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This thesis describes sign-to-speech translation using neural networks. Sign lan-

guage translation is an interesting but difficult problem for which neural network

techniques seem promising because of their ability to adjust to the user’s hand move-

ments, which is not possible to do by most other techniques. However, even using

neural networks and artificial sign languages, the translation is hard, and the best-

known system, that of Fels & Hinton (1993), is capable of translating only 66 root

words and 203 words including their conjugations. This research improves their re-

sults to 790 root signs and 2718 words including their conjugations while preserving

a high accuracy (i.e., over 93 %) in translation. The use of matcher neural net-

works (Revesz 1989, 1990) and asymmetric Hamming distances are the key sources

of improvement. This research aims at providing a means of communication for deaf

people.
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Chapter 1

Introduction

Sign languages have been used for a long time. In any sign language, information

is transmitted through manual/visual channels instead of the oral/auditory channels

used for spoken languages. There are many deaf people in the United States for whom

manual communication is the primary mode of communication (Mayberry, 1978).

Sign language was a common and universal means of communication throughout

the Great Plains among the various American Indian tribes who spoke different vocal

languages (Tomkins 1969). Today sign languages form a very important group of

languages, with over a hundred thousand people worldwide who use them daily as

their primary mode of communication.

When a signer needs to communicate with a non-signer,1 some form of interpre-

tation is necessary. Interpretation can be provided through anything from pencil and

paper to hiring a certified interpreter. The written approach is very slow and often

frustrating. Hiring interpreters also has drawbacks; it is expensive; an interpreter is

not always available; and some people are uncomfortable speaking through an inter-

preter because it seems less personal and less private.
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One possible way of improving this situation would be to automate the interpre-

tation process. Computer recognition techniques could be designed to translate the

signers handshapes and movements into spoken or written English. These techniques

could then be used to enhance or replace human interpretation.

1.1 American Sign Language

American Sign Language (ASL) is a complete and well-formed language developed

naturally within the American deaf community. Its grammar is quite distinct from

that of English or any other spoken language (Wilbur 1979, Meier 1991). It is the

fourth most common language used in the United States.

Many people mistakenly believe that American Sign Language(ASL) is English

conveyed through signs. Some think that it is a manual code for English, that it can

express only concrete information, or that there is one universal sign language used

by deaf people around the world.

Linguistic research demonstrates, however, that ASL is comparable in complex-

ity and expressiveness to spoken languages. It is not a form of English. It has its

own distinct grammatical structure, which must be mastered in the same way as

the grammar of any other language. ASL differs from spoken languages in that it

is visual rather than auditory and is composed of precise handshapes and movements.

ASL is capable of conveying subtle, complex, and abstract ideas. Signers can

discuss philosophy, literature, or politics as well as football, cars or income taxes.
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Sign Language can express poetry as poignantly as can any spoken language and can

communicate humor, wit, and satire just as bitingly. As in other languages, new

vocabulary items are constantly being introduced by the community in response to

cultural and technological change.

ASL is not universal. Just as hearing people in different countries speak different

languages, so do deaf people around the world sign different languages. Deaf people

in Mexico use a different sign language from that used in the U.S. Because of histor-

ical circumstances, contemporary ASL is more like French Sign Language than like

British Sign Language. ASL was developed by American deaf people to communicate

with each other and has existed as long as there have been deaf Americans. ASL is

now used by approximately one-half million deaf people in the U.S. and Canada.

Apart from ASL, the Indian sign language is the world’s most easily learned lan-

guage because it is elemental, basic, logical and the signs in general are what should

properly be made to illustrate the idea - the language being largely idiomatic - con-

veying ideas (Tomkins 1969).

1.2 Automatic Recognition

While there have been many studies on ASL (Poizner 1983, Poizner et al. 1987,

Stungis 1981, Loomis et al. 1983) including some work towards an automatic transla-
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Figure 1.1: Block Diagram of Sign-to-Speech Translation

tion to English, it turns out to be a very complex language to study directly. Instead

of attacking the problem of ASL head on, some authors considered the more manage-

able problem of translating various artificial sign languages to English. Even that is

very difficult. Recently, only a few projects have been directed towards this problem.

Figure 1.1 shows the simplified block diagram of an automatic recognition system

which senses the users hand shape and movement and translates it to speech. Re-

searchers have investigated different types of translation techniques. Some of them

used vision based techniques based on markers to capture the users hand shape and

movements. Others used DataGlove or CyberGlove that are equipped with fiber optic

sensors which measure the angle of flexure at each joint.

Each of the above techniques have their own advantages and disadvantages. Vi-

sion based techniques are much slower than sensor based techniques as they have

to process more data. Hence for real-time applications sensor based techniques are
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preferred over vision based techniques. however for off-line analysis vision based tech-

niques may yield better performance than sensor based techniques.

Tamura and Kawasaki (1988) presented a system that recognized a small list of

handshapes from a videotape of a single signer. This system was designed to recog-

nize only 20 signs and had only a 45 % accuracy rate. Moreover, the system could

not handle many signs without losing accuracy.

Another automated interpretation system was presented by Kramer & Leifer

(1987, 1989) as part of a computer-based system that recognized American finger-

spelling and returned a spoken English translation. In this system, a signer would

be able to communicate with a non-signer by manually spelling English words while

wearing a CyberGlove. Computer recognition algorithms were used to interpret the

information from the glove, and the resulting English text was converted to synthetic

speech for the non-signer to hear.

The recognition algorithm in Kramer’s system had some limitations. First, the

algorithm expected a stop in the hand motion after each letter to trigger the recog-

nition process. The requirement to stop between letters is undesirable since fluent

fingerspellers use nearly continuous motion in producing a sequence of letters (Guil-

lory, 1966). Further, it was designed to recognize static hand shapes only so each

letter had to be produced as it were in isolation.

Glove-Talk (Fels, 1990; Fels & Hinton, 1993) was designed to recognize handshapes

and movements using a DataGlove as the input device. The DataGlove is a nylon

glove with sensors designed to read finger angles and hand locations. The Glove-Talk
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system used neural networks to perform the recognition and had a reported accuracy

rate of 92 %. However, a drawback to this system is that its design could handle only

203 words with conjugations. Also, the sign system would have to be be completely

redesigned to handle an increased vocabulary with the same accuracy.

Another important direction in this research is to study the co-articulation af-

fects prevalent in fingerspelling and automatic recognition algorithms. Shirley (1992)

examined the range and extent of co-articulation in American fingerspelling and its

implications for automatic sign recognition. She concluded that recognition algo-

rithms can be improved by taking co-articulation into account and by concentrating

on just the selected features of handshapes rather than on full handshapes since less

co-articulation may be present for selected features. She also concluded that the con-

text of the previous sign should always be taken into account when the next sign is

being processed in the sequence.

The best results to date are those of Fels and Hinton (1993) who achieved a ro-

bust translation of 66 root signs plus their conjugations. Of course, this falls short

of an average English vocabulary, which has over 20,000 words, and even of the basic

English vocabulary, which contains about 850 words (Ogden 1968). Their important

and pioneering study however leaves much room for improvement.

The research presented here improves the previous translation works using artifi-

cial sign languages. In particular an interface was designed, which robustly translates

2718 gestures to spoken English words and which is capable of adapting to different

users with different hand structures. The results obtained show that the accuracy

of the translation system remains quite high, i.e. 93 %. This can be considered a
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very high accuracy, considering the complexity that the system has to deal with in

providing an adaptive interface between a user and a text-to-speech synthesizer.

To provide such an interface neural networks seems necessary, and indeed they

form the kernel of the translation system designed. The particular neural networks

used are adapted from Revesz (1989, 1990) are not as well-known as the backpropaga-

tion algorithm (Rumelhart et al. 1986) used by Fels and Hinton (1993) or the sparse

distributed memories of Kanerva (1988) to which they seem closest. Therefore, the

research is also novel in presenting an application of a less-known biologically moti-

vated network.

This report is organized as follows. Chapter 2 describes some of the possible

sign-to-speech models. Chapter 3 describes an overview of the sign-to-speech sys-

tem. Chapter 4 describes the basic concepts of Asymmetric Hamming distance and

Matcher neural networks. Chapter 5 describes the computerized generation of hand

symbols. Chapter 6 describes the results obtained, conclusions and future work.
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Chapter 2

Translation Models

2.1 Overview

The task of converting hand movements to speech can be accomplished in many ways.

The user makes a hand gesture which is recorded by the recognition system. Some of

the salient features from the recorded data are extracted and fed as an input to a neu-

ral network. The neural network associates the input with a sound description which

is then converted to speech by the speech synthesizer. The key part of this system

is the mapping of hand data to the synthesizer input. There is a multitude of possi-

ble models to choose from, which form a spectrum based on the granularity of speech.

Each of the sign-to-speech models can be compared using the properties vocabu-

lary size, initial mapping complexity, hand movement speed, user learning complexity

and sound production lag time. The vocabulary size is the number of different words

possible with each particular model. Initial mapping complexity is a relative measure

of the difficulty of defining the sign-to-speech mapping. The fewer number of output

categories, the easier it is to define an initial mapping.

