
Perennial Semantic Data Terms of Use for Decentralized Web
Rui Zhao

University of Oxford
Oxford, UK

rui.zhao@cs.ox.ac.uk

Jun Zhao
University of Oxford

Oxford, UK
jun.zhao@cs.ox.ac.uk

ABSTRACT
In today’s digital landscape, the Web has become increasingly cen-
tralized, raising concerns about user privacy violations. Decentral-
ized Web architectures, such as Solid, offer a promising solution by
empowering users with better control over their data in their per-
sonal ‘Pods’. However, a significant challenge remains: users must
navigate numerous applications to decide which application can be
trusted with access to their data Pods. This often involves reading
lengthy and complex Terms of Use agreements, a process that users
often find daunting or simply ignore. This compromises user au-
tonomy and impedes detection of data misuse. We propose a novel
formal description of Data Terms of Use (DToU), along with a DToU
reasoner. Users and applications specify their own parts of the DToU
policy with local knowledge, covering permissions, requirements,
prohibitions and obligations. Automated reasoning verifies compli-
ance, and also derives policies for output data. This constitutes a
“perennial” DToU language, where the policy authoring only occurs
once, and we can conduct ongoing automated checks across users,
applications and activity cycles. Our solution is built on Turtle,
Notation 3 and RDF Surfaces, for the language and the reasoning
engine. It ensures seamless integration with other semantic tools
for enhanced interoperability. We have successfully integrated this
language into the Solid framework, and conducted performance
benchmark. We believe this work demonstrates a practicality of a
perennial DToU language and the potential of a paradigm shift to
how users interact with data and applications in a decentralized
Web, offering both improved privacy and usability.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; • Security and privacy → Usability in security
and privacy; • Information systems→ Semantic web description
languages.

KEYWORDS
Decentralized Web; Data Terms of Use; Usage Control; Formal
Modelling; Automated Reasoning; Notation 3

ACM Reference Format:
Rui Zhao and Jun Zhao. 2024. Perennial Semantic Data Terms of Use for
Decentralized Web. In Proceedings of the ACM Web Conference 2024 (WWW
’24), May 13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3589334.3645631

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0171-9/24/05.
https://doi.org/10.1145/3589334.3645631

1 INTRODUCTION
After years of development, the Web has become an indispensable
part of people’s life. However, the centralization of the Web has
risen as a pressing challenge, leading to various issues like pervasive
user behavioural manipulation, privacy breaches and an imbalance
of power [34, 40]. Decentralization is viewed as a potential solution
to address these issues [15, 21], and initiatives like Solid (Social
Linked Data) [30] have gained attention for their aim to return data
and control to the user, while respecting the openesss and fairness
of Web standards and infrastructures.

In a decentralizedWeb, users store their data in their own storage
(such as Solid Pods), and applications must request permission to
use and store data there. This shift in data control has the potential
to reduce ‘vendor-lock-in’, as it limits the privileged ownership
of data currently prevalently observed in large platforms. Further-
more, it is also crucial to fostering competition among different
applications. However, one aspect that has received less attention
in the decentralized setting is how users can sensibly decide which
application should be granted permission to access their data.

Assume in the decentralized setting, Alice wants to use a shop-
ping app to buy shoes, which may require access to several types
of data in her Pod, including shoe size, delivery address, and billing
information. She is concerned about how such an app may han-
dle her data ethically. In the meantime, Bob, the developer of a
shopping app, HappyShop, wants to build trust with users and is
willing to provide descriptions on how HappyShop handles users
data through its ‘Terms of Use’. However, users like Alice typi-
cally do not read these terms (aka. “the biggest lie on the Internet”)
because of information overload and their length [20, 24]. The prob-
lem is exacerbated in the decentralized setting with its numerous
apps that may require users’ decision regarding access to their data
Pods, especially if, e.g. an accounting app, TotalAcc, reuses the
data produced by HappyShop (e.g. order details). As a result, users
autonomy may still be compromised in the decentralized Web, and
can lead to many issues related to data misuse [8, 35, 39] or loss of
trust [13].

Facing these challenges, we propose the concept of “perennial”
Data Terms of Use (DToU), characterizing a formal language model
that addresses the following challenges in a decentralized Web
context: C1) expressing data provider’s DToU for their data; C2)
imparting application’s (developer’s) DToU on how they handle
data;C3) performing compliance checking over data usage requests;
C4) supporting DToU policy reusing across applications and data
providers; C5) facilitating apt DToU-compliant cross-application
data sharing.With such a languagemodel, automated reasoning can
be performed thus only exposing distilled important information to
users, reducing the amount of information and numbers of decisions
exposed to the user, thus incentivizing responsible handling of
Terms of Use. It is called “perennial” because a stakeholder only

https://orcid.org/0000-0003-2993-2023
https://orcid.org/0000-0001-6935-9028
https://doi.org/10.1145/3589334.3645631
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589334.3645631

WWW ’24, May 13–17, 2024, Singapore, Singapore Rui Zhao and Jun Zhao

needs to specify the DToU once in the beginning, and it can be
reused across activity cycles and across stakeholders, just like the
plants being implanted once and kept growing in the future.

The perennial concept is in contrast to sticky policy [22, 26] which
proposed principles for supporting distributed DToU compliance,
but, in the core definition, only explicitly discussed requirements
1 and 3. Sticky policy supports DToU-compliant cross-application
data sharing, but suggests the policy staying the same regardless
of data processing history, thus is not apt, leading to the potential
of frequent user disruption. Existing research on policy languages,
often coined as access control [27] and usage control [19, 32], also
proposed formal models for expressing certain parts of DToU. There
are different flavours of them, targeting at different scenarios, with
diverse properties and capacities. As we will introduce in Sec 2,
they provide many design principles and concepts that are useful
across contexts, but impose their individual limitations.

In this paper, we propose a perennial policy language that ad-
dresses challenges from decentralization while maintaining expres-
siveness, by using heterogeneous yet interoperable data policy and
application policy. The language and reasoningmechanism are built
on semantic technologies, namely Turtle [5], Notation 3 [6] and
RDF Surfaces [12]. This facilitates the creation of a common vocabu-
lary, and enables integration with other semantic tools, particularly
ontologies and ontological reasoning. Furthermore, our approach
is integrated with Solid, a decentralized user-focused Web architec-
ture, and we evaluate its performance across various workloads1.
To the best of our knowledge, we are the first work proposing a
(semantic) perennial policy language that supports stakeholders
expressing their DToU in the context of the decentralized Web. We
believe this work provides a good starting of the paradigm shift for
enhancing user autonomy and control.

2 RELATED RESEARCH
Several explorations have delved into the utilization of computer-
interpretable formal encoding of policies to enable (semi-)automated
decision-making of data usage authorization. These range from the
classical access control to more advanced dynamic usage descrip-
tions. In this section, we examine this body of research and discusses
their relevance to a decentralized Web context. The main features
of several closely-related policy languages are summarized in Table
1 (see Appendix A for further details of term explanation), and this
section discusses their general properties. Where relevant, we will
refer to the challenges or concepts shown in the table.

The most well-known line of research involves various access
control models, each based on different principles. For example,
models such as Mandatory Access Control (MAC) [33], Access Con-
trol List (ACL), Role-Based Access Control (RBAC) [31] or Attribute-
Based Access Control (ABAC), can be based on information ranging
from narrower details like user identity to broader categories such
as user groups, and contextual information. Several languages uses
or implements them, such as E-P3P [18], WAC [4] and P2U [16].

1See our repo https://github.com/OxfordHCC/solid-dtou for the source code. Ex-
perimental logs and other information are in the supplementary artifact at
https://doi.org/10.5281/zenodo.10685603.

There is also research that falls in the middle ground, such as Label-
Based Access Control (LaBAC) [7], a simplified variant of ABAC
while more expressive than MAC and RBAC.

Other policy languages may also use some concepts from access
control models, with additional features, such as eXtensible Access
Control Markup Language (XACML) [1], a widely-known XML-
based standard for ABACwith additional constructs like obligations
for cloud services, and Open Digital Rights Language (ODRL) [2],
an expressive policy language serializable to JSON-LD (also to be
discussed later). Thoth [9], on the other hand, uses its own logic-
like policy language to express policies not only for read action,
but also for write, update and declassification actions. It permits
intricate evaluations of formulae that involve rich operators and
the incorporation of external sources of information during policy
evaluation.

These approaches vary in terms of expressiveness and usage con-
texts. However, they tackle the problem either purely relying on the
data providers, or from a holistic view requiring a ‘supervisor’. In
both settings, they require the policy author with abundant knowl-
edge to actively compile and maintain policies during personnel
changes (e.g. adding a new application, or assigning a user/operator
with a new role). While this assumption is reasonable for manag-
ing data usage at an institutional level, it presents challenges in
contexts with multiple independent stakeholders that engage and
disengage dynamically (esp. C2, C4 and C5), as is the case in a
decentralized Web. For example, they can only define the policy
after a user like Alice has determined whether a shopping app
like HappyShop should be granted permission or not, rather than
supporting proactive decisions.

In contrast, some research recognizes the dynamic nature of
data and applications, and offers different solutions. LoNet [14],
for example, employs Information Flow Control (IFC) for RBAC,
along with conditional predefined policy evolution (C5). It tries
to address the expressiveness through the so-called meta-code (an
external script) for checking additional policy information like
time. However, the meta-code is arbitrary code and difficult to
statically verify. CamFlow [25], on the other hand, borrows concepts
from Decentralized IFC (DIFC) [23], and employs homogeneous
policy constructs (tags and labels) to encode both the data policy
and application capability, and checks their compatibility (C2 &
C4). It expresses policy evolution (C5) by adding or removing tags
for output (policy) based on input (policy). Smart object [29] uses
complex constructs to define permitted and prohibited use of data,
and combines this with the application information (using relational
calculus) (C2) to derive policies for output data (C5), assuming and
leveraging a tabular structure of data. Dr.Aid [28] focuses on the
context of data-intensive scientific workflows, employing different
structures to express data rules and process rules (C2). It supports
policy reasoning and derivation for workflow graphs composed of
multi-input-multi-output processes (C5). A common feature among
these approaches is the separation of data policy from application
policy. They have demonstrated that this separation allows the
reasoner to verify if an application complies with the data policy,
aligningwith our intended goal. However, they often have relatively
limited expressiveness compared to the earlier research.

