5,391 research outputs found

    Finding Cycles and Trees in Sublinear Time

    Full text link
    We present sublinear-time (randomized) algorithms for finding simple cycles of length at least k≥3k\geq 3 and tree-minors in bounded-degree graphs. The complexity of these algorithms is related to the distance of the graph from being CkC_k-minor-free (resp., free from having the corresponding tree-minor). In particular, if the graph is far (i.e., Ω(1)\Omega(1)-far) {from} being cycle-free, i.e. if one has to delete a constant fraction of edges to make it cycle-free, then the algorithm finds a cycle of polylogarithmic length in time \tildeO(\sqrt{N}), where NN denotes the number of vertices. This time complexity is optimal up to polylogarithmic factors. The foregoing results are the outcome of our study of the complexity of {\em one-sided error} property testing algorithms in the bounded-degree graphs model. For example, we show that cycle-freeness of NN-vertex graphs can be tested with one-sided error within time complexity \tildeO(\poly(1/\e)\cdot\sqrt{N}). This matches the known Ω(N)\Omega(\sqrt{N}) query lower bound, and contrasts with the fact that any minor-free property admits a {\em two-sided error} tester of query complexity that only depends on the proximity parameter \e. For any constant k≥3k\geq3, we extend this result to testing whether the input graph has a simple cycle of length at least kk. On the other hand, for any fixed tree TT, we show that TT-minor-freeness has a one-sided error tester of query complexity that only depends on the proximity parameter \e. Our algorithm for finding cycles in bounded-degree graphs extends to general graphs, where distances are measured with respect to the actual number of edges. Such an extension is not possible with respect to finding tree-minors in o(N)o(\sqrt{N}) complexity.Comment: Keywords: Sublinear-Time Algorithms, Property Testing, Bounded-Degree Graphs, One-Sided vs Two-Sided Error Probability Updated versio

    Some economic benefits of a synchronous earth observatory satellite

    Get PDF
    An analysis was made of the economic benefits which might be derived from reduced forecasting errors made possible by data obtained from a synchronous satellite system which can collect earth observation and meteorological data continuously and on demand. User costs directly associated with achieving benefits are included. In the analysis, benefits were evaluated which might be obtained as a result of improved thunderstorm forecasting, frost warning, and grain harvest forecasting capabilities. The anticipated system capabilities were used to arrive at realistic estimates of system performance on which to base the benefit analysis. Emphasis was placed on the benefits which result from system forecasting accuracies. Benefits from improved thunderstorm forecasts are indicated for the construction, air transportation, and agricultural industries. The effects of improved frost warning capability on the citrus crop are determined. The benefits from improved grain forecasting capability are evaluated in terms of both U.S. benefits resulting from domestic grain distribution and U.S. benefits from international grain distribution

    Top Quark and Higgs Boson Masses: Interplay between Infrared and Ultraviolet Physics

    Get PDF
    We review recent efforts to explore the information on masses of heavy matter particles, notably of the top quark and the Higgs boson, as encoded at the quantum level in the renormalization group (RG) equations. The Standard Model (SM) and the Minimal Supersymmetric Standard Model (MSSM) are considered in parallel. First, the question is addressed to which extent the infrared (IR) physics of the ``top-down'' RG flow is independent of the ultraviolet (UV) physics. The central issues are i) IR attractive fixed point values for the top and the Higgs mass, the most outstanding one being m_t=O(190 GeV)sin(beta) in the MSSM, ii) IR attractive relations between parameters, the most prominent ones being an IR fixed top-Higgs mass relation in the SM, leading to m_H=O(156) GeV for the experimental top mass, and an IR fixed relation between the top mass and tan(beta) in the MSSM, and iii) an analytical assessment of their respective strengths of attraction. The triviality and vacuum stability bounds on the Higgs and top masses in the SM and the upper bound on the lightest Higgs boson mass in the MSSM are reviewed. The mathematical backbone, the rich structure of IR attractive fixed points, lines, surfaces,... in the multiparameter space, is made transparent. Interesting hierarchies emerge, most remarkably: IR attraction in the MSSM is systematically stronger than in the SM. Tau-bottom-(top) Yukawa coupling unification in supersymmetric grand unified theories and its power to focus the ``top-down'' RG flow into the IR top mass fixed point resp. onto the IR fixed line in the m_t-tan(beta) plane is reviewed. The program of reduction of parameters, a search for RG invariant relations between couplings, guided by the requirement of asymptotically free couplings in the UV limit,is summarized; its interrelations with the search forComment: review, 112 pages, 39 figures and 15 figures in a table; one LaTeX file, 50 postscript files; LaTeX uses style files epsfig.sty, rotating.sty, dina4p.sty; to be published in Progress in Particle and Nuclear Physics, Vol. 37, 1996, copyright Elsevier Science Lt

