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Preface 

 

The importance of wildfires as a natural or a human-induced phenomenon has gained 

importance at regional and global levels in the last years. Improved remote sensing and 

computational capabilities enable the fast processing of large image datasets in real 

time. As a result, remote sensing and geographic information systems are today, more 

than ever before, common tools for fire monitoring at local, regional and global levels. 

However, the gap between research and operational use of remote sensing and GIS still 

exists. The complexity in automating pre-processing and posterior classification of 

remotely sensed imagery poses a great problem for wildfire and civil protection 

managers. It is thus the duty of the remote sensing community to develop systems and 

tools that facilitate the access to information of forest fires to these managers.   

The EARSeL Special Interest Group (SIG) on Forest Fires actively promotes the 

integration of these advanced technologies in the day-to-day of forest managers at all 

scales, embracing researchers, local governments and global organizations.  

In this context the EARSeL SIG on Forest Fire is happy to organize the VIII EARSeL 

Workshop on “Remote Sensing of Forest Fires: From Local to Global Assessments.” This 

conference will thus bring together remote sensing communities that work at local level 

with those working at the global level.  Although these communities have a common 

goal, the monitoring of forest fires, they approach the issue in very diverse ways. 

The Stresa Workshop builds upon the success obtained in previous workshops held 

since the foundation of the EARSeL SIG on Forest Fires in 1995. These took place in 

Alcalá de Henares (1995), Luso (1998), Paris (2001), Ghent (2003), Zaragoza (2005), 

Thessaloniki (2007) and Matera (2009), and provided a great impulse for the progress 

in forest fire research.  

 

The Proceedings book includes papers divided in 4 sections which focus on the 

following topics: 

I- Local to regional applications of remote sensing in pre and during fire conditions 

II- Local to regional applications of remote sensing in post-fire assessment 

III- National to global applications of remote sensing in pre and during fire conditions 

IV- National to global applications of remote sensing in post-fire assessment 

 

 

 

Jesus San-Miguel Ayanz 

Andrea Camia 

Sandra S. Oliveira  

Local Organizing Committee 

 

 

 

 

 

 

Ioannis Gitas 

 

FF-SIG Chair
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ESTIMATION OF FUEL MOISTURE CONTENT FOR FIRE DANGER ASSESSMENT: TURNING 

POTENTIAL INTO REALITY? 

Marta Yebra 

CSIRO Land and Water, GPO Box 1666, Canberra 2601, Australia. Marta.Yebra@csiro.au 

Abstract 

Live Fuel Moisture Content (FMC) has been monitored for about 30 years to assess fire risk in different 
types of ecosystems. FMC data collected in the field following standard protocols have provided a direct 
indication of fire risk in a specific area and has been and it is still widely used by forest managers. 
However, these measurements are inadequate to develop response plans due to the difficulty in 
obtaining sufficient samples over a realistically wide spatial extent in a brief period of time. Remote 
sensing (RS) researchers have attempted to develop methods for spatial mapping of FMC from signals 
detected by sensor (temperature, reflectance, etc.). The initial hypothesis was that the impact of FMC 
variations on the detected signal was strong enough to be discriminated from other factors affecting 
spectral variation. Several studies have been published in the last decades to test this hypothesis and 
several vegetation indices (VIs), directly or indirectly related to water content have been developed. First 
FMC models were based on empirical fittings between field measured FMC and vegetation indices such 
as NDVI derived from NOAA/AVHRR. Since then a lot of effort has been put into improving these RS 
derived estimations. Seeking for more accuracy, robustness and operationality new launched sensors, 
more sophisticated methodologies and ancillary information have been used. Huge progress has been 
done, but are these models performing a lot better? Even more important, are FMC maps being 
operationally used by forest fire managers? After more than 20 years, we are still individually developing 
new models. A community joined effort should be established for a better fire risk prediction and a more 
operational use of FMC data and products. For example, field sampling is still an essential component for 
the validation and calibration of our models. Consequently, there are still a number of teams involved in 
field sampling but there is not a good network for data sharing. Additionally, there are several models 
published but very little effort in inter-comparing them to conclude which is the most suitable. This talk 
reviews the developments in estimating FMC in the context of fire risk assessment, highlights the main 
problems on the operational use of these FMC models including the conversion of FMC into a common 
fire risk scale, present some examples of operational fire risk models and concludes on research priorities 
toward operationalising the research models. There are signs that managers are not using our FMC 
models operationally due to their complexity, the shortage of knowledge about their uncertainties, the 
lack of integration with others variables affecting fire risk and the shortage of long term interactions 
between managers and the researchers. Fire managers have to take decision to save lives. We should 
understand how those decisions are taken so we can better integrate FMC with other risk variables. 
Additionally, research projects should go beyond scientist papers and should search for long term 
operationality of products. Finally, the need to measure FMC should be more recognized and a formal 
evaluation program for methods should be organized. 
 
Keywords: Water content, Wildfire, pre-fire assessment, regional and local scale 
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NASA’S AIRBORNE AUTONOMOUS MODULAR SCANNER (AMS) – WILDFIRE SENSOR: 

INSTRUMENTATION SUPPORTING FIRE INTENSITY, RADIANT ENERGY 

MEASUREMENTS, AND DISASTER MANAGEMENT 

V. G. Ambrosia1, J. S. Myers2, E. A. Hildum2, C. Ichoku3, W. Schroeder4, B. Lobitz1 
1
California State University – Monterey Bay, NASA-Ames Research Center, Moffett Field, California, 94035-0001, 

U.S.A., vincent.g.ambrosia@nasa.gov & bradley.m.lobitz@nasa.gov 
2
University Affiliated Research Center (UARC), NASA-Ames Research Center, Moffett Field, CA. 94035-1000, U.S.A., 

jeffrey.s.myers@nasa.gov and edward.a.hildum@nasa.gov; 
3
Climate & Radiation Branch, NASA-Goddard Space Flight Center, greenbelt, MD, U.S.A., charles.m.ichoku@nasa.gov 

4
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, U.S.A., 

wilfrid.schroeder@noaa.gov 

Abstract 

The NASA Autonomous Modular Scanner (AMS) – Wildfire sensor is an airborne, 16-channel line scanner 
with bands in the VIS-IR-MIR-TIR spectral region. Four AMS thermal channels replicate the spectral 
bandpass region of two of the proposed NPOESS VIIRS channels and allow improved discrimination of 
wildfire conditions over other airborne wildfire sensor systems. The AMS has operated on a range of 
manned and unmanned aircraft, including the NASA Ikhana UAS, and more recently the NASA Beechcraft 
B-200 King-Air manned aircraft. On-board processors allow near-real-time Level 2 products to be derived 
from the spectral data and sent through a satellite link to investigators on the ground. The AMS 
processing algorithms can be modified in flight to allow derivation of various fire property indices to be 
calculated. Real-time, on-board processing includes terrain / geo-rectification procedures that allow 
generation of standard Open Geospatial Consortium (OGC) – qualified data. The AMS-Wildfire instrument 
has been flown extensively in the western U.S. since 2006, supporting disaster managers with real-time 
fire products such as the CCRS hot spot / temperature threshold detection algorithm, a Normalized Burn 
Ratio (NBR) product for post-fire burn assessment and a Burn Area Emergency Response (BAER) data set 
to allow rapid post-fire burn area / fire intensity assessment. The data sets were routinely delivered to 
fire incident management teams to support operational mitigation efforts, as a demonstration of new 
sensor technologies, utility of UAS platforms, and autonomous processing capabilities. The AMS data 
processing is being further modified to provide additional fire-related products that support the wildfire 
science community and support calibration / validation of current and future earth observation satellite 
systems, such as MODIS and NPOESS - VIIRS. The AMS has supported satellite calibration and validation 
efforts with collections over wildfire events simultaneously with MODIS data collections during 
campaigns in 2007-2010. These measurements have led to improved understanding of the satellite 
observations and allowed a renewed focus on the AMS sensor as an instrument capable of deriving 
critical fire parameters to allow improved estimation of wildfire thermal properties. With high spatial, 
temporal and radiometric measurement capabilities of the AMS instrument, improved discrimination of 
fire properties are achieved. The “lingering” capabilities afforded by airborne platforms, allow temporal 
observations of fire properties, rather than the single observations provided by satellite systems. A new 
fire radiative power (FRP) algorithm is being added to the suite of on-board, autonomous-generated, 
real-time image processing capabilities, to allow cross-referencing with the MODIS-derived FRP product 
for coincident wildfire observations. Additionally, the airborne AMS FRP measurements will allow 
assessment of the future NPOESS VIIRS FRP product, and can also be used to support validation efforts of 
the GOESS-R ABI Active Fire Product parameters. The AMS operations, successful missions, and plans for 
future use to support both the fire science community and the disaster management community are 
described here.

 

 

Keywords: wildfire, AMS, Fire Radiative Power (FRP), TIR, MODIS, VIIRS, GOES-R ABI 
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Background 

The National Aeronautics and Space Administration (NASA) Autonomous Modular Sensor (AMS) 

– Wildfire scanner, is a 16-channel airborne instrument imaging in the visible / near-infrared / 

mid-infrared / thermal-infrared (VIS-IR-MIR-TIR) electromagnetic regions. Between 2006 and 

2011, the AMS was employed on manned / unmanned platforms, to support imaging science 

capabilities and provide near-real-time, on-board-processed, Level 2 data products to wildfire 

incident management teams. The products included near-real-time geo-rectified imagery, fire 

detection shapefiles, Normalized Burn Ratio (NBR), and Burn Area Emergency Response (BAER) 

imagery [Ambrosia, et al. 2011a; Ambrosia, et al. 2011b]. In 2011, an on-board processed, real-

time FRP algorithm was added to the product delivery suite. 

While the AMS-Wildfire sensor is useful for wildfire mapping at local scales, satellite data 

represent the primary source of information for mapping of biomass burning activity at regional 

to global scales [e.g., Freitas et al. 2005; Davies et al. 2009; Ichoku et al. 2008; Kahn et al. 2008; 

Reid et al. 2009; van der Werf et al. 2010]. The Moderate-resolution Imaging Spectro-

radiometer (MODIS) aboard the NASA Terra and Aqua satellites was the first satellite-borne 

sensor capable of measuring fire radiative energy (FRE) release rate, or power (FRP), 

quantitatively on a global scale [e.g. Kaufman et al. 1998a; Justice et al. 2002; Giglio et al. 2003, 

Ichoku et al. 2008]. Subsequently, FRP is being derived from a few other satellite sensors [e.g., 

Wooster et al. 2003; Xu et al. 2010]. Planned satellite systems, including the polar orbiting 

Visible / Infrared Imager Radiometer Suite (VIIRS) and the geostationary GOES-R Advanced 

Baseline Imager (ABI) will provide enhanced spatial resolution and temporal observations of fire 

events and require validation of their fire products to ascertain their effectiveness for fire 

detection using airborne sensors such as the calibrated AMS [Schroeder et al. 2010, Giglio et al. 

2008; Schroeder et al. 2008]. Deriving airborne AMS-Wildfire FRP measurements coincident 

with satellite-derived measurements (MODIS, VIIRS, etc.) will improve both regional and global 

estimates of fire radiative properties. 

AMS Sensor Characteristics 

The NASA AMS-Wildfire scanner has operated on-board both manned and UAV platforms and is 

a 16-channel (12 discrete VIS-IR-MIR-TIR bands) airborne multi-spectral imaging line scanner. 

Table 1 indicates the sensor specifications for the AMS. 
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Table 1. AMS-WILDFIRE 16-channel Scanner Specifications. Channels replicating the equivalent Landsat Thematic Mapper (TM) and 
VIIRS Moderate resolution (M) bands are identified. 

Spectral Band Wavelength µµµµm 

1 0.42- 0.45 

2 0.45- 0.52 (TM1) 

3 0.52- 0.60 (TM2) 

4 0.60- 0.62 

5 0.63- 0.69 (TM3) 

6 0.69- 0.75 

7 0.76- 0.90 (TM4) 

8 0.91- 1.05 

9 1.55- 1.75 (TM5) (high gain) 

10 2.08- 2.35 (TM7) (high gain) 

11 3.60- 3.79 (VIIRS M12) (high gain) 

12 10.26-11.26 (VIIRS M15) (high gain) 

13 1.55- 1.75 (TM5) (low gain) 

14 2.08- 2.35 (TM7) (low gain) 

15 3.60- 3.79 (VIIRS M12) (low gain) 

16 10.26-11.26 (VIIRS M15) (low gain) 

Total Field of View: 42.5 or 85.9 degrees (selectable) 

IFOV: 1.25 mrad or 2.5mrad ( selectable) 

Spatial Resolution: 3 – 50 meters (variable based on alt) 

 

On-Board, Real-Time Sensor Data Processing 

The AMS provides a series of Level 2 products directly from the aircraft, through a satellite 

communications link, to investigators on the ground. To derive the Level 2 products, the 

selected raw digital data counts are converted to at-sensor radiance for visible and near-

infrared wavelength channels, and bright- 

ness temperature for the thermal channels. Radiometric correction is performed using pre-

flight (labor-atory) calibration coefficients. Two on-sensor black-body calibration reference 

source temperature readings provide a linear digital count-to-radiance conversion which is then 

used in an approximate inverse Planck's equation to produce a brightness temperature for each 

pixel in the thermal channels. This on-board pre-processing calibration step allows data to be 

spectrally and thermally consistent from mission to mission. 

AMS-Derived Fire Hot-Spot Detection Algorithm 

A fire hot-spot detection algorithm based on the satellite-derived hot spot detection algorithm 

developed by the Canadian Center for Remote Sensing (CCRS) [Li, et al. 2000a, Li, et al. 2000b, 

Flasse and Ceccato 1996, and Cahoon, et al. 1992], was implemented using the representative 

AMS thermal channels. The fire hot-spot detection algorithm uses the AMS-Wildfire 3.6μm 

channel to define a fire temperature threshold, and two or more additional channels to refine 

the classification and eliminate fire commission errors. The fire detection algorithm uses a 

difference-minimum between a temperature threshold from AMS channels 11 and 12, and a 

shortwave IR reflectance maximum in channel 7 (to screen high-reflectance commission errors), 

to derive a pixel-based fire hot-spot data set. The hot spot pixel data are then aggregated / 

produced as shapefiles (*.SHP), geo-rectified and provided as a near-real-time Level 2 product. 

AMS –Derived Fire Radiative Power (FRP) Algorithm 
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In 2011, a FRP algorithm was added to the AMS on-board processing suite to derive finer spatial 

and temporal scale FRP estimates over wildfires [Ichoku, et al. 2010]. FRP is a measure of the 

radiant energy liberated per-unit-time from burning vegetation. The MODIS FRP is estimated as: 

 

Rfre =  a (T4
8 – T4b

8) 

 

Where: 

a is a constant used for MODIS (4.34 x 10-19);  

Rfre (in MW or MJ/s for MODIS) is the pixel fire radiative power; 

T4 (in K) is the fire pixel brightness temperature at the 4-µm channel; 

T4b is the 4-µm brightness temperature of the background surrounding the fire pixel [Kaufman, 

et al. 1998]. 

The same FRP measurements are made from MODIS fire observation data daily for the US, and 

improvements can be made to those satellite measurements with coincident, higher spatial and 

temporal resolution AMS airborne measurements. The MODIS FRP algorithm is being adapted 

with AMS data by using the radiance to temperature calibration for the MIR region covered by 

the AMS channel 11 (3.60- 3.79 µm). The AMS FRP equation is then the same as the MODIS FRP 

equation above, but with units of W/m2/pixel. This method was first tested on the Eagle Fire, 

collected in July 2011 during an AMS sensor operational check flight and provided as a post-

processed data product of planned on-board-derived FRP measurements (Figure 1). 

 
Figure 1. AMS FRP measurement for the Eagle Fire, California, 26 July 2011 (left). The colors range from purple (150W/m2) to red 
(3000+W/m2. Values below 150 are non-fire. The three-channel color composite of the Eagle Fire (right) (AMS channels 12, 9, 10) 

vividly show the hottest regions of the burning. 

Discussion 

The AMS-Wildfire airborne instrument, in operation since 2006 on both manned and unmanned 

aircraft, has been shown to be an effective sensor for deriving and delivering near-real-time 

Level 2 fire-related data products to fire incident management teams and scientists. Recent 

modifications to the sensor improve the quantification of wildfire indices, calibration and 

validation of current and planned satellite observation systems, and also improve active- and 

post-fire information for wildfire incident teams. In 2011, the AMS was flown to support both 

the wildfire management community and the fire science community with improved, higher 

spatial- and temporal-resolution data collection campaigns. Those missions included testing of a 

new AMS-derived FRP product to help validate / calibrate the MODIS FRP product. Additionally, 
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the sensor can /will serve as a test-bed for validating the NPOESS VIIRS satellite fire detection 

capabilities, and the NOAA GOES-R ABI sensor. The airborne AMS validation efforts will 

undoubtedly improve the satellite-based regional / global estimates of fire properties, thereby 

improving measurement of fire impacts on global climate change. 

References 

Ambrosia, V.G., Wegener, S., Zajkowski, T., Sullivan, D.V., Buechel, S., Enomoto, F., Hinkley, E., Lobitz, B., and 
Schoenung, S. 2011a. The Ikhana UAS western states fire imaging missions: from concept to reality (2006-
2010). Geocarto International Journal, 26 (2): 85-101. 

Ambrosia, V.G., Buechel, S., Wegener, S., Sullivan, D.V., Enomoto, F., Hinkley, E., Zajkowski, T. 2011b. Unmanned 
airborne systems supporting disaster observations: near-real-time-data needs. Proceedings of 34th 
International Symposium on Remote Sensing of Environment. CD Proceedings, paper reference # 144, TS-55-1, 
ISRSE, Sydney, Australia, April 2011, 1-4. 

Cahoon, D. R., Jr., Stocks, B.J., Levine, J.S., Cofer, III, W.R., and Chung, C.C. 1992. Evaluation of a technique for 
satellite-derived area estimation of forest fires. Journal of Geophysical Research, 97, 3805-3814. 

Davies, D.K., Ilavajhala, S. et al. 2009. Fire information for resource management system: archiving and distributing 
MODIS active fire data. IEEE Transactions on Geoscience and Remote Sensing, 47(1), 72-79. 

Flasse, S. P., and Ceccato P. S. 1996. A contextual algorithm for AVHRR fire detection. International Journal of Remote 
Sensing, 17, 419-424. 

Freitas, S., Longo, K.M., et al. (2005). Monitoring the transport of biomass burning emissions in South America. 
Environmental Fluid Mechanics, 5, 135-167. 

Giglio, L., Csiszar, I., Restas, A., et al. 2008. Active fire detection and characterization with the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, 112, 3055-3063. 

Giglio, L., Descloitres, J., Justice, C., & Kaufman, Y. 2003. An enhanced contextual fire detection algorithm for MODIS. 
Remote Sensing of Environment, 87, 273– 282.  

Ichoku, C., Ellison, L., and Ambrosia, V. G. 2010. Evaluation of satellite measurements of fire radiative power (FRP) 
using airborne measurements. Proceedings of IEEE International Geoscience and Remote Sensing Symposium 
(IGARSS), Session: WE4.L03.3 - Optical and Infrared Modeling, Honolulu, Hawaii, 28 July 2010. 

Ichoku, C., L. Giglio, M. J. Wooster, and Remer, L. A. 2008. Global characterization of biomass-burning patterns using 
satellite measurements of Fire Radiative Energy. Remote Sens. Environ., 112, 2950-2962 2008a. 

Justice, C., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., & 
Kaufman, Y. 2002. The MODIS fire products. Remote Sensing of Environment, 83, 244–262. 

Kahn, R.A., Y. Chen, D.L. Nelson, F-Y. Leung, Q. Li, D.J. Diner, and J.A. Logan 2008. Wildfire smoke injection heights – 
Two perspectives from space. Geophysical Research Letters 35, doi:10.1029/2007GL032165. 

Kaufman, Y., Justice, C., Flynn, L., Kendall, J., Prins, E., Giglio, L., Ward, D., Menzel, W., and Setzer, A. 1998. Potential 
global fire monitoring from EOS-MODIS. Journal of Geophysical Research-Atmospheres, 103(D24), 32,215– 
32,238. 

Li, Z., Nadon, S., Cihlar, J., Stocks, B. 2000a. Satellite mapping of Canadian boreal forest fires: evaluation and 
comparison of algorithms. International Journal of Remote Sensing, 21, 3071-3082. 

Li, Z., Nadon, S., Cihlar, J. 2000b. Satellite detection of Canadian boreal forest fires: development and application of 
an algorithm. International Journal of Remote Sensing, 21, 3057-3069. 

Reid, J.S., Hyer, E.J., et al. 2009. Global monitoring and forecasting of biomass-burning smoke: Description of and 
lessons from the fire locating and modeling of burning emissions (FLAMBE) Program. IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, 2(3): 144-162. 

Schroeder, W., Csiszar, I., Giglio, L., et al. 2010. On the use of fire radiative power, area, and temperature estimates 
to characterize biomass burning via moderate to coarse spatial resolution remote sensing data in the Brazilian 
Amazon. Journal of Geophysical Research, 115(D21121), doi: 10.1029/2009JD013769. 

Schroeder, W., Prins, E., Giglio, L., et al. 2008. Validation of GOES and MODIS active fire detection products using 
ASTER and ETM+ data. Remote Sensing of Environment, 112, 2711-2726. 

van der Werf, G.R., Randerson, J.T., et al. 2010. Global fire emissions and the contribution of deforestation, savanna, 
forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10, 11707-11735. 

Wooster, M.J., Zhukov, B., and Oertel, D. 2003. Fire radiative energy for quantitative study of biomass burning: 
Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of 
Environment, 86, 83-107. 

Xu, W., Wooster, M.J., Roberts, G., and Freeborn, P. 2010. New GOES imager algorithms for cloud and active fire 
detection and fire radiative power assessment across North, South and Central America. Remote Sensing of 
Environment, 114, 1876-1895. 

  



22 

 

 

  



23 

 

 

DEVELOPMENT OF A FIRE-INDUCED FLASHOVER PROBABILITY INDEX (FIFPI) FOR 

ESKOM TRANSMISSION LINES 

P. Frost1, H. Vosloo2, J. Meeuwis3 
1
CSIR Meraka Institute, Pretoria, South Africa - pfrost@csir.co.za 

2
ESKOM TSI, Rivonia, Johannesburg - Hein.Vosloo@eskom.co.za 

3
University of Johannesburg, Department of Geography, Environmental Management and Energy Studies - 

junem@uj.ac.za 

Abstract 

The need for a fire-induced flashover probability index (FIFPI) for Eskom’s transmission lines (South 
Africa) became evident soon after the installation the Advanced Fire Information System (AFIS) in 2004. 
Thousands of wildfires were detected by satellites close to transmission lines, but only a small percentage 
(4%) of these fires caused a flashover. Historical flashover data was compared to satellite fire information 
as well as air temperature, relative humidity, wind speed and wind direction within a logistic regression 
analysis to develop a flashover prediction model. The FIFPI model was able to predict problem fires with a 
misclassification cost of only 3.87%. The aim of this study was to develop a prediction model with the 
ability to accurately predict fire-induced flashover occurrences on Eskom transmission lines in order to 
reduce the large amount of false alarms (SMS and E-mail messages) produced annually by AFIS. 
 
Keywords: Flashovers, Transmission lines, MODIS, Numerical Weather Forecast models, Probability Index 

Introduction 

During the 2004 fire season, South Africa’s largest power company Eskom, implemented 

satellite based fire information for the first time to help combat flashovers caused by wildfires 

underneath transmission lines. The quality of electricity supply through transmission lines are 

severely affected (in the form of line faults) by natural phenomena such as, bird streamers, 

lightning, fires and pollution. Flashovers cause very short interruptions in the supply of power 

and these in turn have major financial implication to customers with continuous process 

factories.  

Eskom operates 28 000 km of high voltage transmission lines (132kV to 765kV) and is South 

Africa's national electricity utility. Electricity is generated predominantly by means of coal-fired 

power stations and one nuclear station with three hydro peaking stations. This constitutes 95% 

of the electricity of Africa (Anon 2004). The rights-of-way (ROW or servitudes) of these power 

lines cover large areas and traverse a number of biomes, ranging from arid vegetation through 

grasslands and savanna, to tropical vegetation. 

The Council for Scientific and Industrial Research (CSIR) in collaboration with Eskom developed 

the Advanced Fire Information System (AFIS) with the main focus on the prediction, detection 

and assessment of wildfires in South Africa. The system combines fire detection information 

from the TERRA and AQUA MODIS (Moderate Resolution Imaging Spectro Radiometer) polar 

orbiting satellite sensors with the Meteosat Second Generation (MSG) geostationary satellite 

sensor from Eumetsat. As soon as a fire is detected within 3 km of a transmission line, a cell 

phone text message or E-mail alert is automatically generated and sent to the relevant line 

manager as well as Eskom control centre.  
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Because of its dielectric properties, air acts as an isolation medium between live conductors and 

the ground below it. During a fire, the properties of the air change as smoke particles fill the 

space between the ground and transmission line which could result in an electrical discharge or 

flashover to occur. The mechanism active during a fire-induced flashover of a power line is 

highly dynamic and complex and authors explain the phenomenon in different terms 

(Sukhnandan and Hoch 2002). In order to prevent the spread of fires underneath transmission 

lines early fire detection information is required to pinpoint the location and possibly provide 

additional info on the temperature and size. In the past Eskom line managers were dependant 

on information from local residents about fire occurrences and locations 

The problem with fire-induced flashovers is not entirely unique to South Africa – countries such 

as the U.S.A., Australia and Mexico also struggle with flashovers caused by fires (Primen 2001). 

The AFIS system has become a useful tool for the early detection of fires close to Eskom 

transmission lines. The ability to send SMS and E-mail messages to the relevant person as soon 

as a fire is detected is one of the biggest advantages of the system (Frost et al. 2007). The 

problem, however, remains that thousands of fires are detected in the proximity of 

transmission lines annually, but only a small percentage of those fires cause a fire-induced 

flashover on the transmission lines (Vosloo 2005). Studies have indicated that an average of 2% 

to 4% of all fires close to Eskom transmission lines cause a flashover (Vosloo 2005). 

The development of a fire-induced flashover prediction model required the adoption of various 

image processing and data analysis techniques to deal with the variety of data sources that 

ranged from satellite imagery and GIS map layers to numerical weather forecasts. A variety of 

data sets were acquired for both the training of the prediction model as well as the validation of 

the results. With the MODIS active fire product as base layer, weather forecast variables served 

as input to the predictor data set of the model, while flashover statistics for 2007 provided the 

target data set within the logistic regression analysis.  

1.1 Target variable 

The main inputs for the development of the target variable were the MODIS active fire data, a 

shape file of the Eskom transmission grid and historical fire-induced flashover point records for 

2007. In order to develop the target variable for the prediction model, two GIS functions were 

applied to extract MODIS active fire pixels close to Eskom transmission lines. The “buffer” 

function in ArcMap was used to create a 3 km buffer around all transmission lines in the study 

area. MODIS active fire pixels that fell within these buffer zones were extracted with the “clip” 

function and a new data set was created containing only the selected MODIS active fire pixels 

close to the transmission lines. 

1.2 Predictor variable 

The main inputs for the development of the predictor variables were the MODIS active fire 

data, a shape file of the Eskom transmission grid and four primary input data sets (air 

temperature, relative humidity, wind speed and wind direction). In order to develop the 

predictor variables for the prediction model, two GIS functions were applied to extract MODIS 

active fire pixels close to Eskom transmission lines. The “buffer” function in ArcMap was used to 

create a 3 km buffer around all transmission lines in the study area. MODIS active fire pixels 
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that fell within these buffer zones were extracted with the “clip” function and a new data set 

was created containing only the selected MODIS active fires pixels close to the transmission 

lines.  

1.3 MODIS fire detection 

MODIS active fire satellite products are produced daily by the MODIS Direct Broadcast (DB) 

reception and processing systems located at the Satellite Application Centre (SAC) at 

Hartbeesthoek as well as the CSIR Meraka Institute in Pretoria. The collection 5 version of the 

MODIS fire detection algorithm (Giglio et al. 2003) produce daily active fire locations that feeds 

in to the Advanced Fire Information System (AFIS). An ASCII file is created after each satellite 

overpass from the Terra and Aqua satellites, including the following parameters, latitude and 

longitude of each fire, the time and the date of each fire location, the brightness temperature in 

Kelvin, the satellite ID and a confidence factor.  

1.4 Numerical weather forecasting 

Numerical meteorological forecast models (Marchuk 1974) of the atmosphere are run daily and 

form the basis for routine weather forecasts provided by National Weather Services around the 

globe. In 2006 the South African Weather Service (SAWS) implemented the Unified model 

(SAWS 2006) from the UK Met office. The model makes use of a horizontal resolution of 12 km 

and consists of 38 vertical layers (Ndabambi and Poolman 2007).  

The MODIS active fire data set was used as reference data source during the extraction of the 

numerical weather forecast data for every fire point. The following numerical weather forecast 

parameters were extracted for each of the MODIS fire pixel locations from the SAWS database: 

• Air Temperature (2 m above land surface). 

• Relative Humidity (2 m above land surface). 

• Wind Vectors (The geostrophic wind approximations are broken into its two horizontal 

components.  

The parameters were 14:00 pm (SAST) forecasts, predicted at 08:00 am (SAST) daily. The time 

difference between the 14:00 pm (SAST) forecast data and the MODIS active fire data were 

never more than an hour and thirty minutes. The U and V wind vectors were converted to wind 

speed and direction.  

1.5 Logistic Regression analysis 

Logistic regression (LR) is part of a category of statistical models called generalised linear 

models and allows one to predict a discrete outcome from a set of variables that may be 

continuous, discrete, dichotomous, or a mix of any of these. LR does not involve decision trees 

and is especially effective as a predictive analysis tool on non-linear data sets (Perlich et al. 

2003).  

Results and Discussion 

Model prediction accuracies of each of the predictor variable combinations in Table 1 were 

calculated based on three statistical tests. These included the cross validated relative cost, 
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misclassification cost and the Receiver Operating Characteristics (ROC) value for the learning 

and validation data sets (Perlich et al. 2003).  

 
Table 1.   Model predictions for different variable combinations 

The results were focused on the target class, “True” flashovers. The misclassification error on 

the validation data set (Table 1) illustrated the true capability of each of the predictor variable 

combinations to predict a fire-induced flashover. Of the 2248 MODIS fire pixels tested in the 

logistic regression, 10% (224) of the pixels were left out of the model for validation purposes. 

The 10% validation data was thus a fully independent data set on which the misclassification 

error (validation data) in the last column was calculated. By comparing the results in Table 1 for 

the different variable combinations, the combination of air temperature, relative humidity, 

wind speed and wind direction provided the lowest misclassification error on the validation 

data set of 3.87%, while recording a low cross validation error of only 0.07%. The second best 

combination was the wind speed, relative humidity and air temperature variables which scored 

a misclassification error on the validation data set of 4.45% while also recording a cross 

validation error of 0.07%. The third best combination was the wind speed, relative humidity and 

wind direction group that showed a misclassification error on the validation data of 5.87% and a 

cross validation error of 0.10%. Lastly the wind speed and relative humidity combination 

showed a misclassification cost of 7.5% and the highest cross validation error of 0.13%. The 

Receiver Operator Characteristics (ROC) analysis for all the variable combinations showed a very 

high model accuracy of 0.98%, indicating a strong ability of predicting “True” flashover events 

for all the variable combinations 

The results confirm that the variable combination of air temperature, relative humidity, wind 

speed and wind direction provides the most accurate fire-induced flashover predictions and 

implies that each of them contribute something unique to the models prediction capabilities 

The relative importance test provided an analysis of the sensitivity of each of the variables in 

the logistic regression and assigned a relative importance (%) to each. Figure 2 illustrates the 

results from the relative importance test with the predictor variables on the Y axis and the 

relative importance (%) on the X axis. Wind direction was assigned the highest relative 

importance (primary splitter) by the LR analysis, followed by wind speed with an 80% 

importance. Relative humidity scored a 50% importance while air temperature was the lowest 

of the four variables, with a 20% relative importance.  

The results from the logistic regression importance test indicate that wind direction is strongly 

correlated to the “True” flashover target category. Together with wind speed the two variables 

seem to outweigh the importance of air temperature and relative humidity. Wind direction is a 

Variable 
Cross Val 

Cost 

Misclass (%)  

(Learning data) 
ROC 

Misclass (%)  

(Validation data) 

T,RH,WS,WD 0.07 1.01 0.98 3.87 

WS, RH,WD 0.10 2.50 0.98 5.70 

WS, RH, T 0.07 1.01 0.98 4.45 

WS, RH 0.13 3.50 0.98 7.50 

T = Temperature, RH = Relative humidity, WS = Wind speed, WD = Wind direction 
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much more complex variable compared to the other three variables. A 0 degree angle does not 

simply relate to a low flashover probability or a 360 degree angle to a high flashover probability. 

The non-linear nature of the LR might be better for describing the relationship between wind 

direction and fire-induced flashovers. 

 

 

Figure 1. Relative Importance test on predictor variables 

 

Development of the Fire-induced Flashover Probability Index (FIFPI) 

Based on the results obtained from the evaluation of the different models the LR was used to 

calculate the fire-induced flashover prediction model with air temperature, relative humidity, 

wind speed and wind direction as the main predictor variables. The logistic model formula 

computed the probability P of a “True” flashover based on the predictor variables.  

 

A maximum likelihood analysis was performed which provided the probability coefficients 

(parameters) for each of the predictor variables, which enabled the calculation of the FIFPI 

according to the logistic model formulae: 

 

)))*909.0*557.0*0505.0*24.6196(exp(1(

1

WSWDTRH
FIFPI

−+++−+
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Where RH describes the relative humidity in %, T the air temperature in degree Celsius, WD the 

wind direction in degrees from North and WS the wind speed in m s-1. 

 

Validation of the FIFPI model against existing Fire Danger Indices 

The FIFPI model prediction capability was tested against the derived fire danger index variables. 

This data set included three variations of the Lowveld Fire Danger Index (LFDI) currently being 

used by Eskom, and the McArthur Grassland Fire Danger Index (MK 4) from Australia. A LR 

model was used to validate the FIFPI model against the LFDI and MK 4 models by calculating the 

variable importance as well as a confusion matrix. These tests indicated the significance and 

contribution of each of the models to the prediction of a “True” flashover. 

Table 2 illustrates the relative importance of the different models to predicting a fire-induced 

flashover. The FIFPI achieved a 100% relative importance, followed by the Australian MK 4 

model with 85% importance. The LFDI 2 and LFDI 3 models scored lower importance values of 

56% and 54%, while the LFDI 1 model scored a very low 12%.  
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Table 2.  Relative Importance between FIFPI and Fire Danger Indices 

Prediction models Relative importance (%) 

FIFPI 100 

MK 4 85 

FDI 3 56 

FDI 2 54 

FDI 1 12 

 

A multiple regression analysis was performed to determine the correlation between the 

different models as well as the relationship with the flashover (target) data. Correlation is a 

measure of the association between two variables (FIFPI and FDI’s), indicating if the value of 

one variable changes reliably in response to changes in the value of the other variable. The 

correlation coefficient can range from 0 to 1.0, where 0 indicates a low correlation and 1 a very 

strong correlation.  

Conclusion 

This study has shown that modeled weather forecast data and satellite based fire products can 

be used to provide predictions of fire-induced flashovers underneath Eskom transmission lines. 

The FIFPI was able to correctly predict 98.9% of the flashovers in the validation data set using 

the LR model. During the assessment each of the variables contributed uniquely to the 

predictive capabilities of the model as was evident in the rise of the misclassification cost with 

the removal of any of the four variables.  

Wind direction and wind speed was found to be the most important variables causing sharp 

increases in flashover probabilities, as soon as north westerly winds with wind speeds above 

4 m s-1 were reached. While wind direction was previously seen as only an indicator of other 

meteorological factors, the study has shown it to also be a unique predictor of fire related 

flashovers. By including wind direction in the predictive model, the misclassification cost of the 

flashover prediction model decreased from 4.45% (wind speed, relative humidity and 

temperature) to 3.87% (wind direction, wind speed, relative humidity and temperature). 

The validation study comparing the flashover prediction capabilities of the FIFPI with a number 

of existing fire danger indices demonstrated the effectiveness and the model to provide 

improved prediction of dangerous fire weather conditions. The three Lowveld models (LFDI) 

were unable to provide consistent accurate predictions. The MK 4 model provided the second 

best prediction capability which could be attributed to the fact that the model is also a LOG 

function similar to the FIFPI. Linear models such as the Lowveld FDI’s seem to have limited 

capabilities for flashover prediction as demonstrated in this study 
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Abstract 

Fuel mapping is a key activity for forest fire risk management. It is based on remote sensing images 
processing methods. 
Spatial patches of fuel types are complex and highly heterogeneous spatial entities. Complexity of fuel 
types, in relation to their remote sensing-based mapping problem, is classified in four sorts (Borgniet 
2009): purely spectral complexity, i.e., complexity of the relationship between fuel types and spectral 
signatures, spatial heterogeneity of fuel types spectral signatures, spatial horizontal structures of fuel 
types, and fuel types vertical structure heterogeneity. Some methods are developed to solve each kinds 
of complexity: pixel based spectral methods, texture analysis based methods, object based methods and 
3D analysis methods. On an operational point of view, most of the methods are mixed. But it is not 
possible to propose one unique method able to produce a fuel map valid in any context with the same 
parameters. Proposed methods are context dependent and might be complementary in order to solve 
the global problem of fuel mapping in a given geographical and ecological context. They are usually 
implemented in one specific software environment.  
This lead us we choose an open knowledge based system, opposed to a closed processing solution. The 
system is aimed at helping the user to build a global successive processing approach that we call a 
“demarche”, in order to better respond to his needs.  
Conceptual specification of the system is based on the model integration paradigm, in which methods are 
represented by models. In a first stage, the coupled DEV'S formal system (Ziegler 1999) to conceptually 
specify coherent demarches. In a second stage, semantic integration is aimed at solving semantic 
heterogeneity between models to be integrated at a conceptual level. It specifies the semantic 
relationships between concepts handled by the models to be integrated. If semantics (i.e. list of 
concepts) handled by the models are different, integration will require the specification of models for 
models integration (Maillé 2008): such models specify the relationship between concepts of the initial 
models. Finally, syntax integration is aimed at solving heterogeneity of representation terms of 
information handled by the models to be integrated. It permits models interoperability which allows 
proper functioning of the resulting model, without referring to its semantic consistence (Müller 2008). 
Syntax integration might be specified at different abstraction levels: organisational level (architecture), 
logical level (data models, communication protocols, etc.), physical levels (networks), etc.  
The specified tool architecture includes a knowledge database of methods and resources, and an expert 
system for methods selection in relation to the user needs and constraints specification. It is a distributed 
system, where the different resources, either data or processing systems, are distributed on a network of 
"nodes". Although the data-base is unique, it is also distributed on the nodes. Selected methods can then 
be organized into demarches by the user. An executive engine is designed to execute the different 
methods of the demarche in their respective computer environment, through mediating wrappers.  
A research prototype called “Fuel Mapping Methods Integration Platform” (FMMIP) was developed.  
 
Keywords: fuel mapping, remote sensing image processing, image processing integration, decision 
support systems, forest fire risk 

Introduction 

Forest fire risk management is one of the major stakes of Mediterranean local territories land 

planning (Moulignier 2007). Land management decision makers require risk maps and risk 

models, based on fuels maps. Fuels are vegetal covers, classified in different types in relation to 

their combustibility (Jounet 2008). 
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In order to produce risk maps, fuel types have to be mapped using remote sensing images. At 

the European scale, both fuel typologies and image processing methods used to map them are 

very different, depending on the context, in particular the ecosystem type, but also the 

available data and available computer resources to process the images. 

In the context of the FIREPARADOX European research project, aimed at proposing a generic 

forest fire risk mapping method valid all over Europe, different fuel mapping methods were 

proposed by the different partners, adapted to particular contexts and using specific images 

available on their zone of interest. Moreover, most of the methods don't lead to a final fuel 

type map, but to some spatial variables useful to assess the combustibility of the vegetal cover: 

cover ratio, vegetal height, biomass, etc. As a result, it was not possible to propose only one 

unique method valid all over Europe to map the whole diversity of fuels. 

That is why we proposed an integration solution (Maillé 2008) that aims to articulate different 

fuel mapping methods in a global processing demarche, as well adapted as possible to the user 

working context (Borgniet 2009). It is a distributed solution, where methods are assessed in 

relation to the user specified context, and then can be associated and sequentially executed in 

their respective computer environment. The solution was developed as a research prototype 

called "Fuel Mapping Methods Integration Platform" (FMMIP). 

In the first section of this paper, we quickly describe different images processing methods 

problematic for fuel mapping. The second part describes a general architecture for a fuel 

mapping method integration framework and its different components. Finally, we present the 

implementation of the FMMIP, and an example of use of the tool. 

Images processing methods for fuel mapping 

Complexity of fuel mapping by using remote sensing image is related to the complexity of 

objects to be detected. So image processing methods are designed to try to solve the different 

levels of complexity. Four types of complexity of fuel types are specified, in relation to their 

remote sensing based mapping problematic (Borgniet 2009): 

- “purely spectral complexity”: two different fuel types might have very close spectral 

signature.  

- "The spatial heterogeneity" of the spectral signal, for one given fuel type (texture). 

- The spatial complexity of fuel types themselves: fuel types have spatial horizontal structures 

that determine their fuel characteristics. 

- The vertical complexity of the fuel types: fuel characteristics of a fuel type are highly 

determined by the vegetation stand “structure”, i.e. the description of the grass, bushy and 

trees strata. Simple remote sensing methods can only “view” the vegetal cover, i.e. highest 

stratum. Advanced remote sensing methods and tools have to be used in order to map 

stands vegetation structure. 

The different methods studied by the different partners of the project permits to solve or to 

bring elements in order to contribute to solve one or more components of the complexity of 

fuel mapping.  
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1.1 Notion of "methods" 

Methods are defined as series of several image atomic processing. Methods were developed 

by partners using particular input data, generally satellite images, and are so often both data 

dependent and Software dependent (if implemented). Moreover, methods are often applied to 

particular land cover fuel (for example, continuous forest land, bushlands, etc.): so several 

methods might be required to map the whole area fuel. Finally fuel mapping methods always 

depend on the geographical context.  

We distinguish four groups of methods:  

- spectral methods (or "pixel based methods"), aimed at solving spectral complexity, usually 

based on multi-spectral classification processing and/or on spectral indexes calculation (NDVI, 

RVI, SAVI, …). 

 - textural methods are convenient to solve textural complexity of fuel types. This is a key 

element of continuous or dense discontinuous fuel type mapping that have a regular (not 

structured) heterogeneity (forest, scrubland, etc.)  

- Objects oriented methods are convenient to solve horizontal spatial structure complexity. 

They aim to detect geographical objects in relation to some of their spectral, textural, or 

geometrical attributes (shape, size, etc.). These methods are more particularly dedicated to 

discontinuous horizontally structured fuel type detection. 

- 3D methods are convenient to solve to solve vegetal vertical complexity. At least three 

kinds of 3D methods were developed: phtogrammetric, LIDAR based and particular spectral 

methods (correlation between some vegetal indexes values (RVI) and some vertical structure 

characters).  

Finally, most of the methods studied by the different partners of the project are mixed. But it 

appears that it is not possible to propose one unique method able to produce a fuel map valid 

in any context with the same parameters. Proposed methods are context dependent and might 

be complementary in order to solve the global problem of fuel mapping in a given geographical 

and ecological context. 

This lead us we choose not to provide a closed processing solution, but an open knowledge 

based system, which aim to help the user to build a global demarche of successive processing, 

in order to better respond to his needs. We present the architecture of the integration 

framework in the next section. 

The Fuel Mapping Method Integration Platform (FMMIP) 

The fuel mapping methods integration platform is an open knowledge based system, aimed at 

helping the user to build and operate a global demarche by articulating different methods in 

order produce a fuel map adapted to his context and responding to his needs. Context 

parameters might concern geographical variable related to the user's working zone (location, 

geology, climate, etc.) but also user's available data and available computer resources, in 

particular commercial image processing or spatial analysis software. Needs concerns the 

targeted produced (targeted fuel typology, scale of the fuel map) and the previewed usage: 

(global risk calculation, operational planning, etc.).  
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The demarche is to organise different methods into a processing framework, allowing the user 

to take into account his different constraints and specificities. Then, the global demarche is not 

unique, because it has to be adapted to the use of the fuel map. A global demarche articulates 

different methods with other standard geo-data processing in relation to the different available 

resource (Figure 1).  

 

 
 

Figure 1. Processing demarche combining several processing methods 
 

In this purpose, the fuel mapping method integration platform manages and operates 

resources. Resources are either geo-data or geo-data processing systems. For example, 

implemented methods are considered as geo-data processing resources. Resources might be 

open access or limited access. Most of the geo-data used, in particular satellite images, are 

limited access resources because the user must have license rights to process them. 

Commercial software dependent implemented methods are also limited access resource, 

because of the required license to use the commercial software. 

In order to access to limited access resources, particular agreements will have to be passed 

between the platform user and the owner of the resource. 

1.2 The FMMIP "nodes" 

The fuel mapping methods integration framework is composed of a network of FMMIP "nodes". 

Nodes architecture is structured by a kernel surrounded by peripheral software modules, and 

linked to a knowledge database (Figure 2). Software modules are image processing or GIS 

software, and associated methods implemented in the macro-language of the given software. 
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The nodes kernel is composed of three main components: a driving Graphical User Interface, an 

expert system engine, that help the user to choose the best resources to use in relation to his 

needs, and an executive engine that can operate the resource, if possible. In particular, it can 

execute methods by operating their implementing software. To do so, the executive engine 

accesses the software modules through wrappers (Figure 2).  

 

 
Figure 2. A FMMIP node architecture 

 

The knowledge database gathers information about available resources. It contains all 

information about the resources (location, accessibility, operability, etc.), but does not contain 

any resource i.e. data or data processing software. Most of the kernel components might get 

information from the database server. 

Moreover, each node kernel might be endowed with three components dedicated to the 

system distribution: a database server, a process server and a distributor. We develop the role 

of these different components in the next part 3.3 of this section. 

 

1.3 Functioning scheme of a FMMIP node 
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Nodes of the mapping methods integration framework might communicate through a wide area 

network (WAN) like the Internet network, in a distributed service oriented architecture. Node 

can be addressed by their URL. Any node can be client, server or both. Moreover, a FMMIP 

node might be a resource server, so that it offers processing services or data providing services, 

or/and a knowledge server so it can offers read access to its node database. Distribution is 

ensured by the "Distributor" component of each node, that takes in charge the "client" role, 

and the "Resources server" that plays the role of the server. 

When the executive engine of node 1 has to execute a particular process on some given data, it 

invokes the "Distributor". This one queries the local knowledge data base to check if all data 

and processing resources are available locally. If no, it finds the URL of a FMMIP node 2 where 

data or processing resource might be found. So the "Distributor" can invoke the remote 

"Resource server" of node 2. The "Resource server" checks into its own node database if the 

resource is available on node 2. If yes and the required resources are data, the resources server 

temporarily uploads the data back to node 1. If the required resources are processing resources, 

the Resources server temporarily downloads data from node 1 to node 2. Then it asks the 

Executive engine to process these data through the convenient wrapper. Finally, it uploads back 

the result data to node 1. 

The required resource might also not be locally available on node 2. In that case, the node 2's 

Resource server should find in its node database the URL of a remote node 3. It will the invoke 

node 2 Distributor, so that the process can be repeated recursively. 

The prototype implementation and validation 

A prototype of the FMMIP platform was developed in the context of the Fireparadox project. It 

permits to build and share multi-environment processing demarches based on specific methods 

developed by different partners of the project. 

 

The platform is developed around a kernel and wrappers in the JAVA language, by using the 

respective software macro-languages (Gacemi 2009). For example, in order to communicate 

with the image processing software ITT ENVI©, used to operate some "object oriented" 

methods, the IDL language is used. Many image processing software also use script-like macro-

language (ESRI ArcInfo© AML, ERDAS Imagine© batch, etc.). The GIS software ESRI ArcGIS 

language is VBA© (Visual Basic for Application) or Python©. A specialised image processing tool 

kit, called the "fuel mapping resources tool kit" was also developed in C++ language, for open 

access standard image processing (Sorin 2009). This software uses standard system script 

macro-language. 

The node databases are managed by the shareware database server POSTGRES. So they might 

not be "local", but can also be remote. The node can use, for example, a centralised shared 

knowledge database. However, the database related to a node is unique for each node, during 

a FMMIP session. 
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Figure 3. Functioning scheme of a FMMIP Node 

 

Figure 4. The FMMIP framework distribution 
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Conclusion 

We propose a fuel mapping system that aims to take into account the complexity of the fuel 

geographical object definition and typology on one hand, the wide diversity of geographical and 

ecological contexts in which fuel might be mapped , and finally the diversity of resources 

potential users can have access to. To do so, the system is organised around the concept of 

method and demarches that is processing sequence, based on specific data type, adapted to a 

particular context, and aiming to detect a specific fuel typology (or a particular sub-set of fuel 

types of a universal fuel typology).  

The prototype being implemented is composed of several components: a system kernel, that 

includes a knowledge database and an expert system to choose the best adapted methods in 

relation to requirements, an open access resource toolkit that provide common processing 

algorithms, and different methods implemented on their particular software environment. All 

these elements have to be able to communicate, through an adapted distributed architecture. 

Potential distribution of this architecture makes possible a physically distributed system, based 

on a shared method knowledge database, but also shared images database. 
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Abstract 

Forests and Other Wooded Land in Lebanon are a unique feature in the semi-arid environment of the 
Eastern Mediterranean. Until 2006, they covered approximately 24% of the overall area of Lebanon. The 
forests are di-vided into three main classes, namely mixed forest, broadleaves, and coniferous. The Other 
Wooded Land is di-vided into the following classes: coniferous shrubs, broadleaved shrub, mixed 
shrublands and grassland with trees. Like other Euro-Mediterranean countries, forest fires have been 
especially damaging in Lebanon in recent years, representing one of the most important elements that 
contributes to the destruction of Lebanon’s natural resources. Most recently, a National Strategy for 
forest fire management was officially endorsed by the Govern-ment of Lebanon. One of the main 
activities of the National Strategy is to develop a fuel management plan aim-ing at reducing the highly 
flammable biomass. Most commonly, fuel maps in the Mediterranean are generated from remote 
sensing data, mainly, medium resolution sensors such as Landsat data and Very High Resolution sensors 
such as IKONOS data. The aim of this work was to present a classification approach to generate fuel type 
maps in the Eastern Mediterranean using ASTER imagery. The Prometheus fuel type classification system 
which is adapted to the ecological characteristics of the European Mediterranean basin was adopted. 
Field visits for the recognition of different fuel types were conducted. The field data were used as 
ground-truth dataset to train the classification model and to assess the classification results obtained for 
the study area. The Object-Based Image Analysis (OBIA) approach was used for fuel type mapping. This 
involved three steps, namely, image segmentation, object training and object classification. The process 
resulted in the separation of six fuel type classes. Varying degree of accuracy levels among the different 
fuel type classes was preliminary achieved. The results showed that the use of spectral and spatial 
information of ASTER imagery in OBIA allowed obtaining satisfactory results in extremely heterogeneous 
vegetated areas (70% of overall accuracy). Future work will involve 1) improving the accuracy of the 
classification results, 2) testing the transferability of the developed approach to map fuel types in 
different areas in the country, and 3) comparing the results with those derived from studies conducted in 
other Mediterranean countries. 
 
Keywords:  Fuel type mapping, the Mediterranean, Object-Based Image Analysis, ASTER  

Introduction 

Forests in Lebanon are a unique feature in the semi-arid environment of the Eastern 

Mediterranean. Until June 2006, they covered along with Other Wooded Land approximately 

24% of the overall area of Lebanon (Mitri and Elhajj 2008). Increasingly, Lebanon’s forests, 

which include remnants of valuable broad-leaved trees, conifer forests and evergreen trees that 

cover the Lebanese mountains in patches are exposed to degradation due to fires. Forest fires 

have been especially damaging in Lebanon in recent years, representing one of the most 

important elements that destroy Lebanon’s forest cover. This has given rise to concern at the 

national and international levels. In response to the increasing number of fires in the country, a 

National Strategy for forest fire management was officially endorsed by the Government of 

Lebanon in 2009 (Mitri 2009). The provision of valuable information in relation to fuel type 

classes is a process that was essentially highlighted in Lebanon’s National strategy for forest fire 
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management. The development of a fuel management includes the adoption of an operational 

mapping of fuel type. 

Fuel type is considered to be an important factor in pre-fire planning. In addition, fuel maps are 

essential for computing fire risk assessment and simulating fire behaviors and intensity across a 

landscape (Riano et al. 2002). Fuel maps are essential to fire management at many spatial and 

temporal scales. Fire managers have tried to summarize the physical parameters and spatial 

distribution of fuel in different classes also known as “fuel models” (Burgan and Rothermel 

1984). The spatial distribution of the fuel characteristics can be displayed as fuel type maps. The 

Prometheus classification system is considered to be better adapted to the Mediterranean 

ecosystem (Riano et al. 2002, Lasaponara et al. 2006).  

Extensive field efforts are required to update fuel type maps due to the temporal dynamism of 

fuel conditions. Remote sensing multispectral data proved to be an effective source of 

information for use in fuel type mapping at different levels, namely, regional and local 

(Chuvieco 2009). 

Several satellite sensors have been used in the last decades for fuel type mapping. Satellite 

images such as NOAA- AVHRR (McKinley et al. 1985), Landsat-TM (Cohen 1989, Riaño et al. 

2002, van Wagtendonk and Root 2003), Ikonos (Giakoumakis et al. 2002) and QuickBird (Arroyo 

et al. 2006) were employed. Most of the techniques that were employed in fuel type mapping 

have been based on differences within spectral information. The use of spatial information was 

mainly adopted in the case of Very High Spatial resolution imagery. Object-Based Image 

Analysis (OBIA), which is based on a fuzzy concept, is an approach that uses not only spectral 

information but also spatial information (Mitri and Gitas 2010). Segmentation, the first step in 

OBIA, involves merging the pixels in the image into image object primitives called objects or 

segments with a certain heterogeneous and homogeneous criterion. This step is critical because 

segmentation generates the objects that will be treated as a whole in the classification. 

The aim of this study was to develop an OBIA model for fuel type mapping in the Eastern 

Mediterranean using ASTER imagery. The specific objectives were:  

1. To adopt and adapt the Prometheus system in the classification process of the ASTER image; 

and 

2. To assess the accuracy of the results using field data. 

Study area and dataset description 

The study area is the central forested land of North Lebanon (Fig. 1). Its surface area is 145 km2 

extending from 35º51’42’’ to 36 º 0’27’’ East and 34 º 17’27’’to 34 º 22’56’’ North. Elevation 

ranges from 300 m to 1700 m (300 - 1000 m in the main area of interest). The major forest 

species, namely Pinus brutia and Quercus calliprinos often form dense stands with a canopy 

cover ranging from 10 to 80%. In addition to the forests, other types of Mediterranean 

vegetation, such as maquis and garrigue, are also present. An ASTER image captured on 6 

September 2010 was obtained. The first three bands, namely Band 1 (0.52–0.60 μm), Band 2 

(0.63–0.69 μm), and Band 3 (0.78–0.86 μm) were employed. In addition to the satellite image, 

fuel type field measurements were recorded involving plots of 30x30m. Measurements such as 
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Beirut 

the height of trees and shrubs, the height of grass and the thickness of litter and the percentage 

coverage of each were recorded. In addition, GPS coordinates were recorded for each plot.  

 

 

 

 

 

 

 

 
Figure 1. Location of Lebanon in the Mediterranean (left), and location of the study area in Lebanon (right) 

Methodology 

1.1 Image segmentation  

The strategy before classification of the ASTER image was to create a segmented image (Mitri 

and Gitas 2010). The segmentation of the ASTER image was generated by adjusting the 

parameters of scale and by using equal band weights. The composition of homogeneity criteria 

in the employed algorithm for segmentation was set to high values for colour criterion (90%) 

and low values for the shape criterion (10 %). The reason for this is that for most cases the 

colour criterion is the most important one to create meaningful objects; it defines to which 

percentage the spectral values of the image layers contribute to the entire homogeneity 

criterion, as opposed to the percentage of the shape homogeneity. A scale of 10 was selected 

for the segmentation of the image. The scale parameter here is an abstract term which 

determines the maximum allowed heterogeneity for the resulting image objects.  

