475 research outputs found

    Improved regeneration and de novo bone formation in a diabetic zebrafish model treated with paricalcitol and cinacalcet

    Get PDF
    Bone changes related to diabetes have been well stablished, but few strategies have been developed to prevent this growing health problem. In our work, we propose to investigate the effects of calcitriol as well as of a vitamin D analog (paricalcitol) and a calcimimetic (cinacalcet), in fin regeneration and de novo mineralization in a zebrafish model of diabetes. Following exposure of diabetic transgenic Tg(ins: nfsb-mCherry) zebrafish to calcitriol, paricalcitol and cinacalcet, caudal fins were amputated to assess their effects on tissue regeneration. Caudal fin mineralized and regenerated areas were quantified by in vivo alizarin red staining. Quantitative real-time PCR was performed using RNA from the vertebral column. Diabetic fish treated with cinacalcet and paricalcitol presented increased regenerated and mineralized areas when compared with non-treated diabetic group, while no significant increase was observed in nondiabetic fish treated with both drugs. Gene expression analysis showed an up-regulation for runt-related transcription factor 2b (runx2b), bone gamma-carboxyglutamic acid-containing protein (bglap), insulin a (insa) and insulin b (insb) and a trend of increase for sp7 transcription factor (sp7) in diabetic groups treated with cinacalcet and paricalcitol. Expression of insra and vdra was up-regulated in both diabetic and nondiabetic fish treated with cinacalcet. In nondiabetic fish treated with paricalcitol and cinacalcet a similar increase in gene expression could be observed but not so pronounced. The increased mineralization and regeneration in diabetic zebrafish treated with cinacalcet and paricalcitol can be explained by increased osteoblastic differentiation and increased insulin expression indicating pro-osteogenic potential of both drugs.European Regional Development Fund (ERDF) through the COMPETE-Operational Competitiveness ProgramFCT-Fundacao para a Ciencia e a Tecnologia [PEst-CCMAR/Multi/04326/2013]info:eu-repo/semantics/publishedVersio

    Ballistic transport in the one-dimensional Hubbard model: the hydrodynamic approach

    Full text link
    We outline a general formalism of hydrodynamics for quantum systems with multiple particle species which undergo completely elastic scattering. In the thermodynamic limit, the complete kinematic data of the problem consists of the particle content, the dispersion relations, and a universal dressing transformation which accounts for interparticle interactions. We consider quantum integrable models and we focus on the one-dimensional fermionic Hubbard model. By linearizing hydrodynamic equations, we provide exact closed-form expressions for Drude weights, generalized static charge susceptibilities and charge-current correlators valid on hydrodynamic scale, represented as integral kernels operating diagonally in the space of mode numbers of thermodynamic excitations. We find that, on hydrodynamic scales, Drude weights manifestly display Onsager reciprocal relations even for generic (i.e. non-canonical) equilibrium states, and establish a generalized detailed balance condition for a general quantum integrable model. We present the first exact analytic expressions for the general Drude weights in the Hubbard model, and explain how to reconcile different approaches for computing Drude weights from the previous literature.Comment: 4 pages + supplemental materia

    Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet

    Get PDF
    Vascular calcification is common in chronic kidney disease, where cardiovascular mortality remains the leading cause of death. Patients with kidney disease are often prescribed vitamin D receptor agonists (VDRAs) that confer a survival benefit, but the underlying mechanisms remain unclear. Here we tested two VDRAs in a mouse chronic kidney disease model where dietary phosphate loading induced aortic medial calcification. Mice were given intraperitoneal calcitriol or paricalcitol three times per week for 3 weeks. These treatments were associated with half of the aortic calcification compared to no therapy, and there was no difference between the two agents. In the setting of a high-phosphate diet, serum parathyroid hormone and calcium levels were not significantly altered by treatment. VDRA therapy was associated with increased serum and urine klotho levels, increased phosphaturia, correction of hyperphosphatemia, and lowering of serum fibroblast growth factor-23. There was no effect on elastin remodeling or inflammation; however, the expression of the anticalcification factor, osteopontin, in aortic medial cells was increased. Paricalcitol upregulated osteopontin secretion from mouse vascular smooth muscle cells in culture. Thus, klotho and osteopontin were upregulated by VDRA therapy in chronic kidney disease, independent of changes in serum parathyroid hormone and calcium

    Vitamin D effects on bone homeostasis and cardiovascular system in patients with chronic kidney disease and renal transplant recipients

