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  Wildfire is arguably one of the most important and widespread natural disturbance 

agents in western U.S. forests. It has a substantial impact on ecosystem structure and 

function by influencing soils, nutrients, carbon budgets, wildlife habitat, and vegetation. 

Wildfires also influence fuel amount, type, and structure, potentially influencing the 

severity and size of subsequent wildfires through site- and landscape-level feedback 

mechanisms. Until relatively recently, the ability to quantitatively evaluate how these 

feedback mechanisms operate has not been feasible because of data limitations (i.e. there 

has not been enough wildfire). However, due to increased fire activity over the last ~25 

years, there are a number of examples of wildfires “interacting” with subsequent fires, 

where a wildfire either burns within the perimeter of a previously burned area (i.e. it 

reburns) or burns up to (but not in to) a previously burned area. This recent surge in fire 

activity, along with increased availability of remotely sensed data, now makes it possible 

to evaluate how wildfires influence subsequent fire severity and size over large 

landscapes. Some studies have suggested that extreme weather conditions may decrease 

the strength of the feedback mechanisms associated with interacting fires, and 

consequently, evaluating the influence of weather on such relationships is increasingly 

important, especially given that climate change is expected to result in more extreme 

weather events. 

  This dissertation is composed of three chapters. The first chapter quantifies how 

previous wildfire influences the severity of subsequent fires. In my second chapter, I 

develop and evaluate several approaches to estimate day-of-burning for each point within 

a fire perimeter using coarse-resolution MODIS fire detection data. Knowing the day-of-

burning is essential in order to evaluate the influence of observed weather (e.g., from a 

nearby weather station) on observed fire-related effects, such as smoke production or the 

previously mentioned feedback mechanisms of fire. My third chapter evaluates the ability 

of wildfire to act as a fuel break by limiting the extent (i.e. size) of subsequent fire. Using 

the methods from Chapter Two to estimate day-of-burning, I was also able to evaluate the 

influence of weather in weakening the strength of this feedback.  
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Chapter 1: 

Previous fires moderate burn severity of subsequent wildland fires in two large western US 

wilderness areas 

 

Abstract 

Wildland fire is an important natural process in many ecosystems. However, fire 

exclusion has reduced frequency of fire and area burned in many dry forest types, which may 

affect vegetation structure and composition, and potential fire behavior. In forests of the western 

U.S., these effects pose a challenge for fire and land managers who seek to restore the ecological 

process of fire to ecosystems. Recent research suggests that landscapes with unaltered fire 

regimes are more ‘self-regulating’ than those that have experienced fire-regime shifts; in self-

regulating systems, fire size and severity are moderated by the effect of previous fire. To 

determine if burn severity is moderated in areas that recently burned, I analyzed 117 wildland 

fires in two wilderness areas in the western U.S. that have experienced substantial recent fire 

activity. Burn severity was measured using a Landsat satellite-based metric at a 30-meter 

resolution. I evaluated 1) whether pixels that burned at least twice since 1984 experienced lower 

burn severity than pixels that burned once, 2) the relationship between burn severity and fire 

history, pre-fire vegetation, and topography, and 3) how the moderating effect of a previous fire 

decays with time. Results show burn severity is significantly lower in areas that have recently 

burned compared to areas that have not. This effect is still evident at ~22 years between wildland 

fire events. Results further indicate that burn severity generally increases with time since and 

severity of previous wildfire. These findings may assist land managers anticipate the 
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consequences of allowing fires to burn and provide rationale for using wildfire as a ‘fuel 

treatment’. 

 

Introduction 

Wildland fire is an important ecological process in many ecosystems (Agee, 1993), 

altering vegetation composition and structure, consuming biomass, and creating or maintaining 

landscape heterogeneity. However, fire exclusion has caused a dramatic reduction in fire 

frequency and area burned, particularly in dry forests of the western U.S. (Kilgore and Taylor, 

1979; Heyerdahl et al., 2001; Taylor and Skinner, 2003), and is considered one of the major 

causes of increased tree density and homogenization of such forests (Taylor, 2000; Hessburg et 

al., 2005; Naficy et al., 2010). Such changes are thought to be partly responsible for recently 

observed increases in area burned and burn severity (Stephens, 2005; North et al., 2009), 

although a warming climate has also been implicated (McKenzie et al., 2004; Westerling et al., 

2006; Miller et al., 2009).  

Increasing awareness of the ecological role of wildland fire (Hutto, 2008), coupled with 

recognition of the adverse ecological and socio-economic consequences of fire suppression 

(Backer et al., 2004), have led to criticisms of fire suppression policies (Stephens and Ruth, 

2005). Though the idea of allowing more fires to burn has gained favor, implementing ‘resource 

benefit’ fires is still relatively uncommon due to numerous economic, social and, air quality 

concerns (Zimmerman et al., 2006). How best to effectively and safely restore the natural 

process of fire to landscapes that have been altered by decades of fire exclusion remains a 

dilemma (Arno et al., 2000).  
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Theory suggests that landscapes with intact fire regimes are more ‘self-regulating’ than 

those with disrupted regimes (Agee, 1999; Peterson, 2002; McKenzie et al., 2011). That is, 

wildland fires create fuel breaks and reduce fuel loads and, if fires recur before fuels can recover, 

the size and severity of subsequent fires are limited. This negative feedback is a fundamental 

ecosystem property (McKenzie et al., 2011) and the primary rationale for prescribed and 

resource benefit fires in forested ecosystems (Stephens et al., 2009). The concept of self-

regulation is complementary to that of ‘ecological memory’, which is defined as the degree to 

which ecological processes are shaped by past disturbance events (Peterson, 2002). As such, 

increased fire intervals due to fire exclusion may have lessened or erased the effects – or reduced 

the ecological memory – of previous fires in many dry conifer forests of the western US. This 

may have led to landscape patterns and processes that interrupt the self-regulating effect of active 

fire regimes. 

Empirical evidence for self-regulation is limited because data on recurring fires exist for 

relatively few areas. However, there is some evidence that a previous wildland fire can moderate 

the burn severity of subsequent fires. For example, a mixed-conifer forest in central Idaho 

previously treated with prescribed fire burned with lower severity than untreated forest (Arkle et 

al., 2012) and forests in northwestern California that burned at least twice had proportionally less 

high severity fire compared to forests that burned once (Miller et al., 2012). Numerous other 

studies have focused solely on areas that have burned twice or more in recent decades (i.e. reburn 

studies) (Thompson et al, 2007; Collins et al., 2009; Holden et al., 2010; van Wagtendonk et al., 

2012). A key finding among these reburn studies was that areas that previously experienced 

high-severity fire were more likely to burn again at high severity; this is particularly interesting 

because these studies span a broad range of forest types, fire regimes, and climate. Most of these 
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reburn studies, however, found no noticeable trends in the burn severity of subsequent fires when 

the initial fire burned at low or moderate severity (but see Holden et al., 2010). Although these 

reburn studies contribute to understanding the role of successive wildfires, it is difficult to place 

their findings in the context of self-regulation since no comparisons were made to areas that have 

not experienced recent fire.  

I investigated how previous fires affect the burn severity of subsequent fires across two 

large and diverse wilderness landscapes. Though these areas have both experienced significant 

fire activity in recent decades, they differ in topographic complexity and climate. I define burn 

severity as the degree of fire-induced environmental change, as measured with a satellite-derived 

index. This study has three objectives. (1) Determine whether the presence or absence of 

previous wildland fires influences the burn severity of subsequent fires; I hypothesize that burn 

severity in areas that have reburned (i.e. burned at least twice during the study period) is lower 

compared to severity in those areas that have not reburned. (2) Assuming a reburn effect is found 

in objective 1, examine how this effect varies with fire history, pre-fire vegetation, and 

topography, as such variables have been shown to influence burn severity elsewhere (Thompson 

et al., 2007). (3) Assuming a reburn effect is found in objective 1, examine how this effect varies 

over time; I hypothesize it decays. 

 

Methods 

Study areas 

This study focuses on The Gila-Aldo Leopold Wilderness Complex (GAL) in New 

Mexico and the Frank Church – River of No Return Wilderness (FCW) in Idaho. Potentially 

confounding effects of human disturbances are reduced in wilderness areas, as they have 
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experienced little vegetation management (i.e. logging). Furthermore, many fires have been 

allowed to burn in recent decades (Swetnam and Dieterich, 1985; Beckman, 2008), although 

historical fire exclusion has likely left a legacy in both study areas. As such, these areas are the 

most appropriate natural laboratories for my study, containing diverse vegetation types and a 

sufficient number wildland fires and reburns to analyze. 

  

Gila-Aldo Leopold Wilderness Complex (GAL) 

The GAL (3190 km
2
) comprises both the Gila and Aldo Leopold Wilderness Areas (Fig. 

1). Elevations range from 1462 to 3314 m; the topography is diverse, composed of mountains, 

broad valleys, steep canyons, and extensive mesas. At the lowest elevations, the vegetation is 

desert scrub and grasslands (Ceanothus, Artemisia, and Yucca spp.). As elevation increases, it 

transitions to piñon-oak-juniper woodland (P. edulis engelmannii, Juniperus deppeana, J. 

monosperma, and Quercus spp.), and then to ponderosa pine (Pinus ponderosa) woodland and 

forest. The highest elevations are composed of Douglas-fir, Englemann spruce (Picea 

engelmannii), white fir (A. concolor), subalpine fir (Abies lasiocarpa), southwestern white pine 

(P. strobiformis), and aspen (Populus tremuloides) forests (Rollins et al., 2002).  

Although the fire season runs April through September, mid-summer fires are uncommon 

due to rains associated with monsoonal storms from the Gulf of Mexico (Rollins et al., 2002). 

Fires in GAL are generally frequent and low-severity surface fires, but burn severity tends to 

increase with elevation (Swetnam and Dieterich, 1985) and varies with aspect, incident radiation 

and topographic position (Holden et al., 2009). Extensive cattle and sheep grazing began in the 

1890’s, which substantially reduced fine fuel amount and continuity and caused a decrease in fire 

frequency (Swetnam and Dieterich, 1985; Swetnam and Baisan, 1996). Resource benefit fires 
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began to occur in ~1975 (Swetnam and Dieterich, 1985). Between 1984 and 2008, a total of 

72,226 ha burned once, while of 50,004 ha reburned (Fig. 1). 

 

Frank Church – River of No Return Wilderness (FCW) 

The FCW (9574 km
2
) is the second largest wilderness area in the lower 48 states. FCW is 

rugged; elevations range from 600 to 3136 m. Topographic features include river breaks, deep 

canyons, mountains, and glaciated basins (USDA Forest Service, 2003). Park-like groves of 

ponderosa pine exist below about 1500 m on south and west slopes (Barrett, 1988). Denser 

ponderosa pine and Douglas-fir (Pseudotsuga menziesii) forests occupy north and east aspects, 

up to elevations of about 2100 m. Still higher, the vegetation transitions to grand fir (Abies 

grandis), lodgepole pine (Pinus contorta), and Englemann spruce. At the highest elevations, 

subalpine fir, whitebark pine (Pinus albicaulis), and alpine environments are common (Barrett, 

1988; Finklin, 1988).  

The fire season runs from early-July to mid-September (USDA Forest Service, 2013). 

Low-elevation, open ponderosa pine forests tend to experience frequent, low-intensity fires, and, 

generally, fire frequency decreases and severity increases with increasing elevation, moisture, 

and tree density (Crane and Fischer, 1986). Fire suppression became effective in about 1935 

(Finklin, 1988) although sheep grazing may have excluded fire earlier (Steele et al, 1981). 

Resource benefit fires began to occur in ~1988 (Beckman, 2008). Between 1984 and 2008, a 

total of 498,067 ha burned once, while 91,671 ha reburned (Fig. 1). 
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Data 

Burn severity data were obtained from the Monitoring Trends in Burn Severity (MTBS) 

project (Eidenshink et al., 2007), which has mapped burn severity as the differenced normalized 

burn ratio (dNBR) of large (≥400 ha) wildland fires in the U.S. since 1984 (through 2008 when 

this study was conducted) at a 30-m resolution using Landsat 4 and 5 Thematic Mapper and 

Landsat 7 Enhanced Thematic Mapper-Plus satellite imagery (Fig. 2). Specifically, the 

normalized burn ratio (NBR) is computed for both pre- and post-fire satellite images, and then 

the pre-fire NBR is subtracted from the post-fire NBR (Key and Benson, 2006). The post-fire 

imagery is usually acquired one year after the fire, but this may be shorter or longer depending 

on image quality and availability (which varies due clouds, smoke, snow, and sun angle). As 

dNBR values increase, there is generally a corresponding increase in char, consumption of 

downed fuels, exposure of mineral soil and ash, and scorched/blackened vegetation; there is also 

a corresponding decrease in moisture content, above-ground green biomass, and vegetative cover 

(Key and Benson, 2006). The index has been shown to be predictive (R
2
 > 0.65) of field assessed 

measures of burn-severity within or near my study areas (Holden et al, 2009; Arkle et al., 2012). 

MTBS also provides relative differenced normalized burn ratio (RdNBR) data (Miller and 

Thode, 2007), as well as discrete severity classes (e.g., low, moderate, and high). I used dNBR 

(vs. RdNBR) because it is generally equal to or better than RdNBR at representing field-based 

measures of burn severity (Soverel et al., 2010; Cansler and McKenzie, 2012). I also used dNBR 

(vs. the discrete severity classes) because I required a continuous representation of burn severity. 

To minimize the effect of minor mapping errors, I used a ‘reverse buffer’ and analyzed 

only pixels >= 100 meters from the edge of each MTBS perimeter; this reduced the probability 

of including pixels that did not burn. Pixels classified as water, perennial snow, or barren/rock 
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(Rollins, 2009) were removed prior to analysis. Data from 1984-2008 were analyzed; to qualify 

as a ‘reburn’, a pixel must have burned at least twice during this time period. I refer to pixels that 

burned only once during this time period as ‘no-reburn.’  

