2,048 research outputs found

    ODRL Policy Modelling and Compliance Checking

    Get PDF
    This paper addresses the problem of constructing a policy pipeline that enables compliance checking of business processes against regulatory obligations. Towards this end, we propose an Open Digital Rights Language (ODRL) profile that can be used to capture the semantics of both business policies in the form of sets of required permissions and regulatory requirements in the form of deontic concepts, and present their translation into Answer Set Programming (via the Institutional Action Language (InstAL)) for compliance checking purposes. The result of the compliance checking is either a positive compliance result or an explanation pertaining to the aspects of the policy that are causing the noncompliance. The pipeline is illustrated using two (key) fragments of the General Data Protect Regulation, namely Articles 6 (Lawfulness of processing) and Articles 46 (Transfers subject to appropriate safeguards) and industrially-relevant use cases that involve the specification of sets of permissions that are needed to execute business processes. The core contributions of this paper are the ODRL profile, which is capable of modelling regulatory obligations and business policies, the exercise of modelling elements of GDPR in this semantic formalism, and the operationalisation of the model to demonstrate its capability to support personal data processing compliance checking, and a basis for explaining why the request is deemed compliant or not

    Compliance Using Metadata

    Get PDF
    Everybody talks about the data economy. Data is collected stored, processed and re-used. In the EU, the GDPR creates a framework with conditions (e.g. consent) for the processing of personal data. But there are also other legal provisions containing requirements and conditions for the processing of data. Even today, most of those are hard-coded into workflows or database schemes, if at all. Data lakes are polluted with unusable data because nobody knows about usage rights or data quality. The approach presented here makes the data lake intelligent. It remembers usage limitations and promises made to the data subject or the contractual partner. Data can be used as risk can be assessed. Such a system easily reacts on new requirements. If processing is recorded back into the data lake, the recording of this information allows to prove compliance. This can be shown to authorities on demand as an audit trail. The concept is best exemplified by the SPECIAL project https://specialprivacy.eu (Scalable Policy-aware Linked Data Architecture For PrivacyPrivacy, TransparencyTransparency and ComplianceCompliance). SPECIAL has several use cases, but the basic framework is applicable beyond those cases

    Knowledge Components and Methods for Policy Propagation in Data Flows

    Get PDF
    Data-oriented systems and applications are at the centre of current developments of the World Wide Web (WWW). On the Web of Data (WoD), information sources can be accessed and processed for many purposes. Users need to be aware of any licences or terms of use, which are associated with the data sources they want to use. Conversely, publishers need support in assigning the appropriate policies alongside the data they distribute. In this work, we tackle the problem of policy propagation in data flows - an expression that refers to the way data is consumed, manipulated and produced within processes. We pose the question of what kind of components are required, and how they can be acquired, managed, and deployed, to support users on deciding what policies propagate to the output of a data-intensive system from the ones associated with its input. We observe three scenarios: applications of the Semantic Web, workflow reuse in Open Science, and the exploitation of urban data in City Data Hubs. Starting from the analysis of Semantic Web applications, we propose a data-centric approach to semantically describe processes as data flows: the Datanode ontology, which comprises a hierarchy of the possible relations between data objects. By means of Policy Propagation Rules, it is possible to link data flow steps and policies derivable from semantic descriptions of data licences. We show how these components can be designed, how they can be effectively managed, and how to reason efficiently with them. In a second phase, the developed components are verified using a Smart City Data Hub as a case study, where we developed an end-to-end solution for policy propagation. Finally, we evaluate our approach and report on a user study aimed at assessing both the quality and the value of the proposed solution

    Formalisation and Implementation of the XACML Access Control Mechanism

    Get PDF
    We propose a formal account of XACML, an OASIS standard adhering to the Policy Based Access Control model for the specifica- tion and enforcement of access control policies. To clarify all ambiguous and intricate aspects of XACML, we provide it with a more manageable alternative syntax and with a solid semantic ground. This lays the basis for developing tools and methodologies which allow software engineers to easily and precisely regulate access to resources using policies. To demonstrate feasibility and effectiveness of our approach, we provide a software tool, supporting the specification and evaluation of policies and access requests, whose implementation fully relies on our formal development

    Perennial semantic data terms of use for decentralized web

    Get PDF
    In today’s digital landscape, the Web has become increasingly centralized, raising concerns about user privacy violations. Decentralized Web architectures, such as Solid, offer a promising solution by empowering users with better control over their data in their personal ‘Pods’. However, a significant challenge remains: users must navigate numerous applications to decide which application can be trusted with access to their data Pods. This often involves reading lengthy and complex Terms of Use agreements, a process that users often find daunting or simply ignore. This compromises user autonomy and impedes detection of data misuse. We propose a novel formal description of Data Terms of Use (DToU), along with a DToU reasoner. Users and applications specify their own parts of the DToU policy with local knowledge, covering permissions, requirements, prohibitions and obligations. Automated reasoning verifies compliance, and also derives policies for output data. This constitutes a “perennial” DToU language, where the policy authoring only occurs once, and we can conduct ongoing automated checks across users, applications and activity cycles. Our solution is built on Turtle, Notation 3 and RDF Surfaces, for the language and the reasoning engine. It ensures seamless integration with other semantic tools for enhanced interoperability. We have successfully integrated this language into the Solid framework, and conducted performance benchmark. We believe this work demonstrates a practicality of a perennial DToU language and the potential of a paradigm shift to how users interact with data and applications in a decentralized Web, offering both improved privacy and usability

    Governance of Autonomous Agents on the Web: Challenges and Opportunities

    Get PDF
    International audienceThe study of autonomous agents has a long tradition in the Multiagent System and the Semantic Web communities, with applications ranging from automating business processes to personal assistants. More recently, the Web of Things (WoT), which is an extension of the Internet of Things (IoT) with metadata expressed in Web standards, and its community provide further motivation for pushing the autonomous agents research agenda forward. Although representing and reasoning about norms, policies and preferences is crucial to ensuring that autonomous agents act in a manner that satisfies stakeholder requirements, normative concepts, policies and preferences have yet to be considered as first-class abstractions in Web-based multiagent systems. Towards this end, this paper motivates the need for alignment and joint research across the Multiagent Systems, Semantic Web, and WoT communities, introduces a conceptual framework for governance of autonomous agents on the Web, and identifies several research challenges and opportunities

    A note on validity in law and regulatory systems (position paper)

    Get PDF
    The notion of validity fulfils a crucial role in legal theory. The emerging Web 3.0 opens a new landscape where Semantic Web languages, legal ontologies, and the construction of Normative Multiagent Systems are built up to cover new regulatory needs. Conceptual models for complex regulatory systems shape the characteristic features of rules, norms and principles in different ways. This position paper outlines one of such multilayered governance models, designed for the CAPER platform

    Reasoning about river basins: WaWO+ revisited

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper characterizes part of an interdisciplinary research effort on Artificial Intelligence (AI) techniques and tools applied to Environmental Decision-Support Systems (EDSS). WaWO+ the ontology we present here, provides a set of concepts that are queried, advertised and used to support reasoning about and the management of urban water resources in complex scenarios as a River Basin. The goal of this research is to increase efficiency in Data and Knowledge interoperability and data integration among heterogeneous environmental data sources (e.g., software agents) using an explicit, machine understandable ontology to facilitate urban water resources management within a River Basin.Peer ReviewedPostprint (author's final draft
    corecore