There are also policy languages that utilize semantic technologies
or are tailored for specific use cases within the decentralized Web.

https://github.com/OxfordHCC/solid-dtou

Perennial Semantic Data Terms of Use for Decentralized Web WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 1: Summarization of features under different categories of related policy languages.

C1 - C5 refers to the Challenges 1 - 5 identified for perennial language. For column C1, A means authorization, O means obligation, and + means additional features. For columns C3
& C4, � means true, 2� means true if using same environmental information schema. For columns C2, C5 and Condition, A means application, C means capacity, D means data type /

category, E means environmental information, E means entire environmental information exposed in knowledge base, I means multi-input, M means use mode, O means
multi-output, P means purpose, T means transformation, U means user, X means external information.

Language C1 C2 C3 C4 C5 Condition Policy Author Format

E-P3P[18] AO � 2� EPU Supervisor Custom
XACML[1]/ODRL[2] AO+ � 2� EPU Owner XML/JSON-LD
WAC[4]/ACP[3] A � AU/AUX Owner Turtle

P2U[16] A � AU Owner XML
LaBAC[7] A � AU Supervisor Custom
AIR[17] A � 2� EU Owner N3
Thoth[9] A � EUX Owner Logic-like
Eddy[8] AO MP 2� T MPU Supervisor OWL-DL
LoNet[14] A � � T EU Supervisor Custom

CamFlow[25] A C � � T C Owner Custom
Smart object[29] A DIP � � T DP Owner Custom

Dr.Aid[28] AO IP � � OT EPU Owner Custom
This paper AO CDIP � � OT CEPU Owner Turtle

One notable example is ODRL [2], which offers a comprehensive
set of concepts, including permissions, prohibitions, obligations,
remedies, conditions, purposes and agents. However, originated
as a data right expression language, ODRL primarily focuses on
expressing what is (not) permitted for the data, and lacks a corre-
sponding mechanism for expressing application information. While
efforts are being made to address this issue [10], there is still un-
certainty regarding the eventual resolution. The AIR [17] policy
language, based on Notation 3 (N3) [6], specifies permitted and
prohibited actions for data processing. It allows for the expression
of custom rules directly on the contextual knowledge base of data
processing. However, in the absence of general agreements across
applications, this requires the policy author to have the knowledge
of information and structure of the knowledge base, resulting in a
strong coupling with the application. Eddy [8] examined real-life
Terms of Use from online services and proposed a policy language
based on OWL-DL to express key data requirements, including per-
missions, obligations and prohibitions. The language distinguishes
between different use modes (collect, use, retain and transfer) and
demonstrated compliance checking between two policy sets of two
services. However, there is no clear demonstration of how data
providers can utilize this language, as it necessitates highly de-
tailed descriptions. Solid, a decentralized Web architecture based
on Linked Data, has its own policy languages, mainly for access
control purposes. This includes WAC [4], a policy language for
expressing ACL, and ACP [3], an advanced policy language that
supports a broad range of conditions, such as Verifiable Credentials.
WAC and ACP leverage contextual information exposed by Solid
but are less expressive compared to ODRL and AIR.

In summary, the various policy languages exhibit different fea-
tures tailored for their specific use cases. Among them, we find
the second category of research, which separates data policy from
application policy, to be the most suitable for our intended design
context. However, they are not directly applicable to our context,

primarily due to limitations in their expressiveness. Our research
takes inspiration from them, addresses such limitations, and pro-
vides better expressiveness in an extensible way.

3 A PERENNIAL POLICY LANGUAGE
3.1 Language design
Broadly speaking, our language model consists two parts: the data
policy and the app(lication) policy. This design is crucial to enable
automated data access negotiation between a data owner and a data
consumer (e.g. applications). The data policy enables data providers
to define policy-related metadata and expectations for the data
consumers. The app policy allows app developers to encode the
promises and expectations for accessing the data by the application.

The reasoner performs three types of tasks: a) conformance
check: deciding whether the application can use the data; b) obliga-
tion check, assessing what obligations are activated by the appli-
cation; and c) policy derivation: determining the policy for output
data and saving a data owner to define data usage policy for derived
data. Figure 1 gives an overview of the language and the relation
between different concepts.

In the following, we provide more detailed descriptions about
the language, with all examples expressed in Turtle2 [5].

3.1.1 Data Policy. Conceptually, the data policy consists of two
layers: attributes and semantics. Attributes form the base layer, ex-
pressing information about the data and/or the policy. On top of that
is the semantic layer, providing semantic concepts like tags, prohi-
bitions and obligations, while referencing information expressed
in the attribute layer. In the Turtle syntax of the policy encoding,
each statement/tuple is expressed as a node with corresponding
type and properties.

More precisely, each attribute is a simple tuple: (name, class,

value). While they alone do not carry semantics for the policy, they
2For simplicity, we omit the prefixes, and only use : for named nodes.

WWW ’24, May 13–17, 2024, Singapore, Singapore Rui Zhao and Jun Zhao

name
class

value
Attribute

ref

1

binding

*

Tag

binding

*

1

new_class

mode

1..*

Prohibition
argument

*

binding

*

1

activation_condition

Obligation

Requirement Tagging

Semantic
Layer

Base
Layer

purpose

*

app_name
*

user *Activation
Condition

App

User

Shared knowledge

Class

Purpose

Tag
Class

Action
Class

Name

Value ...

...

Refinement

Filter

InputSpecProvide

Data
URI

PortName

PurposePurpose Integrity

Expect

OutputSpec

Security *
purpose

* provide

*

expect

Downstream *

downstream

1

data

1

port

1

name

1

name

1

name

DeleteEdit1

filter

0..1

name

0..1

class

0..1
value

1 new_value

*

app_name

*

purpose

Data Policy App Policy

*
from

*
refinement

Legend

Concept

Secondary
Concept

Entity
Domain

Ontology /
Vocabulary

Composition

Subclass

Finite
subclass

Use
Mode

1

activation_condition

1

1

1

1
0..1

input

Figure 1: Language design and relation between concepts

are designed with a flexible structure to describe information about
data and policy. For example, attributes can be used to define Alice
as an author, e.g. (:author, :string, "Alice"), or encode a textual
description (e.g. (:ack-text, :string, "This dataset is by Alice")), or
specify the data fields (e.g. (:col-2, :field, :column-2)). This concept
of attributes is borrowed from Dr.Aid [28], which has been demon-
strated as a powerful structure for supporting policy derivation.
The following example shows how Alice defines her email address
information as an attribute – the attribute is a kind of ‘string’ and
has the value of “alice@a.b”.
:attr1 a :Attribute;

:name :alice -email;

:class :string;

:value "alice@a.b".

Tags, from the semantic layer of our model, can be used to specify
the requirements or available resources. Two typical categories
of tags are security and integrity: security specifies which secu-
rity clearance an application needs to possess to use the data; and
integrity identifies the integrity level(s) this dataset has, to be re-
quested by the application (policy). Inspired by CamFlow [25] (see
Sec 2), tags can be used to facilitate capacity of conformance check,
see later Sec 3.2.2.

The descriptor of a tag (i.e. which tag it is) is associated with
the class of an attribute using attribute_ref; other information in
the attribute is not used by a tag. Our policy language also allows
expressing additional categories of tags, such as Purposes.

For example, the following excerpt (from Appendix B.1) shows
how tags can be used to define that Alice requires any application
to respect banking security level (to use payment info):
:tag2 a :SecurityTag;

:attribute_ref :attr -tag2;

:validity_binding :attr2.

:attr -tag2 a :Attribute;

:name :tag -2;

:class :banking;

:value :nil.

:attr2 a :Attribute;

:name :det;

:class :data -content;

:value :payment -details.

This example also contains a validity binding for that tag, meaning
that the validity of the tag is dependent on the existence of the
referenced attribute(s), i.e. :attr2, denoting the exact content of
:payment-details.

Prohibitions specify additional restrictions on the data consumer,
independent of the capacity (i.e. tags) of the application. A prohibi-
tion contains an activation condition, which is a matcher against the
context, e.g. user, application and purpose. If the condition matches
the usage context, the usage is deemed prohibited. Validity bind-
ings can also be specified. Additionally, our model also offers an
extension point, allowing users to specify the :modewhen a match is
considered. Currently, we only support the :Use mode, denoting the
reading or processing of the data. We plan to explore other types
of use modes to be integrated.

For example, Alice dislikes a payment processor, <http://duckpay.
com/>, and does not want it to use her payment info, either directly
or indirectly. This can be encoded as:
:pr1 a :Prohibition;

:mode :Use;

:activation_condition

[:app_name <http :// duckpay.com/>];

:validity_binding :attr2.

An obligation denotes a potential obligation that will be triggered
under certain conditions. Its core is an obligation definition, specify-
ing what the triggered obligation will be, and an activation condition,
specifying the condition to trigger this obligation. An obligation
definition contains an obligation class, and a list of arguments –
references to attributes. Upon activation/instantiation of the obli-
gation, the actual value of these attributes will be used, rather than
the reference. The activation condition and validity bindings are the
same as those for prohibitions.

