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Editorial

Human–Robot Collaboration in Industrial Automation: Sensors
and Algorithms

Anne Schmitz

Engineering and Technology Department, University of Wisconsin-Stout, Menomonie, WI 54751, USA;
schmitzann@uwstout.edu

Technology is changing the manufacturing world. For example, sensors are being
used to track inventory from the manufacturing floor to a retail shelf or a customer’s door,
i.e., asset tracking [1]. These types of interconnected systems constitute the so-called fourth
industrial revolution, i.e., Industry 4.0, and are projected to lower manufacturing costs [2].
As the manufacturing industry moves toward these integrated technologies and lower
costs, engineers will need to connect these systems via the Internet of Things (IoT) [2].
These engineers will also need to design connected systems that can efficiently and safely
interact with humans during the manufacturing process, e.g., a car assembly line [3]. The
focal points of this Special Issue are the smart sensors that enable robots and humans to
“see” each other [4–9] and the machine learning algorithms that process these complex data
so the robot can make decisions [10–13].

One of the biggest challenges in human–robot collaborations is the unpredictability
of human actions [14]. To address this challenge, sensors have been integrated into this
collaboration to allow the robot and human operator to “see” each other. The most common
way for robots to “see” humans is through three-dimensional cameras, e.g., Microsoft
Kinect [15]. These data are then used to help the robots detect humans and avoid collisions.
In this Special Issue, Khawaja demonstrates the use of this technology to predict human
motion [5]. Based on this predicted path, the robot can follow the operator’s movements
and be prepared to quickly execute the next step in the task, e.g., tightening a bolt or
attaching grommets. This motion prediction framework has been shown to decrease cycle
time by up to 25% in the sample task studied (delivering parts and tools to a worker in an
automobile assembly task). Another way for the robot to “see” the operator is through a
two-dimensional camera. These cameras tend to be used in applications where robots and
humans coexist. Yamakawa extended the use of two-dimensional cameras to collaborative
applications [4]. A high-speed camera can be used to take images of the operator’s hands,
which are then processed quickly and accurately using machine learning. This imaging
process has been shown to estimate the operator’s grasp type in 0.07 milliseconds with
94% accuracy. One limitation of using red–green–blue (RGB) imaging is the difficulty in
distinguishing between humans in the foreground and moving objects in the background.
Himmelsbach addressed this limitation in the field using thermal imaging [6]. This is espe-
cially advantageous for situations where robots can “see” both the operator’s workspace
and walkways with roaming autonomous vehicles. These autonomous vehicles may inad-
vertently trigger the robot to slow down or stop. Incorporating thermal imaging allows
robots to ignore these roaming robots in the background, resulting in a 50% increase in
efficiency. Typically, only a single sensing modality is used to enable the robot to “see”
the human operator because these data are difficult to process in real time [14,15]. Amin
combined both visual and tactile sensors with the aid of machine learning to quickly pro-
cess these robust data [8]. Multiple Microsoft Kinect cameras were used to detect a whole
human body, while multiple cameras allowed for monitoring a larger workspace. The
data from these cameras were fed into a neural network model to determine whether the
operator was passing through the workspace, observing the robot, moving too close to
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the robot for it to work, or interacting with the robot. Tactile sensors on the robot pro-
vided additional information about the operator: no interaction, intentional contact, or
incidental contact. These systems combined were able to “see” and “feel” the operator with
99% accuracy. Besides human-to-robot communication, messaging the other way from
robot to human is also important because humans can become nervous around fast-moving
robots. To address this, Grushko studied how robots can use haptic feedback to “talk”
to a human [7]. Operators showed a 45% improvement in completion time when haptic
feedback was used to inform the operator of the robot’s planned trajectory. The feedback
was provided through vibrations on a wearable device on the operator’s glove. Another
way humans and robots interact is through teaching, e.g., when the operator teaches the
robot to perform a task. Typically, a robot is taught to perform a non-contact task such as
spraying. Tasks that involve contact, such as picking up an object, require synchronous
sensing or both traction and contact. Zhang developed a sensor that measures both of these
forces using a single sensor, as opposed to a multiple-sensor arrangement [9]. This compact
sensor arrangement utilizes strain gauges mounted on a cylindrical sleeve. This sensor
was validated for a drawer-opening experiment where the robot was taught to approach a
drawer, grab the drawer, open the drawer, and then close the drawer.

During human–robot collaborations, a robot collects data and uses them to make
decisions. Due to the non-deterministic nature of these data, machine learning is used for
this processing [16]. The articles in this Special Issue demonstrate the power of machine
learning to optimize task scheduling, detect collisions, collaborate with more than one
person, and read social cues of a person. Scheduling tasks for human–robot collaborations
in a production setting can be difficult as there are uncertainties that cannot be predicted
and coded a priori offline, e.g., skill differences between human operators. Pupa’s online
framework, which leverages the parallelism of human–robot collaboration, is one way to
address this issue [10]. This novel framework has been shown to adapt to different human
operator skills and reallocate task steps if the robot becomes unavailable. To accomplish this,
a database was created to store the steps needed to accomplish a task. Then, a scheduler
algorithm chose the most suitable task for each actor (robot or human), accounting for
the operator’s skill level. The task monitoring component of the framework was fed back
to the database to determine which details of the task were left to accomplish. While
collaborating on these tasks, there are many points on articulated robots that can collide
with the operator and cause injury. The location and magnitude of these collisions can
be difficult to categorize. A neural network model has been previously developed to
determine when a collision has occurred [17] so the robot can adjust its force and avoid
an accident. Kwon expanded this neural network to include where on the robot the
collision occurred [11]. This work is important for safety, especially as robots become
more complicated with more articulations. Typically, these robots collaborate with a single
human. Zou used N-player game theory to extend the collaborative ability of a robot to
interact with two humans [12]. This theory utilized a recursive least-squares algorithm
underlying a novel controller that allowed the robot to adapt to a human’s response. This
controller was validated in a simulation where a robot helped two humans carry a table.
Compared to a traditional linear quadratic regulator, this N-player game theory controller
resulted in the humans exerting less effort. This work has the potential to extend beyond
industrial robots to robots that help in homes. Akalin developed a reinforcement learning
method to train robots that interact socially at home [13]. The robots were observed
interacting with humans using a trial-and-error method to determine an optimal behavior.
The robot learned which robot behaviors were desired through human feedback (e.g., facial
expressions, vocal laughter) and stored this information in a database for later use.

In summary, human–robot collaborations are a common occurrence. The articles in
this Special Issue aim to increase the efficiency and safety of these collaborations. Sensors
have been incorporated into the robots and surrounding workspaces so the robot can “see”
the human. Humans have been outfitted with sensors as well, so they have additional data
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to “see” the robot. Finally, machine learning techniques have been developed so the robots
can optimize these collaborations.
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7. Grushko, S.; Vysocký, A.; Oščádal, P.; Vocetka, M.; Novák, P.; Bobovský, Z. Improved Mutual Understanding for Human-Robot

Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
Sensors 2021, 21, 3673. [CrossRef] [PubMed]

8. Mohammadi Amin, F.; Rezayati, M.; van de Venn, H.W.; Karimpour, H. A Mixed-Perception Approach for Safe Human–Robot
Collaboration in Industrial Automation. Sensors 2020, 20, 6347. [CrossRef] [PubMed]

9. Zhang, Z.; Chen, Y.; Zhang, D. Development and Application of a Tandem Force Sensor. Sensors 2020, 20, 6042. [CrossRef]
[PubMed]

10. Pupa, A.; Van Dijk, W.; Brekelmans, C.; Secchi, C. A Resilient and Effective Task Scheduling Approach for Industrial Human-Robot
Collaboration. Sensors 2022, 22, 4901. [CrossRef] [PubMed]

11. Kwon, W.; Jin, Y.; Lee, S.J. Uncertainty-Aware Knowledge Distillation for Collision Identification of Collaborative Robots. Sensors
2021, 21, 6674. [CrossRef] [PubMed]

12. Zou, R.; Liu, Y.; Zhao, J.; Cai, H. A Framework for Human-Robot-Human Physical Interaction Based on N-Player Game Theory.
Sensors 2020, 20, 5005. [CrossRef] [PubMed]

13. Akalin, N.; Loutfi, A. Reinforcement Learning Approaches in Social Robotics. Sensors 2021, 21, 1292. [CrossRef] [PubMed]
14. Cherubini, A.; Navarro-Alarcon, D. Sensor-Based Control for Collaborative Robots: Fundamentals, Challenges, and Opportunities.

Front. Neurorobot. 2021, 14, 113. [CrossRef] [PubMed]
15. Arents, J.; Abolins, V.; Judvaitis, J.; Vismanis, O.; Oraby, A.; Ozols, K. Human–Robot Collaboration Trends and Safety Aspects: A

Systematic Review. J. Sens. Actuator Netw. 2021, 10, 48. [CrossRef]
16. Liu, Z.; Liu, Q.; Xu, W.; Wang, L.; Zhou, Z. Robot Learning towards Smart Robotic Manufacturing: A Review. Robot. Comput.-Integr.

Manuf. 2022, 77, 102360. [CrossRef]
17. Heo, Y.J.; Kim, D.; Lee, W.; Kim, H.; Park, J.; Chung, W.K. Collision Detection for Industrial Collaborative Robots: A Deep

Learning Approach. IEEE Robot. Autom. Lett. 2019, 4, 740–746. [CrossRef]

3





Citation: Pupa, A.; Van Dijk, W.;

Brekelmans, C.; Secchi, C. A Resilient

and Effective Task Scheduling

Approach for Industrial

Human-Robot Collaboration. Sensors

2022, 22, 4901. https://doi.org/

10.3390/s22134901

Academic Editor: Anne Schmitz

Received: 4 June 2022

Accepted: 27 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Resilient and Effective Task Scheduling Approach for
Industrial Human-Robot Collaboration
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Abstract: Effective task scheduling in human-robot collaboration (HRC) scenarios is one of the great
challenges of collaborative robotics. The shared workspace inside an industrial setting brings a lot of
uncertainties that cannot be foreseen. A prior offline task scheduling strategy is ineffective in dealing
with these uncertainties. In this paper, a novel online framework to achieve a resilient and reliable
task schedule is presented. The framework can deal with deviations that occur during operation,
different operator skills, error by the human or robot, and substitution of actors, while maintaining
an efficient schedule by promoting parallel human-robot work. First, the collaborative job and the
possible deviations are represented by AND/OR graphs. Subsequently, the proposed architecture
chooses the most suitable path to improve the collaboration. If some failures occur, the AND/OR
graph is adapted locally, allowing the collaboration to be completed. The framework is validated in
an industrial assembly scenario with a Franka Emika Panda collaborative robot.

Keywords: human-robot collaboration; human-centered robotics; task planning

1. Introduction

Industrial applications where human and robots work closely together are becoming
the new paradigm of industrial settings [1]. Collaborative robots can take over repetitive,
challenging, or dangerous tasks improving the well-being of the operators [2]. There are
multiple challenges that emerge from this close collaboration. On one hand, the absence
of barriers makes it necessary to pay close attention to how to guarantee the safety of the
operator [3–5]. On the other hand, it becomes necessary to understand how to create a
synergy between humans and robots that is as natural as possible, making the most out of
the collaboration [6,7]. Therefore, a strategy on how to allocate and schedule tasks between
humans and robots is crucial to improve the human-robot team.

The basis of this strategy is an investigation of how the different tasks that make up the
work can be distributed best among the actors in the nominal situation, the task allocation
problem. The individual tasks are subject to constraints that prescribe how, when, and by
whom the tasks can be executed.

The characteristics of a good task allocation are captured in the fluency concept,
which relates to how well the operator and the robot are adapted to each other. Fluent
collaboration benefits the work execution and the job-quality of the human operator. These
aspects are not captured by optimizing for task efficiency alone. There are subjective and
objective metrics for fluency available of which the latter ones can directly be used as an
optimization criterion. The objective metrics include the relative portion of functional and
non-functional delays of the actors, and the amount of parallel work [8].

The task allocation problem can be solved during the design phase and results in the
nominal schedule. This procedure has widely been investigated in other works. Refs. [9–12]
focused on heterogeneous multi-agent task allocation in an industrial setting. While other

Sensors 2022, 22, 4901. https://doi.org/10.3390/s22134901 https://www.mdpi.com/journal/sensors5
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authors, e.g., [13–15], propose to model the human-robot collaboration (HRC) problem
as a nonlinear optimization problem. These strategies allow us to find the best nominal
schedule.

Even if optimal, a nominal task schedule cannot guarantee a real improvement of the
collaboration. In the task execution phase, many factors come into play that cannot be
anticipated within the nominal schedule. This requires an efficient and resilient team that
can anticipate and adequately respond to these abnormalities. The requirements for an
efficient team of human and automated agents, i.e., robots have been formulated in [16]
and contributed to a design method in [17]. The requirements and the design method
were targeted at general automation challenges and applied in open ended scenarios. The
industrial practice is much more constrained and the irregularities that exist have several
common causes. Identifying these causes can help the design of resilient solutions for
task allocation.

Firstly, it may happen that not all the actors are always available to carry out the
collaboration, e.g., the robot has been dispatched to another work station. In this case it
would be highly inefficient to again design the job considering only the remaining actors. It
would be more convenient to consider this actor availability problem from the beginning
and adapt the schedule accordingly. Secondly, the tasks may depend on each other, i.e.,
there could be precedence constraints, and this interdependence must be considered while
ensuring the parallelism between the actors. Thirdly, the operators, as human beings, are
inherently different from each other, each with their own skills, capabilities, or individual
preferences. Some of them may need or prefer to be guided more during the work, e.g.,
newly hired workers. For others, on the other hand, an excess of information could be
annoying and counterproductive from the job quality perspective. Lastly, there is always the
possibility that failures will occur that prevent the correct execution. Therefore, a fallback
scenario must be considered when designing a scheduling strategy for HRC scenarios.

This paper firstly presents how an industrial HRC process, with its irregularities
during execution time, can be formalized into a set of interdependent tasks. Secondly, it
proposes a novel adaptive task scheduling framework for collaborative cells. As a start, the
framework uses a database to understand how the collaborative job is composed out of
multiple interdependent tasks. Subsequently, at runtime, it monitors the task execution
to understand the human operator skills and the task result, i.e., failure or success. This
information is exploited to adapt the schedule online, making the framework flexible and
able to face most of the situations that may arise in a real HRC scenario.

The main contributions of this paper are:

• A formulation of four primitive situations that encompass most of the scenarios that
could occur in a real HRC.

• A novel adaptive task scheduling framework that is effective and applicable to the
formalized situations, i.e., suitable for a real industrial application.

• The validation of the proposed framework in several variants, one for each situation,
of the same experimental scenario, proving the effectiveness of the framework.

The paper is organized as follows: Section 2 presents the review of related works,
while Section 3 formalizes the task scheduling problem for HRC. In Section 4, the overall
proposed architecture is detailed, and in Section 5, the scheduling strategy is defined.
Sections 6 and 7 address the handling of different human operators and errors, respectively.
Lastly, Section 8 summarizes the experimental validation of the proposed architecture,
while Section 9 sums the conclusions and presents suggestions for future research.

2. Related Works

Different approaches were presented in the literature to deal with the problem of
multi-agent task scheduling. In [18], the author proposes a heuristic method in order to
allocate and schedule the tasks between multiple processors. The approach is based on the
communication time between the processors and the number of successor tasks, making it
suitable for the problem of handling precedence constraints. In [19], a branch-and-bound
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procedure and a climbing discrepancy search heuristic for the parallel machine scheduling
problem with precedence constraints and sequence dependent setup times is proposed.
This algorithm can minimize the sum of the completion time and maximum lateness. In [20],
the authors propose a Load-Balance Scheduling Algorithm, which allows for allocating and
scheduling the tasks in a multiprocessor system. The idea is to use an Earliest Deadline First
(EDF) heuristic to first create an n ordered tasks list. Then, based on the actual workload,
to allocate the task to one processor. In general, these solutions cannot be directly applied
in an HRC application, as they consider the presence of homogeneous actors.

In [21], the authors model the HRC working process as a chessboard setting, where
the decision of each actor is described by the chess piece move and formulated as a
Markov game model. To optimize it, they propose a decentralized Deep-Q-network based
MARL (DQN-MARL) algorithm. In [22], the task scheduling is formulated as a Mixed-
Integer Linear Programming Problem (MILP) inspired by the Multimode Multiprocessor
Task Scheduling Problem. The cost function aims at reducing the total makespan, and
the solution is obtained with a constraint programming model and the use of a Genetic
Algorithm (GA). In [23], instead, the authors propose the use of a Simulated Annealing
(SA) algorithm to find the optimal solution.

These works, however, do not consider the differences between individual operators.
As the scheduling procedure adapts to the robot that is available, e.g., considering the
robot workspace, it should also be able to modify the schedule based on the human
operator that is currently going to perform the collaborative job. In [24], an integrated
task allocation and task scheduling strategy for HRC is proposed. The task allocation is
solved offline exploiting a two-level feedforward optimization. Furthermore, this strategy
is enriched with a feedback procedure based on mutual trust to re-allocate the tasks online.
Furthermore, in [25], the authors propose a multi-criteria decision-making framework
for task allocation, which generates a solution that best matches the criteria you want to
optimize. Moreover, in the case of unexpected events, the algorithm can be exploited for
re-scheduling the remaining tasks. In [26], a two-layer dynamic rescheduling framework is
presented. The first layer builds the nominal schedule solving offline an MILP problem,
while the second layer exploits the real human execution time to reschedule online the
tasks. In this paper, the job quality is considered inside the MILP problem both as data to
be optimized and as constraints. This work has been further extended in [27] to integrate
the scheduling strategy with the safety required by the robot trajectory planner. Moreover,
in [28], the authors propose a genetic algorithm that exploits human and robot data, e.g.,
ergonomics or capabilities, to optimally schedule the tasks in an HRC scenario. The actor
characteristics are given offline as input by the user. In [29], a two-level abstraction and
allocation for an HRC scenario is presented. The first layer exploits the use of the A*
algorithm to optimize a cost function. The second layer, instead, handles the task execution
and the respective failures. If the system detects some errors, it is possible to reschedule the
tasks recomputing the optimal solution.

Even if they adapt online based on what is currently happening, none of the proposed
works are so general to handle all the considered primitive situations at the same time:

1. Scarce resources;
2. Parallelism between the actors;
3. Different human operator skills;
4. Errors during the execution.

The proposed approach focuses on developing a resilient scheduling framework,
that is general and applicable to real industrial scenarios. Differently from other works,
e.g., ref. [26,30], that are more oriented on the optimization and reduction of the total
makespan. The framework does not generate the nominal schedule, it is therefore, to a
large extent, supplementary to existing methods.
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3. Problem Statement

Industrial Human-Robot Collaboration is characterized by multiple agents that work
toward a common goal. In this paper, a situation where a human operator H and a robot R
collaborate in a shared workspace, namely the collaborative cell, is considered. The human
and the robot have a pre-defined task distribution, which is defined by a set of nominal
task schedules. The agents must perform their respective tasks in order to complete the
collaborative job. A job typically represents an industrial process, such as the assembly of
a product. In this work, it is assumed that the nominal task schedules have already been
computed, e.g., exploiting [6,31].

An effective representation of a general collaborative job can be achieved with an
AND/OR graph G = (T, E), as shown in Figure 1 [32]. Each node represents the task, Ti,
while each directed edge Eij means that the parent task Ti must be executed after the child
task Tj. Multiple unlinked edges sharing the same parent represent an OR constraint. This
constraint imposes that the parent task can only be executed if at least one of the children
has been completed, e.g., T4 and T5 in Figure 1. Thanks to the OR constraint, it is possible to
define multiple paths that lead from the same starting point to the same end point, namely
equivalent paths, e.g., T2 + T5 ≡ T1 + T3 + T4 in Figure 1. In this work, the first tasks that
belong to equivalent paths are defined as equivalent tasks, e.g., T1 is equivalent to T2. When
multiple edges share the same parent and are connected with an arc, they model an AND
constraint. This constraint imposes that the parent task can be executed only if all the
children have been completed, e.g., T3 and T4. The job is finished when the final task T6 is
completed; this does not require that all tasks in the job are completed.

Figure 1. AND/OR graph representation. The unlinked edges represent the OR relations, while
the ones connected with an arc represent the AND relations. For example, in the figure, T6 can be
executed after both T3 and T4 or after only T5.

Thanks to their structure, the AND/OR graphs intrinsically model both the parallelism
between the actors, which is required to reduce the waiting times, and the precedence
constraints between the tasks. Furthermore, through the OR constraints it is possible to
represent already in the design phase all the different situations that may arise due to the
available actor capabilities. This might be the temporary absence of an actor such as a robot
that is in maintenance, or an inexperienced operator that needs additional task instructions.
In this paper, only human operators are considered to have different skill levels. To handle
this, each human task is defined with the minimum expertise level that is required from
the operator to be able to perform that task. The robot is assumed to have a fixed set of
capabilities that are known during design time, which is common in industrial settings.

Scheduling the task does not ensure that the actor will always perform it correctly.
For this reason, each task Ti is associated with recovery actions that allow to restore the
nominal behavior of the human-robot team. This set of actions can be very complex and, in
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turn, represented with a AND/OR graph. For ease of reading, this set of actions will be
represented in the paper as a single task. Moreover, the collaborative cell is enriched with a
task monitoring strategy that allows to check if the task execution has been successful and,
in case of failure, it provides information about the error. To achieve this, many algorithms
are already available in the literature [33–35].

In this work, we aim at designing a scheduling framework that:

• Takes as input the skills of the human operator and its knowledge in the collaborative
job, automatically schedules online tasks between the different actors choosing the
most suitable path for the situation on the AND/OR tree.

• Automatically handles most situations and the failures that may occur within an
industrial scenario, making it suitable for HRC in industrial settings.

4. Architecture

The proposed framework is shown in Figure 2, where different components may
be distinguished:

• The Database block is responsible for storing all the information regarding the tasks
composing the collaborative job, through the Task Details block, and analyzing all the
data to evaluate the desired metrics, this is achieved in the Data Evaluation block.

• The Scheduler block, which is the core of the framework, takes care of choosing the
most suitable task for each actor online, considering the human operator capabilities
and the parallelism in the collaborative job.

• The Task Monitoring block oversees the task execution and communicates with the
Database if the task has been completed or not. Moreover, in case of failure, it gives
information about the error so that proper recovery actions can be scheduled.

• The Human Capabilities block takes the result of the data analysis to estimate the
human operator capabilities and knowledge.

Figure 2. The overall architecture.

It is worth noting that in Figure 2 the overall framework has been presented. How-
ever, the grey blocks are out of the scope of this paper and have only been included for
completeness.

The overall procedure starts offline with the design of the AND/OR graph and
inserting all the tasks inside the database. Each task Ti is associated with its description and
requirements, i.e., the actor that must perform it, the precedence constraints as AND/OR
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constraints, and the minimal required expertise level. For example, T6 in Figure 1 can be
defined as the following:

T6 : {description : ′′Final′′,

requirements :

{actor : H,

precedence : ′′(T3 ∧ T4) ∨ T′′
5 ,

level : 1}}

Subsequently, all these task definitions are passed to the scheduler, which searches
along the AND/OR tree to choose, for each actor, the tasks that best suit the current scenario,
e.g., operator experience, actor availability. This is achieved, exploiting the data coming
from the others blocks. Once a task has been chosen, it is forwarded to the respective actor
who must perform it.

At this point, the task monitoring block continuously checks which tasks have been
concluded and what the final task result is, i.e., success or failure. This information is also
stored inside the database and used for two different purposes. Firstly, in the case of error,
it is exploited to choose a proper set of recovery tasks that may be performed in order to
continue the collaboration. Secondly, it is used by the data evaluation strategy in order to
increase or reduce the human operator expertise level. Finally, the scheduler is triggered
again to assign another task, until the collaborative job is concluded.

5. Scheduler

The scheduler is the core of the proposed framework and has the goal of distributing
the tasks among the available actors, i.e., humans and robots. It requires as input both
the AND/OR graph of the collaborative job, already defined in a previous design phase,
and the availability of actors along with their skills and capabilities. These two inputs
are exploited to choose at runtime the best path for the current scenario, tailoring the
specific needs of the human operator during the collaboration. Thus, the scheduler aims at
improving the synergy between the actors with a consequent improvement of the HRC.

The entire scheduling pipeline is implemented according to the pseudo-code reported
in Algorithm 1.

The scheduler needs as input the AND/OR graph G coming from the database, the
set of available actors A, and the actual human operator expertise level HL (Line 1). It
immediately sets to false the variable EndJ , which is used to identify when the collaborative
job is concluded and instantiate to true the list of Boolean variables FA, which indicates if
each actor is free in order to start a new task (Lines 2–5).

Then, the algorithm enters a while loop where it continuously executes the overall
pipeline until the collaborative job has been finished. Firstly, the scheduler checks for
each task T if the requirements have been satisfied (Line 9). This is translated in checking
whether the respective agent is available to accept a new task and if the precedence tasks
have been executed. If this is the case, the algorithm checks if the level of the human
operator is sufficient to execute the task (Line 10). This condition allows the scheduler to
handle the “Different Operator Skills” situation detailed in Section 6. It is worth noting that
if the actor of task T is not the human operator, the function checkLevel() always returns
true. This is because the robot always has the required skills to perform the tasks assigned
to it. If the level check is also successful, the task T is scheduled to the respective actor,
who is immediately marked as unavailable, and it is added to the list of the tasks to be
monitored TA (Lines 11 and 12). At this point, all the equivalent tasks of T are discharged
and removed from the graph. Since the scheduler works online, this procedure is necessary
because otherwise it could happen that the algorithm runs through two parallel paths,
which is unnecessary to reach the goal.
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Algorithm 1 Scheduler()

1: Require: G, A, HL
2: EndJ ← f alse
3: for a ∈ A do
4: Freea ← true
5: FA ← pushback(Freea)
6: end for
7: while EndJ = f alse do
8: for T ∈ G do
9: if checkRequirements(T,FA) then

10: if checkLevel(T, G, HL) then
11: FA ← setBusy(T,FA)
12: TA ← pushback(T)
13: G ← discardEqTasks(T)
14: end if
15: end if
16: end for
17: for T ∈ TA do
18: R, E ← taskMonitor(T)
19: if R = ∅ then
20: continue
21: else if R = Executed then
22: if isFinal(T) then EndJ ← true
23: end if
24: else if R = Failed then
25: G ← applyRecovery(T, E,G)
26: end if
27: TA ← remove(T, TA)
28: FA ← setFree(T,FA)
29: end for
30: end while

Then, the scheduler uses the database to check, for all the active tasks, the information
regarding the task monitoring (Line 18). The task monitoring strategy can be implemented
using several strategies available in the literature as, e.g., ref. [36,37], and allows to detect
critical deviations in the collaboration. In turn, critical deviations from the nominal behavior
are translated into a failure, which is stored inside the database. If no results are available,
the task is not concluded, and the scheduler continues to inspect the other tasks (Line 20).
In the other cases, the behavior of the scheduler depends on the type of the result. If the
task has been concluded, the algorithm only checks if this is a final task, and the job is
finished (Line 22). If the actor has failed, the scheduler locally adapts the graph in order to
generate a recovery procedure (Line 22). This local adaptation depends on the type of error
E coming from the monitoring and it is further detailed in Section 7. Lastly, the concluded
task is removed from TA and the actor is marked as free (Lines 27 and 28).

6. Different Operator Skills

By definition, an HRC application is characterized by the presence of both humans
and robots. The differences between these two actors are quite intuitive. Human operators
are capable of very complex tasks, improving execution every time, but they can hardly
reach or work in hazardous environments. Robots, on the other hand, are less affected by
hazards in the surrounding environment, but they are not able to intrinsically learn from
their last task execution.

Unlike robots, the human is never a constant factor, human operators have different
skills, which can be improved or acquired. When starting on a new type of job, it is
very likely that a human operator needs detailed instructions on the tasks that need to be
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performed. Therefore, it becomes useful to divide the work into several tasks that are easy
to comprehend, allowing the operator to acquire the necessary skills and knowledge. At
some point, the operator will acquire much more experience in the collaborative work,
and it may be more convenient to combine some tasks into one, avoiding unnecessary
fragmentation. An example can be a complex wiring activity: a new human operator may
require wire-by-wire instructions, while for expert operators a single instruction with an
overview of all the wires is sufficient.

The framework handles this situation in two different phases: First, during the design
of the AND/OR graph and the insertion of the tasks inside the database. Second, adding
the check level step inside the scheduler; see Algorithm 1 in Section 5. This constraint is
implemented according to the pseudocode in Algorithm 2.

Algorithm 2 checkLevel()

1: Require: T,G, HL
2: a ← getActor(T)
3: if a �= H then
4: return true
5: else
6: TE ← getEqTasks(T,G)
7: for t ∈ TE do
8: if t.level > T.level and t.level ≤ HL then
9: return f alse

10: end if
11: end for
12: if T.level ≤ HL then
13: return true
14: end if
15: return f alse
16: end if

The level checking needs as input the task to be analyzed T, the AND/OR graph G,
and the actual human operator expertise level HL (Line 1). It immediately gets the actor
a that must perform the task and, if it is not a human operator, it returns true allowing
to schedule the task (Lines 2–4). If the actor is the human, it is necessary to investigate
more to decide if T is the most suitable task. The algorithm firstly builds a list of all the
equivalent tasks TE analyzing the AND/OR graph (Line 6). Then, for each equivalent task,
it checks if there is a task that requires a greater knowledge than the one that is required by
the current analyzed task and if this knowledge is still admissible for the current human
operator. If this is the case, the algorithm returns f alse (Line 9). It is worth noting that this
part of the code allows to always choose the task that best suits the human knowledge level,
improving the collaboration and the job quality for the human operator. If no better tasks
are available, the algorithm checks if this task can be performed by the human operator
before allowing its execution (Line 13).

7. Error Representation

During the collaboration, it is very unlikely that everything happens exactly as planned.
Human operators and robots will make errors during the task execution, preventing the
nominal behavior. The framework must be able to handle these errors and adapt the
behavior of the actors accordingly.

Errors can be classified into two categories based on the way the error is handled:

• Restorable Error, which is an error that does not preclude the task and, after some
checking and restoring actions, it is possible to retry the execution. This may happen
when the robot accidentally hits something and, after the human operator confirms
that there are no damages or safety problems, the task is assigned again to the robot,
i.e., the repair task brings the product to the state before the erroneous task.
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• Non-Restorable Error, which is an error that precludes the task execution, and it is
necessary to execute another task to continue the collaborative job. This may happen
when the robot places an object with a wrong orientation and the scheduler assigns a
new task to replace the object in the correct pose, i.e., the repair task brings the product
to the state after the erroneous task.

In the proposed framework, both categories of errors are handled by locally adapting
the AND/OR graph. This allows the scheduler to continue working without losing its gen-
erality. It is worth noting that some errors are of a type that do not allow the collaboration
to continue, e.g., a safety violation. Since these cases require more severe intervention of
an operator and a consequent reset of the collaborative job, they are not covered by the
proposed framework.

7.1. Restorable Error

After a restorable error occurs, the nominal behavior of the actors could be ideally
restored since the execution of the task is not precluded. The way the framework handles
this situation is illustrated in Figure 3b.

(a) (b)

(c)
Figure 3. Representation of the errors and the adaptation of the AND/OR graph. The dashed line in
(a) Means that T2 failed. (b) Shows the restoring path, while (c) shows the corrective one.

A new graph path that goes from the previous task to the failed one is generated.
This path contains all the tasks that must be executed to restore the nominal behavior, e.g.,
ask the human if it is safe, and is attached to the original AND/OR graph with an AND
constraint. Then, the task that has previously failed is reset and marked as a task that must
be still scheduled. According to Algorithm 1 in Section 5, with this strategy the scheduler
is forced to go through this new restoring path before scheduling again the task that had
previously failed.

7.2. Non-Restorable Error

When the error compromises the correct execution of the collaborative job, the restoring
procedure may not be enough. In this case, it is necessary to ask one of the actors to execute
a set of tasks to recover from the failure and continue the collaboration with the next tasks.
The procedure implemented in the framework is illustrated in Figure 3c.

A new graph path is inserted that goes from the previous task to the task that follow the
failed one. This path is composed by all the tasks necessary to correct from the failure, e.g.,
adjust the orientation, and it is attached with an OR constraint. According to Algorithm 1
in Section 5, this new path allows the scheduler to continue the collaborative job, omitting
the previously failed task.
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8. Experiments

The proposed framework has been experimentally validated in a human-robot collab-
orative scenario, where the human operator works together with a Franka Emika Panda,
a 7-DoF collaborative robot. Several experiments have been carried out, focusing on four
situations of which a video is available as supplementary material:

• Different human operator skills;
• Substitution of human actions with robot action;
• Error handling;
• Parallelism of the actors with resource sharing.

During the experiments, the human operator has been guided exploiting the Arkite’s
Human Interface Mate (HIM), which also enables the interaction. The complete setup for
the experiment is shown in Figure 4.

Figure 4. Setup of the experiment. The image shows all the equipment used during the experiments.

All the software components were developed in Python 3.8 and exploiting Apache
Kafka, while the Franka Emika Panda is position controlled using the MoveIt Motion
Planning Framework and the standard ROS libraries.

The first three situations can be represented with the AND/OR tree shown in Figure 5a,
where different paths can be distinguished. The yellow one requires only the human
operator to perform the job, while on the blue path, the robot performs some of the tasks.
In the last part, the tree divides based on the expertise of the human operator. A detailed
description of all the tasks composing the collaborative job is shown in Table 1. It is worth
noting that the tasks related to the pick and place of both the casing and the connectors
are part of the first phase, while the ones related to the wiring are part of the second phase.
The parallel work situation, instead, is schematized in Figure 5b. This represents a double
assembly job where both a robot and an expert human operator are available. For ease of
reading, the tasks that have been doubled are denoted with the subscripts A and B.
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(a)

(b)

Figure 5. AND/OR graphs representing all the experiments performed. (a) Representation of the
first three scenarios; (b) representation of the parallel work.

Table 1. Tasks description of AND/OR graph in Figure 5a.

Task Index Description Agent Phase

1 Start the job. H

Phase 1
2 Pick and Place casing. H
3 Move in Home. R

4–6 Robot Pick and Place 3 connectors. R
7–9 Human Pick and Place 3 connectors. H

10–13 Connect 4 wires one by one—not expert user. H
Phase 214 Connect all the wires—expert user. H

15 Confirm completion. H

8.1. Different Skills

These experiments mainly focus on the second phase of the collaborative scenario.
Initially, the operator is inexperienced in the collaborative work to be pursued. The
collaboration starts when the operator confirms being ready and the scheduler immediately
asks to place the casing in the correct spot, i.e., T1 and T2. At this point, the robot starts to
pick and place all the connectors, while the human operator is waiting. This is because no
parallel tasks are available, see the blue path in Figure 5a. Once the robot has completed the
tasks, the collaborative job continues with the second phase. Since the operator is learning,
the operator receives detailed step-by-step instructions about the wiring, represented by
the purple path in Figure 5b. Exploiting the input coming from the human capabilities
block, the scheduler is aware of the human expertise level.

After multiple executions of the collaborative job, the human operator became more
expert, and the Human Capabilities block detects an upgrade of the user level. In this
context, displaying the wiring instructions step by step may be tedious and annoying,
with a consequent reduction of the job quality. The scheduler can adapt and chooses the
green path in Figure 5a, which merges T10 − T13 in one single task T14 so the operator only
receives high level instructions.

This experiment validates the functionality of the checkLevel() constraint presented in
Section 6, demonstrating that the overall framework can adapt to different human operators.

8.2. Actor Substitution

This experiment simulates the situation where, for whatever reason, the robot is
unavailable. This may happen when the tool of the robot is under maintenance, and a
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fallback strategy is required. In the analyzed scenario, this applies to the robot tasks during
the first phase. To simulate such unavailability, the robot actor is removed from the actors
list and, without changing the tree, the job is started. As before, the human operator
confirms and places the casing in the correct position. At this point, the scheduler can only
go through the only human path, the yellow one in Figure 5a, asking the human operator
to pick and place the connectors.

8.3. Error Handling

In this experiment, the human operator intentionally triggers robot errors, which are
subsequently handled by the framework. The framework uses the task monitoring block of
Section 7 to detect the correct execution of the task. The first time a task fails, a restorable
error is triggered. If the same task fails another time, a non-restoring action is required.

During the execution of T3, the human operator hinders the robot, which immediately
stops for safety reasons. At this point, the tree is locally adapted by inserting a restoring
task. Thanks to this task, the scheduler firstly asks the human operator if they are safe
and, if possible, moves the robot to the home position ready to retry the execution. This is
shown in Figure 6b,c. Subsequently, the human operator hinders the robot again, causing
another failure. Since the task failed twice, the task monitoring generates a not restorable
error. This is because it would be better to ask the human operator to execute this task.
For this reason, the AND/OR graph is modified again adding a new path to reach T4. As
before, the human operator must confirm that everything is fine and the robot goes back in
a home position, but this time the scheduler asks the human to pick and place the connector
in the correct place. All the steps are illustrated in Figure 6d,e. From this point, the robot
can resume its work.

(a)

(b) (c)

(d) (e)
Figure 6. Failure of of T3. (a) The human hindering the robot. (b,d) The AND/OR graph locally
adapted. In (c), the Arkite system asks if the human is safe before moving again, while in (e), the
instruction to guide the human operator in correcting the task is shown.
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8.4. Parallel Work

The previous situations validate the effectiveness of the framework and its features
in a sequential scenario. The framework is also capable of scheduling parallel tasks. In
this case, the robot works in parallel, sharing resources with the human operator. This is
shown in the last scenario, where the human and the robot work on two products at the
same time while sharing a workspace. Without losing generality, the scenario has been
simplified avoiding the possibility of different paths.

When the collaborative job starts, the scheduler immediately asks the human operator
to pick and place the first casing. Subsequently, the robot starts to insert the three connectors
while the human operator places the second casing. Once the robot has finished working
on the first casing, the scheduler asks the human to make the wiring. It is worth noting that
since the human operator is an expert user, the wiring is composed by a single task. In the
meantime, the robot finishes putting the connectors inside the second casing, allowing the
human to conclude the job with the second wiring.

9. Conclusions and Future Works

In this paper, a framework for resilient and effective task scheduling in a collaborative
industrial scenario has been built. With this framework, industrial collaborative human-
robot processes can be modeled and executed. This includes the nominal execution behavior
as well as alternative execution behaviors that might be caused by common situations at
the workplace. These situations include adjusting to the skill level of the operator, actor
substitution, and error handling.

Starting from the definition of the tasks composing the collaborative job, namely the
AND/OR graph, the scheduler is responsible for deciding what is the most suitable task
for the actors to execute at each point in time. The task monitoring strategy is exploited to
understand if the task has been correctly executed and, if necessary, to locally adapt the
AND/OR graph to prevent that a task failure will result in a halted process. Moreover,
the scheduler exploits the information about the human expertise to improve the HRC.
In the paper, the methodologies used to online estimate the human expertise have not
been investigated. In this paper we have used a description that included a single human
operator and robot, but the framework can be extended to larger teams without major
modifications.

The experimental validation has been conducted in a scenario with different execution
variations, showing and proving that the proposed framework handles most situations that
may occur in a real industrial setting.

Future works aim at improving the scheduling strategy in order to also choose the path
that optimizes a desired cost function, e.g., exploiting the A* algorithm over the AND/OR
graph [12]. Moreover, the framework should be tested in a user study that involves a
real-world industrial scenario. This would lead to a further validation and improvement
of the overall framework. Lastly, the framework could be extended to also handle the
synchronization between the actors. In this scenario, some strategies such as [38,39] could
be used to enable the mutual communication between the two actors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22134901/s1, Video S1: A Resilient and Effective Task Scheduling
Approach for Industrial Human-Robot Collaboration.
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Abstract: This paper focuses on the teleoperation of a robot hand on the basis of finger position
recognition and grasp type estimation. For the finger position recognition, we propose a new
method that fuses machine learning and high-speed image-processing techniques. Furthermore, we
propose a grasp type estimation method according to the results of the finger position recognition by
using decision tree. We developed a teleoperation system with high speed and high responsiveness
according to the results of the finger position recognition and grasp type estimation. By using the
proposed method and system, we achieved teleoperation of a high-speed robot hand. In particular,
we achieved teleoperated robot hand control beyond the speed of human hand motion.

Keywords: teleoperation; high-speed image processing; machine learning; finger position recognition;
grasp type estimation

1. Introduction

Technology for realizing remote systems such as teleoperation, telerobotics, telexis-
tence, etc., has been an important issue [1–3], and much research has been actively carried
out. In the recent situation, in particular with the effects of COVID-19, remote work (tele-
work) by office workers has become commonplace. In the future, teleoperation using
robot technology will be applied to industrial fields, and object handling and manipulation
using remote systems are considered to be essential and critical tasks. In order to achieve
this, we consider that telerobotics technology based on sensing human hand motion and
controlling a robot hand will be essential. Thus, this research focuses on the teleoperation
of a robot hand on the basis of visual information about human hand motion. The reason
why we use visual information is that it is troublesome for users to have to put on contact
devices [4–7] before operating the system, and non-contact-type systems are considered to
be more suitable for users.

Here, we describe related work in the fields of teleoperation and telerobotics based on
visual information. Interfaces based on non-contact sensing generally recognize human
hand gestures and control a slave robot based on these gestures [8,9]. In the related work in
the field of humanoid robotics, a low-cost teleoperated control system for a humanoid robot
has been developed [10]. In wearable robotics, semantic segmentation has been performed
by using Convolutional Neural Networks (CNNs) [11]. Such interfaces are intuitive for
users and do not involve the restrictions involved with contact-type input devices. Some
devices for recognizing human hand gestures have been developed, and some systems
have been also constructed [12,13]. Lien et al. proposed a high-speed (10,000 Hz) gesture
recognition method based on the position change of the hand and fingers by radar [14]. This
method can recognize the rough hand motion, but not its detail. Zhang et al. performed
human hand and finger tracking using a machine learning technique based on RGB images,
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but the operating speed was limited to 30 fps [15]. Tamaki et al. created a database
consisting of finger joint angles obtained by using a data glove, hand contour information,
and nail positions obtained from images, and they also proposed a method of estimating
hand and finger positions by searching the database at 100 fps [16].

Premeratne discussed some techniques for hand gesture recognition for Human–
Computer Interaction (HCI) [17]. Furthermore, Ankit described recent activities on hand
gesture recognition for robot hand control [18]. Hoshino et al. [19] and Griffin et al. [20]
proposed methods of mapping between human hand and robot hand motions. On the
other hand, Meeker et al. [21] created a mapping algorithm experimentally. Sean et al.
developed a system that can operate a robot arm according to human intention [22]. Niwa
et al. proposed “Tsumori” control, which can achieve a unique robot operation for an
operator based on learning the correspondence of a human operation and robot motion [23].
Fallahinia and Mascaro proposed a method of estimating hand grasping power based on
the nail color [24].

Summarizing the above, we can conclude that the disadvantages of the previous
approaches are as follows:

1. Low speed: The sampling rate is course, and the gain of the robot controller becomes
small, resulting in low responsiveness.

2. Low responsiveness: The latency from the human motion to the robot motion is long,
making it difficult to remotely operate the robot. Furthermore, the system cannot
respond to rapid and random human motion.

Regarding the low speed and low responsiveness, Anvari et al. [25] and Lum et al. [26]
discussed the system latency in surgical robotics, and they claimed that the latency affects
the task completion and performance. Thus, it is strongly desirable for teleoperation
systems to have as low a system latency as possible.

To overcome these disadvantages, we also developed a high-speed telemanipulation
robot hand system consisting of a stereo high-speed vision system, a high-speed robot
hand, and a real-time controller [27,28]. In the stereo high-speed vision system, which is
composed of two high-speed cameras and an image-processing PC, the 3D positions of the
fingertips of a human subject were calculated by a triangulation method. Then, mapping
between the human hand and the robot hand was performed. Finally, robot hand motion
was generated to duplicate the human hand motion. With this high-speed system, we
achieved a system latency so low that a human being cannot recognize the latency from the
human hand motion to the robot hand motion [29,30].

In the present research, we aim to achieve even lower latency so that an intelligent
system with vision cannot recognize the latency. Realizing such an extremely low-latency
teleoperated system will contribute to solutions for overcoming latency issues in cases
where the latency of telemanipulated systems may occur in more distant places. In addition,
this technology will enable high-level image processing using the remaining processing
time. In this paper, we propose a new method that fuses machine learning and high-
speed image-processing techniques to obtain visual information about human hand motion.
In general, the speed of machine learning methods is considered to be very low, and
therefore, we consider that it is not suitable to adapt machine learning methods for real-
time and real-world interactions between a human and a robot. By using our proposed
method, we can overcome the issue with the low speed of the machine learning processing.
Concretely speaking, the low-speed characteristics of machine learning can be improved by
using high-speed image processing and interpolating the results of the machine learning
with the results of the high-speed image processing. Although the finger position is
estimated by machine learning using a CNN and high-speed image-processing technologies
in this research, the integration of machine learning and high-speed image-processing
technologies can be considered to be applicable to other target tracking tasks. Thus, our
proposed method with high speed and high intelligence possesses the generality of the
target-tracking method.
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In addition, since our proposed method does not require three-dimensional measure-
ment and camera calibration is also not needed, it is easy to set up the system. Moreover,
motion mapping from the human hand motion to the robot hand motion is not performed
in our proposed method. Therefore, kinematic models of the human hand and robot hand
are not needed either. As a result, it is considered to be easy to implement our developed
teleoperation system in actual situations.

The contributions of this paper are the following:

1. Integration of a machine learning technique and high-speed image processing;
2. High-speed finger tracking using the integrated image processing;
3. High-accuracy grasp type estimation;
4. Real-time teleoperation of a high-speed robot hand system;
5. Evaluation of the developed teleoperation system.

Furthermore, Table 1 shows the positioning of this research. The characteristics of our
proposed method are “non-contact”, “intention extraction”, and “high-speed”.

Table 1. Positioning of this research.