    Get PDF
    Poor vitamin D status is common in patients with impaired renal function and represents one main component of the complex scenario of chronic kidney disease–mineral and bone disorder (CKD–MBD). Therapeutic and dietary efforts to limit the consequences of uremia-associated vitamin D deficiency are a current hot topic for researchers and clinicians in the nephrology area. Evidence indicates that the low levels of vitamin D in patients with CKD stage above 4 (GFR < 15 mL/min) have a multifactorial origin, mainly related to uremic malnutrition, namely impaired gastrointestinal absorption, dietary restrictions (low-protein and low-phosphate diets), and proteinuria. This condi-tion is further worsened by the compromised response of CKD patients to high-dose cholecalciferol supplementation due to the defective activation of renal hydroxylation of vitamin D. Currently, the literature lacks large and interventional studies on the so-called non-calcemic activities of vitamin D and, above all, the modulation of renal and cardiovascular functions and immune response. Here, we review the current state of the art of the benefits of supplementation with native vitamin D in various clinical settings of nephrological interest: CKD, dialysis, and renal transplant, with a special focus on the effects on bone homeostasis and cardiovascular outcomes

    Polycyclic aromatic hydrocarbons modulate the activity of Atlantic cod (Gadus morhua) vitamin D receptor paralogs in vitro

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goksoyr, S. O., Goldstone, J., Lille-Langoy, R., Lock, E.-J., Olsvik, P. A., Goksoyr, A., & Karlsen, O. A. Polycyclic aromatic hydrocarbons modulate the activity of Atlantic cod (Gadus morhua) vitamin D receptor paralogs in vitro. Aquatic Toxicology, 238, (2021): 105914, https://doi.org/10.1016/j.aquatox.2021.105914.Vitamin D receptor (VDR) mediates the biological function of the steroid hormone calcitriol, which is the metabolically active version of vitamin D. Calcitriol is important for a wide array of physiological functions, including calcium and phosphate homeostasis. In contrast to mammals, which harbor one VDR encoding gene, teleosts possess two orthologous vdr genes encoding Vdr alpha (Vdra) and Vdr beta (Vdrb). Genome mining identified the vdra and vdrb paralogs in the Atlantic cod (Gadus morhua) genome, which were further characterized regarding their phylogeny, tissue-specific expression, and transactivational properties induced by calcitriol. In addition, a selected set of polycyclic aromatic hydrocarbons (PAHs), including naphthalene, phenanthrene, fluorene, pyrene, chrysene, benzo[a]pyrene (BaP), and 7-methylbenzo[a]pyrene, were assessed for their ability to modulate the transcriptional activity of gmVdra and gmVdrb in vitro. Both gmVdra and gmVdrb were activated by calcitriol with similar potencies, but gmVdra produced significantly higher maximal fold activation. Notably, none of the tested PAHs showed agonistic properties towards the Atlantic cod Vdrs. However, binary exposures of calcitriol together with phenanthrene, fluorene, or pyrene, antagonized the activation of gmVdra, while chrysene and BaP significantly potentiated the calcitriol-mediated activity of both receptors. Homology modeling, solvent mapping, and docking analyses complemented the experimental data, and revealed a putative secondary binding site in addition to the canonical ligand-binding pocket (LBP). Calcitriol was predicted to interact with both binding sites, whereas PAHs docked primarily to the LBP. Importantly, our in vitro data suggest that PAHs can interact with the paralogous gmVdrs and interfere with their transcriptional activities, and thus potentially modulate the vitamin D signaling pathway and contribute to adverse effects of crude oil and PAH exposures on cardiac development and bone deformities in fish.This study was funded by the Research Council of Norway through the ”iCod 2.0: Integrative environmental genomics of Atlantic cod” project (project no. 244564) and the ”dCod 1.0: decoding systems toxicology of Atlantic cod” project (Center for Digital Life Norway project no. 248840)

    Pharmacological Management of Secondary Hyperparathyroidism in Patients with Chronic Kidney Disease

    Get PDF
    Secondary hyperparathyroidism (SHPT) is a common complication of CKD and is part of the chronic kidney disease-mineral bone disorder (CKD-MBD). SHPT is associated with increased risk of fracture and mortality, thus SHPT control is recommended as kidney function declines. Effective SHPT management becomes more difficult once skeletal and cardiovascular adverse effects associated with severe SHPT have become established. However, interventional studies to lower parathyroid hormone (PTH) have so far shown inconsistent results in improving patient-centred outcomes such as mortality, cardiovascular events and fracture. Pharmacological treatment effect on PTH level is also inconsistent between pre-dialysis CKD and dialysis patients which adds to the complexity of SHPT management. This review aims to give an overview on the pathophysiology, pharmacological and non-pharmacological treatment for SHPT in CKD including some of the limitations of current therapeutic options
    corecore