272 research outputs found

    Remote Sensing Monitoring of Vegetation Dynamic Changes after Fire in the Greater Hinggan Mountain Area: The Algorithm and Application for Eliminating Phenological Impacts

    Get PDF
    Fires are frequent in boreal forests affecting forest areas. The detection of forest disturbances and the monitoring of forest restoration are critical for forest management. Vegetation phenology information in remote sensing images may interfere with the monitoring of vegetation restoration, but little research has been done on this issue. Remote sensing and the geographic information system (GIS) have emerged as important tools in providing valuable information about vegetation phenology. Based on the MODIS and Landsat time-series images acquired from 2000 to 2018, this study uses the spatio-temporal data fusion method to construct reflectance images of vegetation with a relatively consistent growth period to study the vegetation restoration after the Greater Hinggan Mountain forest fire in the year 1987. The influence of phenology on vegetation monitoring was analyzed through three aspects: band characteristics, normalized difference vegetation index (NDVI) and disturbance index (DI) values. The comparison of the band characteristics shows that in the blue band and the red band, the average reflectance values of the study area after eliminating phenological influence is lower than that without eliminating the phenological influence in each year. In the infrared band, the average reflectance value after eliminating the influence of phenology is greater than the value with phenological influence in almost every year. In the second shortwave infrared band, the average reflectance value without phenological influence is lower than that with phenological influence in almost every year. The analysis results of NDVI and DI values in the study area of each year show that the NDVI and DI curves vary considerably without eliminating the phenological influence, and there is no obvious trend. After eliminating the phenological influence, the changing trend of the NDVI and DI values in each year is more stable and shows that the forest in the region was impacted by other factors in some years and also the recovery trend. The results show that the spatio-temporal data fusion approach used in this study can eliminate vegetation phenology effectively and the elimination of the phenology impact provides more reliable information about changes in vegetation regions affected by the forest fires. The results will be useful as a reference for future monitoring and management of forest resources

    Application of vegetation index time series to value fire effect on primary production in a Southern European rare wetland

    Get PDF
    Fire disturbance is an intrinsic component of the Mediterranean biome playing an important role in ecosystem dynamics and processes. However, frequent and severe anthropogenic wildfires can be detrimental to natural ecosystems, particularly in small natural protected areas, where they may hamper the flow of ecosystem services (ES). While post-fire dynamics of individual ES are heavily context-dependent, the primary productivity of the ecosystem can be regarded as a generic driver of several provisioning and regulating ES, as it represents the amount of energy available to plants for storage, growth, and reproduction, which drives future ecosystem structure and functions. The aim of this study was to evaluate the effect of anthropogenic wildfire on the primary productivity of a rare wetland ecosystem in the Natura 2000 site \u201cTorre Guaceto\u201d in Southern Europe. Productivity was estimated by calculating a 15-year time series of vegetation indices (EVI and NDWI)from remotely sensed MODIS imagery. Our results in terms of PP trends may be relevant to assess the change in ecosystems services provided by wetlands. Interactions between wildfire, ecosystem productivity and climate were then analyzed. During the selected period, climate did not play a significant effect on primary productivity, which was mainly driven by post-fire vegetation recovery. Findings of the present study demonstrate that the wildfire affecting the Natural Protected Area of Torre Guaceto in summer 2007 had a major effect on primary productivity, inducing the regeneration of Phragmites australis and the replacement of old individuals by structurally and functionally better ones

    The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal

    Get PDF
    Forest fires are a common disturbance in many forest systems in the world and in particular in the Mediterranean region. Their origins can be either natural or anthropogenic. The effects in regard to the time trends, vegetation, and soil will be reflected in the species distribution, forest composition, and soil potential productivity. In general, it can be said that the larger the fire and the shorter the time between two consecutive occurrences, the higher the probability to originate shifts in vegetation and soil degradation. In the Mediterranean region, the number of fire ignitions does not reflect the burnt area due to the occurrence of very large fires. The latter occur in a very small proportion of the number of ignitions, but result in very large burnt areas. Also there seems to be an increasing trend toward larger fires in the Mediterranean region due mainly to climatic and land use changes. This case study highlights the importance of vegetation regrowth a short time after the fire to maintain both forest systems and soil conservation

    Quantifying the influence of past wildfires on the severity and size of subsequent wildfires

    Get PDF
    Wildfire is arguably one of the most important and widespread natural disturbance agents in western U.S. forests. It has a substantial impact on ecosystem structure and function by influencing soils, nutrients, carbon budgets, wildlife habitat, and vegetation. Wildfires also influence fuel amount, type, and structure, potentially influencing the severity and size of subsequent wildfires through site- and landscape-level feedback mechanisms. Until relatively recently, the ability to quantitatively evaluate how these feedback mechanisms operate has not been feasible because of data limitations (i.e. there has not been enough wildfire). However, due to increased fire activity over the last ~25 years, there are a number of examples of wildfires “interacting” with subsequent fires, where a wildfire either burns within the perimeter of a previously burned area (i.e. it reburns) or burns up to (but not in to) a previously burned area. This recent surge in fire activity, along with increased availability of remotely sensed data, now makes it possible to evaluate how wildfires influence subsequent fire severity and size over large landscapes. Some studies have suggested that extreme weather conditions may decrease the strength of the feedback mechanisms associated with interacting fires, and consequently, evaluating the influence of weather on such relationships is increasingly important, especially given that climate change is expected to result in more extreme weather events. This dissertation is composed of three chapters. The first chapter quantifies how previous wildfire influences the severity of subsequent fires. In my second chapter, I develop and evaluate several approaches to estimate day-of-burning for each point within a fire perimeter using coarse-resolution MODIS fire detection data. Knowing the day-ofburning is essential in order to evaluate the influence of observed weather (e.g., from a nearby weather station) on observed fire-related effects, such as smoke production or the previously mentioned feedback mechanisms of fire. My third chapter evaluates the ability of wildfire to act as a fuel break by limiting the extent (i.e. size) of subsequent fire. Using the methods from Chapter Two to estimate day-of-burning, I was also able to evaluate the influence of weather in weakening the strength of this feedback