Hand movement duration is defined as the approximate amount of time a user
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Table 2.1: Sign-to-Speech Models and their properties

Models Vocabulary Mapping Motion Learning Response
(msec)

Artificial unlimited hard 10 hard FPD
Vocal Tract
Phoneme unlimited medium (≈ 50) 50 medium 2 × FPD
Generator

Finger unlimited easy (≈ 26) 80 medium (|word| + 1)
Spelling × FPD
Syllable depends on number 200 medium FPD

Generator syllables of syllables
Word number (≈ 850) for 500 easy FPD

Generator of words Basic English

spends in making successive sounds, without making the speech output sound dis-

jointed. User learning complexity is a measure of the relative difficulty for a user to

learn to speak (based on the initial mapping). Normally this measure is a combina-

tion of mapping complexity and hand movement duration. System response time is

the amount of time lag from the gesture to speech conversion. It is expressed in terms

of the forward pass delay (FPD) of the translation system.

Each of the various sign-to-speech models possible as illustrated in Table 2.1 are

discussed in the following sections. After examining the merits and demerits of all

the models carefully, this research considers the hand as a word generator model for

the implementation of the sign-to-speech translation system.
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2.2 Hand as an Artificial Vocal Tract

In this model the hand shape and movements mimic the vibration of articulators in

the vocal tract. Once all the possible sounds of the vocal tract and co-articulation

effects are represented by hand movements, any human sound can be produced. Thus

this model has unlimited vocabulary size and natural sounding speech. The mapping

from the hand gestures to speech in this model is complex because of the fact that

each place of articulation must have an associated hand position. As well, any pos-

sible movements of the articulators must be mapped to the movements of the hand

shape.

The second difficulty arises in the sound production time limit. For connected,

intelligible speech, it is important to note that most sounds do not extend more than

about 20 msec. Basically this means that the duration of the user’s hand movements

must be of the same order of magnitude as the articulators. The translation system

should also operate within this time frame. Hence learning to speak with this model

is a very difficult task.

2.3 Hand as a Phoneme Generator

There are 45 to 48 different phonemes in English (Shriberg and Kent 1982). In this

sign to speech model, hand movements and shapes represent phonemes. With all

the phonemes represented a user has an unlimited vocabulary; any word can be pho-

netically spelled out. In addition, as all the possible word sounds are available the

resultant speech sounds almost natural. Only 45 to 48 hand gestures are necessary

to define the initial mapping. However, care must be taken to make frequent pairing

of phonemes close in terms of hand movements. Considering the above points, the
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definition of the initial mapping is probably medium hard on the relative scale of

difficulty.

For continuous speech the phonemes must be produced in quick succession. Con-

sider a phoneme duration of 50 msec. Once the gestures for this phoneme is made,

the user has approximately 50 msec to make the next movement, otherwise there will

be a period of silence between successive phonemes. For a user to learn 45-48 unique

hand positions is not too difficult; however, to learn to make them quickly enough for

continuous sounding speech is very difficult. For these reasons the task of learning to

speak with the hand as phoneme generator model is medium hard.

2.4 Hand as a Letter Generator (Fingerspelling)

In this model, each hand gesture is mapped to a letter. Once all the letters in English

are represented, the user has unlimited vocabulary. Unfortunately, the sound quality

is very poor. There is no account of the variation in word sound since each letter

is made individually. There is no global word property to give tailored sounds to

speech. Combining the simplicity of the initial mapping with the hand movement

speed makes this model medium hard for the user to learn.

Apart from ASL, there are many manual systems based on spoken language. Some

used in the United States includes Signed Exact English (SEE), Manual Coded En-

glish (MCE), and Pidgin Signed English (PSE). In all of these manual communication

systems, including ASL, ‘fingerspelling’ based on a manual alphabet, is used to spell

a word for which there is no specific sign. Fingerspelling is thus commonly used to
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communicate names, addresses, and new or technical words that are not in the sign

lexicon.

2.5 Hand as a Syllable Generator

In this model, a hand gesture is mapped to a syllable. Sequences of gestures form

words. The major drawback of this system is the prohibitively large number of syl-

lables in English. A subset of all the syllables must be used. The vocabulary size

is then restricted to the meaningful permutations of these syllables. Clearly, as the

number of syllables increases, it becomes more difficult to define an initial mapping

to convert gestures to speech.

As in fingerspelling, each word must be syllabically spelled out. However, there

are two main differences. First, the number of syllables in a word is less than the

number of letters. Second, each syllable can be spoken in isolation. For these reasons,

the hand movement speed is only the duration of a syllable (≈ 200msec). The fact

that syllables can be said in isolation also means that the sound production lag is

only the forward delay through mapping.

2.6 Hand as a Word Generator

In this model, hand gestures are mapped to individual words. Vocabulary size is just

the number of words chosen. In English there are more than 20,000 words. As in the

case of the previous two models, if all the English words are represented by gestures,

defining the initial mapping will be extremely difficult. Instead a subset of English
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language may be used. Fortunately, a language called Basic English (Ogden 1968) has

been devised which has only 850 English words. These 850 words do all the essential

work of 20,000 words of English (Ogden 1968). Thus, with hand as a word genera-

tor model, a vocabulary of 850 words is sufficient for a reasonable level of conversation.

To create an initial mapping for this size of vocabulary is not too difficult, com-

pared to some of the other models. In addition, many hand symbols have been defined

in ASL which can be used as a guide in designing initial mapping. Further, as many

of the words in Basic English are concrete (pictured) objects, gestures can be made

to resemble the objects they represent. The above points make designing the initial

mapping relatively easy as well as making the user’s job of learning to speak simpler.

The allowable hand movement duration is the duration of the previous word spo-

ken. This is typically in the 500 msec range. A further feature of the hand as word

generator model is that each word can be said in isolation; thus, the sound production

lag is only the forward mapping delay.

2.7 Selecting a Model for the Translation System

In this research, hand as a word generator model was chosen to build the sign-to-

speech translation system. The hand as a word generator model has several important

advantages over the other models as already seen in section 2.6. In addition, once

developed, a useful system results. Using Basic English as the available vocabulary a

ceiling of 850 words is set. With this vocabulary and the system designed, a person

should be able to learn to converse at a moderately acceptable level.
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Another advantage is the amount of time allowed to generate a word. To avoid

gaps, the duration of each previous word spoken limits the production time of the

desired current word; assume for example this time is 500 msec. The user’s gesture

creation time plus the neural network forward propagation must then be less than

500 msec for the speech to sound connected. This duration is much longer than any

of the other models. The major drawback with this model is that the speech quality

is not as good as with some other models, due to the lack of control of interword

speech parameters. The next chapter describes the implementation of the hand as a

word generator model.
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Chapter 3

Sign-to-Speech Translation

3.1 Overview

The purpose of the sign-to-speech system is to convert user’s hand gestures to speech

based on a sign-to-word model where each gesture is mapped to an English word. The

basic operation of the system is as follows: the user forms a hand shape and makes a

movement forward and back in one of the six possible directions. The system records

the user’s hand shape and the direction of movement. The direction of movements

recognized by the system include right, left, upward, downward, away and towards

the user. The hand shape and direction of movement are then mapped to an English

word.

The sign-to-speech translation system is equipped with CyberGlove which mon-

itors the user’s hand shape, Flock-of-Birds which senses the user’s hand movements

and a DECtalk speech synthesis system. The system was designed on a SUN SPARC

workstation under UNIX environment.

This chapter is organized as follows: Section 3.2 describes the complex structure

of the hand. Section 3.3 thru section 3.5 describes the hardware used and the nature
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of measurements made. Section 3.6 describes the sign-to-speech translation system

designed. Section 3.7 describes the performance of the strobe detector which is one

of the critical building block in the sign-to-speech translation system designed.

3.2 Hand Structure

The human hand is a complex structure with several kinds of bones that are intercon-

nected by various joints having different degrees of freedom. This research considers

17 different joint movements as described below:

The first group of joints considered are the Metacarpophalangeal Joints (MCPs).

These joints represent the knuckles of the hand. They are condyloid joints with 2

degrees of freedom. The flexion or extension of these joints up to 100◦ occurs about

a transverse axis of the hand. An abduction or adduction of these joints - as much

as 30◦ in the case of the index finger - occurs about an anteroposterior axis with

reference to the middle finger.

Second group of joints considered are the Interphalangeal Joints. These are

hinge joints with 1 degree of freedom. Flexion or extension of these joints up to 90◦

occurs about a transverse axis as in the case of MCPs. The Proximal Interphalangeal

joints (PIPs) are between the proximal and the middle phalanges. (The Distal Inter-

phalangeal joints (DIPs) are between the middle and the distal phalanges; however,

the movement of these joints are not considered).