Additional spatial data to evaluate objective 2 (i.e. how the reburn effect varies with fire 

history, pre-fire vegetation, and topography) were obtained from a variety of sources (Table 1) 

and are similar to those used in other studies of reburns (Thompson et al. 2007). The fire history 

variables (severity of previous fire [P.dNBR] and time since previous fire [TIME]) were 

generated using MTBS data (Eidenshink et al., 2007). Because fuels data (amount, type, and 

structure) were not available for every year of the study period, I used two variables as proxies of 

live fuel: pre-fire normalized difference vegetation index (NDVI) and LANDFIRE fire-regime 

group (FRG) (Rollins, 2009). NDVI is a satellite index of photosynthetic capacity, or vegetation 

greenness, and was calculated using the pre-fire Landsat imagery provided by MTBS. FRG 

characterizes presumed historical fire regimes and basically combines the numerous LANDFIRE 

biophysical setting (BpS) categories (BpS is the presumed vegetation under a normal disturbance 

regime; Rollins, 2009) into five classes representing the fire regime (frequency and severity). For 

example, one FRG category indicates a fire return interval of < 35 years with low or mixed 

severity and is composed of BpS types such as ‘northern rocky mountain ponderosa pine 

woodland and savanna’. The topographic variables I evaluated (Table 1) were found to be 

predictive of high-severity fire (Dillon et al., 2011) and included factors that directly or indirectly 

influence fuel (live and dead biomass) type, configuration, and moisture. For example, solar 

radiation (SRAD) may directly influence fuel moisture and indirectly influence biomass 

production and the rate of fuel accumulation. None of the independent variables were highly 

correlated (r < 0.7). All spatial data used in my analyses had a cell size of 30 m.  
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Analyses 

Influence of presence or absence of previous wildland fires on the burn severity of subsequent 

fires 

To determine if the presence of previous wildland fires affect burn severity of subsequent 

fires (hereafter, I term this the ‘reburn effect’), I calculated the mean and median dNBR in reburn 

and no-reburn pixels in each study area. I also used a Kolmogorov-Smirnov test to determine if 

the dNBR frequency distributions of reburn and no-reburn pixels were significantly different. 

For this objective, I used a truncated subset of the severity data from 1999 to 2008 to ensure that 

no-reburn pixels represented a substantially long fire-free period (i.e. at least 15 years). The cut-

off year of 1999 was a somewhat arbitrary choice but reflects a balance between retaining 

sufficient data for analysis and avoiding labeling pixels that had recently burned as no-reburn. I 

considered using fire atlas data that exist for fires before 1984 (e.g., Rollins et al. 2001) so that I 

might use the entire length of the MTBS dataset (1984-2008). However, these data are 

inconsistent and vary in accuracy (Haire et al., 2013); I opted to use only the more consistently 

generated MTBS data.  

dNBR values are unitless and somewhat difficult to interpret ecologically. Therefore, I 

relate some of the dNBR values reported in this section and elsewhere in the results to a field-

based measure of burn severity, the composite burn index (CBI). CBI values are more 

ecologically relevant, as they incorporate factors such as amount of vegetation consumed, 

consumption or charring of substrate materials, and amount of newly exposed mineral soil (van 

Wagtendonk et al., 2004; Key and Benson, 2006). CBI values have a strong relationship to 

dNBR values in and near my study areas (R
2
 > 0.65) (Holden et al., 2009; Arkle et al., 2012). 

Miller and Thode (2007) suggest that low severity fire corresponds to CBI values ≤ 1.25, 
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moderate severity to CBI values > 1.25 and ≤2.25, and high severity CBI values > 2.25. 

Therefore, I used the data presented in Holden et al. (2009) and Arkle et al. (2012) and nonlinear 

models (cf. Miller and Thode, 2007) to determine the relationship between dNBR and CBI, 

thereby better allowing key dNBR values to be placed in the context of an ecologically relevant 

field-based measure of burn severity.   

 

Influence of fire history, pre-fire vegetation, and topography on reburn severity 

To determine how reburn severity varies with fire history, pre-fire vegetation and 

topography, I generated multivariate models for each study site using generalized linear models 

(GLMs, family=Gaussian) and the R statistical program (R Development Core Team, 2007). In 

these models, dNBR is the dependent variable and a suite of fire history, vegetation, and 

topographic variables (Table 1) were evaluated as independent variables.  

Given the high degree of autocorrelation present in the data, a two-stage process was 

used to ensure that the models were not over fit (Legendre, 1993). In stage one, I subsampled the 

data to diminish the effect of pseudoreplication associated with spatially autocorrelated data 

(Legrendre and Fortin, 1989). I based the subsampling frequency on the distance at which pixels 

are spatially independent (Krawchuk et al., 2009; Parisien et al., 2011a). To determine this 

distance, I generated semivariograms using the residuals of naïve models (i.e. including all 

predictor variables) and calculated the ‘range’, which is the distance at which pixels are no 

longer correlated. For GAL, the range was 819 m, corresponding to a subsampling frequency of 

0.13% (823 pixels). For FCW, the range was 1004 m, corresponding to a subsampling frequency 

of 0.08% (644 pixels). 
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In stage two, 2500 subsamples were generated for each study area by randomly selecting 

pixels with the subsampling frequency determined in the previous step (Krawchuk et al., 2009; 

Parisien et al., 2011a). A candidate model was generated for each subsample (n=2500) through 

forward and backward stepwise regression, which is an automated model-selection procedure 

based on Bayesian information criterion (BIC). Both the linear and quadratic (i.e. 2
nd

 degree 

polynomial) forms of each variable were evaluated for inclusion. Each candidate model 

represents the independent variable(s) that best explain burn severity for each subsample; due to 

the infrequent subsampling frequency, the variables explaining burn severity may vary 

substantially among candidate models. Therefore, the final model for each study area was 

selected based on the most frequently identified model (i.e. set of independent variables) in the 

2500 candidate models. Model parameters were generated by averaging across the most 

frequently identified candidate models, thereby creating an ensemble model (i.e. a multi-model 

average). The use of an ensemble model limits the stochasticity of model outcomes caused by 

randomly subsampling the data (Parisien et al., 2011b). The fits of the final models were 

evaluated based on the average coefficient of determination (i.e., the R
2
 between the observed 

and predicted dNBR values) in the ensemble model.  

 

Variation in reburn effect over time 

To quantify how reburn effect varies over time, I plotted the mean dNBR of reburn pixels 

against time since previous fire (i.e. time between fire events). Using all reburn pixels, linear 

regression (dNBR as explained by time since previous fire) was conducted to generate a trend 

line and better depict how the relationship varies through time. I tested whether the slope of each 

trend line was significantly different from zero using a 500 model ensemble, each model using a 
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different subset of data sampled at the frequency described in the previous section. To test for 

significance, I averaged the p-values of the slope coefficient from the model ensemble. 

 

Results  

Influence of presence or absence of previous wildland fires on the burn severity of subsequent 

fires 

In both study areas, mean and median dNBR were substantially lower in reburn pixels 

than in no-reburn pixels. In GAL, mean and median dNBR for reburn pixels were 89 and 68, 

respectively, compared to mean and median values of 213 and 178 for no-reburn pixels. In FCW, 

mean and median dNBR for reburn pixels were 158 and 112, respectively, compared to mean 

and median values of 339 and 272 for no-reburn pixels. A Kolmogorov-Smirnov test revealed 

that the dNBR frequency distributions of reburn and no-reburn pixels (Fig. 3) were significantly 

different in both study areas (p < 0.001).  

The relationship between dNBR and CBI (Fig. 4) allows the unitless dNBR values to be 

better placed in an ecological context. As such, in GAL, the corresponding mean and median 

CBI for reburn pixels were both < 0.5 (low severity), whereas the mean and median CBI values 

for no-reburn pixels were 1.6 and 1.3 (moderate severity), respectively. In FCW, the mean and 

median CBI for reburn pixels were 1.1 and 0.8 (low severity), respectively, compared to mean 

and median CBI values of 1.9 and 1.6 (moderate severity) for no-reburn pixels. 

 

Influence of fire history, pre-fire vegetation, and topography on reburn severity. 

The models for each study area include those variables that were selected during the 

stepwise regression (Fig. 5; Table 2). In both study areas, the interaction between P.dNBR and 



13 

 

TIME indicates that burn severity increases with P.dNBR and that dNBR values are highest at 

the highest values of both P.dNBR and TIME (Fig. 5). The models for both study areas also 

indicate that dNBR increases with pre-fire NDVI. In GAL, no topographic variables were 

selected, whereas in FCW, dNBR increases with ELEV and decreases with SRAD and TPI2000. 

Based on the spatial autocorrelation of the residuals, the subsampling frequency I employed did 

not violate the assumption of independence; that is, the variogram ranges of the model residuals 

was less than the distance values I used to subsample the data. 

 

Variation in reburn severity over time  

Mean dNBR of reburn pixels tended to increase with time since previous fire (Fig. 6). The slope 

of the regression line is significantly different from zero in GAL (p = 0.02) and FCW (p=0.08) as 

determined from the ensemble regression model. The effect is still evident at for the longer 

intervals between fires (~22 years), with mean dNBR values remaining substantially lower than 

the mean dNBR of no-reburn pixels (Fig. 6). The slopes of the regression lines indicate that 

dNBR increases by 3.2 and 4.0 units/year since last burn in GAL and FCW, respectively. 

 

Discussion 

One of the key concepts in landscape ecology is that, not only are landscapes shaped by 

disturbance events, but disturbances themselves are shaped by the history and pattern of 

landscapes (Turner, 1989; Peterson, 2002). This core concept underscores that feedbacks 

associated with, for example, fire history are critical mechanisms of the self-regulation process. 

Our findings complement this concept and add to increasing evidence for the self-regulation of 

burn severity in areas where relatively short-interval successive fires have occurred. 
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The presence or absence of previous wildland fires influences the burn severity of subsequent 

fires 

As I hypothesized, areas that reburned since 1984 experienced lower burn severity than 

areas of no-reburn, indicating that previous wildland fires moderate burn severity of subsequent 

fires. Our results are consistent with Arkle et al. (2012), who found that burn severity was lower 

in areas that were treated by prescribed burns compared to untreated areas. These results are also 

consistent with Miller et al. (2012), who found that there was proportionally less high severity 

fire in reburn compared to no-reburn.  

  Several ecological mechanisms are likely responsible for the observed lower severity in 

reburns compared to no-reburns. The lower severity I found in reburns compared to no-reburns is 

likely due, at least in part, to the consumption of dead and down fuel by the earlier fire, thereby 

reducing fuel availability for subsequent fires. Another explanation, however, could be that 

changes in vegetation amount, structure, and composition were caused by the earlier fire, thereby 

reducing ladder fuels and the likelihood of torching of the upper canopy during subsequent fire 

events.  

 

The reburn effect varies with fire history, pre-fire vegetation, and topography 

Several studies have found that areas that previously burned at high severity were more 

likely to burn at high severity during subsequent wildland fires (Thompson et al. 2007, Collins et 

al. 2009, Holden et al. 2010, van Wagtendonk et al. 2012). I also found that severity generally 

increases with the severity of previous fire. That reburn severity increases with the severity of the 

previous fire is somewhat counterintuitive because one might expect a high-severity fire to leave 
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behind little flammable biomass that would contribute to the severity of a reburn. One 

explanation could lie with fire regime dynamics associated with shrubs, as sites dominated by 

shrubs generally experience crown fires (Baker, 2009) and typically regenerate with shrubs, 

perpetuating a high-severity regime (McKenzie et al., 2011). I suggest that this explanation is at 

least partly responsible in FCW, as 11.2% of the biophysical setting (i.e., presumed vegetation 

with disturbance) in the reburn area is shrub dominated compared to 1.8% in GAL (Rollins, 

2009). Alternatively, forested landscapes that experience high-severity fire may also experience 

a post-fire conversion from tree to shrub life form (which could be either a change in the 

ecological state or the natural successional pathway). Reburns occurring during the shrub state 

will generally burn at high severity (Thompson and Spies, 2010; van Wagtendonk et al., 2012). 

Finally, severe fires in forests may beget severe fires when fire-killed trees create heavy fuel 

loads (Odion et al., 2004) that provide conditions for a subsequent severe wildland fire (cf. Arno 

et al., 2000). Although the last two explanations are difficult to quantify without field data or 

time-series vegetation data, they should not be discounted in either of my study areas. 

Burn severity increased with vegetation greenness, measured as NDVI, in both study 

areas. This follows other studies that have found more vegetation generally corresponds to higher 

burn severity (Cocke et al., 2005; Arkle et al., 2012). This highlights the importance of biomass 

productivity, but also the influence of topographic variables, on burn severity. For example, the 

increase in dNBR with ELEV in FCW is likely explained by a combination of enhanced 

productivity (due to increased moisture) and increasing fuel load (due to reduced fire frequency) 

with elevation; Dillon et al. (2011) also found that elevation was a major influence in explaining 

high-severity fire in the northern Rocky Mountain, USA and suggested it was due to increased 

biomass in upper elevations. The negative relationship between dNBR and SRAD in FCW is 
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potentially because moisture limitations on south-facing slopes leads to decreased productivity. 

The relationship between dNBR and TPI2000 in FCW could be due differences in the relative 

rates of post-fire vegetation recovery in valley bottoms compared to ridge tops. 

Although three topographic variables (ELEV, SRAD, and TPI2000) were predictive of 

burn severity in FCW, no topographic variables were retained in the model in GAL. I suggest 

that the presence and absence of topographic influence on burn severity in FCW and GAL, 

respectively, may be due to varying importance of bottom-up controls. Although topography is 

by no means ‘gentle’ in GAL, it is considerably more diverse and rugged in FCW (standard 

deviation of ELEV, SRAD, and TPI2000 are all higher in FCW). Thus, as also suggested by 

other fire studies (Kennedy and McKenzie, 2010; Parks et al., 2012), it is probable that the 

higher topographic variability in FCW provides stronger bottom-up controls compared to GAL.  

 

The reburn effect decays over time  

Our results add to a growing body of research that has found that severity of reburns 

increases with time since previous fire (Collins et al., 2009; Bradstock, 2010; van Wagtendonk et 

al., 2012) and that such an effect can be persistent for decades (Miller et al., 2012). As expected, 

I found that severity of reburns increases with time since the previous fire, likely due to biomass 

accumulation associated with longer fire-free intervals (Mack et al., 2008). Thus, the moderating 

effect of previous fire on the burn severity of subsequent fire diminishes with time. The effect 

appears to last at least the ~22 years I analyzed, even in the short fire interval system of GAL. 