    The Impact of Conditional Cash Transfers on Marriage and Divorce

    Get PDF
    A growing number of less-developed countries have introduced conditional cash transfer programs in which funds are targeted to women. Economic models of the family suggest that these transfer programs may lead to marital turnover among program beneficiaries. We use data from the experimental evaluation of the PROGRESA program in Mexico to provide new evidence on the short-run impacts of targeted transfers on couples’ union dissolution and individuals’ new union formation decisions. We find that, although the overall share of women in union does not change as a result of the program, marital turnover increases. Intact families eligible for the transfers experienced a modest (0.32 percentage points) increase in separation rates, with most of the effect concentrated among young and relatively educated women households. In contrast, young single women with low educational attainment levels experienced a substantial increase in new union formation rates. The marital transition patterns are consistent with the workhorse economic model of the marriage market – individuals with the greatest prospects to start new unions and those who may become more attractive in the marriage market are more likely to transition out of existing relationships and form new ones.conditional cash transfers; welfare policy; marriage; divorce

    Low Energy Precision Test of Supersymmetry

    Get PDF
    Supersymmetry (SUSY) remains one of the leading candidates for physics beyond the Standard Model, and the search for SUSY will be a central focus of future collider experiments. Complementary information on the viability and character of SUSY can be obtained via the analysis of precision electroweak measurements. In this review, we discuss the prospective implications for SUSY of present and future precision studies at low energy.Comment: 118 pages, review pape

    Improvements on Device Independent and Semi-Device Independent Protocols of Randomness Expansion

    Full text link
    To generate genuine random numbers, random number generators based on quantum theory are essential. However, ensuring that the process used to produce randomness meets desired security standards can pose challenges for traditional quantum random number generators. This thesis delves into Device Independent (DI) and Semi-Device Independent (semi-DI) protocols of randomness expansion, based on a minimal set of experimentally verifiable security assumptions. The security in DI protocols relies on the violation of Bell inequalities, which certify the quantum behavior of devices. The semi-DI protocols discussed in this thesis require the characterization of only one device - a power meter. These protocols exploit the fact that quantum states can be prepared such that they cannot be distinguished with certainty, thereby creating a randomness resource. In this study, we introduce enhanced DI and semi-DI protocols that surpass existing ones in terms of output randomness rate, security, or in some instances, both. Our analysis employs the Entropy Accumulation Theorem (EAT) to determine the extractable randomness for finite rounds. A notable contribution is the introduction of randomness expansion protocols that recycle input randomness, significantly enhancing finite round randomness rates for DI protocols based on the CHSH inequality violation. In the final section of the thesis, we delve into Generalized Probability Theories (GPTs), with a focus on Boxworld, the largest GPT capable of producing correlations consistent with relativity. A tractable criterion for identifying a Boxworld channel is presented.Comment: This PhD thesis consists of 212 pages, with 16 figures and presents content that intersects with the author's previously published work R. Bhavsar, S. Ragy, and R. Colbeck. Improved device independent randomness expansion rates using two sided randomness. New Journal of Physics 25.9 (2023): 09303

    Scalable Realtime Rendering and Interaction with Digital Surface Models of Landscapes and Cities

