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Abstract 

 

Wildfire occurrence and post-fire ecosystem resilience are complex phenomena, driven by a 

multitude of factors at several spatial and temporal scales. These drivers include 

environmental conditions, human factors, landscape and ecosystem traits, and attributes of 

fire events and fire history. This dissertation addresses the complex patterns of wildfire 

occurrence and post-fire regeneration across scales in continental Portugal, a small but 

heterogeneous country holding the highest records of wildfire occurrence in Europe. Results 

of four studies are presented, of which two address national to (sub-)regional wildfire 

patterns and drivers, and two provide analyses of regional and local patterns and drivers of 

post-fire resilience. These four studies are based on several types of data and modelling 

techniques, and together they are intended to contribute to the understanding of wildfire 

occurrence and post-fire resilience as two key components of multi-scale fire risk 

management. 

The first study analyses recent patterns of wildfires in continental Portugal and tries to 

identify its main drivers using machine learning techniques. The heterogeneity of 

environmental and socioeconomic conditions was found to be clearly reflected in the patterns 

of fire occurrence, and distinct groups of factors were shown to differentially influence fire 

occurrence in different regions across the country. The second study applied inductive logical 

programming to derive a set of rules to explain and predict the general patterns of wildfires in 

the Alto Minho sub-region, northwest of Portugal, and again the results highlighted the 

importance of considering internal heterogeneity of conditions (with an emphasis for 

landscape features) to explain and predict fire occurrence in small but complex regions. The 

third study provides evidence of the potential of remote sensing data and tools to assess 

changes in ecosystems driven by fire events as well as to analyse their post-fire recovery, 

particularly for functional state indicators. Finally, the fourth study uses vegetation and plant 

community data collected during in-field campaigns to assess the relative importance of 

geological factors and fire history as local controls of post-fire resilience. 

The following main conclusions were drawn on the patterns of wildfire occurrence in 

heterogeneous countries and regions: (i) the ranking of fire factors or correlates can be 

revealed by analyses of historical fire records and tends to be region-specific in 

heterogeneous countries; (ii) the diversity of fire factors required to adequately explain and 

predict fire regimes is higher in the more heavily burnt regions; and (iii) machine learning 

modelling techniques are useful to explain and predict the patterns and drivers of fire 

occurrence in heterogeneous countries and regions. From the two studies of post-fire 

regeneration we concluded that: (i) using functional indicators of post-fire recovery allows 

capturing dimensions of resilience that are driven by distinct sets of factors; (ii) regional 



patterns of post-fire recovery rates are largely determined by size and other features of fire 

events, as well as by structural and functional attributes of pre-fire landscapes; and (iii) 

geology is an important factor or correlate of post-fire ecosystem resilience at regional and 

local scales. 

Several lessons have been drawn for governance and management of fire risk across 

scales. First, regional to local rates and pathways of post-fire vegetation resilience are 

influenced by many distinct factors related to environmental conditions as well as to 

structural and functional features of landscapes and plant communities, and this should be 

taken into account for technical decision on active restoration of burnt areas. Also, fire 

recurrence and differential post-fire regeneration across burnt landscapes originate complex 

patterns of fuel biomass accumulation and connectivity, and this will influence the occurrence 

and spread of future fires over the landscape. We conclude that robust predictive modelling 

frameworks, coupled with historical fire datasets and remote sensing tools, can be important 

assets in the management of fire risk at several scales as well as in the monitoring of the 

effects of wildfires and other disturbances on the key structural and functional attributes of 

landscapes and the ecosystems therein. Therefore, continued effort should be made to 

promote the application of results and lessons learnt in the improvement of fire risk 

management across spatial scales and levels of political and technical decision. 
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Resumo 

 

A ocorrência de incêndios e a recuperação pós-fogo dos ecossistemas constituem 

fenómenos complexos, determinados por múltiplos factores em diversas escalas espaciais e 

temporais. Estes determinantes incluem as condições ambientais, factores humanos, 

atributos da paisagem e dos ecossistemas, e características dos incêndios e do regime de 

fogo. Esta dissertação aborda os padrões complexos de ocorrência de incêndios e da 

regeneração pós-fogo em diversas escalas em Portugal continental, um país pequeno mas 

heterogéneo que regista os valores mais elevados de ocorrência de incêndios na Europa. 

São apresentados resultados de quatro estudos, dois relativos aos padrões e determinantes 

da ocorrência de incêndios no país e nas suas (sub-)regiões, e dois que analisam os 

padrões e determinantes regionais e locais de resiliência pós-fogo. Estes quatro estudos 

baseiam-se em diversos tipos de dados e ferramentas de modelação, e pretendem contribuir 

para a compreensão da ocorrência de incêndios e da resiliência pós-fogo enquanto dois 

componentes centrais da gestão do risco de incêndios em diversas escalas. 

O primeiro estudo analisa os padrões recentes dos incêndios em Portugal continental e 

tenta identificar os seus principais determinantes com recurso a algoritmos de aprendizagem 

automática. Verificou-se que a heterogeneidade de condições ambientais e 

socioeconómicas se reflete nos padrões de ocorrência de incêndios e que diversos grupos 

de factores influenciam de esses padrões de forma distinta nas diversas regiões. O segundo 

estudo aplica programação lógica indutiva para derivar um conjunto de regras para explicar 

e prever os padrões gerais de ocorrência de incêndios na sub-região do Alto Minho, 

noroeste de Portugal, e os resultados reforçam a importância de considerar a 

heterogeneidade interna de condições (principalmente no que se refere às características da 

paisagem) para explicar e prever os padrões dos incêndios em regiões pequenas mas 

complexas. O terceiro estudo explora e evidencia o potencial dos dados e ferramentas de 

detecção remota para avaliar alterações nos ecossistemas promovidas pelos incêndios e 

para analisar a sua recuperação pós-fogo, particularmente no que se refere a indicadores 

funcionais de estado. Finalmente, o quarto estudo analisa dados de campo relativos a 

vegetação e a comunidades vegetais para a avaliar a importância relativa de factores 

geológicos e do histórico de incêndios enquanto controlos locais da resiliência pós-fogo. 

Foram extraídas as seguintes conclusões principais relativamente aos padrões de 

ocorrência de incêndios em países e regiões heterogéneos: (i) a importância relativa dos 

factores causais ou correlacionados com a ocorrência de incêndios pode ser revelada por 

análises de registos históricos de incêndios e tende a ser distinta entre regiões em países 

heterogéneos; (ii) a diversidade de factores necessária para explicar e prever os regimes de 

fogo é maior nas regiões mais afectadas pelos incêndios; e (iii) os algoritmos de 



aprendizagem automática são úteis para explicar e prever os padrões e os determinantes da 

ocorrência de incêndios em países e regiões heterogéneos. Os dois estudos relativos à 

regeneração pós-fogo permitiram concluir que: (i) a utilização de indicadores funcionais de 

recuperação pós-fogo permite analisar dimensões da resiliência que são condicionadas por 

conjuntos de factores distintos; (ii) os padrões regionais das taxas de recuperação pós-fogo 

são largamente determinados pelo tamanho e outras características dos incêndios, bem 

como por atributos estruturais e funcionais das paisagens pré-fogo; e (iii) a geologia é um 

importante factor causal ou correlacionado com a resiliência pós-fogo dos ecossistemas às 

escalas regional e local. 

Os resultados obtidos permitem extrair um conjunto de implicações para a governança e a 

gestão do risco de incêndio em várias escalas. Em primeiro lugar, as taxas e os percursos 

de regeneração pós-fogo são influenciados por numerosos factores relacionados com as 

condições ambientais e com as características estruturais e funcionais das paisagens e das 

comunidades vegetais, e este facto deverá ser tido em conta na tomada de decisões 

técnicas relativas ao restauro ativo de áreas ardidas. Além disso, a recorrência de incêndios 

e a capacidade diferencial de regeneração pós-fogo em paisagens submetidas a incêndios 

origina padrões complexos de acumulação e conectividade de biomassa combustível, o que 

influenciará a ocorrência e a propagação de incêndios futuros na paisagem. Conclui-se que 

molduras robustas de modelação preditiva, combinadas com dados históricos de incêndios e 

ferramentas de detecção remota, constituem instrumentos importantes na gestão do risco de 

incêndio em várias escalas, bem como na monitorização dos efeitos do fogo e de outras 

perturbações nos principais atributos estruturais e funcionais das paisagens e dos 

ecossistemas nelas contidos. Assim, deverá ser continuado o investimento na aplicação 

prática de resultados e conclusões na melhoria da gestão do risco de incêndio nas diversas 

escalas espaciais e níveis de decisão política e técnica. 
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1.1. Wildfires in the context of landscape change 

 

1.1.1. Fire and the science of Fire Ecology 

 

Fire is a frequent phenomenon in many ecosystems and landscapes around the 

world. It can be seen as an ecological disturbance (Turner, 2010), a land management 

mechanism (Moreira et al., 2011) and/or an environmental hazard with important 

socioeconomic consequences (Román et al., 2012). Throughout time wildfires have 

contributed to the shaping of ecosystems and landscapes, inducing plant and animal 

evolution (Pausas and Schwilk, 2012) as well as driving biotic community structure and 

dynamics (Pausas et al., 2008). The emergence of humans as landscape managers 

changed the fire regime in many ecosystems, either by increasing its frequency (by the 

deliberate use of fire to change land cover) or by diminishing both its frequency and severity 

(e.g. by contributing to fragmentation of the landscape and through the limitation of ignitions 

in certain areas; Keane et al., 2004). 

With the growth of the available methods and technologies as well as of the number 

of researchers investigating it and of the resources allocated for it, a branch of ecological 

sciences (“Fire Ecology”) has emerged as the study of the relations between wildfires, 

organisms, ecosystems and society (Bowman and Franklin, 2005). Fire Ecology is 

concerned with the processes linking the natural incidence of fire in an ecosystem and its 

ecological effects. It can be considered a sub-discipline of Landscape Ecology, since both 

span the temporal, spatial and social dimensions of landscapes (Whelan, 1995).  

There are many terms around wildfire studies, with variations among world regions, 

countries and even authors. In the scope of this thesis, the term wildfires refers to fires of 

natural or anthropic origin, which occur in terrestrial ecosystems and propagate by 

consuming biomass, namely vegetation (Moreira et al., 2011). In Europe, the most common 

term used is forest fires, whereas in the United States of America it is wildland fires and in 

Australia bushfires. These and other terms, such as vegetation fires or landscape fires, are 

considered synonyms (Pausas, 2012). 

Fire disturbance is an ecological process, which can be considered natural within the 

range of its historical records in a given ecosystem (Bond and Keeley, 2005). Outside this 

range it can endanger the stability of that same ecosystem, just like extreme flooding or 

overgrazing. In the same way that the existence of overgrazed areas does not necessarily 

mean that herbivory is an artificial and harmful process to biodiversity, the existence of areas 

with anthropically increased wildfire frequencies does not mean that wildfires are always 

“unnatural”. Moreover, wildfires are not necessarily harmful to biodiversity by themselves, but 
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certain wildfire regimes can be (Pausas, 2012). Understanding wildfire regimes, their causes 

and changes, is paramount to a sustainable management of ecosystems (McPherson and 

DeStefano, 2003). 

Wildfires are the direct or indirect cause of much economic damage. As an example, 

wildfires in Portugal during year 2005 caused economic damage worth almost €800 million 

and caused 13 fatalities. During the summer of 2007, wildfires caused 64 casualties in 

Greece, and according to the Greek authorities the economic damage was estimated at €2–5 

billion (Papachristou, 2007; Petsini Arlapanou and Petsini Arlapanou, 2007). 

Despite the resources invested in fire prevention and suppression, the number of fires 

in recent decades has continued to increase in Europe (JRC, 2012; Figure 1.1). If fact, fire 

exclusion promotes the accumulation of biomass across the landscape, thereby increasing 

fuel load and fire risk, a phenomenon known as the “fire paradox” (Silva et al., 2010). There 

is thus growing concern about the ecological and socio-economic impacts of wildfires, 

particularly under a climate change context that may imply a future increase in the frequency 

and/or severity of wildfires in European countries (Piñol et al., 1998; Mouillot et al., 2002; 

Pausas, 2004; Arianoutsou, 2007). 

 

 
Figure 1.1. Joint number of fires in the five Southern Member States of the European Union (Portugal, 
Greece, Spain, France, and Italy) between years 1980 and 2012. Source: JRC (2012). 

 

 Studying and understanding ecological processes often requires a broad scope in 

time and in space. Therefore studying a single isolated wildfire does not enable managers or 

researchers to correctly understand the regional causes and/or consequences of wildfires. 

Instead, considering the fire regime is the usual process in wildfire research (Lloret et al., 

2003; Lawson et al., 2010; Telesca, 2010).  
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 A fire regime (FR) is the ensemble of characteristics of wildfires in a specific area or 

ecosystem throughout a large period of time, especially regarding their frequency, intensity, 

seasonality and type of propagation (Krebs et al., 2010). ‘‘Fire regime’’ has become, in recent 

decades, a key concept in many scientific domains. In spite of its wide spread use, the 

concept still lacks a clear and widely established definition. Krebs et al. (2010) thoroughly 

reviewed the available bibliography and proposed a structuring of the most important 

categories (Figure 1.2). Some of the parameters belong to the core definition of FR (sensu 

stricto), describing when, where and which fires occur (see Figure 1.2- A). Nearly all the early 

definitions of fire regime corresponded to this strict sense (Gill 1975, 1977; Aldrich et al., 

1978; Christensen, 1985).  

 

 
Figure 1.2 Representation of fire regime concepts. In the more exclusive definition (sensu stricto), a fire 
regime is a description by means of parameters of when, where and which fires occur (A); in a more 
inclusive definition (sensu lato), a fire regime may also include parameters that refer to the conditions of 
fire occurrence (B) and to the immediate effects of fires (C). Combining and analyzing the data of these 
three categories may result in further derived parameters (D). Source: Krebs et al. (2010). 

 

A second category of parameters refers to the conditions of fire occurrence (see Fig. 

1.2 - B), those are all the factors recognized as fire circumstances and prerequisites for fires 

(Booysen, 1984; Bond and Van Wilgen, 1996) that directly determine the timing, size, 

magnitude and characteristics of fire events. Finally, a third category of parameters that may 

be included in the broad definition of fire regime refers to the immediate effects of fires (direct 

impact of fires on ecosystems, human goods and infrastructures, see Figure 1.2- C).  
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Depending on the specific situation, parameters belonging to these categories can 

then be transformed and combined (see Figure 1.2- D). Derived and combined parameters 

have been more used in recent decades as increasingly complex instruments, methods and 

procedures for monitoring and modelling fire regimes have been developed. Examples of 

composite parameters include the analysis of burned areas according to fire severity classes 

(Morrison and Swanson, 1990, p. 19) or stand flammability related to the time since the last 

stand-replacing fire (Heinselman, 1981). 

Even if fire regimes are very diverse (there are no two landscapes with the same 

regime), broad types of vegetation can be related with some features of fire regimes. For a 

wildfire to occur, there are three main conditions to fulfill: a source of ignition, plant biomass 

(fuel), and appropriated weather conditions (Pechony and Shindell, 2010; Pausas, 2012). As 

these conditions can often be met together, and in many different geographic contexts, 

wildfires may occur in almost every ecosystem around the world with very different regimes 

(Bond et al., 2005; Whelan, 2005). 

 

 

1.1.2. An overview of patterns and drivers of fire occurrence 

 

In a permanently changing world, shifts in socio-economy, in land use and in the 

management of the territory, in human population densities and in climatic conditions affect 

and modify the regime of wildfires (Pezzatti et al., 2011; Rogers et al., 2011). These changes 

can (and often do) drive fire regimes outside their historical range, with severe consequences 

to ecosystems and to society. In ecosystems where wildfires were historically very rare, such 

as rain forests, the recent increase in fire frequency and size can be a real threat to 

biodiversity (Pueyo et al. 2010; Ciais et al. 2011). Even in more fire prone ecosystems, such 

as those of Mediterranean areas, the decrease of intervals between wildfires will also likely 

affect biodiversity if climate change predictions are confirmed (Pausas et al., 2008; Moreira 

et al., 2011). 

 The impact and importance of wildfires around the world make them crucial to 

understand regional and global ecological cycles. The regions where wildfires are more 

active are located in tropical and subtropical zones with high primary productivity and marked 

seasonality (Ciais et al., 2011; Pausas, 2012). This is the case of the Savanna biome, where 

the high frequency of fire does not allow large amounts of biomass to be accumulated and so 

wildfires are usually of low intensity. In the other extreme are deserts and alpine regions, 

where the low productivity does not allow sufficient biomass to accumulate. Nevertheless, in 

some arid regions (e.g. central Australia) with enough herbaceous vegetation wildfires may 
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play an important role in ecosystem dynamics. Mediterranean ecosystems represent an 

intermediate situation, where the natural wildfire return interval is situated in the dozen of 

years (Pausas, 2012). 

Since wildfires are a common phenomenon to many types of ecosystems globally, 

the factors that determine them, as well as their regime, vary considerably (Pechony and 

Shindell, 2010). In productive ecosystems (temperate forests, rain forests, etc.), there is 

abundant biomass but the conditions for high flammability (e.g. low humidity) are rare. In 

these ecosystems fire regimes are determined by occasional dryness and are characterized 

by low fire frequency, but when, in exceptionally dry years, wildfires occur they are usually 

very intense and leave severe scars in the landscape (Tedim et al., 2012). In dry regions, 

climatic conditions are usually optimal to fire occurrence, but the lack of biomass usually 

hampers fire propagation. These fire regimes are thus limited by fuel availability (Pausas and 

Fernández-Muñoz, 2011). In fact, as described above, the maximum fire frequencies occur in 

highly seasonal ecosystems, such as savannas, with a wet season that generates great 

volumes of biomass and a dry and hot season when this biomass is dry and is easily 

consumed by fire. In the Mediterranean, the maximum activity of wildfires occurs in dry 

scrubland, decreasing in moist ecosystems such as evergreen forests and even more in 

deciduous forests (Pausas, 2012; Azevedo et al., 2013). The fact that relations between fire 

and climate are different in systems where fire is mediated either by dryness or by biomass 

implies that future climatic changes will affect fire regimes differently across regions (Pausas 

and Fernández-Muñoz, 2011). 

Changes in social, economic and governance models frequently imply modifications 

in land use and landscape management (Pedroli et al., 2006; Ribeiro and Lovett, 2009). 

Wildfire propagation is dependent of the spatial continuity and connectivity of the biomass 

fuel, therefore small changes in landscape structure can lead to abrupt changes in fire 

regime. In the Mediterranean region of Europe, industrialization and general social 

modernization produced drastic changes in many landscapes. Here, landscapes were 

traditionally submitted to a high agricultural and grazing pressure even in the highlands. 

Then, with generalized rural abandonment in the mid and late XX century, the amount and 

continuity of fuel biomass increased considerably and fire regimes changed accordingly 

(Moreira et al., 2011; Pausas and Fernández-Muñoz, 2012).  

Understanding the factors driving the spatial patterns of fire ignitions has important 

implications for vigilance, firefighting and prevention, public educational campaigns, and the 

implementation of legislation concerning human activities prone to cause wildfires (Montiel-

Molina, 2012). Numerous studies have identified several factors influencing the spatial 

patterns of fire ignitions (Vasconcelos et al., 2001; Mercer and Prestemon, 2005; Genton et 

al., 2006; Nunes and Duarte, 2006; Catry et al., 2007, 2009; Romero-Calcerrada et al., 
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2008). Among these, variables related to human activities are rather important, particularly in 

southern Europe where the vast majority of wildfires have human origin (EC, 2008). For 

example, in Portugal and Spain about 97% of all successfully investigated wildfires were 

considered human-caused (DGRF, 2006; MMA, 2007). The coalescence of flammable 

vegetation and urban development and the high risk of ignition in peri-urban areas imply 

extreme threat to human life and property (Moreira et al., 2011). 

Wildfire regimes are rather variable according to spatial context, especially related to 

variations of climate and vegetation structure. The severity of the meteorological component 

of fire risk during the second half of the XX century suggests that climate change, rather than 

forest-related change, may well be the main driver behind fire regime modifications (Seidl et 

al., 2011). However, evidence is mounting that the positive response of fire to more extreme 

weather and drought events is mediated by vegetation/fuel (Koutsias et al., 2012; Pausas 

and Fernández-Muñoz, 2012; Pausas and Paula, 2012). In recent years, these factors jointly 

resulted in a brutal increase of the size and frequency of wildfires in most Mediterranean 

countries of Europe. This increase happened despite the parallel increases of the efforts to 

control an extinguish wildfires (Pereira, 2005). 
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1.2. Ecological changes induced by fire disturbance 

 

 Each type of ecosystem and landscape has a characteristic fire regime defined by the 

range of frequency, intensity, seasonality and type of wildfires (Krebs et al., 2010). Recent 

changes in fire regimes have produced significant impacts on biodiversity and ecosystem 

functioning (Cochrane, 2003; Lavorel et al., 2007). Consequently, there is increasing interest 

in disentangling the drivers of fire regimes world-wide (e.g. Westerling et al., 2006; Marlon et 

al., 2008; Krawchuk& Moritz, 2011) and in implementing this knowledge in predictive tools for 

environmental management (Lavorel et al., 2007; Flannigan et al., 2009). 

Fire, ecosystems and landscapes share a long common history, with fire deeply 

influencing the condition and evolution of ecosystems and landscapes. With the frequent use 

by humans, fire has attained an unprecedented dimension of landscape transformation 

(Perryet al., 2012). The impacts of fire on ecosystems are very diverse and dependent on a 

multiplicity of fire event and fire regime characteristics, some of the more important being the 

intensity of specific events, fire recurrence, and the type and pre-fire ecological condition of 

the ecosystem (Catry et al., 2010). Fires can change environmental conditions, such as the 

composition and configuration of habitats, their resilience, their biodiversity, and even the 

processes of soil formation and loss (Certini, 2005; Bowman and Murphy, 2010). Depending 

on the size of the fire, the main effect on the landscape can be of homogenization (in the 

case of large sized fires), or of increases of spatial heterogeneity and fragmentation (in the 

case of small sized fires; Silva et al., 2011). Moreover, wildfires may homogenize local 

landscapes while producing spatial heterogeneity at broader scales (Malkinson et al., 2011). 

This can then yield rather contrasting (and scale-dependent) effects on future landscape 

flammability, biodiversity, ecological processes and ecosystem services (Proença et al., 

2010). 

The impacts of wildfires on the ecology of ecosystems and landscapes can be 

categorized into: (1) direct effects on conditions and resources in burnt areas, (2) wider 

effects on landscape structure and functioning, and (3) direct and indirect effects on 

biodiversity. These broad types of impacts are briefly described in the following sections. 

 

 

1.2.1. Direct effects on conditions and ecosystem functioning 

 

By consuming vegetation, wildfires dramatically change several types of 

environmental conditions in the affected ecosystem, such as light availability, litter 

deposition, and microclimate (Chapin et al. 2011). The consumption of biomass releases 
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large amounts of carbon from vegetation and soil into the atmosphere, eventually 

contributing to deterioration of air quality (Singh et al., 2012). There are also emissions of 

other substances into the atmosphere, such as water, carbon monoxide, methane, nitric 

oxide and various volatile organic compounds (Pérez-Ramirez et al., 2012). 

Resource availability is also affected by fire in multiple ways, from soil degradation 

and decrease of organic matter to destruction of plant biomass for herbivores to feed upon 

(García-Corona et al., 2004). Nonetheless, low intensity fires may contribute to rapid release 

of nutrients from organic matter, which allows a rapid colonization and biomass production by 

ruderal plant species (Grime, 2001). Open habitat specialists can also benefit from the 

occurrence of wildfires, and many predators will have increased opportunities for capturing 

prey (Letnic et al., 2004). 

Fires are known to alter soil properties that influence soil water retention and thereby 

hydrological regulation and the downstream provision of ecosystem services. They have 

been reported to decrease organic matter content (García-Corona et al., 2004), increase bulk 

density (Ferreira et al., 2009), change soil texture (Badía and Martí, 2003) and induce soil 

water repellency (DeBano, 2000). After fire, vegetation cover is totally or partially removed, 

which affects hydrological processes in the soil, increasing the general risk of floods and of 

erosion (Stoof et al., 2012). Heating alters soil physical and chemical properties, which 

promotes surface runoff, inducing soil erosion and increaseing catchment-level sediment 

yield (Shakesby and Doerr, 2006). When those sediments reach the water lines, water 

quality is affected, as well as hydropower generation processes. Furthermore, the change of 

soil properties affects infiltration capacity and increases peak flows, affecting the timing of 

water flows and maximizing the risk of floods downstream. In addition, there is an increase of 

discharge, mainly because of surface runoff precipitation responses, which contributes to an 

increase of water quantity in the catchment, although quality may not be affected (Neary et 

al., 2009). 

Examples of other ecosystem functions and services negatively affected by wildfires 

include primary productivity and carbon sequestration (Huang et al., 2009), timber and wood 

production by forests (Román et al., 2012), and aesthetic value and recreation. 

 

 

1.2.2. Wider effects on landscape structure and functioning 

 

Disturbances play a fundamental role in shaping the structure and dynamics of 

landscapes (Turner and Dale, 1990), as landscape patterns are largely determined by the 

frequency, intensity, location and extension of disturbances (Pickett and White, 1985; Krumel 
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et al., 1987). At the same time the spatial propagation of disturbances across the landscape 

is a function of the abundance and arrangement of susceptible habitats (Turner et al., 1989) 

and of their disturbance history. 

 Considering that fire is one of the main types of disturbances affecting Mediterranean 

landscapes, understanding how landscape structure affects the spatial spread of wildfires is 

a key issue for understanding their ecological implications and the role they play in 

landscape dynamics (Moreira et al., 2009). As described above, fire disturbance can promote 

either landscape homogeneity or heterogeneity, depending on features of the fire event (e.g. 

spatial extent and intensity/severity; Vega-García and Chuvieco, 2006) and of the landscape 

itself (e.g. susceptibility of its habitat types to fire disturbance, spatial contrasts of 

flammability, and connectivity of the more susceptible habitat types; Zozaya et al., 2011). 

Changes in ecosystem and landscape functioning induced by fires have been mainly 

reported from studies based on satellite imagery and remote sensing methods. Those 

changes include drastic decreases of photosynthetic activity (e.g. Gouveia et al., 2012) as 

well as shifts in vegetation phenology (e.g. Angelis et al., 2012).  

 

 

1.2.3. Direct and indirect effects on biodiversity 

 

Wildfires are regarded as one of the main threats to Mediterranean biodiversity 

(WWF, 2003). Fire disturbance can have strong effects on the local patterns and dynamics of 

biodiversity (Pastro et al., 2011). Such effects may be negative (direct or indirect) or positive. 

Among negative impacts, the most important direct effect is mortality, which affects 

particularly those organisms with limited mobility, such as plants and small non flying animals 

(Banks et al., 2011, Pastro et al., 2011). Indirect effects involve processes such as habitat 

degradation and changes in environmental conditions and resource availability (e.g. Martín-

Martín et al., 2013; see above), as well as landscape fragmentation, including habitat loss 

and increased isolation of remaining habitat patches (Lloret et al., 2002). For example, in 

Portugal 45% of mammals, birds, amphibians, and reptiles are associated with forests, 

particularly with deciduous and evergreen oak forest (Pereira et al., 2005). Fires can also 

modify the balance of biotic interactions, e.g. by promoting predation in open areas (Letnic et 

al., 2004) or favoring ruderals over stress-tolerant plants (Grime, 2001), and foster the 

invasion of disturbed areas by alien plant species (Keeley et al., 2005) 

As briefly described above, positive impacts of fire may be considered for some 

species or functional groups. Open habitat specialists can benefit from the increase of 

suitable areas, and birds of prey as well as many other predators will have increased 
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opportunities for capturing prey (Santana et al., 2012). Plant species adapted to transient 

nutrient flushes, including tall forbs such as Digitalis purpurea (Honrado, 2003), may also 

benefit from biomass breakdown and increased light availability promoted by low-intensity 

wildfires (Proença et al., 2010). Landscape level plant diversity is promoted by wildfires in 

pyrodiverse landscapes, where differential fire spread on distinct vegetation types promotes 

landscape heterogeneity (Azevedo et al., 2013). 
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1.3. Patterns and drivers of wildfires across scales 

 

1.3.1. Historical data and the study of fire patterns across scales 

 

Historical data have revealed that the occurrence of fires in Europe is not randomly 

distributed, with Southern Europe (i.e. the Mediterranean Region) being much more affected 

by the phenomenon (with 500 000 hectares burnt on average every year) than Northern and 

Central Europe (Yves Birot et al., 2009). 

The available data (European Fire Database; Camia et al., 2010) highlight that the 

spatiotemporal distribution and recurrence of wildfires depend not only of climatic factors, but 

also of several other variables (e.g. land use and landscape structure, socio-economy and 

demography) which may affect this pattern at different levels of the phenomenon (Costa et 

al., 2011). Recently, Yves Birot et al. (2009) attributed more than 90% of the ignitions in the 

Mediterranean basin to anthropogenic factors, which, when combined with the natural 

climatic conditions and hydric status of the vegetation, combustion and fire propagation, 

makes the southern European region clearly different from the rest of the continent (Pereira 

and Santos, 2003). 

Previous studies have investigated the factors influencing long-term fire occurrence, 

fire danger and risk in Europe, from regional to local scales. At the European level, 

Sebastián-López et al. (2002) applied the fire potential index (FPI), an integrated index which 

combines long-term and short-term variables, to assess fire danger. Martínez et al. (2009) 

focused their research on the human factors of fire risk in Spain based on structural variables 

such as unemployment rate, average distance to roads and agrarian landscape patterns. 

Sebastián-López et al. (2008) described a methodology to integrate socio-economic 

and environmental variables to model long-term fire danger in southern Europe, using 

stepwise regression. Koutsias et al. (2005, 2010) described results obtained with 

Geographically Weighted Regression in Southern Europe, using structural human variables 

in the model. At a local scale, Amatulli et al. (2006) applied classification and regression 

trees to assess long-term fire risk in a small area in the southeast of Italy. In Portugal, Nunes 

et al. (2005) and Carmo et al. (2011) used wildfire records to demonstrate fire selectivity 

regarding land cover types and topographic situations. These and other studies highlight the 

importance of historical wildfire data to assess the patterns of wildfires as well as their 

drivers. 
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1.3.2. Common causes of fire ignition 

 

Wildfires start from a local epicentre (ignition point) and spread across landscapes 

mainly as a function of the abundance and arrangement of disturbance-susceptible patches 

(Turner et al., 1989; Forman, 1997). The available European wildfire data show a clear 

geographic trend in the number of occurrences, with the majority of wildfires occurring in the 

southern countries (Yves Birot et al., 2009). The total number of wildfires in this area has 

been increasing in the last decades (Pereira and Santos, 2003; European Commission, 

2005), and the strictly natural causes for ignition are very rare. In fact, as much as 90% of the 

ignitions are related to human activities or behaviours (Yves Birot et al., 2009). Nonetheless, 

extreme weather conditions, with high temperatures and dry winds, strongly dictate 

combustion and propagation conditions and therefore the final extension of the burnt area 

(Pereira and Santos, 2003). 

