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ABSTRACT 

RESPONSES OF LAND SURFACE PHENOLOGY TO WILDFIRE DISTURBANCES 

IN THE WESTERN UNITED STATES FORESTS  

JIANMIN WANG 

2020 

 

Land surface phenology (LSP) characterizes the seasonal dynamics in the 

vegetation communities observed for a satellite pixel and it has been widely associated 

with global climate change. However, LSP and its long-term trend can be influenced by 

land disturbance events, which could greatly interrupt the LSP responses to climate 

change. Wildfire is one of the main disturbance agents in the western United States (US) 

forests, but its impacts on LSP have not been investigated yet. To gain a comprehensive 

understanding of the LSP responses to wildfires in the western US forests, this 

dissertation focused on three research objectives: (1) to perform a case study of wildfire 

impacts on LSP and its trend by comparing the burned and a reference area, (2) to 

investigate the distribution of wildfire impacts on LSP and identify control factors by 

analyzing all the wildfires across the western US forests, and (3) to quantify the 

contributions of land cover composition and other environmental factors to the spatial 

and interannual variations of LSP in a recently burned landscape. The results reveal that 

wildfires play a significant role in influencing spatial and interannual variations in LSP 

across the western US forests. First, the case study showed that the Hayman Fire 

significantly advanced the start of growing season (SOS) and caused an advancing SOS 

trend comparing with a delaying trend in the reference area. Second, summarizing >800 



xxi 

 

wildfires found that the shifts in LSP timing were divergent depending on individual 

wildfire events and burn severity. Moreover, wildfires showed a stronger impact on the 

end of growing season (EOS) than SOS. Last, LSP trends were interrupted by wildfires 

with the degree of impact largely dependent on the wildfire occurrence year. Third, LSP 

modeling showed that land cover composition, climate, and topography co-determine the 

LSP variations. Specifically, land cover composition and climate dominate the LSP 

spatial and interannual variations, respectively. Overall, this research improves the 

understanding of wildfire impacts on LSP and the underlying mechanism of various 

factors driving LSP. This research also provides a prototype that can be extended to 

investigate the impacts on LSP from other disturbances.  
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CHAPTER 1: Introduction 
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1.1. Background 

1.1.1. Overview of vegetation phenology 

Phenology is the study of the timing of recurrent biological events (Lieth, 1974). 

For vegetation, phenology can either pertain to observable physical changes (e.g., leaf 

development and abscission) in vegetation structure or physiological changes regulating 

the seasonality of photosynthesis and evapotranspiration (Gu et al., 2003; Richardson et 

al., 2012). Because of its sensitivity to climatic variation and readily understandability to 

the public, phenology has been selected as one of the most effective indicators to track 

ecosystem changes in response to climate change by the Intergovernmental Panel on 

Climate Change (IPCC, 2014, 2007), the United States (US) Global Change Research 

Program (NCA, 2015, 2010), and the Environmental Protection Agency (U.S. EPA, 

2016).  

The climate change-induced phenological shifts have strong impacts on 

ecosystems and human health. First, the phenological shifts influence ecosystem 

productivity by regulating the processes related to photosynthesis, such as cycling of 

carbon (Churkina et al., 2005; Dragoni et al., 2011; Bao et al., 2019), water (Hogg et al., 

2000; Stéfanon et al., 2012; Muche et al., 2019), and nutrient (Cooke and Weih, 2005; 

Estiarte and Peñuelas, 2015). Second, the potential difference in phenological sensitivity 

to temperature among species can significantly change the synchrony of interacting 

species (Rafferty et al., 2013; Kharouba et al., 2018). Third, phenological shifts could 

influence the risk of wildfire activity by changing fuel availability and moisture content 

(Elmore et al., 2005; Bajocco et al., 2015). Fourth, phenological shifts change climate by 

altering land surface energy and water flux (Jeong et al., 2009; Lian et al., 2020). For 
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example, advanced spring phenology raises evapotranspiration and causes extra soil 

drying that amplifies the frequency and intensity of summer heatwaves (Lian et al., 

2020). Last but not least, phenological shifts influence human health because the timing 

of flowering determines exposure dynamics of allergenic pollen that triggers human 

allergic diseases (Li et al., 2019; Sapkota et al., 2019).  

Considering the strong linkage to climate change, ecosystem, and human health, 

the dynamics of vegetation phenology have been extensively monitored and studied. A 

traditional method of monitoring and studying phenology is using ground-based human 

observations. The recent establishment of some national- and continental-scale 

phenological observations networks, such as USA National Phenology Network (USA-

NPN; https://www.usanpn.org/), facilitates the collection and sharing of standardized 

phenological observations at a large scale. However, the ground observations of 

phenology are subject to some limitations: the uneven spatial distribution of observations, 

the limited number of observed species and individuals, the subjective observations 

among different observers even with a standardized protocol (Piao et al., 2019). These 

limitations pose a challenge to a comprehensive analysis of phenological responses of 

various species to climate changes at a large scale.  

1.1.2. Land surface phenology 

Remote sensing technique provides a robust tool to detect phenology by 

processing digital imagery from local to global scales with low labor intensity and limited 

artificial subjectivity. Providing temporally frequent, continuous, and consistent 

observations of land surface over a large area with little time lag, satellite data have been 

extensively used in phenological studies during the last few decades. The phenology 

https://www.usanpn.org/
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retrieved using remote sensing characterizes the seasonal dynamics of vegetation 

greenness in communities, which is usually referred to as land surface phenology (LSP) 

(de Beurs and Henebry, 2005). LSP often refers to key transition dates in the annual cycle 

of vegetation greenness development (LSP timing), which is distinct from the ground-

observed species-specific phenology that refers to specific life cycle events of vegetation 

such as bud break or leaf senescence. LSP also characterizes the magnitude of vegetation 

greenness at a certain phenological stage (LSP greenness).  

A variety of satellite data are available for investigating LSP. Giving the longest 

time series of daily global coverage available since 1982, the advanced very high 

resolution radiometer (AVHRR) data have been widely used to detect LSP at a spatial 

resolution from 4km-16km (Duchemin et al., 1999; Marshall et al., 2016; Moulin et al., 

1997; Nagai et al., 2016; Sehgal et al., 2011). However, AVHRR data suffer from the 

lack of precise radiometric calibration, poor geometric registration, and peculiar spatial 

resampling (Goward et al., 1991; Wu et al., 2010) which impairs the accuracy of the 

retrieved LSP (Zhang, 2015). Since 2000, the moderate resolution imaging 

spectroradiometer (MODIS) data have been providing daily global observations with 

improved temporal, spatial, and radiometric resolutions, which have triggered numerous 

studies to retrieve LSP at 250 m – 5,000 m (Ganguly et al., 2010; Sakamoto et al., 2010; 

Zhang et al., 2003). As MODIS is aging, the visible infrared imaging radiometer suite 

(VIIRS) has been used as the successor of MODIS to produce regional to global LSP 

products (Zhang et al., 2018).  

Moreover, the free and open access to Landsat archive has allowed for LSP 

detection at a higher spatial resolution of 30 m from 1984. However, retrieving LSP using 
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Landsat data is very challenging because of the 16-day revisit interval for a single 

Landsat (8-day when considering two Landsat satellites on orbit simultaneously) and the 

data gaps associated with cloud contaminations and scan-line corrector failure (on the 

Landsat 7 ETM+). To overcome this limitation, a dense Landsat time series for LSP 

retrieval has been generated with three primary methods: using the adjacent Landsat 

images in the overlap zones of Landsat orbits (Liu et al., 2017), merging Landsat 

observations from multiple years (Melaas et al., 2013), and fusing Landsat data with data 

of higher temporal resolution from other satellites (e.g., MODIS)  (Baumann et al., 2017; 

Zhang et al., 2017). Recently, the European Space Agency Sentinel-2 satellites (Sentinel-

2A launched in 2015 and Sentinel-2B launched in 2017) provide data with a spatial 

resolution of 10-20 m and revisit interval of up to 5 days and allow for studying LSP in 

much greater details (Misra et al., 2020). The temporal resolution of the Sentinel-2 time 

series can be further improved by fusing with other datasets such as Landsat 8 data 

(Claverie et al., 2018) and VIIRS data (Zhang et al., 2020). Particularly, the Harmonized 

Landsat and Sentinel-2 (HLS) project at NASA generates spatially co-registered surface 

reflectance products using observations from Landsat 8 (launched in 2013) and Sentinel-

2A (launched in 2015) and Sentinel-2B (launched in 2017) satellites (Claverie et al., 

2018). Combining these three satellites, HLS can provide observations with a nominal 

global median average interval of 2.9 days (Li and Roy, 2017).  

More recently, the PlanetScope data provide daily-to-weekly global coverage at a 

3-m spatial resolution with a constellation of 130+ CubeSats (Planet Labs Inc, 2020), 

which offer an unprecedented opportunity to retrieve high resolution LSP at a regional 

scale. For example, Cheng et al. (2020) found that PlanetScope produced LSP retrievals 
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with fewer spatial artifacts than that derived from Sentinel-2. However, the performance 

of LSP retrieval from PlanetScope could be significantly influenced by the relatively low 

radiometric data quality and the different spectral response functions among different 

sensors (Houborg and McCabe, 2018). It has been suggested that PlanetScope data need 

to calibrate with other rigorously calibrated data such as MODIS, Landsat-8, and 

Sentinel-2 (Houborg and McCabe, 2018; Latte and Lejeune, 2020; Leach et al., 2019; 

Wang et al., 2020).  

In addition to satellite data, digital repeat photography from cameras mounted 

overlooking the vegetation of interest (Richardson et al., 2018) and remote sensing 

images from spectroradiometer aboard aerial vehicles (Yang et al., 2020) have also been 

used to retrieve phenology at a local or landscape scale.  

Using the above remote sensing data, LSP is usually derived from time series of 

vegetation index (VI) which depicts seasonal vegetation greenness dynamics. The most 

commonly used satellite-based vegetation index is the normalized difference vegetation 

index (NDVI) calculated from the reflectance at red and near-infrared (NIR) bands. As 

NDVI is sensitive to soil background brightness and saturates over densely vegetated 

areas, the enhanced vegetation index (EVI) has been developed to improve the 

quantification of vegetation activity by including the blue band (Huete et al., 2002). EVI 

is further modified to the two-band EVI (EVI2), which remains the advantages over 

NDVI, by removing the blue band (relatively low signal-to-noise ratio) using the 

correlation  of surface reflectance between the red and blue bands (Jiang et al., 2008).  

A variety of algorithms have been developed to detect the phenological transition 

dates from the VI time series. A commonly used algorithm is the threshold method that 
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identifies transition dates by empirically setting an absolute or relative VI value (White et 

al., 1997). The performance of this method largely depends on the choice of thresholds. 

Another algorithm for LSP detection is the delayed moving average that determines key 

transition dates based on the intersection of the vegetation index time series and a moving 

average curve (Reed et al., 1994; Archibald and Scholes, 2007). The length of the time 

interval for moving average influences the accuracy of LSP detection. In contrast, the 

derivative-based or curvature-based method does not need to set up the threshold or time 

interval manually. Specifically, this type of method first fits the VI time series with 

mathematic functions (e.g., piecewise logistic function) and then detects the phenological 

transition dates as the inflection points in the first-order or higher-order derivatives of the 

VI time series (Tan et al., 2011) or as the dates with the maximal or minimal rate of 

change in the curvature of the VI times series (Zhang et al., 2003). Besides the LSP 

timing metrics mainly including start (SOS), end (EOS), and length (LOS) of growing 

season, the LSP greenness metrics such as seasonal greenness maximum (GMax) and 

minimum (GMin) can also be retrieved from the fitted VI time series (Zhang, 2018). LSP 

has also been retrieved using other algorithms, such as models based on growing degree 

days (de Beurs and Henebry, 2004; de Beurs and Henebry, 2005; Tomaszewska et al., 

2020), phenology matching methods (Sakamoto et al., 2010; Zeng et al., 2016), and 

machine learning methods (Wang et al., 2019). 

1.1.3. Recent changes in LSP 

 LSP changes over the past three decades have been extensively investigated, 

revealing a general pattern of advanced SOS, delayed EOS, and prolonged LOS with the 

change extent varying across regions, periods, and methods (Jeong et al., 2011). For 
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example, using AVHRR NDVI time series, Myneni et al. (1997) found a global advance 

of 8 days in SOS and a delay of 4 days in EOS from 1981 to 1990; Julien and Sobrino 

(2009) found an advance by 3.8 days/decade in SOS, a delay by 4.5 days/decade in EOS, 

and a prolongation by 8 days/decade in LOS globally during 1981-2003; Jeong et al. 

(2011) found SOS was advanced by 5.2 days in 1982-1999 and by 0.2 days in 2000-2008, 

while EOS was delayed by 4.3 days in 1982-1999 and by 2.3 days in 2000-2008. Besides, 

Zeng et al. (2011) found an advanced SOS (4.7 days/decade) and a delayed EOS (1.6 

days/decade) during 2000-2010 across the northern high-latitude region (≥60 °N) using 

MODIS NDVI. Specifically, the SOS advancing rate was 11.5 days/decade in northern 

America and 2.7 days/decade in Eurasia, while the EOS delaying rate was 2.2 

days/decade in northern America and 3.5 days in Eurasia. Using EVI2 time series from 

both AVHRR and MODIS, Zhang et al. (2014) revealed a general advancing trend of 

SOS (-2.2 to -12.1 days/decade) during periods of 1982-1999 and 2000-2010 in 

temperate, cold, and polar climate regions in the North Hemisphere, with one exception 

(8.7 days/decade) in the temperate climate – dry winter region in Asia from 2000-2010.   

In contrast, some other studies found no evidence of significant LSP trends or 

even opposite LSP trends (i.e., a delayed SOS, advanced EOS, and shortened LOS). For 

example, AVHRR NDVI data records found no significant SOS trend in North America 

from 1982-2006 (White et al., 2009) and a delayed SOS trend by 6.6 days/decade in 

western central Europe from 2000-2011 (Fu et al., 2014). Moreover, Zhang et al. (2007) 

found SOS was advanced by 3.2 days/decade above 40 °N and delayed by 1.5 

days/decade below 31 °N in North America from 1982 to 2005.  
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1.1.4. Drivers and mechanisms 

The complex pattern of LSP variation is a manifestation of the interacted roles of 

different drivers in regulating the vegetation phenology. Among all the potential drivers, 

temperature is generally regarded as the primary control of phenology. Specifically, it is 

assumed that spring phenological events occur when a certain accumulation of forcing 

temperature is achieved. Thus, the phenological dynamics have been widely linked with 

growing degree days (GDDs) calculated as the accumulated temperature above a 

threshold in the preseason (preceding season) (de Beurs and Henebry, 2005; White et al., 

1997). Spring phenology tends to occur earlier with higher temperatures and later with 

lower temperatures. On the other hand, some studies indicated a need for winter chilling 

to break the vegetation dormancy before the occurrence of spring phenology (Cong et al., 

2017; Delpierre et al., 2018; Richardson et al., 2006). For example, using the AVHRR 

NDVI data, Zhang et al. (2007) addressed the importance of chilling requirement for SOS 

occurrence and insufficient chilling conditions resulted in the delaying trend of SOS 

below 31 °N in North America. The combination of forcing and chilling effects of 

temperature has partly resulted in a declining global warming effect on spring phenology 

(Fu et al., 2015). For the occurrence of autumn phenology, a cooling requirement is 

needed but the effect is still poorly understood (Delpierre et al., 2009).   

Besides temperature, other environmental factors also drive the phenological 

variations. Specifically, phenological events are commonly modeled using photoperiod 

and precipitation (Fracheboud et al., 2009; Jolly and Running, 2004; Piao et al., 2019). 

Moreover, phenology is also partially regulated by insolation (Liu et al., 2016), extreme 

weather events (Qiu et al., 2020), nutrient and water availability (Estiarte and Peñuelas, 
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2015; Fay et al., 2012), and the snow seasonality at mid- and high- latitudes and high 

elevations (Tomaszewska et al., 2020; Xie et al., 2017). In addition, the spatial patterns of 

vegetation phenology at a local to landscape scale are altered by topographic properties 

(e.g., elevation and aspects) influencing topoclimatic conditions (An et al., 2018; Misra et 

al., 2018; Xie et al., 2017).  

In contrast to these aforementioned factors controlling both ground observations 

and LSP, the variation in land cover composition in pixels is influencing specifically the 

satellite-based LSP (Chen et al., 2018; Melaas et al., 2015; Misra et al., 2018). Satellite 

pixels, particularly at moderate (10-250 m) and coarse (>250 m) resolutions (Thomas et 

al., 2020), usually consist of a mixture of land cover types and plant species with 

different phenological responses to environmental factors (Augspurger et al., 2005; 

Zhang et al., 2017). The change in sub-pixel land cover composition, which can be 

caused by both natural processes (e.g., disturbances, climate extremes, and species 

invasion) and human activities (e.g., urbanization, deforestation, and crop rotation) 

(Zhang et al., 2019), can lead to a great change in LSP. The LSP change could 

subsequently modify the direction and magnitude of the interannual phenological trend, 

which impairs the effectiveness of phenological trends indicating climate change.  

During the past few years, increasing evidence has indeed revealed the effect of 

land cover composition on LSP. For example, a simulation study demonstrated that SOS 

of mixed pixel was substantially altered by the changes in proportions of endmembers 

even if there was no change in SOS of each endmember (Chen et al., 2018). Moreover, 

using MODIS NDVI data, Misra et al. (2018) found the EOS was linked to subpixel 

percentage of broadleaf forests. Cho et al. (2017) found that tree cover explained 3% of 
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the variance of SOS and 40% for EOS in the semi-arid savanna of Southern Africa. 

Zhang et al. (2019) found a delaying trend of 1.8-6.7 days/decade in SOS in agricultural 

ecosystems spanning the Midwest of the US from 1982 to 2014. Two-thirds of the 

delaying trend was attributed to the areal increases in corn and soybean that have later 

emergence and the areal decreases in wheat and oats that have earlier emergence and one-

third to climatic variation.  

These findings manifest that LSP as a climate indicator is likely influenced by the 

change of land cover composition. This influence could be significant because land cover 

changes are undergoing in most part of the Earth (Buyantuyev and Wu, 2012; de Beurs 

and Henebry, 2004; Romo-Leon et al., 2016; White et al., 2005). This issue severely 

limits our understanding of phenological variability and trends that reflect climate change 

across regional to global scales (White et al., 2005).  

1.1.5. Wildfires in the western US 

As one of the most important land disturbance agents across the world, wildfire 

causes variation in land cover composition at a local to regional scale and subsequently 

changes LSP. Wildfire impact on LSP could be complex including a quick change with 

the burning and a gradual change with the post-fire vegetation succession that changes 

plant species composition and growth conditions (Johnson et al., 2012; Laughlin et al., 

2004; Pongratz et al., 2006). Wildfire impacts on the LSP have been demonstrated using 

MODIS data. Specifically, wildfires caused an abrupt advance in SOS, delay in EOS, and 

prolongation in LOS with a trend of returning to pre-fire LSP in Mt Carmel, Israel (Van 

Leeuwen et al., 2010) and in Northern Italy alpine forests (Di-Mauro et al., 2014), but no 
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significant LSP change in the Guadalest Fire area, Alicante, Spain (Van Leeuwen et al., 

2010).  

The western US forests are among the ecosystems most affected by wildfires. 

Associating with climate change, large wildfire activities have abruptly increased since 

the mid-1980s with higher large-wildfire frequency, longer wildfire durations, and longer 

wildfire seasons with the greatest increases in mid-elevation Northern Rockies Forests 

(Westerling et al., 2006). Considering a total of 12.3% of forests burned during 1984-

2014 based on the Monitoring Trends in Burn Severity (MTBS) data, LSP could be 

largely influenced by wildfires in the western US forests. However, these impacts have 

not been studied yet. This knowledge gap needs to be filled by conducting a systematic 

analysis of the wildfire impacts on LSP and its trends.  

1.2. Research goal, objectives, and hypotheses 

The overall goal of this dissertation research is to gain a comprehensive 

understanding of the responses of LSP to wildfires in the western US forests. For this 

goal, three objectives are developed and achieved by conducting three studies.  

Objective 1: quantify the impacts of a wildfire in the western US forests on the 

magnitudes and interannual trends of SOS by using an unburned buffer as a reference. 

Although few existing studies demonstrated wildfire impacts on LSP in the 

burned areas (Di-Mauro et al., 2014; Van Leeuwen et al., 2010), there is no clear 

evidence of wildfire impacts in the western US forests. Moreover, those studies used the 

LSP as a proxy to study the post-fire vegetation recovery, but none of them directly 

quantified the wildfire impacts on LSP magnitudes and trends. This study selects a large 

wildfire event in the western US forest and develops a method to quantify its impact on 
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SOS. Specifically, a buffer that is not influenced by the wildfire surrounding the burned 

area is used as a reference. By comparing the burned and buffer areas, the wildfire 

impacts on LSP magnitudes and trends are quantified.  

Objective 2: investigate the distribution of wildfire impacts on LSP and identify 

factors controlling the wildfire impacts by analyzing all the wildfires across the western 

US forests. 

Analyzing an individual LSP metric in an individual wildfire event from different 

studies has revealed an inconsistent pattern of wildfire impacts on LSP (Di-Mauro et al., 

2014; Van Leeuwen et al., 2010), but there is a lack of a systematic analysis of wildfire 

impacts on both LSP timing and greenness metrics over a large region. Using all the 

wildfires in the western US forests occurred during 2002-2014, this study conducts the 

first systematic analysis of forest wildfire impacts on the values and trends of LSP 

metrics including SOS, EOS, LOS, GMax, and GMin, which allows for the further 

identification of factors controlling the wildfire impacts, such as burn severity.  

Objective 3: compute the contributions of land cover composition change and 

other environmental factors to the spatial and interannual variations of LSP in a recently 

burned landscape in the western US forests. 

An accurate LSP modeling is critical to terrestrial biosphere models simulating 

the biological processes on the land surface and to accurate forecasts of vegetation 

responses to different future climatic scenarios (Richardson et al., 2013). Conventionally, 

climate and topography that are regarded as the primary controls of temporal and spatial 

variations of phenology, respectively. Meanwhile, increasing evidence showed the 

influence of land cover composition change, which can be caused by wildfires, on LSP 
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(Chen et al., 2018; Cho et al., 2017; Misra et al., 2018). However, the quantitative 

contribution of various environmental factors on LSP remains unclear. To fill the gap, 

this study selects a large wildfire event in the western US forests, where land cover 

composition experiences spatial and interannual dynamics, to investigate the 

contributions of land cover composition and other environmental factors to LSP 

variations. This investigation uses a machine learning method to model spatial and 

interannual variations of LSP with the change in land cover composition, climate data, 

and topography.  

Corresponding to the three objectives, three hypotheses are outlined as the 

following.  

 Hypothesis 1: the interannual trend of SOS timing becomes earlier after the 

occurrence of the 2002 Hayman Fire, Colorado, USA.  