The following example for shoe size shows that Alice expects
any application to email her when used for research purposes:

Perennial Semantic Data Terms of Use for Decentralized Web WWW ’24, May 13–17, 2024, Singapore, Singapore

:ob1 a :Obligation;

:obligation_class :send -email;

:args (:attr1);

:activation_condition [:purpose :research].

Policy set. Finally, the policy terms explained above should be
put together as a policy set. A policy set contains a Policy node
which contains the relevant policy terms, and a Data node which
pairs the policy and the data IRI that this policy applies to. For
example, the policy set for Alice’s payment information looks like:
:data -payment a :Data;

:uri <http ://a.b/payment -info >;

:policy :policy -1.

:policy -1 a :Policy;

:attribute :attr -tag2 , :attr -tag3 ,:attr -tag4 , :attr2;

:security :tag2;

:purpose :tag3 , :tag4;

:prohibition :pr1.

3.1.2 Application Policy. An app policy contains basic information
about the application, and the policy specification for the inputs and
outputs. In addition, it also specifies relevant downstream data con-
sumers (e.g. third-party APIs to send data to) that this application
will use.

An application may take multiple inputs, and thus multiple in-
put specifications (:InputSpec). Normally, each input specification
describes basic information about that input (name and data) and
its capacity: the tags it conforms to, including the security levels,
the integrity it expects, and the purpose it will use the (input) data
for. If the application sends the input data to an external location
for processing (e.g. an API call), a downstream should be specified as
a simplified app policy for that downstream stakeholder, specifying
the (app) name, user and purpose of that downstream3.

For example, HappyShop states this input specification for read-
ing the payment information:
:input1 a :InputSpec;

:data <http ://a.b/payment -info >;

:port [:name "payment -info -in"];

:security :banking;

:purpose :making -payment;

:downstream [

:app_name <http :// goodpay.com/>;

:purpose :making -payment].

It says an input port named "payment-info-in" reads data from <http

://a.b/payment-info>, and promises to comply with security level
:banking, and will use the data only for purpose of :making-payment; it
will send the data to a downstream, named <http://goodpay.com/>, for
purpose of :making-payment. It is compatible with Alice’s data policy
for payment info.

Similarly, an application may wish to store data into user’s Pods,
so it may need to specify multiple output specifications. Apart from
the name, each output specification describes the related input that
this output data is derived from, and the refinements that the data
policies are subject to.

The from statement, (during reasoning) associates the output
with a set of data policies, each pertinent to the input used to derive
the output. In a higher level, this reflects the general information
3The app developer should verify that the downstream capacity is in line with that of
the input specification, so its tags do not need to be explicitly expressed.

flow in the application. The removal or change of information
is captured by a refinement, which expresses how (the attributes
of) the data policies should be modified to reflect the processing
that has been applied to the data. Two types of refinements are
supported: delete and edit. A delete has a filter, meaning that all
attributes matching the filter should be deleted, and the filter is
used to specify the matching attribute information: name, class and
value. Similarly, an edit means that any attribute matching the filter
will be assigned a new class and value.

The following example output specification shows how Hap-
pyShopmay record purchase histories in user’s Pod, which contains
derived data (the copy) of the delivery address, and a declassified
version of payment details:
:out1 a :OutputSpec;

:from [:name "address -in"],

[:name "payment -info -in"];

:refinement :refine -no-payment -details.

:refine -no-payment -details a :Delete;

:filter [

:class :data -content;

:value :payment -details].

This policy snippet means this output is related to the data from
the inputs named "address-in" and "payment-info-in", and has one
refinement, which will delete all attributes of class :data-content

and value :payment-details, reflecting a fact that the output data will
not contain payment details even though it uses payment data.

The refinements directly operate on attributes, but references to
attributes (bindings) in the semantic layer ensure that all operations
will be inferred to related semantic concepts too. For instance, if an
attribute is deleted, any tags, prohibitions and obligations that have
a binding to this attribute will also be deleted.

Similar to data policy, the app policy statements should be put
together as a policy set. Please refer to Appendix B.3 for example.

3.1.3 Shared vocabulary. It is worth noting that shared vocabu-
laries are assumed in all related research, with different levels of
difficulties to achieve. In our work, this is achieved by making
concepts explicit and using URIs/IRIs. This allows easy and decen-
tralized provision of them, such as using OWL ontologies [38] as
vocabularies. There are five sorts of vocabularies to be shared, as
seen in the middle of Figure 1. They are centred around the data
provider’s wills, and thus is most natural to be provided by them, or
some intermediaries. We mainly identify this mechanism, and leave
this to the practitioners to consolidate the vocabularies. Relatedly,
OWL reasoning may be integrated and performed before policy
reasoning to maximize interoperability.

3.2 Reasoning
Our language accommodates three types of reasoning tasks: confor-
mance check, obligation check, and policy derivation. This section
explains the reasoning mechanism in more details.

In general, the reasoning rules can be expressed using first-order
logic, encoded using RDF Surfaces [12] and Notation 3 (N3) [6] in
our implementation. N3 is a language supporting the expression
of both semantic data and reasoning rules with a rich syntax; RDF
Surfaces, building onN3, provides an (easy) translation of first-order
logic (FOL), including representing negations. Some of these rules

WWW ’24, May 13–17, 2024, Singapore, Singapore Rui Zhao and Jun Zhao

contain explicit negations, which are implemented using N3 built-
ins like log:collectAllIn, enabling scoped negation-as-failure (SNAF)
[6]. For the sake of brevity, we only introduce the foundational
principles here, and refer the reader to Appendix C for the axioms.

3.2.1 Context preparation. Before embarking on the three reason-
ing tasks, it is essential to inject the contextual information and
link the application policy with data policy.

The contextual information (see e.g. Appendix B.4) specifies
the relevant app policy 𝑎𝑝𝑝_𝑝𝑜𝑙 , the 𝑢𝑠𝑒𝑟 and the 𝑡𝑖𝑚𝑒 of data
usage. These parameters are only known during actual application
requests and should be provided to the reasoner dynamically each
time. Each reasoning task involves a distinct𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑥𝑡 .

Furthermore, all relevant policy content is added to the same
knowledge base. This leverages the fact that Turtle is a sub-language
of N3, making all policy specifications in Turtle valid N3 statements.
The linkage between data policy and app policy is established by
identifying the data URIs as specified in their respective fields. This
is achieved through our reasoning rules, removing the need for
additional injection of data policy into the corresponding inputs.

3.2.2 Conformance check. The fundamental purpose of our policy
language is to determine whether a data usage should be permitted,
i.e. conformance checking. In our language, there are three types
of conflicts to be checked: unsatisfied requirements, unmatched
expectations, and prohibited uses. (See Appendix C.2.)

An unsatisfied requirement occurs when a requirement tag (e.g. se-
curity) in the data policy is absent in the app policy. Therefore, the
reasoning process involves determining all corresponding inputs
and data, and verifying their requirement tags.

Conversely, an unmatched expectation arises when a tag expecta-
tion (e.g. integrity) in the app policy is missing in the data policy.
This task also covers the verification of whether all purposes are
permitted. Both the reasoning about unsatisfied requirement and
unmatched expectation require a ’closed-world assumption,’ as it
is essential to determine if a tag does not exist. Because the policy
documents are as the sole reliable source of information, we utilize
SNAF provided by N3 built-ins.

A prohibited use is identified when a prohibition is triggered. Pro-
hibitions have their own semantics, including activation conditions,
and should be checked in accordance with these conditions.

3.2.3 Obligation check. Our policy language can also reason about
the obligations triggered during data use. This process is similar to
checking prohibitions and involves verifying the activation condi-
tions. But because obligations contain arguments that are references
to attributes, values of these attributes also need to be returned
from the query for further assessment in application logic. (See
Appendix C.3.)

3.2.4 Policy derivation. When the application produces output data
(i.e. storing data to users’ Pods), policy derivation becomes crucial
to produce derived data policy for the output, based on the output
specification. This aspect is central to (addressing challenge 5 of)
the perennial nature of our language. Policy derivation involves
merging the data policies from all corresponding from inputs and
performing refinements, for each corresponding output port. (See
Appendix C.4.)

The derivation of output attributes is a primary focus because
these attributes are vital for handling output policies for the seman-
tics layer, particularly for bindings. Because of refinements, each
input attribute will either have a copy, be edited, or cease to exist in
the output. This process creates new nodes for the output attributes
in the RDF graph, corresponding to the existential quantifier in the
conclusions. The linkage between the input and output attributes
is also recorded, which will be used for policy derivation of the
semantic layer. SNAF plays a crucial role here as it determines
what ‘happens’ to the rest of the input attributes that do not have
a matching refinement – there should be an output attribute with
identical name, class and value.

The tags in an output are based on the collection of all tags of
related inputs, while removing those tags with deleted attribute
bindings. Because tags have categories, they can be treated uni-
formly when reasoning about their existence, and the reasoner can
make use of the categories afterwards.

The output obligations and output prohibitions are derived simi-
larly. We first check if any binding is deleted, like for output tags. If
not, a new node for obligation (or prohibition) is created, replicat-
ing all fields of the original obligation (or prohibition) in input. For
obligations, that covers the obligation definition (obligated action
class and arguments), validity binding and activation condition;
for prohibitions, that covers the use mode, validity binding and
activation condition.

Intuitively, the attribute references (of statements in the seman-
tics layer) for the output policies will be the corresponding output
attributes, instead of the input attributes.

4 SOLID INTEGRATION
To test and demonstrate the language, we integrated the language
into Solid, a decentralized Web architecture based on Linked Data
that emphasizes on user autonomy. This allowed us to express data
policies and application policies and perform reasoning, in a realistic
context, and also serving as the foundation for our benchmark.