Third group of joints considered are the First Carpometacarpal Joint of the
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thumb. This is a saddle shaped joint with 2 degrees of freedom between the trapez-

ium and the first metacarpal bones. Flexion or extension of this thumb joint occurs

about a plane which is approximately 60◦ to that of the hand. Flexion brings the

thumb ventrally to the plane of the hand towards the palm, while extension brings

the thumb back into the plane of the hand. Abduction and adduction of the thumb

occurs about an axis perpendicular to the plane of the hand. Abduction is the move-

ment of the extended thumb away from the index finger, while adduction brings the

extended thumb against the index finger.

The fourth and last group of joints considered are the Wrist Joints which are

located between the distal end of the radius and the ulna and the proximal row

of carpal bones. Flexion and extension also known as wrist pitch occurs about a

transverse axis. Abduction and adduction also known as wrist yaw occurs about an

anteroposterior axis. The next section gives a description of the hardware used to

measure the angles at each of the joints mentioned above.

3.3 CyberGlove

The Virtual Technologies CyberGloveTM (Model Number CG1801) is an instrument

capable of measuring the movements of the user’s fingers and hand. It is used to

record the shape of the user’s hand. It is provided with a glove equipped with fiberop-

tic sensors for the user to wear and is connected to the CyberGlove Interface Unit

(CGIU). The CGIU contains the controller which manages the protocol between the

host workstation and the glove. The CGIU is connected to one of the serial (RS232C)

ports of the SUN SPARC workstation.
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Although the CyberGlove (Model Number CG1801) is capable of measuring 18-

joint movements, the present research considers only 17-joint movements. The posi-

tion of the CyberGlove sensors considered are illustrated in the Figure 3.1. Five of

these measure the flexion or extension of the MCPs, five for the flexion or extension

of PIPs, four for the abduction or adduction between adjacent MCPs, one for thumb

rotation, and one each for wrist pitch and wrist yaw.

The CyberGlove sensors give digitized output values that vary linearly with the

angle of the joints over which they are located. Therefore these sensors can easily

monitor the movement of the joints described in Section 3.2. MCP, PIP and wrist

pitch angles are defined such that joint flexure corresponds to increasing A/D values

returned from the CGIU. Abduction sensors are defined such that finger spreading

produces decreasing A/D values. Flexing of the wrist joint to the side of the pinkie

finger corresponds to increasing sensor A/D values.

The software configures the CyberGlove to operate at 9600 baud rate. The re-

sponse time of the CyberGlove is 15 msec. That means it takes about 15 msec for

the host to receive the data once it is requested.

3.4 Flock of Birds

Ascension Technology Corporation’s FlockofbirdsTAI is a position sensor that is used

to track the user’s hand position and orientation over short ranges. Other applica-

tions include: head tracking in flight simulators/trainers and virtual reality games,

real-time control of 3D images in computer graphics workstation, 3D measurement of

medical instruments, biomechanical measurement of anatomical parts, manipulation
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Figure 3.1: CyberGlove sensor location

of telerobotic controls, and real time interaction with virtual images.

It has a transmitter and a receiver. The transmitter generates a magnetic field

whose field strength is measured by the receiver in order to determine its 3D position

(X,Y and Z coordinates) with respect to the transmitter. The flock of birds also

measures the orientation angles of the receiver with respect to the transmitter. The

orientation angles are defined as rotations about the X, Y and Z axes of the receiver.

They are called in the nomenclature as roll, elevation, and azimuth respectively. This

research uses only X, Y , Z coordinates and roll for tracking the user’s hand move-
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Figure 3.2: Flock of birds operation

ments.

The Flock of birds controller is connected to one of the serial ports (RS232C) of

the SUN SPARC workstation. The software configures the Flock of birds to operate

at 9600 baud rate with a capability to make 100 measurements per second. The Flock

of birds is capable of tracking multiple receivers. It can handle upto eight transmit-

ters and receivers. The present system uses only one receiver and one transmitter as

this research considers only one-handed signs. However, in future it can be upgraded

to work with sign languages that use both hands.
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3.5 DECtalk

DECtalkTM (Model Number DTC01) is a text-to-speech converter designed by Digi-

tal Equipment Corporation that provides any computer with a human-sounding voice.

Figure 3.3 shows the various modules used in the DECtalk speech synthesis system.

It has sentence parser which breaks up the input stream into separate words and

locates some clause boundaries (such as commas and other punctuation marks). A

word parser breaks compound words into their component parts, yielding words in

their final pronounceable form. A dictionary manager searches the pronunciation

dictionaries which are built into DECtalk. A phrase structure module recombines all

phonemic output from the dictionary search and other modules. A phoneme-to-voice

module processes clauses passed from the phrase structure module and converts them

to control signals for the speech synthesizer. The digital speech synthesizer computes

the speech waveform with acoustic characteristics that are determined by the synthe-

sizer control commands received.

It has a large selection of user controllable speech parameters. For example, the

user can control the speaking rate and word stress by sending some control characters

to the DECtalk. For words not in the DECtalk dictionary, there is a letter-to-sound

module which uses a set of English pronunciation rules to assign phonemic form and

lexical stress patterns to words not found in the dictionary. However if the user

wants to provide his own pronunciation he can break up the word into phonemic

code which is accepted by DECtalk. This research uses only the DECtalk’s builtin

dictionary and does not provide control over speech parameters such as word stress

and word rate. However, it can be integrated into the system in future by making

some design changes.
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The software configures the DECtalk to operate at 9600 baud rate. It is connected

to one of the serial (RS232C) ports of the SUN SPARC workstation. DECtalk reads

text at about 180 words per minute. This is a typical reading rate that is comfortable

for most situations. Words per minute is a relative measurement. DECtalk adjusts

its speech rate for average-length words. It does not count the number of words in a

sentence before speaking them. Sentences with long words take longer to speak than

sentences with short words

3.6 System operation and implementation

The sign-to-speech system designed is illustrated in the Figure 3.4. The initializer

module opens up the serial communication ports on the SUN SPARC workstation

and initializes the protocol associated with the three devices. The flock of birds

starts recording the X,Y and Z position of the hand and stores their values in a buffer

of length N. At any given time T the buffer stores data samples from T to T-N-1.

The strobe detector module calculates the displacement in the hand position by

inspecting all the data values in the buffer. Once it has detected a displacement ’d’

between any two values in the buffer it records a strobe and triggers the CyberGlove

with a data request. The strobe detector then clears all the data values in the buffer

and replaces them with the most recent value. This is done in order to prevent any

false detection of the strobe in the future. The strobe detector also memorizes the

most recent direction in which the user moved his hand. Then it expects the user to

move the hand in the opposite direction to the one it memorized. Once it detects the

displacement of the user’s hand in the opposite direction it recognizes the completion
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Figure 3.3: Text-To-Speech Conversion

of the gesture made by the user.

The strobe detector then clears its memory and also the buffer and the cycle re-

peats. The timer/counter module helps the system to forget the past information

after N cycles and updates the system with the most recent data. The counter is

incremented when ever the strobe detector fails to record a strobe and is reset to

zero when the strobe detector detects a strobe. When the timer/counter value in N
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it clears the buffer and also the memory associated with the strobe detector. It then

resets itself to zero.

The CyberGlove data is fed to a feature extractor after the gesture has been recog-

nized by the strobe detector. The feature extractor then extracts the salient features

from the raw data and encodes them into a 17 bit binary pattern. The features ex-

tracted are fed to a neural network which detects and corrects some of the errors

committed by the user. The roll detector module detects the rotation of the user’s

hand. The strobe detector after recognizing the gesture detects the direction in which

the user moved his hand.

The extracted data consisting of 17 bit CyberGolve data and 7 bit Flock of birds

data are fed as input to the feature to word associator which associates the input

with an English word. The word is then sent to the DECtalk which speaks out the

word. The next chapter describes in detail the feature lists and the neural networks

used.

3.7 Strobe detector performance

The performance of the strobe detector is critical for the working of the sign-to-speech

translation system. The most important factor that should be considered in the de-

sign is the sensitivity of the strobe detector to the user’s hand movements. If it is

too sensitive, then the frequency of false detection increases because it responds to

slight movements of the hand. If it is less sensitive it results in a miss as it may not

capture some of the intended user hand movements.
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Figure 3.4: Sign-to-Speech translation system
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The design was aimed at minimizing the errors due to false detections and misses.

The system does not restrict the user to work with in a particular reference frame,

which means that it does not fix the coordinates of the initial position. The advan-

tage of this approach is that the user can make a gesture from any point in the 3D

space provided it is within the range of the magnetic field generated by the Flock of

the birds. This approach eliminates the possibility of an error that may result due to

improper positioning of the initial position.

The movement of the hand in the opposite direction during any gesture reduces

the probability of error due to false detection. In order to understand how the this

approach reduces the probability of error due to false detection let us consider a de-

sign where the user need not make the opposite movement. When the user makes the

one directional gestures he has to keep track of the amount of displacement needed

mentally. If he exceeds the displacement there is a chance that the strobe is detected

more than once. However in the bi-directional gestures there is no chance of a strobe

being detected more than once due to the hand movements in opposite directions.

Hence the reduction in the probability of error due to false detection.

