are “too many” power units being used, i.e. if the peak
temperature has crossed a threshold or one PE is consuming a considerable amount of
power while others are idle, using the following equation (Alg. 3, L. 8):

(selln − buyn)− (selli − buyi) > τn (5.7)

where τn is the sell threshold of tile n, with τn ≈ wf,s. This threshold is to ensure that
there is no redundant trading, i.e. two agents continuously trading one free unit back and
forth (a ping-pong effect in trading).

If any of the neighbors i ∈ Nn fulfill Eq. 5.7, agent n relinquishes a power unit to the
neighbor with the maximum (selli − buyi) value. If the local agents have free power units
then this is simply a matter of decrementing its number of free power units. However, if
there are no free power units, then the local agent must give up one of its used power units.
This means the agent must also reduce its power consumption through DVFS (Alg. 3, L.
12-13). If as a result of DVFS tasks will be unable to meet their deadlines then they must
be (re-)mapped (Alg. 3, L. 15). This procedure is repeated until the system reaches a
stable state, i.e. when the left side of Eq. 5.7 is less than τn in all tiles.

In this work we have assumed that the global amount of power units is a fixed number
given at design time. Additional power scaling may be done by removing or adding power
units to the multi-core architecture at runtime. However this is beyond the scope of this
work.
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Figure 5.4.: An Exemplary Runtime Scenario explaining TAPE’s Functionality (Sec-
tion 5.6.4)

5.6.2. Weights and Buy/Sell Value Characteristics

An important factor in ensuring that the system reaches a stable state is the choice of
weights used to determine the buy and sell values. These weights are constant over time.
Different tiles have different weights depending on their PE type (a heterogeneous multi-
core architecture is considered). The weights can be seen as the value of a power unit for
each PE. When choosing weights, the following factors must be considered:

• The number of used units has a greater influence in the buy/sell value than the
free units as these are the actual cause of supply/demand in a local area. In an
abstract sense, the used units can be seen as generating “value” which the agents
use to acquire free units. The weights for used units are proportional to the power
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Algorithm 3 Agent-based power economy for DTM
Input: sellbasen : Base sell value of a tile n at time t
Input: buybasen : Base buy value of a tile n at time t
Input: Tn: Temperature of a tile n at time t
Input: sellTn : Sell value of a tile n at a temperature Tn
Input: buyTn : Buy value of a tile n at a temperature Tn
Input: Nn: Set of all the neighboring tiles of tile n
Input: lastbuy, lastsell: Last buy/sell values of a tile n sent to all i ∈ N
Input: buy[N ], sell[N ]: List of buy/sell values of neighboring tiles stored in n
Input: freen: Free power units of tile n
Input: usedn: Power units used for running tasks on tile n
Input: tj : Tasks running on tile n at time t
Input: τn: sell threshold of tile n

50 begin
51 forall the tiles n in parallel do
52 foreach time interval ∆nt do

// Calculate base sell/buy values

53 sellbasen ← (wu,s · usedn + wf,s · freen) buybasen ← (wu,b · usedn − wf,b ·
freen + γ) // The temperature increase may happen due to change in PE activ-

ity. Modify buy/sell value

54 sellTn ← sellbasen - as·Tn buyTn ← buybasen - ab·Tn +
∑
tj
pj if ∃i ∈ Nn : ((sellTn −

buyTn)− (sell[i]− buy[i]) > τn then
55 if any free power units are left then
56 decrement freen
57 else
58 apply DVFS on n to get more free power units decrement usedn if the task does

not meet the given deadline as DVFS is used then
59 (re-)mapping needs to be invoked
60 end
61 graceful performance degradation if allowed

62 end
63 increment freei
64 end
65 if buyTn 6= lastbuy or sellTn 6= lastsell then
66 send buyTn to all i ∈ N send sellTn to all i ∈ N lastbuy ← buyTn lastsell ← sellTn

67 end
// This procedure will propagate until a stable state is reached.

68 if received updated buy/sell values from any l ∈ Nn then
69 update buy[l], sell[l]
70 end
71 if new task mapped to n requiring k power units then
72 freen ← freen − k apply DVFS to PE on tile n usedn ← usedn + k
73 end

74 end

75 end

76 end

unit granularity grz and consequently also to ξz to allow heterogeneous multi-core
architectures (Eq. 5.4).

wu,s, wu,b ∝ grz, ξz (5.8)

• The number of free units however must also influence buy/sell values in order to
prevent one agent from acquiring all free units from its neighbors. The weight pa-
rameters of free units are proportional to the total amount of units (i.e. the initial
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an maximum number of free units), and also to grz (and ξz).

wf,s, wf,b ∝
∑

(used+ free)

wf,s, wf,b ∝ grz, ξz
(5.9)

γ = k · ξz ·
∑

(used+ free)

m
(5.10)

where m is the number of total tiles in the multi-core architecture M .

From these properties we get the following equations for the weights

wu,b = a · γ, wu,s = b · γ,

wf,b = c · γk , wf,s = d · γk

To normalize these weights we define γ := 1, which also gives us k, and choose a ∈ [1, 2),
b, c, d ∈ (0, 1) with a > b, c < d.
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Figure 5.5.: Runtime application (re-)mapping overview

5.6.3. Runtime Application (Re-)Mapping

An agent-based runtime application (re-)mapping algorithm that is invoked due to power
trading in the agents is integrated in our TAPE approach. Our (re-)mapping algorithm
is based on the one presented in [49]. The goal of runtime application (re-)mapping is to
determine which tile is best suited to migrate a given task to. The mapping agents are
realized separately from the agents for power trading and are implemented in software
running on one or more tiles (the implementation of the power trading agents is discussed
in Section 5.7). The software entity that is responsible for our application (re-)mapping
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may be executed in any of the existing PEs inside the multi-core architecture. An overview
of the interaction between the power trading agents and the mapping agents is presented in
Figure 5.5. Depending on the situations during DTM the following scenarios may happen
that require application (re-)mapping:

• If a new task needs to be mapped to a tile, it is mapped to one in which the most
power units are available (either locally or through trade using agent-based negotia-
tion). In our economic approach this is simply the tile where the difference between
its sell value and its buy value is maximal: maxn(selln − buyn) (if more than one
tile fulfills this criterion, one is chosen randomly among the ones with the lowest
absolute buy value). Once a tile is chosen, that particular tile decrements its free
power units and increments its used power units. If not enough free power units are
available, the ’free’ count becomes negative and the agent must acquire new power
units from its neighbors.

• If during runtime a tile does not have enough power units for a currently allocated
task to meet its deadline (i.e. the number of used power units is less than the re-
quired number of power units – meaning that the PE is thereby not operating at a
high enough frequency to complete the task by its deadline – and there are no free
power units) then the task needs to be (re-)mapped. A new tile that maximizes the
difference between sell and buy values is chosen to migrate the task to.

• In case of failure to (re-)map a task the system rejects the new task and in case of
a currently executing task it uses the concept of graceful performance degradation
similar to [49].

An important consideration that comes with task (re-) mapping is how the task migration
will be done. In TAPE, we have adopted the approach presented in [49] during DTM.
It realizes task-relocation by shutting down a task running on tile n and transferring its
context to the destination tile. Here, the context is then loaded and the task is resumed.
In [92] it is shown that the task migration overhead similar to our approach ranges from
10 000 to 10 000 000 cycles depending on the task size.