Evaluation Index Conventional Method Proposed Method
Comfortable operation Contact Non-contact

Application to various robots Motion mapping Intention extraction
Fine-motion recognition Low-speed High-speed

The rest of this paper is organized as follows: Section 2 describes an experimental
system for teleoperation. Section 3 explains a new method for achieving grasp type
estimation based on high-speed finger position recognition. Section 4 shows evaluations of
the proposed method and the experimental results of teleoperation. Section 5 concludes
with a summary of this research and future work.

2. Experimental System

This section explains our experimental system for the teleoperation of a high-speed
robot hand based on finger position recognition and grasp type estimation. The experi-
mental system, as shown in Figure 1, consists of a high-speed vision system (Section 2.1),
a high-speed robot hand (Section 2.2), and a real-time controller (Section 2.3). All of the
components were placed in the same experimental environment.

2.1. High-Speed Vision System

This subsection explains the high-speed vision system, consisting of a high-speed
camera and an image-processing PC. As the high-speed camera, we used a commercial
product (MQ013MG-ON) manufactured by Ximea. The full image size was 1280 pixels
(width) × 1024 pixels (height), and the frame rate at the full image size was 210 frames per
second (fps). In this research, since we decreased the image size, we increased the frame
rate from 210 fps to 1000 fps. The reason why we set the frame rate at 1000 fps is that the
servo control systems for the robot and machine system were both operated at 1000 Hz.
In general, the raw image acquired by the high-speed camera was dark because of the
significantly short exposure time. Therefore, we used an LED light to obtain brighter raw
images from the high-speed camera.

The raw image data acquired by this high-speed camera were transferred to the image-
processing PC. The image-processing PC ran high-speed image processing to track the
finger position and to estimate the grasp type. The details of the image processing are
explained in Section 3. The results of the image processing were sent to a real-time controller,
described in Section 2.3. By performing real-time, high-speed (1000 Hz) image processing,
we could control the high-speed robot hand described in Section 2.2 at 1 kHz. The sampling
frequency of 1 kHz was the same as the sampling frequency of the servo-motor control.
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Figure 1. Structure of the experimental system.

The specifications of the image-processing PC are as follows: Dell XPS 13 9360, CPU:
Intel® Core (™) i7-8550U @1.80 GHz, RAM: 16.0 GB, OS: Windows 10 Pro, 64 bit.

2.2. High-Speed Robot Hand

This subsection describes the high-speed robot hand, which was composed of three
fingers [31]. A photograph of the high-speed robot hand is shown in the center of
Figure 1. The number of degrees of freedom (DoF) of the robot hand was 10; the middle
finger had 2 DoF, the left and right fingers 3 DoF, and the wrist 2 DoF. The joints of the robot
hand could be closed by 180 degrees in 0.1 s, which is fast motion performance beyond that
possible by a human. Each joint angle of the robot hand was controlled using a Proportional
and Derivative (PD) control law, given by

τ = kp(θd − θ) + kd(θ̇d − θ̇), (1)

where τ is the torque input as the control input for the high-speed robot hand control, θd
and θ are the reference and actual joint angles of the finger of the robot hand, and kp and kd
are the proportional and derivative gains of the PD controller.

2.3. Real-Time Controller

As the real-time controller, we used a commercial product manufactured by dSPACE.
The real-time controller had a counter board (reading encoder attached to the motors of
the robot hand), digital-to-analog (DA) output, and two Ethernet connections (one was
connected to the host PC and the other to the image-processing PC). We operated the
real-time controller through the host PC, and we also implemented the program of the
proposed method in the host PC.

The real-time controller received the results of image processing via Ethernet com-
munication. Then, the real-time controller generated a control signal for the robot hand to
appropriately control the robot hand according to the results of the image processing and
output the control signal to the robot hand.
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3. Grasp Type Estimation Based on High-Speed Finger Position Recognition

This section explains a new method for estimating grasp type, such as power grasp or
precision grasp, based on high-speed finger position recognition using machine learning
and high-speed image processing, and our proposed method can be mainly divided into
two components: high-speed finger position recognition described in Section 3.1 and grasp
type estimation described in Section 3.2.

Figure 2 shows the overall flow of the proposed teleoperation method, detailed below:

1. Acquisition of the image by the high-speed camera:
First, images can be captured by the high-speed camera at 1000 fps.

2. Estimation of finger position by CNN and finger tracking by high-speed image
processing:
The CNN and finger tracking are executed on the images. The calculation process
of the CNN is run at 100 Hz, and finger tracking is run at 1000 Hz; the results of the
CNN are interpolated by using the results of finger tracking. As a result, the finger
positions are recognized at 1000 Hz.

3. Estimation of grasp type by decision tree classifier:
Based on the finger positions, grasp type estimation is performed by using a decision
tree classifier.

4. Grasping motion of the high-speed robot hand:
According to the estimated grasp type, the high-speed robot hand is controlled to
grasp the object.

Section 3.1 Section 3.2

Figure 2. Overall flow of the proposed teleoperation method.

3.1. High-Speed Finger Position Recognition with CNN

This subsection explains the method for high-speed finger position recognition. By
recognizing the finger positions at high speed (for instance, 1000 fps), we can reduce the
latency from the human hand motion to the robot hand motion and estimate the grasp type
with high accuracy. Conventional image-processing methods are too slow (around 30 fps)
for actual application. This research can solve the speed issue with the image processing
conventionally used.

The proposed method was implemented by using machine learning and high-speed
image-processing technologies. As the machine learning method, we used a Convolutional
Neural Network (CNN). As the high-speed image processing method, we used tracking of
a Region Of Interest (ROI) and image processing of the ROI. Here, the ROI was extremely
small for the full image size and was set at the position of the result of the CNN, namely
roughly at the position of the fingers.

3.1.1. Estimation of Finger Position by CNN

By using the CNN, we estimated the positions of six points (five fingertips and the
center position of the palm) in the 2D image captured by the high-speed camera. The
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advantages of using the CNN to recognize hand positions include robustness against
finger-to-finger occlusion and robustness against background effects.

The model architecture of the CNN is as follows:

• Input: an array of 128 × 128 × 1;
• Output: 12 values;
• Alternating layers: six Convolution layers and six Max Pooling layers;
• Dropout layer placed before the output layer;
• The filter size of the Convolution layers was 3 × 3, the number of filters 32, and the

stride 1;
• The pool size of Max Pooling was 2 × 2.

This architecture was created by referring to a model [32] used for image classification
and modifying it according to handling multiple-output regression problems.

In addition, the value of Dropout was set at 0.1, and the activation function and
parameter optimization were Relu and RMSprop [33], respectively. The loss was calculated
using the Mean-Squared Error (MSE). Adding the Dropout layer was expected to suppress
overlearning, and reducing the number of layers was expected to be effective in suppressing
overlearning and reducing inference and learning times [34].

Figure 3 shows an example of annotation on a hand image, where the annotated
positions indicating the center points of the fingertips and palms of the five fingers are
shown as blue dots.

Figure 3. Annotation result of fingertip positions.

3.1.2. Finger Tracking by High-Speed Image Processing

Since the estimation by the CNN is much slower than imaging by the high-speed
camera and there are many frames where the hand position cannot be recognized during
the estimation by the CNN, the CNN processing becomes the rate-limiting step of the
system. While compensating for the frames where the CNN estimation is not performed,
we achieved real-time acquisition of the hand position. Figure 4 [35] shows a schematic
of the method that combines CNN estimation performed at low frequency with high-
frequency hand tracking to obtain the hand position. In Figure 4, the orange dots indicate
the execution of the CNN, and the gray dots indicate the execution of hand tracking. By
performing hand tracking in frames where the CNN is not performed, the hand position
can be obtained at high frequency.
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Figure 4. Concept of fusing the CNN and finger tracking.

Next, we explain the requirements that the hand-tracking method should satisfy.
First, in order to perform real-time hand position recognition, information obtained in
frames after the frame to be tracked cannot be used. For example, if we perform linear
interpolation of two CNN results to interpolate the hand position in the frame between
the CNN steps, we need to wait for the second CNN to be executed, which impairs the
real-time performance of the system. Therefore, it is necessary to track the hand based on
the information obtained from the frame to be processed and the earlier frames.

In addition, it is desirable to obtain the data by measurement rather than by prediction.
This is because it is not always possible to accurately recognize high-speed and minute
hand movements if the current hand position is inferred from the trend of past hand
positions. By calculating the current hand position from the information from the current
frame, instead of predicting based on the information from the past frames, we can achieve
more accurate recognition of sudden hand movements.

In this study, we propose a real-time, measurement-based recognition method for
hand positions in frames where the CNN is not performed. This method involves hand
tracking using frame-to-frame differences of fingertip center-of-gravity positions. The
proposed hand-tracking method calculates the hand position in the corresponding frame
by using three data sets: the hand position from the past CNN estimation results, the image
of the frame in which the CNN was executed, and the image of the corresponding frame.
As the amount of hand movement between frames, we calculated the difference in hand
positions from the two images and added it to the hand position estimated by the CNN to
treat it as the hand position in the corresponding frame.

The following is the specific method of calculating the hand position when the most
recent frame in which the CNN is executed is n, the frame in which the tracking process is
performed is n + k, and the frame in which the CNN is executed again is n + T:

1. n-th frame: CNN
In the n-th frame, let an estimated fingertip position obtained by the CNN be Pn.
Using Equation (2) below, the image is binarized, the ROI with the center position Pn
is extracted, and the center of the fingertip in the ROI is assumed to be Cn (Figure 5a).
In the image binarization, the original image and the binarized image are src(i, j) and
f (i.j), respectively. Furthermore, the threshold of the image binarization is set at thre.

f (i, j) =
{

0 if src(i, j) < thre
1 otherwise

(2)

The image moment is represented by mpq (Equation (3)), and the center position (Cn)
of the fingertip in the ROI is (m10/m00, m01/m00):

mpq = ∑
i

∑
j

ip jq f (i, j) (3)
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The value of Pn is substituted for the fingertip position Qn in the n-th frame.

Qn = Pn (4)

2. (n + k)-th frame: Finger tracking
After binarizing the image in the (n + k)-th frame (0 < k < T), the ROI with the center
position Pn is extracted, and the center of the fingertip in the ROI is assumed to be
Cn+k (Figure 5b). At that time, let the finger position in the (n + k)-th frame be Qn+k,
calculated by the following equation:

Qn+k = Pn + Cn+k − Cn (5)

Figure 5. An example of finger tracking: (a,b) show images at the n-th and (n+ k)-th frames, respectively.

If the hand-tracking module receives a new CNN estimation result from the CNN
module every T frames, where T is a predefined constant, and updates the result for
processing, the hand-tracking process will have to wait for every frame that exceeds T for
inference by the CNN. When the number of frames required for inference by the CNN
exceeds T, the hand-tracking process needs to wait. This increases the latency of hand
tracking, since the inference time of the CNN may vary in actual execution and the inference
result may not be sent by the CNN module even after T frames have passed. On the other
hand, if the CNN results are updated in frames received from the CNN module instead of
in frames at regular intervals, the latency is reduced because the last received CNN result
is used even if the CNN result is delayed. The latency is reduced because the last received
CNN result is used even if the transmission of the CNN result is delayed.

Based on the above, we devised two different methods for hand tracking with and
without a waiting time for the CNN estimation results: a low-latency mode with a variable T
value and a high-accuracy mode with a constant T value. The low-latency mode is effective
for applications where low latency is more important than accuracy, such as anticipating
human actions. On the other hand, the high-accuracy mode is suitable for applications
where accurate acquisition of hand positions is more important than low latency, such
as precise mechanical operations. In this research, we adopted the low-latency mode to
track the human hand motion, because we aimed at the development of a teleoperation
system with high speed and low latency. An overview of the algorithm for the low-latency
mode is shown in Algorithm 1. The algorithm for the high-accuracy mode is shown in
Algorithm A1 in Appendix A.
The characteristics of the two modes are summarized below:
Algorithm 1. Low-latency mode:
As the result of the CNN, which is used for finger tracking, the latest result is utilized. The
advantage is that the latency is reduced because no time is required to wait for the CNN
results. The disadvantage is that if the CNN processing is delayed, the tracking process
will be based on the CNN results for distant frames, which will reduce the accuracy.
Algorithm A1. High-accuracy mode:
By fixing the interval T of the number of frames at which the CNN is executed, the process
of updating the estimate by CNN is performed at fixed intervals. The advantage is that
hand tracking is based on frequently acquired CNNs, which improves accuracy. The
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disadvantage is that when the CNN processing is delayed, the latency increases because
there is a waiting time for updating the CNN results before the tracking process starts.

Algorithm 1 Finger tracking with low latency.

1: resultCNN {CNN result to receive}
2: resultFT {Finger tracking result to send}
3: while True do
4: if resultCNN is received then
5: calculate Cn
6: resultFT ← resultCNN
7: else
8: calculate Cn+k
9: resultFT ← resultCNN + Cn+k − Cn

10: end if
11: send resultFT
12: end while

3.2. Grasp Type Estimation

This subsection explains the method for estimating the grasp type on the basis of the
results of the high-speed finger tracking. Furthermore, we explain the robot hand motion
according to the estimated grasp type.

3.2.1. Estimation of Grasp Type by Decision Tree

We also used machine learning technology to estimate the grasp type on the basis of
the finger position and the center position of the palm, which are estimated by the CNN and
hand tracking at high speed. As representative grasp types to be estimated, we considered
two grasp types: (1) a power grasp using the palm of the hand and (2) a precision grasp
using only the fingertips. As a result, we categorized the grasps to be estimated into three
types: “power grasp”, “precision grasp”, and “non-grasp”, as shown in Figure 6. In the
“power grasp”, all four fingers, and not the thumb, move in the same way and tend to
face the thumb, whereas in the “precision grasp”, the positions of the thumb and index
finger tend to separate from those of the little finger and ring finger. The “non-grasp” state
corresponds to the extended state of the fingers.

power grasp precision grasp non grasp

Figure 6. Differences among power grasp (left), precision grasp (middle), and non-grasp (right).

To accurately estimate the grasp type, we used decision trees (decision tree classifier)
as the machine learning method. Decision trees have the features of fast classification
and readability of the estimation criteria. In particular, the ease of interpretation of the
estimation criteria and the possibility of creating algorithms with adjustments are reasons
for using decision trees as a classification method.

Preprocessing of hand position data:

In order to improve the accuracy of the decision tree, we preprocessed the input data,
namely the hand positions (Figure 7). In the preprocessing, we first calculate the distance
between the middle finger and the palm of the hand in the frame with the fingers extended
as a hand size reference to calibrate the hand size. When the coordinates of the middle
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finger and the palm of the hand in the image of the frame to be calibrated are (xm0, ym0)
and (xp0, yp0), respectively, the distance between the two points can be given by

r0 =
√
(xm0 − xp0)2 + (ym0 − yp0)2. (6)

Figure 7. Direction of middle finger and angle between each finger and middle finger.

Next, we calculate the position of the hand, (r, θ), in the polar coordinate system with
the palm of the hand serving as the origin and the direction of extension of the middle finger
serving as the x-axis, based on the position of the hand represented by the coordinates
in the image. When the coordinates of the middle finger and the palm in the image are
(xm, ym) and (xp, yp), respectively, the declination angle of the polar coordinate of the
middle finger, θm, is expressed by the following formula:

θm = arctan
(

ym − yp

xm − xp

)
. (7)

Furthermore, the polar coordinate (ri, θi) corresponding to the coordinate (xi, yi) of
finger i in the image is expressed by the following equation with the direction of the middle
fingertip serving as the positive direction of the x-axis. To calibrate the size of the hand, we
divide ri by the hand size reference r0.

ri =
1
r0

√
(xi − xp)2 + (yi − yp)2 (8)

θi = arctan
(

yi − yp

xi − xp

)
− θm (9)

The vector r containing the distance (ri) of each finger and the vector Θ containing
the declination angle (θi) obtained in this way for each frame are used as inputs to the
decision tree. By using the relative positions of the fingers with respect to the palm in polar
coordinates as inputs, the data to be focused on are clarified, and by dividing the data by the
size of the hand with the fingers extended, the characteristics of the hand morphology can
be extracted while suppressing the effects of differences in hand size between individuals
and differences in the distance between fingers and camera lens for each execution.

3.2.2. Grasping Motion of High-Speed Robot Hand

The object is grasped by the high-speed robot hand according to the result of the
high-speed grasp type estimation described above.

The middle finger of the robot hand has two joints, that is the root and tip links, and the
left and right fingers also have three joints, the root, tip, and rotation around the palm. The
root and tip links operate in the vertical direction to bend and stretch the fingers, allowing
them to wrap around objects. The rotation joint around the palm moves horizontally and
can change its angle to face the middle finger, which enables stable grasping. The wrist
part of the robot hand has two joints, that is flexion/extension and rotation joints, which
enables the finger to move closer to the object to be grasped.
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Since the time required to rotate the finger joint 180 deg is 0.1 s, it takes approximately
50 ms to close the finger from the open position to 90 deg for grasping. From our research
using a high-speed control system, the latency from the image input to the torque input
of the robot hand is about 3 ms [36]. If the value of the estimated grasping configuration
oscillates, the target angle is frequently changed, and the robot hand becomes unstable, so
the grasping operation is started when the same grasp type is received continuously for a
certain number of frames.

4. Experiments and Evaluations

This section explains the experiments, experimental results, and evaluations for finger
position recognition (Section 4.1—Exp. 1-A), grasp type estimation (Section 4.2—Exp. 1-B),
and teleoperated grasping by a robot hand (Section 4.3—Exp. 2), respectively. Figure 8
shows an overview of the experiments and evaluations for each part.

Section 4.3 - Exp. 2

Section 4.1 - Exp. 1-A Section 4.2 - Exp. 1-B

Figure 8. Overview of experiments and evaluations.

4.1. Finger Position Recognition

This subsection explains the experiment and evaluation for finger position recognition
based on the proposed method with high-speed image processing and the CNN.

4.1.1. Preparation for Experiment

We trained the CNN model described in Section 3, which estimated hand positions
from images. To increase the amount of data for training, we performed data augmentation
by random scaling (0.7∼1.0) and rotation (−60∼60 deg.) operations. As a result, we
could obtain 9000 images from 1000 images by data augmentation. The training process
was performed for 200 epochs, with 70% of the prepared data used as the training data
and 30% used as the validation data. The slope of the loss function calculated from the
Mean-Squared Error (MSE) became lower around epoch 30. When we calculated the Mean
Absolute Error (MAE) of the estimation results for the validation data, the MAE was less
than 10 pixels. The width of the fingers in the image was about 15 pixels, which means that
the hand position estimation was accurate enough for the hand-tracking process. As a result
of 5 trials of 100 consecutive inferences, the mean and standard deviation of the inference
times were 7.03 ms and 1.46 ms, respectively. Furthermore, the longest was 24.6 ms, and
the shortest was 3.75 ms. Thus, an average of seven hand-tracking runs was taken for each
update of the CNN results for 1000 fps of image acquisition by the high-speed camera.

4.1.2. Experiment—1-A

The exposure time of the high-speed camera was set to 0.5 ms, the image size to 400
pixels wide and 300 pixels high, the square ROI for the hand-tracking process to 40 pixels by
40 pixels, and the threshold for the binarization process to thre = 20. In such a situation, we
captured the hand opening and closing in 1000 frames during 1 s and applied the proposed
hand tracking for hand position recognition. The images captured in the experiment were
stored, the CNN was run offline on all images, and the results were used as reference data
for the comparison method.
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4.1.3. Results

The output speed of the hand position was 1000 Hz, which was the same speed as the
imaging. The latency between the end of imaging and the output of the hand position was
also 1 ms.

Hand images are shown in Figure 9i: starting with the finger extended (Figure 9(i-a)),
bending the finger (Figure 9(i-b)), folding it back around Frame 400 (Figure 9(i-c)), and
stretched again (Figure 9(i-d)–(i-f)). Figure 9ii is a graph of the hand positions estimated
over 1000 frames by the proposed method. The image coordinates of the five fingers and
the palm center point are represented as light blue for the index finger, orange for the
middle finger, gray for the ring finger, yellow for the pinky finger, dark blue for the thumb,
and green for the palm.

The errors in the proposed method and the errors in the comparison method are shown
in Table 2. The average error of the five fingers in the proposed method was 1.06 pixels.
Furthermore, the error in the comparison method was 1.27 pixels, which is 17% bigger than
that in the proposed method. For all fingers, the error in the proposed method was smaller
than that of the comparison method. Note that 1 pixel in the hand image corresponds to
approximately 0.7 mm in the real world.

(i) Images obtained from a high-speed camera

(ii) (x, y) coordinates of each finger and palm

Figure 9. Result of finger tracking: (i) images obtained from the high-speed camera and (ii) (x, y)
coordinates of each finger and the palm.
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Table 2. Mean-Squared Error (MSE) of finger positions estimated by CNN w/ and w/o finger tracking.

Finger
MSE

with Finger Tracking/Pixel without Finger Tracking/Pixel
Index 0.95 1.03

Middle 0.97 1.24
Ring 1.19 1.60
Pinky 1.18 1.47

Thumb 0.99 1.02
Average 1.06 1.27

4.1.4. Discussion

First, we consider the execution speed of hand position recognition. From the experi-
mental results, the output speed of the hand position was 1000 Hz, which is the same as
that of the image capturing, indicating that the hand position recognition is fast enough.
In addition, the latency from the end of imaging to the output of the hand position was
1 ms, indicating that the total execution time of the inter-process data sharing and hand-
tracking process itself was 1 ms. Thus, the effectiveness of the proposed method described
in Section 3 was shown.

Next, we discuss the reason why the error in the proposed method is smaller than that
in the comparison method. In the proposed method, even for the frames where the CNN is
not executed, the hand position recognition at 1000 Hz by the tracking process can output
values close to the reference data. On the other hand, the comparison method outputs
the last CNN estimation result without updating it for the frames where the CNN is not
executed, and thus, the updating in the hand position recognition is limited to 100 Hz. The
effectiveness of the proposed method for fast hand tracking is the reason why the proposed
method has superior accuracy.

4.2. Grasp Type Estimation

This subsection explains the experiment and evaluation for grasp type estimation
based on the finger position recognition described above.

4.2.1. Preparation for the Experiment

We trained a decision tree that outputs a grasp type label using the hand position
as input. First, we captured 49 images of a power grasp, 63 images of a precision grasp,
and 52 images of a non-grasp and annotated them with the grasp type label. Next, we
annotated the hand positions in the images by estimating the CNN trained in the above
subsection. After preprocessing, we transformed the hand positions represented in the
Cartesian coordinate system into a polar coordinate system centered on the palm of the
hand and normalized them by hand size to obtain 10 variables. The number of variables in
the decision tree was two: length r and angle θ for each of the five types of fingers (index,
middle, ring, pinky, and thumb). The length r is the ratio of the distance from the center of
the palm to the tip of the middle finger with the fingers extended to the distance from the
palm to each fingertip. The angle θ is the angle between the finger and the middle finger,
with the thumb direction being positive and the little finger direction being negative.

Based on the above variables as inputs, a decision tree was trained using the leave-
one-out method [37]. The model was trained with the depth of the decision tree from 1
to 10. As a result, when the depth was three, the accuracy was about 0.94, which can be
considered to be sufficient. Thus, we decided that the depth of the tree structure should
be set at three. Furthermore, the parameters of the decision tree such as the classification
conditions, Gini coefficient, and depth were obtained.
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4.2.2. Experiment—1-B

We used a series of images of the grasping motion to evaluate the learned decision tree.
We took a series of 500 frames of hand images of each type of grasping motion, starting
from the open fingers, performing a power or precision grasp, and then, opening the fingers
again. The exposure time of the high-speed camera was 0.5 ms, the image size 400 pixels
(width) × 300 pixels (height), and the frame rate 1000 fps. Based on the hand positions in
the images recognized by the CNN and hand tracking (accurate mode), we performed the
grasp type estimation using the decision tree and calculated the correct answer rate.

4.2.3. Result

Figures 10 and 11 show the results of grasp type estimation for a series of images
and the hand image in a representative frame. The horizontal axes in Figures 10 and 11
represent the frame number, and the vertical axis also represents the label of the grasp type,
where 0 indicates non-grasp, 1 indicates a power grasp, and 2 indicates a precision grasp.
Figure 10 is the result for the power grasp motion, which is a non-grasp at Frame 0 (a),
judged as a power grasp at Frame 82 (b), a continued power grasp (c), and a non-grasp
again at Frame 440 (d). Figure 11 is the result for the precision grasp motion, which is a
non-grasp at Frame 0 (a), judged as a precision grasp at Frame 72 (b), a continued precision
grasp (c), and a non-grasp again at Frame 440 (d). No misjudgments occurred in either the
power grasp or the precision grasp experiments.

4.2.4. Discussion

First, we discuss the stability of the grasp type estimation by the proposed method.
From the results shown in Figures 10 and 11, there was no misjudgment of the grasp type
estimation. In addition, high-accuracy grasp type estimation was achieved successfully.

Next, we describe the processing speed of the grasp type estimation. The mean and
standard deviation of the inference speed for three trials of 1000 consecutive inferences
were 0.07 ms and 0.02 ms, respectively. This is much shorter than 1 ms and is fast enough
for a system operating at 1000 Hz.

Finally, the hand position recognition and grasp type estimation for the hand images
evaluated in Experiment 1-A and 1-B are shown in Figure 12. From this result, we can
conclude that the effectiveness of the proposed method for the hand position recognition
and grasp type estimation is confirmed.

Figure 10. Estimation result in the case of power grasp.
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Figure 11. Estimation result in the case of precision grasp.

Figure 12. Difference among non-grasp, power grasp, and precision grasp and fingertip and palm
positions (white circles).

4.3. Teleoperated Grasp by Robot Hand

This subsection explains the experiment and evaluation for teleoperated grasping by a
robot hand on the basis of human hand motion sensing.

4.3.1. Experiment—2

In this experiment, the robot hand grasped a Styrofoam stick-shaped object with a
diameter of 0.05 m and a length of 0.3 m, which was suspended by a thread in the robot’s
range of motion. The human operator performed a “power grasp” or a “precision grasp”
with his/her hand in the field of view of the high-speed camera. The real-time controller
calculated the reference joint angles of the robot hand for the grasping operation according
to the received grasp type and provided the reference joint angles as step inputs to the
robot hand through the real-time control system.

4.3.2. Results

A video of the grasping process of the robot hand can be seen at our web site [38],
and the hand fingers of the robot hand and the operator are shown in Figure 13. From
this result, we confirmed the effectiveness of the proposed teleoperation of the robot hand
based on the hand tracking and grasp type estimation.

4.3.3. Discussion

Since the operating frequency of both image processing and robot control was 1000 Hz
in the experiment, the operating frequency of the entire system was 1000 Hz. Therefore,
the robot hand manipulation with high-speed image processing proposed in this study
achieved the target operating frequency of 1000 Hz.

Next, we consider the latency of the entire system. We define the latency as the time
from the imaging to the completion of the robot hand motion. That is to say, the latency can
be evaluated from the total time for the image acquisition, image processing, including hand
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tracking and grasp type estimation, transmitting the results from the image-processing PC
to the real-time controller, and implementing robot hand motion.

non grasp precision grasp power grasp

Figure 13. Experimental result of teleoperation; left, middle, and right show non-grasp, precision
grasp, and power grasp, respectively.

First, the latency from the end of imaging to the end of transmission of the image
processing result was 1 ms. Second, the latency from the transmission of the result by the
image-processing PC to the output of the control input by the real-time controller was from
2∼3 ms, and the worst case was 3 ms. Next, we need to consider the latency from the
output of the control input to the completion of the robot hand motion. The time required
to converge to ±10% of the reference joint angle is shown in Table 3. From the top in
Table 3, “Joint” means the root and tip links of the middle finger and the root, tip, and
rotation of the left and right thumbs around the palm, respectively. Furthermore, Figure 14
shows the step response of the tip link of the left and right thumbs from an initial value of
0.0 rad to a reference joint angle of 0.8 rad. The dashed line depicts the range of ±10% of
the reference joint angle 0.8 rad, and the slowest convergence time was 36 ms. Therefore, it
took 36 ms to complete the grasp after the real-time controller received the grasp type. As
described above, the latency of the entire system was 1 ms for the imaging and the grasp
type estimation, 3 ms for the communication between the image-processing PC and the
real-time controller, and 36 ms for the robot operation, totaling 40 ms for the teleoperation
of the robot hand. Since this value (40 ms) is close to the sampling time of the human eye
(around 33 ms), our developed system is fast enough for robot teleoperation.

Table 3. Time for convergence of robot hand joint angle to ±10% of the reference angle.

Finger Joint Time/ms

Middle finger root 25
top 25
root 26

Left and right thumbs top 36
rotation around palm 18

Figure 15 shows the timeline of the human and robot grasping motions. From the
experimental results, it took about 80 ms from the time the hand starts the grasping motion
to the time the hand form that is estimated to be a specific grasping form is captured and
150 ms until the time the motion is completed. On the other hand, it took 40 ms for the
robotic hand to complete the grasp after the hand configuration that is estimated to be a
specific grasp configuration is captured. In other words, the grasping by the robotic hand is
completed when the grasping motion by the fingers is completed at 80 ms, and the remote
grasping operation using the robotic hand is realized by anticipating the motion from the
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human hand morphology during the grasping motion, called pre-shaping. Consequently,
we achieved teleoperated robot hand control beyond the speed of human hand motion
by using the proposed method and system. This result may contribute to compensate the
latency due to the network in the teleoperation.

Figure 14. Joint response of high-speed robot hand.

Grasp started Grasp finishedPre-shaping detected

Grasp started Grasp finished

Figure 15. Time series of human hand motion and robot hand motion.

5. Conclusions

The purpose of the work described in this paper was to develop an intuitive and fast
telerobot grasping and manipulation system, which requires fast recognition of the intended
grasping method from the operator’s gestures. In this paper, we proposed a method for
fast recognition of grasping intentions by obtaining hand positions from gesture images
and estimating the grasp type from the hand positions by machine learning. In particular,
we combined machine learning and tracking to achieve both high speed and accuracy in
hand position acquisition. In the evaluation experiments of the hand position recognition
method, we achieved a mean-squared error of 1.06 pixel, an operating frequency of 1000 Hz,
and a latency of 1 ms. In the evaluation experiment of the grasp type estimation, we also
achieved an accuracy of 94%, and the inference time was 0.07 ms. These results show that
the operating frequency of the system from gesture capturing to grasping form estimation
was 1000 Hz and the latency was 1 ms, which confirms the effectiveness of the proposed
method. As a result of the remote grasping operation experiment by the high-speed robot
hand using the high-speed grasping form estimation system, the grasping operation was
completed in 40 ms after the hand image was captured. This is the time when the grasping
operation by the fingers was completed at 80%, and the high-speed tele-grasping operation
was realized successfully.
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The first application of the system proposed in this study is HMI, which uses high-
speed gesture recognition. In this study, the grasping form was obtained from the hand
position. However, the proposed method can be applied to HMI that supports various
hand gestures because it is easy to obtain other types of gestures. Next, human–machine
coordination using fast and accurate hand position recognition can be considered as an
application. Since the hand positions are acquired with high speed and high accuracy, the
system can be applied to human–machine coordination using not only gestures, but also
hand positions, and remote master–slave operation of robots by mapping.

There are still some issues to be solved in this research. One of them is the 3D
measurement of the hand position. Currently, the hand position is only measured in two
dimensions, which restricts the orientation of the operator’s hand, but we believe that
three-dimensional measurement will become possible by using multiple cameras, color
information, and depth information. The other is hand position recognition against a
miscellaneous background. In this study, the background of the hand image was black, but
by training the machine learning model using images with various backgrounds, the hand
position can be recognized without being affected by the background, and the applicability
of the system will be enhanced. These issues described above will be solved in the future.
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Appendix A

In this Appendix, we show an algorithm of another mode, which is a high-accuracy
mode for finger tracking, shown in Algorithm A1.

Algorithm A1 Finger tracking with high accuracy

1: f rame number ← 0
2: while True do
3: if f rame number (mod T) ≡ 0 then
4: repeat
5: wait
6: until resultCNN is received
7: calculate Cn
8: resultFT ← resultCNN
9: else

10: calculate Cn+k
11: resultFT ← resultCNN + Cn+k − Cn
12: end if
13: send resultFT
14: f rame number ← f rame number + 1
15: end while
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Abstract: Human–Robot Interaction (HRI) for collaborative robots has become an active research
topic recently. Collaborative robots assist human workers in their tasks and improve their efficiency.
However, the worker should also feel safe and comfortable while interacting with the robot. In
this paper, we propose a human-following motion planning and control scheme for a collaborative
robot which supplies the necessary parts and tools to a worker in an assembly process in a factory.
In our proposed scheme, a 3-D sensing system is employed to measure the skeletal data of the
worker. At each sampling time of the sensing system, an optimal delivery position is estimated using
the real-time worker data. At the same time, the future positions of the worker are predicted as
probabilistic distributions. A Model Predictive Control (MPC)-based trajectory planner is used to
calculate a robot trajectory that supplies the required parts and tools to the worker and follows the
predicted future positions of the worker. We have installed our proposed scheme in a collaborative
robot system with a 2-DOF planar manipulator. Experimental results show that the proposed scheme
enables the robot to provide anytime assistance to a worker who is moving around in the workspace
while ensuring the safety and comfort of the worker.

Keywords: human–robot interaction; human–robot collaboration; collaborative robots; motion
planning; robot control; human motion prediction; human-following robots

1. Introduction

The concept of collaborative robots was introduced in the early 1990s. The first
collaborative system was proposed by Troccaz et al. in 1993 [1]. This system uses a passive
robot arm to ensure safe operation during medical procedures. In 1996, Colgate et al.
developed a passive collaborative robot system and applied it to the vehicle’s door assembly
process carried out by a human worker [2]. In 1999, Yamada et al. proposed a skill-assist
system to help a human worker carry a heavy load [3].

The collaborative robot systems are being actively introduced in the manufacturing
industry. The International Organization of Standardization (ISO) amended its robot
safety standards ISO 10128-1 [4] and 10128-2 [5] in 2011 to include the safety guidelines
for human-robot collaboration. This led to an exponential rise in collaborative robot
research and development. Today, many companies are manufacturing their own versions
of collaborative robots, and these robots are being used in industries all over the world.
Collaborative robots are expected to play a major role in the Industry 5.0 environments
where people will work together with robots and smart machines [6].

In 2010, a 2-DOF co-worker robot “PaDY” (in-time Parts and tools Delivery to You
robot) was developed in our lab to assist a factory worker in an automobile assembly
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process [7]. This process comprises a set of assembly tasks that are carried out by a
worker while moving around the car body. PaDY assists the worker by delivering the
necessary parts and tools to him/her for each task. The original control system of PaDY
was developed based on a statistical analysis of the worker’s movements [7].

Many studies have been carried out on the human–robot collaborative system. Hawkins
et al. proposed an inference mechanism of human action based on a probabilistic model
to achieve wait-sensitive robot motion planning in 2013 [8]. D’Arpino et al. proposed fast
target prediction of human reaching motion for human–robot collaborative tasks in 2015 [9].
Unhelkar et al. designed a human-aware robotic system, in which human motion prediction
is used to achieve a safe and efficient part-delivery task between the robot and the stationary
human worker in 2018 [10]. A recent survey on the sensors and techniques used for human
detection and action recognition in industrial environments can be seen in [11]. The studies
cited above [8–10] have improved efficiency of the collaborative tasks by incorporating
human motion prediction into robot motion planning.

Human motion prediction was also introduced to PaDY. In 2012, the delivery oper-
ation delay of the robot–human handover tasks was reduced by utilizing prediction of
the worker’s arrival time at the predetermined working position [12]. In 2019, a motion
planning system was developed which optimized a robot trajectory by taking the prediction
uncertainty of the worker’s movement into account [13]. In those studies [12,13], the robot
repeats the delivery motion from its home position to each predetermined assembly posi-
tion. If the robot can follow the worker during the assembly process, the worker can pick
up necessary parts and tools from the robot at any time. Thus, more efficient collaborative
work could be expected by introducing human-following motion.

In this paper, human-following motion of the collaborative robot is proposed for
delivery of parts and tools to the worker. The human-following collaborative robot system
needs to stay close to the human worker, while avoiding collision with the worker under
the velocity and acceleration constraints. The contribution of this paper is summarized
as follows:

1. The proposed human-following motion planning and control scheme enables the
worker to pick up the necessary parts and tools when needed.

2. The proposed scheme achieves the human-following motion with a sufficiently small
tracking error without adversely affecting the safety and comfort of the worker.

3. Experiments conducted in an environment similar to a real automobile assembly
process illustrate the effectiveness of the proposed scheme.

This is a quantitative study where we conducted the experiments ourselves and
analyzed the data collected from these experiments to deduce the results. The proposed
scheme predicts the motion of the worker and calculates an optimal delivery position for
the handover of parts and tools from the worker to the robot for each task of the assembly
process. This scheme has been designed for a single worker operating within his/her
workspace. It is not designed for the cases when multiple workers are operating in the
same workspace, or when the worker moves beyond the workspace.

The rest of the paper is organized as follows. Section 2 describes the related works.
Section 3 gives an overview of the proposed scheme, including the delivery position
determination, the worker’s motion prediction, and trajectory planning and control scheme.
The experimental results are discussed in Section 4. Section 5 concludes this paper.

2. Related Works

In this section, we present a review of the existing research on human–robot handover
tasks, human-following robots, and motion/task planning based on human motion prediction.

2.1. Human–Robot Handover

Some studies have considered the problem of psychological comfort of the human
receiver during the handover task. Baraglia et al. addressed the issue of whether and
when a robot should take the initiative [14]. Cakmak et al. advocated the inclusion of user
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preferences while calculating handover position [15]. They also identified that a major
cause of delay in the handover action is the failure to convey the intention and timing of
handing over the object from the robot to the human [16]. Although these studies deal with
important issues for improving the human–robot collaboration, it is still difficult to apply
them in actual applications because psychological factors cannot be directly observed.

Some other studies used observable physical characteristics of the human worker
for planning a robot motion that is safe and comfortable for the worker. Mainprice et al.
proposed a motion planning scheme for human–robot collaboration considering HRI
constraints such as constraints of distance, visibility and arm comfort of the worker [17].
Aleotti et al. devised a scheme in which the object is delivered in such a way that its
most easily graspable part is directed towards the worker [18]. Sisbot et al. proposed
a human-aware motion planner that is safe, comfortable and socially acceptable for the
human worker [19].

The techniques and algorithms mentioned above operate with the assumption that
the worker remains stationary in the environment. To solve the problem of providing
assistance to a worker who moves around in the environment, we propose a human-
following approach with HRI constraints in this paper.

2.2. Human-Following Robots

Several techniques have been proposed to carry out human-following motion in
various robot applications. One of the first human-following approaches was proposed by
Nagumo et al., in which an LED device carried by the human was detected and tracked by
the robot using a camera [20].

Hirai et al. performed visual tracking of the human back and shoulder in order to
follow a person [21]. Yoshimi et al. used several parameters including the distance, speed,
color and texture of human clothes to achieve stable tracking in complex situations [22].
Morioka et al. used the reference velocities for human-following control calculated from es-
timated human position under the uncertainty of the recognition [23]. Suda et al. proposed
a human–robot cooperative handling control using force and moment information [24].

The techniques cited in this section focus on performing human-following motion of
the robot to achieve safe and continuous tracking. However, these schemes use the feedback
of the observed/estimated current position of the worker. This makes it difficult for the
robot to keep up with the worker who is continuously moving around in the workspace.
In this paper, we solve this problem by applying human motion prediction and MPC.

2.3. Motion/Task Planning Based on Human Motion Prediction

In recent years, many studies have proposed motion planning using human motion
prediction. The predicted human motion is used to generate a safe robot trajectory. Main-
price et al. proposed to plan a motion that avoids the predicted occupancy of the 3D human
body [25]. Fridovich-Keil et al. proposed to plan a motion that avoids the risky region
calculated by the confidence-aware human motion prediction [26]. Park et al. proposed a
collision-free motion planner using the probabilistic collision checker [27].

Several studies have proposed robot task planning to achieve collaborative work
based on human motion prediction. Maeda et al. achieved a fluid human–robot handover
by estimating the phase of human motion [28]. Liu et al. presented a probabilistic model
for human motion prediction for task-level human–robot collaborative assembly [29].
Cheng et al. proposed an integrated framework for human–robot collaboration in which
the robot perceives and adapts to human actions [30].

Human motion prediction has been effectively used in various problems of human–
robot interaction. In this paper, we apply the human motion prediction to human-following
motion of the collaborative robot for delivery of parts/tools to a worker.
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3. Proposed Motion Planning and Control Scheme

3.1. System Architecture

Figure 1 shows the system architecture of our proposed scheme. This scheme consists
of three major parts:

1. Delivery position determination;
2. Worker’s motion prediction;
3. Trajectory planning and control.

Figure 1. System architecture.

In delivery position determination, an optimal delivery position is estimated using
an HRI-based cost function. This cost function is calculated using the skeletal data of the
worker measured by the 3-D vision sensor. In workers’ motion prediction, the position data
obtained from the vision sensor are used to predict the motion of the worker. Moreover,
after the completion of each work cycle, the worker’s model is updated using the stored
position data. In the trajectory planning step, an optimal trajectory from the robot’s current
position to the goal position is calculated using the receding horizon principle of Model
Predictive Control (MPC). The robot motion controller ensures that the robot follows the
calculated trajectory. The detailed description of these three parts of our scheme is given in
the subsequent subsections.

3.2. Delivery Position Determination

In our proposed scheme, the delivery position is determined by optimizing an HRI-
based cost function. This cost function includes terms related to the safety, visibility and
arm comfort of the worker. These terms are calculated from the worker’s skeletal data
observed by the 3-D vision sensor in real-time. This concept was first introduced by
Sisbot et al. for motion planning of mobile robots [31]. The analytical form of the HRI-
based cost function was proposed in our previous study [32]. Here, we provide a brief
description of the cost function and solver for determining the optimal delivery position.
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Let pdel ∈ R
n be the n dimensional delivery position, then the total cost Cost(pdel, sw)

is expressed as:

Cost(pdel, sw) = CV(pdel, sw) + CS(pdel, sw) + CA(pdel, sw)

where sw is latest sample of the worker’s skeletal data obtained from the sensor. CV(pdel, sw)
is the visibility cost that maintains the delivery position within the visual range of the
worker. This cost is expressed as a function of the difference between the worker’s body
orientation and the direction of the delivery position with respect to the worker’s body center.
CS(pdel, sw) is the safety cost that prevents the robot from colliding with the worker. This
cost is expressed as a function of the distance between the worker’s body center and the
delivery position. CA(pdel, sw) is the arm comfort cost that maintains the delivery position
within the suitable distance and orientation for the worker. This cost is a function of the joint
angles of the worker’s arm. In addition, this cost penalizes the delivery position where the
worker needs to use his/her non-dominant hand.

The optimal delivery position is calculated by minimizing the cost function Cost(pdel, sw).
Since Cost(pdel, sw) is a non-convex function, we use Transition-based Rapidly-exploring
Random Tree(T-RRT) method [33] to find the globally optimal solution. We apply T-RRT only
in the vicinity of the worker to calculate the optimal solution in real-time. The process of
determining the optimal delivery position is summarized in Algorithm 1.

Algorithm 1 Determination of Optimal Delivery Position using T-RRT

Input: Worker’s position pw,
Current sample of the worker’s skeleton sw,
Sampling range rs,
HRI cost function Cost(pdel, sw)

Output: Optimal delivery position pdel
1: Set the sampling area Snear using pw and rs
2: pcur ← Sample(Snear)
3: Costcur ← Cost(pcur, sw)
4: Counter ← 0
5: while Counter ≤ Countermax do
6: prand ← Sample(Snear)
7: pnew ← pcur + δ(prand − pcur)
8: Costnew ← Cost(pnew, sw)
9: if TransitionTest(Costnew, Costcur, dnew−cur) then

10: pcur ← pnew
11: Costcur ← Costnew
12: Counter ← 0
13: else
14: Counter ← Counter + 1
15: end if
16: end while
17: pdel ← pcur
18: return pdel

Figure 2 shows an example of the cost map in the workspace around the worker
calculated from the HRI constraints. The worker’s shoulder positions (red squares) and
the calculated delivery position (green circle) are shown in the figure. We can see that
the proposed solver can calculate the delivery position that has the minimum cost in the
cost map.
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Figure 2. Example of the cost map calculated from the HRI constraints and its optimal delivery position.

3.3. Worker’s Motion Prediction

The worker’s motion is predicted by using Gaussian Mixture Regression (GMR)
proposed in our previous work [34]. GMR models the worker’s past movements and
predicts his/her future movements in the workspace. Here, we provide a brief description
of the motion prediction using GMR.

Suppose that pc = p(t)
w ∈ R

n is the worker’s current position at time step t, ph =(
p(t−1)

w p(t−2)
w · · · p(t−d)

w

)T
∈ R

n×(d−1) is the position history, and d is the length of the
position history. GMR models the conditional probability density function pr(pc|ph)
whose expectation E[pc|ph] means the worker’s future position and variance V[pc|ph] is
the uncertainty of the prediction. The details of GMR calculation are shown in Appendix A.

The procedure for the long-term motion prediction using GMR is summarized in
Algorithm 2. The calculation to predict the worker’s position at the next time step is
repeated until the length of the predicted trajectory becomes equal to the maximum
prediction length Tp. The worker’s predicted motion is expressed as the sequence of

Gaussian distributions
(
N (tc)

w ,N (tc+1)
w , · · · N (tc+Tp)

w

)
starting from the current time tc. N(t)

w

is the worker’s predicted position distribution at step t expressed as:

N (t)
w = N (μ

(t)
w , Σ

(t)
w ) (1)

where μ
(t)
w is the mean vector and Σ

(t)
w is the covariance matrix of worker’s predicted

position at step t.
If the worker repeats his/her normal movement, which is indicated in the process

chart of the assembly process, our prediction system can predict the worker’s movement ac-
curately enough for the system. According to our previous research, the RMSE (Root Mean
Square Error) of the worker’s movement was about 0.3 m [34]. The RMSE was calculated
by the comparison between the initial predicted worker’s movement and the observed
worker’s movement when the worker started to move to the next working position.

