
Strathprints Institutional Repository

Haahr, M. and Meier, R. and Nixon, P. and Cahill, V. and Jul, E. (2000) Filtering and scalability in the
ECO distributed event model. In: 5th International Symposium on Software Engineering for Parallel
and Distributed Systems (PDSE 2000), 2000-06-10 - 2000-06-11, Limerick, Ireland.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Haahr, M. and Meier, R. and Nixon, P. and Cahil, V. and Jul, E. (2000)
Filtering and scalability in the ECO distributed event model.
In: 5th International Symposium on Software Engineering for
Parallel and Distributed Systems (PDSE 2000), 10-11 June 2000,
Limerick, Ireland.

http://eprints.cdlr.strath.ac.uk/2570/

This is an author-produced version of a paper from the 5th
International Symposium on Software Engineering for Parallel and
Distributed Systems (PDSE 2000).
This version has been peer-reviewed, but does not include the
final publisher proof corrections, published layout, or pagination.

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/2815/

Filtering and Scalability in the ECO Distrib uted Event Model

MadsHaahrandReńeMeier andPaddyNixon andVinny Cahill
DistributedSystemsGroup

Departmentof ComputerScience
Trinity CollegeDublin, Ireland�

Mads.Haahr, Rene.Meier, Paddy.Nixon, Vinny.Cahill � @cs.tcd.ie
http://www.dsg.cs.tcd.ie/

Eric Jul
DistributedSystemsLaboratory

Departmentof ComputerScience
Universityof Copenhagen,Denmark

eric@diku.dk

http://www.diku.dk/distlab/

Abstract

Event-basedcommunicationis usefulin manyapplica-
tion domains,rangingfromsmall,centralisedapplications
to large, distributedsystems.Many different eventmodels
have beendevelopedto addressthe requirementsof dif-
ferent application domains. One such model is the ECO
model which was designedto support distributed virtual
world applications. Like manyother eventmodels,ECO
haseventfiltering capabilitiesmeantto improvescalability
by decreasingnetworktraffic in a distributedimplementa-
tion. Our recentwork in event-basedsystemshasincluded
building a fully distributedversion of the ECO model,in-
cluding event filtering capabilities. This paper describes
theresultsof our evaluationof filters asa meansof achiev-
ing increasedscalability in the ECO model. The evalu-
ation is empirical and real data gathered from an actual
event-basedsystemis used.Thefindingsshowfilters to be
highly valuable in makingdistributed implementationsof
the modelscale, that multicastcontributesto the scalabil-
ity and,perhapsmostsignifcantly, thatmulticastgroupscan
bedynamicallygeneratedfromfiltersusinglocal (pernode)
ratherglobal knowledgeof thedistributedapplication.

1. Intr oduction

Event-basedcommunicationis appropriatefor many ap-
plication domains,ranging from small, centralisedappli-

cationssuchasGUIs to large, distributedsystemssuchas
telecommunications,network monitoring,andvirtual world
supportsystems.Many differentevent modelshave been
put forward, somedesignedfor small-scalesystemsand
othersfor large-scalesystems.Onesuchmodelis theECO
model which was designedto supportdistributed virtual
world applicationsin the Moonlight ([6]) project. Like
many other event models([9, 5]), ECO was designedto
be scalableby including filtering capabilitiesthatwerein-
tendedto decreasenetwork traffic in a distributed imple-
mentation.

Our recentwork in event-basedsystemshas included
building a fully distributed version of the ECO model,
including filtering capabilities. This paperdescribesthe
modelandour implementationof it, aswell asthe experi-
mentsconductedto evaluatefiltering asameansof increas-
ing scalability. Theexperimentsarebasedonempiricaldata
from anactualevent-basedsystem.Thisdatais usedto per-
form threesimulationsof theoriginalsystemto evaluatethe
performanceimplicationsof usingfiltering andthe impact
of usingunicastor multicastcommunications.The results
show thatfiltering coupledwith multicastcommunications
cansubstantiallydecreasenetwork traffic andthusenhance
scalability. Significantly, wealsodemonstratethatmulticast
groupscanbe constructuredfrom filters without needfor
globalknowledgeaboutthedistributedapplication,demon-
stratinga furtherprogramminglevel benefitfrom filters.

In the following, we describethe ECO model and its
implementationthereafterwe presentour experimentsand
comparisons.

1

2. The ECO Model

As event modelsgo, the ECO model is relatively sim-
ple. It hasonly threecentralconceptsand its application
programmerinterface(API) containsonly threeoperations.
The intentof the modelis that it is appliedto a givenhost
languageandextendsthat language’s syntaxandfacilities
asto supporttheECO concepts.This sectiondescribesthe
ECO conceptsandoperations,payingspecialattentionto
notifyconstraintswhich arethemodel’seventfilters.

As mentioned,the ECO modelwasoriginally designed
for usein virtual world supportsystems.This is reflectedin
the terminologyusedto describeECO. Thus,the term an
ECOworld meanswhatevercollectionof entitiesconstitute
the applicationin which the model is being used. For a
detaileddescriptionof themodel,pleasereferto [12, 7].

2.1. Concepts

The acronym ECO standsfor events,constraints, and
objects—thethreecentralconceptsin theeventmodel:

Objects in theECO modelaremuchlikeobjectsin astan-
dardobject-orientedlanguage.However, insteadof in-
voking otherobjectsfor communicationECO objects
communicatewith otherECO objectsvia eventsand
constraintsasexplainedbelow. ECO objectsareof-
tenimplementedasprogramminglanguageobjectsbut
not all programminglanguageobjectsarenecessarily
ECO objects. In order to distinguishthe two, ECO
objectsareoften referredto asentities. Entitieshave
identifiersthat areuniquewithin an ECO world and
they maycontainthreadsof control.

Events aretheonly meansof communicationin themodel.
Entities do not invoke eachother’s methodsdirectly
but insteadraiseeventswhichmay, or maynot, leadto
otherentities’methodsbeinginvoked. Any entity can
raiseanevent. Eventsaretypedandhave parameters,
and they are propagatedasynchronouslyand anony-
mouslyto thereceiving entitiesin no particularorder.
The type of eventsis usuallyspecifiedusingthe type
systemof theunderlyinglanguage.

Constraints makeit possiblefor entitiesto imposerestric-
tions upon which events they actually receive. The
ECO model specifiesseveral typesof constraintsof
which thecentralonein a scalabilitycontext is notify
constraints. Notify constraintscanbeusedby anentity
to specifywhateventsit is interestedin receiving no-
tification about. Notify constraintseffectively consti-
tutefilters asthey areknown from othereventmodels
([9, 5]). Othertypesof ECO constraintsarepre, post,
andsynchronisationconstraints.However, they arenot

interestingfor eventfiltering andwill notbediscussed
furtherin this paper.