To achieve this, we extended the Community Solid Server [11]
v6.0, a modular and extensible Solid server implementation written
in TypeScript. For policy reasoning, we use an off-the-shelf rea-
soner, EYE [36], which supports RDF Surfaces and N3 reasoning. In
particular, we used the eyereasoner package available on npm, which
is a WebAssembly distribution of EYE with a JavaScript interface.

In the sequence diagram depicted in Figure 2, we illustrate the key
components and actions related to policy reasoning for applications,
assuming that the data already have DToU policies associated.

Before reasoning, the application needs to register its application
policy. The DToU handler, located behind the API endpoint on the
server, processes the request and creates a temporary policy record.

Subsequently, the application requests a conformance check
before utilizing the data. The DToU handler retrieves the corre-
sponding policy, establishes the UsageContext, identifies the input
data from the application policy, retrieves the relevant data policy,
and calls the policy engine to perform the conformance check. The
results are then provided to the application for further action, such
as user display. With a complete transformation to DToU (from
current access control), the DToU handler shall deny usage of data
without policies or in the presence of conflicts.

Perennial Semantic Data Terms of Use for Decentralized Web WWW ’24, May 13–17, 2024, Singapore, Singapore

Data
Data
Policy

Policy
Reasoner

API Endpoint

(DToU handler)

Data Store

Solid Pod

App
Policy

App

App

Reasoning

Get Data Policy

Reasoning

Post-process

Do Business Logic

Do Obligations

Acknowledge

Write Data

Save Record

Register

Check Compliance

Check Compliance

Return Results
Return Results

Check Obligation

Check Obligation

Derive Policy

Derive Policy

Return Policy

Assign Policy

Acknowledge

App User

Get Policy Record

Gen Usage Context

Get Policy Record

Gen Usage Context

Figure 2: Sequence diagram for the Solid integration of the
DToU language

Similarly, the application can request an obligation check and
then processes the information accordingly, including displaying
it to the user at the appropriate time or automatically fulfilling
obligations when applicable. Our language distinguishes between
UserObligation and ProcessObligation classes to facilitate this distinc-
tion, leaving the specific obligations up to policy authors.

Finally, when the application intends to write output data to the
Pod, it should send a policy derivation request along with the
data. The DToU handler will then perform policy derivation and
store the policy with the data. This allows subsequent applications
to automatically carry out DToU reasoning when they request this
data as input. As mentioned, the DToU handler may deny usage of
data without policies, thus effectively enforcing policy derivation –
if it does not perform it, the stored data will not be usable.

DToU reasoning is performed by the policy engine and DToU
handler in the modified Solid service, reducing the burden on the
application developers and Pod owners. From the Pod owner’s
perspective, supporting DToU requires expressing relevant data
policies for input data. For the applications, DToU support involves
preparing app policies and sending policy-related requests to the
(modified) Solid service while also handling responses. These appli-
cation policies can be statically attached to the project, or dynam-
ically generated from a template, offering flexibility for different
users. The optimal method for authoring app and data policies
remains an open question, outside the scope of this paper.

5 PERFORMANCE BENCHMARK
We conducted benchmark tests to evaluate the performance of our
integration and to gain insights into its scalability across different

0 200 400 600 800 1000
Count (Value)

0

50

100

150

200

Ti
m

e
(s

)

Conformance

0 200 400 600 800 1000
Count (Value)

Obligation

0 200 400 600 800 1000
Count (Value)

Derivation
Variable

data:numAttribute
data:tag:numSecurity
data:tag:numIntegrity
data:tag:numPurpose
data:tag:numBinding
data:obligation:num
data:obligation:numBinding
data:obligation:numArg
app:numSecurity
app:numIntegrity
app:numPurpose
app:output:numDelete
app:output:numOutput
app:output:numInput
app:numData

Figure 3: General benchmark results of different workloads

reasoning tasks and workloads. This section presents the results
and our discussion.

5.1 Benchmark settings
The benchmark encompasses a wide range of workloads of incor-
porating key variables: the number of different terms in the data
policy and app policy. We varied these numbers, ranging from 10 to
1000, while keeping other variables at a fixed value of 10. There are
two exceptions that are not fixed to 10: the number of attributes,
which is set to 100, and the number of inputs, which is limited to 4.
We chose these values because attributes require references to them,
and handling only 10 would not suffice for distribution among tags,
prohibitions and obligations; the number of inputs significantly
impacts performance, so we opted for a smaller yet reasonable
number. Policies are generated through a random process.

It is worth noting that the range we benchmarked should be
demonstrable to what usually exists in current real-world policies.
For example, [8] reviewed Facebook, Zynga and AOL policies and
identified a total of 131, 190 and 75 statements. Although not eq-
uitable, each statement roughly corresponds to one term in the
semantic layer and several attributes, or one term in the app policy.

For the benchmark, we utilized the WebAssembly distribution of
the eyereasoner v6.9.5, which is available on NPM. We started the
server using the provided file-storage configuration, without special
parameters. The benchmark tests were conducted on a consumer-
level laptop, with an Intel Core i5-1135G7 (2.4 GHz) and 16GB of
RAM, running on Linux kernel 6.1.55 (x86_64). Each workload was
repeated 10 times, and the time taken from sending requests to
receiving results was recorded.

5.2 Results and discussions
5.2.1 General results. Figure 3 shows the primary results of our
benchmark. Most variables exhibit a linear or sublinear scaling
trend. However, some variables do not reach 1000 because they
encountered time-out or connection resets with further increase.

Names of variables correspond to their specific workload. For
example, app:output:numDelete means the variable being changed is
the number of delete refinements in each output specification of
the app policy.

The three specific variables, namely app:numData, app:numPurpose
and app:numIntegrity, displayed exceptional growing trends in con-
formance checking, resulting in time-outs, which we will discuss
separately later. After removing these exceptional cases, and sub-
tracting the base time for policy loading and general reasoning
(e.g. axioms for rdfs:subClassOf), we obtain Figure 4. It demonstrates
a clearer linear growth trend in the remaining variables.

WWW ’24, May 13–17, 2024, Singapore, Singapore Rui Zhao and Jun Zhao

0 250 500 750 1000
Count (Value)

0

20

40

60

Ti
m

e
(s

)

Conformance

0 250 500 750 1000
Count (Value)

Obligation

0 250 500 750 1000
Count (Value)

Derivation
Variable

data:numAttribute
data:tag:numSecurity
data:tag:numIntegrity
data:tag:numPurpose
data:tag:numBinding
data:obligation:num
data:obligation:numBinding
data:obligation:numArg
app:numSecurity
app:output:numDelete
app:output:numOutput
app:output:numInput

Figure 4: Selective benchmark results for most variables, sub-
tracting the base reasoning time for general axioms

0 200 400 600
Count (Value)

0

100

200

Ti
m

e
(s

)

UnsatisfiedRequirement

0 200 400 600
Count (Value)

UnmatchedExpectation

0 200 400 600
Count (Value)

ProhibitedUse

Variable
app:numIntegrity
app:numPurpose
app:numData

Figure 5: Experiment results for different conformance
checking tasks for exceptional variables, app:numData, app:

numPurpose and app:numIntegrity

Among them, most variables reached 1000, except for app:output

:numDelete and app:output:numOutput, which stopped at 600 and 500.
This limitation was due to connection resets, caused by the server
encountering JavaScript out-of-heap errors during the 10 repeti-
tions. This indicates a potential area for optimization of the memory
consumption. However, it is worth noting that having 500 output
ports or 600 delete refinements per output port (thus 6000 in total)
for an application is exceptionally large and likely not an issue in
realistic scenarios.

5.2.2 Unmatched expectations. Now, regarding the exceptional
growths, as shown in Figure 3, two variables, app:numPurpose and
app:numIntegrity, correspond to the checking of unmatched expecta-
tions. We further performed additional experiments to understand
the time spent on different conformance checking (sub-)tasks, as
shown in Figure 5. It verified the intuition that the time was mainly
consumed by checking the unmatched expectations.

However, it is interesting to note that the time for its symmetric
task, unsatisfied requirements, did not exhibit the same exceptional
growth, as seen in Figure 3 for variable data:tag:numSecurity and
app:numSecurity. This suggests that the issue is likely not due to
a mis-implementation of our axioms, but rather a performance
bottleneck for RDF Surfaces or the EYE reasoner related to specific
rule combinations and orders. Ideally, future work should explore
and address this issue, with the potential to further optimize by
reducing the coefficient for tag matching.

5.2.3 Number of data / inputs. Changing the number of data inputs
led to the most significant growth in reasoning time, displaying a
growth pattern that appears higher than linear, as shown in the
sub-figure for unmatched expectations in Figure 5. This could be
explained because all reasoning tasks depend on the pairing of data
policies and inputs, making the complexity increase faster with
the number of data inputs. However, it is interesting to note that
obligation checking and policy derivation did not pose the same
exceptional growth trend as conformance checking in Figure 3. A

plausible explanation is that conformance check involves a heavier
workload, making this effect more pronounced. This is supported
by the fact that the time spent on a more complex subtask, such as
unmatched expectation, also grew faster than that of unsatisfied
requirements and prohibited use, as reflected in Figure 5. This
suggests that our usage of RDF Surfaces may be suboptimal and
should be addressed and optimized in future work.

5.3 Conclusion
From our benchmark, it is clear that the reasoning cost for all tasks
shows a linear growth concerning all but one factor. It is important
to note that DToU policy reasoning is not performed frequently
(typically three possibilities in an application’s lifecycle), so real-
time performance is not a strict requirement. However, our result
highlight the significant potential for deploying our DToU language
on a large scale with a substantial volume of policies. Additionally,
we delved into the specifics of the suboptimal results and proposed
potential reasons for their behaviour. In a production system, it
is essential to focus on optimizing the reasoning tasks and the
underlying reasoner to ensure efficient and reliable performance.