Given the temporal extent of my study, I am unable to make inferences beyond 22 years.  

The longevity of the reburn effect is of great interest to land managers and likely varies 

by ecosystem type and geographic regions. I suggest that the longevity of the reburn effect – 
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measured by how long takes for the previous fire to have no effect on the burn severity of 

subsequent fires – is influenced by a number of factors including the severity of the initial fire, 

the dominant type of vegetation establishing at the site, and the productivity of the site. For 

example, the longevity of the reburn effect from a low-severity fire will be relatively short 

because there is less change in ecological conditions from which to recover. Conversely, the 

longevity of the reburn effect will be longer in cases where sites experience high severity fire. 

The reburn effect will also persist for sites that are revegetated by low-flammability vegetation 

(which may vary by life stage [e.g., lodgepole pine]) (Romme, 1982) or have low productivity. 

Fires in GAL are generally less severe than in FCW, so the re-accumulation of fuels for 

subsequent fires is comparatively quick. Conversely in FCW, the prevalence of higher severity 

fires and, therefore, a higher degree of change, suggest that more time is needed to recover than 

in GAL. Thus, I expect that the longevity of the reburn effect is generally shorter in GAL than in 

FCW, although the temporal extent of my data was too short for us to directly test this. 

 

Other considerations 

Despite their designation as wilderness and being the best available examples of naturally 

functioning ecosystems, GAL and FCW have likely been affected by fire suppression to some 

degree. Fire-use policies (i.e. allowing fires to burn for resource benefit) have only been in place 

for ~25-40 years (Swetnam and Dieterich, 1985; Beckman, 2008), and even with the advent of 

fire use, many fires were suppressed. As such, I acknowledge that fire exclusion in previous 

decades may have led to higher severity fires than would have occurred otherwise (Barrett, 

1988).  
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Although I considered numerous variables in my models, the variation explained (0.29 – 

0.32) suggests that future modeling should include an even broader set of variables. Variables 

related to pre-fire vegetation structure and dead fuels may be particularly important, but 

unfortunately are not yet available for large landscapes, especially on an annual basis. Using the 

soil-adjusted vegetation index (SAVI) (Huete, 1988) instead of NDVI may be appropriate for 

future analyses, especially in GAL, as soils influence NDVI where canopy cover is low (Huete et 

al., 1985). Weather variables, such as wind speed and temperature at the time of burning, are 

likely important drivers of burn severity due to their strong influence on potential fire behavior 

(Schwilk et al., 2006; Miller et al., 2009; Thompson and Spies, 2010).  Including such 

temporally variable data is currently challenging because of the uncertainty in knowing when a 

pixel burned. However, remotely sensed fire progression maps or daily MODIS data (Roy et al., 

2002; USDA Forest Service, 20013) may make it possible to link day of burning with weather 

station data to models explaining burn severity. Finally, because fire activity may be better 

explained at broader scales (Parks et al., 2011) due to the contagious nature of fire spread 

(Peterson, 2002), incorporating variables representing the stand or neighborhood may improve 

future modeling efforts.  

 

Conclusion and management implications  

The three most important findings in this study are that 1) burn severity is significantly 

lower in areas that have recently burned compared to areas that have not, 2) as the time interval 

between fires increases, the severity of the subsequent fire increases, and 3) the moderating 

effect of a previous fire on the burn severity of the subsequent fire lasts at least 22 years. By 

providing quantitative information about future reductions in burn severity, these results provide 
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land managers a longer timeframe in which to view the benefits and costs of an individual fire. 

Our findings indicate that fires can and do self-regulate from a burn severity perspective and 

provide rationale and insight to using wildfire as an effective ‘fuel treatment’.  

A high proportion of each study area burned between 1984 and 2008, suggesting that 

future wildfires will interact with previous fires. Based on my results, these future reburns will 

likely burn at relatively low severity when they occur. In fact, from 2009 to 2012, GAL had eight 

reburn fires (since 1984) and FCW had six reburn fires (USDA Forest Service, 2013; GeoMAC, 

2013). Furthermore, some areas in GAL have burned five times since 1950 (Rollins et al., 2001; 

Eidenshink et al., 2007); such areas are likely restored in terms of vegetation structure and fire 

regime characteristics, at least partially explaining the relatively high proportion of low-severity 

fire seen in GAL. 

Considering that a fire will inevitably burn most forested areas at some point in the future 

(North et al., 2009), land managers need to weigh the short-term ‘costs’ associated with letting a 

fire burn with the long-term consequences of suppressing a fire. Larson et al. (2014) suggest that 

reintroducing frequent fire to unlogged, historically low-density ponderosa pine and mixed-

conifer forests may restore and maintain conditions that were present in the pre-suppression era 

due to ‘latent resilience’ of large, fire resistant trees in these forests. Such forest types are fairly 

common in GAL and, at low-to-mid elevations, in FCW. However, longer intervals between any 

previous fire and a subsequent fire may diminish the capabilities of the forest to absorb the 

disturbance and restore pre-suppression conditions.  After an excessively long fire-free interval, 

fire severity may be too high for even large, fire resistant trees to survive, potentially causing the 

ecosystem to ‘reset’ or change to an alternative state (Gunderson, 2000). 
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Tables 

Table 1. Predictor variables evaluated for inclusion into the models. None of the variables are 

highly correlated (r < 0.7). 

 

*
These values characterize those areas that reburned during my analysis window. 

 

 

  

Variable 

type 

Variable 

name  
Variable description 

Data range 

(5
th

 – 95
th

 

percentile)
*
 

Source 

F
ir

e 
h

is
to

ry
 

P.dNBR dNBR of the previous fire 
-64 - 782 (FCW) 

-29 - 351 (GAL) 

Eidenshink et al., 2007 TIME 
Elapsed time since the previous fire 

burned (years) 

6 - 20 (FCW) 

3 - 17 (GAL) 

P.dNBR:TIME 

Interaction term between P.dNBR 

and Time (this is specified within the 

statistical model equation) 

na 

V
eg

. 

NDVI 
Pre-fire normalized differenced 

vegetation index  

0.20 - 0.65 (FCW) 

.25 - .49 (GAL) 

Landsat 4 and 5 TM; 

Landsat 7 ETM+ 

FRG 
Fire regime group (LANDFIRE) 

(factor variable) 

na (categorical 

data) 
Rollins, 2009 

T
o

p
o

g
ra

p
h
y

 

ELEV Elevation (meters) 
1028 - 2333 (FCW) 

2079 - 2569 (GAL) 
USGS 

SLOPE Slope (degrees) 
6 - 40 (FCW) 

2 - 35 (GAL) 

Burrough and 

McDonnell, 1998 

SRAD Potential solar radiation (kWh/m
2
) 

761 - 1555 (FCW) 

1288 - 1932 (GAL) 
Fu and Rich, 2002 

TPI300 
Topographic position index: 300 m 

scale 

-50 - 54 (FCW) 

-42 - 42 (GAL) 
Weiss, 2001 

 
TPI2000 

Topographic position index: 2000 m 

scale 

-307 - 288 (FCW) 

-124 - 155 (GAL) 
Weiss, 2001 
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Table 2. Parameters of the ensemble model for each study area; these models examine how 

reburn severity varies with fire history, pre-fire vegetation, and topography.  

 

  

 

Variable β SE P 

GAL 

 

NDVI 1415.2 89.4 < 0.001 

 

NDVI
2
 482.3 88.1 0.004 

 

P.dNBR -0.17 0.07 0.050 

 

TIME 0.133 1.06 0.132 

 

P.dNBR:TIME 0.026 0.01 0.001 

 
R

2
 = 0.29 

      

FCW 

 

NDVI 1786.8 180.8 < 0.001 

 

NDVI
2
 -37.98 180.2 0.490 

 

P.dNBR -0.367 0.08 0.001 

 

TIME -3.857 1.81 0.125 

 

ELEV 2367 256.1 < 0.001 

 

ELEV
2
 181.5 187.4 0.390 

 

SRAD -960.6 203.9 < 0.001 

 

SRAD
2
 -328.6 178.1 0.163 

 

TPI2000 -791.8 206.0 0.002 

 

TPI2000
2
 -300.5 184.8 0.220 

 

P.dNBR:TIME 0.024 0.01 < 0.001 

 
R

2
 = 0.33 
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Figures 

Figure 1. The general location of the study areas within the U.S. (a) and areas that have 

experienced no-reburn (green shading) vs. areas that reburned (red shading) between 1984 and 

2008 within GAL (b) and FCW (c). 
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Figure 2. Burn severity (dNBR) for the 2004 Granny fire in GAL. The thick black line represents 

the Granny fire perimeter; the hatched area represents the perimeter of the 2000 Bloodgood fire. 

Qualitatively, areas that had previously burned in 2000 appear to have lower dNBR than areas 

that had not. The inset shows the location of the Granny fire within GAL. 
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Figure 3. Frequency distributions of dNBR for reburn (red) and no-reburn (blue) pixels in each 

study area. A two-sided Kolmogorov-Smirnov test indicates that the distributions within each 

study area are significantly different (p < 0.001). 
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Figure 4. The relationship between dNBR and CBI for the 2003 Dry Lakes Fire in GAL (left) 

(Holden et al., 2009) and the 2007 East Zone Complex near FCW (right) (Arkle et al., 2012).  
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Figure 5. Partial dependence plots for GAL (top row) and FCW (bottom row) models for those 

variables selected by the stepwise regression (Table 2). These plots represent the relationship 

between each variable and dNBR when all other variables are held constant at their mean. 
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Figure 6. Mean dNBR of reburn pixels plotted against time since fire. The dashed horizontal line 

represents the mean dNBR of all pixels that burned from 1999-2008 but did not burn between 

1984-1998. That is, this line represents the burn severity of pixels that had not burned for a 

minimum of 15 years, corresponding to a dNBR of 213 and 339 in GAL and FCW, respectively, 

and CBI values of 1.6 and 1.9. Size of circles represents the number of pixels in each time since 

previous fire. Trend lines (red) are shown of the fit between dNBR and time since previous fire. 

The trend is significant in GAL (p=0.02) and FCW (p=0.08). 
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Chapter 2: 

Mapping day-of-burning with coarse-resolution satellite fire-detection data 

 

Abstract 

Evaluating the influence of observed daily weather on observed fire-related effects (e.g., 

smoke production, carbon emissions, and burn severity) often involves knowing exactly what 

day any given area has burned. As such, a number of studies have used fire progression maps – 

in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution – 

or MODIS satellite data to determine the day-of-burning, thereby allowing an evaluation of the 

influence of daily weather. However, fire progression maps have many caveats, the most 

substantial being that they are rarely mapped on a daily basis and may not be available in remote 

locations. Although MODIS fire detection data provide an alternative due to its global coverage 

and high temporal resolution, its coarse spatial resolution (1 km
2
) often requires that it be 

downscaled. An objective evaluation of how to best downscale, or interpolate, MODIS fire 

detection data is necessary. I evaluated ten spatial interpolation techniques on 21 fires by 

comparing the day-of-burning as estimated with spatial interpolation of MODIS fire detection 

data to the day-of-burning that was recorded in fire progression maps. The day-of-burning maps 

generated with the best performing interpolation technique showed reasonably high quantitative 

and qualitative agreement with fire progression maps. Consequently, the methods described in 

this chapter provide a viable option for producing day-of-burning data where fire progression 

maps are of poor quality or unavailable. 
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Introduction 

There have been numerous fire-related studies that depended upon knowing the day-of-

burning for any given point of any given fire. These studies, for the most part, needed to know 

the day-of-burning in order to use daily weather (e.g., from a nearby weather station) to explain 

or predict fire-related phenomena. For example, some studies have evaluated the influence of 

weather on fire effects (i.e. burn severity) (Collins et al. 2007; Bradstock et al. 2010; Thompson 

and Spies 2010) and others have used observed weather data to parameterize their models of fuel 

consumption and carbon emissions (de Groot et al. 2007, de Groot et al. 2009). Furthermore, 

some researchers have parameterized fire simulation models with weather conditions conducive 

to high spread days (Parisien et al. 2011; Parks et al. 2011; Podur and Wotton 2011).  

The studies described above relied on either fire progression maps or satellite data to 

infer day-of-burning (and therefore, the ability to determine the associated daily weather). Fire 

progression maps are often generated by land management and fire agencies, in which the 

perimeter of an actively burning fire is mapped at a fairly high temporal resolution (every few 

days to daily). Such fire progression maps are generated using aircraft with GPS or thermal 

mapping capabilities, aerial photos, ground-based GPS, or other field-based intelligence (C. 

McHugh personal communication). These maps are primarily generated to provide fire managers 

and the public with information on how a particular wildfire has grown over time. However, they 

also allow the research community the ability to conduct studies that evaluate, for example, the 

influence of daily weather on fire effects (e.g., Collins et al. 2009; Roman-Cuesta et al. 2009) 

There are some challenges, however, with using day-of-burning data from fire 

progression maps. First, fire progression maps are rarely created at the resolution of single days 

due to resource limitation (e.g., no available aircraft during periods of peak fire activity), safety 
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concerns (e.g., high winds or heavy smoke), or remote location (Fig. 1). Generally, only a small 

number of fires are mapped on a daily basis; these fires tend to be the ones that threaten human 

life and infrastructure (e.g., 2102 High Park Fire in Colorado). More commonly, fire progression 

maps have temporal gaps, some of them spanning multiple days (Fig. 1).To deal with such gaps, 

researches typically average daily weather values over the days where temporal gaps exist in fire 

progression maps (e.g., Collins, Kelly et al. 2007). Such an approach, however, likely 

understates the influence of weather because extreme conditions are masked by averaging 

(Collins et al. 2009). Furthermore, because of the limited availability of fire progression maps 

with adequate temporal resolution, many studies have been limited to only one or a few fires, 

making their findings highly localized. Other caveats of fire progression maps are that collection 

flight times vary by day, may be attributed with the incorrect day, and are sometimes drawn to 

reflect containment lines and not actual area burned (C. McHugh personal communication; B. 

