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Summary

The Vehicle Routing Problem (VRP) is one of the most important and chal-
lenging optimization problems in the field of Operations Research. It was intro-
duced by Dantzig and Ramser (1959) and defined as the problem of designing
the optimal set of routes for a fleet of vehicles in order to serve a given set of
customers. The VRP is a computationally hard combinatorial problem and has
been intensively studied by numerous researchers in the last fifty years. Due to
the significant economic benefit that can be achieved by optimizing the routing
problems in practice, more and more attention has been given to various exten-
sions of the VRP that arise in real life. These extensions are often called Rich
Vehicle Routing Problems (RVRPs). In contrast to the research of classical VRP
that focuses on the idealized models with unrealistic assumptions, the research
of RVRPs considers those complicated constraints encountered in the real-life
planning and provides solutions that are executable in practice.

In this thesis, we investigated the models and algorithms of three practical
vehicle routing problems. Each of them involves special practical issues that are
only considered in very few papers. Our study of these problems was motivated
by our cooperation with industrial companies, particularly Transvision A/S and
its client distributors, and Danish Crown. The models and methods proposed in
the thesis are general and can be applied to practical routing problems arising
in many other distribution companies as well.

We first consider a vehicle routing problem with cross-docking options, in which
products are picked up from suppliers by vehicles, consolidated at the depot
and immediately delivered to customers by the same set of vehicles. It is more
complex than the traditional vehicle routing problems in the sense that consoli-
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dation decisions have to be made at the depot and these decisions interact with
the planning of pickup and delivery routes. We presented a mathematical model
and proposed a Tabu Search based heuristic to solve it. It is shown that the
approach can produce near-optimal solutions within very short computational
time on real-life data involving up to 200 pairs of suppliers and customers.

The second problem we consider is a dynamic vehicle routing problem with
multiple objectives over a planning horizon that consists of multiple periods.
In this problem, customer orders are revealed incrementally over the planning
horizon. The delivery plan must be made and executed in every period without
knowing the future orders. We modeled the problem as a mixed integer linear
program and solved it by means of a three-phase heuristic that works over
a rolling planning horizon. The method improves the company’s solution in
terms of all the objectives, including the travel time, customer waiting and
daily workload balances, under the given constraints considered in the work.

Finally, we address an integrated vehicle routing and driver scheduling prob-
lem, in which a large number of practical constraints are considered, such as
the multi-period horizon, the time windows for the delivery, the heterogeneous
vehicles, the drivers’ predefined working regulations, the driving rule etc. The
problem is formulated as a mixed integer linear program and treated by a multi-
level variable neighborhood search algorithm. The method is implemented and
tested on real-life data involving up to 2000 orders. It is shown that the method
is able to provide solutions of good quality within reasonable running time.
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Chapter 1

Introduction

This introductory chapter provides the background, motivation, and overview
of this thesis. The main topic, the Vehicle Routing Problem (VRP), is first
introduced. The purpose and contribution of this work are then given, followed
by the outline of this thesis.

1.1 Motivation

Transportation plays an important role in our daily life. In the US, the trans-
portation related goods and services contributed $1156 billion, or around 11%
of GDP1. In 2003, within EU 2184 billion tonne-kilometers transport was per-
formed, in which the road freight accounts for 72%. The amount of road freight
has increased by 38% from 1995 to 20052. Since even a small percentage sav-
ing will yield a substantial saving in the transportation cost research on VRP
that deals with minimization of the road freight cost, has become a very impor-
tant area. Moreover, the growth of transport-related energy consumption and
its negative effects on environment have attracted more and more worldwide

1Decoupling the Environmental Impacts of Transport from Economic Growth,
http://www.oecd.org/dataoecd/3/52/37722729.pdf, Nov 16, 2006.

2Panorama of Transport, http://epp.eurostat.ec.europa.eu/cache/ITY OFFPUB/KS- DA-
07-001/EN/KS-DA-07-001-EN.PDF, retrieved Feb 2, 2009



2 Introduction

concerns. In the US, transport-related energy consumption increased from 516
million tonnes in 1971 to 745 million tonnes in 2002 (growth of 44%). Between
1970 and 2002, CO2 emissions from the transport sector in the US increased by
69%.3 Therefore, research on VRP not only reduces the transportation cost but
also contributes to the environmental protection.

During the past decades, considerable research on vehicle routing and scheduling
problems has been carried out. One of the earliest and also the simplest routing
problem is the Traveling Salesman Problem (TSP), in which the shortest tour
to visit a number of cities must be determined for a salesman who starts from
and terminates at the same city. Figure 1.1 shows an example of the TSP. This
problem was later extended to the Multiple Traveling Salesman Problem (m-
TSP), in which there are multiple salesmen and they all start at and return to
the same city, which is referred to as the depot. In the late fifties, Dantzig and
Ramser (1959) introduced the VRP, which can be viewed as an m-TSP with
customer demands and vehicle capacity. An example of such a VRP is shown
in Figure 1.2. The VRP introduced in Dantzig and Ramser (1959), strictly
speaking, is called Capacitated Vehicle Routing Problem (CVRP), and is one
of the simplest vehicle routing problems. During the past five decades, various
solution methods have been proposed for solving the CVRP.

Some of these methods can lead to optimal solutions and are therefore named
exact methods. These methods include Branch-and-Bound (B&B), Branch-and-
Cut (B&C) and Branch-and-Price (B&P). The exact methods can only solve the
problem of a limited size because the computational complexity of the VRP is
very high. The most sophisticated exact algorithms today can solve instances
involving a little more than one hundred customers. One of such an algorithm
is presented in Baldacci et al. (2008b).

Since most of the real-life applications consist of hundreds or even thousands of
customers, the research of the VRP has been largely focusing on the develop-
ment of approximate solution techniques that can provide high-quality solutions,
though not necessarily the optimal ones, within short or acceptable computa-
tional times. Heuristics are one kind of such methods that generate good solu-
tions in an iterative fashion. The earliest heuristic methods were proposed to
construct a feasible solution from scratch. Later developments on heuristics em-
phasized how to improve a solution by modifying the solution, such as relocating
a customer from one route to another. Since the late eighties, special attention
has been devoted to metaheursitics, a class of sophisticated heuristics that often
combines construction heuristics and improvement heuristics based on concepts
derived from artificial intelligence, biology, mathematics, physics or nature, and

3Panorama of Transport, http://epp.eurostat.ec.europa.eu/cache/ITY OFFPUB/KS- DA-
07-001/EN/KS-DA-07-001-EN.PDF, retrieved Feb 2, 2009
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generally provides solutions that are much better than those obtained by other
heuristics. During the last two decades, metaheursitics have been successfully
applied to many large-scale complicated vehicle routing problems and provided
solutions that can hardly be obtained by manual planning or simple heuristics.

Cities

Travel route

Salesman

Figure 1.1: An example of the TSP. Each city must be visited once.

Given the large potential savings that have been shown by the research on VRP,
many industrial distributors have become more and more interested in optimiz-
ing their distribution in practice. This increasing interest can be observed by the
large number of logistic consultant companies that provide the distributors with
tools or software for planning and optimizing distribution and transportation
problems based on OR techniques. However, real-life route planning problems
usually involve a large number of practical constraints. To this end, research
interest in the VRP field has also been extended from the idealized VRP to vari-
ants of the VRP, called Rich Vehicle Routing Problem (RVRP). These problems
are characterized by high complexity and large data size, and hence are much
more challenging than the CVRP (Hasle et al. (2006)).

One of the well-known RVRPs is the Vehicle Routing Problem with Time Win-
dows (VRPTW), where each customer is associated with a time interval, called
time window, within which, the customer must be visited. This kind of time
restrictions is often imposed by real-life applications, such as the school bus
route planning. Another type of the RVRP, called Heterogeneous Vehicle Rout-
ing Problem (HVRP), extends the VRP by considering the planning of het-
erogeneous vehicles. A third extension, Multi-Depot Vehicle Routing Problem
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Customers

Depot

Vehicles

Route

Figure 1.2: An example of the VRP. There are 16 customers with unit demand
and four vehicles with capacity 5.

(MDVRP), covers multiple depots, which are quite common in the distribution
network of global distributors. Another example of the RVRP is the Dynamic
Vehicle Routing Problem (DVRP), in which customers are revealed incremen-
tally over time rather than known in advance. The studies on DVRP provide
the possibility of on-line planning in real life. Most of these RVRPs considered
in the literature are still over-simplified since they only consider one or a few
practical issues. A practical routing problem is often a mixture of these RVRPs.
To close the gap between the RVRPs in academic research and in industry, a
strong trend in studying richer models can be observed in the recent years.

1.2 Purpose and contributions of thesis

The purpose of this thesis is to study the RVRPs that involve complicated prac-
tical constraints arising in real life. These RVRPs share common characteristics:
they are usually large-scale, involving up to hundreds or even thousands of cus-
tomers; they are very complicated and impose a lot of practical constraints.
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Due to the high complexity of these problems, we focus on solving them by
metaheuristics in this work.

The main contribution of this work is the development and implementation of
three metaheuristics for solving three large-scale complicated real-life RVRPs.
The proposed methods are, when experimentally investigated, prove to be effi-
cient and effective. The outcome of the research on the three problems shows
that metaheuristics are capable of providing good solutions to hard and com-
plex planning problems in real life. The three papers of the thesis are produced
based on the research results. Additionally, comprehensive introductions and
reviews of the VRP and the RVRP are presented.

1.3 Outline of thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the
mathematical formulation of the CVRP, and briefly discusses the complexity
issues. A review of the solution methods for the CVRP is also given. Chapter
3 addresses the practical issues arising in real-life routing problems and the
keys to the development of metaheuristics for these problems. A number of
important RVRPs that are relevant for this work are introduced and briefly
reviewed. Chapter 4 summarizes the papers included in this thesis, followed
by conclusions in Chapter 5. Finally, the three papers are provided in the
Appendix.
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Chapter 2

The Vehicle Routing Problem

In this chapter, we focus on the CVRP, the basic version of the VRP. The prob-
lem definition and mathematical formulation are first given. The complexity
issues are then discussed. A review of the solution methods, including both the
exact methods and heuristic methods, is provided.

2.1 Problem definition and formulation

The CVRP is first described by Dantzig and Ramser (1959) as follows:

A number of identical vehicles with a given capacity are located at a central
depot. They are available for servicing a set of customer orders, (all deliveries,
or, alternatively, all pickups). Each customer order has a specific location and
size. Travel costs between all locations are given. The goal is to design a least-
cost set of routes for the vehicles in such a way that all customers are visited
once and vehicle capacities are adhered to.

The problem can be defined on an undirected graph G = (N ,A), where N =
{0} ∪ C. Node 0 represents the depot and nodes in C = {1, . . . , n} represent
the customers. Each customer i orders a non-negative demand di. The edges in
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A = {(i, j) : i, j ∈ N , i < j} represent the connections between nodes. The cost
associated to each edge (i, j) is given by cij and we assume that the triangle
inequalities are satisfied, i.e., cij ≤ cik + ckj (∀i, j, k ∈ N ). Let K = {1, . . . ,m}
denote the set of identical vehicles available at the depot with capacity q.

A vehicle route is defined to be a path that starts from and ends at the depot,
and is denoted as r = (v0, v1, . . . , vh, vh+1), where v0 = vh+1 = 0 represent the
depot, and vi ∈ {1, · · · , n} for i ∈ {1, . . . , h} are customers.

A feasible route is a route that covers each customer at most once and for
which the total load does not exceed the vehicle capacity, i.e., vi �= vj ( ∀i, j ∈
{1, . . . , h} and i �= j) and

∑h
i=1 dvi ≤ q. The cost of the route is calculated as

cr =
∑h

i=0 cvivi+1 and the set of customers covered by the route is denoted by
Cr (Cr ⊆ C).

A feasible solution of the CVRP is composed of m feasible routes, denoted
by x = {r1, . . . , rm}, and the feasible routes satisfy Crk ∩ Crl = ∅ (∀k, l ∈ K and
k �= l) and

∑m
k=1 |Crk | = |C|. The cost of a feasible solution is the sum of the

costs of all the routes, i.e., cx =
∑m

k=1 crk .

The optimal solution x∗ is the solution that has the minimum cost, i.e.,
x∗ = argminx∈X cx, where X is the set of all the feasible solutions for the
problem.

Figure 2.1 gives an example of the VRP to illustrate the network and these
concepts.

Laporte et al. (1985) proposed a mixed integer linear programming formulation
for the CVRP, where the integer variable xe indicates the number of times that
edge e ∈ A is traversed in the solution. Let δ(S) = {(i, j) : i ∈ S, j /∈ S or
i /∈ S, j ∈ S} for S ⊆ N . Let v(S) denote the minimum number of vehicles
needed to serve the node set S, which can be obtained by solving the Bin
Packing Problem (BPP) with S and bins of capacity q. The formulation is as
follows:
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Figure 2.1: An example of a solution to the CVRP. There are four vehicles
available with capacity 10. The demand of each customer and the travel cost
of each edge in the solution are given in the figure. A feasible route is given by
r1 = (0, 3, 2, 0). The cost and load of the route are 27 and 8, respectively. A
feasible solution is given by x = {r1, r2, r3, r4}. The cost of the solution is 103,
which is also the optimal solution.
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(CV RP1)min
∑
e∈A

cexe (2.1)

∑
e∈δ({i})

xe = 2 ∀i ∈ C (2.2)

∑
e∈δ({0})

xe = 2m (2.3)

∑
e∈δ(S)

xe ≥ 2v(S) S ⊆ N , S �= ∅ (2.4)

xe ∈ {0, 1} e /∈ δ({0}) (2.5)

xe ∈ {0, 1, 2} e ∈ δ({0}) (2.6)

The degree constraints (2.2) and (2.3) make sure that each customer is visited
exactly once and m routes are created. Constraints (2.4) impose both the con-
nectivity of the solution and vehicle capacity requirement by forcing a sufficient
number of edges to enter each subset of nodes. Constraints (2.5) ensure that
each edge between two customers is traversed at most once. Constraints (2.6)
state that each edge between the depot and customer can be traversed at most
twice. If a vehicle performs a single-customer route, the edge between the depot
and the customer will be traversed twice.

Another useful formulation of the CVRP is the set partitioning formulation,
in which all the feasible routes are enumerated and their costs are determined
in advance (Bramel and Simchilevi (2002)). The objective is to find a set of
routes that form a feasible solution with minimum total cost. Let R denote
the set of all feasible routes, each of which has a load less than or equal to the
vehicle capacity. The cost of each route r ∈ R is denoted by cr. Note that cr is
the minimum cost of serving the customers covered by r. Parameter ari states
whether customer i is covered by route r. Binary variable zr equals 1 if route r
is selected and 0 otherwise. The CVRP is then formulated as follows:

(CV RP2)min
∑
r∈R

crzr (2.7)

∑
r∈R

ari zr = 1 ∀i ∈ C (2.8)

∑
r∈R

zr ≤ m (2.9)

zr ∈ {0, 1} ∀r ∈ R (2.10)
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The objective (2.7) is to minimize the total cost of the selected routes. Con-
straints (2.8) make sure that each customer is covered by one selected route.
Constraint (2.9) states the number of vehicles available. Constraints (2.10) de-
fine the binary variables. An advantages of this formulation is that its Linear
Programming (LP) relaxation tends to be very tight. However, it may be im-
possible to enumerate all the feasible routes when the problem size is very large.
Thus, one needs to use the Column Generation (CG) technique to solve it, which
will be introduced later in Section 2.3. Further details on these formulations and
additional formulations for the CVRP can be found in Toth and Vigo (2002).

2.2 Complexity

In order to analyze the complexity of the CVRP, we need to introduce the
complexity theory and the complexity classes defined by the complexity theory
first.

Computational complexity theory is a field in theoretical computer science and
mathematics, which deals with the resources required during computation to
solve a given problem. Most of the complexity theory deals with the decision
problems that can be answered by ’yes’ or ’no’, and divides these problems into
different classes according to the difficulty of solving the problems in terms of
computational resources. The class P is the class of decision problems that can
be solved by a deterministic algorithm in polynomial time. The class NP is
the set of decision problems that can be solved by a non-deterministic Turing
machine in polynomial time. Obviously P ⊆ NP but whether P = NP is
still an open question. A problem is called NP − hard if it is at least as
hard as any problem in NP in the sense that each problem in NP can be
polynomially reduced to it. The NP − hard problems belonging to NP are
called NP − complete. Hence, the NP − complete problems are the hardest
ones in the NP class.

Since any maximization/minimization problem can be easily transformed into
a decision problem of ’Is there a solution whose objective value is at least/most
A?’, where A is a number, the complexity theory can also be applied to optimiza-
tion problems, such as the VRP. The CVRP is a generalization of the m-TSP
by setting q to be ∞, and a generalization of the BPP by relaxing the routing
structure. Since both m-TSP and BPP are proven to be NP−hard, the CVRP
also isNP−hard. The computational effort required to solve the problem hence
increases exponentially as the problem size increases. Further complexity issues
of the vehicle routing and scheduling problems were investigated by Lenstra and
Rinnooy Kan (1981).
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2.3 Exact algorithms

The CVRP can be solved optimally by using exact methods or approximately
by using approximate methods or heuristics. The focus of this section is how to
solve the CVRP to optimality, whereas the heuristics will be discussed in the
next section.

One of the most important techniques for solving the large-scale combinatorial
problems to optimality is B&B, which is the basis for most exact algorithms
of the VRPs, such as B&P and B&C. The principle idea of B&B is to divide
the search space into subspaces (branching), and evaluate the lower and upper
bounds for these subspaces (bounding). If it is established that a subspace
does not contain the optimal solution, it is discarded (pruning). Otherwise, the
subspace will be further branched and bounded.

A general approach to estimate a lower bound is to solve a relaxed problem,
which can be obtained by removing a number of constraints in a particular
formulation of the problem. When different constraints in the same formulation
or constraints in different formulations are removed, different relaxed problems
are constructed.

For example, given the CVRP1 formulation, relaxations can be based on the
Assignment Problem if constraints (2.4) are removed (Miller and Pekny (1995)),
or based on degree-constrained spanning trees if constraints (2.2) are removed
and the right-hand side of constraints (2.4) are replaced by 1 (Christofides et al.
(1981) and Fisher (1994)). The relaxed problems can be solved very quickly if
a class of hard constraints has been eliminated. However, the quality of these
lower bounds is generally very poor.

The lower bound can also be obtained by solving the LP relaxation of CVRP2,
i.e., CVRP2 without constraints (2.10). The lower bound estimated in this way
is usually very good. Although the LP relaxation consists of a large number of
variables, it can be effectively handled by the CG proposed by Dantzig andWolfe
(1960). The CG decomposes the problem into two problems: a master problem
consisting of a subset of columns and a subproblem which generates columns to
be added to the master problem. The LP relaxation is solved to optimality, i.e.,
the lower bound is obtained, if no column with negatived reduced cost exists.

There are several approaches to improve the lower bounds. One way is to use the
Lagrangian Relaxation (LR), which dualizes some of the relaxed constraints and
adds them to the objective function (Fisher (1994), Miller (1995) and Martinhon
et al. (2004)). Another way is to strengthen the relaxation by adding some
valid inequalities that should be satisfied by all the feasible solutions. Baldacci
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et al. (2007) proposed the valid inequalities for different types of relaxations on
different formulations.

According to the techniques used to estimate lower bounds, the B&B can be
extended to B&P, B&C and Branch-and-Cut-and-Price (B&C&P). The B&P
refers to the method that is based on the set partitioning formulation and uses
the CG to generate the lower bound for each branch node in the searching tree.
Examples of such methods can be found in Agarwal et al. (1989) and Had-
jiconstantinou et al. (1995). They are able to solve the benchmark instances
involving up to 50 nodes. In the B&C, the lower bound of each branch node
is iteratively improved by adding to the relaxed formulation a number of valid
inequalities violated by the current solution. These valid inequalities are gener-
ated by heuristic separation procedure. The most advanced B&C methods are
developed by Baldacci et al. (2004) and Lysgaard et al. (2004), which are able
to solve the problems with up to 135 customers. The B&C&P is a combination
of B&C and B&P, which generates both columns and cuts to derive superior
lower bounds. This kind of methods are the best methods for the CVRP up
to the present. Fukasawa et al. (2006) combines the B&C of Lysgaard et al.
(2004) with the q-route approach which is interpreted as CG instead of LR in
Christofides et al. (1981). The lower bounds are improved compared with those
of Lysgaard et al. (2004) and a number of previously unsolvable instances can be
solved to optimality. Baldacci et al. (2008b) presented a more efficient B&C&P
algorithm based on a set partitioning formulation with three additional cuts.

Recent surveys on exact methods for the CVRP were given by Baldacci et al.
(2007) and Cordeau et al. (2007).

2.4 Heuristic methods

Given that the VRP is NP − hard and the state-of-the-art exact methods can
only solve the VRP with up to 135 customers, heuristics play an important role
in solving the large-scale VRPs quickly and providing near-optimal or even opti-
mal solutions. Heuristics can be considered as search procedures that iteratively
generate and evaluate candidate solutions. Although the VRP is NP − hard,
evaluation of a solution can be done very efficiently by summing up the costs of
the edges in the solution. Hence, how to effectively, intelligently and efficiently
search for good solutions is the key to the success of a heuristic.

Generally speaking, the heuristics can be classified into three groups: construc-
tive heuristics, improvement heuristics and metaheuristics (Laporte and Semet
(2002)).
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The constructive heuristics attempt to built a solution according to some con-
structive rules but do not improve it. They are usually very fast, but the solution
quality provided is often very poor.

Unlike the constructive heuristics, the improvement heuristics deal with com-
plete solutions and attempt to improve them iteratively by applying a sequence
of modifications to the solutions. These modifications are also called operators
or moves and they are usually very simple. Since the improvement heuristics
only accept the modifications that improve the solution, they can also be viewed
as a solution intensification procedure or local search that is guided by the ob-
jective function.

Metaheuristics are a kind of more sophisticated heuristics with emphasis on
performing a deep exploration of the most promising regions of the solution
space. It allows deteriorating and even infeasible intermediary solutions. Some
of the metaheuristics mimic the successful strategies found in nature. For ex-
ample, the Genetic Algorithm (GA) was inspired from Darwinian principles of
natural selection and Simulated Annealing (SA) came from annealing in metal-
lurgy. Some are based on local search and attempt to improve the local search
by introducing diversification strategies, such as using different neighborhoods
and/or restarting the search from different random solutions.

2.4.1 Route construction methods

Route construction heuristics can be further divided into three classes: savings
heuristics, insertion heuristics and two-phase heuristics (Laporte and Semet
(2002)).

The earliest savings heuristic was proposed by Clarke and Wright (1964), which
attempts to save the cost by merging two small routes to a large route. If i is
the last customer of a route and j is the first customer of another route, the
saving of serving i and j consecutively is defined as sij = ci0 + c0j − cij . In the
Clarke and Wright algorithm, n single-customer routes are first constructed, the
savings of all customer pairs are then determined and sorted in a nonincreasing
order, in which the customer pair is examined and connected if it is feasible.

An intensive research has been made to improve the efficiency, effectiveness
and accuracy of the savings heuristic. Golden et al. (1977) and Nelson et al.
(1985) have improved the computational efficiency by investigating complex
data structures. Gaskell (1967), Yellow (1970), Paessens (1988) and Altinel and
Oncan (2005) attempted to improve the solution quality by modifying the sav-
ing expression, e.g., multiplying cij with a route shape parameter or adding a
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new term related to the distance or customer demand. Among these methods,
Altinel and Oncan (2005) performs the best and it was further investigated by
Battarra et al. (2006), in which a genetic-based parameter setting procedure was
introduced to enhance the efficiency of the algorithm. Desrochers and Verhoog
(1989), Altinkemer and Gavish (1991) and Wark and Holt (1994) proposed a
matching algorithm to merge routes, which improves the solution quality signifi-
cantly compared to the standard Clarke and Wright algorithm but is much more
computationally expensive. Wark and Holt (1994) performs the best among the
mentioned matching-based algorithms.

In the insertion heuristics, unrouted customers are iteratively and greedily in-
serted into the constructed routes. Mole and Jameson (1976) proposed a se-
quential insertion heuristic, in which only one route is constructed at a time.
The selection of customer is based on the extra distance resulted from the in-
sertion of the customer to the route, and the distance between the customer
and the depot. Christofides et al. (1979) developed a more effective two-phase
insertion heuristic. In the first phase, a set of feasible routes are determined. In
the second phase, a set of single-customer routes are defined based on the routes
obtained in the first phase. The remaining unrouted customers are then inserted
according to the difference between the best and the second-best insertion cost.

In the two-phase heuristics, solving the CVRP is decomposed into two parts,
clustering customers into subsets, each of which corresponds to a route, and
routing the customers in each subset. According to the order of solving these
two parts, the heuristics can be divided into route-first-cluster-second methods
and cluster-first-route-second methods. In most of the route-first-cluster-second
methods, a giant TSP tour over all the customers is constructed and then decom-
posed into feasible vehicle routes. Such algorithms can be found in Haimovich
and Rinnooy Kan (1985) and Bertsimas and SimchiLevi (1996), but they are
not competitive with the cluster-first-route-second methods. In the cluster-first-
route-second methods, customers are first clustered and then routed. Different
clustering strategies are proposed in the literature. Gillett and Miller (1974)
developed a sweep algorithm which divides customers into clusters by rotating
a ray centered at the depot, as depicted in Figure 2.2. Fisher and Jaikumar
(1981) proposed a method, which first selects a number of seed nodes, each
for a vehicle, and then assigns customers to these seeds by solving a Gener-
alized Assignment Problem to ensure that the vehicle capacity constraints are
fulfilled. In Bramel and Simchilevi (1995), the seeds are determined by solving
a capacitated location problem, which minimizes the total distance between the
customers and their closest seeds. Foster and Ryan (1976) and Renaud et al.
(1996a) presented so-called petal algorithms, which first generate a large number
of feasible routes and then select the final subset by solving a set partitioning
problem. The petal algorithms are usually superior to the sweep algorithms.
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Figure 2.2: An example of node clustering. Four vehicles with capacity 8 are
available. The customer demand is specified in the figure.