The three conceptsare shown in relation in figure 1
which depictsa simplescenariowith two entitiescommu-
nicating. In thefigure,entity A raisesaneventwhich may,
or maynot, reachentity B becauseof theconstraintC. The
constraintis imposedby entity B. The raisingof an event
can be thoughtof as an announcementto the rest of the
ECO world that the event has occurred. A notify con-
straint can be thoughtof as a filter that decideswhether
or not a given entity is to receive the event, and receiv-
ing an event canbe thoughtof as invoking an appropriate
method(calledaneventhandler) of anentity in responseto
theevent.Whenanentity usesa notify constraintto enable
it to receivecertainevents,wesaythatit subscribesto those
events.An entity cansubscribemultiple timesto thesame
eventsusing different constraintsand handlers. It is also
possibleto subscribewithout usinga constraint,in which
caseno filtering is performed.

Event

Entity A C
onstraint C

EE

Entity B

Event

Certain event propagation
Possible event propagation

Figure 1. The Three ECO Concepts in Relation

2.2. Operations

The model’s API containsthree operationswhich are
usedby entitiesto communicate:

Subscribe(eventType,eventHandler,constraint)
is usedby entitiesto register interestin events. An
entity that subscribesto a certain type of event will
receive an invocationof one of its methodswhen a
matchingeventis raised.Theeventis deliveredto the
entity by beingpassedasa parameterto the handler.
When an entity performsa subscription,it can also
chooseto specify a constraint. An event must be of
the right type andmustmatchthe constraint(if any),
in orderto bedeliveredto a particularsubscriber.

Raise(event) is usedby anentity to announcetheoc-
currenceof anevent.Theeventis deliveredto all enti-
tiessubscribingto eventsof thattype,subjectto filter-
ing againsttheir respectiveconstraints.

2

Unsubscribe(event-type, event-handler)
is usedby anentity to cancelanexistingsubscription.

3. Scalability of Distrib uted ECO Implementa-
tions

The ECO modelassuchis neithercentralisednor dis-
tributed but can be implementedin a centralisedor dis-
tributedmanner. A distributedimplementationhasthe ad-
vantagethat new nodes(typically in the form of physical
machines)canbe addedin orderto accommodatea larger
numberof entities.Ontheotherhand,distributingtheECO
implementationacrossa numberof nodesmeansthatenti-
tieson differentnodeswill needto exchangeeventsaswell
assubscriptionandunsubscriptioninformationacrossma-
chine boundaries. The amountof communicationacross
nodeboundariesdependsnot on thenumberof entitiesbut
on thelevel of activity, i.e., on thenumberof subscriptions
performed(andcanceled)andthenumberof eventsraised.

3.1. Scalability

The term scalability hasbecomesomethingof a buz-
zword in the computerindustry. Thereis no generallyac-
ceptedscientificdefinitionof whatexactlyscalabilityis, and
peopletendto rely onanintuitiveunderstandingof thecon-
ceptinstead.Textbooksgenerallyproviderathervaguedef-
initionsandrely onexamplesto explain it. Oneof themore
tangibledefinitionswasmadein connectionwith distributed
garbagecollection,

Scaleis a relativeconceptthat is hard to charac-
terizeprecisely;ratherwedefinescalabilityasa
propertyrelatedto an algorithm: it is scalableif
its costincreasesmuch slowerthanthenumberof
spacesor of sitesin thesystem.([11])

Thoughsomewhatspecificto distributedgarbagecollec-
tion, the definition makes the important observation that
scalability is an algorithmic issue. To make the definition
moregeneral,spacesandsitesshouldbeinterpretedaccord-
ing to theunderlyingdomain.In adistributedECO context,
the following parametersare consideredwhen discussing
scalability:

� numberof entities(or objects)

� numberof nodes(or machines)

� activity (communication)

Theseparametersare not mutually independent. As
mentioned,for example,a commonmeansof scaling(i.e.,
supportinga largenumberof) entitiesis to addmorenodes

to thesystem.This, however, causesmorecommunication
betweennodes. Hence,improving scalability in oneway
may decreaseit in another. This is a commondilemmain
distributedsystems;the greaterthe degreeof distribution,
the morecommunication.Therefore,any meansof reduc-
ing unnecessarycommunicationis valuable.

4. SECO - a Distrib uted ECO Implementation

The implementationwas named SECO for Scalable
ECO. It usesC++ asthe host language.The ECO exten-
sionstake the form of a library with which an application
usingeventcommunicationis linked. Thereis alsoa series
of headerfiles which containabstractC++ baseclassesfor
events,constraints,and entities, in addition to prototypes
for the actualECO operations.Two implementationsare
discussed:a unicastversion(uSECO) anda multicastver-
sion(mSECO).

4.1. Overview

The architectureof the SECO implementationis based
ontheconceptof ApplicationInstances(AIs). An AI is im-
plementedasaprogramrunningonanodein thenetwork. It
hostsa numberof entitiesandrelayseventsraisedby them
to otherAIs. An AI alsoreceiveseventsfrom otherAIs and
deliversthemto its own entities. A scenariowith six enti-
tieshostedby threeAIs runningon two nodesis shown in
figure2.

Entity

AI

Entity

Entity

AI

Node B

Entity

Entity

Entity

Node A

AI

The arrows denote
communication.

Figure 2. Scenario with Nodes, Application
Instances (AIs), and Entities.

In the uSECO implementationan ApplicationInstance
Register(AIR) is usedto maintainauthoritativeinformation
aboutthe AIs that areactive at any given time. A new AI
joining anexisting setof AIs obtainsa list of its peersfrom
the AIR. The current implementationof the AIR is cen-
tralised,but could readily be implementedin a distributed

3

fashionwithout furtherimpacton therestof theSECO im-
plementation.

In mSECO, sincemulticastcommunicationdoesnot re-
quire the senderto know the numberof receivers, global
knowledgeof theSECOentitiesis notnecessarythuselimi-
natingtheAIR. Thenumberof eventmessagesandmanage-
ment(overhead)messagessentwill bereduced.In uSECO,
an AI that raisesan event propagatesa copy of the event
to eachsubscriber, whereasin mSECO a singlemulticast
messageis sentonly. The sameappliesfor management
messages.Insteadof having to senda copy of a manage-
mentmessageto eachAI, a singlebroadcast(implemented
asawell-known multicastgroup)messageis sent.