In Portugal, the annual burnt area has considerably increased in the last three 

decades. In the period between 2003 and 2011, the average yearly burnt area was above 

150 000 hectares, and the average number of occurrences was ca. 25 000 per year, well 

above Mediterranean European averages (European Commission, 2009). The relation of the 

total burnt area and the occurrence of a small number of large wildfires, in a small set of days 

with particularly favourable weather conditions, are particularly striking in Portugal (Pereira et 

al., 2010). Recent assessments of probable causes for fire ignitions have revealed that in 

Portugal about 97% of all successfully investigated wildfires are human-caused (DGRF 

2006). Common causes of fire ignition include: negligent usage of fire, accidental, structural 

causes, incendiary, natural and unknown (Lourenço et al., 2013). In 2012 the National Guard 

proceeded with the criminal investigation of 15 404 forest fires (72.7% of the total registered 

in 2012). Intentional fires corresponded to 22% of the determined causes, and accidents or 

negligence were present in the ignition of 39% of all fires (Figure 1.3). 

 

 

1.3.3. Determinants of fire behaviour 

 

Constraints to fire activity due to vegetation and landscape differences, at scales from 

the biome to the local land cover patch, underline the importance of considering the 

ecological context when assessing the effects of climate variability on past and future wildfire 

activity (Litschert et al., 2012). On average, Mediterranean Europe records 500 000 hectares 

of burnt land every year, with wildfires that surpass 50 hectares (only 2,6% of all wildfires) 

accounting for as much as 75% of the total burnt area (EFFIS, European Commission, 
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2009). Therefore, a small number of large wildfires actually determines the dimension of the 

losses in a given year (Strauss et al., 1989), highlighting the importance of understanding fire 

behaviour across the landscape. Factors related to climate and weather conditions 

(temperature, wind, and relative humidity), local topography, vegetation and fuel conditions, 

land use and landscape structure, and socio-economic and demographic factors, are among 

those known to influence fire behavior (Chuvieco et al., 2010). 

 

 
Figure 1.3 Main causes of forest fires in Portugal, in year 2012. Source: JRC (2012). 

 

The relation between fire, climate and weather conditions is probably the best 

documented among all the factors and conditions considered in the study of the fire 

phenomenon. Weather conditions are known to affect fuel accumulation and moisture (e.g. 

Syphard et al., 2008; Vilar et al., 2010), thus having an effect on the probability of a fire to 

occur (Drever et al., 2008; Bravo et al., 2010; Moreno et al., 2011). Moreover, certain climatic 

regimes (e.g. dry Mediterranean climates) are known to have promoted the evolution of plant 

strategies that very often include fire proneness (Mouillot et al., 2005; Pausas et al., 2012). 

Drought enhances wildfire potential in moist forest biomes where mean net primary 

productivity is relatively high and biomass is always available for burning, in contrast with 

xeric areas where the low productivity limits the availability of burnable fuels (Pausas and 

Bradstock, 2007; Archibald et al., 2009; Littell et al., 2009; Krawchuk and Moritz, 2011). 

In Mediterranean areas, the role climate plays on fire occurrence is testified by, on 

one hand, the high wildfire seasonality, with a concentration of events during the dry and hot 

summer months (Keeley and Fotheringham, 2003; Pausas, 2004; Bajocco and Ricotta, 
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2008), and, on the other hand, by the strong correlation between the seasonal timing (i.e. 

phenology) of the vegetation (the major source of fuel) and the associated wildfire regimes 

(Bajocco et al., 2010). These observations demonstrate a strong bioclimatic control over 

wildfire behavior, which is particularly important in Mediterranean regions where the 

anthropic component highly affects fire incidence patterns, both in terms of ignition sources 

and of fuel characteristics. This way it is easy to confound the relationships between fire 

behavior and natural pyrological conditions (Vazquez et al., 2002).  

The effects of future climate change on altering fire regimes are still a matter of 

debate (Flannigan et al., 2000; Dube, 2009). In an analysis of climate scenarios for Portugal, 

Santos et al. (2002) reported a general trend towards an increase in mean annual surface air 

temperature from 1972 until 2000. For precipitation, although changes in the annual mean 

are not evident, a systematic reduction in spring precipitation in all stations of continental 

Portugal was observed for the period 1931-2000 (Santos et al., 2002). A climatic shift 

towards more frequent dry periods and seasonal precipitation shifts in the Mediterranean 

(Giorgio and Lionello, 2007) are expected to interact with socioeconomic and landscape 

factors in determining the number of fires (Filipe et al., 2009). Extreme climatic events are 

also very important. In 2003, during the heat wave, a record number of large wildfires were 

observed in European countries (Barbosa et al., 2003). In Portugal, the burnt area was more 

than twice the previous extreme (1998) and four times the 1980-2004 average (Trigo et al., 

2006). As a result, 8.6% of the total Portuguese forest area was burned leading to an 

economic impact exceeding one billion euros (De Bono et al., 2004). In Greece, the 2007 

unusual extent of forest fires exposed the vulnerabilities of fire defense mechanisms when 

multiple ignitions and favorable climatic conditions occurred simultaneously (Xanthopoulos, 

2007).  

The spatiotemporal variability of climate conditions and the heterogeneity in 

vegetation and fuel load play an essential role in determining fire behavior and severity 

throughout the landscape. In fact, differences among fuel types can modulate fire-climate 

relationships at a regional scale (Pausas and Paula, 2012) and even at local scales (Gartner 

et al., 2012). In forests that once experienced frequent, low to moderate intensity fire 

regimes, reduction of surface and ladder fuels can create forests with high resistance to 

wildfires (van Wagtendonk, 1996; Agee and Skinner, 2005; North et al., 2007; Stephens et 

al., 2009). 

If the different vegetation types were all equally fire-prone, then fires would occur 

randomly across the landscape. Actually, certain vegetation types are more (or less) fire-

prone than others; they can thus be considered as ‘preferred’ (or ‘avoided’) by fire. In this 

view, fire can be regarded as acting like an ‘herbivore’ that positively (or negatively) selects 

different resources (i.e., vegetation types). When a resource is consumed by fire 
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disproportionately with respect to its availability, then fire behavior is considered ‘selective’ 

(Nunes et al., 2005; Bajocco and Ricotta, 2008). To date, most studies on fire selectivity 

focused on the relationship between wildfire patterns and the structural features of the 

landscape like land cover categories (Stolle et al., 2003; Nunes et al., 2005; Bajocco and 

Ricotta, 2008) and vegetation types (Cumming, 2001; Pezzatti et al., 2009), while the 

functional characteristics of the landscape like land degradation, vegetation productivity or 

fuel phenology are only rarely considered (Bajocco et al., 2011). As the phenological status 

of vegetation represents a primary driver influencing fuel characteristics, regarding both fuel 

availability and moisture content, fire monitoring and prediction over large areas requires the 

capability of capturing broad-scale changes in vegetation phenology that are descriptive of 

changes in fuel conditions (Angelis et al., 2012). 

In fact, considering the functional characteristics of the landscape allows adding a 

dynamic component to wildfire analyses. This functional approach is particularly useful when 

dealing with global change issues, since knowing the relations between fire and vegetation 

dynamics may help predicting future fire behavior under different climatic and environmental 

scenarios (Bajocco et al., 2010a). Vegetation phenology (i.e., the influence of climatic 

variables on the timing of plant development stages) plays an important role in fire studies 

(Bajocco et al., 2010a; Akther and Hassan, 2011). Remotely sensed observations derived by 

sensors like MODIS provide comprehensive spatial coverage (from 250 m to 1 km of pixel-

size) and enough temporal resolution (16-days composites of daily images) to update fuel 

conditions in a more efficient and operational manner than traditional aerial photography 

(Oswald et al., 1999) or fieldwork (Riano et al., 2002). Furthermore, they are particularly 

useful for investigations of wildfire history (Hicke et al., 2003), fuel load production (Roberts 

et al., 2003), and impact of land use on fuel load (Bachelet et al., 2000). The Normalized 

Difference Vegetation Index (NDVI) has been used for fire risk estimation in the 

Mediterranean region by Gabban et al. (2006) and by Cheret and Denux (2007), and in 

northern boreal forests by Leblon et al. (2001). Newnham et al. (2011) used NDVI for 

assessing curing of grassland fuel, and the harmonic analysis of NDVI time series was used 

by Bajocco et al. (2010) to investigate fire incidence probability. A review of fire assessment 

through remote sensing techniques (particularly high spatial and/or temporal resolution 

imagery) in the context of conservation monitoring can be found in Nagendra et al. (2012). 

Topographic features are also often considered in fire risk assessments and in a 

variety of studies regarding fire patterns. Variations in topography have been shown to affect 

vegetation distribution, composition and flammability (Syphard et al., 2008; Whelan, 1995). 

Topography directly affects fire behavior by promoting radiant energy transfer from the fire 

line towards the higher slopes (Rothermel, 1983). Indirectly, topography also affects fire by 

creating different microclimates, which influence the moisture content of fuels, air 
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temperature, wind patterns, as well as the distribution of plant species across the landscape 

(Heyerdahl et al., 2001; Mermoz et al., 2005). Topography and land cover are often linked, 

e.g. agricultural areas may be preferentially located in lowland plains and forests in slopes, 

which may hinder the understanding of the ultimate drivers of fire spread. Over larger areas 

and at coarser scales, elevation gradients and topography are also correlated with climatic 

patterns (Mesquita et al., 2009). 

Land use and landscape structure represent a synthesis between environmental 

(biophysical) and human influences on the spatial and temporal distribution of conditions, 

resources and disturbances (Farina et al., 2006). Landscape composition and configuration 

have often been associated with fire occurrence (e.g. Syphard et al., 2008; Catry et al., 2009; 

Martínez et al., 2009; Vilar et al., 2010; Azevedo et al., 2013), based on the analysis of land 

cover maps in which vegetation types are used as proxies for fuel types and express the 

interaction with human influences (Nunes et al., 2005; Moreira et al., 2011). Fire spread rate 

can be facilitated or retarded by landscape heterogeneity (Turner and Dale, 1990). Thus, the 

spatial patterns of fire ignition and spread across landscapes are affected by fire proneness, 

i.e. the differential fire behavior in various land cover types that are not equally fire prone 

(e.g. Bajocco and Ricotta, 2008; Moreira et al., 2009). The type of vegetation that 

differentiates each land cover type has a key role, considering its fuel structure, load and 

moisture content (Turner and Dale, 1991; Bajocco and Ricotta, 2008; Moreira et al., 2009). 

Fires are usually selective for, and grow larger in, less pyrodiverse landscapes (Viedma et 

al., 2009; Loepfe et al., 2010). 

Much attention has been given to the relationship between landscape structure and 

characteristics of fire, including severity and spread (Bajocco and Ricotta, 2008; Kerby et al., 

2007; Ryu et al., 2007; Wimberly and Reilly, 2007). From a landscape ecology perspective, 

landscape structure includes two dimensions: composition and configuration (McGarigal and 

Marks, 1995; Turner et al., 2001). Both aspects are strongly tied to many characteristics of 

fire such as spread, severity, fuel types, and fuel loading (Lloret et al., 2002; Gonzalez et al., 

2005; Nunes et al., 2005; Kerby et al., 2007). Ryu et al. (2007) investigated the relationship 

between burned area of the Washburn Ranger District of the Chequamegon National Forest, 

Wisconsin, United States, and landscape structure using spatial pattern metrics including, 

among others, mean patch size, mean shape index, and Shannon’s diversity index. They 

reported a strong tie between burned area and landscape structure and concluded that, to 

mitigate fire spread, the forest landscape should be composed of numerous, small, 

irregularly shaped patches of different types of forests. 

Several studies have pointed out that demographic and socio-economic factors are 

also key influences on fire history in several regions (Martínez et al., 2009; Catry et al., 2009; 

Chuvieco et al., 2010; Koutsias et al., 2005). Variables such as unemployment rate, average 
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distance to roads, or population density, as well as their recent dynamics, have been used to 

account for fire patterns and trends (Turner et al., 2008; Martínez et al., 2009; Ribeiro et al., 

2009). Landscape changing processes such as agricultural intensification or abandonment, 

deforestation, fire suppression, livestock grazing or urban development (Farina, 1998) are 

mostly determined by socioeconomic and political issues. These alterations, combined with 

the increase of ignition sources related to high population densities in rural–urban interfaces, 

have greatly expanded in the Mediterranean region over the last decades (Silva et al., 2010). 
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1.4. Post-fire resilience and its drivers across scales 

 

1.4.1. Features of wildfires and fire regimes 

 

Disturbances can be characterised by a number of features, which are commonly 

used in “disturbance ecology” (Turner et al., 2001). Intensity describes the physical energy 

released by the disturbance in a given area and time period, whereas severity expresses the 

effects of the disturbance on the ecological system. In contrast, size expresses the area or 

spatial extent affected by a given disturbance event. These and other features (e.g. shape 

and ecological heterogeneity of the area affected) can be used in fire ecology to describe 

individual wildfires (Miller et al., 2012). 

Wildfire regimes are usually characterized using descriptive statistics from the set of 

fire events occurring in a given area and time period (e.g. mean or median intensity, severity 

or size (Jiang et al., 2009). Another very important feature of fire regimes is frequency, which 

is the mean or median number of events occurring at one point in a given time period; the 

return interval is the mean time distance between consecutive events, and it is therefore the 

inverse of the frequency (Turner et al., 2001). The features of regional fire regimes can be 

summarized under the concept of pyrodiversity, which describes the variability in frequency, 

intensity, seasonality and dimensions of fire patterns across that landscape (Martin and 

Sapsis, 1991; Faivre et al., 2011). 

Describing the features of wildfires and fire regimes as well as understanding their 

determinants if of high importance since they have a direct influence on their ecologic and 

socio-economic impacts, as well as in the resilience of (social-)ecological systems after 

disturbance by fire. This will be addressed in more detail in the next sections. 

 

 

1.4.2. Resilience in the context of fire disturbance 

 

Resilience is a property of ecosystems which describes their capacity to recover to 

the initial condition after a disturbance event, whereas resistance expresses the capacity of 

ecosystems to resist undergoing changes when affected by a disturbance (MacGillivray and 

Grime, 1995; He and Mladenoff, 1999; Díaz-Delgado et al., 2002; Brown et al., 2004; Pausas 

et al., 2004). The concept of post-fire resilience has been thoroughly explored in the scientific 

literature (e.g., MacGillivray and Grime, 1995; He and Mladenoff, 1999; Díaz-Delgado et al., 

2002; Brown et al., 2004; Pausas et al., 2004). Post-fire resilience can be measured from a 
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wide array of system state variables, related to vegetation structure (Lee et al., 2009), 

biodiversity and community structure (e.g. Kazanis et al., 2004; Pausas et al., 2008; Moreira 

et al., 2011) or ecosystem functioning (e.g. Bajocco and Ricotta, 2008; Silva et al., 2011). 

Wildfires can cause dramatic changes in most variables of ecosystem state as well as in their 

rate of recovery to the initial state, depending on fire intensity and frequency among other 

factors (Pausas, 2008, 2012; Lee et al., 2009). 

Fire has a complex effect on vegetation regeneration, mainly due to differential 

responses of plant species and vegetation types to wildfires and fire regimes (Wittenberg et 

al., 2007; Groeneveld et al., 2008). According to Keely et al. (2005) there are four main 

hypotheses establishing that post-fire recovery patterns are mainly determined by: (1) fire 

severity and post-fire fluctuations in precipitation (“event-dependent hypothesis”); (2) length 

of the fire free period, which affects reproductive success/failure and fuel accumulation (“fire 

interval hypothesis”); (3) internal density-dependent control, which regulates the shift from 

herbs to woody species (“self-regulatory hypothesis”); and (4) extrinsic environmental factors 

that vary spatially across the landscape (“environmental filter hypothesis”). 

 

 

1.4.3. Plant functional ecology and post-fire regeneration strategies 

 

Plant species survival in ecosystems after major disturbance events is largely 

dependent on their ability to recover after biomass destruction (Cornelissen et al., 2003). 

Post-fire regeneration is favored by nutrient increase from ashes and by stronger light 

availability allied to the absence of competitors (de Bano and Conrad, 1978; Tyler, 1996; 

Clemente et al., 2005), which then influence species abundance, dominance and evenness 

(Marzano et al., 2012). 

Plant species may regenerate by distinct processes, such as resprouting, clonality 

and seedling recruitment (Menges and Kohfeldt 1995; Maguire & Mendes, 2011). These 

post-fire regeneration modes are mostly dependent on recruitment and resprouting, which 

are determined by species life history. A close relation may be expected between 

regeneration and local seed bank features in the case of seeder plants (Ne’eman et al., 

2009), whereas regenerative processes involving resprouting will depend on an adapted root 

system that can ensure water and carbohydrate provision for the development of new 

shoots. Therefore different regeneration strategies, resprouting and seeding, with diverse 

ecological conditions and dependencies to nutrient and water provision, may be identified 

(De Souza et al., 1986; Hastings et al., 1989; Castell et al., 1994; Fleck et al., 1995; 

Clemente et al., 2005). However, regenerative traits may covary with other functional 
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attributes more related with resource uptake and stress tolerance, hampering the ability to 

understand the role of individual traits as fundamental driving forces in post-fire regeneration 

(Clemente et al., 2005).    

Resprouter species develop new sprouts, whereas seeders regenerate by seed 

germination from local seed banks or nearby populations, which are due to change with fire 

and biogeography (Clemente et al., 2005; Lloret et al., 2005). There are important ecological 

trade-offs determining sprouting and non-sprouting species (Cornelissen et al., 2003). An 

example is provided by drought resistance, with resprouters usually revealing lower drought 

resistance and lower efficiency in water consumption (Krivtsov et al., 2009). The ability to 

resprout is a tolerance functional binary trait (resprouters vs. non-resprouters), contributing to 

persistence and stabilization of plant populations, and is dependent on bud and shoot 

location after a fire event (Pausas et al., 2004; Nano & Clarke, 2011; Clarke et al., 2013). 

Resprouting species can inhabit the same locations throughout time allowing some stability 

of ecosystem and landscape pyrodiversity (Clarke et al. 2010; Maguire & Mendes, 2011).  

Seeding mechanisms have evolved along with the Mediterranean climate and fire 

patterns, and they are a product of the fire selective pressure towards faster germination and 

seedling establishment (Pausas and Verdu, 2006; Saura-Mas and Lloret, 2007; Keeley et al., 

2012; Santana et al., 2013). Moreover, certain physiological attributes are known to be 

related to a seed dormancy breakage by high summer temperatures, thereby allowing 

seedlings to evade summer drought, which is the most significant factor constraining 

seedling establishment (Baskin & Baskin, 1998; Pausas et al., 2006; Baeza and Roy, 2008; 

Santana et al., 2013).  In Mediterranean landscapes, seedling drought tolerance and growth 

ability are important factors after fire events, with likely effects on community composition, 

since distinct drought tolerance among seeders will provoke differential survival (Frazer and 

Davis, 1988; Davis, 1989; Moreno and Oechel, 1992; Clemente et al., 2005). Moreover, 

seeders persistence may become threatened by future changes in fire regimes (Verdú et al., 

2007; Marzano et al., 2012).  

The adaptive attributes of species to environmental modifications can be assessed 

through the use of functional traits (Moretti et al., 2009). Ecosystem and landscape 

vulnerability to wildfires may be increased by the loss of plant species bearing resilience-

related traits (Eriksson, 2000; Dale et al., 2001; Buma and Wessman, 2012). In disturbed 

ecosystems, the inclusion of species life forms and history, as well as response strategies, 

may help to identify those species, strategies or functional groups that are key to improve 

models of ecological response (Syphard and Franklin, 2010). Traits related to water 

availability or carbon storage and associated to regeneration strategies are among those 

most studied in Mediterranean ecosystems (Ackerly, 2004). Since fire regimes and land use 

history are critical factors to understand the structure and dynamics of Mediterranean 
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landscapes, it is important to assess how those factors may interact with functional diversity, 

since the abundance and diversity of functional groups are driven by landscape processes, 

with fire regime as a key component of the system (Lloret and Vilà, 2009). 

Several examples illustrate the use of functional diversity in wildfire ecology. Llloret 

and Vilà (2009) have looked at the diversity of plant functional types (PFTs) by growth forms 

and regenerative attributes related to fire disturbances; PFTs contributed to a deeper 

comprehension of landscape ecological processes through the identification of response 

groups of species with common key traits (Lavorel et al., 1997; McIntyre et al., 2001; Lloret 

and Vilà, 2009). Using functional traits, Syphard and Frankly (2010) were able to find 

differences in predictive accuracy revealed by changes in the patterns of species life history, 

rarity and disturbance responses, considering important ecological processes and patterns 

such as dispersal mechanisms or species prevalence. Combinations of animal and plant 

traits were also applied to demonstrate a close relation between those traits and ecological 

limitations induced by fire (Figure 1.4) (Moretti et al., 2009). 

 

 
Figure 1.4 Plant traits (base of arrow) and animal traits (head of arrow) ordination of sample sites in a 
study of plant and animal traits to assess community functional responses to disturbance in Switzerland. 
Note that short arrows indicate that the plant and animal traits occupy similar positions in the ordination 
space; (S =single fire site; R =repeated fires site; the number indicates the number of years elapsed since 
the last fire; C = control sites, unburnt for at least 30 years). Source: Moretti et al. (2009). 
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1.4.4. Factors determining vegetation resilience to fire disturbance 

 

From the above sections, post-fire vegetation resilience can be influenced by a wide 

range of factors, including features of wildfires and fire regimes, abiotic conditions, biotic 

traits and processes, and landscape processes (Díaz-Delgado et al., 2002). 

Features of wildfires and fire regimes such as intensity, severity and frequency can 

strongly determine the rate of vegetation recovery after fire. In general, fires that are more 

intense, severe and/or frequent will induce more damage on vegetation and on other 

components of ecosystems (e.g. soil), thereby hampering their ability to exhibit high rates of 

recovery after those disturbance events (Pereira et al., 2005; Malvar et al., 2010). 

Abiotic conditions are also of high importance for post-fire regeneration. Recovery 

rates are usually higher in areas of high intrinsic productivity, which are generally related to 

benign environmental conditions (Navarro, 2011; Malkisnon et al., 2012). Effects of abiotic 

factors on vegetation resilience have been reported for climate (e.g. Syphard et al., 2008; 

Vilar et al., 2010), topography/terrain morphology (e.g. Whelan, 1995; Syphard et al., 2008), 

soil types or properties (e.g. Maia et al., 2012), and geology (Smit et al., 2012). 

Post-fire vegetation resilience is also much influenced by biotic traits and processes, 

such as pre-fire community structure, seed bank condition after fire, invasion by alien 

species, and several types of biotic interactions. Disturbance and succession are two forces 

working in opposite directions, and as a consequence of fire events the landscape becomes 

an heterogeneous mosaic of patches with different burning histories (Turner et al., 2011). In 

Mediterranean ecosystems, at least part of the vegetation has developed resprouting abilities 

or seed bank persistence, so the high wildfire recurrence and the rapid vegetation recovery 

make Mediterranean mosaics highly dynamic (Trabaud et al., 1996; Dìaz-Delgado and Pons, 

2001), eventually contributing to enhance their biodiversity (Keely et al., 2005). 

The relation between wildfire and anthropogenically maintained grazing landscapes is 

ancient and can assume different degree of sustainability (Ruiz-Mirazo, 2012). Tall scrub 

formations that periodically experience top-kill by crown fires are particularly susceptible to 

browsing by cattle and other mammalian herbivores because the vegetation that usually 

matures above the browsing line is temporarily within reach for herbivores during the 

regeneration phase (Quinn, 1986). 

Stand-replacing crown fires are a recurrent disturbance in the scrublands of the 

Mediterranean. Following a fire, dominant species of tall shrubs rapidly recapture their pre-

fire dominance without significant local extinction or invasion of pioneer species, in a process 

known as auto-succession (Hanes, 1971; Keeley et al., 2012). Although Mediterranean tall 

scrub communities typically display resilience to periodic wildfire, the auto-succession 

process may fail when the fire-return intervals are too short, under which vegetation can shift 



Introduction 

47 
 

from a closed canopy to an open canopy dominated by monotypic vigorous resprouters, 

disturbance dependent scrub species, and exotic grasses and forbs (Zedler et al., 1983; 

Stylinski and Allen, 1999; Jacobsen et al., 2004).  

Seed banks accumulated in the upper soil layers are known to have a transient 

nature and a strong influence of fire (Ferrandis et al., 2001). Some Mediterranean species, 

such as Cistus ladanifer and C. salviifolius, have shown dormancy in the absence of fire, and 

low to medium intensity fires do not influence their germination rates (Ferrandis et al., 1999). 

In general, recurrent wildfires have a selective impact on the soil seed bank: species with 

transient seed reserves are eliminated whereas those with persistent, buried seed reserves 

tend to remain in the soil after the fire (Ferrandis et al., 1999). Several authors defend that a 

more diverse set of species should be included in plantation and restoration plans to improve 

landscape resilience to current fire regimes (Pausas et al., 2004; Vallejo et al., 2006). 

Landscape processes related to the spatial patterning of vegetation and other land 

cover types can play an important role in post-fire regeneration patterns and rates (Moreira et 

al., 2011). Habitat fragmentation and limitations to organism mobility and dispersal, 

expressing on modified metapopulation and metacommunity dynamics, are examples of 

landscape processes that may affect post-fire regeneration (Miller et al., 2012) while at the 

same time influencing the spread of other pressures and disturbances such as diseases or 

invasive species (Keeley et al., 2005). 

Landscape patterns/configuration and wildfires are mutually dependent, as land cover 

patterns can influence burning patterns through the spatial arrangement of flammable 

biomass (Nunes et al., 2005), whereas the spatial heterogeneity of fire patterns may 

influence a variety of ecological processes and the post-fire distribution of biomass (Berner et 

al., 2011), thereby also influencing vegetation recovery rates. Landscape structure is closely 

associated with post-fire vegetation composition and configuration, including plant 

regeneration and plant mortality (Brown, 2000). Therefore, understanding the relationship 

between landscape structure, fire characteristics and post-fire regeneration is critical, not 

only for managing ecosystems and landscapes towards improved resistance to fire ignition 

and spread, but also to enhance the recovery of ecosystems in burned areas (Moreira et al., 

2011).  

 

 

1.4.5. Assessing vegetation resilience at regional and local scales 

 

Post-fire vegetation resilience can be assessed at regional or local scales, usually 

with distinct objectives and based on different methods, tools and data sources. Regional 
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assessments are most important for spatial planning and risk mitigation across large areas, 

whereas local surveys are particularly relevant in the context of local resource management 

and post-fire restoration projects (Veblen, 2002). 

Regional patterns of post-fire resilience can efficiently be analysed with remote 

sensing tools. From a wildfire analysis perspective, remote sensing of vegetation offers 

comprehensive spatial information about fuel type, fuel properties, and fuel condition 

(Schneider et al., 2008). Accordingly, several parameters related to fire occurrence, such as 

fuel moisture, fuel curing and several fire risk indices have been analyzed using remote 

sensing variables like greenness or wetness indices (Stow et al., 2005; Roberts et al., 2006; 

Akther and Hassan, 2011; Newnham et al., 2011). Diaz-Delgado (2002) used the Normalized 

Difference Vegetation Index (NDVI) from Landsat imagery to monitor vegetation recovery 

after successive fires, correlating fire recurrence to regeneration capability and to the 

contribution of different plant life strategies to resilience.  

Leeuwen et al. (2010) used land surface phenological metrics, including the start and 

end of the season, the base and peak NDVI, and the integrated seasonal NDVI, to monitor 

post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and 

Israel. Their results suggest that a monitoring approach based on readily available satellite-

based time-series vegetation data can provide a valuable tool for assessing post-fire 

vegetation responses. 

Measuring local patterns of resilience can be based on in-field surveys to detect 

changes in vegetation and community structure (Huffman et al., 2012). These surveys may 

include a whole small system (e.g. in cases of post-fire responses in a small burnt area) or 

cover a larger area and then be based on a statistical sampling design. At each location 

post-fire regeneration can be estimated from repeated measurements of parameters related 

to vegetation structure (e.g. canopy cover, height and cover of understory strata; Huffman et 

al., 2012) and/or to community structure (e.g. species richness and composition, functional 

diversity, or seedling and resprouting rates; Proença et al., 2010). Post-disturbance 

succession and resilience can also be assessed from comparative studies of areas with 

different time distances to disturbance events, in which the spatial sampling design is 

actually expressing a temporal gradient (McPherson and DeStefano, 2003; Santana et al., 

2011). 
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1.5. Thesis objectives and outline 

 

1.5.1. General context and overarching research goals 

 

Wildfires are a key driver of ecological change, particularly in regions with medium to 

high productivity and a strong seasonal distribution of annual rainfall. In the Mediterranean 

countries of Southern Europe, thousands of hectares are burnt every year, particularly during 

the dry summer period (JRC, 2012). Wildfires are among the hazards that cause higher 

ecological and economical damage, as well as the loss of human lives, and much effort has 

been put in the development of tools to accurately predict the spatial and temporal patterns 

of wildfire occurrence in an attempt to promote prevention as well as to improve fire fighting 

(Finney and Mark, 2004; Key et al., 2006). 

In Portugal, although changes in fire regimes were noted over the past two decades 

(Pereira et al., 2005), the relative importance of human activities and climatic variability to 

explain regional fire statistics remains insufficiently understood (Carvalho et al., 2008). In 

spite of being the smallest of the five western Mediterranean countries, Portugal is the most 

affected by fire, regarding both the number of fire events and relative burnt area. From 1980 

to 2004, an area equivalent to 30% of the country was burnt. The closest cases (Italy and 

Spain) present values of fire occurrence, density and burnt area inferior by 1/3 and 1/5, 

respectively (Pereira et al., 1998; Pereira and Santos, 2003; European Commission, 2005). 