2.4.2 Route improvement operators

Given a solution, for example, generated by construction heuristics, we can apply
some modifications on the solution to improve its quality. A large number of
operators have been proposed for this purpose, such as moving a customer from
one route to another, exchanging two customers’ positions in the solution and so
on. According to the number of routes modified at a time, the operators can be
divided into intra-route operators, which work on a single route, and inter-route
operators, which modify multiple routes at the same time.

The λ-opt operator, proposed by Lin (1965), is one of the famous intra-route
operators. It removes λ edges from a route and reconnect the λ segments in a
new way. Figure 2.3 illustrates the routes before and after a λ-opt when λ is 2.
Due to the fact that a larger λ results in a higher computational load required
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to examine the neighborhoods, λ = 2 and 3 are the mostly used values in the
literature. Renaud et al. (1996b) developed a new version of the 4-opt, called
4-opt*, which reconnects a chain of at most ω edges and another chain of two
edges. Or (1976) described an Or-opt operator which moves a chain of several
consecutive customers to another position in the route, as illustrated in Figure
2.4. Thompson and Psaraftis (1993) proposed a cyclic transfer operator which
involves a list of σ routes. In each route, ρ nodes are transferred to the next
route in the list. Figure 2.5 shows an example of 3-cyclic 1-transfer.

Van Breedam (1994) classified the inter-route operators into four groups: string
cross that exchanges two chains of nodes by crossing two edges (see Figure 2.6),
string exchange that exchanges two chains of nodes (see Figure 2.7), string relo-
cation that moves a chain of nodes to another route (see Figure 2.8) and string
mix that consists of both string exchange and string relocation. In the literature,
the string relocation with one single-vertex chain, which is also called insertion
move, is very frequently used due to its simplicity, cheap computational cost and
robustness. It can be viewed as a fundamental component of most operators.
For example, swapping two nodes can be implemented by two insertion moves.

Further details on construction heuristics and improvement heuristics can be
found at Laporte and Semet (2002).

(a) Before (b) After
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4
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4

Figure 2.3: An example of λ-Opt operator when λ is 2. Edge (1,3) and (2,4)
are replaced by edge (1,2) and (3,4).

2.4.3 Metaheuristics

During the last two decades, many metaheuristics have been proposed for the
VRP. These metaheuristics include Tabu Search (TS), Simulated Annealing
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Figure 2.4: An example of Or-Opt operator. Chain {3, 4} is moved from a
position between node 2 and 5 to a position between node 1 and 2.
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Figure 2.5: An example of 3-cyclic 1-transfer operator. Route r2, r4 and r3
form up the route cycle. Node 6 in route r2 is transferred to route r4. Node 7
in route r4 is transferred to route r3. Node 10 in route r3 is transferred to route
r2.

(SA), Iterated Local Search (ILS), Large Neighborhood Search (LNS), Genetic
algorithms (GA), Scatter Search (SS) and so on. These methods are categorized
into three groups in Cordeau et al. (2007): local search algorithms, population
search algorithms and learning mechanisms algorithms.
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Figure 2.6: An example of string cross operator. By replacing edge (3, 7) and
(6, 4) by edge (3, 4) and (6, 7), chain {4} and chain {7, 8} are exchanged.
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Figure 2.7: An example of string exchange operator. The routes before the
move were r1 = {0, 1, 2,6,7, 0} and r2 = {0, 5,3,4, 8, 0}. The routes r1 =
{0, 1, 2,3,4, 0} and r2 = {0, 5,6,7, 8, 0} are resulted from exchanging chain {6, 7}
and {3, 4}.

Local search algorithms operate on a single solution xt at each iteration t, and
aim at improving the solution by exploring a small search space N(xt) defined
based on the solution, which is also referred to as a neighborhood of xt. The
neighborhood N(xt) consists of all the solutions resulted from a given type
of move performed on the solution xt. Most of these moves were introduced
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Figure 2.8: An example of string relocation operator. A single-node chain, {7},
is relocated from route r1 to r2.

in section 2.4.2. According to some solution selection strategies, one of the
solutions in the neighborhood is selected for the next iteration, i.e., xt+1 ∈
N(xt). The procedure continues until a stopping criteria is satisfied. Examples
of local search algorithms are TS, SA, ILS and so on.

Population search algorithms, on the other hand, work on a population of solu-
tions rather than a single solution. An example of population search algorithms
is the GA (Mitchell (1998)), in which new solutions are obtained in two steps:
The first step, known as crossover, selects two parent solutions from the popula-
tion based on their fitness and combines their most desirable features to create
one or two offspring solutions. The second step, known as mutation, randomly
apply some modifications to each offspring in order to diversify the population.

Recently, great success has been achieved by integrating population search with
local search. Local searches are often employed to improve the offspring solutions
after the recombination in population search algorithms. Examples of such
algorithms are active-guided evolution strategies presented in Mester and Braysy
(2005) and Mester and Braysy (2007), and Memetic Algorithm (MA) presented
by Nagata and Braysy (2009) and Nagata and Braysy (2008). These two kinds
of metaheuristics are the most promising metaheuristics for the CVRP up to
the present.

Algorithms based on learning mechanisms are characterized by the abilities of
absorbing new information gradually during the search, self-organizing and gen-
erating new solutions based on the knowledge learnt during the search proce-
dure. An example of learning mechanisms algorithms is the well-known Ant
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Colony Optimization (ACO), which is inspired by the natural phenomenon that
an ant finds its short way from nest to food sources based on the pheromone
left by previous ants (Dorigo and Stutzle (2004) and Bouhafs et al. (2004)). In
the method, artificial ants are used to construct solutions. The edges selected
in the good solutions are marked with artificial pheromone, which is used to
guide the following ants. Another example of learning mechanisms algorithms
is Particle Swarm Optimization, in which a solution is represented by a position
of a particle in a multi-dimensional search space and a swarm of particles work
together to find the best solution (see Kennedy et al. (2001) and Ai and Ka-
chitvichyanukul (2009)). The learning mechanisms algorithms are usually not
as good as local search algorithms or population search algorithms.

Several important metaheuristics will be introduced later in this section. More
details on the metaheuristics for the VRPs are given in the extensive surveys
in Gendreau et al. (2002), Braysy and Gendreau (2005), Cordeau et al. (2005),
Cordeau et al. (2007) and Gendreau et al. (2008).

2.4.3.1 Simulated Annealing

SA is inspired by the physical annealing process of solids, and has been applied
to solve the VRPs since it was first introduced by Kirkpatrick et al. (1983). It
combines local search with a simple diversification strategy that probabilistically
allows deterioration of solution quality during the search. At each iteration t, it
moves a solution xt to a random neighboring solution xt+1 ∈ N(xt) and accepts
the move with a certain probability. More specifically, if the neighboring solution
xt+1 has an objective value less than or equal to that of xt, i.e., f(xt+1) ≤
f(xt), the move is always accepted. Otherwise, if f(xt+1) > f(xt), the new

solution is accepted with a probability e−
f(xt+1)−f(xt)

θt , where θt is a parameter
called ’temperature’ and decreases from a relatively large positive value to zero
gradually according to a cooling schedule. This acceptance criterion is referred
to as Metropolis acceptance criterion.

A very common used cooling schedule is achieved by multiplying the acceptance
probability with a factor α, which is a number between 0 and 1 and usually close
to 1, after every fixed number of iterations. At the beginning, large deteriora-
tions tends to be accepted due to the high temperature. As the temperature
decreases, only smaller deteriorations will be accepted.

Besides the Metropolis acceptance criterion, other acceptance criteria can also
be considered, such as the threshold accepting and the record-to-record travel,
both of which lead to two deterministic variations of SA. For the threshold
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accepting, a threshold value is specified as the upper bound of allowed deteri-
orations (Dueck and Scheuer (1990)). For the record-to-record travel, xt+1 is
accepted if f(xt+1) < φf(x∗), where x∗ is the best solution found previously
and φ is a user defined parameter, which is usually slightly larger than 1 (Dueck
(1993)).

Due to the simplicity and the flexibility of the SA, it has been applied to solve
various routing problems and it is one of the basic metaheuristics widely used
in hybrid heuristics. Such examples can be found in Zeng et al. (2007) and
Lin et al. (2009). Suman and Kumar (2006) presented a comprehensive review
of SA-based algorithms and also proposed different strategies to improve the
performance of SA-based algorithms.

2.4.3.2 Tabu Search

TS has been proven to be one of the best metaheuristics for solving the CVRP
and its extensions, which produces high-quality solutions within a reasonable
amount of computational time. The basic idea of the TS is to locally and
repeatedly modify a solution while memorizing the modifications to avoid cycling
and to diversify the search (Glover and Laguna (1997)).

One important feature of the TS is the short-term memory, which is imple-
mented by a tabu list. Tabu list is a list of solutions or attributes of solutions
that have appeared recently and will be prohibited in the near future. For exam-
ple, when a customer is moved from one route to another route, one can declare
tabu moving that customer back to its previous route for a number of following
iterations. This number of iterations is called tabu tenure of the move, which
can be fixed, or randomly selected within an interval (Gendreau et al. (1994)),
or reactive during the search procedure (Battiti and Tecchiolli (1995) and Was-
san (2006)). Tabu list plays an important role in avoiding cycling and helping
the search to escape from local minima. However, it may also prevent attractive
moves. To remedy this, aspiration criteria are employed to revoke tabus when
necessary. A frequently used aspiration criterion is to allow a tabu move when
it leads to a solution better than the best solution found previously.

Another feature of the TS is the long-term memory, which diversifies the search
by forcing it to jump into previously unexplored solution areas. This can be
achieved by penalizing frequently performed moves (Cordeau et al. (2001a)).

The performance of the TS has been improved as a result of significant re-
search efforts. For example, Rochat and Taillard (1995) described the concept
of adaptive memory, which is a population of good solutions during the search
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procedure. The memory is used to construct a good solution for a new search to
start with. Toth and Vigo (2003a) proposed to search more efficiently by remov-
ing long edges in the network, which are not likely to appear in good solutions.
Gendreau et al. (1994) and Cordeau et al. (1997) allowed intermediate infeasible
solutions to make the search more flexible and robust. A penalized objective
function with self-adjusted parameters is used to handle the infeasibilities in
their work.

2.4.3.3 Iterated local Search

ILS is another local search algorithm that uses a perturbation mechanism to
escape from local minima (Lourenco et al. (2003)). The method consists of
three components at each iteration: perturbation, local search and acceptance
criteria. At iteration t, a perturbation is applied on the current solution xt to
generate a new solution x′

t, from which a subsidiary local search is applied until
a local optimum x′′

t is obtained. After that, an acceptance criterion is checked
to decide whether the new solution x′′

t should be accepted. If yes, the next
iteration will start with perturbing x′′

t .

Perturbation enables the search to escape from local minima. The strength of
perturbation has a strong influence on the performance of the algorithm. It is
common to introduce large modifications to a solution in the perturbation phase
in order to help the subsequent local search to find a different local minimum.
The perturbation can be implemented as a random move in a large neighbor-
hood or a number of simple moves. Moreover, the perturbation strategies are
not necessary to be the same at every iteration. One can employ different per-
turbation strategies at different stages of search in an adaptive way.

The local search in the ILS is used to intensify the search by iteratively improving
the solution. To obtain better local minima, a more sophisticated metaheuris-
tics, such as TS, can be used.

Different acceptance criteria can considered to balance the diversification and
intensification in the ILS. One extreme criterion is to always accept new so-
lutions, and the other is to only accept improvement solutions. Intermediate
choices, such as the Metropolis acceptance criterion, the threshold accepting
and the record-to-record travel, can also be applied.
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2.4.3.4 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a relatively new metaheuristic, which, to
some extent, is similar to the ILS in that it also consists of three components at
each iteration: perturbation (or shaking), local search and accept criteria. The
VNS is based on the idea that different neighborhoods may have different local
minima. Therefore it uses a number of different neighborhoods during the search
procedure to ”exploit systematically the idea of neighborhood change, both in
the descent to local minima and in the escape from the valleys which contains
them” (Hansen and Mladenovic (2001), Hansen and Mladenovic (2005)).

The neighborhoods are often ordered according to their size (from small to
large), and are used in this order. At the first iteration, the current solution x is
moved to a random neighbor x′ in the smallest neighborhood. This is referred
to as a shaking phase. A local search is then applied at x′ and stops until a
local minimum x′′ is found. If the new solution x′′ is better than x, it will be
accepted and the smallest neighborhood will be used again in the shaking phase
for next iteration. Otherwise, a larger neighborhood will be selected for the next
iteration. After all neighborhoods have been considered, it will start with the
smallest neighborhood again until the stop criterion is satisfied.

The idea of changing neighborhoods is the key to the success of the VNS. The
neighborhoods used in the VNS are often nested, meaning that a smaller neigh-
borhood is a subset of a larger neighborhood. A simple way to construct nested
neighborhoods is to define the first neighborhood (N1) by one type of move,
the second neighborhood (N2) by iterating the same move twice and the kth
neighborhood (Nk) by iterating the move for k times. In this way, the following
relation holds: N1 ⊆ N2 ⊆ . . . ⊆ Nk.

Similar to the local search in the ILS, the local search in the VNS can be also
enriched by advanced heuristics, such as the Variable Neighborhood Descent and
the TS; the acceptance criterion can be replaced by other mentioned criteria.
Recent researches on the VNS for VRPs can be found in Paraskevopoulos et al.
(2008), Kytojoki et al. (2007) and Hemmelmayr et al. (2009b).

2.4.3.5 Large Neighborhood Search

The LNS was introduced by Shaw (1997). It improves solutions by searching
in large neighborhoods, which may contain more and potentially better solu-
tions to increase the chance of finding high-quality solutions. In the LNS, a
move consists of removing a number of customers and reinserting the removed
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customers into the solution. The two phases are also called destroying and re-
pairing procedure. In this sense, the LNS is similar to the ruin and recreate
heuristic proposed by Schrimpf et al. (2000). It is obvious that the size of the
neighborhood increases exponentially as β increases, where β is the number of
customer removed. The complexity of evaluating such a move is also very high
when β is large. Since it is too time-consuming to evaluate every single solution
in such a large neighborhood, it is very important to restrict the search in a
promising area, which is usually achieved by using heuristics to destroy and
repair an incumbent solution (Pisinger and Ropke (2009)). The heuristics used
to remove a number of customers include the shaw removal heuristic that re-
moves related customers, the random removal heuristic that removes customers
randomly, the worst removal heuristic that removes those customers associated
with the largest cost in the solution, and so on. The insertion procedure can be
performed by the cheapest insertion heuristic, the regret insertion heuristic and
so on. Generally, combining different removal and reinsertion heuristics helps
to diversify the search and leads to better solutions. Pisinger and Ropke (2007)
developed an Adaptive Large Neighborhood Search (ALNS) algorithm, in which
a noise function is used to diversify the search, adaptively adjusted weights are
used to select the neighborhood and the Metropolis acceptance criterion is used
to accept the solutions. Their method is very successful in solving very large-
scale CVRP and its variants. A recent survey on the LNS is given by Pisinger
and Ropke (2009).

2.5 Summary

In this chapter we present two formulations for the CVRP and discuss its com-
plexity. The solution methods to this problem are reviewed. The exact meth-
ods can solve a small-scale CVRP to optimality using techniques such as B&B,
B&P, B&C and B&C&P. The principle idea is to branch the search according
to the lower and upper bounds. The heuristic methods are more suitable for
large-scale problems. Especially, the meta-heuristics can deal with large-scale
problems and provide high quality solutions within much shorter computational
time compared with that of exact methods.
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Chapter 3

The Rich Vehicle Routing
Problems

This chapter gives an overview of practical routing problems and discusses the
keys to solving complex large-scale problems in real life using metaheuristics.
Several well-known extensions of the VRP that are closely related to the prob-
lems investigated in this work are also introduced.

3.1 Real-life Routing Problems

Routing problems are of concern in real life whenever things needs to be trans-
ported from one place to another. For example, garbage collection companies
need to plan the routes for collecting the garbages in the urban; Bus companies
need to plan the time and the routes for buses and drivers. These real-life rout-
ing problems usually include complications that are not considered by the basic
CVRP. Most of the complications are related to the following aspects.

• Planning horizon: In real life, routes are planed for a given planning
horizon. This planning horizon can consist of multiple periods.

• Customer: In the basic VRP, each customer has a demand, In more
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complicated problems, the customers may have requirements on the ser-
vice time and/or the vehicle type. There could also be different types of
services, e.g., pickup service, delivery service or pickup-and-delivery ser-
vice. In some applications, it is not necessary to visit all customers, and
the distributor can decide which customers to visit based on their attrac-
tiveness. In some cases, customers are allowed to be visited multiple times
by several vehicles instead of just once by one vehicle. In some applica-
tions with multiple planning days, the customers have demands every day
and they can store products for the following days if they have received
more than they can consume. In this case, the distributor needs to make
a routing plan according to the demands and inventories of the customers.

• Depot: There can be multiple depots in a large distribution network.
These depots may serve different purposes, such as warehousing or cross-
docking, to reduce the total cost in the supply chain.

• Vehicle: The vehicles used for delivery can be different in capacities and
sizes. There are usually a limited number of vehicles available in real-life
planning. A vehicle may be used in multiple trips instead of a single trip
in a routing plan. In the problem with multiple depots, each vehicle may
be associated to a base depot. The vehicle must start from and end at its
base depot.

• Driver: In most of the real-life problems, distributors need to consider the
drivers’ working regulations, e.g., the working shift and the break rules.
In addition, drivers can be qualified for different types of vehicles.

• Objective: The objective function can be quite complex in practice. It
may include the minimization of the difference between the longest and
shortest route to balance the workload among drivers, the minimization of
the number of vehicles to save the large overhead, and/or the maximiza-
tion of the number of served customers to improve the service level. In
some applications, robustness of the solution is also one of the important
objectives. These different objectives may conflict with each other.

• Uncertainty: There can be uncertainties in the route planning. For
example, the locations and/or the demands of customers are unknown at
the beginning but revealed over time when the vehicles have already been
sent out to carry out tasks. In some occasions, the probability distribution
of these uncertainties is available, whereas in other cases, it is not.

• Goods packing: Goods packing has attracted more and more attention
recently in the vehicle routing problem. In some applications, customer de-
mand is formed by a set of two-dimensional or three-dimensional weighted
items. A feasible routing implies a feasible packing in the sense of geomet-
rical layout. This kind of problems is studied in Zachariadis et al. (2009),
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Fuellerer et al. (2009) and Fuellerer et al. (2010). In some pickup and
delivery problems, special loading strategies need to be considered, such
as first-in-first-out or last-in-first-out (Carrabs et al. (2007) and Petersen
and Madsen (2009)).

The varieties in practical issues lead to different extensions of the CVRP. Figure
(3.1) illustrates the extensions mostly studied in the literature and shows the
interconnections between them.
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Figure 3.1: The basic VRP and its extensions.

3.2 Solving rich VRPs

To manage the various complications and the large size of practical routing
problems, metaheuristics play an important role in solving the RVRPs. During
the investigation of three large-scale complicated real-life problems included in
this work, the following aspects are found to be very important for designing
good metaheuristics.

1. Reduce problem size. Most of the real-life problems are of very large
size, consisting of hundreds or thousands of nodes in their distribution net-
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works. To efficiently solve these problems, one can reduce the problem size and
solve smaller problem(s) instead. One way to achieve this is to aggregate the
nodes that are likely to be served together in the optimal solution and replace
these nodes with one single node. This approach is investigated in Oppen and
Lokketangen (2006) and Wen et al. (2009b). It should be stressed that node
aggregation might be unsuitable for some problems, such as a CVRP with cus-
tomers that are evenly distributed in geography. When node aggregation is
employed, it is very important to control the degree of aggregation and it is
suggested that aggregation should be refined during the search. Another way
to reduce the problem size is to decompose the original problem into smaller
problems. For example, a long planning horizon can be decomposed into sev-
eral smaller planning horizons (Hvattum et al. (2006) and Wen et al. (2009b)).
The key to a successful decomposition is to keep the major characteristics of
the original problem in the decomposed problems. In other words, a successful
decomposition should have insignificant effects on the solution quality.

2. Design of neighborhoods. When local search algorithms are applied, one
must make sure that the neighborhoods used in the algorithm cover different
search directions in the search space. This is important because real-life prob-
lems usually consist of different resources and multiple objectives. For example,
if the vehicles are heterogeneous, it is better to combine the vehicle swapping
operator, which swaps two vehicles used in two routes, together with other route
improvement operators. If the objective is to minimize both the number of vehi-
cles and the total travel distance, it is preferable to use both route improvement
operators and route elimination operators.

3. Reduce neighborhood size. Generally, large neighborhoods contain more
and potentially better solutions. However, searching in large neighborhoods also
requires more computational time than in smaller neighborhoods. To achieve
a good tradeoff between solution quality and computational time, an attractive
idea is to examine the most promising solutions in large neighborhoods and dis-
card the bad solutions. This can be implemented by removing the unattractive
edges or nodes in the network, as proposed in the Granular Tabu Search (Toth
and Vigo (2003b) and Branchini et al. (2009)), or by heuristically selecting the
interesting neighbors to be examined, as done in the LNS (Pisinger and Ropke
(2009)). Moreover, it is also recommended to analyze the properties of the
practical problem at hand and use these properties to make aggressive searches.

4. Other useful apporaches. Based on the experience obtained from this
work, we found that allowing intermediate infeasible solutions usually yields a
more effective and flexible search. The violations can be eliminated very quickly
by using simple self-adjusted parameters proposed in Cordeau et al. (1997). We
also found that it is generally a good idea to use different neighborhoods and
switch between them. The effectiveness of this idea has also been shown in
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other studies, such as Pisinger and Ropke (2009), Hemmelmayr et al. (2009b)
and Wen et al. (2009b).

We believe that in the development of metaheuristics for large-scale complicated
practical routing problems, the future trends are:

1. Hybrid methods: Hybrid heuristics that combine different components
and search schemes in different heuristics have already proven their good per-
formance in solving different hard problems (Lin et al. (2009) and Repoussis
et al. (2006)). It is also a trend to combine exact methods, such as the B&P or
the B&C, with heuristics to obtain not only quick but also near-optimal solu-
tions. This idea has been successfully employed recently in solving some VRP
extensions (Desaulniers et al. (2008) and Prescott-Gagnon et al. (2007)) and it
could also be one of the research focuses in the future.

2. Problem analysis: There are a lot of strategies proposed specially for solv-
ing large-scale problems, such as node aggregation and neighborhood pruning.
However, applying these strategies requires a full understanding of the prob-
lem at hand. One needs to find out, firstly, whether or not these strategies are
appropriate for the practical problem being considered, and secondly, what is
the best way to implement these strategies so that the solution quality will not
be affected too much. We believe that the analysis of practical problems and
the associated data sets will facilitate the development of effective and efficient
metaheuristics for practical complicated problems.

3. Adaptive algorithms: Due to the complexity of practical problems, the
solution methods need to be flexible enough to handle various constraints. It
is often necessary to exploit some adaptive mechanisms. For example, self-
adjusted penalties are applied on the infeasible solutions in Cordeau et al. (1997).
In the reactive Tabu Search, the tabu tenue is self-adjusted during the search
procedure in Wassan (2006). The adaptive algorithms are also very useful in the
balance of the intensification and diversification and in the selection of different
neighborhoods in the metaheuristics (Ropke and Pisinger (2006)). We believe
that adaptive mechanisms will also be one of the focuses of developing heuristics
for practical problems in the future.

3.3 Vehicle Routing Problems with Time Win-

dows

The VRPTW is one of the most important extensions of the VRP. In the
VRPTW, each customer specifies a time window within which the service must
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start. The VRPTW can be used to model various real-life applications, such as
bus routing (Fuegenschuh (2009)), waste collection (Kim et al. (2006)), home
delivery (Weigel and Cao (1999) and Braysy et al. (2009a)) and petrol station
replenishment (Cornillier et al. (2009)).

The VRPTW can be defined on a directed graph G = (V , E), where V =
{0}∪C ∪{n+1} and E = {(i, j) : i, j ∈ V , i �= j}. Node 0 and n+1 correspond
to the start and end of routes, respectively. The cost of each edge (i, j) ∈ E is
denoted by cij , which is usually the travel cost associated to the travel distance
(or time) between node i and j. In some context where the number of vehicles
needs to be minimized, the travel cost c0j for all j ∈ C should additionally
include the fixed cost for using each vehicle.

Let [ai, bi] denote the time window for node i. A vehicle is allowed to arrive
earlier than ai, but it has to wait until ai to start serving the customer. Arriving
later than bi is not allowed. There is also a service time si associated to each
node i. The travel time between i and j is denoted by tij . We set d0 = dn+1 = 0
and s0 = sn+1 = 0 for the depot.