When the worker moves differently from his/her normal movement, it is not easy to
ensure the accuracy of the prediction. However, the proposed system operates safely even
in this case, since the variance of the predicted position of the worker is included in the
cost function used in the motion planning as shown in our previous study [13].
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Algorithm 2 Worker’s motion prediction using GMR

Input: Current time tc,
Current position p(tc)

c ,
Position history p(tc)

h ,
Max prediction length Tp

Output: Predicted trajectory
(
N (tc),N (tc+1), · · · ,N (tc+Tp)

)
1: while k = 1 to Tp do

2: p(tc+k)
h =

(
p(tc+k−1)

c p(tc+k−2)
c · · · p(tc+k−d−1)

c

)T

3: μ
(tc+k)
w = E[p(tc+k)

c |p(tc+k)
h ]

4: Σ
(tc+k)
w = V[p(tc+k)

c |p(tc+k)
h ]

5: p(tc+k)
c = E[p(tc+k)

c |p(tc+k)
h ]

6: end while

3.4. Trajectory Planning and Control

Figure 3 shows the concept of human-following motion planning using the worker’s
predicted motion. The sequence of the worker’s predicted position distributions (N (tc)

w ,

N (tc+1)
w , · · · N (tc+Tp)

w ) is given to the trajectory planner. The sequence of the robot states,
that is the robot trajectory

(
q(tc), q(tc+1), · · · q(tc+To)

)
, is calculated so that the robot’s state

at each time step follows the corresponding predicted position of the worker.

Figure 3. Concept of human-following motion planning based on the predicted trajectory of
the worker.

To achieve the prediction-based human-following robot motion, we use an MPC-based
planner to consider the evaluation function for finite time future robot states. This is a well-
known strategy and is often used in real-time robot applications such as task-parametrized
motion planning [35] and multi-agent motion planning [36].
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The cost function used in MPC consists of terminal cost and stage cost. The terminal
cost deals with the cost at the terminal state of the robot, which is the delivery position in
our case. Stage cost considers the state of the robot during the whole trajectory from the
current configuration to the goal configuration. A distinct feature of our scheme is that
the optimal delivery position, found by optimizing the HRI-based cost function, is used to
calculate the terminal cost. In addition, the predicted trajectory of the worker is used to
calculate the stage cost. This scheme plans the collision-free robot trajectory that follows
the moving worker efficiently under the safety cost constraint and the robot’s velocity and
acceleration constraints.

The cost function J used for the optimization of the proposed trajectory planner is
expressed as:

J = ϕ(q(tc + To)) +
∫ tc+To

tc
(L1(q̇(k)) + L2(q(k)) + L3(q(k)))dk (2)

where q = (θ, θ̇)T ∈ R
2Nj is the state vector of the manipulator, θ = (θ1, θ2, · · · , θNj)

T ∈ R
Nj

is the vector composed of the joint angles of the manipulator, Nj is the degrees of freedom
of the manipulator, To(To ≤ Tp) is the length of the trajectory (in our experiments, we
used To = Tp as a rule of thumb) and ϕ(q(tc + To)) is the terminal cost which prevents the
calculated trajectory of the robot from diverging. It is expressed as:

ϕ(q(tc + To)) =
1
2

(
FKNj(q(tc + To))− xdel

)T
R
(

FKNj(q(tc + To))− xdel

)
(3)

where FKj is the forward kinematics of the robot that transform the robot state q from joint
coordinates to position pj and velocity vj in the workspace coordinates. R is the diagonal
positive definite weighting matrix. xdel is the terminal state of the robot which is calculated
based on the optimal delivery position and the predicted mean position of the worker.

In this study, xdel becomes xdel =
(

μ
(tc+To)
w + pdel, 0

)T
, where μ

(tc+To)
w is the worker’s

predicted position at the end of the trajectory (tc + To), and pdel is the calculated delivery
position for the worker’s observed position. We calculate pdel after each sampling interval
and assume that the variation in pdel is negligibly small during the sampling interval of
the sensing system, which is 30 ms.

L1(q̇(k)), L2(q(k)) and L3(q(k)) are the stage costs which are expressed as:

L1(q̇(k)) =
1
2

N

∑
j=1

rj(Bvel,j(θ̇j(k)) + Bacc,j(θ̈j(k))) (4)

L2(q(k)) = w
Nj

∑
j=1

1

DM

(
FKp,j(q(k)), μ

(k)
w , Σ

(k)
w

) . (5)

L3(q(k)) =
1
2

N

∑
j=1

(FKp,j(q(k))− (μ
(k)
w + pdel)

T) Q (FKp,j(q(k))− (μ
(k)
w + pdel)) (6)

L1(q̇(k)) is the stage cost to maintain the robot velocity and acceleration within their
maximum limits. Bvel,j(θ̇j(k)) and Bacc,j(θ̈j(k)) are defined as:

Bvel,j(θ̇j(k)) =

{
0 (||θ̇j|| ≤ θ̇max,j)(

||θ̇j|| − θ̇max,j
)2

(||θ̇j|| > θ̇max,j)
(7)

Bacc,j(θ̈j(k)) =

{
0 (||θ̈j|| ≤ θ̈max,j)(

||θ̈j|| − θ̈max,j
)2

(||θ̈j|| > θ̈max,j)
(8)
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where θ̇max,j and θ̈max,j are the maximum velocity and maximum acceleration of the jth
joint, respectively.

L2(q(k)) is the stage cost that prevents the robot from hitting the worker. w is a
weighting coefficient of this cost function. DM(x, μ, Σ) =

√
(x − μ)TΣ−1(x − μ) is the

Mahalanobis distance that considers the variance of the probabilistic density distribution.
Using the Mahalanobis distance between the predicted worker’s position distribution
N (μ

(k)
w , Σ

(k)
w ) and the end-effector position FKp,j(q(k)) at step k, an artificial potential field

is constituted according to the predicted variance. The artificial potential becomes wider in
the direction of larger variance in the predicted position.

L3(q) is the stage cost to ensure that the robot follows the worker’s motion. Q is
the diagonal positive definite weighting matrix. This cost function is responsible for
the human-following motion of the robot based on the worker’s predicted trajectory as
shown in Figure 3. For each time step of the predicted position distribution of the worker
N (μ

(k)
w , Σ

(k)
w ), the desirable state of the robot is calculated so that the robot’s endpoint

follows the predicted mean position of the worker μ
(k)
w offset by the calculated delivery

position pdel.
Now we can define the optimization problem that will be solved by our proposed system.

minimize J

subject to q̇ = f (q, u)

q(t) = qcur

where f denotes the nonlinear term of the robot’s dynamics, u is the input vector, and q(t)
is the initial state of the trajectory which corresponds to the current state qcur of the robot.
To solve this optimization problem with the equality constraints described above, we use
the calculus of variations. The discretized Euler–Lagrange equations that the optimal
solution should satisfy are expressed as:

q(k+1) = q(k) + f (q(k), u(k))Δts, (9)

q(t) = qcur, (10)

λ(k) = λ(k+1) −
(

∂H
∂q

)T
(q(k+1), u(k), λ(k+1)), (11)

λ(t+To) =

(
∂ϕ

∂q

)T
(q(t+To)), (12)

∂H
∂u

(q(k), u(k), λ(k)) = 0, (13)

where H is the Hamiltonian and is defined as:

H(q, u, λ) = L1(q̇(k)) + L2(q(k)) + L3(q(k)) + λT f (q, u). (14)

The procedure for calculating the online trajectory is shown in Algorithm 3. After the
sequential optimization based on the gradient decent, we obtain the optimal trajectory(

q(t), q(t+1), · · · , q(t+To)
)

. For detailed calculations, please refer to our previous study [13].
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Algorithm 3 Robot Trajectory Generator

Input: Target delivery position pdel,
Predicted worker’s trajectory

(
N (t),N (t+1), · · · N (t+Tp)

)
,

Current state of the robot qcur,
Max length of the robot trajectory To

Output: Optimal trajectory is
(

q(t), q(t+1), · · · q(t+To)
)

1: Initialize the set of input vectors u
2: q(t) ⇐ qcur

3: while Σt+To
k=t | ∂H

∂u (q
(k+1), u(k), λ(k+1))| < ε do

4: while k = 1 to To do
5: q(t+k) ⇐ q(t+k−1) + f (q(t+k−1), u(t+k−1))Δts
6: end while
7: while k = To to 1 do

8: λ(t+k−1) ⇐ λ(t+k) −
(

∂H
∂q

)T
(q(t+k), u(t+k), λ(t+k+1))

9: end while
10: while i = 1 to To do

11: si ⇐
(

∂H
∂u

)T
(q(t+i−1), u(t+i−1), λ(t+i))

12: end while
13: u ⇐ u + cs
14: end while
15: while k = 1 to To do
16: q(t+k) ⇐ q(t+k−1) + f (q(t+k−1), u(t+k−1))Δts
17: end while

4. Experiment

4.1. Experimental Setup

To evaluate the performance of the proposed scheme in a real-world environment,
we used the planar manipulator PaDY proposed in our previous study [7]. PaDY was
designed to assist the workers of an automobile factory. A parts tray and a tool holder were
attached to the end-effector of PaDY to store the parts and tools required for car assembly
tasks. The robot delivers the parts and tools to the worker during the assembly process.
For the details of the hardware design of PaDY, please refer to [7].

The proposed scheme was installed in a computer with an Intel Core i7-3740QM (Quad-
core processor, 2.7 GHz) with 16GB memory. All calculations were done within 30 ms,
the sampling interval of the sensing system that tracks the position of the human worker.

We designed an experiment to demonstrate the effectiveness of the worker’s motion
prediction in the human-following behavior of our proposed scheme. Figure 4 shows the
experimental workspace and Figure 5 shows the top view of the setup for this experiment.
In this experiment, the worker needs to perform the following six tasks:

1. Tightening a bolt (Task 1);
2. Attaching three grommets (Task 2);
3. Attaching one grommet (Task 3, Task 4, Task 5, Task 6).

Each task is performed at a separate working position in the workspace. The experi-
ment is carried out as shown in Figure 6. The experiment is carried out as follows.

1. The experiment begins when the robot starts to approach the worker standing at the
working position for Task 1. The worker takes a bolt and the bolt tightening tool from
the robot (Figure 6a).

2. The worker performs Task 1 (Figure 6b).
3. The worker moves to the working position for Task 2 and the robot follows him.

The worker returns the bolt tightening tool to the tool holder (Figure 6c) and picks up
three grommets from the parts tray.
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4. The worker performs Task 2 (Figure 6d).
5. The worker moves to the working position for Task 3 and picks up a grommet from

the tray (Figure 6e).
6. The worker performs Task 3 (Figure 6f).
7. The worker moves to the working position for Task 4 and picks up a grommet from

the tray (Figure 6g).
8. The worker performs Task 4 (Figure 6h).
9. The worker moves to the working position for Task 5 and picks up another grommet

from the parts tray (Figure 6i).
10. The worker performs Task 5 (Figure 6j).
11. The worker moves to the working position Task 6 and picks up the last grommet from

the parts tray (Figure 6k).
12. The worker performs Task 6 (Figure 6l) and this concludes the experiment.

We performed this experiment with four different participants (A, B, C and D) to
evaluate the robustness of the system for different workers. Each participant is asked to
perform the complete work cycle ten times. The first trial is performed without using the
predicted motion of the worker. Whereas, in all other trials, the predicted motion of the
worker is used and the worker model is sequentially updated after completing each trial.

For more details about the experiment, please see the Supplementary Materials.

Figure 4. Experimental workspace.

Figure 5. Top view of the experimental setup.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Experiment showing a complete work cycle where six tasks are performed. (a) A bolt and the tool are picked up;
(b) Task 1 is performed; (c) The tool is returned and 3 grommets are picked up; (d) Task 2 is performed; (e) A grommet
is picked up; (f) Task 3 is performed; (g) A grommet is picked up; (h) Task 4 is performed; (i) A grommet is picked up;
(j) Task 5 is performed; (k) A grommet is picked up; (l) Task 6 is performed.

4.2. Tracking Performance

Figure 7a shows the estimated delivery position and the robot’s end-effector position
for trial 1 of a participant when the robot’s motion is calculated based on the observed
position of the worker without using the motion prediction. The black vertical lines show
the time when the worker performs each assembly task. Figure 7b shows the estimated
delivery position and the robot’s end-effector position for trial 10 of the same participant
when the robot’s motion is calculated based on the predicted position of the worker using
the proposed scheme.

At the beginning of the experiment, the robot is at its home position and the participant
is at the working position for Task 1. The robot starts its human-following motion after
arriving at the delivery position for Task 1 (at around 6 s in Figure 7a,b). We can see that
the robot keeps following the participant during the whole experiment in both schemes
(with and without the use of motion prediction).

The green line in Figure 7a,b shows the tracking error which is the difference between
the delivery position and the end-effector position. We can see that the maximum tracking
error is reduced from about 0.5 m to 0.3 m by using the motion prediction.
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(a) (b)

Figure 7. Tracking performance. (a) When motion prediction is not used; (b) When motion prediction is used.

It is not possible to completely eliminate the tracking error since the manipulator
used for the experiments has a mechanical torque limiter at each joint and the maximum
angular acceleration without activating the torque limiter is 90 deg/s2. In both Figure 7a,b,
a large tracking error around 30 s can be observed. This is because the participant makes
a large movement around 30 s and the robot cannot follow the participant because of its
acceleration limit.

4.3. Cycle Time

Figure 8 shows the comparison of the cycle time of the four participants in each trial.
We define cycle time as the time required for a participant to complete all six tasks of the
assembly process. In Figure 8, the cycle time of each trial is normalized by the time of
trial 1. Remember that motion prediction was not used in trial 1.

Figure 8. Comparison of Cycle Time.

We can see that the cycle time for each participant decreases as the number of trials
increases. The cycle time of trial 10 is reduced to 65.6–74.8% of the cycle time of trial 1. This
shows that motion prediction can improve the performance of participants and help them
complete the assembly process faster.

Note that the proposed system ignores the dynamics of the interaction between the
robot and the worker, assuming that the worker is well trained and the behavioral dynamics

53



Sensors 2021, 21, 8229

of the worker with respect to the robot’s movements can be ignored. If the effects of the
robot’s motion on the worker can be modeled, the system can better deal with the effect
of the interaction between the worker and the robot and a further improvement in the
worker’s time efficiency could be expected.

4.4. HRI-Based Cost

Table 1 shows the average and maximum HRI-based costs for each participant during
the human-following motion of the robot. Since the HRI-based cost increases as the safety
and comfort of the worker decreases, it is desirable to have a low HRI-based cost in
human–robot collaboration.

Table 1. Summary of HRI-based costs during the human-following motion for each worker.

Worker Average Cost (without Prediction) Average Cost (with Prediction) Max Cost (without Prediction) Max Cost (with Prediction)

Worker A 8.99 11.79 36.34 35.82

Worker B 12.73 9.90 38.17 34.44

Worker C 18.35 13.56 39.65 31.33

Worker D 16.30 17.50 31.47 31.26

In Table 1, we see that there are no significant differences in the average and maximum
HRI-based costs between trial 1 (when motion prediction is not used) and trial 10 (when
motion prediction is used) for all four participants. Therefore, we conclude that the
proposed prediction-based human-following control reduces the work cycle time without
adversely affecting the safety and comfort of the workers.

5. Conclusions

We proposed a human-following motion planning and control scheme for a collab-
orative robot which supplies the necessary parts and tools to a worker in an automobile
assembly process. The human-following motion of the collaborative robot makes it possible
to provide anytime assistance to the worker who is moving around in the workspace.

The proposed scheme calculates an optimal delivery position for the current position
of the worker by performing non-convex optimization of an HRI-based cost function.
Whenever the worker’s position changes, the new optimal delivery position is calculated.
Based on the observed movement of the worker, the motion of the worker is predicted and
the robot’s trajectory is updated in real-time using model predictive control to ensure a
smooth transition between the previous and new trajectories.

The proposed scheme was applied to a planar collaborative robot called PaDY. Experi-
ments were conducted in a real environment where a worker performed a car assembly
process with the assistance of the robot. The results of the experiments confirmed that our
proposed scheme provides better assistance to the worker, improves the work efficiency,
and ensures the safety and comfort of the worker.

This scheme has been designed for a single worker operating within his/her workspace.
It is not designed for the cases when multiple workers are operating in the same workspace,
or when the worker moves beyond the workspace. Moreover, we did not consider the
dynamics of interaction between the robot and the human, assuming that the human
worker in the factory is well trained and his/her behavior dynamics to the robot motion is
negligible. If the effects of the robot’s motion on the human can be modeled, the system
can better deal with the effect of the interaction and further improvement in time efficiency
could be expected.

We believe that the human-following approach has tremendous potential in the field
of collaborative robotics. The ability to provide anytime assistance is a key feature of
our proposed method, and we believe it will be very useful in many other collaborative
robot applications.
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Supplementary Materials: The supplementary material is available online at https://youtu.be/
-jkPoK5URdw (accessed on 4 December 2021), Video: Human-Following Motion Planning and
Control Scheme for Collaborative Robots.
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Abbreviations

The following abbreviations are used in this manuscript:

HRI Human–Robot Interaction
MPC Model Predictive Control
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PaDY In-time Parts and tools Delivery to You robot
T-RRT Transition-based Rapidly exploring Random Trees
GMR Gaussian Mixture Regression
RMSE Root Mean Square Error

Appendix A. Detail Calculation of Gaussian Mixture Regression

Suppose that pc = p(t)
w ∈ R

n is the worker’s current position at time step t, ph =(
p(t−1)

w p(t−2)
w · · · p(t−d)

w

)T
∈ R

n×(d−1) is the position history, and d is the order of the
autoregressive model. Then the joint distribution pr of pc and ph can be expressed as

pr(ph, pc) =
M

∑
m=1

πmN (ph, pc|μm, Σm), (A1)

where

μm =

[
μ

ph
m

μ
pc
m

]
, (A2)

Σm =

[
Σ

ph ph
m Σ

ph pc
m

Σ
pc ph
m Σ

pc pc
m

]
. (A3)

The expectation E[pc|ph] and the variance V[pc|ph] of the conditional probability
density function pr(pc|ph) are expressed as

E[pc|ph] =
M

∑
m=1

hm(ph)μ
′, (A4)

V[pc|ph] =
M

∑
m=1

hm(ph)
(

Σ′ + μ′μ′T
)

−E[pc|ph]E[pc|ph]
T, (A5)
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where

hm(ph) =
πmN (ph|μph

m , Σ
ph ph
m )

∑K
k=1 πkN (ph|μph

k , Σ
ph ph
k )

, (A6)

μ′ = μ
pc
m + Σ

pc ph
m (Σ

ph ph
m )−1(ph − μ

ph
m ), (A7)

Σ′ = Σ
pc pc
m − Σ

pc ph
m (Σ

ph ph
m )−1Σ

ph pc
m . (A8)

While making the prediction, the position of the worker p(t+1)
c at step t + 1 is calcu-

lated as

p(t+1)
c = E[p(t+1)

c |p(t+1)
h ],

p(t+1)
h =

(
p(t)

c p(t−1)
c · · · p(t+1−d)

c

)T
. (A9)

This calculation to predict the worker’s position, shown in Equation (A9) is repeated
until the length of the predicted trajectory becomes equal to the maximum prediction
length Tp. The process of predicting the worker’s motion is summarized in Algorithm 2.
For the details of the derivation, please see [37].
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Abstract: Human–robot collaborative applications have been receiving increasing attention in in-
dustrial applications. The efficiency of the applications is often quite low compared to traditional
robotic applications without human interaction. Especially for applications that use speed and
separation monitoring, there is potential to increase the efficiency with a cost-effective and easy
to implement method. In this paper, we proposed to add human–machine differentiation to the
speed and separation monitoring in human–robot collaborative applications. The formula for the
protective separation distance was extended with a variable for the kind of object that approaches the
robot. Different sensors for differentiation of human and non-human objects are presented. Thermal
cameras are used to take measurements in a proof of concept. Through differentiation of human and
non-human objects, it is possible to decrease the protective separation distance between the robot
and the object and therefore increase the overall efficiency of the collaborative application.

Keywords: human–robot collaboration; speed and separation monitoring; human–machine differen-
tiation; thermal cameras; protective separation distance

1. Introduction

Human–Robot Collaboration (HRC) is seeing an enormous growth in research interest
as well as in industry applications. The highest priority in HRC applications is given to
the safety of the human within the system. A human within a robotic system is called an
operator. Different approaches on how to protect the operator from any harm are subject
to research. There has been good progress on how to protect the operator from any harm.
The efficiency of the systems suffered from most of these safety improvements. Reduced
efficiency leads to a reduced acceptance of HRC. In order to increase the acceptance, it is
important to examine how these methods for operator safety can become more efficient.

Operator safety does not necessarily mean preventing the operator only from any
physical contact. It can also mean to prevent psychological harm through dangerous
and threatening movement of the manipulator. An overview of different methods of safe
human–robot interaction can be found in [1]. Lasota et al. divided their work into four
major categories of safe HRC: safety through control, through motion planning, through
prediction, and through psychological consideration. The category of safety through
control is subdivided into pre- and post-collision methods [1].

Speed and separation monitoring (SSM), which is subject of this work, belongs to the
subcategory of pre-collision methods. Other methods of this subcategory are quantitative
limits and the potential field method [2].

Established methods for HRC have already been integrated into standards like the
ISO/TS 15066. The Technical Specification 15066 differentiates between four different
modes of collaborative operations [3]:
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• safety-rated monitored stop (SRMS),
• hand guiding (HG),
• speed and separation monitoring (SSM), and
• power and force limiting (PFL).

This paper focuses on Speed and Separation Monitoring (SSM). There are different
sensor systems that can detect the Separation and Speed between the robot and the operator.

There are already quite a few well working sensor systems for speed and separation
monitoring on the market. One can distinguish these systems as external and internal.
Internal means that the sensors are part of the robot itself, e.g., mounted somewhere on
the manipulator surface. External means that the sensor is placed on the edge of the table
that the robot is mounted on, or on ceiling above the robot’s workspace. Examples for
external sensor systems are laserscanners like [4], camera systems like the SafetyEYE [5]
or pressure-sensitive floors [6]. There are only few examples for sensor systems that are
mounted on the manipulator itself. A good example is the Bosch APAS system [7]. It
consists of a safety skin that measures the separation distances capacitively. The main
disadvantage is that it can only detect an obstacle in a distance of two to five centimeters.

All of these systems are more or less great in detecting obstacles within the workspace.
It is difficult for them—if not impossible—to classify the obstacles in human and non-
human objects. Non-human objects, like an automated guided vehicle (AGV), are therefore
treated like an operator and safety measures are applied accordingly when they enter or
pass through the workspace and its surroundings. These AGVs have fixed and well known
dimensions. They have the ability to be programmed for certain behaviour and usually
have a navigation system. Therefore, it should be possible to integrate an AGV with high
precision into the robotic system for example in order to deliver and pick up workpieces.
If the AGV is part of the entire system, it should not be treated as an operator. Instead, it
should be possible to continue the robot’s movement with high velocities and consequently
increase the overall efficiency of the system.

A good overview on research of concepts and performance of SSM can be found
in [8,9]. Lucci et al. proposed in [10] to combine speed and separation monitoring with
power and force limiting. This way it is possible to continue the movement of the robot
when the operator is very close to the robot. A complete halt of the robot’s motion is only
necessary when it comes to a contact between the operator and the robot. They showed
that with their approach it is possible to increase the overall production efficiency. Kumar
et al. researched on how to calculate the amount of sensors needed for a specific area
as well as how SSM can be achieved from the surface of the robot [11,12]. Grushko et al.
proposed the approach of giving haptic feedback to the operator through vibration on
the operator’s work gloves [13]. The system monitors the workspace with three RGB-D
cameras. The controller calculates if the operator’s hand intersects with the planned path
of the robot and gives appropriate feedback to the operator. They were able to proof in
user studies that the participants could finish their task more efficiently compared to the
original baseline. A trajectory planning approach was taken by Palleschi et al. in [14].
Using a visual perception system to gather position data of the operator, they also used
an interaction/collision model from Haddadin et al. [15] to permanently check the safety
situation according to the ISO/TS 15066 standard. If the safety evaluation showed that
the robot needs to slow down, their algorithm searched for an alternative path with lower
risk for injury and velocities acceptable according to the safety limits. In an experimental
validation the group was able to proof the effectiveness of planning safe trajectories for
a task of unwrapping an object. Another approach based on dynamically scaled safety
zones was proposed by Scalera et al. in [16]. Bounding Volumes around the robot links and
the operator’s body and extremities represent the safety zones. These safety zones vary
in their size according to the velocities of the robot and operator. Information about the
operator’s position is gathered through a Microsoft Kinect camera. The paper proofed in
a collaborative sorting operation that it was possible to shorten the task completion time
by 10%.
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As there is no system available that can distinguish between human and non-human
objects, we see demand for such a system and the need to research methods on how to
integrate the differentiation of human and non-human objects in existing safety methods.

In this paper, we propose a method on how such a differentiation is possible. Different
sensor principles are presented that are capable of differentiating between human and
non-human objects. Thermal cameras with two different field of views (FoV) are used to
make measurements. The results show that it is possible two detect an operator in ranges
up to 4 m from the sensor.

We have shown in previous publications that it is possible to do speed and separation
monitoring directly from the robot arm. We showed that time-of-flight (ToF) sensors are
suitable for this task. The first approaches used a camera mounted on the flange of the
robot [17]. Further research investigated the use of single-pixel ToF sensors distributed
over the links of the manipulator [18]. In [19], we presented a sensor solution in form of an
adapter-plate that is mounted between the flange of the robot and the gripper. The previous
work also showed that there is still potential for further growth of HRC applications in
industrial settings. It also showed that the efficiency will play a key role in the success of
HRC and that there is a need to improve the efficiency of these systems.

This paper proposes to differentiate obstacles in the vicinity of robotic systems into
human and non-human objects. With this classification, it is possible to calculate object
specific distance and velocity limits for the robotic system. The limits for non-human objects
can be lower because there is only a financial risk associated with it instead of possible
injuries to the human. As a result, it is possible to increase the efficiency of human–robot
collaborative applications. The paper shows that a differentiation in certain applications
is possible with thermal cameras that can be attached to manipulator or gripper. There is
no need for an additional camera system surrounding the robot’s workspace and there is
no need for any equipment to be attached to objects that shall be differentiated. The main
contributions of this work can be summarized as shown in Table 1.

Table 1. List of main contributions of this paper.

Main Contributions

Introduction of human–machine differentiation into speed and separation monitoring.
Introduction of the extended protective separation distance formula that is extended with a
variable for human and non-human objects.
An algorithm for detecting an operator in distances of up to 4 m with thermal cameras directly
from the manipulator.
Experimental verification of the algorithm with two thermal cameras with different field of views.

The paper is structured as follows. Section 1 introduces the topic and the state
of the art. Section 2 gives an overview of sensor systems that can be used for human–
machine differentiation in the context of speed and separation monitoring in human–robot
collaboration. In Section 3 the protective separation distance is explained and the new
object-specific protective separation distances is proposed. Furthermore, this section shows
the potential efficiency improvement that can be established with this method. Section 4
explains what kind of and how the measurements were executed. Section 5 shows and
discusses the results of the measurements before Section 6 concludes the paper and gives
an outlook on future research.

2. Methods for Human–Machine Differentiation

There are active and passive methods to differentiate between human and non-human
objects. Active methods are, for example, when camera systems are used and the AGV is
marked with a sticker or QR-Code that identifies the object. Other active methods would
be when the AGV sends its coordinates via wireless communication to the robotic system
so that the robotic system knows exactly where the AGV is located and can therefore
differentiate the AGV from other objects in the surroundings. A list of examples for active
and passive methods is given in Table 2. The same is true for humans; they could wear
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a kind of tracker to monitor their position and send it to the robotic system. Depending
on the overall situation on industrial shop floors, there might already exist a navigation
system that keeps track of all machines, AGVs, and operators.

Table 2. Overview of active and passive methods for human–machine differentiation.

Active Methods Passive Methods

Wireless Transmission of position Temperature
Camera and QR-codes Heart Beat

Camera and Object Recognition Breath
Sound localization Walking Pattern

Dielectric constant

There are many small- and medium-sized enterprises (SMEs) that are new to au-
tomation with collaborative robots. They usually do not have any existing navigation
or monitoring systems. Moreover, they require flexible solutions. Passive differentiation
methods provide the most flexibility. They do not require any additional installations in the
surroundings, on the operator or the AGV. This paper focuses on passive differentiation
methods that will be presented in the following subsections.

These passive methods use sensors that measure properties that are characteristic
for humans or machines. Here is a list of human specific properties that can be used for
differentiation [20]:

• Temperature
• Size
• Weight
• Number of legs
• Heart Beat
• Breath

Depending on the specific property that needs to measured, the sensors can be placed
at different locations. Three different locations are proposed that make sense to place the
sensors. These are the base of the robot, the robot links itself, and the flange or gripper. For
integration of the sensors in the gripper, a very flexible method is to use 3D printed grippers.
Using 3D printing technology, it is possible to arrange and layout the sensors as needed. A
good overview on this topic can be found in [21]. The following sections describe some
possible sensor principles that can be used for passive human–machine differentiation.

2.1. Pressure-Sensitive Floor

If the mass of the automated guided vehicle (AGV) is known, and if this mass is
different to the mass of the operators working around the robotic system, then it should be
possible to differentiate between human and non-human objects by the difference in their
mass. An improved system might be able to detect whether the object has two feet on the
ground or if there are four wheels touching the ground. AGVs might have a different and
more consistent footprint on the pressure sensitive floor. A human being has a variation in
pressure. While walking, the human lifts up one foot and there is only one foot touching
the ground with full mass.

The average weight of an adult human being is assumed to be 75 kg. The total weight
of clothes, including shoes, is assumed to be an additional 3 kg. The total mass of an
operator in an industrial setting is then assumed to be 78 kg. In general, an operator
should be able to carry a payload of 20 kg. Considering a minimum weight of 50 kg and a
maximum weight of 100 kg per operator we get a range of 50 kg of a light worker without
payload and up to 120 kg for a worker with payload. Distributed on two feet, we have a
range between 25 kg and 60 kg per foot.

AGVs are available in different sizes and weights. Assuming a standard AGV, we
have a total mass between 200 kg up to 1000 kg. Usually the weight is distributed on four
wheels. This means a weight per wheel of 50 kg up to 200 kg. As we have an overlapping
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range of about 50 kg to 60 kg for both, human beings on one foot and AGVs on one wheel, it
is not possible to differentiate only by weight. A good overview of the research on pressure
sensitive floors can be found in the work of Andries et al. [6]. Other state-of-the-art methods
that use pressure-sensitive floors are in [22,23].

2.2. Capacitive Sensors

Another possible way to differentiate between human and non-human objects is to
measure the change of capacity when an object is approaching a capacitive sensor. There are
already sensor systems available that use a capacitive measurement to detect objects in the
surroundings of the robot like [7]. The capacity of an object depends on different properties:

• size,
• material,
• humidity, and
• dielectric constant.

Depending on the kind of non-human objects that are present in the application,
it could be possible to differentiate between human and non-human objects. AGVs are
commonly built with materials like aluminum or steel and have motors and other metallic
equipment. For such objects, a capacitive sensor system should be capable of differentiating
between human and non-human objects.

Lumelsky et al. were pioneers on the topic of sensitive skin and its use on robot
manipulators [24,25]. Other early work like the one from Karlsson and Järrhed [26] pro-
posed one single huge capacitor with one plate on the floor and the second plate on the
ceiling above the robot’s workspace. More recent work was done by Lam et al. [27] who
managed to integrate the sensors into the housing of the robot manipulator. Thus, reaching
a solution where not a single part of the sensor is on the outside of the manipulator that
could be damaged.

2.3. Thermal Cameras

Body temperature is a property of a human that is already used in other sensor
applications. The human body temperature is usually between 36 ◦C and 37.8 ◦C. There
is only a small window allowed for variations. From 37.8 ◦C to 41 ◦C, the human has a
physical condition called fever. Above 41 ◦C, the fever can be life-threatening. Everything
below 36 ◦C is too cold [28]. Everything above the absolute zero point irradiates infrared
light or waves in the infrared spectrum. It can be detected with Bolometers or Thermopiles.
In a first measurement, images were taken with a FLIR camera. Note that the human body
temperature is only visible on parts of the human that are not covered with clothes or other
means of protection like helmets, masks, or safety googles. For the covered parts of the
body, the temperature is attenuated, as you can see in Figure 1. Even though the AGV is
turned on in the picture, there is no significant heat radiation coming from the AGV next
to the human.

2.4. Conclusions

There are different sensors that allow a differentiation between human and non-
human objects. A differentiation in an industrial setting depends greatly on the conditions
in the hall that the system is used in. The decision for a specific sensor needs to made
for each individual case. In our work, we continue to focus on the differentiation with
thermal cameras.
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(a)

(b)
Figure 1. Comparison of visual and thermal image of a human next to an AGV. (a) Visual image;
(b) Thermal image.

3. Potential Efficiency Improvement

The Cambridge Dictionary defines efficiency as follows: “the good use of time and
energy in a way that does not waste any” [29]. For a standard, non-collaborative, robotic
application, a common way to measure efficiency is to measure how long the robotic system
needs to fulfill a sequence of tasks. With finding ways to shorten the time to fulfill the tasks,
one increases the efficiency of the system.

When it comes to human–robot collaborative applications, it gets a bit more com-
plicated. Interactions happen not only with other well-defined objects, but also with a
human—and no human is like another. A human in industrial applications is called an
operator. This operator might be talking to other operators, might take a break, switch with
an other operator, or simply has to clean their nose.

All of these interruptions are not foreseeable for the robotic system and come along
with leaving and re-entering the robot’s workspace. The more of these occasions happen,
the less efficient is the overall robotic system. An efficient speed and separation monitoring
system is essential for these occasions and influences the overall system efficiency.

On industrial shop floors, there is usually no hard border for a transition from the
walkway or driveway into the operator’s or robot’s workspace as shown in Figure 2. The
monitored space can often reach into the walkway and driveways.
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Figure 2. Different workspaces around a robotic application. Note how the monitored space ranges
into the walkway and driveway area.

In human–robot collaborative applications, there is a special focus on the operator.
The safety of the operator has priority over the speed and movement of the robot. This
is why the robot has to slow down or come to a complete stop when an operator enters
the monitored space. There are different sensor systems that can measure the operators
location and speed. So far, these systems do not differentiate between an operator and
another machine like an AGV. The AGV is handled like an operator and the robot has to
slow down or stop when it gets closer than the protective separation distance.

This is where our work proposes to differentiate between an operator and other
machines. This differentiation shall then be taken into account when calculating the
protective separation distance. With smaller protective separation distances for non-human
objects, we increase the time that the robot can work with higher velocities and thus
increase the overall efficiency of the system.

3.1. Protective Separation Distance

The point in time when the operator enters the workspace can be variable as well as
the speed of the operator while entering the workspace. Depending on the tasks, there are
different types and amounts of interaction with other objects. Other objects in this context
can be other robots, automated guided vehicles, or human beings. These objects can either
provide workpieces, tools, or actively support the robot’s task.

No matter what kind of interaction happens, the object needs to enter and exit the
robot’s workspace at a certain point in time. When entering the workspace, the robot has
to slow down in order to prevent harm to the object. The moment when to slow down or
stop depends on the speed of the robot, the robots reaction and stopping time as well as on
the speed of the operator.

This moment is defined as the protective separation distance. The ISO/TS 15066
provides equations to calculate the protective separation distance. This distance depends
on a large portion on the operators location and speed. Different values are needed to
calculate the protective separation distance. The protective separation distance is calculated
as shown in Equation (1) [3]:

Sp(t0) = Sh + Sr + Ss + C + Zd + Zr. (1)

The different values are defined in the ISO/TS 15066 as follows [3]:

• Sp(t0) is the protective separation distance at time t0.
• t0 is the present or current time.
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• Sh is the contribution to the protective separation distance attributable to the opera-
tor’s change in location.

• Sr is the contribution to the protective separation distance attributable to the robot
system’s reaction time.

• Ss is the contribution to the protective separation distance due to the robot system’s
stopping distance.

• C is the intrusion distance, as defined in ISO 13855. This is the distance that a part of
the body can intrude into the sensing field before it is detected.

• Zd is the position uncertainty of the operator in the collaborative workspace, as
measured by the presence sensing device resulting from the sensing system measure-
ment tolerance.

• Zr is the position uncertainty of the robot system, resulting from the accuracy of the
robot position measurement system [3].

The protective separation distance can be a fixed number if worst case values are used
to calculate it. Especially the contribution by the human operator plays an important role
in the equation.

It is allowed by the ISO/TS 15066 that the protective separation distance can be
calculated dynamically according to the robot’s and operator’s speeds [3]. The operators
contribution to the overall protective separation distance can be calculated as shown in
Equation (2):

Sh =
∫ t0+Tr+Ts

t0

vh(t) dt. (2)

A constant value for Sh can be calculated with Equation (3):

Sh = 1.6 · Tr + Ts. (3)

Equation (4) shows how to calculate the distance that the robot moves during the
reaction time of the controller of the robot:

Sr =
∫ t0+Tr

t0

vr(t) dt. (4)

A constant value for Sr can be calculated with Equation (5):

Sr = vr(t0) · Tr. (5)

The contribution of the stopping time can be calculated with Equation (6):

Ss =
∫ t0+Tr+Ts

t0+Tr
vs(t) dt. (6)

3.2. Object-Specific Protective Separation Distance

Our proposal in this paper is to introduce an additional variable in the formula for the
protective separation distance for the object kind. There are two different approaches of
how to handle this additional variable.

One is to treat the variable as a binary digit: the value is either 0 or 1. If the object is a
human, the contribution of the operator’s change in location to the protective separation
distance needs to be fully accounted for and the value is set to 1. If the object is a non-
human object, the variable is set to 0 and the contribution of the object to the protective
separation distance is neglected.

The second approach would be to treat the value as a probability of how likely the
object is a human or a non-human object. With 0 being a non-human object and 1 being a
human. Equation (7) shows the formula for the extended protective separation distance:

Sp(t0) = (Sh · T) + Sr + Ss + C + Zd + Zr. (7)
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In order to get a rough estimate of values for the protective separation distance, we
calculate an example for the protective separation distance. We calculate with vr = 2.5 m/s
and an operator velocity of 1.6 m/s.

The specification sheet for the KUKA LBR iiwa 7 R800 specifies a stopping distance of
5.193◦ for a category 0 Stop on axis 1 with a 100% radius and a 100% program override.
With a specified radius of 800 mm for the KUKA robot, the distance traveled during
stopping would be 72.47 mm according to Equation (8):

Ss = 2 · π · 800 mm · 5.193◦

360◦
= 72.47 mm. (8)

Neglecting the values for position uncertainties of the robot and the operator, and
neglecting the intrusion distance, we can plot the protective separation distance for robot
speed of 0 to 2.5 m/s with operator speeds of 0.25 m/s which is the maximum allowed
speed close to the robot, 1.6 m/s as an average operator speed, and 2.5 m/s as maximum
speed. Figure 3 shows the calculated protective separation distances. The protective
separation distance is linearly dependent on the robot and the human velocity. If the robot
moves with full speed of 2.5 m/s and the operator approaches the system with a speed of
1.6 m/s, the protective separation distance is 2.922 m.

Figure 3. Protective Separation Distances for robot speeds between 0 m/s and 2.5 m/s and operator
speeds of 0.25 m/s, 1.6 m/s, and 2.5 m/s.

Figure 3 shows the dependency of the robot’s and the operator’s speed on the protec-
tive separation distance. If it is possible to differentiate between an operator and an AGV,
there would be no need for accounting for the approaching distance of the operator and
Sh could be neglected. This reduces the protective separation distance for a robot’s speed
of vr = 2.5 m/s from 3.5 m down to 1.5 m. This opens a range of 2 m where the AGV can
drive by the robotic system without interfering with the robot’s speed.

4. Measurements

4.1. Monitored Space

A difficult question is always what needs to be monitored by the sensors system.
Typically, a robot’s workspace is divided into two main sections, as shown in Figure 2,
namely, the operating space and the collaborative workspace. The collaborative workspace
is the part where the operator can work collaboratively with the robot. The operating space
is the part where no human being is allowed and where the robot can work faster than in
the collaborative workspace.
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Considering a robot that is capable of moving 360◦ around its base, the collaborative
workspace can be as small as a few degrees or as big as the full 360◦ around the base. Thus,
the size of the collaborative workspace is calculated as follows:

Size o f Collaborative Workspace = 360◦ − Size o f operating space. (9)

The operating space is protected by design against any access of the operator. The
collaborative workspace needs to be monitored with a sensor system that is capable of
measuring the separation distance to an intruding obstacle like the operator or an AGV.

A sensor for monitoring the collaborative workspace has a defined field of view
(FoV). The amount of sensors needed to monitor the entire collaborative workspace is then
calculated as shown in Equation (10):

Number o f sensors needed =
Size o f Collaborative Workspace

FoV
. (10)

The collaborative workspace ends with the maximum reach of the manipulator. In
order to calculate the protective separation distance we need to be able to detect obstacles
before they enter the collaborative workspace.

Therefore, monitoring is necessary for the collaborative workspace and an additional
extended monitoring space. This extended monitoring space usually includes walkways
for other workers and AGVs. The required size of the extended monitoring space must
be at least the maximum possible protective separation distance as calculated in Section 3.
The sensor for differentiating between human and non-human objects must have the
same range.

As seen in Figure 3, the maximum possible protective separation distance for robot
speed of vr = 2.5 m/s and an operator speed of vh = 2.5 m/s, is Sp,2.5 = 3.822 m. We
round up and set the maximum separation distance to Sp,max = 4 m.

The goal is to be able to detect a temperature of a human being in an industrial
surrounding in a distance of Sp,max = 4 m.

As described in Section 2, the human body temperature can usually only be measured
somewhere in the head area of the operator due to clothing covering the skin of the rest of
the body. Let us assume a head size of an average human being of 20 cm. We want to be
able to have a minimum pixel size for measurement of 10 cm in a distance of Sp,max = 4 m.
The pixel size in different distances from a sensor is calculated as shown in Equation (11):

x = 2 tan
(α

2

)
d. (11)

With d being the distance from the sensor to the object, α the field of view of the sensor,
and x the size of the viewing window in a distance d from the sensor as shown in Figure 4.

The commercially available TeraRanger Evo Thermal 33 and Evo Thermal 90 are
used to make measurements. The properties of the sensors are listed in Table 3. The
sensor is connected via USB to a laptop running Windows 10. Matlab is used to read the
data from the sensor via a serial connection with parameters set to: Baud Rate of 115,200,
8 Data Bits, 1 Stop Bit, Parity None, and no flow control. Matlab was chosen due to its
great ability to work with matrices as the data read from the sensor with its resolution
of 32 × 32 pixels is best represented in a 32 × 32 matrix. Furthermore, Matlab provides
a well-established set of functions for postprocessing the data. With the KUKA Sunrise
Toolbox it is possible to control the KUKA LBR iiwa 7 R800 robot directly with Matlab via
an Ethernet connection [30]. This allows the control of the entire measurement setup with
only one laptop running Matlab.
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Figure 4. Schematic for the field of view of the sensor attached to the flange of the robot.

Table 3. Teraranger Evo Thermal Specifications [31].

Specification Evo Thermal 90 Evo Thermal 33

Resolution 32 × 32 pixels 32 × 32 pixels
Field of View 90◦ × 90◦ 33◦ × 33◦

Temperature Range −20 ◦C to 670 ◦C 30 ◦C to 45 ◦C
Update Rate 7 Hz 7 Hz
Range up to 5 m up to 5 m
Size 29 × 29 × 13 mm 29 × 29 × 22 mm
Weight 10 g 12 g

The two sensors from Terabee have a field of view of 90◦ and 33◦. The sensors are
shown in Figure 5. The resolution is 32 × 32 pixels. The size of the area measured by the
sensor in a distance d is calculated by dividing Equation (11) by 32 pixels as shown in
Equation (12):

xSensor =
2 tan

(
α
2
)
d

32
. (12)

Figure 5. Teraranger Thermal 33 and 90.

The pixel sizes for both sensors for distances from 1 m up to 5 m are shown in Figure 6.
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Figure 6. Size of pixel in different distances from the sensor.

The average size of a human head is assumed to be 20 cm. The pixel size of the 33◦ FoV
sensor in a distance of 5 m is ~10 cm according to Equation (11). For the 90◦ FoV sensor,
the pixel size would already be at 30 cm in a distance of 5 m which would not lead to good
results. A pixel size of 10 cm for the 90◦ FoV sensor is reached at a distance of 2 m.

A first measurement was to see if it is possible to measure the human temperature
in different distances of 1 m to 4 m in 1 m steps. With Matlab, the average temperature of
10 subsequent measurements was calculated and plotted in an thermal image. The room
temperature during the measurement was 22.2 ◦C and the humidity was at 56%.

In order to find out if it is possible to detect an operator within 4 m from the robot,
we make following measurement. The sensor is placed in a height of 120 cm. The sensor
is connected via USB to a laptop running Windows 10 and Matlab. Matlab opens a serial
connection to the sensor. The Matlab script reads the temperature values from the sensor
100 times. In a first measurement, there is no operator or other human being in the field of
view of the sensor. In the next eight measurements, there is an operator with a height of
183 cm in distances of 0.5 m to 4 m in 0.5 m steps. At each distance value, 100 measurements
are taken. Matlab then calculates the mean value for each measurement as well as the
standard deviation. This measurement will show if it is possible to see the difference
between human beings and the surroundings.

4.2. Differentiation Algorithm

In order to save computing time, the first approach is to measure the temperature and
compare it to a threshold as shown in the flow chart in Figure 7.

First, the thermal data from the camera are read via a serial connection. Second, the
Matlab function max() is used to find the maximum measured value. Third, the measured
maximum temperature is compared with a threshold. If the maximum measured temper-
ature exceeds the threshold, the variable T is set to 1, meaning that the object is treated
like a human. If the measured temperature stays below the threshold, the variable T is set
to 0, meaning that there is no human in the field of view of the sensor and that the object
must be a machine. Fourth, the extended protective separation distance as introduced
in Section 3 is calculated. In the last step, the robot’s speed is adjusted according to the
calculated extended protective separation distance.