Entities hostedby an AI invoke the SECO operations
to make andcancelsubscriptionsandto raiseevents. The
SECO library relays subscriptions,unsubscriptions,and
eventsto remoteAIs asappropriate(e.g.,subjectto filter-
ing constraints)anddeliverseventsobtainedfrom remote
aswell as local entitiesto the entitiesthat it hostsby in-
voking their handlers. The SECO library usesa com-
municationspackagecalled KANGA ([2]) to communi-
cate with other AIs over the network. KANGA imple-
mentsa convenientclass-orientedfront-endto thetransport
layer (TCP/IP)basedon connectionendpointsratherthan
hostnamesandports. Unlike TCP, KANGA is message-
orientedand includesmarshallingoperationsfor all stan-
dard C++ types. Figure 3 shows how the componentsin
a SECO applicationcommunicate.Note that, for reasons
statedabove, theAIR is not neededin themSECO imple-
mentation.

TheSECO implementationperformsnotonly thetaskit
is explicitly built for—in this caseimplementingthe ECO
model—but also the task of keepingtrack of itself as a
distributedapplication. With regardsto implementingthe
ECO operations(propagatingsubscriptions,unsubscrip-
tions, and events)the implementationis fully distributed.
Messagespassdirectly from peerto peer;thereis no cen-
tralised“eventserver” andthereforeno singlepoint of fail-
ure. With regardsto distribution management,it shouldbe
notedthatthecurrentversionof theAIR is centralisedand
thereforea singlepoint of failure. However, it is usedonly
for maintainingthesetof currentlyactiveAIs. In particular,
it hasno influenceoneventflow or filtering andis therefore
of no interestto thefindingsdescribedin thispaper.

4.2. Latecoming Entities

Whenanentity joins an ECO world thatalreadyexists,
theremaybesubscriptionsin placethatthenew entitydoes
not know about.ECO semanticsspecifythatold subscrip-
tionsshouldapplyfor new entities,andthereforenew enti-
tiesneedto obtaininformationaboutthesubscriptionscur-
rently in effect. Thesolutionadoptedin the SECO imple-

mentationis to let theAIs holdingentitieswith active sub-
scriptionsresendthesubscriptionsto new AIs.

4.3. Implementation and managementof the multi-
castcommunication

mSECO’s multicastlayer is implementedbasedon IP
multicast,providing a meansof one-to-many group com-
munication. IP multicastusesUDP as its transportlayer
andthusis aconnectionlessbest-effort (unreliable)service.
A reliabletransportlayer canbe build on top of IP multi-
cast. mSECO usesa hashalgorithmto generatemulticast
groups.Thehashoperationis invokedontheconsumerside
for eachsubscriptionsentandon the raisingsidefor each
subscriptionreceived.TheIP groupaddressis calculatedby
thehashfunctionon theeventtypeandtheeventfilter (i.e.,
thenotify constraint).This enablesentitiesto managetheir
groupmembershipsbasedon a local decision,avoiding a
centralisedcomponent,andhenceasinglepoint of failure.

Thesuccessof thisapproachdependsontheefficiency of
the chosenhashalgorithmandon the sizeof the available
multicastgroupaddressspace.Thehashalgorithmusedin
mSECO is an adaptationof one proposedin [10, p.212]
which generatesa uniquekey from a sequenceof charac-
tersof arbitrarylengthandspreadsthekeys evenly into the
multicastgroupaddressspace.Theexactefficiency of var-
ioushashalgorithmsis beyondthescopeof this paper, but
thealgorithmmayeasilybe replacedby another. The cur-
rentlyavailableIP multicastaddressspaceconsistsof up to
28 bit addressanda 16 bit port number. Although the IP
multicastaddressspacemay have to be sharedwith other
applications,theratherlargenumberof availablemulticast
groupaddressesensuresthatour approachsufficeseven in
large-scalesystemsthat includemany differenteventtypes
andnotify constraints.

5. Simulating a Real-timeSystem

Our experimentsconsistof runningsimulationson data
from an actualreal-timeevent-basedsystemfound at the
Universityof Cambridge.Theexperimentsandconclusions
presentedin thispaperarebasedonempiricaleventdataob-
tainedfrom theCambridgesystem.This sectiondescribes
thesystemandour simulationof it.

5.1. ActiveBadgeSystem

The Cambridgesystemis an active badge system. It
is basedon a numberof infraredsensors(calledstations)
which areplacedin someuniversity laboratoriesandpick
up signalsemittedby battery-driven badgesworn by per-
sonnelin thelabs.Whena stationdetectsthepresenceof a
badge,it raisesa so-calledsightingevent to announcethat

4

Message
Receive
Message

ECO

Send

Application Code

Invocation
HandlerECO

Operation Operation

Send
Message Message

Receive

AIR

Receive

Invocation
Handler

Send
Message Message

Application Code

SECO

Application Instance

KANGA

Application Instance

SECO

Figure 3. Comm unications in a SECO Application

this particularbadgehasbeenseenin that particularloca-
tion. Stationsaregroupedinto networks, eachbeinga part
of a particularlaboratory. In addition,userscanalsobede-
tectedwhen they log into the campuscomputernetwork,
e.g.,via anX-terminal. Eachbadgecarriesa uniquebadge
identifierwhich is pickedup by thesensors.Certainkinds
of equipment,suchasworkstations,X-terminals,andsome
network devices,alsohavebadgeidentifiersassociatedwith
themandcancausesightingeventsto beraised.

The empiricaldatathatwe have obtainedfrom the sys-
tem consistsof 35,811sighting eventscollectedover pe-
riod of almost21 hoursby 118stationsdistributedover 12
networks. For eachsighting, the following information is
available:

Station Identifier identifying the network (by a symbolic
name)andthe station(by an integer) within that net-
work.

BadgeIdentifier identifying the sightedpersonor equip-
ment(by asequenceof six eight-bithexadecimalnum-
bersseparatedby dashes).

Time stamp identifying the moment when the sight-
ing was made in secondsand microseconds,since
00:00:00UTC, January1, 1970.1

The experimentalstrategy is to replaythesesightingsin a
simulation.WerepresenteachstationasanECO entity that
raisesthe sightingeventsrecordedin the Cambridgedata
at the appropriatetimes,asmeasuredby the local system
clock.2 The simulationandits configurationaredescribed
in thefollowing sections.

5.2. HardwareConfiguration

Our testbedconsistsof five PCswith a minimumof 16
megabytesof memory, running FreeBSDand connected

1As returnedby time(3).
2RecallthattheECO modelmakesno requirementsto eventordering,

andwecanthereforedisregardclockvariationsbetweennodes.

with a standard10 Mbit/s Ethernet.Becausewe measured
bandwidthusageon a per messagebasis(as opposedto,
e.g.,roundtriptimes)theexperimentswererun in multiuser
mode.Also, themachineswereon a network segmentwith
traffic not relatedto theexperiments.Thenative compiler,
GCC2.6.3,wasusedto compiletheprograms.