Following are the three parameters that must be optimized in the present design

in order to get the best performance from the strobe detector:

1. Buffer Length: The buffer length N is one of the critical parameter that need

to be optimized in order to get the best performance from the strobe detector. If

N is too long then the user’s intentions may not match the systems interpretation



27

because of the excessive memory. The advantage of having a large N is that

the system tracks the users hand movements more closely. However it increases

the system response time and an error committed by the careless user will get

multiplied due to excessive memory. Thus increasing the probability of error

due to false detection. If the buffer length is too small then the system may not

capture the users intentions. Moreover the user has to make gestures at high

speed to make the system record his gesture. In this case the probability of the

occurrence of a miss is higher. After considering all the above facts the present

system was designed with a buffer length of 50.

2. Displacement: It is another factor that must be studied closely in order to

design a system that is user friendly. The physical restrictions on the user’s

hand movements is one of the factors considered in choosing an optimal value

for the displacement. If the displacement is large then the probability of the

occurrence of a miss is larger. If the displacement is small then the probability

of false detection is more. An optimal value of 3 inches was chosen in the present

system to maximize the performance.

3. Maximum Timer Count: The maximum timer count was found to have the

same effects as that of the buffer length. So in the present system the maximum

timer count was set to N in order to maximize performance.

Considering all the above factors the strobe detector performance was very high(

99 %). The next chapter discusses the common type of errors associated with the

CyberGlove environment and how they are corrected to improve the overall system

performance.
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Chapter 4

Feature Extraction and Neural Networks

4.1 Overview

Feature systems for signs are less well established than for spoken languages. In fact,

the distinctive feature list differs with each researcher.

Woodward (1973) used a binary feature system based on articulatory character-

istics to describe the handshapes used in ASL. The system included a binary feature

for each finger: [thumb], [fore], [middle], [ring], [pinky] and five binary features for

describing the full handshape: [closed], [spread], [bent], [contact] and [crossed]. With

the ten features, specified either positive or negative, 40 separate ASL handshapes

can be uniquely described.

Mandel (1989) devised a feature set for the linguistic description of ASL. He argued

that all of the fingers of any given sign are divided into two groups: foreground

(the selected group, or the fingers necessary for the recognition of the letter) and

background (the unselected group). The selected fingers can be in any position except

closed and must all be in the same position. All unselected fingers must also be in

the same position, but can only be either fully open (straight) or fully closed against
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the palm. This feature analysis reduced the number of possible feature combinations

within a handshape. This helped to reduce redundancy in writing phonological rules

by referring to all the fingers as two groups instead of individually.

4.2 Feature Lists

This research will use a special type of feature lists to describe signs. More specifi-

cally, it will use joint feature lists. That is, it takes the feature list of each sign to be

a pattern of 0’s and l’s where at each position a 1 signifies the bending or a 0 signifies

the straightening of a certain joint.

This research is not using the angle values directly as provided by the CyberGlove.

It converts each angle value into a ”1” if the joint is bent or into a ”0” if the joint is

straightened. To do the conversions to binary, some threshold values are used that

have to be adjusted separately for each user.

Table 4.1 shows a simplified example of joint feature lists considering only the five

PIP joints. There the representations of the signs for ”is”, ”a”, ”there”, ”she”, ”he”,

and ”woman” are listed. For example, the word ”there” is represented by the pattern

00111 which signifies that while making the sign for this word we have to straighten

the thumb and the index PIP joints and bend the other three. This example will be

elaborated further in the following sections.
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Table 4.1: A simple example using PIP feature lists

FEATURES
SIGNS TP IP MP RP LP
IS 1 1 1 1 1
A 1 1 1 0 0
THERE 0 0 1 1 1
SHE 0 1 0 1 0
HE 1 0 1 0 1
WOMAN 0 0 1 0 0

4.3 Asymmetric Hamming Distance

Joint feature lists are the primary means of distinguishing between different hand

signs. Intuitively the feature lists are required to be as different as possible so that

minor errors of one or two bits do not lead to confusion among different signs.

The difference between two feature lists can be measured in several ways. The

most common mathematical measure for the dissimilarity between two binary pat-

terns is the Hamming distance. The Hamming distance is the number of correspond-

ing bits in which the two patterns differ. For example, the Hamming distance between

00111 and 01010 is three.

The Hamming distance is widely used in digital communication problems where

there is an equal probability of 1 getting corrupted to 0, and 0 getting corrupted to

1 during signal transmission. Such a type of error is known as symmetric error as

shown in the Figure 4.1. The other type of error known as asymmetric or unidirec-

tional error occurs when the probability of 1 getting corrupted to 0 is much higher

than the probability of 0 getting corrupted to 1 as shown in the Figure 4.1 or vice

versa. These two types of asymmetric errors are also referred to as omission and
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Figure 4.1: Error types

addition errors respectively. However, the Hamming distance measure is not always

warranted, because in many environments there is an asymmetry in the type of errors

recorded.

In the last two decades, a lot of attention has been paid to the study of codes

which are capable of correcting asymmetric or unidirectional errors (Fang 1993). As

an example, after analyzing the failures in the cells of semiconductor large scale inte-

grated (LSI) non-volatile memories and metal-nitride-oxide semiconductor (MNOS)

memories, Constantin et al. (1979) came to the following conclusion:

“The LSI and MNOS memories thus exhibit a unidirectional failure property. Al-

though the rest of the memory system is not dependent on power shutoffs and is

subject to symmetric failures, for the overall memory systems, the probability of 1 →

0 crossover failure is significantly greater than the 0 → 1 crossover failure.”

The asymmetric or unidirectional failure properties of these memories have pro-
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vided the basis for a new direction of study in coding theory. This research also

strongly believes that asymmetry is also exhibited by the human memory system.

For example while viewing an object, failure to observe a certain feature present in

the object is much more likely than observing a feature that is not present in the

object.

Asymmetry is also a natural characteristic of the CyberGlove environment. Con-

sider for example a joint with a 90 range of movement. The resting or reference

position of this joint may be anywhere between almost completely extended or al-

most completely bent. (There seems to be a large variation in this regard among

various users.) Suppose that for a particular user the rest position is about 10 from

completely extended. Then one may adjust the thresholds to record a ”0” for angles

less than 10 and record a ”1” for angles between 10 and 90.

The angle measurement of any joint tends to vary by a few degrees during dif-

ferent trials of the same sign. There are a number of reasons for this. For example,

the user’s reference position may change due to health or nervousness. The position

of the CyberGlove sensors over the joints may also change slightly. The accuracy of

the sensors may also change with the speed of signing. This means that conversion

of angles between 15 and 5◦ is very error prone. In other words, about half of the

“0” range but less than seven percent of the “1” range is error prone. Hence addition

errors are much more likely. Conversely, if the reference position happens to be closer

to 90◦, then omission errors will be more likely.

Hence omission errors are much more likely than symmetric errors. For this rea-

son instead of the Hamming distance, this research uses an asymmetric Hamming
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distance measure (Revesz & Raghava-Rao, 1993). The asymmetric Hamming dis-

tance between two feature lists A and B is the maximum of the number of omissions

from A or the number of omissions from B that must occur for the two patterns to

become indistinguishable. For example, the asymmetric Hamming distance between

the signs “there” and “she” in Table 4.1 is two. This is because 00010 can be obtained

from 00111 by two omissions and from 01010 by one omission.

Let ω(P ) be the number of 1’s in the pattern P. Then we can define the asym-

metric Hamming distance more formally as follows.

Definition: If P1 and P2 are two patterns, the asymmetric Hamming distance

between P1 and P2 is given by

A(P1, P2) = max(ω(P1 ∧ P̄2, ω(P2 ∧ P̄1))

In the above definition the complement and the conjunction are bit-wise opera-

tions.

4.4 Contour Maps and Reconstructibility

It is easy to see that if at most one omission occurs in the patterns 00111 and 01010,

then they remain distinguishable. This is because, if any of the patterns 00110, 00101

or 00011 is received via the CyberGlove, then the system can guess that the user is

signing ”there”, and will not confuse it with ”she” which would be registered as either

01010, 01000, or 00010.

Thus the asymmetric Hamming distance can be used as a measure of recon-
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structibility (after omission errors) of patterns. A pattern is k-reconstructible if it is

still distinguishable after k number of omission errors.

Observation: Considering only omission errors, a set of patterns S is k-reconstructible

if and only if for each pair of patterns Pi and Pj in S the Asymmetric Hamming Dis-

tance A(Pi, Pj) ≥ k + 1.

The reconstructibility of a set of patterns S can be illustrated by a contour map.

The contour map shows the reconstructibility regions of each pattern in S. For exam-

ple, if S is the set of the six feature lists in Figure 4.1, then the contour map will be

as in Figure 4.2. There the feature list of each sign is represented within a solid line.

The 1-reconstructibility regions of these signs are represented within dashed lines,

and the 2-reconstructibility region of “is” is represented within a dotted line.

Every set of patterns can be illustrated similarly. Note that a set of patterns

is k-reconstructible if and only if the k-reconstructibility regions do not overlap. In

Figure 4.2 the 1-reconstructibility regions do not overlap, hence the feature lists in S

are 1-reconstructible.