6 SUMMARY AND FUTUREWORK
In this work, we have undertaken a comprehensive exploration of
the challenges and advantages associated with introducing DToU
into a decentralized Web context, exemplified by Solid, with the
overarching aim of enhancing user autonomy. Our efforts have
included identifying the pertinent challenges and benefits, delin-
eating the specific requirements for a policy language within this
context, and introduced our own DToU policy language, which is
based on semantic technologies. We have also detailed the design
of data policies, application policies and the underlying reasoning
mechanism. Furthermore, we showed how our solution integrates
with Solid, along with benchmark tests that assessed the scalability
of our implementation, highlighting its potential for wider adoption
with a substantial volume of policies. We discussed areas where
further optimization is required.

The next step of our work involves evaluating the language
expressiveness and its understandability for users. We are also
interested in exploring simpler methods for policy authorization,
which could potentially involve leveraging NLP technologies. In
general, our work underscores a paradigm shift in how application
may be selected, permission granted, and interoperability achieved.
This shift is driven by the automated reasoning of perennial DToU
policies. It points out a wide spectrum of challenges and oppor-
tunities, including but not limited to enhancing the language ex-
pressiveness, improving usability, effectively maintaining policies,
and optimizing performance. Effectively addressing these social-
technical challenges will require interdisciplinary collaboration,
and we are committed to contributing to this ongoing effort.

ACKNOWLEDGMENTS
This research was supported by the Oxford Martin School Pro-
gramme for Ethical Web and Data Architectures in the Age of
AI at the University of Oxford. Special thanks to Nigel Shadbolt,
Tim Berners-Lee and Ruben Verborgh for their engagement and
comments in early discussions of this work.

Perennial Semantic Data Terms of Use for Decentralized Web WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] 2013. eXtensible Access Control Markup Language (XACML) Version 3.0. https:

//docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
[2] 2018. ODRL Information Model 2.2. https://www.w3.org/TR/odrl-model/
[3] 2022. Access Control Policy (ACP). https://solid.github.io/authorization-panel/

acp-specification/
[4] 2022. Web Access Control. https://solid.github.io/web-access-control-spec/
[5] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers.

2014. RDF 1.1 Turtle. https://www.w3.org/TR/turtle/
[6] Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf, and Jim Hendler.

2008. N3Logic: A logical framework for the World Wide Web. Theory and
Practice of Logic Programming 8, 3 (May 2008), 249–269. https://doi.org/10.1017/
S1471068407003213 Publisher: Cambridge University Press.

[7] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. 2016. Label-Based Access
Control: An ABAC Model with Enumerated Authorization Policy. In Proceedings
of the 2016 ACM International Workshop on Attribute Based Access Control (ABAC
’16). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/2875491.2875498

[8] Travis D. Breaux, Hanan Hibshi, and Ashwini Rao. 2014. Eddy, a formal language
for specifying and analyzing data flow specifications for conflicting privacy
requirements. Requirements Engineering 19, 3 (Sept. 2014), 281–307. https:
//doi.org/10.1007/s00766-013-0190-7

[9] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and
Peter Druschel. 2016. Thoth: Comprehensive Policy Compliance in Data Retrieval
Systems. In Proceedings of the 25th USENIX Conference on Security Symposium
(SEC’16). USENIX Association, Berkeley, CA, USA, 637–654. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/elnikety

[10] Beatriz Esteves, Harshvardhan J. Pandit, and Víctor Rodríguez-Doncel. 2021.
ODRL Profile for Expressing Consent through Granular Access Control Policies
in Solid. In 2021 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). 298–306. https://doi.org/10.1109/EuroSPW54576.2021.00038 ISSN:
2768-0657.

[11] Joachim Van Herwegen, Ruben Verborgh, Ruben Taelman, Thomas Dupont,
Matthieu Bosquet, Mend Renovate, Jasper Vaneessen, smessie, Arthur Joppart,
wkerckho, Simone Persiani, Wouter Termont, Michiel de Jong, Noel De Martin,
Stijn Taelemans, Wout Slabbinck, Jesse Wright, jaxoncreed, surilindur, zg009,
Aaron Coburn, Adler Faulkner, Brandon Aaron, Charlie Blevins, Dylan Van
Assche, Emelia Smith, Freya, and Gertjan De Mulder. 2023. CommunitySolid-
Server/CommunitySolidServer. https://doi.org/10.5281/zenodo.8410285

[12] Patrick Hochstenbach, Jos De Roo, and Ruben Verborgh. 2023. RDF Surfaces:
Computer Says No. http://arxiv.org/abs/2305.08476 arXiv:2305.08476 [cs].

[13] Jina Huh-Yoo and Emilee Rader. 2020. It’s the Wild, Wild West: Lessons Learned
From IRB Members’ Risk Perceptions Toward Digital Research Data. Proceedings
of the ACM on Human-Computer Interaction 4, CSCW1 (May 2020), 059:1–059:22.
https://doi.org/10.1145/3392868

[14] Håvard D. Johansen, Eleanor Birrell, Robbert van Renesse, Fred B. Schneider,
Magnus Stenhaug, and Dag Johansen. 2015. Enforcing Privacy Policies with
Meta-Code. In Proceedings of the 6th Asia-Pacific Workshop on Systems (APSys
’15). ACM Press, Tokyo, Japan, 1–7. https://doi.org/10.1145/2797022.2797040

[15] Iulia Ion, Niharika Sachdeva, Ponnurangam Kumaraguru, and Srdjan Čapkun.
2011. Home is safer than the cloud! privacy concerns for consumer cloud storage.
In Proceedings of the Seventh Symposium on Usable Privacy and Security (SOUPS
’11). Association for Computing Machinery, New York, NY, USA, 1–20. https:
//doi.org/10.1145/2078827.2078845

[16] Johnson Iyilade and Julita Vassileva. 2014. P2U: A Privacy Policy Specification
Language for Secondary Data Sharing and Usage. In 2014 IEEE Security and
Privacy Workshops. 18–22. https://doi.org/10.1109/SPW.2014.12

[17] Lalana Kagal, Chris Hanson, and Daniel Weitzner. 2008. Using Dependency
Tracking to Provide Explanations for Policy Management. In 2008 IEEE Workshop
on Policies for Distributed Systems and Networks. 54–61. https://doi.org/10.1109/
POLICY.2008.51

[18] Günter Karjoth, Matthias Schunter, and Michael Waidner. 2002. Platform for
Enterprise Privacy Practices: Privacy-Enabled Management of Customer Data.
In Privacy Enhancing Technologies (Lecture Notes in Computer Science). Springer,
Berlin, Heidelberg, 69–84. https://doi.org/10.1007/3-540-36467-6_6

[19] Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori. 2010. Usage control in
computer security: A survey. Computer Science Review 4, 2 (May 2010), 81–99.
https://doi.org/10.1016/j.cosrev.2010.02.002

[20] Aleecia M McDonald and Lorrie Faith Cranor. 2008. The cost of reading privacy
policies. Isjlp 4 (2008), 543. Publisher: HeinOnline.

[21] ChristianMeurisch, Bekir Bayrak, andMaxMühlhäuser. 2020. Privacy-preserving
AI Services Through Data Decentralization. In Proceedings of The Web Conference
2020. Association for Computing Machinery, New York, NY, USA, 190–200. http:
//doi.org/10.1145/3366423.3380106

[22] M. C. Mont, S. Pearson, and P. Bramhall. 2003. Towards accountable manage-
ment of identity and privacy: sticky policies and enforceable tracing services. In
14th International Workshop on Database and Expert Systems Applications, 2003.

Proceedings. 377–382. https://doi.org/10.1109/DEXA.2003.1232051
[23] Andrew C. Myers and Barbara Liskov. 1997. A Decentralized Model for In-

formation Flow Control. In Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles (SOSP ’97). ACM, New York, NY, USA, 129–142.
https://doi.org/10.1145/268998.266669

[24] Jonathan A. Obar and Anne Oeldorf-Hirsch. 2020. The biggest lie on the Internet:
ignoring the privacy policies and terms of service policies of social networking
services. Information, Communication & Society 23, 1 (Jan. 2020), 128–147. https:
//doi.org/10.1080/1369118X.2018.1486870

[25] Thomas F. J.-M. Pasquier, Jatinder Singh, David Eyers, and Jean Bacon. 2017.
CamFlow: Managed Data-sharing for Cloud Services. IEEE Transactions on Cloud
Computing 5, 3 (July 2017), 472–484. https://doi.org/10.1109/TCC.2015.2489211
arXiv: 1506.04391.

[26] S. Pearson and M. Casassa-Mont. 2011. Sticky Policies: An Approach for Man-
aging Privacy across Multiple Parties. Computer 44, 9 (Sept. 2011), 60–68.
https://doi.org/10.1109/MC.2011.225

[27] Jing Qiu, Zhihong Tian, Chunlai Du, Qi Zuo, Shen Su, and Binxing Fang. 2020. A
Survey on Access Control in the Age of Internet of Things. IEEE Internet of Things
Journal 7, 6 (June 2020), 4682–4696. https://doi.org/10.1109/JIOT.2020.2969326
Conference Name: IEEE Internet of Things Journal.