In this context, it is of key importance for national authorities to understand and anticipate the 

patterns of fire ignition and propagation, in order to effectively promote fire control policies 

and preventive landscape management. As ignitions are, most often, typically related to 

anthropogenic causes (Guyette et al., 2002) and will likely keep occurring in the future, 

studies of fire patterns have been concentrated in the assessment of the more suitable 

conditions for a fire to spread over the landscape (Moreira et al., 2012). 

In recent years, research about the spatial and temporal distribution of fires, as well 

as its causes and drivers, has involved analyses of national or regional wildfire statistics 

(Moreira et al., 2011). In environmentally and socio-economically heterogeneous countries 

one could expect to observe contrasting fire patterns depending of the region and of its 

biophysical and socio-economic characteristics (Venn and Calkin, 2008). In Portugal, such 

regional variations in number, extent and severity of wildfires are well known and have been 

successively reported (Carmo et al., 2011; Moreira et al., 2001, 2010, 2011; Silva et al., 

2011). Nonetheless, the effects of these reports on improving fire risk management, from 

preventive landscape management to firefighting planning, have so far been modest, 

probably due to the lack of solid causal or correlative relationships with regional conditions 
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and socio-economy (Martínez et al., 2009; Moreira et al., 2009). In heterogeneous countries 

the analysis of this type of spatial pattern in the size and number of fires calls for a regional 

approach to the problem, since the prominent factors in fire history may be quite different for 

contrasting regions across the country. 

On the other hand, from an ecological perspective wildfires are considered one of 

main types of disturbance in ecosystems and landscapes, potentially driving profound 

changes in their structure, composition and functioning (Robinson et al., 2013). Resilience to 

natural and human disturbances is a key property of ecosystems whose determinants across 

scales are not fully understood. The study of ecosystem resilience after fire disturbance 

events has nonetheless been a subject of fire ecology research (e.g. Lavorel 1999; Díaz-

Delgado et al., 2002; Pausas et al., 2009), due to its importance for impact mitigation and 

restoration as well as for the provision of valuable ecosystem and landscape services such 

as soil erosion control, carbon sequestration and water regulation. 

In this context, two overarching goals were defined for the research developed for this 

thesis: 

(1) to analyse, model and interpret the spatiotemporal patterns of wildfire occurrence 

at several scales in an heterogeneous country, and 

(2) to analyse, model and interpret regional and local patterns of post-fire vegetation 

resilience using complementary approaches and data sources (remote sensing 

and in-field surveys). 

These two goals were addressed at regional (whole country and its North region), 

sub-regional and local spatial scales in Portugal, the Mediterranean country of Europe most 

heavily affected by wildfires (Pereira et al., 1998; Pereira and Santos, 2003; European 

Commission, 2005). 

 

 

1.5.2. Specific objectives and research questions/hypotheses 

 

The research presented in this thesis was thus organized around those two general, 

overarching goals, each one assessed according to two specific research questions, for a 

total of four studies (Table 1.1): 

 

1) Identifying the main factors driving the occurrence of wildfires in different spatial scales 

and contexts, as well as their relative importance, by addressing the following questions: 

a) Which factors most contribute to explain the patterns of wildfires in Portugal, an 

environmentally heterogeneous country? Are those factors different for the several 
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regions in the country? 

b) Which factors most contribute to explain the patterns of wildfires in the Alto Minho, an 

environmentally heterogeneous sub-region in Portugal? 

 

2) Identifying the main factors driving the patterns of post-fire ecosystem resilience at 

different spatial scales, as well as their relative importance, by addressing the following 

questions: 

a) Which factors most determine post-fire regeneration of ecosystem functioning after 

fire disturbance in a regional context (North of Portugal)? Are those factors different 

for distinct regeneration indicators? 

b) Is there a significant effect of geological setting and fire history, in otherwise 

environmentally homogeneous areas, on the local patterns of post-fire regeneration 

of early successional vegetation? 

 

 
Table 1.1 General overview of the research outline and its relation with the research objectives, questions 
and spatial scales. 

Multi-scale assessment of patterns and drivers of 
wildfires and post-fire resilience 

Spatial scales of assessment 

Regional  Sub-regional Local 

1. 

Patterns and 
drivers of 
wildfires 

1a. Modelling wildfire 
patterns and its drivers in 
continental Portugal 

✓   

1b. Modelling wildfire 
patterns and its drivers in the 
Alto Minho sub-region 

 ✓  

2. 

Patterns and 
drivers of post-
fire resilience 

2a. Assessing the patterns 
and drivers of post-fire 
functional resilience 

✓   

2b. Assessing the patterns 
and drivers of post-fire 
structural resilience 

  ✓ 

 

 

1.5.3. Outline of the thesis 

 

Based on the research objectives and questions outlined above, this thesis is 

organized around the assessment of the patterns and drivers of wildfire occurrence and post-
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fire resilience at several spatial scales, as depicted in Table 1.1. The thesis follows a 

classical structure and therefore it is generally organized in four chapters: 

(1) an Introduction chapter, in which the theoretical context and the objectives of the 

research performed for the thesis are described (chapter 1); 

(2) a Methods chapter, in which the study areas as well as the main datasets, data 

collection techniques and analytical frameworks are described (chapter 2); 

(3) a Results chapter, where the main results developed under the four research 

questions are described and briefly discussed (chapter 3); 

and finally 

(4) a Discussion and Conclusions chapter, in which a detailed and integrative 

discussion of the results described in the previous chapter is provided and the 

main conclusions are outlined (chapter 4). 

 

 Four studies were performed under this framework (see Table 1.1). The first two 

studies, developed under research objective 1, are devoted to the analysis of spatiotemporal 

patterns of wildfire occurrence at regional and sub-regional scales in continental Portugal. 

Using two distinct modeling frameworks, the factors underlying the historical occurrence of 

wildfires were analysed for the whole country and its agrarian regions (research question 1a) 

and in the Alto Minho sub-region (question 1b). A particular attention was devoted to 

assessing the relative importance of abiotic conditions, socio-economic and demographic 

factors, and land cover/use and landscape structure, to explain the patterns of wildfires. 

 Two other studies addressed regional and local patterns of post-fire ecosystem 

resilience, under research objective 2. Under question 2a, we used remote sensing 

techniques to assess regional patterns of ecosystem functional resilience after fire and to 

identify its determinants in the North of Portugal. Finally, to address question 2b, we 

developed a geologically-stratified random sampling of burnt areas, also differing in fire 

frequency and time distance to last fire, in which we surveyed vegetation structure and plant 

community structure to infer upon the factors controlling local regeneration after fire in early 

successional vegetation. 

 



 
 

 
 

 

 

 
  

2. Methods



 

 

  



Methods 
 

55 
 

 

 

This chapter describes the datasets, the pre-processing methods and the modelling 

frameworks used in this thesis. It is organised as three sequential sections describing the 

study areas addressed in the several studies (2.1), the key datasets used and the associated 

(pre-)processing routines (2.2), and finally the statistical modelling methods and the 

analytical framework for each study (2.3). 

 

 

2.1. Study areas 

 

In the development of this research of the patterns and drivers of wildfires and post-

fire resilience, the analyses were focused on four nested test areas in Portugal (Figure 2.1): 

 

(1) the whole Portuguese mainland, corresponding to a regional spatial scale (country 

level); 

 

(2) the Northern part of the country, also corresponding to a regional spatial scale (region 

level); 

 

(3) the Alto Minho region, nested in the North of Portugal (regional scale, sub-region 

level); and 

 

(4) the Baixo Tâmega mountains, also nested in the north of Portugal (local scale, 

municipality level). 

 

The study areas are located within the Iberian Peninsula, which is considered to be a 

very dynamic area in relation to global change and ecosystem functioning (Alcaraz-Segura et 

al., 2006). These four areas are described in the sections below, with an emphasis on those 

factors potentially more related with patterns of wildfires and/or post-fire resilience. 
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Figure 2.1 The four study areas in mainland Portugal: location in the Iberian/European context and 
geographic relations among them. 

 

 

2.1.1. National level: Continental Portugal 

 

2.1.1.1. Location and abiotic conditions 

 

The study area to address national patterns of fire occurrence was the entire 

Portuguese mainland, which covers ca. 90 000km2 at the southwest end of Europe (Figure 

2.1), located between 36º57`N and 42º09`N latitude and between 6º11´W and 9º30´W 

longitude. 

Most of the country is included in the Mediterranean biogeographic region, with a 

Mediterranean type of climate (i.e. with a dry season corresponding to the summer period), 

and only the north-western corner belongs to the Eurosiberian region, with an Atlantic type of 

climate (Costa et al., 1998; Figure 2.2, left). In the global climatic classification of Metzger et 

al. (2012), most of mainland Portugal has Warm Temperate climate, xeric to mesic, with cold 

and wet conditions being reached in the main mountain tops Figure 2.2, right). 
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Figure 2.2 (left) Biogeographic map of mainland Portugal at the sector level; areas with Atlantic climate 
and vegetation are represented in green; (right) Climatic strata in mainland Portugal, according to a 
global climatic stratification. Sources: (left) Costa et al. (1998), (right) Metzger et al. (2012). 

 

 

Elevation in mainland Portugal ranges from sea level along the coast up to 1993m in 

the top of the Serra da Estrela, with most of the mountainous and high plateau areas 

concentrated in the northern half of the country (Figure 2.3, top left). Schist and granite are 

the predominant bedrock types, with limestone and other sedimentary formations strongly 

represented in the centre-west and southwest areas (Figure 2.3, top right). 

Mean annual temperatures range from ca. 7ºC in the northern elevations to ca. 18ºC 

in the southern lowlands (Figure 2.3, bottom left). Mean total annual precipitation ranges 

from ca. 400mm in the southern areas and in the upper Douro valley up to ca. 2800mm in 

the northwest mountains (Figure 2.3, bottom right).  
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Figure 2.3 Main abiotic conditions in mainland Portugal: (top left) Digital elevation model; (top right) 
Simplified geological map (main bedrock types); (bottom left) Mean annual temperature; (bottom right) 
Mean total annual precipitation. Sources: (top left) SRTM (2006), (top right) Atlas do Ambiente Digital, 
DGA-MAOT (2000), (bottom left and right) Worldclim (2005). 
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2.1.1.2. Human occupation and land uses 

 

The total population is roughly 10 million inhabitants, clearly concentrated in the north 

and centre coastal areas (INE, 2010) (Figure 2.4, left). Socio-economic and demographic 

trends that have prevailed in rural areas of Portugal during at least the last four decades 

have contributed to high landscape level susceptibility to fire. Rural areas have experienced 

a substantial population decrease (and aging; Figure 2.4, right) during the second half of the 

20th century, leading to the abandonment of agricultural lands, to the decrease in the size of 

herds, and to the reduction in the consumption of forest fuels by animal grazing and by fuel 

wood harvesting (Rego, 1992). Areas of marginally productive agriculture were converted to 

forest plantations or abandoned to the natural process of ecological succession, and thus 

gradually converted to scrubland and woodland, as in other regions of southern Europe 

(Lloret et al., 2002; Mouillot et al., 2003). 

 

 
Figure 2.4 Selected demographic features of mainland Portugal: (left) Demographic density; (right) 
Elderly proportion by civil parish. Sources: INE (2010). 

 

Nonetheless, agricultural and grazing areas still represent a large portion of the 

country (Figure 2.5). Present throughout the entire territory, they spread over larger areas in 

the southern and central parts of the country. In northern and central Portugal, land 
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ownership is typically very fragmented and the agricultural landscape is a fine-grained 

mosaic of small parcels of diverse crops, vineyards, and olive groves. The agricultural 

landscapes of southern Portugal are more extensive and homogeneous, dominated by dry-

land farming of cereal crops and agro-forestry systems (“montado”). Production forestry 

(mainly of eucalypt, pine and evergreen oaks) and urban occupation are other key land uses 

in mainland Portugal. 

 

 

 
Figure 2.5 Selected agricultural features of mainland Portugal: (left) Usable agricultural areas (UUA, or 
SAU) per civil parish; (b) Number of goats per civil parish, an indicator of grazing pressure. Sources: INE 
(2010). 

 

 

2.1.1.3. Vegetation and land cover 

 

Potential natural vegetation in mainland Portugal is primarily driven by climate 

gradients related to latitude, longitude and altitude (Figure 2.6, left). As a general pattern, in 

the north-western Atlantic areas and at high elevations further south, Quercus robur and 

Betula celtiberica are the dominant tree species in natural woodlands. Quercus pyrenaica 

predominates in mountains and high plateaux with rainy Mediterranean climate, Quercus 

faginea ssp. broteroi is potentially widespread in the centre-western lowlands, and the 
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evergreen Quercus suber and Quercus rotundifolia predominate under dry Mediterranean 

climates in the southern half of the country and in the upper Douro valleys (Costa et al., 

1998; Capelo et al., 2007). 

 

 
Figure 2.6 Vegetation and land cover in mainland Portugal: (left) Simplified map of potential natural 
vegetation; (right) Simplified land cover map (broad categories). Sources: (left) Capelo et al. (2007), (right) 
IGEOE (2010). 

 

 

In terms of land cover (Figure 2.6, right), a large portion of the country is occupied by 

agricultural areas (ca. 20%), forests (ca. 20%) and scrublands (ca. 25%) (IGP, 2010). In 

forest and scrubland areas, where most rural fires occur (Pereira, 2006), eucalypt 

(Eucalyptus globulus) plantations are abundant all along the western half of Portugal and in a 

few more interior areas in the central and southern parts of the study area. Maritime-pine 

(Pinus pinaster) stands are located mainly in the northern half of the country. 

Deciduous oak woodlands of Quercur robur and/or Q. pyrenaica are common in 

mountain and high plateau areas. Evergreen oak woodlands predominate in the southern 

half of Portugal, with Cork-oak (Quercus suber) mainly in south-western Portugal, in the 

north-eastern lowlands and along the Tagus river valley, and Holm-oak (Quercus 

rotundifolia) predominating in the south-east. Shrub understories are common in all of these 

forest and woodland types. In pine and eucalypt stands, the main understory shrubs are 
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gorse (Ulex spp.) and heath (Erica spp. and Calluna vulgaris). Cistus spp. dominate the 

understory layer in open evergreen oak woodlands (DGF, 2001). 

Scrublands are common throughout most of the country, particularly in mountainous 

regions (Figure 2.6, right). The more widespread scrub formations in Portugal are dominated 

by families Fabaceae (Cytisus, Genista, Pterospartum, Ulex), Ericaceae (Arbutus, Calluna, 

Erica) and Cistaceae (Cistus, Halimium). As a general pattern, Cytisus species (brooms) 

predominate in areas with deep soils derived from granitic bedrock, while Cistus species 

predominate on shallow soils derived from schist or granite. Broom species also dominate 

old-field successions and post-fire succession in areas formerly occupied by deciduous 

woodlands or pine stands. 

In the northern third of Portugal and at high elevations, heath and gorse scrublands 

are the most common. In the southern half of Portugal, especially in the southeast, there are 

large areas of Cistus ladanifer scrub. Limestone areas are typically covered by a Quercus 

coccifera garrigue. In very restricted areas, maquis-type formations of tall scrublands can be 

found, mainly composed of Arbutus unedo, Olea europaea, and arborescent Quercus 

coccifera (Pena and Cabral, 1996). 

 

 

2.1.2. Regional level: Northern Portugal 

 

2.1.2.1. Location and abiotic conditions 

 

 For analyses of post-fire vegetation recovery at the regional scale, the North of 

Portugal was chosen as test area since it is among those with the highest incidence of 

wildfires across Europe (Figure 2.7). 

The studied area comprises the northern part of continental Portugal, which includes 

the westernmost transition between the Atlantic and Mediterranean environmental zones and 

biogeographic regions of Europe (Costa et al., 1998; Metzger et al., 2005). This area is 

characterized by wide variations in elevation, ranging from 0 to 1993m, thus resulting in a 

large heterogeneity of environmental conditions, namely in terms of climate and soils. The 

Douro river drainage basin occupies around 50% of the region.  

Bioclimatically, most of this territory is Mesomediterranean and Supramediterranean 

(Rivas-Martínez et al., 2002). The average annual precipitation varies between ca. 400mm in 

the eastern lowlands and over 2800mm in the north-western mountains. Mean annual 

temperature varies between 7.5 ◦C and 16◦C; the average maximum is around 22–32◦C; the 

average minimum is around 0–8◦C (IPMA, 2012). 
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Figure 2.7 Wildfires in Southern Europe for the time frame 2001-2010; the study area is located in the 
highest fire incidence region (Northwest Iberian Peninsula). Sources: EFFIS. 

 

As described above, this study area has the highest frequency of wildfires in Portugal 

(Pereira et al., 2006). This region also shows a strong climatic transition, where the Atlantic 

influence meets the Mediterranean, leading to a strong spatial gradient of temperature and 

precipitation. This gradient, together with the rough, mountainous physiography, produces a 

heterogeneous landscape suitable for testing the existence of regional variations in patterns 

of fire selection and post-fire regeneration. 

 

 

2.1.2.2. Human occupation and land uses 

 

The region has a resident population of ca. 3.2 million people and a relatively high 

population density, particularly towards the west (Figure 2.8, left). Agriculture and forestry are 

the dominant land uses, with various proportions of the active population dedicated to the 

primary sector (Figure 2.8, right). 

In recent decades, the socioeconomic and demographic evolution of marginal rural 

areas led to widespread land abandonment and subsequent scrub encroachment, as well as 
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the afforestation of former agricultural land. In both cases, a higher accumulation of fuels was 

generated, leading to a higher risk of fire (Silva, 1990; Rego, 1992; Moreira et al., 2001, 

2009). 

 

 
Figure 2.8 Selected socioeconomic features of Northern Portugal: (left) Population density; (right) Elderly 
proportion; data aggregated at the civil parish level. Sources: INE (2010). 

 

 

2.1.2.3. Vegetation and land cover 

 

Native forests are dominated by deciduous broadleaved trees in Atlantic areas of the 

northwest and by evergreen sclerophyllous trees in Mediterranean areas towards northeast 

(Figure 2.9, left). Biogeographically, the region is divided in two parts: the Eurosiberian 

region, in the north-west half, with Quercus robur, Pyrus cordata or Ilex aquifolium as 

indicator species; and the Mediterranean region, in the north-eastern part, with Quercus 

faginea ssp. faginea, Quercus pyrenaica, Quercus suber and Quercus ilex as representative 

species (Costa et al., 1998; Capelo et al., 2007). Quercus suber and Quercus faginea ssp. 

broteroi predominate in the centre-western areas (Figure 2.9, left). Evergreen plantations of 

eucalypts and pines, together with a high diversity of agricultural land and urban areas 

(Figure 2.9, right), further contribute to enhance landscape ecological heterogeneity. 
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Figure 2.9 Vegetation and land cover in Northern Portugal: (left) Simplified map of potential natural 
vegetation; (right) Simplified map of main land cover types. Sources: (left) Capelo et al. (2007), (right) IGP 
(2010). 

 

 

2.1.3. Sub-region level: Alto Minho 

 

2.1.3.1. Location and abiotic conditions 

 

The Alto Minho region is located in the northwest corner of Portugal and includes the 

most Atlantic (Eurosiberian) territories in the country. Terrain morphology in this small region 

is quite complex. With ca. 50 km of sandy and rocky beaches along the western coastline, 

elevation rapidly raises to above 1500m in the highest peaks of the Serra do Gerês (Figure 

2.10), which hold national records for total annual precipitation (ca. 3000 mm/m2).  

Three major river valleys (Minho, Lima, and Cávado) cross the region and represent, 

together with the coastline, the climatically more benign areas in the region. As usual, 

temperature and precipitation follow inverse patterns (Figure 2.11), with highlands recording 

the lowest temperatures and the highest precipitations, whereas in the river valleys and 

along the coast temperatures are higher and rainfall values are lower. The range of mean 



Methods 
 

66 
 

temperatures corresponds to ca. 10º C to 15º C, and mean annual precipitation varies from 

1200 mm/m2 in lowlands to well over 2000 mm/m2 in the eastern mountain tops. 

 

 

Figure 2.10 (left) Location of the Alto Minho region in Portugal; (right) Digital elevation model and main 
rivers. 

 

 

2.1.3.2. Human occupation and land uses 

 

The resident population (ca. 500 000 people) is unequally distributed across the study 

area, with the vast majority living in the coastal areas and in the southern river basin 

(Cávado), whereas the highlands and the most interior areas are poorly populated (Figure 

2.12, left). Recent demographic evolution has been strengthening this tendency (Figure 2.12, 

right). 

With a relatively low industrial development, the vast majority of the land is used for 

agriculture and forestry. The small property regime is the rule, with a small increase in 

property size in the more mechanized agricultural lands of the Cávado basin. Most of the 

lowland agricultural areas are dedicated to the production of maize and other dairy farming 

related cultures. In the highest elevations, cattle and herd grazing on meadows and 

pasturelands are common land uses. 
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Figure 2.11 Climatic conditions in the Alto Minho region: (left) Mean annual temperature; (right) Mean 
total annual precipitation (b). Sources: Worldclim (2005). 

 

 
Figure 2.12 Selected socioeconomic features of the Alto Minho region (data aggregated at the civil parish 
level): (left) Population density; (right) Recent population changes (1990-2001). Sources: INE (2010). 
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2.1.3.3. Vegetation and land cover 

 

The Alto Minho region is a fine-grained mosaic in which land parcels are traditionally 

well defined and utilized in different ways for agriculture, forestry and pastoralism. 

Biogeographically the region is located at the southwest end of the Eurosiberian region, with 

Quercus robur and Betula celtiberica as the dominant native tree species (Costa et al., 

1998). In spite of its small size, the study area comprises a noteworthy diversity of potential 

vegetation types, evidencing its variations in altitude, climate, topography and lithology 

(Figure 2.13, left). 

The land cover types related to forests and scrublands occupy ca. 60% of the study 

area, with agriculture occupying ca. 28% (Figure 2.13, right). The large amount of available 

biomass and the high productivity rates are important reasons to place this region among 

those with the highest fire frequencies in Europe, although the average size of the burned 

areas is small (European Commission, 1996; Moreno et al., 1998). 

 

 
Figure 2.13 Vegetation and land cover in the Alto Minho: (left) Simplified map of potential natural 
vegetation; (right) Broad land cover types in year 2000. Sources: (left) Capelo et al. (2007), (right) Vicente 
et al. (2011). 
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2.1.4. Municipality level: Baixo Tâmega 

 

2.1.4.1. Location and abiotic conditions 

 

The Baixo Tâmega study area is located in the northwest of Portugal (Figure Figure 

2.14, left), at the eastern end of the Porto district, in the NUTS-II “North” (NUTS-III 

“Tâmega”). It comprehends territories belonging to three municipalities (Amarante, Baião, 

and Marco de Canaveses), with a total area of ca. 678 km2. The eastern part of the area is 

under protection as part of the Natura 2000 network (Site of Community Importance “Alvão-

Marão”, PTCON0003) and is also included in an Important Bird Area (IBA PT049). Moreover, 

in recent years the three municipalities have been engaged in the formal classification of the 

Aboboreira and Marão mountains as a regional protected area (Honrado and Vieira, 2009). 

There are two main mountain areas that delineate the physiography of the region: the 

Serra do Marão (1314m of maximum elevation), at the northeastern end, and the Serra da 

Aboboreira, a smaller massif that is completely included in the study area (Figure 2.14, right). 

The climate is temperate Atlantic and humid, with a short dry season in summer giving it a 

sub-Mediterranean character, particularly along the Douro and Tâmega river valleys. 

 
Figure 2.14 (left) Geographic location of the Baixo Tâmega study area in continental Portugal; (right) 
Elevation map with main rivers. Sources: (left) APA (2010), (right) SRTM (2004). 
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Geologically, the area is clearly dominated by several types of granite, with schist 

occupying the eastern and northern ends (Figure 2.15, left). Soils are predominantly 

regosoils and antrosoils on granite, where mild slopes and agro-pastoral activities are/were 

common, and leptosoils and regosoils on schist, where the steep slopes hamper agriculture 

but allow forestry and extensive grazing by sheep and particularly by goats (Figure 2.15, 

right). 

 

 
Figure 2.15 Abiotic conditions in the Baixo Tâmega study area: (left) Bedrock types; (right) Soil types. 
Sources: Honrado and Vieira (2009). 

 

 

2.1.4.2. Human occupation and land uses 

 

Human occupation is heterogeneous in the region, with stronger urban development 

along the Tâmega valley (including the towns of Amarante and Marco de Canaveses) 

contrasting with scattered rural villages in the more mountainous areas (Figure 2.16, left). 

Roughly one third of the civil parishes have more than one third of their resident population in 

the primary sector, which testifies the rural character of most of the area (Figure 2.16, right). 

Agriculture, forestry and localized urban development are thus the main land uses in this 

study area (Honrado and Vieira, 2009). In the Douro and Tâmega valleys, several 

hydroelectric dams have also contributed to shape the landscapes that can be observed 

today. 
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Figure 2.16 Selected socioeconomic features of the Baixo Tâmega study area, aggregated at the civil 
parish level: (left) Population density; (right) Percentage of population in the primary sector. Sources: 
Honrado and Vieira (2009). 

 

 

2.1.4.3. Vegetation and land cover 

 

Natural potential vegetation in the Baixo Tâmega region would correspond entirely to 

deciduous oak woodlands of Quercus robur. Quercus pyrenaica and Betula celtiberica in 

mountains, and Quercus suber in lowlands, would be other common native tree species 

(Honrado and Vieira, 2009). Oak woodland and scrubland are today common in marginal 

areas due to abandonment of farming and grazing, but heath and broom scrubs are by far 

the most common natural vegetation types in the area. 

Agricultural areas, several types of forests, and scrub are the dominant types of land 

cover (Figure 2.17). Fine grained landscape mosaics of cropland, urban and forest areas are 

the rule in lowlands, whereas mountain and high plateau areas are dominated by low and tall 

scrub with various presence of forest. Recent land cover change has involved urban 

expansion as well as the loss of forest areas and the development of continuous areas of 

scrub and degraded land (Figure 2.17), mostly driven by rural abandonment and wildfires. 
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Figure 2.17 Recent land cover changes in the Baixo Tâmega municipalities: (left) Simplified land cover 
map for year 1990; (right) Simplified land cover map for year 2000. Sources: Honrado and Vieira (2009, 
adapted). 
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2.2. Databases and data processing 

 

The selection and processing of variables extracted from the several databases was 

done for a wide range of factors capable of influencing fire history or post-fire resilience and 

thus potentially helpful in their interpretation. Those variables and datasets were selected 

based on extensive literature review and expert judgment, as well as their availability for 

each of the study areas under analysis. All variables were computed and managed in a 

Geographic Information System (GIS) and transformed when necessary, following the 

procedures described below. 

 

 

2.2.1. Wildfire data  

 

In recent decades, Portugal has developed sizable efforts in the cartography of burnt 

areas (Figure 2.18). 

Portuguese fire statistics 

are available from the national 

forest authority (ICNF, formerly 

AFN) in the form of polygons with 

a minimum mapping area of 5 

hectares, for the time period of 

1990–2010 (http://www.afn.min-

agricultura.pt/portal/dudf/cartogra

fia/info-geo). These data were 

computed by semi-automated 

processing of Landsat 5 

Thematic Mapper satellite 

images (Pereira and Santos, 

2003; Moreira et al., 2009). 

 

 

Figure 2.18 Polygons of burnt areas 
(minimum mapping area: 5 hectares), 
for the time period 1990–2010, 
available from the National forest 
authority (ICNF, formerly AFN). 
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This database was used in all studies throughout this thesis (Figure 2.19):  

 

 at the national level, the official map of civil parishes and zonal statistics were used to 

calculate the proportion of burnt area in the 1990-2000 time frame for each parish, 

used as a response variable in wildfire modelling;  

 for the Northern Portugal study area, the fire dataset was used to produce a polygon 

cartography of the areas that, in the 2000-2010 time frame, were only burnt in year 

2005, to assess post-fire recovery; 

 for the Alto Minho study area, the polygons from the 1991-2000 and 2001-2010 time 

frames were used, respectively, in the training and testing of a rule set to explain the 

occurrence of fires; and 

 for the Baixo Tâmega study area, fire data from the 1990-2007 time frame were used 

to produce a local stratification for sampling design (selection of field sites). 

 

 
Figure 2.19 Applications of the national wildfire database in the four study areas: (top left) Continental 
Portugal (burnt proportion in 1990-2000); (top right) Northern Portugal (burnt patches in 2000-2010); 
(bottom left) Alto Minho (burnt proportion in 2000-2010); (bottom right) Baixo Tâmega (time distance to 
last recorded fire). 
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2.2.2. National level: Continental Portugal 

 

In the analysis of wildfire patterns in Portugal, 80 potentially explanatory variables 

were computed and organized into four categories: climatic, landscape, topographic, and 

human factors. Since part of the data were only available at the civil parish level, all the 

information was pre-processed in a Geographic Information System (GIS) and aggregated 

values were obtained for each civil parish (see below). 

 

 

2.2.2.1. Climatic variables 

 

Climatic conditions are known to affect fuel accumulation and moisture (e.g. Syphard 

et al., 2008; Vilar et al., 2010), thus having an effect on the probability of a fire to occur as 

well as on its spread over the landscape. Considering the temporal scale of our study, we 

used climatic variables derived from averages of weather conditions over several decades, 

obtained from Worldclim (Hijmans et al., 2005; Table 2.1). 

 

Table 2.1 Climatic variables used in the analysis of national fire patterns: name, description, variable 
group, and data source. 

Variable 

name 

Variable description Variable 

group 

Data source

Bio1  Annual Mean Temperature Climatic WORLDCLIM 

(Hijmans et al., 

2005) 
Bio2  Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

Bio3  Isothermality (BIO2/BIO7) (* 100) 

Bio4  Temperature Seasonality (standard deviation *100) 

Bio5  Max Temperature of Warmest Month 

Bio6  Min Temperature of Coldest Month 

Bio7  Temperature Annual Range (BIO5-BIO6) 

Bio8  Mean Temperature of Wettest Quarter 

Bio9  Mean Temperature of Driest Quarter 

Bio10  Mean Temperature of Warmest Quarter 

Bio11  Mean Temperature of Coldest Quarter 

Bio12  Annual Precipitation 

Bio13  Precipitation of Wettest Month 

Bio14  Precipitation of Driest Month 

Bio15  Precipitation Seasonality (Coefficient of Variation) 

Bio16  Precipitation of Wettest Quarter 

Bio17  Precipitation of Driest Quarter 

Bio18  Precipitation of Warmest Quarter 

Bio19  Precipitation of Coldest Quarter 
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2.2.2.2. Land cover and landscape variables 

 

Land cover, which represents the landscape features of the Earth’s surface as a 

synthesis between environmental conditions and human disturbance (land use), has been 

extensively associated with fire occurrence (e.g. Syphard et al., 2008; Catry et al., 2009; 

Martínez et al., 2009; Vilar et al., 2010). For pre-fire land cover, we used the 1:25.000 scale 

land cover map sheets for 1990 (COS´90) downloadable from the Portuguese Geographic 

Institute (IGEO, 1990). The land cover sheets were geographically matched with the 

administrative map using union commands in the ArcGIS software. Detailed land cover 

categories were combined to produce six broad classes: urban, unproductive, agriculture, 

water bodies, broadleaved forest, and coniferous forest (see Appendix 1). 