5.3. SoftwareConfiguration

In thesimulation,eachof thetwelvenetworksin thereal
badgesystemis representedby oneAI asshown in figure4
locatedon a single node(hogthrob). Four of the five
nodes(janis, zoot, statler, anddown) areused
to run AIs which actaseventconsumers.

To measurenetwork traffic asa function of the number
of AIs, someof our experiments(2 and3) arerun in four
configurations. ConfigurationA usesonly one consumer
node,configurationB usestwo,andsoon. Thisis illustrated
in figure4 wherethefour consumerAIs aremarkedwith the
configurationsin which they areactive.

All configurationsof all experimentshavetwo character-
istics,

1. Event subscribersandconsumersareheld on disjoint
AIs.

2. All AIs hostingevent-generatingentitiesoutlive those
with subscribingentities.

Given knowledgeof the implementation,this configu-
ration makes it relatively easyto calculateadministration
overheadcausedby distribution andfiltering. Whereasthe
latteris extremelyrelevantfor theevaluationof filtering asa
meansof scalability, theformercanbeassumedto beequiv-
alentto adistributedECO implementationwithoutfiltering
andis thereforeof little concernfor thispaper. A discussion
canbefoundin [3].

Filtering overheadis causedby makingandcancelling
subscriptions.This meansthat, given that � is the num-
ber of AIs and � the numberof subscriptionsperformed

5

(config A, B)

(config A)

Event Flow

(config A, B, C)

(config A, B, C, D)

Subscriber

statler

Subscriber

ORL-Net#6

Subscriber

42

Subscriber

40

2 4

41

11

15

8

17

6

43 48

ORL-Net#7

ORL-Three#8

14

2 3 4

5 7

20

8

9 10 11

1

19 20 21 22

25 27 28 29

30 31

4 5 6 7

8 11 12 13

14 15 16 17

18 25 26 32

ORL-Three#9

ORL-Net#1

9

6

51 52

53 54 55 58

16

ORL-Net#2

Subscriber

45

15

16 17 18 19

20 21 22 23

30

ORL-Net#4

27 33 34 35

36 37 38 57

ORL-Net#5

24 25 26 29

30 31 39 49

50 59

106

108 109111 114

116

CL-ArupExtn#8

838281

70 72 73 74

75 76

CL-ArupMain#8

ORL-HOME#5

1

ORL-Net#0

11 12 22 23

24 25 56 60

61 62 63

hogthrob

n

Station

n n

.....

Application
Instance

.....

Node

Subscriber

Subscriber

2

Application
Instance

...

Application
Instance

...

Application
Instance

...

Application
Instance

...

down

zoot

janis

Subscriber

10 14

Legend:

Figure 4. Badg e System Simulation Overview

during the application’s lifetime, the total numberof extra
messagesdueto filtering for unicast ���	��

��������������� andfor
multicast ������

��������������� canbewrittenas,

� �	��

����������������� � �!�#"%$ �'&(�*) ��+)!, �-��./�0�21-�3� �#"
� ���4
5�����������2���6� � �!�#"%$ �'&87:94;/<
=?>A@CBED�@�FA�

where �) ��+)G, �-��./�0�21-� is the number of extra messages
sent for a single subscription and in �H����

�I�I�����-�2��� .
7:9�;J<5=/>
@CBKD�@LFA� is the numberof messagesgeneratedby a
subscriptionandis independantof � .

To derive ���	��

��������������� in the given configuration,all
subscribingentitiesarehostedby asingleAI. Subscriptions
will be sentto all other instancesandthe total numberof
messagestransmittedover the network for any particular
subscriptioncanbecomputedeasily. If �#) is thenumberof
AIs at subscriptiontime, the numberof subscriptionmes-
sages(andreplies)sentis,

M � �)(NPO "
At unsubscriptiontime, the number of AIs may have
changed.Assumingit is called �3� andthat thereis an un-
subscriptionfor eachsubscription,thetotal numberof sub-

scribe/unsubscribemessagesis,
M � �#) NPO "3Q M � � � NRO "

In the configuration used in our experiments, the AIs
with event-generatingentitiesalwaysoutlive the onewith
the subscriber, so for this particularcasewe have �#)R$
� � . Setting �S$T�#)U$T� � the total numberof sub-
scribe/unsubscribemessagesis,

�H) �A+)G, ����.?�0�C1-�3� �#"($ M � �#) NPO "3Q M � � � NPO "($WV � � NPO "
Insertioninto theearlierformulafor � �X�4

�I�����G�-�2��� givesus,

���	��

��������������� � � �!�#"8$Y�'&(�) ��+)!, �-��./�0�21-� � �#"Z$RVX� � � NPO "
Moreover, for �����4
5�����������2��� we simply arguethatthereis a
messagedueto subscribeandamessagedueto unsubscribe
for eachsubscription,giving us2 messagespersubscription
andhence:

� ����

�I�I�����-�2���6� � �!�#"Z$ M �
Theseformulaeareusedin thenext sectionto computethe
numberof overheadmessages.Notea multiplier, which is
the numberof subscriberAIs, mustbe applieddepending
on whichconfigurationis beingused.

6

6. ThreeExperiments

In practice,the completeevent flow throughan active
badgesystemis large and difficult to comprehend.Sub-
scriberswith well-chosennotify constraintscanbeusedto
provide meaningfulviews of this event flow by dynami-
cally extracting eventsaccordingto certain patterns,and
in this way make it easierfor humansto monitor the sys-
tem at runtime. The threeexperimentspresentedin this
chapterweredesignedto presentsuchmeaningfulviewsof
the event flow and would be likely candidatesfor imple-
mentationin a real (non-simulation)badgesystem. Each
experimentfeaturesonetype of subscriber. Someexperi-
mentsfeaturea subscriberwhich canbe given parameters
andwhich filter eventsaccordingto their values.Suchsub-
scriberswererun with all possiblesetsof parameters.For
eachexperimentwe list thenumberof eventmessagessent
in theabsenceof filtering, thenumberof eventmessagesac-
tually sent,andthenumberof overheadmessagescausedby
subscriptions(calculatedaccordingto the formulae3 from
theprevioussection).Finally, thetotalnumberof messages
actuallysent(includingoverheadmessages)is listed,along
with the relative decreasein numberof messagessentdue
to eventfiltering.

6.1. Experiment 1: God

TheGodentity seesall andhencereceivesall events.In
a real badgesystem,sucha subscribercould be useful for
loggingpurposes.Hereit is alsousedto measurefiltering
overheadby implementinga filter without effect. Table1
shows theresultsfrom theexperiment.