The Hayman Fire, the largest wildfire in the recorded history of Colorado, which 

occurred in 2002, is used to perform a preliminary test of the wildfire impacts on LSP 

and its trend in the western US forests. As the Hayman Fire largely converted the 

evergreen conifer forests to shrub and grass patches, the SOS trend in the burned area is 

expected to be earlier after the fire occurrence.    

Hypothesis 2: wildfires in the western US forests change the LSP timing in both 

earlier and later directions with the largest change at the moderate burn severity.  

While LSP greenness is expected to decrease with wildfire burning, the wildfire 

impact on LSP timing is more complex with the changes in plant species composition and 

surface conditions caused by wildfire. Specifically, post-fire species which greens up 

earlier in spring and browns down in autumn than the pre-fire trees would cause an 
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earlier SOS and a later EOS in the post-fire landscape, and vice versa. Thus, the wildfire-

caused shifts on LSP timing could be divergent and vary greatly among different wildfire 

events in a large region such as the western US. Moreover, burn severity is expected to be 

an important control on the extent of LSP changes by wildfires. Specifically, higher 

levels of burn severity cause both more forest loss and severer soil damage (Lewis et al., 

2006), which facilitates and impedes the re-colonization of understory species, 

respectively. Thus, a trade-off between forest loss and soil damage could result in the 

largest shift in LSP timing at the moderate burn severity. 

Hypothesis 3: Land cover composition and weather are the dominant drivers of 

the spatial and interannual variations in LSP, respectively, in the burned area of the 2002 

Ponil Complex Fire, New Mexico, USA.  

The 2002 Ponil Complex Fire was the largest wildfire by 2002 in New Mexico. 

The pre-fire vegetation was dominated by evergreen tree species of Ponderosa pine and 

Douglas-fir (Rodman et al., 2019). After the fire, the quick recolonization of understory 

species, mostly Gambel Oak, in the severely burned area and the trees in the unburned 

area formed patches of various vegetation types. Because of the different adaptations of 

understory species and trees to post-fire environmental conditions and climate change, 

plant species experienced considerable interannual dynamics in the burned area. 

Considering the phenological difference among vegetation types, the land cover 

composition is expected to play a more important role in controlling the spatial variation 

of LSP when compared with weather and topography that are widely regarded as LSP 

drivers. However, weather is still expected to be the dominant driver of interannual 

variation in LSP.     
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1.3. Significance of the research  

This research, for the first time, systematically investigates the wildfire impacts 

on the magnitudes and trends of LSP at a regional scale and quantitatively analyzes the 

contribution of wildfire-caused land cover composition change, relative to other 

environmental factors, to controlling the LSP dynamics in the western US forests. The 

outcomes are expected to advance the field of LSP by (1) improving the understanding of 

the impacts of wildfire disturbance on LSP, (2) providing a novel methodology that is 

applicable to investigate the responses of LSP to various disturbances (e.g., 

insects/diseases, forest logging, grazing), (3) improving the understanding of the 

mechanism that various factors drive LSP dynamics, and (4) providing a prototype of 

quantifying the contributions of various drivers to the spatial and interannual variation of 

LSP using machine learning. 

1.4. Organization of the dissertation 

The dissertation consists of five chapters. Chapter 1 provides an overview of 

vegetation phenology, reviews the materials and methods for LSP detection, summaries 

recent changes in LSP, explains the drivers and mechanisms of LSP dynamics, addresses 

the wildfire impacts on LSP, outlines the research goal, objectives, and hypotheses, 

justifies the significance of this research, and introduces the organization of the 

dissertation.  

Chapter 2 addresses Hypothesis 1. It quantifies the impacts of the 2002 Hayman 

Fire in Colorado on the magnitudes and interannual trends of LSP by using an unburned 

buffer as a reference. The results were published: 
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Wang, J., Zhang, X., 2017. Impacts of wildfires on interannual trends in 

land surface phenology: an investigation of the Hayman Fire. 

Environ. Res. Lett. 12, 054008. https://doi.org/10.1088/1748-

9326/aa6ad9 

 

Chapter 3 addresses Hypothesis 2. It investigates the distribution of wildfire 

impacts on LSP and identifies factors controlling the wildfire impacts by analyzing all the 

wildfires across the western US forests. The results were published: 

Wang, J., Zhang, X., 2020. Investigation of wildfire impacts on land 

surface phenology from MODIS time series in the western US 

forests. ISPRS J. Photogramm. Remote Sens. 159, 281–295. 

https://doi.org/10.1016/j.isprsjprs.2019.11.027  

 

Chapter 4 addresses Hypothesis 3. It explores the role of land cover composition 

change caused by the 2002 Ponil Complex Fire in New Mexico on the spatial and 

interannual variations of LSP, relative to other environmental factors. The results were 

prepared in a manuscript that was submitted for review in Remote Sensing of 

Environment: 

Wang, J., Zhang, X., Rodman, K. Exploring the Contribution of Land 

Cover Composition to Spatial and Interannual Variations of Land 

Surface Phenology in a Recently Burned Landscape Using 

Machine Learning. 

 

https://doi.org/10.1088/1748-9326/aa6ad9
https://doi.org/10.1088/1748-9326/aa6ad9
https://doi.org/10.1016/j.isprsjprs.2019.11.027


18 

 

Chapter 5 summarizes the key findings in the tests of the three hypotheses in 

Chapters 2-4, discusses the implications and limitations and provides recommendations 

on potential future research.   
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Abstract  

Land surface phenology (LSP) derived from satellite data has been widely 

associated with recent global climate change. However, LSP is frequently influenced by 

land disturbances, which significantly limits our understanding of the phenological trends 

driven by climate change. Because wildfire is one of the most significant disturbance 

agents, we investigated the influences of wildfire on the start of growing season (SOS) 

and the interannual trends of SOS in the Hayman Fire area occurred in 2002 in Colorado 

using time series of daily MODIS data (2001-2014). Results show that the Hayman Fire 

advanced the area-integrated SOS by 15.2 days and converted SOS from a delaying trend 

of 3.9 days/decade to an advancing trend of -1.9 days/decade during 2001-2014. The fire 

impacts on SOS increased from low burn severity to high burn severity. Moreover, the 

rate of increase of annual maximum and minimum EVI2 from 2003-2014 reflects that 

vegetation greenness could recover to pre-fire status in 2022 and 2053, respectively, 

which suggests that the fire impacts on the satellite-derived SOS variability and the 

interannual trends should continue in the next few decades. 

 

2.1. Introduction  

Vegetation phenology, characterizing both physical changes (e.g., leaf 

development and abscission) in vegetation structure and the inherent seasonality of mass 

and energy flux, is considered to be a crucial regulator of ecosystem processes and 

feedbacks to climate (Gu et al., 2003; Richardson et al., 2012), as well as a sensitive 

bioindicator of monitoring climate change and carbon cycle (Richardson et al., 2013). In 

recent years, growing evidence has emerged that climate change is altering phenological 
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variation in terrestrial ecosystems across scales from individual species to landscapes 

(Angert et al., 2005; Richardson et al., 2013; Schwartz et al., 2006). As a result, 

vegetation phenology has been selected as one of the most effective and simplest 

indicators to track changes in the ecology of species in response to climate change 

(Pachauri et al., 2014) and is listed as one of the leading indicators of climate change 

identified by the United States (US) Global Change Research Program 

(http://www.globalchange.gov/) and US Environmental Protection Agency (EPA) 

(https://www.epa.gov/climate-indicators).   

Satellite data have been widely recognized as a powerful tool in identifying 

spatially distributed phenological indicators of climate change. Specifically, the start of 

growing season (SOS) has been extensively derived from the Advanced Very High 

Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) data, 

which have been available since 1981, based on various approaches and time periods (de 

Beurs and Henebry, 2005a; de Jong et al., 2011; Reed et al., 1994; White et al., 2009; 

Zhang et al., 2007; Zhou et al., 2001). The interannual SOS trend has been widely used to 

associate with regional or global climate change although the magnitude and direction of 

SOS trends varied greatly in different locations, time periods, spatial and temporal scales, 

and measuring methods (Jeong et al., 2011; Shen et al., 2014; Walther, 2004; Zhang et 

al., 2007; Zhou et al., 2001). 

Unlike the field observations of species-specific phenology, land surface 

phenology (LSP) is commonly used to refer to the area-integrated phenology of 

vegetation communities detected from satellite remote sensing (de Beurs and Henebry, 

2004). Within a satellite pixel, land surface components and plant species composite may 

http://www.globalchange.gov/
https://www.epa.gov/climate-indicators
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be strongly altered by land disturbances. This could lead to a great change of 

phenological timing within a satellite pixel and may in turn significantly modify the 

direction and magnitude of the interannual phenological trend. It is very likely that 

current detections of LSP indicators can be strongly influenced by land use, disturbance 

history, and human activity (Buyantuyev and Wu, 2012; de Beurs and Henebry, 2004; 

Romo-Leon et al., 2016; White et al., 2005). This issue severely limits our understanding 

of phenological variability and trends reflecting climate change across regional to global 

scales (White et al., 2005). Thus, it is necessary to separate the abrupt change caused by 

land disturbance from the gradual change associated with climate change (Verbesselt et 

al., 2010). 

Wildfire is one of the most important drivers of land disturbances across the 

world. Because fire size, severity and frequency have been increasing in many parts of 

the world during past decades (Marlon et al., 2012; Pechony and Shindell, 2010; 

Westerling et al., 2006), the impacts of wildfires on the changes of land cover types and 

soil properties (such as nutrients and water availability) have likely increased (Miller et 

al., 2013). Although some studies demonstrated the post-fire LSP variation (Di-Mauro et 

al., 2014; Fernandez-Manso et al., 2016; Sankey et al., 2013; Storey et al., 2016; van 

Leeuwen, 2008; Van Leeuwen et al., 2010), however, the quantitative impact of wildfire 

on LSP and its interannual trend has been barely investigated and remains poorly 

understood.  

This study aims to quantitatively explore the impact of wildfire on interannual 

LSP trend. Specifically, we detected LSP around the Hayman Fire in the central United 

States using a time series of daily Moderate-resolution Imaging Spectroradiometer 
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(MODIS) data from 2001-2014. We further quantified the difference between pre-fire 

and post-fire LSP for the areas with different levels of burn severity and calculated the 

LSP trends inside and outside the burn scar, with which the wildfire influence on LSP 

was explored. 

2.2. Methodology 

2.2.1. Burn severity and land cover data 

The Hayman Fire, which started on June 8 and ended on July 18, 2002, in 

Colorado’s Front Range (39°13'12.0"N, 105°17' 13.2"W; see Figure 2-1a), was the 

largest wildfire in the recorded history of Colorado with a burned area of 526 km2. We 

obtained the burned area and burn severity levels from the Monitoring Trends in Burn 

Severity (MTBS; http://www.mtbs.gov) map. These data were generated by comparing 

the pre-fire and post-fire Normalized Burn Ratio (NBR) derived from Landsat data at a 

30 m resolution (Eidenshink et al., 2007). Burn severity represents primarily the effect of 

fire on vegetation biomass levels, which is classified as the categories of unburned to 

low, low, moderate, high, and increased greenness. Areas affected by clouds, cloud 

shadows, and data gaps are labeled as non-processing. To match the LSP map (see 

subsection 2.2), the burn severity map was resampled to 240 m based on the majority of 

burn severity levels. The upscaled burn severity map contains 52.1% of high severity, 

17.5% of moderate severity, 4.3% of low severity, 2.5% of unburned to low, 0.7% of 

non-processing, and no area of increased greenness (Figure 2-1b). The pixels with non-

processing were excluded for further analyses because of limited coverage. To investigate 

the wildfire impact on LSP, we set up a buffer zone of 5 km outside the burn scar as a 

reference representing the area without disturbances.   

http://www.mtbs.gov/
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National Land Cover Database (NLCD; can be found in http://www.mrlc.gov) 

data in 2001, 2006 and 2011 were acquired to analyze the change of land cover types, 

which were before (in 2001) and after (in 2006 and 2011) the fire occurrence. The NLCD 

maps were produced using Landsat data with a spatial resolution of 30 m (Fry et al., 

2011; Homer et al., 2007, 2015). The NLCD land cover was reclassified into seven types 

that are forest, shrubland, grassland, developed land, cultivated land, barren, and water 

(Figure 2-1). NLCD 2011 was not shown here because the land cover type was almost the 

same as that in 2006 in our study region. Before the fire occurrence, forests were 

dominant, which mainly consisted of evergreen forests (mainly ponderosa pine-Douglas 

fir forest) with small proportions of deciduous and mixed forest (<2%) and a few shrub 

patches scattered. After the fire occurrence, the forests were mainly converted to 

shrublands with a small portion of grasslands around the burn perimeter, but some forests 

remained unchanged after the fire. The unchanged forests were mainly located in the 

areas with unburned/low and low burn severity, while the land cover conversions 

generally occurred in the areas with moderate and high burn severity. The proportion of 

30-m land cover in each 240-m grid of the upscaled burn severity map was further 

calculated and averaged based on the burn severity levels to quantify the burn severity 

influence on land cover conversion.  

http://www.mrlc.gov/
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Figure 2-1. The location of the Hayman Fire (a), burn severity map (grey is the buffer 

zone with a width of 5 km used as an unburned reference) resampled to 240 m (b), and 

National Land Cover Database maps in 2001 (c) and 2006 (d) at 30-m resolution.  

 

2.2.2. Phenology detection from satellite data 

To detect LSP in the Hayman Fire area, we first collected daily MODIS surface 

reflectance products (MOD09GQ, V006) in tile H09V05 at a spatial resolution of 250 m 

from 2001-2014. Reflectances at red and near-infrared bands in MOD09GQ were used to 

calculate daily two-band enhanced vegetation index (EVI2), which is equivalent to EVI 
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(Jiang et al., 2008). Compared with NDVI which combines reflectances at near-infrared 

and red bands to reflect vegetation greenness, EVI is developed by adding the blue band 

and other adjustment coefficients so that it is less sensitive to soil background brightness 

and atmospheric scattering contamination and does not saturate over high densely-

vegetated areas (Huete et al., 2002). After replacing the blue band (relatively low signal-

to-noise ratio) using the correlative properties of surface reflectance between the red and 

blue bands, EVI is modified to EVI2 that remains the advantages over NDVI (Jiang et al., 

2008). Further, MODIS land surface temperature (LST) products (MOD11A1, V005) and 

daily surface reflectance products (MOD09GA, V006) at a spatial resolution of 1 km 

were also collected for extracting LST and cloud and snow flags, respectively. The LST 

and cloud and snow flag data were simply downscaled to 250 m using a nearest neighbor 

approach. Because of missing MODIS data in early 2000 (1/1/2000-2/23/2000) and in 

June 2002, which severely impaired the accuracy of LSP detection, our study period was 

set to be 2001 (pre-fire) and 2003-2014 (post-fire), which was simply called as 2001-

2014 hereafter.  

The hybrid piecewise-logistic-model-based LSP detection algorithm (HPLM-

LPSD) was applied to retrieve the LSP metrics from the time series of daily EVI2 

(Zhang, 2015; Zhang et al., 2003). There were mainly five steps in implementing HPLM-

LPSD to retrieve phenological metrics for a target year: (1) establishment of a three-day 

EVI2 time series composited by selecting good quality observations, (2) determination of 

background EVI2 by calculating the mean of the 10% largest EVI2 values with cloud- 

and snow-free observations during a winter period defined using LST<278K (during the 

dormancy phase), (3) smoothing of the EVI2 time series by removing the local sharp 
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peak or trough with a Savitzky-Golay filter and a running local median filter, (4) 

reconstruction of the EVI2 time series using the hybrid piecewise logistic functions, and 

(5) detection of the phenological transition dates by identifying the day of year (DOY) 

which shows the maximal or minimal rate of change in the curvature along the 

reconstructed EVI2 time series. The temporal EVI2 observations and phenology 

detection were illustrated in Figure 2-2.  

 

Figure 2-2. An example of reconstructing temporal vegetative EVI2 trajectory and 

detecting SOS, minimum EVI2 (Min), and maximum EVI2 (Max) using HPLM-LPSD. 

Note that fill values (invalid observation in MOD09GQ) are not presented. The irregular 

variation in good quality EVI2 is likely associated with the residual cloud contamination 

and bidirectional reflectance distribution function. 

 

The confidence of phenology detections was quantified using the proportion of 

good quality (cloud- and snow-free) EVI2 (PGQSOS) around the SOS occurrence (Zhang, 
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2015; Zhang et al., 2009). To ensure the reliability of SOS detections, a filter of 

PGQSOS >40% was applied to select high confidence SOS pixels.  

In addition, the annual maximum and minimum EVI2 were also derived from the 

EVI2 time series reconstructed based on the hybrid piecewise logistic model. The 

minimum EVI2 is usually the background EVI2 during a winter period determined in 

step 2 of HPLM-LPSD. The resultant metrics were then resampled to 240 m using the 

nearest neighbor method. 

2.2.3. Investigation of wildfire impacts on SOS 

The impact of wildfire on SOS was quantitatively analyzed using two parameters. 

First, spatial SOS anomaly was calculated by comparing the SOS values inside the burn 

scar with those in the buffer zone (as a reference) outside the burn scar for individual 

years. 

SOS𝑎,𝑦 = SOS𝑖,𝑦 − SOS𝑜,𝑦                                             (1)  

where SOS𝑖,𝑦 and SOS𝑜,𝑦 are the area-integrated SOS (median of SOSs) inside the burn 

scar and in the buffer zone for year 𝑦, respectively, and SOS𝑎,𝑦 is the spatial SOS anomaly 

in year 𝑦. As the pre-fire record is only available in 2001, SOS𝑎,2001 was used as the pre-

fire measurement. The average spatial anomaly from 2003-2014 was used as the post-fire 

measurement. The spatial pattern of SOS anomalies in pre-fire and post-fire was further 

compared. 

Second, SOS trends were examined and compared for overall areas inside the 

burn scar and in the buffer zone and for individual pixels, respectively. Overall trends 

were determined from the time series of SOS during 2001-2014 inside the burn scar 

(SOS𝑖,𝑦) and in the buffer zone (SOS𝑜,𝑦), separately. The trends for individual pixels were 
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also calculated with a simple linear regression to evaluate the detailed spatial variations. 

The significance of the trends was determined using the single tailed student’s t-test. Note 

only the pixels (2,174 inside the burn scar and 2,317 in the buffer) with valid SOS 

detections (PGQSOS>40%) for the entire study period (2001-2014) were included for the 

trend analysis.  

2.3. Results 

2.3.1. Land cover change by wildfire and post-fire vegetation recovery 

Figure 2-3 presents the comparisons of proportions of 30-m land cover in each 

240-m pixel before and after the fire occurrence. This result, to some extent, indicated the 

land cover changes by wildfire burning with different severity levels. In the entire study 

area, natural vegetation (forests, shrublands and grasslands) accounted for more than 97% 

on average. In the buffer zone, the proportion of forests, shrublands, and grasslands was 

80%, 9% and 8%, respectively, with little difference between pre-fire and post-fire 

periods. In the burn scar, the proportion of forests, shrublands, grasslands was 90%, 7%, 

and 2% in 2001 and 30%, 60%, and 8% in 2006 and 2011, respectively. While evergreen 

and deciduous shrubs were not separated in shrublands, the forests were mainly 

evergreen, among which deciduous and mixed forests only accounted for 1.61% in 2001 

and 1.14% in 2006 and 2011. The forest proportion before the fire event was large in the 

regions with high burn severity while small in the low burn severity, indicating that the 

regions with more forests tended to be burned more severely. The forest proportion after 

fire occurrence decreased while the shrubland and grassland proportion increased with 

the burn severity level, indicating that higher burn severity caused more forests converted 
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to shrublands and grasslands. The land cover proportions in 2011 were almost the same 

as those in 2006.  

 

Figure 2-3. The proportion of 30-m land cover in each 240-m pixel in 2001, 2006, and 

2011 at different burn severity levels derived from NLCD maps (Outside is the buffer 

zone, Inside is the entire burn scar, and Unburned/low, Low, Moderate, and High 

represent different levels of burn severity). 

 

Figure 2-4 displays variations of annual maximum and minimum EVI2 values to 

demonstrate vegetation recovery through the post-fire period (2003-2014). The annual 

maximum EVI2 represented the overall vegetation growth in the Hayman Fire because 

almost all the plants reached their peaks during summer. In contrast, the annual minimum 

EVI2 revealed the recovery of evergreen plants because there were no green leaves on 

deciduous plants during winter. In 2001, the annual maximum and minimum EVI2 values 

inside the burn scar and in the buffer zone were very similar, demonstrating that their 

vegetation growing conditions were almost identical across the region before fire 

occurrence. The slight divergences appeared in the minimum EVI2, which might be 

caused by the variation in proportion of evergreen and deciduous plants. After the 

occurrence of the Hayman Fire in 2002, both maximum and minimum EVI2 values inside 

the burn scar dropped sharply but basically remained stable in the buffer zone. In the 
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post-fire period (2003-2014), the EVI2 inside the burn scar showed increasing trend, as 

the vegetation recovering and non-native plants invading. The rate of increase on average 

was 0.052 per decade in the maximum EVI2 and 0.029 per decade in the minimum EVI2. 

These rates reflected the recovery of total vegetation and evergreen trees, separately. The 

increase rate in EVI2s was similar across the areas with different levels of burn severity 

although the magnitude of EVI2 values varied. Based on the current recovery rates, the 

annual maximum and minimum EVI2 and would reach pre-fire status in 2025 and 2053, 

respectively.  

 

Figure 2-4. The spatially-averaged annual EVI2 time series with different burn severity 

levels from 2001 to 2014: annual maximum EVI2 (a) and annual minimum EVI2 (b) in 

the buffer zone (Outside) and inside the burn scar (Unburned/low, Low, Moderate, and 

High are the EVI2 with different burn severity levels and Inside is the EVI2 in the entire 

burn scar). 
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2.3.2. Impacts of fire on SOS in different levels of burn severity 

Figure 2-5 displays the spatial distributions of SOS around the Hayman Fire in 

one year before (2001) and after (2003) the fire occurrence. For the proper comparison, 

the SOS dates only represent the pixels with high confidence, which varied spatially from 

40 to 200 DOY. In both years, the southern and eastern regions tended to have later SOS 

dates, compared to the western and central parts. In the buffer zone, SOS was relatively 

stable from 2001 to 2003, although it was later in the west and east regions and earlier in 

the north and southeast. Inside the burn scar, SOS dates were generally advanced, except 

for small patches in the center where SOS was delayed.  

 

Figure 2-5. Spatial distributions of SOS (DOY) in 2001 (a) and 2003 (b). 

 

The spatial SOS anomaly in pre-fire (2001) and post-fire (2003-2014) revealed 

the fire impacts on SOS (Figure 2-6 and Table 2-1). Before the fire occurrence, the 

anomaly was 0 for the areas of entire burn scar relative to the buffer zone although it 

varied from -1.0 to 3.0 days for different local areas. After the fire occurrence, the 

anomaly became highly variant, which showed considerably early SOS within the burn 
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scar. The SOS anomaly during post-fire was strongly dependent on burn severity. It 

varied from -9.1 days in unburned/low severity to -18.5 days in high severity, and was -

15.2 days for the entire burn scar. The difference of spatial SOS anomaly between pre-

fire and post-fire was -8.1 days in unburned/low severity and -18.5 days in high severity. 