[28] Rui Zhao, Malcolm Atkinson, Petros Papapanagiotou, Federica Magnoni, and
Jacques Fleuriot. 2021. Dr.Aid: Supporting Data-governance Rule Compliance for
Decentralized Collaboration in an Automated Way. In The 24th ACM Conference
on Computer-Supported Cooperative Work and Social Computing (CSCW). https:
//doi.org/10.1145/3479604

[29] Gokhan Sagirlar, Barbara Carminati, and Elena Ferrari. 2018. Decentralizing
privacy enforcement for Internet of Things smart objects. Computer Networks
143 (Oct. 2018), 112–125. https://doi.org/10.1016/j.comnet.2018.07.019

[30] A. Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola Greco,
Abdurrahman Ghanem, D. Zagidulin, Ashraf Aboulnaga, and T. Berners-Lee.
2016. Solid: A Platform for Decentralized Social Applications Based on Linked
Data. MIT CSAIL & Qatar Computing Research Institute, Tech. Rep. (2016). https:
//www.semanticscholar.org/paper/Solid-%3A-A-Platform-for-Decentralized-
Social-Based-Sambra-Mansour/5ac93548fd0628f7ff8ff65b5878d04c79c513c4

[31] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. 1996. Role-based access
control models. Computer 29, 2 (Feb. 1996), 38–47. https://doi.org/10.1109/2.
485845 Conference Name: Computer.

[32] Ravi Sandhu and Jaehong Park. 2003. Usage Control: A Vision for Next Generation
Access Control. In Computer Network Security (Lecture Notes in Computer Science),
Vladimir Gorodetsky, Leonard Popyack, and Victor Skormin (Eds.). Springer,
Berlin, Heidelberg, 17–31. https://doi.org/10.1007/978-3-540-45215-7_2

[33] R.S. Sandhu and P. Samarati. 1994. Access control: principle and practice. IEEE
Communications Magazine 32, 9 (Sept. 1994), 40–48. https://doi.org/10.1109/35.
312842 Conference Name: IEEE Communications Magazine.

[34] Jake M L Stein, Vidminas Vizgirda, Max Van Kleek, Reuben Binns, Jun Zhao, Rui
Zhao, Naman Goel, George Chalhoub, Wael S Albayaydh, and Nigel Shadbolt.
2023. ‘You are you and the app. There’s nobody else.’: Building Worker-Designed
Data Institutions within Platform Hegemony. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (CHI ’23). Association for
Computing Machinery, New York, NY, USA, 1–26. https://doi.org/10.1145/
3544548.3581114

[35] Welderufael B. Tesfay, Peter Hofmann, Toru Nakamura, Shinsaku Kiyomoto,
and Jetzabel Serna. 2018. I Read but Don’t Agree: Privacy Policy Benchmarking
using Machine Learning and the EU GDPR. In Companion Proceedings of the The
Web Conference 2018 (WWW ’18). International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, CHE, 163–166. https:
//doi.org/10.1145/3184558.3186969

[36] Ruben Verborgh and Jos De Roo. 2015. Drawing Conclusions from Linked
Data on the Web: The EYE Reasoner. IEEE Software 32, 3 (May 2015), 23–27.
https://doi.org/10.1109/MS.2015.63 Conference Name: IEEE Software.

[37] W3C. 2014. RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/
rdf11-concepts/

[38] W3C OWL Working Group. 2012. OWL 2 Web Ontology Language Document
Overview (Second Edition). https://www.w3.org/TR/owl2-overview/

[39] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian
Schaub, Shomir Wilson, Norman Sadeh, Steven Bellovin, and Joel Reidenberg.
2016. Automated Analysis of Privacy Requirements for Mobile Apps. In 2016
AAAI Fall Symposium Series. https://www.aaai.org/ocs/index.php/FSS/FSS16/
paper/view/14113

[40] Shoshana Zuboff. 2019. The age of surveillance capitalism: The fight for a human
future at the new frontier of power: Barack Obama’s books of 2019. Profile books.

A FURTHER ON RELATED-WORK TABLE
This section provides further explanations of the terms used in
Table 1.

https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.w3.org/TR/odrl-model/
https://solid.github.io/authorization-panel/acp-specification/
https://solid.github.io/authorization-panel/acp-specification/
https://solid.github.io/web-access-control-spec/
https://www.w3.org/TR/turtle/
https://doi.org/10.1017/S1471068407003213
https://doi.org/10.1017/S1471068407003213
https://doi.org/10.1145/2875491.2875498
https://doi.org/10.1145/2875491.2875498
https://doi.org/10.1007/s00766-013-0190-7
https://doi.org/10.1007/s00766-013-0190-7
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/elnikety
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/elnikety
https://doi.org/10.1109/EuroSPW54576.2021.00038
https://doi.org/10.5281/zenodo.8410285
http://arxiv.org/abs/2305.08476
https://doi.org/10.1145/3392868
https://doi.org/10.1145/2797022.2797040
https://doi.org/10.1145/2078827.2078845
https://doi.org/10.1145/2078827.2078845
https://doi.org/10.1109/SPW.2014.12
https://doi.org/10.1109/POLICY.2008.51
https://doi.org/10.1109/POLICY.2008.51
https://doi.org/10.1007/3-540-36467-6_6
https://doi.org/10.1016/j.cosrev.2010.02.002
http://doi.org/10.1145/3366423.3380106
http://doi.org/10.1145/3366423.3380106
https://doi.org/10.1109/DEXA.2003.1232051
https://doi.org/10.1145/268998.266669
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1080/1369118X.2018.1486870
https://doi.org/10.1109/TCC.2015.2489211
https://doi.org/10.1109/MC.2011.225
https://doi.org/10.1109/JIOT.2020.2969326
https://doi.org/10.1145/3479604
https://doi.org/10.1145/3479604
https://doi.org/10.1016/j.comnet.2018.07.019
https://www.semanticscholar.org/paper/Solid-%3A-A-Platform-for-Decentralized-Social-Based-Sambra-Mansour/5ac93548fd0628f7ff8ff65b5878d04c79c513c4
https://www.semanticscholar.org/paper/Solid-%3A-A-Platform-for-Decentralized-Social-Based-Sambra-Mansour/5ac93548fd0628f7ff8ff65b5878d04c79c513c4
https://www.semanticscholar.org/paper/Solid-%3A-A-Platform-for-Decentralized-Social-Based-Sambra-Mansour/5ac93548fd0628f7ff8ff65b5878d04c79c513c4
https://doi.org/10.1109/2.485845
https://doi.org/10.1109/2.485845
https://doi.org/10.1007/978-3-540-45215-7_2
https://doi.org/10.1109/35.312842
https://doi.org/10.1109/35.312842
https://doi.org/10.1145/3544548.3581114
https://doi.org/10.1145/3544548.3581114
https://doi.org/10.1145/3184558.3186969
https://doi.org/10.1145/3184558.3186969
https://doi.org/10.1109/MS.2015.63
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/owl2-overview/
https://www.aaai.org/ocs/index.php/FSS/FSS16/paper/view/14113
https://www.aaai.org/ocs/index.php/FSS/FSS16/paper/view/14113

WWW ’24, May 13–17, 2024, Singapore, Singapore Rui Zhao and Jun Zhao

For column C1, authorization (A) means a reasoning outcome
that can decide whether the data usage is permitted (authorized) or
not (prohibited); obligation (O) means the reasoning outcome can
contain obligations (pending actions) that needs to be performed
due to the specified data usage; +means the language supports more
types of features (that are not usually covered in other languages),
such as remedy in ODRL.

For column C3 and C4, � means the challenge is addressed by
the design or feature of the language; 2� means the challenge is
addressed, but only if assuming a shared custom schema (that is
not or cannot be a part of the language specification) for describing
environmental information across all policies and the environment.

For columns C2, C5 and Condition, many terms should be intu-
itive. Specifically, capacity (C) means the properties that the data
and/or the application/process need to possess to allow the data
usage (e.g. security levels); E and E differs because E only refers
to the finite (types of) environmental information covered by the
language specification or its foreseeable extension, while E allows
arbitrary environmental information; use mode (M) denotes the
potential data usage modes (aka. codes or action verbs in [8]); multi-
input (I) and multi-output (O) means the policy language possesses
the mechanism to handle policies frommultiple inputs and multiple
outputs respectively; transformation (T) means the output policy
is subject to a transformation based on the input policy and the
actual processing.

B POLICY LANGUAGE EXAMPLES
This section presents the full form of the example policy snippets
used in the paper.

B.1 For payment info
Alice requires any application to respect banking security level,
and permit make-payment and verify-ownership purposes (for payment
info).
:attr -tag2 a :Attribute;

:name :tag -2;

:class :banking;

:value :nil.

:attr -tag3 a :Attribute;

:name :tag -3;

:class :make -payment;

:value :nil.

:attr -tag4 a :Attribute;

:name :tag -4;

:class :verify -ownership;

:value :nil.

:attr2 a :Attribute;

:name :det;

:class :data -content;

:value :payment -details.

:tag2 a :SecurityTag;

:attribute_ref :attr -tag2;

:validity_binding :attr2.

:tag3 a :PurposeTag;

:attribute_ref :attr -tag3;

:validity_binding :attr2.

:tag4 a :PurposeTag;

:attribute_ref :attr -tag4;

:validity_binding :attr2.

B.2 For shoe size
This policy set specifies the policy for Alice’s shoe size data:
:shoe -size a :Data;

:uri <http ://a.b/shoe -size >;

:policy :policy -2.

:policy -2 a :Policy;

:attribute :attr1;

:obligation :ob1.

B.3 App policy set
:app -policy a :AppPolicy;

:name <http :// happy.shop >;

:input_spec :input1 , :input2;

:output_spec :out1.

:input2 a :InputSpec;

:data <http ://a.b/address >;

:port [;name "address -in"];

:integrity :full -address.

B.4 Sample usage context
An example usage context for Alice to use HappyShop may be like
this:
:usageContext1 a :UsageContext;

:user <http ://a.b/alice#card >;

:app [a :AppInfo; :policy :app -policy];

:time "20230823".

:rui a :User.

