56 research outputs found

    Towards the development of safe, collaborative robotic freehand ultrasound

    Get PDF
    The use of robotics in medicine is of growing importance for modern health services, as robotic systems have the capacity to improve upon human tasks, thereby enhancing the treatment ability of a healthcare provider. In the medical sector, ultrasound imaging is an inexpensive approach without the high radiation emissions often associated with other modalities, especially when compared to MRI and CT imaging respectively. Over the past two decades, considerable effort has been invested into freehand ultrasound robotics research and development. However, this research has focused on the feasibility of the application, not the robotic fundamentals, such as motion control, calibration, and contextual awareness. Instead, much of the work is concentrated on custom designed robots, ultrasound image generation and visual servoing, or teleoperation. Research based on these topics often suffer from important limitations that impede their use in an adaptable, scalable, and real-world manner. Particularly, while custom robots may be designed for a specific application, commercial collaborative robots are a more robust and economical solution. Otherwise, various robotic ultrasound studies have shown the feasibility of using basic force control, but rarely explore controller tuning in the context of patient safety and deformable skin in an unstructured environment. Moreover, many studies evaluate novel visual servoing approaches, but do not consider the practicality of relying on external measurement devices for motion control. These studies neglect the importance of robot accuracy and calibration, which allow a system to safely navigate its environment while reducing the imaging errors associated with positioning. Hence, while the feasibility of robotic ultrasound has been the focal point in previous studies, there is a lack of attention to what occurs between system design and image output. This thesis addresses limitations of the current literature through three distinct contributions. Given the force-controlled nature of an ultrasound robot, the first contribution presents a closed-loop calibration approach using impedance control and low-cost equipment. Accuracy is a fundamental requirement for high-quality ultrasound image generation and targeting. This is especially true when following a specified path along a patient or synthesizing 2D slices into a 3D ultrasound image. However, even though most industrial robots are inherently precise, they are not necessarily accurate. While robot calibration itself has been extensively studied, many of the approaches rely on expensive and highly delicate equipment. Experimental testing showed that this method is comparable in quality to traditional calibration using a laser tracker. As demonstrated through an experimental study and validated with a laser tracker, the absolute accuracy of a collaborative robot was improved to a maximum error of 0.990mm, representing a 58.4% improvement when compared to the nominal model. The second contribution explores collisions and contact events, as they are a natural by-product of applications involving physical human-robot interaction (pHRI) in unstructured environments. Robot-assisted medical ultrasound is an example of a task where simply stopping the robot upon contact detection may not be an appropriate reaction strategy. Thus, the robot should have an awareness of body contact location to properly plan force-controlled trajectories along the human body using the imaging probe. This is especially true for remote ultrasound systems where safety and manipulability are important elements to consider when operating a remote medical system through a communication network. A framework is proposed for robot contact classification using the built-in sensor data of a collaborative robot. Unlike previous studies, this classification does not discern between intended vs. unintended contact scenarios, but rather classifies what was involved in the contact event. The classifier can discern different ISO/TS 15066:2016 specific body areas along a human-model leg with 89.37% accuracy. Altogether, this contact distinction framework allows for more complex reaction strategies and tailored robot behaviour during pHRI. Lastly, given that the success of an ultrasound task depends on the capability of the robot system to handle pHRI, pure motion control is insufficient. Force control techniques are necessary to achieve effective and adaptable behaviour of a robotic system in the unstructured ultrasound environment while also ensuring safe pHRI. While force control does not require explicit knowledge of the environment, to achieve an acceptable dynamic behaviour, the control parameters must be tuned. The third contribution proposes a simple and effective online tuning framework for force-based robotic freehand ultrasound motion control. Within the context of medical ultrasound, different human body locations have a different stiffness and will require unique tunings. Through real-world experiments with a collaborative robot, the framework tuned motion control for optimal and safe trajectories along a human leg phantom. The optimization process was able to successfully reduce the mean absolute error (MAE) of the motion contact force to 0.537N through the evolution of eight motion control parameters. Furthermore, contextual awareness through motion classification can offer a framework for pHRI optimization and safety through predictive motion behaviour with a future goal of autonomous pHRI. As such, a classification pipeline, trained using the tuning process motion data, was able to reliably classify the future force tracking quality of a motion session with an accuracy of 91.82 %