It was -15.2 days for the entire burn scar.  

 

Figure 2-6. Interannual variation in the spatial SOS anomaly (SOSa) for different burn 

severity levels (Unburned/low, Low, Moderate, and High) and the entire burn scar 

(Inside). 

 

Spatial SOS anomaly showed great variations interannually during the post-fire 

from 2003-2014 (Figure 2-6). The magnitude (absolute value) of SOS anomaly increased 

from 2003-2006, remained relatively stable from 2006-2011, and decreased from 2011-

2014. During the period of post-fire (12 years), the large anomaly occurred in 2006, 

2009, and 2012, with a value of over 21 days for the entire burn scar and as large as 32 

days in the high burn severity, which represented three troughs. In 2013 and 2014, the 
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anomaly in the areas of unburned/low severity returned to the pre-fire status, which was -

1.0 days in 2001 and -2.0 days in 2014.  

 

Table 2-1. The spatial SOS anomalies (unit: days) in pre-fire (2001) and post-fire (2003-

2014) and their differences for different burn severity levels (Unburned/low, Low, 

Moderate, and High) and the entire burn scar (Inside). 

Burn Severity Unburned/low Low Moderate High Inside 

pre-fire  -1.0    0.0    3.0    0.0    0.0 

post-fire -9.1 -10.7 -14.3 -18.5 -15.2 

Difference -8.1 -10.7 -17.3 -18.5 -15.2 

 

2.3.3. Impacts of fire on SOS trend in 2001-2014 

Figure 2-7 shows the comparison of the interannual variation in area-integrated 

SOS inside the burn scar and in the buffer zone during 2001-2014. Overall, SOS shifted 

early inside the burn scar relative to that in the buffer zone. The interannual variation in 

these two regions was similar in most years, particularly after 2009. However, the SOS 

trends during the study period were contrary for the buffer zone and burned area. It was 

3.9 days/decade in the buffer zone, while it was -1.9 days/decade inside the burn scar. 

The dramatic SOS advance occurred in 2012, in which SOS was 35 days and 21 days 

earlier than that in neighboring years inside burn scar and in the buffer zone, respectively.  
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Figure 2-7. Interannual variation in area-integrated SOS inside the burn scar (Inside) and 

in the buffer zone (Outside) at the Hayman Fire area. 

 

The SOS trend at the pixel scale was very complex. Figure 2-8 shows the pixel 

frequency with different trends inside the burn scar and in the buffer zone, respectively. 

In the buffer zone, SOS trend was positive in 55.4% of pixels (10.1% with p<0.1) and it 

was negative in 44.6% of pixels (7.0% with p<0.1). In contrast, the SOS trend inside the 

burn scar was positive in 41.4% of pixels (7.5% with p<0.1) and it was negative in 58.6% 

of pixels (10.0% with p<0.1). 
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Figure 2-8. The pixel frequency of SOS trend (days/year) in the buffer zone (a) and 

inside the burn scar (b) during 2001-2014. 

 

2.4. Discussion and conclusions 

This study examined the wildfire impact on LSP SOS in the Hayman Fire. 

Evergreen forests were dominant across the regions before fire occurrence. However, the 

fire occurrence in 2002 disturbed land surface, which resulted in the conversion of forests 

to shrublands and grasslands according to the NLCD in 2001 and 2006 (Figures 2-1 and 

2-3). As a result, LSP SOS inside the burn scar advanced dramatically, which was 15.2 

days on average, compared with the undisturbed buffer zone outside the burn scar (as a 

reference). The SOS advance was mainly associated with the fact that shrubs, grasses, 

and young trees usually unfold their leaves earlier than mature trees (Badeck et al., 2004; 

Seiwa, 1999). The LSP SOS was also strongly influenced by burn severity, which was 

quantified using the spatial SOS anomaly. In the areas with unburned/low burn severity, 

the vegetation disturbance was light, so that the SOS anomaly was generally less than 10 

days during the post-fire (2003-2014). However, it could be as high as 32 days in the high 
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burn severity. Note that the land cover conversion caused by wildfire could also change 

the local environment such as skin temperature because land surface energy balance 

varies among different vegetation types (Lee et al., 2011; Shen et al., 2015). The 

alteration of skin temperature could also have effects on vegetation phenology, which is 

worth investigating in the future but is beyond the scope of this study. 

The interannual variation in EVI2 is likely to track well the gradual progresses of 

vegetation regeneration. The annual minimum EVI2, representing the greenness of 

evergreen trees (including evergreen forests and evergreen shrubs) during winter period 

when there were no green leaves on deciduous species, showed a relatively low and 

stable rate of recovery through 2003-2014. This trend agrees well with field observations 

indicating the slow progress of regeneration by tree seedlings after the Hayman Fire 

burning, particularly in the high severity burned areas (Chambers et al., 2016; Rhoades et 

al., 2011). On the other hand, the annual maximum EVI2, representing greenness from 

shrubs, grasses, and forests, showed two stages from 2003-2014. It recovered rapidly 

from 2003-2007, coinciding with the field observations that understory plant 

communities returned back to the cover of the pre-fire levels by 2007 (Fornwalt and 

Kaufmann, 2014). The lower maximum EVI2 inside the burn scar relative to the 

references in the buffer was the result of low abundance of evergreen trees after the fire. 

After 2007, the increasing rate of the maximum EVI2 slowed down and became 

comparable to that of the minimum EVI2. This indicates that the interannual trend in both 

minimum and maximum EVI2 represented gradual regeneration of evergreen trees after 

the completion of understory recovery. Overall, the annual maximum and minimum 

EVI2 trajectories from 2003-2014 suggest that vegetation greenness could recover to pre-
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fire status in 2022 and 2053 at the current rates respectively. Of course, this projection is 

of high uncertainty because the influence of climate change and species interactions make 

the projection of forest recovery very complex (Miller et al., 2013). However, the 

recovery was not reflected in NLCD land cover maps in 2006 and 2011. This is mainly 

due to the NLCD classification system that defines forests as the areas dominated by trees 

generally higher than 5 m tall while young trees lower than 5 m are classified as 

shrubland (Homer et al., 2007). Tree growth is relatively slow in this area. For example, 

newly-established ponderosa pine in the Colorado Front Range takes more than 20 years 

to get 1-2 m tall (Huckaby et al., 2003) and 20-year old Douglas-fir in Northern Rocky 

Mountains is less than 2.4 m (Ferguson and Carlson, 2010). Moreover, land cover type is 

classified based on the entire pixel, which is unlikely to detect the subpixel variation of 

tree recovery.  

The forest recovery could further be connected to LSP SOS trajectories. The 

magnitudes of spatial SOS anomalies continuously increased during 2003-2007, 

corresponding to the increase of understory species coverage (Fornwalt and Kaufmann, 

2014). After 2007, the magnitudes of SOS anomalies showed decreasing trends, in 

response to the continuous regeneration of evergreen trees and relatively stable 

understory (Chambers et al., 2016; Rhoades et al., 2011). In particular, the magnitude of 

SOS anomalies became smaller after 2013, which is likely associated with the denser tree 

canopy causing less understory detected by satellites.   

The magnitude and direction of the interannual trend of LSP SOS were also 

significantly altered by the Hayman Fire. The interannual trend was converted from 3.9 

days/decade in the unburned buffer zone to -1.9 days/decade inside the burn scar during 
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2001-2014. It is likely that the fire impacts on LSP SOS will continue during the long 

recovery period. However, climate change may play a more and more important role in 

the interannual variation of SOS with the forest recovering. 

The time series SOS further revealed that extreme weather and climate events had 

relatively less profound impacts on vegetation phenology than fire events did in a long-

term period. In 2012, the contiguous United States experienced exceptionally warm 

spring and the most severe drought since 1930s (Wolf et al., 2016). The warmest spring 

greatly advanced the SOS across the region of the Hayman Fire, while the advanced days 

were much larger inside the burn scar than those in the buffer zone because of the 

difference in land cover types. On the other hand, severe droughts reduced the annual 

maximum EVI2 but had little impacts on the minimum EVI2 even in the following year. 

However, such dramatic impacts on vegetation phenology only appeared in the specific 

years (a short time period), and vegetation (including seasonal timing and magnitude) 

generally recovered quickly in the following few years. 

The result from this study suggests that it should be cautious against simply 

viewing LSP trends as indicative of climate change. Although the interannual LSP 

detected from AVHRR and MODIS data has been widely associated with climate change 

in regional or global scales (de Beurs and Henebry, 2005a; de Jong et al., 2011; Zhang et 

al., 2007; Zhou et al., 2001), land disturbances caused by both natural processes 

(including insect outbreak, storm damage, flooding, drought, and wildfire) and human 

activities (including urbanization and deforestation) are likely to interrupt the trends 

reflecting climate change. This is due to the fact that disturbances can result in rapid 

conversions of the vegetated land surface, including profound changes in community 
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composition as a result of biotic invasions, either through native range expansion, 

introduced species, or outbreaks of pathogens (Bradley et al., 2010; Mack et al., 2000). 

Even though the disturbance could be identified using the change detection approaches if 

it occurred several years away from either the start or end of a long-term phenological 

time series (de Beurs and Henebry, 2005b; Verbesselt et al., 2010), the detection would 

be very challenging in this study in which the disturbance happened only one year later 

than the begin of the time series. As a result, reliable phenological trends associated with 

climate change could be obtained if the pixels with land disturbances were explicitly 

subtracted.  

Finally, it should be aware that the impact of land disturbance on LSP is likely to 

act more widely. It is due to the fact that fire frequency and size have increased and the 

trend will continue (Westerling et al., 2006) and that human populations and their use of 

land have modified about one-third to one-half of the land surface and transformed 

another third or more of the terrestrial biosphere into rangelands and seminatural 

anthromes (Ellis, 2011; Vitousek et al., 1997). Thus, studies with longer temporal periods 

and larger spatial scales are still required to move forward.  
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Abstract 

Land surface phenology (LSP) characterizes the timing and greenness of seasonal 

vegetation growth in satellite pixels and it has been widely used to associate with climate 

change. However, wildfire, causing considerable land surface changes, exerts abrupt 

changes on the LSP magnitudes and great influences on the LSP long-term trends, which 

are poorly investigated. This study for the first time conducted a systematic analysis of 

the wildfire impacts on LSP by investigating 838 forest wildfires occurred from 2002-

2014 across the western United States. Specifically, we derived three LSP timing metrics 

that are the start (SOS), end (EOS), and length (LOS) of growing season and two LSP 

greenness metrics that are seasonal greenness maximum (GMax) and minimum (GMin) 

from daily time series of 250-m MODIS two-band enhanced vegetation index (EVI2) 

during 2001-2015. Burned area and burn severity were obtained from the Monitoring 

Trends in Burn Severity project. The results showed GMax and GMin were decreased at 

an extent of 0.063 and 0.074 EVI2, respectively. LSP timings presented diverse responses 

to wildfire occurrences. Absolute abrupt shift of > 2 days in SOS appeared in 73% of 

burned areas with 40% advances and 33% delays, the shift in EOS occurred in 80% of 

burned areas with 33% advances and 47% delays, and the shift in LOS occurred in 85% 

of the burned areas with 36% shortening and 49% lengthening. Moreover, the LSP 

changes were significantly influenced by burn severity with the largest impact on LSP 

timing at the moderate burn severity and on LSP greenness at the high burn severity. 

Finally, the phenological trends from 2001-2015 differed significantly between burned 

and unburned reference areas and the trend difference varied with the wildfire occurrence 

year. Overall, this study demonstrated that wildfires exert complex and diverse impacts 
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on LSP timing and greenness metrics and significantly influence LSP trends associating 

with climate change. The approach developed in this study provides a prototype to 

investigate LSP responses to other land disturbances associated with natural processes 

and human activities on the landscape.  

3.1. Introduction 

Land surface phenology (LSP) quantifies the seasonal dynamics of vegetated land 

surfaces from satellite data in terms of both timing and magnitude of vegetation 

greenness development (Zhang, 2018). LSP timing represents key transition dates in the 

annual cycle of vegetation growth and LSP greenness quantifies the magnitude of 

vegetation growth at a certain phenological stage. The most important phenological 

metrics during a vegetation-growing season are the LSP timing metrics of start (SOS), 

end (EOS), and length (LOS) of growing season and the LSP greenness metrics of 

greenness maximum (GMax) and greenness minimum (GMin). These metrics are 

calculated from the reconstructed temporal satellite greenness after removing abiotic 

noises (Wang et al., 2019; Yuan et al., 2018; Zhang, 2015; Zhang et al., 2003). Because 

vegetation phenology is a sensitive indicator of biological responses to climate change 

(Cleland et al., 2012; Ivits et al., 2012; Morisette et al., 2009), LSP provides an ideal 

basis for developing a climate indicator related to temporally consistent and spatially 

exhaustive measurements required for national-scale assessments (Morisette et al., 2009). 

Long-term records of vegetation phenology have greatly contributed to the understanding 

of the biological responses to climate change at regional to continental scales (Cleland et 

al., 2007; Körner and Basler, 2010; Parmesan and Yohe, 2003; Richardson et al., 2013; 

Walther, 2010). Indeed, interannual variations in LSP timing and greenness have been 
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widely revealed from long-term satellite data (Alcaraz-Segura et al., 2010; de Jong et al., 

2012; Jeong et al., 2011; Liu et al., 2017; Wang et al., 2016; Zhang et al., 2014), which 

show trends of advanced SOS, delayed EOS, lengthened LOS, and increased greenness 

because of regional or global warming climate (Richardson et al., 2013; Zhou et al., 

2003; Zhu et al., 2016).   

Current LSP-based climate indicators detected from satellite data can be strongly 

influenced by land disturbance including land cover and land use changes and human 

activities (Buyantuyev and Wu, 2012; de Beurs and Henebry, 2004; Romo-Leon et al., 

2016; White et al., 2005). This influence severely limits our understanding of the 

phenological variability and trends reflecting climate change across regional to global 

scales (Romo-Leon et al., 2016; White et al., 2005). The impact of land disturbance on 

the effectiveness of LSP as a climate indicator is due to the fact that LSP in a satellite 

pixel reflects the seasonal dynamics of a vegetation community with complex species. 

Changes in species compositions and abundances within a pixel can greatly alter 

remotely sensed LSP. As a result, changes in species compositions and abundances can 

interrupt the long-term phenological trends that are commonly considered to be driven by 

climate change at a regional scale (Zhang et al., 2019).  

Wildfire is one of the most important land disturbance agents across the world 

although variation of vegetation species compositions in a satellite pixel can be caused by 

other factors including climate extremes and agricultural and forestry management 

practices. Wildfire is particularly important with the increases in aspects of size, severity, 

and frequency in many parts of the world during past decades (Marlon et al., 2012; 

Pechony and Shindell, 2010; Westerling et al., 2006). Wildfire impacts on LSP have been 
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found in a few case studies by investigating both LSP timing and greenness metrics in 

forests with an abrupt burning and a gradual post-fire succession (Di-Mauro et al., 2014; 

Wang and Zhang, 2017). After a wildfire burning, LSP greenness decreases abruptly with 

the consumption of green vegetation and the extent of decrease usually increases with 

burn severity (Keeley, 2009; Lentile et al., 2007; Montorio Llovería et al., 2016). In 

contrast, the change of LSP timing metrics in post-fire years is very complex, which is a 

function of surface conditions, burn severity, and phenological characteristics between 

the early successional species (usually grasses and shrubs) recolonizing the burned area 

and pre-fire trees. Unlike the unanimous decrease in greenness, wildfire-caused diverse 

changes in LSP timing were revealed in a few existing studies. Specifically, analyzing 

Moderate Resolution Imaging Spectroradiometer (MODIS) time series shows that SOS in 

burned areas compared to unburned areas was delayed in Northern Italy alpine forests 

(Di-Mauro et al., 2014) and Mt Carmel, Israel (Van Leeuwen et al., 2010) but advanced 

in Colorado evergreen forests (Wang and Zhang, 2017).  

Wildfires also have great influences on long-term interannual trends in both LSP 

timing and greenness. The abrupt LSP changes by biomass burning and the post-fire 

recovery processes could alter the long-term LSP time series (Di-Mauro et al., 2014; 

Lhermitte et al., 2011; Meng et al., 2015; Wang and Zhang, 2017). However, many 

studies on LSP trends have not paid attention to the potential interruption of wildfire or 

other land disturbances (Julien and Sobrino, 2009; Li et al., 2019; Piao et al., 2014; Zeng 

et al., 2011; Zhang et al., 2007), while  some analyzed the LSP by excluding the 

disturbed areas (Jönsson et al., 2018; Melaas et al., 2016). We still know little about how 

large impacts that disturbances such as wildfires could impose on LSP trends, despite that 
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only a few studies targeted on it. For example, Wang and Zhang (2017) found that the 

2002 Hayman Fire resulted in more pixels showing an advancing trend of SOS in the 

burned areas than in the unburned areas based on long-term MODIS data. Sulla-Menashe 

et al. (2018) revealed that wildfire disturbance is the most common and important source 

that impacts the trend of annual-maximum Landsat Normalized Difference Vegetation 

Index (NDVI) time series in Canadian boreal forests. However, such studies are very 

limited and more insights are required to reveal the wildfire influences on LSP trends.  

Overall, three major shortages exist in current studies on the wildfire impacts on 

forest LSP. First, a few individual wildfire events were investigated with inconsistent 

results (Di-Mauro et al., 2014; Serbin et al., 2009; Van Leeuwen et al., 2010; Wang and 

Zhang, 2017), which impede our understanding of wildfire impacts on LSP timing 

metrics at a regional scale. Second, most of current studies focused on a single LSP 

metric without discussing the phenological responses described by both LSP timing and 

greenness metrics to wildfires. Third, while current studies simply presented the long-

term LSP in the burned and reference areas, there is a lack of efforts to quantify the 

wildfire impacts on the short-term abrupt LSP change and long-term LSP trends. 

To better understand the impacts of land disturbance on LSP, which could have 

significant interruptions to climate-driven LSP trends, this study conducts the first 

systematic analysis of forest wildfire impacts on LSP metrics of both timing (SOS, EOS, 

and LOS) and greenness (GMax and GMin) that are derived from MODIS data from 

2001-2015 across the western United States (US). The main goals of this study are (1) to 

characterize the wildfire impacts on the abrupt changes of LSP magnitudes at a regional 
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scale, (2) to investigate the LSP change with burn severity, and (3) to examine the 

wildfire impacts on long-term interannual LSP trends.  

3.2. Materials and methods 

3.2.1. Study area and wildfires  

The study area covers the western US where forests are mainly distributed in 

Western Cordillera and Upper Gila Mountains. The major forest type consists of 

Douglas-fir, ponderosa pine, and lodgepole pine along the altitudinal zonation (Zhu and 

Evans, 1994). Climate change in the western US is evidenced by the warming 

temperatures and frequent droughts, which has led to increases in extent and intensity of 

wildfires since the mid-1980s (Dale et al., 2001; Westerling et al., 2006). The trend is 

believed to be going to continue for decades.  

To analyze wildfire impacts on forest LSP from 2001-2015, we obtained burned 

areas, burn severity, and unburned references from Monitoring Trends in Burn 

Severity (MTBS) for the period of 2002-2014 (Eidenshink et al., 2007). Note that 

wildfires in 2001 and 2015 were excluded because (1) the wildfire impacts on LSP were 

quantified based on both pre-fire and post-fire LSP but there were no pre-fire LSP for 

wildfires in 2001 and no post-fire LSP for wildfires in 2015 (see Section 2.3.2), and (2) 

LSP metrics were not retrieved in the burned area for the wildfire occurrence year (see 

Section 2.2). As a wildfire event can burn different land cover types, forest pixels were 

selected from the National Land Cover Database (NLCD) maps in 2001, 2006, and 2011 

(Fry et al., 2011; Homer et al., 2007, 2015). Both MTBS and NLCD are derived from 

Landsat imagery at a spatial resolution of 30 m and stored in Albers equal-area conic 

projection. MTBS, through comparing the pre-fire and post-fire normalized burn ratio, 
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generates consistently burned area and burn severity (unburned/low, low, moderate, high, 

and increased greenness). NLCD provides 16-class land cover maps based primarily on a 

decision-tree classification. To be aligned with the MODIS data (see Section 2.2), MTBS 

maps were resampled to 240 m based on the majority of burn severity, and NLCD maps 

were aggregated to 240 m by calculating the proportions of different 30-m land cover 

types.  

We selected the burned and reference areas based on MTBS for each wildfire 

event following the five steps. (1) Performed the segmentation over the burned pixels and 

label each segment as an individual wildfire event. (2) Set up a 5-km buffer zone 

(unburned in the wildfire occurrence year) surrounding the burned area for each wildfire 

event. (3) Excluded the pixels burned more than once during 2002-2014 from the burned 

areas and the pixels burned in other years (not the given wildfire occurrence year) from 

the buffer areas (Figure 3-1). Pixels with burn severity of increased greenness and non-

processing in the burned areas were further excluded because of limited coverage (<3%). 

(4) Selected the pure forest pixels in the burned and buffer areas for each wildfire event 

based on the NLCD maps. The pure forest pixel at 240 m was defined as that with ≥80% 

30-m forest pixels. For a burned area, the NLCD map closely prior to wildfire occurrence 

was used. In the buffer area, pixels classified as forest in all years of 2001, 2006, and 

2011 were selected as reference pixels. (5) Calculated the areas of the burned and 

reference forest pixels for each wildfire event and excluded the wildfire events with a 

burned or reference forest area less than 10 km2 to minimize the edge effect.   
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Figure 3-1. Illustration of selecting burned and reference pixels. Multi-burned denotes 

the pixels burned more than once during 2002-2014 and Burned-OthYrs denotes the 

pixels burned in other years than the wildfire occurrence year. 

 

Finally, we obtained 838 wildfire events during 2002-2014 for further analysis 

(Figure 3-2). In all the burned and reference areas, 95.3% of pixels are evergreen forests, 

2.2% are deciduous forests, and 2.5% are mixed forests.  
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Figure 3-2. Selected forest fires occurring during 2002-2014. Wildfire size was 

calculated based on the forest pixels burned in each wildfire event. The color indicates 

the year of wildfire occurrence and the circle size varies continuously in representing the 

change of burned areas with five marks provided. 

