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Summary

This thesis treats two different planning problems from the transporta-
tion industry; one from freight transport and one from passenger trans-
port. Each problem emerges as a combination of problems that are
already known from the operational research literature, and introduces
a new view of well-known issues. They both originate in the world of
multimodality, and deal with problems that arise as a consequence of the
combined use of several modes.

The thesis introduces the Double Travelling Salesman Problem with Mul-
tiple Stacks (DTSPMS), which is a problem that combines routing and
last-in-first-out loading constraints. After giving an introduction to the
problem, a range of related problems from the literature are discussed.
Some considerations are made regarding basic bounds for the problem,
and illustrations of problem solutions are given to provide an impres-
sion of how solutions of the DTSPMS compare to solutions of the reg-
ular Travelling Salesman Problem. Next, two papers are presented, in-
troducing respectively heuristic and exact solution procedures for the
problem. The heuristic approach tests a variety of metaheuristic so-
lution approaches, of which a large neighbourhood search obtains the
best results. Results are provided for real-life instance sizes, for smaller
instances for which the optimal solution value is known, and for some
larger instances, which can also be justified from a real-life perspective.
With the purpose of solving the DTSPMS to optimality, several differ-
ent mathematical formulations are presented and tested in the second
paper. The most promising approach is based on a decomposition of the
problem into a routing part and a loading feasibility part, and all tested
instances with 15 orders can be solved using this approach.

The Simultaneous Vehicle Scheduling and Passenger Service Problem
(SVSPSP) is an integration of two problems that are usually solved
separately and sequentially, namely the timetabling problem and the
Vehicle Scheduling Problem. The SVSPSP allows for the solution of
the timetabling problem to be reoptimised when considering the vehicle
scheduling phase, and considers passenger inconvenience at transfers at
the same time. The paper presents a mathematical model of the prob-
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lem, and the implementation of a large neighbourhood search solution
procedure. The problem is solved for a real-life based problem instance,
containing eight bus lines in the Greater Copenhagen area, and the re-
sults are promising.



Resumé

Nærværende afhandling, “Beslutningsstøtte til planlægning af multi-
modal transport med flere målsætninger”, behandler to forskellige plan-
lægningsproblemer fra transportsektoren; et fra godstransport og et fra
passagertransport. Begge problemer er opst̊aet som en kombination af
problemer der allerede er velkendte fra operationsanalyselitteraturen, og
bidrager med en ny synsvinkel p̊a velkendte problemstillinger. De er
begge af multimodal natur, og beskæftiger sig med problemer der opst̊ar
som en konsekvens af den kombinerede anvendelse af flere transport-
former.

Afhandlingen introducerer det dobbelte handelsrejsendes problem med
flere stakke (double travelling salesman problem with multiple stacks –
DTSPMS), som kombinerer rutelægning og LIFO-pakningsbetingelser
(last-in-first-out). Efter en introduktion af problemet, diskuteres en
række relaterede problemer fra litteraturen. Der præsenteres nogle over-
vejelser vedrørende øvre og nedre grænser for løsningsværdier, og illus-
trationer af nogle løsninger præsenteres for at give en fornemmelse af
forholdet mellem løsninger til DTSPMS og til det traditionelle handel-
srejsendes problem. Herefter præsenteres to artikler, der introducerer
henholdsvis heuristiske og eksakte løsningsmetoder til problemet. Den
heuristiske tilgang undersøger flere forskellige metaheuristiske løsnings-
metoder, hvoraf en stornabolagssøgning (large neighbourhood search)
opn̊ar de bedste resultater. Der præsenteres resultater for problemin-
stanser af realistisk størrelse fra den virkelige verden, for mindre in-
stanser, hvor den optimale løsning er kendt, og for større instanser, hvis
størrelse ligeledes kan retfærdiggøres ud fra et virkelighedsnært perspek-
tiv. Med henblik p̊a at opn̊a optimale løsninger til DTSPMS introduceres
og afprøves forskellige matematiske formuleringer i den anden artikel.
Den mest lovende løsningstilgang er baseret p̊a en dekomponering af
problemet i en rutelægningsdel og en pakningsdel, og alle testede prob-
leminstanser kan løses med denne metode.

Det kombinerede vognløbsplanlægnings- og passagerserviceproblem (si-
multaneous vehicle scheduling and passenger service problem – SVSPSP)
integrerer to problemstillinger som sædvanligvis betragtes adskilt og
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sekventielt, nemlig et køreplansproblem og et vognløbsproblem. SVSPSP
åbner mulighed for at køreplansproblemet kan reoptimeres i forbindelse
med vognløbsplanlægningsfasen, og betragter samtidig passagergener ved
skift. Artiklen præsenterer en matematisk model for problemet, og en
stornabolagsløsningsmetode implementeres. Problemet løses for en virke-
lighedsbaseret probleminstans som indeholder otte S-buslinier samt S-
togene fra københavnsomr̊adet, og resultaterne er lovende.
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di Brescia, and I wish to thank Professor Grazia Speranza and Assistant
Professor Claudia Archetti for being a fantastic inspiration for my work
during my time in Brescia. I would at the same time like to thank the
rest of the group for making my visit a pleasant experience.

I would also like to thank The NABIIT Programme Commission (Nano
Science and Technology, Biotechnology and IT) from The Danish Council
for Strategic Research for funding the project.



vi

Furthermore, I would like to thank Finn Laursen from Easy Cargo Sys-
tems A/S, for introducing me to the problem that was later dubbed the
double travelling salesman problem with multiple stacks, and for provid-
ing a lot of inspiration and industry background knowledge at the early
stages of the project.

During the last years I have been surrounded by various colleagues at
CTT, IMM, MAN and DTU Transport – luckily most of my colleagues
have changed less often than the names of their departments. I want
to thank them all for their encouragement and support throughout the
project, and to the ones I have worked more closely with, a special thanks
is due for their inspiration and discussions on all sorts of topics.

Kgs. Lyngby, June 2009

Hanne L. Petersen



Papers included in the thesis

[A] Hanne L. Petersen, Oli B.G. Madsen. The Double Travelling Sales-
man Problem with Multiple Stacks - Formulation and Heuristic
Solution Approaches. European Journal of Operational Research,
2009. Accepted for publication.

[B] Hanne L. Petersen, Claudia Archetti, M. Grazia Speranza. Exact
Solutions to the Double Travelling Salesman Problem with Multiple
Stacks. Networks. Accepted for publication.

[C] Hanne L. Petersen, Allan Larsen, Oli B.G. Madsen, Bjørn Petersen,
Stefan Røpke. The Simultaneous Vehicle Scheduling and Passenger
Service Problem Conditionally accepted for publication.



viii



Contents

Summary i

Resumé iii
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Chapter 1

Introduction

Transportation of goods and passengers plays an important role in the so-
ciety of today, and with increased globalisation the dependency on trans-
port is not likely to reduce in the coming years. The transportation in-
dustry currently accounts for 7% of the GNP of the European Union, and
30% of the energy comsumption.1 Total freight transportation within the
European Union amounted to almost 4 · 1012 tonne-kilometres in 2005,
showing a 30% increase in the period 1995–2005. 44% of this was road
transport, 42% waterborne, and 8.5% rail.2

Recent years have shown an increased awareness of environmental issues,
which call for a reduction in the ressource consumption used for trans-
portation. This can be achieved either by reducing the use of transport
(amount or distance), or by more efficient ways of providing the desired
level of transportation (be it planning or technical improvements). Fur-
thermore, road congestion is a growing problem world-wide, and this
problem cannot be solved exclusively by expanding infrastructure; there
is also a need to reduce traffic on the roads. At the intra-continental level
both of these goals can be obtained by moving goods and passengers off
the roads, and onto other modes, such as rail, or, where applicable, short-
sea/inland shipping. For passenger transportation this typically implies
increased use of public transportation to replace individual car travel;
even though buses travel on the same roads as cars, they cause much less
congestion per passenger. For freight transport, it is a declared goal of
the European Commission to increase usage of the rail and sea modes.3

1Transport: In Brief, http://www.euractiv.com/en/transport/transport-
brief/article-159326, retrieved Feb 2, 2009

2Panorama of Transport,
http://epp.eurostat.ec.europa.eu/cache/ITY OFFPUB/KS-DA-07-001/EN/KS-DA-
07-001-EN.PDF, retrieved Feb 2, 2009

3“EU seeks to shift freight to rail and shipping”,
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However, since these modes are usually unable to provide door-to-door
transportation, they can only be used in combination with road trans-
port. For such a combination to be a viable alternative, the transfer of
goods between modes has to be performed smoothly and without signif-
icant increases of cost or time.

Intermodal transportation is the term used to describe any transporta-
tion process which requires the use of more than one mode, and is thus
dependent on the possibility of performing modal transfers. These modal
transfers, and the terminals at which they take place, play an important
role in intermodal transportation, since they are a necessity, a potential
bottleneck, and a key feature of the intermodal transportation chain.

Intermodal freight transportation has been in use for a number of years,
but has received increased attention recently, due to escalating conges-
tion and environmental considerations. The ability to handle intermodal
transfers is closely related to the availability of uniform storage equip-
ment, that enables terminals to handle many different types of goods.
With the use of uniform containers, each terminal only needs the ability
to handle the containing unit, regardless of its contents, which signifi-
cantly reduces the requirements for the handling equipment. Such stan-
dardised containers have been developed during the 20th century, and
are in widespread use today.

In passenger transportation, the combined use of several modes for one
journey is also no novelty, and use of public transportation has always
required combination with other modes (walking to the nearest embark-
ment point, if nothing else). With the complex networks of public trans-
portation that are available in many modern cities, the usefulness of
intermodal travelling has increased, and today it is necessary to consider
several modes (train, bus, tram, metro, etc.) for almost any form of local
or regional public transport.

This thesis will consider two different problems that both originate in an
intermodal setting; one from freight transportation, and one from public
transport. The first is a problem that is related to the use of intermodal
freight transportation, and occurs as a part of an intermodal chain, where
the initial and final phases are concerned with the consolidation and
breaking up of containerised transport. The other problem originates in
multimodal passenger transportation, and considers the use of scheduling
to help reduce passenger inconvenience at modal transfers.

1.1 Multimodality

In order to reduce the amount of traffic on the roads, a part of this
traffic must be transferred to other modes. However, since trucks are

http://www.euractiv.com/en/transport/eu-seeks-shift-freight-rail-shipping/article-
167734, retrieved Feb 2, 2009
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often the only mode capable of performing the end parts of a freight
transport, i.e. the actual visit at the customer site, the use of alternative
modes can often only happen in combination with trucks. Reducing the
amount of traffic in passenger transportation implies an increased use of
public transport, and multimodality is a cornerstone in a flexible public
transport network. Thus, multimodality becomes an important factor in
removing traffic from the roads – concerning freight as well as passenger
transport.

Public transportation depends heavily on the availability of good and
plentiful opportunities for transfer between the different bus and train
lines that are available. A good network for public transportation is
often built around a rail backbone, which can transport large numbers
of passengers much more easily than a bus network can, while buses
are typically used when transporting passengers between a train station
and their home or working place. Thus the interchange between trains
and buses is often inevitable in a well-functioning public transportation
network, and short interchange times are consequently a very important
factor in making public transportation a viable alternative for personal
travel.

In freight transportation trucks serve the same purpose as buses do in
public transport – they can access almost any location to pick up or
deliver orders, but have some disadvantages for transportation of large
quantities over longer distances. In freight transportation there is often
a considerable potential economical benefit obtainable from economies of
scale when using rail or sea for long-haul transportation, albeit often at a
cost of reduced flexibility and speed. Furthermore, the final destination
may be practically unreachable by use of truck alone; this is naturally
the case for many intercontinental shipments, but also around e.g. the
Mediterranean or the Baltic Sea.

Intermodality has the potential to be successfully applied in many trans-
portation contexts, but naturally it also has its limitations. The transfers
and consolidation occuring in intermodality inevitably take time, mean-
ing that intermodality is usually not competitive for highly time-critical
or urgent deliveries. This naturally disregards transports where an in-
termodal combination does indeed provide the fastest opportunity, such
as air transport of freight that is combined with trucking to and from
the airport.

Intermodality is, or can be, a viable alternative for a large amount of
the freight transportation occuring today, where timeliness is a factor,
but not the most important factor. This includes inter-continental con-
tainerised transports which are by their very nature intermodal, since
no single mode is available that can perform the entire transport. Also
for door-to-door parcel delivery, intermodality and consolidation play an
important role. In most cases speed is an issue for such tasks, albeit not
at any cost. This sets the stage for parcel carriers, who often operate an
elaborate net of terminals in a hub-and-spoke network. In such networks
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parcels are often consolidated at several levels, and at each terminal the
consolidated units may be split up or combined to form new units. This
means that the level of consolidation varies during each leg of the jour-
ney. In such a network all legs may be covered by trucks, however due
to the re-loading and consolidation of the goods, it still exhibits many of
the properties of an intermodal transportation chain.

In passenger transport the temporal aspect is generally more important
than when handling freight. A travelling passenger will usually not ac-
cept an excessively long waiting time for a transfer, whereas a container
does not experience the actual travel, and its journey will usually be
acceptable as long as the departure and arrival times (and thereby trip
duration) are acceptable. For passengers, the value of time is much higher
than for freight, and intermodality will only be considered if it provides
the fastest or otherwise “best” journey. However, since the transfer op-
eration is much less demanding in passenger transport, the bottleneck
effect is smaller for passengers than for freight, and multimodality can
often be a competitive alternative in terms of journey duration, e.g. in
commuting using public transportation.

1.1.1 Freight transport

A key feature of intermodal freight transportation is the use of consolida-
tion to obtain economies of scale. By consolidating, it becomes possible
and economical for the transporter to use modes such as rail or sea,
where the cost of transportation per unit is lower, but where the capac-
ity and start-up costs are such that most customers depend on using it
as a service shared with others. For consolidation to become a popular
and widespread option, it is necessary to have standardised packaging
equipment, since the use of such equipment immensely facilitates the
required handling operations. Such packaging equipment is used today,
in the form of standardised containers. The most widely used standard
container size used is 40 ft (approximately 12 m), which gives a container
with a loading capacity of 2 TEU (twenty-foot equivalent units4), allow-
ing approximately 34 m3 and up to 30 tonnes. Such 40 ft containers,
along with the 20 ft variant (1 TEU), enclose the vast majority of inter-
national containerised goods today. Some variations of the standard 40
ft container exist, including extra long (45 ft, around 14 m) and extra
high containers.

Like containers, pallets provide a standardised way of packaging freight,
facilitating handling and planning. When goods are packaged on a pallet
and securely wrapped, it constitutes a loading unit which takes up a fixed
amount of floor area, making planning easier than when irregular items
are handled. Furthermore the use of pallets ensures that the goods can
be easily handled and moved by e.g. a forklift truck. The standardised

4A TEU is the amount of goods that can be transported in a 20 ft container, and
is the standard measure for amounts of transported cargo
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europallet (not a worldwide standard like the 40 ft container) measures
80 by 120 centimetres.

In freight transportation, cargo is often categorised as truckload, less-
than-truckload, bulk or break bulk. Truckload (or containerload) refers
to orders where the customer has enough cargo to fill a truck with one
order. The truck can then travel directly from the origin to the destina-
tion, without any need for consolidation. When the orders are smaller
they are referred to as less-than-truckload (LTL). An LTL order often
consists of a number of pallets to be transported, which means that all
items handled by the shipper are still of identical shape and size, though
other objects of more irregular shape are also classified as LTL. Finally,
bulk refers to such goods as grain or coal, and break bulk to items that
can be handled individually, such as boxes or barrels. Pallets are also
usually considered break bulk.

When considering freight transportation, there are typically four modes
available to the planner: truck, rail, sea and air. Of these alternatives
truck is by far the most flexible, since all other modes require designated
terminals (rail terminal, harbour or airport) for goods to be loaded and
unloaded. However the cost of this flexibility is high, for example in
terms of man-power, since a truck can in general only transport 2 TEU5

at a time. For comparison a freight train can typically transport around
80–100 TEU, or twice that amount when using double-stacking6, and the
largest container ships have a capacity over 10,000 TEU, with a crew of
10–20 persons. For freight airplanes the capacity lies somewhere between
that of trucks and trains, however the price of transportation by air is
much higher than for any other mode. The sea and air modes may
be necessary to reach certain locations that are inaccessible by road or
rail alone (such as intercontinental connections), though typically truck
transport is still required for parts of such a journey. Air transport has
the additional advantage of being high speed, although the speed comes
at a high monetary cost. As a result, air transport is not an alternative
that is considered for much of the large quantity of goods that is being
transported around the world.

The issue of intermodality in freight transportation is typically relevant
for all but the very shortest deliveries. The use of trucks for customer
visits is often inevitable, since the customer is rarely located directly at a
suitable terminal. However for further transport of containerload freight,
rail or sea, depending on the final destination, is often a good alternative
for economical reasons.

5in some places in Europe up to 3 TEU are allowed, and in other parts of the
world even more. However the larger capacities are only applicable for long-haul
transportation, and it seens fair to assume a maximum capacity of 2 TEU for trucks
that perform customer visits.

6double-stacking allows the placing of containers on top of each other, thus doubling
the capacity of a train of a given length. The use of double-stacking in Europe is very
limited due to the number of low bridges etc., but it is in more widespread use in
other parts of the world.
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Figure 1.1: An example of a small intermodal freight network.

Figure 1.1 shows a sketch of an sample intermodal network. It consists
of a number of separated distribution networks, each served by trucks,
and each with its own terminal. The terminals are linked together by
rail or ship routes.

Intermodal freight transportation presents some requirements for the ter-
minals that handle the mode transfers, where handling equipment and
cranes must be available to perform the transfer operations. These re-
quirements impose a cost on intermodal transportation, meaning that a
certain volume of goods must be present for intermodality to become a
viable alternative. Furthermore the planning issues at and around such
a terminal introduce a wide range of non-trivial planning problems, that
lie outside the scope of this thesis.

An introduction to intermodal freight transportation, along with a review
of the relevant problems and modelling approaches from the operations
research literature can be found in Crainic and Kim [24]. Other reviews
on the use of operations research in intermodal freight transportation are
available in Macharis and Bontekoning [77], Bontekoning et al. [7], and
Caris et al. [10].

1.1.2 Passenger transport

In personal transport the available modes can roughly be divided into
foot, bicycle, car, bus, rail, sea and air. Among these modes sea and air
are typically only used for occasional, long-distance transportation, and
then generally in combination with one or more of the other modes.7 Bus
and train usually constitute the public, local transport, while travel by
foot, bicycle (and motorised variants thereof), and car provide individual
means of transport.

7In certain areas short-distance ferry services are also part of everyday commuting.
Air commuting exists but is less common by far than commuting by bus and train.
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The use of public transport for a journey usually also requires a (small)
amount of individual transport, typically to get to and from the near-
est bus stop. This makes any use of public transport multimodal by
nature; the individual transport e.g. between the home and the first ter-
minal/embarking point of a public transport vehicle must necessarily
employ some other mode. This journey can often be performed by foot,
but may also be considered an integral part of the whole transportation
chain. For example a traveller may choose not to use the nearest station,
but instead use one that possesses other qualities, such as better parking
or shopping opportunities. However such considerations lie outside the
scope of this thesis, which will only consider a problem where the pas-
senger embark and disembark points have been determined beforehand,
and are only mentioned to illustrate the complexity of the multimodal
transportation chain.

In most urban areas, public transportation is used by a large number of
commuters in everyday life, and a lot of passengers are affected by its
daily operation. It is often necessary for passengers to perform transfers
to reach their final destination when travelling, and hence the effects of
multimodal public transportation are noticeable to many. This implies
that there are considerable gains to be made if the quality of interchange
in public transportation can be improved.

In passenger transportation the mode change is less equipment inten-
sive compared to freight transport, since passengers generally transport
themselves between the modes, which means that one of the major ob-
stacles of intermodal freight transportation is not present. Instead pas-
sengers experience a certain inconvenience by having to change vehicle
– an inconvenience which can be reduced considerably if the arrival and
departure times are well-matched to reduce waiting time, and if the phys-
ical layout of the terminals is suitably structured. Thus the constraints
and objectives considered in multimodal public transportation are not
identical to those considered in intermodal freight transportation. Ter-
minal layout is an example of a planning problem that occurs within
both passenger and freight multimodal transportation, but with differ-
ent constraints. Freight terminals need space for handling equipment
and (temporary) storage, whereas passenger terminals may focus more
on short walking distances, intuitive paths and easily accessible waiting
rooms.

1.1.3 Intermodality vs. multimodality

In freight transportation the terms intermodality and multimodality can
often be used interchangeably, however some differences of nuance exist.

The term multimodality (multi, from Latin, many) can be used to refer to
any situation where more than one mode is available. It does not always
require that multiple modes are used, and can also refer to situations
where different tasks use different modes.
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Intermodality (Latin: inter, roughly between) refers to a situation where
interaction and changes between modes occur, and thus places more focus
on the transfer situation.

The United Nations8 uses a definition of multimodality as “carriage of
goods by two or more modes of transport” and intermodality as “the
movement of goods in one and the same loading unit or road vehicle,
which uses successively two or more modes of transport without han-
dling the goods themselves in changing modes”, thus stressing the (non)-
handling of the goods in the transfer situation. Similar definitions are
used by the UN, EU and OECD. The main distinction between these def-
initions seems to be that intermodality is required to use some form of
uniform packaging (e.g. containers) of the goods which facilitates trans-
fers, by enabling transfer without direct handling, while multimodality
is not concerned with the means of obtaining the modal combination.
Thus transportation of bulk materials, such as grain or coal, and liquid
materials would be an example that can be classified as multimodal, but
not intermodal, transportation using the above-mentioned definitions.

Crainic and Kim [24] refer to a similar definition, and point out that it is
too restrictive, by ruling out mail services which include sorting opera-
tions at terminals. However, an alternative interpretation would be that
since the sorting is not performed as part of the mode change itself, this
situation is not ruled out by the UN definition. As long as the mail is
grouped (as part of the sorting) this does indeed provide ways of handling
the freight in larger quantities, without handling each item individually.
The alternative definition suggested by Crainic and Kim refers to “the
transportation of less-than-vehicle-capacity loads by nondedicated ser-
vices [using multiple modes], as well as transfer activities between these
modes in dedicated terminals”, thus focusing on consolidation and on
terminal activities.

In passenger transport only the term multimodality appears to be com-
monly used, and since the issues of packaging and transfer handling are
irrelevant, a distinction seems meaningless.

In the context of this thesis the terms intermodality and multimodality
will be used interchangeably, since the mode choice is not considered per
se, and is irrelevant for the purposes considered here. Instead the modes
and transfers to be used have already been determined, and the mod-
els and solutions that are considered are based on these pre-determined
modal decisions. Thus the main parts of the thesis will deal with inter-
modal problems, with the focus being on the side-effects that occur as
a consequence of the use of intermodality, rather than the intermodality
itself.

8UNECE, Terminology on Combined Transport, Economic Commission for Europe,
2001
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1.2 Problem objectives

When solving optimisation problems, the choice of a suitable objective
function is often not obvious. Several measurements for the quality of a
given solution may exist – in transportation this is often a matter of cost
versus duration and/or customer inconvenience, where the customers in
question can be either passengers or senders/receivers of freight.

Often such problems can be reduced to a single significant objective func-
tion, either because the problem owner is not interested in other aspects,
or because one objective is much more prominent than the others. Once
a single objective has been determined, any given solution can be eval-
uated with respect to this objective, and compared to other solutions,
and the search for an optimal or good solution can begin.

When problems cannot be reduced to a single objective, one must turn to
methods that are capable of handling multiple solution objectives simul-
taneously. Multiple objectives can either be tackled by a preprocessing
procedure which constructs a single representative objective (typically
involving conversion between different measures), or by use of a multi-
criteria approach, which returns a range of solutions, and leaves the final
decision to external (typically human) factors and qualitative judgement.

1.2.1 Multiobjectivity

In many situations there exist several potential objectives that can be
evaluated when assessing the value of a solution, and the decision about
how to select one or more of these is not trivial.

Single-objective, deterministic problems with a well-defined objective can
lead rather directly to the formulation of a model, which can then (ide-
ally) be solved to produce a single optimal solution. However, when
several candidate objectives are present, one must first determine how
these should be handled, and the solution process will typically consist
of at least two phases.

Several possibilities exist:

1. Constructing a model that contains all objectives, and determine
a set of so-called Pareto-optimal solutions.

2. Convert all objectives into one common measure or scale, such as
money or utility.

3. Transform one or more objectives to constraints by imposing a
bound, and solve with regard to the remaining objectives.

4. Appoint one among the existing objectives as the most significant,
and construct the model to solve the problem with regard to this
main objective. The secondary objectives can then be considered
as part of a post-processing phase.

The first approach is a “true” multiobjective approach (see e.g. Ehrgott
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and Gandibleux [32] for a survey up to 2000), while the three other
suggestions provide different ways of solving a problem using a tradi-
tional single-objective solution method. Each of these approaches has
its own advantages, and which approach one chooses in a particular case
should depend on the problem at hand, and the situation in which it
arises. Methods 1 and 4 lead up to a post-processing phase where sev-
eral potential solutions may be presented to the decision maker, whereas
methods 2 and 3 will attempt to handle all objectives simultaneously,
and only return one solution.

The choice of how to deal with several potential objectives is an impor-
tant decision for any problem solving process, and should be made in
cooperation with the problem owner(s).

1.2.2 Selecting an objective

In many real-life problems there are several parameters which express the
quality of a solution for different stakeholders, and thus these problems
are multiobjective if viewed from a global perspective. However, often
the decision maker will mainly be interested in one objective, and the
remaining stakeholders will not be able to influence the final decision.

In cases where the decision maker is a public institution wishing to have
local transportation needs covered, the overall objective can often be
divided into primary objectives (cost) and secondary objectives (level
of service, passenger effects); from an operator point of view the target
is to operate an acceptable schedule at the lowest possible cost, not to
determine the schedule that provides the best possible passenger service.
A certain minimum level of service is often included in the contract with
the service provider, and the problem is to cover these constraints at the
lowest possible cost, corresponding to the third approach from the list
presented in the previous section.

In such situations the decision about which objective to use is often well-
defined by the problem owner, who has a single interest in the problem,
and other stakeholders may have other interests/objectives, that are not
considered. Chapter 3 introduces a problem, which in fact attempts to
include objectives from other stakeholders, and advocates that the results
of such an optimisation may put the service provider in a better position
for negotiation.

1.3 Metaheuristics

Both of the main problems that will be treated in this thesis are of a
complexity which makes it unlikely that instances of real-life size can
be solved optimally. For such cases heuristic solution approaches are a
popular choice. Heuristics can be applied either by designing a problem-
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specific heuristic for the problem at hand, or by adapting an existing
metaheuristic approach. The work of this thesis will be focused on ap-
plication of metaheuristics rather than specialised heuristics, and this
section will give a brief presentation of some commonly used metaheuris-
tics that are relevant in this context. A thorough description of a wide
variety of metaheuristics can be found in Glover and Kochenberger [49],
and reviews of the use of metaheuristics in vehicle routing can be found
in for example Gendreau et al. [43], Cordeau et al. [19] and more recently
Gendreau et al. [46].

Local search metaheuristics work by considering a starting solution, and
gradually modifying this solution to improve it. At each iteration the
neighbourhood of the current solution is examined, evaluating solutions
that are similar to the current one. The neighbourhood is constructed by
applying a minor modification, a move or operator, to the current solu-
tion. In a routing context such a move could typically consist of moving
one customer to a different route (VRP), or swapping the positions of
two or more visits (TSP or VRP). Other examples include the classical 2-
opt, k-opt and Or-opt moves (cf. e.g. Jünger et al. [63]), for the TSP and
VRP. For more involved problems the construction of successful neigh-
bourhoods can be quite complex, since several problem constraints may
impact how new solutions must be constructed in order to be feasible.

When implementing a metaheuristic one should also consider whether
or not to allow intermediate infeasible solutions as part of the solution
process. This is typically done by adding a term to the objective function
which penalises the infeasibility, and can help the algorithm search more
freely, and reduce the risk of getting caught in a certain part of the
search space. Naturally the acceptance of infeasible solutions should still
be somewhat limited, to ensure that feasible solutions to the problem are
also discovered, and that the infeasible solutions still remain “close to”
feasible.

The progress of a metaheuristic can often be divided into one or more
phases of alternating intensification and diversification. Intensification
are the phases where a good solution has been located, and work is fo-
cused on the immediate vicinity of this solution, in order to discover a
similar and even better solution. Diversification are the phases that fol-
low intensification, where an area has been searched thoroughly, and it is
desirable to again broaden the search, to discover new promising solution
regions. The key to a well-functioning metaheuristic often lies in a well-
balanced mix between intensification and diversification. For algorithms
that use diversifying deteriorating/hill-climbing moves, the best solution
encountered may not coincide with the final current solution, and it is
therefore recommended to keep a record of the best solution seen.

Finally it should be mentioned that apart from the specific metaheuris-
tics that will be mentioned in the remainder of this section, a endless
number of metaheuristics can be obtained by combining features of these
and other existing metaheuristics, and such combinations have become
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increasingly popular in recent years..

1.3.1 Tabu Search

Tabu Search (TS; introduced by Glover [48]; see e.g. Gendreau [39] for an
introduction) is one of the most well-known and renowned metaheuris-
tics, and has proven successful on a variety of routing problems over the
years.

The basic idea of tabu search is in each iteration to select the best solu-
tion from the neighbourhood, and use memory of previous solutions to
prevent the algorithm from cycling or being trapped at local optima. A
fundamental concept is that of the tabu list which records characteristics
of the latest visited solutions or latest applied moves. These operations
are then declared tabu and forbidden as long as they are in the list, to
prevent recent changes from being immediately undone. At each iter-
ation the best non-tabu neighbour is chosen, even if it is not as good
as the current solution, which means that local minima can be escaped.
Sufficient information about the change/new solution is then recorded in
the tabu list, where it remains for some number of iterations to ensure
that a deteriorating move is not immediately reversed. An important
decision when applying tabu search includes the determination of which
characteristics of a move or a solution should be recorded in the tabu
list.

Over the years, a number of additional features have been developed,
which can be added to the tabu search algorithm to strengthen it fur-
ther. These include such ideas as the use of variable tabu list length
(variable tabu tenure), variable neigbourhood size, applying probabilities
for different, and otherwise deterministic, parameters of the algorithm
(probabilistic tabu search), and choosing the first improving or a random
solution instead of searching the entire neighbourhood at each iteration.
Gendreau [39] provides a list of references for more advanced extensions
of tabu search.

1.3.2 Simulated Annealing

Simulated Annealing (SA; introduced by Kirkpatrick et al. [66]; see
e.g. Henderson et al. [59] or Suman and Kumar [106] for an introduction
and survey) is another well-tested metaheuristic, that has been around
for more than 20 years.

The approach of simulated annealing is to occasionally accept deterio-
rating solutions, with a probability depending on the degree of deterio-
ration. Simulated annealing typically considers a random neighbour as
a candidate at each iteration. If this neighbour leads to an improvement
of the current solution it is accepted for the next iteration. If the can-
didate solution is not improving, it is selected, despite this fact, with a



1.3 Metaheuristics 13

probability that depends on the deterioration of the objective value, and
on the progress of the algorithm. At early stages the algorithm is more
likely to accept deteriorating solutions to add diversification, whereas
the probability drops towards the end, leading to an intensification of
the search. The probability is controlled by the so-called temperature,
which is reduced regularly throughout the computations. The start and
end temperatures are parameters of the algorithm, and the end temper-
ature is often used as the termination criterion.

The acceptance probability is usually expressed as an exponential func-

tion e
f(x)−f(x′)

T , with f(x) being the objective value of the current solution
and f(x′) the objective value of the candidate solution. An often used
temperature reduction function is Ti+1 = c · Ti, where Ti is the temper-
ature at iteration i, and a suitably small value of c ∈ (0, 1) is used.

Suman and Kumar [106] present a range of implementation choices, such
as initial temperature and various cooling schedules suggested in the lit-
erature. In particular the choice of temperature range to use depends
on the order of magnitude of the objective value for any given prob-
lem, and thus the range to be used must be adjusted for the problem
instance at hand. Variations of the algorithm that have been suggested
to improve the results obtained by simulated annealing, include different
cooling schedules (either simpler or more complex), reheating, and vari-
ous adaptive features to strengthen the otherwise memoryless procedure.

1.3.3 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS; introduced by Mladenović and
Hansen [80]; see e.g. Hansen and Mladenović [57] for a recent descrip-
tion) is based on the idea of combining several neighbourhoods to escape
local optima, exploiting the fact that a solution that is a local minimum
for one neighbourhood is not necessarily a local minimum when consid-
ering another neighbourhood, thus a change of neighbourhood can often
be used to escape a local minimum. The VNS is based on an order-
ing of the available neighbourhoods, from smaller to larger, such that
the simplest neighbourhood is used more often, and the more complex
neighbourhoods are used only when the simple ones fail to find improv-
ing solutions. Neighbourhoods used together in VNS are often nested,
such that the smaller neighbourhoods are subsets of the larger ones, or
they may use a parameterised neighbourhood of increasing size.

The basic idea of the VNS is based on the ordering of the neighbour-
hoods. At each iteration one neighbourhood is considered and a local
search procedure is performed. Whenever an improving solution is found,
the next iteration will return to the simplest neighbourhood. Otherwise
the search will proceed with a more complex neighbourhood. The pro-
cedure of the basic VNS performs a random move to shake or disturb
the solution initially in each iteration, and then applies the local search
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procedure to the shaken solution. The result of this local search is then
considered the candidate solution, and is accepted if improving. The
choice of neighbourhood for the next iteration depends on the outcome
of the local search. The intermediate local search that is applied can also
be used to construct a nested VNS procedure.

Different variations of the VNS have been suggested, for example apply-
ing some of the characteristics of simulated annealing, only checking a
random neighbour from the neighbourhood in each iteration, or accept-
ing non-improving solutions with a certain probability.

The idea of using a combination of several neighbourhoods in an algo-
rithm will be revisited at a later point in this thesis, though the VNS
framework as such will not be used.

1.3.4 Large Neighbourhood Search

Large Neighbourhood Search (LNS) as introduced by Shaw [104] is also a
more recent metaheuristic, that has shown promising results on routing
problems (e.g. Røpke and Pisinger [96]). It simplifies the use of neigh-
bourhood moves as used by many other metaheuristics, by instead using
a two-stage process at each iteration. First one or more destroy operators
are used to remove a part of the current solution, and next one or more
repair operators are applied to reinsert the removed elements into the
solution. This enables the algorithm to apply a larger neighbourhood at
each iteration, hence the name. The use of the destroy and repair oper-
ators in combination to construct the neighbourhood, means that these
operators can often be simpler than the operators used for smaller-scale
neighbourhoods, and the algorithm has shown good performance even
with use of quite simple operators.

When elements are removed from the solution it is desirable to remove
several similar elements in the same iteration, to increase the chance of
obtaining fruitful reinsertions. If all of the removed elements are com-
pletely unrelated, there may only be one feasible position for each rein-
sertion, namely the same position the element was previously removed
from. Instead it is desirable to remove related elements, to increase
the chance of being able to swap some of the elements at insertion. In
order to increase the likelihood of removing related elements from the
solution, Shaw has suggested calculating a measure of relatedness when
determining which elements to remove, such that each iteration would
see the removal of a set of related elements, and would therefore provide
the foundation of a potential benefit when these elements are reinserted.
Furthermore the number of customers to remove at each iteration, and
thus the amount of change made to the solution, is an important pa-
rameter that can be varied over time, and increase when diversification
is needed, ressembling the idea of VNS. The other main issue for an
implementation of LNS is the reinsertion procedure, which determines
which solution element to insert next, and where to insert it. Finally, an



1.4 About this thesis 15

acceptance criterion for new solutions must be established – Røpke and
Pisinger [96] have suggested a randomised acceptance criterion inspired
by simulated annealing.

1.3.5 Iterated Local Search

Iterated Local Search (ILS; Lourenço et al. [76]) is not a “complete”
metaheuristic in itself, rather it is a framework that can be applied,
using some existing local search heuristic as a (potentially black-box)
tool, and as the name suggests provides guidelines for iterating this local
search heuristic. ILS is based on repeated restarts, which happen when-
ever a local optimum has been located by the local search procedure.
Based on the solution given in this local optimum, a different solution is
generated by use of some shaking/perturbation function, and the local
search procedure is applied to this new solution, in the hope of locating
a different and possibly better local optimum.

An implementation of ILS depends on four components: the initial so-
lution, the local search procedure, the perturbation procedure, and the
acceptance criterion, with the initial solution playing the least impor-
tant role as computational time increases. These components can to
some extent be considered separately, but ultimately also the interac-
tion between them should be considered. In particular the perturbation
function should be selected such that the procedure is able to escape lo-
cal minima, while still preserving sufficient information about the latest
good solution.

1.4 About this thesis

The main contribution of this thesis consists of the introduction of two
new interesting problems to the research community, and suggesting ini-
tial solution approaches to each of these problems. Both problems in-
tegrate aspects that have traditionally been handled individually, such
as routing and loading in freight transport, and timetabling and vehicle
scheduling in passenger transport. Thus the two problems follow the
trend of recent years, of considering increasingly integrated and complex
problems.

The double TSP with multiple stacks (DTSPMS) presents a new take on
the well-known pickup and delivery problem, by introducing a new way of
handling real-life loading conditions. Pickup and delivery problems with
LIFO (Last-In-First-Out) loading constraints have been studied previ-
ously, but the presence of several parallel LIFO stacks is new. Judging
by the reception so far this is a problem that appeals to many researchers,
due to its apparent simplicity. For the DTSPMS, a selection of classical
metaheuristics have been implemented and tested, using two new feasi-
ble local neighbourhood operators. Additionally, a large neighbourhood
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search algorithm has been applied, using some well-known, existing op-
erators. Regarding exact solution approaches to the DTSPMS, different
mathematical models based on branch-and-cut have been developed and
examined. Furthermore, a set of test instances has been developed, on
which some observations have been made regarding the impact of the
problem size/configuration, and different bounds for the problem have
been compared. Finally, some initial considerations have been made
regarding the extension of the DTSPMS to the multiple vehicle case
(DVRPMS), and an extension of the existing large neighbourhood search
heuristic has been performed to provide some solutions to this problem.

The simultaneous vehicle scheduling and passenger service problem (SVS-
PSP) constitutes a new combined approach to vehicle scheduling/time-
tabling problems, integrating two problems which have typically been
treated separately. This approach permits minor modifications of the
timetable during the vehicle scheduling process, allowing increased flexi-
bility for the solution of the vehicle scheduling problem, at the same time
as passenger inconvenience can be considered. The SVSPSP is solved us-
ing a large neighbourhood search approach, and it is demonstrated that
the solution of the integrated problem may indeed lead to improvements
over the currently operated solutions.

1.4.1 Structure and reading guide

The thesis is primarily based on three research papers, which can be
found in Appendices A, “The Double Travelling Salesman Problem with
Multiple Stacks – Formulation and Heuristic Solution Approaches”, B,
“Exact Solutions to the Double Travelling Salesman Problem with Multi-
ple Stacks”, and C, “The Simultaneous Vehicle Scheduling and Passenger
Service Problem”. These papers represent the bulk of the work that has
been carried out for this Ph.D. In addition to the papers, the first four
chapters of the thesis provide supplemental and background material,
making these chapter somewhat longer than what is traditional for a
paper-based thesis. For each of the accompanying papers there is a sec-
tion in the introductory report that contains further comments or details
regarding the paper, such that each paper has a natural anchor in the
main text of the thesis. When reading the thesis one may choose to fol-
low this structure, and read each paper at the point that is suggested in
the report. However, since all papers are written for publication and are
therefore self-contained, it is naturally also possible to read the papers
independently at any earlier point.

The research that is presented in this thesis can be divided into two main
problem areas: The Double Travelling Salesman Problem with Multiple
Stacks, and The Simultaneous Vehicle Scheduling and Passenger Service
Problem. Following the general introduction to the area of multimodal
transportation and other areas of general interest to the entire thesis in
Chapter 1, the DTSPMS is covered by Chapter 2, combined with the
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papers of Appendices A and B. The SVSPSP is covered in Chapter 3
and Appendix C, and finally some general concluding remarks are given
in Chapter 4.
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Chapter 2

The Double Travelling

Salesman Problem with

Multiple Stacks

This chapter covers the work on the Double Travelling Salesman Problem
with Multiple Stacks (DTSPMS) that has been carried out in connection
with this project. First a general introduction to the problem is given,
discussing its relationship with other problems already known from the
literature, and making some observations regarding properties of the
problem. Then follow the two research papers that have been written
on the DTSPMS, with some additional comments accompanying each
paper. Finally some thoughts are given on how the DTSPMS can be
generalised by including aspects from other problem classes, in particular
a multi-vehicle variation is considered.

The Double Travelling Salesman Problem with Multiple Stacks (DTSP-
MS) is concerned with finding the shortest pair of routes performing
pickups and deliveries in two separated regions. The items to be trans-
ported must be placed in one of several rows (horizontal stacks) in a
container, such that each row maintains the LIFO (Last-In-First-Out)
principle, while there are no mutual constraints between the rows. The
problem permits neither intermediate repacking nor vertical stacking. An
illustration of a small problem can be seen in Figure 2.1, which shows
the two separated graphs with one depot and six customer nodes each,
and a loading container with six positions organised in two rows.

The problem is defined on a pair of unconnected graphs – one for pickups
and one for deliveries. The input consists of a set of orders, each one
requiring transportation of one unit from a point in the pickup region to
a point in the delivery region, i.e. each order includes a pickup location
and a delivery location for one item. The items to be transported can
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Figure 2.1: A small DTSPMS.

be seen as boxes or pallets of identical dimensions and each of the two
regions has a depot. All pickups and deliveries must be carried out
using the same container – this container is organised in several rows.
The container is rear-loaded, and thus each row can be accessed as a
LIFO stack. An item i is positioned in the container at pickup at the
top/end of a given stack, and can only be delivered from this position.
Since no repacking of the container is allowed, this means that all items
that are picked up after i and are assigned to the same stack must be
delivered before i can be delivered. The problem to be solved consists
of determining the shortest Hamiltonian tour through each of the two
graphs, in such a way that a feasible loading plan exists. Here, no time
windows are considered, and the problem is only considered in its static
version. Additionally, only unit orders are assumed at this point; orders
containing multiple items can be treated as separate orders. All orders
must be served, i.e. rejection is not allowed. The DTSPMS is NP-hard
since it is a special case of the TSP, which is NP-hard [38].

The situation described above can occur in practice when a container is
loaded onto a truck to perform the pickup operations, then returned by
that truck to a local depot/terminal where the container is transferred
onto a train, ship, or similar, to perform the long-haul transportation to
the delivery region. Upon arrival at the depot/terminal in the delivery
region, the container is again transferred to a truck, which carries out
the deliveries. The terminals only have facilities to perform container
movements, and do not offer any opportunities for opening and repacking
of the container. Intermediate repacking may be impossible in real life
if the transported goods are for example heavy, fragile, or hazardous, or
there may be union regulations preventing the driver from handling the
goods.