5.6.4. An Exemplary Runtime Scenario explaining TAPE’s Functionality

In order to further illustrate the agent-based power economy, we present an exemplary
scenario detailed in Fig. 5.4. The 4 × 4 2D-Mesh architecture can be seen as a part of a
larger multi-core architecture. However, to keep the example clear and be able to present
all the buy/sell, free/used values at each time t, only the 4 × 4 tiles are shown. First,
we consider a multi-core architecture where all tiles are idle. All agents have only free
units and all tiles have the same buy/sell values (a homogeneous multi-core architecture is
considered here). At time t0 with no tasks running on the system, the left side of Eq. 5.7
is zero (i.e. less than τn) for all agent pairs, resulting in a stable state. Now we assume
at time t1 task1 needs to be mapped onto the system. At this point, from a thermal and
power perspective, all tiles are equally suited to run task1. The (re-)mapping algorithm
randomly maps the task to tile n (Fig. 5.4a).1 Tile n then converts the number of power
units needed to run task1 from free to used. This results in both an increase in buy and

1These example figures include power traces from two applications (gcc and FFT, using the wattch
simulator), the thermal values are calculated using the Hotspot thermal simulator [63], and the
temperature T0 after which the thermal penalty is applied is assumed to be 62 ◦C.
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sell values and a decrease in the difference (selln − buyn). Assuming that the difference
of n’s buy/sell values (selln − buyn) is now more than τn less than (sellNn − buyNn) of
any of its neighbors Nn, n buys free power units from l ∈ Nn in the next trade intervals
of the neighbors until Eq. 5.7 again holds. At the same time, any l that has given up
power units will have increased buy (and sell) values. These l then in turn trade with
their other neighbors. The trading thus propagates throughout the chip until once again
a stable state is reached. Now, assuming a second task, task2 needs to be mapped on the
chip, it will be mapped to a tile away from n at time t2 (Fig. 5.4b).

Next, we will assume that at a future time ti, several tasks are running on the system and
that, unfortunately, there is a potential thermal hotspot forming at tile n (seen in Fig. 5.4c,
the tile temperature exceeds 62 ◦C). The rise in temperature will cause buyn as well as
selln to decrease (shown in red in the timeline). Once the temperature has become high
enough to decrease selln to the point where the left side of Eq. 5.7 is larger than τn for
one of the l, n will be forced to give up a power unit. Assuming n has no free power units,
n must give up a used unit. We assume that n is now not able to accommodate task1.
Thus the mapping agent is informed and task1 is (re-)mapped (Fig. 5.4d) at time ti+1.
The remaining used units are converted into free ones.

5.7. Implementation Details and Hardware Prototype

The agents store information (e.g. buy/sell values of neighboring agents, the current free
and used units, and tasks currently allocated to the tile) in local memory. They receive
thermal information from a thermal sensor also located in the tile. Each tile has one
sensor as one thermal value is needed for the thermal penalty in the agent negotiation
and the area requirement is marginal (see hardware prototype below). Neighboring agents
communicate (i.e. trade negotiation) with each other through the multi-core architecture’s
communication infrastructure. Agents can be implemented either in hard- or software.
Both have their advantages and disadvantages. However, software agents may not be
available in all tile types, e.g. for a dedicated DSP or ASIC.

• Hardware Agents When not using a general purpose PE, it is necessary to im-
plement agents in hardware. Hardware agents require additional on-chip area. Our
hardware agent prototype takes up 143 slices of a Xilinx FPGA (i.e. less than 1% of
the slices of a Virtex-4). Hardware agents do not interfere with tasks running on the
tile’s PE.

• Software Agents are realized as non-transferable tasks running on the PE of a
tile. Therefore, they take power and processing time away from the power units
allocated to the tile to run its other tasks. Software agents can also serve as a fall-
back for hardware agents, that is if a hardware agent were to fail, its functionality
may be replaced through a software agent. If this is not possible (i.e. software agents
are not available) the power manager may simply choose to use a predetermined
voltage/frequency setting, thus the agents do not present a central point-of-failure
in a tile.

The frequency with which agent negotiation occurs, i.e. due to the time interval between
agent activity, is based on the maximum rate of temperature increase: it takes at least 100k
cycles to raise the temperature by 0.1◦C [113]. We choose the negotiation interval to have
a maximum increase of 0.1◦C − 1.0◦C, which is enough to detect significant increases in
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temperature. Even when choosing a small interval (e.g. every 100µs), the power consumed
by the agents is still negligible compared to the rest of the architecture. It should also be
noted that buy/sell values in general do not change at each interval and thus agents do
not have to communicate at each interval, thus further lowering the overhead.
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Figure 5.6.: Hardware implementation (PlanAhead)

To test the effectiveness of our agent-based power economy in avoiding thermal hotspots we
have also implemented a small-scale version of TAPE on a Xilinx Spartan3E FPGA. For
convenience, the agents of all tiles in our example implementation are realized in hardware.
Each tile also includes its own thermal sensor implemented as a ring oscillator which
occupies one CLB (Configurable Logic Block) on the FPGA. The layout of the hardware
implementation is shown in Fig. 5.6. In this case there are 4 PicoBlaze processors. As
these processors do not produce a lot of heat, we have decreased the minimum temperature
T0 (and thereby increase the influence of the temperature on the buy/sell values) in order
to achieve an effect. We have observed tasks migrating away from a corner when placing a
thumb on that corner of the chip to increase the temperature showing that the agent-based
power negotiation is successful.

5.8. Experimental Setup and Results

For the thermal model we have used the following values: Each tile occupies a 1mm ×
1mm area on the chip. The silicon and copper (heat sink) layers are 0.6mm and 1mm
thick respectively. The specific heat capacities of the two materials are 0.7 kJkg−1K−1

and 0.385 kJkg−1K−1 (with a material density of 2330 kgm−2 for silicon and 8920 kgm−2

Simulation Summary:

Ambient temperature 45◦C
Tile size 4.9 mm × 4.9 mm
Die height 150 µm

Conductivity:
Si 148 W/mK
Cu 401 W/mK

for copper) and the thermal conductivity
148Wm−1K−1 and 401Wm−1K−1 respec-
tively. The ambient temperature is 45◦C.
We use the weights wb,u = 0.8, ws,u = 1 and
wb,f = 0.1, ws,f = τn = 0.2 which were de-
termined at design time based on the equa-
tions in Section 5.6.2. The thermal penalty
values are ab = 0.1 and as = 0.2 and the
temperature used (Tn) is the difference be-
tween the measured temperature Tm and
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the ambient temperature T0 (Tn = Tm−T0).
All agents are simulated in software and thus their own power usage is explicitly considered.

To evaluate TAPE, we run our agent-based thermal management approach with diverse
applications of the MiBench benchmark suite [53] (e.g. calculating SHA hashes or encod-
ing mp3s with LAME). These results are then compared to the same applications running
without thermal management, using the Heat and Run Thermal Management (HRTM)
technique described in [97], and using the state-of-the-art Predictive Dynamic Thermal
Management (PDTM) from [124] which, is reported to achieve the highest reduction in
peak temperature by using a predictive thermal model to migrate tasks before a thermal
threshold is reached to tiles where the predicted temperature is the lowest. The HRTM
technique is chosen to serve as a basis for comparison with other state-of-the-art techniques
as it is a simple responsive DTM approach – migrating tasks when a threshold tempera-
ture is reached. The power traces used as input are generated by SimpleScalar/Panalyzer
2.0 [18] and the temperature is calculated by the Hotspot [64] simulator. For the simula-
tion we have used a 3×3 multi-core architecture and used agents implemented in software.
Fig. 5.7 shows that TAPE is successfully able to keep the maximum temperature below a
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Figure 5.7.: Maximum core temperature in simulation

dynamic threshold of 47 ◦C and thus avoid thermal hotspots. It should be noted however
that this dynamic threshold is not given but dependent on the agent economy (or effec-
tively on the power distribution on the chip).2 When running the same scenario without
our thermal-aware power economy, we see that the on-chip temperature peaks at 51.47 ◦C.
Our results are similar to other DTM methods [124] achieving a 7.7% drop in peak tem-
perature compared to having no DTM [49] (e.g. here there is a gain of 1.9% compared
to [124]). Therefore, besides being highly scalable without added complexity, the pro-
active behavior of our DTM approach keeps the maximum temperature well below the
design-time-determined threshold at runtime compared to other approaches. The peak
temperatures for further applications are shown in Fig. 5.8 where our approach achieves a