 

3.2.2. LSP detection  

We used the hybrid piecewise-logistic-model-based LSP detection algorithm 

(HPLM-LPSD) to detect the five LSP metrics (SOS, EOS, LOS, GMax, and GMin) from 

daily 250-m MODIS surface reflectance (the actual pixel size in 250-m MODIS products 
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is 231.66 m) time series (Zhang, 2015; Zhang et al., 2003). The HPLM-LPSD algorithm 

fits the time series of vegetation index with piecewise logistic models and identifies the 

phenological transition dates using the maximal or minimal rate of change in the 

curvature along the reconstructed time series. Compared to various phenology detection 

methods (Jönsson and Eklundh, 2004; White et al., 1997; Yu et al., 2010), the HPLM-

LPSD algorithm has several advantages (Beck et al., 2006; Zhang, 2018): providing a 

simple, bounded, continuous function for modeling vegetation growth and decay 

processes, assigning each parameter to a biophysical meaning related to vegetation 

growth or senescence, performing superiorly to both Fourier-based and asymmetric 

Gaussian functions for fitting remote-sensing-based phenology development, being 

capable of describing either symmetric or asymmetric vegetation greenness development, 

simulating multiple cycles of vegetation growths flexibly, and providing no predefined 

thresholds in the identification of phenological transition dates. Therefore, we processed 

the phenology detections using the HPLM-LSPD with the detail described as follows 

(Figures 3-3 and 3-4). 
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Figure 3-3. Flowchart of land surface phenology detection using HPLM-LPSD. 

 

(1) A daily time series of two-band enhanced vegetation index (EVI2) with 

quality assessment (QA) was generated. EVI2 was used in this study because, compared 

to NDVI, it is less sensitive to soil background brightness and atmospheric scattering 

contamination and does not saturate over high densely-vegetated areas although both 

indices are based on reflectances at red and near-infrared bands (Huete et al., 2002; Jiang 
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et al., 2008; Rocha and Shaver, 2009). Moreover, EVI2 provides better phenology 

detections than NDVI when compared with the PhenoCam phenology (Rocha and 

Shaver, 2009), ground observed phenology from both national phenology network and 

AmeriFlux (Peng et al., 2017), and flux tower observations (Karkauskaite et al., 2017). In 

practice, a daily 250-m EVI2 time series was first calculated (Jiang et al., 2008) from 

MOD09GQ during 2001-2015. Then, the QA flags (including cloud and snow flags) for 

the daily EVI2 time series were derived from daily 1-km surface reflectance products 

(MOD09GA, V006), which were downscaled to 250 m using a nearest neighbor 

approach.  

 (2) To reduce the uncertainties and data volumes and improve the processing 

speed of LSP detection while to still remain the fine temporal resolution, the daily EVI2 

time series was aggregated to three-day composites by selecting the EVI2 value with the 

best quality within a three-day period using QA flags (Zhang et al., 2018). If there were 

more than one EVI2 value with the best quality in a three-day period, the maximum value 

was used. It is assumed that forest changes within a three-day period are negligible and 

three-day composites would not reduce the accuracy of phenology detection (Zhang et 

al., 2009).  

(3) To remove the effect of snow in the EVI2 data, a background EVI2 was 

determined and used to replace the snow-contaminated values. Specifically, the 

background EVI2 for each year was calculated as the mean of the 10% largest EVI2 

values with cloud- and snow-free observations during winter periods. The winter period 

was defined using daytime land surface temperature (LST ≤278 K) that was obtained 

from daily MODIS LST products (MOD11A1, V006). Although the vegetation growth 



79 

 

could happen at daily mean air temperature below 278 K (Shen et al., 2012),  the daytime 

LST threshold was only used to identify the time period when snow effect could take 

place, rather than to determine an exact winter period by date (Zhang et al., 2018). The 

EVI2 values less than the background EVI2 during the winter periods were considered as 

snow or cloud contaminated values and replaced by the background EVI2.  

(4) To reduce the noise (particularly local sharp peaks or troughs) impacts on 

phenology detection, EVI2 time series were smoothed using a Savitzky-Golay filter 

(Chen et al., 2004) and a running local median filter.  

(5) To reconstruct the EVI2 time series, the hybrid piecewise logistic functions 

were used to fit the time series (Zhang, 2015): 

 𝐸𝑉𝐼2(𝑡) = {

𝑐1

1+𝑒𝑎1+𝑏1𝑡 + 𝐸𝑉𝐼2𝑏     Favorable growth condition

𝑐2+𝑑𝑡

1+𝑒𝑎1+𝑏1𝑡 + 𝐸𝑉𝐼2𝑏      Vegetation stress condition
                            

(1)  

where t is the time in day of year (DOY), 𝐸𝑉𝐼2𝑏 is the background EVI2, and a, b, c, and 

d are the coefficients to be retrieved by fitting the logistic functions. The time series fit to 

the two functions in the equation (1) was compared with an agreement index to determine 

whether the plant suffers from stress or not (Zhang et al., 2018).  

(6) Based on the reconstructed EVI2 time series, the LSP dates were identified as 

the days with the maximal or minimal rate of change in the curvature. GMax and GMin 

were retrieved as the annual maximum and minimum values, respectively, in the 

reconstructed EVI2 time series. Thus, GMax represents the greenness from a vegetation 

community (all vegetation types) within a pixel while GMin indicates the evergreen 

vegetation without deciduous species. For SOS and EOS, the confidence of detections 
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was quantified using the proportion of good quality (cloud- and snow-free) EVI2 (PGQ) 

around the DOY of SOS and EOS, respectively (Zhang, 2015; Zhang et al., 2009). To 

ensure the reliability of LSP detections, a filter of PGQ >40% for both SOS and EOS was 

applied to select the high confidence pixels, for which the LOS is calculated as the 

difference between EOS and SOS.  

 

Figure 3-4. Illustration of retrieving LSP timing (SOS, EOS, and LOS) and greenness 

(GMax and GMin) metrics of an evergreen forest pixel (33°50’0’’ N, 107°28’10.8’’ W). 

 

The resultant 250-m LSP metrics were reprojected to Albers equal-area conic 

projection and resampled using the nearest neighbor method to match 240-m burned 

areas and land cover types. LSP metrics were then spatially aggregated, respectively, for 

burned and reference forest pixels for each wildfire event using the median of the high 

confidence pixels. Similarly, the spatial aggregation was also performed with different 

burn severity levels. As a result, the aggregated LSP metrics in each wildfire event were 

stratified into six groups: the entire burned area, burn severity levels of unburned/low, 
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low, moderate, and high, and the reference area. Only the groups that contained more 

than 50 pixels with high confidence LSP detections were considered valid and used in the 

following analysis. 

Note that LSP metrics were not retrieved in a burned area for the year of wildfire 

occurrence. It was because wildfires severely interrupted the regular temporal EVI2 

development and increased uncertainties in phenology detections. 

3.2.3. Investigation of wildfire impacts 

3.2.3.1. Abrupt wildfire impacts on LSP magnitude  

The wildfire impacts on the post-fire LSP magnitudes (or abrupt LSP change) 

were quantified by comparing the LSP in a burned area with that in the corresponding 

reference. This comparison could reduce the effects of landscape variation with different 

climate and other environmental factors across the western US forests. A reference was 

previously obtained from the burned area during pre-fires (Meng et al., 2015) or the 

surrounding unburned buffer during post-fires (Cuevas-gonzález et al., 2009; Fernandez-

Manso et al., 2016; Sulla-Menashe et al., 2018; Wang and Zhang, 2017; Yang et al., 

2017). The potential bias of LSP reference could be caused from the interannual variation 

in climate for the first method and from the inherent difference (of climate and 

topography) between the burned and unburned areas for the second method.  

In this study, we quantified the wildfire impacts on LSP magnitudes using both 

references obtained from the post-fire unburned buffer and the pre-fire burned area. 

Specifically, for each burned area (wildfire event occurred during 2002-2014), the spatial 

anomaly was first calculated as the LSP difference between a burned area and its 

reference area (Equation 2), which was calculated for the entire study period. The spatial 
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anomaly before the fire occurrence was averaged (Equation 3) to quantify the inherent 

difference (of climate and topography) between the burned and unburned areas, which 

should be zero for a homogeneous area. The wildfire-caused spatial anomaly was then 

calculated by removing the inherent difference (Equation 4). Finally, the abrupt LSP 

change impacted by a wildfire was calculated by averaging the spatial anomaly during 

the first three post-fire years (Equation 5), which was to minimize the uncertainties from 

LSP detections and other factors. 

𝐿𝑆𝑃𝑎𝑛𝑜𝑚(𝑦) = 𝐿𝑆𝑃𝑏𝑢𝑟𝑛(𝑦) − 𝐿𝑆𝑃𝑟𝑒𝑓(𝑦)                                         (2) 

𝐿𝑆𝑃𝑎𝑛𝑜𝑚,𝑝𝑟𝑒 =
∑ 𝐿𝑆𝑃𝑎𝑛𝑜𝑚𝑦<𝑦𝑓 (𝑦)

𝑛𝑝𝑟𝑒
                                                 (3) 

𝐿𝑆𝑃𝑓𝑖𝑟𝑒(𝑦) = 𝐿𝑆𝑃𝑎𝑛𝑜𝑚(𝑦) − 𝐿𝑆𝑃𝑎𝑛𝑜𝑚,𝑝𝑟𝑒                                        (4) 

𝐿𝑆𝑃𝑓𝑖𝑟𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

∑ 𝐿𝑆𝑃𝑓𝑖𝑟𝑒(𝑦)𝑦𝑓+3
𝑦𝑓+1

3
                                                      (5) 

In Equations 2-5,  𝐿𝑆𝑃 represents an individual phenological metric of SOS, EOS, 

LOS, GMax, or GMin; 𝐿𝑆𝑃𝑎𝑛𝑜𝑚(𝑦) is the spatial anomaly in year y for a fire event; 

𝐿𝑆𝑃𝑏𝑢𝑟𝑛(𝑦) is the area-aggregated (median value) LSP metrics in either the entire burned 

area or the area burned at a specific level of burn severity (see Section 2.2); 𝐿𝑆𝑃𝑟𝑒𝑓(𝑦) is 

the area-aggregated LSP metrics within its reference area in year 𝑦; 𝑦𝑓 is the wildfire 

occurrence year; 𝑦 < 𝑦𝑓 is the pre-fire years; 𝑛𝑝𝑟𝑒 is the number of years in the pre-fire 

period; 𝐿𝑆𝑃𝑓𝑖𝑟𝑒(𝑦) is the adjusted spatial anomaly in year y; and 𝐿𝑆𝑃𝑓𝑖𝑟𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean of 

𝐿𝑆𝑃𝑓𝑖𝑟𝑒(𝑦) during the three years after wildfire occurrence, representing the abrupt LSP 

change caused by a wildfire.  
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LSP data during at least three pre-fire and three post-fire years were required to 

ensure the reliability of calculating the abrupt wildfire impacts. Thus, the abrupt LSP 

change was only quantified for the wildfires (and different severity levels) occurred from 

2004-2012, in which 511 wildfire events with valid LSP detections were selected from a 

total of 533 wildfire events. 

3.2.3.2. Wildfire impacts on interannual LSP trends.  

The wildfire impacts on interannual trends of four LSP metrics (SOS, EOS, 

GMax, and GMin) were explored in two different ways. First, we compared the LSP 

trends between the burned and reference areas during the period of 2001-2015 for each 

wildfire event occurred during 2002-2014. This analysis was to quantify the extent of 

wildfires (land disturbances) impacts on LSP trends in a time series and to explore the 

difference of LSP trends with and without wildfire interruptions. The LSP trend in a 

reference area mainly represents the actual response of vegetation communities to climate 

change, which could be taken as a climate indicator. However, LSP trends in the burned 

areas represent the response of vegetation communities to the interaction of climate 

changes and wildfire impacts (abrupt changes and post-fire recovery). The LSP trends 

were calculated using data during the period of 2001-2015 because the trends could be 

affected by wildfires no matter which year the fire occurred. The wildfire events occurred 

in 2001 and 2015 were not included because the LSP was not detected for the year of 

wildfire occurrence (see Section 2.2). In that case, the LSP trends for 2001 and 2015 

wildfires only represent post-fire and pre-fire phenology variation, respectively.  

Specifically, the LSP trend was calculated using a non-parametric Sen’s slope and 

Mann-Kendall (MK) trend test, as LSP time series was not strictly met all the statistical 
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premises of linear regression such as the linearity and independence of observations (de 

Beurs and Henebry, 2004). Further, the interannual trend was only determined for the 

wildfire events where valid LSP detections were more than 10 years during 2001-2015. 

As a result, 786 out of 838 wildfire events occurred during 2002-2014 were selected to 

investigate the wildfire impacts on LSP trends. As a result, two sets (786 burned and 786 

reference areas) of LSP trends were compared using boxplots and the Student’s t-test. 

Moreover, because the year of wildfire occurrence in a given time series could have 

impacts on the interannual LSP trends, we analyzed the LSP trends by grouping wildfires 

based on the wildfire occurrence year. To increase wildfire samples with significant LSP 

trends for statistical analyses, wildfires occurred during 2002-2014 were stratified into 

five groups, i.e., 2002-2003, 2004-2006, 2007-2009, 2010-2012, and 2013-2014. Note 

that different numbers of years were assigned in these groups because the 13 wildfire 

years from 2002-2014 cannot be evenly divided into multiple groups. In each group, the 

LSP trends from 2001-2015 were compared between the burned and reference areas. 

Second, we compared the post-fire LSP trends in the burned and reference areas 

for the wildfire events occurred at the beginning (2002-2005) of the study period. This 

comparison was used to quantify the impacts of post-fire recovery process on LSP trends. 

The pre-fire LSP trends were not investigated because they could be well represented by 

the trends in unburned reference areas. The LSP trends during the post-fire periods were 

also determined using the Sen’s slope and MK trend test for the wildfire events with valid 

LSP detections for more than 10 years. As a result, 235 wildfire events occurred during 

2002-2005 were selected to compare LSP trends.  
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3.3. Results  

3.3.1. Abrupt changes of LSP magnitudes   

Figure 3-5 presents the abrupt changes of LSP magnitudes in SOS, EOS, LOS, 

GMax, and GMin for 511 wildfires occurred during 2004-2012 in the western US forests. 

SOS, EOS, and LOS were all altered by wildfires although the shift direction could be 

either earlier (shorter LOS) or later (longer LOS). The wildfire-caused SOS advance was 

mainly located in north California, southwest Montana, Wyoming, west Colorado, and 

New Mexico, where EOS delay and LOS lengthening mainly presented. In Idaho and 

south California, many wildfires caused a later SOS and EOS (Figures 3-5a, b). 

Specifically, 73% of burned areas showed an absolute shift of > 2 days in SOS (Figure 3-

6) with 40% advances and 33% delays. Among these, there were 58%, 11%, and 3% of 

burned areas caused an absolute SOS shift of 2-10 days, 10-20 days, and >20 days, 

respectively. In contrast, 80% of burned areas showed absolute shifts of > 2 days in EOS 

(Figure 3-6) with 33% advances and 47% delays. There were 52%, 18%, and 10% of 

wildfires caused an absolute EOS shift of 2-10 days, 10-20 days, and >20 days, 

respectively. As a result, 85% of burned areas showed an absolute change of >2 days in 

LOS with 36% shortening and 49% lengthening. Among them, absolute LOS change of 

2-10 days, 10-20 days, and >20 days appeared in 47%, 23%, and 14% of wildfires, 

respectively. 

As expected, the vast majority of wildfires caused reductions in GMax (97% 

wildfires) and GMin (99% wildfires). On average, wildfires caused significant reductions 

(𝑝 ≪ 0.001 based on a paired Student’s t-test) in GMax (-0.063±0.040 EVI2) and GMin 
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(-0.074±0.038 EVI2). The reduction was the largest in northern California, followed by 

that in the northwest and southeast regions (Figures 3-5d, e).   
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Figure 3-5. Spatial distributions of abrupt changes of LSP magnitude caused by wildfires 

based on the data in the first three post-fire years. (a) SOS, (b) EOS, (c) LOS, (d) GMax, 

and (e) GMin. 
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Figure 3-6. Histogram of abrupt LSP timing shifts. 

 

3.3.2. Abrupt LSP change with burn severity 

Figure 3-7 shows the abrupt LSP change varying with the level of burn severity. 

As wildfire-caused shifts of SOS, EOS, and LOS were divergent in the 

advancing/shortening and delaying/lengthening directions (Figure 3-5), analyzing all the 

wildfire events together would make the two directions cancel each other. Thus, wildfire 

events with LSP timing shifts in the two opposite directions were separately analyzed. 

For wildfires causing SOS advances, the absolute value of SOS shift increased with burn 

severity, reached the maximum (~6 days) in the moderate burn severity, and then 

decreased in the high burn severity (Figure 3-7a). For wildfires causing SOS delays, SOS 

shift kept increasing with the burn severity, which was about 7 days at high burn severity 

(Figure 3-7b). On the other hand, for wildfires with EOS either advances or delays, the 

absolute value of EOS shift reached the maximum (~8 days) in moderate and became 

smaller either towards high or unburned/low severity (Figures 3-7c, d). A similar pattern 

was found for LOS change. The absolute LOS change increased with the burn severity 

and reached 10 days at high burn severity for the shortening LOS events (Figure 3-7e) 

and it reached the maximum (~10 days) in the moderate burn severity for the lengthening 

LOS events (Figure 3-7f).  
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The influence of burn severity on LSP greenness was straightforward. As the vast 

majority of wildfires caused reductions in GMax and GMin, the abrupt greenness change 

averaged from all the fires was presented (Figures 3-7g, h). The extent of abrupt 

greenness decreases in both GMax and GMin increased with burn severity.   
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Figure 3-7. Wildfire impacts on LSP magnitude during the first three post-fire years 

against burn severity. SOS shifts averaged from wildfires causing SOS (a) advances and 

(b) delays; EOS shifts averaged from wildfires causing EOS (c) advances and (d) delays; 

LOS changes averaged from wildfires causing LOS (c) shortening and (d) lengthening; 

(g) abrupt GMax change from all wildfires; and (h) abrupt GMin change from all 

wildfires. X-axis represents the level of burn severity, where all, 1, 2, 3, and 4 represent 

the entire burned area and areas burned in unburned/low, low, moderate, and high 

severity, respectively. Error bar represents the standard error of mean.   
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3.3.3. Wildfire impacts on interannual LSP trends in 2001-2015   

Table 3-1 presents the LSP trends from 2001-2015 in the burned and reference 

areas for all the 786 wildfires burned in 2002-2014 to reveal the wildfire impacts on LSP 

and Figure 3-8 compares the trends in the burned and reference areas using boxplots. The 

two-sided Student’s t-test revealed that the trends of four LSP metrics (SOS, EOS, 

GMax, and GMin) in the burned areas were significantly different from those in the 

reference areas. Specifically, the significant trends in the burned areas were lower than 

those in the reference areas for all but GMax (Table 3-1 and Figure 3-8). Moreover, it 

shows that trends in the burned areas presented a wider range than those in the reference 

areas for all the LSP metrics (Table 3-1 and Figure 3-8). 
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Table 3-1. Summary of significant (p<0.05) trends of SOS, EOS, GMax, and GMin in 

the burned (B) and reference (R) areas for 786 wildfires. The unit of trend is days/year 

for SOS and EOS and EVI2/year for GMax and GMin. Wildfires_sig indicates the 

wildfires with significant LSP trends, among which wildfires+ and wildfires- indicate the 

wildfire events with significantly positive and negative trends, respectively. Numbers in 

parentheses are the proportion (%) of wildfire events, which are the proportion of 

wildfire_sig to all the 786 wildfires and the proportions of wildfire+ and wildfires- to 

relative to wildfires with wildfire_sig. 

 SOS EOS GMax GMin 

 B R B R B R B R 

 Frequency and proportion (%) of wildfire events 

Wildfires_sig  
20 

(2.54) 

15 

(1.91) 

115 

(14.63) 

98 

(12.47) 

161 

(20.48) 

229 

(29.13) 

198 

(25.19) 

336 

(42.75) 

Wildfires+ (35.00) (66.67) (5.22) (1.02) (75.16) (89.08) (36.36) (65.77) 

Wildfires- (65.00) (33.33) (94.78) (98.98) (24.84) (10.92) (63.64) (34.23) 

 Mean trends (days/year for SOS and EOS and EVI2/year for GMax and 

GMin) 

Wildfires_sig -0.96 0.63 -1.97 -1.54 0.0042 0.0024 -

0.0011 

0.0008 

Wildfires+ 1.73 1.80 1.57 1.62 0.0071 0.0030 0.0061 0.0023 

Wildfires- -2.41 -1.70 -2.16 -1.57 -

0.0048 

-

0.0025 

-

0.0053 

-0.0021 

 Trend at percentiles for wildfires_sig 

5th percentile -3.6 -1.9 -6.7 -4.1 -

0.0059 

-

0.0021 

-

0.0081 

-0.0030 

95th percentile 2.3 2.5 -0.1 -0.7 0.0137 0.0060 0.0110 0.0037 

5th-95th range 5.9 4.4 6.6 3.4 0.0196 0.0081 0.0191 0.0067 

 Difference of trends 

 -1.59* -0.43* 0.0018** -0.0019*** 

The difference of trends between the burned and reference areas was tested by a two-

sided Student’s t-test. ***: p<0.001; **: p<0.01; and *p<0.05. 
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Figure 3-8. Boxplot for significant (p<0.05) trends of SOS, EOS, GMax, and GMin in 

the burned and reference areas. 

 

For SOS, significant (p<0.05) trends were only found in 2.54% of the 786 burned 

areas and 1.91% of the 786 reference areas with the corresponding average trend of -0.96 

days/year and 0.63 days/year, respectively (Table 3-1). Among the areas with significant 

SOS trends, advancing trends occurred in 65.00% burned areas but only in 33.33% 

reference areas; delaying trends showed the opposite proportions (Table 3-1). The burned 

areas with advancing SOS trends were mainly distributed in the west region of the 

western US (Figure 3-9a), while the reference areas with delaying SOS trends were 

mainly located in the east region (Figure 3-9b).  

Relative to SOS, more fire events showed significant EOS trends that were 

14.63% in the burned areas and 12.47% in the reference areas (Table 3-1 and Figures 3-
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9c, d). Among the burned and reference areas with significant trends, the vast majority 

showed advancing trends (94.78% and 98.98% for burned and reference areas, 

respectively). However, the averaged trends in the burned areas were significantly 

reduced by 0.43 days/year (p<0.05) than those in the reference areas.  

 

Figure 3-9. Spatial distribution of SOS and EOS trends from 2001-2015 in the burned 

and reference areas. (a) SOS trends in burned areas, (b) SOS trends in reference areas, (c) 

EOS trends in burned areas, and (d) EOS trends in reference areas. Triangles are trends 

with a p<0.05. 

 

Over the reference areas with significant (p<0.05) trends (29.13% areas for GMax 

and 42.76% areas for GMin), GMax and GMin showed greening trends at a rate of 



95 

 

0.0024 and 0.0008 EVI2/year, respectively (Table 3-1). Specifically, 89.08% of 

significant GMax trends were greening trends while 10.92% browning; and 65.77% of 

significant GMin trends were greening trends while 34.23% browning. In burned areas, 

however, GMax trends increased by 0.0018 EVI2/year (p<0.01) compared to those in 

reference areas, while GMin trends decreased by 0.0019 EVI2/year (p<0.001). The 

burned areas with significant trends were reduced to 20.48% and 25.19% for GMax and 

GMin, respectively. Moreover, the burned areas with significant greening trends were 

reduced to 75.16% and 36.36% for GMax and GMin, respectively.  