Quayle, personal communication). Finally, and perhaps most importantly, fire progression maps 

are often not generated in extremely remote locations (e.g., the Canadian boreal forest).  

Where fire progression maps are not available or are of inadequate quality, some 

researchers have used MODIS fire detection data (NASA MCD14ML product, Collection 5, 

Version 1) to infer day-of-burning. These satellite data contain the date and location of actively 

burning pixels but have a coarse spatial resolution (pixel size = 1 km
2
). As such, various 

approaches have been used to downscale them. For example, de Groot et al. (2007, 2009) used 

nearest neighbor interpolation to estimate day-of-burning, whereas Parisien et al. (2011) and 

Parks et al. (2012) buffered individual fire detections. Because MODIS fire detection data are 

collected globally and at a high temporal frequency, they offer an alternative to agency-generated 
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fire progression maps. However, an objective evaluation of how to best interpolate, or 

downscale, these coarse data is necessary. 

There is a clear need by the fire management and research communities for reliable 

information regarding the day-of-burning for each point within a fire perimeter. Such data would 

allow a consistent and unbiased method for incorporating daily weather data into fire-related 

analyses. As such, this study has two objectives: 1) use ten spatial interpolation techniques to 

generate fine-scale day-of-burning maps and 2) evaluate each technique using fire progression 

maps. 

 

Methods 

Estimating day-of-burning 

I estimated the day-of-burning (DOB) for 21 fires (Table 1) that are greater than 5000 ha 

and, for comparative purposes, have at least six mapped fire progression perimeters. These fires 

have broad geographic dispersion (Table 1) to ensure that that the methods evaluated here are 

applicable across geographic regions. DOB was estimated for each pixel within each fire 

perimeter using several interpolation techniques (Table 2). Although these estimates can be 

generated at any resolution, I generated DOB using a pixel size of 30 x 30m, matching the 

resolution of Landsat TM imagery and associated products (e.g., burn severity data; Eidenshink 

et al. 2007). All procedures described below are implemented using the R statistical program (R 

Development Core Team 2007); the code is available from the corresponding author with no 

restrictions. 

Estimating DOB was a three step process. In step one, all MODIS fire detection data 

(NASA MCD14ML product, Collection 5, Version 1) overlapping and within 1-km of the final 
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fire perimeter were selected for use in the interpolation process. Fire perimeters were obtained 

from the Geospatial Multiagency Coordinating Group (GeoMAC) (2013); non-contiguous 

polygons (e.g., spot fires) < ~ 100 ha were removed. MODIS fire detection data were obtained 

from USDA Forest Service Active Fire Mapping Program (http://activefiremaps.fs.fed.us/) and 

serve as the input data for the interpolations. Hereafter, these point data are referred to as 

MODIS-DOB; they represent MODIS pixel centroids and are attributed with the date that a fire 

is detected (Fig. 2). MODIS-DOB have a coarse spatial resolution of 1 km
2
; however, the high 

temporal resolution of these data (there are two MODIS sensors, each passing overhead twice 

per day) provide useful information for mapping fine-scale day-of-burning. In cases where there 

were two or more spatially coincident fire detections (i.e. fire was detected in the same pixel but 

on a different day), the one with the earliest date was retained and others were removed. 

In step two, I estimated DOB for each pixel within each fire perimeter using ten 

interpolation methods (Table 2); hereafter, these day-of-burning estimates are referred to as 

interpolated-DOB. The interpolation techniques vary in complexity and not all of them are 

described in this paragraph; however, the details and equations for all ten are presented in tabular 

format (Table 2). The simplest is called nearest neighbor (NN) interpolation, in which each pixel 

within a fire perimeter is assigned a DOB based on the nearest MODIS-DOB. Moving along the 

complexity gradient, another is called average date (AD), in which each pixel is assigned a DOB 

based on the average date of nearby MODIS-DOB data. There are also a number of interpolation 

methods that assign DOB to each pixel based on weighted averages of nearby MODIS-DOB 

data; the most common is inverse-distance weighting (IDW) interpolation (see Fig. 2 for an 

illustration of how IDW operates). For those interpolation methods that calculate the average (i.e. 

AD) or weighted average (i.e. WMD) of nearby MODIS-DOB, I limited the interpolated-DOB to 

http://activefiremaps.fs.fed.us/
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only those dates observed in the nearby MODIS-DOB (Table 2). This ensured that the 

interpolated-DOB corresponded to days of detected fire growth and was not an artifact of 

averaging. This was accomplished for each pixel by selecting the date of the temporally nearest 

MODIS-DOB to the average or weighted average of each interpolation method. 

In step three, I reassigned all spatially contiguous interpolated-DOB regions that were ≤ 

25 ha to DOB values of the nearest regions larger than 25 ha. This size threshold is admittedly 

arbitrary; however, this step was necessary because the process described in step two often 

produced small interpolated-DOB regions that were not in agreement with surrounding 

estimates. This presumably occurred because of flare ups (and therefore MODIS-DOB 

detections) that occurred days after the flaming front passed through an area. 

 

Comparison to fire progression maps 

To evaluate each interpolation technique, I compared interpolated-DOB to the day-of-

burning recorded in fire progression maps obtained from GeoMAC (2013); hereafter, GeoMAC-

DOB. For any perimeter that was recorded before 12 PM (noon) on any given day, I changed the 

recorded day-of-burning to that of the previous day on the assumption that most of the area likely 

burned the previous afternoon and evening. For example, if a perimeter was recorded at 4 AM on 

July 2, I modified the date of the perimeter and shifted it to July 1. For this comparison, the 

GeoMAC-DOB data are considered the ‘observed’ data. However, the observed day-of-burning 

in the GeoMAC-DOB is not necessarily the actual day-of-burning due to temporal gaps in the 

mapped fire perimeters (Fig. 1); in such cases, I compared the ‘recording dates’ of the DOB-

GeoMAC to aggregated interpolated-DOB. For example, consider a GeoMAC-DOB fire 

perimeter that was mapped on August 1 and then again on August 3 (i.e. a two-day gap): I used 
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the mapped fire perimeter (GeoMAC-DOB) on August 3 and compared that to the interpolated-

DOB for August 2 and 3. I quantified the percentage of pixels in the interpolated-DOB that 

spatially and temporally agreed with the GeoMAC-DOB (i.e. percent of pixels that exactly 

matched). I also quantified the percent of pixels in the interpolated-DOB that were within ± 1 

and ± 2 recording dates of the GeoMAC-DOB. These comparisons, hereafter termed ‘percent 

agreement’, were then used to evaluate each interpolation technique.  

 

Results 

Day-of-burning maps (i.e. interpolated-DOB) for each of the ten spatial interpolation 

techniques were generated. Interpolated-DOB, as expected, varied among interpolation 

techniques, as evaluated qualitatively by the maps (Fig. 3) and quantitatively by the percentage 

agreement between interpolated-DOB and GeoMAC-DOB (Table 3). Among the 21 fire 

analyzed, the nearest date method (ND) had the lowest mean percent agreement for the exact 

match (42.8%), ±1 recording date (69.4%), and ±2 recording dates (80.7%). The weighted by 

mean and distance method (WMD) had the highest mean percent agreement for the exact match 

(46.1%; tied with MAJ10), ±1 recording date (75.8%; tied with WMD.sq), and ±2 recording 

dates (85.8%; tied with IDW.half and WMD.sq). Taking into account the percent agreement 

values for the exact match, ±1, and ±2 recording dates, I conclude that the WMD method 

performed marginally best overall. However, several other interpolation methods had percent 

agreement values that were almost as high as WMD, notably AD, IDW, IDW.sq, IDW.half, and 

WMD.sq. Relative to these top performing methods, the NN, ND, MAJ5, and MAJ10 methods 

had low percent agreement with GeoMAC-DOB. Visual inspection of the interpolated-DOB 

(WMD method) and GeoMAC- DOB also shows good agreement (Fig. 4).  
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Discussion 

Several interpolation methods were effective for mapping DOB for a broad range of 

ecosystem types, including grass (Mustang Corner [Florida]), grass/shrub (Rockhouse [Texas]), 

and conifer-dominated types (Fool Creek [Montana]). The average percent agreement for the 

WMD method was 46.1%, 75.8, and 85.8% for the exact match, ±1, and ±2 recording dates, 

respectively. This is roughly in line with the average percent agreement reported by de Groot et 

al. (2007), who used nearest neighbor interpolation to estimate day-of-burning for one fire in 

British Columbia, Canada using AVHRR and MODIS fire detections; they found that the percent 

agreement for ±1 and ±2 recording dates to be 80% and 90%, respectively (they did not report 

the exact match). Although I concluded that the WMD method had the highest percent 

agreement when compared to fire progression maps, this was only a marginal improvement over 

some of the other methods; I therefore suggest that the IDW, IDW.sq, IDW.half, and WMD.sq 

(and to a lesser degree, the AD method) also generate reasonable interpolated-DOB. In fact, 

these six top-performing interpolation techniques, based on the kappa statistic (Landis and Koch 

1977), are nearly identical using a kappa=0.95 threshold (Table 4). 

Although MODIS data have fairly coarse spatial resolution, the high temporal resolution 

of these data supports the use of spatial interpolation techniques and allows day-of-burning maps 

to be generated at any resolution. This is particularly important, because although fire behavior 

and effects are a function of fuels, weather, and topography (Agee 1993), the influence of 

weather is of particular interest (McKenzie et al. 2004; Abatzoglou and Kolden 2011) because of 

its high temporal variability (Bessie and Johnson 1995; Anderson et al. 2007) and its dominant 

influence during extreme years (Moritz 2003; Gedalof et al. 2005). As such, the methodology 
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developed here will allow for incorporating weather data into fire-related analyses covering 

broad regions and literally hundreds or thousands of fires (e.g., Parks et al. 2014). For example, 

studies that tie weather to wildfire smoke and carbon emissions (McKenzie et al. 2006; Lavoué 

et al. 2007) would benefit tremendously from the methods described here. Studies analyzing the 

effect of weather on fire effects (i.e. burn severity) (e.g., Thompson and Spies 2010) would also 

benefit, as would fire simulation studies that parameterize their models with weather conditions 

conducive to high spread days (e.g., Parisien et al. 2011). A related benefit of using the methods 

describe here is simply the ability to quantify daily fire growth of individual fires. For example, 

such an ability would benefit studies like those of Lavoué and Stocks (2011) who used a 

sigmoidal growth function, based on fire duration and final size, to estimate daily fire growth.  

Although I used fire progression maps for quasi-validation purposes, it should be noted 

that these data are imperfect, as previously described, and are not likely correct themselves. The 

lack of adequate ground-truthed data is challenging and, as such, complicates the validation 

procedure: it is not possible to know with 100% confidence how well the interpolations in this 

study perform. For example, the WMD method, on average, ‘under-predicted’ the day-of-

burning by 0.2 recording dates (average difference between interpolated- and observed-DOB 

among the 21 fires; range: -1.3 – 0.4); that is, the interpolated day-of-burning was generally 

earlier than the recorded day-of-burning in the fire progression maps. In some cases, this under-

prediction was substantial (four fires were < -0.5 recording dates and two fires were < -1.0). 

Such bias in the interpolations are likely due to incorrect recording dates of the fire progression 

maps, as it is highly unlikely that the MODIS satellite would systematically detect a fire before it 

actually burned. Considering the previously described caveats with fire progression maps and 

that they may, on average, systematically record the fire date later than it occurred, it is possible 
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that the percent agreement values reported in this study underestimate the quality of the 

interpolations.  

The methodology developed in this paper has been shown to generate, on average, robust 

DOB estimates. However, there are some reasons why estimated DOB may incorrect in some 

areas. Clouds, heavy smoke, and tree canopy may limit the ability of the MODIS sensors from 

detecting fire (Giglio 2010). Also, individual pixels within fast moving or low intensity fires may 

not be detected. Additional mischaracterization of DOB is likely due to the coarse resolution of 

the fire detection data. Also due to the coarse resolution of the MODIS data, it is likely that the 

methods described here are inappropriate for small fires (< ~500 ha); note that the smallest fire I 

analyzed was ~6300 ha. There are other inherent caveats associated with the fire detection 

algorithm (e.g., varying levels of detection confidence) (Giglio 2010) and remote sensing in 

general (Verstraete et al. 1996). Finally, it may be that the methods developed here are not 

necessary when high-quality daily fire progression maps are available. Although these caveats 

are important considerations, the methods described in this paper provide a viable option for 

producing day-of-burning data where agency-generated fire progression maps are of poor quality 

or unavailable. 

Finally, it is worth noting that the MODIS burned area product (MCD45A1) (Roy et al. 

2005) also estimates day-of-burning by evaluating change in vegetation. However, it has an 

eight-day precision (Roy and Boschetti 2009) and oftentimes has spatial gaps within a fire 

perimeter (i.e. no data on estimated day-of-burning for some MODIS pixels) (Fig. 5). As such, 

the methods presented in this paper can potentially be used to complement other algorithms that 

estimate day-of-burning (e.g., Giglio et al. 2009). 
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Table 1. General information about the 21 study fires, including name, year of burning, size, location 

(U.S. state), and duration.  

  

Fire Name Year 
Size 

(ha) 
Location 

Duration 

(days)
*
 

Columbia Cx 2006 53,200 Washington 41 

Tripod Cx 2006 74,121 Washington 81 

Ahorn 2007 22,699 Montana 57 

Corporal 2007 6,337 Montana 35 

Fool Creek 2007 25,847 Montana 73 

Railley Mountain 2007 8,576 Montana 48 

Showerbath 2007 24,999 Idaho 43 

South Barker 2008 13,819 Idaho 53 

Twitchell Canyon 2010 18,391 Utah 73 

High Park 2012 36,546 Colorado 17 

Waldo Canyon 2012 7,340 Colorado 8 

Rock House 2011 127,640 Texas 22 

Miller 2011 36,087 New Mexico 32 

Whitewater Baldy 2012 120,508 New Mexico 41 

Wallow 2011 221,043 Arizona 28 

Day 2006 66,459 S. California 25 

Zaca 2007 98,759 S. California 61 

Hancock 2006 8,964 N. California 81 

Pigeon 2006 40,842 N. California 94 

Deep 2009 12,242 Florida 6 

Mustang Corner 2008 16,166 Florida 6 
*
Based on first and last MODIS fire detection 

 

  



50 

 

Table 2. Abbreviation, name, and description of interpolation methods (ordered from simplest to 

most complex) used to estimate day-of-burning (DOB-interpolated) using coarse resolution 

MODIS fire detection data (MODIS-DOB). For those interpolation methods that calculate the 

average (i.e. AD) or weighted average (i.e. WMD) of nearby MODIS-DOB, I limited the 

interpolated-DOB to only those dates observed in the nearby MODIS-DOB (See Methods). 