We computed composition and configuration landscape metrics, using civil parishes 

as statistical units (Table 2.2). Composition metrics (percentage of occupation by each broad 

class) were obtained through GIS analysis in ArcGIS 10 (ESRI, 2011). The following 

landscape configuration metrics were calculated for each civil parish using the FRAGSTATS 

software (McGarigal and Marks, 1995): total area, number of patches, patch density, largest 

patch index, edge density, area-weighted mean patch fractal dimension, patch fractal 

dimension standard deviation, area-weighted mean patch perimeter-area ratio, perimeter-

area ratio standard deviation, interspersion and juxtaposition index, patch cohesion, patch 

richness, patch richness density, Simpson's evenness index, percentage of like adjacencies, 

area-weighted mean euclidean nearest neighbour distance, and euclidean nearest neighbour 

distance standard deviation (Table 2.2). For some of the municipalities, land cover data were 

not available and for that reason the corresponding civil parishes were excluded from the 

analyses. 

Roads represent improved accessibility to areas where fires can occur. Road density 

and distance to roads have also been pointed out as important factors in fire occurrence 

studies (Romero-Calcerrada et al., 2008; Catry et al., 2009; Martínez et al., 2009; Vilar et al., 

2010). The data source for the road network was the national road institute (IEP; Matos et 

al., 2012), from which four variables were computed (Table 2.2). 

 

 

2.2.2.3. Socioeconomic variables 

 

Human factors (related to demography and socio-economy) are likewise important 

and have been used in predictive modeling of historical fire patterns (Catry, 2007). 
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Table 2.2 Landscape variables used in the analysis of national fire patterns: name, description, group, 
and data source. 

Variable name Variable description Variable 

group 

Data source 

Ta Total area Landscape CNIG 1990. COS´90, Land 

cover for Continental Portugal  Np Number of patches  

Pd Patch density 

Lpi Largest patch index 

Ed Edge density 

Frac_am Area-weighted mean patch fractal dimension 

Frac_sd Patch fractal dimension standard deviation 

Para_am Area-weighted mean patch perimeter-area 

ratio  

Para_sd Perimeter-area ratio standard deviation 

Iji Interspersion and juxtaposition index 

Cohesion Patch cohesion 

Pr Patch richness 

Prd Patch richness density 

Siei Simpson's evenness index 

Pladj Percentage of like adjacencies 

Enn_am Area-weighted mean euclidean nearest 

neighbor distance  

Enn_sd Euclidean nearest neighbor distance 

standard deviation 

Eucalipto_ARE

A_perc 

% of land are occupied by Eucalyptus 

Flnatural_ARE

A_perc 

% of land are occupied by natural forest 

Matosa_AREA_

perc 

% of land are occupied by tall scrubs 

Matosb_AREA_

perc 

% of land are occupied by small scrubs 

Outfolhosas_A

REA_perc 

% of land are occupied by broadleaved 

managed forest 

Pinheiro_AREA

_perc 

% of land are occupied by Pinus 

Urbano_AREA_

perc 

% of land are occupied by urban areas 

Densroadall Total road density Instituto das Estradas de 

Portugal Densroad6less Road density (< 6 m wide) 

Densroad6plus Road density (> 6 m wide) 

Roadareaperc % of land are occupied by roads 
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A simple visual inspection of the national fire database (see Figure 2.18) reveals that 

in the more densely populated littoral areas the number of ignitions is fairly higher, but due to 

the reticulated and fragmented character of the landscape fires originated by these ignitions 

are usually of small dimension. Furthermore, the presence of a large number of settlements, 

villages and roads allows a faster detection and extinction of fire events. In the specific 

context of the study area, the causes of fire ignitions have been considered attributable to 

anthropogenic activities in over 90% of occurrences (Oliveira et al., 2012). Demographic and 

socioeconomic data were obtained from the statistical national institute (INE 2008) and the 

Ministry of Agriculture through agricultural census databases (RGA, 1999; Table 2.3). 

 

Table 2.3 Socioeconomic and demographic variables used in the analysis of national fire patterns: name, 
description, group, and data source. 

Variable name Variable description Variable 

group 

Data source 

Area_06 Agricultural area in use Socio-

economic 

RGA, 1999. Recenseamento 

Geral da Agricultura 

Popres91 Resident population in 1991 INE (2008) 

Popres01 Resident population in 2001 

Poprestrab91 Resident population in1991 

Poprestrab01 Resident population in 2001 

Popact91 Active population in 1991 

Popact01 Active population in 2001 

Popresqualsec

91 

Proportion resident population with 

secundary education in 1991 

Analf91 Analphabetic proportion in 1991 

Analf01 Analphabetic proportion in 2001 

Proppopres3c

01 

Proportion resident population working in 

agriculture 

Denspop91 Population density in 1991 

Denspop01 Population density in 2001 

Propidosos91 Elderly proportion in 1991 

Propidosos01 Elderly proportion in 2001 

Idepidosos91 Elderly dependency index in 1991 

Idepidosos01 Elderly dependency index in 2001 

Proppoprestra

b91 

Proportion resident population without any 

subsidy in 1991 

Proppoprestra

b01 

Proportion resident population without any 

subsidy in 2001 

Proppopressu

btmp91 

Proportion resident population under 18 in 

1991 

Proppopressu

btmp01 

Proportion resident population under 18 in 

2001 
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Proppoprespe

nsref91 

Proportion resident population living of 

welfare in 1991 

Proppoprespe

nsref01 

Proportion resident population living of 

welfare in 2001 

Table 2.3 (cont.) 

 

2.2.2.4. Topographic variables 

 

Topographic features affect vegetation distribution, composition and flammability, and 

have also an influence on local climate variations (Whelan 1995; Syphard et al. 2008). Slope 

may also affect ignitions by limiting accessibility (Widayati et al., 2010). Conedera et al. 

(2011) also found that anthropogenic fires occurred more frequently on gentler slopes. 

A set of topographic variables and indices (Table 2.4) was calculated based on the 

Digital Elevation Model (DEM) available worldwide from the Shuttle Radar Topographic 

Mission (SRTM, version 4). This DEM is based on SRTM images from NASA, further 

processed in order to fill in no-data voids existing in the original images (Reuter et al., 2007; 

Jarvis et al., 2008). Topographic roughness is the amount of land surface variability of a 

particular area (Stambaugh and Guyette, 2008) and it is a proxy for describing the potential 

of terrestrial propagation (in this case, fire spread) related to topographic variability. A set of 

four topographic roughness and terrain complexity indices (mean terrain complexity index, 

terrain complexity index standard deviation, mean surface and area ratio of a landscape, and 

surface and area ratio of a landscape standard deviation) were calculated using different 

ratios between the surface area and the planimetric area, using GIS tools (Table 2.4). 

 

Table 2.4 Topographic variables used in the analysis of national fire patterns: name, description, group, 
and data source. 

Variable name Variable description Variable group Data source

Elev_max Maximum altitude Topographic USGS (2006) 

Elev_mean Mean altitude 

Elev_std Altitude standard deviation 

Slope_max Maximum slope 

Slope_mean Mean slope 

Slope_std Slope standard deviation 

Tci_mean Mean terrain complexity index 

Tci_std Terrain complexity index standard deviation  

Surfratio_MEAN Mean Surface and Area Ratio of a landscape  

Surfratio_STD Surface and Area Ratio of a landscape standard deviation

 

 Figure 2.20 provides four examples of the geographic variations of selected variables 

from the several groups in continental Portugal. 
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Figure 2.20 Geographic variations of selected variables in continental Portugal, belonging to the Climatic 
(mean annual temperature; top left), Landscape (patch density; top right), Socioeconomic (age structure; 
bottom left) and Topographic (surface area ratio; bottom right) groups of variables. Sources: worldclim 
(top left), IGEOE (top right), INE (bottom left) and srtm (bottom right). 
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2.2.3. Regional level: North of Portugal 

 

2.2.3.1. The MODIS NDVI time series 

 

In the study of post-fire regeneration in the North of Portugal, in addition to variables 

obtained from the national fire database (see section 2.2.1) and other national databases on 

environmental, landscape, socioeconomic and topographic factors (see section 2.2.2), other 

variables used were derived from the MODIS NDVI time series (Figure 2.21), from which 

three response variables on post-fire regeneration were computed (see section 2.3.2). 

 

 
Figure 2.21 Annual median NDVI in the North of Portugal (2001-2010), an example of the variables derived 
from the MODIS NDVI time series (MOD13Q1).  

 

 

The 16-day Terra MODIS NDVI product at 250m spatial resolution (MOD13Q1, 

Collection 5) is based on the Terra MODIS level 2 (L2G) daily surface reflectance product 

(MOD09 series), which provides red and near-infrared surface reflectance corrected for the 
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effect of atmospheric gases, thin cirrus clouds and aerosols. This product includes a data 

quality assessment layer (QA binary data) and a pixel reliability layer holding information on 

overall usefulness and cloud conditions on a per-pixel basis (Solano et al., 2010). We used 

all 16-day composites between years 2001 and 2010, projected to the WGS84 / UTM zone 

29 N reference system using the MODIS Reprojection Tool (MRT) version 4.1 (MRT, 2011). 

These composites were used to analyse ecosystem resilience after fire (Figure 2.22), as 

described further ahead (see 2.3.2). 

 

 
Figure 2.22 Contrasting responses of ecosystems after disturbance, in simulated pulse perturbation 
experiments. Sources: Nes and Scheffer (2007). 

 

 

2.2.3.2. Pre-processing of the MODIS NDVI time series 

 

Since remotely sensed, per-pixel time series of the Normalized Difference Vegetation 

Index (NDVI) can be hindered by noise from different sources (e.g. presence of clouds, 

varying sun-sensor-viewing geometries; Bradley et al., 2007), we used a two-step blind 

rejection approach (i.e. without prior knowledge of the quality of the data) for data cleaning 

and smoothing, following Marcos et al. (2012), in order to remove spurious values: (i) firstly, 

we employed a filter based on the Hampel identifier (Hampel, 1974), considered rather 

effective (Pearson, 2002), which uses the concept of breakdown points based on local 

estimations of the median absolute deviation (MAD) and replaces the identified outliers with 

a local median; and (ii) secondly, we used a Savitzky-Golay filter (Savitzky & Golay, 1964), a 

type of filter that has been increasingly applied for cleaning, smoothing, and reconstruction of 

NDVI time series (Chen et al., 2004; Heumman et al., 2007), in order to further remove and 

replace spurious values. All computations for these cleaning and smoothing procedures were 

performed using the R programming environment, version 2.14.2 (R Development Core 

Team, 2012). 
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2.2.3.3. Calculation of burnt area statistics 

 

In order to harmonize the spatial attributes of burnt areas (National Burnt Areas 

Database: 1990–2011; vector format) and of MODIS derived Ecosystem Functional 

Attributes (EFA; in raster format), a vector grid with 250 x 250m rectangular units (equal in 

pixel size and spatial extent to EFA data) was used to calculate the percentage of burnt area 

per year (between 2001 and 2011) within each unit. These calculations were performed 

using the PostgreSQL/PostGIS spatial database system (PostGIS, 2008). Burnt percentage 

data were later converted to raster format (for each year, considering a pixel size and a 

spatial extent equal to EFA data) to enable logic and algebraic operations. 

 

 

2.2.3.4. Predictive variables 

 

In total, 221 predictive variables were considered in the initial dataset and organized 

into several thematic blocks further detailed in the text below. 

 

Fire traits – These are predictive variables detailing the magnitude and spatial 

characteristics of the previously selected burnt areas of year 2005 (Table 2.5). Analyses of 

spatial configuration and distribution of fire events were performed using ArcGIS 

(fstats_brn05_sum and dist_edge_m), and Fragstats (McGarigal et al. 2002) was used to 

compute spatial attributes of burnt patches. 

 

Table 2.5 List of predictive variables related to traits of fire events / burnt areas. 

Variable name/ acronym Description Type 

breakMagnitudeIndex NDVI post-fire break magnitude index  Fire magnitude/ intensity 

fstats_brn05_sum_750m Number of burnt pixels in a 750m buffer area Fire spatial configuration 

fstats_brn05_sum_1500m Number of burnt pixels in a 1500m buffer area Fire spatial configuration 

fstats_brn05_sum_5000m Number of burnt pixels in a 5000m buffer area Fire spatial configuration 

dist_edge_m Distance to burnt patch edge (meters) Fire spatial configuration 

AREA_brt05 Burnt patch area (square-meters) Fire spatial configuration 

PERIM_brt05 Burnt patch perimeter (meters) Fire spatial configuration 

GYRATE_brt05 Burnt patch gyration index Fire spatial configuration 

PARA_brt05 Burnt patch perimeter-area ratio Fire spatial configuration 

SHAPE_brt05 Burnt patch shape index Fire spatial configuration 

FRAC_brt05 Burnt patch fractal dimension index Fire spatial configuration 

CIRCLE_brt05 Burnt patch circle index Fire spatial configuration 

CONTIG_brt05 Burnt patch contiguity index Fire spatial configuration 

CORE_brt05 Burnt patch core area (square-meters) Fire spatial configuration 

NCORE_brt05 Burnt patch number of disjunt core areas Fire spatial configuration 
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CAI_brt05 Burnt patch core area index Fire spatial configuration 

PROX_brt05 Burnt patch proximity index Fire spatial configuration 

ENN_brt05 Burnt patch Euclidean nearest neighbor (meters) Fire spatial configuration 

Table 2.5 (cont.) 

 

Fire history and trends – These are predictive variables related to historical fire 

recurrence, area and recent trends in burnt area, prior to year 2005 (Table 2.6). In order to 

analyze temporal proximity of fire activity in vegetation recovery processes, fire history 

variables were calculated considering three nested periods (1990-2004, 1995-2004 and 

2000-2004), using the Portuguese National Cartographic Map of Burnt Areas (ICNF, 2012). 

 

Table 2.6 List of variables related to fire history and trends prior to year 2005. 

Variable name/ acronym Description Type 

burnt_times_90_04 Number of fire events 1990-2004 Fire recurrence 

burnt_times_95_04 Number of fire events 1995-2004 Fire recurrence 

burnt_times_00_04 Number of fire events 2000-2004 Fire recurrence 

mn_burnt_area_90_04 Mean burnt area 1990-2004 Total fire area 

mn_burnt_area_95_04 Mean burnt area 1995-2004 Total fire area 

mn_burnt_area_00_04 Mean burnt area 2000-2004 Total fire area 

slope_lm_90_04 Burnt area trend 1990-2004 Fire area trend 

slope_lm_95_04 Burnt area trend 1995-2004 Fire area trend 

slope_lm_00_04 Burnt area trend 2000-2004 Fire area trend 

 

 

Physical attributes – This set of variables contained information about the main 

environmental and physical attributes of the study area, such as geology/lithology, soil type, 

topography, hydrography, and climate (Table 2.7). Bioclimatic variables were calculated 

using the Digital Climatic Atlas of the Iberian Peninsula (Ninyerola et al., 2005). Geological 

and soil variables were based on the Portuguese Environmental Atlas (APA, 2013), and 

topographic features were calculated from the ASTER GDEM version 2 elevation dataset 

(Tachikawa et al., 2011). 

 

Table 2.7 List of predictive variables related to physical attributes of the study area. 

Variable name/ acronym Description Theme

bio_01 Annual Mean Temperature Climate 

bio_02 Mean Diurnal Range (Mean of monthly (max temp - min temp)) Climate 

bio_03 Isothermality (BIO2/BIO7) (* 100) Climate 

bio_04 Temperature Seasonality (standard deviation *100) Climate 

bio_05 Max Temperature of Warmest Month Climate 

bio_06 Min Temperature of Coldest Month Climate 
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bio_07 Temperature Annual Range (BIO5-BIO6) Climate 

bio_08 Mean Temperature of Wettest Quarter Climate 

bio_09 Mean Temperature of Driest Quarter Climate 

bio_10 Mean Temperature of Warmest Quarter Climate 

bio_11 Mean Temperature of Coldest Quarter Climate 

bio_12 Annual Precipitation Climate 

bio_13 Precipitation of Wettest Month Climate 

bio_14 Precipitation of Driest Month Climate 

bio_15 Precipitation Seasonality (Coefficient of Variation) Climate 

bio_16 Precipitation of Wettest Quarter Climate 

bio_17 Precipitation of Driest Quarter Climate 

bio_18 Precipitation of Warmest Quarter Climate 

bio_19 Precipitation of Coldest Quarter Climate 

rock_type Main/dominant rock type Geology/Lithology 

soil_name Dominant soil type/class Soils 

soil_subname Sub-dominant soil type/class Soils 

elev_m Mean Elevation (meters) Topography 

slope_perc Slope (percentage) Topography 

curv Surface curvature Topography 

aspect_ang Aspect (angle) Topography 

asp_class Main aspect class (north, east, south, west and flat) Topography 

asp_north Northness (cosine transformation) Topography 

asp_east Eastness (sine transformation) Topography 

twi Topographic Wetness Index Topography 

Table 2.7 (cont.) 

 

Landscape composition – This set of predictors details aspects related to the 

composition of landscape mosaics for each 250x250m grid cell as well as its surrounding 

area. We used a reclassified version of the Corine Land Cover 2000 database (revised 

version) for mainland Portugal (Caetano et al., 2009a,b) to calculate the percentage cover of 

eight broad land cover/use classes (Table 2.8). The CLC reclassification matrix is available in 

Appendix 1. Additionally, in order to study neighborhood effects on vegetation recovery 

processes, we calculated the percentage cover of the eight classes using three different 

buffer distances (750m, 1500m and 5000m) around each grid square. These calculations 

were implemented in PostgreSQL/PostGIS spatial database system (PostGIS, 2008). 

 

Table 2.8 List of predictive variables related to landscape composition. Each of these eight variables was 
computed for three buffer distances around each grid cell. 

Variable name/ acronym Description Type 

CLC1 Percentage cover of Urban/Artificial areas Landscape composition 

CLC2 Percentage cover of Agricultural areas Landscape composition 

CLC3 Percentage cover of Broad-leaved forest Landscape composition 
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CLC4 Percentage cover of Coniferous forest Landscape composition 

CLC5 Percentage cover of Mixed forest Landscape composition 

CLC6 
Percentage cover of Scrub and/or herbaceous 

vegetation associations 
Landscape composition 

CLC7 
Percentage cover of Open spaces with little or no 

vegetation 
Landscape composition 

CLC8 Percentage cover of Wetlands/water bodies Landscape composition 

Table 2.8 (cont.) 

 

Using this dataset we performed a characterization of the total study area as well as 

of burnt areas in terms of land cover (LC), by calculating cover percentages of all LC 

categories (see Appendix 1). To assess whether land cover changes expressed in the CLC 

database would reflect those expected to originate from fire disturbance, alteration statistics 

for each broad CLC category were calculated between years 2000 and 2006 (Table 2.9). 

These statistics were computed for the whole study area as well as for areas burnt in the 

focal year (2005; Figure 2.23). 

 

Table 2.9 Cross-tabulation of land cover (in %) between years 2000 (columns) and 2006 (rows), based on 
aggregated CLC data for the whole study area. 

  Year 2006 

  Urban/ 
Artificial 

Agricultural 
areas 

Broad-
leaved 
forest 

Coniferous 
forest 

Mixed 
forest 

Scrub 
and/or 

herbaceous 
vegetation 

Open 
spaces with 
little or no 
vegetation 

Wetland
s/water 
bodies 

Year 
2000 

Urban/Artificial 99.3 0 0 0 0 0.7 0 0

Agricultural areas 0.1 97.2 0 0 0 2.6 0.1 0

Broad-leaved 
forest 

0.1 0 11.7 0.1 0.3 86.1 1.7 0

Coniferous forest 0.2 0 0 7 0.2 87.2 5.4 0

Mixed forest 0.2 0 0.1 0.3 15.3 83 1.2 0

Scrub and/or 
herbaceous 
vegetation  

0.2 0 0.1 0.1 0 94.5 5.0 0

Open spaces with 
little or no 
vegetation 

0 0.1 0 0 0 9.8 90.1 0

Wetlands/water 
bodies 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
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Figure 2.23 Relative (%) land cover (CLC) in years 2000 and 2006, for the total study area (top) and for 
areas burnt in year 2005 (bottom). 

 

For the entire study region, there were strong declines in forested areas (-19.1% in 

coniferous forests, -14.8% in broad-leaved forests, and -12,5% in mixed forest areas). This 

was accompanied by an increase of 13.0% in the area of scrub/heathlands. Urban/artificial 

areas also recorded an increase in this time interval close to 11.2% (Figure 7, top). In the 

case of 2005 burnt areas (Figure 7, bottom), similar land cover transitions have occurred with 

very strong losses recorded for forest areas (all types). In these areas (totaling a surface of 

1622 km2), coniferous, mixed and broad-leaved forest areas have decreased by 263 km2 (-

93.2%), 163 km2 (-85.2%) and 131 km2 (-88.0%), respectively. Conversely, an increase was 

observed for scrub/heathlands (67.1%) and open spaces with little or no vegetation (54.2%). 

Although forest areas were severely affected by fires in year 2005, a large proportion of burnt 

area, roughly 46.8%, occurred on scrub or heathlands areas. 

Overall, these structural (land cover) changes suggest that CLC data are suitable to 

analyze the effects of wildfires on land cover composition patterns at the regional scale, and 

so the predicting variables derived from this dataset were included in the modeling routines 

(see below). 
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Pre-fire conditions and attributes of ecosystem functioning – This group includes 

those variables describing pre-fire ecosystem attributes such as those related to productivity, 

seasonality, phenology and greenness trends. All of these variables were calculated from 

annual NDVI time-series from the available pre-fire interval (2001-2004). The extraction of 

ecosystem functional attributes from temporal profiles of remote sensing-derived variables 

(e.g. vegetation indices like NDVI) has gained considerable attention in recent years (e.g. 

Alcaraz-Segura et al., 2006; Leeuwen et al., 2010; Bastos et al., 2011). To describe 

functional aspects of the flux of energy in ecosystems, and the patterns of the interception of 

radiation by vegetation, three attributes were extracted from the seasonal NDVI curve of 

each year: productivity, seasonality and phenology (Alcaraz-Segura et al., 2006). These 

three attributes describe in an adequate way the height and shape of the annual NDVI curve 

and they have been shown to have biological significance (Pettorelli et al., 2005). 

Table 2.10 lists the variables used to describe those three attributes. As indicators of 

productivity, the mean and median values, as well as the maximum and minimum values for 

each year, were computed. For seasonality, we calculated the range (i.e. the difference 

between the maximum and minimum values), the standard deviation, the median absolute 

deviation, the coefficient of variation (i.e. the standard deviation divided by the mean), a non-

parametric coefficient of variation (i.e. the median absolute deviation divided by the median), 

the relative range (i.e. the difference between the maximum and minimum values, divided by 

the mean), and the non-parametric relative range (i.e. the difference between the maximum 

and minimum values, divided by the median). Finally, as indicators of phenology, we 

calculated the time (i.e. the 16-day maximum value composite) in which the maximum and 

the minimum values of each year occurred, as well as the difference between those two 

values, as an indicator of the length of the growing season. 

Furthermore, we applied transformations to the original variables, such as the base 

10 logarithm and the negative base 10 logarithm to some of the seasonality-related 

variables. We also computed the "springness" and "winterness" of the phenological 

variables, by transforming the original variables into polar coordinates and characterizing 

them by their sine and cosine values, respectively, in order to keep the continuous nature of 

the annual period and the relative distance between the times of the year (i.e. December is 

as close to January as July is to June) (Alcaraz-Segura et al., 2006). 

From the variables present in Table 2.10, the mean and median were calculated 

when possible, as an example from the Minimum variable the mean minimum productivity 

was calculated and the suffix MN was added (min_MN), when we calculated the median 

minimum productivity we added the suffix MD (min_MD). 

Preliminary tests confirmed that these variables are sensitive to the changes caused 

by wildfire. As an example, Figure 2.24 illustrates that the NDVI coefficient of variation and 
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the NDVI median suffered changes in the focal year (2005) in burnt pixels, compared with 

neighboring non-burnt (control) areas. 

 

Table 2.10 List of predicting variables used to describe pre-fire ecosystem functional attributes in this 
study. 

Name/acronym Description Attribute

mean Mean (i.e. average) Productivity  
median Median Productivity 
min Minimum Productivity 
max Maximum Productivity 

range Range (max - min) Seasonality 
sdev Standard deviation Seasonality 
mad Median absolute deviation Seasonality 
cov Coefficient of variation Seasonality 
lcov Base-10 logarithm of the coefficient of variation (log10(cov)) Seasonality 
pcov Negative base-10 logarithm of the coefficient of variation 

(-log10(cov)) 
Seasonality 

npcov Non-parametric coefficient of variation (median / mad) Seasonality 
rrel Relative range ((max - min) / mean) Seasonality 
nprrel Non-parametric relative range ((max - min) / median) Seasonality 

dmax Time (i.e. 16-day composite) of maximum Phenology 
dmax_winterness “Winterness” ((cos(dmax – 36) / 23) * (2 * pi) * (360 / 365)) of the 

time of maximum 
Phenology 

dmax_springness “Springness” ((sin(dmax – 36) / 23) * (2 * pi) * (360 / 365)) of the 
time of maximum 

Phenology 

dmin Time (i.e. 16-day composite) of minimum Phenology 
dmin_winterness “Winterness” ((cos(dmax – 36) / 23) * (2 * pi) * (360 / 365)) of the 

time of minimum 
Phenology 

dmin_springness “Springness” ((sin(dmax – 36) / 23) * (2 * pi) * (360 / 365)) of the 
time of mminimum 

Phenology 

length Proxy of length of the growing season (abs(dmax - dmin)) Phenology 
percentIncrease2004 NDVI percent increase in pre-fire year 2004  Pre-fire trend 
ndviTrends20012004slope NDVI 2001-2004 trend slope (Theil-Sen estimator) Pre-fire trend 

 

Figure 2.24 Inter-annual changes in the functional attributes of burnt and control areas, between years 
2001 and 2010: (left) NDVI coefficient of variation (cov); (right) NDVI median. 
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2.2.4. Sub-regional level: Alto Minho 

 

 In the study of wildfire patterns in the Alto Minho region, in addition to the national fire 

database (see 2.2.1) and other national databases on environmental, landscape, 

socioeconomic and topographic factors (see 2.2.2), the most important database was a 

regional land cover map produced for year 2000 (1:25 000), through GIS interpretation of 

ortho-photomaps, by the Instituto Politécnico de Viana do Castelo (used here by courtesy of 

Joaquim Alonso, IPVC), following the methodology and land cover classification used by the 

Portuguese Geographic Institute in the COS´90 national coverage (IGEO). 

For each of the 13 960 land cover patches in the study area, two types of information 

were computed: values for several variables known to affect wildfire patterns (as described in 

previous sections; Table 2.11; Figure 2.25), and a burnt percentage per year (Table 2.12). 

 

Table 2.11 Set of explanatory variables used to characterize every land cover patch in the study area 
(name, description, group and source). 

variable 

name 

description variable group source 

land cover land cover class of the patch Land cover IPVC (2007) 

area_p_m2 patch area Area IPVC (2010) 

distroad distance to roads Distance Instituto das Estradas de 

Portugal 

driver distance to river Agência Portuguesa do 

Ambiente (2010) 

mslope mean slope Topography USGS (2006) 

aspect aspect (North, South, East, West) 

malt mean altitude 

bio1  Annual Mean Temperature Climate WORLDCLIM Hijmans et al, 

2005, 2005 bio2  Mean Diurnal Range (Mean of monthly 

(max temp - min temp)) 

bio3  Isothermality (BIO2/BIO7) (* 100) 

bio4  Temperature Seasonality (standard 

deviation *100) 

bio5  Max Temperature of Warmest Month 

bio6  Min Temperature of Coldest Month 

bio7  Temperature Annual Range (BIO5-BIO6) 

bio8  Mean Temperature of Wettest Quarter 

bio9  Mean Temperature of Driest Quarter 

bio10  Mean Temperature of Warmest Quarter 

bio11  Mean Temperature of Coldest Quarter 

bio12  Annual Precipitation 

bio13  Precipitation of Wettest Month 
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bio14  Precipitation of Driest Month 

bio15  Precipitation Seasonality (Coefficient of 

Variation) 

bio16  Precipitation of Wettest Quarter 

bio17  Precipitation of Driest Quarter 

bio18  Precipitation of Warmest Quarter 

bio19  Precipitation of Coldest Quarter 

Table 2.11 (cont.) 

 

Table 2.12 Burnt percentage in each land cover patch for the analyzed time frame (2000-2010) (only an 
illustrative set of patches is shown from the 13960 total set of patches). 

Year/ Patch Id 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total 

10294 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 82.7 0.0 82.7

9308 0.0 0.0 0.0 0.0 82.8 0.0 0.0 0.0 0.0 0.0 82.8

1815 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.5 40.3 0.0 82.8

9298 0.0 82.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 82.8

8090 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 82.9 82.9

9309 0.0 0.0 0.0 0.0 0.0 82.9 0.0 0.0 0.0 0.0 82.9

10919 0.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 83.0

941 9.9 0.0 1.1 0.0 72.0 0.0 0.0 0.0 0.0 0.1 83.1

1348 83.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 83.1

 

 
Figure 2.25 Two examples of the predictive variables computed for each land cover patch: (left) Patch 
distance to roads; (right) Patch mean slope. Source: derived from COS’90 (IGEO).  
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2.2.5. Municipality level: Baixo Tâmega 

 

 New data on vegetation and plant community structure was collected in the Baixo 

Tâmega municipalities during Spring 2008 to assess the local drivers of post-fire resilience. 