A binary decision variable xk
ij is defined for each combination of vehicle k and

edge (i, j) ∈ E and equals 1 if vehicle k travels from node i to node j, and
0 otherwise. Continuous variable wk

i indicates the time for vehicle k to start
service at node i. The model can be formulated as follows:

(V RPTW )min
∑
k∈K

∑
(i,j)∈E

cijx
k
ij (3.1)

∑
k∈K

∑
j∈V\{i}

xk
ij = 1, ∀i ∈ C (3.2)

∑
(i,j)∈E

dix
k
ij ≤ q, ∀k ∈ K (3.3)

∑
j∈V\{0}

xk
0j = 1, ∀k ∈ K (3.4)

∑
i∈V\{i}

xk
ih −

∑
j∈V\{i}

xk
hj = 0, ∀h ∈ C, k ∈ K (3.5)

∑
i∈V\{n+1}

xk
i,n+1 = 1, ∀k ∈ K (3.6)

wk
j ≥ wk

i + si + tij −M(1− xk
ij), ∀i, j ∈ V , k ∈ K (3.7)

ai ≤ wk
i ≤ bi, ∀i ∈ V , k ∈ K (3.8)
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xk
ij ∈ {0, 1}, ∀(i, j) ∈ E, k ∈ K (3.9)

wk
i ≥ 0. ∀i ∈ V , k ∈ K (3.10)

The objective function (3.1) minimizes the sum of the travel cost of the edges
used in the solution. Constraints (3.2) make sure that each customer is covered
by exactly one vehicle. Constraints (3.3) guarantee that the load of each vehicle
does not exceed its capacity. Constraints (3.4—3.6) make sure that each vehicle
must start and end its route at the depot and that flow is conserved at each
customer location. Constraints (3.7), in whichM is an sufficiently large number,
make sure that vehicle k can not start serving j before wk

i + si + tij if it travels
from i to j . Constraints (3.8) ensure that the time window is respected at
each node. Constraints (3.9) and (3.10) define the binary and the continuous
variables. Further details on the formulations of the VRPTW can be found in
Kallehauge (2008).

During the last two decades, intensive research has been carried out to solve
the problem optimally and heuristically. Most of the successful exact methods
are based on the CG because it can produce good lower bounds (Kohl et al.
(1999), Irnich and Villeneuve (2006), Feillet et al. (2004), Chabrier (2006), Feil-
let et al. (2007), Jepsen et al. (2008), and Desaulniers et al. (2008)). In the
methods proposed in these papers, different strategies, such as cut generation
and LR, were incorporated to improve the lower bound. Other approaches to
accelerate the column generator were also proposed, such as using aggressive
dominance rules in the labeling algorithm, using heuristics to generate columns,
etc. One of the best exact methods is the B&C&P algorithm proposed by De-
saulniers et al. (2008). They developed a TS algorithm to efficiently generate
columns, relaxed the elementarity requirements for a subset of the nodes to
accelerate the subproblem and used several inequalities to improve the lower
bound. Their method provided optimal solutions to five previously unsolvable
benchmark instances with 100 customers and reduced solution times for most
of the instances.

In addition to the exact methods, a large number of heuristics are also proposed
to solve the VRPTW. These heuristics include TS algorithm (Cordeau et al.
(2001a)), evolutionary strategy and evolutionary algorithm (Mester and Braysy
(2005), Mester and Braysy (2007), and Repoussis et al. (2009)), LNS algorithm
(Pisinger and Ropke (2007) and Prescott-Gagnon et al. (2007)), VNS algorithm
(Braysy (2003) and Repoussis et al. (2006)), ILS algorithm (Ibaraki et al. (2005)
and Ibaraki et al. (2008)) and SS algorithm (Russell and Chiang (2006)). The
best algorithms for solving large-scale VRPTW are those of Prescott-Gagnon
et al. (2007), Pisinger and Ropke (2007) and Mester and Braysy (2005). Mester
and Braysy (2005) proposed active guided evolution strategies that combine
guided local search and evolution strategies into an iterative two-stage proce-
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dure. The guided local search is used to regulate a composite local search in the
first stage, and the neighborhoods of the evolution strategies algorithm in the
second stage. Their method also employed a multi-restart mechanism, which is
proved to be very useful in finding better solutions and speeding up the search.
They found solutions for a large number of instances better than those in ear-
lier research. Pisinger and Ropke (2007) developed an Adaptive Large Neigh-
borhood Search (ALNS) algorithm, which can solve large-scale problems very
effectively and efficiently. Their method is very robust and is able to produce
high-quality solutions not only to the VRPTW but also to a number of other
VRP extensions within very short computational running times. The method
proposed by Prescott-Gagnon et al. (2007) consists of two phases. The first
phase emphasizes on vehicle reduction and the second phase reduces the total
distance given the number of vehicles obtained in the first phase. They used
an LNS framework: At each iteration the routes are destroyed by different ad
hoc operators and then reconstructed by a heuristic version of the B&P, where
the columns are generated by TS and branches are made by depth-first with-
out backtracking. Their method provided new best solutions to 145 benchmark
instances and reduced the number of vehicles on average. However, it is more
computationally expensive than the method in Pisinger and Ropke (2007). Re-
poussis et al. (2009) reviewed most of the recent metaheuristics and compared
their performances in details.

3.4 Periodic Vehicle Routing Problems

Another extension of the VRP is the PVRP (Beltrami and Bodin (1974)), which
considers multiple periods and assumes that each customer is required to be
visited based on a given frequency and given feasible combinations of visiting
periods.

Recent applications of the PVRP include: routing and scheduling of service
teams for preventive maintenance of elevators at customer locations (Blake-
ley et al. (2003)) and periodic delivery of blood products to hospitals by the
Austrian Red Cross (Hemmelmayr et al. (2009a). The PVRP also appears
in general logistic literature. Parthanadee and Logendran (2006) considered a
multi-product and multi-depot periodic distribution problem that contains the
PVRP as a subproblem. Gaur and Fisher (2004) studied a routing and deliv-
ery scheduling problem for a supermarket chain which also contains the PVRP
as a subproblem. Claassen and Hendriks (2007) investigated a periodic milk
collection problem which can be viewed as a PVRP with special characteristics.

To formulate the PVRP, we use the same node set, edge set and vehicle set as



3.4 Periodic Vehicle Routing Problems 35

defined in the VRPTW formulation. Additionally, let T = {1, . . . , t} denote
the set of planning days. Let Ti denote the set of feasible combinations of
visiting days specified by customer i. Each combination p (∈ Ti) corresponds
to a number of visiting days. Let parameter glp be 1 if day l ∈ T is included in
combination p ∈ Ti. Binary variable zpi equals 1 if customer i is visited according
to combination p and binary variable xk

ijl equals 1 if vehicle k travels from i to
j on day l. The formulation can be written as follows:

min
∑
k∈K

∑
l∈T

∑
(i,j)∈E

cijx
k
ijl (3.11)

∑
p∈Ti

zpi = 1, ∀i ∈ C (3.12)

∑
k∈K

∑
j∈V

xk
ijl =

∑
p∈Ti

zpi glp, ∀i ∈ C, l ∈ T (3.13)

∑
(i,j)∈E

dix
k
ijl ≤ q, ∀k ∈ K, l ∈ T (3.14)

∑
j∈V\{0}

xk
0jl = 1, ∀k ∈ K, l ∈ T (3.15)

∑
i∈V\{h}

xk
ihl −

∑
j∈V\{h}

xk
hjl = 0, ∀h ∈ C, k ∈ K, l ∈ T , (3.16)

∑
i∈V\{n+1}

xk
i,n+1,l = 1, ∀k ∈ K, l ∈ T (3.17)

xk
ijl ∈ {0, 1}, ∀(i, j) ∈ E, k ∈ K, l ∈ T (3.18)

zpi ∈ {0, 1}. ∀i ∈ V , p ∈ Ti (3.19)

The objective (3.11) of the PVRP is to minimize the total cost over the entire
planning horizon. Constraints (3.19) define the combination selection variable.
Constraints (3.12) make sure that one of the visiting combinations is selected
for each customer. Constraints (3.13) guarantee that each customer is visited
by exactly one vehicle on each day included in the selected combination. Con-
straints (3.14—3.18) are similar to constraints (3.3—3.6) and constraints (3.9)
in the VRPTW. Alternative formulations for the PVRP can be found in Francis
et al. (2008).

Due to the large size of the problem, most of the solution approaches presented
so far in the literature are heuristic algorithms, including two-phase heuristic
(Chao et al. (1995)), TS algorithm (Cordeau et al. (1997)), parallel genetic
and local search method (Drummond et al. (2001)), SS algorithm (Alegre et al.
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(2007)) and VNS algorithm (Hemmelmayr et al. (2009b)). The best known
algorithms are those of Cordeau et al. (1997) and Hemmelmayr et al. (2009b).
Cordeau et al. (1997) proposed a Unified Tabu Search Algorithm (UTSA), which
is very simple and flexible. It is based on GENI, a generalized insertion proce-
dure proposed by Gendreau et al. (1992), and it allows intermediate infeasible
solutions during the search. Their method is able to produce quality solutions
to the PVRP as well as its extensions, such as MDVRP and VRPTW. In the
VNS algorithm proposed by Hemmelmayr et al. (2009b), simple move and cross-
exchange operators were used in the shaking phase. A modified 3-opt operator
was applied in the local search phase and the Metropolis acceptance criterion
was employed.

Other variations of the PVRP are also considered in the literature. Francis et al.
(2006) solved a variant of the PVRP, in which service frequency is a decision
variable, by means of a method based on the LR and the B&B. Mourgaya and
Vanderbeck (2007) solved a variant of the PVRP that includes both routing cost
minimization and workload balance by the CG. A recent survey on the PVRP
is given by Francis et al. (2008).

3.5 Heterogeneous Vehicle Routing Problems

Another class of routing problems, which is quite common in logistic operations,
deals with heterogeneous vehicles. There are many reasons for the distribution
managers to keep a fleet of vehicle with different sizes, capacities, fixed costs
and fuel costs. For example, even though large vehicles are usually more cost-
effective than small vehicles, they are sometimes not allowed in urban area
because of the environmental concerns, or can not be used to serve specific
customers due to special restrictions of road infrastructures.

Based on different assumptions, there are several different versions of routing
problems with heterogeneous vehicles studied in the literature. These assump-
tions are mainly related to the following aspects:

1 Whether there is a fixed cost for each type of vehicles?

2 Whether the number of vehicles of each type is limited?

3 Whether the routing cost is different for different type of vehicles?

4 Whether each customer has a preference for the vehicle type?
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In this section, we present a formulation for a complicated version with fixed ve-
hicle cost, limited number of vehicles, vehicle-dependent route cost and vehicle-
specialized customers. It is not difficult to obtain the formulations for other
versions by appropriately setting the values of parameters or sets in this formu-
lation.

Let qk and Fk denote the capacity and fixed cost of vehicle k ∈ K, respectively.
Let Ki denote the set of preferred vehicles specified by customers i. The cost
of traveling from i to j by vehicle k is denoted by ckij . The formulation is as
follows:

(HV RP )min
∑
k∈K

∑
j∈C

Fkx
k
0j +

∑
k∈K

∑
(i,j)∈E

ckijx
k
ij (3.20)

∑
k∈Ki

∑
j∈V

xk
ij = 1, ∀i ∈ C (3.21)

∑
(i,j)∈E

dix
k
ij ≤ qk, ∀k ∈ K (3.22)

∑
j∈V\{0}

xk
0j = 1, ∀k ∈ K (3.23)

∑
i∈V\{h}

xk
ih −

∑
j∈V\{h}

xk
hj = 0, ∀h ∈ C, k ∈ K (3.24)

∑
i∈V\{n+1}

xk
i,n+1 = 1, ∀k ∈ K (3.25)

xk
ij ∈ {0, 1}. ∀(i, j) ∈ E, k ∈ K (3.26)

The objective (3.20) is to minimize the total travel cost and the total cost of
vehicles used. Constraints (3.21) make sure that each customer is served once
by one of its preferred vehicles. Constraints (3.22) are the capacity constraints
for the vehicles. The rest constraints are the flow conservation constraints and
the binary variable constraints.

Baldacci et al. (2008a) provided a good survey on routing heterogeneous vehicles.
Here we only focus on the best algorithms presented recently in the literature,
which include Choi and Tcha (2007), Liu et al. (2009), Brandao (2009), Imran
et al. (2009) and Prins (2009). Choi and Tcha (2007) presented a set covering
formulation, solved the LP relaxation of the formulation by the CG and used a
B&B algorithm to derive integer solution. Liu et al. (2009) developed an effec-
tive GA, in which a new chromosome evaluation procedure was introduced, a
new single parent crossover operator was proposed and local search was used as
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mutation. Brandao (2009) proposed a deterministic TS algorithm which com-
bines GENI and three different moves (single insertion, double insertion and
swap). Imran et al. (2009) presented two variants of VNS. They introduced
six neighborhoods, a diversification procedure for the shaking phase, a power-
ful local search consisting of multiple levels, and an extra refinement based on
Dijkstra’s algorithm. Prins (2009) described two MA methods, in which chro-
mosomes are viewed as a giant tours without trip delimiters and evaluated by a
tour splitting procedure that splits the giant tours into feasible vehicle routes.
The two methods are different in terms of their local search and acceptance
criteria.

The extension of heterogeneous routing problem that includes the time windows
constraints has also drawn a lot of scientific attentions recently. The best known
algorithms for this kind of problems include ALNS algorithm (Pisinger and
Ropke (2007)), VNS based method (Paraskevopoulos et al. (2008)) and SA
based heuristic (Braysy et al. (2008) and Braysy et al. (2009b)). Recent surveys
on routing heterogeneous vehicles with time windows can be found at Baldacci
et al. (2008a) and Braysy et al. (2008).

3.6 Dynamic Vehicle Routing Problems

Another extension of the VRP is called DVRP, which takes into considera-
tion the uncertainties of real life. For example, in some applications, there
may be uncertainty about customers: These are initially unknown but revealed
incrementally while the operations are ongoing. Applications of the DVRP
include real-time ambulance relocation problem (Brotcorne et al. (2003)), real-
time vehicle-dispatching system for consolidating milk runs (Du et al. (2007)),
real-time good delivery to customers (Hvattum et al. (2006)) and local area
courier services (Gendreau et al. (2006)).

Based on the number of previously unknown customers and their arrival time,
Larsen (2001) defined an effective way to measure the degree of dynamism of
a DVRP. Since the problem is dynamic, it is required to adaptively modify
the existing solution in order to serve the newly revealed customers. The most
efficient way of doing this is to modify a part of solution and insert the new
customers into the existing solution.

To make a better plan, it is wise to take future customers into account. Mitrovic-
Minic et al. (2004) suggested a double-horizon heuristic for solving a dynamic
pickup and delivery problem, which focuses on both a short-term goal, namely
minimizing the total distance travelled, and a long-term goal, namely maximiz-
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ing the slack time to ease the insertion of future customers. Mitrovic-Minic and
Laporte (2004), Branke et al. (2005) and Pureza and Laporte (2008) investi-
gated the waiting strategies and tried to improve the solution by letting vehicles
wait at certain places for proper time.

For recent literature reviews, see Larsen et al. (2008)) and Berbeglia et al. (2009).

3.7 Integrated Vehicle Routing and Crew Schedul-

ing Problems

Traditionally the vehicle routing and crew scheduling are considered separately
and sequentially to reduce the complexity of the problems. However, it has
recently become a trend to work on vehicle routing and crew scheduling si-
multaneously in order to jointly optimize the transportation problem. Taking
into consideration the dependency between these two problems may yield better
schedules of the costly manpower under various working regulations and may
reduce the total cost significantly.

A well studied application of the Vehicle Routing and Crew Scheduling Problem
(VRCSP) is the urban transit system, which considers the problem of scheduling
buses and crews to serve trips defined by a timetable. Haase et al. (2001) and
Freling et al. (2003) studied the problem with a single depot. Huisman et al.
(2005) and Mesquita and Paias (2008) considered the problem with multiple
depots. Huisman and Wagelmans (2006) extended the problem into a dynamic
case, in which the vehicle schedules are generated online. A recent research,
Steinzen et al. (2009), focused on improving the regularity of the schedules.
The solution methods in the mentioned work are based on the CG and the LR.

The VRCSP is also studied in other applications, such as mail distribution
(Hollis et al. (2006) and Zaepfel and Boegl (2008)) and food distribution (Wen
et al. (2009b)). Both Zaepfel and Boegl (2008) andWen et al. (2009b) considered
the driving regulations in the planning and solve the VRCSP by metaheuristics.

Another relevant research topic is the integrated aircraft routing and crew
scheduling problem. This problem is considered by Cordeau et al. (2001b),
Mercier et al. (2005) and Papadakos (2009), and solved by Benders decomposi-
tion in their work.
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Chapter 4

Summary of papers included

This chapter summaries the three practical vehicle routing projects investigated
in this work. For each project, the problem is first introduced. The proposed
method is then described, followed by a discussion on future research directions.
The three papers corresponding to these three projects can be found in the
Appendix.

4.1 Vehicle Routing with Cross-docking

The first paper (Wen et al. (2009c)) considers a routing problem with cross-
docking, which has emerged as an important material handling technology in
transportation over the past decade. Cross-docking is defined as the consoli-
dation of orders from incoming shipments so that they can be easily sorted at
a distribution center for outgoing shipments. The distribution center in this
case is referred to as a cross dock, which essentially eliminates the inventory
holding function of a traditional warehouse while still allowing consolidation.
The Vehicle Routing Problem with Cross-Docking (VRPCD) considered in the
paper is a variation of the VRP, where a set of homogeneous vehicles are used to
transport orders from the suppliers to the corresponding customers via a cross
dock. The orders can be consolidated at the cross dock but cannot be stored
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for long because the cross dock does not have long-term inventory-holding ca-
pability. The objective of the VRPCD is to minimize the total travel time while
respecting time window constraints at the nodes and a time horizon for the
whole transportation operation. The problem can be transformed to a classic
Vehicle Routing Problem with Pickup and Delivery if a route consists of both
pickup and delivery and the consolidation at the cross dock is skipped. How-
ever, due to the existence of the consolidation procedure, the vehicles become
connected to each other and the pickup routes and delivery routes are also con-
nected. The difficulty and complexity of the problem increases dramatically due
to these interactions.

In the paper, we first present a mixed integer linear programming formulation
for the problem. Due to the large data size in practice and the requirement on
fast solution time, a heuristic algorithm is developed to solve the problem based
on a TS embedded within an adaptive memory procedure. Even though TS has
proven to be one of the best available heuristic methods for the VRPs in the
literature, applying it to a new problem requires taking the specific knowledge of
the problem into consideration. In the VRPCD, due to the consolidation at the
cross dock, the vehicles are no longer independent. This dependency leads to
high computational complexity even in evaluating a simple insertion move. To
alleviate the computational burden, properties of insertions are investigated and
a new accelerating strategy, aggressive skip, is proposed to skip the potentially
bad moves. This skip strategy plays a key role in effectively reducing down the
number of moves to be fully evaluated and hence helps in reaching high-quality
solutions within short computational times. To strengthen the intensification,
the algorithm sometimes searches in full neighborhoods without using the ag-
gressive skip. The algorithm is able to switch between the aggressive skip and
the full search by itself. Finally, the TS is embedded within an adaptive mem-
ory procedure (AMP). This enables the algorithm to reach good and robust
solutions by repeating the TS from different good starting points.

The proposed algorithm is implemented and tested on realistic data sets pro-
vided by the Danish consultancy company Transvision, involving up to 200 pairs
of nodes. Experimental results show that, thanks to the aggressive skip, the pro-
posed algorithm can produce high-quality solutions (less than 5% from optimal
solution values) within very short computational time (five minutes).

As a relatively new warehousing strategy in logistics, there could be many prac-
tical variations of the VRPCD in the future. A very reasonable extension of the
problem is to relax the constraint that the vehicles must stop by the depot after
they have picked up the orders from the suppliers. If the vehicles are allowed to
perform a direct pickup and delivery when necessary, the total travel distance
should be further reduced. Figure 4.1 gives an example of the routes for this
extension. This extension is also called Pickup and Delivery with Transfers and
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has been investigated by Cortes et al. (2010). Another extension is to consider
multiple depots in the transportation system. This layout may exist in large
distribution networks. One way to solve this problem is to decompose it into
several single-depot problems by assigning the pickup-delivery orders among
depots in a preprocessing procedure and then solve each single-depot problem
using the proposed heuristic. However, better solutions can be obtained if the
interaction between the depots is taken into account. This VPR with multiple
cross docks is therefore very interesting, challenging and worth investigating.

4

2'

3'
4'

5'

5

1

2

3

1'

Vehicle 1
(Pickup tour)

Vehicle 2
(Delivery route)

Vehicle 2
(Pickup tour)

Vehicle 1
(Delivery route)

Figure 4.1: An example of allowing direct transfer in the VRPCD. There are
five supplier-customer pairs. Each pair is denoted by (i, i′), i = 1, · · · 5, where
i is the supplier and i′ is the corresponding customer. Two routes are planned
for the delivery denoted in line and dash. Order from supplier 2 is transfered to
2′ without going through the cross dock.

Besides the extensions of distribution network, another practical consolidation
and delivery process is also worth considering. In the paper, we assume that
the time for unloading a pallet is fixed. However, in practice, this time should
be related to the place where the pallet is stored in the vehicle. For example,
those stored at the back of the truck behind many pallets are harder to unload
than those close to the front of the truck. This unloading time issue also exists
during the delivery. The packing order of the pallets depends on the order of
customers visited in the pickup routes. The problem with integrated vehicle
routing and goods packing is very interesting and practical.

The objectives of this problem can be also extended. In the paper, we only
minimize the total distance traveled, which to some extent is only related to the
fuel cost. However, there are many other costs in the practical distribution. For
example, the fixed costs associated to the vehicles are often very large. These
costs can be reduced by minimizing the number of vehicles. Another type of
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cost is the labor cost, which usually takes up a substantial portion of the total
distribution cost. Reducing the labor cost requires a minimization of the working
duration of the drivers, including the driving time, the waiting time at each node
and the waiting time for the consolidation. These additional objectives can be
easily included in the objective function of the proposed heuristic.

The robustness of the solution is also of interest. Due to the consolidation at the
cross dock, the vehicles are strongly dependent on each other. A slight change in
one pickup route can affect several delivery routes. Hence, robustness is rather
important in the planning and should be considered in the future work.

Although a successful heuristic is proposed for the VRPCD considered in the
paper, the solution to a specific variation of the problem still needs to be con-
sidered carefully. For some of the extensions mentioned above, the proposed
method can easily be modified to solve them, whereas for the others, the direct
usage of the proposed method may not be very obvious, and further research
should be carried out.

4.2 Dynamic Multi-Period Vehicle Routing Prob-
lem

In the second paper (Wen et al. (2009a)), we consider a routing problem en-
countered by Lantmännen, a Swedish company, who is one of the largest groups
within the food, energy and agricultural industries in the Nordic region. One
of the activities of Lantmännen is the distribution of fodder to the farmers at
their requests. The fodder is delivered from one of several terminals that usu-
ally operate independently of each other, except during periods of exceptional
activities.

The problem essentially deals with the distribution of orders from a depot to a
set of customers over a multi-period time horizon. Since customer orders with
specified feasible service days are dynamically revealed over time, this problem
is named Dynamic Multi-Period Vehicle Routing Problem (DMPVRP). In the
DMPVRP, decisions need to be made at the beginning of each day on what
customers should be visited and how they should be visited. If all the orders are
known in advance, this would be a typical PVRP with frequency one. However,
the uncertainty of the orders indicates a dynamic nature of the problem and
increases the complexity significantly.

The primary objective of the problem is the minimization of the total travel
time over the planning horizon. In order to improve the service level and to
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ease the resource assignment, we also try to minimize the customer waiting and
balance the workload over the planning horizon in the dynamic environment.

In the paper, we formulate a static version of the problem as a mixed integer
linear program and propose a rolling-horizon heuristic algorithm to solve the
dynamic variant.

A natural idea to solve the DMPVRP is to consider the planning at the be-
ginning of each day as a static problem, solve it as a special PVRP with all
the orders already known, and execute the routes planned for the current day.
However, this approach has two inherent disadvantages: 1) the computational
load is too intensive; and 2) the plan for the far future is wasted when the new
orders are revealed.

To overcome these two shortcomings, we propose a three-phase heuristic. In the
first phase, a time-space correlation analysis is used to wisely select a subset
of customers Nt to visit in the near future, i.e., in the following τ days, where
τ is a user-defined parameter used to control the problem size for the next
phase. In the second phase, a TS based heuristic algorithm is used to route
these selected customers for the following τ days. With a proper choice of τ ,
the TS can perform a thorough search and provide good solutions efficiently.
The TS consists of two main components at each iteration: a local search based
on insertion move and a shaking phase based on a ruin and recreate approach.
In the last phase, we further optimize the routes to be carried out on the current
day by means of a UTSA proposed by Cordeau et al. (1997).

To handle multiple objectives in an optimization problem, the scalar technique
and the Pareto method are the two mostly used strategies. The Pareto method
is not appropriate for the dynamic context because the routes have to be selected
and carried out every day before the next day is planned. Therefore, we opt
to implement the scalar method. To minimize the customer waiting, we assign
a penalty for not visiting a customer on its earliest feasible service day. The
penalty function for the customer waiting is implemented as a quadratic function
which reaches value 1 if the customer is visited at the end of its feasible service
days. To balance the workload, we minimize the deviation of daily workload
from the average workload estimated from previous days. These two objectives
together with the minimization of total travel time are weighted and summed
in the objective function.

The proposed algorithm is implemented and tested on 11 real-life data sets
collected from Lantmännen. Each data set involves a 10-day or 15-day planning
horizon. Computational results show that the proposed algorithm provides very
high-quality solutions within reasonable running time. It is found that the
first phase, time-space correlation analysis, is very effective in selecting good
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customers for constructing routes in the second phase. The proposed algorithm
can reduce the customer waiting and improve the workload balance significantly
at the cost of an only minimal increase in the total travel time.

The obtained solutions are also compared with the industrial solutions under the
same constraints considered in this work. The comparison shows that on average
the proposed algorithm improves solutions in terms of travel time, customer
waiting and workload deviation by 0.2%, 24% and 35%, respectively. However, it
should be stressed that the software we used to generate the company’s solutions
is designed to handle more practical constraints than we have considered in our
work.

The first phase of the proposed heuristic is essentially a preprocessing procedure
to select good customers and reduce the problem size. This preprocessing,
although found to be effective, could make wrong decisions since it does not
rely on any prediction of the future customers or any route construction. These
kinds of information can be investigated further to improve the performance of
the algorithm in the future.

