292 research outputs found

    New Formulations and Solution Methods for the Dial-a-ride Problem

    Full text link
    The classic Dial-A-Ride Problem (DARP) aims at designing the minimum-cost routing solution that accommodates a set of user requests under constraints at the operations planning level. It is a highly constrained combinatorial optimization problem initially designed for providing door-to-door transportation for people with limited mobility (e.g. the elderly or disabled). It consists of routing and scheduling a fleet of capacitated vehicles to service a set of requests with specified pickup and drop-off locations and time windows. With the details of requests obtained either beforehand (static DARP) or en-route (dynamic DARP), dial-a-ride operators strive to deliver efficient and yet high-quality transport services that satisfy each passenger's individual travel needs. The goal of this thesis is threefold: (1) to propose rich DARP formulations where users' preferences are taken into account, in order to improve service quality of Demand-Responsive Transport (DRT) services and promote ridership strategically; (2) to develop novel and efficient solution methods where local search, column generation, metaheuristics and machine learning techniques are integrated to solve large-scale DARPs; and (3) to conduct real-life DARP case studies (using data extracted from NYC Yellow Taxi trip records) to test the practicality of proposed models and solution methods, as well as to emphasise the importance of connecting algorithms with real-world datasets. These aims are achieved and presented in the three core chapters of this thesis. In the first core chapter (Chapter 3), two Mixed Integer Programming (MIP) formulations (link-based and path-based) of DARP are presented, alongside with their objective functions and standard solution methods. This chapter builds the foundation of the thesis by elaborating the base models and algorithms that this thesis is based on, and by running benchmark experiments and reporting numerical results as the base line of the whole thesis. In the second core chapter (Chapter 4), two DARP models (one deterministic, one stochastic) integrated with users' preferences from dial-a-ride service operators' perspective are proposed, facilitating them to optimise their overall profit while maintaining service quality. In these models, users' utility users' preferences are considered within a dial-a-ride problem. A customized local search based heuristic and a matheuristic are developed to solve the proposed Chance-Constrained DARP (CC-DARP). Numerical results are reported for both DARP benchmark instances and a realistic case study based on New York City yellow taxi trip data. This chapter also explores the design of revenue/fleet management and pricing differentiation. The proposed chance-constrained DARP formulation provides a new decision-support tool to inform on revenue and fleet management, including fleet sizing, for DRT systems at a strategic planning level. In the last core chapter (Chapter 5), three hybrid metaheuristic algorithms integrated with Reinforcement Learning (RL) techniques are proposed and implemented, aiming to increase the scale-up capability of existing DARP solution methods. Machine learning techniques and/or a branching scheme are incorporated with various metaheuristic algorithms including VNS and LNS, providing innovative methodologies to solve large-instance DARPs in a more efficient manner. Thompson Sampling (TS) is applied to model dual values of requests under a column generation setting to negate the effect of dual oscillation (i.e. promote faster converging). The performance of proposed algorithms is tested benchmark datasets, and strengths and weaknesses across different algorithms are reported

    Ambulance routing problems with rich constraints and multiple objectives

    Get PDF
    Humanitäre non-profit Organisationen im Bereich des Patiententransports sehen sich dazu verpflichtet alle möglichen Einsparungs- und Optimierungspotentiale auszuloten um ihre Ausgaben zu reduzieren. Im Gegensatz zu Notfalleinsatzfahrten, bei denen ein Zusammenlegen mehrerer Transportaufträge normalerweise nicht möglich ist, besteht bei regulären Patiententransporten durchaus Einsparungspotential. Diese Tatsache gibt Anlass zur wissenschaftlichen Analyse jener Problemstellung, welche die täglich notwendige Planung regulärer Patiententransportaufträge umfasst. Solche Aufgabenstellungen werden als Dial-A-Ride-Probleme modelliert. Eine angemessene Service-Qualität kann entweder durch entsprechende Nebenbedingungen gewährleistet oder durch eine zusätzliche Zielfunktion minimiert werden. Beide Herangehensweisen werden hier untersucht. Zuerst wird eine vereinfachte Problemstellung aus der Literatur behandelt und ein kompetitives heuristisches Lösungsverfahren entwickelt. Diese vereinfachte Problemstellung wird in zwei Richtungen erweitert. Einerseits wird, zusätzlich zur Minimierung der Gesamtkosten, eine zweite benutzerorientierte Zielfunktion eingeführt. Andererseits werden eine heterogene Fahrzeugflotte und unterschiedliche Patiententypen in die Standardproblemstellung integriert. Letztendlich wird das reale Patiententransportproblem, basierend auf Informationen des Roten Kreuzes, definiert und gelöst. Neben heterogenen Fahrzeugen und unterschiedlichen Patienten, werden nun auch die Zuordnung von Fahrern und sonstigem Personal zu den verschiedenen Fahrzeugen, Mittagspausen und weitere Aufenthalte am Depot berücksichtigt. Alle eingesetzten exakten Methoden, obwohl sie auf neuesten Erkenntnissen aus der Literatur aufbauen, können Instanzen von realistischer Größe nicht lösen. Dieser Umstand macht die Entwicklung von passenden heuristischen Verfahren nach wie vor unumgänglich. In der vorliegenden Arbeit wird ein relativ generisches System basierend auf der Variable Neighborhood Search Idee entwickelt, das auf alle behandelten Einzielproblemversionen angewandt werden kann; auch für die bi-kriterielle Problemstellung, in Kombination mit Path Relinking, werden gute Ergebnisse erzielt.Humanitarian non-profit ambulance dispatching organizations are committed to look at cost reduction potentials in order to decrease their expenses. While in the context of emergency transportation cost reduction cannot be achieved by means of combined passenger routes, this can be done when dealing with regular patients. This research work is motivated by the problem situation faced by ambulance dispatchers in the field of patient transportation. Problems of this kind are modeled as dial-a-ride problems. In the field of patient transportation, the provision of a certain quality of service is necessary; the term “user inconvenience” is used in this context. User inconvenience can either be considered in terms of additional constraints or in terms of additional objectives. Both approaches are investigated in this book. The aim is to model and solve the real world problem based on available information from the Austrian Red Cross. In a first step, a competitive heuristic solution method for a simplified problem version is developed. This problem version is extended in two ways. On the one hand, besides routing costs, a user-oriented objective, minimizing user inconvenience, in terms of mean user ride time, is introduced. On the other hand, heterogeneous patient types and a heterogeneous vehicle fleet are integrated into the standard dial-a-ride model. In a final step, in addition to heterogeneous patients and vehicles, the assignment of drivers and other staff members to vehicles, the scheduling of lunch breaks, and additional stops at the depot are considered. All exact methods employed, although based on state of the art concepts, are not capable of solving instances of realistic size. This fact makes the development of according heuristic solution methods necessary. In this book a rather generic variable neighborhood search framework is proposed. It is able to accommodate all single objective problem versions and also proves to work well when applied to the bi-objective problem in combination with path relinking

    Rich Vehicle Routing Problems and Applications

    Get PDF
    corecore