2This is by design, a hard threshold can be implemented by not allowing tasks to be (re-)mapped
to tiles whose agents have negative buy/sell values.
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similar decrease in peak temperature as the HRTM and PDTM approaches (e.g. 54.32 ◦C
for TAPE versus 54.12 ◦C and 53.89 ◦C for HRTM and PDTM respectively for the LAME
benchmark).
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Figure 5.8.: Peak temperature when running single/multiple benchmarks

When multiple applications are running on the multi-core architecture our approach ex-
hibits a higher dynamic thermal threshold as there are more used units which raises the
average sell (and buy) values and thereby decreases the impact of the thermal penalty (see
Fig. 5.8). Here, our approach does not achieve the same reduction of peak temperature
as the HRTM/PDTM approaches (TAPE: 58 ◦C, HRTM: 55.3 ◦C, PDTM: 54.2 ◦C) with
PDTM achieving 4.65% less peak temperature, but it still reduces the peak temperature
by 11.23% compared to having no DTM (Fig. 5.8).

The 15.9% increase in execution time compared to having no DTM seen in Fig. 5.9 is
based on two reasons. First, the application is interrupted in discrete intervals (in our
simulation every 4ms) to run the agent negotiation. This interval is based on the rate
at which thermal measurements are received; in our simulation every 10ms. The second
factor is the task migration which takes considerably more time than the agent negotiation
(in our simulation, 100 000 cycles are assumed). This factor is responsible for the HRTM
and PDTM approaches having a longer execution time/energy usage than our approach
with HRTM and PDTM taking 39.4% and 44.2% longer respectively, while using 31.59%
and 44.4% more energy.

The reason behind this is that our approach requires a lesser number of task migrations
than the HRTM and PDTM approaches because our thermal threshold value is not fixed
and has a certain degree of tolerance. Even though there are idle cores, tasks need to be
migrated more frequently in HRTM and PDTM approaches to ensure that the temperature
does not reach a strict threshold. This is due to the heat sink. As it is already spreading
heat from other tiles, it is unable to conduct heat efficiently away from a new task on
a new tile making the tile heat up significantly faster. For instance, when the thermal
sensor reaches a threshold, it will immediately migrate the task to another tile when using
HRTM. In our approach however, the agent will begin selling some free units when it starts
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Figure 5.9.: Total execution time

approaching the threshold. The agent must first sell any free units it may still have before
being forced to migrate a task. The energy used for each application (Fig. 5.10) directly
correlates to the execution time of the application.

We require 4 bytes to encode the buy/sell values in our approach. The communication
volume required for power trading in Fig. 5.11 is shown for both the fully distributed
TAPE approach and for an approach using a CI, comparable to [113, 35, 124, 57]. Here,
both approaches implement the same functionality, i.e. reporting of buy/sell values and
subsequent power unit distribution. In particular, most packets to and from the CI will
require multipe hops and thereby occupy multiple communication resources (e.g. links).
The exponential increase in overall communication of the CI clearly shows their lack of
scalability for larger multi-core architectures. Our TAPE approach already requires 11.9
times less communication with as few as 96 tiles compared to an approach using a CI. The
communication overhead in collecting the state information for (re-)mapping is caused by:
1) each tile reporting its state (buy/sell values) to a mapping agent and 2) synchronization
between mapping agents, which only requires the transfer of maxn(selln − buyn). Thus
the scalability of the runtime application (re-)mapping communication depends largely on
the amount of mapping agents deployed. Fig. 5.12 shows the communication overhead for
gathering the system state of the multi-core architecture dependent on the number of tiles
and the number of mapping agents. The overall computational overhead for (re-)mapping
and power trading remains the same, i.e. both power trading and (re-)mapping are done
in O(N) using a CI, whereas TAPE requires O(1) for power trading in each of the N tiles
(and similarly mapping is done in O(logN)), but is spatially distributed and parallelized
when using agents, thereby eliminating a central point of failure.
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In summary our approach is able to pro-actively distribute power over a multi-core archi-
tecture and achieve on average a 7.7% decrease in peak temperature compared to having
no thermal management; when running multiple applications this is increased to 11.23%.
While this is 4.65% more than when using PDTM [124], our approach requires 44.2% less
execution time and uses 44.2% less energy compared to PDTM. These savings, together
with the scalability of TAPE, result in an ideal solution for future multi-core architectures.

5.9. On the Stability of Distributed Techniques

A key problem when employing distributed techniques such as TAPE – especially when
considering large agent systems – is verifying their stable operation. Before analyzing
stability, it is important to first specify the exact meaning of stability. From a control
theoretical view, a stable system is simply defined as one where the integral over the
impulse response h(t) is finite, i.e. the system output settles after a perturbation of its
input. More formally, this is expressed through the following:

∫ ∞
0
|h(t)|dt <∞ (5.11)

In the context of agent-based thermal management, there are actually three different kinds
of stability. The first is thermal stability. This is given if the temperature is guaranteed
to return to the safe operation range (i.e. below a thermal threshold) after a change in
system input (e.g. a new task is started). Designing a stable thermal system is trivial
as one can simply run the system at the low operating frequencies or even halt tasks in
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Figure 5.11.: Scalability of power trading communication volume

order to control temperature. Mostly additional constraints are added such as maximizing
performance while keeping temperatures stable. The second form of stability is the inherent
stability of the agent system. This stability is given if the agent-based system is guaranteed
to find a task-to-core mapping for any change in input (tasks) in finite time. The last
form is the overall stability. Even if a system is thermally stable and has a stable agent
system, it is still possible that these work against each other. For instance, oscillations
in temperature may cause the MAS to underestimate the actual temperature if it is only
active periodically. Since this form of stability is difficult to determine directly, it is easier
to determine stability by analyzing the outcome of an unstable system: if a system is
unstable in any of the three forms, the input responses are not finite and thus no upper
bounds can be given for incurred latencies or performance degradation. It follows, that
if a worst-case execution time for an arbitrary task configuration can be determined, the
system is stable. Note that this is a sufficient and not a necessary condition for stability.
Some stable systems exist for which the worst-case execution time cannot be determined
(being able to do so would effectively solve the halting problem). In our analysis we are
only interested in finding systems from the class of stable systems where guarantees can
be given.

The choice of tuning parameters for agent negotiation has been identified as a critical issue
in ensuring a stable system [70]. Up until now distributed DTM techniques have been
mainly analyzed using either simulations or running on real systems. However, due to the
non-exhaustive nature of simulation, such analysis alone is not enough to account for and
guarantee stability in all possible system configurations. Especially when considering large
multi-core systems, the number of different configurations, e.g., task-to-core mappings,
grows exponentially with the number of cores. Even if some corner cases can be specifically
targeted, there is no proof that these represent a worst-case scenario, and it is never
possible to consider or even foresee all corner cases. Moreover, using simulation, we may
show that for a given set of tasks and cores, some mappings result in localized minima. In
distributed DTM approaches, this means that a local region of cores may be successfully
applying DTM from their point of view although from the global view, temperatures are
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Figure 5.12.: Scalability of (re-)mapping communication

really maximal.