Thereductionin numberof messagesis negative,mean-
ing thatusingthisfilter (notsuprisingly)introducedaslight
overhead. However, in the experimentsit was as low as
0.01%. It is important to look at the scenarioin which
this result was obtained. Overheadin the form of extra
network messagesis generatedat subscriptionandunsub-
scriptiontime but not while thesubscriptionis in effect. In
experiment1, therewasonly onesubscriptioninvolvedand
it wasin effect for a very long time (time enoughto raise
35,811events).Consequently, therelativecostdecreasedas
moreandmorebandwidthwasusedfor otherpurposes.We
concludethat long-lastingsubscriptionshave a relatively
low overhead.No significantdifferencewasnotedbetween
uSECO andmSECO in this experiment.

6.2. Experiment 2: CCTV

A numberof CCTVentitiessubscribeto all eventsgen-
eratedin a particularnetwork. In a realsystem,it couldbe

3Apply appropriatemultiplier asperpreviousobservation.

usedto monitoraspecific(andthereforemoremanageable)
areaof the entire system. This experimentwas run with
twelve subscribersin parallel,onefor eachnetwork. The
resultsaredisplayedin tables 2, 3, 4, and 5.

As can be seen,the reductionin numberof transmit-
ted messagesis quite high: above 90% on average. Had
eventssimply beenbroadcastinsteadof filtered, approxi-
matelytentimesasmany messageswould havebeentrans-
mittedacrossthenetwork. Eventhemostbusycameraonly
received20%of themessagesit would have receivedif fil-
tershadnot beenused.As in experiment1, thesesubscrip-
tionswerein effect for a long periodof time, andthefixed
administrationoverheadof 24 messagesin uSECO and2
messages(per camera)in mSECO graduallybecameless
andlesssignificantasmoreeventswereraised.

6.3. Experiment 3: PrivateEye

ThePrivateEyeentitysubscribesto all eventsgenerated
by aparticularbadge.In arealsystem,thissubscribercould
beusedto tracethemovementpatternsof aparticularbadge
owner. This experimentwas run with at least12 (out of
a possible)162subscribersin parallel,onefor eachbadge
presentin theeventdata. An extractof the results(twelve
privateeye entities)is shown in tables6, 7, 8, and 9. For
theremainingdata,pleasereferto [3].

Thedatashowssubstantialsavings,averagingjustabove
99.0% reduction in the numberof messagestransmitted
acrossthe network. Theprivateeye entitiesin this experi-
mentcollectively getall sightingsof registeredbadges.The
busiestof thebadge-wearerscaused658sightingsandstill
receivedonly 2% of themessagesit would havereceivedif
filters hadnot beenused.

6.4. Overall Conclusion

Figure 5 shows the averagenumberof event messages
sentdependingon the numberof subscribingAIs, accord-
ing to thedatafoundin experiment2. A similargraphcould
be depictedbasedon the data that resultedfrom experi-
ment3. For the uSECOexperiment,the numberof event
messagessentincreaseslinearly to thenumberof subscrib-
ing AIs. Whereas,the mSECOexperimentfound that the
numberof eventmessagessentis independentto thenum-
berof subscribingAIs. Furthermore,the graphshows that
thenumberof overheadmessages,althoughreducedin the
mSECOexperiment,donotcontributesignificantlytowards
thenumberof eventmessagessent.

Theexperimentspresentedin this sectionshows thatfil-
teringwasgenerallyworthwhilein theexamplesimulation.
Notify constraintscausedareductionof between99.9%and
80.0%for all entitiesusedin the experiments,except the
Godentitywherenotify constraintscausedaslight increase.

7

[
MX[X[X[
V [X[X[
\	[X[X[
]	[X[X[
O [[X[[
O MX[X[[
O V [X[[

[O M ^ V _

`ba	cJdfe�gXccJa	cJhji
k c
l-l�e�g	c5l

mon�p l�q/d�r p r�hEgs`utGl
v h�r2q5eXl!i

w

w

w

w

w x nEy i�r2q5eXl!i

Q Q Q Q

Q
Figure 5. The summar y graph of experimental data

To what extent thesefindingscanbe expectedto hold for
otherapplicationsof coursedependson theapplicationsin
question. The applicationin this scenariousedsubscrip-
tions which were in effect for a fairly long time. Appli-
cationswith frequentsubscriptions(andcancellingof sub-
scriptions)will benefit lessfrom using notify constraints,
but for theactive badgesystemconstraintswereextremely
useful.Thenext sectiondiscussesthreeothereventmodels,
two of which containfilters andoneof which doesnot.

7. RelatedWork

In this section,we look closerat threestate-of-the-art
event models. Two of themare from industryandone is
a researchmodel. They aretargetedfor differentapplica-
tion domainsandthereforehavedifferentcharacteristics.A
moredetaileddiscussionof the threemodels,in particular
in thecontext of ECO, canbefoundin [3].

7.1. JavaBeans

Java is an object-orientedprogramminglanguage,rem-
iniscentof C++, which hasbecomeincreasinglypopular
sinceit waslaunchedby Sunin themid 1990s.JavaBeans
is a componentmodelfor Java alsodevelopedby Sun,and
version1.01of theJavaBeansspecification([13]) definesan
eventmodel.Themodelis designedwith smallcentralised
systems(e.g.,window toolkits) in mind but canbeusedin
a distributedfashionby usingtheJava RemoteMethodIn-
vocation(RMI) system.

The modelhasno inherentfiltering support. The event
sourceandreceiver aretightly coupled,comparedto other
models,andmustmaintaindetailedknowledgeabouteach
other. Themodelspecifiesthatthesourceof aneventshould
invokereceiversin sequence,passingits threadof controlto
eachreceiver. Thesesemanticsmeanthat implementations
of the modelcannotbenefitfrom network level multicast.
In its currentform, the modelwill not scaleto be usedin
any distributedenvironmentof substantialsize.

7.2. CORBA Services

The Common Object Request Broker Architecture
(CORBA) is a middlewarearchitecturespecificiedby the
Object ManagementGroup (OMG). The architectureis
basedon theideaof usingObjectRequestBrokers(ORBs)
asa commonway for differentsystemsto performremote
procedurecalls (RPCs). In addition to ORB functional-
ity, the CORBA 2.0 specification([8]) describesa number
of general-purposeservices,oneof which is the CORBA
Event Service. Applicationsusing this servicecan com-
municateusingeventsin additionto thenormalRPCspro-
vided by the bareORB. Moreover, work is currently on-
going within the OMG to definea Notification Serviceto
extendtheeventservicewith eventfiltering capabilities.4

TheCORBA EventandNotificationServiceshave been
designedto beusablein virtually any settingwhereevent-
basedcommunicationis required. The pendingNotifica-
tion Serviceproposal,effectively a supersetof the Event

4TheOMG TechnicalCommitteinitiatedtheadoptionvoteonNovem-
ber13,1998.