Figure 3-10 presents the spatial distribution of LSP greenness trends in burned 

and reference areas. The comparison between the burned and reference areas shows that 

the greening trends of GMax and GMin were interrupted by wildfires, which resulted in 

browning trends (both GMax and GMin) occurring in a large amount of the burned areas, 

such as Northwestern Great Plains (western Montana and Wyoming), Klamath 

Mountains and Sierra Nevada in northern California, and Idaho Batholith. Although more 

reference areas showed browning trends in GMin than GMax, the pattern was greatly 

enhanced in the burned areas, particularly Middle Rockies (the junction of Montana, 

Wyoming, and Idaho), Idaho Batholith, Wasatch and Uinta Mountains (Utah), and New 

Mexico Mountains.  
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Figure 3-10. Spatial distributions of GMax and GMin trends from 2001-2015 in the 

burned and reference areas. (a) GMax in burned areas, (b) GMax in reference areas, (c) 

GMin in burned areas, and (d) GMin in reference areas. Triangles are trends with a 

p<0.05. 

 

Figure 3-11 shows that the magnitude and direction of wildfire impacts on 

phenological trends were a function of wildfire occurrence year. Note that SOS was 

excluded from this analysis as the limited number of burned areas with significant SOS 

trends (Table 3-1). As expected, unlike in the reference areas, the LSP (EOS, GMax, and 

GMin) trends in the burned areas were strongly influenced by the wildfire occurrence 

year. Specifically, EOS trends in burned areas reduced (absolute value) with the wildfire 
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occurrence year (Figure 3-11a). In other words, the rate of advancing EOS during the 

study period became smaller if the fire occurrence year became later. Compared to the 

reference areas, the burned areas had significantly larger advancing EOS trends due to 

wildfires occurred during 2002-2003 and smaller EOS trends due to wildfires during 

2013-2014.  

GMax and GMin trends in the burned areas varied with the wildfire occurrence 

year in a convex shape (Figure 3-11b, c) while the trends in the reference areas were 

relatively stable with a slight greenness increase. Specifically, both GMax and GMin 

showed the largest trend of greenness increase for the burned areas where wildfires 

occurred during the early years. The greening trends reduced and converted to browning 

trends when wildfire occurrence became later. In contrast, the largest browning trends 

(negative GMax and GMin) appeared around 2009. For the burned areas with fire 

occurrence in late years, the GMax and GMin returned from negative (browning) to 

positive (greening) trends. 
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Figure 3-11. Interannual trends against wildfire occurrence year. (a) EOS, (b) GMax, and 

(c) GMin. 

 

3.3.4. Wildfire impacts on post-fire LSP trends 

Figure 3-12 shows the comparisons between the post-fire LSP trends in the 

burned and reference areas for the wildfire events occurred in 2002-2005. Again, SOS 

was excluded from this analysis as only seven burned areas and five reference areas with 
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significant SOS trends. The significant (p<0.05) post-fire EOS trends in the burned areas 

were slightly lower than those in the reference areas, although the difference is not 

statistically significant (p>0.1). EOS was delayed by 7.3 days on average based on those 

burned areas with significant post-fire EOS trends. In contrast, the significant post-fire 

trends of GMax and GMin were larger (p<0.05) than those in the reference areas.   

 

Figure 3-12. Boxplot for significant (p<0.05) trends of EOS, GMax, and GMin during 

the post-fire years in the burned and reference areas for the wildfire events occurred in 

2002-2005. 

 

3.4. . Discussion 

 This study for the first time explored the wildfire impacts on the magnitudes and 

trends of both LSP greenness and timing metrics at a regional scale. There are several 

new approaches and important findings. First, a new approach was developed to 

quantify wildfire impacts on LSP. Previous studies used a reference based on either the 

pre-fire burned area or the post-fire unburned buffer to quantify the wildfire impacts on 
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LSP magnitudes (Cuevas-gonzález et al., 2009; Fernandez-Manso et al., 2016; Meng et 

al., 2015; Sulla-Menashe et al., 2018; Wang and Zhang, 2017; Yang et al., 2017), which 

would cause bias from either the interannual variation in climate or from the inherent 

spatial difference (of climate and topography). In contrast, this study quantified the 

reference by combining both the pre-fire burned area and the post-fire buffer area, which 

reduced the bias that existed in the single reference. This approach provides a prototype 

to investigate LSP responses to other land disturbances, such as direct human activities 

on the landscape (agricultural, forestry, grazing practices, and urbanization). Second, the 

combination of LSP timing and greenness could provide a comprehensive set of metrics 

to trace post-fire LSP development and recovery of understory and evergreen tree 

canopy, separately, which is impossible in previous studies that only use maximum 

satellite greenness (Chen et al., 2011; Cuevas-gonzález et al., 2009; Goetz et al., 2006; 

Veraverbeke et al., 2012; Yang et al., 2017). Third, the systematic analyses of 838 forest 

wildfires over the western US revealed that wildfire impacts on LSP and its trends are 

complex and profound. Fourth, moderate burn severity could have the strongest influence 

on LSP timing although LSP greenness reduced largest in high burn severity. Fifth, 

wildfires mostly advanced SOS, delayed EOS, and lengthened LOS although the patterns 

were diverse. Sixth, LSP trends in a given time period were significantly altered by 

wildfires and the magnitude and direction of wildfire impacts on LSP trends were a 

function of wildfire occurrence year. 

 

 



101 

 

3.4.1. Abrupt wildfire impacts on LSP magnitude 

Two LSP greenness metrics of GMax and GMin during a growing season 

represent the green vegetation cover from all vegetation (a mixture of both herbaceous 

and evergreen woody plants) and evergreen vegetation, respectively. Not surprisingly, 

both LSP greenness metrics of GMax (-0.063±0.040 EVI2) and GMin (-0.074±0.038 

EVI2) experienced an abrupt decrease with the consumption of biomass. A smaller 

abrupt decrease of GMax than GMin (Figure 3-7) was because the quick recolonization 

of forbs and herbs contributed more to GMax increase in the three years following fires. 

This indicates that GMin is a more effective indicator to reflect the wildfire impacts on 

evergreen forests.  

The abrupt changes in LSP timing caused by wildfires are divergent in the 

western US forests, which aligns well with the findings of wildfire-caused LSP shifts in 

many local studies (Di-Mauro et al., 2014; Serbin et al., 2009; Wang and Zhang, 2017). 

The diverse responses of LSP timing are mainly associated with the wildfire-caused 

changes in vegetation species and soil conditions (Cooper et al., 2017), which all vary 

among individual wildfire events. Particularly, the early successional species (usually 

understory species) recolonize the burned area after wildfires, which have different 

phenological characteristics from the pre-fire trees. As a result, LSP timing shifts after 

wildfire occurrences. An early successional species with earlier SOS and later EOS than 

the pre-fire trees would cause an advanced SOS, delayed EOS, and lengthened LOS, and 

vice versa. As phenological characteristics in early successional species vary greatly 

among individual wildfires across different ecosystems and locations, the LSP timing 
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shows divergent directions with spatial variability. Overall, this study revealed that more 

wildfires caused an earlier SOS, later EOS, and longer LOS (Figure 3-6).  

Further, burn severity, determining the degree of the post-fire soil degradation, 

has different effects on the diverse abrupt LSP changes in timing and greenness metrics. 

The amplitudes of LSP greenness (GMax and GMin) reduction increased monotonously 

with the level of burn severity (Figures 3-7g, h) because more vegetation biomass was 

consumed at a higher burn severity (Montorio Llovería et al., 2016). However, wildfire-

caused LSP timing shifts (except for SOS delays in Figure 3-7b and LOS shortening in 

Figure 3-7e) showed a convex relationship with burn severity and the maximum absolute 

phenological shift occurred in the moderate burn severity. This is likely associated with 

the following facts. Higher levels of burn severity caused more forest loss with more 

understory species colonization as shown in the NLCD maps (the results of NLCD 

changes were not shown here), which was expected to cause larger LSP shifts. However, 

higher levels of burn severity would cause more soil damage (a loss of organic matter and 

an increase of water repellency) (Lewis et al., 2006), which impairs the plant growth and 

impedes the re-colonization of early-successional plants (Lentile et al., 2007). Thus, a 

trade-off between forest loss with understory species colonization and soil damage results 

in the occurrence of the maximum absolute LSP shift at the moderate burn severity. Such 

a convex relationship is supported by a similar pattern that the species-specific post-fire 

forest recovery rate varies with the burn severity (Meng et al., 2018).  

Moreover, individual wildfires influence different timing metrics in varying 

extents. Generally, the impacts were higher in EOS than SOS as the absolute shift >10 

days appeared in 15% of burned areas for SOS but in 28% of burned areas for EOS. This 
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suggests that vegetation species during post-fire years are diverse showing 

distinguishable EOS, which is supported by some other studies. For example, Hill et al. 

(2010) found that the largest phenological difference among various tree species appears 

on imagery acquired in autumn by analyzing time series Landsat data. Similarly, 

Pasquarella et al. (2018) found autumn offset is capable of distinguishing different 

hardwood communities. The large abrupt change in LOS (>10 days in 37% of burned 

areas) was the result of SOS and EOS shift. It suggests that SOS and EOS were usually 

changed in opposite directions for individual wildfires which amplified the LOS changes.  

3.4.2. Wildfire impacts on interannual LSP trends.  

Long-term LSP trends, which are commonly used to indicate climate change, are 

expected to be interrupted by both the wildfire-caused abrupt change and gradual post-

fire recovery. This interruption was revealed by comparing the interannual LSP trends 

between the burned and reference areas, where the trends in the reference areas were 

considered as the actual response of western US forests to regional climate change.  

In this study, the LSP trends were determined based on a non-parametric Sen’s 

slope and MK trend test. Although the change detection methods, including Breaks For 

Additive Seasonal and Trend (Verbesselt et al., 2010), Detecting Breakpoints and 

Estimating Segments in Trend (Jamali et al., 2015), and LandTrendr (Kennedy et al., 

2010), can also be used to detect disturbance-related vegetation dynamic trends, they 

were not used in this study due to three reasons. First, the three change detection methods 

detect where or if breakpoints occurred without knowledge of impact factors. However, 

we, in this study, focus on how wildfire impacts on LSP magnitude and LSP trends 

because we know well the time and area of fire occurrences based on MTBS data. 
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Second, these methods are not able to manifest the impacts of wildfires on the LSP trend 

in an entire time series, as they only detect piece-wise trends (Jamali et al., 2015; 

Kennedy et al., 2010; Verbesselt et al., 2010). Third, the methods use parametric linear 

regression to determine the trends. Compared with the Sen’s slope and MK trend test 

used in this study, the parametric linear regression is less suitable to LSP time series 

which was not strictly met all the statistical premises of linear regression such as the 

linearity and independence of observations (de Beurs and Henebry, 2004).  

The impacts of post-fire recovery on LSP trends were evidently revealed from the 

trends in the post-fire years based on the wildfires occurred in 2002-2005 (Figure 3-12). 

In post-fire periods, the LSP metrics in the burned areas changed towards the pre-fire 

status, which is opposite to the direction of wildfire-caused abrupt changes. Specifically, 

as wildfires abruptly decreased the LSP greenness (GMax and GMin), the post-fire trends 

of LSP greenness were much larger in the burned areas than the reference areas. On the 

contrary, while EOS was overall delayed abruptly by the wildfires, the post-fire EOS 

trends in the long-term were advanced. This trend pattern is associated with the recovery 

process that the pre-fire tree species, which was substituted by understory species causing 

abrupt changes, would re-dominate gradually during post-fire under preferable climate 

conditions (Davis et al., 2019). 

The LSP trends in the entire study period (2001-2015) with wildfires occurred in 

2002-2014 revealed the impacts of integral wildfire impacts from both wildfire-caused 

abrupt change and post-fire recovery. The comparison of LSP trends in the entire study 

period between the burned and reference areas demonstrates that simply taking LSP 

trends as climate indicators could cause large uncertainties. This suggests that it should 
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be cautious to use the results from most current studies that associated the LSP trends to 

climate changes without excluding the land disturbance impacts (such as fires) (Julien 

and Sobrino, 2009; Li et al., 2019; Piao et al., 2014; Zeng et al., 2011; Zhang et al., 

2007),.  

The LSP trends were also greatly impacted by the wildfire occurrence year in a 

time series (Figure 3-11). For wildfires occurred at the beginning (2002-2003) of the time 

period (2001-2015), the trends were larger in the burned areas than the reference areas for 

GMax and GMin and smaller for EOS. It is because the LSP in post-fire years 

contributed largely to the LSP trends. With the wildfire occurrence becoming later, the 

contribution of LSP in post-fire years to LSP trends decreased while the abrupt LSP 

change plays a significant role. Usually, an abrupt change in the middle or late years in 

the time series is more likely to cause a trend towards the direction of the abrupt change 

(opposite to the direction of post-fire recovery), which is a browning trend for GMax and 

GMin and a delaying trend for EOS. For the wildfire occurred at the very end of the 

given period (2013-2014), the fire impact on LSP trend was relatively milder because the 

majority of the years (2001-2012) for trend calculation were pre-fire. The pattern of 

trends of GMax and GMin in the burned areas is similar to the greenness trends in 

Canadian boreal forests where the wildfire occurrence year caused variation in greening 

and browning trends (Sulla-Menashe et al., 2018).  

Integrating all the wildfires occurred during the study period (2002-2014), LSP 

trends in the burned areas showed significant differences from those in reference areas 

according to the two-sided Student’s t-test. Compared to reference areas, wildfires 

converted the direction of trends for SOS (from a delaying 0.63 to an advancing -0.96 



106 

 

days/year) and GMin (from a greening 0.0008 to browning -0.0011 EVI2/year); and 

wildfires enhanced the trends for EOS (from an advancing -1.54 to -1.97 days/year) and 

GMax (from a greening 0.0024 to 0.0042 EVI2/year). It should be noted that the trend 

values were averaged from all significant trends with wildfires occurred in different years 

in order to illustrate the wildfire impacts. The different wildfire impacts on the trends of 

GMax and GMin are likely due to two reasons. First, the recovery rate is larger for GMax 

than GMin because of the quick recolonization of forbs and herbs in the post-fire years. 

Second, compared with GMin, GMax showed more significant trends in burned areas 

with wildfires occurred at the beginning (2002-2003) and less in the middle (2007-2009) 

of the study period. Because greenness trends were larger in the burned areas than in the 

reference areas for wildfires occurred at the beginning and smaller for wildfires occurred 

in the middle, the averaged trends were increased for GMax while decreased for GMin. 

The wildfire impacts on LSP trends in 2001-2015 are also reflected in the other 

two aspects. First, the proportion of burned areas with significant trends of both LSP 

greenness and timing differed from those in reference areas. It is because the wildfire-

caused abrupt LSP change and the following recovery can either break, enhance, and 

impair an existing climate-driven trend, or form a new trend in a time series that 

originally showed no trend as reflected in the corresponding reference area. Second, 

trends of SOS, EOS, GMax, and GMin presented a wider range in the burned areas than 

those in the reference areas (Table 3-1 and Figure 3-8). This is likely due to the fact that 

wildfires caused large abrupt changes in an LSP time series and resulted in steeper trends 

(i.e. regression slopes).  
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3.4.3. Implications and limitations 

The systematic analysis of 838 wildfires occurred in 2002-2014 in the western US 

forests implies that wildfires might have significant influences on regional phenological 

trends. The wildfire-caused changes in trends of both the entire time series from 2001-

2015 and post-fire time series indicate that the wildfires occurred either during or before 

a given study period can influence the interannual trends. As a result, historical fires 

could have considerable impacts on LSP trends at a regional scale. Although the area 

influenced by wildfire in a single year is on average only 0.7% of total lands based on the 

MTBS data from 1984-2014, the total burned area during this period accounts for 12.3% 

forest area. Moreover, the wildfire impacts on LSP are likely widespread in the near 

future because the wildfire frequency and size in the western US is expected to increase 

in the future decades. Indeed, explicit understanding of wildfire impacts on LSP is critical 

for the investigation of actual LSP trends associating with climate change (Jeganathan et 

al., 2014; Zhang et al., 2019).  

More importantly, similar to wildfires, other land disturbance should be 

considered when using satellite-derived phenological trends to interpret global climate 

change. The impact of land disturbance on phenological trend could be more profound 

because land cover and land use change could be caused by natural processes (such as 

climate extremes and disturbances), direct human activities on the landscape (such as 

agricultural, forestry, grazing management practices, and urbanization), and indirect 

human activities affecting the landscape (such as modifications to hydrological routing 

and flow and soil quality). The impacts could be very significant because direct human 

activities have modified one-third to one-half of the planetary land surface and 
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transformed at least another one-third of the terrestrial biosphere into rangelands and 

seminatural anthromes (Ellis, 2011; Vitousek et al., 1997). This impact has also 

demonstrated in agricultural area (Zhang et al., 2019), where crop type change 

contributes two-thirds of long-term phenological trends in central USA.  

We acknowledge there are still a few limitations in this study. First, more 

investigation is needed to obtain a clear understanding of the factors determining the 

wildfire-caused abrupt changes in LSP, particularly timing metrics. Although this study 

investigated the effect of burn severity on abrupt LSP changes, other factors such as fire 

type can also have an influence. Specifically, in the western US forests, crown fires cause 

more tree mortalities and expose more understory vegetation while surface fires mainly 

burn surface litter, duff, and understory vegetation. As a result, different fire types cause 

different changes in vegetation species, soil conditions, and surface temperature, which in 

turn influence the abrupt LSP changes. Second, the wildfire impacts on LSP could vary 

with different forest types. This study only discussed the wildfire impacts in evergreen 

forests because the limited number of wildfires, burning deciduous and mixed forests in 

the western US in 2004-2012, impeded a statistically meaningful analysis. Indeed, it is 

needed in future to investigate the impacts of different forest wildfires on LSP. Third, the 

LSP trends in the burned areas are a result of other factors that include climate, 

topography, and burn severity. Although the direct influence of climate and topography 

on LSP variation is largely removed using references, their interactions with wildfire 

impacts could still influence LSP variation. Specifically, vegetation growth and 

phenology are influenced by post-fire climatic factors such as maximum surface 
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temperature and soil moisture (Davis et al., 2019) and burn severity that are dependent on 

topography (Alexander et al., 2006).  

Finally, validation of satellite-derived trends is critical but it is currently infeasible 

although a large number of articles have investigated satellite-derived phenological 

trends. To appropriately validate a phenological trend, the satellite pixel should spatially 

and temporally match well with field observations during a long time period. This kind of 

field observations is currently unavailable. Even though it should be cautious to interpret 

satellite-derived trends, the basic results from this study are reliable. It is due to the fact 

that the HPLM-LPSD has been extensively evaluated using observations from long-term 

ecological research, plots of the forest stands, network flux tower, PhenoCam, national 

phenology network, time series of Landsat data, and landscape phenology indices 

(Ganguly et al., 2010; Liang et al., 2011; Moon et al., 2019; Peng et al., 2017; Soudani et 

al., 2008; Zhang et al., 2006; Zhang, 2015; Zhang et al., 2018), that the interannual 

variation of post-fire LSP detected using HPLM-LPSD agreed well with field 

observations (Wang and Zhang, 2017),  and that the divergent wildfire impacts on LSP 

timing metrics from this study are aligned with many local studies (Di-Mauro et al., 

2014; Serbin et al., 2009; Wang and Zhang, 2017). However, to sufficiently evaluate the 

accuracy of phenological trends, direct validations are still needed in future although it is 

very challenging for a large area such as the western US.  

3.5. Conclusions 

This study for the first time investigated the wildfire impacts on both magnitudes 

and trends of LSP greenness and timing metrics based on 838 forest fires occurred from 

2002-2014 over the western US. Wildfire impacts on the magnitude of LSP metrics were 



110 

 

quantified using the average during the first three post-fire years, which reduced the data 

uncertainty for a single year. Analyses of abrupt LSP change indicated that LSP 

greenness metrics were decreased significantly (-0.063 EVI2 for GMax and -0.074 EVI2 

for GMin) and the decreasing extents increased with burn severity, where GMin and 

GMax represented the change for evergreen forests and overall vegetation greenness, 

respectively. Further, LSP timing metrics showed diverse responses to wildfire impacts 

because land surface properties and burn severity after wildfires varied greatly among 

individual burned areas. As a result, the absolute abrupt change was larger than 2 days in 

73% of burned areas for SOS, 80% for EOS, and 85% for LOS, which was larger than 10 

days in 15%, 28%, and 37% of burned areas for SOS, EOS, and LOS, respectively. 

Moreover, abrupt changes in LSP timing present a convex relationship with burn severity 

and the maximum shift of LSP timing appeared in the moderate burn severity. Finally, 

long-term trends of LSP metrics differed significantly between burned areas and 

unburned reference areas, particularly for SOS and GMin of which the trend directions 

were converted. Specifically, the unburned reference areas showed a delaying SOS trend 

(0.63 days/year) and greening GMin trend (0.0008 EVI2/year), while the burned areas 

showed an advancing SOS trend (-0.96 days/year) and a browning GMin trend (-0.0011 

EVI2/year). The trends from the burned areas were strongly dependent on the year of 

wildfire occurrence in a long time series. This suggests that wildfire impacts should be 

explicitly considered for taking LSP trends as an indicator of climate change and this 

study provides a prototype for investigating the impacts of land disturbances caused by 

natural process and human activities on LSP trends across various regional scales.  
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Abstract 

Land surface phenology (LSP) characterizes the seasonal dynamics of vegetation 

communities that compose individual satellite pixels. Although increasing evidence 

showed an effect of land cover composition within a pixel on LSP, it remains unclear to 

what extent land cover composition compares to and interacts with other drivers of 

phenology. To fill this gap, this study used a machine learning approach of the Boosted 

Regression Tree (BRT) to quantitatively assess the contributions of two land cover 

composition metrics, i.e., vegetation fractional coverage (VFC) and tree proportion to 

vegetation (TPV), and other factors mainly including climate and topography on the 

spatial and interannual variation in LSP throughout the 2002 Ponil Complex Fire in New 

Mexico, USA. Start (SOS) and end (EOS) of growing season were derived from 500-m 

MODIS data from 2001-2018 and 30-m Harmonized Landsat Sentinel-2 (HLS) data in 

2018. Land cover composition was derived from PlanetScope and National Agriculture 

Imagery Program imagery in 2018 and MODIS growing season greenness from 2001-

2018. BRT models of spatial variation in LSP showed that TPV was the most important 

predictor of SOS and EOS derived from both MODIS and HLS data in 2018. Further, the 

drivers of spatial variation in LSP are scale-dependent, indicating a greater role of 

topographic drivers at the finer scale (30-m HLS) than the coarser scale (500-m MODIS). 

BRT models for interannual LSP from MODIS in 2001-2018 indicated that the growing 

degree days (GDD) and the first freeze date (FFD) were the most important predictors of 

SOS and EOS, respectively. However, VFC was also a helpful predictor of interannual 

variation in both SOS and EOS. BRTs for both spatial and interannual variation in LSP 

also revealed that land cover composition exhibited a stronger effect on EOS than SOS. 
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This study demonstrates the utility of machine learning in modeling phenology and 

highlights the essential role of land cover composition in understanding the spatial and 

interannual variations of LSP. Our findings suggest that within-pixel changes in land 

cover composition should not be overlooked when investigating the change of land 

surface phenology. 