Since the emphasis was on assessing the relative importance of fire history and geological 

factors as drivers of vegetation recovery, the sampling was stratified according to three 

binary variables: (1) fire frequency (a single fire vs. two or more fires since 1990), (2) time 

since last fire (10 or fewer years vs. more than 10 years), and (3) Lithology (granite vs. 

schist). Five sites corresponding to scrubland areas, according to a land cover map of year 

2000 (Honrado and Vieira, 2009) and visual inspection of aerial photographs, were then 

randomly selected inside each of the resulting eight strata. In order to control the effects of 

climate variations, only areas with elevation between 700m (corresponding to the lower 

elevation limit of mountainous areas in Portugal; Aguiar et al., 2010) and 1000m were 

considered. These corresponded to a total of 811 land cover patches, from which the 40 

surveyed sites were selected under a stratified random sampling strategy (Figure 2.26). 

 

 
Figure 2.26 Stratified random sampling of 40 sites from which new vegetation and plant community data 
were collected in the Baixo Tâmega municipalities. 
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 In-field campaigns consisted of collecting vegetation and plant community data from a 

25m2 plot at each of the 40 locations. An area with homogeneous vegetation cover was 

selected at, or close to, each geographic point. A standardized field protocol and recording 

form (see Appendix 2) was followed to collect harmonized information on vegetation 

structure and on plant community structure. 

 Vegetation structure was recorded based on the height and percentage cover of three 

vertical strata: tall shrubs (i.e. woody plants >2m tall; E1), low shrubs (i.e. woody plants <2m 

and >0.6m tall; E2), and herbs (i.e. herbaceous plants; E3). From the data on vegetation 

structure, the following six response variables were later computed for each plot: height of 

stratum E1, height of stratum E2, height of stratum E3, cover of stratum E1, cover of stratum 

E2, and cover of stratum E3. 

 Data on plant community structure allowed the calculation of an additional set of 

response variables related to: (1) total species richness per plot, and (2) species richness per 

plot for each functional group (woody species only). For the later, plant species were 

grouped according to the five classifications described in Table 2.13. Also, species 

composition data were used to assess community assembly and its underlying gradients 

through multivariate statistics (see section 2.3.4). 

 

Table 2.13 The five classifications used to group woody plant species and compute species richness per 
functional group. 

Classification Group label Group name Group description References 

Leaf strategy DEC Deciduous Species with deciduous leaves Bunce et al, 
2008 

EVR Evergreen Species with evergreen leaves 

NLE Non-leafy Species with no or ephemeral 
leaves 

Life forms FOR Trees Species with height usually 
above 2m 

Bunce et al. 
(2008) 

TAL Tall shrubs Species with height usually 
between 0.6 and 2m 

LOW Low shrubs Species with height usually 
below 0.6m 

Response  to 
disturbance 

s Seeders Species recovering from 
disturbances through seed 
germination 

Gill (1981) 

r Resprouters Species recovering from 
disturbances through 
resprouting from basal organs 

Seed dispersal ANE Anemochoric Species dispersing seed 
passively by wind 

Pijl (1972) 
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BAR Barochoric Species dispersing seed 
passively by gravity alone 

ZOO Zoochoric Species dispersing seed 
actively by animals 

Synecology fed Forests and 
edges 

Species with forests or edges 
as their primary habitats 

Honrado 
(2003) 

tsc Tall scrub Species with tall scrub as their 
primary habitat 

lsc Low scrub Species having low scrub as 
their primary habitat 

Table 2.13 (cont.) 
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2.3. Statistical analyses, modelling, and workflows 

 

2.3.1. National patterns and drivers of wildfire occurrence 

 

2.3.1.1. General approach and workflow 

 

 The assessment of the spatiotemporal patterns of wildfire occurrence in mainland 

Portugal was done through the application of several modelling techniques to a national 

comprehensive database. The workflow included the following sequential steps: 

(1) Construction of the national database, with calculation, for each civil parish, of 

values for the response variable (burnt proportion) and for 80 predictor variables 

potentially valuable to explain the detected patterns; 

(2) Extensive model calibration with use of five different algorithms, each one with 

several different settings in order the find the model with the best performance; 

and 

(3) Analysis of model results with evaluation statistics, and interpretation of the 

results. 

Due to the lack of land cover data, some civil parishes were excluded from the 

analysis (Figure 2.25, right). 

 

With the intention of testing whether the country had a common national level set of 

drivers of fire history, or then regionally stratified sets of drivers, we subdivided the dataset 

using the seven Portuguese statistical agrarian regions: [EDM] Entre Douro e Minho, [TM] 

Trás-os-Montes, [BL] Beira Litoral, [BI] Beira Interior, [RO] Ribatejo e Oeste, [ALT] Alentejo, 

and [ALG] Algarve (Figure 2.27, left). 

These statistical regions were used because they provide a simple and parsimonious 

division of the Portuguese territory (considering its climatic, socioeconomic, and land use and 

landscape variations) and also because they are used as statistical units by the institutes of 

the administration that collected part of the data used in the analyses (INE, 2010). When 

using these statistical regions, the purpose was to generate subsets of data in order to 

evaluate a possible “regionalization” of fire history, and so all the different subsets and all the 

analyses were developed at the best common spatial grain available (i.e. the civil parish). 
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Figure 2.27 (left) Cartographic representation of the seven Portuguese statistical agrarian regions; (right) 
Map of the civil parish burnt proportion (the response variable in modelling routines) in those parishes 
for which a complete dataset was available. Sources: (left) …, (right) … 

 

 

2.3.1.2. Response variables 

 

In this study of wildfire patterns and drivers, response variables were related to fire 

history and were derived from the national wildfire database (see section 2.2.1). Specifically, 

the response variable used in this study was the burnt proportion per civil parish, computed 

as the cumulative area burnt in the focal period divided by the total area of the civil parish 

(see Figure 2.27, right). 

 

 

2.3.1.3. Computation of datasets 

 

In total, 40 datasets were generated, corresponding to the predictive tasks described 

further below. These datasets shared two common problems: 

 Some cases (i.e. civil parishes) had variables for which the values are not known 

(e.g. the land cover information); 
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 Some of the agrarian statistical regions had too few samples (i.e. civil parishes with 

adequate available data), leading to some situations where the number of predicting 

variables was higher than the number of cases, which is known to cause problems 

when using most modeling techniques.  

To try to overcome these problems, we used the following three-step heuristic 

method: 

1. We removed from the dataset any variable with more than 100 unknown values; 

2. For the remaining variables, we used random forests (see Breiman (2001) for a 

full description, namely of the use of random forests for estimating variable 

importance) for calculating each variable’s capability of explaining the patterns of 

the response variable, obtaining a score for each variable; based on this score we 

selected the 50% of variables with the highest overall importance; 

3. In this final set of independent variables to use in each predictive task, we 

removed any case (i.e. civil parish) that had unknown values for any of these 

variables. 

This heuristic process has yielded 40 datasets with only a sub-set of the original 

independent variables and civil parishes, but with no unknown variable values. 

 

 

2.3.1.4. The prediction tasks 

 

These several datasets were derived using the available data with the ultimate goal of 

explaining and predicting the percentage of burnt area per civil parish in continental Portugal 

and in its seven statistical agrarian regions. These datasets supported different prediction 

tasks that had in common the response variable, though they varied in terms of both the 

explanatory variables that were used and the cases (i.e. civil parishes) that were included in 

the datasets.  

Two types of analyses were performed, either using all available data (from all 

regions of the country together), or then using only the data for each one of the seven 

agrarian regions. Summarizing, we have considered in our analysis 40 different prediction 

tasks: 8 different sets of data/observations (whole country plus each of the seven regions), 

multiplied by 5 different sets of explanatory variables (i.e. climatic, demographic, landscape, 

topographic, or all variables together; see section 2.2.2). 

For each of these prediction problems we considered the use of different modelling 

techniques with the goal of estimating the predictive performance to explain the observed 

patterns of the response variable. From a modelling perspective, the assumption here was 

that by observing the behaviour of this predictive performance we would be able to answer 
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the research questions underlying this study based on the most robust combination of data 

and modelling technique. 

 

 

2.3.1.5. Modelling techniques 

 

With the goal of removing any possible bias from our conclusions concerning the 

choice of the modelling techniques, we have tried to select and apply a diverse set of 

approaches. Namely, in each of the 40 prediction tasks we tested the use of: 

 Multiple linear regression models (Draper and Smith, 1998), 

 Generalized linear models (McCullagh and Nelder, 1989), 

 Regression trees (Breiman et al., 1984), 

 Support vector machines (Shawe-Taylor and Cristianini, 2000), and 

 Random forests (Breiman, 2001). 

Moreover, for most of these techniques several parameter variants were used in the 

experiments. 

Overall, the modeling technique with the best results in the performed tests was 

Support Vector Regression (SVR), which was therefore used in all further analyses to 

disentangle the factors behind fire history in Portugal and in the several statistical regions. A 

brief description of this technique is therefore provided in the next paragraphs, and in the 

following sections we will only describe the procedures involved in SVR. 

Smola and Scholkopf (1998) published a fundamental tutorial giving an overview of 

the basic ideas underlying SVM for function estimation. Vapnik (1998), and Shaw-Taylor and 

Cristianini (2000) are two essential references for SVM. These are complemented with the 

work of Karatzouglou (2006) for implementing an SVM and kernel method environment in R 

Language. 

In Support Vector Regression (SVR) the basic idea is to map the data x into a high 

dimensional feature space F via a nonlinear mapping Φ and obtain a linear regression model 

in this new space: 

f (x) = (ω· Φ(x)) + b  

 

with Φ : Rn → F , ω ∈ F , where b is a threshold. 

 

Thus, linear regression in a high dimensional (feature) space corresponds to non–

linear regression in the low dimensional input space Rn. Since Φ is fixed, ω is determined 

from the data by minimizing the sum of empirical risk Remp [f ] and a complexity term ||ω||2, 

which enforces flatness in the feature space: 
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where l denotes the sample size, C (.) is a cost function (e.g. Vapnik’s (1998) insensitive loss 

function), and λ is a regularization constant. 

For a large set of cost functions, the previous equation can be minimized by solving a 

quadratic programming problem, which is uniquely solvable. It is possible to write the vector 

ω in terms of the data points: 
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with αi ,α∗  being the solution of the afore–mentioned quadratic programming problem. 

The problem may be rewritten as products in the low dimensional space: 
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In the above equation the kernel function is introduced: K (xi, xj ) = (Φ(xi )• Φ(xj )). 

It can be shown that any asymmetric kernel function, K, satisfying Mercer’s condition, 

corresponds to a dot product in some feature space. A common kernel is a Radial Basis 

Function (RBF) kernel: 
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being γ the width of Vapnik’s (1998) insensitive loss function. 

 

 

2.3.1.6. Tuning SVR 

 

The R software package contains the ksvm function that is mostly programmed in R 

but uses the optimizers found in bsvm and libsvm, which provide a very efficient C++ version 

of the sequential minimization optimization (SMO).  

 In our comparative study, we have focused on variants of the epsilon insensitive loss 
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function (gamma argument). By default, this value is 0.1, but in our trials we have used the 

values 0.01, 0.001 and 0.0005. Different values of parameter cost were also used in our 

experiments: 100, 200 and 500. In summary, we have considered 9 variants of SVR models. 

 

 

2.3.1.7. Evaluation statistics 

 

The models obtained by these different techniques were evaluated in terms of their 

predictive accuracy using the Normalized Mean Absolute Deviation (NMAD), which is given 

by: 

 

݊݉ܽ݀ ൌ 	
∑ ൌ పෝݕ|1 െ |௜ݕ
௡
௜
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௜ തݕ| െ |௜ݕ

 

 

where n is the number of test cases, ݕത is the response value of case i, ݕపෝ  is the prediction of 

the model for the case i, and y is the average response value estimated with the given 

dataset (Hoaglin et al., 1983). 

With the aim of providing unbiased estimates of the predictive performance of the 

different models across the 40 prediction tasks, a Cross Validation (CV) estimation process 

was followed. Namely, 3 repetitions of a 10-fold CV experiment were carried out with all 

modelling techniques on the 40 tasks. This experimental process was used to estimate the 

average NMAD of each technique for each problem. Moreover, paired Wilcoxon signed rank 

tests were used to assert the statistical significance of the observed differences.  

 

 

2.3.2. Regional patterns of post-fire resilience in northern Portugal 

 

2.3.2.1. General approach and workflow 

 

 The assessment of the spatiotemporal patterns of post-fire ecosystem resilience in 

northern Portugal was performed through the analysis of post-fire ecosystem functional 

attributes against several groups of potentially predictive variables. The spatial setting for this 

analysis was established based on the availability of remote sensing data as well as on a set 

of previous structural analyses of burnt areas in the focal period. 

The general workflow included the following sequential steps: 

(1) Selection of burnt areas; 

(2) Computation of response variables (post-fire attributes of ecosystem functioning 
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as proxies of ecosystem resilience); 

(3) Model calibration and evaluation; 

(4) Assessment of importance of response variables; and finally 

(5) Analysis of selected response curves. 

 

 

2.3.2.2. Selection of burnt areas 

 

Raster algebra was used to select burnt areas that were suitable for the objectives of 

this study. Consider ܤ௜ a raster dataset containing the percentage of burnt area for year ݅ and 

ܵ a Boolean raster dataset containing the selected areas (or test areas). Also consider 

௠,௡ݏ ∈ ሼ0,1ሽ a pixel within this dataset with values in the Boolean range. 

ܵ ൌ ሺܤଶ଴଴ହ ൒ 75%ሻ

∩ ሺܤଶ଴଴ଵ ൏ 25% ∩ ଶ଴଴ଶܤ ൏ 25% ∩ ଶ଴଴ଷܤ ൏ 25% ∩ ଶ଴଴ସܤ ൏ 25% ∩ ଶ଴଴଺ܤ

൏ 25% ∩ ଶ଴଴଻ܤ ൏ 25% ∩ ଶ଴଴଼ܤ ൏ 25% ∩ ଶ଴଴ଽܤ ൏ 25% ∩ ଶ଴ଵ଴ܤ ൏ 25% ∩ ଶ଴ଵଵܤ

൏ 25%ሻ	

This operation allowed selecting grid cells that burned 75% or more of their surface 

area in year 2005 (i.e. cells that were heavily affected by wildfires in this year) and that 

remained unburned or only mildly affected by fire (up to a threshold of 25% of the pixel area) 

in the remaining years within the 2001-2011 time span of the study (excluding 2005). Grid 

cells selected by these conditions were the ones used in this study of post-fire regeneration. 

 

 

2.3.2.3. Computation of response variables 

 

In order to assess post-fire vegetation recovery in the study area, we used the NDVI 

values between 2006 and 2010, for each pixel in which there was a fire in year 2005 (and in 

which, according to the fire database, no other relevant fires occurred in any other year 

between 2001 and 2010; see section 2.2.3), to compute the following two indices of relative 

vegetation recovery: 

(i) the Recovery Trend Index (RTI) was computed as the slope of the trend in the 

NDVI data for the 2006-2010 period, by using the Theil-Sen’s estimator, which is a rank-

based test that is robust against non-normality of the distribution and missing values (Theil, 
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1950); unlike the Mann–Kendall test, this estimator not only detects if a trend exists, but also 

provides the amplitude of that trend (Sen, 1968); we used the R package zyp (Bronaugh and 

Werner, 2009), which accounts for inter-annual autocorrelation present in the data; 

(ii) the Cumulative Relative Recovery Index (CRRI) was calculated as the sum of the 

relative recovery values in the 2006-2010 period (obtained by dividing each NDVI value in 

that period by the difference between the 2001-2004 inter-annual median value and the 

minimum NDVI value in 2005), standardized by the number of values, in order to get a 

gradient from 0% (i.e. no recovery) to 100% (i.e. total recovery). 

Estimates of the rate of recovery of the vegetation were also computed by fitting non-

linear models based on the methodology described in Bastos et al. (2011), which consists in 

defining a “Gorgeous Year” against which the anomalies in the fire and post-fire years are 

calculated (in this case, the median values for 2001-2004 were used), with the objective of 

reducing inter-annual phenological variability, thereby allowing estimating the recovery rate 

by means of regression analysis. Using this methodology, we estimated recovery times (in 

days) for 50%, 75% and 95% of the pre-fire median levels (RT50, RT75 and RT95, 

respectively), which can be viewed as the time when the modelled curve of vegetation 

recovery crosses the threshold defined as either 50%, 75% or 95% of the median value over 

the pre-fire period (i.e. 2001-2004; see Bastos et al., 2011). Since the performance of the 

models fitted for the 75% and 95% recovery time where very low, hereafter we will only refer 

to the 50% recovery time model.  

 Finally, three response variables were selected for further analyses (Figure 2.28): the 

Recovery Trend Index (RTI), the Cumulative Relative Recovery Index (CRRI), and the 50% 

Recovery Index (RT50). The R package nls2 (Grothendieck, 2013) was used to fit non-linear 

models for the computation of these three response variables. 

 

 
Figure 2.28 Representations of the three response variables for two contrasting resilience levels (see also 
Figure 2.22): the Cumulative Relative Recovery Index (CRRI; blue area), the Recovery Trend Index (RTI; 
green line) and the 50% Recovery Index (RT50; yellow dot). 
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The statistical correlations among these three indicators of ecosystem resilience are 

described in Table 2.14. 

 

Table 2.14 Spearman’s correlation scores between pairs of response variables. 

 
Recovery Trend index

Cumulative Relative 

Recovery Index 
50% Recovery Time 

Recovery Trend index - 0.349 0.599 

Cumulative Relative 

Recovery Index 
0.349 - -0.100 

50% Recovery Time 0.599 -0.100 - 

 

It must be stressed that this definition of vegetation recovery based on ecosystem 

functional attributes only refers to the re-establishment of pre-fire chlorophyll levels, or 

vegetation density (vegetation greenness), and therefore it does not account for either the 

recovery of the ecosystem’s structure or diversity, as it does not for individual tree or species 

development.  

 

 

2.3.2.4. Model calibration and evaluation 

 

In order to relate post-fire recovery response variables and predicting variables, for 

the model fitting tasks we used the Random Forest (RF) algorithm (Breiman, 2001), 

implemented in R’s randomForest package (Liaw and Wiener, 2002). The RF algorithm has 

shown excellent performance in high dimensionality situations, where sometimes the number 

of predicting variables is much higher than the number of observations, for their ability to 

handle with complex interaction structures as well as highly correlated variables, and it can 

provide measures of variable importance (Oppel et al., 2009; Boulesteix et al., 2012). In 

wildfire studies, the RF algorithm has been successfully applied, among other, in determining 

fire severity from satellite data (Holden et al., 2009), modelling and mapping forest canopy 

fuels for fire behavior analysis (Pierce et al., 2012), or modelling spatial patterns of fire 

occurrence in the Mediterranean area (Oliveira et al., 2012). Random forest parameterization 

used a mtry value equal to 70, ntree equal to 100, and no replacement. Other parameters 

were set to default. 

In order to assess model performance we used Monte Carlo cross-validation – MCCV 

(Qing-Song, 2004), by splitting our initial dataset (containing 20 650 observations and 221 

predictors) into two separate datasets, i.e., a training set containing 30% of the observations 



Methods 
 

104 
 

(totaling 6195) and a test set with 70% (14 455). This cross-validation method and the 

relatively small number of training observations were defined in order to decrease RF 

computation time for each replicate. For each response variable, 100 RF models (i.e., 

replicates) were generated. All results, including model predictions, performance statistics 

and variable importance measures, were then averaged across replicates. 

As performance measures between observed (ݕ௜) and predicted values (ݕపෝ ) we used 

R2, Root-mean-square Error (RMSE), the Normalized Root-mean-square Error (NRMSE), 

and the Pearson Correlation: 

 

ܴଶ ൌ 1 െ
∑ ሺ௬ഢෝି௬೔ሻమ
೙
೔సభ

∑ ሺ௬೔ି௬ഢഥ ሻమ
೙
೔సభ

, where ݕపഥ  equals the average of observed values 

ܧܵܯܴ ൌ ට∑ ሺ௬೔ି௬ഢෝ ሻ
೙
೔సభ

௡
 , with ݊ equal to the number of test observations 

%ܧܵܯܴܰ ൌ ቀ ோெௌா

௬೘ೌೣି௬೘೔೙
ቁ ൈ 100 , where ݕ௠௔௫ െ  ௠௜௡ is the range of observed valuesݕ

 

 

2.3.2.5. Importance of predicting variables 

 

To evaluate the importance of individual predictive variables, we used the function 

importance(), also implemented in the randomForest package, using parameter “type=2” 

which calculates importance as the total decrease in node impurities from splitting each 

variable, averaged over all trees. For regression, node impurity is measured by the residual 

sum of squares. We set the parameter “scale=FALSE” as suggested in Strobl and Zeileis 

(2008). Overall, the variable importance assessment focused on the relative ranking of 

variables instead of absolute contribution to prediction accuracy.  

 

 

2.3.2.6. Response curves 

 

Response curves (or evaluation strips), obtained using univariate models fitted for the 

best predictive variables for each response variable, were used to investigate the post-fire 

ecological response of burnt areas to variations in those predictors. The computation of 

these curves was based on Elith (2005) and they were calculated by fitting 100 univariate 

models, each one with 5% of the total number of observations in the dataset (to decrease 

computational time), and then by averaging prediction results. 
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2.3.3. Assessing wildfire patterns and drivers in the Alto Minho 

 

2.3.3.1. General approach and workflow 

 

 The assessment of the spatiotemporal patterns and drivers of wildfire occurrence in 

the Alto Minho sub-region, northwest Portugal, was done through the application of machine 

learning algorithms, namely Inductive Logic Programming, at the burnt patch level, to a 

region with very high burnt areas and wildfire recurrence. The workflow included the following 

sequential steps: 

(1) Construction of a patch level database with relevant variables for modelling fire 

history for the periods 1991-2000 and 2001-2010; 

(2) Use of the database in an ILP context to construct a set of rules that try to explain the 

fire history in the training period (1991-2000); and 

(3) Validation of the rule set with an independent test dataset, corresponding to fire 

history in the period 2001-2010. 

 

 

2.3.3.2. Response variables 

 

In this study of wildfire patterns and drivers, the response variable was related to fire 

history and was derived from the national wildfire database (see section 2.2.1). Specifically, 

the response variable considered here was a binary classification of patches (burnt patch vs. 

non burnt patch). To a polygon to be considered as “burnt” it had to comply with at least one 

of the following two rules: (1) in any of the years of the focal time frame, 50% or more of its 

area was burnt; or (2) during a focal decade, 70% or more of its area was burnt. 

 

 

2.3.3.3. Modelling framework: Prolog in the context of machine learning algorithms 

 

One of the main tools used in this study was Prolog. Prolog stands for 

“PROgramation en LOGic'' (Colmerauer et al., 1973), and it was one of the first and is still 

one of the most popular logic programming languages. It was developed as an attempt to 

implement Colmerauer and Kowalski's idea of computation as controlled inference (Kowalski, 

1974). The goal in Prolog is to separate the specification of what the program should do from 

how it should be done. In Prolog the user specifies application knowledge (facts and rules) 

and queries in a declarative way using logic, leaving the problem of how to solve the query 

using the specified knowledge to the Prolog system.  
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Machine Learning is the study and development of empirical data based algorithms 

that allow systems to improve their behaviour over time (Mohri et al., 2012).  As an example, 

suppose we are given a database with fire events occurring in a given region, plus landscape 

properties such as the distance of each occurrence to water. If the data show that most of 

the regions far from water have burnt, a typical application of machine learning would infer 

general rules such as “If a region is far from water, it will burn''. 

Ideally, observed data would follow an unknown but computable theory T. In this 

case, we could use inductive reasoning to unveil the theory T that fully explains the data 

(Raedt, 2008). In practice, we have limited amount of data, noisy data and we only have a 

partial understanding of the problem, so we can only approximate T. 

 

 

2.3.3.4. Classification problems 

 

In classification problems the data are split into positive (True) and negative (False) 

examples. In order to score a theory T we must analyse how T covers the examples. Three 

of the most used methods for this purpose are Confusion Matrix, Accuracy and 

Precision/Recall. 

 A Confusion Matrix is a visual aid formed by two columns representing the actual 

observations and by two rows representing the predicted results. An example is given in 

Figure 2.29. A binary classifier will have four cases: 

 True Positive (TP), i.e. those correctly labelled as positive; in the example: 4; 

 False Positive (FP), i.e. those wrongly labelled as positive; in the example: 1; 

 False Negative (FN); i.e. those wrongly labelled as negative; in the example: 2; 

 True Negative (TN), i.e. those correctly labelled as negative. In the example: 3. 

 

 
Figure 2.29 Example of confusion matrix with TP (true positives), FP (false positives), FN (false 
negatives), TN (true negatives). Source: Stehman 1997. 
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Often one wants a single number to measure the quality of T. Accuracy gives the 

percentage of correctly predicted examples (both positive and negative) over all examples: 

 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 

Precision/Recall is an alternative metric useful when we have a large number of 

negative examples (Figure 2.30). This is the case with our data; the wildfire dataset is 

extremely skewed in the negative (not burnt) side. Precision is the percentage of true 

positives out of all predicted positive examples. A high precision means most of the predicted 

positive examples are actual positive examples, regardless of whether we miss some (or 

many) positive examples. Recall is the percentage of true positives out of all observed 

positives examples. A high recall means that most of the positive examples are found, even if 

we also label many negative examples as positive (Figure 2.30). 

 

 
Figure 2.30 Graphic representation of the Precision/Recall concept. Precision (PRE) and recall (REC) are 
the quotient of the light and dark regions, respectively. Precision = TP / (TP + FP). Recall = TP / (TP + FN). 
Source: Wikipedia (January 2013). 

 

2.3.3.5. Training and testing a rule set 

 

Evaluating a theory based on the training data alone does not guarantee that the 

theory will perform well with new data. To best score the theory, the data are usually split into 

training and testing sets. We used as training set the data from a land cover map of year 

1990 and the following decade of wildfires (1991-2000), and as test set the data from a land 

cover map of year 2000 and the following decade of wildfires (2001-2010). These land cover 

and fire datasets were described in section 2.2. 
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2.3.3.6. ILP - Inductive Logic Programming 

 

Inductive Logic programming (ILP) is a research area formed at the intersection of 

Machine Learning and Logic Programming (Muggleton, 1991). Induction, a form of reasoning 

and the counterpart of deduction, can be seen as learning theory T from examples, the same 

general objective of machine learning. This is in fact a good definition to ILP itself, where the 

main goal is to derive theories from examples. 

As with human reasoning, in ILP we are allowed to use domain knowledge, here 

known as background knowledge, in order to help the system derive better theories. 

In ILP, the example set E, the background knowledge B and the theory itself T are all 

well-formed Prolog programs. Usually we divide E into positive examples E^+ and negative 

examples E^-, thus E = E^+ V E^-. The objective is to find a hypothesis H which explains the 

positive examples while not explaining the negative examples. 

 

 

2.3.3.7. Aleph 

 

Aleph (A Learning Engine for Proposing Hypotheses; Srinivasan, 2007) is one of the 

many ILP systems. We briefly describe the key parameters here. 

Aleph allows fine-tuning a set of parameters that control the ILP search. The most 

relevant to our work are the following: 

 

evalfn (our case auto_m) - Sets the evaluation function for a search. 

 

i (in our case: 3) - Controls the size of the bottom clause, by setting an upper bound on the 

number of new variables. The larger the i the larger the bottom clause will be. So for a very 

large i the system may just spend too much time generating the bottom clause, whereas for 

very small i it may lose interesting clauses. 

 

minacc (in our case: 10%) - Sets a lower bound on the minimum accuracy of an acceptable 

clause. 

 

minpos (in our case: 20) - Sets a lower bound on the number of positive examples to be 

covered by an acceptable clause. This is useful to avoid very specify clauses that only cover 

very few examples. 
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noise (in our case: 1000) - Sets an upper bound on the number of negative examples 

allowed to be covered by an acceptable clause. With noisy data sets this allows to have 

some flexibility in clause generation. 

 

optimize\_clauses (in our case: true) - Performs query optimizations (Costa et al., 2003). 

 

search (in our case: heuristic to speedup) - Sets the search strategy, the most commonly 

used breath first and heuristic. 

 

Our task was to predict whether a given land cover polygon would suffer a fire event 

in the next decade. We used the ILP system Aleph (Srinivasan, 2007) running under the 

Prolog system YAP (Costa et al., 2012) to search for burnt areas. As discussed above (see 

section 2.2.4), we performed this study for the period between years 1991 and 2000, and 

tested our results using the 2001-2010 decade. The training dataset consisted of 13 968 

polygons, 881 being positive examples (land cover polygons with fire occurrence). We used 

as negative examples the remainder 13 087 polygons in the dataset. The test data set 

included a total of 28 670 polygons, 3830 of which being positive examples (land cover 

polygons with fire occurrence). We used as negative examples the remainder 24 840 

polygons in the dataset. Both datasets are therefore highly skewed. 

After determining the set of rules with the best performance, we tested this rule set 

using the 2000 land cover (with a different geometry and number of polygons) and the fire 

history between 2001 and 2010 as the test data set. Since it was possible to determine for 

each polygon the number of times that it was “caught” by one of this rules, we also computed 

the “key” polygons in the model for explaining burnt (positive examples) and non-burnt 

(negative examples) areas, i.e. those with the highest frequencies in the rule set. 

 

 

2.3.4. Local controls of post-fire vegetation resilience 

 

2.3.4.1. General approach and workflow 

 

 The assessment of the local controls of post-fire vegetation resilience in the Baixo 

Tâmega region, northwest Portugal, was done through the application of Anova Detrended 

Correspondence Analysis and Analysis of Similarities on vegetation data to analyse the post-

fire behaviour of scrublands. The workflow included the following sequential steps: 
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(1) Construction and implementation of a sample design that allowed to test the effects of 

fire history and lithology in scrubland resilience (see section 2.2.5); 

(2) Collection of in-field data on vegetation and plant community structure; and 

(3) Statistical analysis of the collected data. 

 

 

2.3.4.2. Explanatory variables and sampling design 

 

Three explanatory variables were considered to explain the patterns of post-fire 

vegetation recovery: two variables related to fire history (Time Since Last Fire - TSLF, and 

Recurrence - R) and lithology/bedrock type (schist vs. granite). 

The sampling strategy was based on these three variables (see section 2.2.5). The 

40 sampling sites were selected according to their fire history (TSLF and Recurrence) and to 

Lithology. Five replicates were randomly selected for each combination of factors. Sampling 

was therefore based on a full factorial design with three crossed independent factors. The 

characteristics of the data and the several response variables computed from those data 

were described in section 2.2.5. 

 

 

2.3.4.3. Statistical analyses 

 

One-way analysis of variance (ANOVA) performed in SPSS Statistics® 7.0 was used 

to detect significant differences among sites in terms of the number of woody species. 

ANOVA´s assumption of homogeneity of variances was tested with Levene’s test, and that of 

normality of the residual distribution checked graphically by normal probability plots. 