8

Service,constitutesanextremelygeneraleventmodelwith
powerful filtering capabilitiesbasedon filters expressedin
an interpretedlanguage. It is difficult to imagine a dis-
tributedevent-basedapplicationthat could not fit into this
model. However, the generalityis paid for by an increase
in complexity—understandingandusingtheCORBA event
modelis difficult, anda correspondinglyhigh development
costcanbeexpectedfor applicationsusingit.

7.3. Cambridge Event Model

Theeventmodeldescribedin [1, 4] wasdevelopedat the
University of CambridgeComputerLaboratory. Like the
CORBA model,it hasfilters which areexpressedin an in-
terpretedlanguage.TheCambridgemodelis architecturally
muchsimplerthantheCORBA model,but hasafeaturenot
presentin theother, namelythatof eventcomposition. The
idea is that subscriberscan register interestin the occur-
renceof events,subjectto restrictionsontheorderin which
they occur. For example,it is possibleto register interest
in anevent,only if it hasbeen(or explicitly hasnot been)
precededby another. Thecompositeeventlanguageis rem-
iniscentof regularexpressionsandcanbeusedto form very
complex filter expressions.

In general,theCambridgemodelis lessflexible thanthe
CORBA servicebut alsoa lot lesscomplex. Its principal
strengthis thatit hasnativesupportfor compositeeventfil-
ters,a powerful featurewhich hasyet to be discoveredby
industry. LiketheCORBA model,but unliketheJavaBeans
model,it is designedfor large-scalesystems.

7.4. Summary

The threeevent modelsdiscussedhereare different in
many respects.TheCORBA andCambridgemodelsshare
somesimilarities in that both aredesignedfor large-scale
systemsandbothhave excellentfiltering support. In com-
parison,theJavaBeansmodelis well suitedfor centralised
or small-scaledistributedapplicationsbut hasno inherent
supportfor filtering.

8. Conclusion

The initial discussionaboutscalability identified three
parametersin the ECO model, one of which (numberof
entities)couldbe scaledby scalingthe second(numberof
nodes)at the costof decreasedscalabilityof the third (ac-
tivity). In any large-scaledistributedeventsystem,activity
is probablythe parameterwhich is mostdifficult to scale.
New nodescanbeaddedpracticallyad inifinitum but they
all have to exchangeeventsover thesamenetwork. Reduc-
ing network traffic is thereforeanimportantway of scaling
activity in any suchsystem.

Our work hasshown filtering to be an extremelypow-
erful meansto save network bandwidthin an event-based
systemasdemonstratedin theresultsobtainedoverunicast,
and consequentlya feasibleway to dramaticallyincrease
scalability. We have also shown that the introductionof
multicastcommunicationsproducesa further improvement
in scalabilityfrom thenetwork traffic perspecitive.

Of at leastequalsignificanceis our demonstrationthata
high level descriptionof constraintscanbeusedto generate
multicastgroups. In doing this we aremaskingout lower
level network decisionsfrom thedesigner.

Furthermore,becausethe experimentswere conducted
with datafrom a realevent-basedsystem,we claim there-
sultsto havepracticalrelevanceandexpectthemto hold for
similar event-basedsystemsoutsidethelaboratory. Indeed,
a sign that the industry is becomingaware of the impor-
tanceof event filtering is the OMG’s initiative to augment
their eventservicewith filtering capabilities.([9]).

Acknowledgements

We would like to thank IONA Technologiesand The
Irish HigherEducationCouncilfor their financialsupport.

References

[1] J.Bacon,J.Bates,R. Hayton,andK. Moody. UsingEvents
to Build Distributed Applications. In Proceedingsof the
1995 SecondInternational Workshopon Servicesin Dis-
tributedand Networked Environments(SDNE’95). Univer-
sity of CambridgeComputerLaboratory, 1995.

[2] G.Burke.Kanga:A framework for buildingapplicationspe-
cific communicationprotocols.Master’s thesis,Department
of ComputerScience,Trinity CollegeDublin, Ireland,Sept.
1996.

[3] M. Haahr. Implementationand Evaluationof Scalability
Techniquesin theECOModel. Master’s thesis,Department
of ComputerScience,Universityof Copenhagen,Denmark,
August1998.

[4] R. Hayton. OASIS,An OpenArchitecture for Secure Inter-
networkingServices. PhDthesis,Universityof Cambridge,
March1996.TechnicalReportTR399.

[5] R. Hayton,J.Bacon,J.Bates,andK. Moody. UsingEvents
to Build Large Scale Distributed Applications. In Pro-
ceedingsof theSeventhACM SIGOPSEuropeanWorkshop,
pages9–16.Associationfor ComputingMachinery, Septem-
ber1996.

[6] T. T. Moonlight. VOID shellspecification.ProjectDeliver-
ableMoonlight Del-1.5.1,DistributedSystemsGroup,De-
partmentof ComputerScience,Trinity College, Dublin 2,
Ireland,Mar. 1995. Also technicalreportTCD-CS-95-??,
Dept.of ComputerScience,Trinity CollegeDublin.

[7] K. O’Connell,T. Dinneen,S.Collins,B. Tangney, N. Harris,
andV. Cahill. Techniquesfor HandlingScaleandDistribu-
tion in Virtual Worlds. In Proceedingsof theSeventhACM

9

SIGOPSEuropeanWorkshop, pages17–24.Associationfor
ComputingMachinery, September1996.

[8] OMG. TheCommonObjectRequestBroker: Architecture
andSpecification,V2.1. ObjectManagementGroup,1995.

[9] OMG. Notificationservice,requestfor proposal,December
1996.

[10] B. Preiss. Data Structures and Algorithms with Object-
OrientedDesignPatternsin C++ , chapter8. JohnWiley
& Sons,Inc.,1999.

[11] M. Shapiro, D. Plainfosśe, P. Ferreira, and L. Amsaleg.
Somekey issuesin the designof distributed garbagecol-
lectionandreferences.In Unifying TheoryandPracticein
DistributedSystems, Dagstuhl(Germany), Sept.1994.

[12] G. Starovic, V. Cahill, and B. Tangney. An Event Based
ObjectModel for DistributedProgramming.In J. Murphy
andB. Stone,editors,Proceedingsof the1995International
Conferenceon ObjectOrientedInformationSystems, pages
72–86, London, December1995. Dublin City University,
Ireland,Springer-Verlag.

[13] Sun.JavaBeansAPI Specification,Version1.01,July1997.