The temperature threshold needs to be set depending on the application. Best results
will be achieved in settings where the temperature of the surrounding equipment is
significantly lower than the temperature of a human being. With typical room temperatures
of less than 23 ◦C, a threshold for the measurements of 24 ◦C is chosen.
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Figure 7. Flow chart of temperature decision for speed adaption.

5. Results and Discussion

Figure 8 shows the eight results for the thermal measurements of both sensors.
Figure 8a,c,e,g show the results with the TeraRanger Evo Thermal 33. As seen in Figure 8a,
the human temperature is measured quite well with a mean temperature over 10 mea-
surements of 34.92 ◦C. In Figure 8a, one can also see that the human is wearing glasses.
Glasses have poor transmission of long-wave infrared radiation and therefore we see a
lower temperature on the glasses. This could be a possible solution for AGVs that show
a certain heat radiation from their motors or electronics. Those parts could be covered
by a glass or another material that does not transmit heat radiation. In Figure 8c,e,g, you
can see that the underarms of the human being were not covered and therefore also were
measured with a temperature in the range of 30 ◦C.

Figure 8b,d,f,h show the four results for the thermal measurement of a human-being
in distances of 1 m to 4 m in 1 m steps with the Terabee Evo Thermal 90 sensor. Figure 8b
shows that the bigger FoV of 90◦ allows to measure almost a complete standing operator in
a short distance of only 1 m compared to only half the operator in Figure 8a. As calculated
in Section 4, you can see that in Figure 8f,h the operator and especially the head are so
far away, that one pixels measures more than just the temperature of the head. This leads
to a significantly reduced average temperature. That makes it harder to differentiate the
operator from its surroundings.

Figure 8 shows two main advantages and drawbacks of the sensors. For the Evo Ther-
mal 33 sensor, the main drawback is the small field of view. Depending on the application,
multiple sensors might be needed to cover the entire area that needs to monitored. The
advantage is that the measured temperature is close to actual temperature for the entire
distance range from 1 m up to 4 m. This is the drawback of the Evo Thermal 90 sensor, that
still measures temperatures over 30 ◦C for distances up to 2 m. However, for distances
above 2 m, the single pixels of the sensor cover areas of 12.5 cm by 12.5 cm and more,
resulting in lower temperature measurements if a body part only covers a part of the pixel.
Depending on the room temperature it gets more and more difficult to detect a human
being in distances of more than 2 m for the Evo Thermal 90 sensor. The advantage of the
Evo Thermal 90 sensor is the field of view that allows to cover a three times bigger area
than the Evo Thermal 33.

71



Sensors 2021, 21, 7144

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 8. Thermal images of human in distances of 1 m, 2 m, 3 m, and 4 m of the two sensors TeraRanger Evo Thermal 33
and 90. (a) Human in 1 m distance of Evo Thermal 33; (b) Human in 1 m distance of Evo Thermal 90; (c) Human in 2 m
distance of Evo Thermal 33; (d) Human in 2 m distance of Evo Thermal 90; (e) Human in 3 m distance of Evo Thermal 33;
(f) Human in 3 m distance of Evo Thermal 90; (g) Human in 4 m distance of Evo Thermal 33; (h) Human in 4 m distance of
Evo Thermal 90.
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Figure 9 shows the results of the measurement where the highest temperature was
measured while an operator was in distances of 0.5 m to 4 m in 0.5 m steps from the sensor.
The measurement was executed once with the Evo Thermal 33 and once with the Evo
Thermal 90. For each distance of the operator, 100 measurements were taken. The mean
value was calculated and plotted in Figure 9 with error bars for the standard deviation.
The record for a distance of 0 m represents the measurement without operator in the field
of view of the sensors.

(a) (b)

Figure 9. 100 Measurements with human-being in distances from 0.5 m to 4 m for both sensors, the TeraRanger Evo Thermal
33 and 90. (a) Evo Thermal 33: 100 Measurements with human in distances from 0.5 m to 4 m; (b) Evo Thermal 90: 100
Measurements with human in distances from 0.5 m to 4 m.

Figure 9a shows that for the Evo Thermal 33 sensor, there is a difference of more than
5 ◦C between the temperature measurements in all different distances compared to the
temperatures measured without an operator present.

The lower mean values for distances 0.5 m and 1 m with the Evo Thermal 33 as shown
in Figure 9a can be explained by the narrow field of view of the sensor. Due to the sensor
being placed in a height of 120 cm and the FoV being 33 ◦, the sensor cannot measure the
temperatures from the head of a 183 cm operator. Due to the operator wearing long-sleeved
shirt, the mean values are a bit lower because the sensor does not see any naked skin that
would radiate more heat. Starting at a distance of 1.5 m, the head of the operator with a
lot of exposed skin is lying in the field of view of the sensor and therefore detected with a
higher mean temperature than the measurements of 0.5 m and 1.0 m.

Figure 9b shows that the measurement for the scene without an operator shows a
similar temperature range like the temperatures measured in distances of 2.5 m and more.
Therefore, it will not be possible to make a differentiation between human and non-human
objects with the Evo Thermal 90 sensor in distances above 2 m. This confirms the result
of Figure 8 and is one of the main drawbacks of the Evo Thermal 90 sensor.

Regarding the proposed algorithm, these results show that for normal room temper-
atures below 24 ◦C, it is possible to make a differentiation between human beings and
other machines like AGVs. One drawback is in case that an AGV exposes a heat source
like a motor or an electric device that radiates heat in the same amount like a human being,
the AGV could be mistakenly be treated like an operator. This might lead to a reduced
efficiency, but it would not be a safety issue for the operator. A possible solution would
be to cover the heat source with a material that does not allow transmission of infrared
heat. The main advantage of this algorithm is its simple structure and therefore short
computing time.

An interesting question arises when looking at the corona pandemic where one main
indicator for human health is body temperature. Pictures on TV showed that people had
their temperature measured on their forehead, a region that is also part of the measurement
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in our setup. Considering the entire possible temperature range of a human being between
36 ◦C and 41 ◦C, this should not affect the system performance. For setups where the
human is the warmest object, it is no problem at all. The threshold will be set depending
on the room temperature and the given temperatures of the surroundings. Everything
above that temperature will be treated as a human being. It will become more important
in setups where the system should be able to differentiate a human from objects that are
warmer than the human. If the object’s mean temperature is close to 41 ◦C, then it will
be difficult to make a correct differentiation. The differentiation will be easier when the
object’s temperature is essentially higher than the human’s core temperature.

6. Conclusions and Outlook

This paper introduced an object-specific protective separation distance for speed and
separation monitoring in human–robot collaborative applications. The use case was that
in small- and medium-sized enterprises the shop floor space is limited. The space that
needs to be monitored for speed and separation monitoring in HRC applications overlap
with the walkways and driveways for other operators and AGVs. AGVs that pass through
this monitored space slow down the robotic applications because they are treated like
an operator. Differentiating between operators and AGVs allows to adjust the protective
separation distance and therefore let the robot move with higher speed.

The main feature that differentiates an operator from an AGV is its temperature. Using
a thermal camera, it is possible to differentiate between a human and an AGV in distances
of up to four meters depending on the resolution and on the field of view of the sensor.
The measurements showed that the smaller FoV sensor has advantage in measuring the
temperature of objects in distances of 2 m and more. The 90◦ FoV sensor had the advantage
of being able to measure the entire height of an operator in distances as close as 1 m. A mix
of both sensors will be subject for further research. A disadvantage of this method is that if
the AGV exposes a heat source like a motor or an other electric device, it can mistakenly be
treated as an operator. In these cases, the heat sources on the AGV must be covered.

The paper showed that there is potential of more than 50% to decrease the protec-
tive separation distance and therefore increase the efficiency of the overall collaborative
robotic system. The object-specific protective separation distance differentiates between
human and non-human objects in the vicinity of the robot’s workspace through the use of
thermal cameras.

The proposed differentiation between human and non-human objects might not only
be beneficial for Speed and Separation Monitoring, but also for power- and force-limiting
operations. The power- and force-limiting operation is based on maximum values for
quasi-static and transient contacts [3]. The values are determined in a risk assessment for
the specific application.

Similar to the situation in speed and separation monitoring, there is no need to treat
non-human objects like a human object. For hon-human objects, the maximum values for
quasi-static and transient contacts can be higher. The amount of how much higher these
values can be set depends on the materials that the non-human objects are made of. With a
sensor system that can differentiate between human and non-human objects, it is possible
to adjust the maximum values for the power and force limiting operation. The robot will
be able to move with higher speed when a non-human object is close by and therefor the
overall efficiency will be increased. This topic will be subject for further investigation.

Furthermore, research in the future will investigate the different presented sensor
systems and how well they are suitable for human–machine differentiation. Fusing the
data of different sensors might lead to even better results. A first step will be to combine an
infrared ToF sensor with the thermal camera in order to get a single sensor system. Another
important task is to look at how the different sensor systems can be compared and how the
overall system efficiency can be described to suit a broader spectrum of applications.
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Abstract: Human-robot interaction has received a lot of attention as collaborative robots became
widely utilized in many industrial fields. Among techniques for human-robot interaction, collision
identification is an indispensable element in collaborative robots to prevent fatal accidents. This
paper proposes a deep learning method for identifying external collisions in 6-DoF articulated
robots. The proposed method expands the idea of CollisionNet, which was previously proposed for
collision detection, to identify the locations of external forces. The key contribution of this paper
is uncertainty-aware knowledge distillation for improving the accuracy of a deep neural network.
Sample-level uncertainties are estimated from a teacher network, and larger penalties are imposed
for uncertain samples during the training of a student network. Experiments demonstrate that the
proposed method is effective for improving the performance of collision identification.

Keywords: collision identification; collaborative robot; deep learning; uncertainty estimation; knowl-
edge distillation

1. Introduction

With the increasing demands of collaborative tasks between humans and robots, the
research on human–robot interaction has received great attention from researchers and
engineers in the field of robotics [1]. Robots that can collaborate with humans are called
collaborative robots (cobots), and cobots differ from conventional industrial robots in that
they do not require a fence to prevent access. Previously, the application of robots is limited
to performing simple and repetitive tasks in well-structured and standardized environ-
ments such as factories and warehouses. However, the development of sensing and control
technologies has significantly expanded the area of application of cobots [2], and they are
beginning to be applied to several tasks around us. More specifically, their applications
have been diversified from traditional automated manufacturing and logistics industries to
more general tasks such as medical [3], service [4,5], food and beverage industries [6], and
these tasks require more elaborate sensing and complicated control techniques. Further-
more, with the development of intelligent algorithms including intention estimation [7]
and gesture recognition [8], cobots can be utilized in wider application areas.

In general, robots have advantages over humans in repetitive tasks, and humans are
better at making comprehensive decisions and judgments. Therefore, human–robot col-
laboration possibly increases the efficiency of intelligent systems through complementary
synergies. As the scope of robotics applications gradually expands through collaborative
work, interaction with humans or unstructured environments has become an important
technical issue, which requires the implementation of advanced perception and control
algorithms. Especially, collision detection and identification techniques are indispensable
elements to improve the safety and reliability of collaborative robots [9,10].
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To perform cooperative tasks with the aid of human–robot interactions, several studies
have been carried out to detect and identify robot collisions for the safety of workers [11].
Previous work can be categorized into two approaches: the first category is the study on
the control of collaborative robots by predicting possible collisions and the other is the
study of responses after impacts. While collision avoidance is more advantageous in terms
of safety [12], this approach inevitably requires additional camera sensors for action recog-
nition of coworkers or 3D reconstruction of surrounding environments [13]. Furthermore,
it is difficult to completely avoid abrupt and unpredictable collisions. Therefore, techniques
for collision identification are essential to improve the safety and reliability of collaborative
robots.

Collision detection algorithms investigate external forces [14] or currents [15] to deter-
mine whether a true collision has occurred on an articulated robot. A key element in the
procedure of collision detection is the estimatation of external torques. A major approach
to estimating external torques is utilizing torque sensor signals to compute internal joint
torques based on the physical dynamics of robots, and several other methods to construct
momentum observers to estimate external torques without the use of torque sensors. The
method that does not use torque sensors is called sensorless external force estimation, and
an elaborate modeling of the observer and filter is essential for the precise estimation of
external forces [16–19]. External forces are further processed by a thresholding method [20]
or classification algorithm [21], to determine whether a collision has occurred. Recently,
deep-learning-based methods have outperformed traditional model-based methods in
detecting collisions [22]. Beyond collision detection, the identification of collision locations
is beneficial for the construction of more reliable collaborate robots, by making them react
appropriately in collision situations.

To ensure the proper responses of collaborative robots in cases of collisions, it is neces-
sary to identify collision locations. The collision identification technique can be defined as
a multiclass classification of time series sensor data according to collision locations. In early
studies, collision identification was mainly based on the elaborate modeling of filters [23]
and observers [24], and a frequency domain analysis was conducted to improve the accu-
racy of collision identification [25]. To address the classification problem, machine learning
techniques, which were employed to analyze time series data, have also been applied to
collision identification [26]. Recently, support vector machines [27] and probabilistic meth-
ods [28] were applied to improve the reliability of collision identification systems. In [29],
the collision identification performance was improved by utilizing additional, sensors such
as inertial measurement units, and analyzing their vibration features.

In this paper, we propose a method that can identify collisions on articulated robots by
utilizing deep neural networks for joint sensor signals. Collision identification refers to a
technique that not only detects the occurrence of a collision, but also determines its location.
Recently, a collision detection method was proposed by Heo et al. [22]; we extend this
existing method for collision identification and improve the robustness of the deep neural
network. To improve the performance of the collision identification system, we construct a
deeper network, which is called a teacher network, to distill its probabilistic knowledge to
a student network. In the process of distilling knowledge, we employ the uncertainties of
the teacher network to focus on learning difficult examples, mostly collision samples. This
paper is organized as follows. Section 2 presents related work, Section 3 explains collision
modeling and data collection, and Section 4 presents the proposed method. Section 5 and
Section 6 presents the experimental results and conclusion, respectively.

2. Related Work

2.1. Deep Learning Methods for Collision Identification of Collaborative Robots

Collision detection is a key technology to ensure the safety and reliability of col-
laborative robots. Although most previous methods were based on the mathematical
modeling of robots [30–32], recently, deep learning methods have shown promising results
for this goal. Min et al. [33] estimated vibration features based on the physical modeling
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of robots and utilized neural networks for collision identification. Xu et al. [34] combined
neural networks and nonlinear disturbance observer for collision detection. Park et al. [35]
combined a convolutional neural network and support vector machine to detect colli-
sions, and Heo et al. [22] employed causal convolutions, which were previously utilized
for auto-regressive models in WaveNet [36] to detect collisions based on joint sensor signals
including torque, position, and velocity. Maceira et al. [37] employed recurrent neural
networks to infer the intentions of external forces in collaborative tasks, and Czubenko
et al. [38] proposed an MC-LSTM, which combines convolutions and recurrent layers
for collision detection. Mohammadi et al. [13] utilized external vision sensors to further
recognize human actions and collisions.

2.2. Knowledge Distillation

Knowledge distillation was proposed by Hinton et al. [39] to train a student network
with the aid of a deeper network, which is called a teacher network. Probabilistic responses
of the teacher network are beneficial to improve the accuracy of the student network be-
cause the probabilities of false categories were also utilized during knowledge distillation.
Although most early methods directly distill the logits of a teacher network, Park et al. [40]
utilized the logits’ relations, and Meng et al. [41] proposed a conditional teacher–student
learning framework. Furthermore, knowledge from intermediate feature maps was dis-
tilled for network minimization [42] and performance improvement [43,44]. Knowledge
distillation has been employed in various applications such as object detection [45], seman-
tic segmentation [46], domain adaptation [47], and defense for adversarial examples [48].
Recently, the teacher–student learning framework has been applied with other advanced
learning methodologies such as adversarial learning [49] and semi-supervised learning [50].

2.3. Uncertainty Estimation

Uncertainty plays an important role in interpreting the reliability of machine learning
models and their predictions. Probabilistic approaches and Bayesian methods have been
regarded as useful mathematical tools to quantify predictive uncertainties [51]. Recently,
Gal and Ghahramani proposed Monte Carlo dropout (MC-dropout) [52], which can be
interpreted as an approximate Bayesian inference of deep Gaussian processes, by utilizing
dropout [53] at test time. Lakshminarayanan et al. [54] proposed deep ensembles for the
better quantification of uncertainties, and Amersfoort et al. [55] proposed deterministic
uncertainty quantification, which is based on a single model to address the problem
of computational cost of MC-dropout and deep ensembles. Uncertainties have been
utilized to quantify network confidences [56], selecting out-of-distribution samples [57],
and improving the performance of deep neural networks [58,59], in various application
areas such as medical image analysis [60] and autonomous driving [61].

3. Collision Modeling and Data Collection

3.1. Mathematical Modelling of Collisions

This section explains the mathematical modeling of dynamic equations for 6 Degrees
of Freedom (DoF) articulated robots. In order to operate a robot through a desired trajectory
and move it to a target position, precise control torque is required for each joint motor, and
the control torque can be represented as the following dynamic equation:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q), (1)

where τ ∈ R
n is the control torque, M(q) ∈ R

n×n is the inertia matrix of the articulated
robot, C(q, q̇) ∈ R

n×n is the matrix of Coriolis and Centrifugal torques, g(q) ∈ R
n is

the vector of gravitational torques, and q, q̇, q̈ are the angular position, velocity, and
acceleration of each joint, respectively. The dynamic equation can be obtained through the
Newton–Euler method or the Euler–Lagrange equation using the mechanical and physical
information of the robot. Since the dynamic equation of the robot is given as (1), in the
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absence of external force, external torques can be computed by subtracting the control
torques from measured torques.

When a joint torque sensor is installed onto each joint, the torque generated on each
joint due to external force is given as follows:

τext = τs − τ, (2)

where τext is the external torques generated onto each joint due to a collision, and τs is
torque values measured by joint torque sensors. The external torque can be precisely
estimated under an accurate estimation of robot dynamics and physical parameters of the
articulated robot such as the mass and center of mass of each link.

In robots that are not equipped with a joint torque sensor, sensorless methods are
utilized to estimate external torques. Sensorless methods are basically based on the current
signal of each joint motor, and an additional state variable p = M(q)q̇ is defined to
reformulate the dynamic equation as follows:

ṗ = C(q, q̇) q̇ − g(q)− f (q, q̇) + τm, (3)

where f (q, q̇) is the friction matrix, and τm is the motor torque. In the case of the sensorless
method, it is necessary to obtain the transmitted torque from the motor to the link to
estimate the collision torque. Therefore, the friction must additionally be considered in the
existing robot dynamics equation. A main issue in sensorless external torque estimation is
the elaborate design of observer and filter under the dynamic Equation (3), and the effect of
disturbance can be reduced using momentum state variables. Due to the effect of noise and
nonlinear frictional force, sensorless methods are generally less precise in the estimation
of external torques compared to methods that utilize joint torque sensors. Through the
methods mentioned above, it is possible to obtain the torques generated in each joint due
to the collision of the robot. Then, the collision identification algorithm can determine
collision locations from joint torques obtained through sensor or sensorless methods.

3.2. Data Collection and Labeling

Figure 1a presents the 6-DoF articulated robot to collect sensor data, which include
the information of joint torque, current, angular position, and angular velocity. The
Denavit–Hartenberg parameters of the articulated robot are presented in [62]. From the
6-DoF articulated robot, joint sensor signals were obtained with the sampling rate of 1 kHz,
and a data sample collected at time t can be expressed as

xt = [τ
t , it , θt , w

t ]
 ∈ R

24, (4)

where τt, it, θt, wt are six-dimensional vectors corresponding to torque, current, angular
position, and angular velocity, respectively; the i-th components of these vectors indicate
the sensor signals obtained at the i-th joint. Figure 1b shows the definition of collision
categories according to collision locations. Collisions were generated at six locations, and
in the case of no collision, which refers to the normal state, a label of 0 was assigned. In
the case of a collision, a categorical label corresponding to the location was assigned to
generate ground truth data.

Joint sensor data were collected, along with collision time and category, by applying
intentional collisions at different locations. The collision time and category were converted
into ground truth data which have an identical length to the corresponding sensor signals,
as shown in Figure 2. For a collision occurrence, the corresponding category was assigned
to 0.2 s of data samples from the collision time; each collision is represented as 200 collision
samples in the ground truth data. We collected joint sensor signals for 5586 intentional
collisions along with their ground truth data; the number of collisions, which were applied
to different locations, is equal. This dataset was divided into training, validation, and test
sets with the ratio of 70%, 10%, and 20%, as presented in Table 1.

80



Sensors 2021, 21, 6674

Figure 1. The definition of labels. (a) presents 6-DoF articulated robot, and (b) presents the definition
of categories; yellow arrows in (b) indicate categorical labels according to collision locations.

Figure 2. Examples of sensor signals and ground truth data. (a) shows a part of the acquired sensor
signals, and (b) presents examples of generated ground truth data around collision occurrences.
Green lines with numbers in (b) indicate labeled categories in the ground truth data.

Table 1. The number of collisions and data samples. Total indicates the number of data samples, which
were collected with a sampling rate of 1 kHz, and Collision indicates the number of collision samples.

Training Set Validation Set Test Set

Collisions 3906 558 1122

Samples
Total Collision Total Collision Total Collision

19,563,048 781,200 2,778,777 111,600 5,798,685 224,400

4. Proposed Method

This section presents the proposed method for the collision identification of articulated
robots. Firstly, two neural network architectures are presented; one of them is a student
network and the other architecture is a teacher network for knowledge distillation. The
second part explains the proposed knowledge distillation method, which considers the pre-
dictive uncertainties of the teacher network. Lastly, a post-processing is utilized to improve
the robustness of the proposed algorithm by reducing noise in network predictions.
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4.1. Network Architectures

This paper employs the network architecture presented by Heo et al. [22] as a base
network model. Heo et al. [22] proposed a deep neural network, called CollisionNet, to
detect collisions in articulated robots. Its architecture is composed of causal convolutions
to reduce detection delay and dilated convolutions to achieve large receptive fields. We
modeled the base network by modifying the last fully connected layer in CollisionNet
to conduct multiclass classification and identify collision locations. The base network is
composed of seven convolution layers and three fully connected layers, and its details
are identical to CollisionNet except the last layer; convolution filters with the size of 3 are
utilized for both regular and dilated convolutions, the depth of the intermediate features
is increased from 128 to 512, and the dilation ratio is increased by a factor of two. The
architecture of the base network is identically utilized as a student network in the process
of knowledge distillation.

Figure 3 shows the architecture of the teacher network. To construct the teacher
network, three regular convolutions in the base network are replaced into convolution
blocks. A convolution block contains four convolution layers with a skip connection, and
therefore, the number of parametric layers in the teacher network increases to 19. The
number of channels in the second and third convolution layers in a convolution block are
identical to the number of output channels of the corresponding regular convolution layers.
The number of trainable parameters in the teacher network is 6.63 million; therefore, it
has more capacity to learn the training data compared to the base network, which has
2.79 million parameters. Dropout layers with a dropout ratio of 0.5 are added to the
fully connected layers in the teacher network, and Monte Carlo samples from the teacher
network are acquired by applying dropout at the test time.

Figure 3. The architecture of the teacher network.

4.2. Uncertainty-Aware Knowledge Distillation

The teacher network is trained with the cross-entropy loss between the softmax
prediction ŷT and its one hot encoded label y. The i-th component of ŷT indicates the
predicted probability that the input sample belongs to the i-th category. In our case, seven
categories exist, which contain the normal state and six possible collision locations. The
loss function for the training of the teacher network is defined as

lce(y, ŷT) = −∑
i

yi log(ŷT,i), (5)
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where yi and ŷT,i are the i-th components of y and ŷT , respectively.
After training the teacher network, K logits, ẑ1

T , · · · , ẑK
T are obtained from an input

sample by utilizing MC-dropout [52]. These logits are computed by randomly ignoring
50% of neurons in the fully connected layers in the teacher network. Based on the K logits
of the teacher network, the i-th component of the uncertainty vector is computed by

ui =
1
K ∑

k
(ẑk

T,i − z̄T,i)
2, (6)

where z̄T,i is the i-th component of the averaged logit z̄T , which is computed by

z̄T =
1
K ∑

k
ẑk

T . (7)

The uncertainty ui is the variance of logits; therefore, the value of the uncertainty
increases as distances between the logits increase.

The total loss L for the training of the student network is composed of two loss
functions, as follows:

L = lce(y, ŷS) + lkd(z̄T , ẑS, u), (8)

where lce(y, ŷS) is the cross-entropy loss between the softmax prediction of the student
network and its corresponding label, u is the uncertainty vector whose i-th component
is ui, and lkd(z̄T , ẑS, u) is the uncertainty-aware knowledge distillation loss. The knowl-
edge distillation loss os obtained by computing uncertainty-weighted Kullback–Leibler
divergence (KL divergence) between σ(ẑS, T) and σ(z̄T , T), as follows:

lkd(z̄T , ẑS, u) = −∑
i

uiσ(z̄T , T)i{log(σ(ẑS, T)i)− log(σ(z̄T , T)i)}, (9)

where σ(z, T) is the softmax function with the temperature T, and σ(z, T)i is the i-th
component of σ(z, T). In (9), σ(z, T)i can be computed as

σ(z, T)i =
exp(zi/T)

∑j exp(zj/T)
. (10)

The overall procedure for the training of the student network is presented in Figure 4.

Figure 4. The procedure of uncertainty-aware knowledge distillation for the training of the student
network; SN and TN indicate the student and teacher networks, respectively, and σ(z, T) is the
softmax function with the temperature T.
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4.3. Post-Processing

The post-processing to reduce errors in network predictions is inspired by a connected
component analysis in image-processing techniques. In the labeled data, a collision is
represented by connected samples, with a non-zero number corresponding to its location.
However, a few predictions may differ from their adjacent predictions, because a neural
network independently infers predictions for different data samples. Based on the collision
properties in the labeled data, incorrect predictions are reduced by the post-processing
presented in Figure 5.

Figure 5. The procedure for the post-processing. (a) presents the predictions from the student
network, and (b) presents the result of grouping non-zero connected samples and assigning an
identical category of the maximum frequent. (c) presents the result of a thresholding method.

The post-processing is composed of two steps; in Figure 5, (a) shows predictions from
the student network, and (b) and (c) present the results after the first and second post-
processing steps, respectively. In the first step, non-zero connected samples are grouped,
and the number of samples for each category are counted. Predictions in a group are
replaced into the category which corresponds to the maximum frequency, as presented in
Figure 5b. In the second step, if the number of non-zero connected samples is less than a
threshold value, then these samples are regarded as the normal state. The threshold value
of 10 samples is utilized in experiments, and Figure 6 presents examples of the results of
the post-processing.

Figure 6. Examples of predictions before and after the post-processing. (a) presents predictions for
the collision categories of 4 and 5, and (b) presents predictions for the collision categories of 2 and 3.
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5. Experiments

5.1. Experimental Environment and Evaluation Measures

The proposed algorithm is developed within a hardware environment including
Intel core i7-10700 CPU, 32GB DDR4 RAM, and RTX 3080 GPU. In experiments, Python
and Pytorch are mainly utilized to implement the proposed algorithm and to conduct
an ablation study. To demonstrate the proposed method, the dataset is gathered from a
collaborative robot, which consists of six rotating joints. The cobot weighs 47 kg, has a
maximum payload of 10 kg, and reaches up to 1300 mm. The actuator consists of motors
manufactured from Parker, motor drivers from Welcon, and embedded joint torque sensors
in each joint. The hardware of the cobot contains a custom embedded controller, based on
real-time linux kernel, and it communicates with drivers through EtherCAT with a cycle
time of 1 ms.

To demonstrate the effectiveness of the proposed method, we evaluate the algorithm in
three ways: (1) sample-level accuracy, (2) collision-level accuracy, and (3) time delay. In the
process of collision identification, deep neural networks perform sample-level multiclass
classification, which classifies each sample, composed of a 24-dimensional sequence of
sensor data, into the normal state or one of six collision locations. To evaluate the sample-
level accuracy of deep neural networks, we measure Recall, Precision, and F1-score for
each sample, which are defined as follows:

Recall = TP/(TP + FN),

Precision = TP/(TP + FP),

F1-score = 2 × precision × recall
precision + recall

,

(11)

where TP, FP, FN are the numbers of true positives, false positives, and false negatives,
respectively. True positive is a correctly identified collision sample, false positive is an
incorrect prediction, which is classified into a collision, and false negative is an incorrect
prediction which is classified into the normal state.

Collision-level accuracy is another important measure for evaluating a collision iden-
tification system. Because collaborative robots respond to each collision, reducing the
number of false positive collisions is an important issue. Recall, Precision, and F1-score are
computed as (11) with different definitions of TP, FP, and FN to measure the collision-level
accuracy. A group of connected samples that are classified into a collision is regarded
as a true positive if the intersection over union (IoU) between the connected predictions
and its corresponding true collision samples is greater than 0.5. A group of predictions
that are classified into a false category of collisions is regarded as a false positive, and a
false negative is a missed collision. Figure 7 shows several cases of TP, FP, and FN for
measuring the collision-level accuracy.

Figure 7. Examples of true-positive, false-positive, and false-negative collisions for computing
collision-level accuracies. (a) presents a TP collision, (b,d) present FP and FN cases, (c) presents TP
and FP cases, and (e) presents a FP collision.
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Finally, the time delay is measured to evaluate the processing time of the collision
identification system. For the safe and reliable collaborations of human and robots, the
processing time is required to be reduced as possible. The total processing time is composed
of the inference time of a neural network, detection delay for collisions, and post-processing
time. Based on these three types of evaluation measure, the effectiveness of the proposed
method is demonstrated in experiments.

5.2. Training of Neural Networks

To train the neural networks, Adam optimizer [63] is utilized with a learning rate of
10−4. The learning rate is decreased to 10−5 after training 200 epochs. Figure 8 presents
f1-scores for the training and validation datasets during the training of 500 epochs. As
shown in Figure 8, after training a sufficientl number of epochs, the validation accuracy
was not further decreased. Therefore, in the following experiments, the accuracies of deep
neural networks are evaluated for the test set after training 300 epochs.

Figure 8. F1-scores for the training and validation datasets.

To train the student network, the temperature of the softmax function is set to 5 during
the process of knowledge distillation. The temperature value has to be greater than 1
to soften probabilistic predictions of neural network, and temperature values between 2
and 5 are usually used for knowledge distillation in the previous literature [39]. In our
experiments, modifications to the temperature value glead to insignificant changes in
the experimental results. In Figure 9, (a) shows the first dimension of 24-dimensional
sensor data, which corresponds to the torque signal at the first joint, and (b) presents
uncertainties measured by MC-dropout with the value of K = 4. As shown in Figure 9, the
uncertainties of collision samples are high compared to normal state samples. By weighting
the uncertainties on the KL-divergence between probabilistic predictions of the student and
teacher network, the student network is able to focus on learning difficult data samples.
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Figure 9. Uncertainties measured by MC-dropout of the teacher network. (a) shows the first
dimension of 24-dimensional sensor data, and (b) presents uncertainties measured by MC-dropout.
In (a), red × marks indicate collision moments, and green lines represent labels for the normal state
and locations of collisions.

5.3. Sample-Level Accuracy

The first measure to evaluate the performance of deep neural networks is the sample-
level accuracy. As explained in Section 4.1, the architecture of the deep neural network
proposed in [22] is employed to construct the base model. To demonstrate the effectiveness
of uncertainty-aware knowledge distillation for the problem of collision identification,
we compare the accuracies of the proposed method with those of the base model and a
student network. The student network has an identical architecture to the base model, and
is trained by distilling knowledge in the teacher network without employing uncertainty
information. Table 2 presents the sample-level recall, precision, and f1-score of four neural
network models; the proposed method means another student network, which is trained by
uncertainty-aware knowledge distillation. The last row of Table 2 presents the sample-level
accuracies of the teacher network. As presented in Table 2, the f1-scores of the proposed
method are comparable to those of the teacher network; it is worth noting that the proposed
method employs a lightweight network compared to the teacher network.

Table 2. Sample-level accuracies of the four different neural network models before and after the
post-processing.

Before Post-Processing After Post-Processing

Recall Precision F1-Score Recall Precision F1-Score

Base model 98.1611 98.3985 98.2796 98.5473 99.0617 98.8038
Student network 98.2015 98.3458 98.2736 98.5992 99.0198 98.8091
Proposed method 98.3110 98.4516 98.3812 98.7119 99.0465 98.8789

Teacher network 98.2729 98.5337 98.4031 98.5629 99.1011 98.8313

5.4. Collision-Level Accuracy

This section presents the collision-level accuracies. As collaborative robots react to
each collision, reducing the number of false-positive collisions is a very important issue
in reliable collision identification systems. In the labeled data, a collision is represented
by 200 non-zero samples; therefore, false-positive collisions, which are composed of a
few fals- positive samples, are not effectively reflected in the sample-level accuracies.
Although the sample-level accuracies of the four neural network models are above 98%,
there are a considerable number of false-positive collisions. To compute the collision-level
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accuracies, a group of non-zero predictions is regarded as a collision, and Table 3 presents
the numbers of true-positive, false-positive, and false-negative collisions of the four neural
network models. In Table 3, the base model, student network, and proposed method have
an identical network architecture to CollisionNet [22]; the student network is trained by
regular knowledge distillation, and the proposed method employs uncertainties during
knowledge distillation. As shown in Table 3, the number of false positives is significantly
reduced after the post-processing. Table 4 presents the collision-level recall, precision, and
f1-score of the four neural networks. By utilizing probabilistic labels and uncertainties
from the teacher network, the proposed method produces better accuracies, despite its
lightweight network architecture compared to the teacher network.

Table 3. The numbers of true-positive (TP), false-positive (FP), and false-negative (FN) collisions of
the four neural network models before and after post-processing.

Before Post-Processing After Post-Processing

TP FP FN TP FP FN

Base model 1119 229 3 1119 121 3
Student network 1118 295 4 1118 109 4
Proposed method 1120 205 2 1120 76 2

Teacher network 1119 267 3 1119 77 3

Table 4. Collision-level accuracies of the four different neural network models before and after the
post-processing.

Before Post-Processing After Post-Processing

Recall Precision F1-Score Recall Precision F1-Score

Base model 99.7326 78.9139 88.1102 99.7326 90.2419 94.7502
Student network 99.6436 79.1224 88.2052 99.6435 91.1165 95.1894
Proposed method 99.8217 84.5283 91.5406 99.8217 93.6454 96.6350

Teacher network 99.7326 80.7359 89.2344 99.7326 93.5619 96.5487

5.5. Analysis for the Processing Time

The processing time is another important factor for responding to external forces
within an acceptable timeframe. In the collision identification system, the total processing
time is composed of the inference time of a neural network, time delay for detecting a colli-
sion, and post-processing time. Table 5 presents the averaged processing time for each step.
The teacher network requires an 83% longer inference time compared to the base model,
student network, and proposed method. The detection delay is measured by averaging
the time intervals between collision occurrences and their corresponding first true-positive
samples. As presented in Table 5, the proposed method requires 2.6350 ms to identify a
collision occurrence, and this satisfies the requirement for the safety of collaborative robots.

Table 5. The averaged processing time in ms for the collision identification.

Inference Time Detection Delay Post-Processing Total

Base model 1.7641 0.8239 0.2057 2.7938
Student network 1.7641 0.6198 0.2057 2.5897
Proposed method 1.7641 0.6651 0.2057 2.6350

Teacher network 3.2348 0.7006 0.2057 4.1412
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6. Conclusions

This paper proposes a collision identification method for collaborative robots. To iden-
tify the locations of external forces, the propose method employs a deep neural network,
which is composed of causal convolutions and dilated convolutions. The key contribution
is the method of capturing sample-level uncertainties and distilling the knowledge of a
teacher network to train a student network, with consideration of predictive uncertainties.
In the knowledge distillation, KL-divergence between the predictions of the student and
teacher networks are weighted by the predictive uncertainties to focus on data samples
that are difficult to train. Furthermore, we also propose a post-processing to reduce the
number of false-positive collisions. Experiments were conducted with a 6-DoF-articulated
robot, and we demonstrated that the uncertainty is beneficial to improving the accuracy of
the collision identification method.
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Abstract: In a collaborative scenario, the communication between humans and robots is a fundamen-
tal aspect to achieve good efficiency and ergonomics in the task execution. A lot of research has been
made related to enabling a robot system to understand and predict human behaviour, allowing the
robot to adapt its motion to avoid collisions with human workers. Assuming the production task has
a high degree of variability, the robot’s movements can be difficult to predict, leading to a feeling
of anxiety in the worker when the robot changes its trajectory and approaches since the worker has
no information about the planned movement of the robot. Additionally, without information about
the robot’s movement, the human worker cannot effectively plan own activity without forcing the
robot to constantly replan its movement. We propose a novel approach to communicating the robot’s
intentions to a human worker. The improvement to the collaboration is presented by introducing
haptic feedback devices, whose task is to notify the human worker about the currently planned
robot’s trajectory and changes in its status. In order to verify the effectiveness of the developed
human-machine interface in the conditions of a shared collaborative workspace, a user study was
designed and conducted among 16 participants, whose objective was to accurately recognise the
goal position of the robot during its movement. Data collected during the experiment included both
objective and subjective parameters. Statistically significant results of the experiment indicated that
all the participants could improve their task completion time by over 45% and generally were more
subjectively satisfied when completing the task with equipped haptic feedback devices. The results
also suggest the usefulness of the developed notification system since it improved users’ awareness
about the motion plan of the robot.

Keywords: human robot collaboration; human robot interaction; path planning; bidirectional
awareness; haptic feedback device; human machine interface

1. Introduction

Human-robot collaboration (HRC) is a promising trend in the field of industrial and
service robotics. Collaborative robots created new opportunities in the field of human-robot
cooperation by enabling the robot to share the workspace with the personnel where it helps
with non-ergonomic, repetitive, uncomfortable, or even dangerous operations. With the
growing level of cooperation, there is a tendency to increase the intertwining of human
and robot workspaces in the future, potentially leading to complete unification [1,2]. By
allowing a fully shared workspace between humans and robots, it is possible to utilise the
advantages of both, maximise their efficiency and minimise the time needed to complete a
task. Shared workspaces are examples of a dynamic environment, as the human operators
represent moving obstacles, which motions are difficult to predict accurately. Moreover, in
a typically shared workplace, the collaborative robot does not have any perception about
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the position of the operator and can only react to the collisions by detecting the contacts
with the tool or robot body (by measuring joint torques or monitoring the predicted joint
position deviation [1,3]). These approaches have apparent limitations defined by the fact
that in the case of adaptive tasks with high variability, the operator may be unaware of
the actions planned by the robot, and the robot cannot predictively avoid a collision with
the operator. In such adaptable HRC scenarios, the understanding between the human
operator and the robot is crucial. On one side, the robot must be aware of a human operator,
and on the other side, the operator needs to be aware of the current status of the robot
system. Advanced workplaces may include monitoring systems [4–6] enabling the robot to
react to (and potentially predict [7–11]) the operator’s movements by immediately stopping
the activity or by replanning the trajectory [12–14]. However, a workspace monitoring
system enabling the robot to avoid collisions can be considered as one-side awareness,
but the other side of communication remains unresolved. An extensive review of the
existing challenges in the field of human-robot interaction is available in the work of
P. Tsarouchi et al. [15]. Despite many efforts made to make robots understand and predict
human actions, there is still a lack of communication from the robot to the human operator.
Difficulties in understanding the robot’s intent (planned trajectory, current task, internal
status) during demanding cooperation can lead to dangerous situations, reduced work
efficiency, and a general feeling of anxiety when working close to the robot (even if it
is a collaborative robot). Better awareness can be achieved by providing the operator
with intuitive communication channels that allow them to understand the motion plans
and status of the robot. These communication channels may be realised with the help
of feedback devices—Human-Machine Interfaces (HMIs). To convey information, these
systems may utilise the primary sensory modalities of a human: vision, hearing, touch.

Many existing methods for communicating robot motion intent use graphical clues
which notify the human worker about the status of the robot. Typical information for
visualisation may include the internal status of the robot, command acknowledgement,
planned trajectory, and current workspace borders. In the simplest example of such an
approach, the data visualisations are displayed on 2D monitors [16] (static or hand-held
tablets), which, however, require the operator to interrupt the current task and check
the visualisation on display. Light projectors represent a straightforward solution for
representing additional graphical clues and notifications to the operator, possibly directly
in the operator’s vicinity, making it easier for the clues to be noticed [17,18]. Projector-
based systems have a number of limitations, the main one being that various obstacles and
the operator himself can block the system from both displaying the graphical clues and
tracking the work objects, leading to an increased risk of misinterpretation of the visualised
information by the operator.

Multiple Augmented Reality (AR) and Mixed Reality (MR) approaches have been
developed as a subsequent improvement of the projector-based solutions. It allows a
more intuitive overlay of the visual notifications with the real environment and objects in
the workspace. Augmented reality headsets allow 3D graphics to be displayed directly
in the user’s field of view without completely overlapping visual information from the
real world [19–21]. One of the problems associated with the visualisation of the planned
movement of the robot and other contextual information is that it cannot be guaranteed that
this information is always in the field of view of the operator (the operator may be watching
in another direction). It is also worth mentioning that MR/AR devices themselves present
an interfering component that may distract the operator during the task. Experimental
user studies performed by A. Hietanen [21] performed a comprehensive comparison and
evaluation of HRC in a realistic manufacturing task in two conditions: a projector-mirror
setup and a wearable AR headset. The results indicated that HoloLens was experienced less
safe (comparing to the projector-based notification system) due to the intrusiveness of the
device. Even though it was used as an augmented reality display, it blocked, to some extent,
the view for the operator. An extensive review of the collaborative aspects of graphical
interfaces for supporting workers during HRC is covered in the work of L. Wang et al. [2].
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Another option of improving the awareness of a human worker during HRC is by
utilising audio feedback. Auditory cues provide a wide range of contextual information
that promotes awareness of a person about its surrounding. While vision feedback is
traditionally preferred in applications that require a high level of accuracy, audio informa-
tion is important in scenarios when other modalities are limited or blocked. An example
of an application of this approach was demonstrated by A. Clair et al. [22], where the
efficiency of the collaborative task was enhanced by enabling the robot to use synthesised
speech to give a human teammate acoustic feedback about the currently performed action.
G. Bolano et al. [14] focused on a multimodal feedback system for HRC by combining
graphical and acoustic feedback channels. It is worth noting that due to potentially noisy
manufacturing conditions, the operator may be unable to hear the audio signals.

Sense of touch represents a robust and direct way of transferring information to the
user, making it suitable to convey information to workers in industrial environments, where
visual and auditory modalities might be busy or blocked. P. Barros et al. [23] performed a
set of tests using the simulation model of the teleoperated robot and enhancing the users
with tactile feedback that could notify them about the actual collisions of the robot with the
surroundings. Vibration devices can also be used during the control of an industrial robot,
notifying the user about, for instance, approaching singularities and joint limits [24,25] or
commencing the next phase of the manufacturing process [5].

It was demonstrated that the ability to communicate the robot’s motion to the worker
in advance has an influence on the human propensity to accept the robot [2,26,27]. In
this work, we propose a novel wearable haptic notification system for informing the
human operator about the robot’s status, its currently planned trajectory, and the space
that will be occupied by the robot during the movement. The haptic notification system
consists of compact devices placed on both hands of the user, which provided vibrational
alerts depending on the distance from the robot trajectory. Our approach combines the
notifications with active collision avoidance [2], which enables the robot to continue on
task execution even if the worker, despite the alerts, has precluded the initial trajectory.

Compared with existing interfaces, the proposed haptic notification system has the
advantage of reliability alerting the user compared with graphical and acoustic feedback
devices, whose efficiency can be limited or blocked during engagement in the task. The
effectiveness of the robot’s trajectory intent communication to the user was verified in a
user study. The results of the performed user study showed that the users had a better un-
derstanding of the robot’s motion. The developed haptic feedback system for collaborative
workspaces can improve the efficiency and safety of human-robot cooperation in industrial
conditions. The system may be able to reduce the time required for unskilled operators to
get used to the manufacturing process and the movement of the robot in the near vicinity,
along with helping to avoid the discomfort caused by unawareness about the intentions of
the robot.

2. Materials and Methods

2.1. Concept

The proposed system is based on the concept of a shared collaborative workspace
where the robot can adapt its movement to avoid collision with human workers. The
workspace is monitored by multiple RGB-D sensors, and data provided by these sensors
is used to construct a map of the robot’s surroundings and obstacles. At each step of the
task execution, the robot creates a collision-free motion plan according to the currently
available free space. If during the execution of the planned movement there is a change
in the environment (for example, existing obstacles change their location) and the move-
ment can no longer be completed due to possible collisions with obstacles, the robot can
create a new motion plan (active collision avoidance). The improvement to the collabo-
ration is presented by introducing haptic feedback devices (hereinafter, Human-Machine
Interfaces, HMIs), whose task is to reliably notify the human worker about the currently
planned robot’s trajectory and changes in its status. A wearable device is used to improve
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the operator’s awareness during the human-robot collaborative assembly task through
vibrotactile feedback.

With regard to involvement in the work process, the hands are the parts of the body
that are most often present in the shared workspace (especially when the work process
is taking place at a table). For this reason, it was decided to develop a haptic HMI in the
form of a compact device attached to the dorsal side of a work glove providing vibrational
feedback to the user’s palm. Besides, it is a common practice in many industrial domains
that the workers wear work gloves. Still, this placement requires a compact, wireless,
and lightweight design that ensures the comfort of use (HMI must not limit the user’s
capabilities during manual work). The human worker is equipped with two haptic feedback
devices placed at each hand. The system utilises three types of notifications to inform the
operator about the status of the robot: distance notification, replanning notification, and
inaccessible goal notification.