 

Interpolation 

abbreviation 
Interpolation name Interpolation description 

NN Nearest neighbor 
Each pixel is assigned the Julian day of the nearest MODIS fire 

detection. 

ND Nearest date 
Each pixel is assigned the earliest Julian day of the three nearest 

MODIS fire detections. 

AD Average date 
Each pixel is assigned the averaged Julian day of the three nearest 

MODIS fire detections. 

MAJ5 
Majority of five nearest 

neighbors 

Each pixel is assigned the most common Julian day among the five 

nearest fire detections. In case of a tie, the earlier Julian day is 

assigned. 

MAJ10 
Majority of ten nearest 

neighbors 

Each pixel is assigned the most common Julian day among the ten 

nearest fire detections. In case of a tie, the earlier Julian day is 

assigned. 

IDW Inverse distance weighted 

Each pixel is assigned a weighted average of the five nearest MODIS 

fire detections (See Fig. 2). The weight of each fire detection (wi) is 

based on the distance (d) and is defined as: 

    
 

  

  ∑    

 

   

 

IDW.sq 
Inverse distance 

weighted-squared 

Each pixel is assigned a weighted average of the five nearest MODIS 

fire detections. The weight of each fire detection (wi) is based on the 

distance (d) and is defined as: 

    
 

  
   ∑    

 

 

   

 

IDW.half 
Inverse distance 

weighted-square root 

Each pixel is assigned a weighted average of the five nearest MODIS 

fire detections. The weight of each fire detection (wi) is based on the 

distance (d) and is defined as: 

    
 

  
     ∑    

   

 

   

 

WMD 
Weighed by mean and 

distance 

Each pixel is assigned a weighted average of the five nearest MODIS 

fire detections. The weight of each fire detection (wi) is based on the 

date (jdayi) and distance (di) and is defined as: 

   
(
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 ∑       
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WMD.sq Weighted by mean and Each pixel is assigned a weighted average of the five nearest MODIS 
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distance-squared fire detections. The weight of each fire detection (wi) is based on the 

date (jdayi) and distance (di) and is defined as: 
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Table 3. For each fire, percent agreement for each interpolation method between the interpolated-DOB and the GeoMAC-DOB for the 

exact match (±0), within one recording date (±1), and within two recording date (±2). 
 

Fire Name 
NN ND AD MAJ5 MAJ10 

±0 ±1 ±2 ±0 ±1 ±2 ±0 ±1 ±2 ±0 ±1 ±2 ±0 ±1 ±2 

Columbia Cx 66.3 84.0 90.4 70.6 86.2 92.2 67.4 86.1 92.0 69.9 85.4 91.1 71.5 86.1 91.5 

Tripod Cx 38.7 66.3 77.5 31.5 51.1 59.6 39.2 68.8 79.9 37.3 67.3 78.0 38.5 69.7 80.3 

Ahorn 28.5 49.2 63.1 35.0 57.2 70.7 27.2 50.1 67.5 32.4 54.9 70.5 28.4 52.1 69.7 

Corporal 31.0 54.2 65.3 35.8 53.4 59.9 32.4 57.5 68.7 33.0 53.8 63.1 34.2 55.0 64.3 

Fool Creek 48.1 70.6 79.8 49.1 67.0 77.0 47.9 73.7 80.3 54.9 73.8 81.3 54.5 75.4 83.4 

Railley Mtn. 45.9 59.4 72.3 77.3 93.9 96.6 44.6 62.3 73.1 43.5 58.7 70.9 43.3 59.9 71.6 

Showerbath Cx 36.1 65.9 78.8 45.7 77.7 86.9 38.2 67.8 82.4 31.4 63.1 77.7 31.7 59.4 74.8 

South Barker 47.5 78.2 86.5 33.1 60.3 74.1 52.4 84.2 91.4 48.8 82.1 90.3 50.9 82.6 90.9 

Twitchell 28.8 51.1 58.3 35.3 59.2 75.6 29.1 54.6 61.1 33.6 54.3 60.0 34.7 54.8 60.0 

High Park 51.9 80.6 86.8 49.4 77.3 84.6 54.8 82.6 88.7 54.9 81.2 87.6 56.8 81.9 88.3 

Waldo Canyon 59.7 85.1 94.3 54.6 83.5 92.0 63.0 84.8 94.2 64.3 86.5 93.9 64.8 87.7 94.3 

Rockhouse 78.4 95.5 97.7 26.2 61.1 75.8 79.4 96.3 97.8 77.9 95.3 97.2 78.7 95.4 97.2 

Miller 40.0 69.7 88.3 38.2 63.9 84.7 41.1 72.7 90.4 38.7 68.4 87.7 38.5 66.0 85.9 

Whitewater Baldy 41.3 77.6 88.1 43.5 75.8 86.4 42.6 81.3 89.5 42.4 78.7 87.8 41.2 78.8 88.1 

Wallow 36.0 75.3 90.1 40.3 78.0 90.7 37.1 77.6 92.2 38.6 77.7 92.2 39.2 76.7 93.1 

Day 49.3 83.0 91.8 49.0 83.0 92.1 52.5 85.7 93.1 52.6 85.5 93.0 54.5 86.4 93.4 

Zaca 39.2 78.5 87.1 34.0 74.2 86.2 40.5 81.6 90.2 40.9 79.9 88.7 43.0 81.6 89.7 

Hancock 50.6 73.3 86.1 42.5 61.9 74.4 51.3 75.3 88.3 46.8 68.0 80.5 50.6 71.4 84.2 

Pigeon 38.3 63.5 78.3 41.5 55.6 70.3 40.0 67.2 82.1 37.8 60.3 75.8 39.2 61.4 77.0 

Deep 28.4 68.6 84.4 9.9 48.1 72.2 23.6 69.0 85.0 19.6 61.5 79.9 15.4 58.5 75.5 

Mustang Corner 60.3 91.9 96.3 55.6 88.5 93.6 57.8 93.7 97.2 58.8 92.6 94.2 58.7 90.8 92.5 

MEAN 45.0 72.5 82.9 42.8 69.4 80.7 45.8 74.9 85.0 45.6 72.8 82.9 46.1 72.9 83.1 
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Table 3 (continued) 

 

Fire Name 
IDW IDW.sq IDW.half WMD WMD.sq 

±0 ±1 ±2 ±0 ±1 ±2 ±0 ±1 ±2 ±0 ±1 ±2 ±0 ±1 ±2 

Columbia Cx 66.9 86.5 92.5 66.9 85.9 92.0 66.3 86.8 92.7 67.5 86.7 92.7 67.4 86.9 92.7 

Tripod Cx 39.6 69.2 80.6 39.5 69.0 80.1 39.4 69.1 80.8 39.7 69.7 80.9 39.8 69.6 80.9 

Ahorn 26.3 49.0 66.4 28.0 49.9 66.6 26.2 49.4 66.3 26.0 49.3 66.7 25.5 48.8 66.5 

Corporal 32.4 59.7 70.5 31.9 58.5 69.3 32.5 60.0 70.6 32.3 60.6 71.1 31.8 60.8 71.1 

Fool Creek 46.4 73.9 80.3 46.4 73.6 80.1 45.7 74.0 80.5 46.6 74.1 80.7 46.6 74.1 80.8 

Railley Mtn. 44.8 62.6 74.0 45.2 62.0 73.8 43.5 62.0 73.4 44.0 62.3 73.5 43.9 62.2 73.3 

Showerbath Cx 39.9 69.1 84.4 39.5 68.5 83.2 39.6 68.8 84.9 39.7 68.5 84.3 39.6 68.3 84.5 

South Barker 52.4 85.3 92.1 51.3 84.6 91.5 52.4 85.4 92.5 52.6 85.1 92.7 53.1 85.5 92.9 

Twitchell 29.1 56.7 62.4 28.8 56.0 61.9 29.2 57.2 63.0 29.5 56.7 62.4 29.7 56.8 62.8 

High Park 55.0 83.1 89.5 54.8 82.7 88.7 54.4 83.1 89.5 55.0 83.5 89.7 54.8 83.4 89.7 

Waldo Canyon 64.2 86.8 95.2 62.3 86.9 95.1 65.5 86.9 95.0 66.0 87.3 95.6 66.2 87.2 95.3 

Rockhouse 79.6 96.3 97.8 79.1 96.2 97.8 79.6 96.3 97.7 79.5 96.3 97.7 79.5 96.3 97.7 

Miller 41.4 73.6 91.8 41.5 73.3 91.1 41.2 73.0 91.4 41.4 73.5 91.7 41.3 73.2 91.5 

Whitewater Baldy 42.9 82.3 90.2 43.3 82.0 90.1 42.4 82.0 90.2 42.7 82.3 90.1 42.7 82.2 90.1 

Wallow 37.5 78.3 93.3 37.4 78.0 92.7 37.3 78.0 93.4 37.8 78.6 93.7 37.6 78.3 93.6 

Day 53.0 85.9 93.3 52.4 85.6 93.1 53.4 86.0 93.4 53.8 86.2 93.4 54.0 86.2 93.4 

Zaca 40.6 82.0 90.4 40.7 81.4 89.9 40.6 81.9 90.4 41.3 82.5 90.6 41.0 82.5 90.6 

Hancock 53.7 76.6 89.0 54.8 75.9 89.2 53.4 76.1 89.2 54.6 76.6 88.8 53.7 76.0 89.2 

Pigeon 39.4 67.9 83.5 40.0 67.4 83.2 39.3 67.8 83.6 39.5 67.9 83.9 39.5 67.8 83.7 

Deep 20.3 69.6 85.7 22.8 69.3 85.5 19.9 69.5 85.5 20.3 69.5 85.5 20.2 69.9 85.5 

Mustang Corner 58.4 93.8 97.3 59.2 93.7 97.1 57.3 94.3 97.2 58.0 94.8 97.0 57.8 95.5 97.0 

MEAN 45.9 75.6 85.7 46.0 75.3 85.3 45.7 75.6 85.8 46.1 75.8 85.8 46.0 75.8 85.8 
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Table 4. Average (among all 21 fires) kappa statistic (Landis and Koch 1977) between all 

pairwise interpolation techniques. 

 

 

NN ND AD MAJ5 MAJ10 IDW IDW.sq IDW.half WMD WMD.sq 

NN -- -- -- -- -- -- -- -- -- -- 

ND 0.84 -- -- -- -- -- -- -- -- -- 

AD 0.92 0.88 -- -- -- -- -- -- -- -- 

MAJ5 0.87 0.90 0.92 -- -- -- -- -- -- -- 

MAJ10 0.85 0.88 0.89 0.91 -- -- -- -- -- -- 

IDW 0.92 0.87 0.96 0.92 0.90 -- -- -- -- -- 

IDW.sq 0.94 0.87 0.96 0.91 0.89 0.98 -- -- -- -- 

IDW.half 0.91 0.88 0.96 0.93 0.90 0.99 0.97 -- -- -- 

WMD 0.91 0.88 0.96 0.93 0.90 0.99 0.97 0.99 -- -- 

WMD.sq 0.91 0.88 0.96 0.93 0.90 0.98 0.96 0.99 0.99 -- 
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Figures 

Figure 1. Julian day the perimeter was recorded (i.e. observed; left) and the number of 

days that elapsed between perimeter observations (right) for the Day fire in southern 

California.  These maps illustrate that temporal gaps often exist in fire progression maps. 
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Figure 2. Illustration of how the inverse distance weighting (IDW) interpolation method 

operates. For the pixel labeled with an ‘X’, DOB is estimated using a weighted averaged 

of the five nearest MODIS fire detections. w1 is the weight (in the IDW weighted 

average equation [bottom]) of the closest MODIS fire detection, d1 is the distance of the 

closest fire detection, and DOB1 is the day-of-burning of the closest fire detection. w2 is 

the weight of the second closest MODIS fire detection, etc. 
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Figure 3. Visual comparison of five of the interpolation techniques for the Fool Creek 

fire. 
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Figure 4. Maps showing DOB-GeoMAC vs. DOB-interpolated (WMD) for each of the 21 

study fires. 
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Figure 4. (continued) 
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Figure 5. Interpolated (left) and MODIS burned area product (MCD45A1; right) day-of-

burning for High Park, Miller, and Wallow fires.  
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Chapter 3: 

Ability of wildfires to limit the extent of subsequent fires 
 

 

Abstract 

Theory suggests that fire size can be limited by previous fires in landscapes with 

active fire regimes. However, empirical examples of this pattern-process feedback (also 

termed ‘self-regulation’) are surprisingly rare due to data limitations resulting from an 

overall lack of fires on the landscape due to fire exclusion policies. Given the increase in 

fire activity over the last ~25 years in the western US, there are now opportunities to 

evaluate these spatial feedbacks and explicitly quantify the ability of wildfire to limit the 

size, or extent, of subsequent fires. Understanding weather’s influence on the ability of 

wildfires to act as future fuel breaks is also necessary given that extreme fire-conducive 

weather may moderate this effect and may become more common in the future due to 

climate change. In this study, I evaluated the ability of wildfire to limit the extent of 

subsequent fires along a temporal gradient in four large study areas in the western US 

that have experienced substantial fire activity in recent decades. Using fire progression 

maps in conjunction with weather station data, I also evaluated the influence of daily 

weather in modifying the effectiveness of wildfire as a fuel break. Results indicate that 

wildfires do limit subsequent wildfire spread, but this effect decays over time; wildfires 

no longer act as fuel breaks ~6-17 years after a fire, depending on the study area. I also 

found that extreme weather substantially moderates this effect; the ability of wildfire to 

act as a fuel break is ~halved or more under extreme compared to more moderate weather 
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conditions in three of the study areas. These results will be useful to fire managers who 

seek to restore natural fire regimes or to exploit recent burns when managing fire.  