    Modelling patterns and drivers of post-fire forest effects through a remote sensing approach

    Get PDF
    Forests play a significant role in the global carbon budget as they are a major carbon sink. In addition to the deforestation caused by human activities, some forest ecosystems are experiencing detrimental changes in both quantity and quality due to wildfires and climate change that lead to the heterogeneity of forest landscapes. However, forest fires also play an ecological role in the process of forming and functioning of forest ecosystems by determining the rates and direction of forest stand recovery. This process is strongly associated with various biotic and abiotic factors such as: the disturbance regimes, the soil and vegetation properties, the topography, and the regional climatic conditions. However, the factors that influence forest-recovery patterns after a wildfire are poorly understood, especially at broad scales of the boreal forest ecosystems. The study purpose of this research is to use remote sensing approaches to model and evaluate forest patterns affected by fire regimes under various environmental and climatic conditions after wildfires. We hypothesized that the forest regeneration patterns and their driving factors after a fire can be measured using remote sensing approaches. The research focused on the post-fire environment and responses of a Siberian boreal larch (Larix sibirica) forest ecosystem. The integration of different remotely sensed data with field-based investigations permitted the analysis of the fire regime (e.g. burn area and burn severity), the forest recovery trajectory as well as the factors that control this process with multi temporal and spatial dimensions. Results show that the monitoring of post-fire effects of the burn area and burn severity can be conducted accurately by using the multi temporal MODIS and Landsat imagery. The mapping algorithms of burn area and burn severity not only overcome data limitations in remote and vast regions of the boreal forests but also account for the ecological aspects of fire regimes and vegetation responses to the fire disturbances. The remote sensing models of vegetation recovery trajectory and its driving factors reveal the key control of burn severity on the spatiotemporal patterns in a post-fire larch forest. The highest rate of larch forest recruitment can be found in the sites of moderate burn severity. However, a more severe burn is the preferable condition for the area occupied quickly by vegetation in an early successional stage including the shrubs, grasses, conifer and broadleaf trees (e.g. Betula platyphylla, Populus tremula, Salix spp., Picea obovata, Larix sibirica). In addition, the local landscape variables, water availability, solar insolation and pre-fire condition are also important factors controlling the process of post-fire larch forest recovery. The sites close to the water bodies, received higher amounts of solar energy during the growing season and a higher pre-fire normalized difference vegetation index (NDVI) showed higher regrowth rates of the larch forest. This suggests the importance of seed source and water-energy availability for the seed germination and growth in the post-fire larch forest. An understanding of the fire regimes, forest-recovery patterns and post-wildfire forest-regeneration driving factors will improve the management of sustainable forests by accelerating the process of forest resilience

    Advances in Remote Sensing and GIS applications in Forest Fire Management: from local to global assessments

    Get PDF
    This report contains the proceedings of the 8th International Workshop of the European Association of Remote Sensing Laboratories (EARSeL) Special Interest Group on Forest Fires, that took place in Stresa, (Italy) on 20-21 October 2011. The main subject of the workshop was the operational use of remote sensing in forest fire management and different spatial scales were addressed, from local to regional and from national to global. Topics of the workshops were also grouped according to the fire management stage considered for the application of remote sensing techniques, addressing pre fire, during fire or post fire conditions.JRC.H.7-Land management and natural hazard

    Responses of Land Surface Phenology to Wildfire Disturbances in the Western United States Forests

    Get PDF
    Land surface phenology (LSP) characterizes the seasonal dynamics in the vegetation communities observed for a satellite pixel and it has been widely associated with global climate change. However, LSP and its long-term trend can be influenced by land disturbance events, which could greatly interrupt the LSP responses to climate change. Wildfire is one of the main disturbance agents in the western United States (US) forests, but its impacts on LSP have not been investigated yet. To gain a comprehensive understanding of the LSP responses to wildfires in the western US forests, this dissertation focused on three research objectives: (1) to perform a case study of wildfire impacts on LSP and its trend by comparing the burned and a reference area, (2) to investigate the distribution of wildfire impacts on LSP and identify control factors by analyzing all the wildfires across the western US forests, and (3) to quantify the contributions of land cover composition and other environmental factors to the spatial and interannual variations of LSP in a recently burned landscape. The results reveal that wildfires play a significant role in influencing spatial and interannual variations in LSP across the western US forests. First, the case study showed that the Hayman Fire significantly advanced the start of growing season (SOS) and caused an advancing SOS trend comparing with a delaying trend in the reference area. Second, summarizing \u3e800 wildfires found that the shifts in LSP timing were divergent depending on individual wildfire events and burn severity. Moreover, wildfires showed a stronger impact on the end of growing season (EOS) than SOS. Last, LSP trends were interrupted by wildfires with the degree of impact largely dependent on the wildfire occurrence year. Third, LSP modeling showed that land cover composition, climate, and topography co-determine the LSP variations. Specifically, land cover composition and climate dominate the LSP spatial and interannual variations, respectively. Overall, this research improves the understanding of wildfire impacts on LSP and the underlying mechanism of various factors driving LSP. This research also provides a prototype that can be extended to investigate the impacts on LSP from other disturbances
    corecore