Detrended Correspondence Analysis (DCA), with detrending by segments and 

scaling of ordination scores focusing on inter-sample distances, was performed in CANOCO 

ver. 4.5 (Braak and Šmilauer, 2002) in order to clarify the relationships among sampling sites 

based on their floristic composition. 

Analysis of similarities (ANOSIM) in PRIMER software (Clarke and Warwick, 2001), 

based on a Bray-Curtis similarity matrix (Bray and Curtis 1957), was used to test for 

differences in community structure as a function of TSLF, Recurrence and Lithology and their 

interactions. ANOSIM calculates a global R statistic that reflects the differences in variability 

between groups as compared to within groups (so R values are proportional to differences 

between the groups) and checks for the significance of R using permutation tests (Clarke 

and Warwick, 2001). Given the differences in community composition between Granite and 
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Schist and the non-availability of a three-way ANOSIM in the PRIMER software, data were 

analysed by a two-way ANOSIM with Recurrence and TSLF for each Lithology type. 
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3.1. National patterns and drivers of wildfire occurrence 

 

3.1.1. Rationale and specific objectives 

 

Environmental and ecological systems are complex and dynamic, and therefore 

difficult to model with standard modelling tools that often are too restrictive in their data 

distribution assumptions (Elith and Graham, 2009). Several machine learning modelling tools 

provide sophisticated approaches with less stringent assumptions. Therefore this type of 

tools has been receiving increasing attention from the environmental and ecological research 

communities (e.g. Fielding, 1999; Crisci et al. 2012). 

The nature of the problem being tackled in this study of wildfire patterns and drivers 

and the properties of the available data require this type of approaches, namely several 

“state of the art” machine learning tools like Random Forests (Breiman 2001) or Support 

Vector Machines (Vapnik 1995). Here we use the latter to uncover the key drivers of recent 

fire history across different regions of continental Portugal. Our underlying rationale was that, 

in environmentally and socioeconomically heterogeneous countries such as Portugal, the key 

features of fire regimes will be driven by distinct factors, according to the specific 

environmental and socioeconomic setting of each region. 

 

 

3.1.2. Description and interpretation of results 

 

3.1.2.1. Modelling wildfire patterns in Portugal with SVMs 

 

When using the whole country as test area to model wildfire patterns, the best results 

(i.e. lowest NMAD values) were obtained using the whole set of variables, with NMAD 

reaching values below 0.6 (Figure 3.1). The Landscape block of variables had the best 

individual performance whereas the Socio-Economic block achieved the poorest result. The 

Climate and Topography blocks of variables yielded comparable and intermediate scores. 

When analysed separately for the seven agrarian regions of continental Portugal, 

models using all variables performed better in the northern regions that in the southern 

regions of the country (Figure 3.2). The “Entre-Douro-e-Minho” (EDM), in the northwest end 

of the country, was the region with the best performance overall (NMAD=0.55), even better 

than the performance achieved by the national model. 
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Figure 3.1 Performance of SVMs in explaining wildfire patterns in continental Portugal (whole country), 
based on the complete set of variables (“all”) and on individual blocks of variables (Climate, Landscape, 
Socio-Economic, and Topography). 

 

 
Figure 3.2 Performance (NMAD values) of the SVM models for the several agrarian regions of continental 
Portugal. 

 



Results 

117 
 

The proportion of the area that burnt in each of the seven regions during the focal 

time frame was very distinct (Table 3.1), which may have been one of the causes of the 

asymmetric performance exhibited by the algorithm. In fact, the four northern regions (EDM, 

TM, BL, BI) had higher fire recurrence and more than 15% of their territory burnt in the time 

frame considered (1991 to 2000), and many of their parishes had a large proportion of their 

area affected by fire in the same period (Table 3.1). 

 

Table 3.1 NMAD of SVM models per region and for the whole continental Portugal, against selected fire 
statistics. 

Region NMAD mean burnt 

proportion 

(%) 

mean fire 

recurrence  

standard 

deviation fire 

recurrence 

proportion of 

parishes with 

more 

than10% 

burnt area 

[EDM] Entre Douro e Minho 0.55 17 2.01 1.22 46.95 

[TM] Trás-os-Montes 0.70 18 2.10 1.08 54.94 

[BL] Beira Litoral 0.59 16 1.41 1.06 39.81 

[BI] Beira Interior 0.72 22 2.08 0.94 72.03 

[RO] Ribatejo e Oeste 0.73 4 0.85 0.73 8.80 

[ALT] Alentejo 0.79 1 0.79 0.55 1.69 

[ALG] Algarve 0.87 6 1.11 0.83 7.32 

Whole country 0.57 11 1.44 1.07 42.64 

 

 

3.1.2.2. Drivers of wildfire patterns across regions in Portugal 

 

 Even if relatively small in size, continental Portugal has a large diversity of climatic, 

topographic, socio-economic and landscape factors (see Methods, section 2.2.1). 

Considering that fire regimes are also strikingly different across the country (see Table 3.1), 

our next question was whether the response of fire history to the several types of factors was 

regionally stratified. We addressed this goal by comparing the performance of models 

including only a given group of variables with the performance of models including the whole 

set of variables, for the whole country and for each region (Table 3.2, Figure 3.3 and Figure 

3.4). The underlying questions were (1) whether one or more groups of variables would 

individually outperform using all the data to explain wildfire patterns, and (2) whether such 

group(s) of variables would differ among regions. 
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Table 3.2 Performance ranks of the individual blocks of variables and the complete dataset (“all”) in 
explaining wildfire patterns in the whole country and in the different agrarian regions of Portugal. 

Rank Country EDM TM BL BI RO ALT ALG 

1 all all all all all Socio Topo Topo 

2 Land Land Land Topo Land Topo Socio Clim 

3 Clim Topo Clim Land Topo Clim Clim Land 

4 Topo Clim Topo Clim Clim Land Land Socio 

5 Socio Socio Socio Socio Socio all all all 

 

These analyses revealed that there are differences in the relative effects of the 

several types of factors across regions (Table 3.2) and that the country is clearly divided in 

two parts regarding the drivers of wildfire regimes: (1) a northern half in which fire patterns 

are better explained by multiple factors (i.e. when using the whole set of variables), and (2) a 

southern half where models based on the whole set of variables were the ones with the 

lowest performance (Figure 3.3). 

 

 
Figure 3.3 Best performing (left) and worst performing (right) blocks of variables in each of the seven 
agrarian regions of Portugal. 
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Figure 3.4 Differences (and statistical significance) of NMAD for the seven agrarian regions compared to 
using all country data, when testing the effects of all types of variables or of individual types of variables 
on fire regime. Positive values in the vertical axis signal worse performance in individual regions 
compared to the whole country for a given set of variables. 

 

In the northern part of the country, the Landscape group was usually the one 

exhibiting lower loss in model performance when compared with using he whole dataset 

(Table 3.2, Figure 3.4). Also, all differences between the performance of each block of 

variables compared with that attained by that block for the whole country are statistically 

significant (Figure 3.4). Overall, these results suggest that the drivers of fire history in 

Portugal must be analysed separately per region 

 

 

3.1.2.3. Individual performance of the several groups of variables across regions 

 

The final goal was to compare the individual performance of the several groups of 

variables in each region (Figure 3.5). 
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Figure 3.5 Ranking of variable blocks and of the whole dataset in the seven agrarian regions of Portugal. 
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Analysing the main results contained in Table 3.2 geographically highlights the strong 

variations in the relative importance of variable blocks to explain fire patterns across regions. 

Individually, landscape variables represent the most important block in most of the northern 

regions (it is however of lesser importance towards south; Figure 3.5). The statistical tests 

presented in Figure 3.6 further highlight the importance of the Landscape block to explain fire 

patterns in the northern part of the country. 

 
Figure 3.6 Difference of NMAD between using only the Landscape block and using any of the other blocks 
of variables individually. Positive values in the vertical axis represent cases in which using the 
Landscape block alone yields lower values of NMAD (i.e. better performance) that the other block of 
variable being compared. 

 

Conversely, topography and socio-economy seem to be the most important effects in 

the southern part of the country, whereas they are of less importance to explain fire patterns 

towards north (Figure 3.5). Climate, on the other hand, is only the second best performing 

block in ALG, thus apparently representing the least important block overall. 
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3.2. Regional patterns and drivers of wildfire occurrence 

 

3.2.1. Rationale and specific objectives 

 

Fire regimes in environmentally and social-ecologically heterogeneous regions are 

influenced by many different factors. As described in the Introduction (see section 1.3), 

environmental drivers such as climate or topography, socioeconomic factors such as 

demography or land uses, and mixed factors such as land cover and landscape structure, 

jointly contribute to shape regional fire history (Marques et al., 2011; see also section 3.1). 

Since these factors may influence fire occurrence (ignition and/or spread) at different 

scales of space and time (Ganteaume et al., 2013), and due to the many possible 

interactions among drivers (Miranda et al., 2012), the resulting wildfire patterns are often 

rather complex and therefore difficult to explain and/or predict. In this context, robust 

modelling frameworks can be rather useful to identify general wildfire patterns as well as to 

discriminate their underlying determinants. 

Here we explored the potential of inductive logical programming (ILP; Vaz et al., 

2007) to extract a general rule set that could successfully explain the spatial patterns of 

wildfire events that occurred during the 1990s in the Alto Minho, a heavily burnt, 

heterogeneous region in northwest Portugal. Such rule set was then tested against an 

independent wildfire dataset (burnt areas in the 2001-2010 time frame). The rationale of this 

modelling framework as well as the workflow were described in detail in the Methods section 

(see 2.3.3). 

 

 

3.2.2. Description and interpretation of results 

 

3.2.2.1. Rule set performance 

 

 A rule set consisting of 15 rules was generated by the ILP algorithm to explain the 

patterns of wildfires in the Alto Minho (1991-2000 time frame). When tested against the 

training dataset (as described in the Methods section; see 2.3.3),  the performance of this 

rule set can be described as follows (Table 3.3): 

- From the 881 burnt polygons in the dataset, 731 polygons corresponded to true 

positive (TP) cases (i.e. correctly labelled as burnt), and 150 polygons corresponded 

to false positive (FP) cases (i.e. wrongly labelled as burnt); 
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- From the 13 087 unburned polygons in the dataset, the number of false negative (FN) 

cases (i.e. wrongly labelled as unburned) was 3971, and the true negative (TN) cases 

(i.e. correctly labelled as unburned) was 9116.  

 

Table 3.3 Confusion matrix describing the success of the rule set in predicting burnt patches in the 
training dataset (1991-2000). 

 Observed 

Predicted + - Total 

+ 731 3971 4702 

- 150 9116 9266 

Total 881 13 087 13 968 

 

 

When tested against the training data, the rule set thus exhibited an Accuracy (i.e. the 

fraction/percentage of all cases that corresponds to correctly predicted cases, both positive 

and negative) of 0.71 (71%), which can be considered a good performance (Vaz et al., 

2011). This high value is mostly influenced by the high total number of true negative cases 

(due to the expected negative bias of the wildfire database; Table 3.3). 

In cases like wildfire datasets, which are usually rather skewed towards the negative 

(not burnt) side of the distribution, measures like Precision and Recall can be very useful 

(see section 2.3.3). In this test against the training dataset, our rule set achieved a Recall 

(i.e. the fraction/percentage of true positives out of all positives examples) of 0.83 (83%), 

meaning that most of the positive examples (i.e. actually burnt polygons) were predicted by 

the rule set. On the other hand, Precision (i.e. the fraction/percentage of true positives out of 

all predicted positive examples) was only 0.2 (20%), expressing the fact that many cases 

predicted as burnt actually corresponded to unburned polygons (i.e. false positives). These 

results become clear in the spatial expression of Recall and Precision of the rule set against 

the training data (Figure 3.7). 
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Figure 3.7 Spatial expression of performance statistics of the rule set against the training data: (left) 
Recall: only the actually burnt polygons are represented, with those correctly classified by the algorithm 
overlapping in green; (right) Precision: all polygons predicted as positive (i.e. burnt) by the rule set are 
represented, with the true positive (i.e. correctly predicted as burnt) overlapping in green. 

 

 The test dataset was based on a new land cover map (from year 2000) and the fire 

records of the decade 2001-2010. Since the geometry and number of polygons are different 

and the burnt polygons were calculated using a different time frame, this test set can be 

considered independent from the training set. The test set performance (Table 3.4) follows 

the same pattern as the training set, with a slightly worst performance in Recall (0.69, or 

69%) and a better performance in Precision (0.28, or 28%). The overall Accuracy was 0.72 

(72%). 

 

Table 3.4 Confusion matrix describing the success of the rule set in predicting burnt patches in the test 
dataset (2001-2010). 

 Observed 

Predicted + - Total 

+ 2638 6969 9607 

- 1192 17871 19063 

Total 3830 24840 28670 
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 The spatial expression of Recall and Precision of the rule set against the test data is 

depicted in Figure 3.8. To test whether the good Recall achieved for the test dataset was not 

spuriously influenced by the increase in the total number of polygons (when compared with 

the training dataset), we performed a Fisher's Exact Test (with a 95% confidence interval). 

The test rejected (p-value < 2.2e-16) the null hypotheses that the model does not perform 

better than a random selection of polygons. The rule set thus proved to be successful in 

predicting wildfires on an independent dataset. 

 

Figure 3.8 Spatial expression of performance statistics of the rule set against the test data: (left) Recall: 
only the actually burnt polygons are represented, with those correctly classified by the algorithm 
overlapping in green; (right) Precision: all polygons predicted as positive (i.e. burnt) by the rule set are 
represented, with the true positive (i.e. correctly predicted as burnt) overlapping in green. 

 

 

3.2.2.2. Analysis on individual rules and polygons 

 

 Table 3.5 provides a summary of the number of polygons in the training dataset 

covered by the several rules in the study area. Any given rule applies to a minimum of 1.2% 

of all polygons, but no single rule covers more than 6.5% of all polygons, for an overall mean 

of 2.4%. The rule set covers 35.5% (4957) of a total of 13 968 land cover polygons in the test 

area. On average, a given rule achieved a Precision of 18.5% (i.e. 18.% of polygons covered 
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by that rule corresponded to positive cases, i.e. burnt areas), with values ranging between a 

minimum of 10.5% (rule n. 15) and a maximum of 24.7% (rule n. 14). 

 

Table 3.5 Summary statistics for the set of 15 rules applied to the training dataset. Note that a given 
patch/polygon may have been classified as positive by more than one rule. 

Rule n. Total N. of 

polygons 

covered by 

the rule 

% of total 

N. of 

patches 

Positive polygons Negative polygons 

N % of rule 

patches 

N % of rule 

patches 

1 914 6.5 170 18.6 744 81.4

2 162 1.2 22 13.6 140 86.4

3 305 2.2 73 23.9 232 76.1

4 561 4.0 104 18.5 457 81.5

5 407 2.9 80 19.7 327 80.3

6 591 4.2 92 15.6 499 84.4

7 162 1.2 26 16.0 136 84.0

8 168 1.2 33 19.6 135 80.4

9 294 2.1 64 21.8 230 78.2

10 233 1.7 28 12.0 205 88.0

11 248 1.8 36 14.5 212 85.5

12 249 1.8 60 24.1 189 75.9

13 210 1.5 46 21.9 164 78.1

14 243 1.7 60 24.7 183 75.3

15 210 1.5 22 10.5 188 89.5

Rule set 4957 35.5 916 18.5 4041 81.5

 

We selected two rules among those with the highest values of Precision (n. 3 and n. 

14; see Table 3.5) from the rule set for a more detailed analysis. These two rules differ in the 

number of factors used in their formulation and so in their complexity. They are described 

below (Table 3.6 and Table 3.7) regarding their logical formulation (i.e. the native formulation 

of the rule), their ecological translation (i.e. a direct translation of the logical formulation), 

their spatial expression (i.e. distribution in the test region), and their ecological interpretation 

(i.e. a description of the ecological and spatial attributes of the rule). 

Since some polygons may have been classified by more than one rule, analysing the 

number of rules that cover a given polygon can provide some indication of its relative 

importance in the construction of the rule set and therefore in the explanation of recent fire 

history in the study area. Figure 3.9 describes the result of this analysis for both the training 

and test datasets.  
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Table 3.6 General description of Rule n. 3 from the rule set generated to explain wildfire occurrence in the 
Alto Minho (1991-2000). 

 

Logical 

formulation  

 

% [Rule 3] [Pos cover = 73 Neg cover = 232] 

burnt(A) :- 

   terrain(A,sparse_vegetation,jy,granite_and_related_rock_types,_,_,_,_,_,_,_,_). 

 

 

Ecological 

translation 

 

Rule 3 covers: 

 73 patches/polygons affected by fire and 232 not affected by fire in the 
training dataset, 

 632 patches/polygons affected by fire and 445 not affected by fire in the 
test dataset. 

 

The focal patch (A): 

 corresponds to land cover classes ‘sparse vegetation’ or ‘rock outcrop’,  
 occurs in areas where lithology is granite and related bedrock types. 

 
 

Spatial 

expression  

 

 

Ecological 

interpretation 

 

The land cover patches (polygons) covered by this rule are included in sparsely 

vegetated areas with granitic bedrock. These patches are located at various 

elevations, aspects and slopes, occurring scattered in the region but particularly 

towards the eastern mountain areas (particularly in the test dataset). 
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Table 3.7 General description of Rule n. 14 from the rule set generated to explain wildfire occurrence in 
the Alto Minho (1991-2000). 

 

Logical 

formulation  

 

% [Rule 14] [Pos cover = 60 Neg cover = 183] 

burnt(A) :- 

   class(A,p), neighbour(A,B), 

terrain(B,shrubland,ii,granite_and_related_rock_types,C,E,D,_,_,_,_,_),  

   geq(C,305.557), geq(D,0.464287), geq(E,17.4567). 

 

 

Ecological 

translation 

 

Rule 14 covers: 

 60 patches/polygons affected by fire and 183 not affected by fire in the 
training dataset, 

 42 patches/polygons affected by fire and 138 not affected by fire in the test 
dataset. 

 

The focal patch (A): 

 corresponds to land cover class ‘pine forest’, 
 neighbours patch of land cover class ‘shrubland’, on granite and related 

rock types, at a mean altitude ≤ 305.5 m a.s.l., with a slope ≤ 0.47 and 
eastness ≤ 0.175. 
 

 

Spatial 

expression  

 

 

Ecological 

interpretation 

 

The land cover patches (polygons) covered by this rule are included in forest 

landscapes with presence of pine stands and scrub, on granitic soils. These 

patches are located at low elevations and various aspects (except east), somewhat 

concentrated in the catchments of rivers Minho and Lima. 
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Figure 3.9 Frequencies of individual polygons in the whole rule set, for the training dataset (top) and for 
the test dataset (bottom). Maps on the left represent actually burnt polygons (true positive cases) and 
maps on the right represent polygons that were incorrectly classified as burnt (false positive cases). 
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3.2.2.3. Frequencies of wildfire factors in the rule set 

  

A simple analysis of the frequencies of the environmental several factors across the 

rule set (Table 3.8) reveals that land cover (namely the presence of forests, scrubland or 

sparse vegetation over the landscape) and lithological class (bedrock type) were the most 

important factors overall to explain the patterns of wildfire occurrence in the study area. 

 

 

Table 3.8 Importance of the several types of factors, measured from their frequency across the rule set. 
The presence/neighborhood of forest and/or scrub and the type of bedrock were the most frequent 
factors across the rule set (highlighted in bold characters). The five rules with the highest individual 
Precision values are highlighted in grey. 

Types of 

factors 
Factors 

Rule n. 
N 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Climate 
Temperature                0 

Precipitation                0 

Topography 

Altitude              x x 2 

Slope     x         x  2 

Aspect              x  1 

Land cover 

Forests  x   x x x x  x x x x x x 11 

Scrubland x   x  x   x x    x  6 

Agricultural 

land 
            x  x 2 

Sparse 

vegetation 
  x     x     x x  4 

Artificial areas                0 

Area Patch area                0 

Distances 
To rivers                0 

To roads                0 

Lithology 
Lithological 

class 
x  x x x      x x  x x 8 

Soil Soil class         x       1 

Socio-

economic 

Demographic 

and livestock 
          x     1 
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All other factors achieved very low frequencies or were even absent from the rule set. 

Nonetheless, the five rules with the highest individual Precision values (see 3.2.2.2), 

highlighted in Table 3.8, were largely based on distinct sets of factors as well as on different 

numbers of factors, with a minimum of two factors in rules n. 3, 9 and 12, and a maximum of 

seven factors in rule n. 14. 
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3.3. Regional patterns and drivers of post-fire resilience 

 

3.3.1. Rationale and specific objectives 

 

The spatiotemporal variability of climate conditions and the heterogeneity in 

vegetation and fuel load play an essential role in determining fire behaviour and severity 

across the landscape. However, most studies on fire ecology are focused on the relationship 

between wildfire patterns and the structural features of the landscape, like land cover 

categories (Stolle et al., 2003; Nunes et al., 2005; Bajocco and Ricotta, 2008) and vegetation 

types (Cumming, 2001; Pezzatti et al., 2009), while the functional characteristics of the 

landscape, like land degradation, vegetation productivity or fuel phenology, are only rarely 

considered (but see De Angelis et al., 2012). 

However, in areas with Mediterranean type of climate, the high seasonality of wildfire 

occurrence, with a concentration of events during the dry and hot summer months (Keeley 

and Fotheringham, 2003; Pausas, 2004; Bajocco and Ricotta, 2008), and the strong relation 

between the seasonal timing of vegetation (the major source of fuel) and the associated 

wildfire regimes (Bajocco et al., 2010), suggest that looking at the functional characteristics 

of the landscape allows adding a dynamic component to the analysis of fire patterns and 

impacts. This functional approach is rather useful when dealing with global change issues 

and when predicting future fire behaviour under different environmental scenarios (Bajocco 

et al., 2010a). In this regard, vegetation phenology (i.e., the timing of plant development 

stages, most often under the influence of climatic seasonality) plays an important role in 

supporting fire studies (Bajocco et al., 2010a; Akther and Hassan, 2011). 

As vegetation phenological status represents the primary driver influencing fuel 

characteristics, in terms of both fuel availability and moisture content (De Angelis et al., 

2012), any investigation on fire monitoring and prediction over large areas requires the 

capability of capturing broad-scale changes in vegetation phenology that are descriptive of 

changes in fuel conditions. Remotely sensed observations derived by sensors like MODIS 

meet these requirements since they provide comprehensive spatial coverage (from 250m to 

1km of pixel size) and enough temporal resolution (16-days composites of daily images) to 

update fuel conditions in a more efficient and operational manner than traditional aerial 

photography (Oswald et al., 1999) or fieldwork (Riano et al., 2002). Furthermore they have 

been particularly useful for investigations of wildfire history (Hicke et al., 2003), fuel load 

production (Roberts et al., 2003), and impact of land use on fuel load (Bachelet et al., 2000). 

Here we explored the usefulness of high-temporal resolution satellite products (from 

the MODIS sensor) to assess post-fire vegetation dynamics (i.e. regeneration) and to identify 
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its main drivers at the regional scale in the North of Portugal. Using a limited set of 

regeneration indicators, we first analysed pre- and post-fire NDVI profiles of a set of areas 

burnt in a focal year (2005). Then we analysed the patterns of those indicators using the 

Random Forest (RF) algorithm (Breiman, 2001) implemented in R’s randomForest package 

(Liaw and Wiener, 2002), as described in section 2.3.2. Finally, we explore in more detail the 

effect of the main factors identified by our models on post-fire regeneration. 

 

 

3.3.2. Description and interpretation of results 

 

3.3.2.1. Regional patterns of post fire recovery  

 

The statistical distributions of the three post-fire regeneration indicators used in this 

study are illustrated in Figure 3.10, for areas of the study region that were burnt in year 2005. 

 

  

 

 Min. 
1st 

Quantile 
Median Mean 

3rd 

Quantile 
Max. 

CRRI 

(unitless)
0 0.290 0.373 0.372 0.452 0.986

RTI 

(year-1) 
0.0745 0.0221 0.0315 0.0340 0.0435 0.1060

50%RT

(days) 
-593 19 144 164 312 965

 

 

Figure 3.10 Histograms of distribution frequencies for the cumulative relative recovery index (CRRI) (top 
left), the recovery trend index (RTI) (top right), and the 50 % recovery time (50%RT) (bottom left); and 
corresponding main descriptive statistics (bottom right). 
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The cumulative relative recovery index (hereafter CRRI) shows a distribution close to 

Normal, with a quite symmetric distribution curve. The recovery trend index (hereafter RTI) 

also shows a distribution curve close to Normal, but with less symmetry and higher 

prevalence of values close to the mean, evidencing a leptokurtic shape. Conversely, the 50% 

recovery time (hereafter 50%RT) presents the more asymmetrical and far for Normal 

distribution curve, with many values concentrated in the immediate post-fire year and a 

pronounced decreasing trend afterwards. The negative values of this variable correspond to 

projected values of the 50%RT for a period before the beginning of year 2006, since the 

values for this variable were extrapolated from the recovery curve, as described in the 

methods section (see 2.3.2). 

Figure 3.11 illustrates examples of NDVI anomalies obtained for each of the three 

post-fire regeneration indicators, for three selected pixels corresponding to the 25, 50 and 

75% quantiles of the regional distribution of the indicators (see Figure 3.10). These pixels 

represent, for each of the indicators, the regional variations of post-fire regeneration, from 

those areas showing low and/or slow regeneration capacity to those exhibiting high and/or 

fast regeneration ability. 

Moreover, the NDVI anomalies depicted in Figure 3.11 reveal a general tendency for 

an increase of the inter-annual range of their photosynthetic activity (related to climatic 

seasonality), suggesting a higher dependence of suitable environmental conditions in early 

post-fire regeneration and/or a shift towards different, early successional vegetation types. 

The spatial patterns illustrated in Figure 3.12 reveal that local variations, rather than 

regional patterning, are the most common for all three indicators, suggesting a prevailing role 

for local landscape controls, rather than regional climatic effects, on the post-fire 

regeneration process. This is particularly evident for medium to large sized fires. Conversely, 

small sized burnt areas seem to be characterized by predominantly low regeneration values 

(Figure 3.12). To further explore the effect of fire event area, we performed a cross-tabulation 

of the three response variables and of the break magnitude index (a proxy indicator of 

intensity/severity of the fire event) against burnt patch area (Table 3.9). 

Smaller burnt patches tend to exhibit higher break magnitude values, and thus higher 

fire damage/severity, and lower post-fire recovery ability (as portrayed by RTI and by CRRI; 

Table 3.9). Nevertheless, our results also show that these small fires lead to faster short-time 

recovery, observable in the 50%RT indicator (median equal to 55 days, well below the time 

required for medium and large sized fires). These results seem to suggest strong differences 

(and thus complementarity) between recovery time (50%RT) and the two other indicators 

(CRRI and RTI) in assessing post-fire regeneration processes, since they are probably 

characterizing short and long-term vegetation recovery, respectively. This is also confirmed 

by the low correlation values between these variables (see Table 2.11). No significant 
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differences (using Wilcoxon signed-rank tests) were observed for pre-fire median NDVI 

values between each area-quantile (NDVIQ25% = 0.68, NDVIQ50% = 0.70, NDVIQ75% = 0.69) and 

the whole study area (NDVIall = 0.69), excluding a possible effect of pre-fire conditions on the 

differences observed among area-quantiles. 

 

 

 
Figure 3.11 Temporal profiles of the NDVI anomalies for burnt pixels (2005) corresponding to the 25% (top 
row), 50% (middle row), and 75% (bottom row) quantiles of the distributions of each of the indicators of 
post-fire vegetation recovery used in this study: Cumulative Relative Recovery Index (left column), 
Recovery Trend Index (middle column), and 50% Recovery Time (right column).  
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Figure 3.12 Spatial patterns of the three post-fire regeneration indicators assessed in the north of 
Portugal, for areas burnt in year 2005: Cumulative Relative Recovery Index (top), Recovery Trend Index 
(middle), and 50% Recovery Time (bottom). 
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Table 3.9 Cross-tabulation of the three response variables and of the break magnitude index against 
burnt patch area (in hectares). Median values are presented per area-quantile. 

Quantiles Q25% Q50% Q75% 

Area of the fire event 
(< 413ha) 

N = 5120 

(413 - 3294ha) 

N = 9375 

(> 3294ha) 

N = 6155 

Break Magnitude Index 0.68 0.59 0.51 

Cumulative Relative Recovery Index 0.32 0.38 0.41 

Recovery Trend Index 0.0010 0.0014 0.0018 

50% Recovery Time (days) 55.1 127.9 249.4 

 

 

 

3.3.2.2. Model performance and determinants of post fire recovery 

 

Information on model performance (see Methods, section 2.3.2) is provided in Table 

3.10 for the three post-fire regeneration indicators. The values for the several performance 

indicators reveal a good performance of the models for CRRI and for RTI, but a clearly worse 

performance for the 50%RT model.  

 

Table 3.10 Model performance for the test set, using R2, Pearson correlation, root-mean-square error 
(RMSE), and normalized root-mean-square error (NRMSE). 

Model (response variable) R2 Pearson 

correlation

RMSE NRMSE 

CRRI 0.85 0.93 4.55E-02 4.81 

RTI 0.75 0.87 3.54E-04 4.79 

50%RT 0.40 0.63 1.95E+02 12.48 

 

 

When assessing the relative contribution of each explanatory variable (and group of 

variables) for the models calibrated for each post-fire regeneration indicator, we found that 

variables included in the groups expressing fire traits, landscape composition, and pre-fire 

ecosystem functional attributes were the most important to explain the regional patterns of all 

three regeneration indicators (Table 3.11). Conversely, variables expressing physical 

attributes and fire history were of far less importance. 
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Table 3.11 Ranking of the relative contribution of explanatory variables (and groups of variables) for 
models calibrated for each response variable (i.e. post-fire regeneration indicator). The top 18 variables 
are shown so that all groups would be represented by at least one variable.  