4.1. . Introduction 

Vegetation phenology is the science of studying periodic events in the life cycles 

of plant organisms (e.g., bud-burst, flowering, and abscission). As a crucial regulator of 

ecosystem processes and a sensitive bio-indicator of climate change, vegetation 

phenology has been studied extensively during the last few decades using various data 

sources including ground observations (Betancourt et al., 2005; Geng et al., 2020; Park 

and Mazer, 2018) and remote sensing measurements (Cao et al., 2015; Melaas et al., 

2016; Zhang et al., 2020, 2003). While ground observations provide a long-term first-

hand record of species-specific phenology, satellite remote sensing detects the area-

integrated phenology of vegetation communities within a pixel that is usually referred to 

as land surface phenology (LSP) (de Beurs and Henebry, 2004). The record of both 

ground phenology and LSP has revealed a general trend of earlier spring and later autumn 

phenological events in response to a warming climate (Morin et al., 2010; White et al., 

2009; Wu et al., 2016), but inverse trends of later spring and earlier autumn phenological 

events have also been observed (Fu et al., 2014; Jeong et al., 2011; Zhang et al., 2007). 

The direction and magnitude of recent phenological trends vary greatly among locations, 

periods, and plant species (Chmielewski and Rötzer, 2001; Piao et al., 2006; Primack et 

al., 2009).  
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The complex pattern of phenological variation is associated with various 

environmental factors that influence plant life cycles. Although temperature is generally 

regarded as the primary control, phenology is codetermined by other environmental 

factors such as photoperiod (Liu et al., 2018), precipitation (Jolly and Running, 2004; 

Shen et al., 2011), extreme weather events (Qiu et al., 2020; Van Wijk et al., 2003), and 

nutrient and water availability (Estiarte and Peñuelas, 2015; Fay et al., 2012). The 

seasonality of snow and freeze also influences vegetation phenology at mid- and high- 

latitudes and high elevations (Rodriguez-Galiano et al., 2016; Xie et al., 2017). 

Moreover, topographic properties (e.g., elevation and aspect) control the spatial pattern of 

vegetation phenology at a local to landscape scales (An et al., 2018; Misra et al., 2018; 

Xie et al., 2017).  

Besides the aforementioned common factors controlling vegetation phenology 

development, satellite-based LSP is also influenced by variation in land cover 

composition within pixels (Chen et al., 2018; Melaas et al., 2015; Misra et al., 2018; 

Wang and Zhang, 2017). Satellite pixels at moderate (10-250 m m) and coarse (>250 m) 

spatial resolutions (Thomas et al., 2020) usually consist of a mixture of land cover types 

and vegetation species with different phenological responses to environmental factors 

(Augspurger et al., 2005; Zhang et al., 2017). Thus, changes in sub-pixel land cover 

composition, which could be caused by natural processes (e.g., disturbances, climate 

extremes, and species invasion) and human activities (e.g., urbanization, deforestation, 

and crop rotation) (Zhang et al., 2019), can alter LSP values and trends. Indeed, 

increasing evidence has revealed the effect of land cover composition on LSP in the past 

few years. For example, Misra et al. (2018) found the end of growing season (EOS) was 
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spatially linked to the sub-pixel percentage of broadleaf forests. Wang and Zhang (2020) 

found wildfire-caused land cover change triggered abrupt shifts in both start of growing 

season (SOS) and EOS in the western United States (US) forests relative to the LSP in 

surrounding unburned areas. LSP variation associated with land cover change could have 

significant influences on LSP trends (Wang and Zhang, 2017; Zhang et al., 2019), which 

limits the effectiveness of phenological trend monitoring climate change. Although this 

impact has been noted in recent studies (Chen et al., 2018; Cho et al., 2017; Misra et al., 

2018; Wang and Zhang, 2020), we still lack quantitative analyses to reveal the 

contribution of land cover composition change to the LSP variation spatially and 

interannually compared to other drivers including climate and topography.  

Current approaches to modeling the effects of individual drivers on vegetation 

phenology typically involve conventional statistical methods based on linear regression 

(Luedeling and Gassner, 2012; Misra et al., 2018; Shen et al., 2015). However, it has 

been demonstrated that the response of phenology to environmental factors such as 

temperature and precipitation is often nonlinear (Cober et al., 2014; Sparks et al., 2000), 

which limits the efficacy of the conventional methods in modeling phenology. In 

contrast, non-parametric machine learning methods are particularly suitable in handling 

the nonlinearities in phenology modeling because they make few assumptions about the 

relationship between response and predictors. Moreover, machine learning methods 

outperform the conventional statistical methods in handling the complex interactions 

among a large number of related predictors. With these advantages, machine learning has 

been attracting increasing attention in ecological modeling and prediction (Bond‐
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Lamberty et al., 2014; De'ath, 2007). However, its application in phenological modeling 

is still rare (Czernecki et al., 2018; Dai et al., 2019; Rodriguez-Galiano et al., 2016).     

Using machine learning techniques, this study aims to quantitatively assess the 

relative contribution of land cover composition change on the spatial and interannual 

variation in LSP compared with other drivers mainly including climate and topography. 

To accomplish this objective, we performed a case study of LSP throughout the 2002 

Ponil Complex Fire, located in mountainous forests in New Mexico, USA. Within the fire 

area, climate, topography, burn severity, and post-fire succession vary widely, providing 

a useful opportunity to investigate the spatial and interannual dynamics of land cover 

composition on LSP (Laughlin et al., 2004; Wang and Zhang, 2017). Specifically, SOS 

and EOS were detected using the 500-m Moderate Resolution Imaging Spectroradiometer 

(MODIS) data for 2001-2018 and the 30-m NASA Harmonized Landsat and Sentinel-2 

(HLS) product in 2018, separately. The land cover composition in 2018 was derived from 

high-resolution imagery. By integrating land cover composition and other drivers in a 

machine learning model, we were able to assess the contribution of land cover 

composition change to the spatial and interannual variations of SOS and EOS when 

compared with other drivers. 

4.2. Study area  

The Ponil Complex Fire, which occurred in June 2002, is located at the 

mountainous forests of northeast New Mexico, USA (36°40'55.2"N, 105°02' 149.2"W; 

Figure 4-1a). The burn area covers 360 km2 that is primarily within the boundaries of the 

Carson National Forest and the Philmont Scout Ranch. A portion of the Ponil Complex 

Fire was re-burned in the 2018 Ute Park Fire, and this area (denoted in grey color in 
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Figure 4-1b) was excluded from our study. Based on the Monitoring Trends in Burn 

Severity (MTBS) map (see Section 3.1.3), the remaining burned area consists of 26.5% 

of unburned/low severity, 14.7% of low severity, 20.1% of moderate severity, 32.5% of 

high severity, 0.4% of increased-greenness (i.e., post-fire vegetation that exceeded pre-

fire cover), and 5.7% that was masked due to data gaps (i.e., non-processing; Figure 4-

1b). Areas with increased-greenness and data gaps were further excluded from our 

analyses. 

 

Figure 4-1. The location of the Ponil Complex Fire (a) and the Monitoring Trends in 

Burn Severity (MTBS) map (the grey area was removed from the study area because of 

overlapping with the Ute Park Fire) at 30 m (b). 

 

In the study area, elevation ranges from 2,018 to 2,835 m; monthly average 

temperature varies from -3.0 ℃ in January to 17.5 ℃ in July; and average annual 

precipitation is 471 mm with a peak in July (71 mm) and August (77 mm) (averaged from 

1980 to 2018 using Daymet data; see Section 3.3). The pre-fire vegetation was dominated 

by evergreen tree species (mostly ponderosa pine - Pinus ponderosa and Douglas-fir - 

Pseudotsuga menziesii) (Rodman et al., 2019). After the fire occurrence, understory 
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species including grasses and shrubs (mostly Gambel Oak – Quercus gambelii, a 

deciduous shrub species) quickly recolonized the burned area, followed by gradual but 

limited recovery of Ponderosa pine and Douglas-fir (Rodman et al., 2019). Because of the 

different adaptations of understory species and trees to fire and post-fire environmental 

conditions, vegetation species and land cover composition are widely variable throughout 

the burned area and changed throughout the study period.   

4.3. Materials and methods 

Data processing and modeling are described broadly in Figure 4-2. Briefly, after 

LSP was detected from MODIS and HLS data, the contribution of land cover 

composition to the spatial and interannual phenological variation was investigated using 

machine learning models. The spatial variation of LSP from MODIS and HLS in 2018 

was modeled using predictors of land cover composition, climate, topography, and burn 

severity. The interannual variation in LSP from MODIS in 2001-2018 was modeled using 

land cover composition and climatic predictors after all the variables were interannually 

normalized (i.e., scaled to z-scores using pixel-specific means and standard deviations) to 

attenuate the spatial variations (Rodriguez-Galiano et al., 2016). Details are described in 

the following sections.  



133 

 

 

Figure 4-2. Flowchart of modeling the spatial and interannual variations of LSP from 

MODIS and HLS. The “2018” alongside the arrows indicates the variables in 2018 for 

the spatial models, while the “normalized” represents that the variables were 

interannually normalized during 2001-2018 for the interannual models (see Section 3.5). 

 

4.3.1. Datasets 

4.3.1.1. MODIS and HLS NBAR products.  

The MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF) - 

Adjusted Reflectances (NBAR) product (MCD43A4, V006) provides daily surface 

reflectance corrected to a common nadir view geometry at the local solar noon zenith 

angle at a 500-m resolution (the actual pixel size is 463.32 m) in the sinusoidal projection 
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(Wang et al., 2018). The daily NBAR values are calculated by inverting multi-date, 

multi-angle, cloud-free, atmospherically-corrected surface reflectance observations 

acquired by MODIS instruments aboard both the Terra and Aqua satellites over a 16-day 

period with a kernel-driven semi-empirical BRDF model (Schaaf et al., 2002). The 

corresponding quality assurance (QA) flag including the retrieval quality (full inversion, 

magnitude inversion, and filled value) and the retrieval strategy (snow-covered and snow-

free) is provided in the MODIS NBAR/Albedo Quality product (MCD43A2, V006). We 

obtained the daily MODIS products for a single tile (h09v05) covering the study area 

from 2001-2018 from NASA (https://lpdaac.usgs.gov/dataset_discovery/modis/).  

The HLS project at NASA generates spatially co-registered surface reflectance 

products using observations from Operational Land Imager (OLI) aboard Landsat 8 

(launched in 2013) and Multi-Spectral Instrument (MSI) aboard Sentinel-2A (launched in 

2015) and Sentinel-2B (launched in 2017) satellites (Claverie et al., 2018). The seamless 

HLS surface reflectance products are based on a set of algorithms including atmospheric 

correction, cloud and cloud-shadow masking, spatial co-registration and common 

gridding, BRDF normalization, and spectral bandpass adjustment. As a result, the HLS 

provides NBAR and QA at 30 m for OLI and MSI separately. The QA indicates whether 

the NBAR is contaminated by snow/ice, aerosol, cloud shadow, cloud, adjacent cloud, 

and cirrus clouds. Since 2017, HLS data provide a nominal global median average revisit 

interval of 2.9 days by combining Landsat-8, Sentinel-2A, and Sentinel-2B (Li and Roy, 

2017). In this study, we obtained HLS surface reflectance data for tile 13SDA in a 

Universal Transverse Mercator (UTM) projection covering the study area in 2018 from 

NASA (https://hls.gsfc.nasa.gov/data/v1.4/).  

https://lpdaac.usgs.gov/dataset_discovery/modis/
https://hls.gsfc.nasa.gov/data/v1.4/
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4.3.1.2. The National Agriculture Imagery Program (NAIP) and PlanetScope 

imageries  

To compute the land cover composition within 500-m and 30-m pixels, we 

developed a 3-m land cover map using multi-temporal high-resolution imagery from the 

National Agriculture Imagery Program (NAIP) and PlanetScope (Table 4-1). NAIP, 

administered by the US Department of Agriculture’s Farm Service Agency (USDA - 

FSA), provides digital orthophotography with a spatial resolution of 0.5-2 m and an 

acquisition interval of two-five years in three-four bands – red (R), green (G), blue (B), 

and (in more recent collections) near-infrared (NIR) - in the continental US for free or 

low cost (USDA, 2015). In the study area, NAIP provides four-band imagery since 2011. 

PlanetScope is a CubeSat constellation in sun-synchronous orbits operated by Planet 

Labs providing daily observations across the Earth’s surface (Planet Labs Inc, 2020). The 

Planet Ortho Scene Product (Level 3B) provides the surface reflectance in R, G, B, and 

NIR at a spatial resolution of 3 m. In the study area, the PlanetScope record started in 

2016 with very limited acquisitions and became largely available since 2017. Because 

images from different seasons effectively distinguish different vegetation types (Persson 

et al., 2018; Tarantino et al., 2019), we used images in 2018 when NAIP was available 

and PlanetScope acquisitions were abundant for accurate classification. Specifically, we 

obtained the 0.6-m NAIP images covering the study area in June 2018 via Google Earth 

Engine (GEE) (https://developers.google.com/earth-engine/datasets/). For PlanetScope 

imagery, we surveyed all available data in 2018 and obtained five imagery collections 

(the acquisition interval in each collection is <8 days) covering the study area with 

https://developers.google.com/earth-engine/datasets/
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minimal cloud and snow contaminations from April to October in 2018 

(https://www.planet.com/).  

 

Table 4-1. High-resolution image collections used in the land cover classification. 

Platform Imagery acquisition date Spatial resolution Bands 

PlanetScope 4/2/2018 - 4/9/2018 3 m R,G,B, and NIR 

PlanetScope 4/18/2018 - 4/19/2018 3 m R,G,B, and NIR 

PlanetScope 5/13/2018 3 m R,G,B, and NIR 

NAIP 6/20/2018 - 6/22/2018 0.6 m R,G,B, and NIR 

PlanetScope 6/25/2018 - 6/26/2018 3 m R,G,B, and NIR 

PlanetScope 10/3/2018 3 m R,G,B, and NIR 

 

4.3.1.3. Other datasets 

We obtained data describing burn severity (BS) from the Monitoring Trends in 

Burn Severity (MTBS) program (www.mtbs.gov; Figure 4-1b). MTBS maps the location 

and severity of all large wildfires (> 200 ha in the eastern states and > 400 ha in the 

western states) that have occurred in the US since 1984 by comparing the pre-fire and 

post-fire Normalized Burn Ratio derived from Landsat data at a 30-m resolution 

(Eidenshink et al., 2007). In MTBS, thematic burn severity is represented using five 

discrete classes: unburned/low, low, moderate, high, and increased greenness; the areas 

without detections due to clouds, cloud shadows, and data gaps are denoted as non-

processing (Eidenshink et al., 2007).  

https://www.planet.com/
http://www.mtbs.gov/
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The Daymet meteorological data provide gridded estimates of daily weather 

parameters including minimum temperature (TMin), maximum temperature (TMax), 

precipitation (Prcp), and shortwave radiation (SRad) in North America at a resolution of 

1 km since 1980 using terrain-aided interpolation of observations from weather stations 

(Thornton et al., 2017). The MODIS snow cover product (MOD10A1) provides daily 

snow cover, derived using the normalized difference snow index, at 500-m spatial 

resolution (Hall et al., 2002). The Shuttle Radar Topography Mission (SRTM) offers a 

worldwide digital elevation model (DEM) at 1 arc-second (30 m) resolution (Farr et al., 

2007). We obtained Daymet records 2001-2018, MOD10A1 in 2001-2018, and SRTM 

data through GEE (https://developers.google.com/earth-engine/datasets/).  

4.3.2. Detection of LSP timing and greenness metrics of from MODIS and HLS  

LSP timing (SOS and EOS) and greenness (GMax and GMin) metrics were 

detected using a time series of the two-band enhanced vegetation index (EVI2) from 

MODIS in 2001-2018 and HLS in 2018. First, we computed a daily time series of EVI2 

(Huete et al., 2002; Jiang et al., 2008), as well as normalized difference vegetation index 

(NDVI) and normalized difference water index (NDWI) (Delbart et al., 2005; Gao, 

1996), from MODIS in 2001-2018 and HLS in 2018. We used NDVI and NDWI to 

reduce noise in the daily EVI2 time series (Zhang et al., 2020). Specifically, EVI2 values 

greater than 90% of NDVI (anomalously high) or smaller than NDWI (contaminated by 

land surface moisture such as snow and cloud) were excluded from the time series. 

Moreover, the quality of the remaining EVI2 values was labeled into “high quality”, 

“snow covered”, and “other quality” using the QA flags in MODIS and HLS products 

https://developers.google.com/earth-engine/datasets/
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(Zhang et al., 2018). Finally, the daily EVI2 time series were aggregated to three-day 

composites by selecting the maximum value with the best quality in the remaining EVI2.  

Second, the hybrid piecewise logistic model – land surface phenology detection 

(HPLM-LSPD) algorithm was applied on the three-day EVI2 composites (Zhang, 2015; 

Zhang et al., 2003), because this algorithm has been demonstrated to be effective in 

various ecosystems (Liang et al., 2011; Richardson et al., 2006; Wang and Zhang, 2017). 

The implementation of HPLM-LSPD on the three-day EVI2 composites included four 

steps. (1) A background EVI2 value for a given year was calculated for each pixel as the 

mean of the 10% lowest “high quality” EVI2 values within a two-year period including 

the preceding half-year, the given year, and the following half-year. EVI2 values lower 

than the background EVI2 value were primarily due to cloud contamination and were 

excluded from the following processes. (2) The time series were gap-filled using linear 

interpolation and smoothed using a Savitzky-Golay filter (Chen et al., 2004) and a 

running local median filter. (3) The smoothed EVI2 time series was fitted using the 

hybrid piecewise logistic function. (4) SOS and EOS were identified as the day of year 

(DOY) with the maximal and minimal rate of change in the curvature in the spring and 

autumn, respectively; and GMax and GMin were retrieved as the annual maximum and 

minimum values, respectively, in the HPLM fitted EVI2 time series.  

To evaluate the consistency of HPLM-LSPD performance on MODIS and HLS, 

we compared the retrieved SOS and EOS from these two datasets. We aggregated the 30-

m HLS LSP to the 500-m MODIS scale using the percentile aggregation, which uses the 

timing with a specific percentile from the cumulative HLS SOS or EOS frequency 

distribution within a MODIS pixel (Zhang et al., 2017). The aggregated LSP from this 
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approach represents the date at which vegetation greenup or senescence has occurred in 

the specified percentage of the HLS pixels. We determined the percentile by selecting the 

one which generates the smallest difference between the aggregated HLS and MODIS 

LSP from a series of candidates (10%-90% with an interval of 5%). The difference was 

measured by using the mean absolute deviation and the mean deviation.  

4.3.3. Computation of land cover composition  

Based on the multi-temporal high-resolution images collected in 2018 (Table 4-

1), we generated a 3-m land cover map using an unsupervised learning algorithm in GEE 

(Gorelick et al., 2017). The land cover was separated into three classes: tree, shrub/grass, 

and soil. Prior to classification, each of the six image collections in Table 4-1 was 

mosaicked and stacked into a multi-band composite spanning the entire study area. First, 

the NAIP image mosaic was resampled to 3 m to match PlanetScope. Next, we calculated 

brightness as the average of visible bands (RGB) and NDVI using the red and NIR bands 

from each image. Then, we merged these bands within each collection to create a six-

band image consisting of the following: reflectance in R, G, B, and NIR, brightness, and 

NDVI. Finally, we stacked the six images to develop a composite with a total of 36 bands 

at a resolution of 3 m, as no apparent horizontal shifts were shown among different 

images. The observations in the 36-band composite were partitioned into 40 clusters 

using the k-means clustering method which minimizes within-cluster variances (Arthur 

and Vassilvitskii, 2006). From this, the 3-m land cover map in 2018 was generated by re-

assigning each cluster to one of the three land cover classes: tree, shrub/grass, and soil. 

The classification accuracy was also evaluated with 1,000 validation samples that were 

randomly distributed in the study area by visually interpreting the 0.6-m NAIP imagery.    
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Two metrics of land cover composition [vegetation fractional coverage (VFC) and 

tree proportion to vegetation (TPV)] were computed at 500 m and 30 m by aggregating 

the 3-m land cover types in 2018. Specifically, VFC was calculated as the proportion of 

3-m vegetated (tree and shrub/grass) pixels within a coarser-resolution pixel (500 m or 30 

m); and TPV was calculated as the ratio of tree fractional coverage (similar to VFC but 

for trees only) to VFC in a coarser-resolution pixel. The computed VFC and TPV in 2018 

were used in modeling the spatial variation in LSP from MODIS and HLS.  

The interannual variation of VFC and TPV during 2001-2018 was required to 

assess the contribution of land cover composition to interannual LSP variations during 

the study period. As restricted by the limited availability of high-resolution imagery 

spanning multiple seasons, we were not able to directly retrieve the land cover 

composition for other years except 2018. In this study area, the dominant tree species 

(mostly Ponderosa and Douglas fir) are evergreen and shrub/grass species (mostly 

Gambel Oak) are deciduous. Considering there are no green leaves on deciduous shrubs 

and grasses during the winter period, the variation of GMin (the annual minimum of 

EVI2) is mainly caused by the evergreen trees in the study area; meanwhile, the variation 

of GMax (the annual maximum of EVI2) is caused by the entire (both evergreen and 

deciduous) vegetation. Thus, we assumed there were linear relationships between GMax 

and VFC as well as between GRatio (the ratio of GMin to GMax) and TPV. This 

assumption was based on the accordance of post-fire trajectories of GMin and GMax 

with the field-observed tree seedling and vegetation regeneration in a burned ponderosa 

pine – Douglas fir forest in Colorado (Wang and Zhang, 2017). In this study, the linear 

relationships were quantitatively verified using the GMax, GRatio, VFC, and TPV in 
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2018 (see Section 4.2). Thus, interannual variation in VFC and TPV was quantified using 

GMax and GRatio derived from MODIS during 2001-2018. We note that coefficients of 

the linear relationships between land cover composition and greenness metrics could vary 

spatially among pixels. However, the normalization process (see Section 3.5) should 

minimize the spatial variation in the coefficients. Therefore, we were able to directly use 

the normalized GMax and GRatio as surrogates for the interannual variations of VFC and 

TPV, respectively, during 2001-2018.   

4.3.4. Computation of environmental variables  

We computed a suite of topographical and climatic variables through GEE 

(Gorelick et al., 2017). Four topographical variables (elevation, slope, northness, and 

eastness) were generated using the SRTM DEM at 30 m. Northness and eastness were 

calculated as the cosine and sine of aspect, respectively. Both variables ranged from -1 to 

1, with 1 being due north or due east and -1 being due south or due west, respectively.  

Two types of climatic variables, preseason climates and dates of specific weather 

events, were computed using Daymet and MOD10A1 products. Preseason climates were 

weather variables that were either temporally averaged or accumulated during periods 

immediately preceding SOS and EOS. The temporally averaged climatic variables were 

daily maximum (TMax) and minimum (TMin) of air temperature during a preseason. 