4.5 Sparse Distributed Memory

The theory sparse distribution memory was introduced by Kanerva (1988). The the-

ory begins with an interpretation of human long-term memory as a storage system

that associates sensory input patterns quickly with actions that are appropriate for

the situation. In kanerva’s model, sensory input is represented in the form of very

long bit vectors containing thousands or tens of thousands of bits. Because no two
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Figure 4.2: Contour Map representation of PIP feature list

external situations are identical, the memory must respond to partial matches be-

tween the current sensory pattern and previously stored patterns. Hamming distance

is used as the measure of dissimilarity between patterns.

Kanerva proposes an architecture that encompasses an affordable number of phys-

ical locations and large pattern size. Each location is assigned an address at random,

and the set of location addresses constitutes a sparse subset of the memory space.

The memory has an input register for the cue (address) pattern and an input register

for the data pattern, and it has a register for an output pattern. Each location has

an address decoder that compares its own address with the input cue, selecting that

location as a participant in the next storage or retrieval operation whenever the cue

is within hamming distance d of the locations address. Kanerva demonstrates that

the address decoders can be built of linear threshold circuits.
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To store a data pattern at address A, the memory works as follows. The input

cue A is presented to the memory, and all locations within a hamming distance of d

bits of A select themselves. This set of selected locations is called the sphere selected

by A. The copy of the input data pattern, which is to be associated with A, is then

entered into each of the selected locations. Because any given location is within the

spheres of selection of many distinct cue patterns, entering a new value must not

obliterate the previous contents of the location. This is accomplished by implement-

ing each location as a set of counters, one for each bit position of the data. Data are

entered by adding 1 to each counter for which the corresponding data bit is 1, and

subtracting 1 from each counter for which the corresponding data bit is 0. Kanerva

calculates that 8-bit counters are adequate for most applications.

To retrieve a pattern corresponding to input cue A, the memory works as follows.

The sphere of selected locations is formed as described above. A set of output counter

values is constructed from all the selected locations by summing all the corresponding

selected counters; for example, the counter in output position 2 is the sum of the bit-2

counters of each selected physical locations. The output pattern is constructed from

the output counters by a threshold method; if an output counter is nonnegative, that

output bit is 1; otherwise it is 0.

The sparse distributed memory was used to correct any bit errors that had oc-

curred in the 17-bit CyberGlove feature list. The sparse distribution memory imple-

mented, has a 17-bit register for holding the input which is also used as the address.

The memory was designed with 17 counters for each location. Each counter is 8-bit

long. Random addresses of 17-bits long are used to simulate the sparse distribution.
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Figure 4.3: Sparse distributed memory

4.6 Matcher Neural Networks

Matcher neural networks (MNNs) are biologically motivated neural networks that

were introduced in Revesz (1989,1990). This thesis describes only the algorithmic

part of these networks and refers to the original references for their biological context.

Matcher neural networks are especially suitable for the reconstruction of patterns

with a large number of omission errors. Like many neural network algorithms, the

operation of MNNs can also be divided into two phases: learning and associative re-
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call. The learning part of MNNs is instantaneous, i.e., all the patterns to be learned

are memorized instantly and stored in separate memory locations. For each input

pattern, the associative recall phase is carried out in four steps.

1. The first step consists of finding those memorized patterns that match the 1’s

in the input.

2. The second step consists of selecting from the matching patterns those that

have the smallest asymmetric Hamming distance from the input.

3. The third step involves finding the percentage of 1’s within each group of cor-

responding bits of the selected patterns.

4. Finally, the fourth step yields as output a binary pattern in which the ith bit is

0 if and only if the percentage of 1’s within the ith group is below 50.

As a simple example of the operation of MNNs, consider Figure 4.4. There the

first box contains the patterns memorized by the MNN. Note that it is the same set

of patterns as shown in Figure 4.1. The pattern to the left of the first box is the

input pattern. In this case, the first step of the associative recall phase will find that

only the patterns 11111, 00111 and 10001 match all the l’s in the input as shown in

the second box. The second step will select the pattern 10001 because its asymmetric

Hamming distance from the input is only one while the distance of the other two

patterns is greater than one. The next two steps of the algorithm in this case are

trivial and will result in simply the pattern 10001 to be returned as desired.

Matcher neural networks are similar in many respects to the sparse distributed

memories of Kanerva (1988). However, there are several important differences, both
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Figure 4.4: Matcher neural network operation

in the biological context and in the algorithmic parts. Four important differences in

the algorithmic parts between SDMs and MNNs are that

1. SDMs use distributed storage while MNNs use localized storage for each mem-

orized pattern

2. SDMs use Hamming distances while MNNs use asymmetric Hamming distances

3. SDMs select all patterns whose addresses are within a fixed Hamming distance

while MNNs select the closest patterns to the input according to the AHD

measure.

4. SDMs use counters and sum counter values of the selected patterns while MNNs

sum corresponding bit values of the selected patterns.

Some of these differences may seem minor, but as we will see in chapter 6 they

can significantly effect the relative performance of the two algorithms.
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Chapter 5

Automatic Hand Sign Generator

An automatic hand sign generator was designed and implemented with the theory

of constraints developed by Revesz (1993). The main idea here is to find a optimal

possible set of hand signs that are distinguishable from each other. An algorithm

was developed to generate such hand signs. Any two signs so generated will have a

different combination of CyberGlove features.

5.1 Feature Analysis

The description of the features extracted from the CyberGlove data and used by the

sign-to-speech translation system designed are shown in the figure 5.1. Each hand

shape is thus represented by a 17-bit pattern with each bit representing a true or

false value associated with a certain feature. So with 17-bits, there are 217 possible

patterns or hand shapes. Each hand shape formed can be moved in the six possible

directions to generate the conjugations associated with the root word as listed in the

Table 5.1. The root word is recognized by the system when the hand is moved to

the right followed by a movement to the left. The movements in the other directions

generate the conjugations of the root word. For example the movement of the hand

to the left followed by a movement to the right generates the plural form of the root
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Figure 5.1: A 17-joint feature list representation of hand signs

word. Assuming that each root word can be conjugated, the system must be capable

of translating 6 x 217 gestures to words. Considering the roll of the hand (measured

by the flock of birds), the palm of the signer can be oriented upwards or downwards.

If it points upward it is decoded as a 0 else it is decoded as a 1. The roll angle of a

signer has a wide range of rotation (≈ 180◦) across the hinge joint. As a result the

roll bit is detected correctly 100% of the time. Considering the roll bit the an ideal

system must be capable of translating 2 x 6 x 217 gestures to words.

However in English every word does not have a conjugation so the above value

serves as an highly optimistic upper bound. Moreover only a small subset of the 217

patterns are signable because of the physical constraints on the hand. On top of this

there are errors committed by the signer and also by the CyberGlove while recording.

Thus finding an optimal signable set of gestures is a very complex problem to solve.

This work attempts to find a good set of such signable gestures.
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Table 5.1: Hand movement to word ending

Direction Feature List Conjugation

right 1 0 0 0 0 0 root
left 0 1 0 0 0 0 -s

down 0 0 1 0 0 0 -ed
up 0 0 0 1 0 0 -ing

towards 0 0 0 0 1 0 -er
away 0 0 0 0 0 1 -ly -tion -est -meat -en -ness

5.2 Physical Constraints Identification

Using the theory developed by Revesz (1993), this work identifies some of the physical

constraints that restrict the number of signable gestures. The structure of the hand

was studied in detail in order to solve this problem. Some of the important factors

considered are the as follows:

1. Freedom of movement at each joint: It is different for different joints.

For example PIP joints have one degree of freedom while MCP joints have two

degrees of freedom. This parameter is important for feature identification.

2. Interdigit dependency: This dependency occurs because of the complex

structure of the hand. This is due to the fact that some of the main ten-

dons involved in the movement are split and attached to the bones of several

fingers. For example when the index finger MCP and its PIP are flexed the

middle finger MCP is also flexed.

3. CyberGlove sensor measurement: Some of the sensors in the CyberGlove

are more error prone than other. Although the CyberGlove is capable of mea-

suring the arching of the palm due to little finger rotation across the palm,
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it is not considered in the present design as it is more error prone. Interdigit

dependency also effects some of the measurements made by the CyberGlove.

Following are some of the physical constraints identified using the I7-joint feature

list representation of hand signs as shown in Figure 5.1. For example the first physical

constraint specifies that when the little finger PIP is flexed and ring finger MCP is

extended then it is very difficult to have abduction between the two fingers.