10

Entity
Unfiltered
eventmsgs

Actual
eventmsgs

Overhead
msgs

Total
msgs

Relative
decrease

UnicastGod 35,811 35,811 24 35,835 -0.07%
MulticastGod 35,811 35,811 2 35,813 -0.01%

Table 1. Experiment 1: God (Configuration A)

Security
Camera

Unfiltered
unicast
eventmsgs

Unfiltered
multicast
eventmsgs

Actual
unicast
eventmsgs

Actual
multicast
eventmsgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

CL-ArupExtn# 35,811 35,811 52 52 24 2 76 54 99.8% 99.8%
CL-ArupMain# 35,811 35,811 22 22 24 2 46 24 99.9% 99.9%
ORL-Home#5 35,811 35,811 7 7 24 2 31 9 99.9% 100.0%
ORL-Net#0 35,811 35,811 2,125 2,125 24 2 2,149 2,127 94.0% 94.1%
ORL-Net#1 35,811 35,811 5,703 5,703 24 2 5,727 5,705 84.0% 84.1%
ORL-Net#2 35,811 35,811 6,932 6,932 24 2 6,956 6,934 80.6% 80.6%
ORL-Net#4 35,811 35,811 2,582 2,582 24 2 2,606 2,584 92.7% 92.8%
ORL-Net#5 35,811 35,811 5,023 5,023 24 2 5,047 5,025 85.9% 86.0%
ORL-Net#6 35,811 35,811 2,075 2,075 24 2 2,099 2,077 94.1% 94.2%
ORL-Net#7 35,811 35,811 1,899 1,899 24 2 1,923 1,901 94.6% 94.7%
ORL-Three#8 35,811 35,811 7,144 7,144 24 2 7,168 7,146 80.0% 80.0%
ORL-Three#9 35,811 35,811 2,247 2,247 24 2 2,271 2,249 93.7% 93.7%
Average 35,811 35,811 2,984 2,984 24 2 3,008 2,986 91.6% 91.7%

Table 2. Experiment 2: CCTV (Configuration A)

Security
Camera

Unfiltered
unicast
eventmsgs

Unfiltered
multicast
eventmsgs

Actual
unicast
eventmsgs

Actual
multicast
eventmsgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

CL-ArupExtn# 71,622 35,811 104 52 48 4 152 56 99.8% 99.8%
CL-ArupMain# 71,622 35,811 44 22 48 4 92 26 99.9% 99.9%
ORL-Home#5 71,622 35,811 14 7 48 4 62 11 99.9% 100.0%
ORL-Net#0 71,622 35,811 4,250 2,125 48 4 4,298 2,129 94.0% 94.1%
ORL-Net#1 71,622 35,811 11,406 5,703 48 4 11,454 5,707 84.0% 84.1%
ORL-Net#2 71,622 35,811 13,864 6,932 48 4 13,912 6,936 80.6% 80.6%
ORL-Net#4 71,622 35,811 5,164 2,582 48 4 5,212 2,586 92.7% 92.8%
ORL-Net#5 71,622 35,811 10,046 5,023 48 4 10,094 5,027 85.9% 86.0%
ORL-Net#6 71,622 35,811 4,150 2,075 48 4 4,198 2,079 94.1% 94.2%
ORL-Net#7 71,622 35,811 3,798 1,899 48 4 3,846 1,903 94.6% 94.7%
ORL-Three#8 71,622 35,811 14,288 7,144 48 4 14,336 7,148 80.0% 80.0%
ORL-Three#9 71,622 35,811 4,494 2,247 48 4 4,542 2,251 93.7% 93.7%
Average 71,622 35,811 5,969 2,984 48 4 6,017 2,988 91.6% 91.7%

Table 3. Experiment 2: CCTV (Configuration B)

Security
Camera

Unfiltered
unicast
eventmsgs

Unfiltered
multicast
eventmsgs

Actual
unicast
eventmsgs

Actual
multicast
eventmsgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

CL-ArupExtn# 107,433 35,811 156 52 72 6 228 58 99.8% 99.8%
CL-ArupMain# 107,433 35,811 66 22 72 6 138 28 99.9% 99.9%
ORL-Home#5 107,433 35,811 21 7 72 6 93 13 99.9% 100.0%
ORL-Net#0 107,433 35,811 6375 2,125 72 6 6,447 2,131 94.0% 94.0%
ORL-Net#1 107,433 35,811 17109 5,703 72 6 17,181 5,709 84.0% 84.1%
ORL-Net#2 107,433 35,811 20796 6,932 72 6 20,868 6,938 80.6% 80.6%
ORL-Net#4 107,433 35,811 7746 2,582 72 6 7,818 2,588 92.7% 92.8%
ORL-Net#5 107,433 35,811 15069 5,023 72 6 15,141 5,029 85.9% 86.0%
ORL-Net#6 107,433 35,811 6225 2,075 72 6 6,297 2,081 94.1% 94.2%
ORL-Net#7 107,433 35,811 5697 1,899 72 6 5,769 1,905 94.6% 94.7%
ORL-Three#8 107,433 35,811 21432 7,144 72 6 21,504 7,150 80.0% 80.0%
ORL-Three#9 107,433 35,811 6741 2,247 72 6 6,813 2,253 93.7% 93.7%
Average 107,433 35,811 8,953 2,984 72 6 9,025 2,990 91.6% 91.6%

Table 4. Experiment 2: CCTV (Configuration C)

11

Security
Camera

Unfiltered
unicast
eventmsgs

Unfiltered
multicast
eventmsgs

Actual
unicast
eventmsgs

Actual
multicast
eventmsgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

CL-ArupExtn# 143,244 35,811 208 52 96 8 304 60 99.8% 99.8%
CL-ArupMain# 143,244 35,811 88 22 96 8 184 30 99.9% 99.9%
ORL-Home#5 143,244 35,811 28 7 96 8 124 15 99.9% 100.0%
ORL-Net#0 143,244 35,811 8,500 2,125 96 8 8,596 2,133 94.0% 94.0%
ORL-Net#1 143,244 35,811 22,812 5,703 96 8 22,908 5,711 84.0% 84.1%
ORL-Net#2 143,244 35,811 27,728 6,932 96 8 27,824 6,940 80.6% 80.6%
ORL-Net#4 143,244 35,811 10,328 2,582 96 8 10,424 2,590 92.7% 92.8%
ORL-Net#5 143,244 35,811 20,092 5,023 96 8 20,188 5,031 85.9% 86.0%
ORL-Net#6 143,244 35,811 8,300 2,075 96 8 8,396 2,083 94.1% 94.2%
ORL-Net#7 143,244 35,811 7,596 1,899 96 8 7,692 1,907 94.6% 94.7%
ORL-Three#8 143,244 35,811 28,576 7,144 96 8 28,672 7,152 80.0% 80.0%
ORL-Three#9 143,244 35,811 8,988 2,247 96 8 9,084 2,255 93.7% 93.7%
Average 143,244 35,811 11,937 2,984 96 8 12,033 2,992 91.6% 91.6%