The project that forms the basis of the work on the DTSPMS that is de-
scribed in this thesis, was initiated by a Danish software company, Easy
Cargo Systems A/S, producing targeted software solutions for small and
medium-sized companies in the transportation industry. The DTSPMS
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had been encountered during talks with a potential customer, and was
recounted as such. The problem seemed intriguing in its deceptive sim-
plicity and thus the work presented in this chapter was commenced, as
the problem did not appear to have been treated previously in the liter-
ature. Subsequently it has unfortunately been impossible to locate the
actual real-life application of the problem, which could have been inter-
esting for two reasons: 1) access to real-life data and comparison of the
obtained solutions, and 2) rooting the problem in a real-life application.
In particular the comparison of solutions would have been interesting,
since it is certainly very difficult to construct a good manual solution,
and it would have been interesting to know what kind of solutions an
experienced planner would produce. However, even without the real-life
connection the problem presents some interesting challenges, and will
still be of value to the research community.

The DTSPMS is related to several other problems known from the lit-
erature. In particular, one should be mention the well-known Travelling
Salesman Problem (TSP; cf. e.g. Applegate et al. [3]) which consists of
finding the shortest possible Hamiltonian tour in a graph, visiting all
nodes at the lowest possible cost. The TSP can be extended to the more
general Vehicle Routing Problem (VRP; cf. e.g. Toth and Vigo [109] or
Golden and Raghavan [51]), which can use several vehicles to accomplish
the task of visiting all nodes at the lowest possible cost. All trips must
then start at a depot where all vehicles are located. In particular the
term Capacitated VRP (CVRP) is used for the VRP when each customer
has a demand of a given size, and each vehicle has a fixed capacity that
cannot be exceeded.

The DTSPMS is a variation of the vehicle routing problem with pickup
and delivery (VRPPD), more specifically of its single vehicle variant,
SVRPPD. The VRPPD typically occurs in courier services and a varia-
tion of it occurs in transportation of people (the Dial-A-Ride Problem,
DARP).

The term DARP is often used for VRPPDs where the transported “items”
are persons, and where customer inconvenience typically plays a role: in
the objective function, by the introduction of ride time constraints, or
by the presence of time windows. Furthermore the DARP often occurs
in dynamic contexts, where not all data are known beforehand. As the
LIFO principle is inherently “unfair”, it most likely has no applications
in a passenger transportation context (unlike the FIFO principle), and
hence the band between the DARP and the DTSPMS is considered so
thin that the DARP will be disregarded throughout the majority of this
thesis.

The problem referred to here as the single vehicle routing problem with
pickup and delivery (SVRPPD) is referred to by several different names
throughout the literature, e.g. single vehicle pickup and delivery (SVPDP,
[21]; SPDP, [85]), travelling salesman problem with pickup and delivery
(TSPPD, [12]), and 1-VRPPD [28]. Here the name SVRPPD will be used
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as the (hopefully) least confusing alternative, since the term TSPPD has
also been used to describe a problem with simultaneous linehauls and
backhauls (e.g. [42]), and PDP to describe a more general class of prob-
lems, of which the SVRPPD is only a subclass (by e.g. Cordeau et al.
[20]). However, in the literature treating the SVRPPD with LIFO load-
ing, the terms TSPPDL and TSPPD have been used, and therefore these
names will be used when discussing the TSPPDL, rather than SVRP-
PDL, to ease the transition to the related literature.

The general VRPPD consists of a number of orders, each including a
pickup point, a delivery point, a demand, and possibly time windows for
the pickup and delivery operations. A fleet of vehicles (homogenous or
heterogenous) with a given capacity are available to carry out the oper-
ations. The problem consists of finding a set of routes for the vehicles,
such that all orders are served at the lowest possible cost (usually short-
est driven distance). To this end, each pickup and delivery point must
be visited exactly once, and each pair of associated pickup and delivery
points must be visited by the same vehicle, with the pickup point be-
ing visited first. The maximum capacity of each vehicle can never be
exceeded, and when time windows are present each customer must be
visited within its allowed time window. The number of vehicles to be
used may be fixed, or may be minimised as part of the objective function.

For clarity a mathematical model of the VRPPD is given below in (2.1)–
(2.10), which is adapted from Cordeau et al. [20]. The model uses a
fixed number of vehicles, and is shown with unit order loads, and without
time windows and service times. For a mathematical formulation of the
VRPPDTW the reader is referred to e.g. Cordeau et al. [20].

This model uses three sets of variables: xk
ij indicates if the arc from i to

j is travelled by vehicle k, tki is the time where vehicle k visits node i
and qk

i is the load of vehicle k when leaving node i. P = {1, . . . , n} is
the set of pickup nodes, D = {n + 1, . . . , 2n} is the set of delivery nodes,
and 0 and 2n + 1 are the depot nodes, initial and final respectively. The
complete set of nodes in the graph is then N = P ∪D∪{0, 2n+1}. Each
arc (i, j) of the graph can be travelled at cost cij with duration τij. The
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model can then be expressed as follows:

min
∑

k∈K

∑

i∈N

∑

j∈N

cijx
k
ij (2.1)

s.t.
∑

k∈K

∑

j∈N

xk
ij = 1 i ∈ P (2.2)

∑

j∈N

xk
ij =

∑

j∈N

xk
n+i,j i ∈ P, k ∈ K (2.3)

∑

j∈N

xk
ji =

∑

j∈N

xk
ij i ∈ P ∪ D, k ∈ K (2.4)

∑

j∈N

xk
0j =

∑

i∈N

xk
i,2n+1 = |K|, k ∈ K (2.5)

tkj ≥ (tki + τij)x
k
ij i, j ∈ N, k ∈ K (2.6)

tki + τi,n+i ≤ tkn+i i ∈ P, k ∈ K (2.7)

qk
j ≥ (qk

i + uj)x
k
ij i, j ∈ N, k ∈ K (2.8)

qk
i ∈ {0, . . . , Qk}, tki ∈ N0 i ∈ N, k ∈ K (2.9)

xk
ij ∈ B i, j ∈ N, k ∈ K. (2.10)

Constraint (2.1) is the objective function, expressing the total cost of all
travelled arcs. Constraints (2.2) express that each pickup node must be
visited, and (2.3) that each pair of pickup and delivery nodes must be
visited by the same vehicle. Constraints (2.4) ensure flow balance for
all customer nodes, and (2.5) ensure that each route starts and ends at
the depot. The constraints (2.6) calculate the arrival time at each node
(non-linear as given here, but can be linearised for implementation), and
(2.7) use the arrival times to ensure that each pickup node is visited
before its corresponding delivery node. (2.8) update the load variables
after each visit, with the unit loads

ui =











1 i ∈ P,

−1 i ∈ D,

0 i ∈ {0, 2n + 1}.

Finally, (2.9)–(2.10) express the domains of the variables, with Qk being
the capacity of vehicle k.

It should be noted that the precedence relation between a pickup node, i,
and its corresponding delivery node, n+ i, can also be expressed without
the use of time variables, due to Ruland and Rodin [98], however further
details of this approach will not be discussed here, as this precedence
relation is not a complication in the context of the DTSPMS.

The TSPPDL is a extension of the SVRPPD, where all loading opera-
tions must adher to a LIFO principle, i.e. whenever the vehicle contains
more than one item, the items must be delivered in the order opposite
of their pickup order.
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When comparing the DTSPMS and the TSPPDL, two major differences
can be observed. In the TSPPDL (and VRPPD) it is important to
maintain the internal ordering of any pickup/delivery pair, such that each
pickup is performed before the corresponding delivery. This ordering
is automatically observed in the DTSPMS, since the two graphs are
separated and all pickups are completed before the first delivery takes
place. On the other hand the DTSPMS provides multiple LIFO stacks
for loading, whereas the TSPPD with LIFO loading provides only one
stack, thus the crucial decision of which loading stack to use for each
item only occurs in the DTSPMS.

Furthermore, vehicle capacity is not an issue in the DTSPMS as opposed
to the SVRPPD. In the DTSPMS all items will necessarily be carried
simultaneously during the transportation between the pickup and de-
livery regions, meaning that checking the capacity is trivial, and the
problem will be infeasible if the vehicle capacity can be exceeded. In the
(S)VRPPD it is necessary to check the capacity constraints after each
pickup operation. In the DTSPMS, when considering each row individu-
ally, it does indeed have a maximum capacity, and the row capacity must
be observed. Since all items are carried simultaneously at the intermedi-
ate long-haul, it suffices to check the row capacities here, rather than at
each pickup operation. If the DTSPMS is extended to include multiple
vehicles, naturally the row capacity and vehicle capacity will both have
to be checked. The vehicle capacity will affect whether a given order can
be accepted by a vehicle, whereas the row capacities will only affect the
loading and thereby the routing of the vehicle.

The DTSPMS is symmetric in the sense that the loading rows are iden-
tical, and swapping two loading rows of a solution will produce another
solution which is identical in any aspect considered here. However if, for
example, loading stability were to be considered an issue, this would ob-
viously no longer be the case. At the time being this symmetry provides
some freedom for the driver to (slightly) improve loading stability when
carrying out a route.

Many solution approaches to the SVRPPD focus on ensuring that each
pickup customer precedes its corresponding delivery customer, which is
not an issue in DTSPMS, since the pickup and delivery graphs are sepa-
rated. In particular many valid inequalities for the regular TSPPD/TSP-
PDL such as listed in e.g. Cordeau et al. [21] and Cordeau et al. [23] are
often trivially valid for the DTSPMS for this reason.

The DTSPMS shows some ressemblance to several other problems known
from the literature. Such problems include other types of pickup and de-
livery problems, and various routing problems which incorporate loading
constraints. These problems, as well as their similarities and dissimilari-
ties with the DTSPMS, will be discussed in connection with the relevant
literature in Section 2.1.

Finally it should be mentioned that there is some variation in the use of
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the term “pickup and delivery problem” throughout the literature. In the
most general sense it is being used to cover any problem that deals with
both pickup and delivery operations, including for example backhaul or
single-commodity problems (e.g. in the recent surveys by Berbeglia et al.
[6] and Parragh et al. [85]). More narrowly it has been used to describe
different subclasses that involve both pickup and delivery operations,
e.g. problems with backhauls, or VRPPD type problems, which consider
a range of orders, each requiring the transportation of goods between
two given points (e.g. Savelsbergh and Sol [100] and Røpke et al. [97]).

Recent consensus (Cordeau et al. [20], Berbeglia et al. [6], Cordeau et al.
[21], Parragh et al. [85]) seems to be on mainly using PDP in the broader
sense, and using the term VRPPD (VRP with Pickups and Deliveries)
or one-to-one PDP to refer to the more narrow problem class.

2.1 Literature and Related Problems

No research appears to have been done on the Double TSP with Multiple
Stacks prior to this Ph.D. project, however a number of publications exist
on various specialised topics in the bordering areas of the Travelling

Salesman Problem, Pickup and Delivery Problem, and various types of
loading problems, which all show similarities in different aspects. During
the course of the current project, preliminary results have been presented
at several conferences, which has spurred other researchers to commence
work on the DTSPMS. In particular the paper by Felipe et al. [34] will
be discussed in the context of the first paper A in Section 2.3.9.

For problems regarding the TSP or VRP with loading constraints, a
number of different characteristics can be considered when describing a
given problem:

• are the loading constraints in two or three dimensions?
• are the objects rectangular? Are they identical in shape and size?
• can the objects be rotated?
• can the objects be stacked?
• are several objects per customer allowed (and if so, how is this

handled, usually split deliveries are not allowed)?
• are there multiple capacity measures (e.g. weight and space)?
• must all orders be served?

The first four points in the list are concerned with the packing aspects
of the problem, while the last three points are concerned with routing
issues, and each of these issues occur naturally in different applications.
For the DTSPMS, each of these questions can in fact be answered by the
answer that leads to the simplest problem, and yet the DTSPMS is no
simple problem. However these questions illustrate a number of issues
that arise in other routing/loading contexts, and some of them arise in
the related problems that will be discussed below. In particular, this
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section will not cover pure routing problems, like the regular TSP and
(C)VRP, or pure packing problems, such as the knapsack or bin packing
problems.

2.1.1 Surveys on Pickup and Delivery Problems

Several recent surveys exist on various areas within pickup and delivery
problems, though to the author’s knowledge, no dedicated surveys exist
on problems more generally combining routing and loading.

The earliest work on pickup and delivery problems was done on the dial-
a-ride problem, however due to the significant differences between the
DARP and the DTSPMS, this section will mainly focus on work regard-
ing pickup and delivery problems in a freight transportation context, and
thus not cover the DARP, although a significant literature exists on this
topic.

The first survey specifically stating pickup and delivery problems as its
main focus area seems to be by Savelsbergh and Sol [100]. It presents the
General PDP (GPDP), which is a VRPPD with added real-life complica-
tions, such as multiple requests with shared pickup or delivery locations,
time windows for orders and vehicles, dynamic requests, and specified
start and end locations for vehicles. The paper presents a mathemat-
ical formulation of this GPDP, discusses some defining characteristics
of pickup and delivery problems (e.g. different common objective func-
tions), and reviews early literature on the topic up to 1992. The VRPPD,
DARP and VRP are mentioned as special cases of the GPDP. The sur-
vey of solution approaches divides these into static vs. dynamic, and next
into single vs. multiple vehicle, and covers optimal methods as well as
construction heuristics, but no iterative improvement heuristics.

Desaulniers et al. [28] give an introduction to the VRPPD and presents
a model of the VRPPDTW, in a survey that focuses on static problem
variants. The authors also comment on the role of service quality when
the problem to be solved is a DARP. The literature up to 1999 is re-
viewed, covering heuristic and exact approaches, and finally an overview
is given over different real-life applications where the VRPPD can be
applied.

Cordeau et al. [20] cover the VRPPD and four of its application areas
from the field of operational or “on demand” planning: dial-a-ride prob-
lems, urban courier service, dial-a-flight and emergency vehicle dispatch.
Of these problems the urban courier service is usually dynamic in na-
ture, whereas the remaining problems can be either static or dynamic.
First the VRPPD is presented formally, and exact and heuristic solution
approaches from the literature are reviewed for the single and multiple
vehicle cases, before each of the four application areas are described in
further detail, covering the problem characteristics and available litera-
ture. The authors also discuss the issue of multiple conflicting objectives
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that often arises in the covered problems.

Berbeglia et al. [6] treat a broad class of problems where one or more
commodities must be collected from and distributed to a set of cus-
tomers. The paper provides a classification of these problems depending
on the type of commodities, the distribution and mix of pickup and de-
livery customers, and the number of vehicles. Thus it covers several
problem types that are not considered pickup and delivery problems in
the more narrow sense. These include the 1-commodity PDTSP, where
each customer supplies or demands a quantity of the same commodity
(e.g. money), the VRP with backhauls, as well as the dial-a-ride prob-
lem and VRPPD. The paper also includes problems that allow the use of
transshipment points, and where some customers may act as both pickup
and delivery points.

According to the classification scheme provided by Berbeglia et al. [6] the
SVRPPD and single vehicle DARP both match the same classification
as the DTSPMS (1-1, P/D, 1). This implies that both consist of a set of
requests which each include exactly one pickup and one delivery location
(1-1), that no pickup and delivery locations coincide (P/D), and that only
one vehicle is available (1). In the multiple vehicle case this becomes (1-
1, P/D, m) which again coincides with the multi-vehicle DARP. This
indicates that this classification unfortunately can not be immediately
helpful in defining the distinction between these related problems.

[85, 86] by Parragh et al. constitute a two-part survey on pickup and
delivery problems, of which the first considers the VRP with backhauls
(VRPB), dealing with simultaneous distribution and collection, and the
second covers problems where goods are transported between pairs of
pickup and delivery locations, which is more interesting from a DTSPMS
point of view. The survey suggests a classification scheme, presents a
mathematical model of each of the problem classes that are covered,
and surveys solution approaches from the literature. The solutions are
divided into exact, heuristic and metaheuristic, and the size of the prob-
lems solved by the different paperse are summarised. Finally, a list of
available benchmark instances is provided.

The classification scheme used by Parragh et al. [86] is based on common
characteristics of the problems, but does not attempt to describe each
class by a fixed set of fields, as Berbeglia et al. [6] do. This approach
allows for a distinction between mixed and clustered/backhaul routes,
i.e. whether or not linehaul and backhaul actions can be performed si-
multaneously or must be separated, and between the PDP and DARP
problems. However the classification is still based on routing character-
istics, and does not take such issues as loading constraints (e.g. LIFO)
into consideration.

Recently, Cordeau et al. [21] have surveyed the latest advances within
modelling and solutions of one-to-one pickup and delivery problems (thus
excluding the many-to-many and one-to-many-to-one variations alto-
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gether), covering both exact and heuristic approaches. The papers cov-
ered are divided into single and multiple vehicle problems, and the solu-
tion approaches into exact and heuristic. For each group a summary of
the most significant recent contributions is given, with some details on
valid inequalities for exact approaches, and on the algorithms used for
heuristic approaches. This survey additionally provides a brief summary
of a number of real-life applications where the PDP occurs.

2.1.2 Routing problems with LIFO loading constraints

The most significant similarities with the DTSPMS appear in the TSPPD
with LIFO loading (TSPPDL), as treated in the papers by Carrabs et al.
[12], Carrabs et al. [11], and Cordeau et al. [23]. In the TSPPDL a num-
ber of pickup and delivery requests must be served, all located within
the same region, meaning that pickup and delivery operations are car-
ried out simultaneously. In addition to the requirements regularly found
for the SVRPPD, the TSPPDL implements a LIFO policy for the load-
ing/unloading of the vehicle (i.e. for the vehicle as a whole, considering
only one LIFO-stack). This means that at any given time the next op-
eration can be either 1) a pickup of a new item, or 2) the delivery of the
item that has been picked up most recently. If the pickup and delivery
operations of the TSPPDL are separated the problem becomes identical
to the one-stack DTSPMS, i.e. equivalent to solving a regular TSP.

The concept of blocks has been used when treating the TSPPDL (cf. Cas-
sani [13], Carrabs et al. [12]), and can be used to provide further insight
into the differences between the TSPPDL and the DTSPMS, arising from
both the availability of multiple rows and the separation of pickup and
delivery operations. A block B(x+, x−) is a series of consecutive visits,
beginning with a pickup customer x+, and ending with its corresponding
delivery customer x−, such that it does not contain any pickup vertex
without its corresponding delivery vertex, and vice versa. If any order
were only partly contained, this would result in a so-called cross, as il-
lustrated in Figure 2.2. A solution to the TSPPDL is infeasible if it

a+ b+ a− b−

Figure 2.2: A cross, causing an infeasible solution.

contains any crosses. Blocks can be nested, and any TSPPDL solution
can be broken down into a series of nested and sequential blocks, such
that each request defines a valid block, as illustrated in Figure 2.3.

The notion of crosses can be used to illustrate the impact of the multiple
rows that are available in the DTSPMS. In this case several colours/types
of lines would be required for the illustration, to indicate different rows,



2.1 Literature and Related Problems 29

a+ b+ c+ c− b− d+ d− a−

Figure 2.3: Illustration of blocks in the TSPPDL.

and a cross (and thus an infeasible solution) would then be found when-
ever two lines of the same type intersect, whereas lines of different type
are allowed to intersect. The number of types of lines to be used for
such a figure would be the same as the number of loading rows available
in the problem. Figure 2.4 illustrates a solution that is feasible for the
DTSPMS with two stacks but not for the TSPPDL, since the dotted and
full lines intersect each other, but no two lines of the same type (dotted
or full) intersect.

a+ b+ c+ d+ b− d− a− c−

Figure 2.4: Illustration of valid blocks in the DTSPMS.

The recent literature on the TSPPDL consists mainly of a heuristic ap-
proach by Carrabs et al. [12], and exact approaches by Carrabs et al. [11]
and Carrabs et al. [12]. Furthermore, related problems have been treated
by Ladany and Mehrez [69] (double TSP with a single loading stack),
Levitin and Abezgaouz [71] (TSPPDL), Erdoğan et al. [33] (TSPPDF,
using FIFO instead of LIFO), Ficarelli [36], Cassani [13] (both TSPPDL,
in Italian), and Pacheco [83, 84] (TSPPDL, in Spanish).

Carrabs et al. [12] produce heuristic solutions to the TSPPDL, using
a variable neighbourhood search. The paper introduces two new local
search operators for the TSPPDL, which are used in combination with
four operators from Cassani [13], on test data that are based on TSPLIB1.
Both Carrabs et al. [12] and Cassani [13] make extensive use of the con-
cept of blocks when defining neighbourhood operators. The four opera-
tors introduced by Cassani [13] are based on exchange and relocation of
orders or blocks. Carrabs et al. [12] extend the order-relocation operator
to allow multiple relocations, and introduce another operator based on
the well-known 2-opt operator (cf. e.g. [63]). The later uses the block
concept to define a reverse procedure, which is necessary in order to
apply any 2-opt like operator to a problem with pickups and deliveries,
where simple reversion of a path would generally break the precedence
of requests (pickup before delivery). The heuristic is tested on problems
sized in the range 25 nodes (solved in <1 second) to 750 nodes (30–45
minutes). The results are compared to those of the VND heuristic by
Cassani [13], which is outperformed.

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Carrabs et al. [11] solve the TSPPDL and TSPPDF to optimality, using
an additive branch-and-bound approach, which allows for a combination
of several lower bounds to be used, and has previously been applied to
the TSP and the TSP with precedence constraints. The algorithm is used
to combine the lower bounds originating from the assignment problem
and the shortest spanning r-arborescence problem. Since these are lower
bounds of the ATSP, which is in turn a lower bound of the TSPPDL,
their use is combined with a set of filters to help impose LIFO constraints.
Their approach is tested on TSPPDL instances containing 19–43 nodes.
All instances of size up to 31 are solved to optimality within 3 hours,
while 3 out of 9 instances of size 43 can be solved in the same time.
For the TSPPDF the instances that can be solved are slightly smaller,
with several instances of size 31 not being solved. This is caused by the
different structure of the FIFO constraints, which weakens the applied
filters.

In Cordeau et al. [23] three mathematical models for the TSPPDL are
presented, along with different valid inequalities that are subsequently
used to solve the problem using a branch-and-cut approach. Each model
is an extension of a given model for the TSPPD. The first model asso-
ciates a load variable to each node in the graph, stating the load of the
vehicle when leaving the node, and requires a polynomial number of con-
straints added to the model. The second model instead attaches a load
variable to each arc, expressing the load of the vehicle when travelling the
arc, and also requires a polynomial number of constraints to be added to
the model. The third model adds no new variables to the TSPPD model,
but instead requires an exponential number of constraints to express the
LIFO constraints on the existing variables. The computational exper-
iments show that the third model obtains the best results, and solves
all tested instances of size up to 38 nodes within an hour, and a few
instances with 46 and 52 nodes.

As early as 1984, Ladany and Mehrez [69] interestingly presented a real-
world problem, performing pickups and deliveries in two far-away regions.
Having pickups and deliveries separated, their problem presents a simi-
larity to the DTSPMS, that is not found in most other researched pickup
and delivery problems. The problem involves a single LIFO stack for
loading, and as a significant difference allows repacking of the container
along the way, at a certain cost. The main difficulty of this problem lies
in determining which repack operations to perform along with the rout-
ing, and a description is given of the calculation of the reshuffling costs.
The typical stack size of the real-life problem is stated to be no more than
5, and hence the real-life problem is solvable by complete enumeration –
a few comments are given regarding possible approaches to solving larger
instances, but nothing more. A comparison is made between different
reshuffling strategies for a small numerical example, and concludes that
reshuffling is indeed worthwhile for the provided data.

Levitin and Abezgaouz [71] treat a problem with automated guided vehi-
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cles (AGVs), that are used to transport materials between workstations
in a factory. The materials are stackable, and an AGV can carry multiple
loads simultaneously, working as a LIFO stack. The purpose is to con-
struct a shortest possible route for the AGV. A feature of the problem
is that a location can act as origin or destination of several requests, and
that it is preferable to visit each location only once (this reduces total
loading/unloading time). This means that if locations A and B both
have loads destined for location C, A and B must be visited successively
to avoid multiple visits to C. The paper states necessary conditions for
the existence of a LIFO feasible route with only one visit at each station,
and presents an algorithm for finding the shortest such route. A main fo-
cus of this problem is that of avoiding multiple visits, and thus grouping
visits at origins with shared destinations, which removes this problem
somewhat from the DTSPMS. The authors solve random instances with
up to 100 nodes in solution times of less than one minute.

Finally, Erdoğan et al. [33] deal with the TSPPD with FIFO loading.
This “reversed” loading policy provides a problem that exhibits fewer
similarities to the DTSPMS, however the mathematical model presented
for the TSPPDF can be changed to express the TSPPDL by changing
a single constraint. In addition to the mathematical formulation of the
TSPPDF, the authors present five local search operators and two dif-
ferent metaheuristic solution approaches (probabilistic tabu search and
iterated local search) which use the presented operators. The algorithms
are tested on the instances from Carrabs et al. [12] with sizes in the range
25-751 nodes, and the best approach shows to be the probabilistic tabu
search, used in combination with a nearest neighbour based construction
heuristic. The smaller instances are solved within a few seconds by this
method, while run times go up to an average of more than an hour for
the most difficult of the largest instances.

2.1.3 Routing problems with general loading constraints

Several papers deal with combined routing and loading problems, such as
the capacitated vehicle routing problem with 2- or 3-dimensional loading
constraints (2L-CVRP and 3L-CVRP). In this type of problems, a VRP
must be solved such that a feasible loading plan exists for each vehicle.
In this case the items are usually rectangular but of varying size, and
must fit into a rectangular loading space in two or three dimensions with-
out overlapping. Additionally each item must be accessible at its time
of delivery, and each customer location should be visited exactly once,
i.e. split deliveries are not allowed, and for any customer that requires
more than one item, all items must be picked up/delivered during one
visit. It is often assumed that items cannot be rotated, although some
research has also been extended to non-rectangular objects with no fixed
orientation.
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Iori et al. [61] solve the 2L-CVRP to “almost certain optimality”, using
a branch-and-cut procedure. They first present a model for the prob-
lem which includes two sets of constraints that are non-polynomial in
size, and then present separation procedures for these constraints. The
two sets of constraints that are initially relaxed impose (a) the loading
capacities of the vehicles and non-overlap of the loading plan (includ-
ing the solution of a bin packing problem) and (b) that each customers
can only be visited once (this also has implications for feasible loading
plans), which is modelled using infeasible paths. The separation proce-
dure for the bin packing problem is heuristic, meaning that it may, in
rare cases, return an invalid cut. In these cases the solution is marked as
not guaranteed optimal. 60 test instances are considered in the paper,
of which the 45 smaller ones (up to 25 customers and 91 items) were
solved to optimality within an hour, and 10 of the remaining 15 (up to
35 customers and 114 items) were solved within 24 hours.

Gendreau et al. [45] consider the capacitated vehicle routing problem
with 2-dimensional loading constraints (2L-CVRP), and present a tabu
search procedure to solve it. Two variations of the problem are consid-
ered: one in which the items of each customer must be directly available
at delivery, and not be blocked by items belonging to other orders, and
one in which such a restriction is not imposed. At each iteration a routing
is determined, and then a heuristic is used to determine a correspond-
ing loading. Loading infeasibilities are allowed at the cost of a penalty.
Two intensification procedures are used, both making use of an improved
loading heuristic. Of the problems where an optimal solution is known
(16–36 nodes, up to 114 items), the algorithm matches this solution for
57% of the problems, and for instances where no optimal solution is
known, the previously best found solution (found by branch-and-cut by
Iori et al. [61]) is on average slightly improved. Running times are usu-
ally less than 5 minutes. Some larger instances with no reference solution
are considered, using running times up to an hour. These instances are
mainly used to consider the cost of loading restrictions, and examine
some statistics of the constructed routes.

Gendreau et al. [44] study the 3L-CVRP, which is a natural extension of
the 2L-CVRP. The packing used for the 3-dimensional problem requires
considerations regarding stacking of items; some items may be fragile
(limiting the stackability), sufficient supporting area must be provided
for stacked items, and a LIFO loading policy is imposed. Furthermore,
unlike the 2L-CVRP, the items are allowed to be rotated 90◦ around a
vertical axis. The 3L-CVRP is solved using a tabu search approach, in
which a loading problem is solved to determine feasibility of a solution.
The loading problem is solved as a 3-dimensional strip-packing problem
using tabu search, and the length of the loading is then compared to the
length of the container. If necessary, both constructive and improvement
heuristics are applied to the loading subproblem. The solution allows
intermediate solutions that are infeasible with regard to loading weight
or loading length, at a penalty cost. The algorithm is tested on instances
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from the litereture as well as real-life instances. The first 27 instances are
taken from the literature and have 15–100 customers, and 26–199 items.
For all instances a feasible solution is identified, and for those instances
where a simpler heuristic was able to produce an initial solution, this
is on average improved by 40%. Running times are often less than half
an hour, and never exceed two hours. On the real-life instances (44–64
nodes, 141–181 items) the algorithm is allowed running times of 1, 10
and 24 hours, and the solution value of the final solution improves the
initial solution by 30–40%. By increasing the solution time from 10 to
24 hours the solution value are improved by 4% on average.

2.1.4 TSP/VRP with Backhauls

The term TSP/VRP with backhauls describes a class of routing prob-
lems where some orders must be delivered from a depot to the customers
(linehaul), and other orders must be picked up from the customers and
brought back to the depot (backhaul). This problem has been studied
rather extensively in the literature, which also means that several differ-
ent flavours of the problem have been covered: The orders may be served
simultaneously or consecutively, and when served simultaneously there
may or may not be customers requiring both types of service. Addition-
ally the usual variations can apply, such as vehicle capacities, time win-
dows and the opportunity of performing split deliveries. In the literature
several different names are used for routing problems with backhauls,
including “simultaneous pickup and delivery” ([81]) and “deliveries and
collections” ([4]). An general introduction to the VRP with Backhauls
can be found in Toth and Vigo [110].

In comparison to the DTSPMS, the TSPB obviously lacks the ties be-
tween pairs of pickup and delivery customers. The clearest connection
appears when both are considered as “two TSPs with interconnected
routing”, where the connection for the TSPB can be viewed as two open-
ended TSPs with a common endpoint.

The original form of this problem contained two distinct sets of orders
containing linehaul and backhaul customers, requiring that all linehaul
operations must be completed before the backhaul operations can be
commenced. This problem has been considered in the TSP version by
Gendreau et al. [40] and Gendreau et al. [41] using heuristic approaches,
and in the VRP version by Toth and Vigo [107] (exact) and Toth and
Vigo [108] (heuristic).

Additionally a version of the problem has been studied, where line- and
backhaul customers can be served simultaneously, in the VRP-version
by Montané and Galvão [81] and Mosheiov [82] (split deliveries allowed),
and by Baldacci et al. [4], who found exact solutions to the TSP-version
(100–150 customers, all instances solved in less than an hour).

Gendreau et al. [42], Duhamel et al. [31], Salhi and Nagy [99], and Grib-
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kovskaia et al. [52] all consider heuristic solutions to problems where
the operations are mixed and customers may require both pickup and
delivery operations.

Finally the VRP version of the problem with time windows has been
solved heuristically by Potvin et al. [94] and Zhong and Cole [115].

2.1.5 Other related TSP/VRP variants

In addition to the above mentioned problems, some less studied variants
of the TSP and VRP exist, which contain loading, stacking or other
additional constraints that affects which routings are allowed.

2.1.5.1 Multi-Pile Vehicle Routing Problem

The multi-pile vehicle routing problem (MPVRP) is a variation of the
VRP with loading constraints, where the loading space is divided into
several different (vertical) piles/stacks. The MPVRP was introduced by
Doerner et al. [30] and has been further treated by Tricoire et al. [111].
The MPVRP is concerned with the delivery of goods to users, and has no
pickup aspect. The goods are packed on pallets (of varying height) which
gives rise to the multi-pile approach, however some goods do not fit on
one pallet, and will instead extend across the full length of the vehicle,
covering all piles. The problem consists in determining a set of routes
with the smallest possible routing cost, such that for each route there
exists a feasible loading of the vehicle. Additionally it is required that
each customer can only be visited once, and repacking is not allowed,
i.e. all items destined for a given customer must be grouped, such that
they can all be delivered at the same time, without requiring intermediate
handling of items meant for other customers. An illustration of how a
loading could look for the MPVRP can be seen in Figure 2.5.

Figure 2.5: Loading for the MPVRP.

In Doerner et al. [30], the MPVRP is solved using tabu search and ant
colony optimisation (ACO). The tabu search approach is based on a
modified objective function that allows infeasible solutions by adding
a penalty costs for overloaded vehicles, and additionally applies multi-
starts. The ACO approach is based on a framework for the general VRP,
with some modifications to cater for the loading restrictions. This in-
cludes an extra pheromone matrix for loading, where a pair of customers
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is preferred if they take up a lot of loading space, and only lead to a
small amount of space being potentially wasted. The loading feasibil-
ity subproblem is solved using a combination of a simple heuristic and
a dynamic programming approach. The algorithms are tested both on
instances derived from the CVRP literature, with instance sizes rang-
ing from 50 to 199 nodes, and taken from a real-world application of
the MPVRP with 76 nodes. A maximum of two hours solution time is
allowed, but this limit is hardly ever reached. The ACO provides the
better results for all but the smallest instances. Additionally, some re-
sults are presented on the potential of reducing the number of vehicles
used in the solution, by adjusting a parameter of the objective function.

Tricoire et al. [111] use a Variable Neighbourhood Search (VNS) and
a branch-and-cut approach to solve the MPVRP. Several different ap-
proaches are applied to solve the subproblem – one exact and one greedy
heuristic, along with a heuristic from Doerner et al. [30]. Additionally a
number of lower bounds from the literature are used on the subproblem.
The test instances from [30] are used for the heuristic with 30 minutes
run time. The VNS algorithm demonstrates better performance than
the previous TS and ACO approaches, and often improves the previ-
ously best known solution. The branch-and-cut approach is tested on
instances of reduced size, with 20–56 customers, and with a time limit
of 2 hours. The VNS is used to produce initial solutions, and to produce
a pool of proven feasible/infeasible routes to be used by the branch-and-
cut algorithm. All tested instances with up to 38 customers are solved to
optimality within the time limit, while only 1 instance of 44 customers,
and no larger instances can be solved.

The similarity between the MPVRP and the DTSPMS lies in the avail-
ability of multiple stacks for the loading problem. However the stacks
play a rather different role in the two problems, meaning that the sim-
ilarities are fewer than they appear at first sight. In the DTSPMS the
stacks affect the implications of the LIFO principle, whereas LIFO is not
at all present in the MPVRP. In the MPVRP the stacks impose a com-
plication on the search for capacity feasible loading plans, by requiring
load to be spread over stacks for better usage, while capacity feasibility
is not an issue in the DTSPMS.

2.1.5.2 Black and white TSP

The black and white travelling salesman problem (BWTSP) is concerned
with finding a shortest Hamiltonian tour visiting all vertices in a graph
whose vertex set is divided into black and white vertices. It is required
that between two consecutive black vertices the solution contains no more
than a certain number of white vertices, and the total distance between
two black vertices can also not exceed a given limit. The BWTSP typi-
cally arises in telecommunications and in the airline industry (scheduling
with maintenance requirements).
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Bourgeois et al. [9] presents three construction heuristics which may
produce infeasible solutions, one repair heuristic and one improvement
heuristic. The first construction heuristic constructs a TSP solution,
disregarding the special black-and-white constraints. The second and
third construction heuristic both start out by constructing a TSP solu-
tion from the white vertices, and then inserts the black vertices. The
repair heuristic takes as input a TSP tour where one or both of the spe-
cial black-and-white constraints are violated, and attempts to make the
solution feasible by moving black vertices into or white vertices away
from problematic sequences. The improvement heuristic is based on the
2-opt procedure, modified to ensure that feasibility is not broken when a
move is performed. The resulting heuristics are tested on 1080 randomly
generated instances with 50, 100, and 200 nodes, and with a varying
distribution of black nodes. All problems that were solved, were solved
in less than 3 minutes, however for some problems no feasible solution
could be found at all. The results show that the second approach was
better at locating a feasible solution in difficult instances, whereas the
two other approaches on average produced better results.

In Ghiani et al. [47] an integer linear model for the black and white
TSP is presented, along with some valid inequalities for the problem,
leading to a branch-and-cut algorithm. The presented valid inequalities
are a combination of adaptations of known TSP inequalities, and new
inequalities developed for the BWTSP. The latter can be split into
two groups concerned with 1) the number of white vertices and 2) the
distance between two consecutive black nodes. The algorithm is tested
on a combination of randomly generated instances, and instances derived
from TSPLIB. Within 10,000 seconds it produces optimal solutions to
most instances with up to 60 nodes, and to some instances with 100
nodes.

A common trait between the BWTSP and the DTSPMS is that both
involve some sort of distinction between the vertices that does not occur
in the regular TSP. In the BWTSP this is the distinction between black
and white vertices, and in the DTSPMS this is the distinction between
customers whose orders are loaded in different loading rows. A significant
difference is that in the BWTSP this division of the vertices is an exoge-
nous variable (given beforehand), while in the DTSPMS this division is
an endogenous variable (part of the decision to be made). These existing
similarities between the BWTSP and the DTSPMS do not lead to any
immediate insights, but the relationship could be investigated further.

2.1.5.3 VRP with cross-docking

The VRP with cross-docking (VRPCD) presents a different way of han-
dling loading issues when multiple vehicles are present. In the VRPCD
all vehicles return to the terminal/cross-dock after performing the pickup
operations, and the goods are then redistributed between the vehicles be-
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fore the deliveries are carried out. Thus reloading is permitted, to allow
transfer of items between vehicles. Furthermore the actual repacking
cost/time is considered, i.e. there is a preference for using the same ve-
hicle for pickup and delivery for a given order. Loading ordering for the
VRPCD does not seem to have been considered, for example by imposing
some kind of LIFO principle, which could be justified by the fact that
not all orders are in fact repacked. The treatment in the literature of the
vehicle routing problem with cross-docking is still quite sparse.

The VRPCD tends to cluster customers with nearby locations in the
same vehicle, and thus the solution becomes more difficult if several re-
quests have nearby pickup locations but far apart delivery locations (in
particular when reloading is costly). On the contrary, in the DTSPMS,
the clustering of requests into rows does not relate as directly to geo-
graphical proximity.

Lee et al. [70] consider the VRPCD from a supply chain point of view.
The authors require the simultaneous arrival of all trucks at the cross-
dock after the pickup phase, to avoid vehicles having to wait before being
repacked and departing. A tabu search algorithm is implemented to solve
the problem. Instances with up to 50 nodes are considered, all of which
are first solved to optimality using enumeration, to assess the quality of
the heuristic solutions. Within 1000 iterations the tabu search procedure
produces solutions on average 3.75% above optimum, however no running
times are reported; it is only stated that the results are obtained in a
“reasonable amount of time”.

Wen et al. [112] use tabu search to solve the VRPCD, within an adaptive
memory procedure (AMP) allowing the tabu search to perform restarts.
The tabu search algorithm allows infeasible solutions with a penalty for
exceeded capacity, duration and time windows, and variable neighbour-
hood size is used to intensify the search towards the end of the compu-
tation. Additionally, a initial bound on the cost of each neighbourhood
move is used to determine if a move looks promising enough to calculate
its cost exactly. The algorithm is tested on data sets based on real-life
data with up to 400 nodes in total, at running times of maximum 5
minutes. On small instances (20 orders) the algorithm consistently ar-
rives within 1% of the lower bound, whereas on larger instances (30–200
orders) it consistently arrives within 5% of a weaker lower bound.

Ideas from cross-docking could be applied to the DTSPMS, if it were to
be solved with some degree of reloading allowed at the terminal/depot
at a certain cost. The VRPCD and DTSPMS are not immediately very
similar, however the underlying problem that both attempt to deal with
are related, namely that of considering a trade-off between routing and
loading costs. How much longer is it acceptable for the truck routes
to be, if repacking should be avoided? The DTSPMS seeks the best
routes possible when no repacking is allowed, and the cost of this solution
can then be compared to the cost with no loading considerations. The
VRPCD includes the cost and time of the repacking as a parameter, and
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can present a lot of variation in the solutions by adjusting this parameter,
as demonstrated in [112].

2.1.6 Applications

Several papers have been published which discuss real-life occurrences of
routing problems with loading aspects or other complications, and the
difficulties this poses. A selection of such papers will be presented in the
following, giving a flavour of the complications that real-life situations
may impose on routing and loading problems.

Shang and Cuff [103] solve a multiobjective pickup and delivery problem
for transporting patients’ records, equipment and supplies between a
number of medical facilities. The problem involves time windows and
some special characteristics, in particular the option of letting items
transfer between vehicles in the field as part of the transport. The prob-
lem can be considered a DARP with some special properties (e.g. transfer
opportunities and locations shared by several requests). Vehicle capacity
is not an issue, nor is ride time, as long as ready times and due times
are respected. The paper presents an interactive, constructive heuristic
for the problem, which allows the user to accept or reject a given solu-
tion, and resolve with modified parameters until a satisfactory solution
has been found. A subprocedure is used to construct clusters, which
are then evaluated and inserted into the existing vehicle schedule. The
paper handles the multiple objectives (number of vehicles used, travel
time minimisation, and tardiness) on a “one objective at a time”-basis,
optimising with regard to one objective and imposing a limit on the value
of the others, or alternatively weighting them together. The algorithm
is tested on real-life data with 300 requests (of which 133 have no time
windows, and are inserted at the end of the procedure). The results pro-
duced are superior to the previously used cyclic, fixed-route solution used
by the company, which does not allow use of the transfer opportunity
(37% improvement for running time less than 4 minutes).

Xu et al. [114] describe the solution of a real-life pickup and delivery
problem, with several complicating restrictions, including multiple time
windows, multiple carriers, heterogenous vehicles, legal working hour
constraints, LIFO constraints, and compatibility constraints between or-
ders and carriers, vehicles and other orders. The cost function includes
fixed costs, total distance, driving time and driver layover time. The
problem is solved using a heuristic column generation procedure, where
the routing and scheduling of each vehicle is solved as a subproblem,
which contains all the complications. Two different heuristics have been
implemented to solve this subproblem. Additionally a dynamic program-
ming algorithm is presented, which can be used to produce lower bounds
for the subproblems, but is only applicable for smaller instances, and is
used to evaluate the heuristic results. The algorithm is tested on two sets
of data, both of which are based on real-life data: medium sized instances
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with 100–420 nodes, and large instances with 600–1000 nodes (both us-
ing a relatively large fleet of vehicles, with 2–5 orders being served by
each vehicle). For the medium-sized instances the best heuristic gives
results that are on average within 4% of the lower bound in less than
2 minutes. For the larger instances the algorithm providing the better
results uses up to 7 hour of CPU time on average, while the other uses
less than 45 minutes, and provides solutions that are on average within
5% of the better solutions.

Savelsbergh and Sol [101] consider a pickup and delivery problem with
time windows, a heterogenous fleet, compatibility constraints, driver re-
strictions, multiple delivery points for each pickup, and 40% dynamic
requests. The problem is modelled as a set partitioning model, and
solved using a branch-and-price approach, with heuristics used to speed
up the solution process, and some minor modifications to handle parts
of the dynamics, cost structure, and driver regulations. The procedure
is tested on randomly generated instances and on real-life instances. A
simulation is performed to evaluate the quality of the solutions, and they
are compared to the actual planners’ decisions, showing potential cost
reductions of 3–4%, by solving the reoptimisation problem hourly with a
time limit of 5 minutes. The real-life data set contains around 90 vehicles
and some 100–200 requests to assign at each run.

