560 research outputs found

    Early warning monitoring of natural and engineered slopes with Ground-Based Synthetic Aperture Radar

    Get PDF
    The first application of ground-based interferometric synthetic-aperture radar (GBInSAR) for slope monitoring dates back 13 years. Today, GBInSAR is used internationally as a leading-edge tool for near-real-time monitoring of surface slope movements in landslides and open pit mines. The success of the technology relies mainly on its ability to measure slope movements rapidly with sub- millimetric accuracy over wide areas and in almost any weather conditions. In recent years, GBInSAR has experienced significant improvements, due to the development of more advanced radar techniques in terms of both data processing and sensor performance. These improvements have led to widespread diffusion of the technology for early warning monitoring of slopes in both civil and mining applications. The main technical features of modern SAR technology for slope monitoring are discussed in this paper. A comparative analysis with other monitoring technologies is also presented along with some recent examples of successful slope monitorin

    Sentinel-1 A-DInSAR approaches to map and monitor ground displacements

    Get PDF
    Persistent scatterer interferometry (PSI) is a group of advanced interferometric synthetic aperture radar (SAR) techniques used to measure and monitor terrain deformation. Sentinel-1 has improved the data acquisition throughout and, compared to previous sensors, increased considerably the differential interferometric SAR (DInSAR) and PSI deformation monitoring potential. The low density of persistent scatterer (PS) in non-urban areas is a critical issue in DInSAR and has inspired the development of alternative approaches and refinement of the PS chains. This paper proposes two different and complementary data-driven procedures to obtain terrain deformation maps. These approaches aim to exploit Sentinel-1 highly coherent interferograms and their short revisit time. The first approach, called direct integration (DI), aims at providing a very fast and straightforward approach to screen-wide areas and easily detects active areas. This approach fully exploits the coherent interferograms from consecutive images provided by Sentinel-1, resulting in a very high sampling density. However, it lacks robustness and its usability lays on the operator experience. The second method, called persistent scatterer interferometry geomatics (PSIG) short temporal baseline, provides a constrained application of the PSIG chain, the CTTC approach to the PSI. It uses short temporal baseline interferograms and does not assume any deformation model for point selection. It is also quite a straightforward approach, which improves the performances of the standard PSIG approach, increasing the PS density and providing robust measurements. The effectiveness of the approaches is illustrated through analyses performed on different test sites.This work has been partially funded by AGAUR, Generalitat de Catalunya, through a grant for the recruitment of early-stage research staff (Ref: FI_B 00741) and through the Consolidated Research Group RSE, “Remote Sensing” (Ref: 2017-SGR-00729). It has been also partially funded by the Spanish Ministry of Economy and Competitiveness through the DEMOS project “Deformation monitoring using Sentinel-1 data” (Ref: CGL2017-83704-P) and by AGAUR.Peer ReviewedPostprint (published version

    Advanced Ground-Based Real and Synthetic Aperture Radar

    Get PDF
    Ground-based/terrestrial radar interferometry (GBRI) is a scientific topic of increasing interest in recent years. The GBRI is used in several field as remote sensing technique for monitoring natural environment (landslides, glacier, and mines) or infrastructures (bridges, towers). These sensors provide the displacement of targets by measuring the phase difference between sending and receiving radar signal. If the acquisition rate is enough the GBRI can provide the natural frequency, e.g. by calculating the Fourier transform of displacement. The research activity, presented in this work, concerns design and development of some advanced GBRI systems. These systems are related to the following issue: detection of displacement vector, Multiple Input Multiple Output (MIMO) and radars with 3D capability

    Analysis of a large rock slope failure on the east wall of the LAB chrysotile mine in Canada : LiDAR monitoring and displacement analysis

    Get PDF
    A major mining slope failure occurred in July 2012 on the East wall of the LAB Chrysotile mine in Canada. The major consequence of this failure was the loss of the local highway (Road 112), the main economic link between the region and the Northeast USA. This paper is part of a proposed integrated remote sensing–numerical modelling methodology to analyze mining rock slope stability. This paper presents the Light Detection and Ranging (LiDAR) monitoring of this slope failure. The main focus is the investigation of that rock slide using both terrestrial (TLS) and airborne (ALS) LiDAR scanning. Since 2010, four ALS and 14 TLS were performed to characterize and monitor the slide. First, laser scanning was used to investigate the geometry of the slide. The failure zone was 1100 m by 250 m in size with a mobilized volume of 25 hm3. Laser scanning was then used to investigate the rock slide’s 3D displacement, thereby enabling a better understanding of the sliding kinematics. The results clearly demonstrate the ability of the proposed approach to monitor and quantify large-scale rock mass failure. The slope was monitored for a period of 5 years, and the total displacement was measured at every survey. The maximum cumulative total displacement reached was 145 m. This paper clearly shows the ability of LiDAR scanning to provide valuable quantitative information on large rock mass failures involving very large displacements

    Discontinuous GBSAR deformation monitoring

    Get PDF
    This paper is focused on deformation monitoring using the Ground-Based SAR (GBSAR) technique and a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. This paper outlines the D-GBSAR data analysis procedure implemented by the authors. This is followed by a discussion of some specific aspects of D-GBSAR monitoring. Two successful examples of D-GBSAR monitoring are discussed: one concerns an urban area, while the second one involves a rural area where the monitoring requires the use of artificial corner reflectors

    Ground-based polarimetric SAR interferometry for the monitoring of terrain displacement phenomena-part II: applications