Model checking has been successfully used for analyzing some single-core DTM schemes
(e.g., [112, 94]). Similarly, probabilistic model checking of a DTM for multi-core architec-
tures is presented in [83]. The focus of this work is to conduct a probabilistic analysis of
frequency effects through DVFS, time and power spent over budget along with an estimate
of required verification efforts. In order to raise the level of formally verifying complex
DTM schemes, statistical model checking of power gating schemes has been recently re-
ported [76]. However, to the best of our knowledge, so far no formal verification method,
including model checking, was used for the verification of a distributed DTM for multi-core
systems.

To address these concerns, formal verification techniques are used to examine the sta-
bility of TAPE agents in [67]. There, the proposed methodology uses the SPIN model
checker [60] (an open source tool designed for formal verification of distributed software
systems) together with Lamport timestamps [78] to determine the order of events in a
distributed system. First, the distributed thermal management behavior of TAPE is mod-
eled in the PROcess MEta LAnguage (PROMELA) language. These models serve as input
to the SPIN model checker that can then verify desired functional properties. The Lam-
port timestamps algorithm is introduced in the PROMELA model of TAPE to facilitate
the verification of timing properties via the SPIN model checker. Timing is given in the
abstract unit of events corresponding to agent trading intervals.

The events to stability in Table 5.1 represents the number of agent trading events required
to reach a stable state, i.e., a state where power units are distributed and no redundant
trading of power units takes place. The analysis showed that as + ab < 1 is a necessary
condition in order for a stable state to be reached. This adds additional constraints on
the choice of parameters in TAPE. Table 5.1 shows that the number of events increase
proportionally with the increase in the number of tasks.
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Table 5.1.: Effect of number of tasks on stability and temperature (Total Power units:128,
as:2/10, ab:2/10, wus:2/7, wfs:2/7, wub:8/7, wfb:1/7)

Tasks Events to Stability Tm(max) Tasks Re-mapped

1 8 34 0
2 9 34 0
3 9 34 0
4 10 34 0
5 10 34 0

10 14 38 0
15 28 42 0
20 40 42 0
25 53 42 0
30 59 46 0
35 23 46 0
40 43 50 0
45 35 54 0
50 32 54 0
55 30 86 1
60 67 86 6

5.10. EcoLe - Economic Learning

TAPE is highly scalable because it limits the agents to a purely local view of the system,
i.e. they have only local system knowledge. As a result it cannot reach the same DTM
efficiency as a centralized approach. In Figure 5.14 (a) we can see the problems that
can occur when only considering local knowledge in the fully distributed approach. The
approach can result in configurations where tasks fail to be migrated across the chip due
to local temperature maxima between regions. It may for instance be beneficial for the
task in the top right to be migrated to the bottom left of the chip. However, this is
hindered, e.g. due to power unit trading not passing the local thermal maxima generated
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82 5. Proactive Techniques for Multi-Core Systems

Figure 5.14.: Management hierarchies and scalability

by the other three active cores in [43]. In such a case, the fully distributed approach
must wait until the thermal threshold is hit, at which point the task will be remapped.
In Figure 5.14 (b) we see how the above mentioned negative effects can be mitigated
using a hierarchical approach that uses regional knowledge to achieve a trade-off between
optimal results and scalability. In the next section the EcoLe [45] approach is presented. It
combines a hierarchical agent system with the concepts behind TAPE to achieve scalable
DTM with access to global knowledge.

5.11. System Models

The EcoLe approach considers multi-core architectures which are realized as a set of hetero-
geneous processing elements (PEs) connected through an on-chip communication network,
e.g. through a bus or a network-on-chip. In a 3D architecture, two or more separate layers
of these PEs and communication networks are vertically stacked on top of each other and
connected using Through-Silicon Vias (TSVs). An example of such an Architecture is
shown in Figure 5.15. We assume furthermore that the architecture implements dynamic
power management, using both frequency and voltage scaling. Frequency scaling (e.g. im-
plemented through a DCM) allows arbitrary frequencies which can be switched in one
clock cycle and is available to every PE. Voltage scaling, on the other hand, is limited to
a few discrete voltages which are distributed over voltage islands [95].
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Figure 5.15.: Example of a layered 3D multi-core architecture

A task τ = {α(t, PE), p} is a computational entity which is run on a PE. Each task is
characterized by its switching activity α on each PE and has a priority p. A periodic
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task τ̂ = {α(t, PE), p, I,D} is a specific task which is reoccurring at interval I and has
a deadline D. As such, the minimal frequency fmin is known at which the task must run
on a particular PE in order to complete successfully, whereas regular tasks use best-effort
execution.

In order to simplify power budgeting we further define a set of similar tasks as a task
class T = {τi|αi(t, PE) ≈ αj(t, PE)}, combining tasks with similar switching activity.
Specifically, this will reduce the overhead of economic learning in Section 5.12.3 if there
are a high number of tasks, as the learning will not be separate for each task, only for
each task class. In the general case where not enough information is available to form a
classification of the tasks, each task corresponds to its own unique task class.

The power consumption in CMOS is dominated by dynamic switching power and static
leakage power. Both are already almost equal in today’s technology nodes of 45 nm, with
leakage power being expected to surpass switching power in future technology nodes. As
such, the power consumed on a PE at time t can be approximated by:

P (t, PE) = ACPEfV
2 + βV (5.12)

where A =
∑

τonPE α(t, PE) and β is the sum of all leakage currents. Furthermore, the
maximal frequency f at which a PE can run is dependent on the voltage V . An increase
of f will require an increase of V . Since we consider voltage to be limited to a few discrete
levels, each voltage corresponds to a possible frequency range [0, fmaxV ]. Power is supplied
by an outside source (e.g. battery) which sets a global limit Pmax on the amount of power
available to the system.

5.12. Agent Negotiation

In order to keep our approach scalable, we use a distributed approach for thermal-aware
budgeting and mapping decisions which grows linearly in both communication and com-
putation with growing system size compared to the exponential growth of central ap-
proaches [43]. Additionally, this allows us to avoid a central point of failure. These
decisions are made by so-called agents.

In our approach, agents are realized as software in order to minimize the impact on the
architecture. There are two types of agents:

Local agents (LA) are situated at each PE. They are responsible for setting the PEs
frequency based on the amount of power budget available to them, the voltage currently set,
and the tasks which are running on the PE. These agents can be seen as consumers of the
system, which “buy” their power budget for the next trading interval from market agents
and convert the power into useful activities like computation or communication. They each
have a fixed income (see Section 5.12.3) which can be used to buy their power budget. For
thermal management, this income is adjusted through the monitoring infrastructure and
the economic learning (Section 5.12.3).

Market agents (MA) are the agents where power budget trading is accomplished based
on the requirements of each LA. Additionally, these agents are responsible for adjusting
the voltage level of the island based on the currently allocated budget and the maximum
frequency of the PEs of the LAs.
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The number of market agents per thermal domain3 depends largely on the size of the
domain. If the thermal domains are large, i.e. consisting of several tens of cores, there may
be several market agents per domain, each responsible for a part of it. If, on the other
hand, thermal domains are only made up of one core, multiple domains can share one
market agent. Unfortunately, having multiple market agent in one domain complicates
the setting of the island voltage. In this case, all market agent in one voltage island must
aggregate their consumption so that a decision may be made which takes all consumption
of the island into consideration. These agents may be migrated from one PE to another,
but ideally remain in a thermal domain they are responsible for in order to be able to
exploit locality. To keep these migrations efficient and transparent for the agent system,
agent migration is done using communication virtualization described in [46].

5.12.1. Agent Power Budgeting

Trading is performed in iterations which occur in fixed intervals ∆t. This interval is set
at design time as a trade-off between the overhead of budgeting and the possible thermal
effect throughout the interval4, limited by the specific heat capacity of the chip’s materials.
Each kind of agent follows its own goals: The market agent aims to sell all power allocated
to it from the global power source to minimize the wasted power in each trading interval.
Local agents, on the other hand, aim to maximize their utilization of communication and
computational resources by buying as much power as possible.