 

Introduction 

Wildland fire is an important ecological process in many ecosystems (Agee 

1993); it alters vegetation composition and structure, consumes biomass, and influences 

landscape heterogeneity. Such fire-induced changes can influence subsequent fire 

behavior and effects via site- and landscape-level feedbacks (Agee 1999; Peterson 2002; 

McKenzie et al. 2011). For example, wildfires reduce fuel loads, and if fires recur before 

sufficient biomass has accumulated, the size and severity of subsequent fires may be 

limited (Collins et al. 2009; Parks et al. 2014). These feedback mechanisms are 

considered fundamental ecosystem properties of fire-adapted ecosystems of the western 

US (McKenzie et al. 2011) but have been largely disrupted in many ecosystems due to 

successful fire exclusion dating back to the 1930s (Heyerdahl et al. 2001; Taylor and 

Skinner 2003). Some areas of the western US, however, have experienced substantial fire 

over the last three decades, partially because some fires were not actively suppressed 

(termed “resource benefit fires”); these areas provide crucial natural laboratories to 

explicitly evaluate how these feedback mechanisms function. 

Land managers are increasingly recognizing that fire exclusion is problematic for 

a number of ecological and social reasons. For example, fire exclusion is often cited as 

the cause of increased tree density and homogenizations in several forest types (Hessburg 

et al. 2005; Naficy et al. 2010), which in turn has contributed to increases in area burned 

and fire severity (Stephens 2005; Mallek et al. 2013). Fire suppression activities are 
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expensive (Gebert et al. 2007) and have a number of adverse ecological consequences 

such as high-intensity backburns, fireline construction, and fire retardant pollution 

(Backer et al. 2004). Finally, there is an increasing awareness that wildland fire is a 

necessary component of healthy ecosystems (Kilgore 1973; Hutto 2008). These factors, 

combined with acknowledgement that climate change will likely lead to more frequent 

fire (Littell et al. 2010; Westerling et al. 2011), have increased interest in explicitly and 

quantitatively evaluating how feedbacks between wildfire and subsequent wildfire 

operate.  

Several recent studies have shown that fire severity is lower in areas that reburned 

within a previously recorded fire perimeter compared to those that did not (Arkle et al. 

2012; Miller et al. 2012; Parks et al. 2014), clearly indicating a strong feedback between 

wildfire and subsequent fire severity. However, barring those that are inferential (Price et 

al. 2012; Parisien et al. In press) or involve fire simulation modeling (e.g., Davis et al. 

2010), studies explicitly evaluating feedbacks between wildfires and subsequent wildfire 

size are extremely limited and inconsistent in their results. For example, Collins et al. 

(2009) found that wildfire indeed limited the size of subsequent fires in upper mixed-

conifer forest in the Sierra Nevada, California, whereas Teske et al. (2012) found this 

effect in only one of three study areas in central Idaho and northern Montana. The ability 

of wildfires to act as a fuel breaks depends upon underlying contingencies such as time 

between fires (Peterson 2002), but only a couple of studies have evaluated this factor 

(Collins et al. 2009; Price and Bradstock 2010). There is a clear need for more 

information on how wildfires serve as fuel breaks and how this may change as time 
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between fires increases over a broad range of ecosystems and geographies of the western 

US. 

Another understudied aspect of feedbacks between wildfire and subsequent fire 

size is the influence of weather. Mortiz (2003) suggested that extreme fire weather may 

override or moderate the effect of a previously burned area in limiting the extent of 

subsequent fires; this was substantiated by Collins et al. (2009) and Price and Bradstock 

(2010), who showed that the ability of a wildfire to act as a fuel break decreased as fire 

weather became more extreme. Further investigation over a broader range of geography 

and ecosystem types is needed to develop a more comprehensive understanding of fire-

weather relationships, especially given the varying influence of bottom-up and top-down 

controls on fire regimes (e.g., fuels vs. weather) (Heyerdahl et al. 2001; Mermoz et al. 

2005; Parks et al. 2012). Such information would be useful in anticipating how the 

effectiveness of wildfire as a fuel break may weaken under future climatic conditions, 

which is important considering that extreme fire weather is expected to become more 

common in the future (Nitschke and Innes 2008).  

The first objective of this study was to determine if wildfires limit the extent of 

subsequent fires, and if so, how this effect changes as time between fires increases. I 

hypothesized that the effectiveness of wildfire as a fuel break will be greatest 

immediately after a fire and decay through time. Assuming a fuel break effect is found, 

my second objective was to determine if extreme fire-conducive weather conditions 

modify this effect. I hypothesized that the ability of wildfires to act as a fuel break will be 

weaker and decay faster with increasing fire weather conditions.  
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Methods 

Study area 

I conducted this study within four study areas composed entirely of protected 

areas (wilderness and national park) (Fig. 1), thereby limiting the confounding effects of 

mechanical fuel treatments that are common outside such areas. The FCW study area is 

composed of the Frank Church – River of No Return Wilderness in central Idaho. The 

adjacent SBW encompasses the Selway-Bitterroot Wilderness in western Montana and 

north-central Idaho. CCE (Crown of the Continent Ecosystem) is comprised of Glacier 

National Park and the Great Bear, Bob Marshall, and Scapegoat wilderness areas. Finally, 

GAL incorporates the Gila and Aldo Leopold Wilderness Areas in western New Mexico. 

These study areas were chosen because they have experienced substantial fire activity in 

recent decades and thus have enough data to evaluate the effectiveness of wildfire as a 

fuel break. Although a proportion of ignitions were managed as resource benefit fires in 

all study areas, some were also actively suppressed.  

 

FCW (Frank Church – River of No Return Wilderness) 

The FCW (9777 km
2
) is the second largest wilderness area in the lower 48 states. 

Mean annual precipitation is 871 mm and mean annual temperature is 2.7 °C (Daly et al. 

2002). However, there is substantial intra-area variation in both mean annual 

precipitation and temperature (Fig. 2). In this and all study areas, mean annual 

precipitation is generally lowest in the low elevation river bottoms and highest on the 

mountain peaks; temperature exhibits the opposite pattern. FCW is rugged; elevations 

range from 600 to 3136 m. Topographic features include river breaks, deep canyons, 
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mountains, and glaciated basins (USDA Forest Service 2003). Park-like groves of 

ponderosa pine (Pinus ponderosa) exist below about 1500 m on south and west slopes 

(Barrett 1988). Denser ponderosa pine and Douglas-fir (Pseudotsuga menziesii) forests 

occupy north and east aspects, up to elevations of about 2100 m. Still higher, the 

vegetation transitions to grand fir (Abies grandis), lodgepole pine (P. contorta), and 

Englemann spruce (Picea engelmannii ). At the highest elevations, subalpine fir (A. 

lasiocarpa), whitebark pine (P. albicaulis), and alpine environments predominate (Barrett 

1988; Finklin 1988). The fire season runs from early-July to mid-September (USDA 

Forest Service 2013). Low-elevation, open ponderosa pine forests tend to experience 

frequent, low-intensity fires, and, generally, fire frequency decreases and severity 

increases with increasing elevation, moisture, and tree density (Crane and Fischer 1986). 

Fire suppression became effective in about 1935 (Finklin 1988) although sheep grazing 

may have excluded fire earlier (Steele et al. 1981). Resource benefit fires began to occur 

in ~1988 (Beckman 2008).  

 

SBW (Selway-Bitterroot Wilderness)  

The SBW (5471 km
2
) is the third-largest wilderness area in the lower 48 states. It 

includes the Bitterroot mountain range along the Montana and Idaho border and large 

portions of the Selway and Lochsa watersheds in Idaho. Mean annual precipitation in 

SBW is 1221 mm and mean annual temperature is 3.5 °C (Daly et al. 2002). Elevations 

range from 531 m in the Selway River drainage on the western edge to over 3000 m in 

the southeast portion of the study area. The vegetation of SBW is diverse. Lower 

elevations (up to ~1500 m) in the west and northwest portion of the study area are 
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characterized by Pacific maritime forests composed of western hemlock (Tsuga 

heterophylla), western red cedar (Thuja plicata), western white pine (P. monticola), and 

Douglas-fir (Rollins et al. 2002). Ponderosa pine is common at lower elevations in other 

portions of the study area, particularly on dry south-facing slopes (Brown et al. 1994). As 

elevation increases, Douglas-fir and grand fir are prominent on mesic sites and ponderosa 

pine, Douglas-fir, and western larch (Larix occidentalis) are common on drier sites. The 

subalpine forests of the higher elevations (> ~2500 m) are composed of a collection of 

Engelmann spruce, whitebark pine, lodgepole pine, subalpine fir, and alpine larch (L. 

lyallii ) (Rollins et al. 2002). At the highest elevations, alpine environments (i.e., barren 

or snow/ice) are common, especially along the Bitterroot divide. The fire season in SBW 

runs from late-June through mid-September (Brown et al. 1994). The fire regime is 

categorized as mixed: lower-severity surface fires are common in the lower elevations 

and patchy, stand-replacing fires become more common as elevation increases, although 

during extremely dry years, stand replacing fires can occur throughout the study area 

(Brown et al. 1994). Fires were actively suppressed until 1972; resource benefit fires 

were allowed to burn after this point (van Wagtendonk 2007). Cattle and sheep grazing 

was evident in the early 1900’s (USDA Forest Service 1924), which may have decreased 

fire frequency within portions of SBW. 

 

CCE (Crown of the Continent Ecosystem)  

The CCE is the largest (10,331 km
2
) of the four study areas. Mean annual 

precipitation in CCE is 1243 mm and mean annual temperature is 2.2 °C (Daly et al. 

2002) (Fig. 2). The CCE straddles both the east and west slopes of the continental divide. 
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The northern portion of is composed of Glacier National Park (GNP), where alpine 

glacial canyons drain into major river valleys (Barrett et al. 1991). South of GNP lays the 

Great Bear, Bob Marshall, and Scapegoat Wilderness Areas. Elevations in CCE range 

from 950 m near Lake McDonald in GNP to over 3100 m on the highest mountain peak 

(also in GNP). Although dependent upon fire history and soil texture, ponderosa pine, 

lodgepole pine, Douglas fir, western larch are the dominant tree species in low-elevation 

areas (< ~1500 m) (Arno 1980; Keane et al. 1994; Keane et al. 2006). Western hemlock 

and western red cedar are present in low-elevation (< 1500 m) wet areas that have been 

free of fire for extended periods of time (> ~100 years). As elevation increases the 

dominant species become lodgepole pine, subalpine fir, and Engelmann spruce. 

Whitebark pine and alpine larch are present near treeline (1800-2300 m elevation, 

depending on latitude); alpine environments are common above this elevation. Areas of 

ponderosa pine and mixed-conifer in CCE were historically maintained by low- and 

mixed-severity regimes (Arno et al. 2000; Keane et al. 2006); the effects of fire exclusion 

(dense understory and duff accumulation) are evident in these areas. Most of the study 

area (excluding alpine environments), however, is characterized by a mixed- to high-

severity fire regime (Arno et al. 2000). The fire season runs from mid-July through 

September (USDA Forest Service 2013). Resource benefit fires began in the Bob 

Marshall wilderness in 1981 and in GNP in 1994. 

  

GAL (Gila and Aldo Leopold Wilderness) 

The GAL (3087 km
2
) is the driest and warmest of the four study areas; mean 

annual precipitation is 578 mm and mean annual temperature is 10.4 °C (Daly et al. 
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2002) (Fig. 2). Elevations range from 1462 to 3314 m. The topography is diverse, 

composed of mountains, broad valleys, steep canyons, and extensive mesas. At the lowest 

elevations, the vegetation is desert scrub and grasslands (Ceanothus, Artemisia, and 

Yucca spp.). As elevation increases, it transitions to piñon-oak-juniper woodland (P. 

edulis engelmannii, Juniperus deppeana, J. monosperma, and Quercus spp.), and then to 

ponderosa pine woodland and forest. The highest elevations are composed of Douglas-fir, 

Englemann spruce, white fir (A. concolor), subalpine fir, southwestern white pine (P. 

strobiformis), and aspen (Populus tremuloides) forests (Rollins et al. 2002). Although the 

fire season runs April through September, mid-summer fires are uncommon due to rains 

associated with monsoonal storms from the Gulf of Mexico (Rollins et al. 2002). Fires in 

GAL are generally frequent and low-severity surface fires, but fire severity tends to 

increase with elevation (Swetnam and Dieterich 1985) and varies with aspect, incident 

radiation and topographic position (Holden et al. 2009). Extensive cattle and sheep 

grazing began in the 1890’s, which substantially reduced fine fuel amount and continuity 

and caused a decrease in fire frequency (Swetnam and Dieterich 1985; Swetnam and 

Baisan 1996). Resource benefit fires began to occur in 1975 (Swetnam and Dieterich 

1985). 

 

Analyses 

Development of geospatial fire atlas 

Creating the geospatial fire atlas for each study area was a multi-step process. 