Table 5. Experiment 2: CCTV (Configuration D)

Security
Camera

Unfiltered
unicast
eventmsgs

Unfiltered
multicast
eventmsgs

Actual
unicast
eventmsgs

Actual
multicast
eventmsgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

0-0-0-0-10-1 35,811 35,811 651 651 24 2 675 653 98.1% 98.2%
0-0-0-0-13-e 35,811 35,811 658 658 24 2 682 660 98.1% 98.2%
0-0-0-0-4-2b 35,811 35,811 12 12 24 2 36 14 99.9% 100.0%
0-0-0-0-79-0 35,811 35,811 2 2 24 2 26 4 99.9% 100.0%
0-0-0-0-81-2 35,811 35,811 353 353 24 2 377 355 98.9% 99.0%
0-0-0-0-81-8 35,811 35,811 110 110 24 2 134 112 99.6% 99.7%
0-0-0-0-82-5 35,811 35,811 332 332 24 2 356 334 99.0% 99.1%
0-0-0-0-82-5 35,811 35,811 338 338 24 2 362 340 99.0% 99.1%
0-0-0-0-83-2 35,811 35,811 59 59 24 2 83 61 99.8% 99.8%
0-0-0-0-83-4 35,811 35,811 279 279 24 2 303 281 99.2% 99.2%
0-0-0-0-83-9 35,811 35,811 50 50 24 2 74 52 99.8% 99.9%
0-0-0-0-e-e9 35,811 35,811 548 548 24 2 572 550 98.4% 98.5%
Average 35,811 35,811 283 283 24 2 307 285 99.1% 99.2%

Table 6. Experiment 3: Private Eye (Configuration A)

Security
Camera

Unfiltered
unicast
eventmsgs

Unfiltered
multicast
eventmsgs

Actual
unicast
eventmsgs

Actual
multicast
eventmsgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

0-0-0-0-10-1 71,622 35,811 1,302 651 48 4 1,350 655 98.1% 98.2%
0-0-0-0-13-e 71,622 35,811 1,316 658 48 4 1,364 662 98.1% 98.2%
0-0-0-0-4-2b 71,622 35,811 24 12 48 4 72 16 99.9% 100.0%
0-0-0-0-79-0 71,622 35,811 4 2 48 4 52 6 99.9% 100.0%
0-0-0-0-81-2 71,622 35,811 706 353 48 4 754 357 98.9% 99.0%
0-0-0-0-81-8 71,622 35,811 220 110 48 4 268 114 99.6% 99.7%
0-0-0-0-82-5 71,622 35,811 664 332 48 4 712 336 99.0% 99.1%
0-0-0-0-82-5 71,622 35,811 676 338 48 4 724 342 99.0% 99.0%
0-0-0-0-83-2 71,622 35,811 118 59 48 4 166 63 99.8% 99.8%
0-0-0-0-83-4 71,622 35,811 558 279 48 4 606 283 99.2% 99.2%
0-0-0-0-83-9 71,622 35,811 100 50 48 4 148 54 99.8% 99.8%
0-0-0-0-e-e9 71,622 35,811 1,096 548 48 4 1,144 552 98.4% 98.5%
Average 71,622 35,811 565 283 48 4 613 287 99.1% 99.2%

Table 7. Experiment 3: Private Eye (Configuration B)

Security
Camera

Unfiltered
unicast
eventmsgs

Unfiltered
multicast
eventmsgs

Actual
unicast
eventmsgs

Actual
multicast
eventmsgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

0-0-0-0-10-1 107,433 35,811 1,953 651 72 6 2,025 657 98.1% 98.2%
0-0-0-0-13-e 107,433 35,811 1,974 658 72 6 2,046 664 98.1% 98.1%
0-0-0-0-4-2b 107,433 35,811 36 12 72 6 108 18 99.9% 99.9%
0-0-0-0-79-0 107,433 35,811 6 2 72 6 78 8 99.9% 100.0%
0-0-0-0-81-2 107,433 35,811 1,059 353 72 6 1,131 359 98.9% 99.0%
0-0-0-0-81-8 107,433 35,811 330 110 72 6 402 116 99.6% 99.7%
0-0-0-0-82-5 107,433 35,811 996 332 72 6 1,068 338 99.0% 99.1%
0-0-0-0-82-5 107,433 35,811 1,014 338 72 6 1,086 344 99.0% 99.0%
0-0-0-0-83-2 107,433 35,811 177 59 72 6 249 65 99.8% 99.8%
0-0-0-0-83-4 107,433 35,811 837 279 72 6 909 285 99.2% 99.2%
0-0-0-0-83-9 107,433 35,811 150 50 72 6 222 56 99.8% 99.8%
0-0-0-0-e-e9 107,433 35,811 1,644 548 72 6 1,716 554 98.4% 98.5%
Average 107,433 35,811 848 283 72 6 920 289 99.1% 99.2%

Table 8. Experiment 3: Private Eye (Configuration C)

12

Security
Camera

Unfiltered
unicast
eventmsgs

Unfiltered
multicast
eventmsgs

Actual
unicast
eventmsgs

Actual
multicast
eventmsgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

0-0-0-0-10-1 143,244 35,811 2,604 651 96 8 2,700 659 98.1% 98.2%
0-0-0-0-13-e 143,244 35,811 2,632 658 96 8 2,728 666 98.1% 98.1%
0-0-0-0-4-2b 143,244 35,811 48 12 96 8 144 20 99.9% 99.9%
0-0-0-0-79-0 143,244 35,811 8 2 96 8 104 10 99.9% 100.0%
0-0-0-0-81-2 143,244 35,811 1,412 353 96 8 1,508 361 98.9% 99.0%
0-0-0-0-81-8 143,244 35,811 440 110 96 8 536 118 99.6% 99.7%
0-0-0-0-82-5 143,244 35,811 1,328 332 96 8 1,424 340 99.0% 99.1%
0-0-0-0-82-5 143,244 35,811 1,352 338 96 8 1,448 346 99.0% 99.0%
0-0-0-0-83-2 143,244 35,811 236 59 96 8 332 67 99.8% 99.8%
0-0-0-0-83-4 143,244 35,811 1,116 279 96 8 1,212 287 99.2% 99.2%
0-0-0-0-83-9 143,244 35,811 200 50 96 8 296 58 99.8% 99.8%
0-0-0-0-e-e9 143,244 35,811 2,192 548 96 8 2,288 556 98.4% 98.4%
Average 143,244 35,811 1,131 283 96 8 1,227 291 99.1% 99.2%

Table 9. Experiment 3: Private Eye (Configuration D)

13