The distance notification provides a continuous vibration alert to the user about the
proximity to the currently planned trajectory of the robot (see Figure 1a). The future
trajectory segment is defined as the part of the feasible trajectory that yet has not been
executed (see Figure 1b).

Figure 1. (a) Trajectory execution: already executed segment of trajectory, current state, and future
segment (planned trajectory segment yet to be executed); (b) human worker equipped with haptic
feedback device, which provides vibration alert about the proximity to the future trajectory of the

robot; collision vector is denoted as
→
d . Note: collision vector is calculated considering all points of

the robot body, including all links and joints.

The closer the worker’s hand (equipped with HMI) approaches the future segment of
the trajectory, the stronger the vibration provided by the device (see Figure 2a,b). The length
of the vector between the nearest points of HMI and the robot body in all timesteps of the

future trajectory (hereinafter “collision vector”,
→
d ) is considered to be the distance, which

is used to calculate the vibration intensity. Calculation of collision vector considers all the
links and joints of the robot. The user receives vibration notifications while approaching
any part of the robot body. There is also an upper limit of the distance at which HMIs
provide feedback (reaction distance dr, Figure 2c). This ensures that the worker receives an
alert only if his/her current actions may interfere with the robot trajectory.
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Figure 2. Illustration depicting the principle of distance notification: (a,b) vibration intensity is proportional to the distance
to the closes point of the robot body in any timestep of the future trajectory; (c) distance notification is not active when the
hand is further than the safe distance (reaction distance dr).

The vibration intensity of the distance notification is calculated according to (1).

vd =

(vp,max − vp,min) ∗
(

dr −
∣∣∣∣→d

∣∣∣∣
)

dr + vp,min
(1)

where

vd—calculated vibration intensity for distance notification,
vp,max—maximum vibration intensity for distance notification,
vp,min—minimum vibration intensity for distance notification,
dr—reaction distance—distance threshold at which the distance notification is activated,
→
d —current collision vector (see Figure 1).

The reaction distance dr was set to 15 cm as it was found the most convenient for the
users. The calculated intensity vd is applied to all tactors of the corresponding haptic device.

When a person, despite a warning, interferes with the currently planned trajectory,
the robot attempts to find a new feasible path to the goal position and continue the
activity. Every time a new trajectory is planned, as a result of an environment change, both
feedback devices use strong vibration notification (hereinafter “replanning notification”;
this notification has a duration of 0.3 s) to draw the attention of the human worker and
to indicate that the robot has detected an environment change and has replanned its
movement (Figure 3a). If no feasible path to the target is found, both feedback devices also
provide a strong vibration alert (hereinafter “inaccessible goal notification” Figure 3b), but
this alert will last until the robot is able to continue its activity (movement to the goal). Both
notifications may be utilised not only due to the obstacle presented by the hands of the
user but also because of any obstacles (work tools, miscellaneous personal items) present
in the workspace since the monitoring system maps all obstacles in the environment (using
three depth sensors placed at the workplace). This way, even if the hands of the user will
be completely hidden from the upper camera (which provides data for HMI localisation),
the robot will be able to avoid collision with the user.
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Figure 3. Status-related notifications: (a) replanning notification; (b) inaccessible goal notification.

Vibration intensities were handpicked to make the haptic feedback unobtrusive when
active. Vibration intensities for individual notifications are shown in Table 1, where the
intensity of vibration is proportional to the provided PWM duty cycle represented in
the range 0–100%: 0% represents no vibration, 100% represents the maximum attainable
vibration. Preliminary tests have demonstrated that the vibration motors have high inertia
and start spinning only at intensities above 30% PWM duty cycle. However, it was also
noticed that for most users, only vibration above 50% of maximum intensity was noticeable.

Table 1. Notification vibration intensities.

Notification
Vibration Intensity (PWM

Duty Cycle)
Duration Description

Inaccessible goal notification 85% Continuous The robot was not able to find a feasible
path to the goal

Replanning notification 95% 0.3 s The robot has replanned its motion in
order to avoid a collision

Distance notification
(maximum) 80% Continuous The user’s hand is about to block the

currently planned robot trajectory
Distance notification

(minimum) 60% Continuous The user’s hand is approaching the
future segment of the robot’s trajectory

Taken together (see illustration in Figure 4), it is anticipated that the introduced system
would minimise the interference between the robot and worker, leading to less frequent
replanning, improve the comfort and acceptance for the human worker while working
close to the robot and allow more fluent collaboration. The transparent behaviour of the
robot can also lead to increased efficiency in performing the task since the worker will be
informed when hindering the robot from continuing its activity.

2.2. Experimental Workspace

The proposed system was tested on an experimental workspace with Universal Robots
UR3e collaborative robot (Universal Robots, Odense, Denmark, see Figure 5a). UR3e robot
has 6 DoFs, a working radius of 500 mm, and a maximum payload of 3 kg. In order to
correctly map the obstacles within the workspace, three RealSense D435 RGB-D cameras
(Santa Clara, CA, USA, see Figure 5b) are mounted on the workplace frame at different
locations. Due to the principle of operation of the sensors, there is no limit on the number
of cameras observing the same object simultaneously since the cameras do not interfere
with each other. The streaming resolution was set to 424 × 240 at 15 FPS for both RGB and
depth data streams, which is considered sufficient for the application.
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Figure 4. The concept of improved HRC combines principles of active collision avoidance with an
increased awareness provided by the wearable haptic feedback device.

Figure 5. Experimental workspace: (a) overview; (b) Locations of three RGB-D sensors. View directions (z-axes) are depicted
by the blue vectors.

It was decided to concentrate the control over the system into a single PC (Intel i7
2.80 GHz processor and 16 GB of RAM, Santa Clara, CA, USA) and to use the modular
architecture offered by ROS (Melodic, Ubuntu 18.04, Linux, San Francisco, CA, USA) and
to divide the software implementation into several separate components. The internal data
flow is shown in Figure 6.
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Figure 6. Data flow diagram.

The task of HMI localisation is executed by the HMI Tracker node and will be explained
in more detail further in the text. Task Commander node has the primary goal of abstracting
high-level commands to the robot’s movement control and performing the production task.
MoveIt! provides motion planning capabilities and calculations of collision vector during
robot movement. Each HMI communicates with its software counterpart (HMI Controller)
responsible for sustaining wireless Bluetooth data transfer, which is additionally monitored
by a watchdog node. Communication with the real robot controller is implemented using
a standard ROS driver.

The primary purpose of the developed haptic feedback devices is to provide the user
with a reliable notification about the changes in the robot’s status and its currently planned
trajectory. Both HMIs were implemented in the form of compact devices attached to the
dorsal side of the working gloves (see Figure 7). This design ensures that the cover of
the HMI control unit does not limit the user during manual work, as it does not restrict
finger movements. The battery is placed on the user’s wrist, which also improves the
overall ergonomics of the device. The total weight of a single HMI is 132 g. Each glove
is equipped with six vibration motors, which provide haptic feedback. The motors are
glued to the glove around the whole palm. The vibrational motors are controlled using DC
motor drives (PWM control) by a single Arduino-compatible microcontroller that has an
inbuilt battery management system and a Bluetooth Low Energy (BLE) chip, which enables
communication with the main PC. During system operation, the PC constantly updates the
vibration intensities of all HMI motors by sending the speed change requests via BLE. In
the current version, the cover of the control unit is glued to the work gloves and cannot
be detached.

100



Sensors 2021, 21, 3673

Figure 7. Prototype of HMI: (a) 3D model of HMI prototype, HMI cover is set as translucent in order to visualise the internal
placement of the components; (b) implemented prototype.

It was decided to use distinctive colours for HMIs: the left HMI is green, and the right
HMI is red. These colours will further simplify the task of hand tracking and determining
the side of the hand.

2.3. Hand Tracking

The task of the HMI Tracker node is to determine the relative position of HMIs using
data from the top depth camera located at the workplace. HMI segmentation from a 2D
RGB camera image is simplified by the fact that the left and right HMIs have distinctive
colours (it additionally greatly simplifies the correct determination of the side of the hand
at different view angles). Colour-based segmentation is used as a simple alternative to
the complex task of segmenting a 3D object in space, which otherwise would require the
application of machine learning approaches such as SVM [28], deep learning-based object
recognition [29], and image segmentation [30]. An extensive review of object localisation
methods is demonstrated in the work of Y. Tang et al. [31].

The utilised colour-based HMI localisation approach has several limitations imposed
by the nature of the detection process, the main one being that the arbitrary items with
similar to the target (HMI) colours may interfere with localisation if present in the view.
However, for our case, the localisation approach is considered sufficient, as it allows
to reliably recognise the side of the hand regardless of the hand surface being partially
occluded (providing that at least some part of the hand can be observed by the camera).
In the future, the localisation system may integrate data from multiple cameras [13,32]
available in the workplace in order to increase the stability and reliability of the tracking.

The position tracking of both HMIs is performed by an implemented ROS node called
HMI Tracker. A schematic representation of the data processing at this node is displayed in
Figure 8. Found HMI positions are published as transformations (ROS TF).

HMI Tracker node processes synchronised data messages from the upper depth camera
ROS node. In order to mitigate the effect of environment luminance on the recognition
accuracy, the 2D image from the camera is converted to the HVS colour space. The
converted image is further processed by a 2D segmentation procedure (separately for each
HMI). First, a colour range filter is used, and the resulting mask is further enhanced by
the use of morphological operations (dilation and erosion), which allows for a reduction
in noise in the computed mask. The largest contour is then located in the mask. The
filtered HMI point cloud is then analysed to obtain the radius and the centre (centroid) of
the HMI bounding sphere. The HMI bounding sphere is defined as the smallest sphere
that envelopes all the HMI points, and its centre is defined as the geometrical centre of
these points.

HMIs are internally represented as spheres, which allows a fast collision validation. A
snapshot of the HMI tracking process (in the simulation model of the workspace) is shown
in Figure 9.

101



Sensors 2021, 21, 3673

Figure 8. HMI Tracker data flow chart.

Figure 9. Snapshot of HMI tracking process: (a) Gazebo simulation; (b) upper camera image; (c) visualisation of the
recognised HMI positions and segmented point cloud in RViz (HMIs are represented by spheres).

2.4. Motion Planning

The motion replanning subsystem is based on a modified version of ROS MoveIt! [33],
which provides dynamic planning of the robot’s trajectory with respect to the current
position of obstacles in surrounding space: if the operator precludes the currently planned
movement of the robot, the robot is able to replan this movement to avoid collisions with
the human operator and continue on the performed activity. However, it is assumed that
the developed haptic feedback device will minimise the probability of interference between
the robot and humans. Another task of MoveIt!, in addition to trajectory planning, is to
calculate the distance between the HMI and the future trajectory of the robot. MoveIt!
internally uses FCL (Fast Collision Library [34]) library to perform collision validation
between scene object pairs. FCL also allows to perform a distance query that returns the
nearest points between an object pair. We utilise this functionality to calculate the collision
vector to both HMIs in each moment of the trajectory execution and publish it to other ROS
nodes. An example of how calculated collision vector changes during the execution of a
motion is illustrated in Figure 10.
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Figure 10. Example of how collision vector changing during motion sequence: robot moving from left to the right (1–4),
collision vector is depicted by a blue arrow, HMIs are represented by green and red spheres.

3. Testing and User Study

Before starting the user studies, the system was tested in a simple task in both the real
workspace and its simulated model (the parameters of the Gazebo simulation closely match
those of the real workspace). During the testing, the task of the robot was to repeatedly
move between two positions (from left to right and back, see Figure 10).

During the test, the individual system parameters were recorded and subsequently
plotted as a timeline presented in Figure 11. The graph displays distances to both HMIs
(magnitudes of the computed collision vectors), momentary notification intensities, goal
accessibility status, and status of replanning routine.

Graphs in Figure 11 show that hands’ movement triggered trajectory replanning
several times, causing activation of replanning notification. From the timeline, it can also
be observed that notification intensity is in inverse proportion to the distance to HMIs.
In general, it was observed that the reaction time of the system is mainly limited by the
update rate of the collision object representation of the HMIs in MoveIt!: even though the
HMI tracking rate is high enough to enable smooth processing at up to 50 Hz (currently
intentionally limited to 15 Hz), the update time for MoveIt! collision objects are in a range
from 7 to 10 Hz (which causes the step-like changes of the distance as shown in Figure 11).
This set the limit to the overall reaction speed of the system, so fast movements of the
user may remain undetected by the system; however, in the future, it can be addressed by
distributing the process to multiple computation units.
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Figure 11. Timeline of the testing on the real workspace: (a,c) distances to HMIs displayed as a
percentage of reaction distance; (b,d) momentary notification intensities displayed as a percentage
from the maximum intensity, where RN—replanning notification, IGN—inaccessible goal notifica-
tion, MaxDN—maximum distance notification, MinDN—minimum distance notification; (e) goal
accessibility status where F—false, the planner was not able to find a feasible path to the goal);
(f) status of replanning routine where T—true, path replanning was required; change of the goal is
depicted by the purple dash line.
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3.1. User Study

In order to verify the effectiveness of the developed HMI (Human-Machine Interface)
in the conditions of a shared workspace, a user study was developed (see Figure 12). The
conducted user study included a testing system among 16 participants.

Figure 12. Performed user study.

Data collected during the experiment included both objective (measured parameters
of each testing cycle) and subjective (survey-based) parameters. Data analysis further
allowed us to compare the interfaces and evaluate the research hypotheses.

3.2. Experiment Description

In order to evaluate the usability of the developed interface, the following experiment
assessed the responses of the group of volunteers (test subjects, test participants), whose
goal was to accurately recognise the goal position of the robot during its movement. The
quantitative parameters measured during trials (time required to recognise the goal position
and the percentage of the successfully recognised goals) were statistically evaluated as
objective parameters in order to decide the status of the research hypotheses. Each volunteer
additionally filled in the task-specific questionary consisting of questions related to the
usability of each interface and the perceived naturalness during the task execution. The
experiment was conducted with 16 volunteered university members, which included five
unexperienced participants with the background different from the field of robotics. During
the experiment run no harm was done to the volunteers.

The experimental task was based on the idea of sorting parts into different containers,
where it is not known in advance in which container the robot will have to place the next
part. In each round of the experiment, the robot planned its trajectory from its starting
position (this position did not change over the trials) to one of 5 possible TCP goal positions
(see Figure 13). Each goal position was marked and numbered on the worktable.

During the experiment, each volunteer tested the following variations of completing
the task:

• V1—Without HMI: the volunteer is not equipped with HMIs and has no feedback on
approaching the robot’s future trajectory. The volunteer must determine the robot’s
target position by visually examining the initial movement the robot makes to reach
its goal.

• V2—Equipped HMIs: the volunteer is equipped with HMIs on both hands. The
volunteer can use the HMI feedback (when moving hands) to determine the goal
position of the robot. The volunteer is also instructed to watch their hands instead of
watching the robot.
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In both cases, the volunteers did not see a visualisation of the trajectory on the monitor.

Figure 13. Preview of the workplace and the robot’s goal positions (marked with numbers 1–5); hand
positions are marked with red (right hand) and green (left hand); the robot is in the initial position.

The necessary safety precautions were taken during all the pilot experiments, and all
the test subjects were informed about the potential risks and behaviour in safety-critical
situations. Participation was not mandatory, and participants could leave any time they
chose. All participants were required to review and sign a consent form and the definition
of the experiment before beginning the experiment. After they agreed to participate,
the experimenter clarified the ambiguities regarding the task and the principles of each
interface. Additionally, before starting the experiment, each volunteer was allowed to
observe the standard trajectory the robot takes while moving to all five predefined targets.

Each round started with a 3-2-1 countdown ensuring the volunteer knew the moment
when the robots started to move. During movement to the goal position, the robot TCP
speed was limited to the maximum value of 80 mm/s. The task of the volunteers was to
determine the target position to which the robot is currently heading and, at the same time,
avoid hindering the robot’s future path. The following results were possible:

• If the number reported by the volunteer was correct, the task completion time was
recorded, and the attempt was counted as successful.

• In case that the goal position number stated by the volunteer was incorrect, the
final result of the attempt was recorded as unsuccessful, and the measured time
was discarded.

• If the volunteer intervened in the planned trajectory of the robot (or collided with
the robot itself), the attempt was counted as unsuccessful, and the measured time
was discarded.

• Each attempt was limited in time by the duration of the robot’s movement to the goal
position. If the volunteer failed to determine the robot’s goal by this time, the attempt
was counted as unsuccessful, and the measured time was discarded.

The objective parameters (time, percentage of success) of each attempt were measured
and evaluated. At the end of the round, the robot automatically returned to the starting
position at high speed (150 mm/s). If the user had reported the guessed goal position
before the robot reached it, the person responsible for carrying out the experiment might
have interrupted the movement of the robot and move it back to the initial position to
spare the time of the experiment.
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Testing of each interface option was performed in five rounds, i.e., a total of 10 rounds
for each volunteer. Before testing a specific interface, the volunteer had three trial rounds.
The order of the tested interfaces (V1, V2) was selected at random for each volunteer to
mitigate the order effect on the measured parameters. In each round, the robot started
its movement from the same starting position (arm vertically straightened above the
worktable, see Figure 13), and the goal position of the robot was selected randomly (i.e.,
the randomly selected goal positions may have repeated multiple times). Before the start
of each round, the volunteer placed hands on the starting positions marked in Figure 13;
these positions were selected so that the user in the starting position did not preclude
the robot in any of the target positions. At the end of all rounds, the volunteer filled in
the questionnaire.

3.3. Hypotheses

The initial hypotheses are based on the suggestion is that the developed feedback
system should improve the awareness and comfort of the human operator while working
close to the robot. The transparent robot behaviour should also lead to an increase in
efficiency in the completion of the task. The dependent measures (objective dependent
variables) were defined as task completion time and task success rate. The within-subjects
independent variable was defined as a robot intent-communication interface:

• V1: Without HMI—baseline.
• V2: Equipped HMIs.

Overall, it is expected that the test subjects will perform better (lower task completion
times, higher task completion rate) and will have higher subjective ratings when equipped
with HMIs. The experimental hypotheses were defined as follows:

Hypothesis 1.1. (H1.1): The efficiency of the test subjects will be greater with equipped HMIs
than without HMIs.

Higher efficiency is categorised as lower task completion time. This hypothesis is
based on the suggestion that HMI contributes to task performance.

Hypothesis 1.2 (H1.2): Time taken by each test subject to correctly determine the robot’s goal
position will be similar during all rounds when equipped with HMIs (V2). In contrast, there will be
high variation in task completion times between the rounds when the determination will be based
solely on the available visual information.

To test this hypothesis, task completion time will be measured for each subject in
each task condition, and the standard deviation of the measurements will be compared.
This hypothesis is based on the suggestion that users’ awareness enhanced by the haptic
feedback is not influenced by the differences in the trajectories, whereas in the case of
visual feedback, the awareness is dependent on the actual trajectory shape.

Hypothesis 2 (H2): Volunteers will subjectively percept the task as simpler when performing the
tasks while equipped with HMIs (V2) than by relying solely on the available visual information (V1).

This hypothesis is based on the suggestion that the haptic feedback significantly
contributes to the user awareness about the future trajectory of the robot, thus making the
task cognitively easier.

Efficiency was defined as the time taken for the human subjects to complete the
task and effectiveness as the percentage of successful task completion. Efficiency and
effectiveness were evaluated objectively by measuring these parameters for each test
subject during rounds of the experiment.

Apart from objective parameters, multiple subjective aspects of interacting with
different types of interfaces were mapped. The analysis of subjective findings was based
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on responses to 17 questions. The main points of interest focused on the understanding
of the robot’s goals and motions, the feel of security when working closely with the
robot, ergonomics, and the overall task difficulty. For both collaboration approaches,
the participants were asked to indicate on a 1–7 Likert scale (scaling from 1—“totally
disagree” to 5—“totally agree”) the extent to which they agreed with the defined statements.
Questionnaire items were inspired by works by R. Ganesan et al. [35], G. Bolano et al. [14],
and A. Hietanen [21]; however, due to the differences in the tested interfaces, the questions
have been significantly changed.

The first four questions (Q1–Q4, see Table 2) were task- and awareness-related and
aimed to map the comparative aspects of the collaboration during the task execution with all
tested interface variants V1, V2 and to test the general clarity of the provided instructions.

Table 2. General questions for all the tested interfaces.

General Questions

Q1. The task was clear for me
Q2. The task was demanding

Q3. It was simple to determine the goal position of the robot
Q4. More information was needed to accurately determine goal position of the robot

For HMI interface (V2) were additionally stated the questions defined in Table 3.

Table 3. HMI-related questions.

HMI-Related Questions

QH1. HMI improved my awareness of the robot’s future trajectory
QH2. Work with HMI required long training

QH3. Work with HMI improved my confidence in safety during the task
QH4. Haptic feedback (vibration) from HMI was misleading
QH5. Haptic feedback (vibration) from HMI was too strong
QH6. Haptic feedback (vibration) from HMI was too weak
QH7. Haptic feedback (vibration) from HMI was sufficient

QH8. Haptic feedback (vibration) from HMI overwhelmed my perceptions
QH9. Use of HMI was inconvenient or caused unpleasant sensations during activation

The test subjects also could choose an interface of their own preference. The volunteer
could additionally leave a free comment about any topic related to each interface option.
To minimise the effect of bias (practice effect [36]) caused by the order in which participants
interacted with each interface, the order was chosen randomly for each participant during
the experiment.

4. Results

To determine whether the differences between objective measures in the conditions
(V1, V2) were significant at the 95% confidence level, t-test was applied.

Hypothesis H1.1 states that the efficiency of the human-robot collaborative team will
be higher in the case of the equipped HMIs (V2). The total time taken for completing the
tasks was measured and compared between the conditions. t-tests revealed statistically
significant difference (average improvement over 45%) in mean task completion times
between V1 (M = 11.28, SE = 0.71) and V2 (M = 6.15, SE = 0.38) interfaces, t(15) = 6.34,
p < 0.00001, Figure 14. Thus, hypothesis H1.1 was supported.
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Figure 14. Average task completion time with standard errors for all 16 participants: lower is better.

Hypothesis H1.2 stated that the time taken by test subjects to correctly determine
the goal position would be similar in all rounds when equipped with HMIs (V2). To
investigate the hypothesis, the task completion time for all test subjects was analysed
using the standard deviations. It was observed that the standard deviation for each subject
for HMI modes (M = 2.17, SE = 0.37) was significantly lower than for visual inspection
(V1: M = 3.30, SE = 0.29), implying that V2 allowed the participants to perform the task
within a similar amount of time, whereas the time need with V1 interface was highly
distinct in each round—see Figure 15. The deviations were compared using t-test, and
statistically significant differences were found, t(15) = 2.27, p < 0.019. This suggests that
the provided haptic feedback was intuitive and took approximately the same amount of
time for the participants in each round to determine the goal position, thus supporting the
H1.2 hypothesis.

Figure 15. Standard deviations of the task completion time: lower is better.

It is also anticipated that the effectiveness of the V2 and the baseline will be comparable;
however, proving this hypothesis (basically null-hypothesis) with a high confidence level
requires a large number of test subjects. The average task success rates with standard
errors are shown in Figure 16. One of the factors that may have led to a lower success
rate with the V2 interface may be that the haptic feedback (V2) did not provide the test
subjects with enough spatial information, which led to an ambiguous determination of the
goal positions.
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Figure 16. Average task success rate for all 16 participants: higher is better.

All 16 participants answered a total of 17 template questions, and the results were
analysed. The first four questions (Q1–Q4) were common for both interfaces and intended
to capture the differences in subjective usability between them. The average scores with
the standard errors are shown in Figure 17. To determine whether the differences between
ratings for each questionnaire item between test conditions (V1, V2) were significant at the
95% confidence level, t-test was applied.

Figure 17. Average scores with standard errors for the questions Q1–Q4 used in the user studies
(16 participants). Score 5 denotes “totally agree” and 1—“totally disagree”. Questions Q1, Q3
—higher is better; Q2, Q4—lower is better.

Q1 was intended as an indicator of clarity of the task between the test subjects. The
results show that the test subjects understood the provided instructions (there are no
statistically significant differences in the responses in all three conditions). Q2 was related
to the subjective perception of the task difficulty in each condition. The t-test revealed a
statistically significant difference in responses between V1 (M = 3.19, SE = 0.32) and V2
(M = 2.31, SE = 0.22) interfaces, t(15) = 2.67, p < 0.01, the test subjects perceived the task as
more simple while equipped with HMIs. Q3 intended to compare the subjectively perceived
improvement in the awareness related to the robot’s trajectory. t-test revealed a statistically
significant difference in responses between V1 (M = 2.69, SE = 0.27) and V2 (M = 3.94,
SE = 0.17) interfaces, t(15) = 3.873, p < 0.001, the participants subjectively perceived an
improvement of their awareness about the robot trajectory when equipped with HMI. Q4
was designed to find out if the subjects subjectively felt the need for additional information
in order to reliably recognise the trajectory of the robot. Statistically significant difference
in responses was found between V1 (M = 3.50, SE = 0.26) and V2 (M = 2.56, SE = 0.33)
interfaces, t(15) = 3.34, p < 0.01. Thus, hypothesis H2 was supported by the responses
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to Q2–Q3. The subjective findings are also supported by the previous evaluation of the
objective performance of the test subjects.

The additional QH1–QH9 questions were intended to capture the subjective usability
of the HMI (V2) interface. According to the high ranking (see Figure 18), it can be concluded
that the users were satisfied with the interface and the provided feedback. There were few
participants who reported that the vibration feedback was too strong and participants who
reported feedback as too weak, thus leading to a conclusion that the optimal intensity of
vibration feedback should be further investigated or should allow personal adjustments.

Figure 18. Average scores with standard errors for the questions QH1–QH9 used for evaluation of the HMI usability. Score 5
denotes “totally agree”, and 1—“totally disagree”. Questions QH1, QH3, QH7—higher is better; QH2, QH4, QH5, QH6,
QH8, QH9—lower is better.

The users could also choose the one interface of their personal preference: all users
favoured the HMI interface (V2). The user survey additionally offered to leave a free
comment for each of the tested interfaces. Major themes mentioned in the comments
included user perceptions of the haptic feedback. Some subjects noted that the vibration
intensity was perceived differently in different places around the arm (for example, the
vibration of the tractor +Z was perceived less). This suggests that additional research is
needed to find the optimal arrangement of vibration motors. Participants also noted that it
was hard for them to recognise the movement of the robot to certain positions, since, for
example, in the case of goal 1 and 2, there sometimes was an ambiguity in the provided
feedback, which lead to incorrectly reported number (which manifested in the task success
rate). Multiple test subjects mentioned that the gloves’ size was not optimal for their hands.
This issue may be solved by implementing HMI in the form of modules that will be locked
onto the universal work gloves.

5. Discussion

Evaluation of the objective parameters has shown significant evidence supporting
hypotheses H1.1, H1.2. The participants took less time to recognise the goal position when
equipped with HMIs. The time required by test subjects to successfully complete the task
with HMIs equipped had low variation (unlike with visual feedback), potentially indicating
that user awareness was independent of the shape of the robot movement.

Subjective findings from structured and free response questions supported hypothesis 2,
which stated that participants would be more satisfied with the HMI interface compared
to baseline. Overall, participants favoured the HMI with regard to human-robot fluency,
clarity, and feedback.
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Taken together, the results of the experiments indicate the usefulness of the developed
system since it improves user’s awareness about the motion plan of the robot. While
not conclusive, these results indicate a potential of a haptic feedback-based approach in
improving the interaction quality in human-robot collaboration.

In order to assess the developed system, we critically analyse its features and limita-
tions. To the best of our knowledge, the presented system is the first implementation of
haptic notifications, which provide the user with the information about the space that will
be occupied by the robot during the movement execution while simultaneously allowing
the robot to adapt the trajectory to avoid collisions with the worker. Previous studies have
only demonstrated utilisation of the haptic feedback for informing the user about robot
reaching some predefined positions [5,23]. The chosen modality (haptic feedback) has the
advantage of more reliable data transfer compared to the graphical and acoustic feedback,
whose efficiency can be limited or blocked during the engagement of the worker in the
task. The utilisation of the haptic feedback as an information channel may also off-load the
corresponding senses (vision and hearing). Yet, it is worth noting that in certain cases, the
executed task activity (such as handling an electric screwdriver) may block the perception
of the provided vibration alerts in the worker’s hands. According to the results of the
analysis of the subjective rating of the system, more investigation is needed in order to find
the optimal placement of the vibration motors and vibration intensity levels, which will
be considered equally sufficient by the majority of the users. This is necessary given that
tactile sensitivity varies from person to person. However, this was beyond the scope of
this study.

The HMI localisation system currently relies on data from a single depth camera,
potentially enabling situations where the HMI would be occluded by an obstacle, leading
to incorrect localisation. This, however, can be solved in the future by integrating data from
multiple cameras into the HMI localisation pipeline. It should be emphasised that even
if the hands of the user will be completely hidden from the upper camera, the robot will
be able to avoid collision with the user since the obstacles in the workspace are mapped
by all three cameras observing it from different perspectives. Since the overall reaction
speed of the system is limited by 10 Hz updates of the workspace representation, swift
movements of the user may remain undetected by the system; however, in the future, it
can be addressed by distributing the process to multiple computation units and further
optimising the system performance.

During the test, it was noted that there is a possibility to further improve the no-
tification devices by enabling proportional activation of the tactors depending on the
direction to the closest point of the robot’s trajectory and HMI’s orientation. This would
allow avoiding ambiguity in the determination of the goal positions by providing the
user with additional information. A similar solution was implemented in the work of
M. Aggravi et al. [37], where they implemented a solution for guiding the hand of a human
user using a vibrotactile haptic device placed on the user’s forearm. Another example
was implemented in the study of S. Scheggi et al. [38,39], in which a mobile robot had the
task of steering a human (possibly sightless) from an initial to the desired target position
through a cluttered corridor by only interacting with the human via HMI bracelet with
three embedded vibration motors.

6. Conclusions

In this work, we propose an approach to improve human-robot collaboration. The
system is based on the concept of a shared collaborative workspace where the robot can
adapt its movement to avoid collision with human workers. The workspace is monitored
by multiple RGB-D sensors, and data provided by these sensors allow the construction of
a map of the robot’s surroundings and obstacles. At each step of the task execution, the
robot creates a collision-free motion plan according to the currently available free space. If
during the execution of the planned movement there is a change in the environment and
the movement can no longer be completed due to possible collisions with obstacles, the
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robot can create a new motion plan. The improvement of the collaboration is presented
by introducing haptic feedback devices, whose task is to notify the human worker about
the currently planned robot’s trajectory and changes in its status. The human worker is
equipped with two haptic feedback devices placed at each hand. These feedback devices
provide continuous vibration alerts to the user about the proximity to the currently planned
trajectory of the robot: the closer the worker’s hand (equipped with the feedback device)
approaches the future segment of the trajectory, the stronger the vibration provided by the
device. A prototype of the proposed notification system was implemented and tested on
an experimental collaborative workspace.

An experimental study was performed to evaluate the effect of the developed haptic
feedback system for improving human awareness during HRC. The experiment data
analysis included both quantitative (objective and subjective) and qualitative (subjective)
findings from the experiment. Haptic HMI was found superior to the baseline and allowed
the test subjects to complete the tasks faster.

Future research will focus on the improvement of the developed notification system
to allow more information to be transferred to the user. The described concept of the haptic
distance notifications may communicate not only the distance to the robot’s trajectory but
also the direction of the nearest point of the trajectory (relatively to the corresponding
HMI). By organising the vibration motors into a spatial structure resembling an orthogonal
coordinate system, the vibration of each motor may alert the user with the direction of
the possible impact. This improved approach additionally requires measuring the relative
orientation of each HMI, which can be implemented by incorporating IMU sensors into the
design of HMIs. The HMI localisation system may be further improved by combining and
processing the data from all the available cameras in the workplace, which would ensure
that the HMI can be localised even if it is occluded or is outside the field of view of multiple
cameras as long as it is visible to one of them. More types of notifications may represent
more states of the robot and the surrounding machines, allowing the user to quickly react
in a situation when human intervention is needed. However, due to the computational
and overall complexity of the system and the supporting device infrastructure, industrial
implementation of the system would require a standalone processing unit in addition to
the robot controller. In general, the usability of the system can be extended for use in large
production line conditions, including several robots and automatic production systems.
As a human worker moves along the production line to various machines and multiple
robots, the system can provide notifications of any danger that is at a reaction distance
from the human.
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Abstract: Digital-enabled manufacturing systems require a high level of automation for fast and
low-cost production but should also present flexibility and adaptiveness to varying and dynamic
conditions in their environment, including the presence of human beings; however, this presence
of workers in the shared workspace with robots decreases the productivity, as the robot is not
aware about the human position and intention, which leads to concerns about human safety.
This issue is addressed in this work by designing a reliable safety monitoring system for collaborative
robots (cobots). The main idea here is to significantly enhance safety using a combination of recognition
of human actions using visual perception and at the same time interpreting physical human–robot
contact by tactile perception. Two datasets containing contact and vision data are collected by using
different volunteers. The action recognition system classifies human actions using the skeleton
representation of the latter when entering the shared workspace and the contact detection system
distinguishes between intentional and incidental interactions if physical contact between human and
cobot takes place. Two different deep learning networks are used for human action recognition and
contact detection, which in combination, are expected to lead to the enhancement of human safety and
an increase in the level of cobot perception about human intentions. The results show a promising
path for future AI-driven solutions in safe and productive human–robot collaboration (HRC) in
industrial automation.

Keywords: safe physical human–robot collaboration; collision detection; human action recognition;
artificial intelligence; industrial automation

1. Introduction

As the manufacturing industry evolves from rigid conventional procedures of production to a
much more flexible and intelligent way of automation within the frame of the Industry 4.0 paradigm,
human–robot collaboration (HRC) has gained rising attention [1,2]. To increase manufacturing
flexibility, the present industrial need is to develop a new generation of robots that are able to interact
with humans and support operators by leveraging tasks in terms of cognitive skills requirements [1].
Consequently, the robot becomes a companion or so-called collaborative robot (cobot) for flexible task
accomplishment rather than a preprogrammed slave for repetitive, rigid automation. It is expected
that cobots actively assist operators in performing complex tasks, with highest priority on human
safety in cases humans and cobots need to physically cooperate and/or share their workspace [3].
This is problematic because the current settings of cobots do not provide an adequate perception of
human presence in the shared workspace. Although there are some safety monitoring systems [4–7],
they can only provide a real or virtual fence for the cobot to stop or slow down when an object,
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including a human being, enters the defined safety zone. However, this reduces productivity in two
ways as follows:

1. It is not possible to differentiate between people and other objects that enter the workspace of the
cobot. Therefore, the speed is always reduced regardless of the object.

2. It is also not possible to differentiate whether an interaction with the robot should really take
place or not; this also always forces a maximum reduction in speed.

This issue can only be tackled by implementing a cascaded, multi-objective safety system,
which primarily recognizes human actions and detects human–robot contact [8] to percept human
intention in order to avoid collisions. Therefore, the primary goal of this work is to conduct a
step-change in safety for HRC in enhancing the perception of cobots by providing visual and tactile
feedback to the robot from which it is able to interpret the human intention. The task is divided into
two parts, human action recognition (HAR) using visual perception and contact type detection using
tactile perception, which will be subsequently investigated. Finally, by combining these subsystems,
it is considered to attain a more reliable and intelligent safety system, which takes advantage of
considerably enhanced robot perceptional abilities.

1.1. Human Action Recognition (HAR)

Based on the existing safety regulation related to HRC applications and by inspiring from human
perception and cognition ability in different situations, adding the visual perception to the cobot can
enhance HRC performance. Nevertheless, the main challenge is how cobots are able to adapt to human
behavior. HAR as part of visual perception plays a crucial role in overcoming this challenge and
increasing productivity and safety. HAR can be used to allow the cobot keeping a safe distance with its
human counterpart or the environment, ensuring an essential requirement for fulfilling safety in shared
workspaces. Recent studies have been concentrated on visual and non-visual perception systems to
recognize human actions [9]. One method amongst non-visual approaches consists of using wearable
devices [10–15]. Nevertheless, applying this technology as a possible solution for an industrial situation
seems at present neither feasible nor comfortable in industrial environments because of restrictions that
it will impose on the operator’s movements. On the other hand, active vision-based systems are widely
used in such applications for recognizing human gestures and actions. In general, vision-based HAR
approaches consist of two main steps: proper human detection and action classification.

As alluded by recent researches, machine learning methods are essential in recognizing human
actions and interpreting them. Some traditional machine learning methods such as support vector
machine (SVM) [16–19], hidden Markov model (HMM) [20,21], neural networks [22], and Gaussian
mixture models (GMM) [23,24] have been used for human action detection with a reported accuracy of
about 70 to 90 percent. On the other hand, deep learning (DL) algorithms prevail as a new generation
of machine learning algorithms with significant capabilities in discovering and learning complex
underlying patterns from a large amount of data [25]. This algorithm provides a new approach to
improve the recognition accuracy of human actions by using depth data provided by time-of-flight,
depth, or stereo cameras, extracting human location and skeleton pose. DL researchers either use
video stream data [26–28], RGB-D images [29–31], or 3D skeleton tracking and joints extraction [32–35]
for classification of arbitrary actions. Among different types of deep networks, convolutional neural
networks (CNN) stand for a popular approach, which can be represented as 2D or 3D network in
action recognition but still needs a large set of labeled data for training and contains many layers.
The first 3D-CNN for HAR has been introduced by [36–38] providing an average accuracy of 91 percent.
Recent researches based on 3D-CNN techniques [39–42] have obtained a high performance on the KTH
dataset [43] in comparison to 2D-CNN networks [44–47]. Yet, the maximum accuracy of this research
is reported to be at 98.5 percent but is not capable of classifying in real-time. In addition, most of these
articles mainly focus on action classification based on domestic scenarios, only few have an approach
for industrial scenarios [19,48,49] and a restricted number works on unsupervised human activities
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in the presence of mobile robots [50,51]. Thus, there is a need to introduce a fast and more precise
network for HAR in industrial applications, which can be presented as a new 3D network architecture
by considering an outperforming result in action classification.

In this work, we use a deep learning approach for real-time human action recognition in
an industrial automation scenario. A convolutional analysis is applied on RGB images of the
scene in order to model the human motion over the frames by skeleton-based action recognition.
The artificial-intelligence-based human action recognition algorithm provides the core part for
distinguishing between collision and intentional contact.

1.2. Contact Type Detection

In more and more HRC applications, there is a need of having direct, physical collaboration
between human and cobot, physical human–robot collaboration (pHRC) due to an unmatched degree
of flexibility in the execution of various tasks. Indeed, when a cobot is performing its task, it should
be aware of its contact with the human. In addition, from a cobot’s point of view, the type of
this contact is not immediately obvious, due to the fact that the cobot cannot distinguish whether
a human gets in contact with the robot incidentally or intentionally, when a collaborative task is
executed. Therefore, it is important that the cobot needs to percept human contact with deeper
understanding. Towards this goal, it is imperative firstly, to detect the human–robot contact and
secondly, distinguish between intentional and incidental contacts, a process called collision detection.
Some researchers propose sensor-less procedures for detecting a collision based on the robot dynamics
model [52,53], but through momentum observers [52,54–57], using extended state observers [58],
vibration analysis models [59], finite-time disturbance observers [56], energy observers [57], or joint
velocity observers [60]. Among these methods, the momentum observer is the most common
method of collision detection, because it provides better performance compared to the other methods,
although the disadvantage is that it requires precise dynamic parameters of the robot [61]. For this
reason, machine learning approaches such as artificial neural networks [62–64] and deep learning [65,66]
have recently been applied for collision detection based on robot sensors’ stream data due to their
performance in modeling the uncertain systems with lower analytics effort.

Deep neural networks are extremely effective in feature extraction and learning complex
patterns [67]. Recurrent neural networks (RNN) such as long short-term memory network approaches
(LSTM) are frequently used in research for processing time series and sequential data [68–71]. However,
the main drawback of this network is the difficulty and time consumption for training in comparison
to convolutional neural networks (CNN) [65]. Additionally, current researches showed that CNN
has a great performance for image processing in real time situations [26,65,72–74], where the input
data are much more complicated than 1D time series signals. As proposed in [65], a 1D-CNN,
named CollisionNet, has a proper potential in detecting collision, although only incidental contacts
have been considered. Moreover, depending on whether the contact is intentional or incidental,
the cobot should provide an adequate response, which in every case, ensures the safety of the human
operator. At this step, identifying the cobot link where the collision occurred is important information
for anticipating proper robot reaction, which needs to be considered in contact perception [61].

With this background and considering the fact that contact properties´ patterns of incidental and
intentional states are different according to the contacted link, we aim to use supervised learning,
convolutional neural network, to have a model-free contact detection. Indeed, not only does the
proposed system detect the contact, which in other papers [61,65,75,76] is named collision detection,
it can also recognize the types of contact, incidental or intentional, provide information about a
contacted link and consequently increase the robot awareness and perception about human intention
during physical contact.
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2. Material and Methods

2.1. Mixed Perception Terminology and Design

We hypothesize that combining two types of perception, visual and tactile, in a mixed perception
approach can enhance the safety of human during collaborating with a robot by additional information
to the robot’s perception spectrum. It is easy to imagine that a robot then would be able to see and feel
a human in its immediate vicinity at the same time. Using visual perception, a robot can notice:

1. A human entering the shared workspace (Passing)
2. A human observing its tasks when he/she is near to the robot and wants to supervise the robot

task (Observation)
3. A dangerous situation when the human is not in a proper situation to do collaboration or

observation, which can threaten human safety (Dangerous Observation)
4. A human interaction when the human is close to robot and doing the collaboration (Interaction).

However, it is difficult using a pure vision-based approach to distinguish between dangerous
observation and interaction and to differentiate between incidental and intended contact types not
only for a machine but also for a human. Therefore, at this stage, considering both types of perception,
vision and haptics, is of significance. As indicated above, this approach is able to increase the safety
and can be like a supervisory unit to the vision part as the latter can fail due to occlusion effects.

To support our hypothesis, we first choose the approach of developing two separate networks for
human action and contact recognition, which meet the requirements for human–robot collaboration
and real-time capability. These networks will be examined and discussed with regard to their
appropriateness and their results. As a first step, we want to determine in this paper whether a logical
correlation of the outputs of the two networks is theoretically able to provide a reasonable expansion
of the perception spectrum of a robot for human–robot collaboration. We want to find out what the
additional information content is and how it can specifically be used to further increase the safety and
with that possibly also additional performance parameters of HRC solutions such as short cycle time,
low downtime, high efficiency, and high productivity. The concrete merging of the two networks in a
common application represents an additional stage of our investigations, which is not a subject of this
work. The results of the present investigation, however, shall provide evidence that the use of AI in
robotics is able to open up significant new possibilities and enables robots to achieve their operational
objectives in close cooperation with humans. Enhanced perceptional abilities of robots are future key
features to shift the existing technological limits and open up new fields of application in industry
and beyond.

2.2. Robotic Platform

The accessible platform used throughout this project is a Franka Emika robot (Panda), recognized as
a suitable collaborative robot in terms of agility and contact sensitivity. The key features of this robot
will be summarized hereafter; it consists of two main parts, arm and hand. The arm has 7 revolute
joints and precise torque sensors (13 bits resolution) at every joint, is driven by high efficiency brushless
dc motors, and has the possibility to be controlled by external or internal torque controllers at a
1 kHz frequency. The hand is equipped with a gripper, which can securely grasp objects due to a force
controller. Generally, the robot has a total weight of approximately 18 kg and can handle payloads up
to 3 kg.

2.3. Camera Systems

The vision system is based on a multi-sensor approach using two Kinect V2 cameras for monitoring
the environment to tackle the risk of occlusion. The Kinect V2 has a depth camera with resolution
of 512 × 424 pixels with a field of view (FoV) of 70.6◦ × 60◦, and the color camera has a resolution of
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1920 × 1080 px with a FoV of 84.1◦ × 53.8◦. Therefore, this sensor as one of the RGB-D cameras can be
used for human body and skeleton detection.

2.4. Standard Robot Collision Detection

A common collision detection approach is defined as Equation (1) [61].

cd(μ(t)) =
{

TRUE, i f
∣∣∣μ(t)∣∣∣ > εμ

FALSE, i f
∣∣∣μ(t)∣∣∣ ≤ εμ (1)

where cd is the collision detection output function, which maps the selected monitoring signal μ(t)
such as external torque into a collision state, true or false. εμ indicates a threshold parameter,
which determines the sensitivity for detecting a collision.

2.5. Deep Learning Approach

A convolutional neural network (CNN) model performs classification in an end-to-end manner
and learns data patterns automatically, which is different to the traditional approaches where the
classification is done after feature extraction and selection [77]. In this paper, a combination of 3D-CNN
for HAR and 1D-CNN for contact type detection has been utilized. The following subsections describe
each network separately.

2.5.1. Human Action Recognition Network

Since human actions can be interpreted by analyzing the sequence of human body movements
involving arms and legs and placing them in a situational context, the consecutive skeleton images
are used as inputs for our 3D-CNN network, which was successfully applied for real-time action
recognition. In this section, the 3D-CNN, which is shown in Figure 1, classifies HAR to five states,
namely: Passing, Observation, Dangerous Observation, Interaction, and Fail. These categories are
based on the most feasible situations which may occur during human–robot collaboration:

1. Passing: a human operator occasionally needs to enter the robot’s workspace, which is specified
due to the fix position of the robot but without any intention to actively intervene the task
execution of the robot.

2. Interaction: a human operator wants to actively intervene the robot’s task execution, which can
be the case due to correct a Tool Center Point (TCP) path or to help the robot if it gets stuck.

3. Observation: the robot is working on its own and a human operator is about to observe and check
the working process from within the robot’s workspace.

4. Dangerous Observation: the robot is working on its own and a human operator is about to
observe the working process. Due to the proximity of exposed body parts (head and upper
extremities) to the robot in the shared workspace, there is a high potential of life-threatening
injury in case of a collision.

5. Fail: one or all system cameras are not able to detect the human operator in the workspace due to
occlusion by the robot itself or other artefacts in the working area.