The power budget corresponds to the power formula (Equation 5.12). As such, as the
discrete voltage level rises, power becomes more expensive. Initially, all local agents have
enough income to reach their maximal operating frequency. As a result, they will generally
have an excess income which is added onto their savings (these savings are then later used
to bid for newly deployed tasks, see Section 5.12.2). However, the income of local agents
depends on the current temperature, preventing PEs from consuming a lot of power as
temperatures increase (see Section 5.12.3).

Agent trading is outlined in the Power-trading Algorithm per Market (PAM), Algorithm 4
and illustrated in Figure 5.16. First, each LA sends its request to its MA. This request is
based on the power it needs for executing its tasks τi at their required frequency calculated
using Equation 5.12 for one task using the task’s average switching activity i.e. A =
avg(ατ ). However, the request is limited by the LAs income, and thus may be less than
the power needed to run the task at the required frequency which would result in task
migration. The MA then distributes the power budget to the LAs through round-robin
arbitration weighted by task priority p. If there is a left over power budget, or the power
budget is too small to fulfill all LA requests, the MA increases its power budget request
to the global power source in order to fulfill the LA requests in future iterations. Also,
if an LA request could not be met, the LA must perform frequency scaling in order to
reduce its power consumption. If, as a result, task deadlines can no longer be met, task
migration is needed. In the case where there are multiple tasks running on a PE, the tasks
with the lowest priorities p are stopped (i.e. removed from the waiting queue) sequentially
to determine if there is enough power budget to complete high priority tasks by their

3In 2D architectures, we consider a thermal domain to correspond to voltage islands, since voltage is
the dominant part of power consumption. Thermal domains in 3D architectures are discussed in Sec-
tion 5.13.2

4Through measurements with an infrared thermal camera, we were able to observe at most 1◦ C increase
every 200 ms
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deadlines. If so, the lower priority tasks are migrated one at a time starting with the one
with the highest priority. If not, the highest priority task is migrated first and the lower
priority tasks are started again.

5.12.2. Bidding for Tasks

Once a task needs to be mapped to the multi-core system, LAs place bids in order to obtain
the tasks. This situation occurs when either a LA is unable to sustain task execution on
its associated PE due to power budget limitations or when a new task is scheduled. Bids
for new tasks are based on savings accumulated by the LA and submitted to the MA.
The MAs then aggregate their highest bid amongst all other MAs. In practice, each MA
constantly receives updates on the savings of its LAs and the aggregation is also done
periodically. This way, the overhead will be hidden when mapping needs to occur as all
MAs are already informed of which MA has the LA with the highest savings. However,
since task mapping is less frequent than power budgeting and the LA with the highest
savings generally does not change over short periods, this aggregation is done in multiple
budget trading intervals. After each interval, one MA informs its neighboring MAs of its
maximum known LA savings (either from its own domain or from one of its neighbors),
where MAs are considered to be neighbors if they are in adjacent domains. The neighboring
MAs that receive the maximum savings value will, in turn, send the maximum between
the received value and the savings of the LAs in its domain to its own neighbors when it
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Algorithm 4 PAM: Power-trading Algorithm per Market

Input: Market agent (MA), local agent (LA)
Output: Voltage, frequencies

77 begin
78 repeat
79 LA.sort(τi) by priority p MA.budget ← MA.budget + MA.request foreach LA

do
80 foreach task τi on PE of LA do
81 send request to MA receive budget from MA LA.buget ← LA.budget +

budget decrease LA.income
82 end
83 LA.savings ← LA.savings + LA.income if LA.budget < requiredBudget then
84 frequency scaling
85 end

86 end
87 modify MA.request send MA.request to global power source voltage scaling

88 until each trading interval ∆t;

89 end
90 foreach New Task do
91 get highest bid send highest bid to middleware adjust MA.request
92 end

is active in the future. However, it only needs to send values back to previous MAs if its
own LA savings value is higher in order to reduce redundant communication. The task
is then mapped to the LA with the local highest bid in the domain of the MA with the
globally highest bid. Once a task is mapped, the LAs savings are reset to zero. Generally,
this results in the task being mapped to the PE which has been idle for the longest period
of time, assuming that all PEs have the same temperature.

An LA can place a bid on a periodic task only if income is high enough to support the
required PE frequency. For bids on general tasks, a bid can be placed as long as the LA
has a positive income, as they are executed best-effort.

5.12.3. Monitoring, State Classification, and Economic Learning

In order to be able to determine the quality of agent decisions with respect to their ef-
fect on temperature, we need to have a monitoring infrastructure that is able to provide
information on the quality of the monitored thermal state. This allows us to classify the
monitored state in one of three categories: good, neutral, or bad. Which state a LA is
in depends on the monitored values and how they relate to the transition values vector
X = (S1, S2) shown in Figure 5.17.

The initial configuration of the points S1 and S2 is determined by evenly dividing the
interval between the ambient and threshold temperature into three smaller intervals. The
interval border between the lowest and middle interval is assigned to S1 and the border
between the middle and upper interval S2. If the monitored temperature is less than S1,
the LA and its PE are in a good state, between S1 and S2 in the neutral state, and above
S2 in bad.
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Shown in Figure 5.17 is how the income of an LA is dependent on the current state. In the
good state, each LA has its full income, i.e. its income is equivalent to the maximum power
given in Equation 5.12. In the other two states, the income decreases linearly with the
measured temperature, with the rate of decrease being higher in the bad state. It should
be noted that the income value can be negative. In this case, no task can be executed
on the corresponding PE and the savings begin to decrease. This generally occurs when
the threshold temperature is hit. However, the exact temperature is dependent on the
economic learning when the income becomes negative.

Whether a local agent is able to“buy”all the power it needs from the market agent, depends
on its income per trading interval, while the income in turn is determined by its state. Us-
ing the information gathered by the state classification, we are able to utilize the outcome
of past decisions to influence future ones. Through Reinforcement Learning [116], we are
able to reinforce decisions resulting in good states while penalizing decisions resulting in
bad states.

An important aspect to consider for learning is not the state, but the state transition, as
these supply us with an indication of an improvement/worsening of the system state. If,
for instance, the state switches from good to neutral after a decision has been made, this
decision is penalized and avoided in the future, whereas a transition from neutral to good
will result in a positive reinforcement of the agent decision.

This is realized by adapting the values X, at which state transitions occur (see previous
Section). However, since the currently running tasks differ in their power consumption,
we must separately consider the state transition values for each task class. Therefore, we
express the overall X as an average of task class transition values Xi, weighted by their
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activity.

X =

∑
Ti αiXini∑
Ti αini

(5.13)

where αi is the activity of Ti and ni is the number of tasks of task class Ti currently
running on the PE. Initially, all Xi are set to the predetermined X. We are now able to
apply learning by modifying the values Xi of each task class individually:

Xi = Xi + αiΓ (5.14)

where Γ is taken from Table 5.2. Here γ also depends on measured temperature value in
order to keep Xi values from reaching maximum/minimum values.

γ = γ̂ · 4(Tthreshold − T )(Tambient − T )

Tthreshold − Tambient
,
γ

γ̂
∈ [0, 1] (5.15)

where T is the measured temperature and γ̂ is the learning rate.

Table 5.2.: Influence Γ of state transitions on learning

from \ to good neutral bad

good (−γ,0) (−γ,−2γ)

neutral (γ,0) (0,−γ)

bad (γ,2γ) (0,γ)

Every time a state transition occurs in a PE, Equation 5.14 is applied for each task class
in order to adapt the state transition values S1 and S2. The income is then adjusted
depending on the current state, analog to Figure 5.17. If the temperature of the PE is in
the neutral state, the income of the corresponding LA becomes

LA.income = incomemax · (1−
0.4

S2 − S1
(T − S1))

and in the bad state it becomes

LA.income = incomemax · (0.6−
0.6

Tthreshold − S2,0
(T − S2))

where S2,0 is the initial state transition value at time t = 0. The initial state transition
is used as opposed to the current state transition to allow the income to become negative
before the threshold is reached.