These two variables could have different impacts on LSP because SOS may respond 

more strongly to TMax than TMin (Piao et al., 2015) and TMax and TMin may have 

inverse effects on EOS (Wu et al., 2018). The temporally accumulated climatic variables 

were growing degree days (GDD), the number of chilling days (CD), precipitation (Prcp), 

and shortwave radiation (SRad). GDD and CD have been widely used to characterize the 
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forcing and chilling requirements, respectively, for vegetation phenology development 

(Cong et al., 2017; Delpierre et al., 2018; Fu et al., 2015; Richardson et al., 2006). GDD 

was computed as the sum of daily mean temperatures (TMean; calculated as the average 

value of TMax and TMin here) above 0 ℃ and the CD was calculated as the number of 

days with TMean below 0 ℃ over a preseason. To calculate the preseason climates of 

GDD, CD, TMax, TMin, Prcp, and SRad, the preseason lengths were needed. Practically, 

the preseason length for each variable was determined by selecting the optimal preseason 

length from candidates of 30, 60, 90, 120, 150, and 180 days based on the phenological 

model performance (see Section 3.5).  

The dates of specific weather events included three metrics of snow seasonality 

that included the first snow date (FSD), last snow date (LSD), and duration of snow (DS).  

For SOS in a given year, we searched for FSD and LSD in an observation window 

starting on June 21st (the day with the longest day in a year) in the preceding year and 

ending on June 20th in the given year; and DS was defined as the number of days between 

FSD and LSD. For EOS in a given year, we searched for FSD in an observation window 

from June 21st in the given year to June 20th in the succeeding year. Similarly, we 

generated the metrics of freeze seasonality, which were the first freeze date (FFD), last 

freeze date (LFD), duration of freeze (DF). Freeze events were defined as dates with a 

TMin lower than -2 ℃ (Schwartz et al., 2006).  

4.3.5. Machine learning for LSP modeling  

The machine learning algorithm used to model the spatial and interannual 

variations of SOS and EOS was the boosted regression tree (BRT) in the “dismo” R 

package (Hijmans et al., 2017). BRT combines decision tree algorithms and boosting 
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methods and is able to handle the complex non-linearity and interactions among a large 

number of continuous and discrete predictors (Elith et al., 2008). BRT employs the 

strategy of cross-validation to minimize overfitting and optimizes the number of trees 

based on the deviance reduction in the cross-validation datasets. The performance of 

BRT modeling is usually evaluated by measuring the pseudo R2 that is calculated as the 

percentage of deviance in the cross-validation datasets explained by the model. In 

addition, BRT provides the relative importance (or contribution) of each predictor 

variable by measuring the percentage of improvements to the model with the splits of a 

variable average over all trees (Friedman and Meulman, 2003). Higher values of relative 

importance indicate stronger influences of a predictor on the response variable. Lastly, 

BRT can be used to generate the partial dependence plots that show the effect of a 

predictor on the response after accounting for the average effects of all other variables in 

the model.  

This study investigated SOS and EOS by developing three sets of BRT models, 

i.e., MODIS spatial models, HLS spatial models, and MODIS interannual models, 

separately. The predictor variables used in these models were stratified into six categories 

(Table 4-2): land cover composition, preseason climates, specific weather events, 

topography, fire-related factors (BS only), and phenological events (SOS only for 

modeling EOS). Predictors exclusively used for modeling SOS were CD, LFD, DF, LSD, 

and DS. Because spring phenology may have a positive effect on autumn phenology (Fu 

et al., 2018; Liu et al., 2016b), SOS was also used as a predictor for modeling EOS. 

Although all the categories were used in the spatial models, only predictors with 

interannual variations were applied for the interannual models, which were land cover 
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composition, preseason climates, specific weather events, and phenological events (for 

EOS modeling only).  

 

Table 4-2. Predictors used to model the spatial and interannual variations of SOS and 

EOS. 

Category Predictors Unit SOS  EOS 

Land cover 

composition 

Vegetation fractional coverage 

(VFC)* 

1 YES YES 

Tree proportion to vegetation 

(TPV)* 

1 YES YES 

Climate 

(preseason 

climates) 

Growing degree days (GDD) +* ℃•days YES YES 

Chilling days (CD)+* days YES NO 

Maximum temperature (TMax)+* ℃ YES YES 

Minimum temperature (TMin)+* ℃ YES YES 

Precipitation (Prcp)+* mm YES YES 

Shortwave radiation (SRad)+* kW/m2 YES YES 

Climate  

(specific 

weather 

events) 

First freeze date (FFD)* DOY  YES YES 

Last freeze date (LFD)* DOY YES NO 

Duration of freeze (DF)* days YES NO 

First snow date (FSD)* DOY YES YES 

Last snow date (LSD)* DOY YES NO 

Duration of freeze (DS)* days YES NO 

Topography 

Elevation  m YES YES 

Slope ° YES YES 

Northness 1 YES YES 

Eastness 1 YES YES 

Fire-related 

factors 

Burn severity (BS) No unit YES YES 

Phenological 

events 

SOS* DOY NO YES 

+These variables with all the six preseason lengths were used in an initial model and the 

ones with the respective optimal preseason lengths were used in the final model. 

*These variables were normalized and used in the MODIS interannual models.  
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Before developing the models, all the data used in the HLS spatial model were 

reprojected to the UTM 13N projection with a spatial resolution of 30 m, and all the data 

used in the MODIS spatial and interannual models were reprojected to the UTM 13N 

projection with an actual resolution of 480 m (close to the original MODIS pixel size 

463.32 m) using nearest neighbor resampling. To develop the HLS spatial models, we 

randomly selected 10,000 pixels from the total 337,714 pixels with valid observations to 

reduce computational requirements. For MODIS spatial models, 1,346 pixels with valid 

observations in 2018 were used to model SOS and EOS. For MODIS interannual models, 

only the pixels with valid observations in all the years (2001-2018) were used, resulting 

in a total 21,624 samples (pixel-years).   

To develop the interannual models, all the predictor and response variables were 

normalized within each pixel across years to attenuate the spatial variations(Rodriguez-

Galiano et al., 2016). The normalization was a linear transformation conducted for each 

pixel using the formula: 

𝑍𝑣𝑎𝑟𝑦,𝑝
=

𝑣𝑎𝑟𝑦,𝑝−𝑣𝑎𝑟𝑝̅̅ ̅̅ ̅̅ ̅

𝑆𝐷𝑝
                                                                  (1) 

where 𝑣𝑎𝑟𝑦,𝑝 is a variable observed in year 𝑦 and pixel 𝑝, 𝑣𝑎𝑟𝑝̅̅ ̅̅ ̅̅  is the multi-year average 

of the variable in pixel 𝑝, 𝑆𝐷𝑝 is the corresponding standard deviation across years in 

pixel 𝑝, and 𝑍𝑣𝑎𝑟𝑦,𝑝
 is the normalized value of the variable in year 𝑦 and pixel 𝑝. The 

normalized GMax and GRatio were directly used as surrogates of interannual variations 

of VFC and TPV during 2001-2018, respectively. This was reasonable because linear 

relationships existed between GMax and VFC as well as between GRatio and TPV (see 

Sections 3.3 and 4.2).  
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From the six preseason lengths ranging from 30 to 180 days (Section 3.4), the 

optimal preseason length was determined using the relative importance in the BRT 

modeling. Specifically, initial modeling was performed by including all the preseason 

lengths and the optimal preseason length for each preseason climate predictor was 

selected as the one with the largest relative importance. The BRT model was performed 

again using the preseason climates with the selected preseason lengths and other predictor 

variables.  

From the final BRT models, we computed the pseudo-R2 to evaluate the model 

performance and the relative importance to assess the contributions of individual 

variables. Based on the relative importance, we selected the most important variables that 

presented relative importance above the average (100%/n; n is the number of predictors) 

(Thorn et al., 2016). The partial dependence plots were generated for these most 

important variables in each model. We also generated partial dependence plots for TPV 

and VFC in each BRT model because land cover composition on LSP variations is one of 

the foci in this study.  

4.4. Results 

4.4.1. LSP detections from MODIS and HLS 

Figure 4-3 displays the spatial pattern of the SOS and EOS in 2018 derived from 

the 500-m MODIS and 30-m HLS. From both MODIS and HLS, most pixels showed an 

SOS ranging from DOY 90 to 150 with an average of around DOY 124. Most EOS 

values ranged from DOY 270 to 330 with an average of around DOY 300. Extremely late 

SOS (around DOY 200) was located in the western and southwestern edge of the study 

area from MODIS but scattered in the central and north parts from HLS. Extremely early 
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EOS (around DOY 240) was mainly found in the west edge from MODIS but the north 

parts from HLS. SOS and EOS also varied with burn severity (Figure 4-1b). An earlier 

SOS and later EOS pattern occurred in the high-severity regions to the south and west, 

while a later SOS and earlier EOS pattern was found in the areas with the unburned/low-

severity in the central and northern regions. Although these spatial patterns were similar 

in both MODIS- and HLS-derived phenology, HLS data revealed larger local variations 

in SOS and EOS varying with burn severity levels.  

 

Figure 4-3. Spatial patterns of MODIS-derived SOS (a) and EOS (b) and HLS-derived 

SOS (c) and EOS (d) in 2018. 
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SOS and EOS retrieved from the 500-m MODIS were comparable with those 

aggregated from the 30-m HLS using the “percentile aggregation”. For SOS, the 40th 

percentile obtained the lowest mean absolute deviation (9.4 days) and mean deviation 

(0.7 days); for EOS, the 60th percentile obtained the lowest mean absolute deviation (8.6 

days) and mean deviation (-0.4 days) (Figure 4-4). Larger discrepancies between the two 

datasets tended to occur in pixels with a later SOS (> DOY 150) and earlier EOS (< DOY 

270), where the land cover was mainly the unburned forests. 

 

Figure 4-4. Comparisons of SOS (a) and EOS (b) between MODIS and the aggregated 

HLS in 2018. HLS SOS and EOS were aggregated to the MODIS scale using the 40th 

and 60th percentile values, respectively, in the sorted HLS observations within a MODIS 

pixel. The dashed line indicates the 1:1 line. Notations: MAD = mean absolute deviation; 

and MD = mean deviation. 

 

Figure 4-5 shows the interannual variation of area-aggregated (using average) 

SOS and EOS across the burned area from MODIS during 2001-2018. LSP detection was 
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not performed in 2002 because of the interruption of the wildfire occurrence. Before the 

fire occurrence in 2001, average SOS was on DOY 127. After the fire occurrence, SOS 

increased slightly with an average value of DOY 130 during 2003-2018 but there was a 

high interannual variation. The earliest SOS (DOY 116) occurred in 2012 while the latest 

(DOY 158) occurred in 2013. In contrast, EOS occurred on DOY 277 in 2001 and was 

largely delayed after the wildfire with an average of DOY 300 and a relatively smaller 

interannual variation (ranging from DOY 293 and 311). 

 

Figure 4-5. Interannual variation in area-aggregated SOS and EOS from MODIS data 

during 2001-2018. The error bars indicate the spatial standard deviation in each year. The 

detection was not made in 2002 because of the wildfire occurrence. 

 

4.4.2. Land cover composition and greenness metrics  

Maps of land cover composition, i.e., vegetation fractional coverage (VFC) and 

tree proportion to vegetation (TPV), were developed by aggregating the 3-m 

classification of 2018 imagery (overall accuracy is 93.9%) (Figure 4-6). Spatial patterns 
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of VFC and TPV at 30 m and 500 m were similar despite a smoother appearance at the 

coarser resolution (500 m). The VFC and TPV were closely related to burn severity. In 

the areas that were unburned/low-severity, VFC and TPV tended to be higher because 

tree cover was relatively unaffected by the 2002 fire event. In severely burned areas in 

the southeastern and northwestern regions, TPV was lower due to near-total canopy loss 

during the fire and a slow rate of tree regeneration (Figures 4-6b, d); VFC was 

comparatively higher in the southeast part of the fire, indicating faster vegetation 

recovery than that in the northwest (Figures 4-6a, c). The southeastern portion of the burn 

area has greater dominance of Gambel oak, a species capable of quickly resprouting from 

established root systems after fire. The regression analysis indicated that VFC was 

significantly correlated to the seasonal greenness maximum (GMax; Figure 4-7a, R2 = 

0.31) and TPV was a function of the ratio of greenness minimum to maximum (GRatio; 

Figure 4-7b, R2 = 0.56) in 2018 MODIS pixels (500 m). These regressions suggest that 

GMax and GRatio could be used as proxies of VFC and TPV, respectively, during the 

2001-2018 MODIS era.   
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Figure 4-6. Spatial patterns of land cover composition from high-resolution imagery in 

2018: VFC (a) and TPV (b) at 500 m and VFC (c) and TPV (d) at 30 m. Note that the 

gaps in TPV at 30 m (d) were caused by a VFC value of 0. 
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Figure 4-7. The relationships between land cover composition from high-resolution 

imagery and MODIS-derived greenness metrics in 2018: GMax vs VFC (a) and GRatio 

vs TPV (b). 

 

Figure 4-8 presents the interannual variation of area-aggregated (using average) 

greenness of GMax and GRatio from MODIS data during 2001-2018. The range of 

variation is 0.21-0.31 for GMax and 0.53 to 0.71 for GRatio. The greenness abruptly 

decreased from 2001 to 2003 because of the fire in 2002, where the reduction was 29% 

and 8% for GMax and GRatio, respectively. In post-fire years of 2003-2018, GMax 

increased rapidly while GRatio slightly decreased and had a high interannual variation.  
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Figure 4-8. Interannual variation in area-aggregated GMax and GRatio from the 500-m 

MODIS data during 2001-2018. The error bars indicate the spatial standard deviation in 

each year. The detection was not made in 2002 because of the wildfire occurrence. 

 

4.4.3. MODIS and HLS spatial models 

Figure 4-9 shows the pseudo-R2 and relative importance of each predictor 

variable in MODIS and HLS spatial models for predicting SOS and EOS. For brevity, the 

four spatial models are abbreviated as MODIS-SOS for the MODIS spatial model for 

SOS, MODIS-EOS for the MODIS spatial model for EOS, HLS-SOS for the HLS spatial 

model for SOS, and HLS-EOS for the HLS spatial model for EOS. Our results indicated 

that MODIS models had higher pseudo-R2 values than HLS models. The highest pseudo-

R2 (0.63) was found in the MODIS-EOS, suggesting all the predictors explained 63% of 

the total deviances in the cross-validation datasets. In contrast, the lowest pseudo-R2 

(0.30) was found in the HLS-EOS.  



154 

 

 

Figure 4-9. The relative importance of predictor variables in MODIS and HLS spatial 

models derived from BRT analyses of the spatial variation in LSP: MODIS-SOS (a), 

MODIS-EOS (b), HLS-SOS (c), and HLS-EOS (d). The vertical dashed line marks the 

average importance. The pseudo-R2 is shown on the top of each sub-figure. Please refer 

to Table 4-2 for the full name of each variable. 

 

All the six categories of predictor variables (Table 4-2) were used for EOS 

modeling and five (SOS itself was excluded) for SOS. Combining the relative importance 

values from TPV and VFC indicated that land cover composition was the most important 

factor explaining the spatial variation in all models except for HLS-SOS, with the relative 

importance value of 33.1% (MODIS-SOS), 44.4% (MODIS-EOS), 28.7% (HLS-SOS), 

and 45.5% (HLS-EOS). In particular, TPV was the most important predictor in all models 

with relative importance values of 26.7% (MODIS-SOS), 38.9% (MODIS-EOS), 16.3% 

(HLS-SOS), and 40.4% (HLS-EOS). VFC also had above-average relative importance in 

explaining SOS (Figures 4-9a, c) but not EOS (Figures 4-9b, d) from MODIS and HLS.  

Northness, a topographic variable, was the second most important predictor of 

MODIS-SOS (9.4%), HLS-SOS (15.8%), and HLS-EOS (11.0%). Elevation also had 
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above-average relative importance in all the spatial models except for HLS-EOS. 

Summing the relative importance values of elevation, slope, northness, and eastness 

indicated that the topographic variables together explained 26.8% (rank 3 among 5 

categories), 17.8% (rank 3/6), 41.8% (rank 1/5), and 45.5% (rank 2/6) of deviance, 

respectively, in modeling MODIS-SOS, MODIS-EOS, HLS-SOS, and HLS-EOS. 

The preseason climates had relative importance values of 29.9% (rank 2/5), 

27.8% (rank 2/6),  20.9% (rank 3/5), and 18.2% (rank 3/6) in the four models, 

respectively. Though no single preseason climate variable had above-average relative 

importance in all the four models, precipitation and SRad were the two most important 

variables in the preseason climate category. Other categories of predictors including dates 

of specific weather events, fire-related factors (burn severity), and phenological factors 

(SOS) together explained 10.2%, 10.1%, 8.7%, and 9.2% of the deviance of the response 

variable in modeling MODIS-SOS, MODIS-EOS, HLS-SOS, and HLS-EOS. 

Figure 4-10 shows the partial dependence plots of the most important predictors 

(relative importance value is above average) of MODIS-derived SOS and EOS values. In 

the MODIS-EOS model, VFC was also included although the importance value was 

below average. SOS occurred later as TPV increased (Figure 4-10a). Similarly, increases 

in precipitation (Figure 4-10d) and elevation (Figure 4-10e) were associated with a later 

SOS.  In contrast, increasing northness (Figure 4-10b) and TMax (Figure 4-10h) were 

associated with an earlier SOS. SOS was earlier at intermediate levels of SRad (Figure 4-

10c), and SOS had no clear relationship with VFC (Figure 4-10f) or slope (Figure 4-10g). 

EOS occurred later with increases in TMin (Figure 4-10j), higher precipitation (Figure 4-

10k), and lower values of TPV (Figure 4-10i). Similarly, EOS occurred later with earlier 
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SOS (Figure 4-10l), at higher elevations (Figure 4-10m), and higher values of VFC 

(Figure 4-10n). Note that partial dependence plots for HLS models are not presented here 

because they showed similar trends to MODIS models for the most important variables. 

 

Figure 4-10. Partial dependence plots for the most important predictors in BRT analyses 

of spatial variation in MODIS-derived SOS (the left panel) and EOS (the right panel). 

Variables for SOS include TPV (a), northness (b), SRad (c), Prcp (d), elevation (e), VFC 

(f), slope (g), and TMax (h); variables for EOS include TPV (i), TMin (j), Prcp (k), SOS 

(l), elevation (m), and VFC (n). The unit of each variable can be found in Table 4-2. The 

numbers in the parentheses are the relative importance values. The red lines are the 

smoothed partial dependence functions. X-axis rugs mark the deciles in the distribution 

of values for each predictor variable. Please refer to Table 4-2 for the full name of each 

variable. 
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4.4.4. MODIS interannual models 

Figure 4-11 shows the pseudo-R2 and relative importance of each predictor 

variable in the interannual models of MODIS-SOS and EOS. Compared to the BRT 

models of spatial variation in LSP (Figure 4-9), MODIS interannual models had higher 

pseudo-R2 values (0.80 and 0.76 for SOS and EOS, respectively). We used three 

categories of predictors (land cover composition, preseason climates, specific events) for 

the SOS model and four categories (adding the phenological variable - SOS) for EOS. 

Summing up the relative importance values in each predictor category, we found that 

predictors related to preseason climate were most important in modeling interannual 

variations of SOS (64.5%) and EOS (49%), followed by specific weather events (21.3% 

for SOS and 23.7% for EOS), land cover composition (14.1% for SOS and 20.1% for 

EOS), and phenological (7.21% for EOS). The predictors with above-average importance 

values in modeling SOS were the growing degree days (GDD; 25.1%), TMax (11.3%), 

chilling days (CD; 10.6%), and vegetation fractional coverage (VFC; 7.8%). The 

predictors with above-average importance values in modeling EOS were the first freeze 

date (FFD; 18.2%), SRad (14.8%), VFC (11.3%), and GDD (11.1%).  
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Figure 4-11. The relative importance of the predictor variables in MODIS interannual 

models: SOS (a) and EOS (b). The vertical dashed line marks the average importance. 

The pseudo-R2 is shown on the top of each sub-figure. Please refer to Table 4-2 for the 

full name of each variable. 

 

Figure 4-12 gives the partial dependence plots for the most important variables 

(above-average relative importance) of interannual variation in MODIS-SOS and EOS 

(normalized using pixel-specific means and standard deviations). TPV (for SOS and 

EOS) and SOS (for EOS) were also included although the importance values were below 

average. SOS occurred later with increases in VFC (Figure 4-12d) and TPV (Figure 4-

12e). In contrast, SOS occurred earlier with lower GDD (Figure 4-12a), lower TMax 

(Figure 4-12b), and fewer CD (Figure 4-12c). EOS occurred later with a later FFD 

(Figure 4-12f) and SOS (Figure 4-12k), and occurred earlier with higher SRad (Figure 4-

12g), VFC (Figure 4-12h), more GDD (Figure 4-12i), and greater TPV (Figure 4-12j).  
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Figure 4-12. Partial dependence plots of the normalized SOS (the left panel) and EOS 

(the right panel) predicted using the MODIS interannual models with the selected 

important variables. Variables for SOS include GDD (a), TMax (b), CD (c), VFC (d), and 

TPV (e); variables for EOS include FFD (f), SRad (g), VFC (h), GDD (i), TPV (j), and 

SOS (k). The numbers in the parentheses are the relative importance values. The red lines 

are the smoothed partial dependence functions. X-axis rugs mark the deciles in the 

distribution of values in each predictor variable. Please refer to Table 4-2 for the full 

name of each variable.  

4.5. Discussion 

Using the site of the 2002 Ponil Complex Fire, a dynamic landscape with broad 

spatial and interannual variation in land cover composition, this study for the first time 

quantitatively explored the role of land cover composition (vegetation fractional coverage 

and tree proportion to vegetation) – alongside factors related to climate, topography, and 

disturbance severity – in shaping spatial and interannual variation in SOS and EOS. For 

this purpose, we used boosted regression tree (BRT), a machine learning method, to 
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model the LSP derived from the 500-m MODIS and 30-m HLS data with six categories 

of predictor variables: land cover composition, preseason climates, specific weather 

events, topography, fire-related factors (BS only), and phenological events (SOS only). 

The novelty of this study lies in three aspects. First, the usage of BRT allowed for LSP 

modeling to link phenological responses to a large number of predictors with nonlinear 

relationships and interactions among predictors (Figures 4-10 and 12). Moreover, BRT 

allows the calculation of relative importance with which the contribution of each 

predictor can be easily ranked and partial dependence plots with which the relationship 

between each predictor and LSP can be analyzed after accounting for the effects of all 

other predictors. Second, the modeling of spatial variation in LSP was compared at two 

scales: 500 m (MODIS) and 30 m (HLS), which deepens the understanding of the effects 

of phenological drivers across spatial scales. Last, the innovative usage of greenness 

metrics (GMax and GRatio) in the interannual LSP modeling effectively characterized 

the contribution of interannual variation in land cover composition, which is particularly 

important in post-disturbance landscapes.  