1.2 Classification 

First, a classification scheme was developed. The creation of classes in the scheme was 

determined by the “Prometheus” fuel type classification system (Lasaponara et al. 2006). The 

main problem lies in the detection of the understory that may exist in a forest area. As such, the 

last 2 classes can be condensed into 1, as satellite imagery such as ASTER are not expected 

provide enough information for such a detailed classification. Eventually, a classification scheme 

resulted in two parent classes, namely, “no vegetation” and “vegetation”. Six subclasses were 

attributed to “vegetation” as follows: “fuel type 1”, “fuel type 2”, “fuel type 3”, “fuel type 4”, 

“fuel type 5”, and “fuel type 6”. Fuel type 6 (tree stands >4m with medium surface fuels and 

shrub cover > 30%) and fuel type 7 (tree stands > 4m with heavy surface fuels and shrub cover 

>30%) in the Prometheus classification system were merged together to form “fuel type 6” in 

the adapted classification scheme. Second, the segmented image was classified taking into 

account the devel-oped classification scheme. The parent classes were classified using the 

normalized-difference vegetation index (NDVI). The Nearest Neighbour Classifier (NNC) was 

employed for classification of the subclasses, taking into account training objects based on field 

data. In comparison with pixel-based training, the object-based approach of the nearest 

neighbour which is adopted in this work requires fewer training samples for each class: one to 
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two sample objects already cover many typical pixel samples and their variations. Therefore, 

object samples were selected for each class (two object samples per class) by taking the field 

survey information into account.  

Classification results and discussion 

A thematic fuel type map from the ASTER classification model was obtained (Fig. 2). All classes 

as determined by the “Prometheus” fuel type classification system were represented except for 

the last two classes which were merged together. After the classification, an accuracy measure, 

derived on the basis of a comparison of the classification in question with field reference data, 

was applied. Field-collected data from 92 plots were employed in order to assess the accuracy 

of the results. The overall classification accuracy was found to be 70%, while the overall Kappa 

Index of Agreement was 0.583 (Table 1). A closer examination of the accuracy assessment 

revealed that the classes “fuel type 4” and “fuel type 5” had the lowest accuracies. This 

confusion could be attributed to the difficulty of depicting small differences between the 

classes. Overall, the observed confusions could be explained by the spectral overlap among the 

different classes especially in area affected by topographic effects, canopy shadows, and the 

illumination conditions. Still, the accuracy assessment of the classification showed very 

promising results when mapping fuel types in Lebanon using OBIA of ASER imagery, an 

application that was not tested before in this region.  

 
Table 1. Accuracy assessment  

 Fuel type 1 Fuel type 2 Fuel type 3 Fuel type 4 Fuel type 5 Fuel type 6 

Producer 0.7 0.75 0.8 0.5 0.625 0.744 

User 1 0.6 0.4 0.1 0.789 0.875 

KIA/class 0.675 0.735 0.775 0.439 0.527 0.548 

Overall Accuracy 0.706 

KIA 0.583 

 
 

 

 

 

 

 

 
 
 

 
 

Figure 2. Subset of the segmented image (left) and corresponding subset of the classified image (right)   

Conclusion 

The result of this work comes in line with the Lebanon’s National strategy for forest fire 

management. 

The use of OBIA and ASTER imagery could present an affordable and operational approach for 

fuel type mapping at the national level. However, further investigations are needed in case of 

aiming at higher overall classification accuracy (above 70%). In this work, not enough 
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information is obtained about the forest understory. Conversely, the combination of ASTER 

imagery with Very High Spatial resolution imagery such as SPOT, IKONOS, and QuickBird would 

provide the users with the information necessary to recognize each of the seven fuel type 

classes of the Prometheus classification system. The availability of height information from an 

active sensor (e.g. LIDAR) of the same area might provide much more detailed information for 

more accurate classification results at the local level. 
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Abstract 

Wildland fires are the most destructive disturbance of the natural lands in the Mediterranean Basin. The 
abandonment of management practices of Aleppo pine forests in Greece has increased fuel loads and 
fuel continuity in these ecosystems, resulting in forest stands that are vulnerable to catastrophic crown 
fires. This study presents an approach to canopy fuel load prediction in Aleppo pine stands at spatial 
level. Allometric equations for the estimation of crown fuel weight of Aleppo pine (Pinus halepensis Mill.) 
trees in the Mediterranean Basin were developed based on crown diameter. An IKONOS multispectral 
image was used originally for LCLU mapping and identification of Aleppo pine stands. Following that, two 
different approaches were evaluated for individual tree crown recognition and crown diameter 
measurement using IKONOS imagery. The first one was based on object based extraction of tree crowns 
using the commercial Cognition software while the second one relied on the use of in-house developed 
MATLAB routines and a fused IKONOS imagery.  
Crown recognition and diameter estimation results were evaluated based on field measurements over a 
randomly selected sample of Aleppo pine trees. The application of the allometric equations allowed us to 
extent the remote sensing based information about tree crown diameters, in order to accurately map the 
canopy fuel load spatial distribution.  
Mapping canopy fuel load across landscape provide quantitative fuel attributes for use in crown fire 
behavior models and fire management in Aleppo pine stands  

 
Keywords: canopy fuel load, crown fire, IKONOS, GEOBIA, fire hazard, crown diameter, Aleppo pine 
forests  
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Abstract 

The proportion of biomass consumed by the fire is commonly named Burning efficiency (BE) or 
combustion completeness (CC). Traditionally, this parameter is assumed constant for each vegetation or 
fuel type, which im-plies that the fire has consumed equally each fuel complex. However, it is well known 
that inside a burned area there are different levels of burn severity, depending on fire behaviour.  
Consequently, the same fuel type may be consumed in very different proportions, and BE should be 
considered as a spatially dynamic variable related to burn severity levels. 
The Fire Effects Modeling and Mapping (FEMM) project is carried out in the frame of the Changing Earth 
Sci-ence Network initiative (http://due.esrin.esa.int/stse/index.php) of the European Space Agency (ESA). 
This pro-ject aims to test and validate methods to estimate spatial distribution of burning efficiency from 
burn severity mapping, using several study sites in Europe. This estimation will be based on images 
acquired by the ENVISAT-MERIS sensor, which has a spatial resolution of 300 meter (approx.). This sensor 
compensates the lack of SWIR bands with narrow and frequent spectral bands in the visible and near 
infrared spectral regions. 
The study area is located in Teruel (Spain) where a large fire occurred in 2009. The fire severity map of 
the area was computed and validated obtaining a R2 of 0.95. To estimate BE, the classification of burn 
severity values was reduced to three classes: low, medium and high. The minimum and maximum values 
of burning efficiency by vegetation type found in the literature were used to define the low and high 
severity classes. The medium burning efficiency value was computed by interpolation. The results were 
compared with the biomass loss estimated by means of decrement of LAI in the burned area. 
The results of this study highlighted the need of a spatially variable burning efficiency, since this simple 
approach revealed how variable the BE can be inside a single fire. 
 
Keywords:  Fire severity, Burning Efficiency, ESA 

Introduction 

Biomass burning due to forest fires is a major source of greenhouse gases emissions and a 

significant factor in the carbon cycle. In order to quantify the amount of greenhouse gasses 

(GHG) released to the atmosphere the equation proposed by the IPCC (2006) 

(Intergovernmental Panel on Climate Change) is normally used, 

310−××××= effBFIRE GCMAL  

Where LFIRE is the volume of GHG released in a fire (ton), A is the area burned (m2), MB is the 

biomass  available for combustion (Mg/m2), Cf is the burning efficiency or proportion of that 

biomass that is actually  consumed (dimensionless), and Gef is the emission factor of each GHG 

(g/kg of dry matter burned). 

Burning efficiency (BE) is defined as the proportion of biomass consume by the fire. Most of 

studies used a constant BE value by vegetation type assuming that the cover has been 

completely consumed by the fire (French et al. 2004). However some authors pointed out that 

BE factors should be considered a dynamic variable instead (Sá et al. 2005).  

The project Fire Effects Monitoring and Mapping (FEMM) aims to estimate a dynamic burning 

efficiency factor based on the burn severity maps previously obtained (Oliva and De Santis 

2010). Here we present the first approach to the estimation of a dynamic BE factor. 
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Study area and input data 

Several large fires occurred in Mediterranean Europe during 2009 fire season. One of them was 

selected due to the large surface affected by the fire and the potentiality to find a wide range of 

severity levels within it. The forest fire occurred in Teruel (northwest of Spain) burned almost 

6315 ha of pine forests, mixed forests, shrublands and croplands. This fire started the 22nd of 

July by lightning and was completely extinguish after four days. 

MERIS FR level 1b data were used in this study. This sensor measures the solar radiation 

reflected by the Earth at a spatial resolution of 300 meters in 15 spectral bands between 390 

nm and 1040 nm (Bézy et al. 2000). The image selected was dated on the 25th of September 

2009. The software SCAPE-M (Guanter et al. 2008) was applied to obtain atmospherically 

corrected reflectance. 

In this study we used the GlobCover vegetation map to identify the vegetation covers in the 

study area. This map was produced from MERIS data, so it has a spatial resolution of 300 

metres. Therefore, it facilitated the overlapping with our MERIS data.  

Methodology 

1.1 Burn severity estimation 

Burn severity was estimated by means of the simulation model developed by De Santis et al. 

(2009). These authors proposed the inversion of two linked Radiative Transfer Models (RTMs), 

PROSPECT and GeoSail (De Santis and Chuvieco 2009). The model was composed by a Look-up-

table of 30 spectra corresponding to GeoCBI values ranging from 0 to 3. These spectra were 

organized as a spectral library which provided reference spectra to run a spectral angle mapper 

supervised classification (Debba et al. 2005; Krusse et al. 1993) of a single post-fire image. The 

result was a burn severity map, in which a corresponding GeoCBI value was assigned to each 

pixel. This model was applied in Landsat-TM and MERIS data. Landsat-TM data were validated 

with field measures and were used then to validate the MERIS data (Oliva and De Santis 2010). 

The validation results of the MERIS burn severity estimation showed values of the coefficient of 

determination higher than 0.92 with a slope of the regression line higher than 0.9 (Oliva and De 

Santis 2010). Those results proved the potential ability of MERIS data to estimate burn severity 

levels.  

1.2 Burning efficiency estimation 

After a detailed bibliographic search of burning efficiency values, we found just a few of them 

able to be adapted to the Mediterranean ecosystem (i.e., Deeming et al. 1997; IPCC 2006; 

Wiedinmyer et al. 2006). 

In this first approach to burning efficiency estimation we decided to follow Kasischke et al. 

(1995) methodology. Therefore, the burn severity levels were grouped into three categories 

defining the level of damage produced by the fire: low, medium and high. The BE values were 

adapted to the levels of damage taking into account the following premises: 

Low damage: burn severity values lower than 2.5 means low damage to the tree cover, the 

shrubland is scorched and the ground is consumed. 
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Medium damage: burn severity values between 2.5 and 2.8 are produced when ground and 

Shrubland strata are completely consumed by the fire, and the lower braches of the trees are 

burned but the higher branches remain unaffected. 

High damage: burn severity values higher than 2.8 means leaves and branches of the tree cover 

are severely affected by the fire. Shrubland and ground are completely consumed. 

Minimum and maximum values found in the previous studies were assigned to the low and high 

damage classes, respectively. The BE value for the medium damage class was computed by 

interpolation from the previous values. This approach marked the start point of burning 

efficiency estimation by vegetation type and burn severity level.  

 
Table 1. Burning efficiency values adjusted to damage level 

 

 

 

 

 

 

Results 

Figure 1 shows on the left the vegetation map used as input data and the burning efficiency 

values attached to the vegetation classes. On the right of figure 1 is displayed the burning 

efficiency map with the adjusted values to the level of damage presented in table 1. The 

adjusted BE map shows a higher variability of values inside the burned area.  

  
Figure 1. The map on the left shows the vegetation map with their respective burning efficiency values, whereas the map on the 

right displays the burning efficiency values adjusted to the level of damage. 

Conclusions 

Traditionally, the emissions estimates assume an average value of BE for each vegetation or fuel 

type, considering the vegetation affected as completely burnt. However, the different burn 

severity levels within a fire make evident that the BE should be a dynamic factor instead. We 

Vegetation type 
BE adjusted to damage level 

Bajo Medio Severo 

Grassland 0.85 0.9 0.98 

Shrubland 0.7 0.85 0.95 

Conifer forest 0.25 0.42 0.57 

Deciduous forest 0.25 0.4 0.56 
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used the burn severity values as an estimation of the remaining biomass, since the Composite 

Burnt Index (CBI) takes into account several parameters to estimate the post-fire damage level 

which describes how the fire affected the vegetation cover (Key and Benson 2005). Then we 

showed a first estimation of BE that varies spatially according to burn severity values. 

The results obtained in this study support those authors who estimated that the use of an 

average BE value may lead to uncertainties ranging from 23% to 46% (Sá et al. 2005; Ward et al. 

1996). From the maps displayed is clear the variation in the BE values and then the implications 

of this parameter in GHG emissions estimation. 
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Abstract 

Bodrum town, which is located in the southwest Turkey, is in the Mediterranean region and has many 
unique natural and historical beauties. The construction, the urbanization and the social activities 
increase and spread very fast in Bodrum. Bodrum has high fire risk potential because of its climatologic, 
topographic and social features. There have been 10 major forest fires in the last five years in the region. 
In this research, Bodrum forest areas were studied by using Remote Sensing (RS) and Geographical 
Information Systems (GIS) techniques. Landsat and Spot satellite images were used to examine past and 
current status of Bodrum forest areas. The land use classification of the images was made to show the 
land use temporal change. For creation of risk map and determination of vegetation pattern situation 
normalized difference vegetation index (NDVI) image was produced. Also land surface temperature (LST) 
is derived from a thermal band as an alternative meteorological station’s data to show the temperature 
distribution of the study area. To examine the structure of the region’s land Aster GDEM digital elevation 
model was used and slope, aspect and elevation maps were created.  The Bodrum fire risk map was 
produced by using all data in GIS platform.  The results clearly show the fire risk potential and the 
importance of the fire risk map for Bodrum. 
 
Keywords: GIS, remote sensing, LST, forest fire, risk map 

Introduction 

A Mediterranean touristic county, Bodrum that is famous for the countless beauties, is in 

trouble with forest fires. Although complete prevention is not possible, it is possible to know 

the forest fire potential of the region by creating a forest risk map that gives important 

information for disaster management. The NDVI that is extracted from the infrared visible 

regional band arithmetic can exhibit the health and moisture contents of the vegetation 

(Ozelkan et al. 2011). Slope, aspect and the altitude are important topographic parameters that 

can help identify potential areas for forest fire (Ozelkan et al. 2008) and the distributions of the 

settlement and roads are key factors at determining fire risk. The meteorological temperature 

data distribution shows the sensitivity to fire. Using and integrating these data in GIS platform, 

the fire potential can be shown by a fire risk map. Hernandez et al studied the 1995 fire that 

occurred in Island in Canary Islands (Spain) (Hernandez et al. 2006). They used the NDVI, 

Advanced Very High Resolution Radiometer and GIS to create a Fire Risk Dynamic Index (FRDI) 

over the study area. They exhibited that the relationship between NDVI and FRDI was inversely 

proportional during the summer of 1995 and this relationship was considered for their existing 

model. Erten et al. (2004) used Landsat satellite data and topographic maps to create a forest 

fire risk map for the Gallipoli Peninsula. They showed that integrating parameter such as 

topography, vegetation type, distance to roads and settlements satellite data in GIS are suitable 

to create forest fire risk map. Ozelkan et al. (2008) used Landsat satellite data and digital terrain 

model (DTM) to generate forest fire risk map for Kibriz Stream Canyon where is very hard to 

interfere during the fire. In this research, Landsat and Spot satellite images were used to 
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examine past and current status of Bodrum forest areas. For creation of risk map and to see the 

actual vegetation pattern NDVI image were produced. To examine the structure of the region’s 

topography Aster GDEM was used and slope, aspect and elevation maps were created.  The 

settlement and road maps were produced by using satellite images. Also the temperature 

distribution was analyzed to associate with the forest fires by using the thermal band of the 

Landsat image. The Bodrum fire risk map was produced by using all data in the GIS platform.  

Study area 

Bodrum, which is between 36° 95’ and 37° 17’ northern parallels, 27° 20’ and 27° 80’ eastern 

meridians, is a city in the south-western Turkey. In Bodrum, summers are hot and dry; the 

winters are mild and rainy. Temperature stands between +43.7°C-12.6°C and annual total 

precipitation can vary between 1180-414 mm. (Ikiel 2000). Nearly 61.3% of Bodrum was 

covered with forests but in recent years the forest fires reduced vegetation pattern significantly 

(URL-1). 

Materials and methods 

1.1 Materials 

In this study, multispectral Landsat 5-TM data acquired on 05.08.1986, 10.08.2011 and 

08.08.2011 dated Spot5 data were used. Thermal infrared band of 10.08.2011 dated Landsat 

image was used to obtain actual LST values. Near infrared and visible red bands of Spot image 

were used to obtain actual NDVI values. Spot 5 image was used to create road and settlement 

maps.  Also Aster GDEM digital elevation model was used to create slope, aspect and elevation 

maps.  

1.2 Methods 

In this study, unsupervised and supervised classification algorithms were used to classify 

05.08.1986 Landsat 5-TM and 08.08.2011 Spot 5 satellite images. The images were grouped as 

100 clusters using unsupervised classification method with having number of iterations as 50 

and using ISODATA algorithm. After unsupervised classification the supervised classification was 

applied for both images. The vegetation type was classified using the NDVI. The high NDVI 

values indicate healthy vegetation, while the low values indicate the unhealthy and non-

vegetation areas. (Ozelkan et al. 2008) The NDVI values vary between -1 and 1. The NDVI 

formula is NDVI= (NIR-RED)/(NIR+RED). To compose NDVI for Spot 5-NDVI=(Band1-

Band2)/(Band1+Band2 formula is used. Spot 5 NDVI image was extracted to use as an actual 

risk parameter. To obtain temperature distribution of Bodrum Landsat 5-TM thermal band was 

used. The Landsat TM sensors acquire temperature data that is in the form of digital number 

(DN) with a range between 0-255. The first step is converting the DNs to radiance values using 

the bias and gain values, specific to the individual scene. CVR=G(CVDN)+B is the formula used to 

convert DN to radiance where, CVR is the cell value as radiance, CVDN is the cell value digital 

number, G is the gain, B is the bias values. The conversion formula radiance to temperature for 

Landsat 5-TM was T=K2/ln((K1*ε)/CVR+1)  where T is Kelvin degrees, CVR is the cell value as 

radiance, ε is emissivity (typically 0.95). Also K1 is 607.76 and K2is 1260.56 for Landsat 5-TM 
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(URL-2). To convert Kelvin values to Celsius=Kelvin-273.15 unit transformation is used. (Ozelkan 

et al 2011). The settlement and road maps were produced by using Spot 5 images to show the 

human effect to forest fire as a parameter. AsterGDEM was used and slope, aspect and 

elevation maps were created in the GIS platform. Forest risk map of the study area was created 

by performing a multi-criteria analysis by using these data. The parameters taken into account, 

weights, class and the factor values used for the risk mapping are given in Table1. Risk was 

calculated according to the formula: RISK: 0.15 * "settlement" + 0.17 * "roads" + 0.10 * "slope" 

+ 0.13 * "aspect" + 0.09 * "altitude" + 0.19 * "NDVI" + 0.17 * "LST" 

Results 

05.08.1986 Landsat and 08.08.2011 Spot 5 images classification can be seen in Figure1a&b. 

Dark green represents the wooded, green represents treeless vegetation, black represents non-

vegetated and blue represents the water area. In 1986 the wooded area is 39426, the treeless 

vegetation is 26543, non-vegetated is 1928 and the water area is 2 hectares. In 2011 the 

wooded is 32758, the treeless vegetation is 28879, non-vegetated is 6407 and the water area is 

117 hectares. 6668 hectares decrease of wooded, 2336 hectares increase of treeless 

vegetation, 4479 hectares increase of non-vegetated and 115 hectares increase of water areas 

were calculated.  When the total area of 2011 was decreased from 1986, the result is 272 

hectares that is the products of the coastal and the marine construction. The overall 

classification accuracy for Spot 5 product is 90% and for Landsat product is %85. The NDVI 

values that are mostly low can be seen in Figure 2 reflect the vegetation situation clearly. The 

LST shows that the temperature values totally vary between 30-50 Co (Figure 3). In the study 

area the slope values are generally not high (Figure 4). The aspect values are generally south 

and south west (Figure 5). The risk order of the aspect is South > South West > South East > Flat 

> West > East > North West > North East > North. With increasing altitude, the humidity values 

decrease which causes quick spread of the fire. The altitude values with a maximum of 860 

meters are generally not high (Figure 6). In the study areas the settlement and the road areas 

are very dense which create very high risk (Figure 7). 

 
Table 1: Risk parameters, weights, classes and factor values. 

 

 

 

Considering all fire risk parameters (distance to roads, distance to settlement, slope, aspect, 

altitude, NDVI and LST) a fire risk map is established using the risk formula given in section 
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“Methods” (Figure 8). The fire risk values are between 1-10, the risk values, spatial and 

percentage distribution values of the fire risk potential can be seen at Table 2.  As a result 54% 

of the study area is over 5, which means that 36604 hectares area is in fire danger. 

 
Figure1a: Classified Landsat image, Figure1b: Classified Spot image 

 
Figure 2: 2011 Spot 5 NDVI image, Figure 3: 2011 Landsat 5-TM LST image 

 
Figure 4: Slope Map, Figure 5: Aspect Map 

 
Figure 6: Altitude Map, Figure 7: Settlement and road map 

    
Figure 8: Fire Risk Map, Table 2: Fire risk value, spatial and percentage distribution 

Conclusion 

Forests are often damaged from fires, disaster management activities have to be focused by 

using actual risk maps that make disaster management fast and sustainable. RS and GIS are very 

effective tools to observe the vegetation and in this study, the main problem of the region 

forest fire risk potential was analyzed using RS and GIS technology by the way of creating fire 
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risk map. As a result it can be said that, while it is impossible to prevent forest fires, a well- 

made forest fire map can ensure successful preparedness and rapid intervention. 
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Abstract 

Forest fires are a major factor of environmental transformation, playing an important role in land cover 
change, soil degradation and air quality. Recently, with the growing development of the wildland-urban 
interface, they also pose an increasing risk to the safety of people and property. Hence, a thorough fire 
risk assessment is needed to prevent fire occurrence or reduce its negative impacts. In Spain, the largest 
number of fires occurs in the northwest, specifically in the Autonomous Communities of Galicia and 
Asturias. One way to address the fire risk is to compute the burning probability of the territory (defined 
as the number of times each pixel is estimated to burn divided by the total number of years),  which 
would represent its potential to burn. 
This paper estimates the burning probability for those regions using the large-fire simulation system 
(FSim). The system uses historical weather observations, historical fire records and spatial data on fuel 
structure and topography in order to simulate the occurrence and growth of fires for thousands of 
“virtual” years.  
The simulation was performed at a 250m spatial resolution. Five simulations were run, one for each 
province within the study area. The Energy Release Component (ERC) was used as a proxy for fuel 
moisture content. Fire occurrence was stochastically modelled based on the historical fire relationship to 
ERC. Fire growth was simulated taking into account the fuel model for each pixel, the canopy structure, 
the topography, and the weather generated from a time-series analysis of ERC to represent daily and 
seasonal variability and the distribution of wind speed and direction from weather records. The 
simulation was run for 20,000 years. 
The resulting burned probabilities ranged between 0 and 0.1448 for the entire study area. The simulated 
average burn probabilities for each province were compared to the ones derived from historical records, 
obtaining mean errors between 6.26% and 94.66%. Some causes of error were detected, related to sharp 
transitions between provinces and longer than real fire periods, which will be improved in future 
simulations. 
 
Keywords:  Forest fires, Burn Probability, Spain, FSim  

Introduction 

The importance of forest fires as a source of land cover transformation and greenhouse 

emissions, amongst other disturbances, has been widely studied (Eva et al. 2000; Langner et al. 

2007; Mouillot et al. 2006; van der Werf et al. 2003). In the past decades, the increase of the 

wildland-urban interface has also increased both the human-caused fires, and the risk those 

fires pose to the safety of people and property (Syphard et al. 2007; Theobald et al. 2007; 

Venevsky et al. 2002). These facts show the importance of thoroughly assessing the fire risk 

potential, in order to alleviate the negative impacts of fires whenever possible, to better 

allocate fire-fighting resources for protecting people and structures and to reduce burned area. 

Within Europe, Spain is one of the countries most affected by fires, with more than 450,000 

fires in the period 1980-2009, and more than 5 million hectares burned in that period 

(Schmuck, et al. 2010). And within Spain, the Autonomous Community of Galicia has the highest 

incidence of fire, with 53,56% of total fires for the period 1996-2005, followed by “Castilla y 

León” (9,89%) and Asturias (7,76%) (ADIF 2007).  
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In this project, we selected the Spanish geographical area with the highest density of fires, i.e. 

the Autonomous Communities of Galicia and Asturias, which are comprised of a total of 5 

Provinces. As a method to estimate the fire risk, we calculated the susceptibility of the territory 

to burn, using the Large-fire Simulation system, also known as FSim (Finney et al. 2011).  We 

selected this methodology because it allows us to integrate the probability of fire ignition with 

the expected fire behavior, based on real data taken from historical fire and weather records. 

Furthermore, it calculates the fire risk probability throughout the whole territory, instead of just 

doing it for one or a few fires, as is the case of other systems like FARSITE (Finney 1998) or 

FSPro (Calkin et al. 2011). 

Methods 

FSim calculates the burn probability for each pixel (defined as the number of times each pixel is 

estimated to burn divided by the total number of years), simulating fire ignitions and fire 

growth based on historical fire records and weather information, as well as spatial data on fuel 

structure and topography. The structure of the methodology is shown in Figure 1. Since the 

probability of a particular pixel to ignite in a particular year is extremely low, we run the 

simulation for 20,000 years in order to produce moderately stable burn probabilities.  

 

 

 

 

 

 

 

 
 

Figure 1. Methodology  

 

For our study, we extracted the fire records from the Forest Fires General Statistic Database 

(EGIF - Estadística General de Incendios Forestales), which includes the statistical information 

for all the fires in Spain for the period 1988-2009. The weather records for that period were 

provided by the Spanish Meteorological State Agency (AEMET, Agencia Estatal de Meteorología, 

Ministerio de Medio Ambiente y Medio Rural y Marino). One weather station was selected for 

each of the five provinces in the study area as representative of the weather of that province.  

We performed the simulation separately for each province in the study area, using a 250 m 

resolution grid. To account for fuel structure and topography, we used a Landscape file (LCP) 

(Stratton 2006) developed in Flammap (Finney 2006), using the following inputs: the elevation, 

slope and aspect of the terrain where computed from the MDT25 digital elevation model of the 

Spanish National Geographic Institute (IGN, Instituto Geográfico Nacional, 

http://www.ign.es/ign/layoutIn/modeloDigitalTerreno.do, last accessed August 2011); the fuel 

models corresponded to the 13 NFFL models (Rothermel 1983) and were extracted from the 

Spanish Fuel Model Map (MMC, Mapa de Modelos de Combustibles) developed by the Spanish 

Forest Fire Defence Area; the stand height, crown bulk density and crown base height were 
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assigned based on expert knowledge to the predominant tree species extracted from the 

Spanish Forestry Map (MFE200, http://www.marm.es/es/biodiversidad/temas/montes-y-

politica-forestal/mapa-forestal/digital_mfe200.aspx, last accessed August 2011); and the tree 

canopy cover for each pixel was computed from the Vegetation Continuous Fields, Collection 4, 

Version 3 product (VCF, http://glcf.umiacs.umd.edu/data/vcf/, last accessed August 2011), 

which contains proportional estimates for tree cover for each pixel. 

The weather data were input into the FireFamilyPlus v4.1 software (http://www.firemodels.org, 

last accessed August 2011), in order to obtain the Energy Release Component (ERC) fire danger 

rating index for each day (Cohen, et al. 1985). This ERC was used as a proxy for the influence of 

fuel moisture on fire behavior. The "virtual" daily ERC for each simulated year were modelled 

using time-series analysis, which accounted for both daily and seasonal variations in fuel 

moisture (see Finney, et al. 2011). Wind speed and direction were assigned according to their 

historical probability for each month of the year. With this weather information and the LCP, 

fire behavior (rate of spread and intensity of surface fire, crown fire and spotting distance from 

torching trees) was pre-processed for every province using Flammap, in order to make the fire 

growth simulation more efficient. 

FireFamilyPlus also computed a probabilistic relationship between the daily historical values of 

ERC and fire occurrence - from the historical record for each province - using a logistic 

regression equation. Since FSim was intended to simulate only large fires, we set the minimum 

fire size for each province at the 97th percentile of fire size, with a minimum threshold of 30 ha. 

The probability of multiple number of simultaneous large fire ignitions in a particular day was 

also extracted from the historical fire records. The simulated locations of the fire ignitions were 

determined randomly within each province. Fire growth for each fire was simulated by FSim 

using the Minimum Travel Time (MTT) algorithm (Finney 2002). 

Results  

Figure 2 shows the map of the simulated burn probabilities for each pixel, which was computed 

by FSim as the number of times the pixel burned divided by the number of years of the 

simulation. The void areas correspond to not forested areas (urban areas or crops).  

The highest burn probabilities were found in the province of Pontevedra, with a value of 

0.1448, followed by La Coruña (0.1021), Orense (0.1013), Lugo (0.0483) and Asturias (0.0376). 

The fact that we used a single weather station for each province resulted in the sharp transition 

of burn probabilities between some of the provinces, as is most evident between Lugo and its 

western provinces. This error is expected to be solved in the future, with a new version of FSim 

that will allow for gridded weather information. 
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Figure 2. Map of the Simulated Burn Probabilities 

 

Historical burn probability for each province was estimated as the total area burned divided by 

the total area and number of years. The simulated average burn probability was calculated as 

the average burn probability of all the pixels within each province. Table 1 shows the values of 

the probabilities of each province, as well as the mean error of the simulation, which was 

calculated as: 

 
Table 1. Simulated Average Burn Probabilities and Mean Errors for each Province. 

Province 
Historic Burn      

Probability 

Simulated 

Average Burn 

Probability 

Mean 

Error (%) 

Asturias 0.010425 0.007777 25.40 

La Coruña 0.011054 0.020520 94.66 

Lugo 0.006894 0.007326 6.26 

Orense 0.021280 0.028762 35.16 

Pontevedra 0.020372 0.032845 44.79 

 

In most of the cases, excepting Asturias, the simulated burn probabilities are higher than the 

historical ones, with the province of La Coruña showing the biggest mean error. This could be 

partially due to the fact that the simulation is running the fires for much longer periods of time 

than the historical observations, deriving in much larger fires, and hence increasing the burn 

probability for the pixels involved. At this point, there is no option to limit the fire period in a 

way that would represent the Spanish conditions, but this capability will be added to future 

versions of FSim. Other sources of error could be due to the selection of a particular weather 

100*
yProbabilitBurn  Historical

yProbabilitBurn  Average Simulated -y ProbabilitBurn  Historical
(%)Error Mean =
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station for the provinces. Future simulations will include the use of other weather stations, to 

test their influence in the results, until the gridded option is available. 

Since within each province the simulated weather conditions remained constant throughout 

the territory, the results highlight the importance of fuels and topography on fire behavior and 

burning probability.  

This study is a first approach towards a static fire risk assessment for Spain, based on a 

probabilistic analysis and fire simulation models. Future work should focus on solving the 

detected problems, and analyzing the fire size distributions of the modeled fires compared to 

the historical ones. 
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Abstract 

Vegetation fires produce biomass combustion residues, with colour varying from dark black char to white 
mineral ash. The colour-lightness of char and ash combustion residues is a qualitative parameter 
describing the post-fire condition of burned areas, and has been correlated with the completeness of 
combustion, fire intensity, and fire duration. Researchers have suggested that visual comparison of 
combustion residue samples with a standard grey scale would enable reliable combustion residue col-
our-lightness estimation. This paper illustrates an experiment aimed at assessing if colour-lightness can 
be estimated using a standard grey scale. Fifteen combustion residue samples with colour-lightness 
ranging from black char to white mineral ash were collected in the Northern Territory, Australia, and 
visually evaluated by three individuals using a grey scale. The grey scale scores (0–19) were compared 
with the mean visible (390 to 830 nm) wavelength combustion residue reflectance (0–1) measured with a 
portable spectroradiometer. A significant linear relationship between the grey scale scores and the mean 
visible combustion residue reflectance was found (R2 = 0.816 with a linear fit, R2 = 0.936 with a 
logarithmic-transformed fit). This finding suggests that combustion residue colour-lightness can be 
assessed in the field using inexpensive grey scales, and that this technique is a suit-able avenue for future 
research on the field assessment of fire characteristics and effects.  
 
Keywords: Ash, Char, Reflectance, Field estimation  
 

This research is now published in the International Journal of Wildland Fire 2010, Vol. 19, pages 698–704. 
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Abstract 

Forest fires threaten natural resources and even human lives in many areas of the world. Portugal suffers 
from forest fires. The forecast of forest fire risks can be achieved with the use of fire risk zone maps. The 
management of these disasters is of importance to both government authorities and the public. Forest 
fire risk zoning requires integration of natural (topography) and anthropogenic factors (such as roads and 
settlements). This article presents the results of a research project aimed to producing fire risk maps in a 
GIS open source environment. The requirements of open source is better quality, higher reliability, more 
flexibility, lower cost, and an end to predatory vendor lock-in. This project was developed in QuantumGIS 
(http://www.qgis.org/) platform and the interface is in Python (http://www.python.org/). The thematic 
and individual maps generated were merged into an integrated risk map. The application, developed 
through QuantumGIS plugins, incorporates seven procedures under a single toolbar. The production of 
the forest fire risk map comprises several steps and the production of several maps: probability, 
susceptibility, hazard, vulnerability, economic value,  potential damage and fire risk map. The probability 
map incorporates the information of the number of fires that occurs in the last 15 years, for each pixel. 
After, an annual average is calculated (in %), for each pixel. The susceptibility map contains the slope map 
and the land cover information (Corine Land Cover). The mathematical product of these two maps 
(probability and susceptibility) is the hazard map.  The vulnerability map represents the degree of loss of 
each element, and varies between 0 to 1.The economic value map contains the price (in euros) of the 
land (for each pixel) and considers the distance from roads and the distance from settlements. This 
information is given by the local authorities and is public. The mathematical product of the vulnerability 
map and economic value map gives the potential damage map. Finally, the forest fire risk map is created 
multiplying the hazard map by the potential damage map. The forest fire risk map comprises six classes: 
no risk (black), very low risk (dark-green), low risk (green), medium risk (yellow), high risk (orange) and 
very high risk (red). This application was tested in three different municipal governments of the Norwest 
zone of Portugal. The results obtained were similar to the results obtained in a commercial GIS. This 
application has the advantages of grouping in a unique toolbar all the procedures needed to produce 
forest fire risk maps and are free for the institution/user. This work presents several contributions for the 
area of the GIS open source applications to forest fire management. 
 
Keywords: forest fire; risk map; GIS open source; Portugal 

Introduction 

Forest fire risk zones are locations where a fire is likely to start, and from where it can easily 

spread to other areas. A precise evaluation of forest fire problems and decision on solutions can 

only be satisfactory when a fire risk zone mapping is available (Erten et al. 2002). Forest fires 

are one of the major natural risks in Portugal. Fires occur frequently in Portugal and there is a 

need for supranational approaches that analyse wide scenarios of factors involved and global 

fire effects. It is impossible to control nature, but it is possible to map forest fire risk zone and 

thereby minimise the frequency of fire (Erten et al. 2002).  

Geographical Information Systems (GIS) are an important and efficient tool that can be used by 

local administrations to minimize natural disasters, as forest fires. Thus, GIS technologies have 
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been used in several fire analyses (e.g., Chuvieco and  Congalton 1989; Chuvieco and 

Sales,1996, Erten et al. 2002). However, these fire analyses were mainly conducted in GIS 

commercial software. 

This paper presents the results of a research project aimed to producing fire risk maps in a GIS 

open source environment.  The promise of open source is better quality, higher reliability, more 

flexibility, lower cost, and an end to predatory vendor lock-in. This project was developed in 

Quantum GIS (http://www.qgis.org/) platform and the interface is in Python 

(http://www.python.org/). 

Methodology 

The production of the forest fire risk map comprises several steps and the elaboration of 

several maps (Figure 1). All the maps were produced according to the rules of the Portuguese 

Forestry Authority (PMDFCI 2008).   

The probability map incorporates the information of the number of fires that occurs in the last 

15 years, for each pixel. After, an annual average is calculated (in %) for each pixel.  

The susceptibility map contains the slope map and the land cover information (Corine Land 

Cover). The mathematical product of these two maps (probability and susceptibility) is the 

hazard map.  

The vulnerability map represents the degree of loss of an element and varies between 0 to 1 

(this value is tabulated and available for each pixel). In other words the vulnerability value 

represents the ability of each element to recover from a fire event.The economic value map 

contains the price (in euros) of the land (for each pixel) and considers the distance from roads 

and the distance from settlements. This information is given by the local authorities and is 

public. The mathematical product of the vulnerability map and economic value map gives the 

potential damage map.  Finally, the forest fire risk map is created multiplying the hazard map by 

the potential damage map.  

 
Figure 1. Forest fire risk map procedure steps                                   Figure 2. Toolbar created 

 

This project was developed in QuantumGIS (http://www.qgis.org/) platform and the interface is 

in Python (http://www.python.org/). The application, developed through QuantumGIS plugins, 

incorporate seven procedures under a single toolbar (Figure 2). 

The first icon (TIN Creation) allows for a TIN generation based on Delaunay triangulation.  The 

second icon (GRID) allows for a grid generation considered as input a vector file. The pixel size 

was defined as 25 m (according to the Portuguese Forestry Authority rules).  The next icon 
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(Terrain Analysis) produces the slope and the aspect maps.  Topography is an important 

physiographic factor, which is related to wind behavior, and hence affects the fire proneness of 

the area. Fire travels most rapidly up slopes and the least rapidly down slopes.  The Probability 

Map feature gives the probability map, considering the information of the number of fires that 

occurs in the last 15 years, for each pixel.  The next icons (Hazard Map and Risk Map) allow for 

the generation of the hazard and risk map, respectively. In this generation the application 

automatically uploads all the information needed and already created. The last icon (Rasterize) 

is transversal to the project and converts a vector file (shapefile) into a raster. 

All the procedures/icons of this project were created using commands available in GDAL 

(Geospatial Data Abstraction Library) and OGR (Simple Features Library)  libraries, and have also 

been based on plugins already implemented, demonstrating the concept of open source. GDAL 

is a translator library for raster geospatial data formats that is released under an X/MIT style 

Open Source license by the Open Source Geospatial Foundation. As a library, it presents a single 

abstract data model to the calling application for all supported formats. It also comes with a 

variety of useful command line utilities for data translation and processing. The GDAL raster 

support formats such as GeoTIFF, Erdas Imagine, SDTS, ECW, MrSID, JPEG2000, DTED, NITF, 

among others. The OGRis a C++ open source library (and command line tools) providing read 

(and sometimes write) access to a variety of vector file formats including ESRI Shapefiles, S-57, 

SDTS, PostGIS, Oracle Spatial, and Mapinfo mid/mif and TAB formats. GDAL/OGR is considered 

a major free software project with "extensive capabilities of data exchange" and also in the 

commercial GIS community due to its widespread use and comprehensive set of functionalities 

(Neteler and Raghavan 2006).  

Results 

In figure 3 are presented some of the maps produced for the Santa Maria da Feira municipality 

(located in the Norwest part of Portugal). The final product, the forest fire risk map comprises 

six classes: no risk (black), very low risk (dark-green), low risk (green), medium risk (yellow), high 

risk (orange) and very high risk (red). The developed application was tested in three different 

areas, and compared with the risk maps already produced in a GIS commercial software (Figure 

4). 
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Figure 3. Example of the maps generated for Santa Maria da Feira using the open source 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Risk map generated through a commercial GIS software (left) and through an open source GIS software (right) 
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The two risk maps given in the Figure 4 are quite similar. However, some differences were 

detected related to the classification method. Although the two (ArcGIS and QuantumGIS) 

software use the same method (quantiles method), the ArcGIS quantiles code is not available. 

Therefore, the quantiles method employed in our application differs somewhat from the ArcGIS 

quantiles method.  However, the differences are minimal and the final results were similar. 

Discussion and conclusion 

The application described in this paper is an open source GIS application to produce forest fire 

risk maps. Besides being an open source application, it can be freely utilized by any user, and 

may be customized and improved by the authors or users. This application also presents the 

advantages of grouping in a unique toolbar all the procedures needed to produce forest fire risk 

maps. In the future the authors intend to improve some aspects of the application and publish 

the codes and plugins developed, as a mandatory of the open source software. 

This work presents several contributions for the area of the GIS open source applications to 

forest fire management. 
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II - Local to regional applications of remote sensing in post-fire 
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Abstract 

Knowledge of fire severity is important to assess ecological impacts of fires. In recent years it has also 
gained importance in estimation greenhouse gases emitted by fires. To develop a remote sensing 
algorithm for estimating fire severity in the tropical savanna of northern Australia reflectance spectra 
have been collected within two days after fires of varying severity using a full range (400-2500 nm) 
spectroradiometer in a helicopter. Corresponding field data has been collected along 50m transects. Field 
variables collected were amount of photosynthetic/non-photosynthetic vegetation and scorched/charred 
material in four strata (ground, lower, mid and upper canopy). For the ground layer amount of ash, dry 
grass and bare soil has been assessed as well. Additionally scorch height and ground patchiness have 
been estimated. 
Analysis of field variables showed fire severity can be summarised by a combination of scorch height and 
ground patchiness. Using the spectra collected in the helicopter it could be shown that ΔNBR and ΔNDVI 
were able to separate severe from non-severe fires. Further discrimination of non-severe fires into low 
and moderate severity fires was possible using the reflectance in the near-infrared portion of the 
spectrum. To further discriminate low severity fires an algorithm based on linear unmixing has been 
developed to estimate sub-pixel patchiness. The algorithms are currently being implemented for the 
generation of an operational fire severity/sub-pixel patchiness product for northern Australia utilising 
data from MODIS. To validate this product over large areas a methodology has been developed utilising a 
combination of observations from a low flying helicopter and within the field. An extensive field program 
is underway this dry season to collect large amounts of validation data. 
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Abstract 

Fires respond differently to landscape composition and structure patterns, burning preferentially certain 
topographic features and different land-cover types. In turn, post-fire vegetation recovery is determined 
by several factors, such as fire characteristics, vegetation cover, climate, topography, and land-use 
history. Landscape patterns are also shaped by fire, inducing feedbacks that affect fire regime 
characteristics, such as recurrence and severity. Wildfires are, thus, better understood in the context of 
the interactions between landscape, fire regimes, and ecosystem response to disturbances.  
The dependence of wildfire regimes on landscape factors, such as ecosystem composition, topography 
and human occupation, in Portugal is well known. In 2003 and 2005 Portugal registered two outstanding 
fire seasons, with burnt areas of 450 000ha and 338 000ha, respectively, considerably higher than the 
previous maximum for burnt area since 1980, circa 182000 ha in 1991. The authors have previously 
studied post-fire vegetation recovery following these two fire seasons (Gouveia et al. 2010; Bastos et al. 
2011). Despite the fact that these extraordinary fire seasons were mainly driven by climatic factors, 
namely the strong heat wave in 2003 and the severe drought in 2005, it is important to evaluate the 
contribution of landscape characteristics to the larger fire events registered in those fire seasons, as well 
as to the response of post-fire vegetation recovery.  
This work focuses on burnt scars from 2003 and 2005 and relies on monthly NDVI datasets from the 
sensor VEGETATION, at 1km spatial resolution, over an 11-year period (September 1998 to August 2009) 
to evaluate vegetation dynamics. Land-cover was assessed using Corine Land-Cover 2000 and 2006 
datasets, which were degraded to 1km spatial resolution. A Digital Elevation Model for Continental 
Portugal, at 1km spatial resolution, was extracted from the GLOBE project dataset in order to analyse 
landscape structure. In order to identify fire-prone land-cover types, vegetation composition over the 
burnt scars was compared to the overall land-cover composition of the territory before and following the 
fire events. Coniferous, broad-leaved and transitional woodland-shrub were selectively more affected by 
fire, with some differences between the two fire seasons. Transitional woodland-shrub markedly 
dominated the burnt scars from 2003 fire season in the post-fire period. Finally, the influence of 
topography in vegetation recovery was assessed by relating the spatial distribution of estimated recovery 
times for some scars to altitude, slope and aspect. Distinct behaviours observed indicate that these 
factors may have some influence on vegetation recovery, motivating further work on this subject. 
 
Keywords:  Wildfire, vegetation recovery, landscape, remote sensing 

Introduction 

Fire is an ecological phenomenon characterized by the interaction of a large variety of factors 

such as landscape composition and structure, climate conditions as well as the differentiated 

post-disturbance ecosystem dynamics (Costa et al 2010). Fires respond differently to landscape 

composition and structure patterns, burning preferentially certain topographic features and 

different land-cover types (Viedma 2008). In turn, post-fire vegetation recovery is determined 

by several factors, such as fire characteristics, vegetation cover, climate, topography, and land-

use history (Pérez et al. 2003; Pausas and Vallejo 2004). Within the Mediterranean basin, 

landscape patterns are also shaped by fire, inducing feedbacks that affect fire regime 

characteristics, such as recurrence and severity (Loepfe et al. 2010). Wildfires are, thus, better 
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understood in the context of the interactions between landscape, fire regimes, and ecosystem 

response to disturbances (Viedma et al. 2006). This interactive context is particularly relevant in 

Portugal, the area that presents currently the largest amount of average burned area per year 

in within the entire Mediterranean basin (Pereira et al. 2011). 

Moreira et al. (2001) have shown that, for north-western Portugal, in the period from 1958 to 

1995 agricultural land decreased by 29%, being replaced mainly by shrublands and forests, 

which increased fuel accumulation and fire proneness of the landscape. These changes, 

combined with the increasing trend in temperatures, have increased markedly fire risk and both 

the number and extent of fires in Portugal has been increasing since 1980 (DGRF 2008). It 

should be nevertheless mentioned that the observed increase in number of fires also reflects 

the report of much smaller areas (e.g. smaller than 1 ha) that used to be underrepresented 

during the 1980s and early 1900s (Pereira et al. 2011). In 2003 and 2005 Portugal registered 

two outstanding fire seasons, with burnt areas of 450 000ha and 338 000ha, respectively. These 

amounts are considerably higher than the previous maximum for burnt area since 1980 that 

reached circa 182.000 ha in 1991 (DGRF 2008). These extraordinary fire seasons were mainly 

driven by climatic factors, particularly the outstanding heat wave in early August 2003 (Trigo et 

al. 2005) and the severe drought that stroke Iberia between 2004 and 2005 (Garcia-Herrera et 

al. 2007). 

Nunes et al. (2005) and Carmo et al. (2011) studied fire selectivity for large fires occurred in 

1990 and 1991, concluding that very large wildfires have a propensity to burn preferentially 

shrublands and coniferous, broad-leaved or mixed forests. Furthermore, Carmo et al. (2011) 

analysed the influence of topography in fire occurrence in northern Portugal, concluding that 

fires tend to occur selectively in northern and eastern aspects and in moderate to steep slopes. 

However, due to the extraordinary magnitude of both 2003 and 2005 fire seasons, it is 

important to evaluate the contribution of landscape characteristics to the larger fire events 

registered in those fire seasons, as well as to the response of post-fire vegetation recovery. 

Vegetation recovery rates are affected by fire regime and depend largely on water availability, 

which is higher in topographic features with higher water retention capacity or lower losses by 

evapotranspiration.  

The main goals of this work are: (i) to evaluate the influence of landscape composition on fire 

occurrence during the two extraordinary fire seasons of 2003 and 2005; ii) to assess fire driven 

changes in land-cover following the fire season of 2003; (iii) to analyse the dependence of post-

fire vegetation recovery on altitude, slope and aspect.  

Data and Methods 

The study relies on monthly NDVI datasets as derived from the sensor VEGETATION on board 

SPOTs 4 and 5 satellites, at 1km spatial resolution, selected from September 1998 to August 

2009 over a region extending from 37º to 42ºN and from 10º to 6ºW. Land-cover was assessed 

using Corine Land-Cover 2000 and 2006 datasets, which were degraded to 1km spatial 

resolution. A Digital Elevation Model for Continental Portugal, also at 1km spatial resolution, 

was extracted from the GLOBE project dataset (http://www.ngdc.noaa.gov/mgg/topo/globe.html) 

in order to analyse landscape structure (Figure 1 right panel). This work focuses on large burnt 
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scars from 2003 and 2005 fire seasons in Portugal (Fig. 1, left panel), which were identified 

using the procedure proposed by Gouveia et al. (2010).  

For the assessment of post-fire vegetation dynamics, eleven regions were selected enclosing 

some of the largest scars, four corresponding to 2003 fires and another seven from 2005 fires 

(Figure 1, left panel). Selected areas for the present work and respective organization are 

identified by the rectangular frames labelled from 1 to 11. 

 In order to identify fire-prone land-cover types the relative frequency of each of the CLC2000 

sub-classes corresponding either to agricultural land or forest (sub-classes 12 to 33) was 

evaluated for burnt pixels of 2003 and 2005 and compared to the corresponding overall 

abundance. With the aim of evaluating the impacts of fire on landscape composition, the post-

fire composition of burnt scars from 2003 was evaluated using CLC2006.  

The authors have previously studied post-fire vegetation recovery following these two fire 

seasons (Gouveia et al 2010; Bastos et al 2011), using a mono-parametric model which has 

shown to be adequate to analyse spatial patterns of recovery. 

Results 

As shown in Figure 2, the comparison of relative abundance of certain land-cover types over the 

territory and on burnt areas reveals a marked difference in land-cover composition between 

burnt scars and the overall territory. Results suggest that coniferous forests, followed by 

shrubland and broadleaved/mixed forests correspond to the most fire-prone vegetation types, 

being burned preferentially over other land-cover types, especially in very large wildfires. On 

the contrary, all types of agricultural land are clearly avoided by fire, since they present much 

lower fractions of burnt areas than their overall abundance. The slightly higher fraction of area 

classified as burnt in CLC2000 that is registered in the fire season of 2003 is also worth noting 

since it indicates the existence of pixels which were re-burnt in a short period of time.  

Figure 1. Burnt areas over Continental Portugal (left panel), as identified by the cluster analysis of NDVI anomalies following the 
fires seasons of 2003 (green pixels) and 2005 (blue pixels). Selected areas for the present work and respective nomenclature are 
identified by the rectangular frames labelled from 1 to 11. DEM for Portugal, as provided by GLOBE (right panel). 
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Nevertheless, it must be stressed that the results shown in Figure 2 correspond to an analysis 

performed at a very large scale and may be partially influenced by regional differences. In fact, 

while broad-leaved forests are clearly preferred by fire in southern Portugal, both coniferous 

forests and shrublands present very high fire-proneness over all regions in both years, 

particularly in Northern and Central Portugal. 

Moreover, an evaluation of land-cover composition in 2006 (based on data from CLC2006) 

indicates that the scars from 2003 wild fires suffered major changes in their composition, being 

mostly replaced by shrublands. All forests present steeper decreases in burnt scars than the 

respective observed trends over Portugal, being coniferous the land-cover type most severely 

reduced by fire. These results indicate a dramatic fire-driven replacement of forests, especially 

coniferous, for shrublands over the country. Despite the existence of regional patterns, the 

broad extent of this analysis enlightens the crucial role that wildfires, especially very large ones, 

have in landscape composition. 

In order to evaluate post-fire vegetation recovery, the mono-parametric model proposed by 

Gouveia et al. (2010) was applied to individual pixels of the fire scars on selected Regions 1 to 

11, to estimate vegetation recovery time fields. These scars are located in distinct regions of 

Portugal, with different topography (Fig. 1) and pre-fire land-cover composition, which were 

previously evaluated. The distribution of recovery times over the north and southern hillsides 

was assessed only for forests (Fig. 3). Since there is high diversity of land-cover types each 

region, recovery times would present larger dispersion if all vegetation types were considered. 

It should be noted that there are very few pixels corresponding to forests in Region 9, and all of 

them are located in south facing slopes. 

 

 
Figure 2. Relative frequency of agricultural and forest land-cover classes according to CLC 2000 nomenclature (legend) for Portugal 

(white bars), for burnt areas from 2003 (grey bars) and for 2005 (black bars) fire seasons. 
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Figure 3. Recovery time (in months) distribution over each slope aspect (North and South) for Regions 1 to 11. Red lines indicate 
median values; blue boxes indicate the 25% and 75% interquartile ranges and black whiskers encompass the 1.5% and 98.5% 
interquartile ranges. Notches identify the 95% confidence limits for the median values. Red crosses represent outliers. 

 

For most of the regions, recovery times were not significantly related to terrain aspect. 

However, Regions 5, 6, 7 and 11, present marked differences between the respective 

distributions over the two hillsides. Over all regions, with exception for R5 that presents the 

opposite behaviour, pixels on northern aspects tended to present lower recovery times than 

pixels located in south facing slopes.  

Final remarks 

Fire occurrence over Portugal in 2003 and 2005 burned selectively certain topographic features 

and land-cover types, and in turn, led to dramatic changes in landscape composition. 

Shrublands and coniferous forests were the vegetation types generally preferred by fires, 

although some regional differences were observed. The dramatic expansion of shrublands at 

the expense of all types of forests in burnt areas from 2003 is consistent with other studies in 

Portugal (Moreira et al. 2001; Silva et al. 2011) and in the Mediterranean region (Viedma et al. 

2006).  

In some central and northern areas of Portugal, vegetation recovery was influenced by aspect, 

being faster at north facing slopes than at southern ones. The faster recovery rates at northern 

aspects are related to the higher soil moisture content that characterizes north facing slopes, 

since they have less radiation exposure. Distinct behaviours observed such as the one of R5 

indicate that other factors have to be taken into account, motivating further work on this 

subject that is certainly useful for land and territory management.  
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Abstract 

During March and April 2011 the state of Coahuila in Mexico suffered the worst wildfire season ever. The 
fires burned more than 291,000 ha and some of them stayed active for about a month in mountainous 
regions. The surface affected represents 54 % of all affected areas in the whole country. 
These events triggered a state of emergency. A rapid assessment was necessary, which was performed in 
three main stages: i) active fire detection; ii) fire monitoring; and iii) post-wildfire vegetation recovery 
assessment. Information used was obtained from the Forest Fire Early Warning System of the National 
Commission for Knowledge and Use of Biodiversity (CONABIO 2011) and the first results of the burnt area 
operational algorithm for Mexico, also developed in CONABIO. 
In order to evaluate the affected areas, different spatial and temporal resolution imagery were used, 
ranging from very high spatial resolution, RapidEye (4m); high resolution, SPOT (10m); to moderate 
resolution, MODIS (250 m). The pre- and post– fire vegetation characterization was conducted extracting 
multi-temporal spectral information from the available datasets, and this information was used, in turn, 
to validate and refine the burnt area operational algorithm. 
The steps described below are aimed at establishing a methodology to assess the impact of wildfires in 
biodiversity and fire-affected vegetation long-term monitoring using multi-sensor remote sensing 
techniques. 
 
Keywords: Forest fire, early warning system, burnt area assessment, biodiversity 

Introduction 

Each year fire events are common in Mexican territory; however 2011 has been one of the most 

difficult years in the last decade, due to the presence of mega-fires that caused alterations in 

biodiversity. This is because fires can disturb and interfere in the succession of forest 

ecosystems and affect both, diversity species and their functional processes (Flores-Garnica, J.G 

2009). 

The mega-fires that occurred in the state of Coahuila are a clear example. They were active for 

over a month, mainly in difficult to access mountainous areas. In order to establish a method to 

monitor and assess the recovery of fire-affected vegetation, two of them are discussed in this 

paper: “El Bonito” and “El Sabinal”.  Some progress has been made in this project; but further 

work is necessary to establish the corresponding method and make it operational. 

CONABIO has worked in wildfire identification since 1999, providing information to institutions 

responsible for fire management (Cruz-López MI 2008, Ressl et al. 2009). Information generated 

from the wildfire early warning system is the main input for fire monitoring and is used here to 

assess impact and recovery in the area of study. 

Methods 

Our area of study includes El Bonito and El Sabinal areas affected by wildfires, located in the 

Serranias del Burro mountain range, state of Coahuila, Mexico. The fire in El Bonito affected oak 
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forest, oak-pine forest, chaparral and piedmont shrubland. The fire in El Sabinal mainly affected 

oak-pine forest, desertic rosetophyllous shrubland and natural grassland. 

1.1 Active fire detection and monitoring with MODIS images 

Hotspots identified with MODIS imagery received at CONABIO’s receiving station by applying 

the contextual fire detection algorithm for MODIS developed by Giglio et al. (2003) were used 

to monitor fires in the affected area during the time wildfires were active in the zone of 

interest. 

1.2 Burnt area identification with RapidEye imagery 

Hotspots information allowed a preliminary determination of the area of study. Four RapidEye 

images were obtained, from 8th April 20011, to identify the burnt area in El Bonito, up to the 

date of such image. 

These are four-band images covering 400nm to 850nm at a spatial resolution of 5m, with two 

bands in the red region, Red and Red-Edge sensitive to chlorophyll and nitrogen changes. 

However, the short-wave infrared (SWIR) band is necessary to analyze burnt areas. Therefore, 

the Normalized Difference Vegetation Index (NDVI) was calculated, and visual interpretation 

applied. The presence of smoke in all images made identification of the burnt area difficult. 