Rank 
Cumulative Relative 

Recovery Index 
Recovery Trend Index 50% Recovery Time 

1 Breakmagnitudeindex Breakmagnitudeindex Clc_5000m_02 

2 Dist_edge_m Core_brt05 Clc_750m_04 

3 Fstats_brn05_sum_750m Cai_brt05 Clc4 

4 Min_MD_2001_2004 CONTIG_brt05 PARA_brt05 

5 Fstats_brn05_sum_1500m Para_brt05 Contig_brt05 

6 Ndvitrends20012004slope Clc_750m_04 CAI_brt05 

7 Percentincreasein2004 Clc_5000m_02 Clc_1500m_04 

8 Fstats_brn05_sum_5000m Clc_1500m_04 Dmin_springness_fstats_mn_750m 

9 Clc_750m_06 Clc4 Clc2 

10 Mean_MD_2001_2004 AREA_brt05 Dmax_winterness_MD_2001_2004 

11 Clc4 Clc_5000m_04 Clc_5000m_04 

12 Ndvimedian20012004 Dmax_springness_fstats_MN_1500m Dmax_springness_fstats_MN_750m 

13 Clc_750m_04 Dmin_springness_fstats_mn_750m Dmax_springness_fstats_mn_1500m 

14 Elev_m Clc2 Clc_5000m_05 

15 Median_MD_2001_2004 Fstats_brn05_sum_5000m Breakmagnitudeindex 

16 Clc6 Dmin_springness_fstats_mn_1500m Dmin_springness_fstats_mn_1500m 

17 CONTIG_brt05 Dmax_springness_fstats_MN_750m Dmax_springness_fstats_MN_5000m 

18 Mn_burnt_area_90_04 Dmax_winterness_md_2001_2004 Clc_750m_02 

 

Groups of explanatory variables: 

 

  Fire traits 

  Pre-fire conditions/ ecosystem functional attributes 

  Landscape composition 

  Physical attributes 

  Fire history 
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Fire traits (and particularly the magnitude of the NDVI break induced by the fire event) 

were the most important factors underlying variations in CRRI and in RTI, whereas 

landscape composition around each focal burnt pixel was the most important factor 

underlying the regional variation of the 50%RT indicator (Table 3.11). Pre-fire ecosystem 

functional attributes and fire traits were particularly important in the case of the CRRI. For 

RTI, the Fire traits and the Landscape groups of variables were the most explanatory. In the 

inverse order of importance, these two groups were also the most influential in models for the 

50%RT indicator. Overall, there seems to be a shift from functional variables to structural 

(landscape) variables as we move from the CRRI (expressing long-term recovery) to the 

50%RT indicator (short-term recovery) (Table 3.11). 

 

 

3.3.2.3. Responses of post-fire recovery metrics to key predictors   

 

Figure 3.13 illustrates the response curves of six of the most important variables in 

models calibrated for the three post-fire regeneration indicators (see also Table 3.11 and 

Appendix 3). 

CRRI (Figure 3.13, top row) was positively influenced by the size of the fire event 

(‘fstats_brn05_sum_750m’ variable), but negatively influenced by the magnitude of the NDVI 

break induced by fire (‘breakMagnitudeIndex’), i.e. by fire damage/severity. 

RTI (Figure 3.13, middle row) was positively influenced by burnt area landscape 

metrics. This indicator increased with increasing values of the Core Area Index (CAI), of Core 

Area (CORE) and of the Contiguity Index (CONTIG) (see Appendix 3, Figure b), suggesting 

that bigger and spatially more complex burnt patches will have a higher recovery capacity. 

As expected, this indicator was negatively correlated with the magnitude of the NDVI break, 

i.e. higher fire damage/intensity led to lower the recovery values. 

The 50%RT indicator (Figure 3.14, bottom row) showed a negative correlation with 

the percentage cover of agricultural areas in the 5000m buffer area around the burnt patch 

(‘clc_5000m_02’). This suggests that the presence of agricultural areas in a wide area 

(5000m) around the affected patch decreases the time needed to reach the 50% recovery. 

Conversely, there was a positive correlation with the percentage cover of coniferous forests 

in the 750m buffer area of the burnt patch (‘CLC_750m_04’), i.e. the more coniferous forest 

is found in the surrounding areas, the more time the burnt patch takes to recover. This 

indicator exhibited more complex responses with the other variables (see Appendix 3, Figure 

c); also, its models had the poorer performance overall and it exhibited the lowest 

correlations with the response variables. 
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Figure 3.13 Response curves for six of the highest ranked explanatory variables in models for the CRRI 
(top), for the RTI (middle), and for the 50%RT (bottom). Values for the Spearman correlation rank are also 
provided. 

  

Spearman C.=-0.79 Spearman C.=0.39

Spearman C.= -0.63 Spearman C.=0.51

Spearman C.=-0.37 Spearman C.=0.28
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3.4. Local patterns and drivers of post-fire resilience 

 

3.4.1. Rationale and specific objectives 

 

As described in the Introduction (see section 1.4), local patterns of post-fire 

vegetation resilience can be influenced by a wide array of factors. These factors can be 

organized into four general groups: (1) fire history, (2) environmental conditions, (3) pre-fire 

community structure (incl. vegetation and seed bank), and (4) landscape context. 

Fire history (namely frequency and intensity of fire events) is well known as a major 

determinant of post-fire vegetation resilience (Krebs et al., 2010). However, previous studies 

of the vegetation of Northern Portuguese mountains have provided evidence that geology 

and soil factors have a strong influence on early successional vegetation structure and 

dynamics, namely regarding heath and scrub vegetation (Honrado, 2003). Based on such 

evidence, here we tested the general hypothesis that, under common climatic and 

topographic conditions and within one same landscape context, post-fire vegetation 

resilience is more influenced by lithology/bedrock type  (and related soil properties) than by 

fire history (fire frequency and time since last fire). 

Local vegetation resilience can be measured during in-field surveys focused on state 

variables related to several features of vegetation and plant community structure: (1) 

vegetation structure (e.g. height and cover of vertical strata), (2) total species richness, (3) 

species composition, and (4) relative abundance of several functional groups of plants. As 

described in the Methods section (see 2.2.5), we collected data on vegetation structure and 

plant community structure from 40 patches differing in fire history and bedrock type. We 

present below the main results from the analysis of those data under the context of our 

research hypothesis. 

 

 

3.4.2. Description and interpretation of results 

 

3.4.2.1. General patterns across strata 

 

 Figure 3.14 represents the mean number of plant species per plot for each of the 

eight strata defined on the basis of bedrock type and fire history. The highest mean value of 

species richness was observed in plots developed on granitic soils, submitted to multiple 

fires and with short time distance to the last event. Interestingly, the stratum characterised by 
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schistose lithology and one single, distant fire event was the one with the lowest mean 

species richness. Overall, the results in Figure 3.14 suggest a tendency for plots from 

granitic areas (and with occurrence of multiple fire events) to host more species than those 

from schistose areas (and with a single fire event). 

 

 
Figure 3.14 Mean (±SD) number of plant species (species richness) per plot across the eight 
environmental strata. DMG = distant-multiple-granite, DMS = distant-multiple-schist, DSG = distant-single-
granite, DSS = distant-single-schist, RMG = recent-multiple-granite, RMS = recent-multiple-schist, RSG = 
recent-single-granite, RSS = recent-single-schist. 

 

 

Lithology also had the strongest influence on vegetation structure (Figure 3.15), with 

plots from granitic areas exhibiting a considerable development of tall shrubs (E1 stratum) in 

terms of both height (Figure 3.15, top left) and percentage cover (Figure 3.15, top right). 

Conversely, in plots from schistose areas there was a well developed stratum dominated by 

low shrubs (E2), with sparse development of tall shrubs. This difference in the development 

of the dominant shrub strata can be visualized in the photos of Figure 3.15 (bottom left and 

bottom right). The herbaceous stratum (E3) was also clearly more developed in plots on 

granite, particularly concerning its percentage cover (Figure 3.15, top left). 
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Figure 3.15 Vegetation structure across the eight strata: (top left) height of each vegetation stratum (E1-
E3), (top right) cover of each vegetation stratum (E1-E3), (bottom left) example of strong post-fire 
development of large shrubs (Cytisus) on granitic soil, (bottom right) example of low heathland 
developed on schistose soil. E1 = tall shrubs, E2 = low shrubs, E3 = herbaceous. 

 

 

3.4.2.2. Specific patterns for woody species across strata 

 

Table 3.12 summarizes the results of the ANOVA tests performed to identify 

significant differences in the prevalence of functional groups of woody species in strata 

formed by the three explanatory variables (TSLF, Recurrence, and Lithology). The relations 

between these variables and the several response variables are depicted in Figure 3.16 to 

Figure 3.18. Again, there was a prevailing effect of lithology on most of the tested response 

variables. 

 Figure 3.16 compares plant species richness between the two time distance classes 

(i.e. recent fire vs. distant fire), for total species richness and for the several functional 

classifications. No significant effects of time since last fire events were found for any of the 
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tested response variables, except in the case of seeders (F=5,067; p-value 0,030) and of tall 

scrub species (F=4,644; p-value=0,038) (Figure 3.16; Table 3.12). 

 

Table 3.12 Results of ANOVA tests for species richness (total and per woody functional group) across the 
two fire distance strata (distant vs. recent), the two frequency strata (single vs. multiple) and the two 
Lithology strata (granite vs. schist). Significant differences (p<0.05) are highlighted in bold characters. 

Species richness 

F p value F p value F p value 

TSLF 

(distant / recent) 

Recurrence 

(single / multiple) 

Lithology 

(granite / schist) 

total 0,203 0,655 6,255 0,017 5,427 0,025 

Response to 

disturbance 

resprouters 0,014 0,908 0,014 0,908 0,122 0,729 

seeders 5,067 0,030 5,067 0,030 0,000 1,000 

Life forms 

trees 0,040 0,843 0,040 0,843 8,129 0,007 

low shrubs 0,007 0,936 0,325 0,572 20,520 0,000 

tall shrubs 3,624 0,065 0,951 0,336 12,897 0,001 

Leaf strategy 

deciduous 0,206 0,653 0,577 0,452 13,624 0,001 

evergreen 0,989 0,326 0,000 1,000 7,156 0,011 

non-leafy 1,159 0,288 5,104 0,030 0,507 0,481 

Synecology 

forests and edges 0,628 0,433 0,013 0,911 8,086 0,007 

low scrub 0,006 0,939 0,728 0,399 17,433 0,000 

tall scrub 4,644 0,038 0,875 0,356 18,291 0,000 

Seed dispersal 

anemochoric 0,087 0,769 0,801 0,376 14,597 0,000 

barochoric 3,028 0,090 5,280 0,027 0,057 0,812 

zoochoric 0,497 0,485 0,497 0,485 11,217 0,002 

 

 

When assessing plant species richness between the two fire frequency classes (i.e. 

single fire vs. multiple fires), for total species richness and for the several woody functional 

classifications, again few significant effects of fire frequency were found for the tested 
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response variables (Figure 3.17; Table 3.12), in this case for species richness of seeders 

(F=5,067; p-value=0,030), of non-leafy plants (F=5,104; p-value=0,030) and of barochoric 

plants (F=5,280; p-value=0,027). 

 

Figure 3.16 Mean (±SD) number of plant species (total and per woody functional classification) across the 
two fire distance strata (distant vs. recent): (top left) total species richness, (top right) per dispersal type, 
(middle left) per life form group, (middle right) per leaf strategy type, (bottom left) per type of response to 
disturbance, and (bottom right) per synecological group. 
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Figure 3.17 Mean (±SD) number of plant species (total and per woody functional classification) across the 
two fire frequency strata (single vs. multiple): (top left) total species richness, (top right) per dispersal 
type, (middle left) per life form group, (middle right) per leaf strategy type, (bottom left) per type of 
response to disturbance, and (bottom right) per synecological group. 

 

 Conversely to stratifications based on fire history, when plant species richness was 

compared between the two lithology strata (i.e. granite vs. schist), for total species richness 

and for the several woody functional classifications, significant effects were found for most 

response variables (Figure 3.18). Thus vegetation plots on granite usually host higher 
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numbers of species, of animal-dispersed woody species, of trees and tall shrubs, of woody 

deciduous species, and of forest, edge and tall scrub species. However, no significant effect 

of lithology on disturbance response strategies was found (Figure 1.1; Table 3.12). 

 

Figure 3.18 Mean number of woody plant species (total and per functional group) across the two 
Lithology strata (granite vs. schist): (top left) total species richness, (top right) per dispersal type, (middle 
feft) per life form group, (middle right) per leaf strategy type, (bottom left) per type of response to 
disturbance, and (bottom right) per synecological group. 
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3.4.2.3. Effects of fire history and Lithology on plant species composition 

 

Figure 3.19 summarizes the results from the analysis of the general patterns of 

species composition across the 40 vegetation plots, allowing an inspection of the relation 

between floristic composition, vegetation structure, fire history, and lithology. The following 

two main patterns can be inferred: 

- the main direction of floristic variation (axis 1 of the DCA plot) is related to 

differences in the development of the two shrub strata (E1 and E2), which mainly 

express lithological differences (L); along this first axis, plots on granite are 

characterised by tall shrubs like Cytisus spp. and young trees of Quercus 

pyrenaica, whereas plots on schist are discriminated by low shrubs like Ericaceae 

spp. and Pterospartum tridentatum; the higher aggregation of the plots on schist 

revels a more pronounced floristic homogeneity; 

- conversely, variables related to fire history (TSLF and R) have a poor relation with 

variations of species composition, further confirming the results described in the 

previous sections for patterns of species richness (total and for species groups). 

 

 
Figure 3.19 DCA ordination plot of species composition for the 40 vegetation plots. Dark grey dots 
represent plots on schist whereas light grey dots depict plots on granite. Small black dots represent 
important species. Total species richness (SR), Lithology (L), time since last fire (TSRL), fire frequency 
(recurrence, R) and vegetation strata (E1-E3) were overlaid passively onto the ordination space. 
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Analysis of similarities (ANOSIM) aimed to test for differences in community structure 

as a function of TSLF, Recurrence and Lithology, as well as of their interactions, revealed 

that: 

- there is an interaction between Recurrence, TSLF and Lithology (R=0,35; p-

value=0,001); 

- there is also an interaction between Lithology and Recurrence (R=0,347; p-

value=0,001), and between Lithology and TSLF (R=0,362; p-value=0,001); 

- there is no interaction between Recurrence and TSLF (R=-0,012; p-value=0,551). 

 

Given the differences in community composition between plots from granite and plots 

from schist, and the non-availability of a three-way ANOSIM in the PRIMER software, the 

data were analysed through a two-way ANOSIM with Recurrence and TSLF for each 

Lithology type, revealing an interaction between Recurrence and TSLF for plots on granite 

(R=0,191; p-value=0,016). However, no such interaction was found for plots on schist 

(R=0,026; p-value=0,327). Overall, differences in species composition were mainly due to 

Lithology (R=0,457, p-value=0,001). The effect of fire history is significant among granite 

strata, but only noticeable when comparing the most contrasting combinations of fire 

distance and frequency. 
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conclusions  
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The results presented in Chapter 3 provide important insights on the patterns and key 

drivers of wildfire patterns and post-fire resilience at several scales in Portugal, an 

environmentally heterogeneous country that has been heavily affected by wildfires in recent 

decades. In this Chapter an integrative discussion of the main results is provided, organized 

according to the following structure: (i) new insights on the patterns and drivers of wildfire 

occurrence (mainly based on results in sections 3.1 an 3.2), (ii) new insights on the patterns 

and drivers of post-fire resilience (results in sections 3.3 and 3.4), (iii) implications of results 

and insights for planning and management (all results), and finally (iv) synthesis of the main 

conclusions and perspectives for continued research. 

 

 

4.1. Patterns and drivers of wildfire occurrence across scales 

 

4.1.1. Spatial patterns of wildfire occurrence in Portugal 

 

A key objective of this thesis was to analyse the patterns and drivers of wildfire 

occurrence in Portugal, the European country with the highest incidence of wildfires (Pereira 

et al., 2005). The analysis of wildfire patterns is intrinsically scale-dependent, both in terms of 

space and time, and it is also highly influenced by the environmental and social-ecological 

heterogeneity of the regions of interest (Moreira et al., 2001; Catry et al., 2009; Carmo et al., 

2011). Therefore, in this thesis wildfire patterns in Portugal were analysed for three distinct 

spatial contexts/extents: (1) the whole continental area of the country, representing a country 

level of analysis; (2) the seven agrarian regions of the country, approaching a region level 

analysis; and (3) the elevation gradient of the Alto Minho, in the northwest of the country, at a 

sub-region level. 

 

 

4.1.1.1. Assessing wildfire patterns in heterogeneous countries 

 

The analysis of wildfire patterns in the whole mainland Portugal confirmed a highly 

heterogeneous distribution of fire events across the country. In fact, in the period between 

years 1990 and 2010, most fires occurred in the northern half of the country where rainy 

Mediterranean climates prevail and high biomass accumulation coincides with a dry summer 

season (Catry et al., 2010) and the corresponding phenological fire-proneness of vegetation 

(Keeley et al., 2011). This is consistent with reports from other Mediterranean countries in 

Europe and elsewhere, e.g. Spain, Greece, and Morocco (Pausas et al., 2008). In the same 
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period, Portugal was the country with most fire events per area across Europe (Pereira et al., 

2005), which further highlights the importance of understanding the patterns and drivers of 

wildfire occurrence in this country. 

In our study, when using the whole country as test area to model wildfire patterns, the 

best results were obtained when using the whole set of variables (see Table 3.1), generating 

a model with low parsimony while at the same time highlighting the complexity of the problem 

and the diversity of factors involved in fire ignition and behaviour (Gill et al., 2013). Also for 

the whole country, the landscape group of variables had the best individual performance (i.e. 

the closest to using the whole set of variables; see Table 3.1). This was probably due to the 

fact that land use and landscape patterns are considered a synthesis of multiple 

environmental, social and economic effects (Mücher et al., 2010), and thereby capable of 

capturing the effects of a wider range of fire factors (Carmo et al., 2011). 

The several agrarian regions of mainland Portugal have recorded rather distinct fire 

regimes in the focal period (see Results, section 3.1.2). The regions with the highest number 

of fire events corresponded to those located in the Centre and Northwest parts of the country 

(see Figure 2.18 and Table 3.1). In general, these regions are characterised by moderate to 

high topographic complexity, warm summers, varying population densities, and by forest, 

scrub and rain-fed crop fields dominating the land cover. Here, models using all variables 

attained good performances, even better than for the whole country in the case of the EDM 

region (extreme northwest of the country), highlighting the complexity of fire regimes in this 

heterogeneous region (see Figures 3.1 and 3.2, and regional study in section 3.2). 

Conversely, the regions affected by fewer fires were located in the South and are 

characterised by a low topographic complexity, drier and more Mediterranean climates, low 

levels of population density, and dominance of extensive agriculture and agro-forestry 

systems. Similar patterns have been reported for the whole Iberian Peninsula (Pereira et al., 

2010). 

Through the use of blocks of variables it was possible to analyse their relative 

importance across the country (see Figure 3.3). In the northern part of the country the use of 

the whole dataset produced the best results, but in the southern part that was not the case. 

In the Ribatejo and Oeste region the best results were obtained by using the socio-economic 

block of variables. This is a highly urbanized region, with strong contrasts between the large 

urban areas and the surrounding rural territories, so these results confirm a strong influence 

of socio-economic factors in explaining fire history in such contrasting regions (Chuvieco et 

al., 2013). The most southern regions of Alentejo (with very few fire events) and Algarve, the 

topographic block of variables revealed to be very influential, probably reflecting not only the 

effect of topography itself on fire patterns (Carmo et al., 2012), but also its influence on land 

cover, climate, and socio-economy, particularly in regions with relatively low demographic 
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densities (Wood et al., 2011). Overall, our results for the relative importance of blocks of 

variables (see Figures 3.3 and 3.5) highlight not only that fire history is very different 

throughout the country, but also that it can be best explained by different factors in different 

regions, supporting the importance of regional analyses when exploring wildfire causes 

(Costa et al., 2010).  

To further explore the complexity of fire regimes in the several regions of Portugal, we 

assessed the relative performance of each single block of variables in comparison to using 

all the variables, in each region (see Figure 3.4). As described before, in the four northern 

regions model performance was significantly worse when using only one block of variables, 

nonetheless the landscape block had consistently the minimum amount of performance loss. 

The socio-economic variables performed quit poorly in all four regions, which is surprising 

considering the importance of human activities as fire factors (Aldersley et al., 2011) but can 

probably be attributed to a fairly high internal homogeneity of socio-economic features in 

these regions, particularly in their rural parishes, where most fires occur (Pereira et al., 

2011). Conversely, the three southern regions all attained significantly better results when 

using only one block of variables than when using the whole dataset. In the Algarve, using 

only the topographic block of variables represented a gain of over 25% in model performance 

(see Figure 3.4). 

Overall, our results provide evidence that landscape variables are the most important 

to explain fire history in the Northern part of the country, whereas topographic and socio-

economic variables are more important in the Southern areas (see Figure 3.5). The low 

importance of climate variables to explain wildfire patterns at the regional scale (for the whole 

country and for individual regions) is by itself evidence of the strong human mediation of 

current fire patterns in the country, when compared to those that could be expected 

according to the biophysical conditions of each region (Aldersley et al., 2011). This does not, 

however, contradict the well-known importance of weather conditions in the features of fire 

events (Macias Fauria et al., 2011) or the influence of climate on vegetation, land use and 

fuel biomass patterns (Holz et al., 2012), which may have been captured by the landscape 

variables in our analyses. 

Methods based on Support Vector Machines (SVMs) have been particularly 

successful in applications where the dataset includes a large set of variables (Tax and Duin, 

2004). SVMs use a functional relationship known as a kernel to map data onto a new 

hyperspace in which complicated patterns can be more simply represented (Müller et al., 

2001). Because SVMs are not based on characteristics of statistical distributions, there is no 

theoretical requirement for observed data to be independent, thereby overcoming the 

problem of auto-correlated observations, although model performance may be affected by 

how well data represent the range of environmental conditions (Austin, 2007). Furthermore, 
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SVMs are more stable, require less model tuning, and have model performance will be 

affected by how well the observed data represent the range of environmental variables fewer 

parameters than other computational optimization methods such as neural networks (Lusk et 

al., 2002). In our SVM-based assessment of national and regional fire patterns, the 

proportion of the area that burnt in each of the seven regions during the focal time frame was 

rather different (see Table 3.1), which may have been one of the causes of the asymmetric 

performance exhibited by the algorithm. On average, the civil parishes of the four northern 

regions (EDM, TM, BL, BI) had more than 16% of their territory burnt in the time frame 

considered, whereas in the southern regions this value was always below 6% (see Table 

3.1). Variations of mean fire recurrence and proportion of parishes with more than 10% burnt 

area may have been other causes for the observed differences of algorithm performance 

(Lozano et al., 2012). The inferior number of observations (i.e. civil parishes) and the higher 

proportion of non-zero observations (i.e. civil parishes without any fire record) in the southern 

part of the country are other factors to consider, since with a small number of observations 

and a large number of descriptive variables most modelling techniques tend to suffer from 

the well-known "curse of dimensionality" (Bellman, 1961), which may also explain the better 

results obtained when using only topography variables in models for the southern regions. 

Including better climatic, vegetation and land use/cover data (especially in terms of 

spatiotemporal resolution), variables related to socio-economic trends or changes (e.g., 

population variation and ageing) as well as other factors characterizing spatial propensity to 

fire ignition (Moreira et al., 2010) and accessibilities to natural spaces (Romero-Calcerrada et 

al., 2010) could also improve modelling routines.  

 

 

4.1.1.2. Assessing wildfire patterns in heterogeneous regions 

 

The analysis of spatiotemporal patterns of wildfires at the sub-regional level in the 

Alto Minho, northwest Portugal (see section 3.2), revealed that ILP-based machine-learning 

techniques can also be useful to analyse fire patterns in smaller geographic contexts, 

provided that that there are enough wildfire data and spatial heterogeneity of environmental 

conditions to support the development of a robust classification rule set. Fire occurrence is a 

complex phenomenon and so we could hardly expect to fully explain and predict fire patterns 

in heterogeneous regions based on small sets of information on the potential drivers 

(Chuvieco et al 2013; see also our study of the national fire patterns, section 4.1.1.1). 

However, our results do provide further support (in this case for fire pattern analysis) to the 

usefulness of machine-learning techniques in addressing complex ecological or 

environmental problems such as the spatial distribution of endangered species (Shan et al., 
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2005), mapping land-cover modifications (Rogan et al., 2008), post-wildfire land-cover 

mapping (Brunby et al., 2002), and classifying and mapping wildfire severity (Brewer et al., 

2005). 

In our study, a rule set consisting of 15 rules was able to predict more than 80% of 

the burnt areas (i.e. high Recall) in the 1991-2000 time frame (training dataset), though with 

a rather low Precision (20%; see Table 3.3). This demonstrates the ability of ILP to capture a 

large proportion of patches that burnt throughout a decade, using a relatively low number of 

rules. Even if a large number of unburned areas are also captured by those rules, the rule set 

describes the main features of burnt areas and therefore it may play an important role as a 

predictive tool, which would be an important asset for fire risk assessment, mapping and 

management (Chuvieco et al., 2010; see below) at patch-level resolution. Interestingly, when 

applied to an independent test dataset (burnt areas in the 2001-2010 time frame) and using a 

substantially different land cover dataset, this rule set was able to maintain a relatively high 

Recall, predicting almost 70% of the actually burnt areas, and even with a higher Precision 

(28%; see Table 3.4). This rule set therefore does seem capable of predicting some patterns 

of wildfires in the region at a decadal resolution. This may also stress some temporal stability 

of forest fire drivers in the sense that we did not observe strong changes in prediction 

performance of the rule set from one decade to the other. Additionally, this fact itself 

highlights the fairly good generalization ability of the ILP-ML technique used. 

The rule set identified land cover and bedrock type as the main factors explaining the 

spatiotemporal patterns of wildfires in the Alto Minho (see section 3.2.2.3). The presence or 

proximity to several types of forest areas were particularly frequent across the rule set (11 of 

the 15 rules), particularly if the analysed patch was neighboured by pine or eucalypt patches. 

In fact, these tree species, extensively planted in the region and across the country, are 

known to favour the propagation of fire due to their life history traits (Pausas and Schwilk, 

2012), often in conjunction with neglected management (Rego et al., 2013). The presence of 

(or proximity to) scrubland areas (6 rules) and sparsely vegetated areas (4 rules) was also, 

as expected, important in the formulation of the rule set. These land cover types are 

dominant in many fire-prone landscape mosaics, particularly those where the use of fire as a 

landscape management tool (e.g. for pasture regeneration and scrub clearing in highlands) is 

still common (Moreira et al., 2011). The importance of bedrock type (8 rules) confirms the 

relevance of geological features (and their influence in the vegetation cover; Capelo et al., 

2007) in fire ecology, from the occurrence of wildfires (Costa et al., 2013) to the patterns of 

post-fire regeneration (see sections 3.4 and 4.2.2). 

An important fact to consider is that, since the description of wildfire regimes is scale-

dependent, the outcomes of their analysis may also be very much influenced by the quality of 

fire data (Thompson and Calkin, 2011). The national wildfire database used in our study 
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presents some important limitations for fire pattern analysis, such as the absence of a 

specific date for each fire (only the year is reported) or the absence of indication of fire 

intensity or severity. Moreover, fires with burnt area below five hectares are not included. 

Nonetheless, those limitations can be most important for local studies, but less for those at 

regional scales. In fact, this database has been thoroughly used to address national and 

regional patterns of wildfires in the country (e.g. Catry et al., 2009; Moreira et al., 2009, 

2010). 

This study was possible due to the recent development of sophisticated geographical 

databases that led to advances in spatial data analysis and mining, defined to be the branch 

of data-mining where the spatial neighbors of an object may have an influence on the object 

(Ceci et al., 2009). The description and interpretation of wildfire regimes will always be 

influenced by the chosen analytical framework (Krebs et al., 2010). We believe that coupling 

an ILP system with a logic-based geographic information system we avoided the off-line 

materialization step of spatial features using external geographic information systems, 

allowing the search process to dynamically explore spatial relationship predicates in the 

formulation of clauses. In this way we obtained a novel and promising approach to the study 

of intricate spatial relations as those between wildfires, land cover, and environmental 

conditions.  

 

 

4.1.2. Drivers of wildfire occurrence: the importance of considering 

heterogeneity 

 

The results presented in this thesis provide support to the view that the analysis of 

the drivers of wildfire patterns should consider not only the scale-dependence of those 

patterns (Moreira et al., 2010), but also their context-dependence, particularly when 

analysing environmentally and social-ecologically heterogeneous countries or regions 

(Nunes et al., 2005). In this thesis, drivers of wildfire patterns in Portugal were thus analysed 

for several distinct spatial contexts and resolutions, from the whole continental area of the 

country (and the seven agrarian regions therein) to the elevation gradient of the Alto Minho 

sub-region, in the northwest of the country. 

The diversity of climatic, topographic, socio-economic and landscape conditions in 

Portugal (see Methods, section 2.2.1) originates contrasting fire regimes across the country 

(Catry et al., 2010; Costa et al., 2010). The modelling framework applied in our study of 

national pattern of wildfires yielded several important clues towards a deeper understanding 

of the causes underlying this variability. First, it demonstrated that the country is clearly 
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divided in two parts regarding its wildfire regime (see Figure 2.18 and Table 3.1). As 

discussed above, in the northern half of Portugal fire patterns are better explained when 

considering the effects of multiple factors (i.e. when using the whole set of variables). Clearly 

contrasting with this, in the southern half of the country models based on the whole set of 

variables were always outperformed by models based on a single block of variables. In part, 

this may be due to the lower number of observations (i.e. civil parishes) and the higher 

proportion of non-zero observations (i.e. civil parishes with no fire recorded) in the southern 

part of the country, as discussed above. 

Second, our modelling framework also highlighted that the relative importance of the 

several types of drivers of fire regime is highly variable across regions (see e.g. Figures 3.4 

and 3.5, and Table 3.2). For example, landscape variables represented the most important 

block in most of the northern agrarian regions, where it exhibited lower loss in model 

performance, whereas topography and socio-economy seem to be the most important effects 

in the southern part of the country. In the Southern region of the country, and particularly in 

the Algarve, wildfires are very concentrated in areas with higher elevation or inclination, so 

the model based on topographic variables holds a good performance (see Figure 3.5 and 

Table 3.2). Consistently with previous reports (e.g. Moreira et al., 2010; Nunes et al., 2005), 

these results suggest that the drivers of fire history in Portugal must be analysed separately 

per region, and would recommend a regionally stratified planning of fire risk management 

(see below). 

The detailed analysis of wildfire patterns and drivers in the Alto Minho region further 

highlighted the importance of considering (sub-)regional heterogeneity of environmental 

conditions and social-ecological contexts to adequately interpret the main features of 

disturbance regimes (Turner, 2010). Through the development of inductive logical rules, 

various combinations of land cover (particularly presence of forest and scrub) and bedrock 

type were found to explain distinct sets of burnt patches in the period between years 1991 

and 2000 (see Table 3.8). This same combination of factors successfully predicted burnt 

areas in an independent dataset from the following decade (2001-2010). Even in a small (but 

rather heterogeneous) region, several factors thus emerged, under multiple combinations, as 

determinants of wildfire occurrence. Moreover, these factors explain fire patterns with 

contrasting spatial incidence in the region, since the several rules have quite different spatial 

coverage in the study area (see e.g. Tables 3.6 and 3.7). 