5.13. 3D Architectures

In the following, we generalize the above approach in order to make it applicable to 3D
architectures. The approach in 2D becomes a special case of the approach in 3D using
only one layer.
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5.13.1. Considerations When Adapting 2D Algorithms for 3D

A number of changes to the 2D approach must be taken into consideration for it to be
applicable to a 3D multi-core architecture. In particular, the thermal characteristics of
each layer must be considered. Since the heat sink is only directly connected to the
upper layer, heat is dissipated from tiles in that layer much more efficiently. In contrast,
heat generated by tiles on the lower layers must dissipate through all layers above it to
the heat sink. Additionally, the connection area between two PEs in the vertical layer is
considerably higher then the area connecting two PEs vertically. As such it is not sufficient
to apply EcoLe as is to a 3D architecture, instead it must be augmented.

5.13.2. Extending EcoLe for 3D

In order to consider the thermal behavior of the layered architecture, we consider a vertical
stack of processing elements as an additional thermal domain. This domain is referred to
as a column, Cxy =

∑
z PExy. Thus the horizontal distribution of power budget remains

the same as with a 2D architecture, however, the power budget is distributed to columns
instead of tiles. To accomplish this, we must add an additional type of agent.

Column Agents (CA) are agents in a 3D multi-core architecture which are situated in
and responsible for a vertical stack of PEs. These agents take the place of local agents
in bidding with market agents. As such, CAs require an overall state classification and
an income for their column. Functionally, it is an augmented local agent which gathers
the information of all other local agents in its column and bargains/bids with the market
agent on behalf of its column.

Additionally, the state classification/income system described above must be adapted to
the 3D architecture.

5.13.3. Income and State Classification in 3D Columns

In each column, income is generated from the income of the local agents of the individual
PEs according to their state. However, this total income must take into consideration and
compensate for distance from the heat sink. In practice, this is done by adjusting the
state transitions (through reinforcement/penalties) for all the local agents in a column as
soon as any local agent undergoes a transition. However, unlike in the two-dimensional
case, the amount the state transitions are shifted depends on the layer on which the local
agent is located, with transitions in lower agents (i.e. further away form the heat sink)
undergoing a greater shift.

In the implementation, this is realized by adapting the learning rate γ depending on the
layer. If the layers are running at different voltages (see below), then this must be factored
into the learning rate as well.

Since the layers in each column are thermally correlated, it is highly unlikely that one layer
will undergo a transition into a worse state while another in the same column undergoes
one to a better state. However, if it does occur, these two transitions will cancel each
other out, leaving the overall column state and income unchanged. Like the income, the
savings are also gathered by the CA for the entire column. Thus, when a new task is
assigned after bidding, it is initially assigned to the column and not to a specific PE. The
column agent is then responsible for actual assignment. Similar to the assignment based
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Table 5.3.: Overview of assumed periodic SPEC2006 tasks

Task deadline fmin

(ms) (GHz)

soplex 150 0.5
h264ref 42 (per frame) 0.51
bzip2 10000 0.788
calculix 500 0.198
xalancbmk 2000 0.399

on bids using the savings, the CA assigns an incoming task to the PE with the highest
contributing factor of the total excess income.

Voltage scaling in the 3D architecture must also be addressed. • In the simplest case,
voltage islands are the same on each layer and are stacked on top of each other, creating
voltage boxes. These boxes are all set to one voltage, and thus voltage scaling can be done
by the MA as in the 2D case. • More generally though, each layer can have a different
voltage. In this case, the market agent must set the voltage level for each layer individually.
• In the most general case, the voltage islands of individual layers are not aligned, meaning
that the market agents must negotiate when setting the voltage. Here, we assume that
we do have voltage boxes, but each layer can be run on different voltages. This limits the
decisions to the domain of one market agent. However, the problem arises that the market
agent does not have the necessary information for each layer’s voltage island, since it only
communicates with the column agent. As such, the CAs must send additional feedback to
the market agents, after they have assigned a task to a PE. This then allows the MA to
determine how much of the total power budget is assigned to which layer of the voltage
box, and to then scale the voltage accordingly.

5.14. Experimental Setup

To evaluate EcoLe, an 8× 8 mesh of Alpha processors is examined – partitioned into four
4 × 4 voltage islands. Simulation is performed using the m5 [23] architecture simulator
paired with the MCPAT [80] simulator for power estimation. These have been modified to
provide a continuous power trace as an input for the HotSpot [64] thermal simulator. As a
benchmark, we have taken the applications of SPEC2006 benchmark suite [6]. For the 3D

Simulation Summary:

Ambient temperature 45◦C
Tile size 4.9 mm × 4.9 mm
Die height 150 µ m

Conductivity:
Si 100 W/mK
Cu 400 W/mK

evaluation, we assume there to three mesh
layers on top of each other. Power estima-
tion is done for the 45nm technology node
running at 1 GHz with a supply voltage of
1.1 V , resulting in leakage power of 8.95
W and a peak dynamic power consumption
of 14 W . The power values are adjusted
in our simulation based on Equation 5.12
depending on the chosen voltage and fre-
quency during runtime.

For the simulation, we assume that selected
benchmark tasks are periodic. An overview of these tasks is given in Table 5.3 showing
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their required minimum operating frequency with respect to their deadlines. For h264ref,
this deadline is determined to allow 25 frames per second. For the rest of the applications,
the deadline is assumed in order to evaluate a range of deadlines. The minimum frequency
fmin is calculated using the number of execution cycles for each application. The remaining
tasks are run as best-effort tasks and all tasks have their own unique task class.

5.15. Results

Regarding 2D architectures, we compare our approach and implementations based on the
principles of [36, 43], enabling a comparison to state-of-the-art proactive global centralized
and fully distributed approaches which have shown the best results regarding thermal
management. Additionally, we also compare our approach to a central reactive one.
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Figure 5.18.: Peak temperatures

Figure 5.18 shows the results regarding peak temperatures. As seen, our approach is able
to successfully keep the temperature below a threshold of 80◦C. The reduction achieved
is independent of the uncertainties of the thermal simulations and instead relies on the
accuracy of temperature measurements performed during runtime. Simulation is done
in three runs. First, only the periodic tasks are considered. Next, the best-effort tasks
are added and all tasks start at the beginning of the simulation, resulting in the worst-
case power consumption when considering one instance of each task. Lastly, the start
of the best-effort tasks is randomly and evenly distributed throughout the simulation,
representing a more realistic scenario where tasks are dispatched over time. The periodic
tasks execute continuously throughout all runs. A reduction of 15.1% compared to the case
without a specific thermal management can be observed. Also, there is a 4% reduction
compared to the fully distributed approach (i.e. [43]). This 4% can be critical at near-
threshold temperatures in terms of transient errors caused by increased interconnect delays.
Our temperatures do, however, exceed the peak temperatures achieved by the central
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proactive approach, as used by [36] by 2.16% on average. This was to be expected, as
central approaches have a global view of the system and thus more optimization potential.
They are, however, limited by their scalability [43].
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Figure 5.19.: Missed deadlines in periodic SPEC2006 tasks

In Figure 5.19, the effect of the different thermal management techniques with respect
to meeting task deadlines is shown. Since best-effort tasks have no deadlines, only the
periodic tasks are considered. Three simulation runs were performed having one, two, and
four instances of each periodic task, respectively. The fully distributed approach has the
most deadline misses in all runs. This is mainly due to the h264ref task, which has a short
deadline compared to the trading interval. In this specific case, the power budget is too
small locally at the time of task mapping and additional power budget must be propagated
from adjacent PEs. This process can take multiple iterations. Our approach avoids this
as long as there is a power budget available in the MA. The deadline misses in the third
run are due to the MA requesting additional power budget from the global power source.