1.3 Vegetation Anomaly Index (INV) 

Fires continued for more than one month, so the vegetation anomaly index was used to make a 

preliminary identification of affected areas. The vegetation anomaly index is generated every 10 

days and published in the early warning system. It is computed by comparing the actual NDVI 

with an estimated NDVI for the same date, based on NDVI historical behavior (1000 m 

resolution) according to the Harmonic Analysis Time Series (HANTS) technique (De Badts, et al. 

2005), considering 9 years of satellite information, from June 2002. 

Such comparison is used to determine if vegetation greenness and vigor are similar to, above or 

below historical figures. If current NDVI is below historical figures, the vegetation is deemed to 

have less greenness and vigor than usual; therefore, there is a danger of propagation if fire is 

present. 

1.4 Burnt area identification with MODIS images 

Finally, an algorithm for burnt areas adjusted for Mexico was applied. Such algorithm is based 

on Normalized Burned Ratio differencing (dNBR) and Normalized Difference Vegetation Index 

differencing (dNDVI), computed using daily MODIS imagery after downscaling to 250m using 

the surface reflectance product (MOD09 and MYD09). To identify the burnt area, three factors 

were considered (Chuvieco et al. 2008): presence of fuel (vegetation), sudden index change and 

permanence throughout time. 

Index thresholds were established according to ecoregions identified for Mexico, because such 

geographical units have characteristic flora, fauna and ecosystems (CONABIO 2011). Those 

characteristic allow to extract NDVI temporal profiles which can be related to vegetation 

behavior and identify dramatic changes in that behavior.  
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The area of interest is located between two ecoregions: Texas-Louisiana coastal plains and 

warm deserts; in the latter, wildfires occur at the highest elevations, where temperate forests 

are generally present, such as oak or pine forests.  

Due to the duration of the fires and the extent of the area affected by them, mainly two images 

were used: one for March 3, before the wildfires, and another for May 25, after them, with the 

purpose of characterizing vegetation before and after the fires. Intermediate imagery was also 

used to meet the three principles for the identification of burnt areas. Efforts were made to use 

images from the same satellite and around the same times. 

In order to validate the burnt area identified with MODIS imagery, the following adjustments 

were made to the burnt area identified with RapidEye imagery: projection changed from UTM 

to Lambert Conformal Conic and minimum mapping area was established (1ha). 

We wanted to know if the burnt area identified using RapidEye imagery would be identified as 

well using MODIS imagery, because high resolution images were not available for the entire 

area of study. 

Results 

2,638 hotspots were identified in the area, 64% of which were in El Bonito and 36% in El 

Sabinal. The first hotspots identified in such areas appeared on 10th March, and the last 

hotspot was identified on 9th May. 

The burnt area identified using RapidEye imagery covered 53,150 ha for El Bonito until 8th April. 

Figure 1 shows NDVI behavior for 5 observation sites, they were randomly chosen within burnt 

areas. The dotted lines show NDVI estimated values from the analysis of the time line, and the 

solid lines represent the actual NDVI value. As shown in this figure, values are similar until those 

months where an anomaly occurs, such as wildfires. 

NDVI values for 2011 were expected to be below historical values, because during the last 

months of 2010 and the first months of 2011, less precipitation occurred than the historical 

record for the same months (CONAFOR 2011). Figure 1 shows this trend; however, there is a 

point in time where the estimated and actual NDVI values are significantly apart, during 

February, March, April and May. 

 Figure 1. NDVI behavior for five sites in burnt areas; only the last and the current year are shown, to identify changes. 
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The burnt area computed from MODIS images was 191,255 ha for El Bonito, and 164,200 ha for 

El Sabinal, making a total of 355,425 ha. Based on the Key & Benson proposal (2006) to 

establish severity levels, the dNBR was used to characterize the burnt area; results are shown in 

Figure 2. The two fires together showed: 0.05-0.134 low severity in 164,012.5 ha; 0.135-0.21 

moderate-low severity in 179,031.25 ha; and 0.22-0.32 moderate-high severity in 12,381.25 ha. 

High severity did not occur. The most affected areas have steeper slopes, mainly located in El 

Sabinal. 

80% of the area identified using RapidEye imagery was identified also using MODIS satellite 

images. The remaining 20% was identified mainly along the limits of the burnt area and in 

places where the inside area was not likely to be burned; possibly, the understory was burned, 

but not tree canopies.  

Figure 2. Burnt severity 

Final remarks 

So far, the burnt area has been identified using three products of the wildfire early warning 

system, hotspots, anomaly index and burnt area. 

The vegetation anomaly index allowed us to identify the areas to be analyzed, because the 

presence of fire caused a severe difference between estimated and actual NDVI values. The 

index result is expected to change once the vegetation recovers. 

Monthly monitoring is possible because the vegetation anomaly index is operational in the early 

warning system. However, it is important to verify any such anomaly with hotspots and burnt 

areas, as vegetation anomalies may be the result of various causes, not only fire. 

Threshold values used in the burnt areas algorithm were conservative. Our results show that a 

more accurate assessment is necessary for areas that were not burned according to the MODIS 

imagery algorithm, but fire may have affected the areas below tree canopies. 

The next step is to use SPOT imagery dated before and after the fires to conduct a detailed 

analysis of affected areas and verify recovery in that zone. Such images have the short-wave 

infrared band (SWIR), so it is possible to apply the similar method of MODIS images. 
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Abstract 

The present study addresses the problem of burned area mapping using a single post-fire Very High 
Resolution (VHR) satellite image. The aim of this work was to examine the efficiency of two classifiers, 
Support Vector Machine (SVM) and Nearest Neighbor (NN), in classifying image objects for accurate 
mapping of recently burned areas. In this work the image objects were classified into two classes, 
namely, burned and unburned. The object-oriented classifications were applied on an IKONOS image 
which was acquired immediately after the 2007 fire in Parnitha, Attiki, Greece. The results obtained from 
the two classifications, were compared with the burned area resulted from visual interpretation of the 
same IKONOS image. The overall accuracies achieved by each classifier were 98.12 % for SVM and 96.97 
% for NN. Analysis of the results per class revealed that the two classifiers perform differently in each 
class. More specifically SVM achieved an overall accuracy of 95.17% in the burned class and 99.16% in the 
unburned while NN achieves an overall accuracy of 96.47% in the burned class and 97.14% in the 
unburned. A closer examination of the results revealed that the SVM classifier demonstrated higher 
ability in discriminating the different classes comparatively to the NN. However, the implementation of 
SVM on objects is still difficult and the methodology at its current form could not be used as an 
operational tool for burned area mapping. 
 
Keywords: Burned area mapping, Object-based Image Analysis, Support Vector Machines, Nearest 
Neighbor classifier. 

Introduction 

Remotely sensed data are used in many environmental applications. Although a number of 

parametric and non-parametric classifiers has been developed and employed, so far, in order to 

convert image data into meaningful information, image classification still remains an open task 

(Mountrakis et al. 2011). Many researchers are trying to develop new classification schemes by 

combining different classifiers, approaches and sensors in order to improve classification 

accuracy. Despite the existence of several classification approaches such as per-pixel, subpixel, 

per-field, contextual-based, knowledge-based, and a combination of multiple classifiers; the 

pixel-based classification and the object-based classification remain the most widespread ones 

(Lu and Weng 2007). Pixel-based classification techniques are reported to have some limitations 

and difficulties when dealing with Very High Resolution (VHR) satellite images (Li et al. 2010). To 

overcome these limitations in analyzing VHR images, emphasis has been recently given on the 

use of object-oriented classification methods (Blascke et al. 2006). Object-based image analysis 

has demonstrated significant advantages for analyzing VHR imagery (Benz et al. 2004). The 

aforementioned classification approach does not operate directly on individual pixels, but on 

objects consisting of many pixels that have been grouped together in a meaningful way by 

image segmentation (Dang et al. 2008). However, beyond the selection of the classification 

approach, great consideration should be given in the choice of the classification algorithm as 
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well. This study focused on two classifiers, namely, Nearest Neighbor (NN) and Support Vector 

Machine (SVM), which were applied on objects created from segmentation of an IKONOS 

satellite image. NN is a non-parametric classifier (i.e., a classifier that makes no assumptions 

about the underlined statistical distribution of the data), which labels an unclassified object 

according to its nearest neighboring training object(s) in the feature space (Yu et al. 2006). The 

algorithm is widely used in the field of pattern recognition (Zammit et al. 2006). Support Vector 

Machine (SVM) is another more recent non-parametric classifier which is well known in the 

fields of machine learning and pattern recognition (Waske and Benediktsson 2007). SVM which 

is based on the statistical learning theory has the aim of determining the location of the 

decision boundaries that produce the optimal separation of classes (Vapnik 1995). Both, NN and 

SVM are reported to be successfully employed in a number of environmental applications in 

remote sensing. More specifically, NN has been successfully used in vegetation mapping (Yu et 

al. 2006), burned area mapping (Zammit et al. 2006) among many other applications while a 

recent review of different SVM applications can be found in Mountrakis et al. (2011). 

Independently of the application, the two aforementioned algorithms are usually employed to 

classify pixels as opposed to objects. 

This study addresses the problem of accurate burned area mapping, which is very important in 

the Mediterranean region since forest fires are considered as one of the major factors of 

degradation of the Mediterranean ecosystems (De Luís et al. 2001). After a disastrous event, 

accurate and detailed assessment of the damaged areas is required, in order to plan the 

appropriate restoration and rehabilitation measures (Gitas et al. 2004). Up until now several 

studies have shown the great potential of remote sensing classification in burned area mapping 

(Chuvieco et al. 2002). 

The aim of the present study was to examine the efficiency of the two classifiers, namely, SVM 

and Nearest Neighbor, in classifying image objects for accurate mapping of recently burned 

areas. 

The specific objectives were: 

• to employ the Nearest Neighbor classifier in order to classify objects derived from 

IKONOS imagery for mapping a recently burned area; 

• to employ SVM in order to classify the objects derived from the IKONOS image for 

mapping the same burned area;  

• to evaluate the ability of SVM to map a recently burned area accurately, by comparing 

it with the map which resulted from the use of the Nearest Neighbor classifier, as well 

as with the burned area resulted from visual interpretation of the IKONOS image. 

Study area and dataset 

The study area was Mount Parnitha, Attiki, Greece (Figure 1) that was affected by a large fire in 

2007. Mount Parnitha is the highest (1,413 m) and most extended mountain of Attica, in central 

Greece, being a National Park since 1961.The main dataset used in the analysis was a pan-

sharpened (1m) IKONOS image. The satellite imagery was captured on the 8th of July 2007, ten 

days after the fire. The pan- sharpened IKONOS image was acquired geometrically corrected. 
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Figure 1. Location of the study area 

Methodology 

This section presents the procedures of two different object-oriented classification schemes. 

The first one utilizes the NN algorithm and the second one the SVM. A general sample-based 

classification scheme was followed in both cases in order to classify the IKONOS image. Initially, 

for the IKONOS image, the first four Principal Components (PC) were computed. The second PC 

(which exhibited the highest discrimination capabilities between the burned area and the other 

land uses) was selected and stacked in the primary image. Subsequently, the whole process was 

fulfilled in three main phases. 

In the first phase, multi-resolution segmentation was applied to the image with the extra band. 

Throughout the segmentation procedure, the whole image was segmented and image objects 

were generated based on several adjustable criteria of scale, band weights, and homogeneity in 

color and shape. After segmentation, the image was subdivided into a number of objects. These 

objects were exported in vector format and a column with a unique identity field for every 

object was added. This step was essential because the segmentation algorithm creates objects 

which may share the same id (identity number). The unique id per sample is an essential 

requirement for extracting the samples from eCognition software, at a following phase. 

In the second phase the image was segmented again using the information from the thematic 

layer. At this stage the objects created, had the same boundaries as the objects from the first 

segmentation and an extra field id derived from the thematic layer ensuring their uniqueness. 

In the case of the NN classification, samples that are typical representatives for each class 

(‘burned’ and ‘unburned’) were selected. The number of samples per class was proportional to 

the percentage of the area occupied by each category in the image. Additionally, the most 

appropriate features for the discrimination of the two classes arose from the Feature Space 

Optimization algorithm. The Feature Space Optimization is a feature selection algorithm which 

determines the most suitable combination of features for separating the classes, in conjunction 

with a nearest neighbor classifier (eCognition 2009). Furthermore, different sets of samples 

were created, in order to be tested for their effectiveness in the classification. The NN was 

trained on the different sets of samples and then applied on image objects using the eCognition 

commercial software. Finally, a set of 160 samples and 16 features for both classes was selected 

to be used in the final classification. 
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In the last phase a sample-based classification was also conducted with the implementation of 

the SVM classifier. SVM was trained on the same samples and applied on the same image 

objects as in the case of the NN. The implementation of SVM was carried out using the objects 

and the labeled samples exported in vector format. Generally the SVM classifier is constructed 

using a kernel function (Vapnik 1995). In this study the radial basis kernel function (RBF) was 

used and the parameters C and γ were selected through a cross-validation procedure, 

considering a grid of possible values. C is a penalty value for misclassification errors and γ is a 

parameter controlling the width of the Gaussian kernel (Vapnik 1995). Specifically for this 

application, the highest overall classification accuracy was succeeded for C=1 and γ=1. Since 

SVM is not available on the most widely used commercial object image analysis software, a 

Graphical User Interface (GUI) which uses the LIBSVM software (Chang and Lin 2011) to 

implement the algorithm, was developed in MATLAB. All the essential steps for the 

classification by SVM were conducted using the GUI interface; data scaling, cross validation, 

training and testing of the classifier and finally classification.  

The final step in the methodology was to examine the classification accuracy of the two 

classifications. Therefore, the resulting maps were compared with a reference map. The 

reference map was constituted by two classes, namely, ‘burned’ and ‘unburned’, same as the 

two classifications. In order to obtain the reference classes, the burned area was delineated by 

visual interpretation of the IKONOS image, whereas the remaining part of the image was 

labeled as ‘unburned’. 

Results and Discussion 

The burned area resulted from visual interpretation was estimated to be 4991, 33 ha (Figure 2a) 

while the area derived from NN and SVM were 5221, 1 ha and 4869.14 ha respectively (Figure 

2b & 2c). 

Initially, the performance of each classifier for the entire image was computed. Results showed 

an overall accuracy of 96.97% for the NN classification and 98.12% for the SVM. Additionally, 

the accuracy for each class (burned, unburned) was computed.  

The percentage of spatial agreement between the burned area derived from NN classification 

(Figure 2(b)) and the reference fire perimeter was 96.47 % (4815.48 ha). Similarly the class 

‘unburned’ from the aforementioned classification showed a spatial agreement of 97.14% 

(13810.09 ha) with the corresponding class in the reference map. 

Likewise, the spatial comparison between the classified image by SVM (Figure 2(c)) and the 

reference areas, showed a spatial agreement of 95.17 % (4750.63 ha) in the classified burned 

area and 99.16% (14097.30 ha) in the unburned. The analysis of the results reveals that both 

classifiers performed very well. However, both classifications included errors but in different 

classes. 

In order to understand better the performance of the two classifiers, the differences between 

the classification maps and the reference map were also computed. In the case of the NN 

classifier, the difference between the classification and the reference map revealed that the 

classified burned area exceeds the reference burned area for about 229.77 ha (4.6% of the 
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delineated burned area). This fact indicates that the NN classifier had a tendency to 

overestimate the class ‘burned’ against the ‘unburned’ class. 

Similarly, in the case of the SVM classifier, a difference of 122.2 ha (2.44% of the delineated 

burned area) in the area classified as burned was observed between the two maps. In this case, 

the classifier exhibits the tendency to underestimate the class ‘burned’ against ‘unburned’ class, 

albeit to a smaller degree than the NN classifier.  

The statistics per class showed that the NN classifier performed slightly better inside the 

delineated burned area comparatively to SVM. However, as Figure 2(b) clearly demonstrates, 

the NN classifier overestimated the ‘burned’ class in the whole image to a large extent. Hence, 

many objects outside the delineated burned area were erroneously classified as burned. The 

SVM classifier yielded higher accuracy in the overall classification and demonstrated higher 

ability in discriminating the different classes inside and outside the fire perimeter.  

In order to explain the differences in the thematic maps, a visual examination of the 

classification maps was also conducted. The main differences were observed in objects with 

shadows, bare soil, roads, surface fire, slightly burned vegetation, objects with old dry 

vegetation (especially coniferous) and recently ploughed fields. Furthermore, misclassifications 

were observed in mixed objects, that is, objects containing both classes. In these cases, the 

segmentation process failed to partition the image in homogeneous regions, leading to the 

creation of objects with two classes. This problem existed mainly in dense forested areas which 

suffered from surface fires and in bare lands with sparsely distributed shrubs. Considering this 

fact, it seems that the segmentation process is of great importance for the accuracy of the 

classification and should be further investigated. Finally, it should be noted that the selection of 

training samples affected the classification; the selection of the ideal training set remains an 

open issue (Foody and Mathur 2006), especially when dealing with objects instead of pixels. 

Although both classification models provided a very accurate identification of the burned areas, 

it is important to evaluate the two classification methods considering other criteria besides the 

classification accuracy. The NN method is implemented inside the eCognition software. Hence, 

the whole process of object extraction and subsequent classification is conveniently conducted 

inside a single software interface. On the other hand, the SVM classifier requires additional 

preprocessing steps, which consist of extracting the object information from eCognition and 

subsequently import it in Matlab, in order to train the SVM and perform the final classification. 

Furthermore, specialized knowledge is required for manipulating the data and running the SVM 

classifier in Matlab. As a result, the application of SVM on objects is still difficult and the 

methodology at its current form could not be used as an operational tool for burned area 

mapping.  

 

 

 

 

Figure 2. Burned area derived from IKONOS visual interpretation and classification results using NN and SVM. (a). Burned Area from 
visual interpretation    (b). NN Classification results    (c). SVM Classification results 
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Conclusions 

In this research the efficiency of the two classifiers, namely, SVM and Nearest Neighbor, in 

classifying image objects for accurate mapping of recently burned areas was examined. The 

general conclusion drawn from this study was that both classification models produced very 

accurate burned area maps. However, the results reveal that the SVM classifier yielded higher 

accuracy in the overall classification comparatively to the NN, despite the fact that the 

statistical differences are very small. Also it should be noted that SVM exhibited better ability in 

discriminating the different classes. In conclusion, presently the main drawback of this object-

oriented SVM method is that it is difficult to be used as an operational tool for burned area 

mapping, as-in most cases-the present SVM based method can not be implemented in a single 

software interface. 
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Abstract  

In recent years, fires in tropical forests in Southeast Asia have become more frequent and widespread, 
resulting in an increased need to evaluate fire impacts at a landscape scale. Burn severity is an important 
indicator of fire impact on the ecosystem and can be defined as the magnitude of ecological changes 
between pre- and post-fire conditions. Several studies of fires in the extra-tropics have used single and 
multi-temporal change detection techniques to map the magnitude of burn severity but to date these 
have not been extended to the tropical forest environment. We examined if post-fire vegetation 
regrowth could be used as a proxy to evaluate burn severity in tropical peatland in Central Kalimantan, 
Indonesian Borneo that has been subject to multiple fires. Several single and bi-temporal indices as well 
as spectral fraction endmembers derived from either a post-fire image or a combination of pre- and post-
fire images obtained by the Landsat sensor were studied. Spectral data were correlated with several 
vegetation variables obtained from in situ measurements collected four years after the last fire. Of the 
tested spectral data, the bi-temporal and single normalised burn ratio (dNBR and NBR) showed the 
strongest correlations with the sets of vegetation variables, i.e. total woody aboveground biomass, tree 
density and number of trees less than 10 cm in DBH, followed by the normalised difference water index 
(NDWI).  Further results as reported in Hoscilo et al. (2011, in press) show that the results of an ANOVA 
test indicated that these three indices together with green vegetation fraction provided the best 
differentiation of vegetation regrowth classes defined in the field, whilst a Tukey Multiple Comparison of 
Means Test confirmed that NBR, dNBR and NDWI could clearly delineate four regrowth classes, thus 
confirming their utility in separating areas subject to a single fire from those affected by multiple fires as 
well as for discrimination between fires of differing severity. This study clearly demonstrates that even 
four years after the last fire, variation in vegetation structure in locations subject to multiple fires is 
strongly related to the magnitude of burn severity of the last fire. In addition, the results provide 
evidence of the long-lasting impact that multiple fires have on forest recovery in this ecosystem. 
Locations experiencing second fires of high severity enter a critical phase of vegetation regeneration, 
where even four years after the last fire, the landscape is largely dominated by non-woody vegetation, 
particularly ferns.    
 
Keywords:  burn severity, peatland, tropical forest, burned area, regrowth 

Introduction 

Fire plays an important role in deforestation and degradation of tropical peatlands in Southeast 

Asia. Large-scale forest degradation and drainage of tropical peatlands also increase the risk of 

widespread and intensive fires (Wosten et al. 2008). In recent years, fires in tropical forests in 

Southeast Asia have become more frequent and widespread (Langner and Siegert 2009), 

resulting in an increased need to evaluate fire impacts at a landscape scale. Burn severity is an 

important indicator of fire impact on the ecosystem and can be defined as the magnitude of 

ecological changes between pre- and post-fire conditions. Typically burn severity is assessed 

using ground based co-called the Composite Burn Index (CBI) that was originally developed for 

coniferous forests in Montana, USA (Key and Benson 2006). The CBI approach is relatively quick 
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and relies mostly on accurate estimation and judgment of post-fire condition assessed directly 

after a fire event. The CBI estimates are typically coupled with remote sensed data in order to 

determine the burn severity over a larger area. Several studies performed in boreal and 

temperate mixed-coniferous forests and Mediterranean ecosystems have confirmed a strong 

correlation between bi-temporal normalized burn ratio (dNBR) and ground-based CBI (Allen and 

Sorbel, 2008; Cocke et al. 2005; De Santis and Chuvieco 2006 , Epting et al. 2005; Hall et 

al. 2008; Key and Benson 2006; Kokaly et al. 2007; Miller and Thode 2007; Soverel et al. 2010; 

van Wagtendonk et al. 2004; Veraverbeke et al. 2010; Wimberly and Reilly 2007; Zhu et 

al. 2006). It seems that burn severity is relatively well studied in boreal and temperate 

ecosystems, whereas tropical ecosystems, where fire becomes more frequent, are still under-

investigated. In the tropics, however, the assessment of fire affect shortly after burning can be a 

difficult, if not impossible task. This is owing to the weather condition, since the end of burning 

season always coincides with the start of the wet season which can make field assessment 

difficult due to accessibility issues. Therefore we examined if post-fire vegetation regrowth 

could be used as a proxy to evaluate burn severity in tropical peatland in Central Kalimantan, 

Indonesian Borneo. 

Data and methods 

1.1 Study area 

The study was carried out in the degraded part of tropical peatlands, south from Palangka Raya 

- the provincial capital of Central Kalimantan, Borneo, Indonesia. The study area was affected by 

fires in 1997 and 2002. Before 1997 the entire area was covered by tropical mixed peat swamp 

forest (Hoscilo et al. 2011). We used a time-series of satellite images to separate the areas 

affected by a single fire (SF) (1997) from those affected by multiple fires (MF) (1997 and 2002) 

(Hoscilo et al. 2011).     

1.2 Ground data collection 

The inventory of post-fire vegetation cover was conducted during the dry season in 2006; four 

years after the last 2002 fire. In areas affected by multiple fires we identified three classes of 

vegetation regrowth in the field taking into account vertical and horizontal vegetation structure 

and presence of woody canopies. These three classes are:  MF1–more advanced (five plots), 

MF2–intermediate (five plots) and MF3–least advanced (six plots). In the area burnt in 1997, we 

established four plots. Each plot was 20 by 20m. In each plot we calculated number of trees, 

saplings and seedlings, measured DBH, height, canopy coverage, ground coverage and fern 

fraction. The DBH and height were used to calculate above ground biomass of woody stratum. 

We also sample and calculate biomass of fern.      

1.3 Satellite data 

We used the pre-fire Landsat image acquired in July 2000 and post fire Landsat image obtained 

in January 2003 to calculate several single and bi-temporal indices, namely normalized 

difference vegetation index (NDVI), normalized difference water index (NDWI) and normalized 

burn ratio (NBR). In addition, a three endmember model representing green vegetation (GV), 
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non-photosynthetic vegetation (NPV) and Shade was selected from the post-fire 2003 image. 

The GV endmembers were extracted from green vegetation (grass and dense fern), NPV from 

heavily senesced vegetation (along canal banks) and Shade from deep, dark water (rivers). All 

images were atmospherically corrected using the ATCOR model. 

1.4 Methods 

The mean value of a 3 by 3 pixel window for each vegetation plot was extracted from a series of 

single and bi-temporal spectral indices and from the three types of endmembers. The 

Spearman’s rank correlation was then used to analyze if the spectral indices and endmembers 

are correlated with vegetation variables. The ANOVA and Tukey Multiple Comparison of Means 

Tests were used to examine if our hypothesis that the variation in post-fire vegetation regrowth 

observed in the field can be explained by differences in the magnitude of burn severity.   

Results and discussion 

This study has established a strong correlation between spectral data derived from pre- or/and 

post-fire images and sets of vegetation variables collected four years after the last fire. The 

results of a non-linear Spearman’s rank correlation show that nearly all the analyzed spectral 

variables are strongly correlated with a number of vegetation variables. These include tree 

density, total woody AGB, tree AGB, fern biomass, tree basal area and number of trees less or 

greater than 10 cm in DBH (Figure 1). It also confirms that these vegetation variables, derived 

from in situ measurements collected four years after a fire event, can be proposed as indicators 

characterizing the magnitude of burn severity in tropical peatlands subjected to multiple fires. 

Amongst the vegetation variables, total woody AGB, tree density and number of trees < 10 cm 

have the strongest correlation with spectral variables, in particular with single and bi-temporal 

NBR and NDWI. Both NBR and dNBR followed by dNDWI and NDWI also show the strongest 

correlation with density of trees and number of trees < 10 cm (r above +/-0.87). Several studies 

conducted in non-tropical countries had previously recommended the use of dNBR for the 

assessment of burn severity in non-tropical ecosystems. This study has also shown that NDWI 

and dNDWI correlate well with the vegetation variables. The NDWI is known as being 

particularly sensitive to water content and thus it performed very well in areas subjected to two 

intensive fires, where there was a large reduction in canopy cover. In addition, the good 

performance of the NDWI can be associated with the post-fire data acquisition (wet season). 

The number of tree species and density of saplings demonstrate the weakest correlations with 

all the spectral variables, while the Shade fraction demonstrates the weakest relationship with 

each of the vegetation variables. Figure 1 reveals the character of the relationship between 

vegetation and spectral variables. 

The high correlation demonstrates the long-lasting effect of multiple fires on vegetation 

structure and recovery, which supports the hypothesis that the variation in the characteristics 

of post-fire vegetation regrowth observed in the field could be explained by differences in burn 

severity. Second fires of moderate or high severity had more profound effects on the 

ecosystem, with very slow or no recovery of woody-biomass and invasion by non-woody plant 

communities dominated by two species of fern. 
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Figure 1. Dependence of the vegetation variables against spectral variables; class: 1–SF, 2–MF1, 3–MF2 and 4–MF3 (from Hoscilo et 

al., in press). 

 

The ANOVA test indicated that both NBR and dNBR followed by NDWI and GV fraction provide 

the best differentiation among any of the regrowth classes. The Tukey multiple comparisons 

test confirmed that NBR, dNBR and NDWI can delineated between all classes at a 95% 

confidence level (p<0.02). The results of this study demonstrate that the variation in the 

structure and species composition of post-fire vegetation regrowth observed in the field (i.e. 

MF1, MF2 and MF3 plots) could be explained by differences in the magnitude of burn severity 

for the 2002 fire.  
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Abstract 

In the frame of 7FP of the EC the preoperational services of the Global Monitoring of Environment and 
Security Programme (GMES) of the EU were developed. The Remote Sensing Application Center – ReSAC, 
Bulgaria is partner in two of the GMES projects, namely: SAFER (Emergency Response Core Service) and 
Geoland2 (Land Monitoring Core Service). In parallel with the Core Services of GMES several downstream 
services projects were financed by the FP7. In January 2011 the EUFODOS Project began (in which ReSAC 
is partner), which goals are to develop specific downstream forest services related to forest monitoring 
and forest damage assessment.  
In the frame of SAFER ReSAC developed forest fire damage assessment maps for the fire on 9th of April 
2011 where more than 230 ha forest and grassland areas were burned in Gostun region, Bulgaria.  
The processing approach includes automatic classification of VHR satellite images, with later manual 
editing and change detection techniques. The software used is ERDAS Imagine. In order to estimate the 
real forest damage differentiation between the surface and crown cover fire was made. The resultant 
information was combined with data from the updated Forest management Plan (update based on the 
manual editing using VHR image) in order to deliver detailed information on: type of three species 
burned; age of forest burned; area of forest burned with different density. 
For the analyses the following reference and post event EO data were used: WorldView-2, Formosat-2, 
RapidEye. 
The final results we delivered in digital and paper maps, as well as GIS database in which the forest 
polygons from the Forest Management Plan we updated with information on type of forest fire they 
were subject to. 
 
Keywords: GMES, forest monitoring, forest fire damage assessment, earth observation, GIS databases 

Fire Event 

In Saturday – 09/04/2011, in the vicinity of the forest area fund in the Blata area above Gostun 

village, Bansko municipality, Bulgaria fire event initiate. Immediately fire brigades are sent to 

fight the disaster. The fire is spread over forest massif in difficult to reach area. The strong wind 

and the rugged terrain make the fire extinguishing activities more difficult. As a result around 

230 ha forest is burned (according to data from Executive Forest Agency) mainly coniferous 

species: Pinus nigra, Pinus sylvestris, Picea abies and Abies alba. In the late 10/04/2011 the fire 

is localized and the spread of the fire in new territories is stopped. The fire is extinguished 

completely on 11/04/2011.  

Main goal of the research 

To prepare maps and thematic products which gives information for: 

• Type of the forest fire (crown or surface) 

• The real area of burned forest and non-forest areas 

• Type of the damages forest 

• Age of the forest 
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Figure 1. Location of the forest fire in Gostun village, Bansko municipality, Bulgaria 

Data used 

For the purposes of the above mentioned tasks three types of satellite images are used: 

WorldView-2 (reference image acquired on 11th of March 2011, spatial resolution 2m); 

RapidEye (post event image, acquired on 11th of April 2011, spatial resolution 5m); Formosat-2 

(post event image acquired on 12th of April 2011, spatial resolution 2m). The satellite data 

supplied are from project SAFER, after the GMES SAFER mechanism was activated through the 

National Focal Point for Bulgaria. In order to extract information on forest species and forest 

density Forest Management Plans supplied from Executive Forest Agency were used. 

Field Work 

On 18th of May 2011 team from Remote Sensing Application Center - ReSAC together with 

representative from the local forestry made a field trip to the burned area. The main goal was 

to collect ground truth data for the extent of the fire, as well as the type of the fire (crown or 

surface). The trace was selected with the support of the experts from the Mesta forestry. 

During the field trip key locations were chosen with good visibility to the burned areas, they 

were tracked with GPS and photographed. These activities supported later the satellite image 

interpretation and especially distinguishing crown from surface fire.  

 
Figure 2. Photos on the forest fire in Gostun village 18th of May 2011  a) crown fire in young pine forest – 10 years of age, b) 

overview of the forest fire, c) border between the burned and healthy forest, d) example of the activities performed by the fire 
brigades to stop the spreading of the fire. 

 

 

а) b) c) d) 
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Stages of the work done 

The main activities done to reach the goals established are related with the processing of the 

satellite images. On one hand they are related with the software classification of the images 

and on the other the Forest Management Plans were subject to manual editing on the base of 

the recent satellite acquisitions. 

1.1 Satellite image processing 

The processing of the satellite images requires preprocessing related with orthorectification 

and image enhancement in order to assist the later analyses. In order to analyse the forest area 

burned classification between forest and non-forest land cover is needed. Unsupervised 

approach using ERDAS Imagine was used resulting in good differentiation of the boundaries of 

the forest area. In addition the resulting data were processed in order to smooth the 

boundaries between forest - non-forest areas as well as to correct some wrongly classified 

pixels. 

The satellite images from RapidEye and WorldView-2 were used in order to classify the burned 

area. Supervised classification was used with the ground truth collected during the field trip. 

Later on the resulting data were manually corrected. Based on this analyses the area of crown 

and surface fire was derived.. 

The resulting thematic data for the forest territories, as well as the information for the extent of 

the forest fire were spatially analysed and give information for the concrete forest structures 

damaged. The results derived were processed in forms of maps and tables. 

 
Figure 3. Main stages of work related with processing and analyses of the satellite images: а) classification of the fire extent, b)land 

cover classification from the reference image, c)determination of crown and surface fire and types of forest subject to it 

 

1.2 Processing of the Forest Management Plans 

The processing of the Forest Management Plans (FMP) is related with analyses of their state of 

update, accuracy etc. which should be taken into account in the estimation of the 

characteristics of the forest area damaged. The graphical part of the FMPs was related with the 

attributive data in order to obtain information of the forest type, age and density for each 

polygon.  

With the support of the reference satellite image from March 2001 visual correction was made 

on the boundaries of the forested area included in each polygon of the FMPs. In order to speed 

up the correction the work was focused only on polygons where according to classification 

a) b) c) 
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burned area was detected. Together with the boundaries of the forested area correction was 

made also on degree of density and presence of change. 

After the correction of the FMPs, spatial analyses were performed in order to estimate the 

forest area types, forest age and density damaged by the fire. The results obtained were 

delivered as maps and tables. 

 
Figure 4. Main stages in the processing of the FMPs and related analyses: а) update of the FMPs, b) map of the main forest types 
subject to crown and surface fire (not-corrected FMP), c) map of the main forest types subject to crown and surface fire (corrected 
FMP) 

Results 

As a final result from the analyses performed information for the area and types of the forest 

cover was delivered, based on three types of source information – satellite images, FMPs and 

updated FMPs. The results are presented in Table 1. The results from the updated FMP and 

satellite images are very close. The difference of 4.29 ha could be explained by the forested 

areas classified from the image, but not included in the FMP. The big discrepancy between the 

classification results and not-updated FMP are explained by some inaccuracies in the FMP – 

meadows, roads, etc. area included in the forested polygons, which are cleared after the 

update. This fact shows the advantage of the use of recent satellite images for more accurate 

detection of the area subject to forest fires. On the other hand only the satellite images and 

especially high and medium resolution data could not give accurate enough information on 

forest species and forest density – values which are of high importance for the foresters when 

calculating the forest damages after disasters. Using the combined approach we overcome the 

limitations of the datasets and provided more accurate results to decision-makers. 
  

a) b) c) 
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Table 1. Area in hectares affected by fire (by different source data). * in this figure 14.3 ha of non-forest area is included. 
 

Areas in hectares affected by fire (Satellite images 2011) 

Fire type Forest vegetation  Area Total area 

Surface fire Coniferous and deciduous forest 75.96 
170.56 

Crown fire Coniferous and deciduous forest 94.6 

Areas in hectares affected by fire (forest management plan 2007) 

Fire type Forest vegetation  Area Total area 

Surface fire Coniferous and deciduous forest 83.81 
205.8 

Crown fire Coniferous and deciduous forest 121.99 

Areas in hectares affected by fire ( updated forest management plan 2011) 

Fire type Forest vegetation  Area Total area 

Surface fire Coniferous and deciduous forest 77.65 
166.27 

Crown fire Coniferous and deciduous forest 88.62 

Areas in hectares declared to Executive Forest Agency 

Fire type Forest vegetation  Area* Total forest area 

Surface fire Coniferous and deciduous forest 101.4 
216.3 

Crown fire Coniferous and deciduous forest 129.2 
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POST-FIRE MONITORING 

T. Katagis, I. Z. Gitas, P. Toukiloglou 

Laboratory of Forest Management and Remote Sensing, School of Forestry and Natural Environment, Aristotle 

University of Thessaloniki, P.O. Box 248, Greece.  thkatag@for.auth.gr 

Abstract 

In this study, a newly developed trend analysis technique of satellite time series imagery was em-ployed 
for the mapping of recently burned areas and post-fire monitoring of Mediterranean ecosystems. The 
Breaks For Additive Seasonal and Trend (BFAST) method enables the decomposition of time series into 
trend, seasonal and noise components, resulting in the detection of gradual and abrupt changes in 
ecosystems. MODIS 8-day composites covering a period from 2004 to 2010 were utilized in this study. 
Analysis was based on MODIS derived vegetation indices (VIs), namely NDVI, SAVI, GEMI and BAI, 
focusing on an area burned during the 2007 fires in Peloponnese, Greece. The BFAST method was applied 
to each VI dataset leading to the detection of fire affected areas (sudden changes) with a high 
performance for every index. In addition, gradual changes were also detected in the trend component for 
all indices, except the BAI which is specifically developed for burned area discrimination, indicating post-
fire vegetation recovery.  
 
Keywords:  burned area mapping, post-fire monitoring, time series, remote sensing, trend analysis 

Introduction 

Detection of changes in natural ecosystems after a fire event is of primary importance in terms 

of not only estimating the size of the burned area, but also in monitoring the post-fire 

vegetation condition over time. Especially in the Mediterranean region, fires cause significant 

changes in vegetation composition and dynamics and can potentially increase degradation 

processes (Vila et al. 2001). Satellite remote sensing data have been widely used in burned area 

mapping and post-fire assessment studies providing valuable and accurate information (Pereira 

et al. 1997, Chuvieco et al. 2005, Mitri and Gitas 2010).  

Time series of satellite imagery contribute to the generation of burned area maps over long 

time periods (Chuvieco et al. 2007), offering at the same time the advantage of  monitoring 

current conditions (van Leeuwen et al. 2004), and predicting future hazards. Multitemporal 

medium/coarse satellite imagery from sensors such as MODIS, SPOT-VGT and NOAA-AVHRR, is 

also used for assessing fire severity (Veraverbeke et al. 2011) and monitoring vegetation 

phenology and regrowth in fire affected areas (Goetz et al. 2006; Casady et al. 2010). Most of 

these post-fire monitoring studies are based on time-series change detection analysis of 

vegetation indices (VIs) and mainly of the NDVI. 

However, it should be mentioned that when change detection techniques are based on short 

time series, there is a high risk that seasonal variation can be interpreted as change (de Beurs 

and Henebry 2005). Moreover, when specific thresholds or change trajectories are involved in 

change detection methods, misleading results may be produced due to different spectral and 

phenological characteristics of land cover types (Lu et al. 2004; Verbesselt et al. 2009). A newly 

introduced method of detecting changes has been successfully applied to time series data, 

without having to define specific thresholds or change trajectories and that is not influenced by 

seasonal variation. The Breaks For Additive Seasonal and Trend (BFAST) approach enables the 
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iterative decomposition of time series into trend, seasonal and noise components, resulting in 

the detection of gradual and abrupt changes in ecosystems (Verbesselt et al. 2009). 

The BFAST method has been successfully applied to MODIS NDVI series in forest plantations in 

southeastern Australia (Verbesselt et al. 2009). The aim of this work was to apply BFAST to 

several MODIS VIs time series for mapping burned areas and assessing post-fire vegetation 

regrowth in Mediterranean ecosystems. More specifically, the specific objectives were: 

• to investigate the potential of BFAST method to detect burned areas in a 
Mediterranean ecosystem,  

• to investigate the potential of BFAST method to detect post-fire vegetation recovery, if 
any, and 

• to validate the derived results. 

Study area 

The area of interest is located in the Peloponnese, in southern Greece (36°30’-38°30’ N, 21°-23° 

E). Elevations range between 0 and 2404m above sea level and the climate is characterized as 

typically Mediterranean with hot, dry summers and mild, wet winters. The main vegetation 

types in the area are coniferous and broadleaved forests, shrublands (maquis and phrygana 

communities), and olive groves. Black pine (Pinus nigra) and Aleppo pine (Pinus halepensis) are 

the dominant conifer species while oaks are the dominant broadleaved species (Veraverbeke et 

al. 2010). In August 2007 after a severe drought, large fires broke out in the Peloponnese 

resulting in human losses and the destruction of infrastructures and more than 150000 ha of 

natural and managed land. The 2007 fires are considered to be one of the worst natural 

disasters recorded during the past decades in Greece (Gitas et al. 2008). 

Datasets and Methods 

1.1 Datasets 

MODIS surface reflectance 8-day composites at 250m were used for the analysis in this work. 

The dataset was acquired from the National Aeronautics and Space Administration (NASA) 

warehouse inventory search tool (WIST) (http://wist.echo.nasa.gov) for the period from 

01/01/2004 to 31/12/2010, covering the area of interest. The MOD09Q1 (Surface Reflectance 

(SR) 8-Day L3 Global 250m) products provide 2 spectral bands, red and near-infrared, at 250-

meter resolution in an 8-day gridded level-3 product in the Sinusoidal projection. Additionally, a 

Quality Assurance (QA) layer is included in this product that provides quality information for the 

product. For validation purposes, a Disaster Monitoring Constellation (DMC) image with 32m 

resolution captured after the 2007 fire, as well as a Landsat-5 TM scene of summer 2010 were 

also employed. 

1.2 Methods 

Time-series pre-processing 

The MODIS data initial pre-processing activities included importing of the raw imagery and 

reprojection to WGS-84 Lat/Lon projection system, geographical subsetting to the Peloponnese 

boundaries and masking of the sea. The QA information was used to further exclude from 
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analysis low quality, as well as cloud affected and not atmospherically corrected pixels in the 

red and NIR bands. The processed MODIS bands were used for the generation of the Vegetation 

Indices (VIs): 

NDVI = ( ρ ΝΙΡ- ρ RED)/( ρ ΝΙΡ+ ρ RED)                                                                                                        (1) 

GEMI = (γ (1-0.25γ) – ( ρ RED – 0.125)) / (1- ρ RED)                                                                          (2) 
where γ  = (2(ρ2

NIR – ρ2
RED) + 1.5 ρNIR + 0.5 ρRED)/( ρNIR + ρRED + 0.5), 

SAVI = ((1+L) * ( ρ ΝΙΡ- ρ RED)) / (ρNIR + ρRED + L)                                                                                    (3) 

where the term L can vary from 0 to 1 depending on the amount of visible soil. L=1 is generally 
used when the amount of soil is unknown, and 

BAI = 1 / ((ρcRED – ρRED)2 + (ρcΝΙΡ – ρΝΙΡ)2)                                                                                      (4) 
 

where ρcRED and ρcNIR are the red and near-infared reference reflectances, which are defined 

as 0.1 and 0.06 according to Martin (1998). 

The Normalized Difference Vegetation Index (NDVI), see Eq. (1), is one of the most widely used 

indices in burned area mapping and monitoring applications and provides a good estimate of 

vegetation photosynthetic activity. The Global Environmental Monitoring Index (GEMI) is less 

affected by soil and atmospheric variations than NDVI (Pinty and Verstraete 1992), see Eq. (2), 

and has proven to be more sensitive in burned land discrimination (Chuvieco et al. 2002). The 

soil background variation is considered by the Soil Adjusted Vegetation Index (SAVI) (Huete 

1988), which has shown to be sensitive in discriminating vegetation in sparsely vegetated areas, 

see Eq. (3). Finally, the Burned Area Index (BAI), see Eq. (4), has been specifically developed for 

burned area discrimination (Martin 1998).  

Prior to the VIs series analysis, continuous time series were generated by smoothing any noisy 

data with the use of TIMESAT software (Jonsson & Eklundh 2004). For the generation of the 

continuous time series, a local second-order polynomial function, also known as an adaptive 

Savitzky–Golay filter, was applied to replace affected and noisy observations. 

BFAST implementation 

BFAST was applied to every MODIS VI time-series in order to detect the sudden (burned areas) 

and gradual (vegetation regrowth) changes within the trend component. BFAST is an additive 

decomposition model that iteratively fits a piecewise linear trend and seasonal model, given by 

the equation: Yt=Tt+St+et, t=1,…, n, where Yt is the observed data at time t, Tt is the trend 

component, St is the seasonal component, and et is the remainder component (Verbesselt et al. 

2009). The implementation of the method identified breakpoints for all major changes and 

indicated the number and time of these in the trend component. The selected time series 

covered the period from 2004 to 2010 (46 images per year), in order to facilitate the 

discrimination between the seasonal variations and the trend changes. Input settings and 

parameters of the BFAST package had first to be tested and evaluated before processing the VI 

datasets as single time series. A subset of the area was selected due to existing validation data, 

therefore the implementation focused on that area and spatial comparison of the results was 

finally performed. 

 



108 

 

 

Results and discussion 

The implementation of BFAST to MODIS VIs time series resulted in the detection of the time 

and direction of the sudden and gradual changes in the study area. The fire caused abrupt 

decrease in the values of all VIs that were analyzed. Therefore, the breakpoints identified in the 

trend component presented the time and range of these changes caused by the fire event in 

August of 2007, leading to the detection and mapping of all fire affected pixels (Figure 1).  In 

Figure 2, the decomposition of the GEMI time series into trend, seasonal and remainder 

components is indicative of the BFAST fitting operations. The produced fire perimeters per VI 

were spatially compared with a validated perimeter derived by the resampled DMC image. The 

percentage of the common area for every pair compared was found to be quite high (over 90%) 

and only minor differences existed among the estimated perimeters. More specifically, 

comparison revealed a common area of 95.2%, 94.7%, 93.8% and 91.5% for GEMI, BAI, SAVI and 

NDVI perimeters, respectively. However, it should be mentioned that unburned patches within 

the estimated perimeters were not detected, unlike the validated perimeter, probably due to 

the coarse resolution of the MODIS pixel. 

 

 

 

 

 

 

 

 

 
 

Figure 1. Fire perimeters of the study area as derived by the BFAST implementation to every MODIS VI time series. 
 

 

 

 

 

 

 

 

 

 
 

Figure 2. Seasonal, trend and remainder fitted components of the GEMI time series as derived from a single pixel in a conifer forest 
of the study area. Dash lines (- - -) indicate the time of observed changes (breakpoints) in the trend component. A sudden major 

change (fire) is detected in 2007. 
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Regarding the post-fire vegetation condition, the observed gradual changes within the trend 

component reveal a positive increase of the VIs values over time. This increase is shown by the 

slope of the gradual change (Figure 3). The inclination and intercept of the slope varies for every 

vegetation index and according to different vegetation types, however in any case post-fire 

recovery is evident. Analysis revealed that values tend to increase right after the fire and 

despite the fact that the post-fire period is relatively short, recovery rates appear to be 

satisfactory. This can be attributed to the immediate vegetation succession, mainly shrub 

communities, which is common after fires in Mediterranean landscapes. Validation of these 

trend results is not a straightforward procedure, especially when single date validated data 

exist. However, some preliminary validation tests performed with the assistance of the 2010 

LANDSAT validated dataset showed an overall satisfactory performance of the VIs. Future work 

aims at providing complete and more precise estimations of the performance of each 

vegetation index. It should be mentioned that the BAI index is not considered in these 

estimations, since it is specifically developed for burned area discrimination. 

 

 

 

 

 

 

 

 

 
Figure 3. Changes detected in the trend component for the MODIS NDVI, GEMI and SAVI time series in a conifer forest. Sudden 

changes are observed in 2007 (fire) and the slope of the gradual change indicates vegetation recovery. 

Conclusions 

In this work, the potential of a new trend analysis technique of satellite time series to map 

burned areas and monitor post-fire vegetation recovery was investigated. The BFAST (Breaks 

For Additive Seasonal and Trend) method decomposes time series into seasonal, trend and 

noise components, enabling the detection of sudden and gradual changes. The BFAST 

application to derived vegetation indices resulted in the detection of the time and direction of 

the sudden changes, that occurred due to the fire event. Spatial comparison of the produced 

fire perimeters with validated data was found to be quite high, with the GEMI index performing 

slightly better than the other indices. Moreover, the slope of the gradual change observed in 

the trend component revealed post-fire vegetation recovery in every VI time series that was 

analyzed. However, more work is needed in order to provide more complete and precise 

estimations of the vegetation recovery. It should be mentioned, that although BFAST provides 

the time, number and range of changes, one should combine this information in order to 

characterize the type of change, otherwise misleading results could be yielded. Finally, BFAST 

NDVI GEMI 

SAVI 



110 

 

 

succeeded in estimating changes in the trend component, without being influenced by seasonal 

variations or noise.  
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Abstract 

Spatially and temporally explicit mapping of the amount of biomass burned by fire is needed to estimate 
atmospheric emissions of green house gases and aerosols. The instantaneous Fire Radiative Power (FRP) 
[units: W] is retrieved at active fire detections from mid-infrared wavelength remotely sensed data and 
can be used to estimate the rate of biomass consumed. Temporal integration of FRP measurements over 
the duration of the fire provides the Fire Radiative Energy (FRE) [units: J] that has been shown to be 
linearly related to the total biomass burned [units: g]. However, FRE and thus biomass burned retrieval, is 
sensitive to the satellite spatial and temporal sampling of FRP that can be sparse due to infrequent 
satellite overpasses, cloud and smoke obscuration, and failure to detect cool and/or small fires under 
cloudy conditions. In this paper the FRE is derived in a new way as the product of the fire duration and 
the expected FRP value derived from the FRP power law probability distribution function. MODIS FRP 
data retrieved over savanna fires in Australia and deforestation fires in Brazil are shown to have power 
law distributions with different scaling parameters that are related to the fire energy in these two 
contrasting systems. The FRE derived burned biomass estimates computed using this new method is 
compared to estimates using the conventional temporal FRP integration method and with literature 
values. The results of the comparison suggest that the new method may provide more reliable burned 
biomass estimates under sparse satellite sampling conditions if the fire duration and the power law 
distribution parameters are characterized a priori. 
 
Keywords: Fire Radiative Power, Fire Radiative Energy, Burned Biomass, Power law probability  
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Abstract 

The ability of NDVI (Normalized Difference  Index) time series to capture the different fire induced 
dynamics on  covers has been widely investigated by Telesca and Lasaponara (2007 2008) using the 
detrended fluctuation analysis (DFA), which permits the detection of persistent properties in 
nonstationary signals. Nevertheless, up to now no comparative evaluation has been performed with 
other methods or   indexes, such as Normalized Burn Ratio (NBR) considered quite effective in the 
identification and mapping of burned areas and fire severity level. In this study, we compared the 
evolution of dynamical trend of time series of NDVI and NBRd obtained from MODIS data. Satellite time 
series from 2000 to 2009 has been analyzed for two, test sites, located in Southern Italy, using DFA in 
order to study the persistence in the time series.  For both the fire, the time series was split into two 
parts, a first subset consists of the data before the fire and a second consists of the data after the fire 
occurrence. Our results point out that the persistence of dynamics is significantly increased by the 
occurrence of fires in the NDVI compared to NBR  
 
Keywords: Fire recovery, time correlation, Detrended Fluctuation Analysis, NDVI, NBR 

Introduction 

Post fire trends have been analyzed in a wide range of habitats in the Mediterranean-type 

communities, but these investigations have been generally performed at stand level. Fire-

induced dynamic processes are very difficult to study since they affect the complex soil-surface-

atmosphere system, due to the existence of feedback mechanisms involving human activity, 

ecological patterns and different subsystems of climate. Therefore, the patterns constrain fires 

and at the same time are constrained by the fire processes that influence them.  

Remote sensing technologies can provide useful data for fire management from risk estimation 

(Lasaponara 2005), fuel mapping (Lasaponara and Lanorte 2007a,b); Lasaponara and Lanorte 

2007), fire detection (Lasaponara et al. 2003), to post fire monitoring (Lasaponara 2006). The 

identification, mapping and recovery after fire using remote sensing is based on the recognition 

of the spectral response of burned, which is typically different from that of unburned surfaces. 

Effective sources of information for this purpose are the indices derived from satellite imagery 

and in particular here we will analyze the time series of these indices.  

In particular, satellite Normalized Difference Index (NDVI) time series may allow the assessment 

of post fire dynamics from local up to a global scale. This can be performed thanks to the 

availability of satellite data time series, acquired systematically for the whole globe and freely 

available from the national and international space agencies, such as NASA, ESA; etc.   

The NDVI is the most widely used index for investigating cover and monitoring recovery after 

fire (see, for example Telesca and Lasaponara 2007 2008,  Escuin et al. 2008).  In particular, the 

ability of NDVI time series to capture the different fire induced dynamic on covers has been 

investigated by Telesca and Lasaponara using the detrended fluctuation analysis (DFA) in 

natural area (i. e. not managed). Up to now, no comparative evaluation has been performed 

using different indices. In this study, we compared the evolution of dynamical trend of time 

series of NDVI and NBR obtained from MODIS data. Satellite time series from 2000 to 2009 has 
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been analyzed for two, test sites, located in Southern Italy, using DFA in order to study the 

persistences in the time series. 

Method: The temporal autocorrelation basic concepts 

The method used in this work is the DFA, which is suited for the study of long-range 

correlations. Traditional approaches, such as power spectrum or Hurst analysis useful to 

quantify the correlations, are applicable only to stationary signals. A time series is stationary if 

its mean, standard deviation, higher moments and correlation functions are invariant under 

time translation, otherwise signals are nonstationary. 

The DFA method has emerged as an important tool for the detection of long-range correlations 

in non-stationary time series and it works well for certain types of no stationary behaviour 

especially slowly varying trends, as in the case of behaviour. 

The DFA provides a quantitative parameter, the scaling exponent, which describes the 

properties of autocorrelation in long-range signals. 

The main advantages of DFA compared to traditional methods are the following: 

(i) it is capable to capture  correlations in seemingly non-stationary time series and also prevent 

false detections (i.e. 'artifact of non-stationarity);   

(ii) it can systematically eliminate spurious trends due to different no physical meaningful 

external effects;  

(ii) it reduces noise caused by imperfect measures.  

 

The DFA method investigates the temporal evolution of the variance of integrated time series 

by analyzing the scaling of a fluctuation function. It consists of the following steps: 

1) The considered interval time series (of total length N) is integrated using formula 1 

y�k� =��x�i�−< x >��

��  

 

                                                                                          (1) 

 where <x> is the mean value of x 

2) The integrated signal y(k) is divided into boxes of equal length n. 

3) For each n-size box, we fit y(k), using a linear function, which represents the trend in that 

box. The y coordinate of the fitting line in each box is indicated by yn(k). 

4) The integrated signal y(k) is detrended by subtracting the local trend yn(k) in each box of 

length n. 

5) For  given n-size box, the root-mean-square fluctuation, F(n), for this integrated and 

detrended signal is given by 

F�n� = �1N�[y�k� − y��k�]��
���  

                                                 (2) 



115 

 

 

6) The above procedure is repeated for all the available scales (n-size box) to furnish a 

relationship between F(n) and the box size n, which for long-range power-law correlated signals 

is a power-law  

 																																																���� ∝ �� 																																																																			 
 (3) 

The scaling exponent α quantifies the strength of the long-range power-law correlations of the 

signal: if α=0.5, the signal is random; if α>0.5 the correlations of the signal are persistent, which 

means that a large (small) value (compared to the average) is more likely to be followed by a 

large (small) value; if α<0.5 the correlations of the signal are anti-persistent, in other words a 

large (small) value (compared to the average) is more likely to be followed by a small (large) 

value. 

Applications to SATELLITE data 

In this study, we investigated two sites both of them situated in southern Italy, the first is close 

to the Crotone municipality (Calabria) and the second (Andriace) close to Scanzano (Basilicata). 

A wildfire occurred in Crotone on September 10 2004 and affected an area of approximately 

210 ha of which only around 10 ha  was  covered by forest. In Andriace, the fire took place on 

July 19 2003 and affected an area of approximately 234 ha, of which around  154 ha covered by  

forest. 

For each pixel the type of vegetation cover was obtained from the Corine (Coordination of 

Information on the Environment) Land Cover 2006 which is the most recent updated land cover 

map for Italy. 

To analyze the behavioral trends induced by fire events in our test sites, time series of MODIS 

images from 2001 to 2009 were  used. The time series was split into two subset before and 

after fire occurrences. 

 So that, for Crotone we obtained two subsets made up of 170 and 243 data samples related to 

pre and post fire occurrence, respectively.  

Similarly, for Andriace we obtained two subsets made up of 156 and 296 data samples related 

to pre and post fire occurrence,  respectively.  

In  this study, we used the NDVI (from formula 4) which is the most widely used vegetation 

index for vegetation studies. � !" = #$%& − #&#$%& + #& 

  

(4) 

 

The index relates to vegetation vigor and moisture by combining  near infrared (NIR) and mid 

infrared (MIR) reflectance. These two bands provide the best contrast between 

photosynthetically healthy and burned vegetation (Howard et al. 2002). NBR is defined as: �() = #$%& − #*%&#$%& + #*%& 

 

(5) 
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For both the investigated sites, 4 pixels were considered in the areas affected by fire (around 

100 ha). 

A threshold value equal to 0.10 in NDVI difference observed before and  after fire was 

considered as significant variation for discriminating fire affected from fire-unaffected pixels. 

In order to eliminate the phenological fluctuations, for each NDVI composition of each pixel, we 

focused on the departure NDVId = [NDVI - <NDVI>] from the decadal mean   <NDVI>. The 

decadal mean <NDVI> is calculated for each decade, e.g. 1st decade of January, by averaging 

over all years in the record. Investigations were conducted on the NDVId and NBRd departure 

series computed using formula 5. 

Table 1 and 2 show the results obtained from DFA for both Crotone and Andriace test sites. 