The input layer has 4 dimensions, Nchannel ×Nimage-height ×Nimage-width ×Nframe. The RGB image
of Kinect V2 has a resolution of 1980 × 1080 pixels which is decreased to 320×180 for reducing the
trainable parameters and network complexity. Therefore, Nchannel, Nimage-height, and Nimage-width are 3,
180, and 320, respectively. Nframe indicates the total number of frames in the image sequence, which is
3 in this research.

As shown in Figure 1, the proposed CNN is composed of fifteen layers, consisting of four
convolutional layers, four pooling layers, three fully connected layers followed by three dropout
layers and a SoftMax layer for predicting actions. Convolutional layers utilized for feature extraction
by applying filters and pooling layers are specifically used to reduce the dimensionality of the
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input. This layer performs based on the specific function, such as max pooling or average pooling,
which extracts the maximum or medium value in a particular region. Fully connected layers are
like a neural network for learning non-linear features as represented by the output of convolutional
layers. In addition, dropout layers as a regularization layer try to remove overfitting in the network.
Over 10 million parameters have to be trained for establishing a map to action recognition.

 

Figure 1. Three-dimensional convolutional neural networks (CNN) for human action recognition.

The input layer is followed by a convolution layer with 96 feature maps of size 73. Subsequently,
the output is fed to the rectified linear unit (ReLU) activation function. ReLU is the most suitable
activation function for this work, as it is specifically designed for image processing, and it can keep
the most important features of the input. In addition, it is easier to train and usually achieves better
performance, which is significant for real-time applications. The next layer is a max-pooling layer with
size and stride of 3. The filter size of the next convolutional layers decreases to 53 and 33, respectively,
with stride 1 and zero padding. Then, max-pooling windows decline to 23 with stride of 2. The output
of the last pooling layer is flattened out for the fully connected layer input. The fully connected
layers consist of 2024, 1024, 512 neurons, respectively. The last step is to use a SoftMax level for
activity recognition.

2.5.2. Contact Detection Network

For contact detection, a deep network, which is shown in Figure 2, is proposed. In this scheme,
a 1D-CNN, which is a multi-layered architecture with each layer consisting of few one-dimensional
convolution filters, is used. In this research, just two links of the robot which are more likely to be
used as contact points during physical human–robot collaboration, considered which indeed does not
influence the general approach used in this paper. Therefore, it includes one network for classification
of 5 states, which were defined as:
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1. No-Contact: no contact is detected within the specified sensitivity.
2. Intentional_Link5: an intentional contact at robot link 5 is detected.
3. Incidental_Link5: a collision at robot link 5 is detected.
4. Intentional_Link6: an intentional contact at robot link 6 is detected.
5. Incidental_Link6: a collision at robot link 6 is detected.

 

Figure 2. Contact detection network diagram.

In this paper, the input vector represents a time series of robot data as
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where τJ, τext, q, and
.
q indicate joint torque, external torque, joint position, and joint velocity,

respectively. W is the size of a window over the collected signals, which stores time-domain samples as
an independent instance for training the proposed models. Hence, the input vector is W × 28, and in
this research, by selecting 100, 200, and 300 samples for W, three different networks were trained to
compare the influence of this parameter.

As shown in Figure 2, the designed CNN is composed of eleven layers. In the first layer of this
model, the convolution process maps the data with 160 filters. The kernel size of this layer is optimally
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considered 5 to obtain a faster and sensitive enough human contact status; a parameter higher than
5 led to an insufficient network’s response, as it is more influenced by past data rather than near to
present data. To normalize the data and avoid overfitting, especially due to the different maximum
force patterns of every human, a batch normalization is used in the second layer. Furthermore, the size
of all max pooling layers is chosen as 2, and ReLU function is considered as the activation function,
due to reasons already mentioned before.

2.6. Data Collection

2.6.1. Human Action Recognition

The HAR data are collected simultaneously from different views by two Kinect V2 cameras
recording the scene of an operator moving next to a robot performing repetitive motions. The human
skeleton is detected using the Kinect library based on the random forest decision method [78]. As the
Kinect V2 library in Linux is not precise and does not project human skeleton in RGB images, the 3D
joint position in depth coordination was extracted and converted to RGB coordinates as follows:

xrgb = xd ×
PDxrgb

PDxd
+

Cxrgb × PDxd −Cxd × PDxrgb

PDxrgb × PDxd
(7)

yrgb = yd ×
PDyrgb

PDyd
+

Cyrgb × PDyd −Cyd × PDyrgb

PDyrgb × PDyd
(8)

where (Cxrgb, Cyrgb) and (Cxd, Cyd) are RGB and depth image centers, respectively. PD shows the
number of pixels per degree for depth and RGB images, respectively equal to 7 × 7 and 22 × 20 [79,80].
Then, the RGB images, which are supplemented with the skeleton representation in each frame,
are collected as a dataset. The sample rate by considering the required time for saving the images was
22 frames/second. Both cameras start collecting data once the human operator enters the environment,
while it is assumed that the robot is stationary in a structured environment. The collected images
are then sorted into 5 different categories and labeled accordingly based on the skeleton position and
configuration and with respect to the fixed base position of the robot.

2.6.2. Contact Detection

The data acquired at the robot joints during a predefined motion with a speed of 0.5 m/s were
collected in three states, contact-free, during interaction with the operator, and collision-like contacts,
at a sampling rate of 200 Hz (one sample per 5 ms). In this part, collecting collision-like contact
data is challenging, as the dedicated operator induces the collision intentionally [65]. However,
the collision can be considered to happen in a normal situation where the human is standing with
no motion and the robot is performing its task, while the impact happens. Indeed, a data analysis
shows that it can be clearly distinguished from object and intentional contacts and therefore can
be used at least as similar samples of real collision data. Then, a frame of W-window with 200 ms
latency passed through the entire data gathered, preparing it to be used as training data for the
input layer of the designed network. Thanks to the default cartesian contact detection ability of the
Panda robot, those contact data are used as a trigger to stop recording data after contact occurrence.
Consequently, the last W-samples of each collision trial data is considered as input for training the
network. For assuring comprehensiveness of the gathered data, each trial is repeated 10 times with
different scenes, including touched links, direction of motion, line of collision with the human operator,
and contact type (intentional or incidental). Additionally, each sample is labeled according to the
mentioned sequence.
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2.7. Training Hardware and API Setup

In the training of a network by using Graphic Processor Units (GPU), memory plays an important
role in reducing the training time. In this research, a powerful computer with NVIDIA Quadro P5000
GPU, Intel Xeon W-2155 CPUs, and 64 GB of RAM is employed for modeling and training the CNN
networks using the Keras library of TensorFlow. To enable CUDA and GPU-acceleration computing,
a GPU version of TensorFlow is used, and in consequence, the training process is speeded up. The total
runtime of the vision network trained with 30,000 image sequences was about 12 h for 150 epochs,
while it was less than 5 min for training contact networks.

2.8. Real Time Interface

The real-time interface for collecting the dataset and implementing the trained network on the
system was provided by Robotics Operating System (ROS) on Ubuntu 18.04 LTS. Figure 3 shows
the hardware and software structure used in this work. Two computers execute the vision networks
for each camera separately and publish the action states at the rate of 200 Hz on ROS. Furthermore,
CDN and CDM are executed on another PC at the same rate, connected to the robot controller for
receiving the robot torque, velocity, and position data of joints 5 and 6.

Figure 3. Real-time interface of complex system.

3. Results

In order to evaluate the performance of the proposed system, the following metrics are used.
A first evaluation consists of an offline testing, for which the results are compared based on the key
figures precision, recall, and accuracy, defined as follows:

Precision =
tp

tp + f p
(9)

Recall =
tp

tp + f n
(10)

Accuracy =
tp + tn

tp + fn + tn + fp
(11)
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where tp is the amount of the predicted true positive samples, tn is the number of data points labeled
as negative correctly, fp represents the amount of the predicted false positive samples, and fn is the
count of predicted false positive classes.

The second evaluation is based on real-time testing; the tests have shown promising results in early
trials. The YouTube video (https://www.youtube.com/watch?v=ED_wH9BFJck) gives an impression of
the performance (due to safety reasons, the velocity of the robot is reduced to an amount, which is
considered to be safe according to ISO 10218).

3.1. Dataset

Regarding the vision category, the dataset consisting of 33,050 images is divided into five
classes, including Interaction, Observation, Passing, Fail, and Dangerous Observation, with Figure 4
representing the different possible actions of a human operator during robot operation. The contact
detection dataset [81] with 1114 samples is subdivided into five classes, namely No-Contact,
Intentional_Link5, Intentional_Link6, Incidental_Link5, Incidental_Link6, which determine the contact
state on the last two links including their respective type, incidental or intentional.

   

(a) (b) (c) 

  

(d) (e) 

Figure 4. Type of human actions: (a) Passing: operator is just passing by, without paying attention to
the robot. (b) Fail: blind spots or occlusion of the visual field may happen for a camera, in this situation
the second camera takes over detection. (c) Observation: operator enters the working zone, without any
interaction intention and stands next to the robot. (d) Dangerous Observation: operator proximity is
too close, especially his head is at danger of collision with the robot. (e) Interaction: operator enters the
working zone and prepares to work with the robot.
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3.2. Comparison between Networks

3.2.1. Human Action Recognition

For optimizing efficiency in HAR, two different networks, 2D and 3D, were tested, the latter
indicating a significant outcome in both real-time and off-line testing cases. These two networks
are compared with respect to the results of 150 training epochs, in Table 1. The confusion matrix
can be considered as a good measurement to deliver the overall performance in the multi-category
classification systems. As it is shown in Table 2, each row of the table represents the actual label,
and each column indicates the predicted labels, which can also show the number of failed predictions
in every class. As shown in Table 1, both networks have promising result in classifying “Interaction”,
“Passing”, and “Fail” states. However, these networks have lower, but sufficient, accuracy in classifying
the “Dangerous Observation” category due to the lack of third dimensional (depth) information in the
network input. By considering the confusion matrix shown in Table 2, it is obvious that the networks
did not precisely distinguish between “Interaction”, “Observation”, and “Dangerous Observation”
caused by the similarity of these three classes. With regard to the condition of the experimental setup
where the location of cameras and robot base are fixed, the current approach has enough accuracy,
but for a real industry case, we need to add a true 3D representation of the human skeleton and the
robot arm in our network input.

Table 1. Precision and recall of two trained networks for human action recognition.

Network 2D 3D

Precision Recall Precision Recall

Observation 0.99 0.99 1.00 1.00
Interaction 1.00 1.00 1.00 1.00

Passing 1.00 1.00 1.00 1.00
Fail 1.00 1.00 1.00 1.00

Dangerous Observation 0.98 0.96 0.98 0.99
Accuracy 0.9956 0.9972

Table 2. Confusion Matrix for different classes in HRC.

Network 2D 3D

O
bservation

Interaction

Passing

Fail

D
angerous

O
bservation

O
bservation

Interaction

Passing

Fail

D
angerous

O
bservation

Tr
ue

La
be

ls Observation 3696 7 2 0 5 3751 6 2 1 7
Interaction 13 4130 0 0 1 8 4030 0 0 0

Passing 2 0 1145 0 0 1 0 1160 0 0
Fail 0 0 0 593 0 0 0 0 588 0

Dangerous Observation 12 1 0 0 313 2 0 0 0 359

3.2.2. Contact Detection

To evaluate the influence of the size of the sampling window (w) on the precision of the trained
networks, three different size dimensions of 100, 200, and 300 unity are selected, corresponding to
0.5, 1, 1.5 s of sampling period duration. Seventy percent of the dataset is selected for training and
30% for testing. Each network is trained with 300 epochs, and the results are shown in Tables 3
and 4. Window size of 200 and 300 unities provide a good precision for identifying the contact
status, in contrast to w = 100, which is not satisfactory. Furthermore, by comparing the result of
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the 200-window and 300-window networks, the 200-window network provides a better precision
and recall.

Table 3. Precision and recall of trained networks for contact detection with different window size.

w 100 200 300 100 200 300

Precision Recall

No-Contact 0.94 0.99 0.98 0.94 1.00 1.00
Intentional_Link5 0.74 0.91 0.89 0.84 0.91 0.84
Intentional_Link6 0.68 0.97 0.91 0.64 0.90 0.91
Incidental_Link5 0.61 0.89 0.83 0.61 0.93 0.89
Incidental_Link6 0.69 0.96 0.96 0.57 0.96 0.93

Accuracy 0.78 0.96 0.93

Table 4. Confusion matrix of trained networks for contact detection with different window size.

Window Size 100 200 300

N
o-C

ontact

Intentional_Link5

Intentional_Link6

Incidental_Link5

Incidental_Link6on

N
o-C

ontact

Intentional_Link5

Intentional_Link6

Incidental_Link5

Incidental_Link6

N
o-C

ontact

Intentional_Link5

Intentional_Link6

Incidental_Link5

Incidental_Link6
Tr

ue
La

be
ls

No-Contact 166 0 9 0 1 242 0 3 0 1 167 0 3 0 0

Intentional_Link5 0 86 12 19 0 0 93 4 4 1 0 86 5 5 1

Intentional_Link6 8 1 59 2 17 0 3 83 0 0 0 5 84 0 3

Incidental_Link5 0 15 1 33 5 0 6 0 50 0 0 10 0 48 0

Incidental_Link6 3 0 11 0 31 0 0 2 0 52 0 1 0 1 50

3.2.3. Mixed Perception Safety Monitoring

Every perception system designed separately to detect human intention according to Figure 5a,b is
regarded as a preliminary condition for the mixed perception system shown in Figure 5c. As shown
in Figure 5, for proper safety monitoring, the robot is programmed to categorize human safety into
three levels—Safe, Caution, and Danger—with its respective color codes green/yellow, orange, and red.
Safe level consist of two states, indicating whether the cobot has physical contact with human (yellow)
or not (green). Considering only visual perception or only tactile perception in determining the safety
level does not provide sufficient information compared to the mixed perception system. For instance,
in green Safe state of mixed perception, the robot can have a higher speed and in consequence,
increased productivity, while in the other perception systems, green Safe does not give this confidence
to the robot to be faster; consequently, it should be more conservative about possible collisions.
Thus, this higher information content can increase human safety and the robot’s productivity of
pHRC systems. Already a simple logical composition of the results (Figure 5c) shows a significantly
higher information content and thus a possible increase in safety and productivity in human–robot
collaboration. However, it might be that the mixed perception approach will have multiple effects on
the safety of HRC. Therefore, we will examine in detail the influence of the two subsystems on the
overall performance and quality of the entire system at a later stage.
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Figure 5. Safety perception spectrum in (a) visual perception, (b) contact perception, (c) mixed perception
safety systems.

4. Discussion

Human–robot collaboration has recently gained a lot of interest and received many contributions on
both theoretical and practical aspects, including sensor development [82], design of robust and adaptive
controllers [83,84], learning robots force-sensitive manipulation skills [85], human interfaces [86,87],
and similar. Besides, some companies attempt to introduce collaborative robots in order for
HRC to become more suited to enter manufacturing applications and production lines. However,
cobots available on the market have limited payload/speed capacities because of safety concerns,
which limits HRC application to some light tasks with very limited productivity. On the other
hand, according to the norms for HRC operations [88], it is not essential to observe a strict design
or to limit the power of operations if human safety can be ensured in all its aspects. In this regard,
an intelligent safety system as the mixed perception approach has been proposed in this research
to detect hazardous situations to take care of the human safety from entering the shared workspace
to physical interaction in order to jointly accomplish a task by taking advantage of visual and
tactile perceptions. Visual perception detects human actions in the shared workspace. Meanwhile,
tactile perception identifies human–robot contacts. One relevant piece of research in human action
recognition focusing on industrial assembly application is mentioned in [88]. By taking advantage of
RGB image and 3D-CNN network, the authors of the mentioned paper classified human action during
assembly and achieved 82% accuracy [89], while our visual perception system shows higher accuracy
of 99.7% by adding a human skeleton to the RGB series as the network input. Although our skeleton
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detection using Kinect library can be slightly affected by lighting conditions, it detects the human
skeleton in near 30 FPS, which is essential for fast human detection in real-time HRC applications [90].
Indeed, using deep learning approaches such as OpenPose [91] and AlphaPose [92] can omit lightening
problems [93]. However, their respective detection rates are 22 [91] and 23 FPS [92], which needs more
researches to be faster and applicable in safety monitoring systems. Besides, among contact detection
approaches in the state of the art, there are two similar works investigating collision detection using
1D-CNN. The authors of [94] compared both approaches, CollisionNet [65] and FMA [94], where the
accuracy was 88% and 90%, respectively, featuring a detection delay of 200ms [94]. While our procedure
in tactile perception (what is called collision detection in the state-of-the-art literature [61,65,75,76])
reached 99% with 80ms detection delay. For detecting contact type and robot joint, the accuracy was
higher than 89% up to 96%, which in turn, needs more research to achieve a higher accuracy.

In this study, combining the result of both abovementioned intelligent systems is presented using
a safety perception spectrum to examine the potential of the mixed perception approach in safety
monitoring of collaborative workspaces. The result shows that even with a simple combination of
both systems, the performance of safety monitoring can be improved as each system separately does
not have enough perception of the collaborative workspace. Furthermore, this research suggests that
the different forms of collaboration, such as coexistence, cooperation, etc., with their different safety
requirements can be reduced to a single scenario using mixed perception as the robot would be able to
“see” humans and “percept” external contacts.

As a result of this safety scenario, the robot reacts by being able to detect human intention,
determining human safety level, and thus ensuring safety in all work situations. Another advantage
of the proposed system is that the robot would be smart enough to take care about safety norms
depending on the conditions and, consequently, could operate at an optimum speed during HRC
applications. In other words, current safety requirements in most cases stop or drastically slow down
the robot when a human enters a shared workspace. However, with the proposed safety system,
based on the robots’ awareness using the presented mixed perception approach, it is possible to
implement a reasonable trade-off between safety and productivity, which will be discussed in more
detail in our future research.

In this research, there are two limitations concerning data collection: the collision occurred
intentionally, and we did not gather data when the human and/or the robot move at high speed,
which can be extremely dangerous for the human operator. As can be proved, the speed of the robot
has an insignificant influence on the result, since the model has learned the dynamics of the robot
in the presence or absence of human contact with normalized input data. On the other hand, if the
human operator wants to grab the robot at high speed with the intention of working with it, this could
be classified as a collision by the model due to its clear difference between contactless and intentional
data patterns. However, this only increases the false positive error of the collision class (i.e., this would
then be mistakenly perceived as a collision by the robot), which does not represent a safety problem in
this case.

In addition, the current work focuses on a structured environment with fixed cameras and a
stationary robot base position, which has yet to be generalized for an unstructured environment.
In principle; however, this does not restrict the generality of this approach, since for cobots, only the
corresponding position of the robot base has to be determined for the proximity detection to a human
operator. In our ongoing work, we are trying to use some methods to tackle these problems. Moreover,
with the current software and hardware, a sampling rate of HAR and contact detection networks are 30
Hz and 200Hz, respectively, while for the mixed perception system, there is a need for synchronization
of the result of both systems.

5. Conclusions

The efficiency of safety and productivity of cobots in HRC can be improved if cobots are able to
easily recognize complex human actions and can differentiate between multitude contact types. In this
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paper, a safety system using a mixed perception is proposed to improve the productivity and safety in
HRC applications by making the cobot aware of human actions (visual perception), with the ability
to distinguish between intentional and incidental contact (tactile perception). The vision perception
system is based on a 3D-CNN algorithm for human action recognition, which unlike the latest HAR
methods, was able to achieve 99.7% accuracy in an HRC scenario. The HAR system is intended to
detect human action once the latter enters the workspace and only in case of hazardous situations,
the robot would adapt its speed or stop accordingly, which can lead to higher productivity. On the
other hand, the tactile perception, by focusing on the contact between robot and human, can decide
about the final situation during pHRC. The contact detection system, by taking advantage of the
contact signal patterns and 1D-CNN network, was able to distinguish between the incidental and
intentional contact and recognize the impacted cobot’s link. According to the experimental result,
with respect to traditional and new methods, our proposed model is obtained the highest accuracy of
96% in tactile perception.

Yet, based on our experimental results, visual and tactile perceptions are not sufficient enough
separately for intrinsically safe robotic applications, since each system exhibits some lack of information,
which may cause less productivity and safety. By considering this fact, the mixed perception, by taking
advantage of both visual and tactile perception, can enhance productivity and safety. Although a
simple safety perception spectrum of the mixed perception is proposed, which needs more research to
enhance its intelligence, it shows higher resolution in compared to each single perception system.

As future work for our system, we will extend our research regarding to multi-contact and
multi-person detection, which is highly beneficial for the latest Industry 4.0 safety considerations.
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Abstract: In robot teaching for contact tasks, it is necessary to not only accurately perceive the
traction force exerted by hands, but also to perceive the contact force at the robot end. This paper
develops a tandem force sensor to detect traction and contact forces. As a component of the tandem
force sensor, a cylindrical traction force sensor is developed to detect the traction force applied by
hands. Its structure is designed to be suitable for humans to operate, and the mechanical model
of its cylinder-shaped elastic structural body has been analyzed. After calibration, the cylindrical
traction force sensor is proven to be able to detect forces/moments with small errors. Then, a tandem
force sensor is developed based on the developed cylindrical traction force sensor and a wrist force
sensor. The robot teaching experiment of drawer switches were made and the results confirm that
the developed traction force sensor is simple to operate and the tandem force sensor can achieve the
perception of the traction and contact forces.

Keywords: tandem force sensor; traction force sensor; human–robot interaction; contact task;
imitation learning

1. Introduction

Imitation learning or learning by demonstration is one of the promising approaches for non-experts
to develop a task control method or a policy in a straightforward and feasible manner [1,2].
Within imitation learning, a task control model or policy is learned from the task demonstrations, one of
which is a sequence of state-action pairs recorded during the teacher’s demonstration. After the teacher
demonstrates how to complete the task several times, learning algorithms utilize the state-action pairs
in these demonstrations to derive a mapping model of the state and action, namely the policy.

To obtain the state-action pairs in demonstrations, the robot needs to sense the environment
information and the actions taken by the teacher simultaneously during the task demonstration.
The environment information depends on the task to be learned. In non-contact tasks of industrial
robots, such as spraying and welding, the state only contains the robot motion parameters, target
position, and posture, etc. [3,4]. In the contact tasks of industrial robots, the contact force needs to be
included [5–9]. The actions taken by a teacher can be perceived by sensors, such as visual sensors to
capture a teacher’s body movements [10,11] or recognize a teacher’s gestures [12], wearable sensors,
and force sensors to perceive a teacher’s behavioral intentions [13–15]. Compared with visual sensors,
wearable sensors, etc., force sensor-based kinesthetic teaching is suitable for non-professionals to tell
the robot the action needed to be taken in current state in a simple and intuitive way [5–7,13–16].
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In the robot teaching for contact tasks, force sensors need to detect not only traction force, but also
the contact force. However, there is only one perceptual unit in a wrist force sensor, which makes
it impossible to detect the traction and contact forces synchronously. In the imitation learning of
peg-in-hole tasks, references [17–19] adopted kinesthetic teaching to guide the robot to carry out
assembly tasks, in which a wrist force sensors was used to measure the traction force exerted by
human hands and the contact status between peg and holes. However, this force sensor installed at
the end flange of robot cannot distinguish between contact force and traction force, which makes the
force data used for the policy learning inaccurate. To avoid this problem, Abu-Dakka [18] repeated
the demonstration trajectory to collect the net contact force, which is complicated. Different from
reference [18], in reference [13], Zeng grasped the end-point of Baxter robot to guide the robot motion,
and the force sensor installed at the end flange of robot just detected the contact status. However,
this method is only suitable for collaborative robots equipped with joint torque sensors rather than
common ones. One method to obtain traction and contact forces is to adopt two wrist force sensors
mounted in parallel, which can complicate the robot’s end structure [20,21]. For example, the last two
joints of the robot in reference [20] cannot move freely within their motion range, which limits the
adjustable range of the robot’s attitude. Therefore, for the kinesthetic teaching of robot contact tasks,
simultaneous detection of traction and contact forces is still an important issue to be solved.

The main contribution of the paper is that a tandem force sensor is developed, which helps robots
to learn human skills of opening and closing a drawer. A cylindrical traction force sensor that can
be connected with a contact force sensor in series is developed, which is different from the common
wrist force sensors [22–26]. Compared with these common wrist force sensors, the main novelty of the
cylindrical traction force sensor is that the sensor’s side surface is sensitive to external forces rather
than the lateral end surface. Besides, in the cylindrical traction force sensor, there is a central column
coaxial to and within the elastic structural body (ESB), which allows other device to be connected with
this sensor without influencing the measurement of the traction force. Compared with the force sensor
in reference [27], the developed traction force sensor is easier to be operated by human hands and
suitable for drawer switch teaching.

2. Introduction to the Tandem Force Sensor

2.1. The Ideal Tandem Force Sensor

To realize the perception of traction and contact forces, a tandem force sensor consisting of two
perceptual units connected in series is designed, as shown in Figure 1a. Figure 1a shows an ideal
tandem force sensor, which helps to understand the basic perception principle of the tandem force
sensor. In the ideal tandem force sensor, one perceptual unit is connected with its side surface, and the
other is connected with its end surface. In the kinesthetic teaching of the robot contact tasks, the end
effector is connected to the end surface of the tandem force sensor, and the human hand guides the
robot’s motion by grasping the side surface of the tandem force sensor. The traction force applied to the
side surface is detected by the perception unit (i.e., traction force sensor) connected with it, and another
perception unit (i.e., contact force sensor) connected with the end surface is used to measure the contact
force between the end-effector and external environment. Therefore, the side surface and end surface
are sensitive to the traction and contact forces, respectively.
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(a) 

 
(b) 

Figure 1. Schematic diagram of the ideal tandem force sensor: (a) structure of the ideal tandem force
sensor; (b) the inner structure of the ideal tandem force sensor.

Each perceptual unit in the tandem force sensor is composed of an elastic structural body, strain
type sensors pasted on the ESB, etc., and the two ESBs in it are shown in Figure 1b. The two ESBs in
the tandem force sensor are connected in series, and the serial connection mode can be explained by
Figure 2. The free end of the ESB for detecting traction force is connected to the side surface, and the
end surface is fixed to the free end of the ESB for detecting contact force. The fixed end of the former
is directly connected to the connecting flange, while the fixed end of the latter is indirectly fixed to
the connecting flange through the central column. In addition, all the connections are made by screw
fastening. In application, the traction force applied to the side surface will transmitted to the ESB for
detecting traction force and ultimately to the connecting flange, as shown in Figure 2. The contact
force exerted on the end surface will flow to the ESB for detecting contact force and to the connecting
flange through central column. By adopting the connection mode shows in Figure 2, the traction and
contact forces can be detected by the corresponding ESBs, and do not interfere with each other. Finally,
the tandem force sensor can achieve the perception of traction and contact forces in decoupled manner.

Figure 2. Simplified schematic diagram of series connection mode of the tandem force sensor.
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The two perceptual units shown in Figure 2 are connected in serial structure. In principle, the two
perceptual units are independent of each other, which is similar to the measurement principle of two
wrist force sensors in Figure 3. The two wrist force sensors shown in Figure 3 are connected in parallel
structure, which is a currently adopted method to realize the measurement of traction and contact
forces. Different form this method, the two perceptual units in the tandem force sensor are connected
in series so we have named the sensor shown in Figure 1 as tandem force sensor. Compared with the
perception method of the traction and contact forces shown in Figure 3, the tandem force sensor is
compact in structure and does not require the handle to be fixed to the sensor. Therefore, the effect
of the handle gravity on the measurement accuracy of the traction force is eliminated. Moreover,
the tandem force sensor does not increase the transverse structural complexity of the robot end and
will not limit the motion range of the last two joints of a six degree of freedom (6-DOF) industrial robot.

 

Figure 3. Two wrist force sensors installed in parallel for detecting the traction and contact forces.

2.2. The Developed Tandem Force Sensor

In order to simplify the realization difficulty of the tandem force sensor, this paper proposes and
designs a tandem force sensor, as shown in Figure 4a. Both the wrist force sensor and the contact force
sensor in Figure 1a use the end surface to sense external forces, so the wrist force sensor is used as
the contact force sensor. Based on this idea, the developed tandem force sensor is different from the
ideal tandem force sensor in appearance. However, the perception principle of the developed tandem
force sensor is the same as the ideal tandem force sensor, that is, the perception of the traction and
contact forces are achieved by the perception units connected to the side surface and end surface of
the develop tandem force sensor. Moreover, the series connection mode of the two perception units
in the developed tandem force sensor is consistent with the ideal tandem force sensor, as shown in
Figure 4b. The difference of the traction force sensor in the developed tandem force sensor from that of
in the ideal tandem force sensor lies in that the its central column is longer. Unlike the ideal tandem
force sensor, limited by the size of the contact force sensor, the contact force sensor is not surrounded
by the side surface of traction force sensor. Similarly, the connections of different components of the
developed tandem force sensor are made by screw fastening. Besides, to achieve the series connection
of the contact force sensor and traction force sensor, an intermediate connection flange is added.
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Figure 4. Schematic diagram of the developed tandem force sensor: (a) structure of the developed
tandem force sensor; (b) the inner structure of the developed tandem force sensor.

To realize the tandem force sensor, we design and develop a cylindrical traction force sensor
firstly. Compared with common wrist force sensors, the unique features of the cylindrical traction
force sensor are that it senses external force applied to the side surface and its internal space provides
adequate space for the central column. The basic structure of the ESB of the cylindrical traction force
sensor is a thin-walled cylinder. The free end of the thin-walled cylinder-shaped ESB is connected
with the side surface of the traction force sensor, and its fixed end is fixed to the connecting flange,
as shown in Figures 2 and 4b. The internal space of the ESB is not valuable for the detection of traction
force. However, it is significant for the realization of the tandem force sensor. In the tandem force
sensor, the central column is not only used to connect the contact force sensor, but also provides rigid
support for the contact force sensor and the end effector mounted on it. Hence, the diameter of the
central column should not be small, which is 32 mm in this paper. By selecting reasonable structural
parameters of the cylinder-shaped ESB, enough space can be provided for the central column, which is
one of the main advantages of the cylinder-shaped ESB. In addition, the internal space is also important
for the arrangement of the contact force sensor and for the signal lines of the contact force sensor.

3. Development of the Cylindrical Traction Force Sensor

3.1. Architecture of the Cylindrical Traction Force Sensor

Referring the force sensor in literature [28], the cylindrical traction force sensor is designed,
as shown in Figure 5a. The cylindrical traction force sensor is consisting of a cylinder-shaped elastic
structural body, a connecting fitting and a shell. The cylinder-shaped ESB shown in Figure 5b is the
core of the traction force sensor, and it has layer A (black area), layer B (red area) and layer C (blue area).
Compared with the diaphragm type ESB [29], cross beam type ESB [30–32], parallel type ESB [22,33],
etc., the cylinder-shaped ESB is hollow, and the free space inside can be used as the connection channel
between the contact force sensor and the traction force sensor. The layer A consists of A1, A2, A3,
and A4, and layer C is composed by C1, C2, C3, and C4 (Figure 6). A1, A2, A3, and A4 are uniformly
distributed along the circumference, the C1, C2, C3, and C4 are also uniformly distributed along
the circumference. In addition, the angle between A1 and C1 is 45 degrees, and the angle between
the slots in layer A and the slots in layer C are 45 degrees or times of 45 degrees. The fixed end of
cylinder-shaped ESB is fixed to the connecting fitting shown in Figure 5c by screw fastening, and the
contact force sensor is fixed to the central column of it by screw fastening. Then, the connecting fitting
can be fixed to the end flange of a robot and provide rigid support for the ESB and the contact force
sensor. The shell shown in Figure 5d is secured to the free end of the ESB by screw fastening, and it can
transfer the traction force exerted by human hands to the free end of ESB, as shown in Figure 2.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Schematic diagram of the composition of the cylindrical traction force sensor: (a) the
basic architecture of the cylindrical traction force sensor; (b) cylinder-shaped elastic structural body;
(c) connecting fitting; (d) shell.

Figure 6. Basic structure of the cylinder-shaped elastic structural body.

3.2. Basic Force Measurement Principle of the Cylindrical Traction Force Sensor

The basic structure of the cylinder-shaped ESB can be illustrated by Figure 6. Under the traction
force, the ESB will produce bending deformation and shear deformation, which will lead to the
occurrence of normal stress and shear stress in the ESB. The normal stress mainly exists in layer A
and layer C, which is relatively small. Therefore, the traction force sensor uses shear stress to measure
traction force.

The layer A of ESB, which is used to measure the force FX along the X-axis and the force FY along
the Y-axis, consists of A1, A2, A3, and A4. When the force FX is applied on the ESB, the A2 and A4 will
produce shear stress. The strain values of the two points on the same diameter in the outside surface of
A2 and A4 have the same signs, as shown in Figure 7a. Besides, under the moment MZ, the A1, A2, A3,
and A4 will produce shear deformation. The strain values of the two points on the same diameter in
the outside surface of A2 and A4, respectively, have apposite signs, and the strain values of the two
points on the same diameter in the outside surface of A1 and A3 respectively have apposite signs,
as shown in Figure 7b. When the moment MZ act on the cylinder-shaped ESB, the sum of strain values
of the two points on the same diameter in the outside surface of A2 and A4 respectively is zero. Then,
by measuring the sum of strain values of the points in the outside surface of A2 and A4, respectively
and using this characteristic, the force FX can obtain. Similar to FX, the force FY can be measured by
measuring the sum of strain values of the points in the outside surface of A1 and A3, respectively.
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(a) (b) 

Figure 7. The shear stress’ direction of the points in the outside surface of layer A: (a) under the force
FX; (b) under the torque MZ.

The layer C of ESB used for the measurement of moment MZ is composed by C1, C2, C3, and C4.
Under the moment MZ, the strain values of the two points on the same diameter in the outside surface
of C1 and C3, respectively, own different signs, and the sign of strain values of the points in the outside
surface of C2 is opposite to that of the points on the same diameter in C4, as shown in Figure 8c.
When the force FX or the force FY or the combination of both is acting on the ESB, the sign of strain
values of the points located at the outside surface of C1 is the same as that of the point on the same
diameter in C3, the same as the C2 and C4 (Figure 8a,b). Then, under the force FX or the force FY or
the combination of both, the difference of strain values of the two points on the same diameter in the
outside surface of C1 and C3 or C2 and C4, respectively, is zero. However, when the FX, FY, and MZ act
on the cylinder-shaped ESB, the difference of strain values of the two points on the same diameter in
the outside surface of C1 and C3, respectively, is not zero, same thing with C2 and C4. By using this
property, the moment MZ can be detected by measuring the difference of strain values of the points in
the outside surface of C1, and C3 and the difference of strain values of the points in the outside surface
of C2 and C4.

 
(a) 

 
(b) 

 
(c) 

Figure 8. The shear stress’ direction of the points in the outside surface of layer C: (a) under the force
FX; (b) under the force FY; (c) under the torque MZ.

The layer B of the ESB is a ring connected to layer A and layer C respectively, and it can measure
the force FZ, the moment MX and the moment MY. Under the force FZ, layer A bears axial pressure
(Figure 9a). When this axial pressure is transmitted to the layer B, there is the axial shear stress in
layer B, as shown in Figure 10. Figure 10 illustrates the basic constitutional unit of the ESB, and the
expansion diagram of ESB is shown in Figure 11. The axial pressure induced by force FZ causes shear
deformation of B1, B2, B3, B4, B5, B6, B7, and B8 (B1−B8), and then generate axial shear stress in the
axial cross section of B1−B8. Moreover, the sign of strain values of the points in the outside surface of
B1−B8 are the same. Besides, under the moment MX, A2 and A4 are subjected to the axial pressure
in opposite direction, respectively (Figure 9b), which causes shear deformation in B3, B4, B7, and B8.
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The sign of strain values of the points in the outside surface of B3 and B4, respectively, is opposite to
that of in B7 and B8. Then, by using this property, the force FZ can be measured by measuring the sum
of strain values of the points in the outside surface of B1−B8, and the moment MX can be measured by
the difference between the strain values of the points in the outside surface of B3 and B7 and that of in
B4 and B8. Similar to moment MX, moment MY can also be measured.

 
(a) (b) 

Figure 9. Force diagram of the cylindrical traction force sensor: (a) under the force FZ; (b) under the
torque MX.

Figure 10. Basic constitutional unit of cylinder-shaped elastic structural body.

Figure 11. The unfold of the cylinder-shaped elastic structural body.

3.3. Mechanical Model of the Cylindrical Traction Force Sensor

To meet the design requirement of traction force sensor, the selection of ESB structural sizes should
be carried out on the basis of theoretical analysis. Therefore, based on theory of mechanics, we analyze
the mechanical properties of the ESB and establish the mechanical model of the ESB, which is of
great significance for the determination of structural sizes of ESB and for the understanding of the
mechanism of force perception and the mechanical properties of the ESB.
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3.3.1. The Mechanics Analysis under the FX

When the traction force FX exerts on ESB, the circular ring between layer A and the free end of
the ESB will produce shear deformation along the force direction. According to the mechanics of
materials, the direction of the shear stress of a point on the excircle of the circular ring coincides with
the tangential direction of the excircle of it, and the angle between its direction vector and the direction
of force FX is an acute angle, as shown in Figure 12. According to the calculation method of shear
stress, the shear stress of point e can be calculated by using the following equation.

τFX =
FX · Sz

Iz · (D− d)/2
=

4FX · sinα
πD(D− d)

(1)

where Sz = D2(D− d) sinα/8 is the static moment of ĉe segment ring with regard to Z-axis,
Iz = πD3(D− d)/16 is the moment of inertia with respect to Z-axis, D is the diameter of the
excircle of the ESB, d is the diameter of the inner circle of the ESB, α is the acute angle between point a
and point e about the Z-axis.

 

Figure 12. The shear stress analysis of the circular ring.

According to Equation (1), the shear stresses of point a and point c are zero, and the shear stresses
of point b and point f are the largest. Then, the distribution of shear stress values of points in the outer
surface of the circular ring is shown in Figure 13.

Figure 13. The distribution of shear stress values of the points in the outside surface of the circular ring.

Based on Equation (1) and Figure 13, without considering stress concentration, the distribution of
shear stress values of the points in the outside surface of layer A is shown in Figure 14a. According to
Figure 14a, the shear stress in A1 and A3 is small, while that of A2 and A4 is large. Therefore, the shear
stress of the points in A2 and A4 can be utilized to measure FX. In addition, the largest shear stress
value in A2 and A4 caused by force FX is as follows.

τFX =
4FX · sin(π/2)
πD(D− d)

=
4FX

πD(D− d)
(2)
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(a) 

 
(b) 

Figure 14. The distribution of shear stress values of the points in the outside surface of layer A and
layer C: (a) layer A; (b) layer C.

Similar to layer A, the distribution of shear stress values of the points in the outside surface of
layer C can be obtained, as shown in Figure 14b. According to Figure 14b, the values of shear stress of
the points in C1, C2, C3, and C4 are not too large nor too small. Besides, the direction of shear stress at
points in C2 is the same as that of the points in C4 and the direction of shear stress at points in C1 is the
same as that of the points in C3 (Figure 8a).

Unlike layer A and layer C, under the FX, the layer B bears no shear stress. For layer B, the shear
stress in A2 and A4 transmits to B34 and B78 that connects with layer A, which induces the occurrence
of the normal stress in layer B, as shown in Figure 15. This paper utilizes the shear stress in the ESB to
measure the traction force. Therefore, the normal stress in layer B will not affect the measurement of
MX, MY and FZ.

 
(a) 

 
(b) 

Figure 15. The stress in layer B induced by FX: (a) the stress transmitted to B34 by A2; (b) the stress
transmitted to B78 by A4.

3.3.2. The Mechanics Analysis under the FY

According to the basic structure of the ESB, under the FY, the deformation of the ESB is similar to
that of under the FX. Similar to Equation (2), the following formula is important for the measurement
of force FY.

τFY =
4FY

πD(D− d)
(3)

However, unlike under force FX, the points with the largest shear stress are in A1 and A3 and the
points that owns zero shear stress value exist in A2 and A4. Hence, the indirect measurement of force
FY can be achieved by using the shear stress values of the points in A1 and A3.
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3.3.3. The Mechanics Analysis under the Force FZ

Under the force FZ, the A1, A2, A3, and A4 bear axial pressure, the C1, C2, C3, and C4 also under
axial pressure. Therefore, the shear stress of the points in the outside surface of layer A and layer C is
zero. According to Figures 10 and 11, under the FZ, the cross sections along Z-axis of B1−B8 will bear
shear force, and the shear stress of the points in B1−B8 can be calculated using the following equation.

τFZ =
FZ

A
=

2FZ

Lb(D− d)
(4)

where A = Lb(D− d)/2 is the area of the cross section along Z-axis of layer B (Figure 10), (D− d)/2 is
the wall thickness of layer B, Lb is the height of layer B.

Then, based on Equation (4), the force FZ can be measured by detecting the shear stress values of
the points in B1−B8.

3.3.4. The Mechanics Analysis under the Moment MX

When the moment MX acts on the cylinder-shaped ESB, the force/moment applied on A1, A2, A3,
and A4 can be simplified as shown in Figure 9b, which leads to the occurrence of normal stress in the
A1, A2, A3, and A4. In addition, under the MX, C1, C2, C3, and C4 will also produce normal stress,
but no shear stress. When the MX is positive, A2 bears the largest tension and A4 understands the
largest pressure. However, the normal stress in A1 and A3 is close to zero, because the central axis of
twist goes through A1 and A3. For the layer B, the tension applied on A2 will transmit to B34, and the
tension in B34 will cause shear stress in the outside surface of B3 and B4. Similarly, the outside surface
of B7 and B8 will also produce shear stress. Because the normal stress in A1 and A3 is approximately
zero, the tensions/pressures applied on B3 and B4 or B7 and B8 induced by moment MX approximate
to FMX = MX/D. Then, the largest shear stress value of the points in the outside face of B3, B4, B7 and
B8 can be figured out.

τMX =
FMX

A
=

MX/D
Lb(D− d)

=
MX

Lb(D− d)D
(5)

Although both FZ and MX cause shear stress in B3, B4, B7, and B8, the sign of shear stress incurred
by MX in B3 and B4 is apposite to that of B7 and B8, the sign of shear stress caused by FZ in B3 and B4
is the same as that of B7 and B8. Then, the shear stress of the points in the outside surface of B3 and B4
minus the shear stress of the points in the outside surface of B7 and B8 is the shear stress caused by MX.
On the contrary, the shear stress of the points in the outside surface of B3 and B4 add the shear stress of
the points in the outside surface of B7 and B8 is the shear stress caused by FZ. Therefore, by using this
property, FZ and MX can be measured, respectively.

In addition, the FY applied on the ESB generates the moment around X-axis at layer B, as shown
in Figure 16. Therefore, the moment measured by using the shear stress in B3, B4, B7, and B8 is the
superposition of the true moment MX and the moment caused by FY. However, the true moment MX
applied on the ESB is the moment value we need to measure. The force FY is measurable by using
the shear stress in A1 and A3, and the moment arm of the moment caused by FY is available. Then,
the moment caused by FY can be calculated out, after which the true moment MX is obtainable.
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Figure 16. The moment applied on layer B caused by FY.

3.3.5. The Mechanics Analysis under the MY

Under the MY, the deformation of ESB is similar to that of under the MX. Therefore, similar to
Equation (5), the following equation can be obtained.

τMY =
MY

Lb(D− d)D
(6)

Unlike under moment MX, under the MY, A1, and A3 bear the largest tension or pressure, and the
normal stress in A2 and A4 is close to zero. Then, the points in the outside surface of B1, B2, B5, and B6
produce relatively large shear stress. Under the combined action of MY and FZ, both will cause shear
stress in B1, B2, B5, and B6. The sign of shear stress incurred by MY in B1 and B2 is apposite to that of
B5 and B6, the sign of shear stress caused by FZ in B1 and B2 is the same as that of B5 and B6. By using
this property, the FZ and MX can be measured respectively. In addition, the FX applied on the shell
will also produce moment around Y-axis. Therefore, the measurement of true moment MY applied on
the ESB also needs to wipe off the moment around Y-axis caused by FX.

3.3.6. The Mechanics Analysis under the Moment MZ

When the moment MZ act on the cylinder-shaped ESB, the A1, A2, A3, and A4 all produce shear
stress and the value of shear stress can be calculated using the following equation.

τMZ =
MZ

R ·A′ =
MZ

D/2 ·πD(D− d)/2(r + 1)
=

4MZ(r + 1)
πD2(D− d)

(7)

where A′ = πD(D − d)/2(r + 1) is the area of the cross section of layer A perpendicular to Z-axis,
R = D/2 is the radius of the excircle of the ESB, r is the ratio between the arc length of four grooves
and the arc length of A1, A2, A3 and A4.

Under the MZ, the direction of shear stress of the points in the outer surface of A1 and A2 is
opposite to that of A3 and A4 respectively, as shown in Figure 7b. However, under the FX, the direction
of shear stress of the points in A2 and A4 is the same (Figure 7a). Similarly, under the FY, the direction
of shear stress of the points in A1 and A3 is the same. Therefore, the measurement of FX or FY that
using the shear stress of the outside surface of A2 and A4 or A1 and A3 respectively will not be affected
by MZ.

For layer B, the shear stress in A1, A2, A3, and A4 transmits to B12, B34, B56, and B78 that connects
with layer A. Then, B1−B8 under the normal stress, which does not affect the measurement of MX, MY
and FZ. The normal stress in B1−B8 causes stress in B23, B45, B67, and B81, which induces the shear
stress in C1, C2, C3, and C4. The values of the shear stress in the outside surface of C1, C2, C3, and C4
are the same as that of layer A, which can be figured out by using Equation (7). Similarly, the direction
of the shear stress of the points in the outside surface of C1 is opposite to that of C3, the direction of
the shear stress of the points in the outside surface of C2 is opposite to that of C4 (Figure 8c). Besides,
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FX and FY also affect the shear stress of the points in the outside surface of C1, C2, C3, and C4. However,
according to Figure 8a,b, under FX and FY, the direction of the shear stress of the points in the outside
surface of C1 is the same as that of C3 and the shear stress of the points in the outside surface of C2 is
the same as that of C4. Hence, the shear stress in the outside surface of C1, C2, C3, and C4 can be used
to detect MZ without being affected by FX and FY.