To bring prediction of the future in the picture, we may collect the a priori in-
formation about the temporal and spatial statistics of the orders. If we analyze
the data over a long period, a pattern could probably be found and this pattern,
in space or in time, could serve as a good indication of the future orders. Incor-
porating the statistical information in Phase I may provide a better selection of
the customers.

Since Phase I selects the customers without constructing any routes, the cus-
tomer selection is actually isolated from the route optimization. If a bad deci-
sion is made in Phase I, it is not possible to correct it in Phase II in the current
heuristic. One way to improve this method is to allow Phase II to change the
customer set (Nt) based on the optimization of routes. For example, we can
add a refinement step in Phase II, which, based on the current best solution,
removes a number of ’expensive’ and postponable customers, and then insert a
number of unselected customers to the routes if their insertion costs are small.
This kind of refinement can be applied during Phase II whenever it is necessary,
e.g., when the solution has not been improved for a long time.

The work may also be extended by considering the minimization of the number
of vehicles, which is not trivial due to the dynamic nature of this problem. We
may take additional practical constraints into consideration in the future. For
example, the distributor accepts last-minute orders and a vehicle can be assigned
to multiple trips. These constraints will result in a much more complicated
model.
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4.3 An Integrated Vehicle Routing and Driver
Scheduling Problem

In the third paper (Wen et al. (2009b)), we study a distribution problem origi-
nated from the largest fresh meat producer in Denmark, Danish Crown, which
delivers fresh meat from its distribution terminals to the supermarkets all over
Denmark. The problem is an integration of vehicle routing and driver schedul-
ing since the routes are to be determined not only for a fleet of heterogeneous
vehicles but also also for a set of drivers according to their working regulations.

The problem has a one-week planning horizon. The supermarkets place their
orders with specified demands over a week and preferences for visiting times and
vehicle types before the week starts. The distributor makes a weekly delivery
plan for both the drivers and the fleet of heterogeneous vehicles so that the
orders and their specific requirements are fulfilled. In addition, the drivers’
working regulations and driving rules have to be respected. There are two kinds
of drivers used to carry out the distribution work: the internal drivers hired
by Danish Crown, and the external drivers temporarily borrowed from external
freight carrier. Both start from given starting times and finish before given latest
ending times on each workday. The internal drivers have additional constraints
on the maximum working duration over a week, i.e., 37 hours. Moreover, all
the drivers should take a 45-minute break after driving for 4.5 hours according
to the EU driving legislation. The objective of the problem is to minimize the
total travel costs which is formulated as a weighted sum of the internal drivers’
driving distance and the external drivers’ working duration.

In the paper, the problem is formulated as a mixed integer linear program, and
solved by means of a multi-level VNS based heuristic.

At the first level, the problem size is effectively reduced by aggregating the
nodes according to their locations, demands, and time windows. A number
of user-defined parameters are introduced to control the degree of aggregation.
Generally, aggressive aggregation leads to a problem of small size and quick con-
vergence. However, it also narrows down the feasible region, and may degrade
the solution quality substantially.

The second level decomposes the aggregated weekly planning problem into six
daily planning problems and solve each of them by means of a VNS consisting
of initialization, shaking phase and local search. The key question in the decom-
position is how to allocate the weekly working hours to each workday for the
internal drivers. An adaptive allocation strategy is proposed and proved to be
effective. In the VNS, the sweep heuristic is used to construct an initial solution,
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the UTSA is applied in the local search phase to obtain local minima and five
neighborhoods are used in the shaking phase to escape from local minima.

The last level of the method simply expands the solution of the aggregated
problem to that of the original problem.

The proposed method is implemented and tested on real-life data with up to 2000
orders per week. A comprehensive sensitivity analysis on the algorithm is pro-
vided, showing that the adaptive allocation strategy and multiple-neighborhood
shaking phase are very effective. Furthermore, the comparison between our so-
lution and the industrial solution shows that our solution is superior in terms
of both the total travel distance and the number of used vehicles given the
constraints we have considered in this work.

This problem mixes the scheduling and routing optimization, which introduces
many challenges in the development of heuristics. Several aspects can be con-
sidered in future work.

There are several methods proposed to reduce the problem size to a manageable
level. All these techniques make the search efficient but bring about inevitable
compromise in the solution quality. How to keep the influence of size reduction
on solution quality at a minimum level is worth investigating. For example,
the current aggregation only relies on simple information such as time windows
and distance, and is therefore prone to errors. These errors are not possible
to correct later in the present method. To eliminate these errors, we should
introduce a self-correcting scheme or self-refinement to the aggregation. We
may segregate a number of aggregated nodes after a period of searching, and re-
aggregate based on the historical solutions. Such an iterative algorithm is able
to correct the obvious errors in the aggregation. Moreover, a post-optimization
can be included after the last level for each route to improve the solution further.

This problem, although very complicated already, may still be extended accord-
ing to the practical needs. For example, the work shifts of internal workers,
which are fixed in the current problem, can actually be scheduled jointly with
the route planning. This increases the problem complexity but helps to make
the best use of the drivers and reduce the overall transportation cost.

Another interesting variation of the problem is the ’recovery’ problem: given
the orders for a new week and the existing schedule from last week, try to make
a new schedule that satisfies all the orders in the new week while minimizing
the differences between the new schedule and the old schedule from last week.
This objective can be desirable for the distributor since a relatively steady plan
for each week is easy to carry out and manage from resource allocation point of
view. Specifically in this Danish Crown’s distribution problem, the drivers need
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the keys to the supermarkets. A relatively fixed route for each driver not only
improves their efficiency but also reduces the handing over of keys. Considering
the fact that the operation of supermarkets is usually stable, a relatively steady
plan also makes sense. A relatively steady plan can be achieved by a robust
scheduling, which usually requires sufficient redundancy in the vehicle capacity
available for the increase of orders and sufficient buffer times in the routes for
the insertion of new customers.
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Chapter 5

Conclusion

This thesis focuses on real-life routing applications, which as a class of extended
VRP take more realistic constraints into consideration and therefore have drawn
more and more attention both in the academic research society and in the in-
dustry. Due to the high computational complexity in solving these problems,
our focus has been on developing metaheuristics.

Three cases from industry are studied in detail, all of which are difficult and
characterized by four features: real-life problems, large scale, special constraints,
and high requirements on running times. For each problem, we develop a meta-
heuristic algorithm that can yield quality solutions within reasonable running
time.

The first problem considered is a routing problem with cross-docking, a recent
material handling technique in supply chain management. In the problem, goods
are transported from suppliers to customers via a cross dock at which they can be
consolidated. The problem is computationally very hard because of the strong
dependence among the vehicles resulted from the consolidation. We propose a
TS based heuristic and introduce a very effective searching strategy that can
solve this problem successfully within very short running time.

In the second case we deal with a dynamic routing problem where routes are
planned according to the gradually revealed orders over the planning horizon.
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The primary difficulties of the problem are the large size (more than one thou-
sand orders) and the uncertainty resulting from the dynamic nature of the prob-
lem. We propose a three-phase heuristic that works over a rolling horizon and an
effective customer selection strategy to reduce the problem size. The proposed
method yield quality solution within reasonable running time.

The last problem arises from food distribution and is a hybrid of vehicle routing
and driver scheduling. The major challenge of that problem is how to handle
the manifold of constraints and the joint optimization effectively. A heuristic
method based on node aggregation and VNS is proposed and proves to be very
effective.

Through these three projects, we have found that the key techniques concerning
the development of metaheuristics for practical RVRPs include problem-size re-
duction, data analysis for the specific problem, design of neighborhoods, smart
switch of neighborhoods, good balance between diversification and intensifica-
tion, adaptive mechanisms etc. Although each RVRP in real life has its own
characteristics, we have shown that these techniques are common to the develop-
ment of good heuristics for the practical RVRPs. We believe that our methods,
although proposed to address the three individual problems, have consistent
strategies and underlying logic that reflect these techniques and could be of
general applicability.

We have focused our attention on developing metaheuristics for solving the
problems. As an alternative, hybrid methods that combine the merits of both
heuristics and exact methods may also be used to produce quality solutions with
fast response time.
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Abstract

Over the past decade, cross-docking has emerged as an important material handling

technology in transportation. A variation of the well-known Vehicle Routing Prob-

lem (VRP), the Vehicle Routing Problem with Cross-Docking (VRPCD) arises in a

number of logistics planning contexts. This paper addresses the VRPCD, where a

set of homogeneous vehicles are used to transport products from the suppliers to the

corresponding customers via a cross-dock. The products can be consolidated at the

cross-dock but cannot be stored for very long because the cross-dock does not have

long-term inventory-holding capabilities. The objective of the VRPCD is to minimize

the total traveled distance while respecting time window constraints at the nodes and

a time horizon for the whole transportation operation. In this paper, a mixed inte-

ger programming formulation for the VRPCD is proposed. A tabu search heuristic is

embedded within an adaptive memory procedure to solve the problem. The proposed

algorithm is implemented and tested on data sets provided by the Danish consultancy

Transvision, and involving up to 200 pairs of nodes. Experimental results show that

this algorithm can produce high quality solutions (less than 5% away from optimal

solution values) within very short computational time.

Keywords: Cross-docking, Vehicle Routing Problem, Pickup and Delivery.
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A.1 Introduction

Cross-docking is a relatively new warehousing strategy in logistics. It is defined
as the consolidation of orders from incoming shipments so that they can be easily
sorted at a distribution center for outgoing shipments. The distribution center
in this case is referred to as a cross-dock. It essentially eliminates the inventory
holding function of a traditional warehouse while still allowing consolidation.
The shipments arriving from disparate sources are regrouped and dispatched
directly by the outgoing trailers without being stored. Shipments typically spend
less than 24 hours at the cross-dock, sometimes less than an hour. This way,
cross-docking not only provides good customer service but also yields substantial
advantages over traditional warehousing: reduction in inventory investment,
storage space, handling cost and order-cycle time, as well as faster inventory
turnover and accelerated cash flow (Cook, Gibson and MacCurdy, 2005; Apte
and Viswanathan, 2000).

Due to its remarkable benefits, cross-docking has been widely adopted in practice
by manufacturing and retailing companies. A successful application of cross-
docking is found at Wal-Mart, the largest and highest profit retailer in the
world. In the system used by this company, orders are continuously delivered to
Wal-Mart’s cross-docks, where they are selected, repacked, and then dispatched
to stores, often without ever sitting in inventory. By avoiding spending valuable
time and handling inventory cost, cross-docking has enabled Wal-Mart to adopt
an everyday low price strategy and has helped the company improve its market
share and profitability (Stalk, Evans and Shulman, 1992). CompUSA is another
major user of cross-docking: 70% of its orders in dollar volume goes through a
cross-dock (Gentry, 2005).

Considerable research on cross-docking has been carried out in recent years.
However, most of the papers have investigated the physical design of the cross-
dock (Ratliff, Vate and Zhang, 1999; Bartholdi III and Gue, 2004) and its
location (Gumus and Bookbinder, 2004). The very few papers that deal with
the transportation problems associated with cross-docking have studied two
types of network models.

The first type of model is characterized by an ”open” network, in which the
distribution flow starts from a single supplier and ends at a single customer via
a cross-dock without forming any loop. Work in this area includes Sung and
Song (2003), Jayaraman and Ross (2003) and Chen et al. (2006). Sung and
Song (2003) have discussed the problem of deciding whether to open a cross-
dock or not, and the problem of assigning vehicles for transportation from a
supplier to a single destination via one of the open cross-docks. They have
proposed a tabu search algorithm for the transportation problem. Jayaraman
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and Ross (2003) have investigated a similar problem. Given a cost for opening
each supplier, they have discussed how to decide whether a supplier should be
opened or closed. Simulated annealing methods were used in their paper. In
Chen et al. (2006), time windows for suppliers and customers are given, and the
inventory cost at the cross-dock is also taken into consideration. These authors
have proposed a hybrid metaheuristic combining simulated annealing and tabu
search.

In the second type of network model, each vehicle leaves the cross-dock to pick
up or deliver orders and returns to the cross-dock after completing its tour.
To the best of our knowledge, only one publication, that of Lee, Jung and
Lee (2006), has studied a transportation problem of this type. This problem
consists of a single cross-dock, multiple suppliers and multiple customers. The
task is to assign tours to a set of vehicles at the cross-dock so that suppliers
and customers are visited within their time windows. The authors assume that
all vehicles should arrive simultaneously at the cross-dock from their pickup
routes. A mixed integer programming formulation and a tabu search algorithm
were proposed.

The problem considered in our study is the Vehicle Routing Problem with Cross-
Docking (VRPCD). The problem is similar to that of Lee, Jung and Lee (2006)
where the vehicles can pick up or deliver more than one supplier or customer,
and the pickup and delivery routes start and end at the cross-dock. However,
there is no constraint on simultaneous arrival for all the vehicles in our problem.
Instead, the dependency among the vehicles is determined by the consolidation
decisions. Moreover, each pickup and delivery has predetermined time windows.

This work is based on the case of a company operating in Denmark. Suppliers
prepare the orders for individual supermarkets and dispatch them via a cross-
dock. The remainder of this paper is organized as follows. A detailed description
of the VRPCD is given in the next section. A mixed integer formulation of the
problem is then presented, followed by a heuristic embedding tabu search within
an adaptive memory procedure. The algorithm is implemented and tested on
realistic data involving up to 200 supplier-customer pairs. Computational results
are presented and conclusions follow.

A.2 Problem Definition

The VRPCD considered in this paper is in essence a problem of transporting
orders from a set of suppliers to their corresponding customers using a cross-
docking strategy. Orders from the suppliers are picked up by a fleet of homo-
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geneous vehicles, consolidated at the cross-dock, and immediately delivered to
customers by the same set of vehicles, without intermediate storage. Therefore,
the problem involves not only vehicle route design, but also a consolidation
decision at the cross-dock.

A small VRPCD instance of five supplier-customer pairs (requests) is shown in
Figure A.1. The set of nodes {1, ..., 5} represents the suppliers and {1′, ..., 5′}
represents the corresponding customers. Figure A.2 illustrates the pickup and
delivery routes for the three vehicles, all of which start and end their routes
at the cross-dock. For example, the first vehicle makes pickups at nodes 1 and
2 and delivers to nodes 1′, 2′ and 5′. Note that in the VRPCD, a supplier
and its corresponding customer are not necessarily served by the same vehicle.
For instance, request 5 is picked up by the third vehicle but delivered by the
first vehicle. Hence, the third vehicle has to unload order 5 after it arrives at
the cross-dock from its pickup route, and the first vehicle needs to load order
5 before it leaves for its delivery route. Figure A.3 shows the details of the
consolidation process taking place at the cross-dock.

As in the Vehicle Routing Problem with Time Windows (VRPTW), each node
must be served by exactly one vehicle within its time window, the accumulated
load of each route must not exceed the vehicle capacity, and the time horizon
for the whole transportation operation must be respected. At the cross-dock,
for each vehicle the unloading must be completed before reloading starts. Each
vehicle can start unloading immediately after it arrives at the cross-dock from
its pickup route. The duration of the unloading consists of a fixed time for
preparation, and the time needed for unloading orders, equal to the time for
unloading each pallet multiplied by the number of pallets. For instance, suppose
vehicle k reaches the cross-dock at 10:00. It needs to unload orders i1 and
i2, whose demands are 5 and 9, respectively. Given that the fixed time for
preparation is ten minutes and the time for unloading each pallet is one minute,
the total unloading duration is 24 (= 10 + 5 + 9) minutes. Note that the time
at which vehicle k finishes unloading, i.e. 10:24, is also the time at which orders
i1 and i2 are ready to be reloaded in their corresponding delivery vehicles.

A.3 Mathematical formulation

We now present a mixed integer linear programming formulation for the VR-
PCD. Denote the set of pickup nodes by P = {1, ..., n} and the set of deliv-
ery nodes by D = {n + 1, ..., 2n}. Each request i is identified by the node
pair (i, i + n), where i is the pickup node and i + n is the associated deliv-
ery node. The cross-dock is represented by four nodes and denoted by the set
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Figure A.1: A small instance of the VRPCD
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O = {o1, o2, o3, o4}, where the first two nodes represent the starting and ending
locations for pickup routes, and the last two for the delivery routes. Further,
define N = P ∪ O ∪ D. The set E denotes all the feasible arcs in the net-
work. It consists of the arcs {(i, j) : i, j ∈ P ∪ {o1, o2}, i �= j} and the arcs
{(i, j) : i, j ∈ D ∪ {o3, o4}, i �= j}. Let K be the set of vehicles.
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Figure A.3: The consolidation process at the cross-dock
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The parameters are denoted as follows:

cij = the travel time between node i and node j ((i, j) ∈ E);

[ai, bi] = the time window for node i (i ∈ N);

di = the amount of demand of request i (i ∈ P );

Q = the vehicle capacity;

A = the fixed time for unloading and reloading at the cross-dock;

B = the time for unloading and reloading a pallet.

The variables are:

xk
ij =

{
1 if vehicle k travels from node i to node j ((i, j) ∈ E, k ∈ K)
0 otherwise;

uk
i =

{
1 if vehicle k unloads request i at the cross-dock (i ∈ P, k ∈ K)
0 otherwise;

rki =

{
1 if vehicle k reloads request i at the cross-dock (i ∈ P, k ∈ K)
0 otherwise;

gk =

{
1 if vehicle k has to unload at the cross-dock (k ∈ K)
0 otherwise;

hk =

{
1 if vehicle k has to reload at the cross-dock (k ∈ K)
0 otherwise;

ski = the time at which vehicle k leaves node i (i ∈ N, k ∈ K);

tk = the time at which vehicle k finishes unloading at the cross-dock (k ∈ K);

wk = the time at which vehicle k starts reloading at the cross-dock (k ∈ K);

vi = the time at which request i is unloaded by its pickup vehicle at the cross

dock (i ∈ P ).

In addition, M is an arbitrarily large constant.

The VRPCD can be formulated as follows:

minimize
∑

(i,j)∈E

∑
k∈K

cijx
k
ij

subject to
∑

j:(i,j)∈E

∑
k∈K

xk
ij = 1 ∀i ∈ P ∪D (A.1)

∑
i∈P

∑
j:(i,j)∈E

dix
k
ij ≤ Q ∀k ∈ K (A.2)

∑
i∈D

∑
j:(i,j)∈E

dix
k
ij ≤ Q ∀k ∈ K (A.3)
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∑
j:(h,j)∈E

xk
hj = 1 ∀h ∈ {o1, o3}, k ∈ K (A.4)

∑
i:(i,h)∈E

xk
ih −

∑
j:(h,j)∈E

xk
hj = 0 ∀h ∈ P ∪D, k ∈ K (A.5)

∑
j:(j,h)∈E

xk
jh = 1 ∀h ∈ {o2, o4}, k ∈ K (A.6)

skj ≥ ski + cij −M(1− xk
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k
i , gk, hk ∈ {0, 1} ∀i ∈ P, (i, j) ∈ E, k ∈ K (A.18)

ski , tk, wk ≥ 0 ∀i ∈ N, k ∈ K (A.19)

vi ≥ 0 ∀i ∈ P. (A.20)

The objective is to minimize the total travel time. The constraints consist of two
parts: vehicle routing (constraints (A.1) to (A.8)) and consolidation decisions
at the cross-dock (constraints (A.9) to (A.17)).

Both the pickup part and the delivery part can be formulated as VRPTWs. Con-
straints (A.1) ensure that each node is visited once by one vehicle. Constraints
(A.2) and (A.3) ensure that for each vehicle, the load on the pickup route and on
the delivery route does not exceed the vehicle capacity. Constraints (A.4) state
that each vehicle’s pickup route must depart from o1 and delivery route must
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leave from o3. Constraints (A.5) are flow conservation constraints. Constraints
(A.6) force each vehicle to return to o2 on its pickup route and return to o4 on
its delivery route. Constraints (A.7) compute the traveling time between two
nodes if they are visited consecutively by the same vehicle. Constraints (A.8)
ensure that each node is visited within its time window and the whole operation
is completed within the time horizon.

For the consolidation decisions at the cross-dock, whether a vehicle k should
unload or reload order i depends on its pickup and delivery routes. This de-
pendence, which shows the linkage between the pickup part and the delivery
part, is expressed by constraints (A.9) and (A.10). In these two constraints, the
following three cases are considered: if vehicle k picks up i but does not deliver
i + n, then it unloads the order at the cross-dock; if vehicle k does not pick up
i but delivers i + n, then it needs to reload the order at the cross-dock; if the
vehicle neither picks up i nor delivers i+ n, then it neither unloads nor reloads
the order. These cases are summarized in Table A.1.

k picks up i k delivers i + n k unloads i k reloads i∑
j∈P∪{o2} x

k
ij

∑
j∈D∪{o4} x

k
i+n,j uk

i rki

0 0 0 0
1 1 0 0
1 0 1 0
0 1 0 1

Table A.1: Relationship between xk
ij and uk

i , r
k
i

Constraints (A.11) to (A.17) define the internal working flows and deadlines
for all the vehicles at the cross-dock. Constraints (A.11) force gk to be 1 if the
vehicle needs to unload. Constraints (A.12) indicate that the unloading duration
for a vehicle k consists of a fixed time (A) for the preparation of unloading,
and the time for unloading the orders, equal to the unit time for unloading a
pallet (B) multiplied by the number of pallets (

∑
i∈P diu

k
i ) to be unloaded from

the vehicle. Constraints (A.13) and (A.14) ensure that a vehicle cannot start
reloading until it finishes unloading, and all the orders to be reloaded on it are
ready. The ready time of order i is represented by constraint (A.15), which
depends on the time at which the pickup vehicle of order i finishes unloading.
Constraints (A.16) and (A.17) for the reloading are similar to (A.11) and (A.12).

This formulation contains O(n2) binary variables, O(mn) continuous variable
and O(n2m) constraints. Without constraints (A.9) to (A.16), the model is
essentially the problem of solving two independent VRPTWs, abbreviated as
2-VRPTW. It is obvious that any optimal solution to this 2-VRPTW provides
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a lower bound for the VRPCD. The difficulty in the VRPCD is that the pickup
and delivery routes are not independent but correlated. This correlation results
from the fact that the same vehicles need to first pick up and then deliver
orders within the time windows. Therefore, the search for an optimal solution
is not only to find shortest routes for both operations, but also to coordinate
the exchanges of orders at the cross-dock so that all time windows and the
time horizon are respected. These two aspects usually conflict with each other.
The impact of this conflict on the VRPCD solution will be illustrated in the
computational experiments section.

A.4 Heuristics

Tabu search (TS) has proven to be one of the best available heuristic methods
for solving VRPs, producing high quality solutions within a reasonable amount
of computing time (Cordeau et al., 2002). The basic idea of TS is to locally
and repeatedly modify a solution while memorizing the modifications to avoid
cycling. Modifications to the attributes of the recently visited solutions are
stored in a tabu list that forbids their use for a certain number of iterations.

In this paper, we develop a TS algorithm for the VRPCD. Applying TS to a new
problem requires taking the specific knowledge of the problem into consideration.
In the VRPCD, due to the consolidation at the cross-dock, computing the cost
of even a simple insertion is very expensive. To alleviate the computational
burden, properties of insertions are investigated and new accelerating strategies
are proposed, which have been proved to be very effective. Two neighbourhoods
are used alternately in the TS, which is finally embedded within an adaptive
memory procedure (AMP). This enables the algorithm to reach good and robust
solutions by repeating the TS from different good starting points.

The AMP is described next, followed by the proposed TS algorithm, and by a
description of an efficient implementation of local search.

A.4.1 Adaptive memory procedure

In an AMP, a set of vehicle tours is stored in an adaptive memory (AM). A ve-
hicle tour is defined as a pickup route and a delivery route operated by the same
vehicle. An initial TS solution is constructed by combining the selected vehi-
cle tours, where the selection preference is probabilistically biased toward tours
with good objective values. This idea was first proposed by Rochat and Taillard
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(1995) in the context of the VRP and of the VRPTW and has been proved to
be very effective in providing high quality solutions for related problems.

In an AMP, an improved solution identified during the TS is considered. The
vehicle tours in this solution are labeled with the value of the objective function
and are included in the AM. Concurrently, the same number of tours with the
highest label are removed from the AM. Consequently, the AM consists of a
constant number of vehicle tours throughout the algorithm. Algorithm 1 shows
how to generate the initial TS solution from the AM. The probability assigned
to a specific vehicle tour is P (r) = (max{lr|r ∈ AM)} − lr)/

∑
r∈AM lr, where

lr is the label of the rth vehicle tour. A tour with a smaller value of lr will be
selected with a higher probability. At each iteration one vehicle tour is selected
and all incompatible tours are removed since each node can be served by only
one vehicle. The selecting procedure stops when there are no more vehicle tours
compatible with those selected. Finally, the unvisited nodes are assigned to
empty vehicles (see lines 8 to 11).

Algorithm 1 Generate initial solution from the memory

1: AM ′ ← AM
2: assign a probability to each element in AM ′

3: while AM ′ is not empty do
4: select a vehicle tour r from AM ′

5: delete the routes that cover a node covered by vehicle tour r
6: end while
7: let Nleft be the unserved nodes sorted in increasing order of radial angle
8: while Nleft is not empty do
9: assign the nodes in Nleft to an empty vehicle v′ one by one until the vehicle

capacity is reached
10: remove from Nleft the nodes that are assigned to v′

11: end while

A.4.2 Tabu search heuristic

Our TS algorithm is based on that of Cordeau, Laporte and Mercier (2001), in
which infeasible solutions are allowed during the search. The cost function of a
solution s is defined by f(s) = c(s) + αq(s) + βd(s) + γw(s), where

c(s) =
∑
k∈K

∑
(i,j)∈E

cijx
k
ij ; (A.21)
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where (x)+ = max{0, x}. In these equations, c(s) is the total travel time by all
vehicles, q(s) is the total excess quantity in both the pickup and the delivery
parts, d(s) and w(s) are the excess duration and total time window violations,
respectively. Thus, if s is feasible, then f(s) = c(s). The coefficients α, β and
γ are positive self-adjusting penalties. At each iteration, the values of α, β and
γ are modified by a factor 1 + δ > 1: if the current solution is feasible with
respect to quantity (resp. duration, time windows), the value of α (resp. β, γ)
is divided by 1 + δ; otherwise, it is multiplied by 1 + δ.