Simulation Summary:

Ambient temperature 45◦C
Column size 4.9 mm × 4.9 mm
Layer height 150 µm

Layer interface 20 µm
TSV diameter 7.5 µm

TSV area / total area 10%
TSV distribution uniform

Conductivity:
Si 100 W/mK

Cu 400 W/mK
Layer interface5 4 W/mK

This additional power budget is not avail-
able to the MA until the next iteration. The
deadline misses of the central approaches
are also caused by the h264ref task. How-
ever, in this case, the overhead of the cen-
tral computation of the task mapping re-
sults in delayed task execution and missed
deadlines.

When considering 3D architectures, the
overall peak temperature is, of course, high.
So that we can effectively use the addition-
ally PEs, we increase the number of tasks
and compare the results to the state-of-the-
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Figure 5.20.: Peak temperatures in 3D multi-core architecture

art 3D thermal management task scheduling approach presented in [127]. Additionally to
our approach extended for 3D architectures (EcoLe3D, we also compare to EcoLe without
the 3D architecture extensions (EcoLe2D), i.e. where all local agents obtain power budget
from their market agent directly, regardless of which layer they are situated on.
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As seen in Figure 5.20 the three proactive thermal management approaches all achieve a
high reduction of peak temperature compared to the case of no DTM as well as a reduction
compared to the reactive approach. Of the three, the central proactive approach has the
highest reduction of peak temperature. However, this comes with a high overhead in both
computation as well as very frequent task migrations. As a result, the largest number of
deadline misses occur using in the central proactive approach (see Figure 5.21). While
EcoLe2D is still able to reduce peak temperatures in a 3D architecture, without the CA
it maps tasks to PEs without considering the temperature distribution inside a column.
As a result, temperatures of the PEs in a column rise faster than in EcoLe3D and more
frequent task migrations are required. This manifests itself through more deadline misses
in EcoLe2D. In summary, EcoLe3D reduces the peak temperatures by an average 34◦C
compared to having no DTM and is 3.3◦C higher than the central proactive approach.
However, it increases performance by reducing the number of deadline misses by 70%
compared to the central approach, and by 65% compared to EcoLe2D, on average.
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Figure 5.22.: Communication overhead per budget trading interval for 64 cores and various
number of domains

The scalability of EcoLe depends largely on the number of domains (i.e. MAs). For in-
stance, Figure 5.22 shows the communication overhead for a 64-core architecture with
different numbers of MAs. Each LA to MA communication is assumed to take three
Bytes: one for the LA’s income, one for the LA’s savings, and one for the MA’s acknowl-
edgment. The MA to MA communication is assumed to be two bytes to each neighboring
MA. The result for having only one MA is equivalent to implementing the approach using
a centralized management management instance. In this case, the highest communication
overhead is required, even though there is no MA to MA communication. The lowest
communication overhead is observed with the smallest domains, i.e. 32 domains consisting
of two cores each. It should be noted that, when the number of domains is high, it takes
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more intervals for the MAs to propagate the maximum LA savings to all MAs. This is
mostly non-critical because the LA that has the highest savings generally does not change
in short time spans. However, to limit the propagation time of the LA savings values
and keep the communication between the MA and the global power source (which grows
linearly with the number of MAs) efficient, a lesser number of MAs is preferable, i.e. 8.
Alternatively, more MAs may propagate the savings values at once or to more neighbors.
This, however needs to be limited in order to retain scalability.

Additional overhead that must be considered is the memory requirement of our approach.
In order to utilize the economic learning, it is necessary to store the state transition values
X for each task class. This requires two bytes of memory for each task. Thus the required
memory is larger than the two bytes needed for the fully distributed approach in [43].
However, this overhead can be seen as marginal, as even executing 100 tasks will only
require 200 bytes of memory for state transition values.

5.16. Summary

This chapter addresses thermal management in multi-core architectures with two ap-
proaches. The first, TAPE [43], minimizes the possibility of thermal hotspots through
pro-active power distribution. It utilizes a classical supply/demand model from agent-
based economics [117] where neighboring agents trade power units locally. By limiting
power trading to immediate neighbors, the communicational overhead is reduced by 11.9
times compared to a central approach considering a 96-core architecture. Agents can be
implemented in hardware as well as in software with hardware agents requiring chip area
(143 slices) and software agents requiring execution time on a processor. The approach
is simulated using power traces obtained from the MiBench benchmark suite. When run-
ning multiple applications simultaneously, TAPE exploits a dynamic thermal threshold to
keep deadlines. While PRTM [124] achieves 4.65% less peak temperature compared to our
approach, it still achieves an 11.23% reduction compared to having no DTM. It reduces
the execution time by up to 44.2% and energy consumption up to 44.4% compared to
PRTM [124].

The second approach, EcoLe [45], presents a novel power budget economy for perform-
ing thermal management in both 2D and 3D multi-core architectures. It deals with the
shortcomings of TAPE arising from a limited system view. Through economic learning
it is able to reduce peak temperatures compared to [43] and keep them below a thermal
threshold. Since our distributed approach is based on an agent hierarchy, it is also able
to reduce deadline misses compared to a fully distributed approach. It can be viewed as
a hybrid approach which aims to trade-off the effectiveness of a central approach using
global knowledge with the scalability of a fully distributed one.
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6. Outlook and Conclusion

Recently, the International Technology Roadmap for Semiconductors (ITRS) introduced
aging-induced reliability concerns (e.g. NBTI, TDDB) as one of the difficult challenges
faced by industry. These deterioration processes are highly temperature-dependent, as
was shown in Chapter 3. Fortunately, the exponential growth of power densities predicted
a decade ago has ceased. This means that chip temperatures – at least in planar 2D
architectures – are not expected to rise beyond current ones. At the same time, however,
decreasing feature sizes increase dependability issues since aging-induced degradation is
accelerated. As a result, the following conclusions can be made:

• In 2D architectures, performing dynamic thermal management explicitly to target
dependability will become more prominent.

• In 3D architectures, where temperature increases remain a challenge, DTM targeting
both dependability and the growing temperatures is a necessity.

The dynamic of aging effects also shifts with the introduction of high-κ gate dielectrics. In
a general sense, since the increased permittivity decreases the electric field between gate
and bulk, aging mechanisms dominated by this field are weakened – that is, particularly
NBTI and TDDB. PBTI, however, is expected to increase as additional electron traps are
introduced with the high-κ insulator. As a result, the significance of HCI and PBTI are
expected to grow.

The thermal management approaches presented in this thesis target different levels: from
the microarchitecture to cores in a multi-core architecture (which is also extended to
cylinder stacks in 3D layered architectures). First, COOL employs an extremum-seeking
controller to optimize the temperature output from individual system components. TAPE
and EcoLe, on the other hand, perform thermal management on a larger scale in multi-
core architectures. Both operate on the principles behind distributed economies, i.e. they
are based on supply-and-demand. EcoLe is also extended to manage 3D stacked layered
multi-core architectures by extending its clustering hierarchy to account for the thermal
properties of 3D architectures (i.e. with increased heating in the vertical direction).

The presented DTM approaches lead to the following conclusions:
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• In the microarchitecture, temperature-related dependability can be maximized by
optimizing temperature through a controller. This is only possible when there is
a limited overhead of activity migration, and therefore cannot be expanded to the
multi-core level.