The averages of scaling factors relating to NDVI and  NBR for  the site of Crotone and Andriace 

are greater in the pre-fire phase than in the post-fire. Moreover, it can be seen that NDVI 

enable us to better discriminate than NBR index pre-fire and post-fire vegetation behavior. 

The estimated scaling exponents for all the investigated pixels suggest a persistent character of 

vegetational dynamics. However, for both of two investigated sites the pre-fire subset exhibited 

scaling exponents much larger than those calculated for the post-fire subset. It can be noted 

that the pixels for which the scaling is greater than 1 for both sites (all the pixels relating to 

Crotone pre-fire phase - and pixel 2 to the Andriace pre-fire phase) correspond to naturally 

vegetated areas (pine forests, shrubs and high bush) and not to agricultural lands.  

Results from this investigation clearly  pointed out the diverse vegetation behavior observed for 

natural and managed areas before and after fire occurrence, compared to those obtained from 

several investigations conducted by the same authors group using the same method applied to 

VEGETATION/ NDVI time series recorded before and after fire for  natural (i.e. unmanaged) 

vegetation covers. This suggests the possibility to adopt the DFA for discriminating illegal post-

fire management activities such as changes in the land use and  land cover, namely natural 

vegetated areas used for intensive farming which not allowed by the Italian Law  

 
Table 1. Results of DFA for Crotone test site 

a  coefficients  Pixel_1 
shrubbery and / or 

herbaceous 

Pixel_2 
shrubbery and / or 

herbaceous 

Pixel_3 
high bush 

Pixel_4 
high bush 

NDVId_pre fire  
1,0814 

 
1,1152 1,1236 1,0947 

NDVId_post fire 0,8275 0,7716 0,8168 0,8652 

NBRd_ pre fire 1,0588 1,0557 1,0660 1,1246 

NBRd_ post fire 0,9111 0,9261 0,9491 0,8923 

 
Table 2. Results of DFA for Andriace test site 

a  coefficients  
Pixel 1 

intensive farming 
Pixel 2 

forests dominated 
by pine trees and 

cypresses 

Pixel 3 
cultural systems and 

particle complex 

Pixel 4 
intensive farming 

NDVId_pre fire 0,9529 1,0591 0,9538 0,9387 

NDVId_post fire 0,8241 0,8731 0,9959 0,6323 

NBRd_ pre fire 0,9574 1,1023 0,9939 0,8486 

NBRd_ post fire 0,9032 0,9615 0,9511 0,9257 
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Abstract 

Traditional methods of recording fire burned areas and fire severity involve expensive and time -
consuming field surveys. The available remote sensing technologies may allow us to develop 
standardized burn-severity maps for evaluating fire effects and addressing post fire management 
activities. This paper is fo-cused on the characterization of burn severity using  ASTER (Advanced 
Spaceborne Thermal Emission and Re-flection Radiometer). satellite pictures have been processed using 
geo-statistic analyses to capture pattern features of burned areas. Even if in last decades different 
authors tried to integrate geo-statistics and remote sensing image processing methods used since now 
are only variograms, semivariograms and kriging. In this paper, we propose an approach based on the use 
of spatial indicators of global and local autocorrelation. Spatial autocorrelation statistics, such as Moran’s 
I, Geary’s C, and Getis-Ord Local Gi index (see Anselin 1995; Getis and Ord 1992), were used to measure 
and analyze the degree of dependency among spectral features of burned areas. This approach enables 
the characterization of the pattern features of burned area and improves the estimation of burn severity. 
 
Keywords: Fire severity, geospatial analysis, classification, 

Introduction 

In the Mediterranean Basin, composition and structure of vegetation have been and are 

generally strongly shaped by fires, which tend to operate as a selective force, increasing species 

diversity, as well as a filter favouring the dominance of some species rather than of other ones. 

Effects of fires on soil, plants, landscape and ecosystems depend on many factors (among them 

fire frequency and plant resistance). Burn severity is a qualitative indicator of the effects of fire 

on ecosystems, since it affects forest floor, canopy, etc. Assessing and mapping burn severity is 

important to monitor fire effects, to model and evaluate post-fire dynamics and to estimate the 

ability of vegetation to recover after fire (generally indicated as fire-resilience). In an 

operational context, burn severity estimation is critical for short-term mitigation and 

rehabilitation treatments. Traditional methods of recording fire severity involve expensive and 

time-consuming field surveys. The use of satellite remote sensing can help in overcoming such 

drawbacks. 

Remote sensing technologies can provide useful data for fire management, from risk estimation 

(Rauste et al. 1997, Lasaponara 2005), fuel mapping (Lasaponara and Lanorte 2006, Lasaponara 

and Lanorte 2007a, Lasaponara and Lanorte 2007b), fire detection (Lasaponara et al. 2003), to 

post fire monitoring (Lasaponara 2006), including burn area and severity estimation (Gitas and 

Desantis 2009). Methods generally used to estimate fire severity from satellite are based on 

spectral indexes, obtained as a combination of bands which emphasize changes induced by fire 

in vegetation spectral behaviour. Such evaluations are generally performed on fire perimeter 

maps (a priori known), mainly using fixed threshold values to classify and map the different 

levels of burn severity. Nevertheless, as suggested by many authors, such fixed threshold values 

are generally not suitable for fragmented landscapes and inadequate for vegetation types and 

geographic regions different from those for which they were devised.  
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In order to overcome such limitations, a new approach, based on geo-statistical analyses 

applied to satellite data, is herein proposed both to estimate burn area perimeter and to 

evaluate the different degree of burn severity. 

Method: The spatial autocorrelation basic concepts 

Spatial autocorrelations take into account the spatial attributes of geographical objects under 

investigation, evaluate and describe their relationship and spatial patterns also including the 

possibility to infer such patterns at different times for the study area. The spatial patterns are 

defined by the arrangement of individual entities in space and the spatial relationships among 

them. Spatial autocorrelations in the field of archaeological investigations measure the extent 

to which the occurrence of one object/feature/site is influenced by similar 

objects/features/sites in the adjacent areas. As such, statistics of spatial autocorrelation 

provides: (i) indicators of spatial patterns and (ii) key information for understanding the spatial 

processes underlying the distribution of object/feature/site and/or a given phenomenon under 

observation. 

Geographical observations should be arranged in spatial and temporal order, by latitude and 

longitude, and historical periods. In this context time series data, such aerial and satellite 

images can provide useful traces of past human activities and, therefore, can enable us: (i)  to 

some extent predict the amount and types of interaction, (ii)  to investigate spatial predictions 

between objects/features/sites and also to infer  potential relations considering different 

"historical" time windows being that   Everything is related to everything else, but nearest 

things are more related than distant things"(Tobler 1990) “.  

In absence of spatial autocorrelation the complete spatial randomness hypothesis is valid: the 

probability to have an event in one point with defined (x, y) coordinates is independent of the 

probability to have another event belonging to the same variable. The presence of spatial 

autocorrelation modifies that probability; fixed a neighbourhood for each event, it is possible to 

understand how much it is modified from the presence of other elements inside that 

neighbourhood. 

A distribution can show three types of spatial autocorrelation: i) the variable exhibits positive 

spatial autocorrelation, when events are near and similar (clustered distribution); ii) the 

variable exhibits negative spatial autocorrelation, when, even if events are near, they are not 

similar (uniform distribution); the variable exhibits null autocorrelation when there are no 

spatial effects, neither about the position of events, or their properties (random distribution) 

The presence of autocorrelation in a spatial distribution is caused by two effects that could be 

clearly defined (Gatrell et al. 1996), but not separately studied in the practice: i) first order; and 

ii) second order effect. 

i) First order effects depend on the region of study properties and measure how the 

expected value (mean of the quantitative value associated to each spatial event) varies 

in the space with the following expression:  λ,-�s� = lim12→4 5E�Y�ds��ds 9 

 

      [1] 
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where ds is the neighbourhood around s, E is the expected mean and Y(ds) is the events 

number in the neighbourhood. 

ii)  Second order effects express local interactions between events in a fixed 

neighbourhood, that tends to the distance between events i and j. These effects are 

measured with covariance variations expressed by the limit: 

 

- γ;s
s<= = lim12>12?→4@	 A�B�12>�B�12?�12>12? C 
 

      [2] 

 

where symbols are similar to those used in equation 1. 

 

The characterization of spatial autocorrelation requires detailed knowledge on: i) the 

quantitative nature; ii) the geometric nature. 

i) the quantitative nature of dataset is also called intensity of the spatial process that is how 

strong a variable occurs in the space (Murgante et al. 2008), with the aim to understand if 

events are similar or dissimilar. 

ii) the geometric nature needs the conceptualization of geometric relationships, usually 

done with the use of matrixes:  

(a) a distance matrix is defined to consider at which distance the events influence each 

other (distance band);  

(b) a contiguity matrix is useful to know if events influence each other;  

(c) a matrix of spatial weights expresses how strong this influence is.  

 

Concerning the distance matrix, a method should be established to calculate distances in 

module and direction.  For this concern the module, namely Euclidean distance (3), is the most 

used. dA�s
, s<�= E�x
 − x<�� + �y
 − y<�� 

 

      [3] 

 
As for any type of dataset also in the case of digital image analysis there are many indicators of 

spatial autocorrelation that can be distinguished into the following: Global indicators, Local 

indicators and the variogram approach to spatial association in the geostatistical perspective. 

Global statistics summarizes the magnitude of spatial autocorrelation for the entire region by a 

single value. The Global indicators of autocorrelation utilize distance to define the 

neighbourhood of a region and measure if and how much the dataset is autocorrelated in the 

entire study region. 

One of the principal global indicator of autocorrelation is the Moran’s index I (Moran 1948), 

defined in formula (4) 
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where, N is the total pixel number, Xi and Xj are intensity in points i and j (with i≠j), XG is the 

average value, wij is an element of the weight matrix. 

I∈[-1; 1]; if I∈[-1; 0) there’s negative autocorrelation; if I∈(0; 1] there’s positive autocorrelation.  

Theoretically, if I converges to 0 there’s null autocorrelation, in most of the cases, instead of 0 

the value used to affirm the presence of null autocorrelation is given in equation 5: 
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where N is the number of events in the whole distribution. 

The second global indicator of spatial autocorrelation is the Geary’s C (Geary 1954), expressed 

by: 
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Where symbols have the same meaning than expression 4. 

 

C∈  [0; 2]; if C∈  [0; 1) there’s positive autocorrelation; if C∈(0; 2] there’s negative 

autocorrelation; if C converges to 1 there’s null autocorrelation. 

The local versions of the spatial autocorrelation statistics is used to measure the magnitude of 

spatial autocorrelation within the immediate neighborhood. Values indicating the magnitude of 

spatial association can be derived for each areal unit and they are mappable. The local version 

of the statistic utilizes distance information to identify local clusters and relies on the distance 

information captured in Distance matrix.  

Global measures of spatial autocorrelation provide a single value that indicates the level of 

spatial autocorrelation within the variable distribution, namely the homogeneity of a given 

values within the image under investigation.  

Local measures of spatial autocorrelation provide a value for each location within the variable 

distribution and, therefore, they are able to identify discrete spatial patterns that may not 

otherwise be apparent. The statistics output is an image for each calculated index, which 

contains a measure of autocorrelation around that pixel.  

Applications to ASTER data 

ASTER data were used to compute NBR based indexes using ASTER 3 (760-860 nm) and 7 

29 (2235-2285 nm) spectral channels, with a spatial resolution of 30 m, using the formula: 

NBR_ASTER = (ASTER 2 – ASTER 7)/ (ASTER 2+ ASTER 7)   

[7] 
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Using these two bands we obtained a NBR map which is particularly sensitive to changes 

occurring in vegetation cover affected by fire, such as amount of live green vegetation, 

moisture content, etc. NBR values generally range between 1 and −1 as well as NDVI. Strongly 

negative NBR values would indicate a larger reflectance in SWIR than NIR band, and this only 

occurs over not vegetated areas where fire cannot occur. Text areas have been investigated, in 

different area of North and South Italy. For all the investigated test sites geospatial data analysis 

enabled us to discriminate burned from unburned and the different degree of fire severity 

evaluated also using independent data set and field survey. 

Conclusion 

In this paper we present our preliminary results obtained from ongoing research based on the 

evaluation of spatial variability of fire effects using satellite ASTER (Advanced Spaceborne 

Thermal Emission and Reflection Radiometer) data. 

In this study, both single (post-fire) and multi-date (pre and post fire) ASTER images were 

processed for some test areas selected from within Italian peninsula. 

ASTER derived indices were processed using spatial autocorrelation statistics, such as Moran’s I, 

Geary’s C, and Getis-Ord Local Gi index (see Anselin 1995; Getis and Ord 1992). Such spatial 

statistics enable us to map the areas affected by fire and to estimate the degree of fire severity.  

The new approach is independent on sensors used for the evaluation as well as on vegetation 

cover types affected by fire. The model could be incorporated directly into the mapping process 

from local up to global scale. 
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Abstract 

The wildland urban interfaces (WUI) defined as the area where structures and other human development 
meet or intermingle with undeveloped wildland (Vince et al.,2005), which create an environment in 
which fire can move easily between housing and vegetation fuels and where fire frequently occurs due to 
human activity. Assessing the impact of fire on the vegetation especially in WUI is so considered as a key 
issue to evaluate the consequences of past fires, and to improve the prevention and the protection of 
Mediterranean human population against the fire risk. 
The study considers the fires of July 17 and 28 in 2003, which burned 12,390 hectares of vegetation in the 
Massif of the Maures in the south of France and destroyed more than 50 buildings. The aim is to propose 
an effective method based on field and remote sensing data sets to map post-fire damage within WUI 
according to intensity levels. An Intensity Scale developed by Lampin et al. (2002) has to assess the 
severity of a wildfire after the event. It takes into account physical variables related to the fire and is 
based on the qualitative assessment of damage to specific assets observed on the ground. The scale has 
six qualitative intensity levels: very low, low, moderate, high, very high and exceptional. Very high 
resolution images are used: Ikonos image acquired before the fires in August 2001 and Quickbird image 
acquired after the fire in September 2003. 
The remote sensing methodology considered two main approaches: a mono-temporal analysis based on 
one unique post-fire image, and a multi-temporal approach including the image acquired before fire and 
based on the difference image dNDVI calculated as the subtraction between 2003 NDVI and 2001 NDVI. 
For each approach, unsupervised and supervised classifications were performed considering 
multispectral bands, NDVI and EVI indices. On the post-fire images, these classifications allowed (i) the 
mapping of “burned vegetation” and “unburned vegetation” in order to define the WUI that are 
supposed to be affected by the fire, (ii) a damage mapping inside the WUI. The image acquired before fire 
allowed us to perform a land-cover mapping into five classes (mineral, grassland, shrubland, broad-
leaved tree, resinous tree) designed to improve the validation of damage mapping and also make 
relationships between damage and existing land cover before the fire. 
According to the results obtained in this study, the mono-temporal approach leads the distinction of five 
damage levels in WUI with 80% of global accuracy. These levels correspond to five levels of the intensity 
scale elaborated by Cemagref (from very low damage to very high level of damage). The multi-temporal 
approach improves slightly the results with 82% of global accuracy. The land cover map generated from 
before-fire image participates to better understanding the impact of fire for each type of vegetation: 
shrubland is the most impacted by fire (more than 80% is concerned by moderate, and especially high 
and very high levels of damage); broad-leaved trees are a bit less impacted by the fire than resinous trees 
(60% and 70% respectively). 
 
Keywords: wildfire risk, post fire damage assessment, damage mapping, remote sensing, wildland urban 
interfaces 

Introduction 

Context of the study 

Every year, forest fires destroyed thousands of hectares of vegetation in the European 

Mediterranean region. According to the scenarios of climate change (GIEC 2007) and the 

expansion of piecemeal construction of dwellings in rural areas and urban sprawl, the fire risk is 
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supposed to increase in the next years. The impact of fire on the vegetation can be assessed by 

a spatial analysis of post-fire damage. Assessing the impact of fire on the vegetation especially 

in the wildland urban interfaces is so considered as a key issue to evaluate the consequences of 

past fires, and to improve the prevention and the protection of Mediterranean human 

population against the fire risk. 

Definition 

The study focuses on the wildland urban interfaces (WUI), defined as the area where structures 

and other human development meet or intermingle with undeveloped wildland (Vince et 

al.,2005), which create an environment in which fire can move easily between housing and 

vegetation fuels and where fire frequently occurs due to human activity. 

The wildland urban interfaces were identified according to the method described by C. Lampin 

et al. (2010). This method considers houses used as dwellings – i.e. where people live 

permanently, temporarily or seasonally (agricultural, industrial, commercial and public buildings 

were not included) – located at less than 200 meters from forests or shrublands and their 

environment defined by a 100 meters radius. This definition is based on the French Forest 

Orientation Law of July 9 2002, which makes brush clearing obligatory within a maximum radius 

of 100 meters around each house located at a distance of less than 200 meters from forests or 

scrublands. 

Research problem 

The aim of this study is to propose an effective method based on field and remote sensing data 

sets to map post-fire damage according to the intensity scale developed by Lampin et al. (2002). 

This method implies treatments that could be processed by landscape managers. 

Material 

Study area 

The study area is located in the south of the Var department, on siliceous soil in Provence. 

Before the fire, the main vegetation types in the Maures area were cork oak stands and high 

shrublands. The effects of fires of Vidauban I and II are studied: the first fire happened on July 

17 2003 and affected an area of 6,744 ha, and the second one burned 5,646 ha on July 28 2003. 

These fires destroyed more than 50 buildings. 

Datasets 

The objective of the study is the evaluation of post fire damages within the wildland urban 

interfaces from the intensity scale developed by Lampin et al. (2002) and very high spatial 

satellite images. 

The wildfire intensity scale was developed by Cemagref in 2001, on behalf of the French 

Ministry for the Environment and in partnership with GSC Consultant and Météo France. This 

scale can be used to assess the severity of a wildfire after the event on the basis of physical 

variables related to the fire and on the qualitative estimation of damage to specific assets 
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observed on the ground. It is independent of the location and its vulnerability. In this scale, the 

physical variables used are the speed at which the fire spreads, the colour of the smoke 

produced, the occurrence of spotting and the surface area threatened. In addition to these 

variables, damage to specific assets such as vegetation and buildings is estimated by several 

qualitative variables. The scale has five qualitative intensity levels (very low, low, moderate, 

high and very high). For each level, it matches ranges of values of physical variables to 

corresponding ranges of specific damage. Each level of intensity corresponds to a maximum 

level of specific damage that the physical conditions can be considered as liable to produce 

(Lampin et al. 2002). 

The remote sensing datasets consist of 2 very high spatial resolution images: Ikonos image 

acquired before the fires on August 7 2001 (1 meter resolution in panchromatic, 4 meters in 

multispectral bands) and Quickbird image acquired after the fire on September 16 2003 (0.6 

meter in panchromatic, 2.4 meter in multispectral bands). The Ikonos image acquired before 

the fire constitutes a reference to characterize the “original” landcover. The Quickbird image 

taken few days after the fire will be used to identify damage on the burned vegetation. These 

images cover a common area of 154.87 sqkm on the west part of the fire, and concern the 

towns Les Arcs, La Garde-Freinet, Le Muy, Plan-de-la-Tour, Roquebrune-sur-Argens, Sainte-

Maxime and Vidauban. 

 
Figure 1. Images acquired before (Ikonos image on the left from August 7 2001) and after (Quickbird image on the right from 

September 16 2003) the Vidauban fires of July 2003. 

Method 

Before working on the post fire damage extraction, the images are ortho-rectified and geo-

referenced to obtain maximal superimposition and minimize geographical deviation. 

Radiometric corrections were also performed on multi-temporal remote sensing data set to 

reduce any of the above influences and increase sensitivity to landscape change (Chen et al. 

2005; Coppin et al. 2004; Song et al. 2001). 

Burned area mapping 

The first step of this damage mapping method consisted to realize a global distinction between 

the burned and the unburned vegetation on the whole fire area according the Quickbird image 

acquired after the fire. The aim was to define the wildland urban interfaces that are supposed 

to be affected by the fire. 
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Unsupervised classification was performed on the multispectral bands of the Quickbird image 

using the Isodata algorithm of the Erdas Imagine software. 12 classes were extracted then 

photo-interpreted and recoded into 2 classes “burned vegetation” and “unburned vegetation”. 

Landcover mapping 

The landcover mapping was realized on the Ikonos image acquired before the fire in order to 

improve the validation of damage mapping and then to help understanding the effects of the 

fire on the vegetation. The landcover was performed in the wildland urban interfaces included 

in the burned area as defined previously. The landcover typology is composed with 5 classes, of 

which 1 mineral class and 4 classes of vegetation. The mineral class is composed with 

everything that is no vegetation, as water, roads, roofs of houses, bare soils, and uncultivated 

croplands. The vegetation was separated into 3 strata of vegetation (grasslands, shrublands, 

trees). In the last class, broad-leaved and coniferous trees are distinguished. These 4 vegetation 

classes are supposed to have different response to the fire, and should be separated by their 

spectral response. 

A supervised classification based on the Maximum Likelihood algorithm was realized on the 

best combination of spectral bands and indexes: MS bands and NDVI index. 

Damage mapping 

Damage mapping was performed in the wildland urban interfaces included in the burned area 

as defined previously. The realization of the damage map was not dependant of the landcover 

map previously produced. The typology is composed with 10 classes, of which 5 classes 

corresponding to unburned types previously used in the landcover mapping (class 1 

corresponds to mineral, class 2 to grasslands, class 3 to shrublands, class 4 to broad-leaved 

trees and class 5 to resinous trees) and 5 classes of fire damage. The number of fire damage 

classes corresponds to the 5 levels of the Cemagref intensity scale presented in part 2.2. Classes 

5 and 6 can be interpreted as low damage classes, and are represented by scorched crowns. 

Classes 7, 8 and 9 can be considered as higher damage classes, where no crown is identifiable. It 

is now difficult to organize into a hierarchy these 3 classes of damage because of the lack of 

precise field data. 
 

 

 

 

 

 

 

 

 
 

 
Figure 2. Methodology used for post fire damage mapping 



129 

 

 

According to figure 2, several treatments are processed in order to compare the relevance of 

the spectral bands and indices implied in classifications, the unsupervised and supervised 

classifications, and finally the mono-temporal and multi-temporal approaches to map these 5 

classes of fire damage. First, unsupervised classifications were performed on the Quickbird 

image using the Isodata algorithm considering (i) the multispectral bands, (ii) the layer stacking 

of MS bands and NDVI index, (iii) the combination of MS bands, NDVI and EVI indexes. Then, 

supervised classifications are based on the Maximum Likelihood algorithm were realized on the 

best combination of spectral bands and indexes previously defined by the unsupervised 

classifications. A textural analysis, defined as the calculation of the variance of the 

panchromatic band with a 3 x 3 window size, was also be performed to be integrated to the 

supervised classification. The multi-temporal approach was made integrating to the supervised 

classification a new band derived from the subtraction of the post-fire NDVI from the pre-fire 

NDVI (Navarro et al. 2007). 

Results 

Burned area mapping 

The burned area map is validated on the basis of 131 photo-interpreted points and the 

calculation of the global accuracy and the Kappa index. The unsupervised classification gives a 

global accuracy of 87.02% and a Kappa index of 76.42%. 

Landcover mapping 

Landcover classification previously performed was evaluated through statistical analyses, based 

on the generation of confusion matrix, the calculation of the global accuracy and the Kappa 

index, using the validation data set composed with 150 photo-interpreted points located in the 

wildland urban interfaces. 

The supervised classification on the combination of MS bands and NDVI index presents a global 

accuracy of 87.33% in the wildland urban interfaces, the kappa index reaches 84.06%. 

Damage mapping 

Damage classifications previously performed were evaluated through statistical analyses, based 

on the generation of confusion matrix, the calculation of the global accuracy and the Kappa 

index, using the validation data set composed with 374 photo-interpreted points randomly 

generated according to the 10-classes damage typology. 

For the VHR 2003 QuickBird image, the unsupervised classifications present global accuracies 

between 61.56% and 65.12%.The best results are obtained with the combination of MS bands 

and NDVI index. The supervised classification performed on this combination produces better 

damage maps with a global accuracy of 78.08%. The addition of the textural band significantly 

increases the quality of the classification: the global accuracy so exceeds 80%, with a Kappa 

index of 79.03%. 
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Figure 3. Damage mapping in the WUI using monodate and multidate approaches 

 

The supervised classifications on VHR image improve the results to identify 5 levels of damage 

in the wildland urban interfaces. The main confusions affect the classes 8, 9 and 10 that 

correspond to 3 classes of a high level of damage, and particularly between classes 9 and 10 

that are characterized by User and Producer’s accuracies below 50%. The supervised 

classifications performed merging 9 and 10 classes reach a global accuracy of 86.63% in 

interfaces. Merging 8, 9 and 10 classes, the global accuracy is above 88 %. Recoded into 9 or 8 

classes, the quality of classifications performed in the wildland urban interfaces present relative 

similar results, better than the classifications into 10 classes. 

The multi-temporal approach, implying the Ikonos image before fire, was tested for supervised 

classifications, in order to look for 5 levels of damage corresponding to the levels of the 

intensity scale. The dNDVI band has a positive effect on the combination [MS + NDVI], from 

78.08% to 81.82%. The global accuracies are similar when the textural band is included in 

treatments. 

So, the multi-temporal approach can be considered as a relevant improvement of the 

supervised classifications performed on VHR images to produce good quality map with 5 levels 

of damage in wildland urban interfaces. When a before-fire VHR image is available, the textural 

analysis can be avoided. 

Relations between damages and landcover types 

The damage map previously generated could be related with the landcover map produced using 

the before-fire Ikonos image. The landcover could participate to understand the impact of the 

fire on the different types of vegetation. 

The figure 4 presents, in the wildland-urban interfaces, the relation between the landcover 

supervised classification performed on the combination [MS NDVI] of VHR 2001Ikonos image 

and the damage supervised classification performed on the combination [MS NDVI dNDVI] of 

VHR 2003 QuickBird image.  
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Figure 4. Damage representation within landcover type in the WUI 

 

The graph shows the proportions of damage levels for each landcover type. The mineral and 

grasslands classes are mainly affected by damage 6 and 8, with only 18.28% of damage classes 9 

and 10 for the mineral class, and 23.14% for grasslands. Shrublands are mainly affected by 

damage 9 (51.71%) when low damage classes 6 and 7 represent only 12.29%. Broad-leaved 

trees are affected by damage classes 6, 7, 9 and 10 in relatively similar proportions. The classes 

6 and 7 represent 40.77%, and 52.85% for the classes 9 and 10. Resinous trees are more 

affected by high damage classes 9 and 10 (65.04%), and less affected by classes 6 and 7 

(26.33%) in comparison with broad-leaved trees. Shrublands are the most impacted by fire: 

more than 80% is concerned by classes 8, 9 and 10 and more than 70% by high damages 

(classes 9 and 10).  
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Abstract 

In the last decade multiple effort have been undertaken to map Burned Area (BA) at a global scale, as 
input data for different earth system models. The validation of BA products, as any other cartography, is 
a critical step for its acceptance by final users, which needs standard procedures to select the most 
accurate one. The validation efforts of the most common BA products use different methods and results 
are not directly comparable. Most commonly, they try to estimate accuracy, but other components of 
validation, such as precision and temporal consistency have not been previously covered. 
In this study we present a synthetic index that summarizes all the error components of burned area (BA) 
products raised from its validation against independent reference data. The validation analysis comprises: 
the detection ratio of burned patches, information from linear regression for course grid cells, errors 
from confusion matrices and temporal stability of the errors. 
Our validation scheme has been applied to a three different global multi-annual BA products 
(GlobCarbon, MCD45 and L3JRC) in three study areas situated in Brazil, Canada and Portugal from 2000 
to 2006. For these study areas, annual reference data were produced based on pre and post-fire analysis 
of Landsat imagery. Acquisition dates of images define the temporal periods with reference data 
available in each year. A semi-automatic algorithm for BA mapping was used for the generation of these 
reference data. Results show that the MODIS product produces better results than L3JRC and 
Globcarbon, with higher precision and accuracy, but it has a lower temporal stability. 
 
Keywords: Burned Area, Validation, Error, Reference Data, Temporal Consistency 

Introduction 

Validation is a critical step of any remote sensing based product, since it provides a quantitative 

assessment on its reliability and provides a sound framework for product use. For this reason, 

international programs, such as  Global Climate Observing Systems, have established specific 

requirements in terms of validation and error thresholds (GCOS 2010).  

The Committee on Earth Observing Satellites Working Group on Calibration and Validation 

(CEOS-WGCV) defines validation as: “The process of assessing, by independent means, the 

quality of the data products derived from the system outputs” (http://lpvs.gsfc.nasa.gov/). This 

implies to compare those results with a reference source, which is assumed to be the ground 

truth. Validation should quantify the random and the systematic error components, which 

define the precision and the accuracy of the measurements, respectively. Validation should also 

explore the stability, the error variability through time, and the spatial consistency, the error 

variability across space or controlling factors. 

During last years, several global and regional burned area (BA) products have been made 

available to the international community. The release of those products included a first stage 

validation, the GlobCarbon (2007), the L3JRC: Tansey et al. (2008), the MODIS MCD45A1: Roy et 

al. (2008), the GFED3: Giglio et al. (2010) or the Latin American AQL: Chuvieco et al. (2008). 

Results from those validation studies are not directly comparable as they use different 

validation methods. Little work has done to compare products using common validation 
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methods and reference data. Roy and Boschetti (2009) and Chang and Song (2009) presented 

the first attempts on the inter-comparison of global products, the former study compared 

GlobCarbon, MCD45 and L3JRC products in Southern Africa, and  the later compared MCD45 

and L3JRC in Canada, USA, Russia and China. 

International bodies, such GOFC-GOLD Fire Implementation Team, try to coordinate efforts for 

generating standard validation methods for operational products. This paper follows this aim, 

as it presents a synthetic index that summarizes all the validation components, i.e. precision, 

accuracy and consistency of burned area (BA) products raised from its comparison against the 

same independent reference data. This study also present an application of the validation 

scheme with real data, using GlobCarbon, MCD45 and L3JRC global BA products for 3 study 

areas situated in Brazil, Canada and Portugal. The time series ranges from 2000 to 2006. This 

validation exercise is part of the fire_cci project, funded within the ESA initiative for improving 

the use of satellite products in climate change studies.  

Methods 

1.1 Global products and reference data 

The validation scheme presented here has been applied to the MCD45, L3JRC and GlobCarbon 

global multi-annual BA products in 3 study areas situated in Brazil, Canada and Portugal from 

2000 to 2006. MCD45 is produced by the NASA, has daily temporal resolution and 500 m pixel 

size, and it is derived from MODIS data on board the Terra and Aqua satellites (Roy et al. 2005). 

L3JRC is produced by the Joint Research Center, has daily temporal and 1km spatial resolution, 

and is derived from SPOT Vegetation (Tansey et al. 2008). GlobCarbon is produced by the 

European Space Agency, and it has daily temporal resolution at 1km2 pixel size. It is derived 

from ERS2-ATSR2 and ENVISAT AATSR (Plummer et al. 2007). GlobCarbon consist in results from 

three separated algorithms, in the present study we refer to a merge of the three algorithms: 

BA is defined as where at least two of the three algorithms detect a pixel as burned and 

unburned elsewhere.   

The spatial distribution of the validation sites should include the complete range of 

environmental factors that affect burned area mapping accuracy. In this exercise, three 

validation sites were selected, as to be representatives of boreal forest (Central West of 

Canada), Mediterranean ecosystems (Portugal) and tropical biomes (central Brazil). All have a 

significant fire activity. Even though it is a small sample of fire conditions, they serve as an 

example to test the use of an integrated validation index for Burned Area products. In the three 

study areas, annual reference data were produced based on pre and post-fire analysis of 

Landsat imagery. Acquisition dates of images define the temporal periods with reference data 

available in each year. For each validation site, 7 years of BA reference data was produced, 

using 21 Landsat scenes in total. A semi-automatic algorithm for BA mapping, published in 

Bastarrika et al. (2011), was used for the generation of these reference data. These steps follow 

the standard procedure established in the fire_cci project (Chuvieco et al., 2011), available 

online at http://www.esa-fire-cci.org/webfm_send/241). 
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1.2 Validation analysis and their metrics 

Three spatial comparisons between BA and reference fire perimeters were performed to derive 

error measures: (i)  cross-tabulation, (ii) linear regression and (iii) patches detection.  

From the cross-tabulation analysis, the burned/unburned confusion matrix was generated, 

which made it possible to compute commission and omission errors and the Kappa coefficient 

(based on the difference between observed and expected agreement by chance; Congalton and 

Green 1999). Since cross-tabulation is a pixel by pixel comparison, this analysis can be notably 

affected by differences in spatial resolution and co-registration errors between reference and 

target BA products. To avoid those problems, some authors alternatively recommend using a 

linear regression analysis, built upon the proportion of burned area in the two BA products 

using a grid coarser than the pixel resolution of the target product (Boschetti et al. 2004). In this 

study, a 10x10 km grid was used. Correlation coefficient, slope and intercept of the best fitted 

line between target and reference data was computed from a nonparametric linear regression 

based on Kendall’s rank correlation (Roy et al. 2008; Sen 1968; Theil 1950). A strong linear 

relationship (high value of Kendall) indicates that the target and reference product include a 

similar estimation of BA extent for 10x10 km cells. Ideally, the fitted line would have slope 1 and 

intercept 0. The proximity of the fitted line to the ideal one (Prox) is assessed measuring the 

area between the two products  in the scatter plot:  

 

∫ −−=
1

0
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(1) 

 

The third criterion of accuracy was the patches detection index, defined as the ratio between 

the number of patches detected by the BA product and all BA reference patches . A patch was 

accounted as detected when at least 10% of its area was included in the BA product. This 

approach made it possible to identify the patch size below which the detection rate of the 

target product was unreliable.  

1.3 Components of validation 

The validation can be divided in three major components: precision, accuracy and stability.  

Precision is the ability to produce repeatedly similar measurements over the same measurand, 

with a small random error (GOFC-GOLD 2010). For this study, we measured it by the Kendall 

correlation coefficient derived from the linear regression analysis, providing information at 

regional scale (Roy and Boschetti 2009). 

Accuracy is the ability to produce measurements with a distribution centered to the true value, 

with a small systematic error (GOFC-GOLD 2010) and may be evaluated at local and/or regional 

scales (Roy and Boschetti 2009). The accuracy at local scale can be effectively characterized 

through the accuracy indices derived from the cross-tabulation, while accuracy and precision at 

regional scale through the linear regression analysis (Roy and Boschetti 2009). Local accuracy 

was computed as the mean of the kappa index and the complementary of omission and 

commission errors, and regional accuracy was computed as the mean of the detection index 

and the Prox. 
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Scores of precision and accuracy varied from 0 to 1, and resulted from the aggregation of their 

metrics in each of the three study areas. Precision and accuracy were computed for each study 

area, with data for all years, and, for the final integration index, the average values were used.  

Stability, S, was defined by the errors variability measured through time. According to the 

characteristics and sampling of the validation datasets, errors were measured once for each of 

the 7-years of the study period. A non-parametric measure of dispersion, the inter-quartile 

range, was used to estimate this parameter, for each metric x, and for each study site ss, 

through years i.  

)(1 ,, issxss xIQRS −=   (2) 

 

S will vary from 0 to 1 and will be the result of the average of stability indexes seen in each of 

the three study areas. Local stability is computed as the mean of stability indexes of kappa 

index and omission and commission errors, and regional stability is equal to the patches 

detection ratio.1 

1.4 Integration of validation components 

The final integrated index varied from 0 to 1, with high values indicating high reliability. The 

integrated index was computed as the mean between the three validation components 

(precision, accuracy and stability).Precision was equal to the Kendall coefficient (k) and accuracy 

index was the average between local and regional accuracy. Consistency index ideally should 

cover both spatial and temporal variation, but in this paper only the latter was considered, It 

was computed as the mean of local and regional S.    

Results 

The final integrated index and scores for the three validation components are shown in Table . 

MCD45 was the product with the highest precision and accuracy, although it showed lower 

stability values than L3JRC and GlobCarbon.   

 
Table 1. Scores of the three validation components and the final integrated index 

  Precision Accuracy Stability 
Integrated 

Index 

GlobCarbon 0.40 0.19 0.92 0.51 

L3JRC 0.36 0.21 0.92 0.50 

MCD45 0.59 0.44 0.83 0.62 

 

Figure 1 shows local accuracy for each target product in the three validation sites through the 7-

years of the study period. Accuracy and stability performances of the three global products 

agree, as expected, with scores of accuracy and stability components shown in Table 1. MCD45 

was found slightly more accurate in Brazil and Portugal than L3JRC and GlobCarbon, which 

                                                             
1
 Similarly to the temporal stability, a spatial consistency (SC) index may be considered. It may related to how errors 

vary throughout space. SC could be assessed by errors variability found through ranges of different controlling 
factors. SC was not computed in this paper, since only three sites were available, but will be within the fire_cci 
project at a later stage. 
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showed similar results. Differences in performances were more important in Canada, where 

MCD45 was clearly the most accurate product, although with low stability, while L3JRC and 

GlobCarbon presented lower accuracy, but high statibility. Differences in product performances 

through validation sites suggested that they are affected by land cover or fire regimes of each 

study site. On the other hand, some degree of correlation was found on the temporal trends of 

local accuracy values within each study site, particularly in Portugal. Relative minimums 

coincide with low fire activity years (Figure 2), when fires patches are smaller and more difficult 

to detect by coarse spatial resolution sensors.  
 

 
Figure 1. Local accuracy values for each global product in the three validation sites through the 7-years of the study period. 

 
 

 
Figure 2. Fire size distribution (boxplots) and total annual burned area (lines, plotted on the secondary axis) in the three validation 

sites from 2000 to 2003, when fire sizes are available (years with Landsat images without the SLC-off problem) 

Conclusions 

A framework for validation is presented through a synthetic index that summarizes all the error 

components of burned area (BA) products, i.e. precision, accuracy and consistency, raised from 

its validation against independent reference data. Metrics derived from most common 

validation methods have been selected to be part of the three error components, according to 

their meanings.  

The use of this validation scheme allowed to easily compare performances of three operational 

products, providing scores for precision, accuracy, temporal stability and for the integrated 

index. MCD45 showed highest precision and accuracy, however lower stability values. MCD45 is 

slightly more accurate than the two others in Brazil and Portugal, but much more in Canada, 

although with low stability, where L3JRC and GlobCarbon present low accuracy values, in a 
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consistent way. Burned patches size and land cover may be two important factors in product 

performances and further research could be done to investigate their effects. The validation 

framework here presented will now be implemented for the validation of the BA products at a 

more extensive spatial scale around the globe.           
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Abstract 

Forest fires govern ecosystem dynamics in a way that is defined by their particular characteristics such as 
intensity, type, periodicity, etc. Unburned patches within fire scar perimeter are very important especially 
for the succession and the restoration of the affected ecosystems. The ecological importance of 
unburned islands within fire scar perimeter is high in the succession process, especially for vegetation 
types whose regeneration pattern depends on the existence of unburned inlands. Satellite remote 
sensing offers practical benefits and is an ideal tool for mapping and monitoring, while it has been 
extensively applied to map burned surfaces at various scales. The aim of our study is to explore the role 
of spectral and spatial resolution of satellite data for delineating unburned inlands within fire scar 
perimeter. For that purpose, a study case was established in one very destructive wildfire occurred in 
Parnitha, Greece on July 2007. Satellite data at multiple spectral and spatial resolution, were acquired 
shortly after the fires from LANDSAT, ASTER, and IKONOS satellite sensors. Additionally from the basic 
data set we created satellite data at coarser spatial resolution (up to 512 meters). The spectral resolution 
of the sensors covers the visible, near and mid-infrared part of the electromagnetic spectrum. Classical 
image processing algorithms were applied to correct geometrically, radiometrically and atmospherically 
the satellite images used. Additionally, classical image processing techniques were applied to classify the 
satellite data with the maximum possible accuracy. Totally 412 classifications have been implemented 
considering different combinations of spectral and spatial resolutions. Unburned inlands were delineated 
by the different satellite sensor data used in the study, and compared with reference data acquired by 
field survey and aerial photographs taken shortly after the fire. The spatial and the spectral resolution of 
the satellite data is further explored and discussed on how they influence the acquired total accuracy. It 
seems that the spatial resolution is very critical while it is associated to the scale under which the 
mapping of the burned area is implemented. The spectral resolution of the satellite sensor data is also 
critical since the spectral differentiation between different land cover types is very important to 
discriminate burned and unburned patches. Linear regressions models were fitted to characterize the 
relationships between the accuracy and several others parameters. The main findings of our research are 
(a) at combinations of high separability values, the great factor which influences the mapping accuracy is 
the spatial resolution of the satellite data, and (b) the spectral resolution seems to play a more significant 
role as the separability values of the considered satellite images become widen. 
 
Keywords:  burned land mapping, maximum likelihood, IKONOS, ASTER, LANDSAT, separability 

Introduction 

Forest fires govern ecosystem dynamics in a way that is defined by their particular 

characteristics such as intensity, type, periodicity, etc. Unburned patches within fire scar 

perimeter are very important especially for the succession and the restoration of the affected 

ecosystems. The ecological importance of these unburned islands is the reason to determine 

which resolution (spatial-spectral) affects them more, so we can delineating them better with 

further aim a proper forest management. Satellite remote sensing offers practical benefits and 

is an ideal tool for mapping and monitoring, while it has been extensively applied to map 

burned surfaces at various scales (Koutsias and Karteris 1998). According to Roman-Cuesta et al. 

(2009) the post-fire mosaic, consisting of burned patches and islands of unburned vegetation, 

depends on the same variables as those influencing fire behavior: topography, meteorology and 
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fuels (Alexander et al. 2006). The key factors that determine fire characteristics (e.g. fire-line 

intensity and rate of spread), together with fire residence times determine the unburned 

patches within the fire scar perimeter (Turner et al. 1997). Roman-Cuesta et al. (2009) also 

stated that the role of unburned islands is important in various ecological processes, e.g. 

vegetation re-establishment patterns (Turner et al. 1994), forest succession and forest structure 

(Retana et al. 2002), fauna establishment (Gasaway and Dubois 1985), in erosion control and 

watershed dynamics (Lathrop 1994). Moreira et al. (2011) report that the effects of fire on 

landscape may vary from region to region as a result of local fire history, regeneration patterns 

and topographic constraints (Viedma 2008), while there is a scale-dependent relationship 

between fire and landscape heterogeneity. 

Materials and Methods 

1.1 Study Area 

Mt Parnitha, situated in central Greece, distinguish three vegetation zones. The first one, 

extended from 400 to 1000 m, is dominated by Pinus halepensis Mill. forests, Quercus coccifera 

L., Pistacia lentiscus L., Arbutus unedo L. and A. andrachne L. formations, and phryganic 

ecosystems. The second zone extends from c.1000 m on the southern slopes of the mountain 

(and from 600–700 m on the northern ones) to 1400 m and is dominated by Abies cephalonica 

forest. Juniperus oxycedrus L. subsp. oxycedrus stands also occur and on the plateaus some 

grassland species grow. The third vegetation zone is observed on the highest mountain 

summits. This zone is vestigial and consists of spiny, caespitose and cushion-like bushes, 

together with several endemic and rare species of the high mountains (Aplada et al. 2007). 

Bioclimatically, Parnitha belongs to the subhumid zone with cold winters and the climate is 

characterized as Meso-Mediterranean for altitudes of 700–1100 m, and Sub-Mediterranean for 

the highest peaks of the mountain. The main substrates are limestones and marbles, followed 

by schists (which appear in the valleys), and some flysch. 

1.2 Satellite Data 

The satellite data used in our study come from Ikonos, Landsat and Aster sensors. Ikonos 

satellite: one satellite image acquired after the fire on 08/07/2007, with spatial resolution 4 

meters multispectral and 1 meter pan-sharpened. The spectral resolution, which consists of 

four bands, covers the visible and the near infrared part of the electromagnetic spectrum. 

Landsat 5 satellite: one satellite images which acquired after the fire on 05/09/2007. Landsat 

images have a panchromatic band with 15 meters and other seven channels with spatial 

resolution of 30 meters, which one of them is thermal with 60 meters resolution. The spectral 

resolution ranges from 0.45 to 12.5 micrometers. Aster satellite: one satellite image acquired 

after the fire on 20/07/2007. Aster images have three bands in the visible and near infrared 

part of the electromagnetic spectrum with a 15 meters resolution, six more bands in the short 

wave with a spatial resolution of 30 meters and five thermal bands with a 90 meters resolution. 



141 

 

 

 
 

Figure 1. Satellite data in the study a. Ikonos, b. Aster, c. Landsat 

1.3 Methods 

Classical image processing algorithms were applied to correct geometrically, radiometrically and 

atmospherically the satellite images used. Additionally to the basic data set, we created satellite 

data at coarser spatial resolution (up to 512 meters) using resampling techniques. The spectral 

resolution of the sensors covers the visible, near and mid-infrared part of the electromagnetic 

spectrum. The maximum likelihood classifier was applied to classify the satellite data with the 

maximum possible accuracy. Totally 412 classifications have been implemented considering 

different combinations of spectral and spatial resolutions. 

Unburned inlands were delineated by the different satellite sensor data used in the study and 

compared with reference data acquired by field survey and aerial photographs taken shortly 

after the fire. Linear regressions models were fitted to model the relationships between the 

accuracy and several others parameters. 

Results and Discussion 

Table 1 and Table 2 summarize the results of the regression analysis made. Standardized 

coefficients or beta coefficients show the expected change in the dependent variable for a 

standard deviation increase in the predictor variable. Therefore they show which of the 

independent variables have a greater effect on the dependent variable in a multiple regression 

analysis. When the analysis is made with all separability values then the spectral resolution is 

the most important since the beta coefficient is 5.80 as compared to the spatial resolution 

which is -1.29. When the analysis is made with the separability values higher 1280 then the 

spectral resolution is less important than the spatial resolution since the beta coefficient is 5.31 

as compared to the beta coefficient of the spatial resolution which is -7.36. The estimation of 

these coefficients shows sensitivity to the considered range of the values of the spectral and the 

spatial resolution. Therefore the coefficients of the models should be evaluated considering the 

range of the spectral and the spatial resolution of the cases used. Apart from the spectral and 
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the spatial resolution we evaluated also the behavior of other independent variables like the 

type of the satellite sensor (Ikonos, Aster, Landsat) and weather the data are the original or the 

resampled (simulation). 

 
Table 1. Standardized Coefficients (Beta) of the linear regression model between producer’s accuracy of vegetation with the 

independent variables considering all separability values  
R=.624 R2=0.389 

Model Standardized Coefficients (Beta) 

Spatial resolution -1.29 

Spectral resolution 5.80 

Ikonos 1.74 

Aster (resampled to 15m) 0.31 

Landsat 0.86 

Simulation 0.12 

 
Table 2. Standardized Coefficients (Beta) of the linear regression model between producer’s accuracy of vegetation with the 

independent variables considering only those cases exceed the separability value of 1280 
R=.81, R2=0.658 

Independent variables Standardized Coefficients (Beta) 

Spatial resolution -7.36 

Spectral resolution 5.31 

Ikonos 1.25 

Aster (resampled to 30m ) 0.45 

Landsat 1.82 

Simulation -0.94 

 
 

 
 a. all separability values b. separability values > 1280 

 
Figure 2. Scatter plot between producer’s accuracy of vegetation with the average separability considering a. all cases, b. only those 

cases exceed the separability value of 1280 

 

The main findings of our research are (a) the spectral resolution seems to play a more 

significant role as the separability values of the considered satellite images become widen 

(Table 1) and (b) at combinations of high separability values, the great factor which influences 

the mapping accuracy is the spatial resolution of the satellite data (Table 2). The spatial 
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resolution is very critical while it is associated to the scale under which the mapping of the 

burned area is implemented. The spectral resolution of the satellite sensor data is also critical 

since the spectral differentiation between different land cover types is very important to 

discriminate burned and unburned patches. 
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Abstract 

This paper presents the development of a classification scheme in order to assess the post-fire impact on 
the Mediterranean island of Thasos by using optical and SAR imagery and by employing object-based 
classification. For this purpose, 26 SPOT and 46 ERS1&2 images acquired during the period 1987-2010 
were appropriately pre-processed. Subsequently, the multitemporal backscatter signatures of ERS images 
were investigated for monitoring vegetation regrowth. The next steps of the methodology involved: 1) 
the development of an object-based classification scheme in order to map the basic land-cover classes in 
Thasos using SPOT imagery, and 2) the investigation whether the synergy of optical and SAR imagery 
could overcome the limitations of optical data in mapping a Mediterranean landscape.  
Results of the developed post-fire monitoring scheme indicated that the forest regeneration rate is rather 
slow even 20 years after the fire events. It can also be concluded that, the object-based classification 
procedure produced slightly more accurate results (87.89% overall accuracy) when SAR images were 
included in the analysis.  
 
Keywords: post-fire monitoring, Mediterranean landscape, optical data, SAR data, object-based 
classification.  

Introduction 

Several satellite image analysis techniques are employed in the mapping and monitoring of 

post-fire recovery.  

The most important traditional methods are image classification, Vegetation Indices (VIs) and  

Spectral Mixture Analysis (SMA). On the other hand, object-based classification, which includes 

both spectral and contextual information (Wicks et al. 2002), has been recently employed by 

Mitri and Gitas (2010) for mapping post-fire vegetation recovery using EO-1 Hyperion imagery 

with high accuracy.  

Methodologies developed for mapping land-cover types in Mediterranean regions have shown 

limitations in their applicability over wide areas mainly due to the heterogeneity of the 

landscape. This heterogeneity cannot be regarded as a simple mixing of life-forms over large 

areas but, rather, the formation of transitional zones of varying mixtures resulting from 

disturbance and recovery cycles (Shoshany 2000).  

Synthetic-aperture radar (SAR) data has been extensively used for various ecological processes 

(Kasischke et al. 1997). However, the application of SAR data in monitoring vegetation regrowth 

is rather limited (Minchella et al. 2009). Chust et al (2004) reported that a relatively good 

discrimination between dwarf shrubs and open shrublands was achieved by using a series of 

ERS images in combination with SPOT XS optical data.  

The aim of this study was to map post-fire forest regeneration and vegetation recovery on the 

Mediterranean island of Thasos by using optical and SAR imagery and by employing object-

based classification.  

The specific objectives were: 1) to investigate the potential of ERS images for the monitoring 

the vegetation regrowth in the burned areas, 2) to develop an object-based classification 
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scheme for mapping the basic land-cover classes in Thasos using SPOT imagery, and 3) to 

investigate whether the synergy of optical and SAR imagery could overcome the limitations of 

optical data in mapping a mountainous Mediterranean landscape.  

Study area and dataset description 

The study area is the island of Thasos, Greece’s most northerly island. Elevation ranges from sea 

level to 1217 m. Pinus brutia is the dominant tree species at lower elevations (0 to 800 m), 

whereas Pinus nigra is found at higher altitudes. In addition, other types of Mediterranean 

vegetation, such as maquis and garrigue (a shrubland vegetation of the Mediterranean region 

composed primarily of leathery broad-leaved  

evergreen shrubs or small trees), are also present. The fires that occurred on Thasos Island in 

1985 and 1989 resulted in the destruction of approximately 118.7 km2 and 95 km2, 

respectively, of different vegetation land cover types. Before 1984, forests and forested lands 

covered 47.5% of the island.  

The data that were used in this study consisted of the following: 1) 26 SPOT images (20m spatial 

resolution) covering the period 1986 – 2008 (summer months) acquired in different incidence 

angles (ranging from 0.7º to 29º), 2) 46 ERS 1 and 2 PRIs (Precision Image) in descending and 

ascending passes, 3) a digital elevation model with 10 m pixel size generated from a 1: 5000 

contour maps of Thasos, 4) colored orthophotos acquired between 2007 and 2009 available 

from Ktimatologio S.A. (Greek Cadastre), 5) black and white orthophotos acquired in 1996, 6) 

orthophoto land-cover maps produced in 1976 and 1977, 7) a forest service fire perimeter map 

of the two fires on Thasos.  

Methodology 

The methodology comprised three basic steps, namely, data preprocessing, the analysis of the 

multitemporal backscattering signatures, and the development of an object-based classification 

scheme for mapping the basic land-cover types on the island of Thasos.  

1.1 Data preprocessing  

This step included the preprocessing of both the optical (SPOT) and SAR (ERS) data. The 26 SPOT 

images were firstly orthorectified using the 10-meter DEM of the study area. Fifteen out of the 

26 images were finally not used in the analysis due to large RMS errors. Following, the 

remaining 11 SPOT or thorectified images (acquisition dates: 1992/02/08, 1993/07/07, 

1993/17/08, 1995/04/07, 1996/05/07, 1998/14/07, 2003/03/08, 2003/29/06, 2004/23/07, 

2006/20/08, 2007/20/07), were atmospherically corrected (Chavez, 1996) and radiometrically 

normalized (Hall et al 1991, Jensen et al 1995). The 46 ERS PRIs were orthorectified and 

radiometrically normalized using the 10m DEM by employing the SAR simulation terrain 

correction operator of NEST software (Next ESA SAR Toolbox). The s0 images were created with 

a 12.5m pixel size, while layover-shadow masks were also generated. Layover and shadowed  

areas were excluded from further analysis.  
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1.2 Analysis of the multitemporal backscattering signatures  

In order to investigate the potential of multitemporal s0 ERS images for monitoring vegetation 

regrowth in burned areas, samples were carefully chosen based on the land-cover map of the 

Island before the fires and the orthophotos of 1996 and 2007. Sample regions were chosen 

from the 2007 images and represented different land-cover types (e.g. low vegetation, 

regeneration) in the burned areas.  

1.3 Object-based classification  

The classification scheme consisted of five basic land-cover categories, namely, forested areas 

(pine trees), shrubs (this category included maquis and shrublands with scattered trees), areas 

covered with low vegetation (this category included garrigue, areas with scattered vegetation 

where soil is exposed in high degree and agricultural areas), artificial areas and bareland (this 

category included urban areas and land without vegetation cover) and broadleaves (this 

category included broadleaved trees and some agricultural areas mainly olive trees). These 

classes were chosen in order to cover the major land-cover types of the study area, without 

having to compromise the classification results by including detailed classes (Dimitrakopoulos et 

al. 2010).  

The object-based classification started with the segmentation procedure which resulted in the 

creation of image objects and was followed by the classification into the aforementioned basic 

land-cover categories using the appropriate attributes (intrinsic, topological, semantic features) 

of the resulting image objects (Benz et al. 2004). The developed object-based classification 

scheme comprised of 3 levels. In level one the land-cover categories were mapped using only 

the SPOT images. Features such as the mean (mean intensity of all pixels forming an object) and 

NDVI values were used to achieve optimum separation of the classes. Five classes were created 

at this level: 'forest’, 'broadleaves', 'low vegetation', 'shrubs' and 'artificial areas/bareland'. At 

level two the s0 ERS images were employed in order to enhance the classification of the class 

'forest', which was created at level one since a confusion between forested areas and areas 

covered with dense shrubs was observed. Class 'not forest' was finally created at level two. The 

last level of the classification served as to combine the two results from level one and two. The 

final classes that were created were: 'forest a' (class 'forest' excluding the areas which were 

classified as 'not forest' at level two), 'broadleaves', 'low vegetation', 'shrubs' and 'artificial 

areas/bareland'. The development of the classification scheme was based on 5 SPOT images 

and ERS s0 images and which was subsequently transferred to the remaining images in order to 

classify the land-cover categories.  

Results and discussion 

From the multitemporal analysis of the backscatter signatures, not clear conclusions could be 

drawn, given that similar land-cover types showed different mutlitemporal behaviour. However, 

it has to be noted that the signal from low vegetated areas showed high dynamics which could 

be attributed to weather conditions, while the signal from undisturbed forested areas showed 

an increasing trend, a behaviour that could be attributed to increasing forest biomass (Figure 1).  
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The main difficulty during the development of the classification scheme was the confusion 

between forested areas and areas occupied by shrubs with dense vegetation cover. This 

confusion could be explained by the spectral overlap among the two vegetation types due to 

the topographic effect, the canopy shadows, and the illumination conditions. The use of ERS 

imagery in the process helped in slightly overcoming this problem, given that even after the 

inclusion of the s0 information the confusion between the two land cover types could not be 

solved in some areas.  

In addition, both SPOT and ERS images showed limitations over the mountainous region of 

Thasos Island. Almost half of the available SPOT images could not be used due to the high 

incidence angle by which the images were acquired, while a large part of the ERS images could 

not be analyzed due to the layover-shadow effect. In order to assess the classification accuracy 

the appropriate descriptive statistics were generated. The stratified sampling method was 

employed and reference points were identified using the colored orthophotos. Overall 

classification accuracy was estimated to be 87.89% while overall kappa was equal to 0.8318.  

 
Figure 1. Behaviour of backscatter through time corresponding to three different land-cover categories. Y-axis is showing the 

backscatter coefficient (db).  
 

11 classification maps of the five basic land-cover classes were finally created. In order to assess 

the post-fire forest regeneration and vegetation recovery the classification maps of 1996/05/07 

and 2007/20/07, were used. The analysis was performed in a GIS environment using the fire 

perimeters of the 1985 and 1989 fires and the land-cover map of the Island which were 

generated from the digitization of the ortho photo land-cover maps that were produced before 

the fires. Statistics were extracted for each of the land-cover class existed before the fires. 