1. (LP = 1) ∧ (RA =0) ⇒ (RLA= 0)

2. (MM = I) ⇒ (RM = 1)

3. (IM =1) ⇒ (IP = 0)

4. (((IM = 1) ∧ (MM = 0)) ∨ ((IM = 0) ∧ (MM = 1))) ⇒ (IMA = 1)

5. ((MM =0) ∧ (RM =1)) ⇒ (MRA=1)

6. (((RM =1) ∧ (LM = 0)) ∨ ((RM =0) ∧ (LM = 1))) ⇒ (RLA =1)

7. ((IM = 1) ∧ (MM = 1)) ⇒ (IMA=0)

8. (MM = 1) Rightarrow (MRA = 0)

9. ((RM = 1) ∧ (LM 1)) ⇒ (RLA = 0)

10. (Wp = 1) ⇒ (Wy = 0)

11. (RM = 0) ⇒ (LM = 0)

12. ((IM = 1) ∧ (IP = 1)) ⇒ (MM = 1)

13. ((MP = 1) ∧ (RP = 1)) ⇒ (MRA = 1)
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14. ((TM = 1) ∧ (TP = 1)) ⇒ (TR = 1)

15. (TIA = 1) ⇒ (TR = 1)

5.3 Generating 1-Reconstructible Set

The subset A of 217 patterns satisfying the above physical constraints are then used to

select the 1-Reconstructible set of patterns. A set of patterns B is 1-Reconstructible

if for each pair of patterns in the set the asymmetric hamming distance is greater

than or equal to 2. A non-deterministic algorithm was developed to generate the set

B of patterns.

1. Choose an empty set B.

2. Choose a pattern randomly from the set A and add it to set B.

3. Delete all those patterns from the set A that are having an asymmetric hamming

distance of less than 2 from the randomly selected pattern.

4. Repeat step 2 and step 3 until set A is empty.

5. The set B contains the set of 1-reconstructible signable patterns.

A set of 395 signable patterns were generated by the above algorithm. Note that

there is no decision procedure available to prove that the set generated by the above

algorithm is optimal. Given n-bits the problem of finding an optimal k-reconstructible

set is very difficult combinatorial problem to solve. This research made an unsuccess-

ful attempt to solve this hard problem. Considering the fact that the roll bit is

detected correctly 100% of the the time, a set of 395 x 2 = 790 signable patterns can

be generated taking the roll bit into account.
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5.4 Word Conjugation

In English there are more than 20,000 words. However only a small subset of them

can be used as the root words and the rest can be generated from the root words

by conjugating them. For example, consider the word ”act”, it can be conjugated

to form words ”acts”, ”acted”, ”acting”, ”actor” and ”action”. Thus each root word

selected can be conjugated into six different words in English. Each conjugated word

corresponds to the hand displacement in one of the six possible directions.

If we follow the above procedure then we should get 790 x 6 = 4740 conjugated

words. However not every word in English can be conjugated into six words. For

example, the word ”if” cannot be conjugated. On the other hand we cannot throw

out all the words that cannot be conjugated as they may be very important in the

day to day conversation.

A fair choice of root words is made based on the word-frequency study made by

Carroll et al. 1971. Their word frequency study, is essentially an experimental attack

on our ignorance of the lexicon. Its purpose is to learn something about the com-

position and structure of this very large, abstract entity by examining a relatively

small, concrete part of it. They tabulated about 86,741 different words along with

their frequency of word usage. This research selected first the 395 most frequently

used word from Carroll et al. 1971.

These 395 words were doubled to 790 by choosing the antonyms for the originally

selected words. For example, if ”east” is signed with the palm facing downward then

”west” is signed with the palm facing upward. However for words that do not have
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antonym a closely connected word has been selected. For example, ”cat” and ”rat”

are paired. If a word could not be paired then it is replaced from the set with a

word that can be paired. Care has been taken to select enough words to represent

operations, general objects, pictured objects and qualities in addition to the word-

frequency order. Some of the words in Basic English (Ogden 1968) are not chosen as

they are no longer frequently used in the modern world.

After selecting the set of 790 root words, each word is conjugated by the suffixes

shown in Table 5.1 when the conjugations are meaningful. This process yielded 2718

words. Each of the 395 pairs of words are associated with a 17-joint feature list as

shown in Appendix I. Care has been taken to associate the most frequently used

words to easily signable gestures to improve the system performance.
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Chapter 6

Results and Conclusions

6.1 Testing Methods and Results

The sign to speech translation system was tested using the following approach. Ran-

domly generated hundred signs to be tested and allowed repetition in the signs to be

tested following the expected frequency of the signs in ordinary signing. The matcher

neural network had in its memory the feature list of each sign to be tested.

The CyberGlove thresholds were calibrated so that the percentage of the angle

ranges allocated to 0’s was far greater than that allocated to 1’s. Each of the hun-

dred CyberGlove generated feature lists was given in sequence as input to the matcher

neural network. Noted the number and types of errors in the CyberGlove generated

feature lists and in the feature lists reconstructed by the matcher neural network.

(Note that the order of the trials is immaterial as far as the statistics are concerned.)

For comparison the CyberGlove-generated feature lists were entered into the SDM.

The SDM was autoassociative, had hundred randomly generated addresses and 8 bit

counters. The SDM was tested with various values of Hamming distance.

The results obtained are listed in the Table 6.1. Out of the hundred input pat-
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Table 6.1: Performance of MNN vs. SDM

CYBERGLOVE OUTPUT MNN OUTPUT SDM OUTPUT

Correct 45% 96% 33%
False detection 0% 2% 25%

Misses 55% 2% 42%

terns only 45 were correct, while 41 had a 1-bit error and 14 had 2-bit errors. Out

of the total of 69 errors 67 were omission and two were deletion errors. Taking

this as input the matcher neural network reconstructed 96 patterns correctly. This

96 is the sum of the 45 that were initially correct plus the 40 cases of with single

omission errors and 11 cases with double omission errors. In other words 51 out of

55, that is, 93% of the incorrect inputs were corrected by the matcher neural network.

For the SDM working on the same inputs the value of 4 for the Hamming dis-

tance selection was the best. However even in that case only 33% of the outputs

were correct, and some of the outputs had up to eleven bit errors. (Using asymmetric

Hamming distances with the SDM resulted in even worse performance. It was best

with a distance value of 5 yielding only 30 % correctness.) Note that the SDM had a

negative effect on the performance of the sign-to-speech translation system because

twelve of the correct inputs were actually destroyed. While this difference in the per-

formance of SDMs and MNNs on this problem is not really surprising, it underscores

the importance of the differences between these two types of networks and that they

are best for different applications.

Table 6.2 lists the error distribution among various CyberGlove features. Thumb

rotation and thumb MCP are more error prone than other features. This because of

the small range of movement associated with these joints. Note also that omission
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Table 6.2: Error distribution among features

FEATURE OMMISION ERRORS ADDITION ERRORS

TR 45% 0%
TM 14.49% 0%
LM 5.80% 0%
RM 1.45% 0%
MM 1.45% 0%
IM 4.35% 0%

RLA 1.45% 1.45%
MRA 0% 0%
IMA 8.70% 0%
TIA 11.59% 1.45%
TP 2.90% 0%
IP 2.90% 0%

MP 0% 0%
RP 0% 0%
LP 0% 0%
WP 0% 0%
WY 0% 0%

errors occur 97.1% of the time while addition errors occur about 2.9% only. This

illustrates the asymmetric nature of the errors prevalent in the CyberGlove environ-

ment. The performance of the matcher neural network is better because of the fact

that it is designed to attack those problems where there is asymmetry in the type of

error recorded.

Table 6.3 gives a bit error distribution among the gestures recorded. There were

about 41% of one bit errors and about 14% of two bit errors recorded by the Cyber-

Glove. Theoretically MNN is capable of correcting all the one bit errors as shown

in the Table 6.3. However the statistics also indicate that MNN has also corrected

10 out of the 14 two bit errors. This is a very encouraging result achieved by MNN.

However the mechanism of MNN needs to be understood and analyzed properly in

order to answer many questions in nature. MNN looks very simple and trivial, but
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Table 6.3: Bit error distribution among patterns

ERROR BITS CYBERGLOVE OUTPUT MNN OUTPUT SDM OUTPUT

1 41 0 6
2 14. 0 11
3 0 2 10
4 0 0 13
5 0 0 12
6 0 1 6
7 0 0 3
8 0 1 3
9 0 0 1
10 0 1.45 1
11 0 0 1
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 0 0 0
17 0 0 0

the present research believes 1 hat the interaction between feature lists is some what

similar to the learning mechanisms in the brain. The internal study of MNN operation

is however out of the scope of the present research.

6.2 Conclusions and Future Directions

This work improved the work of Fels & Hinton (1993) by increasing from 66 to 790

the number of artificial root signs that can be robustly translated to speech. A vo-

cabulary size of 2718 words was achieved with conjugations with an accuracy of over

93% in translation. This research compiled a vocabulary of 2718 words which essen-

tially does the work of 20,000 words of English after considering carefully the various

linguistic aspects.



51

There is no training involved and the learning of MIEN was instantaneous. The

operation of the system is simple and can be mastered with some practice. The per-

formance of the strobe network is almost 100% and is designed to be reliable. The

association of hand signs to feature lists was done with great care to increase the

performance of the system. In associating the signs with English words, we chose the

signs that are the easiest to make and have the largest mean asymmetric Hamming

distances to other patterns to represent the most frequent English words.