    Get PDF
    Interactive, realistic rendering of landscapes and cities differs substantially from classical terrain rendering. Due to the sheer size and detail of the data which need to be processed, realtime rendering (i.e. more than 25 images per second) is only feasible with level of detail (LOD) models. Even the design and implementation of efficient, automatic LOD generation is ambitious for such out-of-core datasets considering the large number of scales that are covered in a single view and the necessity to maintain screen-space accuracy for realistic representation. Moreover, users want to interact with the model based on semantic information which needs to be linked to the LOD model. In this thesis I present LOD schemes for the efficient rendering of 2.5d digital surface models (DSMs) and 3d point-clouds, a method for the automatic derivation of city models from raw DSMs, and an approach allowing semantic interaction with complex LOD models. The hierarchical LOD model for digital surface models is based on a quadtree of precomputed, simplified triangle mesh approximations. The rendering of the proposed model is proved to allow real-time rendering of very large and complex models with pixel-accurate details. Moreover, the necessary preprocessing is scalable and fast. For 3d point clouds, I introduce an LOD scheme based on an octree of hybrid plane-polygon representations. For each LOD, the algorithm detects planar regions in an adequately subsampled point cloud and models them as textured rectangles. The rendering of the resulting hybrid model is an order of magnitude faster than comparable point-based LOD schemes. To automatically derive a city model from a DSM, I propose a constrained mesh simplification. Apart from the geometric distance between simplified and original model, it evaluates constraints based on detected planar structures and their mutual topological relations. The resulting models are much less complex than the original DSM but still represent the characteristic building structures faithfully. Finally, I present a method to combine semantic information with complex geometric models. My approach links the semantic entities to the geometric entities on-the-fly via coarser proxy geometries which carry the semantic information. Thus, semantic information can be layered on top of complex LOD models without an explicit attribution step. All findings are supported by experimental results which demonstrate the practical applicability and efficiency of the methods

    A Sign-to-Speech Translation System

    Get PDF
    This thesis describes sign-to-speech translation using neural networks. Sign language translation is an interesting but difficult problem for which neural network techniques seem promising because of their ability to adjust to the user\u27s hand movements, which is not possible to do by most other techniques. However, even using neural networks and artificial sign languages, the translation is hard, and the best-known system, that of Fels & Hinton (1993), is capable of translating only 66 root words and 203 words including their conjugations. This research improves their results to 790 root signs and 2718 words including their conjugations while preserving a high accuracy (i.e., over 93 %) in translation. The use of matcher neural networks (Revesz 1989, 1990) and asymmetric Hamming distances are the key sources of improvement. This research aims at providing a means of communication for deaf people. Adviser: Peter Z. Reves

    Modulated Rashba interaction in a quantum wire: Spin and charge dynamics

    Full text link
    It was recently shown that a spatially modulated Rashba spin-orbit coupling in a quantum wire drives a transition from a metallic to an insulating state when the wave number of the modulation becomes commensurate with the Fermi wave length of the electrons in the wire. It was suggested that the effect may be put to practical use in a future spin transistor design. In the present article we revisit the problem and present a detailed analysis of the underlying physics. First, we explore how the build-up of charge density wave correlations in the quantum wire due to the periodic gate configuration that produces the Rashba modulation influences the transition to the insulating state. The interplay between the modulations of the charge density and that of the spin-orbit coupling turns out to be quite subtle: Depending on the relative phase between the two modulations, the joint action of the Rashba interaction and charge density wave correlations may either enhance or reduce the Rashba current blockade effect. Secondly, we inquire about the role of the Dresselhaus spin-orbit coupling that is generically present in a quantum wire embedded in semiconductor heterostructure. While the Dresselhaus coupling is found to work against the current blockade of the insulating state, the effect is small in most materials. Using an effective field theory approach, we also carry out an analysis of effects from electron- electron interactions, and show how the single-particle gap in the insulating state can be extracted from the more easily accessible collective charge and spin excitation thresholds. The smallness of the single-particle gap together with the anti-phase relation between the Rashba and chemical potential modulations pose serious difficulties for realizing a Rashba-controlled current switch in an InAs-based device. Some alternative designs are discussed.Comment: 20 pages, 6 figure
    • …
    corecore