Surprisingly, climatic factors were not selected to formulate any of the 15 rules in the 

final rule set (see Table 3.8). Climate is usually reported as an important driver of wildfire 

patterns (Slocum et al., 2010; Fauria et al., 2011) and therefore it is considered in wildfire risk 

modelling (Bradshaw et al., 1984; Moriondo et al., 2006). However, according to our results, 

in the Alto Minho the spatial variations of temperature and precipitation are not greatly 
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related with the occurrence of wildfires, even if climatic gradients are quite sharp in the 

region (see section 2.1.3). Rather, other factors influencing complex ecological patterns at 

more local scales (Vicente et al., 2011), namely related to land use/cover and geology, 

emerged as key determinants of wildfire occurrence. This is consistent with the results 

obtained in our national assessment for the EDM region, where the landscape block of 

variables was the best performing one (see section 3.1.2). Even considering that the relative 

importance of factors may be different in other regions with distinct patterns of environmental 

and socio-economic conditions (see e.g. section 3.1), the rule set obtained in this study 

highlights the importance of testing the effects of all plausible factors (but particularly those 

related to, or constraining, patterns of land use) in order to obtain robust, tailored predictions 

and thereby improve fire risk modelling and management (see below). 

 

 

 

  



Integrative discussion and conclusions 

160 
 

4.2. Patterns and drivers of post-fire resilience across scales 

 

The patterns of post-fire ecosystem resilience, as those of any spatially-structured 

ecological process, are intrinsically scale-dependent, as they are very much related to the 

spatiotemporal patterns of conditions, resources and disturbances (Parisien et al., 2011). 

Therefore, in this thesis results from two studies were presented, the first one using remote 

sensing tools to assess regional patterns of post-fire regeneration based on functional 

indicators (see section 3.3), and the second one describing the local controls of resilience 

analysed from in-field vegetation data and focused on vegetation and plant community 

structure (see section 3.4). 

 

 

4.2.1. Assessing post-fire resilience at the regional scale from remote 

sensing data 

  

4.2.1.1. Indicators of post-fire recovery of early successional vegetation 

 

Detecting ecological disturbances and other environmental pressures across large 

areas can benefit from the application of remote sensing (RS) data, products and techniques 

(e.g. Nagendra et al., 2012). In fact, RS approaches have been used previously to identify 

functionally homogeneous regions (Alcaraz et al., 2006) as well as to predict fire incidence 

through fuel phenology (Bajocco et al., 2010) or distribution of ecosystem functional types in 

temperate South America (Paruelo et al., 2001). 

Remote sensing tools have been used to assess the responses of ecosystems and 

landscapes to several types of disturbances, from floods and landslides to deforestation and 

wildfires (Joyce et al., 2009; Sena et al., 2013; Van Linn et al., 2013). In our regional study of 

fire patterns in the northern part of Portugal, fire events could successfully be noticed in their 

effects on indicators of ecosystem functional dynamics. In fact, a strong and abrupt decline in 

the NDVI curves was observed in the pixels burnt in year 2005, our focal year for wildfire 

analysis (see Figure 3.11).  

To address regional patterns of post-fire regeneration, we developed and tested three 

functional indicators related to ecosystem productivity and phenology: The Cumulative 

Relative Recovery Index (CRRI), the Recovery Trend Index (RTI), and the 50% Recovery 

Time indicator (50%RT). Considering their distinct definitions, covering different rates of post-

fire recovery, and the fact that they were not highly correlated in the test region (see Table 

2.11), these three indicators were expected to allow assessing distinct (and complementary) 
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dimensions of the regeneration process, jointly allowing a more integrative view of functional 

resilience, which is a key component of ecosystem resilience (Lavorel, 1999; Pausas and 

Lloret, 2007; Moretti and Legg, 2009). 

These three response variables yielded distinct statistical distributions in the study 

region. In the CRRI the distribution was very similar to Gaussian (i.e. Normal), the RTI also 

had a distribution fairly close to Normal, but the 50%RT had a more asymmetrical 

distribution, with a high percentage of the values concentrated in the first 400 days after the 

beginning of the first post-fire year, and even some negative values recorded (see Figure 

3.10). Moreover, these indicators also differed in the fact that, in the case of CRRI (an 

integral below a smoothed curve) we are modelling to predict an area (more sensitive to 

small changes and local maximums), in the RTI we derived the trend (linear trend), with the 

natural error associated from observing a seasonal phenomenon, and in the 50%RT we tried 

to predict a point (a specific date in which the NDVI recovery will reach 50% of the pre-fire 

median), which holds the highest degree of uncertainty. Moreover, as the CRRI results of a 

normalized cumulative sum of the observed values (without modelling), and the RTI and 

50%RT indicators were obtained by nonparametric linear models (being the one for 50%RT 

more complex and with interactive automatic adjustments), a gradual decrease in model 

performance was expected, and it was actually observed (see Table 3.10). 

The ranking of the relative contribution of explanatory variables (and groups of 

variables) revealed differences between models fitted for the three regeneration indicators 

(see Table 3.11). Models for CRRI was the only case that included variables from all five 

groups (in the top ranked 18 variables), although most of the variables were related to the 

“fire traits” and “ecosystem functional attributes” groups. The variable with the highest 

predictive importance for explaining CCRI variability was the Break Magnitude Index i.e. the 

relative magnitude of the NDVI break caused by the fire event. This was also the highest 

ranking variable in models for RTI (see Table 3.11); for this indicator, the groups of variables 

with highest importance were “fire traits” and “landscape composition”. The latter was the 

group of variables with highest importance for the 50%RT indicator (see Table 3.11). 

These results suggest that the three response variables express different aspects of 

the recovery process, occurring at different temporal scales (short vs. mid-long term) and 

responding to variables which themselves exhibit distinct patterns in space (intra-patch vs. 

landscape context) and time (pre-fire conditions vs. features of the fire event). For the CRRI, 

the pre-fire conditions and the features of the fire event itself are the dominant constrains to 

the recovery process; also, this indicator seems to express the mid-long term regeneration of 

ecosystem functioning (e.g. Leeuwen et al., 2010) and it is closely related with the functional 

constraints (pre-fire and fire event) of the recovery process. In the case of the RTI, the 

features of the fire event and the landscape context are the more important factors; this 
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indicator therefore responds to a mixture of functional and structural constraints of the 

recovery process. Finally, in the case of the 50%RT indicator, which appears to refer more to 

the short-term stage of the recovery process (Bastos et al., 2011), the landscape context 

(structural features) was identified as the prevalent factor. 

Overall, from the CCRI and the RTI to the 50%RT indicator there is a general shift 

from the functional constraints characterising the burnt patches (i.e. pre-fire conditions and 

changes induced by the fire event), which seem to be key drivers of the mid-long term 

recovery, to the structural features of the surrounding landscapes, which seem to be more 

related with the short-term responses to fire disturbance. One hypothesis to explain this 

result is that the short-term response in the burnt patch may be dependent of the landscape 

availability of seeders / ruderal species that can converge rapidly to the newly open area 

(Pate et al., 1990), whereas the mid-long term regeneration may be more determined by the 

survival of late-successional resprouting species inside the burnt patch, which in turn mainly 

depends on the pre-fire condition of vegetation and on the intensity and severity of the fire 

event (Malkisnon et al., 2011). The contribution of early successional habitats to overall 

species richness can be larger than those of late successional habitats due to a higher 

heterogeneity between burnt areas caused by dispersal limitation (Brotons et al., 2005). 

  

 

4.2.1.2. Drivers of post-fire resilience at the regional scale 

 

 The results obtained in our study of regional patterns of post-fire regeneration give 

support to the notion that when addressing post-fire recovery we have to be very careful in 

stating what exactly are we measuring (Díaz-Delgado et al., 2002; Leeuwen et al., 2010; 

Bastos et al., 2011). In this case our three indicators of post-fire functional regeneration of 

vegetation were found to respond to different sets of factors, and they seem to express 

distinct and complementary dimensions of the regeneration process, as discussed in the 

previous section. 

 In the CRRI and RTI indicators, the “break magnitude index” was the variable with the 

highest rank and (by far) with the highest correlation with the response variables (see Table 

3.11). This index translates the relative decrease in NDVI produced by the fire event 

regarding the pre-fire NDVI mean, so it expresses the severity (and thus also the relative 

intensity) of the fire event and it was expected to reflect negatively on the recovery process 

(Bastos et al., 2011; see Figure 3.13). In fact, there is a well-known relation between fire 

severity and post-fire regeneration, with more severe fires causing a higher depletion of the 

regeneration capacity of burnt areas whereas less severe fires are often followed by rapid 

recovery in at least some resilience indicators (Diaz-Delgado et al., 2002; Leeuwen and 
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Casady, 2010). 

 In CRRI and in RTI, the recovery measured was more intense in areas (i.e. pixels) 

that were located far from the edge of burnt patches (see Table 3.11, Figure 3.13, and 

Appendix 3, Figures a and b). This could suggest that core areas would recover better than 

those located in the edge of the burnt patch, which would seem a counterintuitive result 

(Leeuwen et al., 2010). Instead, we hypothesized that this result may be expressing an effect 

related to burnt patch size. We tested this by analysing fire severity and regeneration 

indicators against fire event size. The NDVI break magnitude had a significant (p-value < 

0.001) negative correlation with fire size, meaning that with decreasing break magnitude, fire 

size increased (see Table 3.9). Conversely (but as expected given the previous result), the 

values for the CRRI and RTI recovery indicators increased with the size of the burnt area. 

However, the time required to obtain a 50% NDVI recovery (i.e. the 50%RT indicator) 

increased as burnt area size increased. 

Overall, small fires recorded the largest fire severities (i.e. as measured by the 

decrease in NDVI), which reflected on lower capacity of mid-long term regeneration, probably 

due to higher mortality of late-successional resprouters in the burnt patch (Malkisnon et al., 

2011). Small fires also recorded the highest capacity for short-term recovery, which is likely 

the result of higher propagule pressure by seeders / ruderals from the surrounding landscape 

(Pate et al., 1990). These small fire events may have occurred in complex landscapes with 

high local (but discontinuous) accumulation of fuel biomass, which favour small but intense 

fires (Moreira et al., 2001; Pereira et al., 2005). 

Conversely, large fires recorded lower values of NDVI break magnitude (i.e. lower fire 

severity) and consequently the mid-long term regeneration was higher than in small fires. 

These events may represent large mountain fires, usually spreading over areas where fuel 

biomass accumulation is locally small but rather continuous across the landscape, creating 

suitable conditions for large fires with low to moderate intensity (Fernandes et al., 2010). 

Areas burnt during large fires yielded the lowest values of short-term recovery, probably due 

to lower propagule pressure from the surrounding landscape over the larger core area of 

burnt patches (Larios et al., 2013). 

The importance of landscape variables, particularly for the RTI and 50%RT indicators, 

suggests a connection between post-fire regeneration and productivity/benign soil conditions, 

which are more common in farmland matrices than in forest matrices (Lunt et al., 2012). In 

the 50%RT models, landscape variables are even preponderant, with the presence of 

agricultural areas in the wider landscape decreasing the time needed to reach a 50% NDVI 

recovery and the presence of coniferous forests in the surroundings of the burnt patch 

increasing the time it takes to recover (see Figure 3.13). The fact that the effects of these 

structural landscape variables are felt at different distances around the focal burnt pixel (see 
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Table 3.11 and Figure 3.13) highlights the importance of a multi-scale approach to the effects 

of landscape structure on fire occurrence and on post-fire recovery (Morgan et al., 2001; 

Lozano et al., 2010). It also highlights again the importance of considering ecological 

heterogeneity in the assessment of fire regimes and post-fire processes, as discussed in 

previous sections. 

A surprising result from our regional assessment of post-fire resilience was the 

apparent low importance of variables from the “physical attributes” and “fire history” groups. 

Only in models for CRRI these variables entered the list of 20 top ranked variables, and still 

only among the lowest ranked (see Table 3.11). Physical environmental attributes (e.g. 

climate, topography) and features of the fire regime (e.g. recurrence, distance to last fire) are 

vastly used in studies of fire occurrence (Pausas et al., 2008; Ganteaume et al., 2013) and 

post-fire recovery (Clemente et al., 2006), but they were of seemingly low importance in our 

models for functional indicators of post-fire regeneration. These results thus suggest that, 

when compared with structural approaches, using functional indicators to assess post-fire 

regeneration may capture dimensions of resilience that are influenced by a distinct set of 

drivers (Díaz-Delgado et al., 2002; Leeuwen et al., 2010). 

 

 

4.2.2. Assessing the local controls of post-fire vegetation resilience  

 

Local ecosystem resilience after disturbance can be influenced by multiple factors, as 

described in the Introduction (see section 1.4.4), from the spatial distribution of conditions, 

resources and disturbances to pre-fire structure of biotic communities (Lavorel, 1999). On 

nutrient-poor, shallow soils of many mountainous regions across Europe, fire history (often 

joined by grazing) usually originates vegetation mosaics consisting of scrub, grasslands and 

patches of woodland at different stages of successional development (Acácio et al., 2009). 

Our study of the local controls of post-fire resilience focused on these landscape mosaics, 

and particularly on scrub communities originated by vegetation recovery after fire in the 

mountains of northern Portugal. The diversity and dynamics of these vegetation types in the 

region are known to be controlled by climate, geology, topography, and human management 

(Aguiar, 2001; Honrado, 2003). In the study developed for this thesis we hypothesized that, 

under comparable climatic and topographic conditions, geology (particularly bedrock type) 

would be more important than fire history in explaining the observed patterns of post-fire 

resilience in early successional vegetation. 

To test our hypothesis we focused on the collection of in-field data on vegetation 

structure and on plant community structure from scrub formations at locations with different 
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bedrock type, distinct fire frequencies and different time distances from the last fire event 

(see section 2.2.5). The use of vegetation and community structure, including features such 

as vertical strata, species diversity and plant functional diversity, to assess post-fire 

resilience has been used before by Pausas and Lloret (2007). These authors showed that 

the richness of plant functional types tends to decrease with fire occurrence at both 

landscape and patch scales, and that the spatial distribution of functional types with 

mechanisms allowing post-fire regeneration reproduces the fire distribution patterns, 

whereas functional types lacking these regeneration mechanisms tend to avoid burnt areas. 

Based on vegetation and community structure of heath and broom scrub formations, 

our study revealed that, at local scales, geological factors can override fire history in 

determining post-fire vegetation recovery. In fact, no significant effects of fire history traits 

(frequency, and time since last fire) on vegetation recovery were found, whereas significant 

effects of bedrock type were recorded in most attributes of vegetation and plant communities 

assessed as response variables in our study, from species richness and plant functional 

groups to vertical and horizontal structure of vegetation (see section 3.4.2). Scrub formations 

on granitic soils tend to host more species and to exhibit more vigorous development than 

those on schistose soils, consistent with previous reports on the influence on bedrock and 

soil properties on vegetation cover in the region (Honrado, 2003; Honrado and Vieira, 2009). 

Ordination analyses (DCA; see Figure 3.19) highlighted that differences in species 

composition across all the plots were also mainly related to bedrock type, with a minor effect 

of fire history only found on granites. 

Moreover, the prevailing effect of lithology over most of the tested plant functional 

classifications (see Figure 3.18) further highlighted its role as a driver of local patterns of 

post-fire regeneration. In our test region, vegetation plots on granitic soils usually hosted 

higher numbers of animal-dispersed woody species, of trees and tall shrubs, of woody 

deciduous species, and of forest, edge and tall scrub woody species. These functional 

groups are characteristic of later successional stages (Porto et al., 2011) and are thus 

favoured by conditions enabling a rapid and vigorous development of woody vegetation, 

which seem to be provided by well drained deep granitic soils (Honrado, 2003). 

Conversely, few significant effects of fire history were found for the tested functional 

classifications (see Figures 3.16 and 3.17). Seeder plants were the most striking exception, 

since they were represented by more species in locations that suffered a recent fire or that 

were submitted to multiple fire events in the focal time period. This is consistent with the fact 

that, in the Mediterranean, seeders are characteristic of early successional stages and 

frequently disturbed environments (Verdu, 2000; Porto, 2012). 

Even if the effects of other factors could not be assessed due to the absence of 

adequate data (e.g. historical land use, microclimatic conditions), this set of results seem to 
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demonstrate a key role of bedrock type (and related soil properties) as a driver of post-fire 

vegetation recovery in our test region. The several differences recorded in the structural 

development of post-fire scrub vegetation and in the functional profile of plant communities 

highlight the need to consider bedrock type (as well as other local environmental factors or 

gradients) when planning for the restoration of burnt areas (see below). 
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4.3. Implications for planning and management 

 

The results from the several studies presented in this thesis have evident implications 

for several issues related to governance in the context of fire prevention and fighting as well 

as for the management of post-fire resilience in the context of ecological restoration, two 

important components of fire risk management (Chuvieco et al., 2010; Hanewinkel et al., 

2010). 

 

 

4.3.1. Fire risk management at national and regional levels 

 

The results from the two studies analysing patterns of wildfire occurrence at regional 

and sub-regional scales highlighted the variability of fire regimes and of fire factors in 

heterogeneous countries or regions. In fact, we demonstrated that: (1) fire regimes are 

distinct across heterogeneous countries and so is the relative importance of fire factors, 

therefore fire regimes should be analysed on a regional basis; and (2) fire occurrence in 

environmentally heterogeneous (sub-)regions is explained by multiple factors, the ranking of 

which is region-specific, reflecting the distinct features and dynamics of social-ecological 

systems along environmental gradients within those regions. 

Our results therefore suggest that, when planning for efficient wildfire prevention and 

allocation of firefighting resources at the national level, risk management authorities should 

consider the specificity of the several regions in terms of their environmental, socioeconomic 

and landscape attributes and dynamics. Moreover, our results highlight that this 

recommendation is also valid for planning at the (sub-)regional level, since many regions still 

hold high levels of heterogeneity that reflect downstream on the spatiotemporal patterns of 

ecological processes such as disturbances (Wu, 2013). 

The distinct importance of landscape and socioeconomic factors in explaining wildfire 

patterns across regions in Portugal also has implications for preventive management of the 

several fire risk factors. In fact, landscape features were found to be most important as fire 

factors in the northern, more heavily burnt and heterogeneous regions, in which the patterns 

of the analysed set of socioeconomic factors were of negligible importance. Conversely, 

towards south topography and socio-economy overrode landscape features as the most 

important fire factors. Overall, this means that even minor land use changes (e.g. farmland 

abandonment or intensification in small-scale property and ownership landscapes) may have 

quite strong consequences for future wildfire regimes in northern regions, as described for 

other Mediterranean areas by Moreira and Russo (2007) or Silva et al. (2011), whereas in 
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southern areas only a massive, unlikely change in land use patterns (e.g. abandonment or 

conversion of large, continuous areas of ‘montado’ into intensively managed forest stands) 

would eventually lead to shifts in fire regimes. 

Climate was consistently found to be of low importance in our national, regional and 

sub-regional assessments of wildfire patterns and fire factors. However, climate data are 

widely used in the modelling of fire ignition as well as of fire behaviour (Westerling et al., 

2003; Aldersley et al., 2011). In Portugal, fire occurrence is known to have a strong 

connection to weather conditions favouring ignition and spread over the landscape (Pereira 

et al., 2005; Trigo et al., 2006). However, there seems to be no significant connection 

between fire history and the main multiannual climatic patterns and gradients across the 

country, even if climate and weather conditions, particularly in extreme years, are recognised 

as important factors of wildfire occurrence (Pereira et al., 2005). 

Overall, our results confirm that detailed records of fire history and robust modelling 

frameworks are important assets to understand and predict fire patterns, at least at a decadal 

resolution. Those records as well as the spatiotemporal patterns there in should thus be 

more often considered in fire risk modelling. The continuous collection of information of fire 

occurrence, intensity and severity, and an investment in the improvement of predictive 

modelling frameworks, should thus be priorities for administration agencies dealing with 

spatial planning, rural development and natural resource management, fire risk 

management, and multi-scale governance (Chuvieco et al., 2010; Thompson et al., 2011; 

Mickler et al., 2013). 

 

 

4.3.2. Regional to local wildfire risk management and post-fire restoration 

 

Fire risk management at regional to local scales (in Portugal, respectively districts 

and municipalities) should encompass several tasks, from the production of detailed fire risk 

maps at the pertinent scales and with an adequate frequency, to the planning and allocation 

of firefighting resources, but also landscape management for reduced probability of fire 

ignition and propagation (Moreira et al., 2011). In this regard, the results presented in this 

thesis suggest that, when planning for efficient wildfire prevention and fighting at regional to 

local scales, among other factors attention should be paid to: (1) the relative importance of 

fire risk factors (or correlates) in each focal region, as revealed by analyses of recorded fire 

history; (2) the characteristic functional features of ecosystems and landscapes, particularly 

regarding their productivity and phenology; (3) the functional dynamics of vegetation, which 

promotes the accumulation of fuel biomass and thereby the proneness of landscapes to the 
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occurrence of fires; and (4) regional and local factors determining vegetation development 

and phenology as well as post-fire regeneration. 

Our study addressing post-fire resilience at the regional scale clearly demonstrated 

the relevance of functional approaches to analyse key ecosystem properties (Alcaraz et al., 

2006). Pre-fire conditions as well as the magnitude of the functional breaks induced by fire 

events were found to influence post-fire recovery rates. The post-fire recovery capacity is a 

key determinant of fuel biomass accumulation across the landscape (Lloret et al., 2003; 

Moreira et al., 2011), but it is also important to ensure rapid reestablishment of pre-fire 

ecosystem functioning and thereby the provision of valuable ecosystem services (Bugalho et 

al., 2011; Duguy et al., 2012). Therefore, at the regional scale, forest and landscape planning 

for improved post-fire regeneration should consider the functional dimension of ecosystems 

and landscapes besides their structural attributes, e.g. by using ecosystem functional types 

(Alcaraz et al., 2006) to define broad planning and management units. This dimension adds 

to the several other applications of remote sensing tools in fire detection and in fire risk 

management (Chuvieco et al., 2010). 

From our study of post-fire resilience at the local scale we have concluded that 

geology plays a major role in determining the rates and pathways of vegetation recovery 

after fire. Together with results from the (sub-)regional analysis of fire patterns in the Alto 

Minho (see sections 3.2 and 4.1.1), this geological control over local post-fire recovery 

suggests that planning for improved post-fire resilience should consider geology in both 

regional planning and definition of local post-fire management priorities. In fact, the distinct 

rates of post-fire recovery as well as the different functional profiles of the resulting plant 

communities will have consequences for the provision of several regulating ecosystem 

services such as fire prevention, soil erosion control and water regulation (Smith et al., 

2011). Our results would thus also recommend that geology (among other local factors) 

should be considered when taking technical decision on post-fire restoration actions, 

particularly when establishing priorities for active restoration under scenarios of limited 

resources and in geologically heterogeneous areas. On substrates that are unfavourable for 

rapid vegetation recovery after fire (like schist soils in our test region), post-fire management 

of burnt areas may have to include active protection of soil against erosion as well as active 

plantation or seeding (e.g. Moreira et al., 2012). Conversely, on favourable soils (e.g. those 

derived from granite in our test region), the rapid post-fire regeneration of dense scrub 

vegetation (and eventually woodland) would favour passive management as a possible 

strategy, e.g. by promoting supervised natural succession (Maguire and Menges, 2011; 

Camac et al., 2013). Overall, this would allow an improved allocation of limited resources 

according to local needs. 
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Our results also suggest that geological factors should be considered in fire risk 

modelling, since differential resilience will lead to spatial variations in the accumulation and 

connectivity of fuel biomass across the landscape (Lloret et al., 2003; Moreira et al., 2011), 

resulting from the distinct post-fire development and functional profile (and possibly fire-

proneness) of vegetation on soils derived from different bedrock types. 
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4.4. Synthesis and conclusions 

 

In a nutshell, from our studies of the patterns of wildfire occurrence and post-fire 

resilience at several spatial scales in Portugal, we have concluded that: 

 

 On the patterns and drivers of wildfire occurrence: 

 

(1) Distinct factors drive wildfire occurrence across heterogeneous countries and 

regions, and this should be taken into consideration when planning for improved 

fire risk management across the several levels of political and technical decision; 

(2) The ranking of fire factors or correlates, determined by environmental and social-

ecological features of regions, can be revealed by analyses of historical fire 

records against multiple sets of explanatory variables, and is likely to be region-

specific in heterogeneous countries; 

(3) The diversity of fire factors required to adequately explain and predict fire 

regimes is higher in heavily burnt regions than in regions recording lower number 

of fires and lower values of burnt area; and 

(4) Machine learning modelling techniques are useful to explain and predict the 

patterns and drivers of fire occurrence in heterogeneous countries and regions. 

 

 On the patterns and drivers of post-fire recovery: 

 

(5) Using functional indicators of post-fire recovery allows capturing dimensions of 

resilience that are driven by distinct sets of factors; 

(6) Regional patterns of post-fire recovery rates are largely determined by size and 

other features of fire events, as well as by structural and functional attributes of 

pre-fire landscapes; and 

(7) Geology is an important factor or correlate of both fire patterns and post-fire 

ecosystem resilience, and this should be taken into consideration in the spatial 

planning of forest resources and rural landscapes and in fire risk management at 

the regional and sub-regional levels. 

 

 On the implications for risk management and governance: 

 

(8) Regional to local rates and pathways of post-fire vegetation resilience are 

influenced by many distinct factors related to environmental conditions as well as 

to structural and functional features of landscapes and plant communities, which 



Integrative discussion and conclusions 

172 
 

should be taken into account for technical decision on active restoration of burnt 

areas; 

(9) Fire recurrence and differential post-fire regeneration across burnt landscapes 

originates complex patterns of fuel biomass accumulation and connectivity, and 

this will influence the occurrence and spread of wildfires over the landscape; and 

(10) Robust predictive modelling frameworks, coupled with historical fire datasets and 

remote sensing tools, can be important assets in the management of fire risk at 

several scales as well as in the monitoring of the effects of wildfires and other 

pressures on the key structural and functional attributes of landscapes and the 

ecosystems therein. 

 

The research developed for this thesis has provided relevant results and conclusions, 

but it has also suggested that some questions will require continued investigation. First, from 

a methodological perspective, future research should aim to improve the several modelling 

frameworks used in the four studies and to test their predictive power across a wide range of 

conditions. Another promising line of research would focus on the application of remote 

sensing methods, particularly those based on free or low-cost satellite imagery, to predict 

patterns of wildfire occurrence and post-fire resilience at several scales and with the 

appropriate spatial and temporal resolutions, in connection with in-field campaigns for 

calibration and validation. Future research should also assess the individual and joint effects 

of other controls of local resilience, e.g. pre-fire community structure, landscape context and 

topographic attributes, in order to build a more integrative and informative predictive model of 

vegetation resilience. Finally, continued effort should be made to promote the application of 

results and lessons learnt in the improvement of fire risk management and governance 

across spatial scales and levels of political and technical decision. 
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Appendix 1 

Reclassification of CLC categories into eight broad land cover categories.
CLC 

code 

CLC category (level 3) New broad category 

111 Continuous urban fabric Urban/Artificial 

112 Discontinuous urban fabric 

121 Industrial or commercial units 

122 Road and rail networks and associated land 

123 Port areas 

124 Airports 

131 Mineral extraction sites 

132 Dump sites 

133 Construction sites 

141 Green urban areas 

142 Sport and leisure facilities 

211 Non-irrigated arable land Agricultural and agroforestry areas 

 212 Permanently irrigated land 

213 Rice fields 

221 Vineyards 

222 Fruit trees and berry plantations 

223 Olive groves 

231 Pastures 

241 Annual crops associated with permanent crops 

242 Complex cultivation patterns 

243 Land principally occupied by agriculture, with significant areas of natural 

vegetation 

244 Agro-forestry areas 

311 Broad-leaved forest Broad-leaved forest 

312 Coniferous forest Coniferous forest 

313 Mixed forest Mixed forest 

321 Natural grasslands Scrub and/or herbaceous vegetation 

associations 322 Moors and heathland 

323 Sclerophyllous vegetation 

324 Transitional woodland-shrub 

331 Beaches, dunes, sands Open spaces with little or no vegetation 

332 Bare rocks 

333 Sparsely vegetated areas 

334 Burnt areas 

335 Glaciers and perpetual snow 

411 Inland marshes Wetlands/water bodies 

412 Peat bogs 

421 Salt marshes 

422 Salines 

423 Intertidal flats 

511 Water courses 

512 Water bodies 

521 Coastal lagoons 

522 Estuaries 

523 Sea and ocean  
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Appendix 2 

Point nº  

military map 1:25 No:----------------------

--  

I.F.No ------                                Date/-----/----/08 

UTM:-------- Lat.-------- Long. --------- Photos:-------------------------------------- 

Alt.(m): ---- Area: 25m2  Aspect: ---- 

Slope: …..% 

Name:-------------------------------------  

General notes :  Vegetation type: ------------------------------- 

  Phytosocioloy: 

 

Class: ------------------------------------  

  Order: ----------------------------------  

  Aliance: ---------------------------------  

  Association: ----------------------------- 

  Percentage cover (strata) 

 

E1 ____ % E2 _____%   E3 _____% 

  Soil type: 

  Geological form:  

  Lithology :  

 

N species name abundance 

01.     

02.     

03.     

04.     

05.     

Field recording form used in the each of the 40 locations.



 

 

 

  



Appendices 

 

Appendix 3 

  

  

  

Figure a: Response curves for the 6 highest ranked explanatory variables in models for the 

Recovery Index indicator.   

Spearman C.=0.36Spearman C.=-0.79

Spearman C.=0.39 Spearman C.=-0.04 

Spearman C.=0.35 Spearman C.=0.05 
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Figure b: Response curves for the 6 highest ranked explanatory variables in models for the 

Recovery Trend indicator.    

Spearman C.= 0.29Spearman C.=-0.50

Spearman C.=0.51 Spearman C.=0.50 

Spearman C.= -0.63 Spearman C.=0.49 
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Figure c: Response curves for the 6 highest ranked explanatory variables in models for the 

50% Recovery Time indicator. 

Spearman C.=0.32 Spearman C.=0.32

Spearman C.=-0.32Spearman C.=0.27

Spearman C.=-0.37 Spearman C.=0.28
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