4.5.1. Modelling of LSP spatial variations  

Land cover composition plays a significant role in the spatial variation of LSP 

(Cho et al., 2017; Misra et al., 2018). The present study also found that land cover 

composition was the most important of the six categories considered and TPV was the 

most important variable among the 20 predictors of spatial variation in SOS and EOS. 

The pixels with higher TPVs are likely to have a later SOS and an earlier EOS, which 

indicates the difference in timing of greenness development between the understory and 

canopy vegetation in the study area and aligns with a previous study (Wang and Zhang, 
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2017). Moreover, land cover composition is more important in influencing the spatial 

variation in EOS than that in SOS, because EOS exhibits much larger variations among 

different species than SOS does (Cho et al., 2017; Hill et al., 2010; Misra et al., 2018; 

Pasquarella et al., 2018; Wang and Zhang, 2020).  

Topography is also considered as an important driver of spatial variation in LSP 

(An et al., 2018). It affects LSP by influencing topoclimate, soil nutrients, and moisture, 

and plant species distributions (Berryman et al., 2015; Dobrowski, 2011; Hwang et al., 

2011; Rodman et al., 2019). Topography in this study was ranked as the second or third 

important predictor category (depending on the scale of 30 m or 500 m of the data used) 

in modeling LSP spatial variations. As expected, SOS occurred later and EOS occurred 

earlier at higher elevations. This study also found that SOS was earlier on north-facing 

slopes, which may be associated with the higher soil moisture inherent to north slopes 

(An et al., 2018; Rodman et al., 2019).  

Preseason climates also play a significant role in controlling the spatial variations 

of LSP. Not surprisingly, SOS tended to be earlier with higher TMax and EOS tended to 

be later with increasing TMin. Interestingly, SOS tended to be earlier at intermediate 

levels of shortwave radiation (SRad), which could be due to the balance between the 

required radiation forcing and soil moisture (excessive radiation could reduce the soil 

moisture) (Lutz et al., 2010).  

Other categories of variables have relatively small contributions to variation in 

LSP. In particular, EOS has a negative relationship with SOS in space (Figure 4-10l), 

because an earlier greenup is likely to occur in shrub/grass which tends to have a later 

senescence in the study area (Figures 4-10a and i). It is also worth noting that this study 
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found little effect of burn severity on the spatial LSP variations, which seems to 

contradict previous findings from burned areas throughout the western US (Wang and 

Zhang, 2020). This is because this study separated burn severity from other variables 

(land cover composition, climate, and topography) in LSP modeling while Wang and 

Zhang (2020) used the burn severity as a surrogate of wildfire-caused land cover change 

and minimized the effects of climate and topography by using the pre-fire unburned 

buffer as an LSP reference. In particular, land cover composition is a more direct 

representation of the pathway by which fire alters LSP by altering vegetation.    

 The MODIS and HLS spatial models show the scale-dependent effects of 

environmental variables on LSP. The spatial models explained more LSP variations at the 

500-m scale (56% for SOS and 63% for EOS) than the 30-m scale (48% for SOS and 

30% for EOS). This finding could be because the 1-km resolution climate variables more 

closely align with the analytical scale of the 500-m LSP than the 30-m LSP. Moreover, 

LSP could also be related to several additional factors not included in this study, such as 

soil nutrients and water availability (Arend et al., 2015; Estiarte and Peñuelas, 2015; Fay 

et al., 2012). A coarse pixel could smooth the variation in these fine-scale drivers and 

increase the explanatory power of macroclimate.  

4.5.2. Modelling of LSP interannual variations  

Overall, the MODIS interannual models explained 76-80% of LSP variation from 

2001-2018. Noticeably, land cover composition still plays an important role in 

controlling the interannual variations of LSP (Figure 4-11). Both VFC and TPV had 

above-average relative importance for modeling interannual variation in SOS and EOS. 

Similar to the spatial models, the increase in TPV led to non-linear trends of a later SOS 
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and earlier EOS. Moreover, the increase in VFC caused trends of a later SOS and earlier 

EOS. This influence is biophysically unclear, but one possible cause is that denser 

vegetation could cool down the land surface (Liu et al., 2019) and reduce light 

availability for herbaceous plants. Like the spatial models, land cover composition played 

a more important role in affecting EOS than SOS.   

As expected, preseason climate factors were the main drivers of the interannual 

variation in LSP. The three climatic variables with above-average relative importance for 

SOS were all temperature-based: GDD, TMax, and CD, suggesting the dominant role of 

temperature on the interannual variations of SOS in the study area. In particular, the 

considerable contributions of GDD and CD indicate the importance of forcing and 

chilling requirements in modeling the interannual variations of SOS (Cong et al., 2017; 

Delpierre et al., 2018; Richardson et al., 2006). The larger contribution of TMax than 

TMin confirms the finding that daytime temperature has a stronger effect than nighttime 

temperature on SOS (Piao et al., 2015). Interestingly, the most important driver of 

interannual variation in EOS is the first freeze date (FFD). The FFD impact has been 

rarely considered in previous studies (Rodriguez-Galiano et al., 2016). Following FFD, 

the preseason SRad and GDD also play a role in controlling the interannual EOS 

variations. The earlier EOS with the increase of SRad and GDD could be related to the 

soil moisture reduction (Wu et al., 2018).  

This study also revealed that the early phenological events could have an 

influence on later events during a vegetation growing season. Specifically, a positive 

relationship of interannual variations of EOS against SOS was found in this study (Figure 

4-12), which is supported by previous research (Fu et al., 2018; Liu et al., 2016b). An 
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earlier EOS could result from the risks of spring frost and summer drought that are 

increased by an earlier SOS (Buermann et al., 2013; Hufkens et al., 2012; Lian et al., 

2020). The within-year relationship of a later SOS and EOS maintains a relatively stable 

growing season length and may reduce the effect of climate warming on terrestrial carbon 

sequestration (Richardson et al., 2012).    

4.5.3. Implications and limitations.  

This study significantly improves the understanding of drivers and mechanisms of 

phenological dynamics with several interesting and important findings. First and most 

importantly, land cover composition plays a non-negligible role in both spatial and 

interannual variations of LSP. This is particularly important in predicting future 

phenological changes because land cover changes are occurring across much of the Earth. 

Overlooking the effects of land cover composition is likely to lead to biases in vegetation 

phenology prediction and further impair the reliability of terrestrial biosphere models 

(Richardson et al., 2012). Thus, caution is needed to predict or relate the LSP with 

climate in areas where land cover composition tends to be dynamic, such as disturbed 

areas (Wang and Zhang, 2020), agricultural areas (Zhang et al., 2019), and arid/semi-arid 

areas where degradation is common (Diouf and Lambin, 2001).  

Second, we found that the first freeze date was the most important predictor of 

interannual variations of EOS (Figure 4-11), with greater importance than preseason 

radiation (a proxy of photoperiod), temperature, and precipitation that have been found to 

be the main drivers of EOS variation in previous studies (Liu et al., 2016a; Yang et al., 

2015). Here we recommend that future studies should take the first freeze date into 
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account when modeling EOS and test the influence of freeze seasonality in different areas 

across the globe.  

Last, the influence of a driver to LSP depends on the applied scale and dimension 

(temporal or spatial). For example, topography has more contribution to controlling the 

LSP variation at a resolution of 30 m than 500 m; the relationship between EOS and SOS 

is negative in the spatial model (Figure 4-10), while it is positive in the interannual model 

(Figure 4-12). Thus, clear definitions of scale and dimension are crucial in future studies 

that evaluate the influence of different drivers on LSP variation.   

We also acknowledge there are still a few limitations in this study. First, the 

effectiveness of using GMax and GRatio as surrogates of VFC and TPV has not been 

directly evaluated because of the limited availability of high-resolution imagery. Future 

studies may take advantage of the continual accumulation of high-resolution imagery to 

perform a strict evaluation. Second, the spatial models were based on data in the single 

year of 2018, which could cause some uncertainties. However, using a multi-year average 

of LSP to reduce uncertainty as done in previous studies (e.g., Misra et al., 2018) was not 

a reasonable approach for our study because land cover composition is dynamic in post-

fire landscapes (Rodman et al., 2019). Third, although Daymet data is one of the highest-

resolution climate datasets available in the study area, the resolution (1 km) is still 

relatively coarse which may have impacts on model performance. Last, the analysis was 

performed at a landscape scale, which might not be enough to obtain a general conclusion 

on the way that different factors drive LSP across heterogeneous regions. A larger-scale 

study might be needed in the future.  
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4.6. Conclusions 

Using a machine learning approach, this study for the first time quantitatively 

assessed the contributions of two important land cover composition metrics, i.e., 

vegetation fractional coverage (VFC) and tree proportion to vegetation (TPV), to both 

spatial and interannual variations of SOS and EOS with the comparison with other factors 

mainly including climate and topography. Spatial models for SOS and EOS using HLS 

and MODIS data in 2018 revealed that land cover composition, particularly TPV, was the 

most important driver of spatial variation in LSP, immediately followed by topography 

(in the HLS spatial models) and preseason climates (in the MODIS spatial models). In the 

topographical variables, northness and elevation showed above-average importance in 

three of the four spatial models. In the preseason climates, shortwave radiation and 

precipitation were the most important drivers of LSP although none of them showed 

dominance. All the other drivers including dates of specific weather events, fire-related 

factors, and phenological factors contributed little to LSP variations. Based on the 

interannually normalized predictors and responses, the interannual models of SOS and 

EOS from MODIS in 2001-2018 found the growing degree days (GDD) and the first 

freeze date (FFD) were the most important drivers, respectively, for SOS and EOS. 

However, VFC played a non-negligible role with above-average relative importance in 

modeling SOS and EOS. Moreover, the models for both spatial and interannual LSP 

variations also revealed a stronger influence of land cover composition in EOS than SOS. 

Overall, this study suggests that land cover composition metrics have a substantial effect 

on spatial and interannual variations of LSP and should not be overlooked in predicting 

land surface phenology. 
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CHAPTER 5: Summary of the research 
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5.1. Research summary 

The research aims to gain a comprehensive understanding of the responses of land 

surface phenology (LSP) to wildfires in the western US forests. To reach this goal, three 

hypotheses were developed. Below summarize the three studies (detailed in Chapters 2, 

3, and 4, respectively) that test the hypotheses. 

5.1.1. Hypothesis 1: the magnitude and interannual trend of SOS are influenced by the 

2002 Hayman Fire, Colorado, USA. 

5.1.1.1. Summary of the methods 

This study quantified the impacts of the 2002 Hayman Fire on SOS and its trend 

by using a buffer that was not influenced by wildfire surrounding the burned area as a 

reference. The burned area and burn severity were obtained from Landsat-based MTBS. 

The start of growing season (SOS) and annual greenness maximum (GMax) and 

minimum (GMin) were detected by applying the hybrid piecewise-logistic-model-based 

LSP detection algorithm (HPLM-LPSD) on the 250-m MODIS EVI2 time series from 

2001-2014. Wildfire impact on SOS was quantified by calculating the difference of the 

spatial anomaly between the post-fire years (2003-2014) and pre-fire year (2001) with the 

spatial anomaly defined as the SOS difference between the entire burned area (or area 

burned with a specified severity level) and reference for each year. SOS trends during 

2001-2014 were calculated using simple linear regression and compared between burned 

and reference areas. The post-fire recovery was evaluated with GMax and GMin using 

simple linear regression in the post-fire years (2003-2014). 
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5.1.1.2. Results and conclusions 

The Hayman Fire advanced SOS by 15.2 days while the change in SOS increased 

with burn severity. The wildfire-caused SOS change was also influenced by extreme 

weather events. Particularly, SOS was >21 days earlier in the burned area than the 

reference area in 2012 when the contiguous US experienced an exceptionally warm 

spring and a severe drought. Moreover, the Hayman Fire converted SOS from a delaying 

trend of 3.9 days/decade to an advancing trend of -1.9 days/decade from 2001-2014. The 

vegetation greenness could recover to the pre-fire status in 2022 and 2053 for GMax and 

GMin, respectively. Based on the field survey of post-fire recovery for the Hayman Fire 

from the existing literature (Chambers et al., 2016; Fornwalt and Kaufmann, 2014; 

Rhoades et al., 2011), the post-fire temporal trajectory of GMax and GMin coincided 

with the post-fire recovery process of total vegetation and evergreen tree, respectively. 

5.1.1.3. Implications and limitations 

This study, for the first time, quantitatively analyzed wildfire impacts on SOS 

trend, suggesting that it should be cautious against simply viewing LSP trends as 

indicative of climate change. The slow recovery rate of greenness indicates that the fire 

impacts on the satellite-derived SOS variability and interannual trends could continue in 

the next few decades. However, as the area-integrated SOS was used in the analysis, an 

additional error bar (indicating the spatial variation) could have been used to provide 

more insights on the significance of wildfire impacts on LSP. Moreover, the burn severity 

based LSP variation could have some uncertainties because the burn severity in the 

MTBS map was obtained from remotely-sensed Normalized Burn Ratio (NBR) without 

strong supports of field investigations (French et al., 2008; Roy et al., 2006). Last, 
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considering that this study is based only on a single wildfire and a single LSP metric, 

evidence of wildfire impacts on LSP is needed from investigations involving other LSP 

metrics and more wildfires. 

 

5.1.2. Hypothesis 2: wildfires in the western US forests change the LSP timing in two 

divergent directions (advance and delay) with the extent of change depending on burn 

severity. 

5.1.2.1. Summary of the methods 

Wildfire impacts on LSP and its trend were systematically analyzed using 838 

forest fires that occurred from 2002-2014 across the western US obtained from MTBS. 

Three LSP timing metrics that are start (SOS), end (EOS), and length (LOS) of growing 

season and two LSP greenness metrics that are seasonal greenness maximum (GMax) and 

minimum (GMin) were derived from daily time series of 250-m MODIS two-band 

enhanced vegetation index (EVI2) during 2001-2015. Abrupt LSP changes by wildfires 

were quantified using the average LSP in the first three years after wildfire occurrence 

and that in all pre-fire years. LSP trends were determined for the entire time series from 

2001-2015 and post-fire time series using a Sen’s slope and Mann-Kendall test and 

compared between the burned and buffer areas. 

5.1.2.2. Results and conclusions 

Wildfires decreased LSP greenness while changed LSP timing in two opposite 

directions. Overall, an absolute abrupt shift of > 2 days occurred in 73% wildfires for 

SOS, 80% for EOS, and 85% for LOS. More wildfires caused an advance in SOS, delay 

in EOS, and prolongation in LOS. Moreover, wildfires showed stronger impacts on EOS 
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than SOS indicating a larger variation in autumn phenology than spring phenology 

among different species. This is likely related to the facts: (1) the vegetation species are 

more diverse in the burned area after fire occurrences; (2) EOS is more complexly 

controlled by environmental factors than SOS although the underlying mechanism 

remains to be investigated (Delpierre et al. 2009; Richardson et al 2010;  Zhang et al 

2020; Wang et al., 2020). In addition, the abrupt LSP changes depended largely on burn 

severity with the largest impact at the moderate burn severity for LSP timing and the high 

burn severity for LSP greenness. Finally, the phenological trends from 2001-2015 

differed significantly between burned and unburned reference areas. Particularly, the 

reference areas showed a delaying trend for SOS and a greening trend for GMin, while 

the burned areas showed an advancing trend for SOS and browning trend for GMin with 

the trend value depending on the wildfire occurrence year. 

5.1.2.3. Implications and limitations 

This study provides stronger evidence of wildfire impacts on LSP trends by using 

a large number of wildfires and multiple LSP metrics. Changes in trends of both the 

entire time series from 2001-2015 and post-fire time series indicate that the wildfires 

occurred either during or before a given study period can influence the interannual trends. 

Therefore, historical fires could also have considerable impacts on LSP trends at a 

regional scale. Moreover, the wildfire frequency and size across the globe are expected to 

increase in this century because of the changing climate (Liu et al., 2010). As a result, 

LSP trends responding to climate change may have been largely interrupted and the 

interruption could become broader in the future decades. It suggests that land disturbance, 
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such as wildfire, should be considered when using satellite-derived phenological trends to 

interpret global climate change. 

We acknowledge there are a few limitations in this study. First, besides the burn 

severity investigated in this study, other factors can also influence the wildfire-caused 

abrupt LSP changes. For example, different fire types cause different changes in 

vegetation species, soil conditions, and surface temperature, which in turn influence the 

abrupt LSP changes. Second, this study only discussed the wildfire impacts on evergreen 

forests impeding a statistically meaningful analysis of the wildfire impacts on LSP among 

different forest types. Third, this study used unburned forest pixels as an LSP reference 

that was not influenced by wildfires. However, the environmental conditions between the 

reference and burned areas could differ largely, which interrupts the quantification of 

wildfire impacts. Future studies are recommended to select reference areas with 

environmental conditions (e.g., topography, climate, and plant species) similar to burned 

areas. Fourth, although the direct influence of climate and topography on LSP variation 

was largely removed using references, their interactions with wildfire impacts could still 

influence LSP variation (Alexander et al., 2006; Davis et al., 2019) which impedes a 

complete separation of wildfire impacts from other factors. Last, the potential uncertainty 

from MTBS map discussed in Section 5.1.1.3. still exists, although MTBS is a convenient 

resource and field investigation of fire effect is difficult in a large area like western US.  
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5.1.3. Hypothesis 3: land cover composition, climate, and topography co-determine the 

LSP variation in the burned area of the 2002 Ponil Complex Fire, New Mexico. 

5.1.3.1. Summary of the methods 

The 2002 Ponil Complex Fire in New Mexico, USA was selected as the study 

area because it is a large wildfire in the western US and the wildfire-caused plant species 

change was acquirable. This study quantified the contributions of land cover composition 

change (caused by the fire) and other environmental factors to the spatial and interannual 

variations of LSP using a machine learning approach of the Boosted Regression Tree 

(BRT). SOS and EOS were derived from the 500-m MODIS data from 2001-2018 and 

30-m Harmonized Landsat Sentinel-2 (HLS) data in 2018. Two metrics of land cover 

composition, i.e., vegetation fractional coverage (VFC) and tree proportion to vegetation 

(TPV), were derived from the high-resolution imagery in 2018 and from MODIS 

greenness during a growing season from 2001-2018. Using BRT, LSP spatial variations 

in 2018 were modeled with land cover composition and other predictors mainly including 

climate and topography, while LSP interannual variations during 2001-2018 were 

modeled with land cover composition and climate. These BRT models quantified the 

contribution of each predictor to spatial and interannual variations in LSP. 

5.1.3.2. Results and conclusions 

For LSP spatial variations, land cover composition, particularly TPV, was the 

most important driver, immediately followed by topography (in the HLS LSP spatial 

models) and preseason climates (in the MODIS LSP spatial models). In contrast, for the 

LSP interannual variations, the growing degree days (GDD) and the first freeze date 

(FFD) were the most important drivers for SOS and EOS, respectively. However, VFC 
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played a non-negligible role with above-average relative importance in modeling SOS 

and EOS. Moreover, the models for both spatial and interannual LSP variations revealed 

a stronger influence of land cover composition in EOS than SOS. 

5.1.3.3. Implications and limitations 

Some implications can be derived from the findings. The substantial effects on 

both spatial and interannual variations of LSP suggest that land cover composition should 

not be overlooked in predicting land surface phenology in the disturbed areas. Second, 

the largest contribution of the FFD to controlling the interannual variations of EOS 

indicates that EOS models could be potentially improved by adding FFD into current 

models that are mainly based on the preseason photoperiod, temperature, and 

precipitation (Liu et al., 2016; Yang et al., 2015). Third, the scale effect on HLS and 

MODIS LSP models suggests that the scale and dimension need to be clearly defined 

when evaluating the drivers of LSP variation.   

There are also a few limitations. First, the effectiveness of using GMax and 

GRatio as surrogates of VFC and TPV has not been directly evaluated because of the 

limited availability of high-resolution imagery. Second, although Daymet record is one of 

the highest-resolution climate datasets available in the study area, the resolution (1 km) is 

still relatively coarse and could have an impact on the modeling performance. Last, the 

analysis was performed at a landscape scale, which might not be enough to obtain a 

general conclusion on the way that different factors drive LSP.  

 

5.2. Key findings 

The key findings of this dissertation are:  
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1. SOS trend was changed to be earlier by the 2002 Hayman Fire comparing an 

unburned reference. 

2. Wildfires in the western US forests changed the LSP timing in both earlier and 

later directions depending on individual wildfire events.  

3. The largest shifts of LSP timing occur at moderate burn severity. 

4. Wildfire has a stronger impact on EOS than SOS.  

5. LSP trends are interrupted by wildfires with the degree of impacts largely 

dependent on the wildfire occurrence year. 

6.  Land cover composition variation caused by a wildfire plays a dominant role 

in the LSP spatial variations and a non-negligible role in the LSP interannual variations in 

a recently burned landscape. 

 

5.3. Recommendations and future directions 

Based on the discussions of implications and limitations in the three studies (see 

Sections 5.1.1.3, 5.1.2.3, and 5.1.3.3), I recommend the following three main directions 

for future research work.  

First, the underlying mechanism of the divergent response of LSP to wildfires 

remains unclear and needs a thorough investigation in the future. While this research 

found burn severity influences wildfire-caused LSP changes, other factors, such as fire 

type, forest type, soil conditions, and human management, can also affect post-fire LSP 

and should be analyzed in future studies.   

Second, other land disturbances than wildfire could also interrupt the LSP trends 

and their impacts on LSP need to be investigated. Considering the human populations and 
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their use of land have modified about one-third to one-half of the land surface and 

transformed another third or more of the terrestrial biosphere into rangelands and 

seminatural anthromes (Ellis, 2011; Vitousek et al., 1997), land disturbance is likely to 

have broader impacts on LSP. 

Third, as the current LSP trends are often interrupted by disturbances like 

wildfire, future studies are recommended to explore the possibility of extracting LSP 

variation only responses to climate change. While some studies analyzed the LSP by 

excluding the areas with land cover changes (Jönsson et al., 2018; Melaas et al., 2016), 

the completely pure and homogenous pixels are rare in nature and difficult to identify in 

moderate to coarse resolution remote sensing data (Misra et al., 2018). Although high-

resolution (<10 m) data, such as PlanetScope, are less suffered from this issue, LSP trend 

analysis based on those data is currently limited because of the relatively short data 

record and can be studied with the accumulation of high-resolution data in the future. On 

the other hand, the change detection methods recently developed based on time series 

analysis, such as Breaks For Additive Seasonal and Trend (Verbesselt et al., 2010) and 

Detecting Breakpoints and Estimating Segments in Trend (Jamali et al., 2015), provide 

an opportunity to separate the gradual trend from abrupt changes. However, these 

methods are still not able to separate the LSP responses to climate change from the 

disturbance impacts, which calls for new approaches. A possible way could be 

incorporating the pattern of LSP responses to disturbances to the change detection 

methods, which relies on a thorough and comprehensive analysis of LSP responses to 

different disturbance agents.  
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