In the TS, an insertion moves a node i from its original vehicle k to another
vehicle k′, as illustrated in Figure A.4.

Figure A.4: Insertion move

In some TS implementations (e.g., Barbarosoglu and Ozgur, 1999; Tang and
Miller-Hooks, 2005), the solution improvement phase is divided into two stages:
exploring a small number of moves (namely, small neighbourhood search), and
exploring a large number of moves (namely, large neighbourhood search). Em-
pirical results show that alternating between small and large neighbourhood
search enables the search to evolve in an efficient way without degrading solu-
tion quality.

In our TS algorithm, the same strategy is exploited. In the large neighbour-
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hood search, every node is moved to every position of every other vehicle. The
complexity for this neighbourhood is O(n2). In the small neighbourhood search,
instead of searching the whole solution space, we select a subset of nodes N ′

(N ′ ⊆ N) and move each of them to a specific subset of vehicles. For instance,
a node i′ (i′ ∈ N ′) is tentatively moved to each vehicle in M ′

i (M ′
i ⊆ M). The

ways of selecting N ′ and M ′
i are as follows: if in the current solution, a vehicle

violates the capacity constraint, exceeds the duration limit or involves any node
not visited within its time window, all the nodes served by this vehicle will be
added into N ′ since the infeasibility of the solution will probably be reduced by
removing a node from an infeasible route. After collecting all the nodes from all
the infeasible vehicle routes, if the size of N ′ is still less than a fixed number μ,
we randomly select μ− |N ′| nodes and add them into N ′ to make sure that N ′

is not too small or empty when the solution is nearly feasible or feasible. When
considering moving a node i′ ∈ N ′ to vehicles in M ′

i , we would like M ′
i to be a

set of vehicles that are very close to node i′ in order to minimize the total travel
time. We sort all the nodes i ∈ N except i′ in ascending order of the travel
time between i and i′. The set M ′

i consists of all vehicles that cover any of the
ν nodes nearest to i′. Hence, each node in N ′ is moved to several of its nearest
vehicle routes. With fixed values of μ and ν, the running time is independent
of the size of the data.

The strategy we used for switching between small and large neighbourhoods
is the following: the TS starts with the small neighbourhood and switches to
the large neighbourhood if there has been no improvement in the best solution
in the last η iterations; when exploring the large neighbourhood, if the best
solution is updated within σ iterations, the search process switches back to the
small neighbourhood, otherwise the TS stops. The overall structure of TS is
presented in Algorithm 2.

As for short and long term memories, we use the same rules as in Cordeau,
Laporte and Mercier (2001). To avoid cycling, if a node is removed from a
vehicle, reinserting it in that vehicle is forbidden for the next θ iterations unless
the move satisfies an aspiration criterion, i.e. a feasible solution better than
the present best solution is found. To diversify the search, the move cost Δf
is increased by a penalty whose value is proportional to the frequency of the
move. For more details, see Cordeau, Laporte and Mercier (2001).

A.4.3 Efficient implementation of local search

Compared with the VRPTW, an insertion move for the VRPCD is computa-
tionally much more expensive. In the VRPTW, the routes of the vehicles are
independent of each other, but due to the consolidation at the cross-dock, the



66 Appendix A

Algorithm 2 Tabu search algorithm

1: Stop = FALSE; Nb = 2; i = 0; s∗ = ∅; f(s∗) =∞
2: while Stop == FALSE do
3: if Nb == 2 then
4: Small neighbourhood search
5: else
6: Large neighbourhood search
7: end if
8: s = solution found by the neighbourhood search
9: if f(s) < f(s∗) and s is feasible then

10: s∗ = s; i = 0; Nb = 2
11: else
12: i++
13: end if
14: if Nb == 2 and i > η then
15: Nb = 1
16: end if
17: if Nb == 1 and i > σ then
18: Stop = TRUE
19: end if
20: end while

vehicles are no longer independent of each other in the VRPCD. For example,
an insertion move that shifts a supplier i from vehicle k to k′ will not only affect
the delivery route of k and k′, but will also affect other related vehicles that
serve the corresponding customers of the suppliers served by vehicles k and k′.

Without any improvement the running time will be too large for the planning
environment in many companies. In order to accelerate the algorithm, we have
studied the cost impact of a move. Denote the current solution by S1, the so-
lution after the move i : k → k′ by S2, and the move cost by Δf . The change
in total travel time is denoted as Δc. The changes in violation of quantity,
duration and time windows are denoted as Δq, Δd and Δw, respectively. The
following property holds:

Property If S1 is feasible, then Δf ≥ Δc+ αΔq.

Proof. Since f(s) = c(s) + αq(s) + βd(s) + γw(s), the cost of a move can be
represented as Δf = f(S2) − f(S1) = Δc + αΔq + βΔd + γΔw. Since S1 is
feasible, then Δd ≥ 0 and Δw ≥ 0 hold. Hence, Δf ≥ Δc+ αΔq. �

Note that to calculate βΔd and γΔw, we need to exploit the complete infor-
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mation about S2 including the duration of each vehicle route and the visiting
time of each node; on the other hand, Δc and αΔq can be very easily calculated
without investigating the details in S2. Let Δf∗ denote the minimum move
cost among all moves considered. In the neighbourhood search of a currently
feasible solution, a move for which Δc + αΔq ≥ Δf∗ can be skipped to save
computation time. We call this kind of skipping a conservative skip.

Preliminary tests have shown that very little computing time is saved by using
the conservative skip since it only applies to feasible solutions. To reduce the
computational time further, we have developed an aggressive skip which applies
when the route of vehicle k is feasible with respect to the duration and time
window constraints. This skip is reasonable because removing i from k is very
likely to reduce the violation of route k, and inserting i into route k′ may increase
the violation of route k′. If vehicle k is already feasible, Δd and Δw are probably
positive. The move is therefore skipped if Δc + αΔq ≥ Δf . Nevertheless, if
route k is infeasible with respect to the duration and time window constraints,
then the move should not be skipped.

A.5 Computational Experiments

Our TS heuristic was implemented in C and executed on a Linux computer
with a 2.2GHz Dual Core AMD Opterontm Processor 175 and 2 Gbytes of
RAM. Due to the practical constraints, for a data set with 200 pairs of nodes,
the users would expect to solve the problem relatively quickly. As a result, the
computational time of running the algorithm in this paper is limited to five
minutes.

A.5.1 Data

The data used in this paper were generated from a real data set belonging
to Transvision, a Danish logistics consultancy based in Copenhagen. The real
data are confidential and could not be provided to us. The test data consist of
five Euclidean sets, denoted by 200a, 200b, 200c, 200d and 200e, respectively,
where 200 stands for the number of supplier-customer pairs. Each set consists
of suppliers and customers with pickup and delivery locations (x, y) in meters.
The time window for each node is two hours. The time horizon for the whole
transportation operation is from 6:00 to 22:00. The demand transported from
each pickup location to the corresponding delivery location is given in number
of pallets. Vehicles drive at a constant speed of 60 km/h and have a capacity
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of 33 pallets. It takes ten minutes to prepare a vehicle, plus an additional one
minute for each pallet to be loaded or unloaded. The locations of the suppliers,
the customers and the cross-dock for one data set are given in Figure C.1. In
this data set, the depot is located in Glostrup, near Copenhagen. The pickup
points are mostly in Zealand where Glostrup is situated, and the delivery points
are mostly in Jutland.

For preliminary testing purposes, small data sets with 20, 30, 50, 100 or 150
pairs of nodes were generated by randomly selecting the corresponding number
of supplier-customer pairs. All the test data can be accessed via the Internet at
http://www2.imm.dtu.dk/∼mw/vrpcdData/.

Figure A.5: Locations of pickup and delivery nodes for one instance of the
VRPCD

A.5.2 Parameter tuning

The algorithm employs a set of parameters whose values require tuning before
the algorithm is assessed. In Table A.2, these parameters are listed and ex-
plained. Based on a large number of runs, the following set of parameters was
finally selected: (δ, η, σ, ϕ, μ, ν) = (3, 1200, 800, 10n, n, 10), where the n is
the number of supplier-customer pairs.
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δ: the maximum number of AMP iterations;
η: the maximum number of non-improving iterations in small

neighbourhood search in TS;
σ: the maximum number of non-improving iterations in large neigh-

bourhood search in TS;
ϕ: the size of the AM;
μ: the number of the selected nodes for the small neighbourhood;
ν: in the small neighbourhood, a selected node i is moved to the

vehicles that cover the ν nodes nearest to i;

Table A.2: Parameters of the algorithm

In the AMP, it was found that the performance of the algorithm is not very
sensitive to the AM size ϕ. Preliminary results have shown that ϕ = 10n is large
enough. The selection of the number of AMP iterations is a tradeoff between
performance and computational cost. Given the running time of five minutes,
three iterations are found to be suitable, which is in line with the setting used
in Tang and Miller-Hooks (2005).

As mentioned in the TS description, the alternate use of two neighbourhoods
in the TS makes it possible for the search process to move out of the current
local optimum. This strategy has already been proved to be very effective in
providing high quality solutions as stated in Tang and Miller-Hooks (2005). The
same effect is achieved by our algorithm, as shown in Table A.3. In the tests, the
value of ν is 10 for the small neighbourhood and n for the large neighbourhood.
Table A.3 illustrates the comparison between two-neighbourhood search and
one-neighbourhood search. The first two columns are the data set descriptor
and the number of supplier-customer pairs. Columns 3 and 4 report the average
solution value over 25 runs and the average computational time in seconds for
the two neighbourhood strategies adopted in our algorithm. Columns 5 and 6,
and columns 7 and 8 provide the corresponding results for the large neighbour-
hood search and the small neighbourhood search, respectively. According to
Table A.3, the two-neighbourhood strategy consistently outperforms the other
two one-neighbourhood strategies both in terms of average solution value and
computational time.

A large number of trials have shown that the selection of η, σ and μ is not
critical over a wide range. The values 1200, 800 and n are selected based on the
results and experience. The parameters α, β, γ are set as in Cordeau, Laporte
and Mercier (2001).
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Two-neighbourhood Large neighbourhood Small neighbourhood
Average AverageAverage Average Average Average

Data solution timesolution time solution time
set n value (seconds) value (seconds) value (seconds)

50a 50 6534.2 16 6568.1 27 6558.7 11
100a 100 12982.9 63 13096.6 93 13265.9 20
100b100 14770.9 56 14864.9 92 14919.6 20
150a 150 19871.3 139 19939.7 232 20304.5 38
150b150 21284.0 125 21374.3 218 21537.8 36
200a 200 27684.8 274 27959.9 482 28107.7 73
200b200 27989.1 278 28241.2 517 28393.3 77

Table A.3: Comparison of two-neighbourhood strategy and one-neighbourhood
strategy

A.5.3 Analysis of the main results of the algorithm

We now analyze the impact of the efficient implementation and the correlation
among vehicles on the behaviour of the algorithm, and we present results on the
VRPCD instances.

Effect of the efficient implementation of the local search

The new aggressive skip described earlier in the Heuristic section is vital to
efficiently narrow down neighbourhood size and to reach high quality solutions
within short computing times. In theory, the ruling out process may cut off
useful moves and degrade the solution quality slightly. However, it works very
well in practice.

A comparison between the results with aggressive skip and without aggressive
skip (namely, full search) is provided in Table A.4. The column ′Gap′ presents
the percentage gap between the two results. It is calculated as 100(z̄aggressive skip−
z̄full search)/z̄full search.

The column ′Gap′ shows that the TS with aggressive skip performs as well as
full search. The Gap is less than 0.3% for all the tests in Table A.4. However,
it can be seen, the computational time for the aggressive skip is much shorter
than for the full search. Figure A.6 shows the value of the best solution found
as a function of the running time of the algorithm for data set 200a. As we can
see, the aggressive skip significantly speeds up the algorithm while maintaining
almost the same solution quality.
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Aggressive skip Full search
Average Average Average Average
solution time solution time

Data Set n value (seconds) value (seconds) Gap (%)

100a 100 12981.9 63 12980.3 891 0.012
100b 100 14770.9 56 14769.3 805 0.011
100c 100 14145.1 57 14125.3 749 0.140
150a 150 19871.3 139 19885.5 2790 -0.071
150b 150 21284.0 125 21265.1 2565 0.089
150c 150 20320.5 140 20326.7 2578 -0.031
200a 200 27683.9 273 27676.2 6519 0.028
200b 200 27989.1 278 27916.5 6449 0.260
200c 200 26654.1 282 26640.3 6053 0.052

Table A.4: Comparison of TS with and without aggressive skip

Figure A.6: The effect of aggressive skip. The horizontal axis is the running
time in seconds and the vertical axis is the objective value. The short and long
curves show the results with and without aggressive skip, respectively

Impact of the correlation among vehicles on the VRPCD solution

To illustrate the impact of correlation among vehicles on the VRPCD solution,
we vary the preparation time A and the time B for reloading and unloading
a pallet. As A and B increase, it becomes more time consuming to exchange
orders among vehicles at the cross-dock. Restricted by the time windows at the
delivery nodes, the algorithm will try to avoid unloading and reloading orders
and thus hinder the optimization of travel time on both sides.

We have applied our algorithm with different settings of A and B. The results
are presented in Table A.5. Five data sets (20a, 20b, 30a, 100a and 200a)
were tested with different settings of A and B. The setting A-B denotes the
number of minutes required for A and B, respectively. For each data set and
A-B setting, the average objective value over 20 random runs and the average
number of nodes whose orders are unloaded at the cross-dock are given. ′INF′

means no feasible solution was found in the 20 runs.

As expected, the best objective value the algorithm can find increases with A
and B. For large A and B, it is obvious that the optimal 2-VRPTW solutions
do not yield good lower bounds for the VRPCD.

It should be stressed that other factors could affect the linkage of the pickup
and delivery parts, such as the geographical distribution of suppliers and cus-
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Data A-B
set n 10-1 15-3 20-5 20-10 30-20

20a 20 Avg. solution value 2671.6 2674.9 2684.9 2748.8 3010.6
% of orders unloaded 85 65 55 25 10

20b 20 Avg. solution value 3236.8 3244.6 3285.1 3723.4 4008.2
% of orders unloaded 85 70 40 20 10

30a 30 Avg. solution value 3923.4 3936.4 4005.5 4156.9 INF
% of orders unloaded 87 70 50 20 INF

100a 100 Avg. solution value 12981.9 13318.3 13656.2 14640.9 20479.4
% of orders unloaded 96 89 61 37 21

200a 200 Avg. solution value 27683.9 28425.9 29427.5 33451.9 INF
% of orders unloaded 98 91 62 40 INF

Table A.5: The effect of parameters A and B

tomers, the time windows, and the number of supplier-customer pairs. When
the distribution of suppliers is very different from that of customers, for example
when nearby suppliers have far away corresponding customers, when the time
windows are short, or when the number of suppliers and customers is large, the
correlation between the two parts tends to be strong, i.e., the optimal solution
of the VRPCD tends to be farther away from that of the 2-VRPTW.

Results on VRPCD instances

Tables A.6 and A.7 show the results obtained for small and large instances,
respectively. Each instance was run 25 times randomly. In both tables, the
average solution value, average computational time and the best solution value
over 25 runs are provided. The algorithm of Kallehauge, Larsen and Madsen
(2006) was used to solve the corresponding 2-VRPTWs as the lower bounds to
the VRPCD.

For every small instance, the 2-VRPTW is solved to optimality and the solution
is given in column ′LB1′ in Table A.6. The gap between the ′Average solution
value′ and ′LB1′ is given in column ′Gap′ in Table A.6. We can conclude that
the algorithm can produce near optimal solutions (less than 1% away from the
optimum) within very short computing times (less than 5 seconds) for all the
small instances.

For the large instances, as 2-VRPTW itself is an NP-hard problem, it is very
difficult to obtain the optimal solution. Instead, we use a lower bound equal to
the LP relaxation value computed at the root node of the 2-VRPTW, in column
′LB2′ in Table A.7. The gap between the ′Average solution value′ and ′LB2′ is
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Average Average Best
solution time solution

Data set n value (seconds) value LB1 Gap (%)

20a 20 2671.6 5 2668.8 2668.793 0.11
20b 20 3236.8 4 3230.9 3228.816 0.25
20c 20 2643.1 4 2632.0 2631.791 0.43
20d 20 3647.8 3 3646.5 3638.727 0.25
20e 20 2834.7 3 2819.1 2816.152 0.66
20f 20 3487.5 5 3483.8 3483.459 0.12
20g 20 3329.3 4 3323.6 3322.730 0.20
20h 20 3428.8 3 3428.5 3428.457 0.01
20i 20 2861.8 4 2861.4 2861.447 0.01
20j 20 2851.7 4 2851.7 2841.704 0.35
20k 20 2903.8 4 2903.8 2883.691 0.70

Table A.6: Experimental results for small instances

given in column ′Gap2′ in Table A.7. As can be seen from the table, Gap2 is
consistently below 5% for any data size in the tests. We consider this percentage
to be very satisfactory since it overestimates the true optimality gap. We also
provide the best known solution values and the corresponding computational
time in columns ′No limit test results′ in Table A.7. These results are obtained
by removing the limit on the computational time and setting the parameters as
(δ, η, σ, ϕ, μ, ν) = (50, 15000, 15000, 10n, 2n, 10).

A.6 Conclusion

We have considered the Vehicle Routing Problem with Cross-Docking in which
the orders from the suppliers and customers must be consolidated at a cross-dock
terminal before being dispatched to the customers. The problem was modeled
and then solved by means of an efficient heuristic embedding tabu search within
an adaptive memory procedure.

Since the cross-dock allows the transfer of orders between vehicles, the pickup
and delivery vehicles are not independent of each other. The pickup and deliv-
ery parts are also correlated. As a result of these interactions, calculating and
performing a move can be difficult. A new aggressive skip procedure introduced
in the tabu search plays a key role in effectively narrowing down the number of
moves to be calculated thoroughly and in reaching high quality solutions within
short computing times. The proposed algorithm was tested on realistic data
sets involving up to 200 pairs of nodes. Computational results show that it can
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No limit
Results test results

Avg. Avg. Best Avg. Best
Data solution time solution time solution Gap2
set n value (sec) value (sec) value LB2 (%)

30a 30 3923.4 9 3908.2 1787 3884.7 3757.04 4.02
30b 30 4901.0 7 4855.6 1319 4824.1 4795.65 1.25
30c 30 5146.8 7 5125.2 1495 5112.4 4968.30 3.16
30d 30 3891.9 8 3865.0 1729 3850.0 3708.37 4.22
30e 30 5084.4 7 5041.4 1468 5014.3 4913.24 2.61
50a 50 6534.2 17 6497.3 3865 6471.9 6340.90 2.47
50b 50 7504.9 19 7466.3 3185 7410.6 7201.89 3.67
50c 50 7440.0 20 7350.5 3269 7330.6 7241.05 1.51
50d 50 7107.6 20 7074.0 3658 7050.3 6887.93 2.70
50e 50 7629.4 16 7571.5 3159 7516.8 7347.54 3.05
100a 100 12981.9 63 12878.0 11543 12860.8 12555.57 2.57
100b 100 14770.9 56 14646.8 9967 14526.1 14200.48 3.14
100c 100 14145.0 57 14056.4 10677 13967.8 13631.24 3.12
100d 100 13949.6 57 13844.4 11177 13763.3 13395.33 3.35
100e 100 14396.1 63 14300.4 10643 14212.7 13745.60 4.04
150a 150 19871.3 139 19784.0 24326 19537.3 19012.02 4.06
150b 150 21284.0 125 21098.1 24461 20974.8 20371.08 3.57
150c 150 20320.5 139 20166.2 23754 20126.5 19419.55 3.84
150d 150 20891.3 123 20747.2 24468 20549.4 20013.37 3.67
150e 150 20034.6 140 19888.5 23400 19848.5 19141.66 3.90
200a 200 27683.9 273 27537.4 46586 27324.4 26538.53 3.76
200b 200 27989.1 278 27851.7 43653 27637.7 26722.88 4.22
200c 200 26654.1 282 26472.5 46389 26358.6 25607.31 3.38
200d 200 28088.2 296 27935.3 46615 27749.7 26969.42 3.58
200e 200 26868.6 275 26703.4 45649 26620.6 25776.01 3.60

Table A.7: Experimental results for large instances

provide high quality solutions (less than 5% away from the optimum) within
very short running times.
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Abstract

This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals

with the distribution of orders from a depot to a set of customers over a multi-period

time horizon. Customer orders and their feasible service periods are dynamically

revealed over time. The objectives are to minimize total travel costs and customer

waiting, and to balance the daily workload over the planning horizon. This problem

originates from a large distributor operating in Sweden. It is modeled as a mixed

integer linear program, and solved by means of a three-phase heuristic that works

over a rolling planning horizon. The multi-objective aspect of the problem is handled

through a scalar technique approach. Computational results show that the proposed

approach can yield high quality solutions within reasonable running times.

Keywords: Dynamic, Multi-Period, Multi-Objective, Vehicle Routing, Variable

Neighborhood Search.

B.1 Introduction

The purpose of this paper is to model and solve the Dynamic Multi-Period
Vehicle Routing Problem (DMPVRP). Our study is motivated by the case of
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Lantmännen, a large distributor operating in Sweden, but our contribution is of
general applicability. In the DMPVRP, customers place orders dynamically over
a planning horizon consisting of several periods (or days). Each request specifies
a demand quantity, a delivery location and a set of consecutive periods during
which delivery can take place. The distributor must plan its delivery routes over
several days so as to minimize the routing cost and customer waiting, and to
balance the daily workload over the planning horizon.

Lantmännen is one of the largest groups within the food, energy and agricultural
industries in the Nordic countries. The company is owned by 42,000 Swedish
farmers, hires 13,000 employees, and generates sales of SEK 36 billion per year.
One of its activities is the distribution of fodder to the farmers at their request
from one of several terminals which usually operate independently of each other,
except in periods of exceptional activity. Here we consider a single terminal,
Väster̊as, located in southern Sweden. It is the busiest terminal in terms of
number of vehicles and orders. Figure B.1 shows the locations of the customers
and of the terminal. The distribution problem is very complicated in practice
and involves many special restrictions, for example, rules regarding the use of
compartments in the vehicle and special loading restrictions. In this work, we
consider a simplified problem in which customers place orders over time and
the distribution schedule of a given day is constructed for several vehicles at
the beginning of that day. It serves some of the unfulfilled orders and typically
leaves some for the following days. A fair amount of foresight is required so as
not to create infeasible situations in the future while creating efficient routes.
Unfulfilled orders after the schedule has been built and new orders accumulated
during the day are considered for scheduling the following day. Because the
drivers do not interact with the customers when delivering, no time windows
need to be specified.

The literature on the DMPVRP is rather scarce. To our knowledge, the closest
work was done by Angelelli et al. (2007, 2009). Angelelli et al. (2007) have
considered a special case of the DMPVRP in which each order has two consec-
utive feasible visit days after its arrival and only one uncapacitated vehicle is
available each day. This problem has been extended by Angelelli et al. (2009)
in which a fixed fleet of vehicles is available and on-line requests are considered
by re-optimizing the plan during the day. A request is called on-line if it arrives
during the day when the vehicles are already moving in the area. An on-line
request can be either postponable or unpostponable, which means it must be
served on the day that it arrives. It is assumed in the paper that unpostponable
requests can only arrive before a fixed time in order to ensure the feasibility of
the solution.

The DMPVRP is closely related to the Periodic Vehicle Routing Problem (PVRP)
in which all information is available at the beginning of the planning horizon.
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Figure B.1: Locations of customers and depot (represented by a house) in the
Lantmännen case study

In the PVRP, customers specify a service frequency and sets of allowable com-
binations of visit days. For example, if a customer specifies a frequency of 2
and the combinations {1, 3} and {2, 4}, then the customer wishes to be visited
twice, on days 1 and 3, or on days 2 and 4. In the DMPVRP, visit frequencies
are equal to 1 and visit combinations are made up of consecutive days. The
PVRP is usually solved heuristically. The best known algorithms for this prob-
lem are those of Cordeau, Gendreau and Laporte (1997) and of Hemmelmayr,
Doerner and Hartl (2009). Francis, Smilowitz and Tzur (2008) have solved a
variant of the PVRP in which service frequency is a decision variable. Mourgaya
and Vanderbeck (2007) have solved another variant that includes routing cost
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minimization and daily workload balance.

Other routing problems with a dynamic component are often encountered in
the context of dynamic pickup and delivery problems (Psaraftis, 1988; Mitrović-
Minić, Krishnamurti and Laporte, 2004; Branke et al. 2005; Hvattum, Løkketangen
and Laporte, 2006, 2007; Pureza and Laporte, 2008), but these papers do not
consider a multi-period horizon. For recent literature reviews, see Larsen, Mad-
sen and Solomon (2008), and Berbeglia, Cordeau and Laporte (2009).

Another strand of literature relevant to our problem is about the Multi-Objective
Vehicle Routing Problem encountered in school bus routing (Pacheco and Marti,
2006; Alabas-Uslu, 2008), waste collection (Lacomme, Prins and Sevaux, 2006),
and hazardous products transportation (Dell’Olmo, Gentili and Scozzari, 2005;
Zografos and Androutsopoulos, 2008; Tan, Chew and Lee, 2006). The two main
solution strategies for multi-objective problems are the scalar technique, which
consists in minimizing a weighted linear combination of the objectives, and the
Pareto method which identifies a set of non-dominated solutions. We refer to
Jozefowiez, Semet and Talbi (2008) for a recent survey of these methods in the
context of vehicle routing.