Results showed that only a small area of the burned forests has been regenerated (Figure 2) 

indicating a very slow regeneration rate even almost 20 years after the fire events. In addition, 

it can be observed that in fire affected areas, low vegetation is been replaced gradually by 

shrubs (Figure 2).  

 

 
 
 
 
 
 
 
 
 
 

Figure 2. Statistics extracted for forested areas that have been burned in 1989 (left) and 1985 (right). Figures show which land-cover 
categories dominate the burned areas based on the classifications using images acquired in 1996 and 2007.  
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Conclusions 

Based on the aim and objectives of this work the following conclusions can be drawn: 1) from 

the multi temporal analysis of the backscattering coefficient for monitoring vegetation 

regrowth, not clear conclusions could be extracted. However, the signal of undisturbed forested 

areas showed an increasing trend which could be attributed to increasing forest biomass, 2) the 

use of object-based classification for mapping basic land-cover categories when employing 

SPOT images resulted in a very accurate (87.89% over all accuracy) and transferable 

classification scheme, 3) the synergy of optical and SAR imagery overcame slightly the 

limitations of optical data in mapping a Mediterranean landscape, especially the confusion 

between forested areas and areas covered with dense shrubs.  
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Abstract 

The aim of this study is to test and compare different remote sensing techniques to define burned areas 
in Liguria. The test area is the Monte Fasce site, affected by a huge fire in September 2009. The work is 
based on the Landsat TM and the QuickBird images acquired before and after the event. We considered 
bands, PCA, texture analysis and several spectral indices reported in literature. The indices were 
compared empirically and using two algorithms (ROI separability and the software SEATH) to find the 
most suited ones to detect the burned zones. Once the base data have been characterised, the burned 
area was extracted using different methods: thresholds, decision trees, the Maximum Likelihood 
classification, the ENVI and RHSEG segmentation and the Change Detection technique. The maps' 
accuracy of the areas covered by fire was estimated by comparing the satellite data with those taken on 
the ground by the Forest Service and the ones provided by a visual analysis of the post-event QuickBird 
image. The best results were obtained with the multitemporal technique computing the pre- and post-
image difference: the Landsat data give an overall error of 22.75% applying a multithreshold technique 
with the indices NDVI, NBR and NBRT; the QuickBird data show an error of 22.8% using the NDVI index. 
Future improvements should envisage a methodology to reduce the error and a thorough analysis on a 
range of burned areas in the Liguria region. 
 
Keywords: burned areas, Liguria region, remote sensing, Landsat, QuickBird 

Introduction 

Fires are a major cause of depletion and degradation of the Liguria region.  According to the 

Italian law 353/2000, municipalities are expected to create a register showing the events 

occurred, their location and their perimeter, with the aim of applying the fifteen-year constraint 

to no-change of land use and the ten-year constraint to not-suitability for building, grazing and 

hunting (LQMIB 2000). It is within this context that our project develops an experimental 

activity on burned areas detection through remote sensing. To date, there is not a standard 

procedure to identify and map burned areas. We aim at identifying the most appropriate 

approach to achieve a fast and semi-automated delineation of burned areas in the Liguria 

region. 

Materials and methods 

Monte Fasce (44°24'34'' N, 9°02'04'' E) is located just behind the town of Genoa. From 6 to 13 

of September 2009 (CFS 2009) this area was affected by a huge fire that destroyed around 1200 

ha of vegetation. The prevailing injured land covers are: grassland (49%), shrubs (16%), mixed 

conifer and broadleaf high forest (11%), simple mixed coppice (9.5%), simple coppice of 

Quercus ilex L. (3.5%), high forest of tall pines (3%) and cultivated land (2.3%). 

The analysis is based on remote sensing data that include pre- and post-fire images acquired by 

medium and high geometric resolution sensors, in particular: two Landsat-5 TM images from 31 
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August 2009 and 23 September 2009; two QuickBird images from 11 May 2009 and 27 

September 2009. 

Additional data used in this work are a forestry map, the forest fire archives based on ground 

fire observations done by the Italian National Forestry Service and a validation perimeter 

provided by Consorzio LAMMA-Toscana through a visual analysis over a cutting of the post-

event QuickBird image.  

The main phases of processing are summarized in the diagram of Figure 1. All the satellite 

images (already orthorectified) were radiometrically corrected to convert Landsat TM digital 

numbers and QuickBird relative radiance to exoatmospheric reflectance, as described in 

V.V.A.A. (2008) and (DISAT 2011). Besides a scene-to-scene atmospheric normalization using 

pseudoinvariant features was applied between the pre- and post-event images (Krause 2005).  

 

 

 

 

 

 

 

  

 

 

 

 

 
Figure 1.  Scheme of the main phases of the work. 

 

Based on previous burned area studies, some spectral indices were selected and calculated. 

Then they were compared through visual analysis and using two algorithms, the ENVI ROI 

separability function (V.V.A.A. 2008) and the SEATH software (V.V.A.A. 2010), in order to 

evaluate their capability to discriminate between burned areas and other land covers. The 

indexes finally chosen are reported in the following table:  
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Table 1.  Indices considered in the study. 
 

NDVI 
	�") − )�") + )  [7] 

NDII 
HI") − �")HI") + �") [8] 

NBR 
�") −J")�") +J") [9] 

NBRT 
�") − �J") ∗ H(L	��") − �J") ∗ H(L	� [10] 

SAVI 
�1 + M� ∗ ��") − )N ��") + )N + M  [11] 

BI O ∗ 0.098 + ) ∗ �−0.352� + �") ∗ 0.957 [12] 

 
In addition we considered the raw bands and we applied the Principal Component Analysis.  

Starting from these base data, the detection of burned areas was carried out using different 

techniques: simple thresholds (Chuvieco et al. 2002), Decision Trees (V.V.A.A. 2008), the 

Maximum Likelihood classification (V.V.A.A. 2008) and the ENVI and RHSEG segmentation 

(V.V.A.A. 2008; RHSEG). These methods were applied to both post-fire images and temporal 

differences. 

In the final phase the classifications accuracy was evaluated comparing the burned area maps 

with the ground data and the fire perimeter derived from visual interpretation of the post-fire 

QuickBird image. The parameter considered is the overall error, calculated using the following 

function: 

OVERALL ERROR  =  ( (COM + OMI) / VAL 
 
) * 100 

 

where COM and OMI are respectively the commission and the omission errors and VAL is the 
validation area. 

Results 

Table 2 provides the overall errors obtained comparing the Landsat and the QuickBird images 

elaborations with the Forest Service's ground data. The multitemporal analysis shows the 

smallest errors. In particular the best combinations are the Decision Tree function applied to 

NDVI, NBR, NBRT (25.2%) for Landsat and the Threshold technique applied to NDVI (34.8%) for 

QuickBird.  
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Table 2. Overall, commission and omission errors obtained for different parameters and methods using as validation data the Forest 
Service's profile (dtr: Decision Tree; ml: Maximum Likelihood; segm: segmentation) 

 

 

LANDSAT  

MONOTEMPORAL 

NDII+BI 
NDII+BI

+B6 

NDVI+NDII+NB

RT 

NDII+NB

RT 
NDVI+NBR+NBRT 

PCA(noB

6) 
PCA BANDS 

NDII+ 

NBR 

dtr dtr dtr ml dtr dtr ml segm 
ml_PC2,4

,5 

ml_PC3,

6 
segm segm 

OVERALL  

ERROR (%) 
41.014 42.881 38.203 41.135 38.014 37.780 41.339 37.228 47.997 49.638 51.580 42.201 

COMMISSION  

ERROR (%) 
8.910 4.708 4.912 3.537 4.958 5.215 2.864 4.512 2.494 2.676 12.636 3.129 

OMISSION  

ERROR (%) 
32.104 38.173 33.291 37.598 33.056 32.565 38.475 32.716 45.503 46.962 38.943 39.072 

 
 LANDSAT  

MULTITEMPORAL 

QB  

MONOTEMPORAL 

QB  

MULTITEMPORAL 

NDII+NBR NDVI+NDII+NBRT NDVI+NBR+NBRT NDVI 
NDVI-

SAVI 
BANDS+NDVI NDVI-DIFF 

dt ml dt ml dt ml segm envi_segm dt segm thres 

OVERALL 

ERROR (%) 
29.943 30.313 25.884 26.232 25.265 25.695 28.121 39.100 78.532 

Image too 
 large 

34.843 

COMMISSION  

ERROR (%) 
15.410 4.179 6.628 5.086 6.696 5.608 5.003 12.152 19.461 6.993 

OMISSION  

ERROR (%) 
14.533 26.134 19.256 21.146 18.569 20.088 23.118 26.948 59.071 27.851 

 

In order to understand the reason of the errors pointed out, Consorzio Lamma was asked to 

make a new delimitation of the burned area through a visual analysis over a cutting of the 

QuickBird image. Comparing this new perimeter with the Forest Service's profile (Figure 2a), the 

difference is relevant. The Forest Service's shape turns out to be less detailed, showing the 

difficulties of ground delimitation. The new fire perimeter was then used as validation data 

(Figure 2b-c) and the new resulting error values for the two best combination seen above are 

22.7% for Landsat and 22.8% for QuickBird. The error trend remains however unchanged so 

that the ground data are still valid for a comparison between the different techniques. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2.  a) Overlay of LAMMA's and Forest Service's profiles.  b- c) Commission (blue) and omission (red) errors obtained 
comparing Landsat (b) and QuickBird (c) best results with LAMMA's profile. 

 
On the other side, a more detailed profile is necessary to establish the origin of the real error, 

with the aim of reducing it. The overall error can be split in the two components, omission and 

a) b) c) 

          7.402 % 
        15.355 % 

 

          1.874 % 
        20.934 % 

 

        LAMMA  
        Forest Service  
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commission. In all the test (i.e. Figure 2b-c), the leading factor is the first one, reflecting what 

was seen using the Forest Service's perimeter as validation data (Table 2). Then, we also 

checked the areas of confusion, verifying that the largest part of the omission areas is located 

on the shady side of the mountains. The remaining part of error instead overlaps with the 

boundary lines.  

The fact that the geometric high-resolution images provide worse results (using the Forest 

Service's profile) or equivalent ones (using the LAMMA's profile) with respect to the medium-

resolution images may be due to different reasons. First of all, the QuickBird images used in this 

study are Standard 2A products (normalized for topographic relief with respect to the reference 

ellipsoid using a coarse DEM), creating co-registration problems when employing a 

multitemporal approach. Moreover, QuickBird data lack medium and thermal infrared bands, 

preventing the computation of some important indices. Finally, we have to consider that the 

ground data contain errors due to the difficulties of field campaigns in a territory such complex 

from the topography point of view and that these errors become even worse with the 

improvement of the image resolution. 

Conclusion 

In this study, we observed that the Decision Tree function applied to NDVI, NBR and NBRT for 

Landsat image and the Threshold technique applied to NDVI for QuickBird image provide the 

greatest results for mapping the Monte Fasce burned area in Liguria. Further work will be 

focused on the topography influence on the mapping errors and testing the methods over other 

burned areas in Liguria. 
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Abstract 

Large fires (LFs) are becoming more frequent in some areas of the Mediterranean Basin. LFs tend to occur 
under extreme weather conditions and their occurrence is predicted to increase due to the changes in 
weather and climate caused by global warming. LFs are not homogeneous. They are usually characterized 
by heterogeneous patches of fire severities, which can have long-lasting effects on the post-fire 
communities and on the landscape. Hence, understanding the role of the main factors driving fire 
severity is of upmost importance in LF–prone areas. In this study we assessed the role of 28 predictive 
variables on fire severity in a very large fire that occurred in the summer of 2005 in Guadalajara (Central 
Spain). The predictive variables were divided into four main groups (vegetation-related; topography-
related, human-derived and burning condition), so the effects of each group of variables could be 
independently assessed. Fire severity was estimated from the Relative difference of the Normalized Burn 
Ratio (RdNBR) obtained from two Landsat TM images of the area (pre- and post-fire). The RdNBR was 
then related to the predictive variables by using complementary boosted regression tree (BRT) and 
regression tree analysis (RTA). First, each group of variables was independently used to model fire 
severity; later, the significant variables from each group were combined in a fifth fire severity model. Our 
results suggest that, when considered independently, the topography-related variables explain the 
greatest variability of RdNBR (50%), followed by vegetation (24%), human-derived (20%) and burning 
condition variables (17%). However, when all variables were considered together, the variance explained 
by the model increased considerably (76%).  Topographic wetness (soil humidity), topographic complexity 
(elevation and slope), vegetation structure (basal area of Pinus pinaster and number of trunks of Quercus 
pyrenaica), distance to roads, distance to villages and burning conditions (mainly, position in relation to 
the fire advance) interacted in a hierarchical and non-linear way to explain fire severity variability. Higher 
severities were found in areas with high solar radiation and medium to high soil humidity conditions, 
where conifer forests of Pinus pinaster were dominant, and in areas with lower solar radiation and at 
high elevation, where number of trunks of Quercus pyrenaica was higher; whereas lower fire severity 
values were found in the lowest illuminated areas and steep slopes with high density of deciduous 
species. Also, higher severities occurred near to roads and at intermediate distance to villages, where 
there was greater fuel accumulation and high basal area of Pinus pinaster; whereas lower fire severities 
were found in areas very distant to roads and near to villages very close to villages, with greater presence 
of shrublands of Cistus sp. Finally, higher severity values were found in the front fire and the windward 
flank under high speed winds; and fire severity was lower in the leeward fire flank and in areas that 
burned at night, under cooler conditions. These results support the idea that fire severity is the result of 
complex and non-linear relationships between biophysical conditions, land management and specific 
burning conditions. 
 
Keywords:  fire severity; decision trees; land uses; fire weather conditions; large fires 

Introduction 

Wildfires are a recurring phenomenon in many regions of the world, and they can cause major 

modifications in the landscape. The intensity of wild fires, and therefore the severity of the 

damage, is affected by several factors, including the properties and quantity of available fuel, 

the topography of the affected area, or the nature and intensity (if any) of suppression 
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activities. Several studies have investigated the relation between environmental variables and 

fire severity (Alexander et al., 2006, Hammill and Bradstock, 2006, Odion et al., 2004). However, 

the degree to which fire severity varies as a result of fuel condition, topography and/or weather 

conditions remains poorly understood (Schoennagel et al., 2004, Thompson and Spies, 2009). 

Moreover, very little is known about the effects of human-related variables or the burning 

conditions on fire severity. The aims of the present study were: (1) to determine how much (if 

any) fire severity can also be explained by human-derived and burning condition variables and 

(2) to assess the relative importance of environmental variables over human-related and 

burning conditions variables for predicting patterns of fire severity. In this study, the term “fire 

severity” will be used to account for the amount of change in a burned area with respect to the 

pre-fire conditions (as suggested by Keeley, 2009). 

Methods 

Study area 

In summer 2005, the Guadalajara fire (in central Spain) swept through 12,697 ha (Fig. 1). The 

area affected by the fire was mountainous, with elevations ranging between 1000 and 1400 m, 

and considerable slope variability (from 0 to more than 30 degrees). The burned area was 

mainly composed of sandstones (77%), with some areas of limestone and dolomite (14%) and 

slate and quartzite (9%). The area affected by the fire was dominated by mixed forests of Pinus 

pinaster Aiton with scattered oaks (Quercus pyrenaica Willd., Q. faginea Lam.) in the understory 

(80% of the burned area). Shrubs were common under the canopy, and also in open areas, 

where it formed shrublands (8% of the burned area). The fire also affected some smaller areas 

of broadleaved woodlands (8% of the total burned area) dominated by Quercus pyrenaica and 

Q. faginea. Finally, Juniperus thurifera L. woodlands occupied 4% of the burned area. 
 

 
Figure 1. Location of the study area. False color composite of a Landsat TM image captured after the fire 

 

Estimation of the response variable: fire severity 

Fire severity was estimated using two Landsat 5 Thematic Mapper (TM) images, corresponding 

to July 1st, 2004 (pre-fire) and August 5th, 2005 (post-fire). The original Landsat 5 TM images 

were first scaled to radiance values using the procedure proposed by Chander y Markham 
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(2003). The atmospheric correction was performed using the dark object method proposed by 

Chavez (1996). A set of 70 ground control points was selected for the geometric correction of 

the pre-fire image, using a Landsat ETM+ ortho-image as reference (from the CORINE 2000 

project, UTM 30 T European 1950 mean). A linear polynomial function and a cubic convolution 

re-sampling algorithm were chosen to minimize the loss of spatial accuracy of the data. The 

resulting Root Mean Square Error (RMSE) was under half a pixel (or 15 m). Then, pre- and post-

fire images were co-registered (RMSE<15 m). The illumination correction was carried out using 

a digital terrain model (DTM, 10 m of resolution) and the method proposed by Civco (1989). The 

radiometric fitting between pre- and post-fire images was tested by comparing spectral 

signatures of the pixels corresponding to areas with low seasonal changes (asphalt and rock). 

The comparison of reflectance values returned a RMSE of 0.02. 

Fire severity was estimated as the relative delta normalized burn ratio (RdNBR): 

 

RdNBR = PreFireNBR−PostFireNBR)/(SquareRoot(ABS(PreFireNBR/1000))) 

 

 Where, NBR = (band4-Band7)/(Band4+Band7) 

 

The RdNBR has previously shown good correlation with the Composite Burn Index (CBI), 

proposed by  Key and Benson (2006) in order to provide consistent and comparable estimations 

of fire severity, as well as with the modified version of this index, called GeoCBI (De Santis and 

Chuvieco, 2009).  

The explanatory variables 

Twenty eight independent variables were considered for predicting fire severity in this large 

fire. They were classified into four major groups: (1) Vegetation-derived variables (pre-fire 

vegetation composition and structure), (2) Topography-derived variables, variables that are 

related to topographic wetness and topographic complexity, (3) Human variables, variables 

related to the level of accessibility and the management of the area; and (4) Burning condition 

variables, variables related to the weather conditions during the fire progression and position in 

relation to the fire front. These variables were derived from previously existing maps, extensive 

field work and geographic information systems. 
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Table 1. Contribution (in percentage) of the explained variance of the obtained BRT models for the explanatory variables. The 
variables that exceeded the expected contribution under an even distribution of explained variance are highlighted in bold. 

 

  Fire severity model (BRT) 

Vegetation Topography Human 
Burning 

cond. 
Combined 

V
ar

ia
b

le
s 

V
eg

et
at

io
n

 
Forest type 20.0    4.1 
Basal area_Pinus 28.2    6.5 

Basal_area Qp 9.3     
Basal_area Cistus 4.9     
Number trunks_Pinus 7.2     
Number trunks_Qp 25.6    5.7 

Number trunks_Cistus 4.8     

To
p

o
gr

ap
h

y 

Curvature  8.3    

Elevation  12.6   9.1 

Flow  8.5    
North  7.2    

West  7.7    
Radiation_summer  6.8   6.2 

Radiaton_winter  9.3   6.0 

Slope  11.8   9.4 

Stream  6.0    

Topographic Wetness Index  14.7   10.9 

H
u

m
an

 

Ownership   14.9  2.7 

Distance to Roads   46.7  7.9 

Distance to Villages   38.4  6.1 

B
u

rn
in

g 
C

o
n

d
. 

Position within the fire perimeter    24.3 3.8 
Time of burning    6.6  
Humidity during burning    10.9  
Max temp during burning    5.5  
Mean temp during burning    14.1 3.6 
Min temp during burning    8.7  
Wind_direction during burning    16.3 3.6 
Wind_speed during burning    13.6 1.9 

R2 0.24 0.50 0.20 0.17 0.76 

NRMSE (%) 97.0 90.0 97.0 92.0 55.0 

Statistical analysis 

We assessed the relationship between fire severity (RdNBR) and the predictor variables by 

using Boosted Regression Trees (BRT) (Friedman et al., 2000) and Regression Tree Analysis 

(RTA) (Breiman et al., 1984). First, each group of variables was used independently to model fire 

severity (i.e., vegetation, topography, human-derived and burning condition variables); then, 

the significant variables from each group were combined in an independent fire severity model. 

BRT models were used for predictive purposes because of their ability to handle complex and 

non-linear interactions (boosting and cross-validation algorithms). RTA was applied for 

descriptive purposes, since it allows the analysis of hierarchical interactions and threshold 

predictor behaviours (Prasad et al., 2006). 

Results and discussion 

The results of the BRTs models are summarized in Table 1. When considered independently, the 

topography-related variables explained the greatest RdNBR variability (50%), followed by 

vegetation (24%), human-derived variables (20%) and burning conditions (17%). However, 

when all variables were considered together, the explained variance increased considerably 
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(76%). These results suggest that, although the environmental variables (i.e., topography and 

vegetation) explain the majority of variability in fire severity, information related to human 

activities and burning conditions can also aid to explain this variability. 

For the combined BRT model, topographic wetness (soil humidity), topographic complexity 

(elevation and slope), vegetation structure (basal area of Pinus pinaster and number of trunks 

of Quercus pyrenaica), distance to roads, distance to villages and burning conditions (mainly, 

position in relation to the fire front) interacted in a hierarchical and non-linear way to explain 

variability in fire severity. Burning condition variables occupied the highest level of the 

hierarchical structure. Thus, high values of severity were associated with the fire front and the 

windward flank under high speed winds; whereas lower severities were found in the leeward 

fire flank and in areas that burned at night. Vegetation, topography and human-derived 

variables were responsible for the fine tuning of the fire severity model. Higher severities were 

found in areas with high solar radiation and medium to high soil humidity conditions, where 

forests of Pinus pinaster were dominant, and in areas with lower solar radiation and at high 

elevation, where the number of trunks of Quercus pyrenaica was higher; whereas low fire 

severity was found in the lowest illuminated areas and steep slopes, with a high density of 

deciduous species. Also, higher severities occurred near roads and at intermediate distances to 

villages, where there was greater fuel accumulation and high basal area of Pinus pinaster; 

whereas lower fire severities were found in areas very distant to roads and close or very far to 

villages, with greater presence of shrublands of Cistus sp. The application of the regression tree 

approach highlighted the relative importance of the studied variables for predicting fire 

severity. These results support the idea that fire severity is the result of complex and non-linear 

relationships between biophysical conditions, land management and specific burning 

conditions.  
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Abstract 

Fire risk assessment involves considering a wide range of variables, both related to estimate fire 
occurrence and potential fire effects. This lecture will focus on defining a comprehensive fire risk 
information system for global scales, although the basis may be adapted to different temporal and spatial 
scales. 
Fire occurrence factors have been traditionally classified in three groups: Fuels, Heat source and Oxygen. 
In the case of wildland fires, heat source is mostly related to the starting of the fire (fire ignition), and can 
be further divided in natural-caused (lightning, volcano eruption) and human-caused. Oxygen is needed 
for combustion, and it is mostly related to fire propagation, being the critical parameters wind speed, 
direction and slopes. Fuels are both related to fire ignition (the drier, the more likely to ignite) and 
propagation (the more fuel load available, the more energy will be released and favour further ignition). 
Fuel moisture is associated to short-term weather factors, topographic conditions and soil characteristics, 
while fuel load and geometrical properties are related to climate, soil and land use patterns. In addition 
to these factors, fire risk assessment should also consider the potential damages caused by fires, which 
are very much dependent on fire characteristics (energy released, residence time, flame length, etc.).  
Even though some of the methods to derive the required variables for such a system have been derived 
in the last few years, still little experience is available on how to apply them to a global scale. In addition 
to, additional efforts should be invested on improving current integration tools, as well as providing a 
more consistent framework for accuracy assessment.  
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Abstract 

In the framework of wildfire fighting in Mediterranean regions, fire risk planners need updated daily 
vegetation combustibility maps. Current research developed by both forest and meteorological services 
(“Office National des Forêts”, “Météo-France”) aims to map vegetation sensitivity to fire during drought 
period homogeneously for all French Mediterranean regions. This "static" combustibility map is based on 
an interpretation of a vegetation map, combustibility index values are assigned according to vegetation 
behavior and to bioclimatic zones. The next step will be to produce a "dynamic" mapping of vegetation 
sensitivity to fire risk merging vegetation charac-teristics and daily meteorological dryness maps.  
Concurrently, the authors have developed indicators of vegetation sensitivity to fire based on time series 
of re-mote sensing images (MODIS). This approach is based on the analysis of series of vegetation index 
values related to annual and inter-annual variations of chlorophyll activities and green biomass 
development, to map indicators linked to fuel dryness and to express fire danger:  
- A spring greenness indicator to characterize the vegetation status at the end of spring; 
- An annual greenness indicator that reflects vegetation drying up in summer and used for the analysis of 
spatial and temporal variations of vegetation fire susceptibility. 
This paper aims to present the attempts made to identify the complementarity of the two approaches. 
Remote sensing indicators can be used on the one hand to express the spatial variability of the 
vegetation dryness, and on the other hand to be integrated into the regular update process of 
combustibility index calculated from meteorological data.  
 
Keywords: fire risk mapping, NDVI time series, MODIS, annual RGRE  

Introduction 

In the framework of wildfire fighting in Mediterranean regions, fire risk planners need updated 

daily vegetation combustibility maps. Current research developed by both forest and 

meteorological services (“Office National des Forêts”, “Météo-France”) aims to map vegetation 

sensitivity to fire during drought period homogeneously for all French Mediterranean regions 

(Duché et al., 2011). A combustibility map is based on an interpretation of a vegetation map, 

combustibility index values are assigned according to vegetation behavior and to bioclimatic 

zones. Weekly maps of vegetation sensitivity to fire risk are produced merging vegetation 

characteristics and daily meteorological dryness maps. 

Concurrently, the authors have developed indicators of vegetation sensitivity to fire based on 

time series of remote sensing images (MODIS) (Chéret and Denux, 2011). This approach is 

based on the analysis of series of vegetation index values related to annual and inter-annual 

variations of chlorophyll activities and green biomass development, to map indicators linked to 

fuel dryness forest fire susceptibility. 

An yearly greenness indicator that reflects vegetation drying up in summer and used for the 

analysis of spatial and temporal variations of vegetation fire susceptibility (Chéret and Denux, 

2007). For a given pixel, the annual RGRE is calculated from: 
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NDVImax: the maximum NDVI observed at the end of spring (June), 

NDVImin Phase 1: the minimum measured before onset of spring greenness (March-April) 

NDVImin Phase 2: the minimum NDVI  attained during the driest period (August or September), 

 

Annual RGRE = (NDVImin Phase 2 – NDVImin Phase 1) / (NDVImax – NDVImin Phase 1) 

 

This work presents the attempts made to identify the complementarity of the two approaches. 

Remote sensing indicators can be used to express the spatial variability of the vegetation 

dryness. We focus on the analysis of the potential of the annual RGRE to improve the mapping 

of the spatial variability of the combustibility index.  

The study area is Aude and Pyrénées-Orientales provinces, in the South of France, covering 

10,255 km². The extent of forest and wildland is about 6,250 km². The Western part of the 

territory is under Mediterranean climate influence, characterized by a very dry and hot 

summer, and where spring is the wettest season, Mediterranean vegetation, mainly composed 

of evergreen sclerophyllous species, is very sensitive to fire. In the South-West, mountainous 

areas benefits from a cooler and wetter climate and the vegetation is dominated by 

mountainous species less sensitive to fire. 

We processed a time series of MODIS Terra Normalized Difference Vegetation Index (NDVI) 

produced at 231x231 m spatial resolution and 16 day compositing periods (MOD13Q1) (Huete 

et al., 2002; Justice et al., 1998). The data set spans 9 years from March 2000 to December 

2008, acquired from the Land Processes Distributed Active Archive System 

(http://edcimswww.cr.usgs.gov/). For each 16 day synthesis a mean synthesis was processed 

from these 9 years, in order to create a mean annual series of NDVI used to generate a mean 

annual RGRE. 

The maps of figure 1 present the combustibility index, the mean annual RGRE and the limits of 

the biogeographic zones. These biogeographic limits plainly divide the combustibility index 

values. The mean annual RGRE values are consistent with the biogeographic zones but changes 

are more gradual than those of the combustibility index. In the mountain area, positive RGRE 

values match low combustibility values. Overall the study area, increasing combustibility and 

decreasing RGRE follow the succession of the biogeographic zones: mountains, hills, plain and 

Mediterranean lowland. However, in the Mediterranean area this gradient is reversed. 

Combustibility is low along the coast, covered mainly by shrubs, and increase from east to west, 

where Holm oak coppices are growing. Oppositely, the highest values of RGRE are found for the 

eastern Mediterranean shrubland. The annual RGRE showing summer decrease of vegetation 

activities can be interpreted as vegetation dryness and it can be related to inflammability rather 

than combustibility. 
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Figure1. Maps of the mean annual RGRE (left) and combustibility index (right) for Aude and Pyrénées-Orientales provinces (France) 

 

Mean annual RGRE values were extracted for each forest types mapped for the study area. In 

mountainous and hilly zones dominated by deciduous oaks, beech and chestnut forest stands, 

RGRE values for each type are homogeneous, as illustrated in figure 2a for deciduous oaks 

coppices characterized by combustibility index value of 2 or 3. Most of the Mediterranean 

vegetation shows RGRE values widely spread. The histogram of RGRE values extracted for 

Mediterranean shrubland (figure 2b) covers the whole range of RGRE values meanwhile its 

combustibility index values rank from 5 to 6 with limited spatial variability. This can be 

understood as a lack of thematic precision in the forest map used, where not enough distinction 

was made between shrubs types. Furthermore, in Mediterranean lowland, local constraints 

linked to climatic conditions (localized rainfall or dry wind) and to edaphic factors (soil water 

content) can be highly variable. 

Our hypothesis is that RGRE variability has the capability to take into account local vegetation 

dryness in the area where wildfire risk is the most important and could be used as 

complementary information of the combustibility index.  
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Figure2. Histograms of the mean annual RGRE values extracted for deciduous oak coppices (a) and for Mediterranean shrubland (b) 

Method 

The purpose is to evaluate the capability of RGRE to assess local variations of hydric constraints. 

To validate this interpretation in the Mediterranean lowland a regression analysis (Leblon et al., 

2007) was made with climatic and edaphic factors newly designed to assess these local 

variations of water availability. Meteorological data (temperature and rainfall) acquired from 

weather stations network and soil parameters (soil water holding capacity) from national survey 

were interpolated over the study area with a spatial resolution similar to MODIS images. These 

data were available monthly from 2000 to 2008. They were used to process indices mapping 

climatic and edaphic factors (Lebourgeois and Piedallu, 2005; Piedallu and Gégout, 2008; 

Piedallu et al., 2011) to be used to analyze the spatial variability of RGRE (table 1). RGRE is 

designed to characterize vegetation behavior in summer. The indices were integrated over 

different period of time to take into account not only summer season and but potential effects 

of previous months on water availability. 

 
Table 1. Climatic and edaphic factors used in this study (source: LERFOB) 

Climatic index definition Soil index definition 

ST sum of mean temperature SWC 

SWHC 

Soil water content 

Soil water holding capacity 

SR sum of rainfall REW Relative Extractable Water: 

REW=SWC/SWHC 

PET sum of potential 

evapotranspiration 

SI Stress Index: SI=SWC/PET 

HB hydric balance:  

HB=SR-PET 

AET Actual evapotranspiration : 

AET=R-(SWC(t) – SWC(t-1)) 

BI Bioclimatic index:  

BI= SR/PET
 
 

ED Evaporation deficit: 

DE=PET-AET 

IM De Martonne index:  

IM=SR/(ST+10)  

AI Aridity index: 

AI=AET/PET 
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Results 

Table 2 shows the Pearson coefficient of determination between the mean annual RGRE and 

climatic and edaphic indices. All the indices show significant correlation with the remote 

sensing indicator. The period of time allowing the best correlation covers spring and summer 

seasons for most of the indicators. Roughly, the indices using soil properties display higher r² 

values than those based only on meteorological data. 

 
Table 2. Correlation analysis between annual RGRE and climatic and edaphic factors (all r² are significant at the .01 level) 

Climatic index period r² Soil index period r² 

ST March - August 0.33 SWC March - August 0.30 

SR July - August 0.50 REW March - August 0.58 

PET March - August 0.29 SI March - August 0.37 

HB July - August 0.45 AET July - August 0.55 

BI March - June 0.20 ED March - August 0.62 

IM March - August 0.34 AI March - August 0.62 

 

The sum of rainfall alone expresses 50% RGRE variability. The three indices integrating actual 

evaporation estimates present the best r² values.  This may validate the capability of the RGRE 

to express local variation of vegetation hydric status. The regression model presented could be 

improved using multiple linear regression tools. However some important climatic factors, like 

wind, cannot be easily included in the analysis. 

These first results show that annual RGRE could be used to weight combustibility index to 

assess local variability at pixel resolution. Annual RGRE is an efficient way to take into account 

biogeographic conditions as a gradient rather than an abrupt limit. Next investigation will aim 

to use the potential of RGRE to provide yearly information on vegetation status and to include 

temporal variability in combustibility index calculation. 
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Abstract 

The conceptual definition of a fire risk assessment system should include the most relevant components 
associated to the fire process. Fire occurrence factors have been traditionally classified in three groups: 
Fuels, Heat source and Oxygen. In the case of wildland fires, heat source is mostly related to the starting 
of the fire (fire ignition), and can be further divided in natural-caused (lightning, volcano eruption) and 
human-caused. Oxygen is needed for combustion, and it is mostly related to fire propagation, being the 
critical parameters wind speed, direction and slopes. Fuels are both related to fire ignition (the drier, the 
more likely to ignite) and propagation (the more fuel load available, the more energy will be released and 
favour further ignition). Fuel moisture is associated to short-term weather factors, topographic 
conditions and soil characteristics, while fuel load and geometrical properties are related to climate, soil 
and land use patterns. In addition to these factors, fire risk assessment should also consider the potential 
damages caused by fires, which are very much dependent on fire characteristics (energy released, 
residence time, flame length, etc.).  
Following these ideas, a comprehensive fire risk assessment system has been developed within the 
Fireglobe project (www.fireglobe.es), funded under the Spanish Program for Science and Research. To 
implement the proposed risk framework, the first phase focused on the generation of risk factors for the 
whole Spanish Iberian territory (both the Canary and the Balearic islands were not considered at this 
stage). Human factors, lightning probability, fuel moisture content of both dead and live fuels, and 
propagation have been considered. Additionally, fire vulnerability has been assessed by analyzing values 
at risk and landscape resilience. Once the variables were generated, the fire risk model was defined by 
integrating the input variables using statistical and physical approaches. Finally, the validation has been 
performed using fire statistics derived from the fire seasons of 2010 and 2011. 
 
Keywords:  Fire Risk, Fuel Moisture Content, Vulnerability, Human factors, Fire propagation 

1.1 Fire risk conceptual framework 

Forest fires are a major factor of environmental transformation in a wide variety of ecosystems 

(FAO 2007), while they also have important impacts at global scale, both in terms of land use 

transformation (affecting habitats and biodiversity) and gas emission (Chuvieco 2008). Recent 

impacts of severe fire seasons in Europe (Portugal, 2005; Greece, 2007; Russia, 2010) have 

made the importance of improving current fire risk assessment systems evident for alleviating 

the most negative effects of fire. 

Any fire risk assessment system should aim to provide certain functions that are either not 

currently available or are unsatisfactory. In most operational fire risk assessment systems, the 

main objectives are to improve the pre-fire planning actions or improve the suppression 

actions. The end-users are fire managers at local or regional administrations. The conceptual 

definition of a fire risk assessment system should include the most relevant components 

associated to the fire process. Traditionally, fire ignition and propagation has been concerned 
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with three factors: Fuels, Heat source and Oxygen. The heat source can be either natural-

caused (lightning, volcano eruption) or human-caused, being the latter the most extended 

worldwide. Oxygen is needed for combustion, and it is mostly related to fire propagation, being 

the critical parameters wind speed, wind direction and slope gradient. Fuels are both related to 

fire ignition (the drier, the more likely to ignite) and propagation (the more fuel load available, 

the more energy will be released and favour further ignition). Fuel moisture is associated to 

short-term weather factors, topographic conditions and soil characteristics, while fuel load and 

geometrical properties are related to climate, soil and land use patterns. 

A comprehensive risk assessment system should also consider the potential damages that may 

be caused by a natural hazard. In the case of forest fires, the actual damages are very 

dependent on fire behaviour (energy released, residence time, flame length, etc.), which is not 

known before the fire. Therefore, the estimation of potential damages is based on expected 

scenarios, the worst-case and average conditions being the most common. Those conditions are 

commonly based on historical trends of weather variables for the target region, but modelling 

approaches are also very useful, especially when considering medium-term changes of weather 

or land use patterns as a result of climatic or socio-economic changes. 

Figure 1 includes the components of a fire risk system that we have developed within the 

framework of the Fireglobe project, funded under the Spanish Science and Innovation program.  

It includes the physical probability that a fire starts or propagates, and the potential damages 

that it may cause. The former component is named fire danger throughout this document, 

whiles the latter, named vulnerability, includes damages related to socio-economic and 

ecological values.  

 
 

Figure 1. Proposed Framework for an integrated fire risk assessment system (adapted from Chuvieco et al. 2010) 

 

To implement the proposed risk framework, the following steps should be carried out: 

• Generation of risk factors, using a common geographical unit. A target scale and spatial 

resolution needs to be defined, in relation to the sources of data available.  

• Model calibration. Input variables of the risk index are measured in a very different 

scale (%, m, m/s), and they must be integrated using a sound model that provides 
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objective assessment of risk conditions. This model should be properly parameterized 

for a wide set of input conditions. 

• Validation. The proposed system should be compared with actual impacts of fire to 

quantify its performance for different ecosystem types and for various fire 

characteristics. 

• Dissemination of risk information, defining the mechanisms to transfer the computed 

indices to the end-users, including temporal updating. 

1.2 Methods to generate risk factors 

There is a wide variety of studies published in the last decades on methods to generate relevant 

data for fire risk assessment. Table 1 provides a summary of the methods and input variables 

used in the Fireglobe project. All variables were mapped at 1 km2 spatial resolution using the 

UTM as standard projection system. 

 
Table 1. Sources for the main inputs of the Fireglobe risk assessment system 

Factor Methods Input variables 

Human factor  Spatial analysis. 
Statistical approach 

Land use change, Population density, Income, Socio-
economic conditions, Properties, Distances to roads or 
urban areas 

Lightning Statistical approach Meteorological data, Lightning strikes, forestry maps 

Live Fuel Moisture 
Content 

Field work 
Meteo-models 
Statistical approach 

Satellite images, simulation models 
 

Dead FMC Meteo-models Meteorological data  

Fuel types Field work 
Classification techniques 

Forestry maps. Corine Land Cover map.  
Digital terrain models 

Socio-economic 
vulnerability 

Economic analysis 
Sample studies 

Wood and non-wood products statistics, Forestry inventory 
and maps, Hunting, Fishing and recreational use of forests 
statistics, Pastureland prices, CO2 prices, Housing prices 

Ecological 
vulnerability  

Field work 
Ecological/erosion models 

Soil, Vegetation and land use maps, Protected areas, 
satellite images, Digital terrain data, Ecoregions, Climatic 
maps 

 

The impacts of human factors on fires can be considered as both a cause and an effect. The 

former studies are more abundant, since human activities are the most common cause of fires. 

Identifying the most important factors of fire occurrence has been the main goal of a wide 

range of studies, commonly based on statistical approaches, which try to explain historical 

human-caused fire occurrence from a set of independent variables (Chou et al. 1993; Chuvieco 

et al. 2003; Martell et al. 1989; Martínez et al. 2009; Vega-García et al. 1995). The consideration 

of human values in fire risk assessment is more recent and only a few regional studies have 

identified that the main socio-economic damages potentially caused by wildland fires are 

associated to lives, properties, and environmental services (wood products, hunting, fungi, 

carbon stocks, recreational…).  

Even though most fires are human-caused worldwide, the importance of fires caused by 

lightning cannot be underestimated, since they account for a significant part of all fires in low 

populated areas (> 30% in the Boreal forest, for instance). To include this variable in fire risk 

models, a good knowledge of spatial distribution of lightning strikes is required, as well as a 
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better understanding on why a strike becomes an ignition point (Dissing and Verbyla 2003; 

Larjavaara et al. 2005; Renkin and Despain 1992).  

With respect to fuel moisture content status (FMC, commonly expressed as percentage of dry 

weight), the most common approach has been the estimation through moisture codes based on 

weather data.  The spatial estimation of these indices is commonly based on interpolation 

techniques or on gridded forecasted data (Aguado et al. 2007). The FMC of live plants has been 

approached from satellite data, both using empirical and simulation methods (Chladil and 

Nunez 1995; Garcia et al. 2008; Yebra et al. 2008).  

Fire propagation potential was modelled in this project using the Behave model (Rothermel 

1983). As an approximation of fuel type mapping, the forestry map of Spain was used, and 

updated for some categories using the CORINE land cover map at 1:200.000.  

For assessing the potential impacts of fire, and therefore which areas might be more affected if 

burned, two synthetic variables were derived. On one hand, the ecological vulnerability, which 

was based on an estimation of the number of years any cell in our study area would recuperate 

its pre-fire conditions, and on the other the socio-economic values at stake. This latter variable 

has in turn two components: values of houses that may be burned in case of fire (those close to 

the forest interface), and ecosystem services that may be affected (including wood prices, 

firewood, cork, pine nuts, pasture, hunting, CO2 sinks, fishing and recreational services.  

1.3 Integration 

The integration of input variables is being based in statistical and physical approaches. 

Probabilistic scenarios are being considered for human and natural causes, while the 

propagation is based on fire behavior models and vulnerability is based on production and 

utility functions and expressed in monetary units. 

The validation will be based on the fire seasons of 2010 and 2011. Preliminary results show 

significant differences between high and low risk areas in terms of fire occurrence. 
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Abstract 

Fuel landscape structure determines wildfire occurrence and propagation. The pervasive abandonment 
the rural mountainous Mediterranean landscape has undergone in past decades has highly influenced 
fuel arrangements and loads in many areas. The relationship between landscape homogenization and 
increased hazard conditions has been studied before, using medium-resolution sources of remote 
sensing data (i.e. Landsat). High-spatial-resolution analyses of spatial fuel arrangements and their 
influence on local fire hazard are very scarce, though. We selected fires occurred between 2006 and 2010 
in several Mediterranean regions in Spain: Aragón (1399 fires), Cataluña (1383), Castilla-La Mancha (144) 
and Comunidad Valenciana (1165). We analyzed local fuel structure by applying texture and several 
kernel measurements to blue, green, red and near infrared bands in 0.5 meters-resolution ortophotos 
acquired before the fires occurred. We then studied the relationship between the spatial configuration of 
the fuels in the burned area of each forest fire and the spatial configuration of the fuels in not-burned 
areas. Where developmental perimeters were available for each fire (perimeters at successive time steps 
of the fire spread until final burned area is reached), directional texture and kernel measures were 
computed and tested for agreement with propagation direction 
 
Keywords: Fire spread, High spatial resolution, Fuels, Spatial pattern, Ortophotos  
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Abstract 

The current climate change trend in the Mediterranean and more specifically in Greece causes longer 
summer droughts and intensification of these droughts even out of season. Also, extreme weather 
events, such as periods of high temperatures, strong air dryness and very strong winds, as well as sudden 
storms with heavy rainfall in only few hours are becoming frequent. As a result, the frequency of large-
scale forest fires is on the rise and the same holds true about soil erosion which is aggravated when such 
fires are followed by heavy rains a few days later. When a period of drought and high temperatures is 
followed by a day of peak temperatures, low relative humidity and very strong winds, fire danger reaches 
extreme levels and multiple fires can easily get out of control creating havoc.  
In order to investigate fire danger in correlation with meteorological conditions in Greece, the Canadian 
Fire Weather Index (FWI) was used in the context of the current study. FWI is a daily meteorologically-
based index designed in Canada and used worldwide to estimate fire danger in a generalized fuel type. 
The FWI System provides numerical ratings of relative fire potential based on weather observations. FWI 
components depend solely on daily noon measurements of dry-bulb temperature, air relative humidity, 
10 m open wind speed and 24 h accumulated precipitation. FWI consists of 6 standard components each 
measuring a different aspect of fire danger. The first three are fuel moisture codes that follow daily 
changes in the moisture contents of three classes of forest fuel with different drying rates. The remaining 
components are fire behavior indices representing the rate of spread, fuel weight consumed and fire 
intensity. 
In this study, an evaluation of the index applied to current fire data for Greece is initially performed. 
Additionally, the index is correlated to observed meteorological data over a 7-year period, with particular 
emphasis on the most vulnerable region of Southern Greece. The study aims to establish whether FWI 
values and its components can adequately reflect fire risk as judged by actual fire occurrence and area 
burnt. New thresholds of elevated (FWI>15) and extreme (FWI>45) fire risk are established in accordance 
with previous studies. 
Subsequently, a regional climate model with a high horizontal resolution of 25x25km is used to provide 
input for the FWI system in order to investigate the impacts of climate change on fire risk for two future 
time periods - 2021-2050 and 2071-2100. Days with extreme fire risk are expected to increase over the 
domain of interest with a maximum value of 30 days occurring by the end of the century, in Eastern 
Peloponnese and the Attica Peninsula. 
 
Keywords: fire risk, forest fires, FWI, meteorological conditions, RCMs 

Introduction 

Forest fires have always been present in the Mediterranean ecosystems. Throughout history, 

human induced or naturally caused forest fires imposed their impact on natural environment. 

The last few decades though, the number of forest fires has significantly increased, as well as 

their severity and impact on the environment. An average of 50,000 fires sweep away from 

700x103 to 1000x103 ha of Mediterranean forests per annum (FAO 2007), causing enormous 

economic and ecological destruction. In particular, the data collected reveal that, according to 

the average burnt area per fire, Greece has the most severe forest fire problems among the 
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European Union countries (EU 2001). It has been estimated that the average area burnt per fire 

was 39.4 ha in Greece, 28.47 ha in Spain, 19.74 in Italy and 15.29 in Portugal (Iliadis et al. 2002).  

Forest fires are highly sensitive to climate change because fire behavior responds immediately 

to fuel moisture (Weber and Flannigan 1997; Stocks et al. 2001). Thus, the projected increase in 

temperature will increase fuel dryness and reduce relative humidity and this effect will worsen 

in those regions where rainfall decreases. Accordingly, increases in climate extreme events are 

expected to have a great impact on forest fire vulnerability (Beniston 2003).  

The contribution of meteorological factors to fire risk is simulated by various non-dimensional 

indices of fire risk. Viegas et al. (1999) validated several such indices in the Mediterranean 

against observed fire occurrence, with the Canadian Fire Weather Index (FWI, van Wagner 

1987) amongst the best performers. The FWI model is non-dimensional, based on physical 

processes and has been used in many different locations, therefore it seems a sensible basis for 

exploring the mechanisms of fire risk change.  

In this study, an evaluation of the index applied to current fire data for Greece is performed 

with particular emphasis on the most vulnerable region of Southern Greece. The study aims to 

establish whether FWI values can adequately reflect fire risk as judged by actual fire occurrence 

and to estimate the potential projected changes in fire risk. 

Data and methods 

In our study, the fire data were provided by the Forest Special Secretariat of the Ministry of 

Environment, Energy & Climate Change. Fire data concern inventory of forest fires that 

occurred in the period 1991-1997 throughout Greece.  

Meteorological data covering the 7-year period (1991-1997) were obtained from the Hellenic 

National Meteorological Service. Mean daily values from two stations (Elliniko-37° 44' N. 23° 44' 

E, Kalamata-37° 04' N. 22° 10' E) were used in order to compute daily values of FWI.  

Due to the different meteorological conditions prevailing in the eastern and western areas of 

Southern Greece, the domain of interest was split into two parts covering the eastern 

Peloponnese and the Attica Peninsula (Eastern Domain) and the western Peloponnese (Western 

Domain).  

 
Figure 1. Map of Southern Greece, where the two domains are displayed.  

 

Forest fire risk was assessed using the Canadian Fire Weather Index (FWI). FWI is a daily 

meteorological-based index used worldwide to estimate fire danger in a generalized fuel type. 
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Although it has been developed for Canadian forests, several studies have shown its suitability 

for the Mediterranean basin (Moriondo et al. 2006). The FWI System provides numerical ratings 

of relative fire potential based solely on weather observations. FWI components depend on 

daily noon measurements of dry-bulb temperature, air relative humidity, 10m open wind speed 

and 24 h accumulated precipitation and are described in detail in van Wagner (1987). FWI 

consists of 6 standard components each measuring a different aspect of fire danger. The first 

three are fuel moisture codes that follow daily changes in the moisture contents of three 

classes of forest fuel with different drying rates. The remaining components are fire behavior 

indices representing the rate of spread, fuel weight consumed and fire intensity. 

Results  

1.1 Forest fire records and FWI validation 

The following table concerns cumulative data on burnt area and the number of fires occurred in 

the eastern and western domain respectively on each year in the period 1991-1997. 
 

Table 1. Burnt area and number of fires per year for the Eastern  and the Western Domain during 1991-1997 period. 

 
Burnt Area (ha) Number of fires 

Eastern Domain Western Domain Eastern Domain Western Domain 

1991 2668,9 570,6 119 91 

1992 28436,5 5652,8 312 224 

1993 13486,6 6754 301 292 

1994 3567,1 2495,7 212 182 

1995 4367,3 3768,2 188 214 

1996 4643,2 1040,9 162 146 

1997 2307 3355,8 138 239 

Total 59476,6 23638 1432 1388 

 

The table depicts an almost total predominance in burnt area and the number of fires of the 

Eastern Domain. That is due to several factors, such as the larger extent of the Eastern Domain, 

population, the density of infrastructure and the climate. Most fires are caused by human 

activities, deliberately or by negligence (Pausas & Vallejo, 1999), and in this way it is expected 

to have more fire events on a highly populated area. 

The FWI was classified in categories of bin with size 1 and the average value of the number of 

fires that occurred at each category was calculated for both domains (Figure 2). It should be 

noted that the increased variability in high FWI values results from the decrease in the 

frequency of occurrence of high index values. The best estimated polynomial fit was applied on 

the data. The turning points of both fitted equations were calculated at FWI ≈ 15 and FWI ≈ 45. 

This implies that at FWI ≈ 15 the fire risk is starting to increase and one fire in two days occurs 

when FWI ≈ 15. The FWI ≈ 45 value indicates extreme fire risk, while one fire occurs in each day 

with FWI ≈ 45. These values are in accordance with Moriondo et al. (2006) and Good et al. 

(2008) that resulted at the same threshold values with different methodologies. Therefore, FWI 

≈ 15 and FWI ≈ 45 are set as thresholds for elevated and extreme fire risk, respectively.  
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Figure 2. Mean number of fires per day against FWI (black line) and the respective polyonimal fit (red line) for the Eastern (left) and 

the Western Domain (right) for 1991-1997 period.   

1.2 Future Projections 

Present and future model data from the Regional Climate Model RACMO2 were used in this 

study. The model was developed within the framework of the ENSEMBLES Project, by the Royal 

Netherlands Meteorological Institute (KNMI), at 25km horizontal resolution. The control run 

represents the base period 1961-1990 and is used here as reference for comparison with future 

projections for the periods 2021-2050 and 2071-2100. For the study region, maps produced 

illustrating the change in the number of days with extreme fire risk (FWI>45) between the 

reference and the two future periods (Figure 3). 

In the near future, namely 2021-2050, the most considerable increases are estimated in the 

eastern part of Peloponnese and the greater part of Attica with up to7 and 10 more days of fire 

risk per year, respectively (Fig 3a).On the other hand, by the end of the century (2071-2100), 

most part of the Eastern Domain may experience increases of up to 30 days per year, with the 

Attica Peninsula being the most vulnerable part of the domain. Smaller increases of up to 12 

days may occur on the Western Domain (Fig 3b). 

 

 
 
 

Figure 3. Projected changes in the number of days with extreme fire risk (FWI>45) during (a) the first future period (2021-2050) and 
(b) the second future period 2071-2100. 
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Conclusions 

FWI was confirmed to be skillful in predicting fire occurrence for the vulnerable area of 

Southern Greece. The resulted thresholds FWI ≈ 15 and FWI ≈ 45 for elevated and extreme fire 

risk, respectively, are in accordance with Moriondo et al. (2006) and Good et al. (2008).  

The future projections suggest a general increase in fire risk over the domain of interest with a 

very strong impact in the eastern Peloponnese and Attica. For the near-future period 2021-

2050, the number of days with extreme fire risk increases up to 10 more days per year in the 

eastern part of the study area. By the end of the century (2071-2100), the increase is 12 and 30 

days in the Western and Eastern Domain, respectively. 
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Abstract 

This article presents the new forest fire emissions module in the European Forest Fire Information System 
(EFFIS). The European Forest Fire Information System (EFFIS) systematically delivers since 2000 series of 
burnt area statistics mapped from satellite imagery. A previous emission module in EFFIS, built on 
classical methodologies of fuelmap-based emission estimation, has been revisited here. Since 2009, the 
Rapid Damage Assessment module in EFFIS provides daily increases of the burnt areas and perimeters 
based on MODIS imagery. This improvement made EFFIS a unique system, with no equivalent in accuracy 
for both local (fire-by-fire) and regional (covering whole Europe) scales. The new methodology exposed 
here makes use of this near-real time fire information, and additionally implements a more detailed 
module to better assess the burning efficiency, a key parameter impacting largely the fire emission 
estimation. The main improvement concerning burning efficency modelling in respect to the previous 
European emission estimates is the modelling of the burning efficiency not only with fuelmap-
dependency, but also accounting both for the fuel moisture damping effect and the feedback of the fire 
intensity itself.  Results on the application of the new EFFIS emissions module for a Greek large fire in 
2009 and for the entire 2009 fire season are presented and compared to previous estimates in the 
system. A sensitivity test to different burning efficiency models has been performed, showing the large 
differences with models where only the fuel-dependency is considered, or when a coarser empirical 
model of moisture damping effect is used. The systematic application of the methodology will start in 
EFFIS operational system in 2011 and will lead to an enhanced estimate of forest fire emission over 
Europe. 
 
Keywords: European Forest Fire Information System, forest fire smoke plume emissions 

Introduction 

Biomass burning events are large sources of gases, particles and heat releases in the 

atmosphere. These fires widely vary in three aspects: which pollutants are emitted, in what 

proportions and with which energy. These direct or immediate consequences of forest fires are 

a major issue for air pollution (Miranda et al., 2004; Goldhammer, 2009), climate and health 

(Liousse et al., 1996; Wu et al., 2007) 

For almost three decades the estimation of trace gases emissions from vegetation fires has 

been based on the “fuel map” –based method proposed by Seiler and Crutzen (1980). This 

approach is based on information on the burnt surface extent, the amount and type of biomass 

burnt (fuel types, fuel loads), and the conditions under which fires take place (combustion 

efficiencies); finaly emission factors are used to estimate the amount of emissions of each 

species (gases and particles). All these variables are affected by high uncertainties, often 

reaching more than 50% in the final emission estimates at the global scale (Liousse et al., 2004). 

Currently, large use is made of detailed space borne data to help reduce such uncertainties, as 

shown by recent comparison exercise at global scale (Jain, 2007; Stroppiana et al., 2010). 

A new alternative approach to this “fuelmap”-based approach has emerged recently (Wooster, 

2002; Wooster et al., 2005; Roberts et al., 2005). Burned biomass is directly retrieved from the 
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fire radiative power/energy provided by satellite products, without any assumptions on burning 

fuel types. This approach is actively tested all over the world (Kaiser et al., 2011). One of the 

main uncertainties in this approach is linked to the relationship between energy and emitted 

masses of pollutants and for instance, Kaiser et al. finally calibrates their estimates using 

estimates from the fuelmap-based approach. 

In spite of all these uncertainties and because real-time information are now increasingly 

needed for operational use in  rapid fire damage assessment, operational fire emission systems 

have been recently developed both at the global (MACC system) (Kaiser et al., 2011) and 

regional scales (EFFIS system) (San Miguel et al., 2011). The European Forest Fire Information 

System (EFFIS) provides one of the finest resolution fuelmap-based operational system, 

allowing to retrieve the required spaceborne information for estimating forest fire emissions 

over Europe. Since 2000, burnt area information over Europe is mapped from satellite imagery 

at the highest available resolution. Additionally, information on fuels is also available, with fuel 

types identified at 250m resolution (Sebastian-Lopez et al , 2002). Based on this information, 

fire emission estimations are performed (Barbosa et al, 2009; San-Miguel-Ayanz et al. 2011). 

More recently, in 2009, the sytem has gained in accuracy with retrieval of daily increases of the 

burnt areas and burning perimeters using MODIS imagery. This improvement makes EFFIS a 

unique European system, with no equivalent in spatial and temporal resolution to retrieve in 

near-real time, with precise fire information, both at local scale (for each fire) and at 

continental scale burnt area information covering the entire Europe. 

The present article reports on new improvments on the classical “fuelmap”-based approaches, 

especially on revisiting the burning efficiency estimations and the choice of emission factors, 

and on the use of the near-real time fire information. After detailing the methodology in section 

2, results are shown both at single fire scale and for whole Europe in section 3. A sensitivity test 

(section 4) has been conducted by degrading the estimation of burning efficiencies, with more 

classical approaches to evaluate the impact of such variations upon the data set. Results and 

prospects are then discussed in section 5. 