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    Human-Robot Collaborations in Industrial Automation

    Get PDF
    Technology is changing the manufacturing world. For example, sensors are being used to track inventories from the manufacturing floor up to a retail shelf or a customer’s door. These types of interconnected systems have been called the fourth industrial revolution, also known as Industry 4.0, and are projected to lower manufacturing costs. As industry moves toward these integrated technologies and lower costs, engineers will need to connect these systems via the Internet of Things (IoT). These engineers will also need to design how these connected systems interact with humans. The focus of this Special Issue is the smart sensors used in these human–robot collaborations

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Automation and Control

    Get PDF
    Advances in automation and control today cover many areas of technology where human input is minimized. This book discusses numerous types and applications of automation and control. Chapters address topics such as building information modeling (BIM)–based automated code compliance checking (ACCC), control algorithms useful for military operations and video games, rescue competitions using unmanned aerial-ground robots, and stochastic control systems

    Development and evaluation of a haptic framework supporting telerehabilitation robotics and group interaction

    Get PDF
    Telerehabilitation robotics has grown remarkably in the past few years. It can provide intensive training to people with special needs remotely while facilitating therapists to observe the whole process. Telerehabilitation robotics is a promising solution supporting routine care which can help to transform face-to-face and one-on-one treatment sessions that require not only intensive human resource but are also restricted to some specialised care centres to treatments that are technology-based (less human involvement) and easy to access remotely from anywhere. However, there are some limitations such as network latency, jitter, and delay of the internet that can affect negatively user experience and quality of the treatment session. Moreover, the lack of social interaction since all treatments are performed over the internet can reduce motivation of the patients. As a result, these limitations are making it very difficult to deliver an efficient recovery plan. This thesis developed and evaluated a new framework designed to facilitate telerehabilitation robotics. The framework integrates multiple cutting-edge technologies to generate playful activities that involve group interaction with binaural audio, visual, and haptic feedback with robot interaction in a variety of environments. The research questions asked were: 1) Can activity mediated by technology motivate and influence the behaviour of users, so that they engage in the activity and sustain a good level of motivation? 2) Will working as a group enhance users’ motivation and interaction? 3) Can we transfer real life activity involving group interaction to virtual domain and deliver it reliably via the internet? There were three goals in this work: first was to compare people’s behaviours and motivations while doing the task in a group and on their own; second was to determine whether group interaction in virtual and reala environments was different from each other in terms of performance, engagement and strategy to complete the task; finally was to test out the effectiveness of the framework based on the benchmarks generated from socially assistive robotics literature. Three studies have been conducted to achieve the first goal, two with healthy participants and one with seven autistic children. The first study observed how people react in a challenging group task while the other two studies compared group and individual interactions. The results obtained from these studies showed that the group interactions were more enjoyable than individual interactions and most likely had more positive effects in terms of user behaviours. This suggests that the group interaction approach has the potential to motivate individuals to make more movements and be more active and could be applied in the future for more serious therapy. Another study has been conducted to measure group interaction’s performance in virtual and real environments and pointed out which aspect influences users’ strategy for dealing with the task. The results from this study helped to form a better understanding to predict a user’s behaviour in a collaborative task. A simulation has been run to compare the results generated from the predictor and the real data. It has shown that, with an appropriate training method, the predictor can perform very well. This thesis has demonstrated the feasibility of group interaction via the internet using robotic technology which could be beneficial for people who require social interaction (e.g. stroke patients and autistic children) in their treatments without regular visits to the clinical centres

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain
    • …
    corecore