Finally, some researchers (e.g. Goel and Gruhn [50] and Hasle [58]) have
used the term “rich VRP”, which is a broad term covering all types of
VRP problems with additional (real-life) constraints. The purpose of
this is often to point out that the theoretical and “clean” problems typ-
ically considered in the literature (such as the regular TSP, VRP, and
VRPTW) are inapplicable in practice, since the real world will often
impose numerous additional constraints that do not easily fit into these
often-studied problem classes. Such constraints include a variety of re-
strictions on loading, order types, fleet composition, driver regulations,
dynamically incoming orders, and the need for fast response times.

Goel and Gruhn [50] present what is referred to as a General VRP,
incorporating a variety of features from real-life applications. These in-
clude load acceptance (not all orders must be serviced), time windows,
a widely heterogenous fleet of vehicles (capacities, travel times, costs,
depots) compatibility constraints, orders split over different locations,
and routing restrictions. The problem has been encountered in road
feeder services for air freight. The problem is solved using a Reduced
VNS approach (VNS with reduced neighbourhood search), and an LNS.
To simulate a dynamic environment the heuristics are only allowed a
few seconds of computation time, on randomly generated instances of
500–2500 total orders and 100–500 vehicles.
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2.2 Properties of the DTSPMS

A mathematical formulation of the DTSPMS is provided in each of the
papers A and B, and will be repeated here for completeness.

The DTSPMS is defined on two complete graphs GT = (V T , ET ), where
T ∈ T and T = {P,D} denotes pickup and delivery, respectively. The
set of pickup nodes is V P = {vP

0 , . . . , vP
n}, where vP

0 is the depot in
the pickup region and vP

1 , . . . , vP
n are the pickup locations of the orders

1, . . . , n. The delivery graph is defined correspondingly. For each arc in
the graphs the cost cT

ij is given.

The problem can be formulated using three sets of binary variables, in-
dicating the routing, the precedence relations between orders, and the
assignment of orders to loading rows.

xT
ij =

{

1 if arc (i, j) is used in graph GT ,

0 otherwise,

yT
ij =

{

1 if node vT
i is visited before node vT

j (i 6= j),

0 otherwise,

zr
i =

{

1 if item i is placed in row r,

0 otherwise.

The model can then be stated as follows:

min
∑

T∈T
i,j∈V T

cT
ij · x

T
ij (2.11)

s.t.
∑

i∈VT

xT
ij = 1 T ∈ T , j ∈ VT (2.12)

∑

j∈VT

xT
ij = 1 T ∈ T , i ∈ VT (2.13)

yT
ij + yT

ji = 1 T ∈ T , i, j ∈ VT
C (2.14)

yT
ik + yT

kj ≤ yT
ij + 1 T ∈ T , i, j, k ∈ VT

C (2.15)

xT
ij ≤ yT

ij T ∈ T , i, j ∈ VT
C (2.16)

yP
ij + zr

i + zr
j ≤ 3 − yD

ij r ∈ R, i, j ∈ VT
C (2.17)

∑

r∈R

zr
i = 1 i ∈ VT

C (2.18)

∑

i∈VP
C
∪VD

C

zr
i ≤ L r ∈ R (2.19)

xT
ij ∈ B T ∈ T , i, j ∈ VT , i 6= j (2.20)

yT
ij ∈ B T ∈ T , i, j ∈ VT

C , i 6= j (2.21)

zr
i ∈ B r ∈ R, i ∈ VP

C ∪ VD
C . (2.22)
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The objective function sums the cost of all used arcs in the graph. Con-
straints (2.12) and (2.13) are flow conservation constraints, stating that
one unit of flow must enter and exit each node. Constraints (2.14) ensure
that for each pair of nodes (i, j) a precedence variable must be set to one,
i.e. either i is before j or j is before i. (2.15) ensure the consistency and
transitivity of the y variables: that if i is before k and k is before j,
then i must necessarily be before j. Constraints (2.16) make sure that
if an arc (i, j) is used, then the precedence variable is set accordingly
(i is visited before j, i.e. yij = 1). Constraints (2.17) express the LIFO
constraints, that only apply when two items are in the same row r: if i
and j are placed in the same row (zr

i = zr
j = 1), and i is picked up before

j (yP
ij = 1), then j must be delivered before i (yD

ji = 1). Finally, (2.18)
ensure that all items are assigned to exactly one row, and (2.19) enforce
the row capacity L.

Pickup and delivery problems (in the narrow meaning of the term, i.e.
problems of type SVRPPD) are traditionally modelled with a order
index i ∈ {0, . . . , 2n + 1} for an instance with n orders, with P =
{1, . . . , n},D = {n + 1, . . . , 2n} and depots 0 and 2n + 1. However
since the pickup and delivery graphs of the DTSPMS are completely
separated, such a formulation did not seem natural, and did not improve
the readability of the model. Instead, it has been chosen to define the
variables as can be seen above, with one index used to indicate the or-
der i ∈ {1, . . . , n}, and another index to indicate whether the node is a
pickup or delivery node T ∈ T .

A dataset for the DTSPMS has been developed for this project and made
available online2. The test instances have been generated randomly, by
finding two sets of n random (real) points in a 100 × 100 square. The
depot is placed in the centre of the square at (50, 50). All distances are
Euclidean distances rounded to the nearest integer, in accordance with
the conventions from TSPLIB. This rounding implies that the triangle
inequality is not preserved, however none of the algorithms presented
here rely on this inequality.

2.2.1 Observations on bounds

Optimal solutions have been determined for all instances with 15 orders,
and in the following a discussion will be given regarding the relationship
between these optimal solutions and various bounds, as well as on similar
bounds obtained for larger instances.

The values for some TSP bounds and optimal solutions split on the
pickup and delivery graphs have been summarised in Table 2.1. The
first column shows the instance number, followed by the value of the
optimal DTSPMS solution z∗. Columns z∗P and z∗D show the value of the
DTSPMS-optimal path through each graph. zTSP shows the solution

2http://www.transport.dtu.dk/datasets/DTSPMS

http://www.transport.dtu.dk/datasets/DTSPMS
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Inst. z∗ z∗P z∗D zTSP zTSP
P zTSP

D
z∗

zTSP

z∗P
zTSP
P

z∗D
zTSP
D

R00 741 398 343 707 367 340 1.05 1.08 1.01
R01 754 378 376 720 378 342 1.05 1.00 1.10
R02 658 334 324 635 319 316 1.04 1.05 1.03
R03 768 380 388 733 377 356 1.05 1.01 1.09
R04 708 403 305 689 403 286 1.03 1.00 1.07
R05 737 373 364 716 371 345 1.03 1.01 1.06
R06 836 374 462 811 364 447 1.03 1.03 1.03
R07 690 382 308 651 364 287 1.06 1.05 1.07
R08 826 427 399 789 390 399 1.05 1.09 1.00
R09 768 359 409 751 349 402 1.02 1.03 1.02

avg. 749 380 368 720 368 352 1.04 1.03 1.05

Table 2.1: Lower bounds, 15 orders.

value of two individual TSPs, which is the lower bound referred to as nS
(n-stack) in Paper A. zTSP

P and zTSP
D show the length of the optimal TSP

tour in the pickup and delivery graphs respectively, thus zTSP = zTSP
P +

zTSP
D . The column z∗

zTSP shows the gap between the optimal solution and

the nS bound, and
z∗P

zTSP
P

and
z∗D

zTSP
D

show the gaps between the TSP and

DTSPMS optimal tours for each of the graphs P and D.

The numbers of Table 2.1 show that the n-stack bound, z∗

zTSP , is a rea-
sonable bound for problems of moderate size (15 customers), with an
average gap of the optimal solution of 4%. However as L increases, the
accordance between the TSP and DTSPMS solutions decreases, and so
does the strength of this bound. The two last columns show that the
way to obtain a DTSPMS-optimal solution from a TSP-optimal solu-
tion can have different forms, and that the deviation from zTSP

T is not
necessarily evenly distributed between the pickup and delivery routes.
For some instances the DTSPMS-optimal solution consists of one TSP-
optimal route and one route which is rather far from its TSP-optimal
(in particular R01, R04, and R08), and for other instances both routes
have undergone some modifications compared to the TSP-optimal (such
as R02, R06, and R07). For larger instances it should not be expected
that very many DTSPMS-optimal solutions contain one route that is
TSP-optimal, however it seems very likely that one route can be much
further away from its TSP-optimal than the other.

Table 2.2 shows some upper bounds that are based on the lower bounds in
Table 2.1. zTSP-D

P (zTSP-P
D ) shows the length of the optimal DTSPMS tour

through the pickup (delivery) graph, given that the route of zTSP
D (zTSP

P )
is used as delivery (pickup) tour. zP|D (zP|D) gives the corresponding

upper bound for the DTSPMS obtained by zTSP-D
P + zTSP

D (zTSP-P
D +

zTSP
P ), and

zP|D

z∗
(

zD|P

z∗
) the gap between this upper bound and the optimal

solution. z̄TSP

z∗
shows the average gap between the upper bounds obtained

from zTSP-D
P and zTSP-P

D , and the optimal solution z∗. Finally, zTSP
1 is the
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upper bound obtained by solving the single stack problem (referred to

as SS in Paper A),
zTSP
1
z∗

shows the ratio between the single stack upper

bound and the optimal solution, and
zTSP
1

zTSP shows the ratio between the
upper and lower bounds.

zTSP-P
D zTSP-D

P zD|P zP|D
zD|P

z∗
zP|D

z∗
zTSP
1

zTSP
1
z∗

zTSP
1

zTSP

R00 397 412 764 752 1.031 1.015 935 1.26 1.32
R01 376 443 754 785 1.000 1.041 971 1.29 1.35
R02 387 344 706 660 1.073 1.003 957 1.45 1.51
R03 416 440 793 796 1.033 1.036 977 1.27 1.33
R04 305 441 708 727 1.000 1.027 949 1.34 1.38
R05 369 425 740 770 1.004 1.045 980 1.33 1.37
R06 494 394 858 841 1.026 1.006 998 1.19 1.23
R07 360 405 724 692 1.049 1.003 916 1.33 1.41
R08 437 427 827 826 1.001 1.000 1048 1.27 1.33
R09 430 371 779 773 1.014 1.007 909 1.18 1.21

avg. 397 410 765 762 1.023 1.018 964 1.29 1.34

Table 2.2: Upper bounds, 15 orders.

Table 2.2 shows that quite good DTSPMS solutions can be obtained by
first solving a TSP on each of the graphs, and then solving the DTSPMS
with this route fixed. By doing this for each of the routes (pickup and
delivery) a solution can be obtained that is within 1% of the optimal in
8 of the 10 instances with 15 orders, as shown in the table. It is worth
noting that instance R07, where the optimal DTSPMS solution consists
of two routes that are around 5% from TSP-optimal, a solution exists
that contains one TSP-optimal route and is only 0.3% above the optimal.
As mentioned earlier, these results can be expected to deteriorate with
increased problem size, but the trend is interesting, and indicates a path
of research that could possibly be investigated further, however time has
not allowed for this to be done at this point. The last two columns show
that the single stack bound is rather weak, even for small instances.

Illustrations of the DTSPMS- and TSP-optimal solutions of two smaller
instances are shown in Figures 2.6 and 2.7. These figures illustrate how
one or both TSP-optimal tours may sometimes differ from the DTSPMS-
optimal, and also how they can be very similar. Further illustrations
of the DTSPMS-optimal and TSP-optimal solutions of Table 2.1 can be
found in Appendix D.1.

Larger instances

Some similar bounds can be calculated for the instances with 33 orders,
as reported in Tables 2.3 and 2.4.

Table 2.3 is similar to Table 2.1, but reports values for the 33 order
instances, using the best known solution to each of the 33 order problems
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Figure 2.6: Comparison of optimal TSP (z = 689) and DTSPMS (z =
708) solutions for instance R04.

zbest zbest
P zbest

D zTSP zTSP
P zTSP

D
zbest

zTSP

zbest
P

zTSP
P

zbest
D

zTSP
D

R00 1063 528 535 911 482 429 1.17 1.10 1.25
R01 1032 551 481 875 471 404 1.18 1.17 1.19
R02 1065 563 502 935 504 431 1.14 1.12 1.16
R03 1100 515 585 961 494 467 1.14 1.04 1.25
R04 1052 550 502 937 511 426 1.12 1.08 1.18
R05 1008 515 493 900 479 421 1.12 1.08 1.17
R06 1110 512 598 998 457 541 1.11 1.12 1.11
R07 1105 603 502 963 481 482 1.15 1.25 1.04
R08 1109 580 529 978 492 486 1.13 1.18 1.09
R09 1091 517 574 976 464 512 1.12 1.11 1.12

avg. 1074 543 530 943 484 460 1.14 1.12 1.16

Table 2.3: Partial comparison of best known DTSPMS solution and TSP-
optimal, 33 orders.
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Figure 2.7: Comparison of optimal TSP (z = 751) and DTSPMS (z =
768) solutions for instance R09.
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(from Table A.1), as the DTSPMS-optimal solutions are unknown for
these instances. Again it can be observed that there is a significant

variation in values of zbest

zTSP and
zbest
P

zTSP
P

for one instance – some instances

form the best DTSPMS-solution by moderate modifications to each TSP-
optimal route, while others perform only minor modifications (down to
4%) on one graph, and significant modifications to the other. Table 2.4

zbest zTSP
1

zTSP
1

zbest

zTSP
1

zTSP

R00 1063 1682 1.58 1.85
R01 1032 1579 1.53 1.80
R02 1065 1564 1.47 1.67
R03 1100 1741 1.58 1.81
R04 1052 1629 1.55 1.74
R05 1008 1438 1.43 1.60
R06 1110 1643 1.48 1.65
R07 1105 1696 1.53 1.76
R08 1109 1643 1.48 1.68
R09 1091 1556 1.43 1.59

avg. 1074 1617 1.51 1.72

Table 2.4: Comparison of upper bound, 33 orders.

shows the upper bounds that can be computed for 33 order instances
zTSP
1

zTSP (zTSP
1 are the numbers given as SS in Paper A). It has not been

possible to compute the values zP|D and zD|P for these instances. The

upper bound zTSP
1 is compared to the best known solutions and to the

lower bound. Most notably the ratio between the upper and lower bounds
has increased considerably with the increase of the problem size from 15
to 33 orders (from 1.34 to 1.72 on average), indicating that the strength
of one or both bounds has also decreased significantly.

An interesting interpretation of the value z∗

zTSP , is that it indicates the
cost of not allowing repacking. If repacking were allowed the orders could
be served at the value zTSP instead of z∗, meaning that the cost increases
by on average 4% by not allowing repacking for the 15 order instances,
and by 14% for the 33 order instances.

2.3 Paper: Heuristic solution approaches to the

DTSPMS

In the paper “The Double Travelling Salesman Problem with Multiple
Stacks – Formulation and Heuristic Solution Approaches” (cf. Appendix
A) a selection of metaheuristics for the DTSPMS are presented, imple-
mented and tested. Additionally this paper constitutes the introduction
of the DTSPMS to the research literature. This section will provide some
additional comments as a supplement to the paper. It is recommended
that the paper is read before reading the remainder of this section. It
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should be noted that the symbols used in the paper differ slightly from
the model presented in (2.11)–(2.22) and used throughout the rest of the
thesis.

2.3.1 Additional solutions with known optimal solutions

By using the exact approaches that will be presented in Paper B, it
has been possible to evaluate the heuristic solutions for instances with
known optimal solutions, that are slightly larger than those presented in
Section A.4.4. These instances have been tested using the large neigh-
bourhood search algorithm, and the results are summarised in Table 2.5.

opt. 10 sec. 180 sec.

R00-15 741 1.000 (3) 1.000 (3)
R01-15 754 1.003 (1) 1.000 (3)
R02-15 658 1.000 (3) 1.000 (3)
R03-15 768 1.002 (2) 1.000 (3)
R04-15 708 1.000 (3) 1.000 (3)
R05-15 737 1.000 (3) 1.000 (3)
R06-15 836 1.000 (3) 1.000 (3)
R07-15 690 1.000 (3) 1.000 (3)
R08-15 826 1.000 (3) 1.000 (3)
R09-15 768 1.001 (2) 1.000 (3)

R10-15 698 1.000 (3) 1.000 (3)
R11-15 684 1.000 (3) 1.000 (3)
R12-15 751 1.000 (3) 1.000 (3)
R13-15 744 1.000 (3) 1.000 (3)
R14-15 751 1.001 (1) 1.000 (3)
R15-15 748 1.000 (3) 1.000 (3)
R16-15 692 1.000 (3) 1.000 (3)
R17-15 783 1.000 (3) 1.000 (3)
R18-15 783 1.000 (3) 1.000 (3)
R19-15 800 1.000 (3) 1.000 (3)

avg. 746 < 1.001 (54
60 ) 1.000 (60

60 )

Table 2.5: Larger instances with a known optimal solution.

As Table A.3, Table 2.5 shows the average deviation between the heuristic
and the optimal solutions for three runs, and the number of times out
of the three that the optimal solution is obtained. While the optimal
solution was consistently found for the 12 order instances, even for the
short running time, this is not quite the case for the 15 order instances.
For 4 of the 20 tested instances the optimal solution is not always found,
however the average deviation is still very small (within 0.3%). For the
longer run time of 3 minutes the heuristic still consistently discovers the
optimal solution.
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2.3.2 General heuristic improvements

When implementing a solution method for a given problem, one always
reaches a point where the refinement must be terminated, even though
it is always possible to test new parameters and add new features. Of
the methods presented in the paper, particularly the work on the tabu
search method could be said to have been ended prematurely. The overall
approach was to first implement a basic version of each of the algorithms,
and then focus the further work on the algorithms that seemed most
promising from an early stage. This meant that some of the heuristics
presented in the paper are rather rudimentary.

Several common enhancements of the basic tabu search algorithm have
already been mentioned briefly in the introductory section 1.3.1, such as
variable tabu tenure. Additionally, the tabu search should probably have
been allowed to choose a random operator at each iteration, rather than
using a fixed pattern, and the argument of maintaining tabu search as a
deterministic algorithm does not seem justified in hindsight. The termi-
nation criterion could have been changed to the more commonly used “a
certain number of iterations without improvement”, supplemented with
a restart or some other diversification technique to make better use of the
full time available. Furthermore, it would be tempting to test reducing
the size of the explored neighbourhood in each iteration, by searching
only part of the neighbourhood, for example by searching only until an
improving solution has been found. Finally, each of the just mentioned
suggestions could be made dependent on a parameter, so as to take more
or less effect at the beginning/end of the calculation.

The implementation of iterated local search that was made for the pa-
per was also rather crude. In particular each restart could have been
performed from a solution that was more closely related to a previous
good solution, rather than being restarted from a new random solution.
As mentioned in the paper the initial idea was indeed to examine the
behaviour of a simple steepest descent approach with restarts, but as
this idea turned into an ILS algorithm, further known ILS features could
have been tested, such as the implementation of a proper kick function
to generate restart solutions. A potential kick function could be an ex-
tension of the Complete-Swap to swap 3 orders – this would be in line
with the suggestion of Lourenço et al. [76] to use a higher order move of
an existing neighbourhood as kick.

2.3.3 Initial solutions

The initial solutions used by the heuristics has been based on a heuristic
solution to the single stack problem. An alternative initial solution could
have been obtained by initially solving a TSP for one graph, and then
implementing a simple construction heuristic to produce a good tour in
the other graph based on a given loading. This would generate an initial



2.3 Paper: Heuristic solution approaches to the DTSPMS 49

solution that could make better use of the multiple stacks. This approach
would naturally lead to two different solutions (by solving either the
pickup or the delivery route first) – in an implementation one might
calculate both and use the best.

It is questionable whether the initial solution has a significant impact
on the final solution, however as one TSP-optimal tour is part of the
optimal DTSPMS-solution at least for the smaller instances (as shown
in Table 2.1), and the best known solution for the larger instances often
contains one tour that is much closer to its TSP-optimum than the other,
such an approach might prove worthwhile.

2.3.4 Infeasible solutions

A common approach when implementing metaheuristics is to allow in-
termediate infeasible solutions by imposing an additional cost/penalty
depending on the amount of infeasibility. This cost is then added to the
objective function when expressing the value of a solution, and the fea-
sibility of a solution must then be considered whenever the incumbent
solution is updated. The idea of allowing infeasible solutions is already
mentioned in the paper as a suggestion for further research.

Each of the implemented metaheuristics could be expanded to allow in-
termediate infeasible solutions. To this end a meaningful measure of
infeasibility would need to be determined. Traditionally, when imple-
menting solution approaches that allow intermediate infeasibilities, such
infeasibilities can often be expressed in terms of numeric violation of a
resource constraints (e.g. of the type

∑

x ≤ x̄; excessive usage of some
resource, such as loading capacity or time windows), and the violation
can thus be quantified by determining the numeric size of the violation
(
∑

x − x̄).

Infeasible solutions for the DTSPMS can be constructed in two different
ways: by allowing loading plans that are infeasible regarding the ordering
of the items, or by allowing loading plans where some rows may exceed
the row capacity. In the latter case the degree of infeasibility can quite
easily be expressed in terms of the amount of excess row capacity that is
used. For the former case such an approach is not immediately feasible,
however this approach can be seen as a violation of the “no intermediate
repacking” constraint, and thus the degree of infeasibility could prob-
ably be expressed in terms of “number of intermediate rearrangements
required to perform the delivery tour”.

2.3.5 Alternative operators

When developing the route-swap and complete-swap operators, focus was
on constructing operators that maintained the feasibility of the solution.
This meant that the use of very simple operators was ruled out from the
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beginning. Furthermore it did not seem possible to construct a single
operator that maintained feasibility and would still be able to cover the
entire solution space.

When allowing infeasible intermediate solutions, several simpler opera-
tors immediately become available, including the traditional ones used
for the TSP/VRP.

An approach that allows infeasible solutions and thereby the usage of
simpler operators has in fact been succesfully tested by Felipe et al. [34],
which will be further discussed in 2.3.9 (p. 53).

As mentioned earlier most operators developed for the TSPPD/TSP-
PDL focus on the preservation of the LIFO constraints, and are hence
not directly applicable to the DTSPMS. In particular the idea of moving
entire blocks can not be immediately transferred, as blocks of consecutive
items in a loading row does not correspond to a contiguous routing unit
in the DTSPMS.

The block concept can be used to illustrate the route-swap introduced
in the paper. If the pickup visits c+ and d+ of Figure 2.4 (p. 29) are
swapped in the pickup route without updating the delivery route, the
resulting infeasibility is clearly visible from the cross seen in Figure 2.8.

a+ b+ d+ c+ b− d− a− c−

Figure 2.8: Blocks used to illustrate an infeasibility in the DTSPMS.

It is also easily seen from Figure 2.4 why no further modifications are
necessary when swapping two visits that are assigned to different rows,
e.g. swapping b+ and c+ would lead to Figure 2.9, which contains no
crosses.

a+ c+ b+ d+ b− d− a− c−

Figure 2.9: Illustration of blocks in the DTSPMS.

In fact this leads to the idea of allowing shifts of not only one, but several
positions, since the swaps can be performed without affecting the row
assignment or the other route, as long as the swapped orders are assigned
to different rows.

The complete-swap performs a swap of both pickup and delivery order of
two requests, and thus in an illustration such as Figure 2.9 only the labels
would change when performing a complete-swap (for example the labels
of orders a and d could be swapped, while the lines above, indicating
loading compatibility, would remain unchanged).



2.3 Paper: Heuristic solution approaches to the DTSPMS 51

Unfortunately, it has not been possible thus far to convert the concept of
blocks to a form that is immediately useful for constructing new neigh-
bourhoods for the DTSPMS, by modification of existing TSP neighbour-
hoods.

For the large neighbourhood search algorithm a random removal operator
could have been implemented, to supplement the relatedness and price-
based ones and provide further diversification.

2.3.6 Switching strategies

The method of combining the two neighbourhood structures could have
been modified, to develop adaptively over the course of the iterations.
As mentioned earlier the reason for using a combination of operators was
initially a necessity to properly examine the entire solution space, but
the similarities with VNS could be further exploited by using a more
advanced switching strategy, such as the one from VNS where one oper-
ator at a time is applied, and more involved operators are only applied
whenever the simpler operators has been unable to produce improving
solutions for a given period.

Alternatively, an adaptive probability could be used, such that the prob-
ability of choosing a given operator at each iteration would depend on
the historic performance of this operator over recent iterations. This
idea is similar to the adaptive large neighbourhood search presented in
Røpke and Pisinger [96] and Pisinger and Røpke [93].

2.3.7 Termination criterion

As described in the paper, running time was chosen as termination cri-
terion, rather than e.g. number of iterations, since it better matched the
requirements of the real-world situation where the problem would occur.
It also eased the comparison of the different heuristics, by reducing the
number of performance parameters to compare. Through the parameter
tuning process each algorithm should be allowed to perform at its best,
even with a pre-set running time.

To ensure reproducibility and stability of the results, the use of running
time as termination criterion was obtained by converting this to a number
of iterations. This was done by first determining the number of iterations
that could be completed during the assigned running time as an average
over three timed runs, and then completing the tests using the resulting
number of iterations to represent the desired running time. This was done
for 180 seconds, and all other running times used were found by suitable
multiplication. To further reduce the impact of time variations each
timed run was repeated three times, and the final number of iterations
was taken as an average over these three.

The number of iterations to be completed within a given time span was
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dependent on some of the parameters for each algorithm, namely:

ILS: percentage of moves of each type
TS: percentage of moves of each type
SA: start and end temperature
LNS: number of orders to remove at each iteration (min and max)

Thus the number of iterations was determined for each combination of
these parameters, and these numbers were used for calibration runs and
for the final runs.

Furthermore each of the final runs were repeated three times with differ-
ent random seeding for all algorithms that include randomness (all but
tabu search), to reduce the impact of this, and give a broader view of
the results.

2.3.8 SA temperature reduction scheme

The temperature reduction scheme implemented for simulated annealing
to allow the use of running time as termination criterion is described
rather briefly in the paper (Section A.3.5), and will be described in fur-
ther detail here.

Traditionally the temperature reduction function used by simulated an-
nealing is based on the reduction scheme

Ti+1 = c · Ti (2.23)

where T0 = Ts, c ∈ (0; 1) is some reduction factor, and the algorithm
terminates when the final temperature Te is reached, that is the temper-
ature is reduced exponentially as a function of the number of iterations
completed, as seen in Figure 2.10. The purpose of this modification cor-
responds to determining a value of c that ensures that the desired ending
temperature is reached at the desired ending time of the algorithm.

0

T_e

T_s

Iterations

T
em

pe
ra

tu
re

Figure 2.10: Standard cooling scheme.

The temperature reduction function given in (2.23) is equivalent to find-
ing the temperature T (i) at iteration i as:

T (i) = Ts · c
i (2.24)
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where Ts is again the starting temperature, c is the reduction factor and
the algorithm is stopped once the desired final temperature Te is reached.

If instead a certain number of iterations is allowed, the temperature
reduction function can be expressed as

T (i) = Ts ·

(

Te

Ts

)
i

imax

(2.25)

where T (i) is the temperature at iteration i, and imax is the prede-
termined maximum allowed number of iterations. This ensures that
T (0) = Ts, T (imax) = Te and the behaviour between these two points
corresponds to that of (2.23) when temperature Te is reached at time
tmax.

Similarly the temperature can be calculated as a function of the running
time

T (t) = Ts ·

(

Te

Ts

)
t

tmax

(2.26)

where tmax is the total allowed running time.

For the implementation in the paper this approach has been used to
allow the algorithm a predetermined running time, and still ensure that
an appropriate temperature interval is covered, effectively keeping the
same exponential temperature reduction curve with changed x-axis, as
illustrated by Figure 2.11.
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Figure 2.11: Adjusted cooling scheme.

2.3.9 Related work by others

The work presented in A has inspired Felipe et al. [34, 35] to work on
the DTSPMS, implementing a variable neighbourhood search algorithm.
This implementation uses a combination of the feasible operators intro-
duced in the paper of Appendix A and new operators that are in part
based on the existing ones. Their approach partially allows intermediate
solutions that are capacity infeasible.

One new operator that is introduced (in-stack swap) is similar on the
complete-swap, but performs the swap on two orders that are assigned
to the same loading row, thus affecting only the routes, and not the
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row assignment. A reinsertion operator is introduced, which removes an
order from the solution and reinserts it in a different row. In order to
work well the Reinsertion operator requires that infeasible solutions are
allowed (exceeding row capacity), and it is used in combination with a
repair heuristic, which attempts to restore feasibility of a solution. An
r-route permutation operator is introduced, which permutes a sequence
of customers in one route. The sequence is constituted of consecutive
customers assigned to different rows, such that one route can be mod-
ified without affecting the other elements of the solution. Figure 2.12
points out some sequences of customers that can be permuted this way.
When 2 customers are permuted this operator corresponds to the route-
swap (specifically the case where the swapped customers are assigned to
different rows). Finally, a stack permutation operator is a generalisation
of the complete-swap, allowing more than two orders to be permuted in
one step, and a variation called r-complete stack permutation performs
multiple simultaneous stack permutations on different parts of the row.

a+ b+ c+ d+ e+ f+ e− f− c− b− d− a−

Figure 2.12: Illustration of the Route Permutation, examples
of permutable sequences are (b+, c+, d+), (e−, f−, c−), (c−, b−, d−),
(b−, d−, a−).

Three variations of the VNS are implemented, Variable Neighbourhood
Descent, which allows no hill-climbing moves, a Generalised Variable
Neighbourhood Search, which uses a nested VND as the local search
procedure and allows ways to escape local optima, and a Hybridised
VNS, which is based on the GVNS, adding further features, such as
restarts, tabu lists, and randomised operator choice.

The results presented by Felipe et al. [35] are generally better than those
of paper A for all but the smallest instances (12 customers), and for a
third of the largest instances (66 customers) an improved best solution
is presented. Finally some instances with 132 customers are generated
and tested for a 3-row setup, although instances with a row capacity of
44 does not seem very likely in real-life.

Felipe et al. [35] also compare the impact of each of the operators used.
Interestingly the by far best operators are the reinsertion, which uses
infeasible solutions, and the complete-swap. Particularly, a comparison
of the complete-swap and the 2 new operators based on a related idea
(in-stack swap and complete stack permutation) show quite different per-
formance.

The findings of Felipe et al. [35] support the suspicions from Paper A,
that the DTSPMS is more easily solved when the algorithm can move
rather freely through the solution space, either by applying far-reaching
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operators, or by allowing intermediate infeasible solutions.

2.4 Paper: Exact solutions to the DTSPMS

In addition to the models presented in Paper B, two further modelling ap-
proaches were developed for the DTSPMS, however the results were not
promising, and they were excluded from the published work. Nonethe-
less, they are presented here, to give an impression of the variety of
modelling approaches that can be applied to the DTSPMS. These models
represent supplementary work to the paper, and it is thus recommended
to read the paper before reading the remainder of this section.

2.4.1 Variation of the flow model: The multiple commodi-
ties flow model

This section considers a variation of the flow model presented in Section
B.4, called the multiple commodities flow model. The DTSPMS can be
modelled in terms of multi-commodity flows, with one commodity for
each available loading row, and a supply/demand of 1 for each customer.
Since the assignment of orders to rows is a decision variable, so is the
commodity that is supplied/demanded by each customer.

The idea is to maintain the LIFO constraints by comparing the load
of the vehicle on pickup and delivery of each item and is inspired by
model TSPPDL2 (see Cordeau et al. [23]). If node i supplies/demands
commodity r, then the vehicle load of this commodity must be the same
immediately before order i is picked up as it is immediately after i has
been delivered. In Cordeau et al. [23] a new set of variables must be added
to the model when the LIFO constraints are formulated this way, whereas
in the DTSPMS this set of variables simply replaces the y variables from
the precedence model of Section B.3.1, and thus the disadvantage is
potentially smaller. The model requires some big M notation, however,
the value of M is equal to the row length, and typically not much greater
than 10 in practical applications.

The multiple commodities flow model uses three sets of variables, two of
which are binary:

xT
ij =

{

1 if arc (i, j) is used in graph GT ,

0 otherwise,

zr
i =

{

1 if item i is placed in row r,

0 otherwise,

uTr
ij is the load of commodity r carried on arc (i, j).

The x and z variables are the same as in the precedence formulation,
while the u variables have changed from indicating the (binary) prece-
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dence between any pair of nodes to indicating the (integer) ordering of
the nodes for each row. Since all nodes have a supply or demand of 1,
the load of the vehicle when leaving a node corresponds to the position
of that node in the row.

This use of the u variables resembles the idea introduced by Miller,
Tucker and Zemlin in 1960 (Miller et al. [78]) for subtour elimination,
where integer variables were used to indicate the order of the visits.

The multiple commodities flow model can be expressed as follows:

min
∑

T∈T
i,j∈V T

cT
ij · x

T
ij (2.27)

subject to
∑

j∈V T
C

uPr
ij =

∑

j∈V T
C

uPr
ji + zr

i i ∈ V T
C , r ∈ R (2.28)

∑

j∈V T
C

uDr
ij =

∑

j∈V T
C

uDr
ji − zr

i r ∈ R, i ∈ V T
C (2.29)

∑

j∈V T
C

uPr
0j =

∑

j∈V T
C

uDr
j0 = 0 r ∈ R (2.30)

∑

i∈V T
C

uPr
i0 =

∑

i∈V T
C

uDr
0i r ∈ R (2.31)

∑

r∈R

zr
i = 1 i ∈ V T

C (2.32)

∑

i∈V T
C

zr
i ≤ L r ∈ R (2.33)

zr
0 = 0 r ∈ R (2.34)

∑

j∈V T

xT
ji =

∑

j∈V T

xT
ij = 1 T ∈ T , i ∈ V T (2.35)

uTr
ij ≤ L · xT

ij T ∈ T , r ∈ R, i, j ∈ V T
C (2.36)

∑

j∈V T
C

uPr
ij −

∑

j∈V T
C

uDr
ji ≤ L(1 − zr

i ) r ∈ R, i ∈ V T
C (2.37)

∑

j∈V T
C

uPr
ij −

∑

j∈V T
C

uDr
ji ≥ −L(1 − zr

i ) r ∈ R, i ∈ V T
C (2.38)

xT
ij ∈ B T ∈ T , i, j ∈ V T , i 6= j (2.39)

uTr
ij ∈ R T ∈ T , r ∈ R, i, j ∈ V T

C , i 6= j

(2.40)

zr
i ∈ B r ∈ R, i ∈ VP

C ∪ VD
C . (2.41)

Constraints (2.28) and (2.29) ensure flow conservation in the pickup and
delivery graphs, respectively. The supply of commodity r is zr

i for each
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node i in the pickup graph, and similarly the demand is zr
i for each node

i in the delivery graph. Constraints (2.30) ensure that the vehicle is
empty at the start and end points, while (2.31) ensure that the loads
are maintained before and after the intermediate long haul. (2.31) is
superfluous when N = R×L, since all rows will then be full. Constraints
(2.32) guarantee that all customers are assigned a supply/demand of
exactly one commodity, and (2.33) enforce row capacity, i.e. that only
a limited number of customers are assigned commodity r. (2.33) hold
with equality when N = R × L. The depot is not assigned to any row
through (2.34) while constraints (2.35) ensure that all customers are
visited. Constraints (2.36) ensure that no load is carried on unused arcs.
This must be expressed explicitly since there is no cost for carrying load.
Finally, constraints (2.37)–(2.38) ensure the LIFO constraints; if zr

i = 1,
then

∑

j uPr
ij =

∑

j uDr
ji must hold, otherwise no binding exists.

2.4.2 Expanded model: 4 variable formulation

Additionally, attempts were made at solving an expanded model where
the w-variables from B.3.2 were added to the original precedence model
from (B.2)–(B.12), as briefly mentioned in the paper. The hope was
that by combining the different sets of variables, and adding the pos-
sible constraints between them, it would be possible to provide closer
ties between the variables, hence counteracting the effects of the matrix
structure illustrated in Figure B.2.

The complete variable set thus becomes:

xT
ij =

{

1 if arc (i, j) is used in graph T ,

0 otherwise,

yT
ij =

{

1 if vT
i is visited before vT

j ,

0 otherwise,

wr
ij =

{

1 if item i is picked up before item j and both are in row r,

0 otherwise,

zr
i =

{

1 if item i is placed in row r,

0 otherwise.

The full set of constraints that were implemented for the 4 variable model
is listed in (2.42)–(2.69).

∑

i∈V T

xT
ij = 1 j ∈ V T (2.42)

∑

j∈V T

xT
ij = 1 i ∈ V T (2.43)

yT
ij + yT

ji = 1 T ∈ T , i, j ∈ V T
C (2.44)

yT
ik + yT

kj ≤ yT
ij + 1 T ∈ T i, j, k ∈ V T

C (2.45)
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xT
ij ≤ yT

ij T ∈ T , i, j ∈ V T
C (2.46)

yP
ij + zr

i + zr
j ≤ 3 − yD

ij r ∈ Ri, j ∈ V T
C (2.47)

∑

r∈R

zr
i = 1 i ∈ V T

C (2.48)

∑

i∈VP
C
∪VD

C

zr
i ≤ L r ∈ R (2.49)

wr
ij + wr

ji ≥ zr
i + zr

j − 1 r ∈ R, i, j ∈ V T
C (2.50)

2 · (wr
ij + wr

ji) ≤ zr
i + zr

j r ∈ R, i, j ∈ V T
C (2.51)

∑

i,j∈V T
C

yT
ij =

n · (n − 1)

2
T ∈ T (2.52)

∑

j∈V T
C

yT
ij +

∑

j∈V T
C

yT
ji = n − 1 T ∈ T , i ∈ V T

C (2.53)

∑

i,j∈V T
C

wr
ij =

L · (L − 1)

2
r ∈ R (2.54)

∑

j∈V T
C

wr
ij +

∑

j∈V T
C

wr
ji = (L − 1) · zr

i r ∈ R, i ∈ V T
C (2.55)

wr
ij ≤ yP

ij r ∈ R, i, j ∈ V T
C (2.56)

wr
ij + wr

ji ≤ 1 r ∈ R, i, j ∈ V T
C (2.57)

∑

r∈R

wr
ij ≤ 1 i, j ∈ V T

C (2.58)

∑

i∈V T
C

wr
ij ≤ L · zr

j r ∈ R, j ∈ V T
C (2.59)

∑

j∈V T
C

wr
ij ≤ L · zr

i r ∈ R, i ∈ V T
C (2.60)

zr
i + zr

j + yP
ij + yD

ji ≥ 4 · wr
ij r ∈ R, i, j ∈ V T

C (2.61)

zr
i + zr

j + yP
ij ≤ 2 + wr

ij r ∈ R, i, j ∈ V T
C (2.62)

zr
i + zr

j + yD
ij ≤ 2 + wr

ji r ∈ R, i, j ∈ V T
C (2.63)

xP
ij + wr

ji ≤ 1 + wr
ij r ∈ R, i, j ∈ V T

C (2.64)

xD
ij + wr

ij ≤ 1 + wr
ji r ∈ R, i, j ∈ V T

C (2.65)

xT
ij ∈ B T ∈ T , i, j ∈ V T , i 6= j (2.66)

yT
ij ∈ B T ∈ T , i, j ∈ V T

C , i 6= j (2.67)

wr
ij ∈ B r ∈ R, i, j ∈ V T

C , i 6= j (2.68)

zr
i ∈ B r ∈ R, i ∈ V T

C . (2.69)

Constraints (2.42)–(2.49) are identical to (2.12)–(2.19). The remaining
constraints express various valid relations between the variables, but will
not be explained individually in detail.
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Constraints (2.50)–(2.51) express the connection between the z and w
variables, and (2.52)–(2.53) use the knowledge of the total number of y
variables that must be set to 1. (2.54)–(2.55) use similar knowledge of
the w variables, and are only valid for instances with n = R · L. (2.56)–
(2.60) express further bounds on the w variables, while (2.61)–(2.65)
state connections between w and the other variables. In particular (2.64)
express that xP

ij = 1 ⇒ wr
ij ≥ wr

ji, and similarly (2.65).

2.5 Extensions

So far, initial work on the DTSPMS has been presented, and the prob-
lem has been introduced to the research community. Further work on
the DTSPMS can now be carried out, either by application of new or
improved solution methods to the DTSPMS, or by extension of the prob-
lem into new contexts. This section will discuss a variety of such possible
extensions, and comment on their implications.

The DTSPMS can naturally be generalised in several directions, by ex-
tension towards existing and related fields of research, or towards more
realistic real-life applications. Such extensions include the DVRPMS
(double VRP with multiple stacks) on which some initial work will be
presented in the following. Later in this section some further possible
directions of extension will be discussed, both in terms of integration
with existing related problems from the literature, and more generally,
possible extensions of the problem into other real-life scenarios. An ex-
ample of the former would be a merger between the DTSPMS and the
SVRPPDL, leading to a pickup and delivery problem with multiple load-
ing stacks and mixed pickup and delivery operations. An example of the
latter could be obtained by adding further complications that typically
occur in real-life situations, such as time windows, a heterogenous fleet,
and compatibility requirements between orders, or between orders and
vehicles.

2.5.1 A generalisation of the DTSPMS: The DVRPMS

The most immediate extension of the DTSPMS seems to be the DVRP-

MS (Double Vehicle Routing Problem with Multiple Stacks). The Dou-
ble VRP with Multiple Stacks is an extension of the DTSPMS to include
multiple vehicles, hence the change of TSP to VRP in the name, yet still
maintaining the availability of several LIFO loading rows in each vehi-
cle. Here, a mathematical formulation of the DVRPMS will be given,
based on the formulation presented for the DTSPMS, and some com-
ments will be given on how the DVRPMS could be treated, in the light
of the DTSPMS solution methods that have already been presented.

The DVRPMS would imply an extension of the problem to contain more
than one container, and thus the construction of more than one route
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in each of the graphs. The assignment of orders to containers/vehicles
would then naturally become a decision variable, in addition to the row
assignment variables already present in the DTSPMS.

An extension of the mathematical model (2.11)–(2.22) to include multiple
vehicles is relatively straightforward, and can be obtained by adding a
vehicle index h ∈ H to all 3 sets of variables, xTh

ij , yTh
ij and zrh

i , and
updating their definitions as follows:

xTh
ij =

{

1 if arc (i, j) is travelled in graph GT by vehicle h,

0 otherwise,

yTh
ij =











1 if node vT
i is visited before node vT

j (i 6= j),

and both are visited by vehicle h,

0 otherwise,

zrh
i =

{

1 if item i is placed in row r of vehicle h,

0 otherwise.

The size of the model can be expected to increase considerably with this
extension, since most constraints are repeated for every vehicle.