C AXIOMS FOR REASONING
The axioms for reasoning are encoded as RDF Surfaces in our rea-
soner. For simplicity, we present the equivalent first-order logic
axioms for performing reasoning for our language here. Because
our policy language is based on Turtle thus RDF [37], knowledge is
represented as triples in the ABox. We employ some conventions
here for the expression in first-order logic:

(1) 𝐴(𝑥, 𝑆𝑜𝑚𝑒𝑇𝑦𝑝𝑒) denotes that the (RDF) type of entity 𝑥 is
𝑆𝑜𝑚𝑒𝑇𝑦𝑝𝑒 , i.e. the triple (𝑥, rdf:type, 𝑆𝑜𝑚𝑒𝑇𝑦𝑝𝑒) exists in
the ABox;

(2) ℎ𝑎𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑥,𝑦) denotes that there is a relation 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒
between entity 𝑥 and 𝑦, i.e. the triple (𝑥, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒,𝑦) exists
in the ABox;

(3) Other predicates starting with a capital letter refer to a short-
hand, which will be explained individually;

(4) Variables are universally quantified over the scope of the
entire formulae, unless explicitly quantified or stated other-
wise;

(5) For clarify, we write the conclusion in the beginning, similar
to a Horn clause;

(6) Existential quantified entities in the conclusions denote a
new node in the ABox, which is handled nicely by RDF
Surfaces;

(7) Negations denote scoped negation-as-failure, implemented
using N3’s built-ins;

Perennial Semantic Data Terms of Use for Decentralized Web WWW ’24, May 13–17, 2024, Singapore, Singapore

(8) We use double-line arrows to visually distinguish between
the main premise and conclusions; however, they still repre-
sent material implications, same as the single-line arrows,
and are encoded in RDF Surfaces as such;

(9) Namespaces are dropped from the formulae for clarity.

C.1 Helper axioms
To simplify the axioms for actual reasoning tasks, we extract two
common parts as helper axioms: 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 and
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 .

The𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡) identifies and
groups data policy (𝑑𝑎𝑡𝑎) and corresponding input specification
(𝑖𝑛𝑝𝑢𝑡) together, as well as the usage context 𝑢𝑠𝑎𝑔𝑒 and applica-
tion policy 𝑎𝑝𝑝 . Typically, in a reasoning, there is only one usage
context (𝑢𝑠𝑎𝑔𝑒) and one application (𝑎𝑝𝑝). Conformance checking
often uses this predicate. It is defined as:

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝐴(𝑢𝑠𝑎𝑔𝑒,𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑥𝑡)
∧ ℎ𝑎𝑠𝐴𝑝𝑝 (𝑢𝑠𝑎𝑔𝑒, 𝑎𝑝𝑝𝑠) ∧ ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑎𝑝𝑝𝑠 , 𝑎𝑝𝑝)
∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑒𝑐 (𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡) ∧𝐴(𝑑𝑎𝑡𝑎, 𝐷𝑎𝑡𝑎) ∧ ℎ𝑎𝑠𝑈𝑟𝑖 (𝑑𝑎𝑡𝑎,𝑢𝑟𝑖)
∧ ℎ𝑎𝑠𝐷𝑎𝑡𝑎(𝑖𝑛𝑝𝑢𝑡,𝑢𝑟𝑖)

The 𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡) identifies which
input (specification) and its corresponding data policy is related
to an output (specification). One input has only one data policy,
while one output may have multiple inputs, leading to several
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡s. It is defined as:

𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑝𝑒𝑐 (𝑎𝑝𝑝, 𝑜𝑢𝑡𝑝𝑢𝑡) ∧ ℎ𝑎𝑠𝐹𝑟𝑜𝑚(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑖𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑖𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡) ∧ ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙𝑖𝑐𝑦)

C.2 Conformance check
We have explained them in the main text of the document. There-
fore, this part only presents the formulae, and their explanations
where necessary.

C.2.1 Unsatisfied requirement.

𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑝𝑜𝑙, 𝑟𝑒𝑞)∧
ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑟𝑒𝑞, 𝑡) ∧ ℎ𝑎𝑠𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 (𝑟𝑒𝑞, 𝑛)∧
¬∃𝑝𝑟𝑜𝑣 .(ℎ𝑎𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑟𝑜𝑣)∧

ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑝𝑟𝑜𝑣, 𝑡) ∧ ℎ𝑎𝑠𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 (𝑝𝑟𝑜𝑣, 𝑛))
The definition of𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) is:

𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ≡
∃𝑥 .𝐴(𝑥,𝑈𝑛𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡) ∧ ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑥, 𝑡)∧
ℎ𝑎𝑠𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 (𝑥, 𝑛) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

C.2.2 Unmatched expectation.

𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝐸𝑥𝑝𝑒𝑐𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑒𝑥𝑝)∧
ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑒𝑥𝑝, 𝑡) ∧ ℎ𝑎𝑠𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 (𝑒𝑥𝑝, 𝑛)∧
¬∃𝑡𝑎𝑔.(ℎ𝑎𝑠𝑇𝑎𝑔𝑔𝑖𝑛𝑔(𝑝𝑜𝑙, 𝑡𝑎𝑔) ∧ ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑡𝑎𝑔, 𝑡)∧
ℎ𝑎𝑠𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 (𝑡𝑎𝑔, 𝑛))

The definition of𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) is:
𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑡, 𝑛, 𝑖𝑛𝑝𝑢𝑡) ≡

∃𝑥 .𝐴(𝑥,𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑥, 𝑡)∧
ℎ𝑎𝑠𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 (𝑥, 𝑛) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

C.2.3 Prohibited use.

𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒 (𝑢, 𝑛, 𝑝, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑝𝑜𝑙, 𝑝𝑟𝑜)∧
ℎ𝑎𝑠𝑀𝑜𝑑𝑒 (𝑝𝑟𝑜,𝑈𝑠𝑒) ∧ ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑝𝑟𝑜, 𝑎𝑐)∧
ℎ𝑎𝑠𝑈𝑠𝑒𝑟 (𝑎𝑐,𝑢) ∧ ℎ𝑎𝑠𝐴𝑝𝑝 (𝑎𝑐, 𝑛) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑎𝑐, 𝑝) ∧ (
(ℎ𝑎𝑠𝑈𝑠𝑒𝑟 (𝑢𝑠𝑎𝑔𝑒,𝑢) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑝𝑝, 𝑛) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑝))
∨
(ℎ𝑎𝑠𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑖𝑛𝑝𝑢𝑡, 𝑑𝑠) ∧ ℎ𝑎𝑠𝐴𝑝𝑝𝑁𝑎𝑚𝑒 (𝑑𝑠, 𝑛)∧
ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑑𝑠, 𝑝))
)

The definition of 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒 (𝑢, 𝑛, 𝑝, 𝑖𝑛𝑝𝑢𝑡) is:
𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒 (𝑚,𝑛, 𝑝, 𝑖𝑛𝑝𝑢𝑡) ≡

∃𝑥 .𝐴(𝑥, 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑈𝑠𝑒) ∧ ℎ𝑎𝑠𝑀𝑜𝑑𝑒 (𝑥,𝑈𝑠𝑒) ∧ ℎ𝑎𝑠𝑈𝑠𝑒𝑟 (𝑥,𝑢)
∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑥, 𝑛) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑥, 𝑝) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

C.3 Obligation check

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑟𝑔𝑠, 𝑖𝑛𝑝𝑢𝑡) ⇐
𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑝𝑝𝐼𝑛𝑝𝑢𝑡 (𝑢𝑠𝑎𝑔𝑒, 𝑑𝑎𝑡𝑎, 𝑎𝑝𝑝, 𝑖𝑛𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑙𝑖𝑐𝑦 (𝑑𝑎𝑡𝑎, 𝑝𝑜𝑙) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑙, 𝑜𝑏𝑙)∧
ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑜𝑏𝑙, 𝑜𝑏) ∧ ℎ𝑎𝑠𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 (𝑜𝑏𝑙, 𝑎𝑟𝑔𝑠)∧
ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜𝑏𝑙, 𝑎𝑐) ∧ ℎ𝑎𝑠𝑈𝑠𝑒𝑟 (𝑎𝑐,𝑢)∧
ℎ𝑎𝑠𝐴𝑝𝑝 (𝑎𝑐, 𝑛) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑎𝑐, 𝑝)∧
ℎ𝑎𝑠𝑈𝑠𝑒𝑟 (𝑢𝑠𝑎𝑔𝑒,𝑢) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑝𝑝, 𝑛) ∧ ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒 (𝑖𝑛𝑝𝑢𝑡, 𝑝)

The definition of 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑟𝑔𝑠, 𝑖𝑛𝑝𝑢𝑡) is:
𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑟𝑔𝑠, 𝑖𝑛𝑝𝑢𝑡) ≡

∃𝑥 .𝐴(𝑥,𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑥, 𝑜𝑏)∧
ℎ𝑎𝑠𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 (𝑥, 𝑎𝑟𝑔𝑠) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑥, 𝑖𝑛𝑝𝑢𝑡)

Slightly different from the conflicts, when querying activated obli-
gations, the corresponding attributes should be returned as well.

WWW ’24, May 13–17, 2024, Singapore, Singapore Rui Zhao and Jun Zhao

C.4 Policy derivation
C.4.1 Output attribute.

𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑛, 𝑡, 𝑣, 𝑝, 𝑎𝑡𝑡𝑟) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑟𝑡) ∧ (
(ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑝𝑜𝑙𝑖𝑐𝑦, 𝑎𝑡𝑡𝑟) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑡𝑡𝑟, 𝑛)∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑎𝑡𝑡𝑟, 𝑡) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑎𝑡𝑡𝑟, 𝑣) ∧ ¬∃𝑟𝑒 𝑓 𝑖, 𝑓 𝑖𝑙𝑡𝑒𝑟 .
ℎ𝑎𝑠𝑅𝑒 𝑓 𝑖𝑛𝑒𝑚𝑒𝑛𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑟𝑒 𝑓 𝑖) ∧ ℎ𝑎𝑠𝐹𝑖𝑙𝑡𝑒𝑟 (𝑟𝑒 𝑓 𝑖, 𝑓 𝑖𝑙𝑡𝑒𝑟)∧
ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑝𝑜𝑟𝑡) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑛)∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑡) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑣))∨
(ℎ𝑎𝑠𝐴𝑡𝑡𝑖𝑟𝑏𝑢𝑡𝑒 (𝑝𝑜𝑙𝑖𝑐𝑦, 𝑎𝑡𝑡𝑟) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑡𝑡𝑟, 𝑛)∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑎𝑡𝑡𝑟, 𝑡 ′) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑎𝑡𝑡𝑟, 𝑣 ′)∧
ℎ𝑎𝑠𝑅𝑒 𝑓 𝑖𝑛𝑒𝑚𝑒𝑛𝑡 (𝑎𝑡𝑡𝑟, 𝑟𝑒 𝑓 𝑖) ∧𝐴(𝑟𝑒 𝑓 𝑖, 𝐸𝑑𝑖𝑡)∧
ℎ𝑎𝑠𝐹𝑖𝑙𝑡𝑒𝑟 (𝑟𝑒 𝑓 𝑖, 𝑓 𝑖𝑙𝑡𝑒𝑟) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑝𝑜𝑟𝑡)∧
ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑛) ∧ ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑡 ′)∧
ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑓 𝑖𝑙𝑡𝑒𝑟, 𝑣 ′) ∧ ℎ𝑎𝑠𝑁𝑒𝑤𝐶𝑙𝑎𝑠𝑠 (𝑟𝑒 𝑓 𝑖, 𝑡)∧
ℎ𝑎𝑠𝑁𝑒𝑤𝑉𝑎𝑙𝑢𝑒 (𝑟𝑒 𝑓 𝑖, 𝑣))
)

Same as above,𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑛, 𝑡, 𝑣, 𝑝, 𝑎𝑡𝑡𝑟) is a shorthand. How-
ever, different from them, it involves multiple nodes:

𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑛, 𝑡, 𝑣, 𝑝, 𝑎𝑡𝑡𝑟) ≡
∃𝑎𝑡𝑡𝑟 ′ .𝐴(𝑎𝑡𝑡𝑟 ′, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) ∧ ℎ𝑎𝑠𝑁𝑎𝑚𝑒 (𝑎𝑡𝑡𝑟 ′, 𝑛) ∧ ∧
ℎ𝑎𝑠𝐶𝑙𝑎𝑠𝑠 (𝑎𝑡𝑡𝑟 ′, 𝑡) ∧ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 (𝑎𝑡𝑡𝑟 ′, 𝑣)∧
∃𝑓 𝑙 .𝐴(𝑓 𝑙, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐿𝑖𝑛𝑘) ∧ ℎ𝑎𝑠𝑂𝑟𝑖𝑔𝑖𝑛(𝑓 𝑙, 𝑎𝑡𝑡𝑟)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑓 𝑙, 𝑝) ∧ ℎ𝑎𝑠𝑅𝑒 𝑓 (𝑓 𝑙, 𝑎𝑡𝑡𝑟 ′)

This means that we create a node 𝑎𝑡𝑡𝑟 ′ which is of type 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ,
and assign its corresponding fields; we also create a linking relation
(the node 𝑓 𝑙) between the original attribute 𝑎𝑡𝑡𝑟 and the created
attribute node 𝑎𝑡𝑡𝑟 ′ at output 𝑃 .

In addition to that, because we will often refer to the output
attribute, we define this shorthand:

𝐼𝑂𝑃𝑎𝑖𝑟 (𝑖𝑛, 𝑜𝑢𝑡, 𝑝) ≡
𝐴(𝑓 𝑙, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐿𝑖𝑛𝑘) ∧ ℎ𝑎𝑠𝑂𝑟𝑖𝑔𝑖𝑛(𝑓 𝑙, 𝑖𝑛)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑓 𝑙, 𝑝) ∧ ℎ𝑎𝑠𝑅𝑒 𝑓 (𝑓 𝑙, 𝑜𝑢𝑡)

C.4.2 Output tag.

𝑂𝑢𝑡𝑝𝑢𝑡𝑇𝑎𝑔(𝑡, 𝑎𝑟, 𝑝, 𝑡𝑎𝑔) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑇𝑎𝑔(𝑝𝑜𝑙𝑖𝑐𝑦, 𝑡𝑎𝑔) ∧ ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑡𝑎𝑔, 𝑡)∧
ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑅𝑒 𝑓 (𝑡𝑎𝑔, 𝑎𝑟0) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑎𝑟0, 𝑎𝑟, 𝑝)
(∀𝑣𝑏.ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑡𝑎𝑔, 𝑣𝑏) →
∃𝑎𝑡𝑡𝑟 .𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝))

where the full form of 𝑂𝑢𝑡𝑝𝑢𝑡𝑇𝑎𝑔 is:

𝑂𝑢𝑡𝑝𝑢𝑡𝑇𝑎𝑔(𝑡, 𝑎𝑟, 𝑝, 𝑡𝑎𝑔) ≡
∃𝑜𝑡 .𝐴(𝑜𝑡,𝑇𝑎𝑔) ∧ ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑜𝑡, 𝑡)∧
ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑅𝑒 𝑓 (𝑜𝑡, 𝑎𝑟) ∧ ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑡, 𝑝)∧
(∀𝑣𝑏, 𝑎𝑡𝑡𝑟 .ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑡𝑎𝑔, 𝑣𝑏) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝)
→ ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑡, 𝑎𝑡𝑡𝑟))

C.4.3 Output prohibition.

𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑚,𝑎𝑐, 𝑝, 𝑝𝑟) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑝𝑜𝑙𝑖𝑐𝑦, 𝑝𝑟)∧
ℎ𝑎𝑠𝑀𝑜𝑑𝑒 (𝑝𝑟,𝑚) ∧ ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑝𝑟, 𝑎𝑐)∧
∀𝑣𝑏.(ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑝𝑟, 𝑣𝑏) → ∃𝑎𝑡𝑡𝑟 .𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝))

where the full form of 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 is:

𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑚,𝑎𝑐, 𝑝, 𝑝𝑟) ≡
∃𝑜𝑝.𝐴(𝑜𝑝, 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑀𝑜𝑑𝑒 (𝑜𝑝,𝑚)∧
ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜𝑝, 𝑎𝑐) ∧ ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑝, 𝑝)∧
∀𝑣𝑏, 𝑎𝑡𝑡𝑟 .(ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑝𝑟, 𝑣𝑏) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝)
→ ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑝, 𝑎𝑡𝑡𝑟))

C.4.4 Output obligation.

𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑐, 𝑎𝑟𝑔𝑠, 𝑎𝑐, 𝑝, 𝑜𝑏) ⇐
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑜𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑢𝑡𝑝𝑢𝑡)∧
ℎ𝑎𝑠𝑃𝑜𝑟𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑙𝑖𝑐𝑦, 𝑜𝑏)∧
ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑜𝑏, 𝑜𝑐) ∧ ℎ𝑎𝑠𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 (𝑜𝑏, 𝑎𝑟𝑔𝑠)∧
∀𝑥 .(𝑚𝑒𝑚𝑏𝑒𝑟 (𝑎𝑟𝑔𝑠, 𝑥) → ∃𝑥 ′ .𝐼𝑂𝑃𝑎𝑖𝑟 (𝑥, 𝑥 ′, 𝑝))∧
ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜𝑏, 𝑎𝑐)∧
∀𝑣𝑏.(ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑏, 𝑣𝑏) → ∃𝑎𝑡𝑡𝑟 .𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝))

where the full form of 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛 is:

𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛(𝑜𝑐, 𝑎𝑟𝑔𝑠, 𝑎𝑐, 𝑝, 𝑜𝑏) ≡
∃𝑜𝑜.𝐴(𝑜𝑜,𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛) ∧ ℎ𝑎𝑠𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 (𝑜𝑜, 𝑜𝑐)∧
∃𝑎𝑟𝑔𝑠′ .ℎ𝑎𝑠𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 (𝑜𝑜, 𝑎𝑟𝑔𝑠′)∧
(∀𝑥 .𝑚𝑒𝑚𝑏𝑒𝑟 (𝑎𝑟𝑔𝑠, 𝑥) →𝑚𝑒𝑚𝑏𝑒𝑟 (𝑎𝑟𝑔𝑠′, 𝑥))∧
(∀𝑣𝑏, 𝑎𝑡𝑡𝑟 .ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑏, 𝑣𝑏) ∧ 𝐼𝑂𝑃𝑎𝑖𝑟 (𝑣𝑏, 𝑎𝑡𝑡𝑟, 𝑝)
→ ℎ𝑎𝑠𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑜𝑜, 𝑎𝑡𝑡𝑟))

where𝑚𝑒𝑚𝑏𝑒𝑟 (𝑎𝑟𝑔𝑠, 𝑥) means 𝑥 is a member of the list (RDF Col-
lection) 𝑎𝑟𝑔𝑠 .

	Abstract
	1 Introduction
	2 Related Research
	3 A perennial policy language
	3.1 Language design
	3.2 Reasoning

	4 Solid Integration
	5 Performance Benchmark
	5.1 Benchmark settings
	5.2 Results and discussions
	5.3 Conclusion

	6 Summary and Future Work
	Acknowledgments
	References
	A Further on related-work table
	B Policy language examples
	B.1 For payment info
	B.2 For shoe size
	B.3 App policy set
	B.4 Sample usage context

	C Axioms for reasoning
	C.1 Helper axioms
	C.2 Conformance check
	C.3 Obligation check
	C.4 Policy derivation