• As these multi-core architectures continue to grow in size and complexity, the main
limiting factor for DTM is scalability. Scalability can be explicitly targeted by em-
ploying distributed agent-based systems.
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A. SPICE model of NBTI circuit

This chapter presents an example SPICE implementation of the NBTI circuit introduced
in Chapter 3.1.2.2. To prevent contributions to the timing behavior, the transistors and
diodes are kept as ideal as possible. The diode controlling the current direction approx-
imates ideal behavior by using a low emission coefficient (n = 0.001). Both the ideal
PMOS and NMOS transistors are approximated using ideal switches, with NMOS tran-
sistors receiving inverted stress voltage. The voltage stored in CTH is representative of the
degradation due to NBTI, i.e. α · (VINIT - V(NTOT)) = ∆Vth.

NBTI equivalent RC circuit

****************************

**

**

.PARAM VINIT = 1.0

** Pulse stress source:

V1 VSTRESS GND 0 PULSE(0 1 10N 10N 10N 10m 20m)

** Alternate constant stress source:

* V2 VSTRESS GND 1

** Inverted stress condition:

BN NNONSTRESS 0 V = ’1-V(VSTRESS)’

** Capacitors representing Vth shift

CTH NTOT GND 10U IC=VINIT ; Capacitor representing total traps

CIT NIT GND 8U ; Cap. representing interface traps

CHT NHT GND 5N ; Cap. representing hole traps
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118 A. SPICE model of NBTI circuit

S1 NTOT C VSTRESS 0 SM ON

DIT C D ID

RVAR D NIT R=’(VINIT-V(NTOT))*1E12’

SN1 NIT NPRIT NNONSTRESS 0 SM OFF

RVA2 NPRIT NRIT R=’(VINIT-V(NTOT))*1E12’

VSenseIT NRIT 0 0

S2 NTOT B VSTRESS 0 SM ON

DHT B NPHT ID

RRecoveryHT NPRHT NRHT 1K

RStressHT NHT NPHT 1K

SN2 NHT NPRHT NNONSTRESS 0 SM OFF

VSenseHT NRHT 0 0

BIR 0 NIR I=’I(VSenseIT) + I(VSenseHT)’

VSense3 NIR NTOT 0

** Near-ideal switch model:

.MODEL SM SW(VT=0, VH=0, RON=1, ROFF=1.0E+12 )

** Near-ideal diode model:

.MODEL ID D(N=0.001)

* Analysis

.TRAN 1n 1e3 0.0001m 100m UIC

.OPTIONS NOMOD

.END

Figure A.1 shows a summary of the results of the SPICE simulation. Voltage stress is
applied for 10 ms of each 20 ms period. To keep the figure comprehensible, only every
10 000 sample is plotted, as the full plot is too dense to differentiate. The short-term
characteristics of hole trapping and detrapping can be seen in the high frequency noise in
∆Vth.
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Figure A.1.: Results of circuit simulation in SPICE. Plot shows every 1e5 sample
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B. OpenMPI Implementation of
TAPE-Agent Communication

int in[4], out[4], east, rank;

MPI_Request request_reast = MPI_REQUEST_NULL;

MPI_Request request_seast = MPI_REQUEST_NULL;

MPI_Cart_create (MPI_COMM_WORLD, ... , &cart);

MPI_Cart_shift (cart, 1, 1, &west, &east);

if ( east != MPI_PROC_NULL ) {

MPI_Irecv(data, 1, MPI_INT, east, UPDATE,

MPI_COMM_WORLD, &request_reast);

}

while(TRUE){ // Agent Loop

MPI_Test( &request_reast, &flag , &status);

if ( flag && status.MPI_TAG != MPI_ANY_TAG ) {

input = data[0];

MPI_Irecv(data , 1, MPI_INT, east, UPDATE,

MPI_COMM_WORLD, &request_reast);

}

// ... Agent code ...
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122 B. OpenMPI Implementation of TAPE-Agent Communication

MPI_Wait( &request_seast, &status );

if ( east != MPI_PROC_NULL ) {

MPI_Isend(out, 1, MPI_INT, east, UPDATE,

MPI_COMM_WORLD, &request_seast);

}

sleep(INTERVAL);

}
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Glossary

Symbols

VDD

Positive supply voltage. 12, 20

VGS

Gate-to-source voltage. Equivalent to gate bias. 12

VSS

Negative supply voltage, i.e. ground. 12, 20

Vth

Threshold voltage. 12

A

availability

Resources remain accessable, operate, and provide a response. 5, 27, 123

B

BL

Bit Line (SRAM). 20

BSIM

Berkeley Short-channel IGFET Model – Transistor models used for integrated circuit
design. 35

C

CMOS

Complementary Metal-Oxide-Semiconductor. 11

D

dependability

Reliability together with availability. 5, 27
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Device layer

Concerning individual transistors. 33

DTM

Dynamic Thermal Management. 1, 6, 62

DVFS

Dynamic Voltage and Frequency Scaling. 6

Dynamic Thermal Management

Methods for controlling temperature during runtime at system level. 1, 124

E

electromigration

Aging effect due to erosion of metal interconnects through ion movement. 28

F

FEA

Finite-Element Analysis. 14

feature size

Characteristic length of a given manufacturing process, correspondes to half-pitch
(half the distance between) identical features. 1, 126

FET

Field-effect transistor. 125

H

HCI

Hot Carrier Injection. 33

high-κ

Having a high (i.e. compared to SiO2) dielectric constant κ = ε(ω)/ε0, where ε(ω) is
the (frequency dependent) absolute permittivity of the material and ε0 the vacuum
permittivity, i.e. κ determines the strength of a electric field through the material,
compared to an electric field through a vacuum.. 12, 33, 35, 97

Hot Carrier Injection

Aging effect due to carriers accelerated by the horizontal electric field through
the transistor channel, leading to carriers entering the oxide layer (either directly,
through scattering due to impact ionization, or tunneling effects) and breaking Si−h
bonds.. 33, 124

I
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ITRS

International Technology Roadmap for Semiconductors. 3

M

MOSFET

Metal-Oxide-Semiconductor FET. 35

N

NBTI

Negative Bias Temperature Instability. 6, 9, 27, 28, 31, 110, 125

Negative Bias Temperature Instability

Aging mechanism due to vertical electric field through gate oxide in a negative biased
transistor (PMOS). 6, 9, 125

P

PBTI

Positive Bias Temperature Instability. 33

Positive Bias Temperature Instability

Like NBTI, but with positive biased NMOS transistors and, as a result, electron
trapping instead of hole trapping.. 33, 125

R

reliability

Correctness in operation. 5, 27, 123

S

SNM

Static Noise Margin. 36

Static Noise Margin

SRAM cell resiliency to voltage noise. 36, 125

steady state temperature

The stable temperature reached when dissipation and heat generation reach equilib-
rium (assuming power consumption does not change). 7

T

TDDB

Time Dependent Dielectric Breakdown. 34
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TDP

Thermal Design Power. 3, 13, 109

technology node

Manufacturing process characterized by feature size of a memory cell. 2

Thermal Design Power

Power dissipated under maximum workload stress. Guideline for required tempera-
ture management. 3, 109, 126

Through Silicon Via

Vertical interconnects in 3D layered architectures. Enable communication between
layers. Thermal conduction towards packaging/heat sink is considerably higher
through TSVs than through silicon. 5, 126

Time Dependent Dielectric Breakdown

Aging effect due to deterioration of oxide layer through trap generation. Eventually
a conducting path is created between gate and bulk, resulting in device failure.. 34,
125

TSV

Through Silicon Via. 5, 82

V

Very Large Scale Integration

Process for creating circuits with several thousands of transistors. 126

VLSI

Very Large Scale Integration. 1

W

WL

Word Line (SRAM). 20
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