First, I obtained fire perimeters from the Monitoring Trends in Burn Severity (MTBS) 

project (Eidenshink et al. 2007), which has mapped the perimeter and severity of fires ≥ 
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400 ha in the western US from 1984-2011. Next, I supplemented the MTBS fire 

perimeters by identifying and mapping all fires ≥ 20 ha from 1972-2012 using the entire 

record of Landsat data, including the multi-spectral sensor (MSS), thematic mapper 

(TM), enhanced thematic mapper plus (ETM+), and operational land imager (OLI) 

sensors. This was conducted by obtaining virtually all snow-free images for each study 

area from the US Geological Survey Center for Earth Resources Observation and Science 

(USGS-EROS) (available from http://earthexplorer.usgs.gov/) and identifying and 

mapping areas of change between image dates. Identifying and mapping fires with the 

MSS imagery (circa 1972-1984) relied primarily on evaluating differences between pre- 

and post-fire NDVI (normalized differenced vegetation index) (dNDVI). For the Landsat 

TM, ETM+, and OLI data (1984-2012), however, I delineated fire perimeters by 

evaluating differences between pre- and post-fire NBR (normalized burn ratio) (dNBR) 

(Key and Benson 2006). I converted the reflective and thermal bands of each Landsat 

scene into top-of-atmosphere reflectance and brightness temperature respectively, and 

produced multi-date comparisons of all NDVI/NBR scenes within each year. A linear 

grayscale was assigned to dNDVI and dNBR imagery typically in the range of -800 to 

+1100 for best contrast in delineating fire perimeters. To identify and map fires in GAL, I 

also used two relativized metrics of fire-induced change (RdNBR, Miller and Thode 

2007; RBR, Parks et al. 2014) since these severity indices provided higher contrast in the 

more sparsely vegetated study area. Supplementary spatial data were also used to confirm 

the presence of fire, including Moderate Resolution Imaging Spectroradiometer (MODIS) 

fire detections (USDA Forest Service 2013) (2001-2012), National Interagency Fire 

Management Integrated Database (https://fam.nwcg.gov/fam-

http://earthexplorer.usgs.gov/
https://fam.nwcg.gov/fam-web/kcfast/html/ocmenu.htm


75 

 

web/kcfast/html/ocmenu.htm) (1972-2012), Geospatial Multi-Agency Coordination 

Group fire perimeters (http://www.geomac.gov/index.shtml) (2001-2011), and various 

regional fire atlases for the Gila Wilderness (Rollins et al. 2001) (1972-1997), Northern 

Rocky mountains (Gibson 2006) (1972-2003), and the Flathead National Forest 

(http://www.fs.usda.gov/detailfull/flathead/landmanagement/gis) (1980-2012). All 

geospatial operations were conducted using either ArcMap 10.1 (ESRI Inc. 2012) or the 

“raster” package (Hijmans and van Etten 2011) within the R statistical program (R 

Development Core Team 2007). 

Numerous MTBS fire perimeters were modified because they incorrectly mapped 

two fires from different years as one fire or where multiple MTBS fires in a year actually 

represented one contiguous fire or fire complex. The final product is a geospatial fire 

atlas for all fires ≥ 20 ha from 1972-2012. All fire perimeters were converted to raster 

format with a 30 x 30 meter pixel size (matching the resolution of Landsat TM, ETM, 

and OLI data). 

 

Identifying limiting fire perimeters 

Previous wildfires interact with subsequent fire by either stopping the spread or 

getting reburned by a subsequent fire. As such, I developed an objective and consistently 

applied rule-set to identify wildfire perimeters, or portions thereof, that either limited or 

did not limit the spread of subsequent fires. First, each pixel of each fire perimeter was 

evaluated to determine if it interacted with a subsequent fire, defined by either 1) a fire 

perimeter pixel is within 375 m of a subsequent fire or 2) a fire perimeter pixel is 

reburned by a subsequent fire. The 375 m distance threshold allows for error in wildfire 

https://fam.nwcg.gov/fam-web/kcfast/html/ocmenu.htm
http://www.geomac.gov/index.shtml
http://www.fs.usda.gov/detailfull/flathead/landmanagement/gis
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perimeter mapping due to the spatial and spectral diversity caused by variability in fire 

severity, vegetation type, and speed of vegetation recovery (Holden et al. 2005). Next, I 

determined whether interacting pixels did or did not limit the extent of subsequent fires. 

If a subsequent fire perimeter was ≤ 375 m as measured outwards from the initial fire 

perimeter and ≤ 750 m as measured inwards (i.e. the subsequent fire infiltrated the initial 

fire perimeter by ≤ 750 m), then I assumed that the pixel was limiting the extent of the 

subsequent fire (Fig. 3); hereafter, these proximal and interacting pixels are referred to as 

LIMITING. In this case, the 750 m threshold acknowledges that wildfires may limit 

subsequent fire size even though it may reburn along the perimeter of a previous fire. If a 

pixel from a subsequent fire perimeter infiltrated > 750 meters and reburned a previous 

fire, then I assumed that the subsequent fire was not limited in extent by the initial 

wildfire; hereafter, these interacting pixels are referred to as NOT LIMITING. If a pixel 

from a subsequent fire was > 375 m from a fire perimeter, I assumed that that there was 

no interaction and the pixel was excluded from further analyses (Fig. 3). Preliminary 

analyses indicated that many false-positives resulted from this rule-set (e.g. pixels were 

mislabeled as LIMITING, see Fig. 3d), prompting an additional step to minimize this 

occurrence: if greater than 35% of the area of the initial or subsequent wildfire 

overlapped, then all proximal pixels were identified as NOT LIMITING. All pixels from 

all fires were thus labeled as LIMITING, NOT LIMITING, or excluded from the 

analyses. To clarify, the analyses units are pixels along the perimeter boundary, or edge, 

of the initial wildfire; no pixels from the interior of the initial fire perimeter are analyzed. 

Exploratory analyses indicated there are individual cases where the thresholds 

described above failed and perimeter pixels were seemingly mislabeled as LIMITING or 
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NOT LIMITING. I found that, although changing the thresholds may alleviate this issue 

for individual cases, it seemingly mislabeled pixels of other fires. I evaluated alternative 

thresholds in these exploratory analyses (250 and 500 m vs. 375 and 750 m); the results 

were surprisingly similar to those reported here, which suggests that minor changes in 

threshold values do not substantially change the findings of this study. 

 

Statistical model  

To quantify the ability of wildfires to serve as fuel breaks, and how this ability 

may change as time between fires increases, I built logistic regression models (using the 

logit function) with LIMITING vs. NOT LIMITING as the binary response variable and 

time between fires (years) as the explanatory variable. I built these models with two sets 

of data for each study area, one with all fires (≥20 ha) and another with large fires (≥400 

ha). I built two models for two reasons. First, it is probable that some of the smaller fires 

in my study did not burn in a subsequent fire event although the fire perimeter data would 

indicate that it did (falsely labeling such pixels as NOT LIMITING). This is due to 

difficulty in identifying and mapping unburned islands within a fire perimeter. A model 

including only large fires reduces the chance of this occurring. Second, some have 

suggested that small fuel treatments are ineffective at limiting fire spread (e.g., Graham 

2003); excluding small fires (< 400 ha) acknowledges this notion. Although the fire 

perimeter data span 41 years, I removed all interactions older than25 years from the 

analysis. This was because initial data exploration indicated that there were only small 

amounts of data beyond 25 years between fires and there appeared to be no effect of 

wildfire as a fuel break beyond this time, although this could simply be due to the lack of 
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data. Model fits are evaluated with the area under curve calculation for the receiver 

operating characteristic curve (ROC) as calculated with the ‘verification’ package in R 

(NCAR - Research Applications Laboratory 2013).  

To test for model significance while minimizing the effects of spatial 

autocorrelation, which tends to overfit models and inflate statistical significance 

(Legendre and Fortin 1989; Legendre 1993), I used a subsampling and multi-model 

approach similar to that described by Parisien et al. (2011). Specifically, for each logistic 

regression model described above and below, I generated a model ensemble using 2500 

random subsets of data; the subsampling frequency was 1% of the full dataset. The model 

ensemble p-value for each variable (which is the average p-value of each of the 2500 

models) was used to test whether or not the independent variables were statistically 

significant. I chose a 1% subsampling frequency based on Parks et al. (2014) who used 

~0.1% subsampling frequency for two-dimensional data; since fire perimeter edges are 

linear, one-dimensional features, I assumed that this sampling frequency was appropriate. 

A 1% sampling frequency indicates that, on average, one pixel is selected for every 3 km 

of interacting fire perimeter in each random subset of data. 

 

Incorporating weather into statistical models 

To evaluate how weather conditions may affect the ability of a wildfire to limit 

subsequent fire extent, I built a second set of logistic regression models for each study 

area that also included a fire weather index (in addition to time between fires) as an 

explanatory variable. I used the energy release component (ERC) to represent fire 

weather, which is commonly used in fire studies (e.g., Abatzoglou and Kolden 2013; 
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Riley et al. 2013). ERC is related to the amount of heat released per unit area at the 

flaming front of a fire (Bradshaw et al. 1983) but can also be considered a fuel moisture 

metric that represents long term drying (Andrews et al. 2003). Daily ERC was generated 

using Fire Family Plus software (Bradshaw and McCormick 2000) and remote automated 

weather station (RAWS) data for stations within or in close proximity to each study area 

(Lodgepole RAWS for FCW, Hells Half Acre for SBW, Spotted Bear Ranger Station for 

CCE, and Beaverhead for GAL). ERC was calculated using the NFDRS fuel model G for 

all study areas except GAL, in which I used fuel model K. 

I then assigned these daily ERC values to each 30 x 30 m pixel within each large 

fire that burned between 2001 and 2012 based on the estimated day of burning. Because 

agency generated fire progression maps were not available for a large number fires in my 

study, I estimated day-of-burning using the methods developed by Parks (2014), where 

day-of-burning for each 30 x 30 m pixel, and hence fire progression, was calculated by 

spatially interpolating Moderate Resolution Imaging Spectrometer (MODIS) fire 

detection data (NASA MCD14ML product, Collection 5, Version 1). Due to the coarse 

nature of the MODIS input data (1 km
2
), this process was limited to large fires and to 

fires burning after 2000 to coincide with the operational timeline of the MODIS sensors. 

MODIS fire detection data depict the date and location (i.e. pixel centroid) of actively 

burning MODIS pixels, and although the spatial resolution is relatively coarse (pixel size 

= 1km
2
), the fine temporal resolution (there are two MODIS sensors, each passing two 

times per day) allows day-of-burning to be mapped at finer spatial resolution via 

interpolation.  
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The models that incorporate weather employ a subset of data; they include only 

large fires (≥400 ha), and further, those large fires must interact with fires that occurred 

between 2001 and 2012. For example, a 1000 ha fire from 1990 that interacts with a 1500 

ha fire from 1999 is excluded from the analysis because the 1999 fire occurred prior to 

MODIS; it is also excluded if it interacts with a 300 ha fire from 2003 because the 2003 

fire was too small to use day-of-burning interpolation. However, if the same fire interacts 

with a 1500 ha fire from 2003, then it is included in the analysis since MODIS data can 

be used to estimate day of burning for the subsequent 2003 fire. For each interacting fire 

perimeter pixel, I extracted the daily ERC value that was associated with the subsequent 

fire. In those cases when a wildfire did not technically overlap but was within 375 m 

from a subsequent fire, I used the day-of-burning estimate, and hence the ERC value, of 

the nearest pixel of the subsequent fire. I assessed significance of ERC using the 

subsampling and model ensemble approach described above. Interactions between time 

and ERC were not evaluated for simplicity. 

 

Results 

A total of 1038 fires and 437 large fires were identified between 1972 and 2012 

across all study areas. A majority of these (> 60%) interacted with a subsequent fire 

(Table 1). The FCW had the highest number of large fires and the greatest amount of 

total area burned. SBW had the most fires (≥ 20 ha) (n=373) during this time period, but 

on average, those fires were smaller compared to the other study areas (average fire size 

in SBW = 685 ha). GAL (the smallest study area), on the other hand, experienced the 
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least number of fires (≥20 ha). Proportionally, CCE burned the least (0.30) over the 1972-

2012 time period whereas GAL burned the most (1.12) (Table 1). 

In all study areas, the proportion of pixels defined as LIMITING generally 

decreased as time until subsequent fire increases (Fig. 4) for both sets of wildfires 

analyzed (all fires and large fires). Consequently, the logistic regression models indicate 

that the ability of wildfires to limit the extent of subsequent fires is strongest immediately 

after a fire but decays over time (Figs. 4 and 5). Wildland fires no longer act as an 

effective fuel break (defined here as a ≤ 0.30 probability of limiting extent of subsequent 

fire) after ~6 years in GAL and ~16 in the three northern study areas (Figs 4 and 5; Table 

2). Overall, the relationship between the effectiveness of fire as a fuel break and time 

between fires is distinctly different in GAL (i.e. it is weaker and decays faster) compared 

to the northern study areas of FCW, SBW, and CCE (Fig. 5). Large wildfires in FCW, 

SBW, and CCE are over 75% effective at limiting the extent of subsequent wildfires for 

up to four years, diminishing to ~50% 11 years after wildfire (Fig. 5). Model fits, as 

measured with the ROC statistic, range from 0.72 (FCW) to 0.82 (GAL) for the models 

including all fires and range from 0.77 (FCW and SBW) to 0.87 (CCE) for those 

including large fires. The model ensembles with randomly subset data indicate that all 

models are statistically significant (p ≤ 0.001).  

In all study areas, the ability of wildfire to act as a fuel break weakens with 

increasing fire-conducive weather conditions (Fig. 6). For example, ten years after 

wildfire in CCE, the ability of fire to act as a fuel break is very high under moderate 

conditions (probability = 0.97; 50
th

 percentile ERC) but is very weak and no longer acts 

as an effective fuel break under extreme conditions (probability < 0.30; 99
th

 percentile 
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ERC). The length of time in which wildfire no longer acts as an effective fuel break 

(again defined as ≤ 0.30 probability of limiting extent of subsequent fire) is substantially 

shorter under extreme vs. moderate weather conditions (99
th

 vs. 50
th

 percentile ERC) 

(Fig. 6; Table 2). In GAL, for example, wildfire no longer acts as a fuel break after two 

years under extreme conditions compared to eight years under moderate conditions. The 

influence of ERC was statistically significant (p ≤ 0.03 in all study areas) according to the 

model ensembles. Delta ROC values (comparing a model with and without ERC) ranged 

from 0.00 (FCW) to 0.05 (CCE). 