In this paper we formulate the DMPVRP as a mixed integer linear program
using the scalar technique. We then develop a three-phase heuristic for its
solution, and we show that our approach can yield high quality solutions within
reasonable running times. The remainder of the paper is organized as follows.
The mathematical model is described in Section 2. The heuristic is described
in Section 3, followed by computational results in Section 4 and by conclusions
in Section 5.

B.2 Mathematical Problem Description

We start with a more detailed description of the DMPVRP. To capture the
problem more precisely, we also formulate it as a mixed integer linear program.

B.2.1 Problem description and analysis

The DMPVRP is solved over a planning horizon divided into days. Customer
orders arrive at any time and must be fulfilled within a set of consecutive service
days which can start as early as the day after the order is placed. A set of
homogeneous vehicles are available at the depot. These vehicles depart from
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the depot at 00.00 and return to the depot at the latest at 23.59 on the same
day. The objectives are to minimize the total routing cost (proportional to travel
time) and customer waiting, and to balance the daily workload over the planning
horizon. Each customer must be visited exactly once by one vehicle within its
feasible service period, each vehicle must depart from and return to the depot
in the same day, and the load of each vehicle cannot exceed its capacity.

This problem is dynamic in the sense that orders are revealed incrementally over
time. The daily planning must determine which orders should be fulfilled on
that day and in which sequence the vehicles should visit the customers. These
decisions are made without the knowledge of future orders. However, even if
the problem is dynamic, the routing problem at the beginning of each particular
day over the planning horizon can be viewed as a static problem since the routes
for that day are planned based on the orders known so far and the routes are
fixed before their execution.

Figure B.2 illustrates the planning process for a small DMPVRP example con-
sisting of two days. For simplicity, we assume that the demand of each order is
one, the capacity of the vehicle is three, and two vehicles are available. Before
the first day, as shown in (a), six orders are already logged in the system. Three
of these, denoted by triangles, can be fulfilled either on the first day or the
second day, while the other three can only be served on the first day. At the
beginning of the planning horizon, the planner has to construct the routing plan
for the first day, as shown in (b). Before the second day is planned, three new
orders have arrived, as shown in (c). The routes for the second day are shown
in (d).

This example illustrates that the challenging part of the problem is to decide
on the first day whether to serve the triangle orders, or whether to postpone
them until the second day without knowing which orders will arrive during the
first day. On the one hand, if the new orders are destined for locations close to
those of the triangle orders, it may be wise to postpone them so as to minimize
the total travel time. On the other hand, if too many orders are postponed,
customer waiting is prolonged and the feasibility of the next day’s solution may
be jeopardized due to the limited available vehicle capacity.

B.2.2 Mathematical formulation

The planning for each particular day can be regarded as a special case of the
PVRP with unit visit frequency and consecutive allowable delivery periods.
Without loss of generality, we present the formulation for the planning problem
on day t (t ∈ T , where T = {1, 2, . . . , r} denotes the planning horizon). Denote
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(a) orders arrived before day 1
(feasible service days:       {1}        {1, 2})

(b) routes for day 1
(      )

(c) 3 newly arrived orders
 (feasible service days:       {2})

(d) routes for day 2
(       )

Figure B.2: A small instance of the DMPVRP

the updated planning horizon on day t by T ′ = {t, t + 1, . . . , r}, the set of
known but unvisited orders by N = {1, 2, . . . , n}, and the set of vehicles by
K = {1, 2, . . . ,m}. The depot is located at 0 and the set of all locations is
N0 = N ∪ {0}. The parameter cij represents the travel time on arc (i, j) ∈ A,
where A is the set of arcs between all the locations in N0. Each order i specifies
a demand qi and a service time di. We denote the original consecutive feasible
service days for order i by {ai, . . . , bi}. Note that the first feasible day has to
be adjusted to a′i = max{t, ai} when planning on day t. Each vehicle has a
capacity Q and each route has a duration limit D. The binary variables xt

ijkl

denote the decisions made on day t. They are equal to 1 if and only if vehicle k
travels from i to j on day l. The constraints are defined as follows:

∑
l∈{a′

i,...,bi}

∑
k∈K

∑
j:(i,j)∈A

xt
ijkl = 1 ∀i ∈ N (B.1)
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∑
i∈N

∑
j:(i,j)∈A

qix
t
ijkl ≤ Q ∀k ∈ K, l ∈ T

′
(B.2)

∑
i∈N

∑
j:(i,j)∈A

(cij + di)x
t
ijkl ≤ D ∀k ∈ K, l ∈ T

′
(B.3)

∑
j∈N

xt
0jkl = 1 ∀k ∈ K, l ∈ T

′
(B.4)

∑
i:(i,h)∈A

xt
ihkl −

∑
j:(h,j)∈A

xt
hjkl = 0 ∀h ∈ N, k ∈ K, l ∈ T

′
(B.5)

∑
i∈N

xt
i0kl = 1 ∀k ∈ K, l ∈ T

′
(B.6)

xt
ijkl ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K, l ∈ T

′
. (B.7)

Constraints (B.1) ensure that each customer is visited once by exactly one ve-
hicle within its feasible service days. Constraints (B.2) guarantee the vehicle
capacity limit is not exceeded. The duration limit on each route is ensured by
constraints (B.3). Constraints (B.4)–(B.6) state that each vehicle must start
and end its route at the depot and that flow is conserved at each customer
location. Constraints (B.7) define the binary variables.

The first objective, minimizing the total travel time of visiting the orders in N ,
can be formulated as

f t
1 =

∑
l∈T ′

∑
k∈K

∑
(i,j)∈A

cijx
t
ijkl . (B.8)

To minimize the total customer waiting, for each customer having multiple
feasible service days, we assign a penalty for not visiting it on the first of its
feasible service days. This penalty increases quadratically with customer waiting
time, and goes up to 1 if the customer is visited at the end of its feasible service
days, as shown in Figure B.3. This penalty function favors short waiting times
for several customers, as opposed to long waiting times for a few. For example,
letting three customers wait for one day is preferable to letting one customer wait
for three days if all of them have the same time window length. Additionally,
we use a′i instead of ai to reset the penalty function every day for the unvisited
customers and thus treat the unvisited customers and the new customers equally.
Let N ′ denote the set of customers having multiple feasible service days, and
let the integer variable yti be the day when customer i is visited. The second
objective can be formulated by:

f t
2 =

∑
i∈N ′

(
yti − a′i
bi − a′i

)2

, (B.9)
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where

yti =
∑

l∈{a′
i,...,bi}

∑
k∈K

∑
j:(i,j)∈A

lxt
ijkl ∀i ∈ N ′. (B.10)

ai'    ai'+1             bi                 Visit day

Penalty

1

0.44

0.11

Figure B.3: Penalty curve

The third objective, balancing the daily workload over the planning horizon, is
more difficult to define since future orders are unknown. In a static problem, this
objective can be achieved by minimizing the total deviation of daily workload,
where a single day’s workload deviation is measured by the absolute value of
the difference between that day’s workload and the average daily workload over
the planning horizon. However, in the dynamic case, it is unwise to allocate
the known orders evenly to all future days of the planning horizon. Instead,
it seems preferable to focus on the workload of the current day, since we have
the complete knowledge of the orders accumulated at the beginning of that day.
Moreover, since the actual average daily workload cannot be obtained until the
end of the planning horizon, we use an estimate of the average daily workload,
denoted by w̃t, based on historical data. The third objective is hence formulated
as:

f t
3 =

∣∣∣∣∣∣
∑
k∈K

∑
(i,j)∈A

cijx
t
ijkt − w̃t

∣∣∣∣∣∣ . (B.11)

As mentioned, scalar techniques and the Pareto method are the two most used
strategies for multi-objective optimization. However, in a dynamic context, the
Pareto method is inappropriate because even if it were possible to determine a
set of Pareto optimal solutions, it would be necessary to implement one of these
before the next day’s planning, without guidelines on how to make this selection.
We have therefore opted to implement the scalar method with weights, 1, w2

and w3, for objective f
t
1, f

t
2 and f t

3, respectively, and we work with the aggregate
objective

f t = f t
1 + w2f

t
2 + w3f

t
3. (B.12)
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B.3 A Three-Phase Rolling Horizon Heuristic

We propose a three-phase rolling horizon heuristic to handle the dynamic aspect
of the problem. Planning on day t starts with adjusting the set of feasible
service days for the yet unvisited customers, including those revealed on day
t − 1. A three-phase heuristic (TPH) is then applied to construct the delivery
plan for that day. In order to minimize the total travel time over the planning
horizon, instead of only planning the routes for day t, the TPH also optimizes the
routes for τ days in the future. Let Tt = {t, . . . , t+ τ} be the planning horizon
considered on day t. Phase I selects the customers to be visited within Tt. The
selection is necessary because the feasible service days of the customers may
not be entirely included in Tt. To this end, we perform a time-space correlation
analysis on the known customers. In Phase II, given the customers selected for
period Tt, routes are constructed by treating the planning problem as a PVRP
with a service frequency equal to 1 over the planning horizon Tt. This routing
problem is solved by means of a variable neighborhood search heuristic. In
Phase III, the routes to be executed on day t are postoptimized by means of
a tabu search algorithm, and the customers visited on day t are removed from
further consideration. This three-phase scheme is summarized in Algorithm 3.

Algorithm 3 : Rolling horizon framework

1: Input: the set N newt of customers revealed on each day t ∈ T
2: Output: the routing plan R = {R1, . . . , R|T |} for horizon T
3: N ← ∅
4: for t = 1 to |T | do
5: AdjustVisitDays(N)
6: N ← N ∪N newt−1

7: Nt ← SelectCustomers(N) // Phase I
8: {Rt, . . . , Rt+τ} ← RouteCustomer(Nt, Tt) // Phase II
9: Rt ← Optimize(Rt) // Phase III

10: N ← N \ {i : i ∈ Rt}
11: R← R∪Rt

12: end for

In the TPH, τ is a user-defined parameter. A small value of τ results in a
planning problem of small size for the subsequent solution phases and hence
reduces the computational burden, whereas a large value of τ helps optimize
the total routing cost over the planning horizon. A sensitivity analysis on τ is
conducted in Section 4.
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B.3.1 Phase I: Customer selection

The customer selection phase attempts to determine a good set of customers
to be visited in the future τ days without relying on routing information. The
”good” set is judged only by travel time, since the total travel time is the most
important objective of interest and this phase only performs a rough selection
of customers in the future τ days. The other two objectives will be mainly
considered in the second phase. The customer selection is achieved by analyzing
the time-space correlation between the known customers, as shown in Algorithm
4. More specifically, for each customer i we define a compatibility index qil for
each of its allowable service days, where l ∈ {a′i, . . . , bi}. A larger value of qil
corresponds to a higher visit preference for day l. The parameter is determined
as follows. First set qil equal to 0 for all customers and feasible service days. Now
consider two customers i and j having common allowable service days. If cij ≤ ρ
then both qil and qjl are increased by 1/(cij+δ)ε (l ∈ {a′i, . . . , bi}∩{a′j , . . . , bj}),
where ρ, δ and ε are user-defined parameters. A smaller cij results in a larger
increment (see Figure B.4). For each customer i, the day with the highest
compatibility index is selected as the best service day. The customers whose
best service days lie within Tt are selected for visit during that horizon. This
procedure is described as Algorithm 4.

Algorithm 4 : Phase I (Customer selection)

1: Input: the set of known customers N
2: Output: the set of customers Nt to be visited within period Tt

3: for i = 1 to |N | do
4: for l = a′

i to bi do
5: qil ← 0
6: end for
7: end for
8: for i = 1 to |N | − 1 do
9: for j = i+ 1 to |N | do

10: if cij ≤ ρ and {a′
i, . . . , bi} ∩ {a′

j , . . . , bj} 	= ∅ then
11: for l ∈ {a′

i, . . . , bi} ∩ {a′
j , . . . , bj} do

12: qil ← qil + 1/(cij + δ)ε

13: qjl ← qjl + 1/(cij + δ)ε

14: end for
15: end if
16: end for
17: end for
18: for i = 1 to |N | do
19: vi ← argminl∈{a′

i
,...,bi} qil

20: end for
21: Nt ← {i : vi ∈ Tt}
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Figure B.4: The increment value curve for different value of δ and ε

B.3.2 Phase II: Variable neighborhood search

The aim of the Phase II is to construct routes for customers on each day of
Tt. The objective in this phase is to minimize the total travel time, the total
customer waiting and balance the daily workload. This problem is treated as
a PVRP with frequency 1, where the planning horizon is {t, t + 1, . . . , t + τ},
and each selected customer i must be served with frequency 1 between day
max{t, ai} and day min{t+ τ, bi}. The PVRP is solved by means of a variable
neighborhood search heuristic (see Algorithm 10), made up of three components:
initialization, local search and shaking. An initial solution is first constructed
by means of a sweep heuristic. The local search phase is based on a tabu
search (TS) algorithm that uses simple insertion moves to transfer customers
from their route to another route. For each customer, all possible reinsertion
positions are attempted and the one leading to the minimum objective value
is selected. If TS fails to find a feasible solution within a preset number of
iterations, it is assumed that the customer set selected in Phase I is too large
and a customer with the largest number of remaining feasible service days is
removed from Nt. If TS fails to improve the solution within a preset number
θ of iterations, it restarts from another solution provided by a shaking phase,
based on a ruin and recreate approach (RRA) (Schrimpf et al., 2000; Pisinger
and Ropke, 2007). This procedure is initiated from the best known solution and
attempts to iteratively improve it by removing ξ% of the customers that have
the largest removal costs, and reinserting them by means of the regret insertion
method described in Algorithm 6. If the RRA finds a better solution or fails
to improve the best solution after κ iterations, TS is reapplied to it. Phase II
stops after ω iterations.
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Algorithm 5 : Phase II (Variable neighborhood search)

1: Input: the set of customers Nt to be visited within period Tt

2: Output: the solution s�

3: s← SweepHeuristic(Nt)
4: s� ← s
5: iteration← 0
6: while iteration < ω do
7: counter ← 0
8: while counter < θ do
9: (s,Nt)← TabuSearch(s,Nt)

10: iteration← iteration+ 1
11: if s < s� then
12: counter ← 0
13: s� ← s
14: else
15: counter ← counter + 1
16: end if
17: end while
18: counter ← 0
19: s← s�

20: while counter < κ do
21: s← RRA(s, ξ)
22: iteration← iteration+ 1
23: if s < s� then
24: s� ← s
25: break
26: else
27: counter ← counter + 1
28: end if
29: end while
30: end while
31: return s�

B.3.3 Phase III: Postoptimization

Phase III aims to minimize the total travel time on day t. This problem is
a Capacitated Vehicle Routing Problem which is solved by the TS heuristic
of Cordeau, Gendreau and Laporte (1997). In this algorithm, intermediate
infeasible solutions are allowed during the search and are controlled by means of
a penalized objective f ′(s, t) = c(s, t)+αq(s, t)+βd(s, t), where c(s, t) is the total
travel time by all vehicles on day t, and q(s, t) =

∑
k∈K(

∑
(i,j)∈A qix

t
ijkt −Q)+

and d(s, t) =
∑

k∈K(
∑

(i,j)∈A(cij + di)x
t
ijkt − D)+ are the total violations of

the capacity and duration constraint on day t, where (x)+ = max{0, x}. The
coefficients α and β are positive self-adjusting penalties. It should be noted that
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Algorithm 6 : Phase II (Ruin and recreate heuristic)

1: numToRemove is the number of customers to be removed and reinserted
2: Nt is the set of customers in the solution s
3: Input: current solution s
4: Output: updated solution s
5: NRem ← ∅
6: while |NRem| < numToRemove do
7: for i ∈ Nt do
8: RCi ← CalculateRemovalCost(i, s)
9: end for

10: i� ← argmini∈Nt RCi

11: s← RemoveCustomer(i�, s)
12: NRem ← NRem ∪ {i�}
13: Nt ← Nt \ {i�}
14: end while
15: while NRem 	= ∅ do
16: for i ∈ NRem do
17: bestICi ← CalculateBestInsertionCost(i, s)
18: secondICi ← CalculateSecondBestInsertionCost(i, s)
19: end for
20: i� ← argmaxi∈NRem(secondICi − bestICi)
21: s← InsertCustomer(i�, s)
22: NRem ← NRem \ {i�}
23: end while

the effect of postoptimization on workload balance is negligible compared with
that on total travel time because the weight assigned to the travel time in the
objective function is much larger, as will be seen later in Section B.4. Therefore,
the postoptimization of total travel time is also a further optimization in the
overall objective stated in equation (B.12).

B.4 Computational Results

The heuristic just described was implemented in C and executed on a Linux
computer with lx24-amd64 architecture and two Gbytes of RAM. The data and
parameters used in our tests are first described. Sensitivity analyses on the
parameters used in the heuristic are then performed. Finally we provide the
results of our tests on the Lantmännen data, which can be accessed via the
Internet at http://www2.imm.dtu.dk/~mw/dmpvrpData/.



B.4 Computational Results 91

B.4.1 Data and parameters

Real-world data were collected from Lantmännen. There are altogether 11 data
sets, five of which involve a 10-day planning horizon and six involve a 15-day
planning horizon. On average 80 orders are received every day. The number of
feasible service days ranges from one to 15 and is equal to 2.5 on average. Figure
B.5 shows the distribution of the number of days elapsed between the day at
which an order is placed and the first feasible service day. Most customers order
two or three days before the start of the service period. The average demand
of the orders is 6,306kg, and the vehicles have a capacity of 40,000kg. We use
Euclidian distances and assume the vehicle speed is 45km/hour.
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Figure B.5: Distribution of the number of days before the start of the service
period when customers call in

Based on preliminary tests, parameters ρ, δ and ε in Phase I of the TPH were
set to 60, 2 and 1.5, respectively. The maximum numbers of non-improving
iterations for the TS and the RRA of Phase II, i.e., parameters θ and κ, were
set to 102 and 104, respectively. In the RRA, between 25% and 35% of the
customers are removed and reinserted in each iteration. The estimated daily
workload for objective function f t

3 in Equation (B.11) is obtained from the
workload of the previous five days and is updated adaptively for each planning
day.
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B.4.2 Sensitivity analyses

This section describes the sensitivity analyses that were performed to assess the
behaviour of the TPH.

Number of days to plan in TPH

As mentioned in Section 3, the TPH not only plans the routes for day t, but
also for τ days in the future. We tested the TPH with different values of τ on 11
instances. Figure B.6 illustrates the convergence of the TPH for three different
values of τ . When τ equals 1 or 2, Phase I selects approximately 33% or 50%
of the customers, respectively. The results show that τ = 1 is not sufficient but
τ = 2 works very well. With a short running time (less than four minutes),
τ = 2 even provides better results than τ = ∞. This is because within a given
short running time, the problem of smaller size can be better optimized due to
a more thorough search, and the correlation analysis provides good candidates
for the customers that should be visited within the next two days.
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Figure B.6: Sensitivity analysis of number of planning days (τ)

Effectiveness of correlation analysis

To further demonstrate the effectiveness of correlation analysis, we compare the
results obtained with correlation analysis to those using a random scheme. In the
random scheme, we assume each customer is randomly and uniformly assigned
to one of its feasible service days, and customers assigned to the first τ days
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are selected. Figure B.7 shows the comparison between the two schemes. The
horizontal axis is the instance index and the vertical axis gives the total travel
time over the planning horizon by using a random selection scheme or correlation
analysis. The running time is set at four minutes. For all 11 instances, the
solutions provided by the correlation analysis are consistently better than those
obtained by the random selection scheme.
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Figure B.7: Comparison between correlation analysis and random selection
scheme

Results for the multi-objective function

In this experiment, we assess the effectiveness of the TPH to handle the multiple
objectives. Table B.1 shows the values of the first objective, i.e., total travel
time (denoted by F1), and of the second objective, i.e., total customer waiting
(denoted by F2), with different values of w2 ranging from 0 to 20. Column
’F1’ and ’F2’ are the total travel time over the planning horizon and the total
number of waiting days for all customers over the planning horizon, respectively.
The last row ’Average’ shows the average values for the 11 instances. As w2

increases from 0 to 20, the total customer waiting is reduced by half on average,
whereas the total travel time increases only slightly, by less than 1 %. Figure
B.8 depicts the relative changes of total travel time and total customer waiting
as a function of w2.

Similar results are obtained for the total travel time and for the total workload
deviations with increasing values of w3, as shown in Table B.2 and Figure B.9.
In Table B.2, column ’F3’ is the sum of deviations between each day’s duration
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Figure B.8: Relative changes in total travel time and total customer waiting as
a function of the weight w2 assigned to customer waiting time

and the average daily duration, over the planning horizon. The last row shows
the average values for the 11 instances. As can be seen from the results, when
w3 increases from 0 to 0.6, the average workload deviation decreases by more
than 70%, whereas the total travel time only increases by approximately 0.5%.
We also note that the rate of deviation reduction decreases as w3 increases. In
Figure B.9, within the interval 0.4 ≤ β ≤ 0.6, the deviation reduction curve
is nearly flat and the deviation reduction is insignificant. This is because the
objective function f t

3 used in the TPH minimizes the difference between the
workload on day t and an estimation of the average daily workload instead of
the actual average workload.

B.4.3 Comparison between TPH solutions and solutions
obtained with the company’s platform

Lantmännen already works with high quality solutions obtained by running
their vehicle routing software for 12 minutes each day on their latest platform.
Their software can deal with various practical restrictions. In order to establish
a fair comparison, we have used their software to solve our simplified problem
based on Euclidean distances with the same real-life data. We refer to these
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Figure B.9: Relative changes in total travel time and total workload deviation
as a function of the weight w3 assigned to daily workload deviation

solutions as the “company’s solutions”. We have also run our algorithm for
12 minutes on a similar computer, but the improvement obtained after four
minutes is insignificant. Comparative results are presented in Table C.7. Based
on the preliminary tests on the combinations of the parameters w2 and w3, we
found that their influence on the total travel time is very little. A good setting
is w2 = 4 and w3 = 0.15 in order to keep the total travel time change at an
insignificant level while reducing total customer waiting and improving workload
balance as much as possible.

Ten random runs for each instance are performed for our algorithm to obtain
the average value of the total driving time, total customer waiting, and daily
workload deviation. These statistics are provided in the columns ’Average total
duration’, ’Average total customer waiting’ and ’Average total workload devia-
tion’, respectively. The best value of the total travel time within the 10 random
runs are also presented in column ’Best total duration’. The results provided
by the company’s platform are for a single run. The average values for all the
instances are given in the last row. Regarding the total duration, our average
value for 10 runs is slightly better (by 0.2%) than that of the company’s solu-
tions, probably because both solutions are very close to optimality. However,
the TPH significantly improves customer waiting and workload deviation by up
to 24% and 35%, compared with the solutions obtained by using the company’s
platform. We also found the best solutions for all instances. This is a clear sign
of the effectiveness of our heuristic. One should bear in mind, however, that
customer waiting and daily workload balance may not have been optimized by
the company. In addition, the company’s solutions used in the comparison are
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not those that Lantmännen uses in the real life since its daily solutions are
generated under several practical restrictions.

B.5 Conclusion

We have considered a real-life dynamic multi-period and multi-objective routing
problem encountered by a large distributor operating in Sweden. The planning
horizon consists of several periods and the problem considers three objectives,
including minimization of the total travel time, minimization of customer wait-
ing, and daily workload balancing over the planning horizon. We have presented
a mixed integer linear programming formulation for the problem, and we have
proposed a three-phase heuristic embedded within a rolling horizon scheme. The
main idea of the heuristic is to wisely select the customers to be visited in the
near future, and to route these customers so that the overall travel time can
be minimized efficiently. The choice of customers to be routed on a given day
is performed rather effectively through a time-space correlation analysis. The
multiple objectives are handled by the scalar technique. The method was im-
plemented and tested on real-life data. Results show that the proposed TPH
provides very high quality solutions within a reasonable running time. The re-
sults are also compared with the solutions produced by the company’s platform.
The comparison shows that our method improves upon those solutions in terms
of travel time, customer waiting and daily workload balance, with gains of 0.2%,
24% and 35%, respectively. Our method is general and applies to other contexts.
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Abstract

The world’s second largest producer of pork, Danish Crown, also provides a fresh meat

supply logistics system within Denmark. This is used by the majority of supermarkets

in Denmark. This paper addresses an integrated vehicle routing and driver scheduling

problem arising at Danish Crown in their fresh meat supply logistics system. The

problem consists of a one-week planning horizon, heterogeneous vehicles, and drivers

with predefined work regulations. These regulations include, among other things,

predefined workdays, fixed starting time, maximum weekly working duration, and a

break rule. The objective is to minimize the total delivery cost, which is a weighted

sum of two kinds of delivery costs. The real-life case study is first introduced and

modelled as a mixed integer linear program. A multi-level variable neighborhood

search heuristic is then proposed for the problem. At the first level, the problem size is

reduced through an aggregation procedure. At the second level, the aggregated weekly

planning problem is decomposed into daily planning problems, each of which is solved

by a variable neighborhood search. At the last level, the solution of the aggregated

problem is expanded to that of the original problem. The method is implemented and

tested on real-life data consisting of up to 2000 orders per week. Computational results

show that the aggregation procedure and the decomposition strategy are very effective

in solving this large scale problem, and our solutions are superior to the industrial

solutions given the constraints considered in this work.

Keywords: vehicle routing, driver scheduling, Variable Neighborhood Search, node

aggregation.
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C.1 Introduction

Supplying supermarkets with different types of saleable items (fresh meat, milk,
fruit etc.) is expensive. Different types of goods have different requirements and
hence a typical supermarket is generally supplied by several trucks on a daily
basis. Each truck is a part of a transport system which can be expensive to
operate. Hence a number of supermarkets, from different supermarket chains
in Denmark, are supplied fresh meat by the same distributor, Danish Crown.
In this paper, we consider a Multi-Period Vehicle Routing and Driver Schedul-
ing Problem arising in the fresh meat logistics system at Danish Crown when
supplying a large number of supermarkets, more than 800, in Denmark.

