419,593 research outputs found

    Anomaly Detection for Big Data Technologies

    Get PDF
    The main goal of this research is to contribute to automated performance anomaly detection for large-scale and complex distributed systems, especially for Big Data applications within cloud computing. The main points that we will investigate are: - Automated detection of anomalous performance behaviors by finding the relevant performance metrics with which to characterize behavior of systems. - Performance anomaly localization: To pinpoint the cause of a performance anomaly due to internal or external faults. - Investigation of the possibility of anomaly prediction. Failure prediction aims to determine the possible occurrences of catastrophic events in the near future and will enable system developers to utilize effective monitoring solutions to guarantee system availability. - Assessment for the potential of hybrid methods that combine machine learning with traditional methods used in performance for anomaly detection. The topic of this research proposal will offer me the opportunity to more deeply apply my interest in the field of performance anomaly detection and prediction by investigating and using novel optimization strategies. In addition, this research provides a very interesting case of utilizing the anomaly detection techniques in a large-scale Big Data and cloud computing environment. Among the various Big Data technologies, in-memory processing technology like Apache Spark has become widely adopted by industries as result of its speed, generality, ease of use, and compatibility with other Big Data systems. Although Spark is developing gradually, currently there are still shortages in comprehensive performance analyses that specifically build for Spark and are used to detect performance anomalies. Therefore, this raises my interest in addressing this challenge by investigating new hybrid learning techniques for anomaly detection in large-scale and complex systems, especially for in-memory processing Big Data platforms within cloud computing

    High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    Full text link
    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.Comment: 72 page

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    Filtering and scalability in the ECO distributed event model

    Get PDF
    Event-based communication is useful in many application domains, ranging from small, centralised applications to large, distributed systems. Many different event models have been developed to address the requirements of different application domains. One such model is the ECO model which was designed to support distributed virtual world applications. Like many other event models, ECO has event filtering capabilities meant to improve scalability by decreasing network traffic in a distributed implementation. Our recent work in event-based systems has included building a fully distributed version of the ECO model, including event filtering capabilities. This paper describes the results of our evaluation of filters as a means of achieving increased scalability in the ECO model. The evaluation is empirical and real data gathered from an actual event-based system is used

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks

    A component-based middleware framework for configurable and reconfigurable Grid computing

    Get PDF
    Significant progress has been made in the design and development of Grid middleware which, in its present form, is founded on Web services technologies. However, we argue that present-day Grid middleware is severely limited in supporting projected next-generation applications which will involve pervasive and heterogeneous networked infrastructures, and advanced services such as collaborative distributed visualization. In this paper we discuss a new Grid middleware framework that features (i) support for advanced network services based on the novel concept of pluggable overlay networks, (ii) an architectural framework for constructing bespoke Grid middleware platforms in terms of 'middleware domains' such as extensible interaction types and resource discovery. We believe that such features will become increasingly essential with the emergence of next-generation e-Science applications. Copyright (c) 2005 John Wiley & Sons, Ltd
    • …
    corecore