For most constraints the extension is simple, however constraints (2.14)
which ensure that the precedence is defined for any pair of customers,
must now only be imposed on any pair of customers which is visited by
one and the same vehicle:

yTh
ij + yTh

ji =

{

1 if i and j are both serviced by vehicle h,

0 otherwise.
(2.70)

This can be expressed in a non-linear way, as:

yTh
ij + yTh

ji =
∑

r∈R

zrh
i ·

∑

r∈R

zrh
j T ∈ T , h ∈ H, i, j ∈ VT

C (2.71)

since the precedence variables must be set exactly when two items are
transported by the same vehicle, but not for items that are assigned to
different vehicles. Constraints 2.71 can be linearised as follows:

yTh
ij + yTh

ji ≥
∑

r∈R

zrh
i +

∑

r∈R

zrh
j − 1 T ∈ T , h ∈ H, i, j ∈ VT

C (2.72)

yTh
ij + yTh

ji ≤

∑

r∈R zrh
i +

∑

r∈R zrh
j

2
T ∈ T , h ∈ H, i, j ∈ VT

C . (2.73)
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To summarise, the DVRPMS can be formulated as:

∑

h∈H,T∈T
i,j∈VT

cTh
ij xTh

ij (2.74)

s.t.
∑

h∈H,i∈VT

xTh
ij = 1 T ∈ T , j ∈ VT

C (2.75)

∑

h∈H,i∈VT

xTh
i0 = |H| T ∈ T (2.76)

∑

i∈VT

xTh
ij =

∑

i∈VT

xTh
ji T ∈ T , h ∈ H, j ∈ VT

C (2.77)

∑

r∈R

zrh
i ·

∑

r∈R

zrh
j = yTh

ij + yTh
ji T ∈ T , h ∈ H, i, j ∈ VT

C (2.78)

xTh
ij ≤ yTh

ij T ∈ T , h ∈ H, i, j ∈ VT
C (2.79)

yTh
ik + yTh

kj ≤ yTh
ij + 1 T ∈ T , h ∈ H, i, j, k ∈ VT

C (2.80)

yPh
ij + zrh

i + zrh
j ≤ 3 − yDh

ij h ∈ H, r ∈ R, i, j ∈ VT
C (2.81)

∑

r∈R,h∈H

zrh
i = 1 i ∈ VT

C (2.82)

∑

i∈VP
C
∪VD

C

zrh
i = L h ∈ H, r ∈ R (2.83)

xTh
ij ∈ B T ∈ T , h ∈ H, i, j ∈ VT ; i 6= j

(2.84)

yTh
ij ∈ B T ∈ T , h ∈ H, i, j ∈ VT

C ; i 6= j

(2.85)

zrh
i ∈ B h ∈ H, r ∈ R, i ∈ VP

C ∪ VD
C . (2.86)

The objective function (2.74) again expresses the sum of the costs of all
travelled arcs of the graph. (2.75) ensure that each customer node is
visited, (2.76) that all vehicles are used, and (2.77) ensure flow balance.
(2.78) are the constraints ensuring the precedence relation between any
pair of customers serviced by the same vehicle, and can be linearised
as shown in (2.72)–(2.73). Constraints (2.79)–(2.83) are similar to the
original model for DTSPMS, and express that each travelled arc enforces
a precedence, transitivity of the precedence variables, the connection be-
tween pickup and delivery route for each row, that each order is assigned
to a row, and the row capacity.

In accordance with the DTSPMS it is assumed that the full capacity of
all vehicles is used, thus (2.76) is stated using all vehicles, rather than
using at most all vehicles.

The fact that each pickup/delivery pair must be visited by the same
vehicle is ensured by (2.75), (2.78), and (2.79) in combination. (2.75)
ensure that each node is visited, (2.78) that some y-variable will be set
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corresponding to that visit, and (2.79) that the y-variables can only be
set for a pair of nodes that are visited by the same vehicle.

2.5.1.1 Solving the DVRPMS

To solve the DVRPMS, a large part of the already presented heuristics
could be reused, in one of two possible ways: Either by extending the
neighbourhood structure to accomodate swaps/transfers between vehi-
cles, or by using the DTSPMS as a subroutine that is applied for each
vehicle.

The previously presented heuristic could be used as a subroutine for a
separate routine dedicated to dividing the customers between vehicles.
This would depend on the speed of the original heuristics, in order to
be a useful approach. In short time it should be possible to produce
solutions that are sufficiently good, or that at least compare identically
(given two clusterings A and B, if A gives the better routing cost after
few iterations, this should indicate that A is also better in terms of the
optimal solutions to the routing problems). An indication of whether this
is the case can be obtained by plotting the solution value improvement
for the DTSPMS as a function of the iteration count/elapsed time, for
a number of different instances. Such a plot can be seen in Figure 2.13,
which shows the development of the solutions of 10 different instances,
during 500 iterations (approximately 6 seconds), with the values of the
best known solutions indicated on the right-most side. The figure shows
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Figure 2.13: Development of solution values over time for different prob-
lem instances. Up to 500 iterations the progress of the algorithm is
shown, after 500 iterations the best known objective value for each in-
stance is plotted. Large Neighbourhood Search using the standard set-
ting for short runs, with 3-15 orders removed per iteration.

that there are still noticeable improvements occuring up to iteration 500,
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and there is considerable variation in how the solution after 500 iterations
compares to the best known solutions. In combination with the running
time of 6 seconds for the 500 iterations, this indicates that the current
best solution heuristic for the DTSPMS may not be fast enough to be
used as a subroutine in solving the DVRPMS. A similar test has been
made with changed settings, to allow a higher number of iterations to be
completed in shorter time. Figure 2.14 shows the results for 100 iterations
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Figure 2.14: Development of solution values over time for different prob-
lem instances. Up to 100 iterations the progress of the algorithm is
shown, after 100 iterations the best known objective value for each in-
stance is plotted. Large Neighbourhood Search with 3-9 orders removed
per iteration.

which were completed in approximately 0.8 seconds. The time is still too
long, and the results seem too unstable for the current approach to be
applicable as a subroutine.

An alternative approach would be to extend the neighbourhood structure
of the existing implemented heuristics, by introducing the possibility of
moving/swapping customers between routes, thus still solving the entire
problem in one algorithm. The heuristics based on feasible operators
(tabu search, simulated annealing and iterated local search) already de-
pend on a combination of several operators, and this selection could thus
be supplemented with an operator swapping visits between vehicles. A
simple extension of the complete-swap operator would be sufficient to
enable the algorithm to reach the entire solution space, but more sophis-
ticated variations could be considered. An extension of the large neigh-
bourhood search algorithm can be performed almost automatically. The
removal operator must be updated to consider removal of orders from
all vehicles, and the insertion operator similarly to consider insertion of
orders into all vehicles.
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2.5.1.2 Solutions

As described in the previous section, the large neighbourhood search
code from Paper A can quite easily be modified to handle the multiple
vehicle case. This has been done in order to provide some initial insights
into the structure of the DVRPMS, and the results will be presented
below.

In addition to the removal and insertion procedures, the savings algo-
rithm used to construct initial solutions has also been updated. Since the
vehicle tours to be constructed must all have the same length m = R×L
(unlike a traditional solution for the VRP), the savings algorithm used for
the TSP-version has been modified in the following way: Partial tours
are merged, to gradually construct partial tours of increasing length.
Whenever such a merge results in a tour that is too long, the new tour is
split after the mth customer. This produces two tours, of which one has
length m, and will thus not be considered again, and the other is shorter
and will go on to be merged with other partial tours.

The 10 first problem instances from an extended data set3 have been
solved as DVRPMS instances using the modified LNS procedure, with 3
and 10 vehicles, and row capacities of 5 and 11. All instances are solved
with a 3 row configuration.

The parameters of the LNS have been modified such that the number of
orders to remove at each iteration is in the interval

[

max

(

2,

⌊

N

9

⌋)

,

⌈

N

4.5

⌉]

where N is the number of orders. The temperature interval for the
acceptance criterion was set to

[

zUB

400
,

zUB

1600

]

where zUB is the value of the initial solution supplied to the heuristic.

Due to the increased size of these problems, a further increase of the
running time has been included for these tests, which have been con-
ducted for running times 3 minutes, 10 minutes and 30 minutes. Table
2.6 reports the dimensions of the tested problems (vehicles × rows × row
capacity), and the average solution value over 3 runs of each duration.
The table also reports the overall best solution value found. For 4 of
the 40 instances the best solution has been found in one of the short
runs, and for another 5 the best solution has been found/matched for a
600 second run. This happens most frequently for the smaller instances
(3×3×5, N = 92), but also for some medium sized instances (10×3×5,
N = 200 and once for 3×3×11, N = 302). This implies that a multi-start
procedure might be beneficial, or that other measures should be taken

3http://www.transport.dtu.dk/datasets/DTSPMS

http://www.transport.dtu.dk/datasets/DTSPMS
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inst n zbest 180 s. 600 s. 1800 s.

R00 3×3× 5 92 1681 1.006 1.010 1.002
10×3× 5 302 4207 1.081 1.027 1.028
3×3×11 200 2533 1.062 1.053 1.034

10×3×11 662 7263 1.098 1.036 1.015
R01 3×3× 5 92 1663 1.008 1.003 1.002

10×3× 5 302 4342 1.057 1.035 1.006
3×3×11 200 2663 1.032 1.025 1.008

10×3×11 662 7286 1.102 1.052 1.016
R02 3×3× 5 92 1600 1.042 1.043 1.013

10×3× 5 302 4264 1.061 1.033 1.016
3×3×11 200 2553 1.070 1.038 1.028

10×3×11 662 7343 1.107 1.040 1.011
R03 3×3× 5 92 1621 1.007 1.019 1.017

10×3× 5 302 4410 1.038 1.015 1.012
3×3×11 200 2651 1.043 1.024 1.020

10×3×11 662 7387 1.072 1.040 1.018
R04 3×3× 5 92 1602 1.009 1.039 1.005

10×3× 5 302 4320 1.063 1.043 1.008
3×3×11 200 2617 1.062 1.034 1.011

10×3×11 662 7444 1.110 1.080 1.020
R05 3×3× 5 92 1478 1.017 1.021 1.018

10×3× 5 302 4312 1.055 1.045 1.010
3×3×11 200 2557 1.037 1.032 1.014

10×3×11 662 7318 1.103 1.043 1.028
R06 3×3× 5 92 1691 1.030 1.010 1.024

10×3× 5 302 4332 1.061 1.036 1.017
3×3×11 200 2623 1.042 1.027 1.016

10×3×11 662 7120 1.110 1.085 1.015
R07 3×3× 5 92 1682 1.046 1.037 1.005

10×3× 5 302 4361 1.034 1.021 1.011
3×3×11 200 2648 1.086 1.042 1.028

10×3×11 662 7376 1.094 1.042 1.013
R08 3×3× 5 92 1617 1.012 1.014 1.004

10×3× 5 302 4239 1.049 1.029 1.015
3×3×11 200 2559 1.043 1.017 1.027

10×3×11 662 7421 1.107 1.049 1.011
R09 3×3× 5 92 1574 1.007 1.015 1.013

10×3× 5 302 4267 1.091 1.040 1.007
3×3×11 200 2591 1.053 1.033 1.022

10×3×11 662 7204 1.102 1.067 1.008

avg. 3×3× 5 92 1647.7 1.018 1.021 1.010
10×3× 5 302 4455.0 1.059 1.033 1.013
3×3×11 200 2691.4 1.053 1.033 1.021

10×3×11 662 7729.4 1.100 1.053 1.016

Table 2.6: Test results for the DVRPMS.
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to avoid the algorithm getting trapped, such as increased neighbourhood
size.

As can be seen from the table, instances with higher row capacity seem to
be slightly more difficult than instances with more vehicles, even though
they contain 50% more customers. This again supports the previous
observations that the row capacity is really the one parameter that has
the largest impact on the difficulty of solving a given instance. There
does not seem to be a good explanation of why instances of 10 × 3 × 11
seem easier to solve than 3 × 3 × 11 – since the best solutions used for
comparison are also determined by the runs reported in Table 2.6 it may
be that there is simply less variation in the results for 10× 3× 11, while
these are in fact further away from their optimal solutions.

2.5.2 Further extensions

In this section some suggestions will be given for further extension pos-
sibilities for the DTSPMS. These will be limited to modifications that
affect the handling of the special properties of the DTSPMS, such as
modified loading patterns or alternative ways of handling the two graph
setup. In addition, a range of more “standard” extensions could be per-
formed, by including problem properties that are commonly applied to
vehicle routing problems, such as time windows, dynamic order arrival,
variable orders size, split deliveries, or load acceptance issues where not
all orders must be served.

In practical applications, the balancing of load weight in the vehicle might
also play a role, i.e. if a loading row on one side of the vehicle is almost
full while one on the other side is still empty, this can affect the stability
of the vehicle. Such considerations could lead to interesting additional
constraints to be applied to the feasibility of a loading plan.

The descriptions given in the remainder of this section are rather brief,
and focus on describing the modified problem that arises and its struc-
tural relation to the DTSPMS. Given the difficulty of solving real-life
sized instances of the DTSPMS, and the fact that the DVRPMS may
be more likely to be encountered in practice, it seems unlikely that any
extension of the problem with further complications can be solved to
optimality at current.

2.5.2.1 Alternative loadings

In real-life situations other loading patterns exist than the homogenous
rows described so far. For example, depending on the shape, size, and
properties of the transported items, a loading configuration has been
encountered where one row is made up of items that are rotated 90◦

(in this case the items are on wheels, and can thus be handled from all
sides). This results in a loading pattern with rows of varying length – in
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this case 2 rows of length 9 and one row of length 21. Such a change can
quite easily be incorporated in the existing heuristic and exact solution
approaches, by adding a row index to the row capacity parameter.

Furthermore, some loading patterns in practical applications make use
of tricks such as “turn the last two items of each row” in order to make
better use of the total available loading. Such actions also require items
that can be handled from the side, but occur in real-life. This mod-
ification can not immediately be adopted by the solution approaches
presented here, but is mentioned as it presents an interesting twist to
the loading problematic, and demonstrates a complication that may well
be encountered in a real-life application of the DTSPMS.

2.5.2.2 Multiple transfer points

Instead of considering the start and end points (depots) of the routes as
fixed points, these could instead be chosen among a number of points,
reflecting that several terminals might be available for the transfer of the
container(s) between the modes. This could for instance be relevant if
the different terminals provided access to different modes for the long-
haul transportation, and could then additionally lead to a connection
between the choice of depot in the two graphs.

In this case the cost of the long-haul transportation would enter the
objective function in some form, possibly leading to a multi-objective
problem. This cost might express more than the simple travelling dis-
tance used in the DTSPMS itself, and could possibly include road tolls
depending on route choice, or significant variations in travel time de-
pending on mode choice. This would require the solution of the problem
to take such multiple criteria into account.

Such a change could relatively easily be implemented in the heuristics
already presented, by moderate modifications/extensions of the neigh-
bourhood structures.

2.5.2.3 Pickup and delivery with LIFO and with multiple

stacks – VRPPDLMS

The regular VRP with pickup and delivery under LIFO constraints (as
described previously in Section 2.1.2) could be extended to have multiple
stacks. The resulting problem could also be described as a DTSPMS with
mixed pickups and deliveries.

This change would imply considerable modifications to the problem, both
from the point of view of TSPPDL and DTSPMS, and probably no exist-
ing methods for either problem could easily be modified to accomodate
this change.
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2.5.2.4 Partial reloading

Another imaginable real-life setting of the DTSPMS could be obtained
by allowing (partial) intermediate reloading of the container, albeit at
a cost. This could happen if the transported items were fragile and re-
quired secure fastening, and their repositioning could thus be possible,
but quite costly. This would pose the question of what price transporta-
tion companies would be willing to pay for the opportunity to move one
item.

In this case there could be limits on the “reloading depth”, such that
only the k next items of each row would be candidates for rearrangement
(since it might be too impractical to rearrange an entire row), or limited
space could be available during reloading, imposing limitations on the
total number of items to rearrange (allowing only a certain number of
items to be placed outside of the vehicle at any time).

Allowing intermediate reloading would considerably change the structure
of the problem, since the reloading decisions would need to be recorded.
Such a change cannot be easily incorporated into the implemented heuris-
tics, since these never considers the entire set of loaded items at a given
point in time, but only a pair of items at their current loading position.
At any time two items considered for swapping are selected such that the
swap will be feasible, without making any considerations for the positions
of the remaining items.

2.5.2.5 Hierarchical graphs

Finally, the DTSPMS or some of its concepts could be integrated in a
larger intermodal framework, as a further extension to considering mul-
tiple transfer points. A problem could occur where a complete trans-
portation chain is considered with several hiearchical levels, where the
lowest level involves some loading constraints in line with those of the
DTSPMS.

The transportation procedure could be as follows:

1. A number of small trucks pick up items from the customers.
2. At an intermediate pickup terminal all items are transferred from

the smaller trucks to a container.
3. The container is transported to an intermediate delivery terminal,

possibly using several modes to get there.
4. The items are transferred to a number of smaller vehicles.
5. Which perform the delivery of the items to the final destinations.

In this case the transfers between the levels might be performed with lim-
ited space available, meaning that the loading order would to some ex-
tent be reversed (items must be transferred directly between the smaller
and larger trucks). This variant of the problem approaches the issues
encountered during crossdocking operations.



Chapter 3

The Simultaneous Vehicle

Scheduling and Passenger

Service Problem

The second part of this Ph.D. has been focused on the problem that has
been labelled the Simultaneous Vehicle Scheduling and Passenger Ser-
vice Problem (SVSPSP), and is treated in the paper “The Simultaneous
Vehicle Scheduling and Passenger Service Problem” (Appendix C). As
the name indicates it is a variation of the vehicle scheduling problem
(VSP), where passenger service is taken into consideration simultane-
ously with solving the traditional vehicle scheduling problem. Contrary
to the classical VSP, this problem permits some moderate modifications
of the timetable, which are intended to allow improvements of passenger
service.

This chapter will first give a brief introduction to vehicle scheduling
problems in general, and discuss relevant literature on problems which
combine vehicle scheduling, (re-)timetabling, and passenger service con-
siderations. It will then go on to introduce the SVSPSP and present
some early results on solving the developed model with a standard solver,
which were produced leading up to the work presented in Paper C. Fi-
nally, some supplementary comments on the paper will be given.

3.1 The Vehicle Scheduling Problem

The regular vehicle scheduling problem (VSP; see e.g. Desaulniers and
Hickman [26] for a thorough introduction) is concerned with the assign-
ment of (bus) trips/tasks to vehicles, in such a way that a given timetable
is covered at the lowest possible cost. The timetable consists of a num-
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ber of trips to be operated, and a set of vehicles are available to cover
the trips. The purpose is to construct a set of vehicle schedules, such
that each trip is operated exactly once, and all vehicle schedules are
feasible (for any two trips a and b that are consecutive in a schedule,
starttimea + durationa + traveltimeab ≤ starttimeb must be respected,
and possibly further restrictions may be imposed). The costs include
deadhead costs incurred by empty travel between end points of consecu-
tive trips, costs for transport to and from the depot (pull-in and pull-out),
and possibly other elements. Travel times for the VSP are usually as-
sumed to be fixed and deterministic. The number of available vehicles
may be fixed, or its minimisation may be considered as part of the objec-
tive, by including a vehicle cost in the cost function. The problem may
include vehicles available from several depots, leading to a multi-depot
VSP (MDVSP), and in this case each vehicle must additionally start and
end its schedule at the correct depot. Terminology used for the VSP is
summarised in Table 3.1. Some slight modifications to this terminology
will be introduced for the SVSPSP later in this chapter.

Trip A trip, or task, has given start and end points, and a
given departure time and duration.

Line A line is a sequence of stops, such as the set of stops
visited by bus 300. A line is often operated in both
directions. For some lines there may be trips which
only visit a subsequence of the stops, but still belong
to that line (short-turning).

Trip
incompatibility

Two trips that can not be operated consecutively by
one vehicle are said to be incompatible.

Timetable The timetable is the set of all trips that must be op-
erated.

Schedule A vehicle schedule describes the plan for one vehicle
for one day, i.e. a set of trips that are non-overlapping
(in time) and compatible.

Table 3.1: Terminology for the VSP.

The Single Depot VSP (SDVSP) is a VSP where all vehicles are stationed
at the same depot. A number of trips are given, each with a fixed origin,
destination, starting time and duration. Furthermore, it is assumed for
now that a fixed number of vehicles are available to cover the trips, with
all vehicles starting at the depot, at a known location. The task is now
to construct a set of schedules, such that all trips are covered on time,
at the lowest possible cost.

The SDVSP can be illustrated by a time-space network, as shown in
Figure 3.1. In the figure, each trip is shown as an arc to illustrate the
temporal aspect, but for modelling purposes each of these trip arcs can be
collapsed to one node. Each arc going from a white node to a black node
corresponds to a trip. Similarly the main depot node is only included
in the figure for illustrative purposes, and can be left out of the model,
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trip start node

trip end node

depot

dummy depot

trip arc

pull-in/pull-out arc

deadhead arc

internal depot arc

Figure 3.1: A time-space network illustrating the SDVSP.

along with its adjacent arc.

With the trip arcs collapsed, the problem can be expressed on a directed
graph G = (V,A) where the set of vertices consists of the trip nodes
i ∈ N and a set of dummy depot nodes D = {d0, d1, . . . , d|D|−1}, thus
V = N ∪ D. The set of arcs A in the graph is constructed such that all
temporal constraints are satisfied; the existence of an arc (i, j) implies
that ai + tij ≤ aj , where ai and aj are the respective starting times of
the two trips, and tij is the duration of trip i plus the deadhead time
from the final destination of i to the origin of j.

The variable xij can then be introduced to express that the arc (i, j) is
used, i.e. that trip j is performed immediately after trip i by the same
vehicle (when i, j ∈ N , and with a suitable modification of the definition
otherwise). The arc cost cij expresses the cost of using the arc (i, j), and
may include any empty travel cost incurred when the destination of i is
not identical to the origin of j. A possible daily cost of using a vehicle
can be included in the costs cd0·, where d0 is the first dummy depot node.

A mathematical model of the SDVSP can then be expressed as follows:

min
∑

(i,j)∈A

cijxij (3.1)

s.t.
∑

i∈N

xij = 1 j ∈ N (3.2)

∑

i∈V

xij =
∑

i∈V

xji j ∈ V (3.3)

∑

i∈N

xd0i ≤ v (3.4)

xij ∈ B (i, j) ∈ A. (3.5)

where (3.1) is the objective function, containing the cost of all used
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edges. Constraints (3.2) ensure that all trips are covered, and (3.3) are
flow conservation constraints. In constraints (3.4), v is the number of
available vehicles, to ensure that the maximum capacity is respected.

The SDVSP can be generalised to the multi-depot version (MDVSP),
by introducing an extra set of dummy depot nodes for each additional
depot, and duplicating each trip node for each depot (if all depots can
not serve all trips some duplicates are omitted).

The SDVSP can be solved in polynomial time as a minimum cost flow
problem, however the multi-depot version is NP-hard (Desaulniers and
Hickman [26]). The MDVSP can be solved as a multi-commodity flow
problem, and good exact procedures exist for solving large real-life in-
stances. A mathematical formulation of the MDVSP will not be given
here, but can be found in Desrosiers et al. [29], or in Paper C.

3.2 The Simultaneous Vehicle Scheduling and

Passenger Service Problem

When the MDVSP is solved in practice it occurs as part of a planning
process, where the timetable to be operated has been determined in the
preceding phase, and the purpose of the MDVSP is then to operate the
proposed timetable at the lowest possible cost. However, when the vehi-
cle scheduling problem is solved for a given timetable, it is possible that
a better solution could be obtained by allowing minor adjustments to the
timetable, which would in comparison be insignificant. In the traditional
planning approach such modifications are not permitted. In contrast, the
SVSPSP regards the input timetable as a guideline, which can be modi-
fied during the vehicle scheduling solution process. This initial timetable
expresses the required level of service with regard to frequencies and vis-
ited stops, and changes are only allowed such that these properties are
maintained. The re-timetabling is in this case effectively performed by
generating a set of shifted departure times for each trip of the original
timetable, such that each trip may use any of these alternative departure
times.

During the re-timetabling performed by the SVSPSP, the transfer op-
portunities provided by the solution are also considered. Transfer qual-
ity/duration is typically an objective when the timetable is produced,
and by including this objective in the re-timetabling phase, it is ensured
that the new solution still maintains these qualities.

The two objectives, operating cost and passenger convenience, are not
necessarily contradictory – since the service levels have already been
determined – but not concordant either. By the integration of re-timeta-
bling elements into the vehicle scheduling problem, it becomes possible
to consider these two objectives simultaneously when solving the SVS-
PSP. The purpose of the SVSPSP is thus to attempt to integrate two
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traditionally separated problem solving phases, to include both operating
cost, as expressed by the VSP, and passenger inconvenience (expressed
as transfer time) when determining the final time table.

The combination of operating cost and passenger considerations natu-
rally leads to a model with multiple candidate objectives; namely cost
and passenger waiting time. In the case presented here, the choice has
been to convert waiting time to a monetary value, using the published
value-of-time for public transport, and add this value to the monetary
objective expressing the operating costs.

For the presentation of the SVSPSP, a terminology will be used which
ressembles that of the VSP, with some necessary modifications. In par-
ticular, not all trips of the original timetable must be covered in the
SVSPSP: some of them may be replaced by alternative departures. To
this end the concept metatrip is introduced to describe a set of trips, of
which exactly one must be selected. Thus for each trip in the VSP, there
is a metatrip in the SVSPSP, and each metatrip represents the possible
occurences in time of a given (VSP-)trip. An overview of the updated
terminology with the modifications for the SVSPSP is given in Table 3.2.

Trip A trip or task is a departure on a given line at a given
time. In contrast to the regular VSP, not all trips
must be operated in the SVSPSP. Each trip belongs
to exactly one metatrip.

Line Same definition as for the VSP: a line describes a
sequence of stops, which may be operated in either
direction.

Metatrip A metatrip is a set of trips, of which exactly one must
be operated. Thus there is a metatrip for each trip in
the original, corresponding VSP. The trips contained
within each metatrip all share line, origin, and desti-
nation, and are close to each other in time.

Timetable A timetable is part of a feasible solution to the prob-
lem, and contains all trips that are covered by the
solution. In the VSP the timetable of the final solu-
tion is identical to input data.

Trip
incompatibility

For the SVSPSP two trips are said to be incompatible
if they are not allowed to be used in the same solution.
This is typically used to avoid two consecutive trips
departing at too long or short intervals.

Schedule Same definition as for the VSP, an operating plan for
one vehicle for one day.

Table 3.2: Terminology for the SVSPSP.

The SVSPSP can be illustrated by expanding Figure 3.1, duplicating
each pair of trip nodes (white and black) for each depot (as for the MD-
VSP) and additionally for each possible departure time. Unfortunately
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this expansion of the graph makes in rather unsuited for graphical rep-
resentation, even for small examples, and thus an actual illustration has
not been attempted here.

The VSP is traditionally solved from an operator point of view, where
service requirements (timetables) are given by a contract, and the goal is
to provide the required level of service at the lowest possible cost. Thus
the issue of passenger inconvenience is not considered at this stage, and
the two objectives operating cost and passenger inconvenience are not
faced by the same entity. The SVSPSP attempts to consider the plan-
ning problem from a societal perspective, where passenger convenience
and operating costs can indeed be considered simultaneously. This is
justifiable, since ultimately the interest of the authorities is to obtain
the best possible service at the lowest possible cost. The use of such a
tool could improve the negotiating position of either the service provider
or the operator, since each would benefit from having an improved per-
spective on the issues addressed by the other party.

The purpose of the introduction of the SVSPSP has been to study the
possibilities of including the passenger perspective when solving the op-
erator’s problem, to demonstrate potential benefits of such an approach,
and to examine whether passenger conditions can indeed be improved at
a reasonable cost, by including these considerations in the process.

While the SVSPSP allows for time-shifting of trips, there are still re-
strictions imposed on such shifts. These restrictions apply for any two
consecutive departures on the same line, and state that the distance in
time between two such departures must be within given lower and upper
bounds – typically expressed in terms of the temporal distance between
the lines in the original timetable.

When allowing time-shifting in order to increase passenger comfort, there
are two types of transfer times that can be considered, which, from
a modelling perspective, are quite different. The first type is the in-
termodal transfers experienced by passengers transferring between two
modes where one has a fixed timetable, external to the model, and the
other has a variable timetable, which will be modified by the model. For
such transfers the cost of a given trip can still be calculated indepen-
dently of all other trips, and the objective function remains relatively
straightforward. The second type of transfer is intramodal; passengers
transferring between two links that both have variable timetables. When
such transfers are allowed, the cost of trips is no longer independent, and
the objective function typically becomes quadratic.

3.2.1 Literature on related problems

This section will discuss a selection of literature from areas related to the
SVSPSP, combining vehicle scheduling problems and timetabling prob-
lems, with a variety of other aspects included that are also relevant to
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the SVSPSP. Only very few papers have been found which treat prob-
lems that closely resemble the SVSPSP, so a range of papers covering
similar problems will also be presented. The broader areas of VSP and
timetabling in general will not be covered in detail, instead focus will be
on the different complicating constraints arising in different situations.
The purpose of this section is not to be exhaustive, but rather to give
an impression of the multitude of problems from real-life that have been
treated in the literature, and some of the different problem aspects that
they consider.

The Vehicle Scheduling Problem, in single-depot and multi-depot ver-
sions, has been treated in the literature for years. An extensive survey
up to 1995 is given by Desrosiers et al. [29], and a review of recent appli-
cations of operational research in public transportation, including vehicle
scheduling problems, can be found in Desaulniers and Hickman [26]. This
review covers the different planning phases, from strategical over tacti-
cal and operational to real-time disruptions, providing an overview over
applied methods. A recent review focused around transit and transfer
opportunities is found in Guihaire and Hao [54], which covers the net-
work design, frequency setting and timetabling, and in particular points
out work that integrates several of these phases.

Passenger aspects of timetabling problems can be obtained in two ways:
by using so-called timed transfers where several buses arrive simultane-
ously at a transfer location, and have a layover time that is long enough
to allow passengers to transfer, or by coordinating the departure and
arrival times such that buses do not have to physically meet, but pas-
sengers can still transfer (this only allows for one-way transfer between
two buses, since one bus will typically leave before the other arrives). In
larger systems with many potential transfer locations, the use of timed
transfers is often not a viable alternative, as it requires a considerable
layover for each transfer, and also requires a certain layover slack at
transfers to safeguard against delayed connections.

The majority of papers dealing with issues related to timetabling are
based on real-life applications, and most of the presented results are
based on real-life datasets. This shows that much of the research is
spurred by realistic situations, but unfortunately has the side-effect that
the results are difficult to compare. Furthermore the applications are
often highly influenced by local conditions and traditions, both regarding
the types of constraints that are applied, and the choice of objectives
that are considered most important. Each model and solution approach
is tailor-made to a specific situation, and there is not consensus in the
literature about a standard problem definition, as is the case for example
for the VRPTW or MDVSP. This in turn makes it difficult to compare
solutions, and even to apply models developed by others.

Problems considering applications from the railway industry display some
characteristics that differ from problems related to bus operation. Since
trains often share the same tracks, collisions must be avoided. Further-
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more, the use of periodic timetables seems to be more popular in the rail
literature than in the bus literature – this is probably also caused by the
track sharing constraints that are imposed on trains. However, e.g. un-
derground systems or other local commuter train systems are sometimes
operated without track sharing, thus avoiding the resulting safety is-
sues. The literature discussed later in this section will be focused around
problems concerned with bus scheduling, but will also include a few pa-
pers from the rail literature, in particular where some of the common,
distinctive features are absent.

As mentioned, two different types of transfers are considered in planning
problems: 1) external/intermodal transfers, between two modes where
only one of them is controlled by the optimisation, while the other is
external and fixed (typically transfer between a bus and a train, but
transfers between an express bus and a city bus, or intercity and local
trains may also occur), or 2) internal/intramodal transfers, between two
trips that are both under the control of the optimisation procedure. The
latter is typically the one considered in the literature where transfer op-
portunities are discussed, whereas the former naturally occurs more often
in multimodal transportation, and has also received some attention in
the literature, at times simultaneously with internal transfers. External
transfer opportunities taken in isolation reduce to a matter of matching
the timetable to the already given external lines, however, given that not
every potential transfer can be covered, the choice of covered transfers
remains.

There is a considerable amount of literature available on the topic of
timetabling in general. The timetabling problems to be considered here
will be a selection of recent problems that integrate timetabling with
other planning phases, or exhibit other problem properties that are in-
teresting from the point of view of the SVSPSP. Some of the included
papers do not use solution methods from operational research, but have
been included to demonstrate the variety of problems that exist. The
considered timetabling problems generally optimise passenger service,
with respect to some measure of transfer synchronisation, but there are
a range of other properties which may or may not apply to each problem.
These include:

• are resource considerations (the VSP aspect) included?
• is the service frequency predetermined or part of the optimisation?
• are intermodal or intramodal transfers considered? Many cover

both, but some use only one or the other
• is stochasticity of travelling/arrival times considered?

The closest resemblance to the SVSPSP is probably that of the prob-
lem treated by Guihaire and Hao [53], which allows time shifting of
a pre-determined timetable, and considers resource costs simultaneously
with passenger inconvenience. Unlike the SVSPSP, the model uses timed
transfers, and detects a transfer opportunity whenever two trips intersect
within a certain allowed maximum time interval. Evenness of headway



3.2 SVSPSP 77

is also considered, and a non-linear objective function is obtained as a
weighted sum of these elements with vehicle cost. The problem is solved
by means of an iterated local search approach, using an optimal SDVSP
procedure to solve the vehicle assignment problem for the solutions that
are constructed considering departure times of one or more trips. Ex-
periments are carried out on a real-life dataset containing 25 lines with
a total of 318 trips, and less than 30 train connections, using around
67 vehicles in the solutions found. The allowed running time was 10
minutes.

The case study by Liebchen and Möhring [72] also treats a problem sim-
ilar to the SVSPSP, considering both internal and external connections
in a hierarchical network involving two types of trains. The high-level
trains have timetables that are set externally, and the task is to schedule
the low-level trains to reduce waiting times at transfers both internally
and to the higher level. The problem is modelled as a periodic event
scheduling problem (PESP); an approach that seems particularly popular
within train planning. The paper considers resource minimisation while
determining a periodic schedule that provides the best possible transfer
options, and also describes the process of adding additional constraints
that are suggested by planners as the model is developed. Potential
transfers between lines are assigned to a hierarchy, which is strongly, but
not exclusively, based on the number of transferring passengers. The test
results are viewed in this light, with focus on the most used transfers,
and some tests completely disregarding 10–17% of transferring passen-
gers, to examine the impact of such a reduction on the problem size.
The problem is solved using a branch-and-bound algorithm with some
heuristic elements, and tested on a data set which requires around 70
vehicles.

Another problem similar of the SVSPSP is described by Fleurent et al.
[37]. The paper describes a software system which also incorporates
resource usage and an adjustment of a pre-set timetable. Transfer quality
is evaluated based on minimum, maximum and ideal waiting times, in
order to calculate a synchronisation quality index. The paper does not
give many details on solution method and results.

A larger group of papers exist which treat problems that do not contain
the vehicle scheduling aspect, but cover problems that perform timetable
modifications in order to improve transfers, possibly including a limit on
the number of vehicles that are available. Chakroborty et al. [16] con-
sider a timetabling problem for a bus transfer system, with the objective
of minimising the total passenger waiting time (at the origins and at
one transfer stop), under constraints of fleet size, stopping time, and
headway. Thus the fleet size is considered as a constraint, rather than
an objective. The problem is solved using a genetic approach, which is
tested on a dataset with 3 routes and 30 vehicles, over a time horizon
of 4 hours, with headway for routes with so-called “very high” demand
being around 30 minutes. The network contains only one transfer stop,
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however the authors state that their approach can rather easily be ex-
tended to handle multiple transfer points. A bus timetabling problem
with intramodal transfers is also described by Cevallos and Zhao [15].
Their problem is based on shifting trips in an existing schedule in order
to reduce transfer times. The authors consider stochastic bus arrival
times, and use real-life data (40 bus lines, 255 transfer points, solution
time up to 8 hours) to estimate the potential of the results.

Bookbinder and Désilets [8] consider the value of applying stochastic
arrival times when considering timetable optimisation, and compare dif-
ferent measures of disutility, such as mean, mean squared, and variance.
They present a range of interesting observations regarding the different
measures, and also comment on the impact of using stochastic arrivals
rather than deterministic.

In Ceder et al. [14] passenger service is measured by the number of simul-
taneous arrivals of trips, i.e. using timed transfers, rather than calculat-
ing the actual waiting times of transfers. The paper poses minimum and
maximum restrictions on headways, but allows the individual departure
times on each line to be set independently. The problem is solved using
a heuristic procedure, tested on some small constructed examples, and
one real-life example of moderate size.

Intermodal transfers are considered by Shrivastava and Dhingra [105],
who consider a network of bus feeder routes each connecting to one of
several railway stations. The paper considers both the bus frequencies
and departure times. Transfers are considered feasible if the transfer time
is larger than a value Tmin (5 minutes) and any value larger than Tmax (10
minutes) is penalised, as are overloaded vehicles. The number of buses
required for each period of the day is also determined, and the problem
is solved using a genetic algorithm. A similar system using feeder buses
is considered by Chowdhury and Chien [17] where both bus and train
timetables are determined, and both inter- and intramodal transfers are
considered, but no transfers that are external to the considered problem.
The objective is a combination of resource cost and user inconvenience
(consisting of waiting time and in-vehicle time), and is obtained by ad-
justing slack time and headways. Vehicle arrival times are considered
stochastic, and slack times are used to hedge against delays.

The so-called Timetable Synchronisation Problem (TTSP), which is a
non-periodic, deterministic, railway planning problem, is solved by Wong
et al. [113] by adjusting not only the headways, but also the drive times
and dwell times of the trains. The system does not allow to insert or take
out trains, so the available capacity is fixed within the planning horizon.
A real-life data set from Hong Kong with 130–200 vehicles is considered,
using a 1 hour planning horizon during rush hour, and a 2 hour planning
horizon in non-rush hour.

Additionally, a variation of the MDVSP has been considered in the lit-
erature, which allows time shifting of the tasks in order to improve the
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scheduling solutions. This variation has been referred to as the MD-
VSPTW, since it assigns a time window to each task, in which it must
be performed. This problem does not include passenger considerations
or transfers opportunities at all, and has been treated by Mingozzi et al.
[79], Desaulniers et al. [27], and more recently Hadjar and Soumis [55].

Finally, van den Heuvel et al. [60] consider a problem that combines
timetabling with vehicle scheduling for a heterogenous fleet, e.g. allowing
for a demand of a given size to be covered by a combination of buses of
different sizes, as long as the total capacity covers the total demand. The
timetabling process does not consider transfer opportunities. A model is
presented which allows for one trip to be covered by e.g. either one large
vehicle, or two smaller vehicles. Several models are developed allowing
various degrees of freedom when assigning buses to trips. The models
are solved iteratively, by performing small changes to the timetable at
each iteration, while solving the vehicle scheduling flow problem. The
models are tested for weekdays, Saturdays, and Sundays, using real-life
data with passenger counts for each trip.

To summarise, it can be concluded that a variety of papers have been
published covering different aspects of the SVSPSP, but that no literature
seems to exist, which covers the exact same flavour of the problem.

3.2.2 Mathematical formulation

A slightly simplified version of the SVSPSP can be formulated as a net-
work flow model similarly to the MDVSP. Such a model will cover the
vehicle scheduling aspect and the intermodal tranfers, but not the in-
tramodal transfers. The cost of intermodal transfers only depends on
the departure time of the trip itself, and all transfer times can be cal-
culated a priori, based on the fixed timetables of the transfer mode.
The costs of intramodal transfers however, depend on each of the two
involved trips, potentially involving more than two metatrips, and are
thus considerably more demanding to model mathematically.

For the SVSPSP, the simple, purely intermodal, model named SVSPSP0

was first developed and implemented in CPLEX to be tested on some
smaller instances, and secondly a large neighbourhood search heuristic
was implemented for the complete problem, including the intramodal
transfers. This two-stage approach was chosen for two reasons: 1) it
was doubtful whether the exact model could be solved to optimality
for real-life instances, and 2) the intramodal transfers are an important
feature of the real-life problem, however adding this to the model would
considerably increase the complexity of the model. The first, exact part
of this process will be presented briefly in this section, while the heuristic
solution has been described in detail in Paper C.

The initial, intermodal model SVSPSP0 is presented in Paper C and
stated below. It provides an important initial insight to the SVSPSP, and
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a first approach to the declared purpose of simultaneously considering
vehicle scheduling issues and passenger transfers.

The nodes of the graph represent either trips or dummy depots, and
the variable xd

ij is used to express that node j is covered immediately

after node i by a vehicle belonging to depot d. The cost coefficient cd
ij

expresses the cost of doing so. The set of metatrips is Ω, and Φ is the
set of sets of incompatible trips, which for the SVSPSP means trips that
are not allowed to be in a solution together. Each set in Φ is a set of
trips that are mutually incompatible. Incompatible trips typically arise
from headway restrictions, and help ensure a certain level of passenger
service. K is the set of depots.
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ij ∈ B k ∈ K, i, j ∈ N (3.11)

xk
ij ∈ N k ∈ K, (i, j) ∈ Ak\(N × N). (3.12)

The objective function (3.6) expresses the cost of the solution. This
includes both the operating costs, as known from the VSP, and the in-
termodal transfer costs which are contained in the arc costs. Constraints
(3.7) ensure that exactly one trip from each metatrip is covered, and (3.8)
ensure that all incompatibilities are respected. (3.9) limits the number of
vehicles available at each depot, and finally (3.10) are flow conservation
constraints.

As stated previously this model does not cater for intramodal transfers
between buses, since the costs as expressed here can only cover passengers
transferring to or from a connection with a fixed timetable.

3.2.3 CPLEX Solution Results

The model (3.6)–(3.12) has been implemented in Java using ILOG Con-
cert Technology with CPLEX, and run on an Intel Pentium 4, 2.8 GHz,
with 2GB RAM, running Windows XP. Due to the size of the real-life
instances, the model was only tested for some smaller, partial instances.
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The size of the instances that have been tested, have been controlled by
several parameters:

• number of lines
• number of depots
• number of metatrips considered per trip
• length of the day

Unfortunately, modifying the number of lines or length of the day does
not only affect the size of the problem, but also some of its characteristics.
The choice of lines to include in each instance affects the number of
possible transfers, as well as the number of trips operated per hour.
The tests of the initial model have been focused on the most central
lines, which means that there is a quite large amount of traffic, and a
high number of possible transfers, particularly intermodal transfers. All
calculated days have been started early in the morning, but for some
runs the length of the day has been reduced, e.g. by excluding all trips
that depart later than 18.00, rather than going on to the regular end of
schedule around midnight (there is not round-the-clock service on any
of the lines considered for this data set). Thus the most busy period
(morning rush hour) has been included for all tests, and only the less
busy evening period has been left out. This still results in a reduction
of the model size, however the number of vehicles used in total can be
expected to be unaffected when the time horizon is adjusted this way.

l d s h Time/s Root/s Rows Columns Non-zeroes Obj.

3 2 5 24 395 352 8.9·103 773·103 3.40·106 798·103

3 3 3 24 409 288 8.0·103 426·103 1.68·106 819·103

3 3 3 18 223 200 6.6·103 377·103 1.49·106 796·103

3 3 5 18 970 903 10.1·103 1.03·106 4.52·106 776·103

3 3 5 24 1546 1354 12.3·103 1.16·106 5.10·106 798·103

Table 3.3: Initial results of CPLEX for SVSPSP0.

Table 3.3 shows the dimensions of the tested problem, with l lines, d
depots, s trips per metatrip and h being the latest departure consid-
ered (h is not directly the length of the planning period, since operation
starts around 05.00 and not at midnight). For each tested instance the
table reports the solution time in seconds, the solution time for the LP-
relaxation of the root node, and the size of the reduced MIP as reported
by CPLEX. All 5 instances are solved in the root node, with an objective
value equalling the value of the LP-relaxation.

As it turned out the biggest hindrance for solving the model was memory,
and the test computer with 2GB RAM failed for larger instances. Some
CPLEX parameter settings to possibly alleviate this problem, such at
depth-first search, were tested, but the model could still not be solved
using these settings either.

In particular the results of the test runs indicated that a potential reduc-
tion in waiting time could indeed be obtained by following the integrated



82 The SVSPSP

solution path suggested with the formulation of the SVSPSP.