The supermarkets place their orders with specified demand for different days of
the week before the week starts. The distributor then makes a weekly delivery
plan for the drivers and vehicles so that the orders are delivered, the drivers’
working regulations are respected and the total travel cost is minimized.

Danish Crown is the largest producer of fresh meat in Denmark. It slaughters
over 20 million pigs and 0.5 million pieces of livestock each year. Its pork pro-
duction is the largest in Europe and the second largest in the world. In addition,
Danish Crown is responsible for the delivery of fresh meat to supermarkets all
over Denmark every day. There are two distribution terminals placed in Kolding
and Ringsted, operating independently. In this project, we consider the Kolding
terminal. It receives more than 2000 orders every week and delivers meat to
over 800 supermarkets across western Denmark. Figure C.1 shows the locations
of the customers and of the terminal. The total amount of meat delivered varies
from day to day, ranging from 60 tons to 300 tons. As a result, the need for
drivers varies as well. Danish Crown has a number of drivers who work on regu-
lar workdays with a fixed number of hours every week. For busier days, Danish
Crown needs to hire drivers with their own trucks from external transportation
companies to take the routes that can not be covered by the limited number of
their own drivers.

The literature on the integrated Vehicle Routing and Crew Scheduling Problem
(VRCSP) is rather limited. To our best knowledge, the most relevant work is
that of Zaepfel and Boegl (2008). They addressed a weekly planning problem
for postal companies, in which pickup tours and delivery tours must be de-
cided for vehicles and drivers based on variable vehicle capacities and drivers’
working regulations. Similar to our work, they also considered the driving rules
and different types of drivers with different costs and working regulations. In
their work, a solution framework was proposed, which consists of four parts: ini-
tialization, route generation, personnel assignment and solution evaluation. The
framework was tested with two guiding metaheuristics, Tabu Search and Genetic
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Figure C.1: Locations of customers and depot (represented by a square) in the
Danish Crown case study

Algorithm. The Tabu Search procedure was found to be competitive in solv-
ing their application. Another integrated vehicle routing and driver scheduling
problem that has been studied in the literature is about the urban mass tran-
sit system, in which the buses and drivers are scheduled to serve a number of
trips defined by a timetable (Huisman et al. (2005), Huisman and Wagelmans
(2006), Freling et al. (2003), and Mesquita and Paias (2008)). Most of the
solution methods for the VRCSP in the urban mass transit system are based on
Column Generation and Lagrangian Relaxation. The integrated aircraft rout-
ing and crew scheduling problem is also relevant. This problem is solved by the
Benders decomposition in Cordeau et al. (2001b), Mercier and Soumis (2007),
Papadakos (2009), which decomposes the integrated problem into an aircraft
routing problem and a crew pairing problem.

The vehicle routing part of our problem can be viewed as a Heterogeneous Vehi-
cle Routing Problem with Time Windows (HVRPTW) in which a limited num-
ber of heterogeneous vehicles, characterized by different capacities, are available
and the customers have a specified time window for service. The HVRPTW
is usually solved by heuristics. The best known algorithms for this problem
include: adaptive large neighborhood search (Pisinger and Ropke (2007)), vari-
able neighborhood search (Paraskevopoulos et al. (2008), Imran et al. (2009))
and simulated annealing (Li et al. (2007), Braysy et al. (2008)). Choi and Tcha
(2007) proposed an exact method based on column generation for the problem.
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For a recent literature review, see Baldacci et al. (2008).

The remainder of this paper is organized as follows. The MPVRCSP arising at
the Danish Crown is defined in Section 2. In Section 3, the problem is formulated
as a mixed integer linear program. A multi-level variable neighborhood search
method is proposed in Section 4. Section 5 presents the computational results
on the real-life data and conclusions follow in Section 6.

C.2 Problem Description

The problem is to determine routes for delivering fresh food to a set of super-
markets (or customers) every day over a one-week planning horizon. The routes
are planned for a fleet of heterogeneous vehicles and a number of drivers with
predefined working regulations. This distribution problem is very complicated
in practice and involves many special restrictions. In this work, we simplified
the real-life problem by only considering the major constraints.

A number of practical issues are considered regarding the delivery. First of all,
each customer can order a different amount of meat every day, measured in
weight (Kg) and volume (pallets). Each vehicle has limited capacities both in
weight and in volume. Secondly, each customer has a certain time window for
receiving its order. Finally, certain special customers have requirements on the
vehicle size. This is usually because of small roads or limited parking lot sizes. If
an inappropriate vehicle type is used to serve such a customer, the driver usually
needs to park some distance from the supermarket. This results in additional
service time, which is proportional to the number of pallets ordered.

There are two categories of drivers hired to carry out the delivery: internal
and external drivers. The internal drivers are employed by Danish Crown.
They work on predefined workdays and for no more than a maximum weekly
working duration (37 hours) over a week. As changing the predefined working
days requires formal negotiation with the drivers and their union, they are
considered fixed in this project. The external drivers and their trucks are hired
from external transportation companies and contracted at fixed hourly price.
Both the internal and external drivers start working at specified times and must
finish before given latest ending times. The drivers cannot drive for more than
4.5 hours without a 45-minute break according to the EU driving legislation.

Several different types of costs are considered in this problem. We assume that
the internal drivers have regular salaries according to their contracts. Hence
only the fuel cost of the routes assigned to the internal drivers are considered,
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which depends on the distance travelled and the cost per kilometer. The external
drivers are contracted at a fixed price every hour, which covers both the salary
for the driver and the vehicle cost. Therefore, the cost of the routes assigned
to the external drivers is calculated by multiplying the route duration and the
fixed hourly price.

The objective can therefore be described to minimize the fuel cost of the routes
taken by the internal drivers and the cost of the routes taken by the external
drivers over the planning horizon in such a way that each order must be served
by one vehicle within its time window, vehicle capacities are not exceeded, each
driver starts working at a predefined time and finishes before a given time on
every workday, the internal drivers work for no more than a maximum weekly
duration over the planning horizon, and the break rule regarding the driving
legislation is respected.

This problem integrates vehicle routing and driver scheduling. The complexity
of this problem can be characterized in many aspects: the multiple periods, the
heterogeneous vehicles, different types of drivers with different working regu-
lations and the simultaneous planning of vehicles and drivers. Note that the
orders on different days are fixed. The only constraint connecting the routes on
different days is therefore the maximum 37 weekly hours for the internal drivers.
This means that a certain driving schedule for an internal driver on one day will
affect the maximum duration of the driver on the remaining days. Without this
constraint, this weekly planning problem can be viewed as several independent
daily planning problems, each of which considers the vehicle routing and crew
scheduling problem on a single day, namely the daily planning problem. This
property is utilized in the solution method described in Section 4, and helps
solving the large size problem effectively and efficiently.

C.3 Mathematical Formulation

This section presents a mixed integer linear programming formulation for the
MPVRCSP. We denote the planning horizon by T and the set of drivers by D.
The set of workdays for driver l ∈ D is denoted by Tl ⊆ T . The start working
time and latest ending time for driver l ∈ D on day t ∈ T are given by gtl and
ht
l , respectively. Let DI and DE denote the set of the internal and external

drivers (D = DI ∪ DE). For each internal driver l ∈ DI , let H denote the
maximum weekly working duration. We denote the maximum elapsed driving
time without break by F and the duration of a break by G (according to the
EU driver legislation).
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Let K denote the set of vehicles. For each vehicle k ∈ K, let Qk and Pk denote
the capacity in weight and in volume, respectively. We assume the number of
vehicles equals to the number of drivers. Denote the set of n customers (/nodes)
by N = {1, 2, ..., n}. Denote the depot by {0, n+ 1}. Each vehicle starts from
{0} and terminates at {n+ 1}. Each customer i ∈ N specifies a set of days to
be visited, denoted by Ti ⊆ T . On each day t ∈ Ti, customer i ∈ N requests
service with demand of qti in weight and pti in volume, service duration dti and
time window [ai, bi]. Note that, for the depot i ∈ {0, n + 1} on day t, we set
qti = pti = dti = 0. Denote the set of preferable vehicles for visiting customer
i by Ki (Ki ∈ K) and the extra service time per pallet by e if a customer is
not visited by a preferable vehicle. The travel time between customer i and j
is given by cij . Denote the cost coefficients of the travel time of the internal
drivers by A and the working duration of the external drivers by B.

We define binary variable xt
ijk to be 1 if vehicle k travels from node i to j on day

t, binary variable wt
i to be 1 if customer i is not visited by a preferred vehicle

on day t. Variable vtik is the time that vehicle k visits node i on day t. Binary
variable ztik indicates whether vehicle k takes a break after serving customer i
on day t. Variable ut

ik is the elapsed driving time for vehicle k at customer i
after the previous break on day t. Binary variable ytlk is set to 1 if vehicle k is
assigned to driver l on day t. Variables rtl and stl are the total working duration
and the total travel time for driver l on day t, respectively.

This notation can be summarized as follows:

Set:
T The set of workdays in the planning horizon,
DI The set of internal drivers,
DE The set of external drivers,
D The set of drivers D = DI ∪DE ,
Tl The set of workdays for driver l ∈ D,
K The set of vehicles,
N The set of customers,
N0 The set of customers and depot N0 = {0, n+ 1} ∪N ,
Ki The set of preferable vehicles for customer i ∈ N ,
Ti The set of days on which customer i ∈ N orders,
Parameter:
Qk The weight capacity of vehicle k ∈ K,
Pk The volume capacity of vehicle k ∈ K,
cij The travel time from node i ∈ N0 to node j ∈ N0,
[ai, bi] The earliest and the latest visit time at node i ∈ N ,
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dti The service time of node i ∈ N0 on day t ∈ Ti,
qti The weight demand of node i ∈ N0 on day t ∈ Ti,
pti The volume demand of node i ∈ N0 on day t ∈ Ti,
e The extra service time per pallet when a non-preferable vehicle is

used,
[gtl , h

t
l ] The start time and the latest ending time of driver l ∈ D on day

t ∈ T ,
H The maximum working duration for each internal driver over the

planning horizon,
F The maximum elapsed driving time without break,
G The duration of the break for drivers,
A The cost factor on the total travel time of internal drivers,
B The cost factor on the total working duration of the external

drivers,
Variables:
xt
ijk Binary variable indicating whether vehicle k ∈ K travels from node

i ∈ N0 to j ∈ N0 on day t ∈ T ,
wt

i Binary variable indicating whether customer i ∈ N0 is visited by a
non-preferable vehicle on day t ∈ T ,

vtik The time at which vehicle k ∈ K starts service at node i ∈ N0 on
day t ∈ T ,

ztik Binary variable indicating whether vehicle k ∈ K takes break after
serving node i ∈ N0 on day t ∈ T ,

ut
ik The elapsed driving time of vehicle k ∈ K at node i ∈ N0 after the

previous break on day t ∈ T ,
ytlk Binary variable indicating whether vehicle k ∈ K is assigned to

driver l ∈ D on day t ∈ T ,
rtl The total working duration of driver l ∈ D on day t ∈ T ,
stl The total travel distance of driver l ∈ D on day t ∈ T .

The mathematical formulation for this problem is presented as follows:

minA ·
∑
l∈DI

∑
t∈Tl

stl +B ·
∑
l∈DE

∑
t∈Tl

rtl (C.1)

∑
k∈K

∑
j∈N0

xt
ijk = 1 ∀i ∈ N, t ∈ Ti (C.2)

∑
k∈K\Ki

∑
j∈N0

xt
ijk = wt

i ∀i ∈ N, t ∈ Ti (C.3)

∑
i∈N

∑
j∈N0

qtix
t
ijk ≤ Qk ∀k ∈ K, t ∈ T (C.4)

∑
i∈N

∑
j∈N0

ptix
t
ijk ≤ Pk ∀k ∈ K, t ∈ T (C.5)
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∑
j∈N0

xt
0jk = 1 ∀k ∈ K, t ∈ T (C.6)

∑
i∈N0

xt
ihk −

∑
j∈N0

xt
hjk = 0 ∀h ∈ N, k ∈ K, t ∈ T (C.7)

∑
i∈N0

xt
i,n+1,k = 1 ∀k ∈ K, t ∈ T (C.8)

ut
jk ≥ ut

ik + cij −M(1− xt
ijk)−Mztik ∀i, j ∈ N0, k ∈ K, t ∈ T (C.9)

ut
jk ≥ cij −M(1− xt

ijk) ∀i, j ∈ N, k ∈ K, t ∈ T (C.10)

ut
ik +

∑
j∈N0

cijx
t
ijk − F ≤ Mztik ∀i ∈ N0, k ∈ K, t ∈ T (C.11)

vtjk ≥ vtik + dti + e · pti · wt
j + cij

+G · ztik −M(1− xt
ijk) ∀i, j ∈ N0, k ∈ K, t ∈ T (C.12)

bi ≥ vtik ≥ ai ∀i ∈ N, k ∈ K, t ∈ Ti (C.13)∑
k∈K

ytlk = 1 ∀l ∈ D, t ∈ Tl (C.14)

∑
l∈D

ytlk = 1 ∀k ∈ K, t ∈ T (C.15)

vt0k ≥
∑
l∈D

(gtl · ytlk) ∀k ∈ K, t ∈ T (C.16)

vtn+1,k ≤
∑
l∈D

(ht
l · ytlk) ∀k ∈ K, t ∈ T (C.17)

stl ≥
∑
i∈N0

∑
j∈N0

cijx
t
ijk −M(1− ytlk) ∀l ∈ DI , k ∈ K, t ∈ Tl (C.18)

rtl ≥ vtn+1,k − gtl −M(1− ytlk) ∀l ∈ D, k ∈ K, t ∈ Tl (C.19)∑
t∈Tl

rtl ≤ H ∀l ∈ DI (C.20)

xt
ijk , w

t
i , z

t
ik, y

t
lk ∈ {0, 1} ∀i, j ∈ N0, l ∈ D, k ∈ K, t ∈ T (C.21)

vtik, u
t
ik, r

t
l , s

t
l ≥ 0 ∀i, j ∈ N0, l ∈ D, k ∈ K, t ∈ T (C.22)

The objective function (C.1) minimizes weighted sum of the travel time of the
internal drivers and the working duration of the external drivers over the plan-
ning horizon.

The constraints can generally be divided into two classes: one focuses on the
vehicle routing (constraints (C.2-C.8) and (C.12-C.13)) and the remaining em-
phasizes the driver scheduling.
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Constraints (C.2) state that each customer must be visited by one vehicle on
each of its delivery days. Constraints (C.3) define whether each customer is
visited by a preferable vehicle. Constraints (C.4—C.5) guarantee that the vehi-
cle capacities are respected in both weight and volume. Constraints (C.6—C.8)
ensure that each vehicle must start and terminate at the depot and that the
flow is conserved at each customer on each day.

Constraints (C.9—C.10) define the elapsed driving time. More specifically, for
the vehicle (k) travelling from customer i to j on day t, the elapsed driving time
at j equals the elapsed driving time at i plus the driving time from i to j (i.e.,
ut
jk ≥ ut

ik + cij) if the vehicle does not take a break at customer i (i.e., ztik = 0);

Otherwise, if the vehicle takes a break at customer i (i.e., ztik = 1), the elapsed
driving time at j will be constrained by (C.10) which make sure it is greater
than or equal to the travel time between i and j (i.e., ut

jk ≥ cij). Constraints
(C.11) guarantee that the elapsed driving time never exceeds an upper limit F
by imposing a break at customer i (i.e., ztik = 1) if driving from customer i to
its successor results in a elapsed driving time greater than F .

Constraints (C.12) determine the time to start the service at each customer. If
j is visited immediately after i, the time vtjk to start the service at j should

be greater than or equal to the service starting time vtik at i plus its service
duration dti, the extra service time e ·pti if i is visited by an inappropriate vehicle
(i.e., wt

j = 1), the travel time between the two customers cij , and the break time
G if the driver takes a break after serving i (i.e., ztik = 1). Constraints (C.13)
make sure the services start within the customers’ time window.

Constraints (C.14) assign each driver a route on each of his/her workday. Con-
straints (C.15) make sure each route on each day is assigned to exactly one
driver. Constraints (C.16—C.17) ensure that the starting time and ending time
of each route must lie between the start working time and latest ending time of
the assigned driver. Constraints (C.18) calculate the total travel time for each
internal driver. Constraints (C.19) define the working duration for each driver
on every workday, which equals the time the driver returns to the depot minus
the time he/she starts work. Constraints (C.20) make sure that the internal
drivers work for no more than a maximum weekly working duration, referred
to as 37 week-hour constraints. Constraints (C.21—C.22) define the binary and
positive variables used in this formulation.

The formulation containsO(|N |2|K||T |) variables and O(|N |2|K||T |) constraints.
Without Constraints (C.9-C.11) and (C.14-C.20), the problem can be reduced
to a multi-period Heterogeneous Vehicle Routing Problem with Time Windows,
which has already been proved to be NP-hard. Therefore, our problem is also
NP-hard.
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C.4 Multi-level Variable neighborhood search heuris-
tic

We propose to solve this problem using a heuristic. Firstly, the problem is NP-
hard and secondly we foreseen that the size of the problems that needs to be
solved makes an exact approach prohibitive. The proposed method is named
Multi-Level Variable Neighborhood Search heuristic (MLVNS) and illustrated
in Figure C.2.

 Level III

Level II

 Level I

Node aggregation

select the busiest unplanned day t

Any unplanned day?

Update the maximum working durations for internal drivers on day t

Vehicle routing and driver scheduling for day t
(variable neighborhood search)

Node segregation

End

Figure C.2: The flowchart of the MLVNS.

The MLVNS consists of three levels. The first level reduces the problem size
through a node aggregation procedure. The second level constructs the solution
to the aggregated problem. To reduce the computational overhead, we decom-
pose the weekly planning problem into six daily planning problems, which are
then solved sequentially in a given order. Before a specific daily problem is
solved, the maximum daily duration of each internal driver is updated based on
the 37 week-hour constraints and the workload that has been assigned to the
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driver on the previously planned days. Given the updated information on the
internal drivers, the daily distribution plan is determined by means of a variable
neighborhood search. At the last level, the solution of the aggregated problem
is expanded to a solution for the original problem and the time to visit each
customer is determined.

In the remainder of this section, the aggregation procedure is described in Sec-
tion 4.1. How to update the maximum daily durations for the internal drivers
is described in detail in Section 4.2. The variable neighborhood search that is
applied to solve the daily planning problem is presented in Section 4.3. The
overall method is summarized in Section 4.4.

C.4.1 Aggregation procedure

The basic idea of the aggregation procedure is to reduce the problem size by
combining several nodes (customers) to a single supernode. The nodes to be
aggregated are selected by analyzing their time windows, demands, and the
travel times between them. Intuitively, it is preferable to visit supermarkets
located close to each other, if possible, by the same vehicle in order to minimize
the total travel distance. We hence treat such supermarkets as one supernode
in order to reduce the size of the planning problem.

Our aggregation procedure is an iterative process. If two nodes i and j are
located close enough (i.e. cij ≤ ρ or cji ≤ ρ), have sufficient overlap in time
windows (i.e. min{bi, bj} − max{ai, aj} > δ) and the total amount of their
orders is no more than κ1 and κ2 in weight and volume, they become a candidate
pair to be aggregated. At each iteration, the set of candidate pairs is found and
the pair with the shortest distance is firstly aggregated. If the aggregation
feasibility check fails, the aggregation is revoked and the candidate pair with
the second shortest distance is tried to be aggregated. This attempt continues
until one pair is aggregated successfully and then a new iteration begins. If no
pair can be aggregated or the set of candidate pairs is empty, the aggregation
procedure stops.

Every aggregation forms a supernode, which replaces the original two node(s)
/supernode(s). The newly aggregated supernode, denoted by h, can be repre-
sented by a chain of basic nodes, denoted as {h1, ..., hf}. The first node h1 is
called the entry point and the last node hf the exit point. The entry point
and the exit point are used to update the distance between h and the rest of
nodes/supernodes. The distances from h to the rest of nodes/supernodes are
set to be the distances from hf to them. Similarly, the distances from the rest
of nodes/supernodes to h are set to be the distances from them to h1.
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The demand of the aggregated node is calculated as the sum of the demands
of the nodes in the chain. The internal distance of h is calculated as ch =∑

i∈{1,...,f−1} chi,hi+1 . For simplicity, the earliest start time to serve h is set to
the maximum starting times of the nodes included in h, i.e., ah = maxi∈{1,...,f}ahi .
Since certain customers have special requirements on the vehicle size, we define
the internal duration of h visited by vehicle k as dkh, which is the sum of total
travel time, total service time and total additional service time caused by using
vehicle k. The internal duration dh of the supernode is set to dh = maxk∈Kdkh
to ensure the feasibility of the solution. The latest visit time of h is defined as
bh = mini∈{1,...,f}(bhi − dh). For each new supernode after aggregation, if its
bh is greater than ah, the aggregation is regarded as ”feasible” and otherwise
”infeasible”. It should be stressed that, in our algorithm, the way to select the
candidate pairs of nodes to be aggregated and the way to define the time window
for the newly aggregated supernode are simple and greedy. In a general context,
two nodes to be aggregated do not have to overlap in their time windows. Since
we only aggregate the nodes that are located very close to each other and the
customers usually have loose time windows in our problem, this aggregation
procedure works effectively and is able to reduce the problem size significantly.

In the aggregation procedure, the parameters ρ, δ, κ1 and κ2 control the degree
of aggregation. Increasing the values of ρ, κ1 and κ2, or decreasing the value of
δ results in more aggregation of nodes. Generally, aggressive aggregation leads
to a problem with small size and quick convergence. However, it also narrows
down the feasible region, and may decrease the solution quality. The effects of
the aggregation on solution quality and computational time are investigated in
Section 5.

C.4.2 Updating driver duration

In order to accelerate the algorithm, we decompose the weekly planning problem
into several daily problems and solve these daily problems sequentially. When
decomposing, we only need to consider how to distribute the 37 weekly hours
to each workday of the internal drivers. To respect this constraint, a maximum
daily duration is imposed for each internal driver on each workday. There are
several ways to determine this maximum daily duration.

A simple way is to evenly distribute the 37 hours to each workday, namely
an even allocation strategy. This can be achieved by setting maximum daily
duration Ml to 37 hours divided by the number of workdays for each internal
driver l on each workday. In this case the internal drivers will never be assigned
for more than 37 working hours over the week. However, since this simple
strategy fails to take the significant variation of daily workload into account,
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some internal drivers might be idle on days with lower demand, while a lot of
external drivers have to be hired for busier days.

In order to overcome this, we propose another strategy which adaptively de-
termines the maximum daily duration before each daily plan is made, namely
an adaptive allocation strategy. Based on the observation on the data that a
larger number of customers generally lead to a longer overall duration, we can
assume that the day with more orders is a “busier” day. We first sort the days
according to the number of orders and plan the busy days ahead of the quiet
days. For a specific day t, if internal driver l works on day t (i.e., t ∈ Tl), we
determine his/her unplanned work duration Wl by subtracting the total work
duration already assigned to driver l on the previous planned days from the
37 hours and determine the number of unplanned workdays Ul for driver l. If
day t is the last workday to be planned for l (i.e., Ul = 1), Ml is set to Wl so
that the 37 week-hour constraints are respected. Otherwise, if Ul > 1, Wl is
set to Wl/Ul +Θ, where Wl/Ul is the average daily workload for the remaining
unplanned days, and Θ is a user defined parameter. An appropriate value of Θ
gives a degree of flexibility in the plan and leads to a good utilization of internal
drivers on busy days since the daily problems are solved in descending order of
workload. The adaptive allocation strategy is summarized in Algorithm 7 and
a comparison of the two strategies is conducted in Section 5.

Algorithm 7 : Level II (Update daily work duration for internal drivers for
day t)

1: Input: The planning day t; The set of routes R = {R1, . . . , R|T |}
2: Output: The maximum daily work duration M = {M1, . . . ,M|DI |} for day t
3: for l = 1, . . . , |DI | do
4: Ul ← GetTotalWorkDays(l)
5: Wl ← H
6: for i ∈ T \ {t} do
7: if (Ri 	= ∅) &( i ∈ Tl) then
8: σ ← GetPlannedDailyWorkDuration(Ri, l)
9: Wl ←Wl − σ

10: Ul ← Ul − 1
11: end if
12: end for
13: if Ul > 1 then
14: Ml ←Wl/Ul +Θ
15: else
16: Ml ←Wl/Ul

17: end if
18: end for
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C.4.3 Variable Neighborhood Search

The VNS was first introduced by Mladenovic and Hansen (1997) to ”exploit
systematically the idea of neighborhood change, both in the descent to local
minima and in the escape from the valleys which contains them” (Hansen and
Mladenovic (2001), Hansen and Mladenovic (2005)). During the past decade,
this method has been successfully applied to a wide range of rich vehicle routing
problems (Paraskevopoulos et al. (2008), Imran et al. (2009), Hemmelmayr et
al. (2009)).

In this work we also develop a VNS to solve the daily planning problem which is
an integrated vehicle routing and driver scheduling problem. The proposed VNS
consists of three components: initialization, a shaking phase, and a local search.
An initial solution is constructed and improved iteratively. In each iteration,
one of five large neighborhoods is first exploited in order to diversify the search,
referred to as shaking phase, and a local search is then applied in order to find
the local optima. These components and the overall framework of the VNS are
detailed below.

C.4.3.1 Initialization

Our initial solution is generated by means of a sweep heuristic, as shown in
Algorithm 8. We first assign each vehicle a random driver and sort the nodes
in an ascending order of the angle they make with the depot and an arbitrary
radius. The nodes are then assigned to the vehicles sequentially. For each
unrouted node, it is assigned to the vehicle considered currently if the vehicle
capacities and the corresponding driver’s duration are not exceeded or if the
vehicle is the last available vehicle. Otherwise, the node is assigned to a new
vacant vehicle.