Methodology 

The key factors influencing the European forest fire emissions are fuel types, meteorological 

conditions, topography, and the fire itself (fire intensity evolving during the combustion 

phases).  Typically, here in the approach, these key factors are taken into account in the 

following steps:  (1) retrieval of  information on  fire location (position of fire fronts and  

backfires, or location of burnt areas if the  fire history cannot be reconstituted finely enough in 

real time), (2) identification of  topography,  meteorological fields and  fuel composition at that 

site, (4) evaluation of two key variables:  fuel moisture (% of relative humidity in fuel) and  fire 

intensity (kW/m2), (5) assessment of  burning efficiencies and amounts of fuel burnt (or fuel 

consumptions) during the different combustion phases (smoldering/flaming), and finally, (6) 

evaluation of emissions from burnt fuel loadings. The main improvements from previous 

methods are thus: (1) a more precise estimation of  the burning efficiency, accounting not only 

for fuel properties, but also for meteorological factors and for the fire intensity itself, (2) an 

update of the emission factors from the most recent literature, and (3) the  use of the most 
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recent fire information (daily updates of burnt areas and perimeters from MODIS imagery). In 

the EFFIS system, the current fuelmaps are from Sebastian-Lopez et al. (2002), which are 

compatible with the US-NFDRS fuel nomenclature, using standard fuel properties (fuel loads, 

fuel depth,...) (Deeming et al., 1978). Use was also  made  of  canopy forest type classes from 

the most recent high resolution forest type maps (Kempeneers et al., 2011). A new fuelmap is 

under development in the EFFIS system which will be incorporated in a near future.  

1.1 Burning efficiency estimations 

The simplest method to estimate burning efficiency is a fuel-dependent (Leenhouts, 1980; 

Liousse et al 1996; Barbosa et al., 2009) method, clearly more suited for emission inventories at 

lower time resolution (mainly for monthly estimates in climate models). More developed 

approaches required for high temporal resolution systems do also involve a fuel moisture 

damping effect and an estimation of fire intensity, crucial factors of short-term variability of 

burning efficiency. Two types of models (propagating and non-propagating) do take into 

account such dependency. The propagating models spatially reconstitute the fire behaviour and 

the associated burning efficiency, like the mathematical model FARSITE (Finney et al., 2004) or 

the physically-based models WFDS (Mell et al., 2005) and FIRETEC (Linn et al., 2002). Non-

propagating models include the emipirical relationships of the CFFDRS Canadian model 

(CFFDRS, 2007), providing both fire behaviour (fire intensity, rate of srpead) and fire effects 

(burning efficiency, fire emissions). They also include models for fire behaviour like NEXUS 

(Scott and Reinhardt, 2001), separated from models for fire effects model like FOFEM5 

(Reinhardt, 2003) or FEPS (Anderson et al., 2004). 

Propagating models, though particularly promising, are not yet able to assimilate 

measurements of burnt areas and burnt perimeters. Thus, in this paper, a non-propagating 

approach was developed. The Canadian CFFDRS system has been discarded for use in Europe, 

mainly due to the shrub class lack. A coupling between the fire behaviour and fire effects 

modelling has been developed here including the NEXUS model for fire behaviour calculations, 

the FOFEM5 model for fire effects of woody fuels, and the CONSUME3 model for fire effects of 

non-woody fuels. This model was preferred to the FOFEM5 for non-woody fuels since, in 

FOFEM5, additional distinction is made on regionalisation in the US continent, a refinement not 

adapted to the European region. Let us note that the FOFEM5 system has recently been shown 

to be well adapted to European woody fuels by Bacciu et al. (2009) for Mediterranean bush 

fires in Sardinia (Italy) during 2007. 

The large variability in a day of the fuel moisture content (FMC) of fine dead fuels, mainly due to 

the variability in a day of the meteorological factors, is taken into account in our system: this 

parameter is known to be largely impacting the burning efficiency. Meteorological fields are 

from the COSMO-EU model, at 3hour and 7km resolutions, provided by the German 

meteorological institute DWD German Meteorological model. The FMC for other dead and 

living fuels than the fine dead fuels are estimated on the basis of a lower temporal resolution 

(daily at best) : (1) the FMC of large dead fuels are derived from the fire danger assessment 

module in EFFIS (San-Miguel-Ayanz et al., 2011), (2) the FMC of living herbaceous fuels are 

derived from the method proposed by Yebra et al. (2008) for MODIS vegetation indices, which 

has shown to give coherent FMC values in Europe, (3) the  FMC for shrub fuels, quite variable 
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between European sites, cannot be easily derived from satellite products on a continental scale 

(Chuvieco et al., 2004). In this case, a more validated approach considering meteorologically-

based indices (drought code), has been used here (Viegas et al., 2001; Pellizzaro et al., 2007). 

Finally, (4) the FMC of canopy in the model follows a seasonal variation (Alexander et al., 2010) 

from a set of empirical data (Dimitrakopoulos et al., 2003; Mitsopoulos, 2010). Note that the 

curing effect (transition from living to dead fuels in dry season) has not been considered: its 

implementation in the EFFIS fire danger assessment module is currently under development. 

Finally, the common problem in non-propagating models of the not accessible precise location 

of the fire front, was raised here, with a need to manage together (1) the 3hr resolution of the 

fine dead fuel FMC with the coarser daily resolution of the burnt area and perimeter increase, 

and (2) the fine spatial resolution (250m) of the fuelmap with the coarser daily increase in fire 

area and perimeter. This problem has been handled with the use of an additional assumption: 

an hypothesis has thus been made of equiprobable events of burning one particular fuel type or 

the other within one given fuelmap cell in by daily burnt areas. Consequently, as a first step, for 

each fuel type encountered in the daily burnt area increase, a disaggregation of the burning 

efficiency from the day to a 3-hr evolution has been performed, proportionally to the 3-hr 

intensity of the rate of spread. Then, averaging has been made over all fuel types, using 

individual fuel type burning efficiencies weighted by the percentages of surface coverage by 

such fuel type in burnt areas. 

1.2 Emission estimations 

Emissions were estimated for the main pollutants emitted by fires, namely CO2, CO,CH4, 

PM2.5, PM10, NMHC, VOC, NOx, BC, OC, SO2, NH4, BaP and levoglucosan. The emission factors 

in the existing fire literature are often relative to large ecosystems (temperate, tropical forests) 

(Andreae and Merlet, 2001), but they are not provided by individual fuel components (living 

grass, shrubs, small, medium, large dead fuels, canopy,...) in the fuel models. A few papers 

however present more details by fuel components, but either for a restricted list of fuel 

componenrts (Battye and Battye, 2002; Miranda et al., 2005), or from more ancient literature 

for the entire list of fuel components (Leenhouts, 1998). They all provide differentiated 

emission factors for flaming and smoldering combustion phases, but only Miranda et al. (2005) 

(MI2005) provide emission factors for combustion phases adapted to European biomass 

burning. However, MI2005 does not provide emission factors for duff and for dead woody fuels, 

and does not include emission factors for SO2, NH3, BaP and levoglucosan. Thus, EF values were 

first taken here from MI2005 for grasslands, shrublands and canopy, and then complemented 

for  fine dead fuels by values from Battye and Battye (2002) and Leenhouts (1998) and, for  

medium/large dead fuels from Leenhouts (1998) only. Missing EF for some species (SO2, NH3, 

BaP, levoglucosan) were adapted from Andreae and Merlet (2001). 

Results  

Zoom on a Greek fire in 2009 

The method was tested in the largest fire of the 2009 fire season occurred in the Attiki  region 

(Greece) between August 22nd and 23rd, with  final burnt areas of 20,520 ha and more than 80% 
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burnt the first day (Figure 1). This fire had a behaviour typical of very large fires, with estimated 

plume injection height of about 6km, clearly visible (not shown here) in  IASI-CO satellite 

products (Clerbaux et al., 2009). This contrasts with highermost injection height of 4km 

traditionally observed for Mediterranean fires (Lavoue et al., 2000). Modelled fire intensity 

(Figure 1 center right) is found quite different between August 22nd and 23rd. This is largely due 

to differences in burnt areas (Figure 1 center left) whereas meteorological factors and fuel 

moisture only poorly differ from one day to the other. Total CO emissions every 3hour display a 

diurnal cycle with large differences between August 22nd and 23rd. 

 

  
Figure 1. MODIS imagery of the fire (left),  MODIS-based burnt area increases between August 22nd and 23rd (center left),  fireline 

intensity and rate of spread (values multiplied by 100) (center right),  comparison of results of the three simulations for  CO 
emissions (left). 

Biomass burning emissions during the 2009 fire season   

We have focused on the five European Mediterranean most fire affected countries: France, 

Greece, Italy, Portugal and Spain. In 2009, the other countries with significant fires were 

Albania, Bulgaria and Sweden, but  with less than 4% cotntribution in the 2009 burnt area total 

of the European Union. 

Burnt areas in the five quoted countries amount to 238000 ha.  In our system, the CO emission 

total amounts to 260Gg, with 32%, 30% and 22% of this total  respectively for Spain, Portugal 

and Greece, the most fire affected countries. Greek CO fire emissions are issued for 40%  from  

22nd-23rd August fire in Attiki region. 

CO emission amount was compared to other emission inventories in the context of 

collaborations during the intercomparison exercise BBSO-2 (Stroppiana et al., 2010) and from 

JRC previous estimate (San Miguel et al., 2011). These emission inventories were provided at 

global scale, with different grid resolutions, all about 1°x1° resolution. Total amounts were 

derived from these inventories for the five EU Mediterranean countries mostly affected by fires. 

As seen in Table 1, our estimate for the year 2009 is slightly higher but of the same order than 

the previous JRC estimate (San Miguel et al., 2011). As shown by San Miguel et al., the 2009 

emission amount is among the lowest in the period 2003-2009, whereas the 2003 one is the 

highest.  The comparison for the year 2003 shows a very high range of uncertainty in Europe. In 

2003, MODIS-based data let appear two different types of results: the previous JRC estimate, 

relying on purely MODIS burnt area products, show lower values than the Chin et al. (2002) 

estimate, based on composite MODIS active fire and burnt area products. GFED v2 and v3 are 

more tightly linked to MODIS burnt areas than to active fires (resp. Giglio et al., 2006 and Giglio, 

2010) and their estimates are quite comparable to the ones from San Miguel et al. The MOPITT-

based approach, an independent method relying on inverse source modelling from  EO-based 

CO column retrievals, provides estimates in the middle range. The highest estimates are 

basically relying on active fire data, e.g. ones from Mieville et al. (calibrated by GBA2000 BA 
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product) and from Chin et al. The L3JRC product exhibit highly different results (Stroppiana et 

al., 2010), mainly due to problems of threshold in the burnt area retrieval, particularly over 

temperate regions. 

 
Table  1.  Comparison of CO total amounts from various emission inventories 

 CO emission amounts Region Reference 

EFFIS system 0.644 (2003), 0.299 (2004), 0.523 (2005), 0.264 (2006), 0.384 (2007), 0.104 

(2008), 0.147 (2009) 

Whole EU Mediterranean Region *San Miguel et al. 

GBA-ATSR 1 2.7 (2003) 5 countries Mieville etal., 2010 

L3JRC 13.3 (2003) 5 countries Tansey et al., 2008 

MODIS-based 3.7 (2003) 5 countries Chin et al. 2002 

GBA-ATSR 2 0.217 (2003)  Ito and Penner, 2004 

MOPITT inverse  1.2 (2003) 5 countries Petron et al., 2005 

GFED v2 1.16 (2003) 5 countries Van der Werf et al., 2006 

GFED v3 0.63 (2003) 5 countries Van der Werf, pers. comm. 

This study 0.261 (2009) 5 countries This study 

 

Sensitivity to the burning efficiency model 

Burning efficiency (BE) is a key parameter in fire emissions. As already stated, major inventories 

at large spatial and temporal scales only display model fuel-dependent BE. Let us denote S0 the 

current inventory here. In a S1 scenario, the same BE model as in San Miguel et al. (2011), with 

only fuel-dependent BE, has been considered, whereas in a S2 scenario, the complex physcially-

based FOFEM5 model for woody fuels has been replaced by the more simple empirical 

relationships for woody fuels provided by CONSUME3. Five different test areas in Europe have 

been selected for throrough comparison: two large fire zones  in Portugal, other zones being 

located in Corsica, Sardinia and Greece. These zones were chosen because they totalize large 

amounts of fires in 2009, while clearly showing different fuel type patterns from  zone to zone, 

with grassland/shrublands being the largely dominant fuel type in western Portugal, eastern 

Portugal and Greece, against transitional shrublands/woodlands in Corsica and perennial 

grasslands and  agricultural grasslands in Sardinia. About forest type coverage of  burnt areas in 

test zones, non forested areas largely dominate. Relatively to  other zones, high coniferous 

proportions are found in the eastern Portuguese zone and in Greece (mostly mixed with shrubs) 

and high broadleaved proportions are found in Sardinia. 

Comparing the three scenarios on the  basis of  resulting burnt biomass amounts by fuel type 

and  combustion phases (Figure 2), the highest amounts are found for the S0 and S1 scenarios, 

as compared to S2, showing the large differences obtained when moisture damping is 

considered. We note that S2 does not account for canopy fires, but impact of canopy is 

relatively small in each region when compared to  other fuel components, mainly due to poor 

relative representation of this fuel stratum. The difference of BE modelling in S0 and S1 bearing 

on dead woody fuels (brown color in Figure 2), the former generally exhibits lower CO amounts, 

and significantly larger amounts in the smoldering phase relatively to the flaming ones. This also 

reveals the strong sensitivity of flaming/smoldering relative emission contributions to the BE 

modelling. 
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Figure  2. Evolution of burnt biomass (tons/year) in the five selected regions (left), according to fuel types and combustion phases. 
Left: chosen regions, center left : S0 scenario, center right: S1, right: S2 

 

Conclusion 

A new methodology been applied to evaluate fire-by- fire the emissions in the European zone 

covered by the EFFIS system.  Main improvements in respect to other emission inventories are 

on  burning efficiency modelling, considering not only fuel type-dependence, but also moisture 

damping and the impact of fire intensity itself on the distribution  of emissions during the 

different combustion phases. These parameters have been found  largely impacting burnt 

biomass. Improvements also include the updating of emission factors using recent literature 

data. The systematic application of the methodology will start in EFFIS operational system in 

2011 and will lead to an enhanced estimate of forest fire emission over Europe. Prospects for 

this new emission model are numerous and diverse, with future developments on dead/living 

grassland/shrubland curing, but also distinction between broadleaf deciduous and broadleaf 

evergreen in the canopy coverage, since variability exists in the fuel parameters between these 

two canopy classes. Moreover, implementation of a new European fuel map is presently 

ongoing in EFFIS. This emission model is already adapted to associated fuel properties which 

may replace the US-NFDRS default properties currently used. Finally, an approach combining a 

fire propagation model and the EO-based fire evolution burnt areas from EFFIS could make 

better use of fine spatial scales availalable for most fields (forest maps, topography, fuelmaps) 

to improve emission estimates.. This approach would improve current emission schemes and 

also results in short-term forecasting of fire propagation risks, using 3-hr meteo predictions. 
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Abstract 

In 2007, Greece faced the worst natural disaster recorded in recent history as 67 people (fire-fighting 
personnel and civilians) lost their lives; and according to the Greek Fire Brigade, 189,952 ha of forested 
and agricultural lands were burned in the Peloponnese (south Greece). More recently, in February of 
2009 more than 170 people died and 4,500 square kilometers were burned by wildfires in Australia. 
During the wildfires in Russia in 2010 more than 60 people were killed directly by fire, and the possible 
premature deaths due to heat and smoke effects in western Russia was probably in the magnitude of 
55,000 people. The magnitude of the problem emphasizes the need to develop fire management 
strategies, and in particular efficient fire prevention policies and methods. Fire danger evaluation is a 
critical part of fire prevention, since fire planning resources require objective tools to monitor areas 
where a wildfire is more prone to occur. Based on this information, an optimization of the alternative fuel 
treatments, fire-fighting personnel dispatching, infrastructure development, etc. can be achieved. Many 
factors such as requirements, labour, specialized personnel, availability of necessary means, and usually 
limited economic recourses compete to optimize such efforts and actions.  
The focus of this study is to present a method for multi-scale fire risk zoning in the Mediterranean basin. 
The proposed method is based on historical wildfire ignition observations and uses a kernel density 
estimation. Kernels have the advantage of directly producing density estimates that are not influenced by 
grid size and localization effects. Within this scheme, kernel density surfaces have been created and 
reclassified to construct fire risk zones from local to global scale in the Mediterranean Basin. Specifically, 
fire risk zones were created for the Eu-ropean scale (European Mediterranean Basin), for National scale 
(Greece), for regional scale (Peloponnese, Greece) and for local scale (Chalkidiki, Greece). For the 
evaluation of the value of fire risk zones, we compared the observed with the expected number of fires. 
In all cases, these numbers were statistically different, as devia-tions from the expected distributions 
towards the high risk zones indicated a successful assessment and value of fire risk zoning. In this paper, 
we further discussed the value of these risk zones for multi-scale fire management and fire policy. 
 
Keywords: kernel density interpolation, fire mapping, fire management and policy, Mediterranean 

Introduction 

In 2007, Greece faced the worst natural disaster recorded in recent decades as 67 people 

(fighting personnel and other civilians) lost their lives and according to Hellenic Fire Brigade 

189,952 ha of forested and agricultural areas was burned in the Peloponnese (south Greece). 

More recently, in February 2009 more than 170 people died and 4500 square kilometers were 

burned by wildfires in Australia. During the wildfires in Russia in 2010 more than 60 people 

were killed directly by fire, and the possible premature deaths due to heat and smoke effects in 

Western Russia was possibly in the magnitude of 55,000 people (Goldammer 2010, 2011). The 
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magnitude of the problem sets up the need to develop fire management strategies and in 

particular efficient fire prevention policies and methods. Fire danger evaluation is a critical part 

of fire prevention, since pre-fire planning resources require objective tools to monitor areas 

where a fire is more prone to occur (Chuvieco et al. 2009). Based on this information an 

optimization of the alternative fuel treatments, fire-fighting personnel distribution, 

infrastructure development etc. can be achieved. 

Precise detection of the actual ignition points is difficult and the recorded fire ignition locations 

contain positional inaccuracies, due to fire characteristics and logistic problems. Positional as 

well as attribute uncertainties may result from factors such as small-scale or inaccurate, non-

updated maps used to read the x and y coordinates or large interval resolutions (e.g., 

coordinates given only in degrees and minutes) (Koutsias et al. 2004). If the aim is to explain the 

spatial pattern of landscape fire regimes and/or the underlying causal factors these inaccurate 

point records may introduce substantial errors. Especially, if explanatory variables are extracted 

from other geo-referenced data layers using spatial overlay techniques, these records may lead 

to serious inaccuracies. 

In our study, fire risk zoning is implemented by using the kernel density estimation in an 

attempt to overcome information loss and aggregation constraints (Bailey and Gatrell 1995). In 

addition, definition of fire risk zones based on fire occurrence density mapping could allow 

more effective communication with decision makers and improved public information 

dissemination. 

Kernel density estimation 

Kernel density has been originally introduced in wildfire occurrence mapping by Koutsias et al. 

(2004), as a method to address the inherent positional inaccuracies of recorded wildland fire 

ignition points. The basic principle of this concept is the assumption that wildland fire ignition 

points do not constitute exact point locations but fuzzy ones that define a broader area, where 

the actual point location lies inside. De Riva et al. (2004) and Amatulli et al. (2007), further 

extended the utility of the developed concept in wildfire research. 

An important issue, however, and rather difficult to define when implementing kernel density 

interpolation, is the choice of the smoothing parameter of the kernel. Narrow bandwidths allow 

nearby observations to dominate the density estimate, while wide bandwidths favor distant 

locations (Seaman and Powell 1996; Worton 1989). According to Silverman (1986), the choice of 

the bandwidth depends mostly on the purpose for which the density estimate is used. If the aim 

is to explore the data and suggest models and hypotheses about them, it would be sufficient to 

choose the smoothing parameter subjectively by visual inspection. 

Materials and Methods 

1.1 Study area and fire observations 

To apply and explore the kernel density interpolation in fire risk zones assessment we 

established four study cases corresponding to four different study scales. The European 

Mediterranean Basin for the global scale, Greece for the National scale, Peloponnese (Greece) 

for the regional scale and Chalkidiki (Greece) for the local scale. The fire database consists of 
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the fire ignition points occurred between 1985 and 1995 in Greece as well as the number of 

fires occurred in municipality level in European Mediterranean countries between 1990 and 

2000. The latter data come from the SPREAD2 project. For the Greek database the fire events 

with x and y coordinates have been recorded in latitude and longitude using degrees and first 

minutes resulting in positional uncertainty of about ±700 to ±925 meters in x and y axes. 

1.2 Methods 

To implement kernel density estimation in fire risk zoning, the fixed mode approach has been 

adopted in order to keep the smoothing parameter of the kernel constant over the entire study 

area. The incentive behind this decision was to avoid different treatments of the point 

observations over the areas with different degrees of concentration. In addition to the choice of 

the kernel type, which might not be so important, the choice of the smoothing parameter is 

very crucial since it controls the amount of variation of the estimates (Worton 1989). To define 

the size of the bandwidth the mean nearest distance of fire ignition points was considered. 

Kernel density interpolation was applied also to control points established using random design 

sampling restricted by the constraint of distance. Since, the kernel density estimation of control 

points refers to points, where no fires have been observed, the estimation was inverted to a 

negative scale by multiplying the original densities times the value of -1. The inversion to a 

negative scale preserves the general shape of the data distribution with a mirror effect, 

however. Finally, the kernel density estimates of both, the fire ignition events and the control 

points, were combined into one layer using spatial overlay functions. 

Results 

The kernel density surfaces of both, fire ignition points and control points, were reclassified to 

create fire risk zones using the criterion of “equal areas” (Figure ).  

For the evaluation of the value or fire risk zones we compared the observed with the expected 

number of fires. In all cases these numbers are statistical different while the deviations from the 

expected distribution towards the high risk zones indicates a successful assessment and value of 

fire risk zones. 

Discussion 

Fire fighting organizations design and implement operational projects to successfully face forest 

fires for prevention, forecast and suppression. Many factors such as availability of labor, 

specialized firefighter personnel, availability of technical firefighting resources, and usually 

limited economic recourses compete to optimize such efforts and actions. Wildland fire risk 

zoning helps to orient a priori the managers towards proper action for forest fire and civil 

protection. Fire risk zoning might be a strategic operational advantage for the proper 

development of a Decision Support System, since such actions can be applied with priority 

(spatial and temporal) inside the zones of high risk. Reduction of the necessary costs and 

maximization of the benefits and outcomes can be considered. Fire risk zoning based on 

                                                             
2 EC project ‘Forest Fire Spread and Mitigation (SPREAD), EC-Contract Nr. EVG1-CT-2001-00027, and the Federal Office for 

Education and Science of Switzerland (BBW), BBW-Contract Nr. 01.0138 
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historical fire observations can contribute further for the proper and documented use and 

distribution of available resources. The diachronic value of those fire risk zones is a challenge 

and on the same time a requirement so that to become a real strategic operational tool for 

prevention and suppression. Our results can be used at the Euro-Mediterranean level by policy-

makers and at national, regional and local scales by national public bodies, planners and 

managers to prioritize projects and investments to reduce wildfire risk and manage fire prone 

areas. 

 

  

  

Figure 1. Fire risk zones in a. European Mediterranean scale b. national scale in Greece, c. regional scale in Peloponnese, Greece and 
d. local scale in Chalkidiki, Greece 

 

   
 a. Mediterranean b. Greece c. Peloponnese 

Figure 2. Evaluation statistics. 

 

At local scale fire risk zoning could be used as part of a Decision Support System for vegetation 

and fuels treatment, wildland fire early warning, development of fire management plans, etc.. 

At national scale fire risk zones could be used as a standard component of a daily, national scale 

fire risk index. Also, the distribution of fire risk could be used for spatial allocation of human and 

economic resources throughout the year, for planning and regional development as well as for 

implementing environmental policies and laws and educational activities. 

At Euro-Mediterranean scale, risk zoning could serve first of all as means for the establishment 

of inter-national forest fire information systems. Also, fire risk zones could indicate regions 

where common awareness raising campaigns and scientific and research networks and 

institutions should be introduced. EU member states could introduce new rural policies and 

regulations or modify existing ones (i.e. subsidies policies of Common Agricultural Policy) in 
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regions highly threatened by forest fires. Also, the fire risk zone information could be used as 

part of a financing instrument which could promote transboundary collaboration between 

countries in fire management. 
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Abstract 

In this study we compared global and local models to identify driving factors of occurrence of human-
caused forest fires in Spain. The number of human-caused fires occurred within a 25 years period (1983-
2007) were computed for each one of the 7.638 municipalities of the Spanish peninsula that were 
analyzed. We created a binary variable (fire/no fire) to develop logistic models, and a continuous variable 
(log transformed fire density to account for normality) to build linear regression models. For the linear 
regression, we selected 6.993 municipalities in which one or more fires were registered during the study 
period. The independent variables are composed by socio-economic and demographic indicators 
together with land cover and agricultural statistics. The 29 of those variables were compiled from a 
previous study while 6 new variables were introduced referring to topographic and climatic parameters. 
The binary logistic model, which estimates the probability of having or not a fire, classified successfully 
76.4% of the total observations. Nine explanatory variables were identified as critical by the analysis, 
while the most influ-enced variables were the forest surface, population decrease and forest-cultivated 
land interface. Mean annual precipitation and mean summer temperature were also important. For the 
linear regression that has been used to explain long-term fire density patterns, 12 of the original variables 
was selected after a stepwise process which explain 53% of the variation of the dependent variable 
(adjusted R2 0.53). Among them mean annual precipita-tion, density of agricultural properties, mean 
altitude, population decrease and non tree-covered forest surfaces seem to be the most important ones. 
Only 2 variables (precipitation and population decrease) were common by both modeling approaches. In 
addition to forest properties and climatic variables, our results confirm the im-portance of variables 
related with agrarian activities, land abandonment, rural exodus and development processes, as 
underlying factors of fire occurrence. 
To overcome the constraints of these traditional global regression models (linear and logistic) which 
assume sta-tionary processes, we applied geographically weighted regression (GWR) models using the 
same independent variables previously selected, both for the linear and the logistic approach. The GWR 
logistic model, using a fixed bandwidth of 209 km, selected by an automatic process based on AICc 
minimization, classified correctly 80.00% of the observations while the deviance (-2Log Likelihood) 
improved from 3431.2 to 3261.4. For the line-ar approach, the explanatory power of the OLS model 
increased from 53% to 67% in the case of an adaptive GWR linear model, using a bandwidth of 1300 
nearest neighbors, and 62%, in the case of a fixed GWR using a bandwidth of 154 km. Apart from these 
slight fitting improvements of the models, local approaches like GWR seems to be a valuable approach 
for exploring non-stationary relationships between the response and explanatory variables. In fact, the 
results of a Monte Carlo test on the local estimates indicate that there is significant spatial variation in 
the local parameter estimates for all the variables. These local coefficients were mapped in order to 
better understand local variations of the fire occurrence causal factors in Spain.  
 
Keywords: Fire occurrence, Fire Factors, Geographically Weighted Regression, Logistic Regression, OLS 
Regression 

Introduction 

In fire occurrence modeling, regression techniques are applied frequently at several scales 

(Vega-García et al., 1995; Vasconcelos et al, 2001;Martínez et al., 2009), assuming that the 

model parameters are valid for the entire study area from which the data are sampled. 
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However, especially when the geographical extent of the study area is large it would be more 

reasonable to find varied rather than constant relationships. Koutsias et al. (2010) observed 

that the explanatory power of traditional regression (linear or logistic) increased considerably 

when it assumed varying relationships instead of constant ones, because region-specific factors 

might affect fire occurrence patterns locally. 

In this study, carried out with Spanish data, we built predictive models at national scale using 

classical regression, both linear Ordinary Least Squares (OLS) and binary logistic regression, and 

both were compared with local models based on Geographically Weighted Regression (GWR). 

Specifically, the objectives of the analysis are to identify the main driving factors of human-

caused forest fires in Spain and to explore which factors or variables vary spatially. We 

hypothesize that some region-specific factors deviate from global or national trends. 

Materials and Methods  

1.1 Study Area and Database 

The independent variables used in the analysis are composed by socio-economic and 

demographic indicators together with agricultural and land cover statistics. The 29 of those 

variables were compiled from a previous study (Martínez et al., 2009) while 6 new variables 

were introduced referring to topographic (mean altitude and slope), climatic parameters 

(summer temperature and mean annual precipitation) and forest vegetation (forest surface and 

non tree-covered forest surfaces), selected after an analysis to avoid multi-collinearity. All the 

variables were compiled at municipality level for the Spanish peninsula. 

The number of human-caused fires occurred within a period of 25 years (1983-2007) were 

computed for each one of the 7.638 municipalities that were analyzed, with the exception of 

the region of Navarre. We created a binary variable (fire/no fire) to develop logistic models, and 

a continuous variable (log transformed fire density to account for normality) to build linear 

regression models. For the linear regression, we selected 6.993 municipalities in which one or 

more fires were registered during the study period.  

1.2 National models using classical regression 

We used different regression methods to obtain predictive models of ignition. OLS linear 

regression has been used to explain long-term fire density patterns, using only a database with 

6.993 municipalities. Despite the fact that the distribution of the dependent variable indicates a 

negative binomial or a Poisson model as most appropriated, we used a linear model after 

applying a logarithmic transformation to the dependent variable to convert their values to an 

approximate normal distribution. 

Additionally, as a complement of the fire density model, a binary logistic model tries to 

estimates and explains the probability of having or not a fire. Logistic regression is one of the 

most popular mathematical modeling approaches than has been used successfully in similar 

studies. The assumption of multivariate normality is not presupposed in logistic regression. 

Cut-off points in binary logistic regression are used to convert probability of ignition to 

dichotomous 0-1 data. Cases with predicted values that exceed the classification cutoff are 

classified as positive (fire), while those with predicted values smaller than the cutoff are 
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classified as negative (no fire). In order to select the optimal cut-off point we constructed tables 

with classification error rates for varying cut-off points, computing for each one two statistics: 

sensitivity and specificity. Sensitivity is the proportion of true positives that were predicted as 

fire and specificity is the proportion of true negatives that are predicted as no fire. The optimal 

cut-off point corresponds to the intersection of the two lines, in which sensitivity and specificity 

are equal (Vasconcelos et al, 2001). Figure 1 show the calculation of the statistics, being the 

best cut-off point in this case 0.91. 

The final multivariate models were obtained in SPSS using automatic stepwise forward 

procedures for variable selection in combination with manual modification or selection using 

“introduce method”. In all cases we checked for potential collinearity problems of the selected 

variables calculating the correlation matrix and other common statistical tests such as the 

tolerance coefficient, the variance inflation factor (VIF) and eigenvalue analysis. In the case of 

logistic model we selected a stepwise model with 10 variables, but after collinearity analysis we 

removed the variables “slope” and “population occupied in agriculture” and we introduced the 

variable “agricultural areas but with significant areas of natural vegetation”. In the case of OLS 

model we selected with stepwise a model with 9 variables, but in a second process we 

introduced manually another 3 variables of interest (decrease in number of owners of agrarian 

holdings, % owners of agrarian holdings >55 years and density of agricultural machinery), so the 

final model has 12 variables. Models have been built using standardized Z scores for dependent 

and independents variables. 

To evaluate the influence of individual variables in the models, several criteria were computed 

and analyzed globally; (i) a simple calculation of the standardized coefficients according to 

Menard (2010 p.89), (ii) the t statistic and its level of significance, but in the case of the logistic 

regression we used the Wald statistic, (iii) the step at which the variable was input into the 

model, (iv) the change in the R2 when the variable was removed from the model (the greater 

the change, the more important the variable). In the case of logistic regression we used the 

change in logarithm of likelihood (-2LL), (v) only in the case of logistic, the Odds ratio or the 

exponential of the logit coefficient B (Exp(B). 

0

10

20

30

40

50

60

70

80

90

100

0

0
,0

5

0
,1

0
,1

5

0
,2

0
,2

5

0
,3

0
,3

5

0
,4

0
,4

5

0
,5

0
,5

5

0
,6

0
,6

5

0
,7

0
,7

5

0
,8

0
,8

5

0
,9

0
,9

5 1

%
 c

o
rr

e
c
tl
y
 c

la
s
s
ifi

e
d

Cut-off point

Specificity

 
Figure1. Sensitivity and specificity graphs of the binary logistic model for select optimal cut-off point 

1.3 Local models using GWR  

Traditional statistical methods like logistic and linear regression assume independent 

observations, spatial stationarity and no autocorrelation. To overcome these limitations we 

applied GWR models using the same independent variables previously selected, both for the 
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linear and the logistic approach. GWR considers that the relationships between the response 

and explanatory variables vary in space according to their location and allows local variations to 

be taken into account. At each data point, GWR fits a regression model by weighting all 

observations from that point as a function of distance. GWR adopt a kernel function controlled 

by the bandwidth size of the kernel to implement this geographical weighting. In our study, we 

used both the adaptive (nearest neighbors) and the fixed (distance) kernel types, while the 

minimization of the corrected Akaike Information Criterion (AICc) served to determine the 

bandwidth size. We used GWR 3.0.1 software for Windows (Fotheringham et al., 2002). 

Results  

National Models 

The binary logistic model classified successfully 76.4% of the total observations. Nine 

explanatory variables were identified as critical by the analysis, while the most influenced 

variables were the forest surface, population decrease and forest-cultivated land interface. 

Mean annual precipitation and mean summer temperature were also important (Table 1). For 

the linear regression 12 of the original variables was selected after a stepwise process which 

explain 53% of the variation of the dependent variable (adjusted R2 0.53). Among them mean 

annual precipitation, density of agricultural properties, mean altitude, population decrease and 

non tree-covered forest surfaces seem to be the most important ones. Only 2 variables 

(precipitation and population decrease) were common in both approaches. In addition to forest 

properties and climatic variables, our results confirm the importance of variables related with 

agrarian activities, land abandonment, rural exodus and development processes (Moreira et al., 

2011). 

GWR models 

The GWR logistic model, using a fixed bandwidth of 209 km, selected by an automatic process 

based on AICc minimization, classified correctly 80.00% of the observations while the deviance 

(-2Log Likelihood) improved from 3431.2 to 3261.4. For the linear approach, the explanatory 

power of the OLS model increased from 53% to 67% in the case of an adaptive GWR linear 

model, using a bandwidth of 1300 nearest neighbors, and 62%, in the case of a fixed GWR using 

a bandwidth of 154 km. 
 

Table 1. Results of the sensitivity analysis for logistic model: ranking of influence of the input variables (the lower the ranks, the 
more important) 

 

 

Variable 

Name

 (i) S td. 

Coef. B

(ii) 

Wald

(iii) 

S tepwise

(iv) Change 

in -2LL 

(v) 

Exp(B)

Global 

Score (sum)
B_Std Wald Stepwise

Change 

in -2 LL
Exp(B)

FOR_P 1 1 1 1 3 4 0,979 160,661 1 200,84 1,034

DIS_50_91 3 2 2 2 4 9 0,588 89,756 2 98,27 1,021

ICFSUP_P 4 4 3 3 2 14 0,506 55,005 3 59,71 1,104

NOGES_PF 6 3 4 4 7 17 0,327 58,114 4 55,47 1,011

T_SU 5 6 7 6 1 24 0,687 40,574 6 48,09 1,003

P_A 2 5 6 5 8 18 0,386 37,395 7 38,58 1,171

DIS_SAU 7 7 5 7 6 26 0,247 23,797 5 22,09 1,012

CL21_PM 8 9 9 9 5 35 -0,155 17,730 8 18,54 1,000

POT_DEN 9 8 8 8 9 33 0,163 7,422 9 8,59 1,015
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Regional-local variations 

The results of a Monte Carlo test on the local estimates indicate that there is significant spatial 

variation in the local parameter estimates for all the variables. These local coefficients were 

mapped in order to better understand, in the subsequent analysis, local variations of the fire 

occurrence causal factors in Spain (Figure 2). Negative coefficients were mapped with cold 

colors (green to blue) and positive with warm colors (orange to red). 
 

 
Figure 2. Local coefficients for adaptive GWR lineal model using a bandwidth of 1300 nearest neighbors 

Conclusions 

Apart from some of the slight fitting improvements of the models presented in this study, local 

approaches like GWR, an alternative to global regression modeling, seems to be a valuable 

complement for exploring non-stationary relationships between the response and explanatory 

variables and thus to better understand changes in spatial resolution and scale, possible 

regional variations and other spatial processes in wildland fire occurrence. All factors analyzed 

show significant spatial variations in Spain. 
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Variables Interpretation

P_A Mean annual precipitation

PAR_SEXP
Agricultural land fragmentation: density of 

agricultural plots

ALT_MEAN Mean Altitude of municipality

DIS_50_91 Rural Exodus: pop. decrease between 1950-91

DESAR_P
% Non tree-covered forest area (mainly shrub 

and grassland) 

FRAG7x7
Landscape Fragmentation Index using a 7x7 

kernel 

ENTSIN_M Density of human settlements

ROAD_DEN Density of roads 

IUF_DEN Urban/Forest Interface Density  

DIS_TIT Decrease in owners of agrarian holdings 89-99

MAQUIN_D Density of agricultural machinery 

TIT_55_P Rural ageing: % owners of agrarian holdings >55 

T_SU Mean summer temperature

DIS_SAU Decrease in agricultural area  between 1989-99

ICFSUP_P Forest/Cultivated Land Interface Area  

NOGES_PF
Forest surface with less management, control and 

planning over time

POT_DEN Population potential

CL21_PM

Corine Land use class defined as “agriculture 

areas, but with significant areas of natural 

vegetation”
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Abstract 

Among the factors that threaten the forests in Lebanon, fire constitutes the most dangerous one and 
causes severe ecological and economic losses and, sometimes, human injuries and death. Recently, a 
National strategy for forest fire management was developed and endorsed by the Lebanese Council of 
Ministers. The aim of the Strategy is to reduce the risk of intense and frequent forest fires whilst allowing 
for fire regimes that are socially, economically and ecologically sustainable. The Strategy acknowledged 
that decisions about fire management are best made within a risk-management framework, known as 
the 5Rs, namely (1) Research, information and analysis; (2) Risk modification, including fire vulnerability 
reduction and prevention of harmful fires; (3) Readiness, covering all provisions intended to improve 
interventions and safety during a fire event; (4) Response, including all means of intervention for fire 
suppression; and (5) Recovery, including the rehabilitation and ecological restoration of healthy forest 
conditions, and the support to individuals and communities in the short- and medium term aftermath of 
the fire. Although satellite remote sensing is reported to be an effective tool for conducting different 
studies related to forest fire management, only a small number of them have been conducted in 
Lebanon. The aim of this work was define which satellite remote sensing applications can help in forest 
fire management in Lebanon by identifying the role of remote sensing in each of the previously 
mentioned components, i.e. the 5Rs. The methodology of work included reviewing all items under each 
strategic component to define priorities in the implementation of remote sensing in the different phases 
of fire management. The work included a presentation of operational examples from the Mediterranean 
illustrating the practical use of remote sensing within a strategic framework. Overall, the review of 
literature proved that remote sensing can provide very useful support to fire managers and planners who 
are involved in the implementation of the Strategy. It is expected that the use of remotely sensed 
information will result in improved fire management at both levels, local and National. 
 
Keywords:  Remote Sensing, forest fire management, National Strategy, the Mediterranean  

Introduction 

Forests in Lebanon are a unique feature in the arid environment of the Eastern Mediterranean. 

Increasingly, Lebanon’s forests, which include remnants of valuable broad-leaved trees, conifer 

forests and evergreen trees that cover the Lebanese mountains in patches, are exposed to 

degradation due to urbanization, pests and diseases, fires, wars, climate change, human 

neglect, improper management, outdated laws, and poor law enforcement (Mitri 2009). Like 

other Euro-Mediterranean countries, forest fires have been especially damaging Lebanon in 

recent years, representing one of the most important elements that destroy Lebanon’s natural 

resources (Mitri and Elhajj 2008).  

Recently, the fires in Lebanon have harvested large green areas, noting that the percentage of 

forest cover has declined in a short period of time in Lebanon in recent years to 13% of its total 

area (MOE/UNDP/ECODIT 2011), after it had constituted around 35% in the years 1960-1965. 

This has given rise to concern at the national and international levels resulting from the risk of 

loss to forest cover. Despite the increased efforts, fire issues increasingly threaten forest 
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ecosystems and economic development in Lebanon. Reports accuse increases in fire frequency 

and severity; thus, affecting tree growth and survival as well as yield and quality of wood and 

non-wood forest products, wildlife habitat and the recreational, scenic, environmental and 

cultural value of forests. Serious fires can also cause human injuries, death, and losses in 

properties. 

Most recently, a National strategy for forest fire management was developed and endorsed by 

the Lebanese Council of Ministers (Mitri 2009). The aim of the Strategy is to reduce the risk of 

intense and frequent forest fires whilst allowing for fire regimes that are socially, economically 

and ecologically sustainable. The Strategy acknowledges that decisions about fire management 

are best made within a risk-management framework, known as the 5Rs, namely, (1) Research, 

information and analysis; (2) Risk modification, including fire vulnerability reduction and 

prevention of harmful fires; (3) Readiness, covering all provisions intended to improve 

interventions and safety in the event of fire; (4) Response, including all means of intervention 

for fire suppression; and (5) Recovery, including the rehabilitation and ecological restoration of 

healthy forest conditions, and the support to individuals and communities in the short- and 

medium term aftermath of the fire.  

The implementation of the Strategy requires strengthening the capacity of the concerned 

authorities in order to address the different issues related to forest fires. However, Lebanon 

lacks the necessary technological measures and management capacities to address a number of 

measures related to fire management including monitoring, prediction (early warning), 

preparedness, prevention, suppression and restoration. Also, experience has shown over a 

number of years that forest fire reporting systems in Lebanon are weak and do not reflect the 

reality of the problems.  

Although Remote Sensing (RS) is reported to be an effective tool for conducting different 

studies related to forest fire management (Chuvieco 2009), only a small number of them have 

been conducted in Lebanon. Today, the development of new remote sensing instruments 

provides an opportunity to advance studies and researches on forest fire management in 

Lebanon. 

The aim of this work was define which RS applications can help in forest fire management in 

Lebanon by identifying the role of RS in each of the previously mentioned components, i.e. the 

5Rs. The methodology of work involved reviewing all items under each strategic component to 

define priorities in the implementation of RS in the different phases of fire management. The 

work included the presentation of operational examples from the Mediterranean illustrating 

the practical use of remote sensing within a strategic framework. 

1.1 Potential use of Remote Sensing in the National Strategy 

Satellite remote sensing data and techniques are used in all the phases of wildland fire 

monitoring at the regional and national levels in a number of European Mediterranean 

countries. The use of RS in forest fire management has been a relevant research topic of several 

European Union research projects in the last 15 years (e.g. MEGAFIRES, SPREAD, EUFIRELAB, 

among others). Other EU funded projects such as PREVIEW and RISK-EOS aimed at providing 

operational use of existing methodologies in the context of the Global Monitoring for 

Environment and Security (GMES) joint initiative of the European Commission and the 
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European Space Agency. This section included 1) a general review of all items under each 

component of Lebanon’s National Strategy for forest fire management, and 2) an identification 

of the role of satellite Remote Sensing in each component.  

1.2 Research, Information and Analysis 

The strategic objective of this component is to support and promote the improvement, know-

how sharing, monitoring and dissemination of knowledge on fire ecology, fire management and 

post-fire vegetation dynamics among all relevant actors (science/research, policy makers, land 

managers, grassroots’ groups), bridging science and traditional knowledge. In general, satellite 

remote sensing can provide valuable data for “Research, Information and Analysis” in fire 

management. This includes 1) the development of effective fire monitoring systems, 2) the 

development of daily danger indices based on vegetation types, and thus, developing a 

comprehensive danger-rating system (Chuvieco and Salas 1996, Camia et al. 2006), and 3) 

development of an annual comprehensive database on forest fires for analytical use (Barbosa et 

al. 2006, San-Miguel-Ayanz et al. 2009, Camia et al. 2010). The European Forest Fire 

Information System (EFFIS) provides standardized European forest fire danger forecast and 

burned area maps for the EU Mediterranean region (San-Miguel-Ayanz et al. 2009). The system 

RISICO (RISchio Incendi & COordinamento) which involves remote sensing data has been used 

since 2003 by the Italian National Civil Protection for daily dynamic forest fire risk assessment 

(D’Andrea et al. 2008). In Greece, a daily forest fire risk map involving up-to-date satellite data 

of vegetation greenness is published by the civil protection (Gitas et al. 2004). 

1.3 Risk modification (fire vulnerability reduction and prevention of harmful fires) 

The strategic objective of this component is to develop effective measures intending to reduce 

fire vulnerability, to increase ecological and social resilience to fire, and to prevent the 

occurrence of harmful fires and unsustainable fire regimes. Remote sensing is considered a 

useful tool for sustaining prevention activities (Chuvieco 2009). Remote sensing proved to 

provide valuable data on type (e.g. distribution and amount of fuels) and status of vegetation in 

a consistent way and at different spatial and temporal scales (Riano et al. 2002, Arroyo et al. 

2006, Lasaponara et al. 2006, Lasaponara and Lanorte 2007). Also, satellite remote sensing 

proved to assist in the detailed analysis of forests status and the improvement of pre-fire 

management plans (Hernandez-Leal et al. 2006). 

1.4 Readiness or pre-suppression 

The strategic objective of this component is to undertake all possible provisions by individuals, 

communities and fire and land management agencies to be prepared before a fire event occurs, 

and improve interventions and safety in monitoring the probability of fire and detecting the 

event of fire. Satellite remote sensing data has contributed to the conduction of a proper 

distribution at the landscape level of fire control infrastructures such as fire lookout towers 

(Nogueira et al. 2002, Catry et al. 2007), water reservoirs, forest strips with low tree density and 

low shrub cover, fire break areas of first and second level, forest tracks with fire break lines 

along them, and protection perimeters in urbanized areas (Chuvieco and Salas 1996, Jaiswal et 

al 2002). 
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1.5 Response 

The strategic objective of this component is to quickly suppress and limit the extension of fires 

through the development of methods and techniques coupled with appropriate material and 

very well trained personnel. Satellite remote sensing has helped in the development of fire 

behaviour models and/or combustibility models to allow fire-fighting brigades to better predict 

the fires and better manage them, thus avoiding the expansion of fires (Dimitrakopulos 2002, 

Stergiadou et al. 2007). Also, spatial information such as, the vegetation cover density and the 

location and defensible space of buildings, can contribute to the improvement of forest fire 

suppression planning. Satellite remote sensing are tools that can be implemented to extract, 

store and process relevant information (Tsakalidis and Gitas 2007). In Spain, the EMERCARTO 

mapping viewer involving satellite remote sensing data proved to be a powerful GIS tool for the 

optimization and control of resources during forest fire suppression (Aguirre et al. 2007). Today, 

Lebanon is in the process of developing a similar system. Also, it is possible for Lebanon like 

other countries to submit official requests to the International Space Charter which can provide 

available data from a series of satellites such as RADARSAT, ERS, EMVISAT, SPOT, LANDSAT, and 

DMC in order to obtain data and information on a disaster occurrence. 

1.6 Recovery, Post-fire Management and Rehabilitation 

The strategic objective of this final component is to provide support for individuals and 

communities in the immediate aftermath of the fire as well as in the medium and longer term 

efforts of community and economic renewal, and restore healthy ecological conditions of 

burned forest land to facilitate the natural recovery of vegetation and increase forest resilience 

against future fires. Remote sensing satellite data has previously assisted in 1) mapping fire 

affected areas and assessing the impact of fire on different vegetation types (Mitri and Gitas 

2004), 2) mapping fire type (Mitri and Gitas 2006) and fire severity (Mitri and Gitas 2008, Gitas 

et al. 2009). Also, remote sensing data has helped in implementing activities aiming at the 

reduction of soil erosion, and mapping forest regeneration and vegetation recovery (Diaz-

Delgado et al. 2003, Twele and Barbosa 2004, Hernandez-Clemente et al. 2009, Gouveia et al. 

2010, Mitri and Gitas 2010, Vila and Barbosa 2010, Gitas et al. 2011, Veraverbeke et al. 2011) 

for the development of post-fire active restoration/rehabilitation activities (forest landscape 

restoration). Eventually, RS data contributed to the development of national reporting systems 

based on fire statistics, expanding national databases on forest fires, their occurrence, and the 

ecosystems where they occur (Viedma et al. 1997, Roder et al. 2008). For instance, Portugal has 

an operational system for mapping burned areas from satellite remote sensing imagery (Pereira 

and Santos 2003, San-Miguel-Ayanz et al. 2009). 

Conclusions 

The review of the literature proves that satellite remote sensing can provide very useful support 

to fire managers and planners who are involved in the implementation of Lebanon’s National 

strategy for forest fire management. However, there are many factors that should be taken into 

account to decide on which of the different operational RS applications in the forest fire sector 

should be given a priority in Lebanon. Such factors include the degree of maturity to acquire, 
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pre-process and process satellite data, the existing level of expertise, the capability to 

disseminate results in an efficient way, and the availability of financial resources. 

Accordingly, priorities for use of RS applications in the different phases of fire management can 

be focused on 1) advancing current academic and public research for the development of a 

national forest fire monitoring system and daily danger indices with the use of RS data, 2) 

producing accurate maps showing the distribution and amount of forest fuels at the national 

level, 3) developing proper forest management plans and infrastructure, 4) optimizing and 

controlling resources during forest fire suppression, and 5) expanding the national databases on 

forest fires, their occurrence, their locations, and their impact on the vegetation cover. 

It is expected that the use of remotely sensed information and techniques in each of the 

Strategy’s components will result in strengthened capacities of public authorities and units 

involved in forest fire management (mainly, the Central Operations Room of forest fire 

management which is currently managed by the Directorate of Civil Defence, the General 

Directorate of Environment, and the Directorate of Rural Development and Natural Resources 

at the Ministry of Agriculture).   
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Abstract 

This paper presents an analysis of the fire regimes in Southern European countries, where 

forest fires are a major hazard. Data on number of fires and burned area size available from 

1985 until 2009 were retrieved from the European Fire Database and were used to study the 

temporal and spatial variability of fire occurrence, at three different spatial scales: for the 

whole region, at country level and at province level. The temporal trends were assessed with 

the Mann-Kendall test and Sen slope and two periods were compared: the whole time-series 

(1985-2009) and the last 10 years (2000-2009). At regional (supranational) level, results suggest 

that in the last 10 years there was a significant decreasing trend in the number of fires and in 

relation to the burned area the decrease occurs for the whole study period. At country level, 

the trend varies by country but there is a general decrease in burned area and the same 

decreasing trend was found for almost all the provinces in the last decade. These results 

provide an important insight into the spatial distribution and temporal evolution of fires, a 

crucial step to investigate the underlying causes and impacts of fire occurrence in this region. 

Introduction 

The Mediterranean region of Europe is strongly affected by forest fires. Particularly the 

countries of Portugal, Spain, Italy, Greece and southern France, are by far the most affected by 

wildfires. According to European Statistics (EC 2010), from 1980 until 2009 fires have burned an 

average of circa 480,000 hectares of land per year in this region alone, with an annual average 

of 50,000 occurrences. Data on the number of fires and burned area in this region have been 

collected since the 80’s by each country and compiled in the European Fire Database of the 

European Forest Fire Information System (Camia et al., 2010). The analysis of the spatial and 

temporal trends of fires is crucial to understand the underlying causes of the fires and their 

environmental and socio-economic impacts, assuming a key role in fire prevention and 

management. The purpose of this work was to analyze the spatial and temporal trends of fire 

frequency (number of fires) and burned area size, two essential components of the fire regimes, 

and to draw conclusions on the main factors affecting fire regimes in the European 

Mediterranean region.  

Methods 

The analysis was carried out at three different spatial levels: (i) at regional (supranational) level, 

considering the Euro-Mediterranean region as a whole, with the purpose of characterizing its 

fire regimes, known to be markedly different from the rest of Europe. The region under study, 
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shortly referred to as EUMed in what follows, comprises Portugal, Spain, France, Italy and 

Greece; (ii) at country level, by analyzing the data of each country individually in order to assess 

differences between countries that may depend on national settings and policies; and (iii) at 

province level (NUTS3), to investigate the potential influence of local environmental and socio-

economic conditions. Temporal trends were analyzed separately for the whole study period 

(1985 – 2009) and for the last 10 years (2000 – 2009). These trends were compared using the 

Mann-Kendall test, a non-parametric statistical test used to identify trends in time series data 

(Kendall 1975). In addition, seasonal trends were also characterized both at regional and 

country levels, by examining separately the months corresponding to the main fire season (June 

to October) and the other months. 

Results and discussion 

Our results suggest that, compared with the overall period 1985 – 2009, changes in the fire 

regime have been observed in the last 10 years (2000 – 2009) in Southern Europe. The long-

term trend for the number of fires in the EUMed region was an increase (Figure 1), but non-

significant according to the Mann-Kendall test; however, this trend was reversed in the last 10 

years, showing a significant decrease (S=-25, p=0.032). This increase was particularly high in the 

90’s, which can be partly due to the changes in the reporting systems in the countries that 

occurred during this time, mostly driven by EC regulations. Besides, the tendency for the 

abandonment of agricultural land verified in the last decades in this region, which causes an 

increase in fuel accumulation and the expansion of shrublands, may also explain this trend 

(Carmo et al., 2011; Lloret et al., 2002; Romero-Calcerrada et al., 2010). 

The burned area, on the other hand, shows a decreasing trend since 1980 (Figure 1), with 

strong annual fluctuations. The results of the Mann-Kendall test show that, for both periods, 

the general trend is a decrease, but only significant when considering the entire time series (S= -

88, p=0.042). This decrease is likely related to the implementation of fire prevention strategies 

and to the improvement in fire detection and fire-fighting techniques verified in the last years. 

 

   

Figure 1. Total annual number of fires (left) and total annual burned area in ha (right) in the EUMed region from 1985 until 2009 

 

However, downscaling the analysis at national and province (NUTS3) level reveals the existence 

of certain spatial variation in the trends concerning the number of fires and burned area. At 

country level, Portugal, Spain and Greece show an increasing trend in the number of fires for 

the whole study period, while France and Italy had a general decrease (Table 1). Both the 
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increasing trend observed for Portugal and the decreasing trend of Italy are significant. In the 

last decade, a decrease was observed for all the countries, significant only for Portugal, which 

had a median decrease of over 1500 fires per year (Sen slope). In relation to the burned area, 

results of the Mann-Kendall test show a decreasing trend in all countries during both periods 

(Table 2), with the exception of Greece, where an increasing trend was observed for the last 

decade. The decreasing trend for the whole time series was significant only for Spain and Italy, 

which show a higher score and a median annual decrease in area burned of 5175 ha for Spain 

and 3243 ha for Italy, according to the sen slope. 

 
Table 1 –Results of the Mann-Kendall test and Sen slope for the number of fires by country in both periods. Negative values mean a 

decrease and positive values mean an increase. 

 
 

Table 2 –Results of the Mann-Kendall test and Sen slope for the burned area by country in both periods. Negative values mean a 
decrease and positive values mean an increase. 

 
 

 

At NUTS3 level, the trend in the number of fires is very irregular depending on the province, 

although general patterns can be observed by country (Figure 2). Portugal and Spain have the 

majority of provinces with a significant increasing trend, while Italy and Greece have more 

provinces with a significant decreasing trend. However it should be noted that the in Greece 

data at NUTS3 level after 1998 are partial, because of changes in the reporting system in the 

country. In the case of Italy, an exception occurs in Sicily, where all provinces show increasing 

trend or no trend, while in Sardinia almost all the provinces had a decreasing trend. In France, 

most of the provinces with available data indicate no trend or decreasing. The situation changes 

when considering only the data between 2000 and 2009. There are few provinces in the whole 

study area with a significant trend, either increasing or decreasing, possibly because the time 

series is too short at this scale of analysis.  

The burned area, on the other hand, evidences a general significant decreasing trend for the 

provinces of all countries, except Portugal and the region of Sicily in Italy, between 1985 and 

2009 (Figure 3). In the last years, however, the general tendency is a decrease (significant or 

not) for almost all the provinces.  

 

 

Number fires 1985-2009 Portugal Spain France Italy Greece

Mann-Kendall score (S) 110 82 -28 -164 22

p value 0.010906 0.058524 0.52831 0.000141 0.62381

sen slope 801.9 396.9 -33.04 -346.2 5.969

Number fires 2000-2009 Portugal Spain France Italy Greece

Mann-Kendall score (S) -27 -21 -7 -7 -17

p value 0.020045 0.073638 0.5915 0.5915 0.15241

sen slope -1554 -1134 -157.5 -201.2 -118

Burned area 1985-2009 Portugal Spain France Italy Greece

Mann-Kendall score (S) -6 -100 -52 -96 -68

p value 0.90704 0.02077 0.23361 0.026506 0.11763

sen slope -101.6 -5175 -473.5 -3243 -1703

Burned area 2000-2009 Portugal Spain France Italy Greece

Mann-Kendall score (S) -19 -9 -21 -5 11

p value 0.1074 0.47427 0.073638 0.72051 0.37109

sen slope -14016 -6232 -2215 -1443 2127
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Figure 2.  Trend in the number of fires by province in the EUMed region between 1985 - 2009 (top) and between 2000-2009 

(bottom) obtained from the Mann-Kendall test. 
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Figure 3. Trend in the burned area (ha) by province in the EUMed region between 1985 – 2009 (top) and between 2000 – 2009 

(bottom), obtained from the Mann-Kendall test. 