Since the SVSPSP0 model was unable to include the intramodal trans-
fers, it was decided not to pursue this solution path any further.

3.3 Paper: Heuristic Solution Approaches for

the SVSPSP

Paper C presents a heuristic solution approach to the SVSPSP which
shows promising results on the real-life sized test instances, and this
section will provide some additional comments on issues that are relevant
to the paper. It is recommended that the reader read the paper before
reading the remainder of this section.

Some simplifying assumptions are made in the paper, and some choices
are made on how to regard passenger behaviour. In particular, it has
been assumed that all passengers read the published timetable, and that
half of the passengers make their journey based on a desire to be at a
given destination at a given time, and select their departure time such
that this target is obtained. The other half will wish to leave their origin
at a certain time, and have no preference regarding arrival time. This
imposes some complications on the model, by requiring the use of both
y and z variables in the formulation (C.13)–(C.21), and also complicates
the implementation of the heuristic solution approach. However, it has
seemed potentially interesting to also allow some transfers to be defined
by the embarking connection, given that there are certainly some pas-
sengers who plan their journey this way. This is opposed to the more
traditional approach of only considering transfers based on the disem-
barking connection (passengers arrive at a terminal, and depart by the
first valid departure). It could be considered whether the distribution
between these two types of planning should indeed be equal, or if some
smaller percentage should be used for embarking passengers.

A simplification of reality can be found in the assumption that passen-
gers’ route choice is unaffected by the operated timetables. This is the
traditional approach within operational research, but traffic researchers
from other areas will disagree with this simplification. Solving an in-
tegrated problem, which optimises under consideration of route choice
models would definitely present an interesting direction for future work.
Furthermore, e.g. the number of passengers on a vehicle will affect its
travel time, due to increased (dis)embarking times, and stochastic travel
times in general is also a topic that could be included in the considera-
tions. Finally, the value-of-time that has been used to calculate the value
of saved time for the passengers, expresses the value as perceived by the
passengers. It is not obvious that this value corresponds to the value of
passengers’ time as experienced by the service provider. However, as the
presentation of the SVSPSP at this stage has been focused on the devel-
opment of the model and proof-of-concept of the method, these values
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have been adopted directly.

The issue of obtaining travelling data for passengers is another inter-
esting topic. In the paper, travelling patterns have been expressed by a
estimated number of passengers embarking/disembarking at every trans-
fer point, and an estimated distribution of these passengers among the
available connections. This approach has made the transfers easier to
handle, since it did not require knowledge of origin-destination pairs,
and did not check for consistency of data in the form of “x passengers
disembark A to embark B” and “y passengers embark B coming from
A”, where x = y would be a natural assumption, but is neither assumed
nor verified in this form of the model. At present it has been estimated
that the uncertainty on the travel data is significantly larger than this
inconsistency.

With the advent of electronic ticketing systems, it must be expected that
much better data will become available for planning problems like the
SVSPSP. At least with respect to the actual travels and transfers on a
given day, it should become possible to obtain accurate, observed data,
which would be a significant improvement over the current situation,
where data are often based on estimates and qualified guesswork. How-
ever, for electronic ticketing to become a reliable source of data, it should
be used consistently by all travellers, and this situation still lies several
years into the future in Denmark. Until then, the results of the paper
show that there is a potential gain from simultaneous optimisation, but
in order to realise this effect in practice, an improvement of the data
quality is needed.

Finally the effects of having a “memorable” timetable have been briefly
touched upon in the paper, and is an issue that deserves further at-
tention before any solution can possibly be implemented in real-life.
Many timetables today consist of several periods of periodic departures
(e.g. “from 15.02 a bus departs every 10 minutes until 18.32”), which
makes the timetables (or parts thereof) easier to memorise for passen-
gers, and is a feature of user-friendliness that is quite independent of the
cost of operation of the required vehicles. This memorability of solutions
has not been included as a feature of the solution procedures tested so
far, and the results from the paper show that this causes a drop in the
memorability of the produced solutions. Two obvious ways to prevent
this would be either by adding a component to the objective function
which somehow penalises departures at irregular intervals, or by only al-
lowing timeshifting to be performed on pre-defined blocks of metatrips,
such that the headways within the blocks are unchanged.
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Chapter 4

Conclusion

This thesis has covered two different problems, which both occur in an
intermodal setting and arise in situations where multiple objectives may
need to be considered. One problem comes from the world of freight
transportation, while the other comes from public transport. To the
best of the author’s knowledge, neither of the problems has been de-
scribed previously in the literature, similar to the versions presented in
this thesis.

The Double Travelling Salesman Problem with Multiple Stacks (DTSP-
MS) is an interesting problem, which combines routing and loading as-
pects. It is concerned with determining the shortest possible routes for
performing a set of pickup and delivery operations, under a set of load-
ing constraints. These loading constraints pertain to the vehicle which is
used for the transport of the goods, which does not allow random access
to the loaded items, but only allows access in a LIFO stack fashion. Fur-
thermore the items that are transported are of such type that the loading
space of the vehicle can be divided into several independent LIFO stacks.
Pickup and delivery problems with LIFO constraints have already been
treated in the literature, but the introduction of several independent
stacks is new. The idea to use multiple loading stacks has been inspired
by a real-life case from the transport industry, and the introduction of
this new problem has already inspired several researchers to either work
on either the DTSPMS, or to integrate the usage of multiple loading
stacks into other problems.

An interesting property of the problem that emerged is that the total
number of orders to be handled is not as important, in terms of solution
difficulty, as the capacities of the LIFO stacks, particularly regarding the
difficulty of obtaining an optimal solution to the problem. The number
of stacks that are available has a much smaller impact on this difficulty.
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For the solution of the DTSPMS, a selection of well-known metaheuris-
tics have been implemented, and in particular the large neighbourhood
search approach has demonstrated good results on instances of real-life
size. Results presented here, and by others, have indicated that the com-
plexity of the solution space is such that heuristics applying only small
modifications to the solution in each iteration may find it difficult to ob-
tain good results. So far the best results have been obtained by heuris-
tics that use more extensive modifications, such as large neighbourhood
search, or that allow the use of intermediate infeasible solutions.

Some exact solution approaches for the DTSPMS have also been de-
veloped and implemented, all based on a branch-and-cut approach us-
ing CPLEX. Different modelling approaches have been considered and
tested, and particularly good results were obtained using a decomposition
approach, which divides the problem into a routing and a loading part,
with the routing problem being solved as the master problem, and the
loading feasibility problem solved as a subproblem, to identify loading
infeasible subpaths, and exclude these from the solution. A long way still
remains before real-life-sized instances can be solved to optimality, but
the size of the problems that can be solved has been improved noticeably,
in comparison to the initial formulation.

The Double Travelling Salesman Problem with Multiple Stacks is, as the
name suggests, a single vehicle problem, however it can quite easily be
extended to the multiple vehicle case: The Double Vehicle Routing Prob-
lem with Multiple Stacks. The best of the implemented metaheuristics
for the DTSPMS has been extended to the DVRPMS case, and some
results are presented, along with other suggestions and ideas for further
development and extension of the problem.

The other problem which has been introduced with this thesis is the
Simultaneous Vehicle Scheduling and Passenger Service Problem (SVS-
PSP). This is a problem from public bus transport, which combines as-
pects of timetabling and vehicle scheduling. Usually these two problems
are handled separately, but the approach suggested here integrates (re-)
timetabling into the vehicle scheduling problem, potentially allowing for
better vehicle schedules for the operator, and improved transfer oppor-
tunities for the passengers. The results are promising, and indicate that
passenger inconvenience can be decreased at the cost of a slight increase
in empty vehicle mileage.

The Simultaneous Vehicle Scheduling and Passenger Service Problem
includes several different aspects. Apart from the usage cost and empty
mileage incurred by the vehicles, it considers passenger transfer times,
both between the buses whose service are controlled by the algorithm,
and in relation to external timetables, which are in this case trains.

Initially, a mathematical model of the problem was implemented us-
ing CPLEX. This model was based on a flow formulation of the vehicle
scheduling problem, which was modified to handle the temporal shifts
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and the transfer to external modes. This model ignored the internal
transfers between buses. The results obtained from testing this model
were not discouraging, but the ability to handle internal transfers would
require considerable modifications, and were thus decided against.

In order to solve the problem for the complete dataset that was in-
tended from the outset, namely the express bus network of Copenhagen,
a heuristic solution approach to the SVSPSP was chosen, handling ex-
ternal and internal transfers, as well as timeshifts and vehicle costs. A
large neighbourhood search algorithm was implemented, and the results
were promising, both with regard to the ability of the algorithm to solve
the problem, and with regard to achievable savings in passenger waiting
time.

Overall, the problems presented in this thesis have provided valuable
input to the research society. The presented solution approaches have
all shown promising results, and can hopefully provide a platform for
future work by myself and others.
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Hanne L. Petersen, Oli B.G. Madsen.

Abstract:

This paper introduces the Double Travelling Salesman Problem with
Multiple Stacks and presents four different metaheuristic approaches to
its solution. The Double TSP with Multiple Stacks is concerned with
determining the shortest route performing pickups and deliveries in two
separated networks (one for pickups and one for deliveries) using only one
container. Repacking is not allowed, instead each item can be positioned
in one of several rows in the container, such that each row can be con-
sidered a LIFO (last in, first out) stack, but no mutual constraints exist
between the rows. Two different neighbourhood structures are developed
for the problem and used with each of three local search metaheuristics.
Additionally some simpler removal and reinsertion operators are used in
a Large Neighbourhood Search framework. Finally some computational
results are given along with lower bounds on the objective value.
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Errata A few minor corrections to the published paper have been made
in the version included here:

• the index τ just before the section on Route-Swap is now G.
• the text at the end of sec 4.4 now reads “increased values of L” and

“R = n”, i.e. “will deteriorate with increased values of L, since the
nS bound is exactly the optimal solution for R = n”.

• some slight inaccuracies were discovered in the top half of column
SS of Table A.1, and have been corrected. This does not affect any
results or conclusions of the paper.

In addition, some minor typographic and aesthetic changes have been
made.

A.1 Introduction

As congestion is an ever-growing problem on the roads all over the world,
intermodality is playing an increasingly important role in the transporta-
tion of goods. Furthermore, the complexity of the resulting planning
problems presents additional requirements to the tools available to plan-
ners.

The project that forms the basis of this paper was initiated in cooperation
with a company producing computer software systems for operation and
fleet management in small and medium-sized transportation companies.
The software company encountered this problem at one of its prospective
customers, and the problem is intriguing in that it does not seem to
have been treated previously in the literature, at the same time as it is
conceptually simple.

The Double Travelling Salesman Problem with Multiple Stacks
(DTSPMS) is concerned with finding the shortest routes performing
pickups and deliveries in two separated networks/regions. The prob-
lem permits neither repacking nor vertical stacking, instead the items
can be packed in several rows (horizontal stacks) in the container, such
that each row must obey the LIFO (Last-In-First-Out) principle, while
there are no mutual constraints between the rows.

In the DTSPMS a set of orders is given, each one requiring transportation
of one item from a customer in the pickup region to a customer in the
delivery region, i.e. each order contains a pickup customer and a delivery
customer for one item. The items are required to be boxes/pallets of
identical dimensions and each region has a depot. The two regions are
far apart, and thus some long-haul transportation is required between
the depots. This long-haul transportation is not part of the problem
considered here. All pickups and deliveries must be carried out using the
same container, which cannot be repacked along the way, and items in
the container can only be accessed from the opening in one end of the
container. Hence the problem to be solved consists of determining the
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shortest Hamiltonian tour through each of the networks, in such a way
that a feasible loading plan exists. No time windows are considered in
this problem.

In practice this situation can occur when the container is loaded onto
a truck to perform the pickup operations, then returned by that truck
to a local depot/terminal where it is transferred onto a train, ship or
another truck, which then performs the long-haul transportation. Upon
arrival at the depot/terminal in the delivery region, the container is
again transferred to a truck, which carries out the actual deliveries. The
terminals only have facilities to perform container movements, and do
not offer any opportunities for opening or repacking the container.

It is assumed that each order consists of exactly one item, thus if one
pickup or delivery location is shared by several orders the corresponding
node in the graph will be duplicated.

To state the problem more formally two weighted complete graphs (V G,
EG), G ∈ {P,D} are given for pickup (P) and delivery (D) respectively,
and the purpose is to find a Hamiltonian tour through each graph, such
that the sum of the weights of the edges used is minimised. Each graph
G has a depot node vG

0 , G ∈ {P,D}, customer nodes vG
1 , . . . , vG

n , and
symmetric edge costs cG

ij . A set of n orders {1, . . . , n} is given, where

order i must be picked up at vP
i ∈ V P and delivered at vD

i ∈ V D. Finally,
V G

C = V G\{vG
0 }, G ∈ {P,D} denotes the set of customer nodes in graph

G. Whenever superscript G is used in the following it will indicate a
distinction between pickup and delivery, G ∈ {P,D}.

The edge costs are assumed to be symmetric throughout this paper, but
the presented algorithms do not rely on this property, and can also handle
problems with asymmetric edge costs.

Throughout the paper it will be assumed that the number of orders n
equals the number of loading positions. The loading container will have
R rows, each of length L, and thus n = R ·L. The total number of nodes
in the problem is 2n + 2.

The connection between the two tours to be found is given by the loading
of the container. Since no repacking is allowed, the only items that can
be delivered “next” at any time during delivery are the ones that can be
accessed from the opening of the container. This implies that the loading
is subject to LIFO constraints.

However, in the DTSPMS there is no LIFO ordering for the container as
a whole. Rather, it contains several loading rows, each of which can be
considered a LIFO stack, but all rows are independently accessible.

In real life the items to be transported would typically be standardised
Euro Pallets, which fit 3 by 11 on the floor area of a 40-foot pallet
container, providing three independent loading rows.

A solution to a given problem consists of a pickup route, a delivery route,



92 Appendix A

and a row assignment, which for each item indicates which loading row
it must be placed in. A row assignment only gives the row that each
item should be placed in, and does not indicate which position the item
will occupy in that row. Given a route (pickup or delivery) and a row
assignment, one can construct the loading plan, which gives the exact
position of each item inside the loaded container.

The problem may at first glance seem purely theoretical, since the extra
mileage incurred by not being able to repack may seem prohibitive. How-
ever the problem has been encountered in real-life applications, where
this extra mileage is justified by the wages stemming from handling and
requirements to comply with union restrictions (the driver is not allowed
to handle the goods).

Special cases of the DTSPMS occur when the number of loading rows is
equal to 1 or to the number of orders n. In both cases the problem of
finding a row assignment for the solution becomes irrelevant.

In the single row case the pickup route will strictly dictate the delivery
route (or vice versa), and the two routes will be exact opposites. In
this case the problem can be solved by adding the transposed distance
matrix of the delivery graph to the distance matrix of the pickup graph,
and solving a regular TSP for the resulting distance matrix.

Conversely, when the number of loading rows equals the number of orders
n, the two routes do not impose any restrictions on each other and the
optimal solution to the problem consists of the optimal solutions to the
two independent TSPs.

The DTSPMS as described here is a combination of the travelling sales-
man problem (TSP) and pickup and delivery problems (PDPs) and does
not seem to have been treated previously in the literature, however early
presentations of the work presented in this paper have inspired additional
work presented in Felipe et al. [34], which uses several new operators,
along with the ones presented here, in a Variable Neighbourhood Search
(VNS) framework.

Although being concerned with pickups and deliveries, the DTSPMS
differs significantly from the “regular” PDP as described in e.g. Cordeau
et al. [20] and Desaulniers et al. [28], and earlier in Kalantari et al. [64]
and Savelsbergh and Sol [100]. A number of variations of the PDP have
been described in the more recent survey Parragh et al. [85, 86].

The main additional complication is the availability of multiple LIFO
loading rows and thus the need to present a loading plan as part of the
solution. The regular PDP with LIFO ordering (one stack only) has
been treated using both heuristics Carrabs et al. [12] and exact methods
Cordeau et al. [23] and Carrabs et al. [11].

In the regular PDP it is necessary to make sure that each pickup is per-
formed before the corresponding delivery. This is automatically ensured
in the DTSPMS, since all pickups are performed before all deliveries.
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Furthermore when capacity constraints are present in a PDP these must
be checked for every node that is visited. In the DTSPMS all items
will need to be kept in the container at the same time, and therefore
it would suffice to check the capacity of the full vehicle if any kind of
capacity constraints were present (which would not happen in the plain
DTSPMS, but could occur with an extension to multiple vehicles, or if
not all orders need to be served).

Apart from the regular PDP, another class of problems that show similar-
ities with the DTSPMS is the TSP with Backhauls (TSPB) (cf. e.g. Toth
and Vigo [110]). Here the property that “all pickups lie before all de-
liveries” is preserved, however there is no longer any constraints tying a
pickup to its corresponding delivery.

The DTSPMS is a special case of the generalised Pickup and Delivery
Problem with Loading Constraints in 2 dimensions. Routing problems
with more general loading constraint are described in Iori et al. [61],
Gendreau et al. [45] and Gendreau et al. [44].

The Multi-Pile VRP (MPVRP), is a problem somewhat similar to
the DTSPMS, combining routing and loading, using several available
piles/stacks. Doerner et al. [30] solve the MPVRP using tabu search
and ant colony optimisation. The MPVRP is a generalisation of the
DTSPMS, with varying dimensions of the transported items (leading to
overlap between the stacks/piles).

The paper is organised as follows: First a mathematical formulation of
the problem is presented in Section A.2 and some comments are made
on its implementation in GAMS/CPLEX. Next, four different heuristic
solution approaches are presented in Section A.3, with emphasis on the
developed neighbourhood structure that is based on the structure of the
problem, and is used for the first three approaches. Finally, Section A.4
describes the implementations and gives some computational results, and
Section A.5 concludes on the described heuristic solution approaches and
gives some suggestions for future work on the DTSPMS.

A.2 Mathematical Formulation

The DTSPMS can be modelled as a binary integer programming problem
with variables

xG
ij =

{

1 if edge (i, j) is used in graph G,

0 otherwise,
i, j ∈ V G,

yG
ij =

{

1 if vG
i is visited before vG

j ,

0 otherwise,
i, j ∈ V G

C ,

zir =

{

1 if item i is placed in row r,

0 otherwise,

i ∈ V G
C ,

r = 1, . . . , R.
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Again G ∈ {P,D}.

The objective function can then be expressed as:

min
∑

i,j∈V G

G∈{P,D}

cG
ijx

G
ij (A.1)

The constraints can be stated as follows:

∑

i

xG
ij = 1 ∀j ∈ V G (A.2)

∑

j

xG
ij = 1 ∀i ∈ V G (A.3)

yG
ij + yG

ji = 1 ∀i, j,G, i 6= j (A.4)

yG
ik + yG

kj ≤ yG
ij + 1 ∀i, j, k,G (A.5)

xG
ij ≤ yG

ij ∀i, j,G (A.6)

yP
ij + zir + zjr ≤ 3 − yD

ij ∀i, j, r = 1, . . . , R (A.7)
∑

r

zir = 1 ∀i (A.8)

∑

i

zir = L ∀r = 1, . . . , R (A.9)

x, y, z ∈ B. (A.10)

where i, j and k are in V G
C unless otherwise stated, and G is always in

{P,D}.

Constraints (A.2) and (A.3) are flow conservation constraints, stating
that one unit of flow must enter and exit each node.

Constraints (A.4) ensure that for each pair of nodes (i, j) a precedence
variable must be set, i.e. either i is visited before j or j before i. (A.5)
express that if i is before k and k is before j, then i must necessarily
be visited before j and constraints (A.6) ensure that if the edge (i, j) is
used, then the according precedence variable is set (i is visited before j).

Constraints (A.7) express the LIFO constraints that are only relevant
when two items are in the same row, i.e. if i and j are placed in the same
row, and i is picked up before j, then i must be delivered after j (i may
not be delivered before j).

Finally, (A.8) ensure that all items must be assigned to exactly one row,
and (A.9) enforce the row capacity/length L.

The model has been implemented in GAMS 21.5 with CPLEX 9.1, on
a UNIX system with 16 GB RAM/1200 MHz, which was able to solve
problems for container sizes up to 2 by 5 or 3 by 4 within an hour of
running time. Since the typical real-life instance is of size 3 by 11 and
the time available for solving was limited, it was therefore decided to
attempt to solve the problem heuristically.
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A.3 Heuristic Solution Approaches

Since the mathematical model is unsolvable for problems of realistic size
using a standard solver, a number of metaheuristic solution approaches
have been considered for this problem. A survey of previous use of meta-
heuristics in vehicle routing problems can be found in [43].

Tabu Search (TS) has previously presented good solutions to vehicle rout-
ing problems, which are similar in nature to the current problem. Many
variations of tabu search exist, however this paper will only consider the
simple version, which always uses the best neighbouring solution, and
has constant tabu tenure.

Simulated Annealing (SA) is another method that is well-known to pro-
vide good results to many different problems. Its advantage over TS is
that it can move faster through a number of neighbourhoods, since it
immediately chooses one neighbour at each iteration, rather than com-
paring several neighbours, and can thus complete a higher number of
iterations in a given time. This comes at a cost of more randomised
behaviour.

To conclude the traditional neighbourhood-based metaheuristics, a sim-
ple Steepest Descent approach has been implemented to determine how
easy it is to locate good local optima from random starting points in
the solution space. This has then been used in a simple Iterated Local
Search (ILS) with random restarts and steepest descent used as the local
search strategy.

Finally a Large Neighbourhood Search (LNS) algorithm has been imple-
mented for the problem. LNS has in recent years showed good perfor-
mance for VRP-like problems and seems promising when dealing with
highly constrained problems, such as the one treated here.

The first three solution approaches all solve the problem by local search
in a rather limited neighbourhood and are all based on an initial solution
and some neighbourhood structure. Thus once one or more neighbour-
hoods have been developed, they can be reused for several approaches.
Two different neighbourhoods have been developed here, both of which
preserve feasibility of the solution, and, as it will be explained later, in
combination the two can cover the entire feasible solution space. These
two neighbourhoods have been implemented for use with each of the first
three above-mentioned heuristic approaches.

The LNS approach is based on a combination of simpler operators, per-
forming either deletion or insertion of orders. Since these operators are
less problem-specific, this approach allows for the operators to be in-
spired by heuristic solutions to more general problems, such as the TSP
or VRP.

Since the company that introduced the problem were interested in the
running times that would be experienced by the customers, wall clock
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times was chosen as the stopping criterion. This additionally ensured
that the results from the different algorithms would be directly compa-
rable. A 10 second interval was chosen to resemble online computations,
while 3 minutes was expected to produce considerably better solutions
within a duration that users would still be willing to wait for.

A.3.1 Initial Solution

A feasible solution to the problem can be found by solving the single-
stack version of the problem. In this case the pickup and delivery routes
must be exact opposites, and the solution can be obtained by adding
the two distance matrices and solving a regular TSP on the resulting
distance matrix. This problem has been solved using a savings algorithm
as introduced by Clarke and Wright in [18] to solve the TSP, and this
initial solution has been used for the TS, SA and LNS implementations,
since these only need one initial solution to the problem.

For the ILS, a number of initial solutions were constructed by randomly
generating an ordering of the items to use for the pickup route, and
reversing this for the delivery route, thus all of the generated solutions are
still based on feasible solutions to the single-stack problem. Loading rows
were then assigned randomly by partitioning all orders evenly among the
available rows.

A.3.2 Feasible Neighbourhood Structures

In this section the two operators that form the basis of the three initial
solution approaches are introduced.

Route-swap

The first operator only performs changes to the routing of the two tours,
and leaves the row assignment untouched. The neighbourhood consists
of all possible exchanges of two items A and B in a route where they
immediately follow each other. To ensure feasibility of the resulting
solution it is necessary during this operation to consider whether the
two items are placed in the same loading row. These two cases can be
seen in Figure A.1 (top resp. bottom). From left to right the figure
shows pickup route, loading plan and delivery route, before and after
performing a route-swap.

If A and B are placed in the same row (top of Figure A.1), then they will
be neighbours in this row and their positions in the loading plan of the
container will be swapped by swapping their pickup order. Consequently
their positions must also be swapped in the delivery route (even when A
and B are not consecutive in this route).
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Figure A.1: An illustration of route-swap.

If A and B are placed in different loading rows (bottom part of Figure
A.1), then, since they are consecutive in the pickup route, this means
that when vP

A is visited, vP
B will be next in line and since A and B are

in separate rows, then the loading position of B will also be accessible
(and be the last accessible position in its row), and thus the positions of
A and B in the final loading plan can remain unchanged when swapping
the pickup order, and so can the delivery route.

Both of these arguments can be reversed when the operator is used on
the delivery route.

The entire neighbourhood can be traversed by considering all values of
i = 1, . . . , n− 1 for both routes G, thus the size of this neighbourhood is
2n − 2, i.e. O(n), where n is the number of orders.

Complete-swap

The operator complete-swap is focusing on the row assignment, while
only updating the routes to maintain feasibility. It considers any pair
of items that are currently assigned to different rows (regardlessly of
routing), and swaps their positions in the loading plan and in each of the
routes. This is illustrated in Figure A.2. The top half shows (part of)
the two graphs and loading plan before performing the complete-swap,
while the bottom half shows them after. A and B are the two orders that
are swapped, while C is some order that is visited between the two, and
would be blocking if the routes were not updated as part of the swap.

To traverse the entire neighbourhood all pairs of orders must be examined
(skipping pairs where both orders are assigned to the same row), and the
size of the neighbourhood is therefore O(n2).
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Figure A.2: An illustration of complete-swap.

A.3.2.1 The operators in combination.

Since route-swap does not affect the row assignment of a solution, it is
obvious that one cannot reach the entire solution space by only using this
operator. Similarly when performing complete-swap the mutual visiting
orders of the two routes will never change (e.g. if an order is handled
third in the pickup route and last in the delivery route, then there can
never be an order visited third in the pickup route and not last in the
delivery route, if only complete-swap is applied). However by using a
combination of the two operators it becomes possible to cover the entire
solution space.

The idea of combining several different neighbourhood structures is not
unique – it is also the idea behind Variable Neighbourhood Search (VNS,
see [80]). However, the background for using this approach here is differ-
ent. The purpose of VNS is to be able to reduce solution time, while the
use of a combined neighbourhood in this paper is a necessity to ensure
access to all feasible solutions.

Any solution can be constructed from any other solution by first perform-
ing a series of complete-swaps until the loading plan is correct, followed
by a number of route-swap operations to make the routes match. When
performing a route-swap only one of the routes will be affected, unless
the swapped items are assigned to the same row. In this case the two
items must be swapped in both routes as the solution would otherwise
become infeasible.

A.3.3 Iterated Local Search

The idea behind iterated local search (cf. [76]) is to use a simple local
search procedure a number of times in an intelligent way, to eventually
produce good results. In the current implementation this has been done
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by using steepest descent at the local search procedure, and using random
restarts as a rather crude iteration control. The restart mechanism is
usually at the heart of the algorithm, and thus the implementation here
should not be seen as a representative of what ILS would be capable of
for this problem. However it was implemented to examine the value of
using a pure steepest descent approach, and the results should be judged
as such.

A.3.4 Tabu Search

In the tabu search implementation the fact that two different neighbour-
hood structures must be considered has been dealt with by systemati-
cally changing between the two types, following some pre-defined pattern.
Two parameters are used to describe this pattern, namely the length or
period of the pattern, perLen, and the ratio between the two opera-
tors, ratio. E.g. the parameter combination perLen = 20, ratio = 0.3
indicates that the first 6 iterations should use route-swap, the next 14
should use complete-swap, and from iteration 21 onwards this pattern is
repeated.

In this way the deterministic nature of tabu search has been maintained,
by not introducing randomness in the selection of the operator to use for
each iteration.

For each operator it has additionally been necessary to decide on some
attributes to register in the tabu list, and for both operators the choice
has been to register which two orders were swapped.

For moves of type route-swap it is thus not registered on which route
(pickup or delivery) the swap was performed.

Although moves of both types are marked by the same attributes in the
tabu list, a separate list is kept for each move type. This is due to the
differences in the two operators. Consecutively performing one move
of each type on the same pair of orders does not imply that one move
is reversing the other, and does not lead the algorithm to start cycling
between a few solutions, and hence the two operators should not be kept
in the same tabu list.

The TS algorithm implemented here is rather simple, with a constant
tabu list length, fixed switching strategies between the operators, and a
stopping criterion based on elapsed time. Using a different stopping cri-
terion, such as a certain number of iterations without improvement, was
decided against to ensure comparability between all of the implemented
algorithms.
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A.3.5 Simulated Annealing

The SA implementation handles the two available operators by randomly
selecting one of them for each iteration, and the probability for choosing
each operator is expressed in the parameter ratio, indicating the proba-
bility of choosing route-swap.

Traditionally SA approaches take three parameters; an initial tempera-
ture Ts, a final temperature Te, and a temperature reduction function.

The temperature reduction function is usually based on the reduction
scheme

Ti+1 = c · Ti (A.11)

where T0 = Ts, c ∈ (0; 1) is some reduction factor, and the algorithm
terminates when the final temperature Te is reached.

However for the purpose of comparability SA has here been implemented
to take running time t as an input parameter instead of the temperature
reduction factor/function.

Thus the temperature at time t has been calculated as:

T (t) = Ts ·

(

Te

Ts

)
t

tmax

(A.12)

where tmax is the total allowed running time. This ensures that T (0) =
Ts, T (tmax) = Te and the behaviour between these two points corre-
sponds to that of (A.11) when temperature Te is reached at time tmax.
In this implementation the temperature is updated at each iteration.

A.3.6 Large Neighbourhood Search

Large neighbourhood search (cf. [104]), is based on simply removing
(larger) parts of the solution, and subsequently reinserting the affected
customers. Thus it does not use neighbourhood operators in the same
sense as the previously discussed local search based metaheuristics.

An implementation of LNS must consider such issues as strategies for
removal and insertion, degree of destruction at each iteration and accep-
tance criterion for the generated solutions.

In this case both the removal and insertion strategies are based on a
variety of simple strategies, where the strategy to apply at each operation
is selected randomly with some probability (which is a parameter). As
with the other algorithms used in this paper, the stopping criterion for
LNS has been running time.

A.3.6.1 Operators

Two removal strategies have been implemented – one is based on a mea-
sure of relatedness similarly to the description in [104], thus attempting
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to remove orders similar to those already removed in the same iteration,
while the other is based on removing the orders that are most expensive
to cover in the current solution. In this context the relatedness of two
orders has been expressed as the sum of the distances between the orders
in each of the two graphs.

Reinsertion is performed using a range of four different insertion heuris-
tics: Nearest, farthest, cheapest and most expensive (all based on [63]).

Additionally, a certain amount of noise has been added when choosing
the order to insert, to increase diversification.

A.3.6.2 Parameters

In addition to the use of the available operators a number of parameters
have been applied and tested for the LNS implementation.

The criterion for accepting new solutions has been based on simulated
annealing acceptance, similar to the approach used in [96]. As in Section
A.3.5 the calculation of the temperature is based on a pre-determined
stopping criterion, rather than using the temperature itself as the stop-
ping criterion.

Additionally it has been decided to remove orders from the solution
rather than customers. This is based on the structure of the DTSPMS,
which strongly reduces the reinsertion possibilities, if e.g. a pickup cus-
tomer has been removed, while the corresponding delivery customer re-
mains in the solution.

Finally, the steepest descent used for ILS has been used to improve the
solution after each iteration.

A.4 Computational Results

Each of the four algorithms has been implemented in Java 1.5 and tests
have been performed for running times 10 and 180 seconds (both are wall
clock times).

All tests have been performed on a Dell D610 laptop with 1.5 GB RAM
and a 1.60 GHz processor running Windows XP.

A.4.1 Test Instances

The test instances that have been used for the evaluation of the solu-
tion approaches have been generated randomly, by finding two sets of n
random (real) points in a 100 × 100 square. The depot is placed in the
centre of the square at (50, 50). All distances are Euclidean distances
rounded to the nearest integer, in accordance with the conventions from
TSPLIB. Note that this rounding implies that the triangle inequality is
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not preserved, however the algorithms described in this paper do not rely
on this inequality to be valid.

Two test sets have been generated, each containing ten problems of size
n = 33 orders (i.e. with 33 customers in each graph). The first set was
used for parameter tuning for each of the heuristics, and both sets were
used for the final results reported in Table A.2.

The test instances generated for this problem can be obtained online1.

In this paper all test problems have been solved for the 3-stack problem.

A.4.2 Bounds

Since the optimal solutions to the test instances are unknown, it is de-
sirable to find good lower bounds to evaluate the quality of the solutions
obtained during testing.

One lower bound can be found by relaxing the constraints that ensure
loading feasibility between the graphs, i.e. solving the n-stack problem.
This way the problem reduces to two individual TSPs, that can be solved
to optimality with tools such as Concorde (cf. [2]). Obviously each TSP
solution is a lower bound on the optimal tour through that graph, and
the sum of the tours is then a lower bound on the sum of the tours in
any feasible solution to the DTSPMS with any number of rows.

However, intuitively this bound must be expected to be quite weak, since
one would expect many changes to be necessary before a feasible loading
plan could be constructed for such a solution.

In addition to this problem-specific lower bound some common lower
bounds have been calculated and compared, to demonstrate some prop-
erties of the problem. These numbers can be found in table A.1.

The first column gives the problem number. The second column (nS)
gives the lower bound described above (the optimal solution to the n-
stack problem), column LP gives the lower bound provided by solving
the LP relaxation of the model (A.1)–(A.10) and root gives the objective
value in the root node after CPLEX has added cuts. BB shows the
lower bound obtained by CPLEX after an hour of running time with
BestBound used as the node selection strategy. Best shows the value of
the best known solution for each problem, while Best

LB shows the quality of
the best known solution compared to the best lower bound (i.e. Best

nS ). All
best known solutions have been found by allowing the best metaheuristic
(LNS) to use a longer running time. The last two columns contain upper
bounds: SS gives the optimal solution to the single-stack problem, while
the column init gives the heuristic solution to problem SS, which was
used as the initial solution that was used for TS, SA, and LNS.

As can be seen from the table the n-stack bound is always considerably

1http://www.transport.dtu.dk/datasets/DTSPMS

http://www.transport.dtu.dk/datasets/DTSPMS
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nS LP root BB Best Best
LB init SS

R00 911 793 802 812 1063 1.17 1886 1682
R01 875 820 824 831 1032 1.18 1690 1579
R02 935 826 844 845 1065 1.14 1672 1564
R03 961 887 905 905 1100 1.14 1836 1741
R04 937 859 860 863 1052 1.12 1671 1629
R05 900 811 814 816 1008 1.12 1548 1438
R06 998 941 944 944 1110 1.11 1739 1643
R07 963 894 900 900 1105 1.15 1867 1696
R08 978 899 911 922 1109 1.13 1761 1643
R09 976 889 909 910 1091 1.12 1610 1556

R10 901 822 833 839 1016 1.13 1697 1575
R11 892 810 820 823 1001 1.12 1494 1429
R12 984 934 946 950 1109 1.13 1778 1673
R13 956 887 895 897 1084 1.13 1707 1613
R14 879 794 803 803 1034 1.18 1704 1565
R15 985 903 916 917 1142 1.16 1943 1783
R16 967 857 887 894 1093 1.13 1767 1647
R17 946 847 882 884 1073 1.13 1716 1620
R18 1008 876 920 921 1118 1.11 1796 1673
R19 938 839 855 864 1089 1.16 1725 1633

Table A.1: Bounds.

stronger than the LP bound, even after CPLEX has been allowed some
time for improving this bound. Comparisons show that the best known
solutions are all within 11–18% of the best lower bound (nS). Given
that this lower bound is found by completely ignoring all sequencing
constraints, one may assume that these lower bounds are quite weak.
This suggests that the best found solutions could be reasonably good.

The best known solutions have all been found by performing a number
of runs of length around two hours. The best approach for obtaining
good solutions has turned out to be running several runs of a somewhat
shorter length, rather than performing one run with a very long running
time. Performing one run of 15 minutes length gives solutions that are
on average 0.5% above the best known, and when performing four runs
of each 90 minutes (i.e. 6 hours total time), the best known solution was
matched at least once for all 20 instances.

A.4.3 Results

A number of test runs have been performed for each of the four algorithms
implemented. The details of these implementations will first be presented
individually before presenting the final results and comparisons in Table
A.2. It is worth noting that the first three implementations all use the two
improvement operators that were designed specifically for the DTSPMS
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and presented in Section A.3.2, while the LNS implementation instead
uses more general removal and insertion operators as described in Section
A.3.6.1.

All of the algorithms required considerations regarding the ratio between
the different operators, and apart from the ILS algorithm each includes
a number of parameters that additionally needed to be calibrated.

All calibration runs were performed on the problems from the first data
set to determine a good set of parameters, and these parameters were
then applied to the problems from the both of the two data sets to
produce the final results presented in Table A.2. More elaborate results
of the calibration runs can be obtained from [90], or by contacting the
author.

In the remainder of this paper the term solution quality will be used to
refer to the deviation from the best known solution, i.e. the objective
value of the solution to an instance is divided by the value of the best
known solution for that instance.

A.4.3.1 Iterated Local Search

For each iteration of the local search algorithm the operator to use has
been chosen randomly with some probability ratio. The best results
were obtained with value 0.4 for both of the running times considered,
meaning that 40% of the moves were of type route-swap.

The algorithm could typically complete around 2600 iterations within
the allotted 3 minutes.

A.4.3.2 Tabu Search

Next the impact of the length of the tabu list, tabuLength, was examined.
Based on the results, tabu lengths of 7 and 11 were used for the remaining
runs, for 10 and 180 seconds, respectively.

Finally, the combination of the operators was examined, given by the
parameters ratio and perLen as described in Section A.3.4. It proved
beneficial to use a low value for perLen (tested values: 10, 30, 50, 70, 90),
namely 10 for both running times. It was assessed that 10 was so close
to 0 that using an even lower value would not produce any significant
gain. The best value of ratio turned out to be higher for tabu search
than for iterated local search, with values of 0.9 for 10 seconds and 0.7
for 180 seconds runs, thus using the less time-consuming operator more
frequently, especially for the shorter TS runs (tested values: 0.1, 0.3, 0.5,
0.7, 0.9).

The algorithm was able to complete around 137,000 iterations within the
allotted 180 seconds (ratio 0.7).
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This strong preference for using the faster operator also gives an indica-
tion, that the number of iterations that can be completed is important
to the result (number of iterations completed is approximately 54,000 for
ratio 0.1 and 88,000 for ratio 0.5). This in turn indicates that the use
of one combined neighbourhood might not pay off, since the number of
iterations would then be reduced by 50%.

A.4.3.3 Simulated Annealing

The ratio parameter turned out to have a rather small impact on the
quality of the solutions obtained by simulated annealing, and the chosen
values were 0.4 for 10 seconds and 0.5 for 180 seconds runs. These tests
were furthermore performed with ratios 0.0 and 1.0, to demonstrate the
effect of using only one operator. As expected this approach produced
considerably worse solutions, and for running time 180 seconds the so-
lution quality was 1.47 (route-swap only) and 1.35 (complete-swap only)
when using one operator exclusively, while the corresponding numbers
were around 1.1 for all tested values of ratio in the interval [0.1; 0.9].

Finally, several combinations of start and end temperatures were exam-
ined, to determine the final set of parameters.

With these parameters the algorithm could complete around 15 million
iterations in 3 minutes.

A.4.3.4 Large Neighbourhood Search

For both running times it showed beneficial to use a relatedness-based
removal strategy in most iterations, with some uses of the most-expensive
strategy for increased diversification. The final setting used relatedness
in 80% of the iterations for 180 seconds runs, and 60% for 10 seconds
runs.

The best strategy for insertion in all cases was to randomly select one of
the four available insertion strategies.

The number of orders to remove was selected randomly at each itera-
tion – in the interval [4, 17] for 3 minutes and [3, 15] for 10 seconds.
This indicates that the longer runs could benefit from a higher degree of
diversification than the shorter runs.

Additionally it was tested to use the steepest descent algorithm from the
ILS for re-optimisation at each iteration. The longer 3 minute running
times would benefit from this refinement, while the shorter 10 second
runs performed better when using less refinement and spending the time
on additional iterations.

The acceptance of new solutions was performed using the criterion from
simulated annealing – there was no variation in temperature interval
between the two running times.
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Finally an amount of noise was added to the solution when determining
which order to reinsert next. Here the 10 second runs showed an overall
best performance when these values were modified with ±40%, while the
corresponding number for 3 minutes was ±20%.

The LNS algorithm could complete around 12,500 iterations within 3
minutes.

A.4.3.5 Summary of the Results

After calibrating each of the four heuristics, Table A.2 summarises the
results obtained by applying these parameters to the test problems from
both sets.

10 seconds 180 seconds
LNS SA TS ILS LNS SA TS ILS

R00 1.04 1.26 1.42 1.66 1.01 1.13 1.23 1.58
R01 1.04 1.17 1.34 1.64 1.01 1.08 1.21 1.61
R02 1.04 1.19 1.38 1.57 1.01 1.10 1.24 1.53
R03 1.06 1.22 1.44 1.66 1.01 1.12 1.24 1.62
R04 1.05 1.25 1.38 1.59 1.02 1.11 1.23 1.56
R05 1.03 1.22 1.25 1.53 1.01 1.15 1.21 1.47
R06 1.06 1.19 1.37 1.56 1.02 1.11 1.26 1.51
R07 1.05 1.23 1.39 1.66 1.01 1.11 1.26 1.58
R08 1.04 1.21 1.36 1.56 1.01 1.11 1.27 1.51
R09 1.04 1.15 1.29 1.47 1.01 1.08 1.19 1.46

R10 1.05 1.24 1.45 1.67 1.00 1.15 1.25 1.64
R11 1.06 1.24 1.24 1.49 1.01 1.10 1.22 1.48
R12 1.04 1.21 1.44 1.60 1.01 1.13 1.22 1.55
R13 1.04 1.23 1.37 1.55 1.01 1.08 1.22 1.53
R14 1.03 1.22 1.47 1.63 1.00 1.11 1.25 1.58
R15 1.04 1.21 1.37 1.62 1.01 1.10 1.26 1.56
R16 1.02 1.20 1.35 1.61 1.00 1.10 1.18 1.55
R17 1.04 1.24 1.48 1.60 1.00 1.12 1.28 1.58
R18 1.05 1.20 1.33 1.59 1.01 1.13 1.21 1.53
R19 1.03 1.16 1.31 1.57 1.01 1.11 1.25 1.54

Avg. set 0 1.04 1.21 1.36 1.59 1.01 1.11 1.23 1.54
Avg. set 1 1.04 1.22 1.38 1.59 1.01 1.11 1.23 1.56

Table A.2: Result Summary.

The table shows the quality of the solutions that have been found with
each of the four heuristic approaches for the two different running times.
All values are found using the “best” set of parameters found in the
preceding sections.

The table shows that among the four implementations presented, LNS
consistently produces the best results, and gives results around 4% above
the best known for a running time of 10 seconds, and within 1–2% when
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allowed to run for 3 minutes.

Additionally the table shows a very clear ranking of the implementa-
tions. For all but the ILS a significant improvement can be observed by
increasing the running time.

The results also show that using the ILS algorithm with the short running
time produces solutions that are only slightly better than the initial
solutions used for the two other approaches. This demonstrates that
a clear benefit can be obtained by using something more sophisticated
than the current ILS, which is basically a series of steepest descents with
random restart.