Algorithm 8 : Level II (Initialization of VNS)

1: Sort the customers in an ascending order of the angle they make with the depot
and an arbitrary radius {1, ..., n}

2: Assign each vehicle a random driver
3: Set the first vehicle k:= 1.
4: for i = 1, ..., n do
5: if insertion of i to k results in violation of capacities or duration constraints

then
6: k ← min{k + 1,—K—}.
7: end if
8: Insert i to k so as to minimize the total travel time of k.
9: end for
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C.4.3.2 Local Search

The local search in our VNS is performed by the Unified Tabu Search Algorithm
(UTSA) (Cordeau et al. (2001a)). The UTSA allows intermediate infeasible
solutions during the search by means of a penalized objective f(s, t) = c(s, t) +
αp(s, t)+βq(s, t)+ γd(s, t)+ ξw(s, t), where c(s, t) is the delivery cost on day t,
p(s, t) =

∑
k∈K(

∑
i∈N

∑
j∈N0

pix
t
ijk − Pk)

+ and q(s, t) =
∑

k∈K(
∑

i∈N

∑
j∈N0

qix
t
ijk−Qk)

+ are the total violations of the capacities in weight and in volume on

day t, d(s, t) =
∑

k∈K(vtn+1,k −
∑

l∈D ht
l ·ytlk)+ is the total violation of the daily

duration of all the drivers on day t, and w(s, t) =
∑

i∈N (vtik − bi)
+ is the total

violation of the service time window on day t, where (x)+ = max{0, x}. The
coefficients α, β, γ and ξ are positive self-adjusting penalties. A simple insertion
is employed to improve the solution iteratively, which transfers customers from
their original routes to other routes. The UTSA stops when the solution is not
improved for a given number of iterations ϕ.

C.4.3.3 Shaking phase

Five large neighborhoods are proposed for the shaking phase. The first three
are based on the Ruin and Recreate Approach (RRA) (Schrimpf et al. (2000),
Pisinger and Ropke (2007)). The basic idea of the RRA is to diversify the search
by removing a number of bad customers from the current solution according
to a removal scheme and then reinsert them into the routes again based on
a reinsertion scheme. All these three neighborhoods use the same reinsertion
scheme, i.e., regret heuristic (Potvin and Rousseau (1993), Ropke and Pisinger
(2006)), but different removal schemes.

The first neighborhood uses a worst removal heuristic which selects a certain
percentage (θ) of customers with the largest removal costs (Ropke and Pisinger
(2006)). The removal cost of a customer is defined to be the change in the solu-
tion value when it is removed from the route. This neighborhood is named the
Worst Removal Neighborhood and denoted by WRN. The second neighborhood
removes the customers covered by the external driver with the shortest working
duration, namely the Driver Removal Neighborhood (DRN). The neighborhood
helps not only to minimize the cost caused by using the external drivers but also
reduce the number of vehicles used. The third neighborhood, Overlap Removal
Neighborhood (ORN), removes all the customers in those routes that have the
largest overlapping areas. The area of a route is defined as the area of the small-
est rectangle that covers the depot and all the customers on that route. The
areas of routes may overlap with each other. We define the overlapping area of
each route to be the sum of its overlapping areas with all the other routes. In
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the ORN, we sort all the routes in a descending order of the overlapping area
and remove the customers on the first λ routes. Since most of the customers
have wide time windows, reducing the overlapping areas of routes may lead to
a better solution. Such an example is illustrated in Figure C.3, where, for sim-
plicity, we consider two vehicles with capacity 4 and seven customers with unit
demand. The solution before reducing the overlapping area is shown in (a). The
area of each route in the solution and the overlapping area are defined in (b).
The solution after reducing the overlapping area is depicted in (c) and the over-
lapping area is given in (d). As we can see from this small example, reducing
the overlapping area leads to a better solution with smaller travel distance.

After the removal of customers, a regret heuristic, as detailed in Algorithm 9,
is applied to reinsert the removed customer into the routes. For each node in
the node set to be reinserted, a regret value is determined, which is defined as
the difference in the cost of inserting it to the best position and the second best
position. The node with the largest regret value is selected, inserted to the best
position, and removed from the node set. This procedure repeats until the node
set is empty.

Algorithm 9 : Level II (Regret heuristic for the WRN, DRN and ORN in
VNS)

1: NRem is the set of nodes to be inserted into solution s
2: while NRem 	= ∅ do
3: for i ∈ NRem do
4: bestICi ← CalculateBestInsertionCost(i, s)
5: secondICi ← CalculateSecondBestInsertionCost(i, s)
6: end for
7: i� ← argmaxi∈NRem(secondICi − bestICi)
8: s← InsertCustomer(i�, s)
9: NRem ← NRem \ {i�}

10: end while

The other two neighborhoods are constructed by a swap move. The fourth
neighborhood, Swap Driver Neighborhood (SDN), swaps the drivers to find
a good match between the drivers and the routes in terms of starting time
and ending time. Similarly, the last neighborhood, Swap Truck Neighborhood
(STN), swaps vehicles, as shown in Figure C.4. In the SDN (/STN), all possible
pairs of drivers (/vehicles) are tried and the pair that leads to the minimum
objective value is selected and applied.

To sum up, the five neighborhoods proposed for the shaking phase fall into two
categories. The first three, WRN, DRN, and ORN, emphasize the construction
of good routes, whereas the other two, SDN and STN, focus on assigning the
right vehicles and right drivers to the routes. A sensitivity analysis on the effects
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of these neighborhoods is conducted in Section 5.

Overlaped
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(a) Original solution (b) Overlapped area of solution in (a)

(c) New solution (d) Overlapped area of solution in (c)

Figure C.3: An example of two solutions with different overlapping areas
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Figure C.4: An example of swapping vehicles

C.4.3.4 VNS framework

The overall framework of the VNS is given in Algorithm 10. Set L = {WRN,
DRN,ORN,SDN,STN} denotes the set of five large neighborhoods used in
the shaking phase. Set L′ denotes the set of available neighborhoods during the
search procedure. The VNS starts with the initial solution given by the sweep
heuristic and improves the solution iteratively until the stop criteria reached.
In each iteration, it exploits a neighborhood selected from L′ and updates the
current solution with a solution from the selected neighborhood. The UTSA is
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then applied on the neighboring solution and it stops when the best solution
found so far has not been improved within ϕ iterations. There are two possible
values, ϕ1 and ϕ2 (ϕ1 < ϕ2), for parameter ϕ depending on whether the UTSA
is supposed to search thoroughly (i.e., ϕ = ϕ2) or not (i.e., ϕ = ϕ1). If the best
solution found by the UTSA (s�UTSA) is better than the best solution found
in the previous VNS iteration (s�), s� is updated by s�UTSA and the boolean
parameter improved is set to True, meaning that the best solution is improved
in the current VNS iteration. Otherwise, improved is set to False. The VNS
stops once a certain time limit τ has been reached.

Algorithm 10 : Level II (VNS framework)

1: Input: The planning day t; The set of customers Nt to be planned on day t; The
maximum duration M for internal drivers on day t.

2: Output: The route plan Rt for day t.
3: improved← False
4: L′ ← L
5: s← SweepHeuristic(Nt)
6: while CPUT ime ≤ τ do
7: if improved then
8: ϕ← ϕ1

9: L′ ← L
10: else
11: L′ ← L′ \ {currentL}
12: if L′ = ∅ then
13: ϕ← ϕ2

14: L′ ← L
15: end if
16: if SDN ∈ L′ then
17: currentL← SDN
18: else
19: currentL← FindLongestUnused(L′)
20: end if
21: end if
22: s← ApplyLNS(currentL, s,M)
23: (s, s�UTSA)← TabuSearch(s,M,ϕ)
24: if s�UTSA is better than s� then
25: s� ← s�UTSA

26: improved← True
27: else
28: improved← False
29: end if
30: end while
31: Rt ← s�

32: return Rt

We now describe how the VNS selects the value of ϕ from {ϕ1, ϕ1} and how
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it adaptively selects a neighborhood in the shaking phase at each iteration.
The parameter ϕ is initialized by the small value ϕ1, and L′ by L. If the
best solution (s�) is updated in the previous iteration (i.e., improved = True),
the same neighborhood used in the previous iteration is applied again in the
current iteration. Otherwise, if improved = False, the neighborhood used in
the previous iteration is removed from the set of potential neighborhoods L′ and
another neighborhood from L′ takes over. If the removal leads to an empty L′,
which means the best solution has not been improved by the last five iterations,
we set ϕ to be the large value ϕ2 so that the UTSA will search thoroughly in
future, and reset L′ to be L so that all neighborhoods become available again.
As soon as the best solution is updated, ϕ is set back to ϕ1 and L′ back to
L. When selecting a neighborhood from L′, we first consider the SDN. If the
SDN is not in L′, the neighborhood that has not been used for the longest
time is selected. The reason of giving the SDN a higher preference is that the
assignment of the right drivers to the routes is found to be very crucial due to the
various starting times of the drivers, as we will show in Section 5. Besides, the
three neighborhoods, WRN, DRN and ORN, as well as the UTSA all emphasize
on the route optimization, therefore a higher selection probability of the SDN
balances the optimization efforts on all aspects of the problem.

C.4.4 Overall method

The overall MLVNS is summarized in Algorithm 11. Line (3—6), line (7—13)
and line (14—16) correspond to Level I, II and III, respectively.

C.5 Computational Results

In this section we present the computational experiments on the real-life data
provided by Danish Crown. Our method was programmed in C# and executed
on a Pentium 2.66GHz machine and two GB of memory. We first describe the
data and parameters used in our tests and then present a sensitivity analysis
of the parameters as well as a comparison between our solutions and Danish
Crown’s solutions.
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Algorithm 11 : Multi-level variable neighborhood search heuristic

1: Input: The set of nodes N = {N1, . . . , N|T |}
2: Output: The set of routes R = {R1, ..., R|T |}
3: for t = 1, ..., |T | do
4: Nt ← AggregationProcedure(Nt)
5: Rt ← ∅
6: end for
7: daysP lanned← 0
8: while daysP lanned < |T | do
9: t← FindBusiestUnplannedDay(R)

10: M ← UpdateMaxWorkDuration(t,R) // see Algorithm 7
11: Rt ← VNS(Nt,M) // see Algorithm 10
12: daysP lanned← daysP lanned+ 1
13: end while
14: for t = 1, ..., |T | do
15: Rt ← Expand(Rt)
16: end for
17: return R

C.5.1 Data and parameters

There are data sets for four weeks, each of which consists of six workdays. As
an example, Table C.1 shows the total number of orders and the total demand
by volume and weight for each workday from 29/09/2008 to 04/10/2008. The
length of time window (TW) in this week ranges from 1 hour to 24 hours and
the histogram of the TW length is shown in Figure C.5. Approximately 40%
of the orders have an 8-hour TW, most of which have [0.00, 8.00]. Roughly
35% of the orders have 2- to 4- hour time windows in the early morning, such
as [6.00 8.00], [7.00 10.00] and [6.00 10.00]. Around 18% of the customers do
not have any restriction on visiting time and can be visited at any time during
the day. This is because Danish Crown has the electronic keys to access these
supermarkets. The vehicle information is provided in Table C.2, including the
sizes, the capacities and the numbers of the vehicles. Approximately 10% of
the supermarkets have requirements on the vehicle size. There are 14 internal
drivers and at most 14 external drivers used every day. All the internal drivers
are fully used every day in our solution. Euclidean distances are used in our
tests and we assume the vehicle speed is 60km/hour.

The value of each parameter used in the algorithm is set based on the prelimi-
nary tests. The minimum length (δ) for the overlap required between two time
windows in order for two nodes to be aggregated is set to 60 minutes. The
capacity parameters κ1 and κ2 are set according to the smallest vehicle, i.e.,
7000 (KG) and 18 (pallets) respectively. The parameter Θ used in the adap-
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tive allocation strategy in solving the daily problems is set to 60 minutes. The
parameter θ in the WRN is set to 10%, i.e., 10% of customers are removed
and reinserted again. The parameter λ in the ORN is set to 2, meaning that
customers in two routes are removed. The iteration number ϕ1 and ϕ2 for the
stop criteria in the TS are set to 350 and 1500, respectively.

Total demand
Date Number of orders (Pallet) (Kg)

29/09/2008 279 329.5 84263.5
30/09/2008 381 439.5 125118.6
01/10/2008 365 399.0 124740.5
02/10/2008 364 434.5 124740.5
03/10/2008 397 577.0 170938.1
04/10/2008 360 483.0 144057.5

Table C.1: Orders from 29/09/2008 to 04/10/2008
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Figure C.5: The TW length of the customers

Capacity
Type Number of vehicles (Pallet) (Kg)

Big 9 33 14000
Medium 2 27 10000
Small 14 18 7000

Table C.2: Vehicle Resource
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C.5.2 Sensitivity Analysis

The purpose of this section is to assess the behavior of the proposed heuristic
and analyze the sensitivity of the parameters. The analysis can be classified
into two categories. The first one focuses on the algorithm performance on
daily problems. We tested the algorithm on six daily instances, including both
busy days and easy days, and examined three aspects of the algorithm: the
effectiveness of the node aggregation procedure, the effectiveness of using two
alternative values for ϕ in the UTSA in the VNS, and the effects of the five
large neighborhoods in the shaking phase of the VNS. The second group of tests
evaluated the performance of the algorithm on solving weekly problems and
provided the following results: a comparison of two work duration allocation
strategies for decomposition and a comparison of the different number of the
special supermarkets that have requirements on vehicle size.

Effectiveness of the aggregation procedure

As mentioned in Section 4, before the solution is constructed, the problem size
is first reduced through a node aggregation procedure in which pairs of nodes
with a distance less than or equal to ρ are considered to be aggregated into a
single supernode. We tested the algorithm with different values of ρ on six daily
instances. Figure C.6 illustrates the convergence of the proposed heuristic for
four values of ρ, 0, 2, 4 and 6. When ρ equals 0, no aggregation is done. When
ρ equals 2, 4 or 6, the problem size is reduced by approximately 25%, 35% and
50%, respectively. Table C.3 shows the detailed results. Column ’Index ’ is the
test descriptor and column ’Time’ is the running time in minute for each test,
ranging from 3 to 36 minutes. For each ρ, the column ’Average solution value’
reports the average solution value z̄ρt on the six daily instances in test t. The
column ’Conv.(%)’ shows the relative difference in the average solution value

between test t−1 and t, calculated as
z̄ρ
t −z̄ρ

t−1

z̄ρ
t−1

·100, which also indicates the speed

of convergence with different values of ρ. The column ’Gap(%)’ provides the
percentage gap between solution value of the aggregated problem (ρ′ = {2, 4, 6})
and that of the original problem (ρ = 0), calculated as

z̄ρ′
t −z̄ρ

t

z̄ρ
t

· 100. These

gaps show how the solution value is influenced by different level of aggregation,
depicted in Figure C.7.

As seen from Table C.3 and Figure C.6, a higher value of ρ yields a faster con-
vergence to the solution since more of the feasible region is cut by the aggressive
aggregation. With a short running time, the aggregated problem leads to a bet-
ter solution due to an intelligent search in a smaller feasible region. For example,
ρ = 6 provides better results than ρ = 0 when the running time is shorter than
20 minutes. However, given an enough computation time, the aggregated prob-
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lem is not competitive to the original problem any more in terms of solution
quality. For instance, the solution value provided by ρ = 0 is consistently better
than that provided by ρ = 6 when the running time is larger than 20 minutes.
A good trade-off between the running time and solution quality is obtained with
ρ = 2. When ρ = 2, there are 2.57 nodes in a supernode on average. The largest
supernode contains 7 nodes.
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Figure C.6: Average solution value as a function of running time using different
values of ρ
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Effectiveness of using two alternative values for ϕ
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The parameter ϕ in the stop criteria of UTSA is self-switched between two user
defined values ϕ1 and ϕ2 (ϕ1 < ϕ2). We compare the performance of using two
ϕ values (i.e., ϕ = {ϕ1, ϕ2}) with that of using solely one ϕ value (i.e., ϕ = ϕ1 or
ϕ = ϕ2). Ten random runs on the six daily instances with different running times
are performed. Given a running time t, we denote the average solution value
with ϕ = ϕ1 by z̄ϕ1(t), the average solution value with ϕ = ϕ2 by z̄ϕ2(t), and
the average solution value with ϕ = {ϕ1, ϕ2} by z̄{ϕ1,ϕ2}(t). Figure C.8 shows
the percentage gap between z̄ϕ1(t) (and z̄ϕ2(t)) and z̄{ϕ1,ϕ2}(t) as a function of

running time t. These gaps can be calculated as fϕ1(t) =
z̄ϕ1(t)−z̄{ϕ1,ϕ2}(t)

z̄{ϕ1,ϕ2}(t)
· 100

(and fϕ2(t) =
z̄ϕ2(t)−z̄{ϕ1,ϕ2}(t)

z̄{ϕ1,ϕ2}(t)
· 100). The results show that, given an enough

computational time (more than 13 minutes), the solution of using two values of
ϕ is consistently better than that of using solely one value. The improvement
is approximately 2%.
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Figure C.8: Solution gap in percentage between using two ϕ values and using
solely one ϕ value

Effect of the five large neighborhoods in the shaking phase in the VNS

We proposed five neighborhoods in the shaking phase of the VNS, including
the WRN, DRN, ORN, SDN and STN. We evaluated the contribution of each
neighborhood in this section and show the effect of combining the five neighbor-
hoods. In Table C.4, column ’Index ’ is the test descriptor and column ’Time’
is the running time in minute for each test, ranging from 3 to 36 minutes. For
each neighborhood setting L, column ’Average solution value’ reports the av-
erage solution value z̄Lt on the six daily instances in test t. Column ’Gap(%)’
presents the percentage gap in the average solution value between using one

neighborhood L1 and using five neighborhoods L, calculated as
z̄
L1
t −z̄L

t

z̄L
t

· 100.
Row ’Average’ provides the overall average value of each column. Figure C.9
shows gaps as a function of running time.

From Table C.4 and Figure C.9, we can see that, among all the five neighbor-
hoods, the SDN is the most effective one. This is the reason why we give SDN
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the highest selection probability in the shaking phase as mentioned in Section
4. The heuristic with all the five neighborhoods outperforms the heuristic with
any single neighborhood by 0.6% to 3% given an enough computational time.
On average, the SDN accounts for the largest portion, around 30% of the total
number of calls of neighborhoods, and the ORN accounts for the least, around
14%. For the heuristic with different combinations of these neighborhoods, the
performance is generally better when more neighborhoods are included.
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Figure C.9: Solution gap in percentage between using different large neighbor-
hood settings

Effectiveness of the adaptive allocation strategy

We compared the two allocation strategies, even allocation strategy and adaptive
allocation strategy, used to distribute the 37 weekly hours to each workday for
the internal drivers. The average solution values on the four weekly instances
are provided in column ’Average solution value’ in Table C.5. The column
’Gap(%)’ shows the percentage gap between the solution values using the two
strategies. Row ’Average’ shows the overall average value of each column. For
all the tests, the adaptive allocation strategy consistently performs better than
the even allocation strategy and improves the solution by 4.5% on average.

Effect of the supermarkets that have requirements on vehicle size

In real life approximately 10% of the supermarkets have requirements on vehicle
size, referred to as special supermarkets. To analyze the influence of these spe-
cial supermarkets, in addition to the real-life case supplied by Danish Crown,
we created two additional cases. In the first case we assume there is no special
supermarket and the corresponding results are shown in column ’0% of super-
markets ’. In the second case, we randomly added vehicle size requirements to an
additional 10% of the supermarkets from the real-life case so that altogether 20%
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of supermarkets were special. The test results are presented in Table C.6. For
each test, the average solution value, total distance, total duration and number
of vehicles used are provided in column ’Average solution value’, ’Average total
distance’, ’Average total duration’ and ’Number of vehicles ’, respectively. Row
’Average’ shows the overall average value of each column. As we can see from
the table, the number of special supermarkets has a large effect on the solution
values. As the proportion of special supermarkets increases from 0% to 20%,
the solution value, total travel distance and total route duration are increased
by 21%, 5.7%, and 8.8%, respectively. More vehicles are required when there
are a large number of special supermarkets.

C.5.3 Comparison with industrial solution

Danish Crown also provided the routes they planned and executed for the four
weekly instances. However, the only accessible information about their real-life
plan is the list of customers served in every route on every day. The exact order
in which and the time at which each customer is visited are not available. We
therefore calculated a TSP lower bound on the travel distance for each route
using Concorde (Appelgate et al. (2003)). These lower bounds are provided in
column ’LB on travel distance’ in Table C.7. The first column gives the names
of the data sets and the second column corresponds to the index of days in
each week. The daily solutions as well as the summarized weekly solutions are
provided. We also tested our algorithm on the same instances. The average
solution value and the average travel distance on ten random runs are presented
in column ’Average solution value’ and column ’Average travel distance’. The
numbers of vehicles used in the two solutions are provided in columns ’Number of
vehicles ’. Column ’Gap(%)’ shows the percentage gap between travel distance
(z̄) by our method and the lower bound ( ¯zLB) on the travel distance of the
industrial solution, calculated as z̄−z̄LB

z̄LB
·100. The results show that, our solution

is superior to the industrial solution in terms of both the total travel distance
and the number of vehicles used.

It also needs to be stressed that the TSP lower bound is a very poor lower
bound on the travel distance since a lot of constraints are not considered in the
TSP, such as the time windows, the working regulation and so on. Therefore,
the actual difference between the two solutions is likely to be larger. However,
one should bear in mind that the company’s solutions are generated under more
practical restrictions with more realistic parameters, such as the varying speed
of the vehicles. In addition, the company may have set requirements on the
robustness of the solutions for easy management of the resources, which is not
considered in this paper.
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C.6 Conclusion

We have addressed a planning problem with integrated vehicle routing and driver
scheduling which arises from a practical problem of Danish Crown. In this prob-
lem, a routing plan, consisting of six days in a week, has to be made for a fleet of
heterogeneous vehicles to deliver the fresh meat to the supermarkets according
to their demands and preferences, such as the visiting time and the preferable
vehicle sizes. The route plan also needs to comply with the drivers’ working
regulations, such as the fixed workdays, the fixed starting time and latest end-
ing time, the maximum weekly working duration, break rule and so on. The
objective is to minimize the total delivery cost. We have presented a mixed in-
teger linear programming formulation for the problem and a multi-level variable
neighborhood search based heuristic for solving it. The first level of the pro-
posed heuristic effectively reduces the problem size through a node aggregation
procedure based on the locations, demands, and time windows of the nodes.
The second level decomposes the aggregated weekly planning problem into six
daily problems by wisely distributing the internal drivers’ weekly workload to
each workday and solves the daily problems sequentially by means of a variable
neighborhood search. Two aspects of our VNS were proved to be very effective:
the combination of five large neighborhoods in the shaking phase and the alter-
native usage of a short-term and long-term searching in the local search. At the
last level, the solution of the aggregated problem is expanded to the solution
of the original problem. The heuristic was implemented and tested on real-life
data. Our solution is superior to the industrial solution in terms of the total
travel distance and number of vehicles used.
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Time Even allocation strategyAdaptive allocation strategy
(minute) Average solution value Average solution valueGap(%)

10 135104 129201 -4.4
14 128561 124412 -3.2
18 124790 119656 -4.1
22 122670 117304 -4.4
26 121410 115453 -4.9
31 120073 113849 -5.2
36 119289 113011 -5.3

Average 124557 118984 -4.5

Table C.5: Average solution values with even allocation strategy and adaptive
allocation strategy
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MLVNS solution Danish Crown solution
Average Average Number LB on Number

Data solution travel of travel of Gap
set Day value distance vehicles distance vehicles (%)

Week10 13532 4365 15.0 5809 20 -24.9
1 21839 5397 16.7 6383 23 -15.4
2 23859 5518 17.0 6389 23 -13.6
3 22176 5349 17.0 6252 23 -14.4
4 29805 6018 19.0 6592 24 -8.7
5 32559 6235 19.0 6374 23 -2.2

Total 143770 32882 19 37799 24-13.0

Week20 12498 4032 15.0 6136 20 -34.3
1 16122 4888 15.8 6801 23 -28.1
2 17726 5404 15.5 6392 23 -15.5
3 15152 4647 15.0 5960 23 -22.0
4 20550 5280 16.0 6142 24 -14.0
5 16284 5008 15.5 6068 23 -17.5

Total 98332 29260 16 37500 24 -22.0

Week30 12630 4074 14.8 5920 20 -31.2
1 17246 4973 15.8 6586 23 -24.5
2 16650 5259 15.2 6924 23 -24.0
3 14881 4767 15.0 6720 23 -29.1
4 19302 5208 16.0 6862 24 -24.1
5 14107 4551 15.0 6292 23 -27.7

Total 94817 28831 16 39304 24 -26.6

Week40 13056 4211 15.0 5966 20 -29.4
1 14722 4699 15.2 6514 23 -27.9
2 20010 5372 16.0 6417 23 -16.3
3 14960 4673 15.0 6262 23 -25.4
4 28930 5833 18.0 6839 24 -14.7
5 23448 5605 17.0 7080 23 -20.8

Total 115125 30394 18 39078 24 -22.2

Table C.7: Comparison between the Danish Crown solution and MLVNS solu-
tion
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The Vehicle Routing Problem (VRP) is one of the most important and challenging optimization prob-
lems in Operations Research field. It was first introduced by Dantzig and Ramser (1959) and defined 
as the problem of designing the optimal set of routes for a fleet of vehicles in order to serve a given 
set of customers. The VRP is a computationally hard combinatorial problem and has been intensively 
studied by tremendous researchers in the last fifty years. Due to the significant economic benefit 
that can be acheived by optimizing the routing problems in practice, more and more attentions has 
been given to various extensions of the VRP that arise in real life. These extensions are often called 
Rich Vehicle Routing Problems (RVRPs). In contrast to the research of classical VRP that focuses on 
the idealized models with unrealistic assumptions, the research of RVRPs considers those compli-
cated constraints encountered in the real-life planning and provides solutions that are executable in 
practice.
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