 

The variation found between countries and provinces in burned area is potentially related to 

the influence of physical parameters like the topography or the weather conditions, which vary 

spatially and/or seasonally, and to the diversity of the environmental and socio-economic 

conditions found throughout the study area, which set the availability of ignition agents 

(population) and the possibility of fire spread. However, the fire recording process, which is 

different in each country, and in some cases even in each NUTS2 region (Spain) and has been 

improved through time, can also have influence in the datasets, especially in the number of 

fires, and consequently in the results. 

In any case, our findings suggest that the general tendency in the EUMed region is a decrease in 

the total amount of burned area, while the total number of fires seems to be increasing. 

Nevertheless, trend comparison between the whole period and the last ten years reveals that 

the increasing trends in number of fires is reversing, or at least losing its significance in recent 

years.  
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Abstract 

The impact of forest fires in Europe is assessed in the European Forest Fire Information System (EFFIS) 
from two different information sources: (1) field data collected at regional and national level by the fire 
services of the countries, and (2) remote sensing.  
Forest fire statistics have been stored in the European Forest Fire Database (EFFD) of EFFIS since 2000. 
These statistics go back to the 80s for some of the Mediterranean countries. Additionally, the area burnt 
by forest fires in the European countries has been monitored in EFFIS since the year 1998 by remote 
sensing techniques. Data from RESURS, WiFS and MODIS satellite sensors have subsequently been used 
for this purpose. Since 2003 MODIS daily images of 250 m spatial resolution are used to map burnt areas 
in the so-called Rapid Damage Assessment (RDA) module of EFFIS. The RDA provides a daily update of the 
perimeters of burnt areas in Europe for fires of 40 ha or larger. Both information sources, EFFD and RDA, 
are considered reliable and the basis for official statistics for the countries and for the European 
Institutions e.g. the European Parliament and the European Commission. However, it acknowledged that 
these information sources contain inherent errors due to the methodologies used in assessing fire size. 
On the one hand, in country statistics, fire sizes are often derived by ocular estimation of the burnt area 
on the ground; in some occasions GPS tools are used to determine fire perimeters. Although this 
methodology may be considered very precise for small fires, it introduces errors when mapping fires of 
large size. On the other hand, remote sensing is considered very reliable for mapping large fires, while 
less precise when mapping fires of small size which may be omitted in the process of automatic 
classification of remote sensing imagery.  It is thus important to assess the coherence and consistency of 
the reported fires and fire statistics drawn from these sources. 
The present study focuses on the analysis of the agreement between the above-mentioned sources: EFFD 
and RDA. The comparison is performed for all the fires recorded between 2000 and 2009 in the 5 most 
affected countries, those of the Mediterranean basin. The first stage of the analysis uses common 
variables recorded in the EFFD and the RDA such as date, location and fire size to match fire records. In a 
second stage, when the exact date or location was unknown, ranges of time (7-10 days) and fire size were 
used; additionally, spatial cross checking with different administrative unit levels (NUTS5-municipality-, 
NUTS3-province) was performed. For those fire perimeters (in the RDA) that were not automatically 
matched to records in EFFD a manual quality check was carried out. The reasons for mismatching were 
manifold e.g. assignment of spatial location to a fire within an administrative unit using different criteria, 
not reported fires, reporting of some events more than once, different fire sizes in RDA and EFFD. 
The perimeters of the big fires (more than 500 ha) matched in most countries, around 94% of the total 
(over 95% for all countries except for Greece, 68%). However, taking into account all fires bigger than 50 
ha, the agreement decreased to around 15-20%. This analysis made it possible to explore the level of 
accuracy of the main two sources of information on forest fires at the European level. Although remote 
sensing can be considered the most reliable method for mapping large fires, the analysis performed 
suggests that its reliability may decrease as fires decrease in size approaching the threshold of 40 ha in 
the RDA. 
 

Keywords: burnt area, Euro Mediterranean, fire occurrence, GIS, MODIS 

Introduction 

In the European Mediterranean region on average 60 000 fires occur every year, burning 

approximately half a million ha of forest areas (European Commission, 2010). Mediterranean 

ecosystems cannot be fully understood without the role of fires. Natural fires have been 
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essential to maintain biodiversity. Fire has been also a widely used tool to manage the territory. 

However, in the last decades, natural fire regimes have experienced significant alterations (fire 

frequency, intensity and severity), which have aggravated their ecological, social and economic 

consequences (Westerling et al., 2006; FAO, 2007). The first steps to create a European forest 

fire database were taken under the Regulation EEC No 2158/92, now expired, followed by the 

Regulation EEC No 804/94 and the Forest Focus Regulation (EC) No 2152/2003. The forest fire 

data of the European members is collected every year through the above-mentioned 

regulations. Since 2000 this data has been checked and stored by the European Forest Fires 

Information System (EFFIS) through the database known as the European Fire Database. In this 

harmonised database, the numbers of fires, burnt area and fire cause, among other variables, 

are stored since the 80s for some member states (European Commission, 2010). The burnt area 

of the European territory has been monitored since the year 1998 by means of remote sensing 

techniques. After carrying out tests and obtaining sub-regional results, EFFIS produced in 2000 a 

burned area product from WiFS data. This product was obtained by the end of each summer 

season on the basis of a single image mosaic. Classification was obtained through thresholding 

and post-classification visual interpretation. From 2003 onwards, MODIS daily images with 250 

m spatial resolution have been used. Daily two full sets of tiles covering Europe are pre-

processed, providing radiometry, geolocation and atmospheric corrected reflectances. Also the 

MODIS thermal activity product is processed and the active fire product is used for the 

automatic geo-location of active fires. The EFFIS Rapid Damage Assessment provides the daily 

update of the perimeters of burnt areas in Europe for fires of about 40 ha or larger (San-Miguel 

Ayanz et al 2009). 

Methods 

Study area 

EUMED comprises the Southern European countries Portugal, Spain, Italy, Greece and the 

Mediterranean provinces of France, with an area of more than 1 million km2. The climate in 

much of this region is Mediterranean, with mild, rainy winters and hot, dry summers (Merlo and 

Croitoru, 2005), which supports characteristic Mediterranean forests. Forests cover about 50% 

of its area, including shrub formations and other semi-natural categories (e.g. transitional 

woodlands, sclerophyllus vegetation) (CLC 2000). Reflecting the prevailing climate, 

Mediterranean forests are frequently characterized by fire climax species, i.e. those dependent 

on the presence on fire in the reproductive cycle (FAO, 2006). In this populated area of about 

137 million people (Eurostat 2011; Insee 2009) most of the fires are directly or indirectly linked 

with human activity. 

Data 

The European Forest Fire Database (EFFD) contains fire statistics going back to the 1980s for 

some of the Mediterranean countries. For the study period 2000-2009, in the EUMED countries, 

the total number of fires was 541 324 and the burnt area 4 253 207 ha. In Portugal there were 

254 542 fires with 1 608 558 ha of burnt area. In Spain 182 761 fires occurred and 1 269 074 ha 

of forest area was burnt. In the EUMED provinces of France there were 22 145 fires burning 164 
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438 ha. In Italy, there were 73 021 fires and 844 993 ha of burnt area. Finally, in Greece, there 

were 8855 fires burning 366 142 ha. Figure 1 illustrates the percentage of burnt area by fire size 

class for the whole EUMED and by country in the study period 2000-2009. 

 

 

  

 

 

 

 
Figure 1. EFFD Percentage of fires by Fire Size Class at EUMED level and by country (2000-2009) 

 

The Rapid Damage Assessment (RDA) provides a daily update of the perimeters of burnt areas 

in Europe for fires of 40 ha or larger. The methodology for its calculation is further explained in 

San-Miguel Ayanz et al 2009. In the study period 2000-2009 8890 fires were mapped, with a 

total burnt area of 2 814 264 ha. In Portugal, there were 4003 fires, burning 1 116 393 ha. In 

Spain, 2575 fires were mapped with 745 031 ha of burnt area. In the EUMED provinces of 

France, 313 fires were mapped giving a total burnt area of 104 433 ha. In Italy there were 1566 

fires, burning 360 252 ha. Finally, in Greece, 433 fires were mapped with a total burnt area of 

479 265 ha. The burnt area was calculated by the end of the season for 2000-2005 and daily for 

2006 onwards, as the exact date of the fires was known for this latter period.   Figure 2 shows 

the percentage of burnt area by fire size class for the whole EUMED and by country, in the 

study period 2000-2009. 

 

 

 

 

 

 
 

Figure 2. RDA Percentage of fires by Fire Size Class at EUMED level and by country (2000-2009) 

 

Method 

The present study focuses on the analysis of the agreement between the above-mentioned 

sources: EFFD and RDA. The comparison is performed for all the fires recorded between 2000 

and 2009 at the EUMED level. The first stage of the analysis uses common variables recorded in 

the EFFD and the RDA such as date, location and fire size to match fire records. In a second 

stage, when the exact date or location was unknown, ranges of time (7-10 days) and fire size 

were used; additionally, spatial cross checking with different administrative unit levels (NUTS5-

municipality-, NUTS3-province) was performed by using GIS tools. For those fire perimeters (in 

the RDA) that were not automatically matched to records in EFFD a manual quality check was 

carried out.  
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Results and discussion 

The level of agreement between the two fire data sources is summarized in Table 1. On one 

hand, at the EUMED level, about 56% of the big fires (equal to or bigger than 500 ha) of the 

EFFD were linked to the burnt mapped area (RDA). On the other hand, the big fires from the 

RDA database were linked to the records in the EFFD in 94% of cases. By country, large fires 

were linked in the EFFD in about 70% in Spain and Greece, around 60% in France, while 55% 

and 45% in Italy and Portugal respectively. In the RDA, in all countries, except for Greece (68%), 

all big fires were linked in more than 90% of the cases.  

 
Table 1. Percentage of linked fires by Fire size class in EFFD and RDA at EUMED level and by country in 2000-2009 

 Linked fires (%) 

 EUMED ES FR GR IT PT 

Fire size class (ha) EFFD RDA EFFD RDA EFFD RDA EFFD RDA EFFD RDA EFFD RDA 

<0.01 0.1 0.0 0.0 0.0 0.0  0.0  0.0  0.2 0.0 

0.01-1 0.1 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.2 0.0 

1-5 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 

5-10 0.1 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.4 0.0 

10-50 0.7 13.5 0.5 11.6 0.3 2.2 2.0 6.7 0.8 16.4 0.7 15.4 

50-100 3.7 14.8 2.8 10.5 7.9 29.0 11.4 33.3 3.8 12.2 2.9 16.2 

100-500 13.8 22.0 14.9 18.1 14.9 40.0 30.2 32.5 14.5 27.6 9.6 18.4 

>=500 56.1 94.0 68.9 99.0 62.9 97.7 73.3 67.9 54.8 96.4 45.6 96.6 

 

Regarding the periods in the RDA database source in which the exact date of the fire was known 

(2006-2009) or not (2000-2005), table 2 illustrates the level of agreement in percentage of the 

linked mapped fires with the EFFD database by period and by country. As the table shows, for 

the smaller fires (10-50 and 50-100 ha), the success in linking cases is higher in the period 2006-

2009, where the date of each event is available (except for Greece). In fires of size 100-500 ha, 

the agreement is higher in Spain, Italy and Portugal. Finally, for the largest fires, the percentage 

is quite similar in both periods.   

 
Table 2. Percentage of linked fires by Fire size class in RDA by country in 2000-2005 and 2006-2009  

 Linked fires (%) 

 ES FR GR IT PT 

Fire size class (ha) 00-05 06-09 00-05 06-09 00-05 06-09 00-05 06-09 00-05 06-09 

<0.01 0.0 - - - - - - - 0.0 - 

0.01-1 0.0 0.0 0.0 - 0.0 - 0.0 - 0.0 - 

1-5 0.0 0.0 0.0 - 0.0 - 0.0 - 0.0 - 

5-10 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 

10-50 0.0 55.2 0.0 14.3 12.5 6.5 0.0 32.7 0.6 53.5 

50-100 0.0 46.2 23.3 50.0 57.7 15.8 0.0 25 1.7 61.6 

100-500 0.3 68.5 40.9 31.3 45.3 24.8 0.0 47.8 3.5 71.7 

>=500 98.9 99.0 97.3 100.0 62.8 71 97.7 95.7 98.8 85 
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The main difficulties found in analyzing the agreement between the two databases were: (1) 

lack of coincidence in the date of the event; (2) fires that were not reported in the EFFD; (3) 

exact location of the fire not reported in the EFFD database; (3) fires that happened in border 

areas in between countries or regions; (4) fires in which the burnt area covered more than one 

municipality unit (NUTS5) and which appear in the EFFD as more than one different record 

according to the municipalities where they have happened; (5) big differences in burnt area 

size. 

Conclusions 

This analysis explores the level of accuracy of the main two sources of information on forest 

fires at the European level. For the big fires, most of them have been reported in both 

databases and are coincident in more than 95% of cases, with the exception of Greece (70%). 

This lower level of agreement may be related to changes in the Greek services in charge of 

collecting and reporting forest fire statistics. Regarding smaller fires, the reliability decreases. It 

might be due to the lack of information related to the spatial location, time of the event, or 

more precise burnt area data in the EFFD. Although there are decreases in the level of 

agreement between RDA and EFFD with decreasing burnt area size, remote sensing allows the 

enrichment of the fire data reported in the EFFD as it provides explicit detailed positioning of 

the burnt areas in the countries.  
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IV - National to global applications of remote sensing in post-fire 

assessment 
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Abstract  

Satellite data have been used to monitor fire for more than two decades using computer algorithms that 
detect the location of active fires at the time of satellite overpass, and in the last decade using burned 
area mapping algorithms that map the spatial extent of the areas affected by fires (Lentile et al. 2006; 
Roy et al. 2008). Until the successful launch of the polar-orbiting NASA Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensors there were no environmental satellite systems with dedicated fire 
monitoring capabilities (Justice et al. 2003). The MODIS design includes bands specifically selected for fire 
detection and MODIS data are being used to systematically generate the daily global 1km active fire 
(Giglio et al. 2003) and the monthly 500m burned area products (Roy et al. 2005).  However, neither 
MODIS product can detect fires reliably at the scale of 10’s of meters. The recent USGS 2008 free Landsat 
data policy now provides the opportunity for continental to global scale Landsat 30m resolution 
processing 
This paper presents a multi-temporal methodology to fuse the MODIS active fire and burned area 
products with Landsat data to map burned areas at 30m on a temporally rolling basis. To demonstrate 
the fusion methodology, 30m burned area maps of the conterminous United States (CONUS) are 
generated using the freely available Web Enabled Landsat (WELD) ETM+ mosaics (Roy et al. 2010, 
http://landsat.usgs.gov/WELD.php). Validation is conducted by systematic comparison with the fire 
perimeter vectors provided by the USGS Monitoring Trends in Burn Severity project (Eidenshenk et al. 
2007). Prospects for future developments and continental application are discussed. The presented 
methodology demonstrates the potential for the fusion of the planned NPP/NPOESS VIIRS active fire 
product with reflectance data sensed by the planned Landsat Data Continuity missions. 
 
Keywords: MODIS, Landsat, Data Fusion, Unsupervised Burned Area Detection 
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Abstract 

The evaluation of the restoration practices applied to burnt Mediterranean forest ecosystems is an    
essential element of any restoration project and it refers both to the restoration by natural regeneration 
and by artificial reforestation as well.  
The objective of the research was to study the forest post-fire dynamics for the two restoration practices 
under various fire regimes as regards the frequency of fire breakouts. This work was carried out in 
Pendeli mountain (Attica, Greece) that has been repeatedly burnt by fires.  In-situ measurements were 
performed in 2008 in one hundred and three burnt surfaces which were identified in the territory. In 
each surface, all kind of plants (physical regeneration-artificial reforestation) as well as incremental data 
were measured and were subsequently used for the determination of the total aboveground biomass 
using suitable allometric equations.  The analysis was based on appropriate satellite time-series of a 
modified Normalized Difference Vegetation Index retrieved from SPOT series satellites which were used 
for the determination of the forest recovery empirical model.  
The results concluded that reforestation performed on surfaces that were burnt once in the year 1995 
was comparable to natural regeneration. In fact, ten years after the fire, it was superior in terms of total 
biomass. The reforestation made after the year 1995 in areas that were burnt also in 1982, was superior 
than the corresponding natural regeneration. Those findings were confirmed by the assessment of the 
degree of natural regeneration of Pinus halepensis Mill in each surface and the measurement of the 
average value of biomass for year 2008. 
 
Keywords: Restoration, Natural regeneration, Reforestation, Evaluation, SPOT 

Introduction 

Restoration of burned Mediterranean forest ecosystems with natural regeneration is ensured 

after a single incident (Trabaud 1982, Daskalakou 1996, Thanos et al. 1996).  On the other hand, 

recurrent wildfires significantly impede or even eliminate the natural regeneration process of 

those ecosystems. As pointed out in the relevant literature, natural regeneration of Pinus 

halepensis Mill is not possible in the case of multiple fires occurring within a short period of 

time. For this reason, artificial reforestation is extensively adopted for restoration in Greece and 

other Mediterranean counties as well. (Christakopoulos et al. 2007). 

The evaluation of the restoration practices is an essential element of any restoration project 

applied to burnt Mediterranean forest ecosystem and it refers both to the restoration by 

natural regeneration and by artificial reforestation. Benchmarking of the two practices may lead 

to useful findings, regarding restoration success. Towards this direction, the above-ground 

biomass is considered as one of the essential ecological indicators of restoration success 

(Aronson et al. 1993). In the literature, various biomass estimation methods based on 
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allometric equations are found (Blanco and Navarro 2003, Christakopoulos 2010). Alternatively, 

the assessment of the restoration success can be based on remote sensing indicators, such as  

the Normalized Difference Vegetation Index (NDVI) (Diaz-Delgado et al. 2002, Gouveia et al. 

2010), the SWIR/NIR index (Vogelmann et al. 2009), pRI(Lhermitte et al. 2010), Green 

Vegetation Cover (Röder et al. 2007) and other indices derived from data acquired by existing 

sensors (e.g.  LANDSAT TM and ETM+, ASTER, IKONOS, SPOT). In general, NDVI exhibits a strong 

relationship with a number of vegetation characteristics, notably green leaf area index (LAI), 

green biomass, and fractional absorbed photosynthetically active radiation, FPAR. In particular, 

and because of its general response to levels of green biomass irrespective of plant species, it 

has been used to quantify the total vegetation cover. It corresponds well to the levels of the 

total above-ground biomass, especially during the first stages of post-fire restoration before 

reaching its saturation level (Anderson et al. 1993). 

This paper focuses on the evaluation of restoration success of a burnt forest ecosystem in 

Greece. The proposed research is based on the determination of an empirical restoration model 

using the post-fire trends as determined by a modified NDVI index derived from a series of high 

resolution SPOT multispectral images. The specific model is used in conjunction with 

estimations of the total above-ground biomass, for the comparative evaluation of the two 

restoration practices namely natural regeneration and artificial reforestation. 

Data and methodology  

The study took place in the area of mountain Pendeli near Athens, the capital city of Greece 

(Figure 1). Some parts of the area have been burnt  once in 1995 while some other parts have 

been burnt by recurrent wildfires in 1982 & 1995. The former have been restored mainly by 

natural regeneration while a small part has been restored by artificial reforestation. The parts of 

the area burnt twice have been mainly restored with reforestation. 

In-situ measurements were performed during 2008 in 103 burned surfaces (control surfaces) 

identified in the territory. In each surface, the number of plants (natural regeneration-artificial 

reforestation) as well as incremental data (height, basal diameter, canopy cover) were 

measured. Using suitable allometric equations suggested by Blanco and Navarro (2003) and 

Christakopoulos (2010) the total above-ground biomass was estimated in each area. 

An extended set of images comprising twenty high resolution images from SPOT series satellites 

(SPOT 1, 2, 3, 4) covering the years 1986-2008 and corresponding to summer acquisitions was 

used. Prior to the analysis, all images were corrected for geometric, topographic and 

atmospheric effects. For each one of the identified control surfaces, the spatially average values 

of the Normalized Difference Vegetation Index (NDVI) were determined. Those values were 

normalized by the average NDVI values of some unburned areas identified in the area. This 

modified NDVI, called Resilience (R), has proven to be insensitive to factors such as moisture, 

visibility, and temperature variations (Diaz-Delgado et al. 2002). 

The analysis of the satellite time-series showed that the post-fire response can be 

approximated via a logistic or sigmoid curve (Figure 2) expressed in general as f(x)=a·[(1+b·exp(-

c·x)]-1. Using the above mentioned curves, four different scenarios were examined in terms of 

frequency of fire occurrence and the restoration practice applied: a) Fire in year 1995-natural 
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regeneration, b) Fire in year 1995-artificial reforestation, c) Fires in years 1982 and 1995-natural 

regeneration and d) Fires in years  1982 and 1995- artificial reforestation. 

 

          
  

Figure 1. Areas of study in Pendeli mountain  Figure2.  The general form of the logistic or sigmoid curve adopted 
 

Results and discussion 

Single-fire (1995) 

In Figures 3 and 4 the graphs of the temporal evolution of the modified NDVI index (R) (in blue) 

and its post-fire logistic curves (in red) for natural regeneration and artificial reforestation are 

shown for the case of a single-fire occurred in 1995. The comparative graph of the post-fire 

trends is shown in Figure 5 reveals that soon after the fire, the curve of natural regeneration (in 

blue) is higher than the respective curve of reforestation (in green). This happens because in 

general, the  areas restored with reforestation present low levels of natural regeneration. As it 

can be inferred from the slope of the two curves, reforestation is growing slightly faster than 

natural regeneration. As a result, at the tenth year, the two curves cross each other. From this 

point on though, a decrease of natural regeneration speed is observed. The average above-

ground biomass values estimated from the allometric equations for year 2008 as given in Figure 

5, are in agreement with the above findings. More precisely, the biomass estimates for 

reforestation (18.376 ton/Ha) and natural regeneration (17.709 ton/Ha) indicate a higher 

performance of the former by 4%. 

 

Figure 3. Evolution of R after one fire (1995) and  
natural regeneration 

Figure 4. Evolution of R after one fire (1995) and  
artificial reforestation 
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Figure 5. Post-fire trends after one fire in 1995. Natural regeneration versus Reforestation 

 

Recurrent fires (1982, 1995) 

Figure 6 depicts the temporal evolution of R as a function of time elapsed from the last fire 

incident (in 1995) in the case of two recurrent fires, for the two restoration practices. 

As it is observed, the reforestation curve (in green) presents higher slope throughout the entire 

period than the natural regeneration curve (in blue), a fact indicating the higher restoration 

speed with reforestation. It is characteristic that although the two sample areas present almost 

identical values immediately after the second fire (R≈0.25) and thus similar initial conditions, 

the value of R for artificial regeneration is higher by approximately 20% (R≈0.90 and R≈0.75 

respectively). Τhe average above-ground biomass values for the areas with natural regeneration 

and reforestation in the year 2008 are respectively 19.638 ton/Ha and 17.798 ton/Ha, a 

difference equal to around 10%. According to Christakopoulos (2010), the plant density for 

natural regeneration of Pinus halepensis Mill for the specific case, is moderate (600 plants /Ha) 

while the relevant density of artificial reforestation is high (about 1400 plants/Ha). Thus, also in 

the specific case of two recurrent wildfires, artificial reforestation is superior to natural 

regeneration in terms of total above-ground biomass.  
 

 
Figure 6. Post-fire trends after the two fires in 1982 and 1995. Natural regeneration versus Reforestation  
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Conclusion 

In the specific work, appropriate sigmoid curves were fitted to the time-series of a Resilience (R) 

index derived from SPOT high resolution multispectral images to study the post-fire response of 

a Mediterranean forest ecosystem. The analysis, showed that for the specific cases examined, 

the post-fire response depends on the restoration practice applied. Reforestation in Pendeli 

mountain after one incident of fire in 1995 was slightly superior than restoration with natural 

regeneration while in the case of two fire incidents (in 1982 and 1995), restoration with 

reforestation was significantly superior to restoration with natural regeneration. The trends 

identified by the analysis of the satellite time-series were consistent with estimations of the 

total above-ground biomass made in 2008. 
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Abstract 

In 2010 the European Space Agency initiated the Climate Change Initiative, a relevant effort to provide 
long and consistent essential climate variables (ECV) time series data for improving global climate 
modelling. The program is part of the European effort to accomplish the Global Observing Climate System 
(GCOS) requirements. Within this program, ten ECVs are being generated, including atmospheric 
variables (ozone, greenhouse gasses, aerosols, clouds), oceanic variables (ocean colour, height and 
temperature), and terrestrial (fire, glaciers and land cover). This paper presents the goals and current 
developments of the fire ECV. 
 
Keywords:   Burned Area, Climate Change, MERIS, ATSR, VEGETATION, European Space Agency  

Introduction 

The European Space Agency (ESA) Climate Change Initiative (CCI) is part of the European 

contribution to the Global Observing Climate System (GCOS) program. In particular, the 

objective of this initiative is producing consistent and accurate time series of Essential Climate 

Variables (ECV), which can be used by climate, atmospheric and ecosystem scientists for their 

modeling efforts (Plummer 2009). The CCI stresses the importance of improving scientific 

impact of data acquired by ESA sensors, while maintain close links with key science bodies and 

other agencies currently generating ECV data. The first call of the CCI program includes ten ECVs 

covering atmospheric products (ozone, greenhouse gasses, aerosols, clouds), oceanic variables 

(ocean colour, sea ice, height and temperature), and terrestrial (fire, glaciers, and land cover). A 

Climate Modelling User Group (CMUG) is also part of the program, to help the interaction of 

ECVs data production with end-users. 

Fire disturbance is one of the ECVs included in the ESA CCI program. It shall focus on mapping 

burned area (BA) using (A)ATSR, VEGETATION and MERIS data, and in comparing the 

performance of those products with other algorithms and external equivalents datasets (e.g. 

MODIS and VEGETATION products). The project aims at developing and validating algorithms to 

meet GCOS ECV requirements (Global Climate Observing System (GCOS) 2009), which require 

consistent, stable, error-characterized global satellite data products from multi-sensor data 

archives. The project also includes developing  algorithms for pre-processing of (A)ATSR, 

VEGETATION and MERIS (both Full and Reduced resolution data), to improve geometrical 

accuracy and remove atmospheric effects that may lead to potential confusions with burned 
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areas (clouds, smoke, cloud shadows, water, snow, topographic shadows), as well as algorithms 

to merge BA from different sensors and adapting the outputs to the needs of the climate 

modelling community (for technical information on the fire_cci project, see http://www.esa-

fire-cci.org/).  

From a conceptual point of view, the project tries to answer the following scientific questions: 

What is the actual magnitude of fire impacts? How much area is burned annually worldwide?, 

What are the recent trends in fire activity? These questions are the basis for other aspects of 

global fire science, such as the amount of biomass actually consumed by the fires and their 

associated GHG emissions, the departure of current fire occurrence from natural fire regimes, 

the role of fire in world deforestation (REDD+), or the main factors behind fire occurrence 

trends, on whether they are mostly socio-economic (land-use transformation, for instance), 

political (fire suppression policy) or climatic. 

1.1 ORGANIZATION OF THE FIRE_CCI PROJECT 

The fire-cci project is developed by a consortium of ten teams from five different European 

countries (fig. 1): University of Alcalá, CIFOR-INIA and GMV (Spain); GAF, DLR and Julich 

(Germany), IRD and LSCE-CEA (France), ISA (Portugal), and University of Leicester (UK). These 

groups cover the different specialities required for the project: Earth Observation scientists, 

Climate-atmospheric-vegetation modellers, and System engineers.  

 
Figure 1. Fire_cci project composition 

1.2 PROJECT PHASES 

The fire_cci project includes the following main phases (fig. 2): 

• User requirement and definition of Product Specifications. 

• Geometric and radiometric processing of input images. 

• BA detection and merging algorithms 

• Validation and error characterization. 

• Testing BA data within climate-vegetation models. 

In order to generate a long and consistent time series of BA products, which can be used by the 

climate, atmospheric and ecosystem scientists for their modelling efforts, it is necessary to 

understand in detail their needs. For that purpose a user requirement survey was carried out, 
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both considering the scientists potentially interested in the BA product and the literature 

references describing actual uses of global BA information.  

From that analysis, the product specifications were generated, taking into account as well the 

limitations of the input data and the CMUG and GCOS requirements. As a result of this analysis, 

it was compromised that the fire_cci project would include two BA products, one at pixel level, 

merging the outputs of (A)ATSR, VEGETATION and MERIS sensors, and another one at grid level, 

at a 0.5 degree resolution, which is the most standard climate grid modelling (CGM) size. The 

BA information shall be provided at daily resolution, with temporal composites of 1 month for 

the pixel product and 15 days for the grid product. Each of the two products will be properly 

documented, including quality layers. 

 
Figure 2. Modules of the fire_cci project 

 

In terms of pre-processing, the BA products of the fire_cci project will be based on level-1B and 

level-2 calibrated radiances from (A)ATSR, VEGETATION and MERIS (Reduced and Full 

Resolution). To derive corrected level2 products advanced image geometrical matching has 

been introduced by DLR, which have also developed dedicated algorithms for removing 

atmospheric effects, improving cloud, water and snow masking, and topographic shadow 

removal. . Additional, long term drift effects will be investigated and corrected using CEOS-

reference sites. The pre-processing chain has been mostly focused on ten 500x500 km study 

sites (fig. 3), with the full temporal series (1995-2009) that will be included in the project. They 

cover the major ecosystems affected by fires, as well as areas previously reported as 

problematic for burned area mapping. 

Burned area algorithms adapted to the three target sensors and considering the diversity of 

burned area conditions at global scale are being developed. They will primarily aim at the ten 

study sites to demonstrate the consistency in the processing chain for the BA product outputs. 

Algorithms currently tested by the UAH-INIA and ISA teams are based on multitemporal change 

detection, contextual-regional analysis and fire seasonality. A Round-Robin exercise will be 

conducted between October and December 2011 to check the most relevant existing 

algorithms applicable to the three sensors against the same reference information. The goal of 

this exercise is to select the best performing algorithm for global production of burned area 
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maps. The exercise will be open to participation of any scientists interested in these issues. 

Once the best performing algorithm is selected, a merging process will be developed to create a 

synthetic BA product from the three sensor BA products (ATSR, VGT and MERIS). Finally, the 

complete processing chain will be applied at global scale for five selected years (1999, 2000, 

2002, 2003 and 2005), to demonstrate the operational conditions of both the pre-processing 

and BA algorithms.  

Figure 3. Location of study sites for the fire_cci project 

 

Validation of the BA product will be performed by comparing BA outputs with reference fire 

perimeters generated from Landsat-TM/ETM+ multitemporal images. A standard protocol 

based on the CEOS LPV recommendations was generated and agreed between UAH and GAF 

validation teams to extract fire perimeters from Landsat data, based on a semi-automatic 

algorithm (Bastarrika et al. 2011). The validation exercise will aim to measure both spatial and 

temporal accuracy and precision. The spatial assessment will be based on a sample of 110 

multitemporal Landsat images acquired in 2005, while the temporal stability will be measured 

from a temporal series of one Landsat scene for each of the ten study sites. Reference 

perimeters for these sites are already completed. 

BA information generated by the fire_cci project will be compared with other global BA 

products currently available (GFED3 and MCD45), to check common trends and potential 

problems. Modellers within the fire_cci consortium will test the BA information in atmospheric 

and carbon cycle models to analyze its advantages and limitations. 
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Abstract 

Forest fires can be a major ecological disturbance agent that modifies landscapes, especially when 
normal fire frequencies and /or intensities are modified. The main negative fire effects are vegetation 
biomass loss, soil degradation, and greenhouse gas emissions. In the worst cases, fires cause not only 
natural and econom-ical but also human losses (for example, 2007 fire season in Greece). A 
comprehensive study of a fire event re-quires early warning, crisis monitoring and, after the fire occurs, 
the interpretation of causal factors, fire effects and ecosystem responses, in a wide range of spatial (local 
to regional) and temporal (short to long term) scales. However, the lack of data, standard methodologies 
and economic resources makes this assessment often difficult and/or incomplete. Therefore, analysis of a 
fire event is usually centered in a post-fire evaluation of the burnt area and, in some cases, in the fire risk 
estimation. Wildfires show marked seasonal and diurnal cycles and can vary widely in its spatial location. 
Satellite Earth Observation is actually the only method able to provide repetitive data at the spatial and 
temporal scales necessary for detecting, quantifying and monitoring this activity, and for understanding 
the regional and inter-annual variations involved. Therefore, INSA proposed several fire products in order 
to support the crisis management, integrated in a geoportal (www.insageoservices.com) and provided in 
the mark of the GMES/SAFER project:  

• Fire monitoring -the geographic location of the hot spots and associated parameters, and cloud 
mask. Fire detection algorithm has been developed in order to detect actives fires in the Iberian 
Peninsula with MSG SEVIRI (5 min and 15 min- delivery frequency) and MODIS (8 times per day). 
The algorithm is based on contextual approach selecting pixels which could potentially be fires 
and afterwards confirms the pixels by comparing the potential fires with their immediate 
neighbors. In addition, the algorithm re-trieves temperature and burning area of hotspots 
following the Dozier’s approach and the fire radiative power. 

• Rapid burned area mapping -by the daily MODIS acquisition and processing, between 1 and 7 
day after fire extinction.  

• Recovery:  Recovery products are intended for an in-depth analysis of fire event, e.g. damage 
assess-ment or a synthesis of the fire event. High resolution fire perimeter can be provided at 
the end of the fire season, for fire inventory. Fire severity product is the estimation of damage 
levels in the different vegetation strata, obtained using a simulation model.  

All products have been validated using ground truth data and independent expert validation and have 
been con-sidered as fully operational. 
 
Keywords: forest fires, active fires, burned area, fire severity, hot spots 

Introduction 

Forest fires can be a major ecological disturbance agent that modifies landscapes, especially 

when normal fire frequencies and /or intensities are modified. The main negative fire effects 

are vegetation biomass loss, soil degradation, greenhouse gas emissions and, in the worst 

cases, the loss of lives. 

A comprehensive study of a fire event requires prevention, early warning, crisis monitoring and, 

after the fire occurs, the interpretation of causal factors, fire effects and ecosystem responses, 

in a wide range of spatial (local to regional) and temporal (short to long term) scales. Often, this 

assessment is incomplete due to economic reasons, the lack of data or the use of standard 

methodologies that are not efficient. 
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SAFER project proposed several fire services in order to support all phases of crisis 

management: 

Preparedness/Prevention: Global Fire Risk Service (GRF) provides fire danger forecast on the 

basis of meteorological weather forecasts. Information content includes the identification of 

the area that can be under risk classified into 5 classes (from very low to very high risk) 

Emergency Response:  Fire monitoring (FMM-1) – They contain the continuous near-real time 

monitoring of active fires. This product includes fire location and several associated parameters: 

estimated fire power, fire temperature, size of burning area and background temperature. In 

addition, cloud cover is provided per each satellite image- and Rapid burned area mapping 

(FMM-2) – fire perimeters at medium resolution by the daily MODIS acquisition and processing 

can be provided, between 1 and 7 day after fire extinction. 

Recovery:  Recovery products are intended for an in-depth analysis of fire event, e.g. damage 

assessment or a synthesis of the fire event. High resolution fire perimeter (BSM-1) can be 

provided at the end of the fire season, for fire inventory. Fire severity (BSM-2) product is the 

estimation of damage levels in the different vegetation strata. A detailed and rapid knowledge 

of the level of damage and its spatial distribution is essential to: quantify the impact of fire on 

landscape; select and prioritize treatments applied on site; plan and monitor restoration and 

recovery activities; provide baseline information for future monitoring. 

INSA leads the European forest fire platform of SAFER project (www.emergencyresponse.eu), 

coordinating the activities of Spain, Portugal, France, Italy and Greece. 

Between all this services proposed by SAFER, INSA is service provider of FMM-1 and FMM-2 (in 

collaboration with the University of Valladolid -LATUV, Spain), BSM-1 (in collaboration with the 

University of Alcalá- UAH, Spain) and BSM-2. All these services are provided using a dedicated 

GeoPortal (www.insageoservices.com).  

SAFER fire products have a strong scientific base, demonstrated by the number of scientific 

papers published in high impact journals and PhD thesis related to their development and 

testing. On the other hand, the methodologies developed are automatic or semi-automatic, 

what confirms the operational generation of fire products.  

All fire services were selected among the most mature products provided in previous GMES 

projects. During 18 months, the products were tested and improved, taking into account both 

the validation results and users’ feedback. In 2010, all products, except for GFR, were 

independently validated and checked by other partners and users of the project in order to 

evaluate their incorporation in the portfolio of operational services. User feedback results 

quantified the overall agreement with an average value of 4.15 over 5 (where 1 corresponds to 

“very low” and 5 to “very high” agreement), with a homogeneous trend for all products. 

After this validation process, the SAFER fire services have been considered fully operational and 

have been included to the core SAFER services (since July 2011). Any authorized user can now 

activate SAFER and ask for our products in case of natural disaster. 

Active fire location and rapid burned area mapping (FMM-1 and FMM-2 products) will be 

provided in “emergency” mode within 8 hours from the receipt of the first suitable satellite 

image of the disaster, whereas detailed burned area mapping and fire severity will be delivered 

within 45 days (“emergency support” mode). 
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The distribution of these products to a wide number of users will contribute to better 

understand and forecast fire behavior, to manage the crisis in a more cost-effective way, to 

reduce the impacts and to plan and monitoring the mitigation and recovery activities. 

Description of fire product provided by INSA 

FMM-1: Active fire detection 

Active fire detection is obtained by means of MSG-Seviri and MODIS sensors, using sensor-

specific processing chains and provided in collaboration of the University of Valladolid (LATUV, 

Spain). 

In both cases (MSG and MODIS), the hot spot product is provided with the following associated 

parameters: Date (GMT), Reliability (%), Fire Temperature (Kelvin), Fire Released Power 

(W/m2), Fire Area (Pixel proportion, %).  

MSG-Seviri Chain 

The fire detection algorithm runs every 15 minutes, which is the temporal resolution of MSG-

Seviri, and analyzes the pixels not covered by clouds (see CLM-cloud mask product) and 

catalogued (totally or partially) by Corine Land Cover as “forest”. Further, the algorithm 

considers data from previous scenes in order to improve the consistency and persistency of the 

product.  

The CLM cloud mask product is the most onerous process in term of processing time in the 

MSG-Seviri chain. Therefore, in order to reduce the fire detection processing time, the 

algorithm takes the previous 15 minutes cloud mask with respect to the actual image. The 

processing and delivery time of the fire product is about 4 minutes. The geographic coordinates 

associated to the pixel detected as a fire correspond to the centre of the MSG-Seviri pixel. The 

MSG spatial resolution at nadir is 3x3 kilometres and it is decreasing as we moved away from  

the nadir position, for example the pixel size is about 4.3 km x 3.1 km over Spain and 4.4 km x 

3.5 km over Greece. 

MODIS Chain 

The temporal resolution of the MODIS sensor is about 6 images per day. Fire detection is 

performed through the Active Fire algorithm by NASA (Product MOD14). The time associated to 

the fire product is the time (UTC) at the acquisition of the image. The processing and delivery 

time of the fire product is between 45 and 120 minutes from image acquisition. The geographic 

coordinates associated to fire product correspond to the centre of the pixel (1x1 kilometres). 

The last steps for the active fire algorithm is to filtering through the cloud mask (product 

MOD35) by NASA and the Corine Land Cover forest mask.  

FMM-2: Rapid Burned Area mapping 

FMM-2 Burned area product is a vectorial fire perimeter obtained using MODIS data (250 m- 

spatial resolution). The burned area methodology is based on a contextual algorithm which 

takes into account the differences between the Normalized Difference Vegetation Index (NDVI) 
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values obtained before and after de fire. This methodology is applied twice: 7 and 16 days after 

the last hotspot detected. A forest mask based on GlobCover MERIS v2.2 is applied. 

Every polygon of the product represents a MODIS pixel catalogued as burnt. The product fields 

provided through the GeoPortal are: Date (GMT), Name, Quality product (7 or 16, which 

correspond to the time since hotspot detection), Central Latitude, Central Longitude,Start Date, 

End Date, Area (ha), Product Creation Date. 

Cloud mask 

The cloud mask algorithms are based on temporal and spectral filters applied on MSG-Seviri 

data. 

There are two combined windows for Europe: 

Spain and Portugal: the algorithm takes into account high resolution visible (HRV), 0.6, 0.8, 1.6, 

3.9, 10.8, and 13.4µm channels.  

Europe without Spain and Portugal (faster product, lower processing time): the algorithm takes 

into account only 0.6, 0.8 and 10.8 µm channels.  

The cloud masks for both windows are calculated in the MSG view geometry, and then a mosaic 

with both masks is created. The product is re-projected to Geographic longitude-latitude 

projection. 

BSM-1: Detailed Burned Area mapping 

UAH produces BSM-1 fire perimeters using software called Automatic Burned Area Mapping 

Software (ABAMS) (Bastarrika et al., 2011), specifically developed for SAFER. ABAMS proved to 

be a flexible and adaptive software due to the possible modification of the algorithm in the in 

the user interface. 

BSM-2: Fire severity 

Fire severity product is generated by INSA following the methodology developed by De Santis et 

al. (2009), based on the inversion of a radiative transfer model and validated in several 

Mediterranean ecosystems (Portugal, Spain, Greece and California). 

Geoportal 

The GeoPortal is a website where the users will have access to geospatial information. The 

available data are focused to support the activities of the emergency decisions makers.  

Currently available fire products are: Hot Spots; Cloud Mask; Burned Areas; Fire severity. 

In order to ensure the interoperability of this tool, it is developed following the correspondent 

standards. 

In the main view, the last hot spots per sensors and the last Seviri cloud mask are shown. Hot 

spots are classified according to their reliability and there is the possibility of downloading a 

KMZ Google Earth file which connects automatically with the database and present the last 

recorded CLM and hot spots data. 
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Figure 1. Example of the main view of the INSA GeoPortal 

 

The “Search map” allows searching hot spots and burned area products from INSA repository 

using time and sensor type constraints. The search result can be downloaded directly from this 

view. 

Finally, the “Product download” gives the possibility of downloading all the data stored in the 

INSA repository. 

Conclusion 

Forest fires are a major natural disaster with marked seasonality and wide geographical 

distribution. SAFER fire services, based on EO data, represent the only example, by the date, of 

a comprehensive and operational approach covering all phases of crisis management 

(preparedness/prevention, emergency response and recovery). Fire products were extensively 

validated and improved according to user needs and proved to be ready for their inclusion into 

the operational service portfolio.  
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Abstract 

Maps of the fire season derived from satellite-based remote sensing products are used to define fire 
regimes, to explain differences in fire behaviour and effects, land use practices and emissions factors, and 
to evaluate large-scale models of fire occurrence. Since fire events are portrayed differently in different 
active fire (AF) products, this research compares maps of the fire season in the Central African Republic 
(CAR) as depicted by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Spinning 
Enhanced Visible and Infrared Imager (SEVIRI). One full year of MODIS and SEVIRI active fire pixels 
beginning on 20 July 2008 were spatially and temporally sorted into 30 combinations of 10 grid cell 
resolutions (ranging from 0.05° to 0.5°) and three compositing periods (either 8, 16 or 32 days). We 
define the start/end of the fire season as the first temporal compositing period in which the cumulative 
number of AF pixels equals or exceeds 10%/90% of the annual total. At 0.05° spatial resolution and 16-
day temporal resolution, for example, MODIS and SEVIRI identify an identical start to the fire season in 
52% of the grid cells and an identical end in 43% of the grid cells. In the remaining grid cells, MODIS 
claims an earlier start and a later end more often than SEVIRI. The overall agreement between MODIS 
and SEVIRI increases as either the spatial or temporal resolution of the compositing scheme is degraded 
such that at the coarsest spatiotemporal resolution (0.5° and 32-days), for example, MODIS and SEVIRI 
identify an identical start to the fire season in 83% of the grid cells. Regardless of the map scale, there is 
less of an agreement between MODIS and SEVIRI when characterizing the end or the duration of the fire 
season. Results here demonstrate that care should be taken when (i) deriving fire regime characteristics 
from different remote sensing products, and (ii) when using such characteristics to evaluate large-scale 
simulations of fire occurrence. 
 
Keywords: fire season, satellite-based active fire products, map comparisons, shared information 

Introduction 

Satellite-based active fire (AF) products are imperfect representations of the landscape fires 

burning at the time of image acquisition. Satellite images only contain a sample of all fire events 

(Eva and Lambin 1998), and the portrayal of these events depends on the spectral, spatial, and 

temporal resolution of the observation as well as the sensitivity of the active fire detection 

algorithm. Differences between AF products are most apparent at the pixel level and on an 

instantaneous basis, yet most interpretations of fire activity are not performed at the native 

resolution of the remote sensing product. Instead AF pixels are typically accumulated and 

analyzed at coarser spatiotemporal scales.  

While recognizing the differences between polar-orbiting and geostationary AF products, this 

work explores the information potentially shared between the two. In particular we examine 

the start, end, and duration of the fire season in the Central African Republic (CAR) as depicted 

by the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the 

geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI). In addition to 

contributing to the definition of a fire regime, the timing of fire activity has been used to explain 

seasonal differences in fire behaviour and effects, land use practices, and emission factors (e.g., 

Govender et al. 2006; Bucini and Lambin 2002; Hoffa et al. 1999). Furthermore, maps of the fire 
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season derived from satellite-based remote sensing products are increasingly being used to 

evaluate large-scale models of fire occurrence (e.g., Thonicke et al. 2010). In terms of 

characterizing the timing of fire activity at a particular location, we hypothesize that the 

agreement between MODIS and SEVIRI will improve if compared at coarser spatiotemporal 

scales. 

Data and methods 

The MOD14/MYD14 (MODIS Terra/Aqua) active fire products are generated over the CAR 

nominally four times per day at 1 km spatial resolution (Justice et al., 2002). The SEVIRI active 

fire product is generated 96 times per day at a nominal 3 km spatial resolution (Roberts and 

Wooster 2008). One full year of MODIS and SEVIRI active fire pixels beginning on 20 July 2008 

were spatially and temporally sorted into 30 combinations of 10 grid cell resolutions (ranging 

from 0.05° to 0.5°) and three compositing periods (either 8, 16 or 32 days). In contrast to Giglio 

et al. (2006), MODIS fire pixel counts were not adjusted to compensate for the overpass 

geometry, and neither the MODIS nor SEVIRI fire pixel counts were adjusted to compensate for 

cloud cover. Rather than defining the fire season based on the absolute number of fire pixels 

detected in a compositing period (e.g. Giglio et al. 2006; Chuvieco et al. 2008), we define the 

fire season based on the relative number of fire pixels detecting in a compositing period 

calculated with respect to the annual total (e.g., Dwyer et al. 1999; Clerici et al. 2004). 

Cumulative distributions of the number of AF pixels detected in 8, 16, and 32-day intervals were 

constructed in each grid cell. For both sensors, the start/end of the fire season was identified as 

the first compositing period in which the cumulative number of AF pixels equalled or exceeded 

10%/90% of the annual total. The duration of the fire season was determined as the difference 

between the starting and ending compositing periods. To reduce the complexity of the maps, 

the start, end, and duration of the fire season were each assigned a numeric classification. For 

instance, all compositing periods with a start date before 31 Nov 2008 were assigned to ‘Start 

Class 1.’ Start, end, and duration classes thereafter depended on the temporal resolution of the 

map and were composed of 20 classes at 8-day resolution, 11 classes at 16-day resolution, and 

7 classes at 32-day resolution. The overall agreement between the MODIS- and SEVIRI-derived 

maps of the fire season was calculated as the percentage of grid cells in the CAR that were 

assigned an identical class. 

Results 

Maps of the start classes, end classes, and duration classes as determined from the 

MOD14/MYD14 active fire products are presented in Figure 1. At 0.05° spatial resolution, 6.8% 

and 5.3% of the grid cells in the CAR do not contain a MODIS or a SEVIRI active fire pixel, 

respectively. These statistics suggest that in the majority of the CAR, one is not further than 

~8km from an area burned in 2008/09. Also at this scale, 3.5% of the grid cells contain a SEVIRI 

fire pixel, but not a MODIS fire pixel. Given the coarser spatial resolution of SEVIRI, such grid 

cells can be explained by (i) a MODIS error of omission, (ii) the ability of SEVIRI to detect fires 

between the MODIS overpasses, or (iii) a SEVIRI error of commission. Nevertheless, 91.2% of 

the 0.05° grid cells in the CAR contain both a MODIS and SEVIRI fire pixel. Hence polar-orbiting 
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and geostationary AF products seem to offer a reasonable level of agreement when 

characterizing fire return intervals in the CAR at this spatial resolution. 

Figure 1 also illustrates (i) histograms of the start, end, and duration of the fire season in the 

CAR as determined by MODIS and SEVIRI, and (ii) the difference between the MODIS and SEVIRI 

maps of the fire season in the CAR. At 0.05° spatial resolution and 16-day temporal resolution, 

MODIS and SEVIRI identify an identical start class in 52% of the grid cells and an identical end 

class in 43% of the grid cells. The reduced agreement between MODIS and SEVIRI when 

identifying the end class is attributed, in part, to the seasonal profile of fire pixel counts. At the 

onset of the dry season there is an abrupt, discernable increase in fire activity which quickly 

drives the MODIS and SEVIRI cumulative distributions above the 10% threshold. At the end of 

the dry season, however, a longer tail in the temporal profile of fire pixel counts imparts a 

greater uncertainty in the compositing period that eventually breaches the 90% threshold. 

Uncertainties in the start and end classes combine such that there is only 31% agreement 

between MODIS and SEVIRI when characterizing the fire season duration at this spatiotemporal 

resolution. 

 
Figure 1. In the left column are maps of the start (top row), end (middle row), and duration (bottom row) of the 2008/09 fire season 
in the Central African Republic as determined from the MODIS active fire product. Fire pixels are sorted at 0.05° grid cell resolution 
(~5.57 km at the equator) and 16-day temporal resolution. The start and end classes are expressed in terms of the day of year 
(DOY), and the duration classes are expressed in days. In the centre column are the respective histograms of the start, end, and 
duration of the fire season as determined by MODIS and SEVIRI. In the right column are the respective differences (in days) 
between the MODIS and SEVIRI classifications. 

 

From Figure 1, MODIS claims an earlier start to the fire season in 29% of the grid cells and a 

later start in 19% of the grid cells. In contrast, MODIS claims a later end to the fire season in 

30% of the grid cells and an earlier end in 27% of the grid cells. At this spatiotemporal 
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resolution, obscuration by clouds and the presence of smaller and/or lower intensity fires at the 

beginning and end of the dry season are the most likely causes hindering the SEVIRI active fire 

detection algorithm and thus the ability of SEVIRI to more precisely recognize the start and end 

of the fire season. Consequently MODIS tends to claim a longer fire season than SEVIRI. 

 

 
Figure 2. Overall agreement between the MODIS and SEVIRI maps of the fire season in the Central African Republic (CAR) as a 
function of spatiotemporal resolution. The agreement between MODIS and SEVIRI is calculated as the percentage of grid cells in the 
CAR that have an identical start (left), end (centre), and duration (right) of the fire season.  

 

Figure 2 illustrates the agreement between MODIS and SEVIRI when characterizing the fire 

season at a variety of spatiotemporal resolutions. In general, the agreement between MODIS 

and SEVIRI improves as the grid cell resolution expands. Aside from assuaging the 

spatiotemporal nuances of the MODIS and SEVIRI sampling designs, an increase in the grid cell 

resolution provides a more synoptic view of fire activity. At 16-day temporal resolution, for 

example, the distribution of start classes in the CAR narrows as the size of the grid cells 

increase. That is, the proportion of extremely early start classes and extremely late start classes 

are reduced in favour of ‘Start Class 4’ (day of year = 329, 24 Nov 2008). Since both the MODIS 

and SEVIRI distributions become narrower at coarser grid cell resolutions, there is less 

opportunity for disagreement, and the overall agreement between the two sensors improves. 

Likewise, the agreement between MODIS and SEVIRI improves as the temporal compositing 

period expands. At the coarsest spatiotemporal resolution (0.5° and 32-days) MODIS and SEVIRI 

identify an identical start to the fire season in 83% of the grid cells. As with Figure 1, there is 

less agreement between MODIS and SEVIRI across all spatiotemporal scales when 

characterizing the end of the fire season, and even less when characterizing the duration. 

Conclusions 

MODIS and SEVRI offer reasonable, but not perfect, agreement when characterizing the start, 

end, and duration of the fire season in the Central African Republic. Results here demonstrate 

that care should be taken when (i) deriving fire regime characteristics from different remote 

sensing products, and (ii) when using such characteristics to evaluate large-scale simulations of 

fire occurrence. Although the fire season is characterized here based upon AF pixel counts, it is 

possible that further differences may arise if the fire season is alternatively characterized based 

on fire radiative power (FRP) or the number of days that a fire pixel is detected in particular grid 

cell.   
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Abstract 

Wildfire forms, undoubtedly, one of the most significant driving forces in shaping the Mediterranean 
landscape with a history dating back to the first appearance of terrestrial vegetation of any kind. Despite 
the recent advances in both means and tactics in fire fighting, the extent, frequency and severity of 
wildfires is in-creasing dramatically and so do their detrimental effect. Most importantly, this situation is 
only going to deterio-rate, given the foreseen climate changes in the Mediterranean region and socio-
economic changes occurring in the Mediterranean countryside. Thus, it is time to shift the focus from the 
current monothematic approach of fire suppression into an integrated fire management strategy. An 
integrated fire management has to consist of three distinctive but interrelated phases, namely: fire 
prevention, fire fighting and post-fire management. 
The current study presents a semi-automatic methodology for large scale mapping of burnt areas at 
national level, based on a fixed thresholding method followed by photo-interpretation, known as 
BSM_NOA. The methodology was applied for the first time in 2006 and since then it is deployed 
operationally to map the massive forest fires over Greece including the major devastating events of 2007 
and 2009 fire seasons. Ninety-nine satellite images of high (Landsat-5 TM, SPOT XS) and very high 
(FORMOSAT 2) spatial resolution, acquired shortly after the end of the two fire seasons were used for 
burnt area mapping. The results showed that in 2007 a total of 195,018 ha of burnt areas were mapped. 
The damages extended to an additional area of 32,175 ha because of the 2009 fires.  
The generated Burn Scar and Damage Assessment products provide fire agencies and land managers with 
highly accurate and spatially consistent explicit data of wildfire dispersal over Greece for the two years 
which were the most devastating in the recent history of the country. The methodology presented here 
provides accurate spatial data on the affected areas which can be used for planning the pre and post fire 
management, both at national and local level, based on the historical ecology, current conditions and 
ecological peculiarities of a given area. 
 
Keywords:  Burn scar mapping; Wildfires; BSM_NOA; National scale 

Introduction 

Fire has had a significant impact on the current structure and composition of Mediterranean 

ecosystems, from the early stages of the establishment of  Mediterranean climate (Naveh, 

1975, 1999; Trabaud, 1987). For thousands of years fire constituted a natural factor with a 

regular periodic appearance and a positive role in ensuring the rejuvenation and productivity of 

Mediterranean ecosystems. However, the interaction between man and fire, altered the fire 

regime in many fire prone areas increasing dramatically fire frequency and turning, eventually, 

a natural ecological factor into a major disturbance factor and perhaps the most important 

threat for the conservation of Mediterranean Ecosystem’s ecological integrity. As a result from 

the late 19th century a fire suppression policy has been adopted in many fire prone regions 

across the globe (Stephens & Ruth, 2005).   
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The fire suppression strategy, however, was developed under a rather narrow context, relying 

in most cases on improving fire fighting tactics and means alone. Despite the recent advances in 

fire fighting tactics and means and the increased amount of resources allocated in fire 

suppression (Bassi & Ketunnen, 2008), recent experience in Greece, Southern Europe and 

elsewhere demonstrates that the current policy of fire suppression is rather ineffective. 

Wildfires have became more catastrophic, affecting large areas and often with a significant cost 

in human lives.  

Thus a careful reconsideration of the wildfire management strategy appears to be necessary in 

order to avoid the devastating impacts of wildfires in ecosystem’s ecological integrity, society 

and economic activity. Such a strategy has to take seriously into account the historical and 

ecological role of fire as well as the contemporary patterns of wildfire distribution and behavior. 

Comprehensive, spatially consistent and highly accurate data on wildfire distribution and 

characteristics, at large national scales, are indispensable for the in depth understanding of 

wildfires phenomenon and subsequently the planning of an effective wildfire management 

strategy. 