The top half of the table (problems R00–R09) shows the results obtained
for set 0 which was used for parameter tuning, while the bottom half
(problems R10–R19) shows the results for set 1 which has been used
exclusively for the final evaluation of the algorithms. Averages for each
set are reported at the bottom of the table. This shows that the solution
quality is not significantly higher for the problems that have been used
for calibration, i.e. the choice of calibration problems does not seem to
have influenced the final parameter values.

A.4.4 Instances with known optimal solution

The largest instance size which can currently be solved to optimality with
the mathematical model presented in Section A.2 contains 12 customers
in each graph. A series of such instances has been obtained by considering
the first 12 orders of each of the above-mentioned instances. Table A.3
gives the optimal solution to each of these reduced instances, along with
the average gap obtained by running the LNS, SA, and TS algorithms
on these. The gap is averaged over three runs for LNS and SA, and in
parentheses is given the number of times (out of three) where the optimal
solution was found.

The first column of Table A.3 shows the optimal value, and the next
two columns show the quality of the lower bounds obtained from the
n-stack problem, and by letting CPLEX add cuts to the root node (cf.
the bounds presented in Section A.4.2). Solution times for obtaining the
optimal solution range from 14 to 2850 seconds, with an average of 450.

Again the nS bound turns out to be superior in all cases, and in this
case provides a quite good bound – probably due to the size of the
problems. It should still be expected that the quality of this bound will
deteriorate with increased values of L, since the nS bound is exactly the
optimal solution for R = n. A few tests that could be completed with
R = 3, L = 5 confirm this expectation.

These results confirm the superiority of the LNS implementation over
the three other implementations, by consistently finding the optimal so-
lution, and also confirm that SA performs better than TS.
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opt nS
opt

root
opt

LP
opt LNS SA TS LNS SA TS

R00-12 694 0.98 0.96 0.96 1.00 (3) 1.02 (0) 1.04 (0) 1.00 (3) 1.01 (1) 1.04 (0)
R01-12 710 1.00 0.89 0.86 1.00 (3) 1.03 (0) 1.06 (0) 1.00 (3) 1.02 (0) 1.06 (0)
R02-12 606 0.98 0.91 0.89 1.00 (3) 1.02 (0) 1.08 (0) 1.00 (3) 1.01 (0) 1.08 (0)
R03-12 680 0.99 0.96 0.96 1.00 (3) 1.01 (0) 1.06 (0) 1.00 (3) 1.00 (3) 1.06 (0)
R04-12 607 0.99 0.95 0.93 1.00 (3) 1.03 (0) 1.09 (0) 1.00 (3) 1.00 (3) 1.06 (0)
R05-12 567 0.99 0.89 0.87 1.00 (3) 1.00 (2) 1.12 (0) 1.00 (3) 1.00 (3) 1.13 (0)
R06-12 747 0.99 0.95 0.90 1.00 (3) 1.03 (1) 1.08 (0) 1.00 (3) 1.00 (2) 1.08 (0)
R07-12 557 0.96 0.90 0.85 1.00 (3) 1.02 (0) 1.03 (0) 1.00 (3) 1.00 (3) 1.03 (0)
R08-12 690 0.98 0.98 0.98 1.00 (3) 1.04 (0) 1.13 (0) 1.00 (3) 1.00 (3) 1.12 (0)
R09-12 669 1.00 0.97 0.92 1.00 (3) 1.02 (0) 1.08 (0) 1.00 (3) 1.00 (1) 1.07 (0)
R10-12 633 0.95 0.93 0.91 1.00 (3) 1.01 (0) 1.11 (0) 1.00 (3) 1.00 (2) 1.08 (0)
R11-12 591 0.96 0.95 0.93 1.00 (3) 1.04 (0) 1.07 (0) 1.00 (3) 1.00 (3) 1.07 (0)
R12-12 722 0.99 0.92 0.91 1.00 (3) 1.01 (0) 1.09 (0) 1.00 (3) 1.00 (2) 1.08 (0)
R13-12 664 0.97 0.96 0.95 1.00 (3) 1.02 (2) 1.09 (0) 1.00 (3) 1.00 (3) 1.10 (0)
R14-12 650 0.98 0.85 0.84 1.00 (3) 1.03 (0) 1.07 (0) 1.00 (3) 1.01 (2) 1.07 (0)
R15-12 595 0.97 0.95 0.93 1.00 (3) 1.01 (2) 1.01 (0) 1.00 (3) 1.00 (2) 1.03 (0)
R16-12 577 0.99 0.98 0.98 1.00 (3) 1.02 (0) 1.05 (0) 1.00 (3) 1.00 (3) 1.05 (0)
R17-12 737 0.99 0.97 0.95 1.00 (3) 1.01 (1) 1.07 (0) 1.00 (3) 1.00 (1) 1.07 (0)
R18-12 724 0.98 0.98 0.97 1.00 (3) 1.01 (0) 1.07 (0) 1.00 (3) 1.00 (2) 1.07 (0)
R19-12 753 0.99 0.95 0.92 1.00 (3) 1.02 (0) 1.11 (0) 1.00 (3) 1.00 (2) 1.11 (0)

Avg. 0.98 0.94 0.92 1.00 (60
60 ) 1.02 ( 8

60 ) 1.08 (0) 1.00 (60
60 ) 1.00 (41

60 ) 1.07 (0)

Table A.3: Results for 12 order instances.
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A.4.5 Larger problem instances

A real-life application containing 66 orders can also be imagined if the
transported items are all vertically stackable and have a height that is
less than half of the height of the container. In this case the top item of
such a vertical stack must obviously be removed first, and additionally all
items from one position must be removed before the top item on the next
position becomes available. Thus solving an instance using such stacking
of height 2 is identical to solving an instance with rows of double length.

The previously used test instances have all been increased to size 66
by letting the original random generation procedure continue until the
desired number of orders has been generated (these larger instances are
also available from the same website), and a series of test runs have been
performed on these instances with the parameter settings found earlier.
The results hereof can be found in Table A.4.

10 seconds 180 seconds
Best nS LNS SA TS LNS SA TS

R00-66 1594 1237 1.19 1.38 1.59 1.07 1.21 1.45
R01-66 1600 1257 1.20 1.39 1.60 1.08 1.22 1.57
R02-66 1576 1295 1.20 1.38 1.63 1.12 1.28 1.61
R03-66 1631 1290 1.14 1.35 1.58 1.06 1.23 1.53
R04-66 1611 1295 1.18 1.46 1.52 1.09 1.28 1.43
R05-66 1528 1204 1.18 1.40 1.53 1.07 1.21 1.49
R06-66 1651 1294 1.17 1.38 1.56 1.07 1.21 1.51
R07-66 1653 1307 1.17 1.44 1.56 1.08 1.22 1.41
R08-66 1607 1297 1.18 1.41 1.54 1.07 1.27 1.52
R09-66 1598 1276 1.18 1.35 1.59 1.08 1.25 1.53

R10-66 1702 1339 1.17 1.35 1.60 1.09 1.23 1.49
R11-66 1575 1268 1.19 1.40 1.55 1.08 1.25 1.49
R12-66 1652 1295 1.19 1.38 1.55 1.10 1.24 1.41
R13-66 1617 1275 1.19 1.39 1.60 1.10 1.24 1.53
R14-66 1611 1245 1.21 1.38 1.65 1.09 1.24 1.54
R15-66 1608 1228 1.19 1.38 1.56 1.10 1.22 1.48
R16-66 1725 1356 1.16 1.34 1.51 1.07 1.17 1.41
R17-66 1627 1274 1.21 1.40 1.70 1.10 1.29 1.59
R18-66 1671 1328 1.18 1.40 1.58 1.08 1.23 1.52
R19-66 1635 1256 1.17 1.41 1.57 1.09 1.22 1.48

Avg. 1.18 1.39 1.58 1.08 1.24 1.50

Table A.4: Results for 66 order instances.

Again it can be seen that LNS outperforms the other heuristics.

Additionally it can be noticed that the gap between the lower bound
and the best known solution has increased notably (avg. 30%). This
probably indicates that these instances are harder and the best known
solution could therefore be further away from the optimum, but most
likely also reflects that when the number of items in each loading row
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increases, the quality of the n-stack lower bound decreases.

The best known solutions to these instances have again been found by
performing a series of runs of a few hours, however a lot more runs
were required for these instances than for the smaller instances of 33
customers. Performing two runs of 4 hours each (thus 8 hours total time),
will generate a solution that is around 1% above the best known, which
reduces to 0.53% above the best known for 8 times 4 hours (i.e. 32 hours
total), to 0.35% above for 16 times 4 hours, and to 0.25% for 25 times 4
hours (total 100 hours). Different combinations of running time/number
of runs have been tested, and a series for 4 hour runs generally gave the
best results.

A.5 Conclusion and future work

This paper has introduced the DTSPMS which is a new variant of the
TSP/PDP, presented a mathematical formulation of the problem, and
demonstrated the behaviour of different heuristic solution approaches on
the problem.

Four different implementations have been tested, and comparisons have
shown that large neighbourhood search produces the best results of the
four, with solutions that are within 2% of the best known solution, with
a running time of 3 minutes, and within 2–6% for running times of 10
seconds.

It seems clear that the strongly restricted nature of this problem should
be taken into consideration when choosing a suitable solution approach.
The results obtained in this paper indicate that the tested traditional
metaheuristic local search solution approaches might be insufficient for
producing good solutions to the problem – apparently they are un-
able to cover the irregular solution space well enough. Instead the
LNS-algorithm, which allows free movement through the solution space,
proves successful. This observation is also supported by the preliminary
results of [34], which uses intermediate partial solutions and larger neigh-
bourhoods than the ones presented in the three initial heuristics of this
paper.

Additionally, tests have been performed on smaller instances with known
optimal solutions, and on larger instances to further examine the be-
haviour of the implemented algorithms, and the findings are consistent
with the initial results.

A.5.1 Future work

Future work on the DTSPMS could focus on either improving the solu-
tions/solution methods or generalising the problem.

One way of attempting to improve the solutions would be by improving
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the approaches already described here. In particular one could attempt
refining the tabu search, e.g. by using variable tabu list length, or by in-
troducing some diversification mechanism, such as performing mutations
to the solution when a certain number of iterations have been performed
without leading to any improving solutions. Furthermore using a ran-
domised operator choice for tabu search might lead to improvement, since
the shorter period lengths are consistently the best. However, although
some improvement of the behaviour of the three initial metaheuristics
could be obtained, it is questionable whether the improvement would
match the results of the LNS.

The three initial metaheuristics are all based on using a combination
of different neighbourhoods, and to this end it would also be possible
to consider different switching strategies, other than fixed ratios and
random selection at each iteration. This could be obtained by using
only one operator at a time until a certain number of iterations has been
unable to produce improving solutions, or by using some adaptive scheme
where the selection probability depends on previous successes.

The current ILS implementation was not intended as an ILS as such, but
simply an attempt to test the usefulness of using a very simple steepest
descent approach repeatedly. Thus the implementation could be refined
using the usual principles from ILS, in particular improving the restart
procedure to start at a perturbation of a previous solution, rather than
a completely random solution at each iteration.

Additionally it could be attempted to solve the DTSPMS to optimality,
and it could be interesting to examine the effect of the number of loading
rows on the solution.

The most obvious extension of the problem is to either generalise the
TSP aspects of the problem to more general vehicle routing (VRP) and
include multiple vehicles/containers and/or multiple depots to form a
Double VRP with Multiple Stacks, or to generalise the problem in the
direction of the regular pickup and delivery problem, to form a pickup
and delivery problem with multiple stacks (PDPMS).

In the first case, if the choice of depot becomes a decision, it is likely that
the cost of the long-haul between the depots will no longer be negligible,
and this may be very hard to estimate at the time of planning in real-life
applications.

Modifying the problem to include non-uniform objects would complicate
the packing considerably, since some objects might still be positioned
next to each other, so that their internal delivery order becomes irrel-
evant. This would heavily influence the use of the LIFO-principle so
far, and would approach the problem to the more generalised PDP with
loading constraints.
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Abstract:

In this paper we present mathematical programming formulations and
solution approaches for the optimal solution of the Double Travelling
Salesman Problem with Multiple Stacks (DTSPMS). A set of orders is
given, each one requiring transportation of one item from a customer in
a pickup region to a customer in a delivery region. The vehicle available
for the transportation in each region carries a container. The container
is organised in rows of given length. Each row is handled independently
from the others according to a LIFO (Last In First Out) stack policy.
The DTSPMS problem consists of determining the pickup tour, the load-
ing plan of the container and the delivery tour in such a way that the
total length of the two tours is minimised. The formulations are based
on different modelling ideas and each formulation gives rise to a specific
solution approach. We present computational results on a set of bench-
mark instances that compare the different approaches and show that the
most successful one is a decomposition approach applied to a new model.
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B.1 Introduction

The Double Travelling Salesman Problem with Multiple Stacks (DTSP-
MS) was first introduced in [91], which presented a mathematical formu-
lation and some metaheuristic solution approaches to the problem. In
this paper we face the problem of solving the DTSPMS exactly.

In the DTSPMS a set of orders is given, each one requiring transporta-
tion of one item from a customer in a pickup region to a customer in
a delivery region. The two regions are separated from each other and
are typically far apart. The vehicle available for the transportation car-
ries a container. The vehicle starts from the depot of the pickup region,
is loaded during the pickup phase, transported from the depot of the
pickup region to the depot of the delivery region and then unloaded in
the delivery region. The container is organised in rows of given length.
All items are boxes/pallets of identical dimension and each item occupies
one of the positions of a row. Each row is independently handled from
the others according to a LIFO (Last In First Out) stack policy as items
are loaded and unloaded from the back of the vehicle. No repacking
is allowed at any time, not even between the pickup and the delivery
phases. The problem consists of determining the pickup tour, the load-
ing plan of the container and the delivery tour in such a way that the
total length of the two tours is minimised. The interest in this problem
comes from a real world application (see [91]). The problem finds appli-
cations in pickup and delivery freight transportation and in multi-modal
transportation, where the pickup operations are followed by the air or
railroad transportation of the container to the delivery region.

The DTSPMS is a variation of the Travelling Salesman Problem with
Pickup and Delivery (TSPPD) and shows some similarities to the TSPPD
with LIFO loading (TSPPDL). In comparison to the latter the DTSPMS
has its pickup and delivery operations completely separated, which pro-
vides a simplification, and introduces the concept of several loading rows,
which increases the complexity.

The most closely related earlier work on exact solutions to the TSPPDL
has been done by Cordeau et al. [23], who present three different models
for the TSPPDL and a branch-and-cut approach. The two first models
use continuous variables to represent the load of the vehicle, while the
last model solves the problem without adding extra variables, and in-
stead imposes additional constraints on subsets of the existing variables.
Additionally, the TSPPDL is treated using exact methods by Carrabs et
al. [11], who uses a branch-and-bound approach based on additive lower
bounds, and heuristically by Carrabs et al. [12], using variable neighbor-
hood search with a collection of old and new operators. A closely related
problem is also the TSPPD with FIFO (First In First Out) loading stud-
ied in [11, 22, 33].

A more extensive literature exists for different variations of the vehi-
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cle routing problem (VRP) with loading constraints, which have less in
common with the DTSPMS, although the DTSPMS is a special case of a
routing problem with 2-dimensional loading constraints and identically
shaped objects. In [61], Iori et al. solve the capacitated VRP with re-
spect to some two-dimensional loading constraints, using an infeasible
path approach that is somewhat related to the one used in this paper.
The authors use a branch-and-cut approach which first solves the prob-
lem with all loading constraints relaxed, and subsequently adds infeasible
paths based on loading infeasibilities.

In this paper, the mathematical programming formulation of the DTSP-
MS introduced in [91], which is here called the precedence model, is
used in a branch-and-cut approach. One variation of this model is pro-
posed together with two new different mathematical formulations (the
flow model and the Travelling Salesman Problem with Infeasible Paths
model) in the hope of finding a formulation that could lead to the exact
solution of instances of larger size. The Travelling Salesman Problem
with Infeasible Paths model has been solved through a decomposition
approach that turned out to be effective. The tests that compare the
different formulations confirm that this problem is extremely hard, as is
the case for the other above mentioned problems that combine routing
and loading.

In this paper we first give a description of the problem in Section B.2 fol-
lowed by Sections B.3, B.4 and B.5 which present the precedence model
and its variation, the flow model and the Travelling Salesman Prob-
lem with Infeasible Paths model, respectively, together with the solution
methods. Finally, Section B.6 presents computational results, and some
concluding remarks are given in Section B.7.

B.2 Problem description

The Double Travelling Salesman Problem with Multiple Stacks (DTSP-
MS) consists of finding the shortest routes performing pickups and de-
liveries in two separated regions.

A set of pickup customers have to be served with a pickup operation of
an item. A delivery customer, to whom the item has to be delivered,
is associated with each pickup customer. All the pickup operations are
carried out before any delivery operation can take place. The available
vehicle carries a container that is organised in rows (horizontal stacks)
of a given length. After all the pickup operations have taken place, the
container is moved to the delivery region and the delivery phase begins.
When picked up, an item is inserted into the first available position of a
specific row and its position cannot be changed later. The row in which
to insert it is to be decided. For example, if there are three rows of
length 5 and 3 items have already been picked up and inserted into row
1, the next item that is inserted in row 1 will occupy position 4. One
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more position then remains available in row 1. If space is available in
other rows a crucial decision consists of choosing the row for inserting
the item. This decision is crucial because each row is served according
to a LIFO (Last-In-First-Out) policy in the delivery phase, as the items
are loaded and unloaded from the back of the vehicle. At any time of the
delivery phase the last inserted, and not yet unloaded, item of each row
can be unloaded. Neither repacking nor vertical stacking is permitted at
any time.

A number of parameters are used to describe the configuration of a given
problem instance, namely the number of orders (and thereby items) N ,
the number of rows, R, and the length of the rows, L. Each order
identifies a pickup and a delivery customer. Thus, the total number of
graph nodes (customers and depots) visited by the vehicle is n = 2N +2.
In most cases, and unless otherwise stated, we assume N = R × L, i.e.,
the full loading capacity is used.

We denote each order (and thereby item) with the index i. Let I be the
set of orders I = {1, . . . , N}. The problem is defined on two complete,
oriented and unconnected graphs: the graph of the pickup customers for
which we use the letter P, and the graph of the delivery customers for
which we use the letter D, with T = {P,D}. We denote either of the
two graphs by GT = (V T , AT ), T ∈ T . In order to avoid excess notation
and with a slight abuse of notation, the index i, that is used to indicate
an order (and the associated item to be picked up and delivered), will be
also used to indicate the node of graph GP associated with the pickup
customer and the node of the graph GD associated with the delivery
customer. Thus, an item i is picked up at node i in GP and delivered to
node i in GD. Graph GT has N + 1 nodes, V T = I ∪ {0}, with nodes
i = 1, . . . , N representing customers and node 0 representing the depot.
A cost cT

ij is associated with each arc (i, j) ∈ AT , T ∈ T .

Each loading row has a limited capacity, meaning that the number of
items kept in a row cannot exceed a certain value. As a single vehicle is
considered throughout the paper, the number of items to be transported
will not exceed the total capacity of the rows of the vehicle. We will
denote by R the set of rows and will write r ∈ R to indicate that the
row r belongs to the set R.

It can be noted that if both the pickup and delivery route of a feasible
solution to the DTSPMS are reversed and the assignment of the items to
the rows is maintained, we obtain a feasible solution (with the ordering
of each row reversed). If the distance matrix is symmetric the objective
value will be unchanged.

Cordeau et al. [23] make a comparison of the number of feasible solutions
to the TSPPDL depending on the number of orders. The corresponding
numbers for the DTSPMS have been calculated as described in the Ap-
pendix and a comparison of the values can be found in Table B.1. The
values for the TSPPDL for N > 8 have been found by using the formula
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given in [23]. We denote by DTSPxS the DTSPMS with x rows. All
values have been calculated considering the shortest row length possible,
L = dN

R
e. The values for DTSPxS in italics indicate non-full loadings

(N
R

not integer).

N TSPPDL DTSP2S DTSP3S

4 336 864 69984

5 5040 48000 972000

6 95040 288000 5.83 · 106

7 2.16 · 106 2 .47 · 10 7 5 .55 · 10 9

8 5.77 · 107 1.98 · 108 1 .14 · 10 11

9 1.76 · 109 2 .30 · 10 10 1.02 · 1012

10 6.09 · 1010 2.30 · 1011 1 .76 · 10 15

11 2.35 · 1012 3 .41 · 10 14 4 .79 · 10 16

12 9.96 · 1013 4.09 · 1014 5.75 · 1017

Table B.1: Number of feasible solutions with N orders.

B.2.1 Remarks

When a problem instance is solved with varying values of R (and fixed
N), an increased value of R naturally tends to give a better objective
value (with R = N the problem is unrestricted in terms of loading, while
R = 1 gives a very restricted problem). However, it is not the case
that, for a given problem instance, an optimal solution with a higher
number of rows will always provide a lower bound on a solution with a
lower number of rows (assuming that the length of the rows is always
the minimum necessary to fit all items in the container, L = dN

R
e).

As an example, consider an instance with 6 orders as shown in Figure B.1,
where each graph constitutes a regular heptagon with 7 nodes, where 0
is the depot and the six orders are denoted by letters from A to F, such
that the optimal TSP solution (the perimeter) in the pickup graph is (0,
A, B, C, D, E, F, 0), while the optimal TSP solution in the delivery graph
is (0, C, B, A, F, E, D, 0). The values cT

ij are evaluated as Euclidean
distances. In this case an optimal solution to this problem with 2 rows
consists of the two optimal TSP tours and the row assignment {{A, B,
C},{D, E, F}}. Figure B.1 shows the two graphs and the corresponding
optimal loading plan with 2 rows (container seen from above).

0
F

E

D

C B

A

0
D

E

F

A B

C

A D

B E

C F

Figure B.1: Example where z∗R=2 < z∗R=3.

When solving the same instance with 3 rows of length 2, no loading plan
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exists which allows the use of the optimal TSP tour in both graphs, and
hence its objective value will be strictly greater than that obtained with
two rows.

If L is held constant, an optimal solution will always be a lower bound
on the same instance solved with fewer rows, since one or more rows can
then be left empty, meaning for example that a solution with 2 rows is
still valid when using 3 rows.

B.3 Precedence models

In order to make the paper self-contained, we recall in this section the
formulation that was first presented in [91]. We also present a variation
of this formulation and, finally, a branch-and-cut approach to solve both
models.

B.3.1 The precedence model

We call the formulation presented in [91] the precedence model. This
formulation contains a polynomial number of constraints.

The variables are:

xT
ij =

{

1 if arc (i, j) is used in graph GT ,

0 otherwise,

yT
ij =

{

1 if item i is handled before item j,

0 otherwise,

zr
i =

{

1 if item i is placed in row r,

0 otherwise.

The objective function can then be expressed as:

min
∑

T∈T
i,j∈V T

cT
ijx

T
ij (B.1)

and the constraints can be stated as follows:

s.t.
∑

i∈V T

xT
ij = 1 T ∈ T , j ∈ V T (B.2)

∑

j∈V T

xT
ij = 1 T ∈ T , i ∈ V T (B.3)

yT
ij + yT

ji = 1 T ∈ T , i, j ∈ I (B.4)

yT
ik + yT

kj ≤ yT
ij + 1 T ∈ T , i, j, k ∈ I (B.5)

xT
ij ≤ yT

ij T ∈ T , i, j ∈ I (B.6)
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yP
ij + zr

i + zr
j ≤ 3 − yD

ij r ∈ R, i, j ∈ I (B.7)
∑

r∈R

zr
i = 1 i ∈ I (B.8)

∑

i∈I

zr
i ≤ L r ∈ R (B.9)

xT
ij ∈ B T ∈ T , i, j ∈ V T , i 6= j (B.10)

yT
ij ∈ B T ∈ T , i, j ∈ I, i 6= j (B.11)

zr
i ∈ B r ∈ R, i ∈ I. (B.12)

Constraints (B.2) and (B.3) are flow conservation constraints, stating
that one unit of flow must enter and exit each node. Constraints (B.4)
ensure that for each pair of items i, j the corresponding precedence vari-
able must be set, i.e., either i is picked up before j or j is picked up
before i. Constraints (B.5) express transitivity, that is, if i is before k
and k is before j, then i must necessarily be before j. Constraints (B.6)
make sure that if an arc (i, j) is used, then the precedence variable is set
accordingly (i is visited before j, implying yij = 1). In the formulation
of this set of constraints we make a slight abuse of notation, because the
indices of the x variables should vary in the set of nodes while the indices
of the y variables vary in the set of the items. Constraints (B.7) express
the LIFO constraints, that only apply when two items are in the same
row r; if i and j are placed in the same row (zr

i = zr
j = 1), and i is picked

up before j (yP
ij = 1), then j must be delivered before i (yD

ij = 0 and

thus yD
ji = 1). On a side note, this can also be expressed with the right

hand side as 2+yD
ji, without affecting the behavior of the model. Finally,

equations (B.8) ensure that all items are assigned to exactly one row, and
constraints (B.9) enforce the row capacity L. Constraints (B.10)–(B.12)
state that all variables are binary.

The presence of the y variables ensures that no subtours can exist, and
thus no explicit subtour elimination constraints are needed in this for-
mulation.

It can be observed that in the precedence formulation only the x vari-
ables appear in the objective function, and only the z variables carry
information regarding the row assignment. The y variables do not carry
any new information about the solution, and are given entirely by the
values of the x variables. However, it is not possible to express any im-
mediate connections between the x and z variables. Instead, each of the
two sets of variables are tied to the y variables as illustrated in Figure
B.2. This probably explains part of the difficulty of solving the model.
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B.3.2 Variation: The row precedence model

A variation of the precedence model (B.1)–(B.12) has been developed in
an attempt to find a more effective formulation that uses different sets of
variables, and the resulting model is briefly described in the remainder
of this section. We call the new model the row precedence model. Here,
the y variables are replaced by a set of variables that additionally reflect
the row assignment and is thereby sparser:

wr
ij =

{

1 if item i is picked up before item j and both are in row r,

0 otherwise.

The model consists of the original objective function (B.1) and con-
straints (B.2), (B.3), (B.8) and (B.9), along with the following:

x(S) ≤ |S| − 1 T ∈ T , S ⊆ V T , |S| ≥ 2 (B.13)

wr
ij + wr

ji ≥ zr
i + zr

j − 1 r ∈ R, i, j ∈ I (B.14)

2(wr
ij + wr

ji) ≤ zr
i + zr

j r ∈ R, i, j ∈ I (B.15)

x(pij) + zr
i + zr

j ≤ |pij| + 1 + wr
ij r ∈ R, i, j ∈ I, pij ∈ Π (B.16)

xT
ij ∈ B T ∈ T , i, j ∈ V T , i 6= j (B.17)

wr
ij ∈ B r ∈ R, i, j ∈ I, i 6= j (B.18)

zr
i ∈ B r ∈ R, i ∈ I, (B.19)

where pij is a path from node i to node j either in the set V P of the
pickup graph or in the set V D of the delivery graph, Π is the set of all
paths pij and |pij | is the number of arcs in the path pij . The notation
x(S) indicates the summation, over all the arcs that connect nodes of the
set S, of the associated x variables. Similarly, x(pij) is the summation
over all the arcs of the path pij of the associated x variables. Subtour
elimination constraints (B.13) are necessary here since, contrary to the
y variables, the w variables do not ensure the elimination of subtours.
Constraints (B.14) ensure that if i and j are both in some row r, then
a w variable must be set to one, and (B.15) similarly ensure that if i
and j are in different rows, then no w can be set to one. Finally, (B.16)
ensure that for all pairs i, j that are placed in the same row r, and for
which some path from i to j exists (implying that i is before j), the
corresponding w variable must be set to 1.

An additional variation of the precedence model can be derived, which
uses all of the above-mentioned 4 variable sets, x, y, w, and z, in the
hope that the additional ties between the variables would be beneficial.
Thus, this model was constructed by adding all conceivable constraints
for the variables. However, computational experiments showed that this
variation was not effective.
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B.3.3 A branch-and-cut approach

In order to speed up the solution of the precedence model, reduction of
symmetry is performed by forcing the first item to be placed in the first
loading row, the second in one of the two first loading rows, the third in
one of the three first loading rows, and so on up to order R − 1.

To solve the precedence model and the row precedence model exactly, a
branch-and-cut approach is used. In the case of the row precedence model
presented in this section and of the majority of the models we present in
this paper, the subtour elimination constraints (B.13) are relaxed in the
branch-and-cut approach designed for their solution and a cut is added to
the formulation when a violated constraint is identified. Whenever this
happens we proceed in the following way. For each graph GT and for each
node i of the graph, i = 1, . . . , N , a minimum cut from the depot to i is
calculated on the values of the x variables. Here, a minimum cut is the
optimal solution of the problem of partitioning the nodes into two non-
empty connected components to minimise the total weight (in terms of
x variables) of arcs whose end points are in different components, where
one component contains the depot and the other one node i. In order
to guarantee that there are no subtours, we need the minimum cut from
the depot to any node i in each graph GT to have a value not lower than
2. If a minimum cut has total value lower than 2, then a cut of the form
(B.13) is added to the formulation. The minimum cut is obtained using
the algorithm presented in [95]. At each iteration, when a constraint is
identified as violated by the currently optimal solution in graph GP, a
cut is added to the formulation. Similarly, the constraints are checked in
graph GD and possibly another cut is added to the formulation. Then,
a new iteration is run. At most one cut for each graph is added at
each iteration. If no violated constraint is identified and the subtour
elimination constraints were the only constraints that were relaxed in
the original formulation, the optimal solution of the linear relaxation has
been obtained. Otherwise, other constraints will be checked for violation.

The precedence model In the branch-and-cut approach to the prece-
dence model, the large set of constraints (B.5) are removed from the
formulation, and the constraints are added to the formulation when vi-
olated. At the first iteration the precedence model is solved without
any of these constraints while in the subsequent iterations it is solved
with those constraints that have been identified as violated at previous
iterations. At each iteration all constraints (B.5) are checked and those
that are violated by the currently optimal solution, that is the optimal
solution of the linear relaxation of the current formulation, are added
to the formulation. Several of these constraints may be added at each
iteration.

Explicit subtour elimination constraints are not necessary in this model,
as previously noted. However, they can be used to strengthen the for-
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mulation. They can be checked for violation at each iteration and, if
one is identified as violated, the corresponding cut can be added to the
formulation.

In the section devoted to the computational tests, we will show the results
of the tests that we carried out to evaluate the impact of the different
combinations of possible cuts. When both (B.5) and (B.13) are used to
dynamically add cuts in the branch-and-cut approach, both types are
checked at each iteration.

The row precedence model The row precedence model cannot be
formulated with a polynomial number of constraints, due to the presence
of (B.13) and (B.16). In the branch-and-cut approach to this model,
these constraints are relaxed initially and added as cuts when violated.
Constraints (B.13) are subtour elimination constraints and are treated as
described earlier in this section. At each iteration constraints (B.13) are
checked first, and constraints (B.16) are checked only when all subtour
elimination constraints are satisfied. Constraints (B.16) are checked for
possible violation by checking each path of arcs with associated non-zero
x variables. The paths are checked on both graphs, GP and GD. When a
violated constraint is identified, it is added to the formulation. Several of
these constraints may be added at each iteration. Although the number
of these constraints grows exponentially with the size of the problem,
for the instances that we tested in this paper we did not encounter any
computational problems.

B.4 The flow model

An alternative formulation of the DTSPMS can be obtained by viewing
the problem purely in terms of flows. In this section we present the flow

model and the branch-and-cut approach adopted for its solution.

For this model the original graphs with node sets V P and V D are du-
plicated, adding a separate set of nodes for every loading row, creating
a complete graph for the pickup and the delivery regions, respectively.
A solution can be expressed as a number of flows in such a graph, with
constraints expressing restrictions such as “if there is a flow on an arc a,
there must be a flow on some path p”. This idea is illustrated in Figures
B.3–B.5 for an instance with R = 2 rows and N = 6 orders.

Figure B.3 illustrates the pickup route and row assignment of a feasible
solution. The two rows are represented by the two copies of the graph
(top and bottom), and the solid line represents the actual pickup route
(0, 2, 3, 4, 5, 6, 1, 0). Each customer node is visited in exactly one of
the subgraphs, indicating the loading row that this order is assigned to
(row 1: orders 3, 4, 1; row 2: orders 2, 5, 6). The dotted lines in the
figure indicate the order in which each row is loaded. A node must be
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Figure B.2: Matrix structure of the precedence formulation (B.1)–(B.12).

1 2

6 0 3

5 4

1 2

6 0 3

5 4

Figure B.3: An example of pickup graph used for the flow formulation.

5 3 2 0

6 4 1

5 3 2 0

6 4 1

Figure B.4: A delivery graph for Figure B.3.

1 2

6 0 3

5 4

3 2

4 5

1 6

5 3 2 0

6 4 1

Figure B.5: The complete solution for the example of Figures B.3–B.4.
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visited by either both “types” of flow (dashed and solid lines), or by no
flow at all. Figure B.4 illustrates the corresponding delivery route, and
Figure B.5 summarises the two routes and the loading plan.

Thus, each of the graphs G̃T , over which the flow formulation is defined,
is made of 2R subgraphs. In the pickup graph G̃P there is a subgraph,
that is a copy of GP, for each row r. Similarly, for graph GD. When
defining the problem variables, a node is a copy of a node, associated
with a row, of graph GP or GD. A node in the graph G̃P is identified by
a pair (i, r), where i is the order and r is the row. Similarly, for graph
G̃D. The set S of nodes in (B.23) consists of all such pairs.

The flow model uses two sets of binary variables, both of which are flow
variables:

• xTpq
ij = 1, iff the arc between nodes (i, p) and (j, q) is travelled in

G̃T , i.e., item i is picked up immediately before j, i is in row p, and
j is in row q;

• vr
ij = 1, iff the arc between nodes (i, r) and (j, r) is travelled in the

pickup subgraph of row r, i.e., i and j are both in row r, and no
other item of row r is picked up between i and j.

In Figures B.3 and B.4 the solid lines correspond to the x variables, while
the dotted lines correspond to the v variables.

The x variables describe a flow through the entire graph representing the
actual travelled route, and are thus again the only variables appearing in
the objective function. The use of the x variables in this model is closely
related to that in the precedence model, in that xTpq

ij = 1 in the flow

model if and only if xT
ij = zp

i = zq
j = 1 in the precedence model. Thus,

the complete solution to an instance can here be expressed solely in terms
of the x variables, since these now also contain the row assignments.

The v variables describe the flow in each of the subgraphs, representing
the order in which the items in a given row are loaded, and are required
to express the LIFO connection for each row between the pickup and
delivery routes.

Each node in the graph must be passed by the same amount of x and
v flow, and the difficulty in this model lies in ensuring that the order of
any pair of customers is the same on the x and v flows.

In the formulation that follows, we refer to the copies of the original
graphs GP and GD, one for each row. We will use the notation S ⊆
(V T ×R) to indicate that S is a subset of nodes of the graph G̃T , where
each node is a pair (i, r), with i ∈ V T and r ∈ R.

The objective function can now be expressed as:

min
∑

T∈T
i,j∈V T



cT
ij

∑

p,q∈R

xTpq
ij



 (B.20)
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and the constraints can be stated as follows:
∑

p,q∈R
j∈V T

xTpq
ij =

∑

p,q∈R
j∈V T

xTqp
ji = 1 T ∈ T , i ∈ V T (B.21)

∑

q∈R
j∈V T

xTrq
ij =

∑

q∈R
j∈V T

xTqr
ji T ∈ T , r ∈ R, i ∈ V T (B.22)

x(S) ≤ |S| − 1 S ⊆ (V T ×R), |S| ≥ 2, T ∈ T
(B.23)

∑

j∈R

vr
ij =

∑

j∈R

vr
ji r ∈ R, i ∈ R (B.24)

∑

i,j∈R

vr
ij ≤ L + 1 r ∈ R (B.25)

∑

q∈R
j∈V T

xPqr
ji =

∑

q∈R
j∈V T

xDrq
ij =

∑

j∈R

vr
ij r ∈ R, i ∈ V T , T ∈ T (B.26)

∑

j∈R

vr
0j = 1 r ∈ R (B.27)

∑

r∈R,j∈R

vr
ij = 1 i ∈ R (B.28)

∑

r∈R,j∈R

vr
ji = 1 i ∈ R (B.29)

vr
ij + |pr

ij | − 1 ≥ x(pr
ij) r ∈ R, pr

ij ∈ Πr (B.30)

xTpq
ij ∈ B T ∈ T , p, q ∈ R, i, j ∈ V T , i 6= j

(B.31)

vr
ij ∈ B r ∈ R, i, j ∈ R, i 6= j. (B.32)

The set Πr contains all x-paths pr
ij from i to j, that start and end in

the subgraph associated with row r and do not contain any intermediate
nodes in this subgraph, implying that vr

ij = 1.

Constraints (B.21) ensure that each customer has one unit of flow in
and out. Constraints (B.22) ensure balance of x flow for each node in
the graph, while (B.24) ensure balance of v flow. Constraints (B.23)
are subtour elimination constraints on the x variables. Row capacities
are enforced by (B.25) (which hold with equality when N = R × L);
in each subgraph the tour must consist of (at most) L items plus the
depot. Constraints (B.26) ensure that the x and v flows exiting a node
are equal, i.e., if a node is passed by one type of flow it is passed by
both types. Through (B.27) it is guaranteed that the depot is visited in
each subgraph, which is necessary to ensure that there is a well-defined
starting point, when determining whether one node is visited before some
other node. Constraints (B.28) and (B.29) ensure that each customer is
visited exactly once. Constraints (B.30) state that if an x-path pr

ij ∈ Πr
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exists between customers i and j, then the corresponding v variable must
be set to one, and (B.31)–(B.32) are the domains of the variables.

Constraints (B.30) would be expected to favor instances with fewer rows,
since the average length of any x-path in Πr before returning to its start-
ing row will be shorter in these instances. In problems with many loading
rows a path is more likely to visit many customers before returning to
its starting row. Additionally the total number of nodes in the graph
will depend on the number of rows, which should further favor instances
with fewer rows.

B.4.1 A branch-and-cut approach

When solving the flow model with a branch-and-cut approach, the sub-
tour elimination constraints (B.23) and the connection cuts (B.30) are
relaxed initially and these cuts are added to the formulation when vio-
lated constraints are identified.

The constraints (B.30) are separated as follows (the description is given
for G̃P only, and is similar for G̃D):

• select a pair of nodes i and j such that vr
ij has value 1 in the

currently optimal solution;
• follow a path of x variables with value 1 from node (r, i) of graph

G̃P, until a node (r, ·) is reached;
• if the reached node is not (r, j), it means a violation has been

identified and the corresponding violated constraint (B.30) is added
as a cut to the formulation.

Even for non-integral solutions it would be possible to identify some
violated cuts of type (B.30), with values 0 < vr

ij ≤ 1. However, in this
case the separation would be quite cumbersome, and we have decided to
only search for violated connection cuts when an integer solution is at
hand.

B.5 The Travelling Salesman Problem with In-

feasible Paths model

In this section we present a model that maintains some of the modelling
ideas of the precedence model, but faces the modelling of the loading
aspect in a substantially different way, avoiding the explicit use of the y
variables and instead focusing on the construction of two optimal TSP
tours that allow a feasible solution in terms of loading and unloading of
the vehicle. This idea is inspired by the use of infeasible paths in [65],
and we call this model the Travelling Salesman Problem with Infeasible

Paths (TSPIP) model. The model is based on the idea of decomposing
the problem into a master problem which focuses on the routing aspects,
and a subproblem focusing on the loading aspects. Thus the task of
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the master problem becomes to build two TSP tours, one for the pickup
operations and one for the delivery operations, using only the x variables
of the precedence model. The subproblem should then identify cuts that
eliminate any set of tours that do not allow the construction of a feasible
loading plan. More precisely, when the two TSP tours are found by the
master problem, the corresponding values of the precedence variables of
the precedence model can be calculated and used as parameters in the
subproblem, to determine if a feasible loading plan exists. If this is not
the case, the subproblem will produce a cut in the form of an infeasible
path that is violated by the current solution, which can be added to the
master problem before this is solved again. We call the master problem
the TSPIP-master and use the term TSPIP-subproblem to refer to the
loading feasibility subproblem, that checks whether a feasible loading
plan exists and, in case it does not, produces a cut.

We first present the TSPIP model and then the solution approach.

B.5.1 The TSPIP model

The TSPIP model employs the arc variables xT
ij used in the precedence

model and is formulated as:

min
∑

T∈T
i,j∈V T

cT
ijx

T
ij (B.33)

subject to the constraints:

∑

i∈V T

xT
ij = 1 T ∈ T , j ∈ V T (B.34)

∑

j∈V T

xT
ij = 1 T ∈ T , i ∈ V T (B.35)

x(S) ≤ |S| − 1 T ∈ T , S ⊆ V T , |S| ≥ 2 (B.36)

x(p) ≤ |p| − 1 p ∈ P (B.37)

xT
ij ∈ B T ∈ T , i, j ∈ V T , i 6= j. (B.38)

The flow conservation constraints (B.34) and (B.35) are identical to (B.2)
and (B.3), and constraints (B.36) are regular subtour elimination con-
straints, which are now necessary since the y variables are no longer
present.

The special feature of the TSPIP model is the presence of constraints
(B.37) that eliminate all pairs of pickup and delivery tours that do not
allow the construction of a feasible loading plan. The set P is the set of all
loading infeasible paths. In this section a path is a sequence of customers
that include both pickup and delivery customers. A path contains the
last nP customers of the pickup tour and the first nD customers of the
delivery tour and a loading infeasible path is a path for which no feasible
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loading plan exists. Take, for example, an instance with R = 1. Then,
a path where the last customers of the pickup tour are customers 1 and
2 and the first customers of the delivery tour are customers 1 and 2 is
loading infeasible because, in the delivery tour, customer 1 has to be
served after customer 2. The expression x(p) indicates the sum, over all
the arcs of p, of the x variables associated with the arcs. The quantity
|p| denotes the number of arcs in path p.

Obviously, the enumeration of all loading infeasible paths of P is in
general very cumbersome, and the formulation lends itself to a decom-
position approach.

B.5.2 The solution approach

The decomposition approach used for the solution of the TSPIP model
is based on the solution of the TSPIP-master, which finds a minimum
length pair of tours (a pickup tour and a delivery tour), and the TSPIP-
subproblem, which checks whether a feasible loading plan exists for that
pair of tours and, in case it does not, identifies a loading infeasible path
p and a corresponding cut x(p) ≤ |p| − 1. Then, the cut is added to the
TSPIP-master that will find a new pair of tours, of the same or longer
length. The procedure is repeated until the TSPIP-subproblem verifies
that a feasible loading plan exists for a pair of tours. In this case, the
given pair of tours is optimal.

start

CPLEX solve

subtours? add subtour cuts

check loading feasibility

loading
feasible?

add
infeasible path

return solution

end

no

yes

yes

no

Figure B.6: Flow chart of the solution approach to the TSPIP.

At each iteration of this solution approach, the TSPIP-master formula-
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tion is solved. The formulation coincides with the TSPIP model where,
in the constraints (B.37), the set P is replaced by the subset P ′ that con-
tains the loading infeasible paths identified by the TSPIP-subproblem in
the previous iterations. The optimal solution of the TSPIP-master is
obtained through a branch-and-cut approach where the subtour elimina-
tion constraints are initially relaxed and a cut is added for each graph
at each iteration when violation is identified (see Section B.3.3). In the
beginning the set P ′ is empty and the TSPIP-master identifies the un-
constrained pair of tours of minimum cost. At each iteration of the
solution approach, new paths are identified by the TSPIP-subproblem
and new cuts are added to P ′ until the TSPIP-subproblem finds a load-
ing feasible plan. The solution of the TSPIP-master is obtained through
a branch-and-cut approach that completely relaxes the subtour elimina-
tion constraints at the beginning and then adds violated constraints.