3.4. Parameter Selection and Strength Check of Cylinder-Shaped Elastic Structural Body

3.4.1. Sensitivity and Parameter Selection of the Elastic Structural Body

Strain values under unit forces and torques can reflect the sensitivities of a force sensor.
The microstrain measured by the strain gauge is ε = τ/E, where E is the elasticity modulus and τ
is the shear stress caused by unit force/moment. Aluminum alloy 7075 is selected to machine the
cylinder-shaped ESB, and the elasticity modulus of aluminum alloy 7075 is E = 71.7 Gpa. Under the
unit traction force, the micro strains measured by the strain gauges pasted in the outside surface of the
ESB are as follows. ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

SFX= SFY = 4/πD(D− d)E
SFZ = 2/lb(D− d)E

SMX= SMY = 1/lb(D− d)DE
SMZ = 4(r + 1)/πD2(D− d)E

(8)

where SFX , SFY , SFZ , SMX , SMY , SMZ are the sensitivities of ESB with respect to traction forces/torques
FX, FY, FZ, MX, MY, MZ respectively.

According to Equation (8), the smaller D, d and lb are, the larger r is, and the larger sensitivities
will be. However, based on the design criteria, the parameters of the ESB must not be too small.
Considering the convenience of mechanical processing of the ESB and the pasting of strain gauges,
the selected parameters are D = 50 mm, d = 48 mm, lb = 9 mm, r = 3 and the heights of layer A
and layer C are la = 10 mm, lc = 9 mm, respectively. Substituting the parameters into Equation (8),
the theoretical sensitivities of the ESB can be obtained, as shown in Table 1.

Table 1. Theoretical sensitivity of the elastic structural body.

Forces/Moments Sensitivity Unit

FX 0.177 με/N
FY 0.177 με/N
FZ 1.549 με/N
MX 0.155 με/N·cm
MY 0.155 με/N·cm
MZ 0.142 με/N·cm

3.4.2. Strength Check of the Cylinder-Shaped ESB

In order to prevent the overload damage of the traction force sensor, it is necessary to obtain
the maximum force that the cylinder-shaped ESB can withstand, which can be calculated by the
following equation. ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

FX−max= FY−max = (πD(D− d)/4)[τ]
FZ−max = (Lb(D− d)/2)[τ]

MX−max= MY−max= Lb(D− d)D[τ]

MZ−max= (πD2(D− d)/4(r + 1))[τ]

(9)

where [τ] is the permissible shear stress of the 7075 aluminum alloy used to machine the cylinder-shape
ESB, [τ] = 0.5[σ], [σ] = σs/2.5 = 182 N/mm2, σs = 455 N/mm2 is the yield stress of 7075 aluminum
alloy, FX−max, FY−max, FZ−max, MX−max, MY−max, and MZ−max are the largest FX, FY, FZ, MX, MY, and MZ
that the ESB can bear, respectively.
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Substituting the parameters into Equation (9), the maximum forces/moments that the ESB can
withstand can be figured out, and they are FX−max = 2857.4 N, FY−max = 2857.4 N, FZ−max = 819 N,
MX−max = 8190 N·cm, MY−max = 8190 N·cm and MZ−max = 8929.38 N·cm, respectively. In the kinesthetic
teaching of robot, humans will not to use large forces to guide the movement of robots. Therefore,
for human, the theoretical maximum forces/moments that the ESB can bear are very large, which are
enough to prevent the traction force sensor from damaging.

3.5. Measurement of the Traction Force

Given the true sensitivities of the traction force sensor, the traction force can be calculated according
to the measured strain values. By combining Equations (2)−(8), the traction force can be figured out,
as follows.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FX

FY
FZ

M′X
M′Y
MZ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/SFX 0 0 0 0 0
0 1/SFY 0 0 0 0
0 0 1/SFZ 0 0 0
0 0 0 1/SMX 0 0
0 0 0 0 1/SMY 0
0 0 0 0 0 1/SMZ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εFX

εFY

εFZ

εM′X
εM′Y
εMZ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

where εFX , εFY , εFZ , εM′X
, εM′Y and εMZ are the shear strain values caused by FX, FY, FZ, M′X, M′Y,

and MZ, respectively.
In order to measure the shear strains caused by external forces/moments, the strain gauges need

to be pasted to the ESB in a manner of ±45◦ with the axis of the ESB and the strain gauges pasted
in different regions are formed into six electric bridges. The output of an electric bridge is voltage,
not strain value. Then, Equation (10) can be rewrote to exhibit the mapping relation between the
voltage changes of electric bridges and the external forces.

[F]6×1 = [S]6×6 · [K]6×6 · [Δv]6×1 = [P]6×6[Δv]6×1 (11)

where [F]6×1 is [FX, FY, FZ, M′X, M′Y, MZ]
T; [S]6×6 is the diagonal matrix in Equation (10); [K]6×6 is

the coefficient matrix of strain transfer of electric bridge, the elements in [K]6×6 is the strain values
corresponding to unit voltage; the elements in [Δv]6×1 are the change values in the output voltage of
the electric bridges; [P]6×6 is equal to [S]6×6[K]6×6.

Owing to the moment M′X in [F]6×1 includes the moment caused by FY and the moment M′Y
contains the moment induced by FX, the amendment is necessary to get the real moment MX and MY
applied on the traction force sensor. The following equation can eliminate the errors in M′X and M′Y.

{
MX = M′X − FY · dFY

MY = M′Y − FX · dFX

(12)

where dFX is the moment arm from the application point of the force FX to the moment measuring
point, dFY is the moment arm from the application point of the force FY to the moment measuring
point, and in ideal circumstances, dFX is equal to dFY .

3.6. The Realization of Traction Force Sensor

After the traction force sensor is machined, it is necessary to paste strain gauges for the shear
stress measurement on the surface of the cylinder-shaped ESB. To measure the traction force, we pasted
48 miniature strain gauges on the outer surface of the cylinder-shaped ESB, and the distribution
diagram of these strain gauges is shown in Figure 17. The blue rectangles in Figure 17 represent strain
gauges, and the red squares in Figure 17 represent the connecting terminals of strain gauges. In order
to measure the shear stress of one point, two strain gauges are pasted on the same area at an angle
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of 90◦, and the angle between the two strain gauges and the direction of shear stress is 45◦ and −45◦
respectively. Therefore. One strain gauge is used to detect tensile stress caused by shear stress, and the
other is used to measure compression stress induced by shear stress. Moreover, the strain gauges
pasted in A1, A2, A3, A4, C1, C2, C3, and C4 should be pasted in the area that bears the largest shear
stress under the FX, FY, and MZ, that is, the middle position of these areas. However, based on the
analysis in Sections 3.3.3–3.3.5, the strain gauges pasted in B1−B8 can be arranged as Figure 17 shows.
After the strain gauges were pasted, the cylinder-shaped ESB is shown in Figure 19a.

Figure 17. Distribution of strain gauges pasted on the cylinder-shaped elastic structural body.

After the pasting of the strain gauges, the strain gauges pasted in different areas are connected to
form six electric bridges. The four strain gauges pasted in A2 and A4 are connected to form the 1st
electric bridge to measure the strain caused by the force FX. The strain gauges pasted in A1 and A3
are connected to form the 2nd electric bridge to measure the strain caused by the force FY. The strain
gauges pasted in B12, B21, B32, B41, B52, B61, B72, and B81 are connected to form the third electric
bridge to measure the strain induced by the force FZ. Similarly, the strain caused by the moment M′X
can be measured by the fourth electric bridge made up of strain gauges stuck in B31, B42, B71, and B82,
the indirect measurement of the moment M′Y is obtainable by the fifth electric bridge made up of
strain gauges pasted in B11, B22, B51, and B62, the strain caused by the moment MZ can be measured
by the sixth electric bridge made up of strain gauges pasted in C1, C2, C3, and C4.

As presented in Sections 3.2 and 3.3, this paper utilizes the sum or the difference of strain values
of the points in the outside surface of the ESB to measure the traction force. The sum of strain values of
the points in the outside surface of A2 and A4 respectively is used to represent the force FX. Therefore,
the connection mode of the four strain gauges pasted in A2 and A4 is shown in Figure 18a. ΔRFX

and ΔRMZ represent the changes in the resistance values of the strain gauges caused by the force
FX and the moment MZ respectively. In addition, the minus sign and plus sign of ΔRFX and ΔRMZ

indicate that the strain gauge is compressed and stretched respectively. According to the measurement
principle of electric bridges, when ΔRFX is zero, the output voltage is zero even if ΔRMX is not equal
to zero. However, the output voltage is not zero when ΔRMX is equal to zero and ΔRFX is not zero.
Therefore, the 1st electric bridge can measure the force FX. In order to measure the forces FY and FZ,
the connection mode of the second and the third electric bridges is basically the same as that of the 1st
electric bridge.
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(a) 

 
(b) 

Figure 18. The connection mode of strain gauges in electric bridge: (a) the first electric bridge; (b) the
fourth electric bridge.

According to Sections 3.2 and 3.3.4, the difference between the strain values of the points in the
outside surface of B3 and B4 and that in B7 and B8 is used to represent the moment MX. Therefore,
the connection mode of the eight strain gauges pasted in B31, B42, B71, and B82 is shown in Figure 18b.
ΔRFZ and ΔRMX represent the changes in the resistance values of the strain gauges caused by the
force FZ and the moment MX respectively. According to the measurement principle of electric bridges,
when ΔRMX is zero, the output voltage is zero even if ΔRFZ is not equal to zero. However, the output
voltage is not zero when ΔRFZ is equal to zero and ΔRMX is not zero. Therefore, the fourth electric
bridge can measure the moment MX. In order to measure the moments MY and MZ, the connection
mode of the fifth and the sixth electric bridges is basically the same as that of the fourth electric bridge.

According to the structure of the traction force sensor shown in Figure 5, the cylinder-shaped ESB,
connecting fitting and shell were assembled into a traction force sensor by screw fastening, as shown
in Figure 19b. The central column in the connecting fitting attaches the contact force sensor to the
end of the traction force sensor and form a tandem force sensor. The output signal of the traction
force sensor is voltage, and we developed a 12-channel signal acquisition instrument to realize the
signal acquisition (Figure 19c). The 6-channel in the signal acquisition instrument is used for the signal
acquisition of the traction force sensor, and the other 6-channel is used for the information acquisition
of the contact force sensor.

 
(a) 

 
(b) 

 
(c) 

Figure 19. Cylinder-shaped elastic structural body and traction force sensor: (a) cylinder-shaped elastic
structural body; (b) traction force sensor; (c) signal acquisition instrument.

3.7. Calibration Experiment of Cylindrical Traction Force Sensor

Equations (11) and (12) exhibit that the traction force can be detected by measuring variation
values of voltages of six electric bridges. To obtain the real matrix [P]6×6 in Equation (11) and the
moment arm in Equation (12), calibration experiment is necessary. In the calibration experiment of
traction force sensor, we use a 6-DOF industrial robot to finish the calibration experiment, as shown in
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Figure 20. In the calibration experiment, the robot remains stationary during the calibration process to
provide a rigid support for the sensor, and forces and torques are applied to the sensor by mounting
weights on the loading structure. Moreover, the attitude of the traction force sensor can be changed by
adjusting the posture of the robot so that the forces/moments in different directions can be applied to
the sensor. After applying forces/torques to the sensor, the self-developed signal acquisition instrument
collects the output voltages of the sensor.

 
Figure 20. Industrial robot used in calibration experiments.

In the calibration experiment, small force/moment ranges are adopted because humans like
to guide robot with small forces/torques. During the calibration process, FX and FY adopt interval
load of ±60 N × 10 N, FZ adopts interval load of 60 N × 10 N, MX and MY adopt interval load
of ±201 N·cm × (10 N × 3.35 cm) and MZ adopts interval load of ±192 N·cm × (10 N × 3.2 cm).
The moments applied to the sensor were achieved by mounting weights on the loading structure.
Therefore, when moments were applied to the sensor, the weights will also exert forces on the sensor.
After each loading, the output values of electric bridge were recorded. Each calibration experiment was
repeated three times to ensure the availability and repeatability of the experimental data. Under the
external force, the changes of output voltage value are shown in Figure 21, and CH1, CH2, CH3, CH4,
CH5, and CH6 represent the output voltage values of the first, second, third, fourth, fifth, and sixth
electric bridge, respectively. Under the FX and MZ, CH1, CH5, and CH6 have significant output,
and this certifies that FX will induce the occur of moment around Y-axis; under the force FY and
moment MZ, CH2, CH4 and CH6 have significant output, and this certifies that FY will induce the occur
of moment around X-axis. In addition, Figure 21 shows CH1 is mainly sensitive to FX, CH2 is mainly
sensitive to FY, CH3 is mainly sensitive to FZ, CH4 is mainly sensitive to MX, CH5 is mainly sensitive
to MY and CH6 is mainly sensitive to MZ. All of this certifies the theoretical analysis in Section 3.2.
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) (f) 

Figure 21. The output voltage changes of electric bridges: (a) under the force FX; (b) under the force
FY; (c) under the force FX and moment MZ; (d) under the force FY and moment MZ; (e) under the force
FZ and moment MX; (f) under the force FZ and moment MY.

After the calibration experiment, the least square method was used to calculate the calibration
matrix [P]6×6, as follows.

[P]6×6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.07× 10ˆ− 1 5.21× 10ˆ− 3 −6.22× 10ˆ− 3 −2.26× 10ˆ− 2 5.23× 10ˆ− 1 1.37× 10ˆ− 1

−2.45× 10ˆ− 3 5.44× 10ˆ− 2 −1.80× 10ˆ− 3 2.20× 10ˆ− 1 −1.74× 10ˆ− 1 −4.14× 10ˆ− 2

−6.06× 10ˆ− 4 3.13× 10ˆ− 4 −9.07× 10ˆ− 2 −3.50× 10ˆ− 2 5.61× 10ˆ− 2 1.61× 10ˆ− 2

−3.67× 10ˆ− 3 5.91× 10ˆ− 3 −1.03× 10ˆ− 2 2.62 1.43× 10ˆ− 1 −4.05× 10ˆ− 2

−5.64× 10ˆ− 3 3.65× 10ˆ− 3 2.88× 10ˆ− 4 −5.48× 10ˆ− 2 2.59 8.91× 10ˆ− 3

−6.65× 10ˆ− 4 −7.34× 10ˆ− 4 2.89× 10ˆ− 3 6.99× 10ˆ− 2 −9.18× 10ˆ− 2 −2.12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)

Plug the calibration matrix into Equation (11) and using Equation (12), the calculated forces/torques
can be obtained, which are presented in Figure 22. Then, the interference errors of the cylindrical traction
force sensor are shown in Table 2, which shows that most of the errors are not larger than 1.0%, and the
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measurement ranges are −60 ≤ FX ≤ 60 N, −60 ≤ FY ≤ 60 N, 0 ≤ FZ ≤ 60 N, −201 ≤ MX ≤ 201 N·cm,
−201 ≤MY ≤ 201 N·cm, −192 ≤MZ ≤ 192 N·cm, respectively.

(a) (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 22. Force/Torque obtained by the cylindrical traction force sensor: (a) the force FX acts on the
sensor; (b) the force FY acts on the sensor; (c) under the force FX and torque MZ; (d) under the force FY

and torque MZ; (e) under the force FZ and torque MX; (f) under the force FZ and torque MY.

Table 2. Interference error of the cylindrical traction force sensor.

Interference
Error (%F.S.)

FX FY FZ MX MY MZ

FX - 1.13 0.14 0.03 2.17 1.20
FY 1.09 - 0.22 0.94 0.14 1.52
FZ 0.08 0.11 - 1.10 0.86 0.10
MX 0.05 0.05 - - 2.94× 10̂− 4 1.54× 10̂− 5
MY 0.02 0.03 - 0.05 - 8.53× 10̂− 5
MZ - 0.35 0.14 3.43× 10̂− 4 2.58× 10̂− 4 -
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Non-linear errors (NLES), hysteresis errors (HES) and repeatability errors (RES) are important
indexes to show the static performance of a sensor. Five of the six NLES of the cylindrical traction force
sensor are not larger than 0.70%, five of the six HES are not larger than 0.85% and four of the six RES
are not larger than 0.80%, as Table 3 shows. To demonstrate the measurement error visually of the
sensor, several load and measurement experiments of forces/moments were conducted, and Table 4
compares the calculated values with the actual values. The measurement errors in Table 4 verified
that the cylindrical traction force sensor can detect the external forces/torques applied to it, and the
measurement errors are small.

Table 3. Static performance indices of the cylindrical traction force sensor.

Forces/Moments FX FY FZ MX MY MZ

Non-Linear Error (%F.S.) 0.02 0.11 1.54 0.46 0.29 0.69
Hysteresis Error (%F.S.) 0.19 0.24 2.19 0.37 0.83 0.34

Repeatability Error (%F.S.) 0.30 0.51 0.75 1.24 1.98 0.31

Table 4. Calculated and real values when forces/torques are applied on traction force sensor.

FX FY FZ MX MY MZ

Applied 60.00 0.00 0.00 0.00 0.00 192.00
Measured 60.06 −0.56 −0.11 −0.86 0.26 191.50

Error (%F.S.) 0.10 0.93 0.18 0.43 0.13 0.26
Applied 0.00 60.00 0.00 0.00 0.00 192.00

Measured 0.55 60.07 −0.07 −0.36 0.00 193.76
Error (%F.S.) 0.92 0.12 0.12 0.22 0.17 0.92

Applied 0.00 0.00 60.00 201.00 0.00 0.00
Measured −0.10 −0.10 59.79 201.52 1.19 −0.37

Error (%F.S.) 0.17 0.17 0.35 0.25 0.57 0.19
Applied 0.00 0.00 60.00 0.00 201.00 0.00

Measured −0.03 −0.03 59.40 0.26 201.03 −0.10
Error (%F.S.) 0.05 0.05 1.00 0.12 0.01 0.05

4. The Realization and Application of the Tandem Force Sensor

4.1. The Tandem Force Sensor Based on the Developed Cylindrical Traction Force Sensor

According to the schematic diagram of the structure of the tandem force sensor shown in Figure 4a
and the series connection mode shown in Figure 4b, a tandem force sensor is developed, as shown
in Figure 23. The tandem force sensor is composed of a developed cylindrical traction force sensor
and a contact force sensor connected in series, and the contact force sensor is connected with the
cylindrical traction force sensor by an intermediate connecting flange. In addition, all connections
are made by screw fastening. In the application, the tandem force sensor is connected to the robot
end through the connection flange, and the end-effector can be fixed to the end of the tandem force
sensor. In the kinesthetic teaching of robot contact tasks, the human hand exerts the traction force by
grasping the shell of the traction sensor to guide the robot’s motion, while the contact force sensor
can accurately perceive the contact force between the robot’s end-effector and the environment. Then,
the traction and contact forces can be simultaneously perceived by the developed tandem force sensor
in a decoupled manner.
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Figure 23. The developed tandem force sensor.

4.2. Application of the Developed Tandem Force Sensor

To further test the feasibility of the developed tandem force sensor, this paper designs drawer
switch experiment based on human–robot interaction. In daily work and life, people can easily open a
variety of drawers. However, it is not an easy task for robot to open and close diversified drawers
like what human does. Human–robot interaction helps to transmit experience to robot and inform the
robot of the method of opening and closing drawers, and then robot can learn the method to open and
close drawers.

With the developed tandem force sensor, the drawer switch experiment can complete with
human–robot interaction without damaging the drawer, and the robot can obtain several effective
demonstrations. In the human–robot interaction to finish the drawer switch experiment, the tandem
force sensor is mounted at the end of the robot and vacuum chuck, which allows the robot to control
the opening and closing of drawers, is attached to the contact force sensor. In human–robot interaction,
the teacher chooses a drawer in the locker and selects the adsorption area of the drawer. People guide
the robot move from the initial point to the selected drawer, and control the suction cup to hold the
drawer. Then, the human guides the robot to open the drawer to the maximum and finally, the human
guides the robot to close the drawer, as shown in Figure 24. In this process, the tandem force sensor
detects the traction force and the contact force between vacuum chuck and drawer, which allows the
robot to act according to human intentions and its contact state with the object being operated on,
not just human intentions. During the experiment, the data sampled by the tandem force sensor and
the action taken by the teacher are saved as state-action pairs. Then, the robot can learn the policy of
drawer switch task and perform drawer opening and closing by itself (Figure 25), which confirms the
feasibility and effectiveness of the tandem force sensor.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 24. Human-robot cooperate to finish drawer switch experiment: (a) approach to the target;
(b) grab the target; (c) open switch (d) close switch.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 25. Robot finish drawer switch with the method human teaches: (a) approach to the target; (b)
grab the target; (c) open switch; (d) close switch.

In the human–robot interaction, to complete the drawer switch experiment, the change curves of
FT

Z and FC
Z (superscript T and C represent the traction force and contact force sensors, respectively)

are shown in Figure 26. Owing to the inaccuracy of manual operation, the numerical fluctuation of
the traction force FT

Z is high, while the numerical fluctuation of the contact force FC
Z is lower than FT

Z.
In order to simulate the force curve in the kinesthetic teaching of drawer switch experiment based on
single wrist force sensor, the resultant force of the traction force FT

Z and the contact force FC
Z has been

calculated, as shown in Figure 27. By comparing Figures 26b and 27, it can be seen that the resultant
force cannot accurately represent the contact state between the robot and the drawer. If the task policy
is learned based on the resultant force, it cannot make the right decision. For example, when the
drawer switch task policy is learned based on the data shown in Figure 27, the learned policy only
outputs effective action instructions when the absolute value of contact force is about 20 N, instead
of 0 N. Therefore, the net contact force obtained by the tandem force sensor is necessary for learning
effective contact task policy.

 
(a) 

 
(b) 

Figure 26. The change curve of the traction and contact forces in the drawer switch experiment: (a)
Traction force FT

Z; (b) contact force FC
Z.

Figure 27. The change curve of the sum of the traction force FT
Z and the contact force FC

Z.
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5. Conclusions

A tandem force sensor for measuring the traction and contact forces is introduced in this paper.
In cases that a wrist force sensor is used as the contact force sensor, a cylindrical traction force sensor
that is easy to handle by hand, has been designed. As the core of the cylindrical traction force sensor,
the cylinder-shaped elastic structural body is designed, and the force measurement theory of it is
analyzed in detail. Calibration experiments verify the theoretical analysis of the cylinder-shaped elastic
structural body and the good static characteristics of the traction force sensor. Then, a wrist force
sensor is mounted to the developed cylindrical traction force sensor to realize the tandem force sensor.

To verify whether the tandem force sensor can meet the original intention, the drawer switch
experiment based on the tandem force sensor has been carried out. The traction force sensor in drawer
switch experiment transmits the human intention to the robot, and the contact force sensor detects the
contact status between the robot and the drawer. Human–robot interaction experiment shows that the
tandem force sensor can sense the way and skill of a teacher and the contact force between robot and
environment, so that the human and robot can cooperate to complete the task, which is the basis of
how robots learn to accomplish contact tasks.

The traction force sensor can be combined with the contact force sensor as a tandem force sensor,
or can be used alone. Note that, although we have only applied the tandem force sensor to the
drawer switch experiment, this sensor can also be applied to a wide range of contact tasks that
needs human–robot collaboration, such as assembly, grinding, polishing, and deburring. Moreover,
the traction force sensor can be used alone for the non-contact tasks that need human–robot collaboration,
such as paint spraying and track teaching. In these tasks, the most important advantage of the traction
force sensor over the common wrist force sensor is that the gravity of the end-effector does not affect
its measurement, which simplifies the sensor’s gravity compensation.

Because the contact force sensor adopted in the tandem force sensor is a commercial wrist force
sensor, and its structure is not optimized for the tandem force sensor, which makes the appearance
of the developed tandem force sensor less graceful and complex. In the future, the structure of the
tandem force sensor will be optimized, which will make it very graceful and close to the ideal tandem
force sensor. By that time, the tandem force sensor can be utilized to robotic contact tasks in a very
elegant way.
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Abstract: This article surveys reinforcement learning approaches in social robotics. Reinforcement
learning is a framework for decision-making problems in which an agent interacts through trial-and-
error with its environment to discover an optimal behavior. Since interaction is a key component
in both reinforcement learning and social robotics, it can be a well-suited approach for real-world
interactions with physically embodied social robots. The scope of the paper is focused particularly
on studies that include social physical robots and real-world human-robot interactions with users.
We present a thorough analysis of reinforcement learning approaches in social robotics. In addition
to a survey, we categorize existent reinforcement learning approaches based on the used method and
the design of the reward mechanisms. Moreover, since communication capability is a prominent
feature of social robots, we discuss and group the papers based on the communication medium
used for reward formulation. Considering the importance of designing the reward function, we also
provide a categorization of the papers based on the nature of the reward. This categorization
includes three major themes: interactive reinforcement learning, intrinsically motivated methods,
and task performance-driven methods. The benefits and challenges of reinforcement learning in
social robotics, evaluation methods of the papers regarding whether or not they use subjective and
algorithmic measures, a discussion in the view of real-world reinforcement learning challenges and
proposed solutions, the points that remain to be explored, including the approaches that have thus
far received less attention is also given in the paper. Thus, this paper aims to become a starting point
for researchers interested in using and applying reinforcement learning methods in this particular
research field.

Keywords: reinforcement learning; social robotics; human-robot interaction; reward design; physi-
cal embodiment

1. Introduction

With the proliferation of social robots in society, these systems will impact users
in several facets of life from providing assistance, performing cooperation, and taking
part in collaboration tasks. In order to facilitate natural interaction, researchers in social
robotics have focused on robots that can adapt to diverse conditions and to different user
needs. Recently, there has been great interest in the use of machine learning methods for
adaptive social robots [1–4]. Machine Learning (ML) algorithms can be categorized into
three sub fields: supervised learning, unsupervised learning and reinforcement learning.
In supervised learning, correct input/output pairs are available and the goal is to find a
correct mapping from input to output space. In unsupervised learning, output data is not
available and the goal is to find patterns in the input data. Reinforcement Learning (RL),
on the other hand, is a framework for decision-making problems in which an agent interacts
through trial-and-error with its environment to discover an optimal behavior [5]. The RL
agent receives scarce feedback about the actions it has taken in the past. The agent then
tunes its behavior over time via this feedback signal, i.e., reward or penalty. The agent’s
goal is therefore learning to take actions that maximize the reward.

RL approaches are gaining increasing attention in the robotics community. As inter-
action is a key component in both RL and social robotics, RL could provide a suitable
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approach for social human-robot interaction. Worth noting is that humans perform sequen-
tial decision-making in daily life where sequential decision making describes problems that
require successive observations, i.e., cannot be solved with a single action [6]. Consequently,
much of social human-robot interactions can be formulated as sequential decision-making
tasks, i.e., RL problems. The goal of the robot in these types of interactions would be to
learn an action-selection strategy in order to optimize some performance metric, such as
user satisfaction.

Before outlining the research related to reinforcement learning in social robots, first
it is important to establish the definition of a social robot in the context of this article.
A variety of definitions for a social robot have been proposed in the literature [7–12].
Within each of these definitions, there is a wide spectrum of characteristics. However,
two important aspects become prominent in these definitions that are considered in this
paper, namely, embodiment and interaction/communication capability. One example
can be found in Bartneck and Forlizzi [10] where they define a social robot as an “...
autonomous or semi-autonomous robot that interacts and communicates with humans by
following the behavioral norms expected by the people with whom the robot is intended
to interact.” Following this definition, the authors stress that a social robot must have a
physical embodiment. Based on the presented definitions in [7–12], we consider social
robots as embodied agents that can interact and communicate with humans. Figure 1
shows some of the social robots that are used in the reviewed papers.

(a) Pepper (b) Nao (c) Mini (d) Maggie (e) iCat

Figure 1. Some of the social robots platforms referenced within the reviewed papers. (The pictures of (a) Pepper robot,
and (b) Nao robot were taken by the authors. (c) Mini robot, the figure is adapted from [13]—licensed under the Creative
Commons Attribution, (d) Maggie robot, the figure is from https://robots.ros.org/maggie/, accessed on 20 March 2020—
licensed under the Creative Commons Attribution, (e) iCat robot, the figure is from https://www.bartneck.de/wp-content/
uploads/2009/08/iCat02.jpg, accessed on 22 March 2020—used with permission, photo credit to Christoph Bartneck.)

This article presents a survey on RL approaches in social robotics. As such, it is
important to emphasize that the scope of this survey is focused on studies that include
physically embodied robots and real-world interactions. Considering the definition of [10]
given above, this paper excludes studies with simulations and virtual agents where no
physical embodiment is present. The presented review also excludes studies with industrial
robots and studies that do not include any interaction with humans. Rather, this review
exclusively focuses on papers that comprise both a social robot(s) and human input/user
studies. It is worth noting that studies which use simulations for training and test on
physical robot deployment with user studies fall within the selection criteria. Likewise,
studies that use explicit or implicit human input in the learning process are also included.

Due to the complexity of the social interactions and the real-world, most of the studies
applying RL are trained and tested in simulation environments. However, real-world inter-
actions are extremely important not only for social robots but also for understanding the
full potential of reinforcement learning. It is mentioned in [14] (p. 391), that “the full poten-
tial of reinforcement learning requires reinforcement learning agents to be embedded into
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the flow of real-world experience, where they act, explore, and learn in our world, and not
just in their worlds.” Generally speaking, the overall goal of an RL agent is to maximize
the expected cumulative reward over time, as stated in the “reward hypothesis” [14] (p. 42).
The reward in RL is used as a basis for discovering an optimal behavior. Hence, reward
design is extremely important to elicit desired behaviors in RL-based systems. The choice
of reward function is crucial in robotics, where the problem is also referred to as the “curse
of goal specification” [15]. Therefore, in this paper, we provide a categorization based on
reward design which is crucial for RL to be successful. Moreover, since communication
capability is a distinctive feature of social robots, we discuss communication mediums
utilized for reward design together with RL algorithms.

Finally, it is also worth noting that in the general field of robotics there is a plethora
of research in RL. There also exist review papers on the topic of RL in robotics such
as applications of RL in robotics in general [15,16], policy search in robot learning [17],
safe RL [18], and Deep Reinforcement Learning (DRL) in soft robotics [19]. Indeed, RL has
been applied to a variety of scenarios and domains within social robotics, with growing
popularity. While the field of social robotics deserves a survey on its own, to the best of our
knowledge, there exists no such survey on this particular research field. Thus, the main
purpose of this work is to serve as a reference guide that provides a quick overview of the
literature for social robotics researchers who aim to use RL in their research. Depending on
the target user group, the application domain or the experimental scenario, different types
of rewards, problem formulations or algorithms can be more suitable. In that sense, we
believe that this survey paper will be beneficial for social robotics researchers.

Overview of the Survey

After surveying research on RL and social robotics, we analyze and categorize the stud-
ies based on four different criteria: (1) RL type, (2) the utilized communication mediums
for reward function formulation, (3) the nature of the reward function, (4) the evaluation
methodologies of the algorithms. These categorizations aim to facilitate and guide the
choice of a suitable algorithm by social robotics researchers in their application domain.
For that purpose, we elaborate on the different methods that are tested in real-world
scenarios with a physical robot.

Categorization based on RL type includes bandit-based methods, value-based meth-
ods, policy-based methods, and deep RL (see Section 4). The utilized communication
mediums are verbal communication, nonverbal communication, affective communication,
tactile communication, and additional communication medium between the robot and the
human. Moreover, there are studies in which higher interaction dynamics are used for re-
ward formulation such as engagement, comfort, and attention. There are also other studies
that do not use any communication medium at all for reward formulation. In the catego-
rization based on the design of the reward mechanisms, three major themes emerged:

1. Interactive reinforcement learning: In these methods, humans are involved in the
learning process either by providing reward or guidance to the agent (Section 5.1).
This approach, in which the human delivers explicit or implicit feedback to the agent,
is known as Interactive Reinforcement Learning (IRL).

2. Intrinsically motivated methods: There are different intrinsic motivations in the
literature on RL [20], however, the most frequently used approaches in social robotics
depend on the robot maintaining an optimal internal state by considering both internal
and external circumstances (Section 5.2).

3. Task performance driven methods: In these methods, the reward the robot receives
depends on either the robot’s task performance or the human interactant’s task
performance, or a combination of both (Section 5.3).

The evaluation methodologies include (1) the algorithm point of view, (2) the user
experience point of view, and (3) evaluation of both learning algorithm-related factors and
user experience-related factors.
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To formulate the social interactions as a reinforcement learning problem, researchers
need to consider some key concepts such as input data, state representation, robot actions,
and reward function. Moreover, after the implementation of RL, it should be decided
how the evaluation will be performed. Therefore, we extract from each of the cited works
the following key points (1) the input data, state space and action space (2) the reward
function (3) the communication medium in the HRI scenario (4) the main experimental
results (5) the experimental scenario and its validation. Therefore, the contributions of this
paper include: (i) analysing and categorising the relevant literature in terms of type of RL
used; (ii) analysing and categorising the relevant literature based on the reward function;
(iii) analysing the relevant literature in terms of evaluation methodologies.

The paper is organized as follows: In Section 2, we discuss the benefits and challenges
of applying RL in the social robotics domain. In Section 3, we present a background on
reinforcement learning. Following the formal presentation of the methods, in Section 4,
we present the applications of these methods in social robotics. Later, we present the
categorization based on reward functions in Section 5. Evaluation methods are discussed
in Section 6. In Section 7, we discuss the current approaches in the view of real-world RL
challenges and proposed solutions. The section further includes the points that remain
to be explored, and the approaches that have thus far received less attention. Finally, in
Section 8, we conclude the paper.

2. RL in Social Robotics—Benefits and Challenges

Applications of social robots are numerous and range from entertainment to eldercare.
The robot tasks in such cases involve interactive elements such as human-robot cooperation,
collaboration, and assistance. To achieve longitudinal interaction with social robots, it is
important for such robots to learn incrementally from interactions, often with non-expert
end-users. In consideration of continuously evolving interactions where user needs and
preferences change over time, hand-coded rules are labor-intensive. Even though rule-
based systems are deterministic, it can be difficult to create rules for complex interaction
patterns. Machine learning is bound to play an important role in a wide range of domains
and applications including robotics. However, the social robot learning problem differs
from the traditional ML setting in which there is a need for collected datasets or assump-
tions about the distribution of input data [21]. Often, social robots should be able to learn
new tasks and task refinements in domestic (unstructured) environments. Furthermore,
social robotics researchers need to deal with a particular challenge of learning in real-time
from human-robot interactions. ML paradigms such as supervised learning and unsu-
pervised learning are not designed for learning from real-time social interactions. On the
contrary, RL represents an active process. Unlike other ML methods, it does not need to be
provided desired outputs instead, it trains interactively based on reward signals and refines
its behavior throughout the interaction. Moreover, interaction is a key component for social
robots which makes RL a suitable approach. RL also provides a possibility to learn from
natural interaction patterns by utilizing the various social elements in the learning process.
Consideration of all these points suggests that socially guided machine learning [22] could
be a more suitable approach than traditional ML approaches for social HRI.

In general, combining human and machine intelligence may be effective for solving
computationally hard problems [23]. The term “socially guided machine learning” was first
used by Thomaz et al. [22] and refers to approaches that include social interaction between
a user and a machine in the learning process. Studies using IRL in social robotics can be
considered as socially guided machine learning since they make use of human feedback in
different forms in the learning process. The feedback provided by the human can be used
for shaping the action policy (the human is involved in the action selection mechanism), or
shaping the reward function [24]. It can be treated either as reward, in that the feedback is
given based on the agent’s past actions indicating “how good the taken action was”, or
policy feedback in which human feedback affects action selection or modification thereby
indicating “what to do”.
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The majority of studies included in this review paper use IRL which may suggest
that IRL could be the best suited approach in social robotics. However, IRL has its own
challenges. Human teachers tend to give less frequent feedback (due to boredom and/or
fatigue) as learning progresses, resulting in diminished cumulative reward [25]. Likewise,
human teachers tend to provide more positive reward than punishment [26,27]. Yet another
problem in IRL is the transparency issues that might arise during the training of a physical
robot via human reward [28,29]. Reference [29] used an audible alarm to alert the trainer
about the robot’s loss of sense. Suay et al. [30] observed that experts could teach the defined
task in a predefined time frame, whereas the same amount of time was not enough for
inexperienced users. One solution suggested for this was algorithmic transparency during
training, which shows the internal policy to the human teacher. However, the presentation
of the model of the agent’s internal policy might be obscure for naive human teachers.
Therefore, this information should be presented in a straight-forward way that is easy to
understand to avoid causing confusion. To exemplify, in [28] human trainers waited for
the Leonardo robot to establish eye contact with them before they continued teaching. The
eye contact was considered as the robot being ready for the next action. These kinds of
transparent behaviors in which the robot communicates the internal state of the learning
process should be taken into account for guiding human trainers in IRL. As noted in several
studies, in IRL, the human teacher’s positive and negative reward can be much more
deliberate than a simple ‘good’ or ‘bad’ feedback [28,31]. The learning agent should be
aware of the subtle meanings of these feedback signals. As an example, human trainers
tend to have a positive bias [28,31].

In addition, there are a variety of technical challenges to address when implementing
RL in social robotics and social HRI. One of the drawbacks of online learning through
interaction with a human is the requirement of long interaction time, which can be tedious
and impractical for the users, resulting in fatigue and a loss of interest. A considerable
amount of interaction time can wear out the robot’s hardware. An alternative is using a
simulated world to train the algorithm and subsequently deploying it on the real robot.
Using a simulated setting has several advantages. It allows the agent to carry out learning
repeatedly, which would otherwise be very expensive in the real-world. Simulated environ-
ments can also run much faster than the real-world, thus permitting the learning agent to
make proportionately more learning experiences. Bridging the gap between the simulated
and the real-world is not a simple task. It may be achieved by randomizing the simulator
and learning a policy that shows success across many simulators and can ultimately be
robust enough to work in the real world. However, simulating the real-world can be very
difficult, especially with regards to modeling relevant human behaviors. Simulating the
human requires a predictive model of human interactive behaviors and social norms as
well as modeling the uncertainty of the real-world. Furthermore, the use of RL in social
robotics poses other challenges such as devising proper reward functions and policies, as
well as dealing with the sparseness of the reward signals.

The exploration-exploitation dilemma is a well-known problem in RL and refers to the
choice of actions to discover the environment or taking actions that have already proven to
be effective in producing reward [14]. RL practitioners use different approaches to deal
with the trade-off between exploration and exploitation, such as epsilon-greedy policy [32],
epsilon-decreasing policy [33] and Boltzmann distribution [34]. The epsilon-greedy strategy
exploits knowledge for maximizing rewards (greedily choosing the current best option),
otherwise to select a random action with probability ε P r0, 1s [14]. The epsilon-decreasing
strategy decreases ε over time, thereby progressing towards exploitative behavior [14].
Boltzmann exploration uses Boltzmann distribution to select the action to execute. A
temperature parameter balances between exploration and exploitation (high-temperature
value for selecting actions randomly and low-temperature value for selecting actions
greedily) [14].

Despite the mentioned challenges, there are also advantages of using RL in social
robotics. One of the main advantages is that the robot can learn a personalized adaptation
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for different interactants, i.e., a different policy for each user. Social robots can learn social
skills from their own actions without demonstrations through uncontrolled interaction
experiences. This is especially true given that interaction dynamics are difficult to model
and sometimes even humans cannot explain why they behave in a certain way. Therefore,
RL may enable social robots to adapt their behaviors according to their human partners
for natural human-robot interaction. In IRL, the immediate reward provided by the
human teacher has the potential to improve the training by reducing the number of
required interactions. Human teachers’ guidance significantly reduces the number of states
explored, and the impact of teacher guidance is proportional to the size of the state space,
i.e., it increases as the size of the state space grows [26]. In RL, how to achieve a goal
is not specified, instead the goal is encoded and the agent can devise its own strategy
for achieving that goal. Intrinsically motivated reward signals might be useful in many
real-world scenarios, where sparse rewards make the goal-directed behavior challenging.
Approaches using human social signals have the advantage of utilizing signals that the
user exhibits naturally during the interaction. It does not require an extra effort to collect
the reward. However, the change in social signals would not be so sudden, which would
very much affect the time for convergence. The role of human social factors deserves
extra attention in online learning methods. Combination of RL with deep neural networks
has shown success in many application areas. DRL is also a trending technique in social
robotics as we see increasing work in recent years. It has the advantage of not needing
manual feature engineering [35] and resulting in human-like behavior for social robots [36].

3. Reinforcement Learning

Reinforcement learning [5] is a framework for decision-making problems. Markov De-
cision Processes (MDPs) are mathematical models for describing the interaction between
an agent and its environment. Formally, an MDP is denoted as a tuple of five elements
xS , A, P , R, γy where S represents the state space (i.e., the set of possible states), A repre-
sents the action space (i.e., the set of possible actions), P : SˆAˆS Ñ r0, 1s represents the
probability of transitioning from one state to another state given a particular action, R :
SˆAˆS Ñ R represents the reward function, and γ is the discount factor that determines
the importance of future rewards, γ P r0, 1s. The agent interacts with its environment in
discrete time steps, t “ 0, 1, 2, ...; at each time step t, the agent gets a representation of the
environmental state St P S , takes an action At P A, moves to next state St`1, and receives a
scalar reward Rt`1 P R. Figure 2 depicts the standard RL framework.

EnvironmentSt+1

state 
St

Agent

action 
At

Rt+1

reward 
Rt

Figure 2. A standard reinforcement learning framework (reproduced from [14] (p. 38)).

The agent’s behavior that maps states to actions is described as a policy, π : S ˆ A
where πps|aq “ PrpAt “ a|St “ sq is the probability of taking action a P A given state s.
The agent’s goal is to maximize the expected cumulative discounted reward, in other words
return which is denoted as Gt:

Gt “
8ÿ

k“0

γkRt`k`1 (1)

where γ is the discount factor and usually γ P r0, 1s. The optimal behavior that is taking
the best action at each state to maximize the reward over time is called optimal policy, π˚.
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There exists a large variety of approaches in RL. They can be most broadly distin-
guished as model-based and model-free. Model-free approaches can be further subdivided
into value-based and policy-based approaches. A shortened version of a RL taxonomy can
be seen in Figure 3.

RL Algorithms

Model-Free RLModel-Based RL

Value-based
Policy-based

Learn the Model Model Given

On-policy Off-policy

SARSA DQNQ-Learning

Gradient-Free Gradient-Based

Figure 3. Taxonomy of Reinforcement Learning algorithms (reproduced and shortened from [37]).

3.1. Model-Based and Model-Free Reinforcement Learning

RL algorithms can be divided into two main categories, model-free RL and model-
based RL, depending on whether the agent does or does not use a model of the environment
dynamics, which can be either provided or learned. The model describes the transition
function, P , and the reward function, R. The model-based methods can be divided into
two categories: those that use a given model, i.e., the models of the transition and the
reward function can be accessed by the agent, and the methods in which the agent learns
the model of the environment [37]. In the latter approach, the agent learns a model, which it
subsequently uses during policy improvement. The agent can collect samples from the
environment by taking actions. From those samples state transitions and reward can
be predicted through supervised learning. Planning methods can be used directly on
the environment model. In the model-free approach, there is no effort to build a model
of the environment, instead the agent searches for the optimal policy through trial and
error interactions with the environment. Model-free methods are easier to implement in
comparison with model-based methods. These methods can be advantageous over more
complex methods when building a sufficiently accurate model is difficult [14] (p. 10).

3.2. Value-Based Methods

The value of policy π, namely the value function, is used to evaluate the states based
on the total reward the agent receives over time. RL methods that approximate the value
function through temporal difference (TD) learning instead of directly learning the policy
π are called value-based methods. For each learned policy π, there are two related value
functions: the state-value function, vπpsq, and state-action value function (quality function),
qπps, aq. The equations for qπps, aq and vπpsq are given in Equations (2) and (3) respectively.
Eπ in Equations (2) and (3) means the agent follows policy π in each step.

qπps, aq “ EπrRt`1 ` γ Rt`2 ` γ2 Rt`3 ` ...|St “ s, At “ as “ Eπ

« 8ÿ
k“0

γkRt`k`1

ˇ̌̌
ˇ̌St “ s, At “ a

ff
(2)

vπpsq “ EπrRt`1 ` γ Rt`2 ` γ2 Rt`3 ` ...|St “ ss “ Eπ

« 8ÿ
k“0

γkRt`k`1

ˇ̌̌
ˇ̌St “ s

ff
. (3)
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The value functions are expressed via the Bellman equation [38]. The Bellman equation
for vπ and qπ is given in Equations (4) and (5) where s1 indicates the next states from the
set S .

vπpsq “
ÿ

a
πpa|sq

ÿ
s1,r

pps1, r|s, aqrr ` γvπps1qs (4)

qπps, aq “
ÿ
s1

pps1|s, aq
«

rps, a, s1q ` γ
ÿ
a1

πpa1|s1qqπps1, a1q
ff

. (5)

Comparing policies, a policy π is better than or equal to a policy π1 if:

π ě π1 if @s P S : vπpsq ě vπ1 psq. (6)

There exists always at least one optimal policy π˚ whose expected return is greater
than or equal to the other policy/policies for all states. Optimal policies share the same
state-value function, defined as v˚psq “ max

π
vπpsq for all s P S , and action-value function,

defined as q˚ps, aq “ max
π

qπps, aq for all s P S and a P Apsq. The Bellman optimality

equation for q˚ps, aq is given in Equation (7).

q˚ps, aq “
ÿ
s1,r

pps1, r|s, aq
”
r ` γ max

a1 q˚ps1, a1q
ı
. (7)

Another distinction in RL methods comes from the perspective of policy: on-policy vs.
off-policy learning. On-policy methods learn the value of the policy that is used to make
decisions. In the on-policy setting, the target policy and the behavior policy are the same.
The target policy is the policy that is learned about, and the behavior policy is the policy that
is used to generate behavior. The state-action-reward-state-action (SARSA) algorithm [39]
is one of the on-policy methods in which the agent interacts with the environment, selects
an action based on the current policy, then updates the current policy. The Q function
update in SARSA is done using Equation (8). A transition from one state-action pair to
the next is expressed as pSt, At, Rt`1, St`1, At`1q which gives rise to the name SARSA.
The update given in Equation (8) is done after every transition from a non-terminal state St.