The current study presents a methodology for large scale burnt area mapping at national level 

which has been applied in two fire seasons, namely 2007 and 2009. The former is considered as 

the most devastating fire season ever recorded in Greece, where thousands of hectares of 

forested areas were affected and 69 civilians lost their lives. Such unusual events offer great 

opportunities for the study of wildfires patterns under extreme conditions and at the same time 

they demonstrate the huge limitations of the current wildfire policy. The 2009 fire season was 

not equally devastating but it mainly affected Attica, which is the most populated area of 

Greece with significant ecological, economic and social impacts.  

Materials and methods 

The BSM_NOA processing chain is a fixed thresholding approach. It relies on a combination of 

automatic processing of uni- and/or multi-temporal derived spectral indices (NBR, NDVI, multi 

date NDVI and ALBEDO) and a radiometric change vector analysis. The processing chain is 

divided into three main levels, namely BSM_NOA Pre-processing, BSM_NOA Core Processing, 

and BSM_NOA Post Processing. The full description of the methodology can be found in 

Kontoes et al. (2009).  

In year 2007 (Figure 1, left), the BSM_NOA method was deployed over an area of 120,212 km2 

out of the 131,957 km2 of Greece’s territory, therefore covering the 91% of entire Greece. The 

remaining 9% of Greece was not affected at all by fires during the 2007 fire season. To cover the 

above mentioned large area, fifteen Landsat TM, two SPOT, and seventy-two FORMOSAT 2 

images, from which 32 multispectral (8 m/pixel) and 32 panchromatic (2m/pixel) were acquired 

and used. The image data set required for the BSM_NOA service deployment over Greece was 

provided by ESA in the framework of the RISK-EOS/GSE project. Because of the severity of 

damages in the region of Peloponnese, it was decided to cover the entire damaged area with 

the FORMOSAT 2 very high spatial resolution images. Moreover the acquired Landsat TM and 

SPOT XS scenes covered the Administrative Regions at NUTS II level (Regions) of Peloponnese, 

Central Greece, Ionian Sea Islands, Epirus, Thessaly, Macedonia, and Thrace. The Regions of 



255 

 

 

Crete and Aegean Sea Islands were not processed as no significant wildfires occurred in this 

period.  

In 2009 (Figure 1, right), the BSM_NOA service deployed in an area of 51,864 km2 

corresponding to the 39.3% of the entire Greece’s territory. For this, a set of 10 full Landsat TM 

images has been used, covering the Administrative Regions at NUTS II level of Peloponnese, 

Central Greece, Ionia Sea Islands, Thessaly, Crete and Aegean Sea islands. The remaining areas 

in northern Greece remained unprocessed, as either no significant wildfires have occurred 

during the fire period of 2009 or no appropriate post fire satellite image could be retrieved.  

                 
Figure 1. Satellite image distribution for mapping in 2007 (left), and 2009 (right) 

 

Results 

According to the results of the BSM_NOA service deployment, 256 wild fires were recorded in 

2007 (fire size > 1 ha) and the total burnt area was 195,018 ha. In 2009 the total number of 

recorded fires was 144 and the corresponding total burnt area 32,175 ha. A classification of 

burnt area based on the Corine Land Cover maps shows that in 2007 44% of the burnt area was 

forests, 10% pastures, and 45% transitional woodland, shrub and other. In 2009 48% was 

forests, 10% pastures, 42% transitional woodland, shrub and other.  In both seasons Southern 

Greece was affected much more than northern Greece as a result of the large fires in 

Peoloponnese in 2007 and the large fire of eastern Attica in 2009.  

The fire size-frequency distribution is shown in Figure 2, and one can see that in 2007 

approximately 90% of the fires had a size of less than 1000 ha while only 3.6% (nine fires) burnt 

more than 5000 ha each. In 2009 the situation is somewhat similar with 97.5% of fires having a 

size of less than 1000 ha and only 1.2 % (two fires) a size of more than 5000 ha. In fact the nine 

largest fires in 2007 burnt 142,716.5 ha or 73.2% of the total and in 2009 the two largest fires 

burnt 18,441.2 ha or 57.3 % of the total. If those extreme fires had been successfully 

suppressed then the total burned area would be approximately 52,302 ha in 2007 and 13,735 

ha in 2009.  
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Figure 2. Fire size distribution for the two studied fire seasons 

Discussion 

The results presented above suggest that wildfires remain a significant threat for the 

environment and society despite the technological advances and the increased budget 

allocated to fire suppression. The southern and more arid parts of Greece are much more 

vulnerable to extreme fire events than the northern parts, threatening unique habitat types 

including the Abies Cephalonia forests of Attica and Peloponnese.  The situation becomes even 

more critical given that those habitats have not developed mechanisms to undergo the 

detrimental effects of fire since their altitudinal distribution zone was, for thousands of years, 

above the fire prone zones of Mediterranean. 

Of significant importance are the results regarding the fire size-frequency distribution. These 

results suggest that even for the devastating season of 2007 fire suppression was successful to 

the 90% of cases, restricting fires to a size of less than 1000 Ha, and only nine fire events turned 

a fire season from being usual to being the worst recorded ever. In 2009 fire suppression was 

successful to 97.5% of cases and two fire events alone, and especially the one in eastern Attica, 

was enough to characterize 2009 as a catastrophic fire season. In fact it is always the few large 

fires which determine the landscape patterns and cause detrimental effects to environment 

and society as suggested by Johnson et al. (2001). 

These facts clearly demonstrate that the currently applied wildfire management strategy has 

reached its limits of effectiveness and can no longer be considered adequate for the protection 

of environment and society from wildfires. Although the summer of 2007 was characterized by 

the extreme weather conditions with three consecutive heat waves and wind patterns that 

favored the spread and intensity of fires there is no doubt that those weather patterns will 

occur again in the future and perhaps more extreme. The IPCC Forth Assessment Report 

(Christensen, et al., 2007) suggest that summer temperatures and precipitation are likely to 

increase and decrease, respectively, during the following decades leading to weather patterns 

that we have possibly never experienced or recorded before. Similar projections are given by 

other studies as well, including Mouillot et al., 2002 and Carvalho et al.2011.  Furthermore, fire 
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suppression, as it is currently applied, has been considered by many studies responsible for the 

transition from a fire regime with frequent small fires to a regime with less frequent large stand 

replacing fires (Minnich 1983, 2001), although this findings have been disputed by other 

authors (e.g. Keeley & Fotheringham 2001). Fuel build up in Greece and elsewhere in 

Mediterranean is thought to be also the result of countryside depopulation and the significant 

reduction of free grazing livestock in many mountainous areas, generating conditions that could 

favor large, high intensity stand-replacing fires. 

The adoption of a contemporary and integrated fire management strategy appears inevitable if 

the phenomenon of wildfires is to be effectively controlled. The new strategy has to take 

seriously into account the historical role of fire in shaping the Mediterranean landscape as well 

as the contemporary setting in which wildfires occur. Fire should no longer be treated as the 

absolute evil which needs to be totally eliminated but it has to be treated as a “living organism” 

with a certain ecological behavior, distribution and dietary preferences. The aim of a 

contemporary wildfire management strategy has to be the conversion of a ravenous “organism” 

to an “organism” which is manageable and vulnerable to certain measures, but at the same 

time it will continue to play the highly significant historical and ecological role that has been 

playing for the last 3 million years in the Mediterranean region. 

An integrated wildfire management strategy consists of three independent and interrelated 

phases, namely fire prevention, fire suppression and post fire management. The results 

presented in the current study can be used for the better planning of all three phases and offer 

a great tool to policy makers, land managers and agencies involved in wildfire management. It 

provides highly accurate data for the study and interpretation of wildfire distribution and 

behavior. Used in combination with highly accurate fuel maps it would provide extremely useful 

insights for the effective planning of fire prevention and allocation of resources for fire 

suppression. If additionally combined with highly accurate landcover and geomorphology maps 

the basis for the planning of post-fire treatments with focus on the most vulnerable areas 

where immediate intervention is required, is formed.   
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Abstract  

The behavior of a fire and its consequences are influenced, among other factors, by the underlying land 
cover. In this research, the relation between land cover types and fires was investigated at a broad spatial 
scale, by comparing the types of land cover most frequently affected by fires (fire selectivity) in several 
countries of Southern Europe. To assess fire selectivity, the selection ratio, defined as the ratio between 
the used and the available resources, was calculated; the used resources correspond to the proportion of 
each land cover type inside the fire perimeters, while the available resources correspond to the 
proportion of that same land cover type in a buffer created around each fire perimeter, representing the 
land cover existing before the fire occurred. The fire perimeters were obtained from the European Forest 
Fire Information System and land cover types were defined based on Corine Land Cover 2000 and 2006. 
The selection ratio was calculated for each land cover category for the entire study area and their 
significance assessed by estimating 95% confidence intervals.. The selection ratio was also calculated at 
country level and the results between countries were compared by means of the Kruskall-Wallis test. The 
selection ratio was also calculated for the topographic categories (4 classes of elevation, 7 classes of 
slope and 4 classes of aspect), to determine if land cover types within any of these categories were 
burned more than expected in the different countries.  
Our results suggest a general tendency of fire selectivity in favor of grasslands and shrublands, while 
artificial surfaces, agricultural areas, transition natural-agriculture land and broadleaved forests burned 
less than expected. At country level, the results indicate different trends depending on the country, 
reflecting the dissimilar biogeographic characteristics, fire regimes, ignition patterns and the different 
management practices of the countries. Steeper slopes in southern exposures were more susceptible to 
burn in almost all the countries.  
These findings contribute to understand the relation between fire and land cover distribution in different 
environmental and human conditions. The assessment of the most fire-prone land cover types in 
different countries can lead to the improvement of fire prevention strategies suitable to each country’s 
situation.  
 
Keywords: fire selectivity, land cover, burned areas, broad scale  

Introduction 

Land cover composition and the topographic conditions are two of the factors that influence 

fire patterns and their consequences in the landscape (Mermoz et al. 2005; Moreira et al. 2009; 

Viedma et al. 2009; Carmo et al. 2011). Understanding the relation between fires and the 

underlying land cover and topography is fundamental to define fire prevention and 

management strategies suitable to the area’s characteristics. Previous studies at regional or 

national level investigated the relation between burned areas and land cover, focusing on the 

selectivity of fire towards specific land cover types. In Mediterranean areas, it was found that 

croplands, pastures and broadleaved forests were less affected by fire, while shrublands and 

coniferous forests were more susceptible to burn (Carmo et al. 2011; Moreira et al. 2001, 2009; 

Mouillot et al. 2003; Nunes et al. 2005). In Patagonia, shrubland and woodland were more 

susceptible to fire damage, while forest areas were less burned (Mermoz et al. 2005). In 

Canada, Black Spruce forests were more susceptible to fire as compared to deciduous forests 
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(Cumming, 2001). Carmo et al. (2011) also explored the selectivity of fire towards specific 

topographic conditions, having found that steeper slopes burned more than expected. 

The main objective of this study was to analyze the relation between burned areas, land cover 

types and topographic conditions at a broad scale, with the purpose of:  

• Assessing which land cover types are preferred or avoided by fire (fire selectivity) in 

Europe 

• Analyzing the differences in fire selectivity between several European countries 

• Exploring the potential influence of topographic conditions in fire selectivity 

METHODS 

Data collection 

Burned areas were obtained from the European Forest Fire Information System (EFFIS), which 

maps the fire perimeters of approximately 40 ha or larger from MODIS satellite imagery at 250 

m spatial resolution. In total, 8560 fires located in several countries were used for the analysis. 

Only the countries which had a minimum sample of 10 fires were selected (Figure 1).  

 
Figure 1. Countries where fire perimeters were retrieved by EFFIS (n>10), between 2000 and 2008 

 

The land cover data was obtained from the Corine Land Cover (CLC) map for the years 2000 and 

2006 at a resolution of 100 m (EEA, 1994, 2002); this harmonized land cover database available 

at European level allows for comparisons between countries. The original 44 classes of CORINE 

were grouped into 8 larger categories of relative similarity with respect to fire, based on the 

potential influence of the land cover types in fire occurrence according to previous studies on 

this subject (Nunes et al. 2005; Moreira et al. 2009; Bajocco & Ricotta, 2008), namely 

broadleaved (brl), coniferous (cnf) and mixed forest (mix), shrubland (srb), grasslands and 

sparsely vegetated areas (grl), transition natural-agricultural areas (tna), agricultural areas (agr) 

and artificial surfaces (art). Topographic data was obtained from a Digital Elevation Model 

available for Europe, at 100 m resolution (Reuter et al. 2007; Jarvis et al. 2008).  Elevation was 

divided in 4 classes (0-500 m; 500-1000 m; 1000-1500m and above 1500m); slope was divided 

in 7 classes (0-5%, 5-10%, 10-15%, 15-20%, 20-25%, 25-30% and above 30%) and aspect was 

divided in 4 main directions (N=315-45º, E=45-135º, S=135-225º and W=225-315º). 
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Data analysis 

The methodology applied to assess fire selectivity is based on studies of resource selection in 

wildlife ecology (Manly et al. 1993) and in previous studies where similar methods were applied 

(Moreira et al. 2001, 2009; Bond & Keeley 2005; Nunes et al. 2005; Bajocco & Ricotta 2008; 

Carmo et al. 2011). The overall approach was to compare the land cover used (affected by the 

fires), represented by the burned areas, with the land cover available before the fire occurred, 

represented by a buffer of approximately the same shape and double the size of the burned 

area, created around each fire perimeter , including also the burned area. The selection ratio 

was calculated for each land cover category following the formula of Manly et al. (1993):  

 

SR (n) = proportion of land cover type (n) used / proportion of land cover type (n) available 

 

where SR is the selection ratio for each land cover type n; other factors are the proportions of 

land cover type used and available corresponding to the areas inside the fire perimeters and in 

the buffer, respectively, and n is each type of land cover considered. If the proportion of land 

cover burnt is higher than the proportion available within the buffer then SR > 1; this indicates 

that, the fire showed preference for that specific land cover type , i.e. burned more than 

expected by chance. On the contrary, if the proportion of land cover consumed by fire is lower 

than the proportion available then SR< 1, meaning that, this type of land cover was not 

preferred by the fire, i.e. burned less than expected based on its availability. SR for a given land 

cover type were averaged across the fires where it occurred.Confidence intervals (95%) were 

then estimated, in order to assess the significance of the values obtained. Using the same 

procedure applied to land cover, the relation between the topographic variables and fire 

selectivity was explored by calculating the selection ratio for each topographic category, in 

order to determine if specific topographic categories had burned more than expected in the 

different countries.  

Results and discussion 

The results of our study show that fires are selective regarding different land cover types in 

Europe. Grassland and shrubland were the land cover types generally preferred by fire, with a 

SR above 1 and significant at 95% level. Artificial surfaces, agricultural areas and transition 

natur_agric were the least preferred. Fig. 2 shows the number of countries in each SR condition 

per land cover category; coniferous and mixed forest showed the highest number of random 

situations (no significant SR), while transition natural-agriculture shows a significant low SR for 

all the countries. Shrubland and grassland present a significant SR >1 for more than half of the 

countries (n=7), while broadleaved forest has low SR for 9 countries.  
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Figure 2. Number of countries (n=13) with significant SR >1, SR<1 or random, per land cover category.  

Cyprus was excluded for broadleaved (brl) and mixed forest (mix), due to lack of data. 

 

At country level, it was found differences between countries for almost all the land cover 

categories (Fig. 3). Fires in Albania showed preference for grassland and shrubland, while in 

Bosnia & Herzegovina, Croatia and Turkey coniferous forest was the only land cover that 

significantly burned more than expected. In Bulgaria and France grassland was preferred to 

burn, while in Greece and FYROM shrubland was preferred instead. In Italy, Portugal, Serbia & 

Montenegro and Spain, both shrubland and grassland were preferred by fire. 

 

 
Figure 3. Selection Ratios per land cover category in each country and the corresponding confidence intervals at 95% 

 

Previous authors found that shrubland and coniferous forests were more susceptible to burn in 

Portugal (Carmo et al. 2011; Moreira et al. 2001, 2009; Nunes et al. 2005, Silva et al. 2009) while 

agricultural areas were less burned, due to their low flammability. In Canada, conifers were also 

more susceptible to fire than deciduous forests (Cumming, 2001), while in the Great Lakes 

region in USA, Cardille and Ventura (2001) found instead that fires were more likely to occur in 

grassland and agricultural land, related to the accessibility of these areas to humans. In 

Patagonia shrubland and woodland were also more fire-prone than forests (Mermoz et al. 

2005). This European wide preference of fire for grasslands and shrubland was to be expected, 

considering that these land cover types are easily ignited and highly flammable, independently 

of the place where they occur. The differences between countries could be explained by the 
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availability of the land cover types and the diverse biogeographic characteristics of each 

country, the management practices applied, the ignition patterns and the fire-fighting strategies 

(Silva et al. 2009; Moreira et al. 2009). 

In relation to the topographic conditions, our results suggest that the selection ratio of 

topographic features is higher at higher altitudes, at higher slopes and in the southern aspect 

for most of the countries. However, general differences were found between the European 

Mediterranean region (EUMed) and the Balkans countries, with a higher proportion of fires 

occurring at higher altitudes in the Balkans in relation to the EUMed countries. This reflects the 

intrinsic differences in the biogeographic and human conditions of these two regions, which in 

turn affect the fire distribution patterns; besides, in the EUMed region, the majority of fires are 

human-caused (Leone et al. 2009; San-Miguel-Ayanz and Camia 2009) and population is mainly 

concentrated at lower altitudes (e.g. Catry et al. 2009), thus the abundance of ignition agents 

and the concentration of human activities at lower altitudes could explain the higher fire 

occurrence at elevations below 500m. The increasing fire proneness of higher slopes, 

particularly evident and significant in the EUMed countries, may be explained by the fact that 

the spread of fires is faster uphill (Rothermel 1983). 

Conclusions 

Understanding the relation between the underlying land cover, topography and fire behavior 

provides a valuable contribution for fire prevention strategies, by assessing the most and the 

least fire-prone areas. This study was a first attempt to characterize fire selectivity at a 

European broad scale. It revealed that shrubland and grassland are the most fire-prone land 

cover types in most countries due to its intrinsic vegetation characteristics, while agricultural 

areas are less fire-prone and could be used as fire breaks. The results obtained at country level 

suggest that the influence of the country’s own environmental and human features in fire 

occurrence should be investigated more deeply in future studies. 
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Abstract 

The aim of this work was to assess the annual variations of land cover changes of forest areas affected by 
fires during the period (2000-2006) for European countries where data is available. Our study used a GIS-
based methodology involving two CORINE Land Cover (CLC) maps, 2000 and 2006, and the EFFIS database 
available (since 2000 to 2006) at the JRC of Ispra. The studied countries were Portugal, Spain, France and 
Italy. We worked with the second CLC data level and when the results of the analysis indicated the 
occurrence of an important type of transition at a country level, the third CLC data level was used. The 
areas that were burned in each country for every year within the studied period were obtained from the 
annual fire maps of the EFFIS database. For each country, a set of seven masks (ArcGIS shape layers) was 
derived from these fire maps; i.e. one mask for each year from 2000 to 2006. Fires smaller than 50 ha 
were not included. 
We Classified all the CLC transition classes into agradative, degradative or stable categories.We found 
clear differences between countries in the distribution of the total burned area respect to these three 
classification  types.  
The statistical data and map outputs represent a vast overview of changes in land use occurred in these 
four countries during the period 2000-2006. The most important land cover changes were in favour of 
“Transitional woodland-scrub” (classes 324) and were reported  in all the years that were considered. 
Our results suggest a slow post-fire vegetation dynamics in most of the countries studied. 
The statistical characteristics of the EFFIS database in the period 2000-2006 along with the 
transformation of individual CLC classes during this period, and the percentage of their changes, have 
allowed us to make an accurate individualization of the studied classes  to future changes in their land 
use. 
 
Keywords: Land use change, Post-fire, GIS, EFFIS, CORINE Land Cover. 

Introduction 

The land use change is the main factor in causing biodiversity loss. The Mediterranean region 

has been affected by antropic disturbance for several years, and in this moment, it is one of the 

most significantly altered hotspots in the world (Falcucci et al., 2007). Unfortunately, wildfires 

in Southern Europe (Portugal, Spain, France, Italy and Greece) burn thousands of squared 

kilometres of forest, shrub lands, and grasslands every year. They cause extensive economical 

and ecological losses and, sometime human victims (C. Quintano et al., 2011). For this reason 

the study of the land cover change in burned areas and of the fire regime in Southern Europe 

has become fundamental. 

The objective of our work was to assess the annual variations of land cover changes of forest 

areas affected by fires during the period (2000-2006) for European countries where data is 

available.  

The countries studied were Portugal, Spain, France and Italy. Greece was excluded because the 

2006 CLC map was not available for that country.  
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Methodology 

Our study used a GIS-based methodology involving two CORINE Land Cover (CLC) maps, 2000 

and 2006, and the European Fire Database (EFFIS) containing the annual forest fire information 

compiled by EU Member States and other European countries (http://effis.jrc.ec.europa.eu). 

The EFFIS database was used for the period 2000 - 2006. 

We worked with the second CLC data level and when the results of the analysis indicated the 

occurrence of an important type of transition at a country level, the third CLC data level was 

used. The areas that were burned in each country each year throughout the studied time period 

were obtained from the annual fire maps of the EFFIS database. For each country, a set of seven 

masks (ArcGIS shape layers) was derived from these fire maps; i.e. one mask for each year from 

2000 to 2006. Fires smaller than 50 ha were discarded from the mask (San-Miguel-Ayanz et al., 

in press). 

Results 

During the study period (2000-2006), the total burned area in the four considered countries was 

1,395,119 ha. Half of this area (51%) consisted of CLC Level 2 class 32 (“Scrub and/or 

herbaceous associations”), followed by class 31 (“Forests”) (34%). At CLC Level 3 fires affected 

mainly class 324 (“Transitional woodland-scrub”), corresponding to 23% of the total, class 312 

(“Coniferous forest”) (15%), followed by classes 311 (“Broad-leaved forest”) (12%) and classes 

313 (“Mixed forest”), 321 (“Natural grassland”), 322 (“Moors and heathland”) and 323 

(“Sclerophyllous vegetation”), representing each ca. 9% of the total burned area (San-Miguel-

Ayanz et al., in press). 

Overall, burned areas that suffered land cover changes became class main into 324 

(“Transitional woodland scrub”) mainly in Portugal and Spain and into 334 (“Burnt areas”) in 

Spain, France and Italy respectively (Figure 1). 

The statistical data and map outputs represent a vast overview of changes in land use occurred 

in this four countries during the period (2000-2006). The most important land cover changes 

were in favour of “Transitional woodland-scrub” (classes 324) and were reported  in all analyzed 

years. In particular, land use change during the period 2000-2006, for each year, is reported in 

Figure 2. 
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Figure 1. Burned areas where change in land use occurred. Code for land cover are: Land principally occupied by agriculture, with 

significant areas of natural vegetation (243); Natural grasslands (321); Moors and heathland (322); Sclerophyllous vegetation (323); 
Transitional woodland-scrub (324); Sparsely vegetated areas (333) and Burned areas (334).   

 

 
Figure 2. Land use total that became “Transitional woodland – scrub” (324) for year during the period 2000 – 2006 in Southern 

Europe. 

 

The Classification of all the CLC transition classes into agradative, degradative or stable 

categories, shows clear differences among the considered countries in the distribution of the 

total burned area within these three classification types.  

Conclusion 

These results suggest a slow post-fire vegetation dynamics in most of the studied countries. 

The statistical characteristics of the EFFIS database in the period 2000-2006 along with the 

transformation of individual CLC classes during this period, and the percentage of their changes, 
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have allowed us to make an accurate individualization of the studied classes respect to future 

further changes in their land use. 
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Abstract 

Fire has an important ecological role in many ecosystems worldwide, particularly in the African 
savannahs where the fire activity is regular and affects large areas every year. In the savannah fires 
contribute to maintain the balance between the herbaceous and the woody vegetation, and it can also 
stimulate grass regeneration with positive impacts on the animal community. Fire’s effects can be 
positive or negative depending on the timing of burning, the rate of fire spread and the environmental 
conditions where fire occurs. 
Besides its ecological role fire is also important for many land use practices like farming, agriculture and 
hunting. Understanding the temporal and spatial patterns of fire is therefore fundamental for an 
effective land manage-ment, civil protection and natural hazard control as well as for conservation 
purposes and the sustainable use of natural resources. As study area we chose Central and West Africa 
because this is a transitional region between the Sahara desert and the humid forests embracing 
different ecosystems. Our analysis provides information on the fire occurrence and its seasonality which 
can support fire management and decision makers. We used the MODIS active fire product from the year 
2001 to 2011. For each year we considered the period from September to May to include the complete 
dry season. We arranged fire data in 10-day periods and applied a grid with 0.25 degree cell size. We 
determined, for each dry season, the number of decades when the first and third quartiles of the 
cumulative fire pixels were reached. Using this approach we also determined the length of the core fire 
season as the difference between the first and third quartiles (in decades). Results highlighted regional 
patterns in the temporal distribution and duration of fires, which were often associated to a change of 
ecoregion or the land cover type.  
 
Keywords:  MODIS, active fires, timing, fire management  

Introduction 

Fire is part of many ecosystems worldwide and it is used for different management practices as 

well. In Africa vegetation fires are particularly common in the savannah ecosystem and occur in 

large number every year across the continent. There are many positive effects associated with 

fires: they can improve vegetation structure limiting bush encroachment, they also stimulate 

vegetation renovation and can be used in conservation programs to maintain the habitat 

variability and therefore biodiversity (Mbow et al., 2000). In Africa fire is widely used by people 

in their daily activities (Hough, 1993); to mention a few fire is used to renovate the pasture for 

the cattle, prepare soil for new crops, gather firewood and improve visibility during the hunting 

activities.  

Our analysis aimed at identifying fire patterns over time and space in Central and West Africa. 

In this region, from Senegal to Ethiopia, fires occur along a transition zone between the 

savannah and the forest domains. The objective of the study was to determine the fire 

distribution at regional and country level to support the design of effective fire plans and the 

environmental management.  
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Materials and methods 

We analyzed ten years of MODIS fire data derived from the MODAPS (Davies et al., 2009) and 

MRR (Justice et al., 2002; Giglio et al., 2003) products to identify fire patterns and analyze their 

temporal trends. Both datasets are available at 1 km spatial resolution and provide daily 

information on the timing and location of the active fires. The MODAPS data cover the period 

from 2001 to 2010, whereas the MRR provides information for the year 2011 (not yet available 

on the MODAPS product). 

We considered the region of West and Central Africa in the range of latitude between 20N and 

the equator. In this way we reached the desert limit at the northern boundary of the area of 

interest, beyond that limit fires are almost absent until the Mediterranean coasts of Morocco 

and Algeria, which we did not include in the study. In the northern hemisphere the dry season 

lasts from about October until May. Then, for the analysis we considered the period from the 1st 

of September until the end of May to cover a complete dry season in each year. The original 

satellite product has 1 km resolution, which is useful for applications at regional and local level, 

but can also produce noisy results when larger areas are considered. We therefore derived 

statistics and results at 0.25 degree resolution, which corresponds to an area of 25 by 25 

kilometers, because this is a compromise for multiple scale analysis. We also used data at a 

different time step of the original daily observations. We cumulated the daily data over 10-day 

periods, per grid cell: this allowed to smooth out the effect of daily oscillation in the fire activity 

and facilitated the identification of temporal trends in the fire activity. 

To study the temporal distribution of the active fires we computed the cumulative number of 

fire pixels for each year, at the end of the dry season. Then we derived the number of decades, 

from the beginning of the fire season, needed to reach the first and third quartile of the total 

fire pixels. We defined the core fire season as the difference, in decades, between the third and 

first quartile (Giglio, 2007; Roberts et al., 2009). We also determined the number of decades 

between the third quartile and the total fire counts. Each of these temporal steps is important 

to understand the dynamics of the fire activity, because the temporal distribution of fires during 

the dry season, informs about the type of burning and, consequently, on its effects on 

vegetation (Dwyer et al., 2000).   

Results 

1.1 Fire occurrence 

The analysis of fire occurrence showed definite spatial patterns. We derived the maximum and 

minimum values of the fire counts during the ten years and show them in figure 1. In general 

we observed a latitudinal gradient with the highest values in the Sudanian and Guinea-

Congolia/Sudania ecoregions.  
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Figure 1. a) Maximum and b) minimum number of fire pixels. The ecoregions (White, 1983) and the country borders are indicated 

with a white line and a purple line, respectively. 

 

The number of fires tends to increase in the inner part of the area, decreasing towards north, in 

the Sahel ecoregion, and south, in the Guineo-Congolian ecoregion. These patterns are largely 

related to the combination of the climatic conditions and fuel availability. Fire activity shows a 

sharp reduction on the eastern region along the limit between the Sudanian and Afromontane 

ecoregions, reflecting the strong eco-climatic difference of these regions. An exception to the 

general latitudinal gradient is found in Nigeria, where fires are less numerous (as minimum and 

maximum values) than in the surrounding areas. This difference is probably due to the high 

population density and the large proportion of agricultural land in this country. In summary, 

two regional bodies of fire activity are clearly evident: the West Africa one, from Senegal to 

Benin and the Central Africa one, from Cameroon to Sudan. The latter involving a larger area. 

1.2 Temporal analysis of the fire activity 

The results of the temporal analysis of the fire activity showed again clear geographic patterns 

related to the ecoregions and the land covers. Figure 2 shows the average number of decades, 

from the beginning of the dry season, to reach the first (figure 2a) and third (figure 2b) quartiles 

of the total fire counts. The longest durations were found in the Guineo-Congolian ecoregion 

with 12 to 21 decades to reach the first quartile and 15 to 24 for the third quartile. In the 

Sudanian ecoregion the first quartile showed a dominance of 6 to 9 decades duration, with the 

exception of Nigeria where the first quartile was usually reached later, after 9-12 decades. On 

the other hand, the third quartile had two dominant behaviours: a shorter duration (6 to 9 

decades) in the western end (Senegal, Mali) and central-east (Sudan, Ethiopia); and a longer 

duration (12 to 15 decades or more) in the rest of the region. It is interesting to note that the 

areas where the first and third quartiles had short durations are dominated by deciduous 

woodlands, this vegetation type provides high levels of fuel availability and can explain the 

shorted time needed to reach 25% and 75% of the total fires. Another feature that can be 

observed in figure 2 is the inner delta of the Niger river in Mali: 15 to 18 decades are needed to 

reach the first quartile, while the surrounding region shows a much lower value, around 10 

decades.  
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From the difference of durations between the first and third quartiles we also derived the 

length of the core fire season. As shown in figure 2 the time difference is usually very short (few 

decades), often less than 2 on average.  

 

 
   Figure 2. a) The average duration to reach 25% and b) 75% of the total fires. The ecoregions are indicated with a white line, the 

country borders are indicated with a purple line. 

 

In order to characterize the end of the burning season (tail) we considered the number of 

decades needed to complete the last 25% of the fire counts (between the third quartile and 

100% of the counts). In particular we considered the duration of the last 25% of fires where the 

third quartile was reached after more than 12 decades, in this way we isolated fires occurring in 

the mid or late dry season (figure 3). 

 

         
Figure 3. The average duration of the last 25% of the fires over grid cells where the third quartile was reached after more than 12 

decades. 

 

The duration of the tail follows a latitudinal gradient with most of the long-lasting tails in the 

Sudanian ecoregion. In this ecoregion we found tails lasting between 6-9 decades with few 

cases going up to 12 decades. The tail duration decreases moving southwards across the 

Guinea-Congolia/Sudania and the Guineo-Congolian ecoregions. We also found a decrease in 

the tail duration on the Eastern side at the border with the Afromontane ecoregion. On the 

Sudanian side the maximum tails reached the range 9-12 decades, whereas in the Afromontane 

ecoregion they were between 1 and 3 decades. In areas where the tail lasts longer than 6 

decades we have late burnings, which are indicators of intense fires and have a strong impact 

on the vegetation cover. Therefore they are important to identify in any management plan. 
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Such late season fires are more difficult to control but might be extremely useful to limit bush 

encroachment and more generally to promote a proper variability of the natural habitats. 

Conclusions 

Our results showed definite spatial patterns in the distribution of the fire occurrence, in terms 

of fire counts and temporal trends. We observed a latitudinal gradient in the total number of 

fire counts with the highest values in the Sudanian and Guinea-Congolia/Sudania ecoregions. A 

strong reduction of the fire counts is visible towards the northern region of Sahel and the 

southern limit with the humid forest. The temporal analysis showed a general agreement in the 

patterns of the first and third  quartile, especially in the area dominated by deciduous 

woodlands where both the first and third quartiles were shorter than the surrounding areas. At 

the same time, these quartiles had both longer durations in the Guineo-Congolian ecoregion. 

Additional information on the temporal trends was derived from the analysis of mid and late 

burnings. These were identified considering the regions with the third quartile duration greater 

than 12 decades. In these regions we considered the duration of the tail (last 25% of fire counts) 

to distinguish areas where late burnings were occurring. These types of fires tend to be more 

destructive and can be used, for example, to limit bush encroachment. Areas with late burnings 

were found in the Sudanian ecoregion, in Senegal and Mali, and in South-Sudan and Ethiopia.  

This study provides new insights about the fire activity in terms of fire seasonality and 

occurrence of burning. These findings can support land managers and policy makers in their 

environmental management plans. Fire plans and prescribed burnings are crucial to improve 

biodiversity as well as the sustainable use of natural resources, which can only be designed with 

deep understanding of the fire patterns in time and space. 
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Abstract 

Every year forest fires occur across Europe. In the Mediterranean Region (Italy, Portugal, Greece and 
Spain) the number of fires has increased over the past decades. In 2009 more than 320.000 hectares of 
land were lost due to forest fires. Forest fires require immediate action and reaction in order to prevent 
damages to life, private property and ecosystems. Furthermore, forest fires affect global warming due to 
rising CO2-emissions. Knowledge about past fire events and the damage they caused will greatly enhance 
the knowledge base that will allow for a better understanding of the risks, and increase the forecasting 
quality of fire scenarios. 
In this context the Center for Satellite Crisis Information (ZKI) covers several activities of the disaster 
manage-ment cycle. The ZKI is a service of the DFD (German Remote Sensing Data Center) of DLR 
(German Aerospace Center). It provides a 24/7 service of rapid provision, processing and analysis of 
satellite imagery during natural and environmental disasters, for humanitarian relief activities and civil 
security issues worldwide. 
To provide information about forest fires a burnt-area mapping tool was developed. This semi-automatic, 
ob-ject-based, multi-sensor rapid mapping algorithm is based on very high resolution (VHR) optical (like 
Spot) as well as radar (TerraSAR-X) remote sensing data. The algorithm includes a decision-tree classifier, 
which relies on spectral indices, e. g. MSAVI (Modified Soil-adjusted Vegetation Index) and BAI (Burnt 
Area Index).  
To reduce the limitations in optical data due to the cloud cover and/or haze, the algorithm was improved 
with a change detection technique based on image differencing, rationing and the NCI (Normalized 
Change Index) of TerraSAR-X data.  
Next to these rapid mapping activities the ZKI offers an automatic operational service on active fire 
detection from space. Based on MODIS (Moderate Resolution Imaging Spectroradiometer) data from 
Terra-1 and Aqua-1 satellites a Web Processing Service (WPS) generates fire hot spots. Two X-band 
antennas which are operated by the DFD enable near real-time receiving and processing of MODIS data. 
The MODIS based fire service is acces-sible for everybody through the ZKI Internet Portal. 
 
Keywords: forest fires, disaster management, burnt area mapping, hot spot detection 

Introduction 

Wildfires are one of the main causes of forest destruction in the countries of the Mediterranean 

Basin. About 50000 fires sweep through 700000 ha of forest and agricultural land each year, 

causing enormous economic and ecological damage as well as loss of human life. Globally, and 

particularly in European countries located in the Mediterranean Basin, the frequency of 

wildland fires has significantly increased in the recent years. The increase of forest fire 

occurrences in the Mediterranean basin is due to the land-use changes (rural depopulation 

increases land abandonment and consequently, fuel accumulation) and climatic change (which 

is reducing fuel humidity and increasing fire risk and fire spread) (Chuvieco 2009). Natural 

wildland fires are caused by lightning, sparks from falling rocks, volcanic activity, natural heat 

waves and many other causes which can act as natural fire ignition source. But the primary 

cause of wildland fires is human activities. According to a study conducted by the European 

Commission over 80% of the forest fires in the Mediterranean Basin are caused by human 
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activities. While the vast majority of wildfires are anthropogenic, the risk of such fires is 

expected to increase in forthcoming years under the impact of climate change. The vegetation 

becomes more inflammable (due to thermal stress and drought) and fire services are faced with 

difficulties when trying to suppress a fire due to increased inflammability and water shortage. 

Civil Protection Services, Forest Fire Services and Environmental Services were faced with the 

management of multiple fires, the evolution of simultaneous extensive fire fronts and the 

monitoring of heavy smoke emitted during wildland fires. Timely and reliable detection of new 

outbreaks is particularly crucial for effective wildfire management, particularly in largely 

inaccessible mountainous areas.  

Near real time tracking and monitoring of active hot spots is also very important during crisis 

management concerning the optimal distribution of ground and aerial forces (Sifakis et al. 

2011). The role of satellite observations in the resolving of the previous issues has considerably 

increased during the last twenty years as the spatial, spectral and temporal characteristics of 

the sensors have been constantly improving, and new methods for the exploitation of satellite 

data have been developed (Gitas et al. 2009; Justice et al. 2001; Lentile et al. 2006).  

According to the management disaster cycle, which represents the different stages before and 

after a disaster, the following points should be taken into a consideration of any type, but 

especially for wildland fires: prevention/preparedness (e.g. fire risk), emergency response (e.g. 

fire locations, burn scars, affected infrastructure) and recovery (e.g. monitoring of the fire 

effects). 

The main objective of the presented paper is emergency response activations. Next to the rapid 

mapping services (see chapter 2) the DLR/ZKI offers an operational service on active fire 

detection from space (ZKI-Fireservice, 2011) (see chapter 3).  

Burnt area mapping 

After the occurrence of a natural or man-made disaster the necessity of fast and reliable spatial 

information is important not only for crisis control centers but also for relief organisations and 

rescue teams. Civil protection authorities have to meet the demand for adequate crisis 

information in order to ensure an appropriate decision process and an effective crisis 

management. Therefore all possibilities obtaining spatial crisis information have to be taken 

into account, particularly earth observation data proved to provide significant information 

input. In order to cover these user requests in crisis situations, DLR set up a rapid mapping 

service to ensure fast access to available, reliable and affordable crisis information worldwide. 

After the mandatory decision process whether satellite analysis is appropriate for the 

respective crisis, the area of interest has to be defined and cross checked to avoid false geo 

location. Following this iterative process, it has to be assured that all applicable satellites are 

programmed for data acquisition. This can either be coordinated within the International 

Charter “Space and Major Disaster” or a GMES initiative like the project SAFER (supported by 

the Seventh European Frame Work Programme) by the responsible project manager, or 

through commercial satellite tasking. According to the requirements of the user, the 

information products are delivered in the form of maps, GIS-ready geodata or dossiers which 

are then used to support disaster management operations, humanitarian relief activities or civil 
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security issues. The rising number of natural disasters, humanitarian emergency situations and 

threats to the civil society increases the demand for timely and precise information on many 

different types of scenarios and situations. ZKI uses all kinds of satellite imagery for the 

extraction of relevant crisis information like flood extent, damaged infrastructure, burnt areas 

or evacuation areas. Besides response and assessment activities, ZKI derives geo-information 

products for the use in medium term rehabilitation, reconstruction and crisis prevention 

activities. It operates in national and international context, closely networking with German 

public authorities at national and state level, non-governmental organisations, satellite 

operators and space agencies. Since 2003 the ZKI prepared about 35 maps in 11 activations in 

the context of wildfires (http://www.zki.dlr.de/). 

In this chapter an operational object-based algorithm for burnt area mapping will be presented 

using the example of wildland fires that occurred in Greece and La Palma during July and August 

2009. The algorithm is based on SPOT5 (data pair before and after the fires in La Palma and one 

post-disaster scene in Greece) and TerraSAR-X StripMap (two data pairs before and after the 

fires in Greece and one data pair in La Palma) images. The applied pre-processing for the optical 

images includes orthorectification, topographic normalization, co-registration to the other 

satellite data and atmospheric correction. The radar images were multi-looked to a resolution 

of 3x3 meters per pixel, filtered (Gamma-DE-Map), radiometrically calibrated, geocoded, 

orthorectified, topographically corrected and converted to the radar backscatter coefficient 

sigma nought. Due to a lack of ground truth data, the accuracy of the algorithm was assessed by 

using the fire perimeter that resulted after visual interpretation of the SPOT5 images and 

digitalization of the image and additional data from the European Forest Fire Information 

System (EFFIS). 

A backscatter and reflectance analysis of burnt and unburnt objects was applied to the pre-

processed SPOT5 and TerraSAR-X scenes. The single- as well as the multi-temporal analysis of 

the SPOT5 data showed highly different values over burnt areas compared to the unburnt parts. 

The separability between affected and unaffected areas was highest in the NIR and MIR infrared 

bands. Therefore, the indices MSAVI, BAI and NDSWIR were applied for classification to avoid 

misclassifications between burnt areas, cloud shadows, coastal areas and open space. The 

single-temporal analysis of the TerraSAR-X data showed only slightly higher backscatter values 

over burnt areas compared to the unburned parts, which turned out as insufficient for burnt 

area detection. However, the multi-temporal backscatter analysis showed a clear increase over 

the burnt areas compared to the pre-disaster image. The VV-polarization difference values were 

higher (3.4 dB) than the HH difference values (1.6 dB). These higher backscatter difference 

values can be explained by the fact that vertical polarization is more sensitive to vertically 

oriented objects than horizontal polarization. Vertical polarization interacts stronger with 

remaining stems, also strengthened through the double bounce effect arising between stems 

and the ground. This leads us to the assumption that burnt area mapping might profit from the 

use of VV polarized data instead of HH polarized data.  

All pre-processed satellite images were analyzed in the eCognition Developer software, and the 

algorithm has been developed in cognition network language (CNL). The object-based 

segmentation and classification was separately applied to both data types. In the case of optical 
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images the burnt area detection was possible with post-disaster images only as well as with pre- 

and post-disaster images. Whereas with radar images, forest fire detection was just possible 

with a comparison of pre- and post-disaster images. Both data types were integrated into one 

algorithm. In order to simplify and accelerate image classification, a user friendly graphical user 

interface (GUI) in eCognition Architect - with which all parameters used can be modified 

interactively - was generated.  

Burnt areas do not show any uniform texture or shape characteristics. In order to receive a 

useful segmentation, a two-dimensional segmentation approach was applied. For the optical 

images, the spectral information of the near and middle infrared bands was of the highest 

interest, whereas for the radar images, the change information between before and after the 

fires was significant. Therefore, three different change detection techniques (image 

differencing, image rationing and the Normalized Change Index) were calculated and used for 

segmentation. The second step was the classification of the burnt areas. In case of the optical 

images the classification was based on the indices MSAVI, NDSWIR and BAI. To avoid 

misclassifications, most unburned parts of the image were excluded by a fuzzy classification 

using the indices MSAVI and NDSWIR. Subsequently, cloud shadows were extracted with the 

help of the normalized middle infrared. Finally, the burnt area was classified by means of a 

fuzzy classification approach containing the MSAVI, BAI and NDSWIR. The applied classification 

steps are threshold based, whereas the threshold values were determined by literature review 

and visually by an iterative approach. In order to take multi-temporal data sets into account, a 

change detection algorithm was developed as well. Therefore, a fuzzy approach based on the 

reflectance differences between pre- and post-disaster objects was used. For this purpose, the 

temporal difference of the previously listed spectral indices was used (dBAI, dMSAVI, 

dNDSWIR). The optical burnt area classification showed an overall accuracy of 91% for the 

single-temporal approach and an overall accuracy of 95% for the multi-temporal approach.  

The radar classification procedure was based on the change information between pre- and 

post-disaster images. In a first step areas covered by water were extracted in order to avoid 

misclassifications. Subsequently, the information given by the previously calculated difference, 

ratio and normalized change index layer was used for burnt area detection. The classification 

result of the radar algorithm achieved an overall accuracy of 78%.  

The goal of the work was to exploit the advantages of both optical and radar data. Radar data 

are generally less intuitive in interpretation (for untrained image analysts) than optical images, 

but offer high acquisition rates due to their ability to penetrate clouds and haze, and their 

independence of sun illumination (Attema et al., 1998). Thus, the burnt area algorithm first 

detects burnt areas in the optical satellite image. If cloud or cloud shadows preclude the burnt 

area, the radar classification is considered. Is an object classified as cloud or cloud shadow in 

the optical image, but as burnt in the radar image, than it gets finally classified as burnt. Thus, 

the whole image, also containing regions covered by clouds and cloud shadows, can be 

analyzed and the burnt area can be detected (figure 1). With regard to the high accuracy of the 

classification it should be noted that transferring the algorithm to other regions in the 

Mediterranean Basin normally leads to modifications of the thresholds (Polychronaki & Gitas, 

2010). This depends on the following reasons:  
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• differences in the atmospheric conditions of the optical images, 

• differences in the degree of burn severity, 

• differences in topography and land cover, 

• differences in the time period between the fire incident and the acquisition of the satellite 

images and the existence of old fire scars and recently burnt areas in the same image. 

The transferability of the algorithm was assessed by applying it to other wildland fires sites in 

Sardinia and Greece, where devastating fires occurred in 2009, respectively 2007.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Fires in Greece 2009. Mapping of the burnt areas with SPOT5 and TerraSAR-X data. 

 

MODIS - Active Fire Detection 

Based on data of the NASA owned MODIS sensors on board of the Terra-1 and Aqua-1 satellites, 

wild and forest fires can be detected. Users can view, download and automatically receive 

information on current fires in Europe. The MOD14 algorithm used for fire detection was 

developed at the University of Maryland and is an internationally acknowledged standard. In 

Europe, the German Remote Sensing Data Center (DFD) is the only institution operating two X-

band antennas enabling it to receive and process observation data from both satellites 

simultaneously and allowing for up to eight daily observations. DFD is offering its capability to 

the European community and its people providing daily hot spot detection free of charge. The 

software has been developed in close cooperation between Mexico’s National Commission on 

Biodiversity Research (Conabio) and DFD. The MOD14-based processing chain is now running in 

a WPS frame work which enables the easy implementation of further processes like the 

calculation of cloud cover or land surface temperature. This could be also the technical pre-

condition for the creation of higher level products like the determination of the daily fire risk, 

which is actually under development. 

SPOT5 image (07.08.2009), 

band combination: SWIR, NIR, 

GREEN 

TerraSAR-X StripMap image,  

band combination: post, pre, post 
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Conclusion 

In the presented paper a short overview over the activities of the DLR-ZKI is given. The example 

shows, that earth observation can successfully provide a beneficial support for an operational 

burnt area mapping. The multisensoral, fast but at the same time precise algorithm is a highly 

useful tool for the detection of wildland fires and the resulting burnt areas in the European 

Mediterranean. The integration of the burnt area mapping algorithm (ruleset) into a user 

friendly graphical user interface (GUI) in eCognition Architect supports the operational 

efficiency during a disaster event. Because of the large spatial extent and high spatial and 

temporal variability of wildfires, robust near real time post-fire monitoring tools are needed on 

the one hand to inform humanitarian relief activities and civil security issues and on the hand to 

an improved adaptive management and advance the understanding of post-fire vegetation 

response rates and ecosystem health. In combination with additional geographic data (e.g. land 

cover), possible threats to properties, infrastructures and to human life can be predicted and 

ideally, mitigated. Low-cost, rapidly available, and accurate assessment of landscapes following 

the disaster will lead to improved predictive capabilities and more informed management 

decisions (van Leeuwen et al., 2010). 
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Abstract 

We propose a method to map burned areas from single date Remotely Sensed imagery by integrating 
partial positive evidence of burn provided by multiple Spectral Indices (SIs). The method exploits a region 
growing algorithm where seeds and maximum growing boundaries are revised with negative evidence of 
burn brought by the indices. Six Landsat TM images were acquired for the year 2003 over Portugal, Spain, 
Greece, southern France and Croatia and a set of eight SIs were computed from the surface reflectance 
measured in the TM bands (NBR, NBR2, NDVI, CSI, SAVI, MIRBI, EVI, EVI2). Training pixels were collected 
over burned areas, topographic and cloud shadows, water and vegetation and used to define the 
membership functions of positive and negative evidence of burn. The membership degrees of partial 
evidence were integrated with soft computing techniques to derive layers for seed selection and region 
growing. The negative evidence is used for revising the positive evidence of burn brought by the indices 
to reduce the commission errors. We assessed the accuracy of the proposed method for a TM scene 
acquired over Portugal (path/row 203/034) and found that the use of negative evidence of burn reduces 
the commission error from 59% to 1% and increases the overall accuracy from 41% to 91%. 
 
Keywords:  fire, Landsat TM, multi-criteria approach, fuzzy membership functions 

Introduction 

Vegetation fires play a key role in biogeochemical cycles at the local, regional and global scales 

(Crutzen and Andreae 1990) and they are the major disturbance factor of forested ecosystems 

(Thonicke et al. 2001). Despite the fact that fire is the most important damaging agent in 

southern Europe, most of the Mediterranean countries lack systematic monitoring of fire 

perimeters. Remote sensing techniques are now recognized as the only cost-effective source of 

information for mapping burned areas at regional/national scale. However, algorithm 

development is still an open issue when dealing with high/very high resolution data for which 

systematic fire products have not been developed yet. The Landsat TM/ETM+ sensors were 

proven suitable for the Mediterranean environment and Spectral Indices (SIs) have been often 

used for mapping fire perimeters (Bastarrika et al. 2011). We propose a method for mapping 

burned areas in Mediterranean regions from single date Landsat TM images. It relies on the 

convergence of positive evidence of burn brought by SIs and on the use of negative evidence 

for reducing the commission error due to spectral confusion between burns and low albedo 

surfaces. In particular, it consists of a region growing algorithm where the seed and growing 

layers are derived from the integration of the SIs performed with soft computing techniques. 

The approach described here is the result of the continuous improvement of previous work 

(Carrara et al. 2009; Stroppiana et al. 2009; Boschetti et al. 2010) aiming at building a robust 

method applicable at regional scale.  
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The proposed method and the data 

The flowchart of the proposed method is shown in Fig. 1. First, a set of SIs are computed from 

the TM bands and converted to layers of partial positive and negative evidence of burn through 

soft constraints (µSI). Second, the layers of the membership degrees of the positive evidence are 

integrated into the layer for candidate seed selection (PEseed) and candidate region growing 

boundary (PEgrow) by applying two distinct partially compensative integration operators:  a strict 

convergence of evidence for candidate seeds and a looser convergence for region growing 

maximum boundary. The membership degrees of negative evidence are integrated into the 

overall layer of negative evidence (NE) with a completely compensative integration operator of 

the t-co-norm family (the max). The layer NE is used to revise the integrated layers used for 

seed selection (rPEseed=PEseed-NE) and for growing (rPEgrow=PEgrow-NE). A set of seed burn pixels is 

selected from rPEseed to be grown over the layer rPEgrow to derive the final burned area map.  

 
Figure 1. The flowchart of the proposed method for mapping burned areas from spectral indices. 

 

1.1 The experimental dataset 

Landsat TM images were acquired in 2003 over Portugal (Path/Row 203/034 and 204/032, 

dates: 24/10 and 12/08), Spain (202/032, 15/09), France (195/030, 14/09), Croatia (189/029, 

04/09) and Greece (184/034, 2003/10) and processed to derive surface spectral reflectance (ρi) 

in the TM bands (i=1,..,7) (Masek et al., 2006). Eight SIs were computed: NDVI (ρ4-ρ3/ρ4+ρ3) 

(Rouse et al., 1973),  NBR (ρ4−ρ7/ρ4+ρ7) and NBR2 (ρ5−ρ7/ρ5+ρ7) (Key and Benson, 1999), 

MIRBI (10ρ7−9.5ρ5+2) (Trigg and Flasse, 2001),  CSI (ρ4/ρ5) (Smith et al., 2005),  SAVI 

(ρ4−ρ3)(1+L)/(ρ4+ρ3+L) (Huete 1998), EVI (G∗(ρ4−ρ3)/( ρ4+C1ρ3-C2ρ1)) (Huete et al., 2002), EVI2 

(G∗(ρ4−ρ3)/(ρ4+C3ρ3+1)) (Jiang et al., 2008), where L=0.5, G=2.5, C1=6, C2=7.5 and C3=2.4. The 

NDVI enhances the signal of green vegetation and, although several authors pointed out that it 

is not the best index for burned area mapping (e.g. Pereira et al., 1999), it is still widely used. 

The Soil Adjusted Vegetation Index (SAVI) is derived from the NDVI to correct for its sensitivity 

to soil colour and moisture whereas the Enhanced Vegetation Index (EVI) was specifically 

developed for the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) 

to improve sensitivity in high biomass regions while minimizing the influence of soil and 

atmosphere. The two-band EVI was developed to maintain the characteristics of EVI while not 

relying on the blue band thus being applicable to satellite sensors which do not carry a band in 

the blue wavelengths.     
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Among the indices developed for enhancing the signal of burned surfaces, the Normalized Burn 

Index (NBR) is widely used for mapping burn severity and the Char Soil Index (CSI) was found to 

perform well for burned area mapping with Landsat TM images by Smith et al. (2007). Finally, 

the Mid-Infrared Burn Index (MIRBI) was proposed as a robust index with respect to intrinsic 

perturbing factors (e.g. pre-fire vegetation conditions) as well as to scattering by even optically 

thick smoke plumes. 

1.2 The membership functions  

Fig. 2 shows the histograms of probability density derived from the training set for NBR and 

MIRBI. The membership functions of the soft constraints identifying positive and negative 

evidence of burn were defined as linear interpolation between maximum and minimum values 

of the class histograms (i.e. burns in the case of positive evidence). For example, the NBR’s 

membership function for positive evidence (black continuous line in Fig. 2) is defined as µi,b=1 if  

NBR<-0.325, µi,b=0.66-1.06*NBR if 0.325<NBR≤0.620, µi,b=0 if NBR>0.620. The partial positive 

evidence of burn was computed for the other indices by applying membership functions similar 

to NBR’s. An analysis of separability pointed out NBR and MIRBI as the best indices for deriving 

the negative evidence. Hence, the membership functions of negative evidence were defined to 

fit the frequency distribution of shadows and vegetation for NBR and MIRBI, respectively, as 

shown in Figure 2. 

Figure 2. Histograms over burns, shadows, non forest vegetation and water and the membership functions of positive (continuous 
line) and negative (dashed line) evidence of burn for NBR and MIRBI. 

1.3 The integration functions  

Soft integration functions, i.e. Ordered Weighted Averaging (OWA) operators (Yager, 1988), 

were used for integrating the partial positive evidence scores into the overall positive evidence 

for all of the eight SIs. We chose two distinct functions for identifying seeds (PEseed) and the 

wider possible boundaries for region growing (PEgrow): a very strict operator (OWAmost90) that 

identifies a seed when 90% of the partial evidence scores are high and a looser integration 

operator (OWAmost50, i.e., half of the partial evidence scores are integrated) for the growing 

layer. For the integration of membership degrees of negative evidence we used the maximum 

operator. 

Results  

Figure 3 shows some burned area maps (bottom row) derived over TM image 203/034 

(Portugal, 24/10/2003) (top row). The accuracy of the map was evaluated by comparison with 

burned area perimeters (red polygons) provided by J.M.C. Pereira of the Technical University of 

Lisbon. The figure shows an example of correctly classified burns (panels b and f) although 
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unburned small patches inside the major perimeter produce omission errors. In figure 3a an 

extensive area of agricultural lands in the Beja district, Portugal, is erroneously classified as 

burned where the reference dataset registered only one polygon (figure 3e). As shown by the 

RGB (543), this area represents a challenge for the algorithm since agricultural fields at the end 

the season (soils) can be spectrally confused with burns. In some cases, the omission error 

could be inflated by inaccuracy of the reference dataset (figure 3c), which is also affected by 

errors since the ground truth cannot be reproduced with a 100% accuracy. Finally, omission 

errors can be due to fires occurred a long time before satellite acquisition in which case the 

post-fire processes could significantly change the spectral signal. The land cover characteristics 

and fire severity are two major factors influential on the persistence of the burn spectral signal. 

      
Figure 3. Example maps extracted from the TM images 203/034 (top row: RGB 543).Bottom: correctly classified burns are orange, 
omission in blue and commission in green, correctly classified unburned areas are white. Grey regions have been masked out. Red 

perimeter are the reference dataset. 

 

Global figures provided by the validation are very encouraging since the commission error is 

less than 2%, omission is 21% and overall accuracy is slightly less than 92%. The same approach 

described above and applied without the revision of the seed and growing layers, based on the 

negative evidence, provided a burned area map with a commission error of 59% and an overall 

accuracy of 42%.  

Conclusions  

We propose a method for mapping burned areas in Mediterranean regions from Landsat 

TM/ETM+ images based on the integration of spectral indices and performed with soft 

computing techniques. Preliminary results are very encouraging since validation shows that 

commission and omission errors are 1.3% and 21.1%, respectively, and overall accuracy is less 

than 92%.    
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