However this research opens up many research directions. Given n-bits the prob-

lem of finding an optimal k-reconstructible set has not been studied extensively. Sur-

prisingly this is a very difficult combinatorial problem with the even the best solutions

at present giving only some lower and upper bounds on the maximal set sizes for most

values of k. Bounds on the maximum cardinality of codes correcting up to four asym-

metric/unidirectional errors have been tabulated for codes of length <23 by Fang

(1993).

The second research direction includes the study of MNN mechanisms and their

hardware implementation. The network representation of MNN was already done by

Revesz 1989. The ultimate goal is to find how closely it models the human memory

as a long term storage device and how it can be used in the neuro-control.

The third research direction involves the comparison of backpropagation with that

of MNNs. This research believes that with a different design strategy backpropaga-

tion based sign-to-speech translation system’s performance can be improved from

that of Fels & Hinton (1993). The major bottleneck with Fels & Hinton’s design
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was that they assigned an output node corresponding to each root word. Thus they

have 66 output units. So as the vocabulary size increased the network size also blows

up. When the network size increases this research believes that the training time

of the network also increases. So in future this research will explore the possibility

of a better design and compare its performance with that of MNN’s. In future this

research also plans to build a hybrid system by bringing together the concepts of

backpropagation and MNN’s.

Backpropagation algorithm (Rumelhart et al. 1986) is well-known and has been

applied to various applications. However this research strongly believes that the

mechanisms are not understood properly even today. Given a problem there is no

procedure that can calculate the number of input, output and hidden nodes required

to solve the problem.

Now a stage has been reached where the problem of recognizing ASL has to be

undertaken. If possible more number of sensors may be integrated into the system.

For example we can integrate one more CyberGlove and one more Bird into the

system designed to attack the problem of recognizing ASL. ASL recognition is a very

hard problem to solve but in due course we may see deaf people able to communicate

in English using computer aid. This research is a step in that direction.
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APPENDIX

No Word Freq T T L R M I R M I T T I M R L W W

R M M M M M L R M I P P P P P P Y

A A A A

1 a 124959 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

the 373123

2 at 23975 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0

of 146001

3 and 133899 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

or 21283

4 from 22799 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0

to 121347

5 in 99108 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1

out 12252

6 is 60852 1 1 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1

was 40934

7 I 25932 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0

you 50957

8 as 32208 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

for 39322

9 that 47443 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1

this 23301

10 he 46249 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1

she 13653

11 it 47284 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0

them 11997

12 are 35454 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1

were 17031

13 by 20189 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1

with 30455

14 we 27620 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0

with 16452

15 her 11375 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0

his 29268

16 off 3873 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1

on 36482

17 but 19196 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0

if 12907

18 has 10369 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0

had 20511

19 one 19976 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0

two 10085

20 all 19976 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1

some 11534

21 do 12695 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 1 0

an 14696

22 am 1294 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0

be 23746

23 have 22331 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0

keep 2509

24 when 15886 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1

where 5611

25 down 7206 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0

up 12776
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No Word Freq T T L R M I R M I T T I M R L W W

R M M M M M L R M I P P P P P P Y

A A A A

26 now 7457 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1

then 12022

27 here 4184 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0

there 15194

28 may 6635 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1

will 12646

29 equal 565 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1

not 18645

30 other 10729 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0

than 7982

31 each 14290 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0

every 3398

32 how 13303 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0

why 4147

33 can 15247 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0

cannot 1279

34 because 4207 0 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0

so 11543

35 few 2685 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

many 12158

36 about 12496 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1

almost 2324

37 read 3057 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1

write 9846

38 get 5700 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0

use 7009

39 find 6916 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1

know 5655

40 less 1366 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0

more 9992

41 after 5915 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1

before 5275

42 into 10620 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 1

onto 403

43 air 3673 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1

water 7194

44 first 7655 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0

last 3030

45 hear 2154 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1

see 8518

46 who 7576 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0

while 2837

47 like 9696 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1

opposite 591

48 very 5997 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1

well 4255

49 every 3398 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1

only 6583

50 no 8483 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0

yes 1317
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No Word Freq T T L R M I R M I T T I M R L W W

R M M M M M L R M I P P P P P P Y

A A A A

51 also 4647 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0

too 5071

52 another 4377 1 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0

any 5023

53 hour 908 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0

time 8441

54 new 5448 0 1 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1

old 3894

55 letter 1738 0 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1

word 7532

56 person 1196 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0

people 7989

57 large 2777 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1

little 6204

58 break 516 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1

make 8333

59 different 3826 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1

same 5022

60 must 4307 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1

should 3470

61 road 1106 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1

way 6612

62 left 2885 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0

right 4815

63 give 3366 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1

take 4089

64 day 5019 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0

night 2307

65 hack 5862 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0

front 1438

66 light 2376 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0

sound 4667

67 big 34761 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0

small 3555

68 done 1566 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1

through 5442

69 say 3916 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1

show 2734

70 again 3892 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0

often 2616

71 great 3855 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

important 2588

72 even 4225 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

ever 2036

73 man 5486 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0

woman 750

74 bad 6601 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0

good 5343

75 come 467 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0

go 5388
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No Word Freq T T L R M I R M I T T I M R L W W

R M M M M M L R M I P P P P P P Y

A A A A

76 always 2657 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1

never 3115

77 complete 1445 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1

part 4285

78 above 2298 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0

below 3276

79 rest 1183 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0

work 4358

80 away 3814 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1

toward 1690

81 look 4933 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0

view 393

82 guess 637 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1

think 4636

83 place 4240 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0

position 540

84 land 2953 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1

sea 1812

85 among 1308 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0

between 3324

86 ask 900 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1

tell 3715

87 name 3766 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0

street 748

88 book 1453 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

page 2831

89 far 2250 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1

near 1985

90 attack 273 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1

help 3875

91 begin 976 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1

end 2961

92 across 1942 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0

against 1755

93 let 2176 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 0

order 1507

94 earth 2690 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0

sky 976

95 black 1556 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1

white 2085

96 boy 2529 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1

girl 1084

97 kind 2262 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1

mean 1256

98 house 2705 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1

office 469

99 father 785 1 1 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0

mother 2343

100 head 2487 1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1

tail 620
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No Word Freq T T L R M I R M I T T I M R L W W

R M M M M M L R M I P P P P P P Y

A A A A

101 high 2237 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0

low 857

102 city 1843 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0

town 1219

103 apart 414 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 0

together 2629

104 moon 1046 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0

sun 1977

105 dead 590 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1

live 2431

106 event 179 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0

thought 2835

107 necessary 679 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0

need 2281

108 answer 2002 0 0 1 1 0 0 0 1 0 0 1 1 1 0 1 1 0

question 895

109 next 2727 0 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 0

previous 150

110 library 276 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 1

school 2599

111 country 2357 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0

nation 510

112 class 1211 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 0

group 1570

113 minute 663 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0

second 2094

114 close 1288 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1

open 1416

115 cold 1469 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0

hot 1233

116 enough 2363 1 0 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1

plenty 320

117 month 403 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0

year 2277

118 picture 2500 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1

photo 156

119 hard 1980 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0

soft 669

120 hand 2316 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0

leg 313

121 blue 1071 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1

red 1557

122 article 253 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0

paper 2372

123 bottom 858 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

top 1741

124 door 1748 1 1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 0

window 841

125 act 457 1 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0

play 2113
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No Word Freq T T L R M I R M I T T I M R L W W

R M M M M M L R M I P P P P P P Y

A A A A

126 instrument 386 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0

music 2100

127 plant 1051 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0

tree 1421

128 1564 414 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0

French 886

129 room 1801 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1

wall 642

130 amount 701 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1

money 1694

131 short 1534 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0

tall 848

132 common 1174 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0

special 1192

133 bird 812 0 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 0

fish 1513

134 run 1473 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

walk 831

135 evening 543 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0

morning 1736

136 fire 1227 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1

ice 995

137 consonant 702 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1

vowel 1484

138 start 1087 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1

stop 1081

139 list 1781 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0

sort 375

140 early 1439 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1

late 689

141 change 1854 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0

remain 271

142 cut 1757 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1

join 363

143 quiet 967 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0

talk 1133

144 rhythm 574 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0

song 1525

145 example 1939 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1

sample 128

146 summer 1048 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0

winter 1004

147 ahead 639 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1

behind 1376

148 plane 990 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

ship 1021

149 mountain 838 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0

river 1170

150 check 1024 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1

mark 980
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No Word Freq T T L R M I R M I T T I M R L W W