    Get PDF
    ©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Urban subsidence and landslides are among the greatest hazards for people and infrastructure safety and they require an especial attention to reduce their associated risks. In this framework, ground-based synthetic aperture radar (SAR) interferometry (GB-InSAR) represents a cost-effective solution for the precise monitoring of displacements. This work presents the application of GB-InSAR techniques, particularly with the RiskSAR sensor and its processing chain developed by the Remote Sensing Laboratory (RSLab) of the Universitat Politecnica de Catalunya (UPC), for the monitoring of two different types of ground displacement. An example of urban subsidence monitoring over the village of Sallent, northeastern of Spain, and an example of landslide monitoring in El Forn de Canillo, located in the Andorran Pyrenees, are presented. In this framework, the key processing particularities for each case are deeply analyzed and discussed. The linear displacement maps and time series for both scenarios are showed and compared with in-field data. For the study, fully polarimetric data acquired at X-band with a zero-baseline configuration are employed in both scenarios. The displacement results obtained demonstrate the capabilities of GB-SAR sensors for the precise monitoring of ground displacement phenomena.Peer ReviewedPostprint (author's final draft

    InSAR as a tool for monitoring hydropower projects: A review

    Get PDF
    This paper provides a review of using Interferometric Synthetic Aperture Radar (InSAR), a microwave remote sensing technique, for deformation monitoring of hydroelectric power projects, a critical infrastructure that requires consistent and reliable monitoring. Almost all major dams around the world were built for the generation of hydropower. InSAR can enhance dam safety by providing timely settlement measurements at high spatial-resolution. This paper provides a holistic view of different InSAR deformation monitoring techniques such as Differential Synthetic Aperture Radar Interferometry (DInSAR), Ground-Based Synthetic Aperture Radar (GBInSAR), Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), Multi-Temporal Interferometric Synthetic Aperture Radar (MTInSAR), Quasi-Persistent Scatterer Interferometric Synthetic Aperture Radar (QPSInSAR) and Small BAseline Subset (SBAS). PSInSAR, GBInSAR, MTInSAR, and DInSAR techniques were quite commonly used for deformation studies. These studies demonstrate the advantage of InSAR-based techniques over other conventional methods, which are laborious, costly, and sometimes unachievable. InSAR technology is also favoured for its capability to provide monitoring data at all times of day or night, in all-weather conditions, and particularly for wide areas with mm-scale precision. However, the method also has some disadvantages, such as the maximum deformation rate that can be monitored, and the location for monitoring cannot be dictated. Through this review, we aim to popularize InSAR technology to monitor the deformation of dams, which can also be used as an early warning method to prevent any unprecedented catastrophe. This study also discusses some case studies from southern India to demonstrate the capabilities of InSAR to indirectly monitor dam health

    Displacements Monitoring over Czechia by IT4S1 System for Automatised Interferometric Measurements Using Sentinel-1 Data

    Get PDF
    The Sentinel-1 satellite system continuously observes European countries at a relatively high revisit frequency of six days per orbital track. Given the Sentinel-1 configuration, most areas in Czechia are observed every 1–2 days by different tracks in a moderate resolution. This is attractive for various types of analyses by various research groups. The starting point for interferometric (InSAR) processing is an original data provided in a Single Look Complex (SLC) level. This work represents advantages of storing data augmented to a specifically corrected level of data, SLC-C. The presented database contains Czech nationwide Sentinel-1 data stored in burst units that have been pre-processed to the state of a consistent well-coregistered dataset of SLC-C. These are resampled SLC data with their phase values reduced by a topographic phase signature, ready for fast interferometric analyses (an interferogram is generated by a complex conjugate between two stored SLC-C files). The data can be used directly into multitemporal interferometry techniques, e.g., Persistent Scatterers (PS) or Small Baseline (SB) techniques applied here. A further development of the nationwide system utilising SLC-C data would lead into a dynamic state where every new pre-processed burst triggers a processing update to detect unexpected changes from InSAR time series and therefore provides a signal for early warning against a potential dangerous displacement, e.g., a landslide, instability of an engineering structure or a formation of a sinkhole. An update of the processing chain would also allow use of cross-polarised Sentinel-1 data, needed for polarimetric analyses. The current system is running at a national supercomputing centre IT4Innovations in interconnection to the Czech Copernicus Collaborative Ground Segment (CESNET), providing fast on-demand InSAR results over Czech territories. A full nationwide PS processing using data over Czechia was performed in 2017, discovering several areas of land deformation. Its downsampled version and basic findings are demonstrated within the article

    Big data managing in a landslide early warning system: Experience from a ground-based interferometric radar application

    Get PDF
    A big challenge in terms or landslide risk mitigation is represented by increasing the resiliency of society exposed to the risk. Among the possible strategies with which to reach this goal, there is the implementation of early warning systems. This paper describes a procedure to improve early warning activities in areas affected by high landslide risk, such as those classified as critical infrastructures for their central role in society. This research is part of the project LEWIS (Landslides Early Warning Integrated System): An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines. LEWIS is composed of a susceptibility assessment methodology providing information for single points and areal monitoring systems, a data transmission network and a data collecting and processing center (DCPC), where readings from all monitoring systems and mathematical models converge and which sets the basis for warning and intervention activities. The aim of this paper is to show how logistic issues linked to advanced monitoring techniques, such as big data transfer and storing, can be dealt with compatibly with an early warning system. Therefore, we focus on the interaction between an areal monitoring tool (a ground-based interferometric radar) and the DCPC. By converting complex data into ASCII strings and through appropriate data cropping and average, and by implementing an algorithm for line-of-sight correction, we managed to reduce the data daily output without compromising the capability for performing
    corecore