Whenever the TSPIP-master has produced a subtour-free optimal pair of
tours, the TSPIP-subproblem is solved. It will either return one or more
infeasible paths to be added to the TSPIP-master, or determine that
none exist and that the current solution is thereby feasible and optimal.
The structure of the solution approach to the TSPIP is depicted in Figure
B.6.

The TSPIP-subproblem

We now present the algorithm that is used to solve the TSPIP-subprob-
lem. The variables that are used to model the TSPIP-subproblem are
identical to the z variables of the precedence model:

zr
i =

{

1 if item i is in row r,

0 otherwise.

Furthermore, the TSPIP-subproblem uses a set of parameters ȳ, which
correspond to the values of the y variables of the precedence model, and
can be calculated after the two TSP tours have been obtained through
the solution of the TSPIP-master:

ȳT
ij =

{

1 if i is before j in tour T of the current solution,

0 otherwise.

Since there are no costs connected to the loading plan, the subproblem
is a feasibility problem and does not have an objective function.

The constraints of the TSPIP-subproblem are identical to constraints
(B.7)–(B.9) of the precedence model, with variables yT

ij replaced by pa-
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rameters ȳT
ij:

zr
i + zr

j ≤ 3 − ȳP
ij − ȳD

ij r ∈ R, i, j ∈ I (B.39)
∑

r∈R

zr
i = 1 i ∈ I (B.40)

∑

i∈I

zr
i ≤ L r ∈ R (B.41)

zr
i ∈ B r ∈ R, i ∈ I. (B.42)

Note that only those constraints (B.39) for which ȳP
ij = 1 and ȳD

ij = 1
need to be included.

The TSPIP-subproblem can be seen as an l-bounded k-coloring prob-
lem. Constraints (B.39) are active only when ȳP

ij and ȳD
ij are both equal

to one. Then, considering k equal to the number of rows and l = L,
we can construct a graph G′ = (V ′, E′) where V ′ = V and, for each
pair of nodes i and j, there exists an edge joining them if and only if
ȳP

ij = ȳD
ij = 1. Thus, finding an l-bounded k-coloring on G′ corresponds

to finding a feasible solution to the TSPIP-subproblem. However, the
parameters ȳT

ij have a specific structure since they represent precedence
relations in a tour. Thus, even if it possible to prove that graph G′ does
not have a specific structure (for example, it can be connected or discon-
nected, acyclic or contain cycles), a polynomial transformation from the
l-bounded k-coloring problem to the TSPIP-subproblem is not straight-
forward. In any case, since the l-bounded k-coloring is proven to be
NP-complete (see [38]), our conjecture is that the TSPIP-subproblem is
NP-complete.

As any infeasibility cut for a path is dominated by the infeasibility cut
for any sub-path, we aim at finding the shortest possible infeasible paths.
For this reason, the TSPIP-subproblem is solved by repeatedly solving
model (B.39)–(B.42) with an increasing number of orders, thus examin-
ing potential infeasible paths of increasing length.

Note that, if in a path nP + nD ≤ R, the path is certainly feasible. More
specifically, for a path to possibly be loading infeasible it must contain
at least R + 1 distinct orders, with at least one pickup and one delivery
customer.

The search for infeasible paths begins by constructing a path consisting
of the nP = dR/2e last pickup customers and the nD = dR/2e first
delivery customers. This is the shortest path that can possibly be loading
infeasible, and contains a total of at most R + 1 distinct customers. If
it contains fewer than R + 1 distinct customers it is extended before the
first check is performed.

Furthermore, for the TSPIP-subproblem (B.39)–(B.42) to be well defined
all included orders must contain both a pickup and a delivery customer.
Indeed, it is necessary to have both pickup and delivery customers for
each order in order to satisfy constraints (B.39). This is generally not
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the case when taking the last part of the pickup route and the first
part of the delivery route. Typically, one or more pickup customers will
be present, whose corresponding delivery customer is not in the path,
and vice versa. In this case, we need to extend the path to include
the missing customers. Let us consider, for example, the pickup path
where some customers are missing, i.e., they are not present in the pickup
path but the corresponding delivery customers are present in the delivery
path. In order to solve the TSPIP-subproblem (B.39)–(B.42), we want
to add the missing pickup customers somewhere in the pickup path. The
missing customers have to be placed at the start of the pickup path, as
otherwise we would modify the TSP solution which we are checking for a
possible infeasibility in the loading plan. Moreover, we have to consider
the order of insertion of the missing customers at the start of the path. In
order to avoid the introduction of any infeasibility caused by the addition
of the missing customers, they have to be added in the order opposite

to the order of appearance of the corresponding orders in the delivery
path. In this way, the TSPIP-subproblem on the new path (the extended
sequence of pickup customers combined with the original sequence of
delivery customers) is infeasible if and only if the sequence of nP + nD

customers of the original path is infeasible, and hence feasibility is not
affected by the addition of the missing customers. A similar procedure is
used when extending the delivery part of the path with customers that
only appear for pickup in the subproblem. Following this approach, for
example, the path {1, 2 | 3, 1, 4} (where | shows the split between pickup
and delivery customers) would become {4, 3, 1, 2 | 3, 1, 4, 2}.

Note that, if the distances are symmetric, whenever a loading infeasible
path is identified, another relevant loading infeasible path can be found
by reversing the order of both the pickup and the delivery parts of the
path and solving the subproblem again. Thus, for every solution to
the TSPIP-master, the subproblem can be solved twice to produce two
different cuts, before returning to the TSPIP-master. This idea exploits
the symmetry of the distance matrix, where the pair of reversed routes
will produce another optimal solution to the master problem.

Other ways to simultaneously identify several cuts can be considered.
Figure B.7 shows how several loading infeasible paths can exist for a
given solution to the TSPIP-master. The numbers on the top indicate
a path, and the lines indicate paths that are loading infeasible for a
problem with R = 2.

1 2 3 4 1 2 3 4

Figure B.7: Different infeasible paths for the same TSPIP-master solu-
tion (R = 2).

In order to systematically identify such cuts one would need to extend
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the path in one route only, while the part of the path that lies in the
other route is kept constant, until a violation is found (or it can be
determined that a dominating cut has already been found). This could
then be repeated for all possible constant partial paths up to length N .
However, such an approach has not been pursued in this paper.

As our conjecture is that the TSPIP-subproblem is NP-hard, we tested
the time needed to solve it using a standard solver. In fact, the time is
systematically extremely short. Only in very few cases is it of the order
of one second, whereas in most cases it is insignificant. The number of
times that the TSPIP-subproblem is invoked depends on the size of the
instance. On the tested instances, the number ranges from a few hundred
on the small instances, to more than 100,000 times on the largest tested
instances.

B.6 Computational results

Each of the models presented in Sections B.3, B.4 and B.5 has been
implemented using Java 1.5 and ILOG Concert Technology with CPLEX
version 9.1. We used the standard settings of CPLEX, and used nested
callbacks for adding cuts. All test runs have been performed on an Intel
Pentium 4, 2.8 GHz with 2 GB RAM. Unless otherwise mentioned, all
tests have been performed with a maximum allowed running time of one
hour.

All tests have been performed on instances from the set of 20 randomly
generated instances from [91], which can be found online1. We will spec-
ify the number and size of the tested instances for each test. The data for
each instance of a given size has been obtained by taking the necessary
number of customers from the beginning of each file. The notation for
the size of the tested instances throughout this section is R × L, for R
rows of length L.

For all test runs on instances with N = R × L, an initial solution to
the problem has been supplied. This initial solution has been obtained
using the simulated annealing heuristic described in [91] with 3 minutes
of allowed running time. In cases where N < R × L (Sections B.6.5 and
B.6.6) this heuristic is unable to produce solutions, and therefore no
initial solution was provided.

Initially, some experiments were performed to examine the behavior of
CPLEX when more time is allowed. The results can be seen in Table
B.2, which reports the progress over time, by listing the current MIP
gap every hour over a twelve hour period for one instance of each of
three different problem sizes. The model tested is the precedence model
(B.1)–(B.12). All three columns of the table show the slow progress of
the lower bound.

1http://www.transport.dtu.dk/datasets/DTSPMS

http://www.transport.dtu.dk/datasets/DTSPMS
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Hrs 2 × 7 3 × 7 4 × 7

1 7.60% 9.33% 11.89%
2 7.31% 9.28% 11.89%
3 7.12% 9.26% 11.89%
4 6.99% 9.17% 11.89%
5 6.90% 9.13% 11.71%
6 6.82% 9.10% 11.71%
7 6.76% 9.08% 11.71%
8 6.71% 9.06% 11.71%
9 6.65% 9.03% 10.62%

10 6.61% 9.00% 10.62%
11 6.57% 8.97% 10.62%
12 6.53% 8.94% 10.62%

Table B.2: MIP gap obtained by CPLEX, progress over time.

B.6.1 Impact of Cuts

In this section the impact of relaxing some of the constraints and adding
them when violated is examined, as well as the impact of strengthening
cuts.

Table B.3 shows the results for the precedence model. The tests have
been carried out for four different instance sizes, and each number shows
the average MIP gap over five instances after one hour of running time.
The first line of the table shows the results for the complete model, as
presented in (B.1)–(B.12) and directly solved by CPLEX. The following
lines show the impact of using different sets of constraints to add as cuts
when violated.

2 × 7 3 × 7 4 × 7 4 × 5

Precedence model (B.1)–(B.12) 7.98% 12.12% 17.17% 5.74%
- with (B.5) only added as cuts 7.88% 11.64% 16.95% 4.63%
- with subtour elimination cuts only 7.82% 9.89% 12.08% 4.09%
- with both added as cuts 7.71% 9.92% 12.09% 4.02%

Table B.3: Impact of using cuts and additional inequalities in the prece-
dence model.

First, constraints (B.5) are removed from the model, and at each node
are checked for violation and added accordingly. In the following line,
constraints (B.5) are kept in the formulation from the beginning while
subtour elimination constraints are used as valid inequalities, checked
for violation and are added as cuts when violated. In the last line both
sets of constraints are used to generate cuts. The results indicate that
particularly the subtour elimination constraints are valuable, whereas
the effect of adding (B.5) as cuts is reduced when combined with the
subtour elimination constraints. We will use both types of cuts for the
rest of this paper.
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When the flow model (B.20)–(B.32) is solved, constraints (B.23) and
(B.30) are removed and inserted when violated due to their number.
However, constraints of type (B.30) can be added directly if |pr

ij| is small.
The results of tests that include (B.30) for small values of |pr

ij| do not
show any practical advantage of this.

B.6.2 Comparison of models

Table B.4 reports the results of running each of the three models on five
instances of different sizes and configurations. The first column gives
the problem instance: instance name and loading configuration (R×L).
Here n is the total number of graph nodes, Opt. is the value of the op-
timal solution, when known, and UB is the value of the heuristic initial
solution supplied to the algorithm. Whenever a value of Opt. is provided
for an instance which no tested method could solve to optimality within
the fixed time limit, the solution has been found by allowing CPLEX
to run for a longer time. For each of the tested models there are two
columns, presenting the MIP gap after one hour of running time for each
instance, and the solution time in seconds (3600 seconds being the max-
imum allowed running time). As can be seen from the table, the TSPIP
model performs significantly better than the other models, solving more
instances, and leaving a smaller MIP gap on the remaining instances.
Additionally, the precedence model performs better than the flow model
on the small and medium sized instances, while the performance of the
two is comparable for the larger instances. On the largest set of instances
(4 × 7) all three models produce very similar results.

In a few cases it can be noticed that the resulting MIP gap is reduced
when R is increased by 1 (with L fixed), even though this means that
the number of orders is increased by 33–50%. A likely cause is that the
nature of the solution changes considerably when the number of rows
changes, and that the difficulty of solving different instances of a given
size can also vary significantly. A similar effect is never seen when the
row length is increased.

B.6.3 Precedence model variations

We now compare the precedence models of Section B.3 with its variation.

Table B.5 shows the average MIP gap over 5 instances of each size for
the precedence model and the row precedence model.

These results indicate that the addition of the row index to the prece-
dence variable did not improve the performance of the model.
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Instance n Opt. UB Precedence Model Flow Model TSPIP
gap time/s. gap time/s. gap time/s.

R05 2×4 18 501 501 0% < 1 0% 4 0% < 1
R06 2×4 18 694 694 0% 20 0% 303 0% 31
R07 2×4 18 487 487 0% 5 0% 302 0% 27
R08 2×4 18 642 642 0% 53 0% 388 0% 38
R09 2×4 18 558 558 0% 11 0% 81 0% 17
R05 2×5 22 546 546 0% 69 1.13% 3600 0% 196
R06 2×5 22 774 774 0% 215 4.04% 3600 0% 678
R07 2×5 22 547 547 0% 58 0% 2246 0% 115
R08 2×5 22 670 670 0% 290 3.06% 3600 0% 392
R09 2×5 22 610 610 0% 16 0% 381 0% 44
R05 2×6 26 - 631 7.13% 3600 11.09% 3600 7.92% 3600
R06 2×6 26 793 793 4.30% 3600 6.73% 3600 2.77% 3600
R07 2×6 26 593 593 5.03% 3600 8.87% 3600 4.05% 3600
R08 2×6 26 749 749 7.34% 3600 9.63% 3600 4.65% 3600
R09 2×6 26 692 692 2.38% 3600 3.10% 3600 0% 1680
R05 2×7 30 - 775 2.86% 3600 8.13% 3600 7.08% 3600
R06 2×7 30 - 824 10.98% 3600 7.65% 3600 5.22% 3600
R07 2×7 30 - 697 11.24% 3600 11.19% 3600 6.95% 3600
R08 2×7 30 - 824 7.07% 3600 11.65% 3600 8.01% 3600
R09 2×7 30 739 739 9.59% 3600 3.36% 3600 1.53% 3600
R05 3×4 26 567 567 0% 38 1.06% 3600 0% 7
R06 3×4 26 747 747 0% 79 1.47% 3600 0% 15
R07 3×4 26 557 557 0% 804 3.77% 3600 0% 90
R08 3×4 26 690 690 0% 112 2.03% 3600 0% 7
R09 3×4 26 669 672 0% 31 0.74% 3600 0% 6
R05 3×5 32 737 737 2.58% 3600 2.85% 3600 0% 2442
R06 3×5 32 836 836 2.51% 3600 2.99% 3600 0% 1815
R07 3×5 32 690 690 4.96% 3600 5.65% 3600 2.39% 3600
R08 3×5 32 826 826 3.06% 3600 4.48% 3600 0% 2028
R09 3×5 32 768 768 1.26% 3600 2.28% 3600 0% 666
R05 3×6 38 804 833 9.50% 3600 7.86% 3600 6.89% 3600
R06 3×6 38 - 871 6.39% 3600 4.25% 3600 3.56% 3600
R07 3×6 38 - 758 8.85% 3600 8.97% 3600 8.08% 3600
R08 3×6 38 - 864 5.21% 3600 5.44% 3600 4.61% 3600
R09 3×6 38 774 796 5.90% 3600 4.40% 3600 0% 1995
R05 3×7 44 - 900 11.12% 3600 9.61% 3600 7.64% 3600
R06 3×7 44 - 949 11.80% 3600 10.54% 3600 10.41% 3600
R07 3×7 44 - 841 9.74% 3600 9.75% 3600 9.45% 3600
R08 3×7 44 - 916 10.60% 3600 9.72% 3600 9.53% 3600
R09 3×7 44 - 891 15.30% 3600 10.33% 3600 10.21% 3600
R05 4×4 34 744 750 4.37% 3600 3.07% 3600 0% 1271
R06 4×4 34 821 841 0.73% 3600 3.45% 3600 0% 281
R07 4×4 34 673 673 0% 341 0.45% 3600 0% 3
R08 4×4 34 815 819 1.95% 3600 2.08% 3600 0% 123
R09 4×4 34 755 774 0% 648 2.45% 3600 0% 1
R05 4×5 42 825 856 7.61% 3600 6.48% 3600 5.57% 3600
R06 4×5 42 859 894 6.00% 3600 4.92% 3600 0% 2347
R07 4×5 42 763 795 6.42% 3600 6.42% 3600 0% 3542
R08 4×5 42 841 853 3.54% 3600 3.28% 3600 0% 1614
R09 4×5 42 796 818 1.07% 3600 2.69% 3600 0% 4
R05 4×6 50 - 933 12.43% 3600 9.65% 3600 9.62% 3600
R06 4×6 50 - 975 12.34% 3600 10.87% 3600 10.77% 3600
R07 4×6 50 - 916 14.42% 3600 12.01% 3600 11.90% 3600
R08 4×6 50 - 924 7.40% 3600 5.41% 3600 5.25% 3600
R09 4×6 50 - 882 14.68% 3600 6.18% 3600 6.04% 3600
R05 4×7 58 - 984 18.08% 3600 11.89% 3600 11.88% 3600
R06 4×7 58 - 1034 14.07% 3600 11.17% 3600 10.93% 3600
R07 4×7 58 - 1002 17.56% 3600 12.57% 3600 12.44% 3600
R08 4×7 58 - 1088 19.58% 3600 15.49% 3600 15.26% 3600
R09 4×7 58 - 975 14.87% 3600 9.64% 3600 9.63% 3600

Table B.4: Comparison of models.
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3 × 5 4 × 7

Original precedence model 2.26% 12.06%
Row precedence variation 3.57% 12.14%

Table B.5: Comparison of precedence model variations.

B.6.4 Number of rows vs. length of rows

Somewhat surprisingly, the length of the rows in the problem has proven
to be much more significant than the number of rows in terms of difficulty
of solving the problem.

This trend can already be observed in Table B.4, and a further illus-
tration is given in Table B.6, which shows results obtained by solving
10 instances with 18 orders in different loading configurations, using the
TSPIP approach. For each instance size the table reports the number of
instances (out of 10) that were solved to optimality within one hour, the
average MIP gap after one hour of computation and the average solution
time used.

2 × 9 3 × 6 6 × 3 9 × 2 18 × 1

Optimal 0 1 10 10 10
Gap (avg.) 11.96% 5.24% 0% 0% 0%
Time (avg.)/s. 3600 3283 5.5 4.6 2.1

Table B.6: Instances with 36 customer nodes in different configurations.

The table clearly shows that instances with many short rows are signif-
icantly easier to solve than instances with only a few long rows. The
same trend was observed during other tests, and when attempting to
determine optimal solutions (allowing longer running times) to the test
problems.

B.6.5 Extra loading capacity

The instances considered so far have dealt with loading plans where the
number of available loading positions equals the number of items to be
loaded, i.e., N = R × L. However, one could also examine instances
where the number of loading positions is allowed to be greater than the
number of items. The purpose of this is twofold: 1) to determine if this
change has any impact on the difficulty of solving the problem, and 2)
from a business point of view, to determine if any cost reduction can
be achieved by reducing the loading degree, i.e., by running the vehicles
with some spare capacity to increase loading flexibility.

In this section all instances have been solved without providing an initial
solution, because the heuristic used to produce initial solutions could not
solve instances with N < R × L. This option was preferred over adopting
a solution obtained for N ′ = R × L where N ′ ≥ N , since the effect of
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such an adopted solution might disturb the results, as the quality of the
initial solution will be relatively better when the difference R × L − N
is small. Naturally, for actual solutions it will always be beneficial to
provide an initial solution.

Since it is clearly not possible to gradually increase the loading capacity
in steps of size one, the tests have been conducted by stepwise increases
of the row length, which gives the smallest meaningful increase of the
loading capacity.

These tests have been performed on 10 instances with 15 orders loaded
as 3 × 5, 3 × 6, 3 × 7, and 3 × 8, and the results can be seen in Table
B.7. The table provides the row length L, the number of instances solved
to optimality, the average time to solve those instances and the average
gap after one hour. The results indicate that instances with some extra
space could be slightly easier to solve. However, adding large amounts
of extra space does not seem to provide any further advantage.

L Opt. Time (avg.)/s. Gap

5 6 2017 0.63%
6 7 1964 0.80%
7 6 1532 0.58%
8 6 1520 0.57%

Table B.7: Tests with extra space.

For the instances with L = 6 more instances can be solved to optimality
in a shorter time than for L = 5. However, the average solution quality
does not improve. This is caused by one instance which becomes much
more difficult.

Concerning the possibility of cost reduction there does not seem to be
a significant gain achievable by increasing the loading capacity. When
the row length increases from 5 to 6, 5 instances show objective value
decreases by 1.2%, 0.4%, 0.2%, 1.9% and 0.4%, while the remaining are
unchanged. With the additional increase of the row length to 7 only
one decrease of 1.0% occurs, and when increasing from 7 to 8 no gain
is achieved. Thus, it seems unlikely that any significant gain would be
obtainable in practice by allowing extra capacity.

B.6.6 Instances from the literature

In addition to the randomly generated instances from [91], the TSPIP
approach has been applied to some pickup and delivery instances derived
from TSPLIB, namely the instances that were adopted by [11] to test
the TSPPDL2. These instances provide node coordinates, as well as a
division of the set of customers into pickup and delivery customers, and
a 1-to-1 matching of the pickup and delivery customers. The instances

2http://neumann.hec.ca/chairelogistique/data/TSPPDL-BB/

http://neumann.hec.ca/chairelogistique/data/TSPPDL-BB/
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contain 19, 23, 27, 31, 35, 39, 43, 47, and 51 nodes, meaning 9, 11,
13, 15, 17, 19, 21, 23, and 25 orders, and have been solved here with 3
loading rows. Since the DTSPMS requires a depot in each graph, the
same location has been used in both graphs. This means that a given
instance always contains one more node when considering the DTSPMS
than when considering the TSPPDL, since the depot is used twice. The
matching of pickup and delivery customers that is provided with the
instances has also been used here.

Table B.8 shows for each instance the name, the total number of nodes
n, the number of orders N , the loading configuration as R × L, the
final upper and lower bounds, the gap between the two, and the solution
time. No solution time is reported for instance nrw1379 with 25 orders,
since this instance finished prematurely with an out-of-memory error.
The TSPIP approach has been provided with a heuristic initial solution
whenever possible (N = R × L); these instances have been marked by a
+ in the table. All other instances have been solved without providing
the solver with an initial solution, and in these cases we see that the
algorithm often fails to find a feasible solution.

It can be noted that the results given in Table B.8 are generally consistent
with those of Table B.4, regarding the size of the instances that can be
solved, with a slightly larger variation, as only 8 out of 9 instances are
being solved at row length 5, while 2 out of 9 can be solved with row
length 7. The table also confirms that the use of a good initial solution
is helpful – in 3 cases a larger instance with an initial solution is solved
faster than a smaller instance with no initial solution.

B.7 Conclusions

A number of different modelling approaches for the solution of the Double
TSP with Multiple Stacks have been proposed and tested. The problem
has turned out to be very difficult to solve, confirming the results known
from the literature for problems that combine routing and loading issues
in the same optimization problem.

The most successful approach is based on a new model solved through a
decomposition approach. All the 5 tested instances with 4 rows of length
4, with a total number of nodes of 34, were solved to optimality within
an hour as were 4 of the 5 tested instances with 4 rows of length 5 (42
nodes).

Interestingly, it could be observed that the difficulty of a given problem
instance depends not so much on the number of orders, as on the length
of the rows. Thus, instances with 16 orders are easily solved when using
4 loading rows, while they are currently impossible to solve to optimality
when using only 2 rows.

The availability of optimal solutions allowed us to check the quality of the
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instance n N R × L UB LB gap time/s.

a280 20 9 3×3+ 585 585 0% 2
24 11 3×4 654 654 0% 51
28 13 3×5 696 696 0% 19

32 15 3×5+ 792 792 0% 31
36 17 3×6 945 945 0% 2277
40 19 3×7 - 1017 - 3600

44 21 3×7+ 1127 1091 3.21% 3600
48 23 3×8 - 11605 - 3600
52 25 3×9 - 1192 - 3600

att532 20 9 3×3+ 5361 5361 0% 2
24 11 3×4 6399 6399 0% 23
28 13 3×5 7261 7261 0% 102

32 15 3×5+ 7562 7562 0% 320
36 17 3×6 11369 7737 31.95% 3600
40 19 3×7 11413 7972 30.16% 3600

44 21 3×7+ 13218 12230 7.48% 3600
48 23 3×8 - 12530 - 3600
52 25 3×9 - 15709 - 3600

brd14051 20 9 3×3+ 7897 7897 0% 0
24 11 3×4 8064 8064 0% 1
28 13 3×5 8079 8079 0% 41

32 15 3×5+ 8196 8196 0% 3
36 17 3×6 8300 8226 0.89% 3600
40 19 3×7 8434 8394 0.48% 3600

44 21 3×7+ 9109 8400 7.79% 3600
48 23 3×8 - 8499 - 3600
52 25 3×9 - 8513 - 3600

d15112 20 9 3×3+ 93597 93597 0% 28
24 11 3×4 100489 100489 0% 39
28 13 3×5 108574 108574 0% 211

32 15 3×5+ 130297 124692 4.30% 3600
36 17 3×6 141408 126627 10.45% 3600
40 19 3×7 - 130153 - 3600

44 21 3×7+ 188222 132034 29.85% 3600
48 23 3×8 - 133448 - 3600
52 25 3×9 - 138886 - 3600

d18512 20 9 3×3+ 7951 7951 0% 1
24 11 3×4 8023 8023 0% 1
28 13 3×5 8034 8034 0% 6

32 15 3×5+ 8098 8098 0% 19
36 17 3×6 8567 8124 5.17% 3600
40 19 3×7 - 8292 - 3600

44 21 3×7+ 10664 8425 21.00% 3600
48 23 3×8 - 8476 - 3600
52 25 3×9 - 8556 - 3600

fn14461 20 9 3×3+ 3387 3387 0% 1
24 11 3×4 3430 3430 0% 9
28 13 3×5 3628 3628 0% 185

32 15 3×5+ 3796 3796 0% 192
36 17 3×6 3853 3837 0.42% 3600
40 19 3×7 5344 3981 25.52% 3600

44 21 3×7+ 4589 4058 11.58% 3600
48 23 3×8 - 4170 - 3600
52 25 3×9 - 4253 - 3600

nrw1379 20 9 3×3+ 4572 4572 0% 3
24 11 3×4 4733 4733 0% 17
28 13 3×5 4872 4872 0% 273

32 15 3×5+ 4984 4984 0% 1230
36 17 3×6 5355 5195 2.99% 3600
40 19 3×7 - 5245 - 3600

44 21 3×7+ 6114 5434 11.12% 3600
48 23 3×8 - 5481 - 3600
52 25 3×9 - 5862 - -

pr1002 20 9 3×3+ 21498 21498 0% 0
24 11 3×4 22977 22977 0% 15
28 13 3×5 25087 25087 0% 184

32 15 3×5+ 25899 25899 0% 929
36 17 3×6 27246 27246 0% 731
40 19 3×7 28196 28196 0% 1733

44 21 3×7+ 29875 29875 0% 5
48 23 3×8 31463 31463 0% 133
52 25 3×9 32319 32319 0% 5

ts225 20 9 3×3+ 34000 34000 0% 0
24 11 3×4 43000 43000 0% 443
28 13 3×5 48440 48440 0% 2

32 15 3×5+ 50580 50580 0% 4
36 17 3×6 50881 50881 0% 2
40 19 3×7 51371 51371 0% 17

44 21 3×7+ 52322 52322 0% 8
48 23 3×8 54460 54460 0% 6
52 25 3×9 62688 62688 0% 808

Table B.8: Results on instances from [11].
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solutions produced by the heuristic presented in [91] for the DTSPMS.
The heuristic solution turned out to always match the optimum for in-
stances with 2 rows (14 optimal solutions known), often for 3 rows (9
out of 12 optimal solutions known), but rarely for 4 rows (1 out of 10
optimal solutions known).
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Appendix

This section will describe how the numbers of feasible solutions to a
DTSPMS shown in Table B.1 are calculated.

The calculations will be done by first determining the number of feasible
pickup routes, then the number of feasible loading plans given a pickup
route, and finally the number of feasible delivery routes, given a loading
plan. The calculations can naturally be reversed, and will be identical
if starting with a delivery route and ending with the pickup route, or,
as it turns out, if starting with a loading plan and then determining
the number of each of the routes. A loading plan is a plan that gives
the exact position of each loaded item, i.e., both its loading row and its
position in that row, as opposed to a row assignment, which assigns each
item to a row, but does not include the row position.

The number of feasible pickup routes is straightforward: N orders can
be ordered in N ! different ways when no restrictions are present.

Next, the number of feasible loading plans for a given pickup route must
be determined. In other words, given the arrival order of N items, deter-
mine the number of feasible loadings λN , respecting the number of rows
R and the length of the rows L. With infinite row capacity, which in this
case is equivalent to L = N , the number of feasible loading plans would
be trivially RN , since each item could be placed in any of the R rows.
However, this is rarely the case in practice. Often N = R × L, and the
remainder of this section will assume that L = dN

R
e.

If the loaded vehicle contains no empty space, i.e., if N = R × L the
number of loading plans can be obtained as a product of one or more
binomial coefficients:

λN =

R−2
∏

r=0

(

N − r · L

L

)

. (B.43)

This expresses the number of ways the orders can be grouped to fit the
rows. Once L items have been assigned to a given row, the internal
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positions within the row are given by the pickup routing. Thus, the
number of feasible loading plans can be determined as the number of
row assignments.

When the vehicle is not fully loaded the calculation is less simple, and
the number of loading plans must be determined by recursion:

λm = λm−1 ·
R

∑

r=1

(r · pr
m), for L < m ≤ N (B.44)

λm = Rm, for m ≤ L, (B.45)

where pr
m is the probability that there are r different rows to choose from,

on the arrival of item m.

For the first m ≤ L loaded items, it is not yet possible that any row has
been filled up (the m−1 items already loaded are too few to fill an entire
row), so the first m items can each be placed in any of the R rows, and
the total number of ways to divide the first m items into the R rows is
Rm, as stated in (B.45).

For values of m > L, the value of λm can be obtained by determining, for
each possible r = 1, . . . , R, the probability that there are r rows available,
and multiplying this by λm−1. The calculation of these probabilities pr

m

depends on the number of rows R and is described here for R = 2 and
R = 3.

R=2 The probability that only one row is available is equal to the
probability that one row is full. With m− 1 items already loaded, there
are

(

m−1
L

)

different ways of selecting the L items to fill this row. The full
row can then be either of the two existing rows and we obtain:

p1
m =

(

m−1
L

)

· 2

λm−1
. (B.46)

Since there is necessarily either one or two rows available, it follows that
p2

m = 1 − p1
m.

R=3 The situation where only one row is available can only occur if
m > 2L (otherwise, there are not enough items already loaded to fill up
two rows).

The L items that fill up the first full row can be chosen among the m−1
already loaded items in

(

m−1
L

)

ways, while the L items to fill up the

second row can be chosen among the remaining loaded items in
(

m−1−L
L

)

ways. Then these two rows can be placed in 6 different ways among the
3 existing rows and we obtain:

p1
m =

(

m−1
L

)

·
(

m−1−L
L

)

· 6

λm−1
. (B.47)
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The probability that there are two rows available for item m corresponds
to the number of ways there can be exactly one row that is already
full. First the items that complete the full row can be chosen in

(

m−1
L

)

ways, similar to the 2 row case, and this full row can be either of the
three existing ones. Next the distribution of the remaining m − 1 − L
customers between the remaining two rows is found, by summing over
all possible lengths of one of these rows. Since we know that neither of
these rows can be full, each must have at most L − 1 items. In the sum
j is the number of items in one of the two rows. Since these two rows
are considered “symmetrically” this sum is not multiplied by two (as in
the previous cases). We obtain:

p2
m =

(

m−1
L

)

· 3 ·

min(m−1−L,L−1)
∑

j=max(m−2L,0)

(

m−1−L
j

)

λm−1
. (B.48)

Finally, the probability that all three rows are still available can be found
in the simple way:

p1
m + p2

m + p3
m = 1 ⇔ p3

m = 1 − p1
m − p2

m. (B.49)

If a loading plan is given, the number of feasible delivery routings can
also be found by applying the recursion given in (B.44)–(B.45), by a
similar argument.

For each of the first L visits, the next in line can be chosen among the
R items available for delivery (at the end of each row). For visit number
L + 1 there is a probability pR−1

L+1 that one row is empty and therefore
only R − 1 rows contain items that can be chosen for the next delivery,
and a similar argument can be applied to the remaining visits.

Now the total number of feasible solutions to a problem of a given size
can be determined. First the pickup route is constructed. There are
N ! feasible routes, when all loading constraints are disregarded. Next a
corresponding loading plan can be constructed in λN different ways, and
finally the delivery route can be constructed in another λN ways, leading
to a total number of feasible solutions to the problem, of

KN = N ! · (λN )2. (B.50)

Finally, it should be noted that if the distances are symmetric, each
solution will lead to another solution of the same cost, by reversing each
of the graphs.

In addition to the information provided by Table 1, in Table B.9 we show
the number of feasible solutions to the DTSPMS for different problem
instances with 2 and 3 rows. As the table shows the number of feasible
solutions to an instance increases drastically with the number of orders,
showing that simple complete enumeration is far from being a viable
solution method even on small instances.
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N DTSP2S DTSP3S

5 4.8 · 104 9.7 · 105

10 2.3 · 1011 1.8 · 1015

12 4.1 · 1014 5.8 · 1017

15 2.2 · 1020 7.5 · 1023

20 8.3 · 1028 3.9 · 1035

25 1.7 · 1039 3.4 · 1047

30 6.4 · 1048 8.2 · 1057

33 4.7 · 1055 1.6 · 1065

Table B.9: Number of feasible solutions with N orders.
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Hanne L. Petersen, Allan Larsen, Oli B.G. Madsen, Bjørn Petersen, Ste-
fan Ropke.

Abstract:

Passengers using public transport systems often experience waiting times
when transferring between two scheduled services. In this paper we pro-
pose a planning approach which seeks to obtain a favourable trade-off
between the two contrasting objectives passenger service and operating
cost by modifying the timetable. This planning approach is referred to
as the Simultaneous Vehicle Scheduling and Passenger Service Problem
(SVSPSP). The SVSPSP is modelled as an integer programming prob-
lem, and solved using a large neighborhood search (LNS) metaheuristic.
The proposed framework is tested on data inspired by the express-bus
network in the Greater Copenhagen Area. The results are encourag-
ing and indicate a potential decrease of passenger waiting times in the
network of 10–20%, with the vehicle scheduling costs remaining mostly
unaffected.
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C.1 Introduction

In every larger public transport system massive amounts of time are
wasted due to waiting time when transferring between different parts of
the journey. For the Greater Copenhagen area it has been estimated that
the time lost on an average weekday by passengers waiting for connecting
buses or trains approaches 65,000 hours (based on 400,000 daily transfers
with an average of 10 minutes transfer waiting time.1 Hence, generating
timetables which optimise for temporal correspondences has an enormous
socio-economic potential. Clearly, this could be achieved through an
increase in the frequency of the trips offered in the timetable, however
this would require an unacceptable increase in operating costs.

The traditional sequential framework for planning of public transport
has been excellently described by Desaulniers and Hickman [26] and is
sketched in Figure C.1. Given the route network, the frequencies are
determined to ensure demand coverage and to comply with politically
determined service levels, under practical constraints such as fleet size.
The timetabling process then determines the exact timings for all trips
while respecting the previously determined frequencies/headways. Both
of these first phases are concerned with maximising some measure of
passenger service, and are carried out by the public transport service
provider, who typically works by appointment by the local authorities.
The timetabling phase may take schedule synchronisation and transfer
times into account.
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Vehicle Scheduling

Timetabling

Frequency setting

Crew pairing

Crew rostering

Figure C.1: Traditional sequential planning approach.

Once the timetable has been established, the resource scheduling begins.
During this phase the first problem to be solved is the scheduling of
the physical resources necessary to carry out the trips in the timetable,
i.e. the vehicles. The purpose of the vehicle scheduling is to be able to
execute the timetable at the lowest possible cost. The costs considered
in this phase include empty mileage performed by the vehicles, both in
connection to the depot, and in the form of deadheading, i.e. transport

1cf. http://www.dtu.dk/centre/modelcenter/TU/Standard%20Tabeller/
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between the end point of one trip and the starting point of another. Once
the vehicle schedules have been established, the crew pairing and roster-
ing phases are carried out. The last three phases are all carried out by
the public transport operator, who is appointed by the service provider
to operate a set of trips, and they all have the purpose of operating the
requested timetable at the lowest possible cost.

Today, efficient systems for generating near-optimal vehicle schedules
exist within all modes of transport. However, these systems treat the
timetable as fixed input, meaning that potential savings in operating
costs from moving a set of trips in the timetable are lost. Only very
limited research has been done on models that address the problem of
minimising the operating costs by modifying the timetable. Furthermore,
research is scarce on models that focus on minimisation of the waiting
time during transfer.

In this paper we introduce the Simultaneous Vehicle Scheduling and Pas-
senger Service Problem (SVSPSP) which addresses the multiple objec-
tive planning problem of improving timetables such that they remain
economically satisfactory for the operator, and at the same time offer
high-quality service to the passengers by reducing the unproductive time
spent on waiting during transfers. Please note that whenever we refer to
waiting time throughout this paper we are solely referring to the waiting
time associated with transfers, and not the waiting time of passengers
entering the system. The SVSPSP framework is sketched in Figure C.2,
and integrates the planning processes of timetabling and vehicle schedul-
ing.

SVSPSP

Vehicle Scheduling

Timetabling

Frequency setting

Crew pairing

Crew rostering

Figure C.2: The role of the SVSPSP shown in relation to the traditional
sequential planning approach.

The main input of the SVSPSP is the original timetable and estimates
of passenger demand in the network. The natural problem owner of the
SVSPSP is the public transport service provider, as this is the authorithy
which on the one hand is committed to provide a high-quality timetable
to the customers (in terms of e.g. minimum waiting times) and on the
other hand holds the responsibility of ensuring that the offered timetable
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is feasible from an operating costs perspective. By integration of the
vehicle scheduling phase, which previously belonged to the operator, the
service provider can obtain a better negotiating position towards the
operator, since the operating costs have already been considered during
the optimisation of the timetables.

The contributions of this paper are fourfold: 1) we formally introduce
a new interesting problem, motivated by a real-life case, 2) we make a
realistic data set available, that can be used for future studies, 3) we
propose a heuristic solution method that is able to handle data sets of
realistic size, 4) we show that substantial reductions in passenger wait-
ing time are possible using the proposed methodology. The paper is
organised as follows: Section C.2 reviews the literature on the multiple
depot vehicle scheduling problem as well as work on minimising passen-
ger transfer times. In section C.3 we formulate the SVSPSP as an integer
programming model. Section C.4 discusses how the proposed problem
can be solved by the large neighborhood search metaheuristic. Section
C.5 introduces the data set used in this study which is based on the bus
network of the Greater Copenhagen area, and in Section C.6 we discuss
the results obtained. Finally, we provide our concluding remarks and
suggest directions for further research in Section C.7.

C.2 Literature review

Our approach to the integrated vehicle scheduling and timetabling prob-
lem is based on the multiple depot vehicle scheduling problem (MDVSP).
Desrosiers et al. [29] provide an excellent introduction to the problem and
survey the literature prior to 1995. A more recent, but short literature
survey is presented by Pepin et al. [89] who also present an interesting
comparison of heuristic approaches for the problem. Section 4.1 in De-
saulniers and Hickman [26] also contains a recent survey. Some of the
currently best exact methods for the MDVSP are proposed by Hadjar
et al. [56] and Löbel [75]. We are aware of two papers that extend vehi-
cle scheduling problems to handle parts of the timetabling process. The
paper by van den Heuvel et al. [60] studies the integration of timetabling
and multi depot vehicle scheduling with the aim of reducing costs (reduc-
ing the number of vehicles) while ignoring passenger waiting times. On
the timetabling level the approach allows the trip starting times for each
line to be shifted in time to allow greater flexibility in the vehicle schedul-
ing part. The paper presents integer programming models as well as a
local search algorithm that solves a network flow problem in each local
search iteration. Guihaire and Hao [53] also integrate vehicle schedul-
ing and timetable synchronisation in their optimisation problem. They
consider several terms in their objective: number of vehicles required,
number and quality of transfer possibilities and the so-called headway
evenness. The second term aims at minimising passenger inconvenience.
The last term attempts to make arrivals of vehicles, serving a particular
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line, occur with a regular frequency. The three terms are weighted to-
gether. In terms of the vehicle scheduling problem, the paper considers
a single depot setup while our approach handles the multiple depot case.
The problem studied in this paper is probably the one that resembles
our problem the most.

Several papers focus on optimising timetables in order to minimise pas-
senger waiting times, without explicitly considering the impact such
changes have on the physical resource requirements (e.g. more buses may
be needed to carry out the modified plan). Examples of such approaches
are Jansen and Pedersen [62] who formulate the problem as a mathemat-
ical model and propose simulated annealing and tabu search algorithms
to solve the problem (see also Pedersen [87]); Ceder et al. [14] who syn-
chronise bus timetables by maximising the number of times two buses
arrive at the same time at any node in the network; Klemt and Stemme
[67], Bookbinder and Désilets [8] and Daduna and Voß [25] who synchro-
nise timetables by solving a quadratic semi-assignment problem. Worth
mentioning is also the paper by Chakroborty et al. [16], which studies
timetable synchronisation and “optimal fleet size” using a genetic algo-
rithm heuristic. They do not study the vehicle scheduling aspect of the
problem, instead the term “optimal fleet size” refers to the fact that
the number of departures on a specific line is a variable, decided by the
proposed model.

As explained in the introduction, the SVSPSP integrates the timeta-
bling and vehicle scheduling phases. The integrated problem has not
been widely studied in the literature but some papers on the topic do
exist. One approach for handling the integrated problem has been the
so-called periodic event scheduling problem (PESP). The PESP is mainly
used for timetabling but has been extended to handle some aspects of
vehicle scheduling as well. The PESP model was proposed by Serafini
and Ukovich [102]. It is a general framework for modelling optimisation
problems with a periodic nature. Liebchen and Möhring [73] show how
the PESP and extensions can be used to handle many aspects of railway
timetabling. One of these is to minimise the changeover time for passen-
gers and another is the minimisation of the number of vehicles needed
to perform the timetable. The complexity of the vehicle minimisation
depends on whether trains are allowed to switch line when they reach
their endpoint. Contrary to our approach the paper does not model the
situation where vehicles can perform deadheading in order to switch ter-
minal (this does not seem practical when the vehicles are trains running
on tracks, but can be useful for buses). The material in Liebchen and
Möhring [73] builds on the work of Liebchen and Peeters [74] which fo-
cuses on vehicle minimisation, but arrives at a model with a quadratic
objective function. Other recent works on the PESP and railway timeta-
bling include Liebchen and Möhring [72], Peeters [88], and Kroon et al.
[68].

Wong et al. [113] study the Mass Transit Railway in Hong Kong that
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contains 6 train lines. They minimise the overall passenger waiting time
in a non-periodic fashion. The number of vehicles needed to carry out
the plan is determined in advance and is kept constant. In this way it is
ensured that the proposed timetable does not become too expensive to
carry out, while optimising customer satisfaction. The authors present
a MIP model and solve it using a heuristic that incorporates a standard
MIP solver as an important component. Fleurent et al. [37] describe
an optimisation system and an interactive tool for minimising passenger
waiting time while keeping vehicle costs under control. The suggested
approach is tested on a case from the city of Montreal, Canada, and the
results indicate that the passenger waiting time can be improved while
keeping the vehicle count constant. The paper provides little detail about
the optimisation algorithm used to obtain these results.