 

Discussion 

Theory suggests that in landscapes with an active fire regime, landscape pattern is 

shaped by wildfire, but wildfire is also shaped by landscape pattern. This pattern-process 

feedback loop, also termed self-regulation, is a fundamental concept in disturbance 

ecology (Turner 1989; Agee 1999) and underscores the importance of wildfire in creating 

and maintaining resilient landscapes (McKenzie et al. 2011). The results of this study 

clearly indicate that wildfires act as fuel breaks and limit the extent of subsequent 

wildfires across my four western US study areas, supporting the notion of self-regulation 

in landscapes with active fire regimes. The strength of this feedback, however, decays 

over time and is completely diminished by ~6-16 years after a wildfire, depending on the 

study area. This suggests that the “ecological memory”, defined as the degree to which 

ecological processes are shaped by past disturbance events (Peterson 2002), at least in 

terms of wildfire’s ability to act as a fuel break, is relatively short. However, the pattern-

process feedback loop of wildfire not only limits subsequent fire extent, but limits 
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subsequent fire severity (Parks et al. 2014), an effect that can last for decades (Miller et 

al. 2012), suggesting that the ecological memory of wildfire in terms of subsequent fire 

severity is much longer. Since federal agencies spend millions of dollars each year on 

fuel treatments to reduce fire hazard and risk in fire prone landscapes (Allen et al. 2002), 

it is critical to understand how wildfires may also serve as fuel treatments, both in terms 

of how they limit subsequent fire extent and severity. As such, my study has the potential 

to help managers make more informed decisions about how to best manage a particular 

wildfire through assessing its potential longevity for constraining future fires and 

understanding the limitations under extreme weather conditions.  

In terms of time between fire events, my findings are broadly similar to those of 

Collins et al. (2009), who also found that the ability of fire to act as a fuel break decays 

over time. My findings, however, are less consistent with those of Teske et al. (2012), 

who found that wildfire limited the extent of subsequent wildfires in only one of the three 

study areas they examined. I evaluated the same three study areas (FCW, SBW, and 

CCE) as Teske et al. (2012) and found that wildfires definitively act as fuel breaks in all 

three areas, especially in the immediate years following a fire, so it is somewhat 

surprising that our findings are not in agreement. The likely explanation for the lack of 

agreement involves methodological differences; Teske et al. (2012) did not include a 

statistical evaluation of time between fires in their analyses, and in not doing so, may 

have muted the statistical signal of fire as a fuel break. Given my findings that wildfire’s 

ability to act as a fuel break decays relatively quickly and is completely diminished by 

~16 years after a fire in these study areas, investigations of this sort should explicitly 

address time between fires.  
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In all study areas, the effectiveness of wildfire as a fuel break weakens with 

increasing fire weather, which was also noted Collins et al. (2009). In fact, my results 

indicate that, in three out of four study areas, the longevity of the ability of fire to act as a 

fuel break effect is at least ~halved or more under extreme (99
th

 percentile ERC) 

compared to more moderate fire-season weather conditions (50
th

 percentile), thereby 

supporting the assertion that the importance of fuels diminishes during extreme weather 

events (Bessie and Johnson 1995; Price and Bradstock 2011). Nevertheless, my results 

indicate that fuels, or lack thereof due to burning, strongly limit fire (probability of 

limiting subsequent fire ≥ 0.65) in the northern study areas for at least three years 

following fire even under extreme conditions. Conversely, in GAL, which is generally 

comprised of dry conifer forest, the ability of fire to act as a fuel break lasts for only two 

years (probability ≤ 0.3) under extreme fire weather conditions; a study by Price and 

Bradstock (2010) revealed similar findings in a dry forest in Australia. From a climate 

change perspective, extreme weather conditions are projected to become more common 

(Salinger 2005; Nitschke and Innes 2008), and in fact, there is evidence that such changes 

are already occurring (Collins 2014). As such, the strength and longevity of wildfire in 

limiting the extent of subsequent fires will be likely be reduced in future years, 

reinforcing the results from other studies suggesting that climate change will result in 

higher fire activity in many areas of the western US (Westerling and Bryant 2008; Littell 

et al. 2010; Moritz et al. 2012).  

Some studies have argued that the distribution of fire sizes is dictated by 

endogenous factors, implicitly implying that fuel availability solely drives fire sizes 

(Malamud et al. 1998; Turcotte and Malamud 2004). Others, however, have argued that 
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exogenous factors such as weather are responsible for fire size distributions (Boer et al. 

2008). Our results suggest that both fuel availability and weather (endogenous and 

exogenous factors) are responsible for fire sizes, supporting the assertion of Moritz et al. 

(2005) who posit that fire size is controlled by multiple factors. Our results further 

suggest that the influence of weather may vary among regions, being more influential in 

CCE and GAL (based on improved model fits and relative decreases in the longevity of 

wildfire to act as a fuel break under extreme contitions [Table 2]). These differences may 

be due to factors such as variability in vegetation and drought frequency (Wang et al. In 

press). However, these differences could also be because the fire weather data may 

imperfectly represent the conditions influencing some fires because the procedure I used 

to estimate day-of-burning, and therefore ERC, has a moderate degree of uncertainty 

(Parks 2014), meteorological conditions are highly spatially heterogeneous (Holden and 

Jolly 2011), and weather station siting may bias observations (Myrick and Horel 2008).  

Pyrogeographic differences among the study areas are evident and are likely due 

to differences in climate and ecosystem response to fire (Keeley et al. 2008; Freeman and 

Kobziar 2011). The southwest study area in particular, composed of the Gila and Aldo 

Leopold Wilderness areas (GAL), is strikingly different than the other three study areas 

in terms of the strength and longevity of wildfire to act as a fuel break. This difference is 

likely a reflection of differences in climate and fire regime characteristics in GAL. The 

fire regime in GAL is for the most part characterized by frequent surface fire dependent 

upon fine fuel availability and continuity (Schoennagel et al. 2004). As such, large fire 

years tend to occur one to three years after a wet (i.e. high precipitation) year (Swetnam 

and Baisan 1996); fine fuel growth and accumulation stimulated during wet years 
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therefore erases the effects of the previous fire in terms of its ability to act as a fuel break 

and, consequently, wildfires are not likely to act as fuel breaks for periods of time 

exceeding ~6 years. In contrast, the other study areas generally experience less frequent 

but higher severity fires (Parks et al. 2014) that are more dependent upon ladder and 

canopy fuels (Schoennagel et al. 2004). Such ladder and canopy fuels take longer to 

recover after fire, hence the increased longevity of fire as a fuel break in FCW, SBW, and 

CCE. I suggest similar studies should be conducted in other study areas representing 

different ecosystems (e.g., chaparral and boreal systems) to gain a broader 

pyrogeographic perspective. Broader theoretical perspectives may also be necessary, 

because although fire may act as a fuel break if a subsequent fire occurs nearby, the 

probability of a subsequent fire interacting with a previous fire may be quite low (e.g., 

Price et al. 2012). 

Several aspects of my analyses likely influence the results of this study. First, I 

assumed that a wildfire limited the extent of a subsequent wildfire if pixels on the 

perimeters of both wildfires were proximal. Because other features such as mountain 

ridges or rivers may influence fire boundaries, this assumption may not always hold true. 

However, given the strong signal of time between fire events, I surmise this assumption 

has a negligible influence on my results. Second, it is possible that a wildfire limited the 

extent of a subsequent wildfire even if infiltrated it by more than 750 m (I labeled these 

pixels as NOT LIMITING). Due to the logistic regression framework utilized in this 

study, it was necessary to define perimeter pixels in a binary fashion. The implication of 

this second issue is that I potentially underestimate the strength and longevity of 

wildfire’s ability to limit the extent of subsequent fires. Third, when mapping the fire 
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perimeters with satellite data, it is possible that I may have falsely identified other types 

of disturbance as fire. I assume, however, that the errors of this sort are negligible since 

fuel treatments do not occur in my study areas (because they are inside wilderness or 

national parks) and vegetation changes due to insect and disease (e.g., bark beetle) are too 

subtle to be detected using my methods given that their full effects often take multiple 

years to manifest (Meigs et al. 2011). 

 

Conclusion 

My findings show that wildfires clearly limit subsequent fire size. This effect is 

strongest immediately after fire, decays over time, and lasts for ~6-16 years, depending 

on the study area. Furthermore, my findings show that increasing fire weather diminishes 

the ability of fire to act as a fuel break. As such, fire managers can potentially use my 

results to aid in assessing whether any particular fire scar will act as a fuel break based its 

age and the projected weather. However, managers should also consider that, even if a 

past fire scar does not stop the progression of a wildfire and it reburns within a past fire 

perimeter, the fire severity will likely be limited (Miller et al. 2012; Parks et al. 2014).  

More broadly, however, the numerous fires that have occurred over the last 

couple of decades in the western US potentially provide opportunities for managing fire 

in a different manner. That is, in forested landscapes that have experienced relatively 

recent fire (< ~25 years), there are now opportunities to reevaluate fire suppression 

policies and allow more fires to play their natural ecological role. Although this 

management strategy may not be advantageous in some landscapes, such as those at risk 

of invasion by non-native species (Keeley et al. 2011), it has several potential benefits. 
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For example, allowing more fires to burn in certain situations will reduce landscape 

homogeneity and create more resilient landscapes in which the self-regulating feedback 

mechanisms of fire can be better realized (Keane et al. 2002), thereby reducing fire 

suppression costs and increasing firefighter safety. Furthermore, landscapes with active 

fire regimes may be more resilient to other types of disturbance (i.e. insect and disease 

outbreaks) (Bebi et al. 2003; Kulakowski et al. 2012). Lastly, ongoing fire disturbance 

offers the opportunity for establishment of species that are better aligned with the 

emerging climate, thereby acknowledging that vegetation communities and fire regime 

characteristics will change with shifts in climate (Westerling et al. 2011; Smith et al. 

2014).  
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Tables 

Table 1. Summary of fires in each study area from 1972-2012. 

 
 All fires Large fires 

Study 

area 

Number 

of fires 

Number that 

interact with 

subsequent fire
a 

Area burned 

(ha) [proportion 

of study area] 

Number 

of fires 

Number that 

interact with 

subsequent fire
a 

Area burned 

(ha) [percent of 

study area] 

FCW 297 234 862,373 [0.88] 147 123 843,574 [0.86] 

SBW 373 225 255,454 [0.47] 125 71 225,698 [0.41] 

CCE 189 78 307,228 [0.30] 77 33 297,678 [0.29] 

GAL 179 138 345,334 [1.12] 88 56 334,137 [1.08] 

Total 1038 675 1,770,389 437 283 1,701,087 
a
These values reflect only those fires that interact with a subsequent fire within 25 years (see Methods). 
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Table 2. Number of years until wildfires no longer serve as an effective fuel break 

(defined as having a ≤ 0.30 probability of limiting the extent of subsequent fire). Values 

reflect model fits (e.g., Figs. 5 and 6) with and without ERC as an explanatory variable. 

 
 Time only models Time plus ERC models 

Study area 
All 

fires
a Large fires

b
 

No ERC 

(n)
c
  

ERC 50
th

 ERC 75
th

 ERC 90
th

 ERC 99
th

 

FCW 16 16 16 (111) 18 17 15 13 

SBW 18 18 17 (66) 24 20 17 13 

CCE 15 14 14 (32) 24 19 16 10 

GAL 6 7 5 (54) 8 5 4 2 
a
These values reflect the model that include fires ≥20 ha (Fig. 5a). 

b
These values reflect the model that include fires ≥400 ha (Fig. 5b). 

c
These values reflect a model using the subset of fires used in the models that include elapsed time and 

ERC, but excludes ERC (see Methods); these values are more directly comparable to the values in the 

columns to the right that include both elapsed time and ERC. The number of fires evaluated in the models 

evaluating elapsed time and ERC is provided in parentheses. 
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Figures 

Figure 1. Locations of the four study areas in the western US. 
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Figure 2. The four study areas for which I evaluated the ability of previous wildfires to 

limit the extent of subsequent wildfires. The boxplots depict the variability in mean 

annual precipitation and mean annual temperature within each study area (Daly et al. 

2002); boxes represent the inter-quartile range, whiskers extend to the 5th and 95th 

percentiles, horizontal lines represent the median, and solid dots the mean. 
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Figure 3. Examples from SBW depicting how pixels were defined as LIMITING or NOT 

LIMITING. In all examples, the initial wildfire has a blue (LIMITING), red (NOT 

LIMITING), or brown (not analyzed) perimeter and the subsequent fire is solid gray. In 

panel (a), a 2007 wildfire that interacts with a subsequent 2008 wildfire. Blue pixels are 

those defined as LIMITING and are ≤ 375 m (as measured outwards) or ≤ 750 m (as 

measured inwards) from the subsequent fire perimeter. Those pixels that do not interact 

with a subsequent fire (brown line) are excluded from the analyses. In panel (b), all pixels 

from the 2000 wildfire are NOT LIMITING since the 2007 wildfire burned over the 

entire 2000 wildfire and are > 750 m from the 2007 fire perimeter boundary (as measured 

inwards). In panel (c), some portions of the 2008 wildfire infiltrate the 2007 wildfire 

beyond 750 m; such pixels are defined NOT LIMITING. In panel (d), a large proportion 

of the perimeter of the 2005 wildfire is proximal to the perimeter of the 2012 wildfire. 

However, since > 35% of the 2005 wildfire overlaps with the 2012 wildfire, all proximal 

pixels are labeled NOT LIMITING (see Methods). 
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Figure 4. Data depicting proportion of pixels defined as LIMITING (y-axis) along a 

gradient depicting time until subsequent fire (x-axis). Sizes of circles represent the 

relative number of pixels for each time until subsequent fire within each study area. Red 

lines show the predicted logistic regression fit. ROC values are provided in Fig 5. 
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Figure 5. Response curves depicting the probability of a wildfire limiting the extent of 

subsequent fire over time for each study area for small (a) and large fires (b). The 

receiver operating characteristic, area under the curve statistic (ROC) is shown for each 

fit. These models fits were generated using all pixels (the model ensembles were used to 

test for statistical significance). The horizontal dashed line represents the threshold (0.30 

probability) at which wildfires no longer act as an effective fuel break. 
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Figure 6. Response curves depicting how the probability of fire limiting the extent of 

subsequent fire varies by ERC. The contribution of ERC is statistically significant (p ≤ 

0.05) in all study areas according to each 2500 model ensemble. All ERC percentiles are 

study area specific and determined using ERC values occurring within the fire season; I 

defined the fire season as the beginning and ending date that encompassed 95% of the 

MODIS fire detections (USDA Forest Service 2013) for each study area. The horizontal 

dashed line represents the threshold (0.30 probability) at which wildfires no longer act as 

an effective fuel break. 
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