R M M M M M L R M I P P P P P P Y

A A A A

151 drink 347 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1

eat 1616

152 add 1654 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1

subtract 292

153 move 1592 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0

station 341

154 learn 1674 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1

teach 254

155 chair 421 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0

table 1502

156 false 225 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 0

true 1696

157 bright 741 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0

dark 1171

158 circle 945 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1

square 965

159 car 1752 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0

cart 136

160 rain 938 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0

snow 948

161 avoid 246 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1

face 1629

162 ready 1207 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0

wait 656

163 north 926 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0

south 928

164 seat 339 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

table 1502

165 animal 1122 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0

human 710

166 call 1374 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0

visit 443

167 measure 1056 1 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0

scale 737

168 hundred 1187 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1

thousand 597

169 blow 411 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0

wind 1336

170 grow 1418 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0

kill 326

171 flat 662 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0

round 1076

172 base 881 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0

unit 838

173 quite 967 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1

rather 734

174 size 1057 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1

weight 610

175 language 1041 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

sign 615
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176 sit 549 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1

stand 1081

177 fall 824 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1

spring 802

178 dance 608 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

sing 1014

179 beside 725 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

else 859

180 cool 500 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0

warm 1072

181 fast 1173 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0

slow 396

182 correct 940 1 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1

wrong 606

183 follow 1022 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 0

lead 520

184 empty 384 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

full 1144

185 cow 263 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

horse 1263

186 edge 817 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0

middle 706

187 dog 1380 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0

pig 142

188 farm 900 0 0 0 0 0 1 ) 0 1 0 0 1 0 0 0 0 1 0

garden 600

189 difficult 592 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1

easy 894

190 America 1321 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1

Britain 149

191 future 354 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

past 1109

192 either 1033 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0

neither 402

193 poor 851 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1

rich 584

194 certain 1198 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1

doubt 222

195 dry 993 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0

wet 418

196 gold 895 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0

silver 502

197 strong 1140 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0

weak 245

198 iron 817 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1

steel 565

199 able 1260 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

stable 114

200 brain 330 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0

heart 1032
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201 buy 872 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0

sell 462

202 history 726 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0

science 602

203 peace 343 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1

war 968

204 clock 330 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0

watch 969

205 copy 887 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0

original 403

206 narrow 426 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0

wide 863

207 building 857 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0

property 419

208 fact 925 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0

observe 349

209 sand 672 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0

stone 593

210 bottle 346 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0

glass 913

211 ancient 515 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1

modern 731

212 bring 1016 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0

remove 215

213 friend 923 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0

enemy 301

214 clear 811 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0

noise 411

215 ball 1061 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

net 157

216 floor 935 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0

roof 276

217 memory 139 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0

mind 1046

218 beautiful 1048 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1

ugly 126

219 control 556 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0

rule 618

220 complex 206 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

simple 956

221 impossible 231 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0

possible 930

222 thick 540 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0

thin 611

223 coal 419 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1

oil 731

224 border 155 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0

center 984

225 chemical 376 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

natural 739



62

No Word Freq T T L R M I R M I T T I M R L W W

R M M M M M L R M I P P P P P P Y

A A A A

226 skin 2237 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1

touch 857

227 business 1843 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0

market 1219

228 happy 414 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0

sad 2629

229 fly 1046 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

swim 1977

230 journey 590 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1

travel 2431

231 salt 179 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1

sugar 2835

232 purpose 679 0 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 0

reason 2281

233 wood 2002 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0

wax 895

234 daughter 2727 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1

son 150

235 cheif 276 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1

general 2599

236 ear 2357 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0

eye 510

237 east 1211 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0

west 1570

238 industry 663 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1

produce 2094

239 mouth 1288 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0

tongue 1416

240 fat 1469 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0

thin 1233

241 brother 2363 1 1 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0

sister 320

242 column 403 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1

row 2277

243 bend 2500 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1

straighten 156

244 metal 1980 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

powder 669

245 train 2316 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0

truck 313

246 fix 1071 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1

free 1557

247 catch 253 1 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0

throw 2372

248 comb 858 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1

hair 1741

249 nose 1748 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1

smell 841

250 temperature 457 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0

thermometer 2113
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251 accompany 90 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

alone 825

252 material 651 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0

substance 260

253 arm 491 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1

army 412

254 meal 286 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1

meat 617

255 cause 502 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0

effect 399

256 pull 558 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0

push 339

257 king 688 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0

queen 206

258 normal 179 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0

strange 710

259 husband 233 0 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 0

wife 636

260 adult 132 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 1

child 730

261 market 383 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0

trade 479

262 note 713 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0

slip 149

263 drive 543 1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0

sail 312

264 awake 134 1 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0

sleep 717

265 hate 107 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

love 735

266 danger 359 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

safe 474

267 liquid 442 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0

solid 390

268 balance 263 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1

interest 560

269 major 597 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

minor 223

270 save 396 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0

spend 418

271 billion 147 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1

million 662

272 divide 465 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1

multiply 337

273 branch 233 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0

root 568

274 dinner 430 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1

lunch 357

275 key 652 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1

lock 123
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276 absent 36 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1

present 732

277 rod 259 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0

stick 502

278 bread 515 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1

cake 244

279 crime 52 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

trouble 695

280 gun 422 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1

knife 318

281 cotton 554 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

silk 184

282 receive 246 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1

send 485

283 decide 540 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0

judge 173

284 backward 121 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1

forward 591

285 range 351 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0

rate 359

286 process 468 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

theory 240

287 cat 620 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0

rat 85

288 drop 433 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0

lift 267

289 attempt 138 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1

chance 548

290 desire 129 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0

hope 544

291 birth 147 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0

death 518

292 clean 521 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1

dirty 143

293 gentlemen 121 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1

lady 539

294 marry 141 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0

ring 516

295 courage 219 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0

fear 437

296 angle 462 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0

degree 191

297 dull 147 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0

sharp 499

298 angle 43 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1

degree 590

299 prefix 200 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

suffix 428

300 sudden 235 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0

surprise 389
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301 rough 292 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1

smooth 331

302 describe 486 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0

detail 136

303 tomorrow 362 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0

yesterday 257

304 combine 200 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 1

separate 416

305 cry 327 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1

laugh 287

306 private 163 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

public 447

307 grain 340 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0

rice 264

308 bag 371 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1

basket 227

309 goat 130 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1

sheep 464

310 cent 364 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0

dollar 217

311 neck 373 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0

throat 207

312 cheap 60 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

valuable 512

313 desk 421 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

shelf 150

314 paint 437 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1

print 134

315 fruit 456 1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1

vegetable 112

316 military 209 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1

political 356

317 glove 42 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0

hat 511

318 meter 206 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0

mile 344

319 fog 212 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0

smoke 328

320 copper 326 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

tin 203

321 loud 410 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0

mild 115

322 pen 194 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1

pencil 331

323 price 289 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

tax 233

324 finger 370 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0

thumb 150

325 apple 294 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

orange 221
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326 coat 391 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

skirt 123

327 butter 275 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0

cheese 236

328 brush 251 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0

wash 252

329 coffee 280 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0

tea 223

330 company 339 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0

organization 161

331 height 346 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1

width 149

332 leather 226 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0

wool 255

333 healthy 140 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0

sick 334

334 discover 364 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1

invent 73

335 loose 227 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0

tight 208

336 jump 356 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0

stamp 76

337 bar 325 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0

hotel 106

338 opinion 182 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1

suggest 244

339 bitter 103 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0

sweet 319

340 boil 81 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1

steam 340

341 data 157 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1

date 261

342 negative 210 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

positive 204

343 roll 266 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0

slope 146

344 knot 82 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0

thread 317

345 medical 149 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0

physical 240

346 atom 225 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1

molecule 160

347 protest 43 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1

support 341

348 miss 191 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1

waste 191

349 bus 345 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1

van 35

350 foolish 126 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

wise 253
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351 pain 198 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0

pleasure 166

352 religion 179 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 1 0

respect 185

353 January 156 1 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0

July 199

354 leaf 214 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0

stem 138

355 pipe 232 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0

pump 117

356 offer 185 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

request 159

357 burn 190 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0

flame 151

358 quality 259 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0

quantity 74

359 smile 281 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1

weep 36

360 hospital 154 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1

wound 161

361 oven 128 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

store 183

362 hammer 155 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0

nail 153

363 poison 76 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1

snake 226

364 assume 99 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1

condition 193

365 soup 184 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1

wine 108

366 female 147 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1

male 139

367 shirt 222 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0

trouser 60

368 insect 202 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0

worm 73

369 ant 146 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0

bee 128

370 float 125 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1

sink 149

371 decrease 29 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1

increase 244

372 hang 159 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0

hook 112

373 muscle 133 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1

nerve 121

374 shade 203 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1

umbrella 51

375 fold 168 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0

twist 81
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376 bath 95 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0

soap 134

377 loss 162 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1

profit 67

378 anger 108 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 1

content 114

379 shoe 146 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 1

socks 73

380 accept 159 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0

refuse 57

381 burst 194 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1

smash 20

382 collect 189 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1

distribute 20

383 digest 23 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1

stomach 184

384 delicate 114 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1

violent 80

385 contract 94 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0

expand 87

386 crack 144 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0

crush 23

387 nut 59 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1

screw 100

388 credit 100 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1

debt 43

389 manager 85 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1

secretary 55

390 kick 89 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0

ass 43

391 attract 101 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0

repel 22

392 punish 29 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0

reward 84

393 dense 86 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0

sparse 14

394 approval 51 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1

regret 40

395 couch 47 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1

mat 37
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