We can conclude that the work on integrating time tabling and vehicle
scheduling is rather limited and that Guihaire and Hao [53] is the paper
that presents a problem that is most similar to the SVSPSP. The SVS-
PSP model is, regarding some aspects, more ambitious than the model
studied by Guihaire and Hao [53] as it considers a multi-depot setting
which is not the case in the aforementioned paper.

C.3 The SVSPSP: modelling

In a classical multi-depot vehicle scheduling problem (MDVSP) a set of
trips have to be covered with a set of vehicles (based at several depots)
while minimising costs. A trip has a start and end location, as well as
a departure and arrival time. In a bus scheduling setting a trip corre-
sponds to the movement from the start to the end of a bus line. A line

is a collection of trips that have the same start and end locations but
different departure and arrival times. A line also contains trips going
in the opposite direction. The MDVSP can be modelled as follows (see
[29]): let N = {1, . . . , n} denote the set of trips and K the set of depots.
With each depot k ∈ K we associate a graph Gk = (V k, Ak) where the
set of nodes is defined as V k = N∪{n+k} with n+k being the node rep-
resenting the kth depot. The set of arcs Ak is a subset of the set V k×V k,
with all infeasible arcs removed. An arc is infeasible if it forms an im-
possible connection between two trips; typically this is caused by timing
constraints. For each depot k ∈ K and each arc (i, j) ∈ Ak we define an
arc cost ck

ij and we are given an upper bound vk on the number of vehi-

cles located at k. Using a binary variable xk
ij for all k ∈ K, (i, j) ∈ Ak,

having value 1 if and only if a vehicle from depot k travels from node i
to j we can write an integer multi-commodity flow model as follows:

min
∑

k∈K

∑

(i,j)∈Ak

ck
ijx

k
ij (C.1)
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subject to

∑

k∈K

∑

j∈V k

xk
ij = 1 i ∈ N (C.2)

∑

j∈N

xk
n+k,j ≤ vk k ∈ K (C.3)

∑

i∈V k

xk
ij −

∑

i∈V k

xk
ji = 0 k ∈ K, j ∈ V k (C.4)

xk
ij ∈ {0, 1} k ∈ K, (i, j) ∈ Ak. (C.5)

The objective (C.1) minimises the total cost. The arc costs ck
ij can be set

such that the total cost reflects a fixed cost per vehicle and deadheading
costs. Constraints (C.2) ensure that all trips are served, constraints (C.3)
ensure that we do not use more than the available number of vehicles,
and constraints (C.4) are flow conservation constraints.

The SVSPSP generalises the MDVSP as follows: in the SVSPSP we
group trips into so called metatrips. The set of metatrips, Ω, forms a
partitioning of the set N , that is, ∪M∈ΩM = N and ∀M1,M2 ∈ Ω,M1 6=
M2 : M1 ∩ M2 = ∅. Furthermore, we relax the condition that every
trip must be covered. Instead we require that exactly one trip from
each metatrip must be covered. In the context of this paper, we assume
that each metatrip corresponds to a trip from the original timetable, and
the (sub)trips belonging to the metatrip represent copies of the original
trip, with alternative departure times. Thus, the requirement that each
metatrip is covered corresponds to the MDVSP-requirement that each
trip is covered (C.2). The idea behind this, in relation to our goal of
increasing passenger service, is that selecting alternative departure times
may reduce waiting times and thereby improve the passenger service
level.

We will now introduce some useful concepts that will be used in our
treatment of the SVSPSP. Trips in the SVSPSP model can be incom-

patible for various reasons, as we shall see later. This is captured by
a set Φ ⊆ 2N containing sets of mutually incompatible trips. Thus, if
φ ∈ Φ then any pair i, j ∈ φ is incompatible and cannot be used together
in a feasible solution. For the SVSPSP we maintain the definition of a
line that is known from the MDVSP; a line L is a sequence of stops to
be visited in a given order. A line can be travelled in both directions,
and we use the term d-line (directed line) for a line in a particular di-
rection. Each metatrip, and the trips contained in it, belongs to exactly
one d-line. Therefore we can view a d-line L as a subset of the set of
metatrips: L ⊆ Ω. For every bus line a number a stops are defined.
The stops are the locations where the bus stops to pick up and unload
passengers. Several bus lines may share one stop and a stop can provide
connections to other modes of timetabled transportation like trains or
ferries. Any transfer of passengers takes place at a stop. We are only
interested in stops where transfers can take place, hence, when mention-
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ing stops in the rest of this paper we assume a stop with at least one
transfer opportunity.

Figure C.3 shows an example of trips and metatrips. The nodes {1, . . . ,
12} represent trips, and two metatrips {2, . . . , 6} and {7, . . . , 11} are
shown. The time of day is shown along the top of the figure. Trips 4 and
9, marked with grey, are the two original trips, from which the metatrips
are constructed. The remaining trips in each metatrip are constructed by
creating duplicates of the original trip, spread evenly in the available time
interval. The nodes 1 and 12 belong to other metatrips, not illustrated
in the figure. All trips shown in the figure belong to the same d-line.

The usage of incompatible trips to impose passenger service is appar-
ent: trips belonging to the same d-line and departing within a short
time interval should be incompatible, for example trip 6 and 7 on Fig-
ure C.3 could be incompatible because they depart within 3 minutes.
Similarly, two consecutive departures on a d-line should not be too far
apart. Therefore it would make sense to make trip 2 incompatible with
trip 11. If departures at regular intervals are required on a bus line for
a specific period of the day or the entire day this could also be modelled
using incompatible trips. If we desire departures every 15 minutes in the
example on Figure C.3 we must make trip 2 incompatible with trips 8,
9, 10, and 11 (by adding the set {2, 8, 9, 10, 11} to Φ), trip 3 should be
incompatible with trips 7, 9, 10, and 11, and so on.

metatrip 1 metatrip 2

54321 6 7 8 9 10 11 12
9.509.409.309.20

Figure C.3: Example of trips and metatrips.

Using the notation from the MDVSP we can now present a mathematical
model for a simple version of the SVSPSP, denoted SVSPSP0.

min
∑

k∈K

∑

(i,j)∈Ak

ck
ijx

k
ij (C.6)
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subject to
∑

i∈M

∑

k∈K

∑

j∈V k

xk
ij = 1 M ∈ Ω (C.7)

∑

i∈φ

∑

k∈K

∑

j∈V k

xk
ij ≤ 1 φ ∈ Φ (C.8)

∑

j∈N

xk
n+k,j ≤ vk k ∈ K (C.9)

∑

i∈V k

xk
ij −

∑

i∈V k

xk
ji = 0 k ∈ K, j ∈ V k (C.10)

xk
ij ∈ {0, 1} k ∈ K, (i, j) ∈ Ak. (C.11)

Constraints (C.9) and (C.10) are identical to (C.3) and (C.4) in the
original MDVSP formulation. Constraints (C.7) ensure that exactly one
trip from each metatrip is selected and constraints (C.8) ensure that no
pair of incompatible trips are selected at the same time.

In order to discuss how passenger service can be taken into account
in the SVSPSP0 we need to define exactly how we measure passenger
service. The area we focus on in relation to passenger service is waiting
time during transfers. We first introduce the central concept transfer

opportunity. A transfer opportunity is a triple (s,M,L), where s is the
stop where the transfer takes place, M is a metatrip that stops at s, and
L is a connecting line that exchanges passengers with M at s. For each
transfer opportunity we assume that an estimate Ds

ML of the number of
passengers disembarking metatrip M and transferring to line L at stop
s, as well as an estimate Es

ML of the number of passengers embarking
metatrip M transferring from line L at stop s are available. It is assumed
that all passengers disembarking a metatrip to transfer to line L take
the earliest possible departure on line L and all passengers embarking
a metatrip M come from the latest possible arrival on line L. For the
SVSPSP0, L is a line external to the model, but we will later generalise
it to include those lines that are rescheduled by the model.

To improve passenger service we desire to minimise the total number
of passenger minutes wasted by waiting for a connection, at the same
time as we want to minimise the cost of serving all trips. This results
in two goals that are weighted together in the cost coefficients of the
objective function. The SVSPSP0 model can accommodate a part of the
waiting times that we desire to include in the model, namely a penalty
for waiting times related to lines that are external to the model, such
as already timetabled train departures: for each trip i in N we find the
transfer opportunities (s,M,L) of the metatrip M that i belongs to. As
stated above, L is an external line with fixed departures and arrivals,
therefore we can a priori find the arrival and departure on line L that
are used by passengers embarking and disembarking trip i at stop s and
we can calculate the associated waiting times. The two waiting times are
multiplied by the passenger estimates Es

SM and Ds
SM and summed to give
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the total number of minutes waited for the particular trip and transfer
opportunity. By summing over all the transfer opportunities that the trip
is involved in we obtain the total number of waiting minutes incurred by
the trip. This number, weighted in a suitable way, is added to the cost
of all arcs leaving the node corresponding to the trip.

The SVSPSP0 model cannot take the transfer of passengers from bus
to bus into account if both buses are rescheduled by the model. We
therefore introduce the model SVSPSP, that generalises SVSPSP0, to
accommodate this. The overall idea is to introduce two new sets of binary
variables ys

ij and zs
ij that indicate if transfers between trip i and j are

taking place at stop s. For each transfer opportunity (s,M,L) involving a
d-line L which is timetabled by the model we create a number of variables
ys

ij where i ∈ M , j ∈ ∪M ′∈LM ′. Each variable indicates if the transfer
opportunity of passengers disembarking metatrip M to transfer to d-line
L is realised by transferring from trip i to j. Similarly, for the same
transfer opportunity, we create a number of variables zs

ij where j ∈ M ,
i ∈ ∪M ′∈LM ′. These variables indicate if the transfer opportunity of
passengers embarking M , coming from L is realised by transferring from
trip i to j. We assign a cost c̄s

ij > 0 for each ys
ij variable and a cost ĉs

ij > 0
for each zs

ij variable. The cost is based on the time between arrival and
departure on the two trips and the number of passengers expected to
take advantage of the transfer opportunity.

Consider the following example: the bus lines 200 and 300 both visit
Lyngby station. Assume that a trip for line 200 northbound (200-N) has
been chosen by the model such that the bus arrives at Lyngby station at
9.29. A number of the passengers on board the bus wish to disembark
the bus to transfer to line 300 heading north (300-N). Their waiting
time depends on the departure time of the next 300-N, which is also
decided by the model. Figure C.4 shows this situation. The chosen

9.30 9.40 9.50

4 5 6 7 8 9 10 11 12

a b c d e f

Bus 300-N

Bus 200-N

Figure C.4: Example of a bus-to-bus transfer.

trip for bus 200-N (trip a) is shown at the top of the figure along with
alternative 200-N arrivals, and nine trips belonging to line 300-N are
shown on the bottom. Passengers from trip a cannot transfer to bus
300-N on the departure times marked with grey circles: departure 4 is
impossible because it departs before bus 200-N arrives, while departure 5
departs one minute later than trip a arrives and there is not enough time
for the transfer (passengers have to walk). The other departures are all
feasible transfers. Note that trips 7 to 11 constitute a metatrip, so exactly
one of these trips must be selected. This means that no passenger from
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trip a heading for line 300-N would transfer to trip 12 because an earlier,
feasible departure will exist in the plan. On the other hand, if trip 12
is selected by the model and trip a is the latest selected bus from 200-N
that allows a transfer to trip 12 then embarking passengers on trip 12
arriving from 200-N would perform the transfer. Since both embarking
and disembarking passengers are considered, both y and z variables are
necessary. The y variables handle passengers disembarking a specific trip
to the first possible trip on the specified d-line. The z variables handle
passengers embarking a specific trip from the last possible trip on the
specified d-line.

Let S be the set of all stops that are visited by more than one bus line.
We introduce a graph Ĝs = (V̂ s, Âs) for each stop s ∈ S. The set of
vertices V̂ s is the set of all trips that visit stop s and the set of arcs is
defined as

Âs =

{

(i, j) : i, j ∈ V̂ s,
passengers can transfer from trip i to
trip j at stop s

}

.

For example, if s is Lyngby station as shown in Figure C.4 we would
have that

{(a, 6), (a, 7), (a, 8), (a, 9), (a, 10), (a, 11), (a, 12)} ⊂ Âs,

but {(b, 4), (b, 5), (b, 6)} ∩ Âs = ∅. The variables ys
ij and zs

ij are defined

for every s ∈ S and every arc (i, j) ∈ Âs. We can use Figure C.4 to show
the meaning of the y variables. If, for example, trips a and 9 are chosen
and trip 6 is not then ys

a,9 = 1 and ys
a,j = 0 for j ∈ {6, 7, 8, 10, 11, 12}. If

both trip 6 and 9 were chosen then we would have ys
a,6 = 1 and ys

a,9 = 0
because all passengers disembarking a, bound for 300-N, would transfer
to trip 6.

For a trip i ∈ N and a stop s ∈ S on its line we define t(i, s) to be the
departure time of trip i at stop s. For a trip i we define dl(i) to be the
d-line that the trip belongs to. For a stop s and an arc (i, j) ∈ Âs we
define

π(i, j, s) = {j′ ∈ ∪M ′∈dl(j)M
′ : (i, j′) ∈ Âs, t(j′) < t(j)},

that is, π(i, j, s) is the set of trips j′ from the same d-line as j that are
earlier than j but that still are feasible transfer destinations from trip i.
Similarly we define

σ(i, j, s) = {i′ ∈ ∪M ′∈dl(i)M
′ : (i′, j) ∈ Âs, t(i) < t(i′)},

which is the set of trips i′ from the same d-line as i that are later than
i but where a transfer to trip j still is feasible. We can now present an
extended model that also handles the bus-to-bus transfers:

min
∑

k∈K

∑

(i,j)∈Ak

ck
ijx

k
ij +

∑

s∈S

∑

(i,j)∈Âs

c̄s
ijy

s
ij +

∑

s∈S

∑

(i,j)∈Âs

ĉs
ijz

s
ij (C.12)
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subject to
∑

i∈M

∑

k∈K

∑

j∈V k

xk
ij = 1 M ∈ Ω (C.13)

∑

i∈φ

∑

k∈K

∑

j∈V k

xk
ij ≤ 1 φ ∈ Φ (C.14)

∑

j∈N

xk
n+k,j ≤ vk k ∈ K (C.15)

∑

i∈V k

xk
ij −

∑

i∈V k

xk
ji = 0 k ∈ K, j ∈ V k (C.16)

∑

k∈K

∑

l∈V k

xk
il +

∑

k∈K

∑

l∈V k

xk
jl − 1

−
∑

j′∈π(i,j,s)

∑

k∈K

∑

l∈V k

xk
j′l ≤ ys

ij s ∈ S, (i, j) ∈ Âs (C.17)

∑

k∈K

∑

l∈V k

xk
il +

∑

k∈K

∑

l∈V k

xk
jl − 1

−
∑

i′∈σ(i,j,s)

∑

k∈K

∑

l∈V k

xk
i′l ≤ zs

ij s ∈ S, (i, j) ∈ Âs (C.18)

xk
ij ∈ {0, 1} k ∈ K, (i, j) ∈ Ak (C.19)

ys
ij ∈ {0, 1} s ∈ S, (i, j) ∈ Âs (C.20)

zs
ij ∈ {0, 1} s ∈ S, (i, j) ∈ Âs. (C.21)

Two changes have been performed compared to model SVSPSP0: a) two
terms have been added to the objective function (C.12) to model the cost
of passengers waiting during transfers between two buses that are both
re-timetabled by the model, and b) inequalities (C.17) and (C.18) have
been added to ensure that the ys

ij and zs
ij variables are set correctly. For

example, ys
ij is set to 1 by (C.17) when both trip i and trip j are used

(the first two sums on the left hand side) and when none of the feasible
transfer destinations earlier than j are in use (the last sum on the left
hand side). The constraints only enforce a lower bound on ys

ij but the
minimisation in the objective and assumption that c̄s

ij is positive ensure
that the y variables take the lowest possible value. Constraints (C.18)
are similar to (C.17), but work on z rather than y variables.

The mathematical model presented in (C.6)–(C.11) has been implemen-
ted in CPLEX, but CPLEX was not able to solve instances with the
dimensions considered in this paper. No attempts have been made to
solve the model presented in (C.12)–(C.21) with a general purpose solver,
since the number of variables and constraints used in the advanced model
is even larger than in the model presented in (C.6)–(C.11). However,
by presenting the models here, they have served as an instrument to
give a precise definition of the problem to be studied. Using techniques
like reformulation or cut or column generation it might be possible to
solve realistically sized instances using the mathematical models – in
particular, model (C.6)–(C.11) lends itself to a column based solution



The SVSPSP 157

approach. However, we have worked in a different direction, and in the
following section we shall present a metaheuristic for solving the problem.

C.4 Solution method

The solution method we propose for solving the SVSPSP is based on the
large neighborhood search (LNS) metaheuristic. The LNS was proposed
by Shaw [104]. As many other metaheuristics, the LNS is based on the
idea of finding improving solutions in the neighborhood of an existing
solution. What sets the LNS apart from other metaheuristics is that the
neighborhood searched (or sampled) in the LNS is huge.

The term LNS is often confused with the term very large scale neigh-

borhood search (VLSN) defined by Ahuja et al. [1]. While the LNS is a
heuristic framework, VLSN is the family of heuristics that searches neigh-
borhoods whose sizes grow exponentially as a function of the problem
size, or neighborhoods that simply are too large to be searched explicitly
in practice, according to Ahuja et al. [1]. The LNS is one example of a
VLSN heuristic.

We are aware of one application of LNS to the MDVSP, this approach
is described by Pepin et al. [89]. That LNS implementation is more
complex than ours as it uses column generation and branch and bound
to solve restricted instances of the MDVSP. The computational results
reported in [89] show that the LNS is competitive against four other
heuristics. LNS has also been successful in solving the related vehicle
routing problem with time windows. See for example Bent and van
Hentenryck [5] and Pisinger and Røpke [93].

C.4.1 Large neighborhood search

An LNS heuristic moves from the current solution to a new, hopefully
better, solution by first destroying the current solution and then repairing

the destroyed solution. To illustrate this, consider the traveling salesman
problem (TSP). In the TSP we are given n cities and a cost matrix that
specifies the cost of traveling between each pair of cities. The goal of the
TSP is to construct a minimum cost cycle that visits all cities exactly
once (see e.g. [3]). A destroy method for the TSP could be to remove
10% of the cities in the current tour at random (shortcutting the tour
where cities are removed). The repair method could insert the removed
cities again using a cheapest insertion principle (see e.g. [63]).

The LNS heuristic is outlined on Algorithm 1. In the pseudo-code we
use the symbols x for the current solution, x∗ for the best solution ob-
served during the search and x′ for a temporary solution. The operator
d(·) is the destroy method. When applied to a solution x it returns a
partially destroyed solution. The operator r(·) is the repair method. It
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Algorithm 1 Large Neighborhood Search

1: input: a feasible solution x;
2: x∗ = x;
3: repeat

4: x′ = r(d(x));
5: if accept(x′, x) then

6: x = x′;
7: end if

8: if f(x′) < f(x∗) then

9: x∗ = x′;
10: end if

11: until stop criterion is met
12: return x∗

can be applied to a partially destroyed solution and returns a normal
solution. The expression r(d(x)) therefore returns a solution created by
first destroying x and then rebuilding it.

The LNS heuristic takes an initial solution as input and makes it the
current and best known solutions in lines 1 and 2. Lines 4 to 10 form
the main body of the heuristic. In line 4 the current solution is first
destroyed and then repaired, resulting in a new solution x′. In line
5 the new solution is evaluated to see if it should replace the current
solution, this is done using the function accept which will be described
in Section C.4.2.3 below. In lines 8 to 10 the best known solution is
updated if necessary. Line 11 checks the stopping criterion which in our
implementation simply amounts to checking if tmax seconds have elapsed.

C.4.2 Large neighborhood search applied to the SVSPSP

This section describes how the LNS heuristic has been tailored to solve
the SVSPSP. In particular, we describe the implemented destroy and
repair methods and the acceptance criterion.

C.4.2.1 Destroy methods

Destroy methods for the SVSPSP remove trips from the current solution.
Every time a destroy method is invoked the number of trips to remove is
selected randomly in the interval [5, 30]. Two simple destroy methods for
the SVSPSP have been implemented. The first method simply remove
trips at random, which is a good method for diversifying the search.

The second method is based on the relatedness principle proposed by
[104]. Here we assign a relatedness measure R(i, j) to each pair of trips
(i, j). A high relatedness measure indicates that the two trips are highly
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related. The relatedness of two trips i and j are defined as

R(i, j) =30 × 1s(i)=s(j) + 30 × 1e(i)=e(j) + 20 × 1s(i)=e(j)

+ 20 × 1e(i)=s(j) − |t(i) − t(j)|

where s(i) and e(i) are the start and end locations of trip i respectively,
t(i) is the start time of trip i (start time in the current solution). The
notation 1expr is used to represent the indicator function which evaluates
to one if expr evaluates to true and zero otherwise. The measure defines
two trips to be related if they start around the same time and if the
share start and/or end locations. The measure is used to remove trips
as follows. An initial seed trip is selected at random and added to a set
of removed trips S. For each trip i still in the solution we calculate the
relatedness

v(i, S) = max
j∈S

{R(i, j)}

The trips still in the solution are sorted according a non-increasing v(i, S)
in a sequence T , a random number p in the interval [0, 1) is drawn and
the trip at position b|T |p5c in T is selected. This selection rule favours
trips with high v(i, S) value. The selected trip is added to the set of
removed trips, and v(i, S) is recalculated after adding a trip to S. We
continue to add trips to S, until we have reached the target number of
removed trips.

The two destroy methods are mixed in the LNS heuristic. Before re-
moving a trip from the solution it is decided which destroy method that
should be used to select the trip. With probability 0.15 the first method
(random) is used and with probability 0.85 the second method (related-
ness) is used.

The trips that have been removed from the solution are still active in the
sense that they will be used in the trip incompatibility check defined by
constraints (C.8) and (C.14). That is, when adding a trip to a solution
in the repair step below, we check if it is compatible with the trips in the
solution and the trips removed in the previous destroy operation. A trip
i is made inactive when another trip, belonging to the same metatrip as
i, is inserted into the solution.

C.4.2.2 Repair methods

The repair method for the SVSPSP reinserts the trips that were removed
from the solution by the destroy method. The repair method uses a ran-
domised greedy heuristic. For each unassigned metatrip S the heuristic
calculates an insertion cost f(S) given the current solution. When in-
serting a metatrip S we have a choice of which trip i ∈ S that should
be inserted. With probability ρ we insert the same trip that was used
in the solution before destruction and with probability 1 − ρ we insert
a random trip from S. The chosen trip should be compatible with all
active trips. Such a trip exists because we are sure that the trip from
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the pre-destruction solution is still compatible with all trips. The re-
quirement ensures that we never get to a situation where one or more
metatrips cannot be inserted because of the the compatibility constraints
(C.8) and (C.14).

Given the choice of trip i, we define the cost f(S) as the cost of inserting
trip i at the best possible position in the current solution multiplied by
a random factor that is meant to diversify the insertion procedure. More
precisely the cost is defined as:

f(S) =

{

minr∈R{c(i, r)} · (1 + rand(−δ, δ)) if minr∈R c(i, r) 6= ∞,

c(i, ∅) otherwise,

where c(i, r) is the cost of inserting trip i in route r at the best possible
position, R is the set of routes in the current solution, c(i, ∅) is the cost
of serving the trip using a new vehicle from the best possible depot,
δ is a parameter and rand(−δ, δ) is a function that returns a random
number in the interval [−δ, δ]. The parameter δ controls the amount of
randomisation applied by the insertion procedure. The heuristic chooses
to insert the metatrip S with lowest cost. It does this by inserting the
trip i that was used as a representative for S and inserts this at its best
possible position. This continues until all metatrips have been inserted.
With the assumption that vk = |Ω| it is always possible to insert a
metatrip – we will always be able to serve it using a new vehicle.

C.4.2.3 Acceptance criterion

The acceptance criterion used in our implementation of the LNS heuris-
tic is the one used in simulated annealing metaheuristics: The function
accept(x′, x) used in line 6 of Algorithm 1 accepts the new solution x′ if
it is at least as good as the current solution x, that is, f(x′) ≤ f(x). If
f(x′) > f(x) then the solution is accepted with probability

e
f(x)−f(x′)

T .

The parameter T is called the temperature and controls the acceptance
probability: a high temperature makes it more likely that worse solutions
are accepted. Normally the temperature is reduced in every iteration
using the formula Tnew = αTold where 0 < α < 1 is a parameter that is
set relative to desired start and end temperatures and desired number of
iterations. Because we use elapsed time as stopping criterion we calculate
the current temperature by the formula

T (t) = Ts ·

(

Te

Ts

) t
tmax

here t is the elapsed time since the start of the heuristic, Ts is the starting
temperature and Te is the end temperature. Because of the acceptance
criterion the LNS heuristic can be seen as a simulated annealing heuristic
with a complex neighborhood definition.
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Algorithm 2 Heuristic for generating an initial solution

1: while there are non-served metatrips left do

2: Select a random station s with unserved metatrips;
3: Select earliest non-served metatrip S starting from s;
4: Start a new route r serving S. Use a vehicle from the depot nearest

to s;
5: repeat

6: Let s′ be the station where route r is ending;
7: if r can be extended with a non-served metatrip starting in s′

then

8: Select earliest non-served metatrip S′ starting in s′ that can
extend r. Add S′ to r;

9: else

10: End route r by returning to the depot;
11: end if

12: until r has returned to the depot;
13: end while;

C.4.2.4 Starting solution

A starting solution is necessary because the LNS heuristic improves an
existing solution. It is constructed using the greedy heuristic outlined in
Algorithm 2. The generation heuristic does not consider time shifting,
instead it only considers insertion of the original trip from each metatrip.
Therefore, when writing earliest metatrip in Algorithm 2 we refer to the
metatrip whose original trip is the earliest. The heuristic constructs
vehicle routes one at a time and attempts to create routes where little
time is wasted in between trips. Lines 2–12 deal with the construction
of a single route for a vehicle. Lines 2–4 select the first trip on the route
and the depot which should provide the vehicle for the route. Lines 5–
12 add trips to the partial route. The selection of which trip to add is
based on the terminal where the partial route is ending at the moment.
The algorithm adds the first trip that leaves that terminal or closes the
route if the route cannot be extended with a trip starting in the current
terminal.

C.5 Data

The data set that has been developed for the SVSPSP during the prepa-
ration of this paper has been described in further detail in a technical
report by Petersen et al. [92], and in this section we will give a brief
description of the background and the resulting data set. The data set
can be obtained online2.

The local train network in the Greater Copenhagen area roughly has the

2http://www.transport.dtu.dk/SVSPSP/

http://www.transport.dtu.dk/SVSPSP/
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form of a fan or the fingers of a hand, as shown in Figure C.5. A network
of express bus lines complements the train lines across and in parallel,
as can be seen in Figure C.6. The data set that has been developed for
the SVSPSP is based on this structure, where the radial train lines are
operated on a fixed timetable, and the timetables for the bus lines (of
which most are circular) are adjusted according to this.

Figure C.5: The local train network of Copenhagen.

A data set for the SVSPSP consists of several parts: 1) a distance ma-

trix, containing all distances between depots and line end-points, 2) fixed

timetables of all fixed-schedule train connections, 3) number of transfer-

ring passengers for each transfer opportunity, 4) an initial schedule used
to determine the available set of trips, 5) costs of different activities, and
other parameters such as turnaround times, passenger transfer times,
etc.

Among these elements the distances and fixed timetables are generally
relatively easy to obtain. Furthermore the initial schedule, in the form
of the current bus schedule, is required to provide information regarding
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Figure C.6: The S-bus network; trains are shown as thin lines, compare
Figure C.5.
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frequencies and service level, which will be maintained by the new solu-
tion. Given a suitable generation strategy, the set of potential trips can
be generated based on these time tables. The current schedule can also
be used to generate an initial feasible (VSP) solution for the heuristics.

The problem objectives of operating cost and passenger waiting time have
been combined by expressing both in monetary units. The various costs
required for calculating the total cost of a solution have been estimated
for the data set, in particular the cost of passenger waiting time has been
estimated based on the value of travel time recommended by the Danish
Ministry of Transport.

What then remains to be estimated is the number of passengers and their
transfer patterns. This transfer information will allow us to calculate
the number of (dis)embarking passengers using each available transfer
opportunity, for any arrival or departure of a bus at a station.

For this project these data have been obtained by a two-stage process:
First we estimated the number of (dis)embarking passengers, as a func-
tion of the station, bus line and time of day, and then we estimated
the percentage of (dis)embarking passengers that would perform each
possible transfer.

The number of (dis)embarking passengers at each station is calculated as
ft·fl·fs·n where ft is a time factor, fl is a line factor, fs is a station factor,
and n is a random number evenly distributed in the interval [32, 48]. The
values of n is chosen to roughly reflect the capacity of a vehicle, and the
introduction of randomness increases the variation of data, to make them
more realistic.

The distribution of transferring passengers between available connections
has been estimated based on knowledge of the network, and considering
the direction of trains (towards the town centre or away from it). Again
a random element has been added to provide a better spread of the
obtained values. Connections have been specified either for a particular
train line or as e.g. “the first departure going into town”. For modelling
purposes this could be obtained by adding artificial train lines.

Metatrips are created from trips in the original timetable. Let Ti be
the departure time of a trip in the original timetable, belonging to a
particular d-line L. We create an interval [T s

i , T e
i ] around Ti and dis-

tribute κ trips in this interval to form a metatrip. Assume that κ is an
odd number. We express the start and end of the interval as follows
T s

i = Ti − τ−
i and T e

i = Ti + τ+
i . The symbols τ−

i and τ+
i are expressed

in terms of the departure times Ti−1 and Ti+1 of the previous and next
trips, respectively, on L as follows: τ−

i = bTi−Ti−1−1
2 c, τ+

i = bTi+1−Ti

2 c.
This construction ensures that the intervals around the trips on each
d-line are disjoint. The set of departure times constructed are

{

Ti −
2j

κ
τ−
i : j = 1, . . . ,

⌊κ

2

⌋

}

∪ {Ti} ∪

{

Ti +
2j

κ
τ+
i : j = 1, . . . ,

⌊κ

2

⌋

}
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with the time expressions rounded to the nearest integer to ensure that
departures occur at integer valued times. If the trips in the original
timetable are close then we may end up with fewer than κ departure
times because some departures get mapped to the same integer due to
the round-off. In that case we only create as many trips as we have
departure times for. In our test we used κ = 5. Figure C.7 shows an
example of how the trips of a metatrip are distributed.

9.309.15 9.45

30+2/5*7 30+4/5*730−2/5*730−4/5*7

Figure C.7: Example of the distribution of trips in metatrips.

The only incompatibilities used in this project, have been found by mul-
tiplying the current interval between two trips by a factor to determine
lower and upper bounds allowed for the same interval. This factor has
been set to 0.5 for the lower bound and 1.5 for the upper bound.

Instances of three different sizes have been considered for this project.
These instances have been constructed by considering a meaningful sub-
set of the actual operated bus routes, i.e. a subset that in itself constitutes
a realistic problem. This means that the set of routes selected for the
smaller subset have characteristics that may differ from the routes added
in the larger subsets. Thus the smaller problems consist of the most cen-
tral lines, and the lines that are added in the larger sets are more rural,
and/or have fewer intersections with the train network.

The properties of the three different instances can be summarised as
follows:

3 lines. 538 trips. All lines are circular lines with 5–6 intersections with
the train network, but only few interconnections between the buses.
Many passengers. Subset of

5 lines. 792 trips. All lines are circular lines with 4–6 intersections with
the train network, and only few interconnections between the buses.
Some lines are passenger intensive. Subset of

8 lines. 1400 trips. Combination of circular and radial lines. The radial
lines only have 2–3 connections to trains, but more connections to
other buses. Most lines are passenger intensive.

C.6 Computational experiments

To evaluate the quality and usefulness of the algorithm, we have per-
formed a series of tests to examine its behaviour with different instance
sizes and settings, which will be presented in this section. The tests
have been performed on an Intel Pentium 4, 2.8 GHz, with 2GB RAM,
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running Windows XP.

The current vehicle schedules used for the data set were not available, so
these had to be constructed initially. This has been done by using the
implemented LNS as a regular VSP solver, i.e. by not allowing any time
shifts. The generated solutions have been used as initial solutions when
solving the SVSPSP, and also as reference solutions representing current
practice, when evaluating the quality of the obtained final solutions. As
we know that the actual current schedules are not created with dedicated
software, this should produce reference solutions that are not worse than
the currently used solution. For each instance a running time of 24 hours
was allowed for the construction of the reference solution.

Table C.1 shows the results from running the implemented LNS algo-
rithm on instances of different sizes with different running times. For

3 lines

total avg.
cost veh. empty time shifts shift reg.

1h 2.9% 0.0% −14.2% 16.5% 74.2% 2.19 39.7%
6h 3.1% 0.0% −13.0% 17.4% 73.4% 2.22 43.2%
24h 3.3% 0.0% −8.9% 18.1% 73.8% 2.11 48.1%

5 lines

total avg.
cost veh. empty time shifts shift reg.

1h 2.8% 0.0% −10.1% 19.8% 77.0% 2.58 39.8%
6h 3.1% 0.0% −9.2% 21.8% 79.3% 2.68 43.4%
24h 3.2% 0.0% −7.8% 22.5% 78.2% 2.61 40.5%

8 lines

total avg.
cost veh. empty time shifts shift reg.

1h 1.1% 0.0% −7.8% 9.5% 64.2% 1.88 30.4%
6h 1.6% 0.0% −6.4% 13.3% 76.6% 2.38 31.4%
24h 2.0% 0.0% −7.1% 16.4% 76.4% 2.39 36.0%

Table C.1: Solution improvements for different problem sizes.

each run we report the cost reduction compared to the initial solution,
the number of vehicles used, the reduction of empty mileage costs (i.e. a
negative value indicates that the empty cost has increased), the reduc-
tion of total passenger waiting time, the percentage of trips that have
been time shifted, the average amount of time that each trip is shifted,
and the percentage of trips that are regular. A regular/memorable trip
is a trip for which the gap to the preceding trip on the same line is a
multiple of 5. This makes the schedule easier to remember, and is thus
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an advantage to the passengers. For the current schedule the percent-
age of regular trips is around 72% for the largest instance, and 83–84%
for the others. However, memorability has not been an objective of the
implemented algorithm.

The table shows that good results can be obtained, and that a consider-
able reduction of passenger waiting time is possible. The reduced waiting
times lead to an increase in the amount of empty travel, however the to-
tal operating cost still shows improvement of around 3% for the smaller
instances, and 1–2% for the 8 line instances.

Alternative small instances

As stated previously the different tested instances differ not only in size,
but also in some characteristics regarding the type of lines that are used.
Thus the variation in cost and time reduction obtained for the different
instances may well depend just as much on the change in these charac-
teristics as on the actual size of the problems. The tests of Table C.1
have been repeated on two additional small instances that have been
created with a mix of lines more similar to those of the largest instance.
These instances represent subproblems that would most likely not be
considered in real-life, but can hopefully demonstrate the behaviour on
smaller instances without being affected by the different characteristics
of the problem. Each instance consists of two circular lines (of which
one is passenger intensive) and one radial line. The results for these two
instances can be found in Table C.2, and indicate that it is difficult to
compare the properties of instance just by looking at simple properties
of the included lines. The results also indicate that the achievable cost
improvement does indeed depend on the choice of lines to include in the
problem.

total avg.
cost veh. empty time shifts shift reg.

1h 1.3% 0.0% −7.2% 12.2% 73.2% 2.0 29.8%
6h 1.6% 0.0% −7.7% 14.7% 76.4% 2.1 31.4%

1h 2.9% 0.0% −8.6% 20.4% 79.4% 2.8 39.2%
6h 3.1% 0.0% −5.6% 21.3% 76.5% 2.8 45.0%

Table C.2: Solution improvements for more “realistic” small instances.

Random variation of the instances

The network structure and the existing time tables are fixed, so in order
to produce a series of different data sets/problem instances that still re-
flect the real world, the only adjustable parameter has been the random
element of the spread of the passengers over different available connec-
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tions. This has been done for the medium-sized instances (5 lines), using
running times of 1 and 6 hours, and the results can be found in Table C.3.

total avg.
cost veh. empty time shifts shift reg.

1h 2.8% 0.0% −10.5% 19.7% 78.8% 2.7 37.3%
2.2% 0.0% −6.4% 15.4% 75.5% 2.5 39.3%
2.8% 0.0% −11.8% 20.1% 77.8% 2.7 34.5%
2.7% 0.0% −11.6% 19.7% 76.8% 2.7 39.6%

6h 3.2% 0.0% −6.2% 21.8% 76.4% 2.6 39.9%
2.6% 0.0% −4.8% 17.8% 77.1% 2.7 43.1%
3.1% 0.0% −9.0% 21.8% 78.3% 2.6 43.1%
3.2% 0.0% −5.4% 21.8% 76.4% 2.5 39.5%

Table C.3: Solution results with modified transfer distributions.

These results show that the actual distribution of the passengers to some
extent influences the size of the reductions that can be obtained, but also
that the cost improvements are consistently around 2.6% for the shorter
running times, and around 3% for the 6 hour running times.

C.7 Conclusion

We have introduced a new problem that integrates the timetabling and
vehicle scheduling phases in public transportation planning. It does so
by simultaneously considering resource costs and passenger waiting time
at transfers. The problem has been defined formally and a metaheuristic
based on the LNS principle has been designed and tested. The meta-
heuristic has been tested on a data set based on a subset of the buses
serving the Greater Copenhagen area. The results obtained are encour-
aging: for the full data set we have observed that a 16% reduction of
passenger transfer waiting times are possible. This reduction was possi-
ble without using more vehicles to provide the service, but an increase in
the amount of deadheading was necessary. We consider the increase in
deadheading negligible compared to the total cost involved in operating
a public transport system and when considering the increased passenger
service obtained.

A topic for future research is how to make the timetables produced by the
heuristic easier for the passengers to memorise. This could be achieved
either by adding a term penalising solutions with low memorability to
the objective function or ensuring that blocks of subsequent departures
have fixed headway.
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Additional figures

D.1 15 order instances

These figures show the optimal DTSPMS solution, together with the
optimal TSP solution for each tour.
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Figure D.1: Instance 00: dashed, fat line shows DTSPMS solution; full,
thin line shows optimal TSP solution; objective values for (TSP-P, TSP-
D, DTSPMS-P, DTSPMS-D) are (367, 340, 398, 343).
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Figure D.2: Instance 01: dashed, fat line shows DTSPMS solution; full,
thin line shows optimal TSP solution; objective values for (TSP-P, TSP-
D, DTSPMS-P, DTSPMS-D) are (378, 342, 378, 376).
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Figure D.3: Instance 02: dashed, fat line shows DTSPMS solution; full,
thin line shows optimal TSP solution; objective values for (TSP-P, TSP-
D, DTSPMS-P, DTSPMS-D) are (319, 316, 334, 324).
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Figure D.4: Instance 03: dashed, fat line shows DTSPMS solution; full,
thin line shows optimal TSP solution; objective values for (TSP-P, TSP-
D, DTSPMS-P, DTSPMS-D) are (377, 356, 380, 388).
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Figure D.5: Instance 04: dashed, fat line shows DTSPMS solution; full,
thin line shows optimal TSP solution; objective values for (TSP-P, TSP-
D, DTSPMS-P, DTSPMS-D) are (403, 286, 403, 305).
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Figure D.6: Instance 05: dashed, fat line shows DTSPMS solution; full,
thin line shows optimal TSP solution; objective values for (TSP-P, TSP-
D, DTSPMS-P, DTSPMS-D) are (371, 345, 373, 364).
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Figure D.7: Instance 06: dashed, fat line shows DTSPMS solution; full,
thin line shows optimal TSP solution; objective values for (TSP-P, TSP-
D, DTSPMS-P, DTSPMS-D) are (364, 447, 374, 462).
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Figure D.8: Instance 07: dashed, fat line shows DTSPMS solution; full,
thin line shows optimal TSP solution; objective values for (TSP-P, TSP-
D, DTSPMS-P, DTSPMS-D) are (364, 287, 382, 308).
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Figure D.9: Instance 08: dashed, fat line shows DTSPMS solution; full,
thin line shows optimal TSP solution; objective values for (TSP-P, TSP-
D, DTSPMS-P, DTSPMS-D) are (390, 399, 427, 399).
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Figure D.10: Instance 09: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (349, 402, 359, 409).
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D.2 33 order instances

These figures show the best know solution, together with the optimal
TSP solutions.
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Figure D.11: Instance 00: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (482, 429, 528, 535).
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Figure D.12: Instance 01: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (471, 404, 551, 481).
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Figure D.13: Instance 02: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (504, 431, 563, 502).
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Figure D.14: Instance 03: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (494, 467, 515, 585).
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Figure D.15: Instance 04: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (511, 426, 550, 502).
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Figure D.16: Instance 05: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (479, 421, 515, 493).



Additional figures 187

0

1

2

3

4 5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

b b

b

b

b

b

b

b

b

b

b

bc

bc
bc

bc
bc

bc

bc

bc

bcbcbc

u

u

u

u

u

u

u

uu

u

u

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26

27

28

29

3031

32

33
b

b

b

b

b

b b

b

b

b

b

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

u

u

u

u

u

u

u

u

u

u

u

Figure D.17: Instance 06: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (457, 541, 512, 598).
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Figure D.18: Instance 07: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (481, 482, 603, 502).
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Figure D.19: Instance 08: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (492, 486, 580, 529).
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Figure D.20: Instance 09: dashed, fat line shows DTSPMS solution;
full, thin line shows optimal TSP solution; objective values for (TSP-P,
TSP-D, DTSPMS-P, DTSPMS-D) are (464, 512, 517, 574).
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Abbreviations

This appendix contains a list of a number of abbreviations that have
been used throughout the thesis.

The abbreviations TSP (Travelling Salesman Problem) and VRP (Vehi-
cle Routing Problem) will be assumed known, and used in the list. The
list will explain the name of each abbreviation when written in its en-
tirety. It will not go into discussion of the meaning of the name, or the
usage of the name in this thesis.

BWTSP Black and White TSP.
CVRP Capacitated VRP.
DTSPMS Double TSP with Multiple Stacks.
ILS Iterated Local Search.
LNS Large Neighbourhood Search.
MDVSP Multi Depot Vehicle Scheduling Problem.
MPVRP Multi Pile VRP.
PDP Pickup and Delivery Problem.
SA Simulated Annealing.
SVSPSP Simultaneous Vehicle Scheduling and Passenger Service Prob-

lem.
SVRPPD Single VRP with Pickup and Delivery.
TS Tabu Search.
TSPPD TSP with Pickup and Delivery.
VNS Variable Neighbourhood Search.
VRPPD VRP with Pickup and Delivery.
VSP Vehicle Scheduling Problem.
TW Time Windows.
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[1] R. K. Ahuja, Ö. Ergun, J. B. Ergun, and A. P. Punnen. A survey of
very large-scale neighborhood search techniques. Discrete Applied

Mathematics, 123:75–102, 2002.

[2] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Implementing
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