QpSt, Atq Ð QpSt, Atq ` α
“
Rt`1 ` γ QpSt`1, At`1q ´ QpSt, Atq

‰
. (8)

In the off-policy methods, the target policy is different from the behavior policy.
In these methods, the policy that is evaluated and improved does not match the policy that
is used to generate data. Off-policy methods can re-use the experience from old policies or
other agents’ interaction experience to improve the policy. One example of an off-policy
algorithm is Q-learning [40]. It is one of the most popular RL algorithms using discounted
reward [41]. The Q-learning rule is defined by:

QpSt, Atq Ð QpSt, Atq ` α
“
Rt`1 ` γ max

a
QpSt`1, aq ´ QpSt, Atq

‰
. (9)

The Q-learning algorithm iteratively applies the Bellman optimality equation (given
in Equation (7)). As shown in Equation (9), the main difference between Q-learning and
SARSA (see Equation (8)) is that in the former the target value is not dependent on the
policy being used and only depends on the state-action function.

3.3. Policy-Based Methods

Policy-based methods, also known as direct policy search methods, do not use value
function models. In these methods, the policy is parameterized with θ and written as πθ .
They operate in the space of policy parameters Θ and θ P Θ [17]. The goal is still to
maximize the accumulative return. The agent updates its policy by exploring various
behaviors and exploiting the ones that perform well in regard to some predefined utility
function Jpθq. In many robot control tasks the state space, which includes both internal
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states and external states, is high-dimensional. The policy of the robot πθ can be defined
as a controller. For any state of the robot, this controller decides which actions to take
or which signals to send to the actuators [42]. The robot takes its actions u according
to the controller (please note, actions in policy search context are represented with u
instead of a). The robot controller can be stochastic, i.e., πpu|sq or deterministic, i.e., πpsq.
After the action execution the robot transitions to another state according to the probabilistic
transition function ppst`1|st, utq. These states and actions of the robot form a trajectory
τ “ ps0, u0, s1, u1, ...q. The corresponding return for the trajectory τ is represented as Rpτq.
The global utility of the robot is denoted as:

Jpθq “ Eτ„πθ
rRpτqs. (10)

Computing the expectation in Eτ„πθ
rRpτqs requires to run an infinite number of

trajectories with the current controller. The way to go around this difficulty is to sample
the expectation. After performing a finite set of trajectories, the return is computed over
these trajectories. Thus, the goal is:

θ˚ “ argmax
θ

Jpθq “ argmax
θ

ÿ
τ

Ppτ, θqRpτq (11)

where θ˚ is the estimate of global performance and Ppτ, θq is the probability of τ under
policy πθ .

Here RL addresses a black-box optimization problem in that the function which re-
lates the performance to the policy parameters is unknown. There are two families of
methods: direct policy search and gradient descent [42]. In direct policy search algorithms,
approximate gradient descent is performed by “random trial then selection” methods, like
genetic algorithms, evolution strategies, finite differences, cross entropy, etc. These algo-
rithms need many samples and can escape from local minima if large enough variations are
used. In gradient descent methods, a mathematical transformation is used so that policy
gradient methods can be applied. In these methods, the policy gradient update is given by:

θk`1 “ θk ` α∇θ Jpθq (12)

where α is a learning rate, and the policy gradient is given by [17]:

∇θ Jpθq “
ÿ
τ

∇θ Ppτ, θqRpτq. (13)

There are different methods to estimate the gradient ∇θ Jpθq, interested readers may re-
fer to [17]. Policy-based methods have the advantage of being effective in high dimensional
or continuous action spaces and having better convergence properties.

Some methods learn both policy and value functions. These methods are called actor-
critic methods, where ‘actor’ is the learned policy that is trained using policy gradient with
estimations from the critic, and ‘critic’ refers to the learned value function that evaluates
the policy.

3.4. Deep Reinforcement Learning

Learning in RL progresses over discrete time steps by the agent interacting with the
environment. Obtaining an optimal policy requires a considerable amount of interaction
with the environment, which results in high memory and computational complexity.
Therefore, the tabular approaches that represent state-value functions, vπpsq, or state-
action value functions, qπps, aq, as explicit tables are limited to low-dimensional problems,
and they become unsuitable for large state spaces. A common way to overcome this
limitation is to find a generalization for estimating state values by using a set of features
in each state. In other words, the idea is to use a parameterized functional form with
weight vector w P R

d for representing vπpsq or qπps, aq that are written as v̂ps; θq or q̂ps, a; θq
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instead of tables [14] (p. 161). Such approximate solution methods are called function
approximators. The reduction of the state space by using the generalization capabilities
of neural networks, especially deep neural networks, is becoming increasingly popular.
Deep Learning (DL) has the ability to perform automatic feature extraction from raw data.
DRL introduces DL to approximate the optimal policy and/or optimal value functions [14]
(p. 192). Recently, there has been an increasing interest in using DL for scaling RL problems
with high-dimensional state spaces.

The DQN method, first presented by Mnih et al. [43], combines Q-learning with
Convolutional Neural Networks (CNN) for learning to play a wide variety of Atari games
better than humans. In DQN, the agent’s experiences et “ pst, at, rt, st`1q are stored at
each time step t in a data set Dt “ te1, ..., etu, so-called experience replay memory. Q-
learning updates are applied on a mini-batch uniformly sampled from the experience
replay memory. The Q-learning update is done using Equation (14):

Lipθiq “ Es,a,r,s1„UpDq
”´

r ` γ max
a1 Qps1, a1; θ̂iq ´ Qps, a; θiq

¯2ı
(14)

where θi represents the parameters (weights) of the Q-network at iteration i and θ̂i repre-
sents the parameters used to compute the target network at iteration i. The target network
parameters θ̂i are updated to the parameters θi after every C iterations.

4. Categorization of RL Approaches in Social Robotics Based on RL Type

In human-human communication, a communication medium is a means of conveying
information to other people. It can be in different forms such as verbal, nonverbal, affective,
and tactile. Human-robot interaction overlaps with human-human interaction to a certain
extent. Furthermore, there can be an additional physical interface (i.e., a computer, a tablet,
a smart game board, etc.) shared between the robot and the human. In the interaction
between the robot and the human, information transmission is bidirectional, the robot
and the human can be sender, receiver, or both. In the surveyed papers, we see all these
communication channels being utilized, especially for the RL problem formulation. As it
has already been stated in the introduction, one of the prominent characteristics of social
robots is the ability to interact and communicate. Therefore, we provide two categorizations
in this section: first we categorize the papers based on RL types, after which we provide a
further discussion and categorization with respect to the utilized communication channels
and interaction dynamics for the reward functions.

4.1. Bandit-Based Methods

Bandit-based methods can be considered as a simplified case of RL in which the next
state does not depend on the action taken by the agent. Different bandit-based methods
explored in social robotics [4,44–47], such as dueling bandit learning [44], k-armed bandit
method (multi-armed bandit) [4,45,46], and Exponential-Weight Algorithm for Exploration
and Exploitation (Exp3) algorithm [47].

4.1.1. Additional Physical Communication Medium between the Robot and the Human

Learning user preferences to personalize the user experience is used in customizing
advertisements and search results. A similar approach was applied in HRI studies [4,44].
Whereas the customization is done in the background for personalized experiences in
websites using users’ clicks, it is adapted for social interactions by asking the user to
select their preferences using the buttons. In other words, these studies use a physical
communication medium between the robot and the human. Schneider and Kummert [44]
investigated a dueling bandit learning approach for preference learning. The algorithm
draws two or more actions, and the relative preference is used as reward. It is defined as
follows: In each time step t ą 0 a pair of arms pkp1q

t , kp2q
t q is selected and presented to the

user, if the user prefers kp1q
t over kp2q

t then wt “ 1, and wt “ 2 otherwise where wt is a noisy
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comparison result. The distribution of outcomes is represented by a preference matrix P “
rpijsKxK, here pij is the probability that the user preferred arm i over arm j. The participant
provided pairwise comparisons via a button. In the work by Ritschel et al. [4], the robot
adapted its linguistic style to the user’s preferences. They defined the learning tasks as
k-armed bandit problems. The adaptation was done based on explicit human feedback
given via buttons in the form of numeric reward (´1, +1). The actions of the robot were a
set of scripted utterances. Similarly, Ritschel et al. [46] used an additional medium between
the robot and the user. They employed the social robot Reeti as a nutrition adviser, where a
custom hardware was utilized to obtain the information about the selected drink [46].
Their custom hardware included an electronic vessel holder and a smart scale that could
communicate with the robot. The problem was formalized as an k-armed bandit problem
where the actions of the robot were scripted spoken advice. The reward was calculated
from the amount of calories and quantity of the selected drink.

4.1.2. Verbal and Nonverbal Communication Plus an Interface

Social robots can use any natural communication channel, and benefit from different
user interfaces. The studies [45–47] take advantage of a physical medium shared across
the robot and the human to simplify the state space representations. Leite et al. [45] used
a multi-armed bandit for empathetic supportive strategies in the context of a chess com-
panion robot for children. The difference in the probabilities of the user being in a positive
mood before and after employing supportive strategies was used as a reward. The child’s
affective state was calculated by using visual facial features (smile and gaze) and contex-
tual features of the game (game evolution i.e winning/losing, chessboard configuration).
Similarly, in the work by Gao et al. [47] the user’s task-related parameters were monitored
through the puzzle interface. The robot’s behaviors were adapted by combining a decision
tree model with the Exp3 [48]. The Exp3 algorithm maintains a list of weights for each
of the actions, which are used for selecting the next action. The reward was the user’s
task performance in combination with the user’s verbal feedback. The set of robot actions
included four supportive behaviors to help the user to solve the puzzle game.

4.2. Model-Based and Model-Free Reinforcement Learning
Verbal Communication

Considering the challenge of modeling real-world human-robot interactions, the ma-
jority of papers included in this survey use model-free RL. Nevertheless, several recent
works started to investigate model-based RL for HRI [49,50]. One of the challenges of
real-world robot learning is the delayed reward. There is an assumption that the result of
an agent’s observations of its environment is available instantly. However, there can be
a lag in human reaction to robot actions in HRI. When the reward of the robot depends
on human responses, reward shaping can be useful for the robot to get more frequent
feedback. Reward shaping is a technique that consists of augmenting the natural reward
signal so that additional rewards are provided to make the learning process easier [51].
Studies in [49,50] presented methods including model-based RL and reward shaping for
HRI. Tseng et al. [49] proposed a model-based RL strategy for a service robot learning the
varying user needs and preferences, and adjusting its behaviors. The proposed reward
model was used to shape the reward through human feedback by calculating temporal
correlations of robot actions and human feedback. Concretely, they modeled human re-
sponse time using a gamma distribution. This formulation was found to be effective
(more cumulative reward collected) in dealing with delayed human feedback. The work
by Martins et al. [50] presented a user-adaptive decision-making technique based on a
simplified version of model-based RL and POMDP formulation. Three different reward
functions were formulated, and compared in the experiments. Their entropy-based reward
shaping mechanism devised using an information-based term. The purpose of using the
information term was to increase the reward given for an action leading to unknown
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transitions, thereby encouraging the robot to investigate the impact of new actions on
the user.

4.3. Value-Based Methods

In recent years, there has been an increasing interest in applying RL methods to
social robotics with growing trend towards value-based methods. Q-learning, along
with its different variations, is the most commonly used RL method in social robotics.
The studies using Q-learning are [3,13,34,52–61]. These comprise studies using stan-
dard Q-learning [3,54,55,58,60,62], studies modify Q-learning for dealing with delayed
reward [52], tuning the parameters for Q-learning such as α [13,34,52], dealing with
decreasing human feedback over time [52], comparing their proposed algorithm with
Q-learning [33,49,61,63,64], variation of Q-learning called Object Q-learning [64–66], com-
bining Q-learning with fuzzy inference [67], SARSA [68,69], TD(λ) [70], MAXQ [33,71,72],
R-learning [32], and Deep Q-learning [35,36,73,74].

4.3.1. Tactile Communication

When the user is involved in the learning process by providing feedback in the form
of reward or guidance, the general approach is either using an additional interface or
utilizing the sensory information such as internal (robot’s onboard sensors) or external
cameras and microphones. Nowadays, many social robots are equipped with tactile
capabilities. However, the usage of the robots’ touch sensors as a feedback mechanism
has received relatively little attention in the context of RL in social robotics. Yet [52,53]
benefited from the robot’s tactile sensors instead of an additional interface between the user
and the robot. Barraquand and Crowley [52] conducted five experiments with different
modifications of the classical Q-learning algorithm. The human teacher provided feedback
through tactile sensors of the Sony AIBO robot, caressing the robot for the positive feedback
and tapping the robot for the negative feedback. The action space comprised two actions;
bark and play. The first experiment was standard Q-learning with human reward. Since the
human ceased giving feedback over time, they concluded that the learning rate α should
be adapted. In the second experiment, they used the asynchronous Q-learning algorithm.
In asynchronous Q-learning, the learning rate α may be different for different state-action
pairs. The learning rate is decreased when the system encountered the same situations and
actions. In relation to standard Q-learning this modification increased the effectiveness
of the algorithm, i.e., it learned faster and forgot more slowly. Because the learning rate
was much smaller when there was no feedback. To overcome the delayed reward, they
considered to increase the effect of human-delivered positive reward in larger time frames
and to decrease the effect of negative reward in a shorter time frame. The use of an eligibility
trace with a heuristic for delayed reward was found to be more efficient than classical
Q-learning (generalizing experience to cover similar situations). The authors noted that
learning rate, reward propagation, and analogy (i.e., propagating information to similar
states) can improve the effectiveness of learning from social interaction. Yang et al. [53]
proposed a Q-learning based approach that combines homeostasis and IRL. The internal
factors, i.e., the drives and motivations worked as a triggering mechanism to initiate the
robot’s services. However, the reward in the real-world experiments was given by the
user touching the robot’s head, left hand, and right hand to give positive, negative, and
dispensable feedback, respectively [53]. The authors trained their model in a simulator and
deployed it on the Pepper robot.

4.3.2. Additional Physical Communication Medium between the Robot and the Human

Since we identify social robots with interaction, the robot learning within a social
scenario stands out in the surveyed papers. Alternatively, there are studies where social
interaction is not the main concern however, the main purpose is training a social robot
to do a task. As an example, a human teacher trains the agent through a GUI [26,30],
speech and gestures [28,31]. In Suay and Chernova [26], human teacher trained a social
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robot. They performed experiments similar to those presented in [75] in a real-world sce-
nario with the Nao robot [26]. The human trainer observed the robot in its environment via
a webcam and provided reward based on the robot’s past actions or anticipatory guidance
for selecting future actions through a GUI. They conducted four sets of experiments (small
state space and only reward, large state space and only reward, small state space and re-
ward plus guidance, large state space and reward plus guidance) to investigate the effect of
teacher guidance and state space size on learning performance in IRL. The task was object
sorting and the size of state space depended on the object descriptor features. Their results
showed that the guidance accelerated the learning by significantly decreasing the learning
time and the number of states explored. They observed that human guidance helped the
robot to reduce the action space and its positive effect was more visible in large state-space.
In a similar vein, Suay et al. [30] conducted a user study in which 31 participants taught a
Nao robot to catch the robotics toys by using one of three algorithms: Behavior Networks,
IRL, and Confidence-Based Autonomy. The study compared the results of these algorithms
in terms of algorithm usability and teaching performance by non-expert users. In IRL,
the participants provided positive or negative feedback in the form of reward through an
on-screen interface. In terms of teaching performance, users achieved better performance
using Confidence-Based Autonomy, however, IRL was better of modelling user behavior.
It has been noted in much of the literature that teaching with IRL requires more time than
with other methods because users had the tendency to stop rewarding or to vary their
reward strategy. This affected the training time, which is a drawback to this approach.

4.3.3. Verbal and Nonverbal Communication

We discuss different human feedback types in IRL in Section 5.1. When a human
teacher trains an agent, the positive or negative feedback might convey several meanings,
even lack of feedback can give information to the agent depending on the teacher’s training
strategy [76]. For example, Thomaz and Breazeal [31] realized that human trainers might
have multiple intentions with the negative reward they are giving, such as the last taken
action was bad and future actions should correct the current state. They performed experi-
ments with two different platforms: the Leonardo robot learned pressing buttons and a
virtual agent learned baking a cake (Sophie’s kitchen). The virtual agent responded to the
negative reward by taking an UNDO action, i.e., the opposite action. In the examples with
the Leonardo robot, the human teacher provided verbal feedback. After negative feedback,
the robot expected the human teacher to guide it through refining the example by using
speech and gestures (collaborative dialog). Although the interactive Q-learning with the
addition of UNDO behavior was tested only on the virtual agent, it is worth mentioning
that the proposed algorithm was more efficient compared to standard IRL. It had several
advantages such as robust exploration strategy, fewer states visited, fewer failures occurred
and fewer action trials done for learning the task. Continuing along these lines, Thomaz
and Breazeal [28] explored how self-exploration and human social guidance can be coupled
for leveraging intrinsically motivated active learning. They called the presented approach
socially guided exploration, in which the robot could learn by intrinsic motivations, how-
ever, it could also take advantage of a human teacher’s guidance when available. The robot
learner with human guidance generalized better to new starting states and reached the
desired goal states faster than the self-exploration.

4.3.4. Higher Level Interaction Dynamics: Engagement

Social robots are expected to exhibit flexible and fluent face-to-face social conversation.
The natural conversational abilities of social robots should not be only limited to short basic
task related sentences. However, they should be able to engage users in the interactions
with chat and entertainment, varying from storytelling to jokes together with human-like
vocalizations and sounds. As an example, Papaioannou et al. [60] reported that users
spent more time with the robot which can carry out small chat together with task-based
dialogue compared to the robot that conversed only task-based dialogue. In their system,
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the agent was trained using the standard Q-learning algorithm with simulated users
and tested with the Pepper robot where the robot assisted visitors of a shopping mall
by providing information about and directions to the shops, current discounts in the
shops, among other things. In the problem definition, states were represented with 12
features such as user engaged, task completed, distance, turn taking, etc. The action space
consisted of 8 actions, A “ [PerformTask, Greet, Goodbye, Chat, GiveDirections, Wait,
RequestTask, RequestShop]. The reward was encoded as predefined numerical values
based on task completion by the agent, including the engagement of the user. Another study
considering user engagement is Keizer et al. [1], who applied a range of ML techniques
in the presented system that included a modified iCat robot (with additional manipulator
arms with grippers) and multimodal input sensors for tracking facial expressions, gaze
behavior, body language and location of the users in the environment. The reward function
was a weighted sum of task-related parameters. For each individual user i the reward
function Ri was defined as Ri “ 350 ˆ TCi ´ 2 ˆ Wi ´ TOi ´ SPi. TCi is short for Task
Complete, and is a binary variable. Wi (Waiting) is a binary variable showing whether the
user i is ready to order but not engaged with the system. TOi stands for Task Ongoing
and is a binary variable describing whether the user is interacting with the robot but
has not been served. SPi is short for Social Penalties and corresponds to several social
penalties (e.g., while the user i is still talking to the system, it turns its attention to another
user). An experimental evaluation compared a hand-coded and trained system. The
authors reported that the trained system performed better and it was found to be faster
at detecting user engagement than the hand-coded one, while the latter was more stable.
In [55,57,59], the authors investigated the entertainment capabilities of social robots using
RL. Ritschel et al. [57] presented a social-cues-driven Q-learning approach for adapting
the Reeti robot to keep the user engaged during the interaction. The engagement of the
user was estimated from the user’s movement through the Kinect 2 sensor by using a
Dynamic Bayesian Network. They used the change in the engagement as a reward in
the storytelling scenario to adapt the robot’s utterance based on the personality of the
user. In similar fashion, the work by Weber et al. [59] incorporated social signals in the
learning process, namely the participants’ vocal laughs and visual smiles as reward. In
the problem formulation, they used a two-dimensional vector containing probabilities
of laughs and smiles for state representation, and the action space consisted of sounds,
grimaces and three types of jokes. They used an average reward based on all samples
from the punchline to the end with a predefined punchline for every joke. The human
social signals were captured and processed by using the Social Signals Interpretation (SSI)
framework [77]. Their purpose was to understand the user’s humor preferences in an
unobtrusive manner in order to improve the engagement skills of the robot. In a joke-telling
scenario, the Reeti robot adapted its sense of humor (grimaces, sounds, three kinds of
jokes and their combination) by using Q-learning with a linear function approximator.
Likewise Addo and Ahamed [55] presented a joke telling scenario with a torso Nao robot
for entertaining a human audience. They used Q-learning in which the actions of the robot
were pre-classified jokes, and the numerical reward corresponded to affective states of the
user. However, the affective states of the participants were captured by a self-reported
feedback signal. After each joke, the human participant provided a verbal feedback (i.e.,
reward) such as “very funny”, “funny”, “indifferent” and “not funny”.

4.3.5. Affective Communication: Facial Expressions

Human facial expressions are perhaps one of the richest and most powerful tools in
social communication. Facial expressions analysis is commonly used in HRI for understand-
ing users and enhancing their experience. Affective facial expressions can also facilitate
robot learning in RL. Recently, it is becoming more popular to use off-the-shelf applications
in social robotics for different perception and recognition modules. Affectiva software [78]
analyzes facial expressions from videos or in real-time. The studies [58,68,69] used this
software for affective child-robot interaction. In the work by Gordon et al. [68] a tutoring
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system for children was presented. The system included an Android tablet and the Tega
robot setup integrated with the Affectiva software for facial emotion recognition. They used
the SARSA algorithm where the reward was a weighted sum of valence and engagement.
Both valence and engagement values were obtained from the Affectiva software. Similar
to [68], Park et al. [58] used the Tega robot as a language learning companion for young
children. A personalized policy was trained through 6–8 sessions of interaction by using a
tabular Q-learning algorithm. The reward function was a weighted sum of engagement
and learning gains of the child. The engagement was obtained from the Affectiva software.
The learning gains in the reward function was represented as numerical values ([´100,
0, +50, +100]) depending on the lexical and syntactic complexity of the phrase relative
to the child’s level. Gamborino and Fu [69] presented an approach for socially assistive
robots for children to support them in emotionally difficult situations using SARSA. In
the proposed method, the human trainer selects the actions for the social robot RoBoHoN
(small humanoid smartphone robot) through an interface with the purpose to improve the
mood of the child depending on her/his current affective state. The affective state of the
child was based on seven basic facial emotions and engagement obtained by the Affectiva
software and stored in an input feature vector to classify the mood of the child as good or
bad. The emotions were binarized as 1 or 0 depending on whether the value was greater or
less than the average, respectively. The robot suggested a set of actions to the trainer. The
aim was to suggest actions that would match with the trainer’s action preferences. This way
the agent would act independently, without feedback from the trainer. Another study using
facial expressions is Zarinbal et al. [54], in which Q-learning was used for query-based
scientific document summarization with a social robot. The problem formulation was as
follows: In each state St :ă xi, scoretpxiq ą a summary that consisted of M sentences was
generated, where xi is a sentence and i “ 1, 2, ..., M. The scoring scheme was updated based
on the human-delivered reward. The reward rt P t´1, 0, 1u depended on the classified
facial expressions: dislike, neutral and like. In state St, the robot presented the sentence
x˚ to the user and based on his reward rt. The authors concluded that user feedback may
improve the query-based text summarization.

4.3.6. Verbal Communication

The curse of dimensionality is a phenomenon that refers to problems with high
dimensional data. Representing state and action spaces as explicit tables becomes im-
practical for large spaces. To overcome the problem of large state space, approximate
solutions are used, one of them being fuzzy techniques. This approach is also explored for
HRI, e.g., Chen et al. [67] and Patompak et al. [32] used fuzzification and fuzzy inference
together with Q-learning. These works employed verbal communication in their user
studies. Chen et al. [67] proposed a multi-robot system for providing services in a drinking-
at-a-bar scenario. The authors used a modified Q-learning algorithm combined with fuzzy
inference which was called information-driven fuzzy friend-Q (IDFFQ) learning for un-
derstanding and adapting the behaviors of the mentioned multi-robot system based on
the emotion and intention of the user. The reward function was defined as r “ prt ` rhq{2.
Task completion rt (i.e., robots selected the drink the user preferred) and the human’s
satisfaction with the robots’ task performance rh were predefined numerical values. Fuzzi-
fication of emotions was done using the triangular and trapezoidal membership function
in the pleasure-arousal plane. They compared the proposed algorithm with their previous
algorithm, Fuzzy Production Rule-based Friend-Q learning (FPRFQ) [79]. The authors
noted that the current algorithm was superior in that it resulted in higher collected reward
and faster response time of the robots. Patompak et al. [32] proposed a dynamic social force
model for social HRI. The authors considered two interaction areas: a quality interaction
area and a private area. The quality interaction area was defined as the distance from which
the users can be engaged in high-quality interactions with robots. The proposed model
was designed by a fuzzy inference system, the membership parameters were optimized by
using the R-learning algorithm [80]. R-learning is an average reward RL approach; it does
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not discount future rewards [81]. They argued that R-learning was suitable for the scenario
since they intended to take every interaction experience into account equally. In the real
robot experiments, positive or negative verbal rewards were provided by the participants.

Another study that used verbal communication for the reward is [62]. In this study, a
gesture recognition system categorized the body trunk patterns as towards (the person is
facing the robot), neutral (the trunk is facing the robot between 30–150 away), and away
(orientation of the trunk is more than 150). The recognized gestures were interpreted as a
person’s accessibility level, which was used to determine the person’s affective state. In
the Q-learning-based decision-making system, the robot had drives and emotional states
which were utilized for action selection. In particular, a state is represented as spyH , yR, dq
where yH is the accessibility level of the human, yR is emotional state of the robot and d
is the dominant drive. State transition probabilities, Q-values for each state, and reward
for each transition were predetermined numerical values. The satisfaction of the robot’s
drives depended on the robot completing the task. In the experimental scenario, the Brian
robot reminded the user about daily activities (eat, use the bathroom, go for a walk and
take medication) and the user verbally stated ‘yes’ or ‘no’ after the robot’s action, with
‘no’ meaning that the robot’s drive is not satisfied and it will continue to try to satisfy the
drive. The authors mentioned that the robot could use its drives in one or two iterations for
the reminders except the drive related to using the bathroom. It was attributed to people
potentially being uncomfortable with this reminder.

4.3.7. Higher Level Interaction Dynamics: Attention

Social robots have the potentials for information acquisition from both verbal and
nonverbal communication. Not only can they gesture, maintain eye contact, and share
attention with their users, but they can also estimate the users’ non-verbal cues and behave
accordingly. In this interaction, both actors can interpret verbal and nonverbal social cues
to communicate effectively. For natural fluid HRI, robot non-verbal behaviors together
with verbal communication are thoroughly discussed in [82]. These social cues do not only
convey a basic message but also carry higher-level interaction dynamics such as attention,
engagement, comfort, and so on. The following works highlight these in the context of RL
in social robotics. Chiang et al. [56] proposed a Q-learning based approach for personalizing
the human-like robot ARIO’s interruption strategies based on the user’s attention and the
robot’s belief in the person’s awareness of itself. The authors called it the “robot’s theory of
awareness”. They formulated the problem based on the user attention, which was referred
to as a Human-Aware Markov Decision Process. The human attention was estimated
with a trained Hidden Markov Model (HMM) from human social cues (face direction,
body direction, and voice detection). The reward consisted in predefined numerical values
based on the robot’s theory of awareness of the user. The robot had six actions (gestures:
head shake and arm wave; navigation: approach the user and move around; audio: make
sound and call name) to draw the user’s attention while the user was reading. The optimal
policy converged after two hours of interaction. The robot developed personalized policies
for each user depending on their interruption preferences. Another study considering
human attention in their problem formulation is Hemminghaus and Kopp [3]. They used
Q-learning to adapt the robot head Furhat’s behavior in a memory game scenario. In the
game, the robot assisted the participant by guiding their attention towards target objects
in a shared spatial environment. In the proposed hierarchical approach, the high-level
behavior was mapped to low-level behaviors, which could then be directly executed by the
robot. The purpose of using Q-learning was to learn the execution of high-level behaviors
through low-level behaviors. In the problem formulation, states were represented in
terms of the user’s gaze, user’s speech, and game state. The game state represented the
number of remaining card pairs in the game. The action space included actions such as
speaking, gazing, etc. or a combination of those actions. The reward was designed as
r “ rpos ´ c if success r “ c.rneg if no effect. The robot received a positive reward rpos if the
robot’s action helped the user to find the correct pair. The robot received a negative reward
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rneg if the action had no effect on helping the user. c represents the cost of the chosen action
in cases where the costs were determined manually. Moro et al. [61] is another study that
considered the attention of the user. Their scenario was an assistive tea-making activity
for older people with dementia. The authors proposed an algorithm involving Learning
from Demonstration (LfD) and Q-learning for personalized robot behavior according to
a user’s cognitive abilities [61]. The Casper robot learned to imitate the combination of
speech and gestures from a collected data set. The robot learns to select the suitable labeled
behavior (i.e., speech and gestures initially learned from demonstrations) that is most likely
to transition the user into the desired state, i.e., focused on the activity and completing the
correct step. The reward function, Rps, bi

lq, depended on bi
l , the labeled behavior displayed

by the robot, and the state s where s “ tsr, suu. Here, sr represents a set of robot activity
states, and su is the user state such that su “ ts f nc, sacu. In the user state, s f nc represents the
user functioning state which is one of five mental functioning states: focused, distracted,
having a memory lapse, showing misjudgment, or being apathetic. The user activity state,
sac, represents possible actions that can be performed by seniors with cognitive impairment:
successfully completing a step, being idle, repeating a step, performing a step incorrectly,
or declining to continue the activity. The robot was rewarded according to the state the user
transitioned into—a positive reward if the user was focused and completed the activity, and
a negative reward if the user transitioned to an undesirable state. The authors compared
the proposed approach with Q-learning, and reported that the proposed approach required
fewer interactions for convergence and fewer steps required to complete the tea-making
activity. In all the papers explained above, the robot takes the users attention into account
for deciding its actions. Shared attention refers to situations involving mutual gaze, gaze
following, imperative pointing and declarative pointing. Da Silva and Francelin Romero
[63] presented a robotic architecture for shared attention which included an artificial
motivational system driving the robot’s behaviors to satisfy its intrinsic needs, so-called
necessities. The motivational system comprised necessity units that were implemented as
a simple perceptron with recurrent connections. The input to the artificial motivational
system was provided by a perception module used to detect the environmental state and to
encode the state in first order logic with predicates. This module included face recognition
with head pose estimation and a visual attention mechanism. The necessities of the robot
were associated with a state-action pair in the training phase of the learning algorithm. The
activation of a necessity unit was dependent on the input signal representing a stimulus
detected from the environment (i.e., the perception module) and empirically defined
parameters. They compared the performance of three different RL algorithms, namely
contingency learning, Q-learning and Economic TG (ETG) methods for shared attention
in social robotics. ETG is a relational RL algorithm that incorporates a tree-based method
for storing examples [83]. Because ETG performed better in the simulation experiments,
they decided to employ it in real-world experiments which entailed one of the authors
interacting with the robotic head. The authors reported that the robot’s corrected gaze
index, which was defined as frequency of gaze shifts from the human to the location that
the human is looking at, was increased over time during learning.

4.3.8. Affective Communication

Humans use affective communication consciously or unconsciously in their daily
conversations by expressing feelings, opinions, or judgments. Social robots can facilitate
their learning process through sensing and building representations of affective responses.
This idea was used in [33,71,72]. In these studies, the socially assistive robot Brian 2.0 was
employed as a social motivator by giving assistance, encouragement, and celebration in a
memory game scenario. In the scenario, the participants interacted with the robot one-on-
one with the objective to find the matching pictures in the memory card game (4 ˆ 4 grid,
16 picture cards). The robot’s behaviors were adapted using a MAXQ method to reduce
the activity-induced stress in the user. The MAXQ approach is a hierarchical formulation,
which accommodates a hierarchical decomposition of the target problem into smaller
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subproblems by decomposing the value function of an MDP into combinations of value
functions of smaller integral MDPs [84]. The authors argued that the MAXQ algorithm
was suitable for memory game scenarios due to its temporal abstraction, state abstraction,
and sub-task abstraction. These abstractions also helped to reduce the number of Q-values
that needed to be stored. The detailed system was presented in [33]. In their system,
they used three different types of sensory information: a noise-canceling microphone for
recognizing human verbal actions, an emWave earclip heart rate sensor for affective arousal
level and a webcam for monitoring the activity state (depending upon whether matching
card pairs were found or not). They used a two-stage training process involving offline
training followed by online training. The purpose of the first stage was to determine the
optimal behaviors for the robot with respect to the card game. The offline training was
carried out on a human user simulation model created with the interaction data of ten
participants. In the second stage, they aimed to personalize the robot according to the user’s
state (affective arousal and game state) for different participants in online interactions.
The affective arousal and user activity state formed the user state (e.g., stressed: high
arousal and not matching card, pleased: low arousal and matching card). The success of
the robot’s actions was subject to the improvement of a person’s user state from a stressed
state to a stress-free state.

4.4. Deep Reinforcement Learning

For natural interaction, it is important that social robots possess human-like social
interaction skills, which requires features from high dimensional signals. In these cases,
DRL can be useful. In fact, several researchers have begun to examine the applicability of
DRL in social robotics [35,36,73,74,85–87].

4.4.1. Tactile Communication

One of the pioneering works using DRL in social robotics was presented by [36].
Here, a Pepper robot learned to choose among predefined actions for greeting people,
based on visual input. In their work, they succeeded to map two different visual input
sources, the Pepper robot’s RGBD camera and the webcam, to discrete actions (waiting,
looking towards the human, hand waving and handshaking) of the robot. The reward
was provided by a touch sensor located on the robot’s right hand to detect handshaking.
The robot received a predefined numerical reward (1 or ´0.1) based on a successful or
unsuccessful handshake. A successful handshake was detected through the external touch
sensor. The proposed multimodal DQN consists of two identical streams of CNN for
action-value function estimation—one for grayscale frames and another for depth frames.
The grayscale and depth images were processed independently, and the Q-values from
both streams were fused for selecting the best possible action. This method comprised
two phases: the data generation phase and the training phase. In the data generation
phase, the Pepper robot interacted with the environment and collected data. After this
phase, the training phase began. This two-stage algorithm was useful in that it did not
pause the interaction for training. Qureshi et al. [36] used 14 days of interaction data where
each day of the experiment corresponded to one episode. The same authors applied a
variation of DQN, the Multimodal Deep Attention Recurrent Q-Network (MDARQN) [73],
to the same handshaking scenario in [36]. In their previous study, the robot was unable to
indicate its attention. For adding perceptibility to the robot’s actions, a recurrent attention
model was used, which enabled the Q-network to focus on certain parts of the input
image. Similar to their previous work [36], two identical Q-networks were used (one for
grayscale frames and one for depth frames). Each Q-network consisted of convnets, a
Long Short-term Memory (LSTM) network, and an attention network [88]. The convnets
were used to transform visual frames into feature vectors. The network transforms an
input image into D-dimensional L feature vectors, each of them representing a part of
the image at “ ta1

t , ..., aL
t u, al

t P R
D. This feature vector was provided as an input to the

attention network for generating the annotation vector z P R
D. The annotation vector zt
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is the dynamic representation of a part of an input image at time t. zt is computed with
zt “ řL

l“1 βl
ta

l
t. The LSTM network used the annotation vector zt for computing the next

hidden state. Each of the streams of the MDARQN model were trained by using the back-
propagation method. The outputs from the two streams were normalized separately and
averaged to create output Q-values of MDARQN. As in their previous work, handshake
detection was used for the reward function (´0.1 for unsuccessful handshakes and 1 for
successful handshakes). The horizontal and vertical axes of the input image were divided
into five subregions, and the Q-network enabled to focus on certain parts of the input
image. The attention mechanism of the robot used the annotation vector zt to determine the
pixel location to direct maximal attention to the input image. This region selection provided
computational benefits by reducing the number of training parameters. Another work from
the same authors Qureshi et al. [74] proposed an intrinsically motivated DRL approach
for the same handshaking scenario. The proposed method utilized three basic events to
represent the current state of the interaction, i.e., eye contact, smile, and handshake. These
event occurrences were predicted at the next time step according to the state-action pair by
a neural network called Pnet. Another neural network called Qnet was employed for action
selection policy guided by the intrinsic reward. The reward was determined based on the
prediction error of Pnet, i.e., the error between actual occurrences of events ept ` 1q and
Pnet’s prediction êpt ` 1q. An OpenCV-based event detector module provided the labels for
three events (i.e., actual event occurrence). The Qnet was a dual stream deep convolutional
neural network mapping pixels to q-values of the actions (wait, look towards human, wave
hand, and shake hand). Pnet was a multi-label classifier which was trained to minimize
the prediction error between ê and e by using the Binary Cross Entropy (BCE) loss function.
The reward consisted in predetermined numerical values depending on the prediction
error between e and ê. They investigated the impact of three different reward functions
named strict, neutral and kind. In all reward functions, if all three events are predicted
successfully by Pnet, Qnet receives a reward of 1, if all events are predicted wrong then
Qnet gets a reward of ´0.1. If one or two events are predicted correctly then different
reward functions penalize differently, with the strict reward having the highest penalties.
The authors reported that the reward functions with more positive reward on incorrect
predictions yielded more socially acceptable behavior. They compared the collected total
reward from 3 days of experiments in a public place, each day following a different policy
(random policy, Qnet policy, and the previously employed method [36]). The current
proposed model led to more human-like behaviors, according to the human evaluators.

4.4.2. No Communication Medium

Another study using the Pepper robot and DQN was presented by Cuayáhuitl [35].
In their scenario, human participants played a ‘Noughts and Crosses’ game with two
different grids (small and big) against the Pepper robot. They used a CNN for recognizing
game moves, i.e., hand-writing on the grid. These visual perceptions and the verbal
conversations of the participant were given as an input to their modified DQN. The author
modified the Deep Q-Learning with Experience Replay [43] by adding the identification
of the worst action set Â. Â included actions with minprps, aq ă 0 @a P Aq and A is the
set of actions leading to win the game. The action selection was done with max

aPAzÂ
Qps, a; θq.

In other words, the proposed DQN algorithm refines the action set at each step to make
the agent learn to infer the effects of its actions (such as selecting the actions that lead
to winning or to avoid losing). The reward consisted in predefined numerical values
based on the performance of the robot in the game. Therefore, this study does not use any
communication medium for reward formulation. The robot received the highest reward in
the cases ‘about to win’ or ‘winning’, whereas the robot received the lowest reward in the
cases ‘about to lose’ or ‘losing’.
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4.4.3. Nonverbal Communication

Expressive robot behaviors including facial expressions, gestures, and posture are
found to be useful to express the robots’ internal states, goals, and desires [89]. To date,
several studies have investigated the production of expressive robot behaviors using DRL,
including gaze [85,86] and facial expressions [87]. Lathuilière et al. [85] modeled Q-learning
with a Long Short Term Memory (LSTM) to fuse audio and visual data for controlling the
gaze of the robotic head to direct it towards the targets of interest. The reward function was
defined as Rt “ Ft`1 ` α

ř
t`1 where α ě 0 serves as an adjustment parameter. If the speech

sources lie within the camera’s field of view, large α values return large rewards, i.e, α
permits to give importance to speaking persons. The reward function includes face reward
Ft (α “ 0) and speaker reward (α ą 0). The number of visible people (face reward) and the
presence of speech sources in the camera field of view (speaker reward) were observed from
the temporal sequence of camera and microphone observations. The proposed DRL model
was trained on a simulated environment with simulated people moving and speaking,
and on the publicly available AVDIAR dataset. In this offline training, they compared the
reward obtained with four different networks: early fusion and late fusion of audio and
video data, as well as only audio data and only video data. The authors emphasized the
importance of audio-visual fusion in the context of gaze control for HRI. They reported
that the proposed method outperformed the handcrafted strategies. Lathuilière et al. [86]
extended the study presented in [85] by investigating the impact of the discount factor, the
window size (number of past observations affects the decision), and LSTM network size.
They reported that in the experiments with AVDIAR dataset, high discount factors were
prone to overfit, whereas in the simulated environment low discount factors resulted in
worse performance. Using smaller window sizes accelerated the training, however, larger
window sizes performed better in simulated environment. Changing the LSTM size did
not make a substantial difference in the results. In a similar vein, Churamani et al. [87]
utilized visual and audial data for enabling the Nico robot to express empathy towards the
users. They focused on both recognizing the emotions of the user and generating emotions
for the robot to display. The presented model consisted of three modules: an emotion
perception module, an intrinsic emotion module, and an emotion expression module. For
the perception module, both the visual and audio channels were used to train a Growing-
When-Required (GWR) Network. For the emotion expression module, they used a Deep
Deterministic Policy Gradient (DDPG) based actor-critic architecture. The reward was the
symmetry of the eyebrows and mouth in offline pre-training, whereas in online training the
reward was provided by the participant deciding whether the expressed facial expression
was appropriate. The Nico robot expressed its emotions through programmable LED
displays in the eyebrow and mouth area.

4.5. Policy-Based Methods
Higher Level Interaction Dynamics: Comfort

In the domain of socially assistive robotics, the robots are expected to be adaptive
to their users to some extent, by using social interaction parameters (for example, the
interaction distance, the speed of motion and utterances) regarding to the task, to the
users’ comfort and personality. Several studies [90–92] examined the Policy Gradient
Reinforcement Learning (PGRL) for adapting the robot behaviors using social interaction
parameters. Mitsunaga et al. [90,91] presented a study where the Robovie II robot adjusted
its behaviors (i.e., proxemics zones, eye contact ratio, waiting time between utterance
and gesture, motion speed) according to comfort and discomfort signals of humans (i.e.,
body re-positioning amount and the time spent gazing at the robot).These signals were
used as reward. The goal of the robot was to minimize these signals, thereby reducing
experienced discomfort in the human interactant. In [92], an ActiveMedia Pioneer 2-
DX mobile robot adapted its personality by changing the interaction distance, speed and
frequency of motions, and vocal content (what and how the robot says things). The purpose
of this adaptation was to improve the user’s task performance. Their reward function was
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based on user performance, defined as the number of performed exercises. Specifically, the
number of performed exercises over the previous 15 s was computed every second and
results were averaged over a 60 s period to produce the final evaluation for each policy.
They used a threshold for the reward function (7 exercises in the first 10 min) and a time
range to adjust the fatigue incurred by the participant. The participant’s performance was
tracked by the robot through a light-weight motion capture system worn by the participant.

5. Categorization of RL Approaches in Social Robotics Based on Reward

We now present a review of the literature but with focus on the reward function.
Designing the reward function is perhaps the most crucial step in the implementation of an
RL framework. One of the main contributions of this paper is a categorization of different
types of reward functions that are used in RL and social robotics. The categorization is
given in Figure 4.

RL in Social Robotics

Interactive RL Intrinsically
Motivated Methods

Task Performance
Driven Methods

Implicit FeedbackExplicit Feedback Homeostasis-based
methods

Human Task
Performance

Robot Task
Performance

Human and Robot
Task Performance

Figure 4. Reinforcement Learning approaches in social robotics.

As we have already discussed the used RL methods in Section 4, they are not included
here. Moreover, the evaluation methodologies are also discussed in a separate section
(see Section 6).

5.1. Interactive Reinforcement Learning

Different approaches have been proposed for incorporating the human assistance in
the learning process of artificial agents, including learning from human feedback [24,76]
and learning from demonstration. Learning from demonstration is beyond the scope of
this paper, we focus on learning from human feedback. In traditional RL, the agent receives
environmental reward from a predefined reward function. Interactive RL makes use of
human feedback in the learning process in combination with or without environmental
reward. Interactive RL framework is given in Figure 5. Integrating human feedback with
RL can be accomplished in different ways, such as via evaluative feedback [93], corrective
feedback [94] or guidance [95].
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Figure 5. Interaction in Interactive Reinforcement Learning (reproduced from [96]).

Li et al. [96] discuss different interpretations of human evaluative feedback in inter-
active reinforcement learning (referred to as human-centered RL throughout the paper).
They distinguish between three types of human evaluative feedback: interactive shaping,
learning from categorical feedback and learning from policy feedback. In interactive shap-
ing, human feedback is interpreted as numeric reward, and this reward can be myopic
i.e., γ “ 0 [93] or non-myopic i.e., γ is different from 0 [97]. Human feedback might be
erroneous when the task is repetitive. Moreover, human teachers tend to give less frequent
feedback (e.g., due to boredom and fatigue) as the learning progresses. Modeling human
feedback has been found to be an efficient strategy when the meaning of human-delivered
feedback is ambiguous [76]. Loftin et al. [76] developed a probabilistic model of human
teacher’s feedback. They interpret human feedback as categorical feedback, considering
that human teachers may have different feedback strategies. In their work, depending on
the human teacher’s training strategy, a lack of feedback can convey information about
the agent’s behavior. Human training strategies are categorized into four groups: reward-
focused strategy (positive reward for correct actions and no feedback for incorrect actions),
punishment-focused strategy (no feedback for correct actions and punishment for incorrect
actions), balanced strategy (positive reward for correct actions and punishment for incor-
rect actions) and inactive strategy (the human teacher rarely provides feedback). Corrective
feedback can be categorized under policy feedback. As an example, Celemin and Ruiz-del
Solar [94] presented a framework named COACH (COrrective Advice Communicated by
Humans) which uses human corrective feedback in the action domain as binary signals
(i.e., increase or decrease the magnitude of the current action). In their comparison with
classical reinforcement learning approaches, they showed that RL agents can benefit from
human feedback, i.e., learning progresses faster [94]. When the agent learns both human
feedback and environment reward, the human feedback can be used to guide the agent’s
exploration [95]. The guidance includes both providing feedback on past actions and guid-
ing the agent in the learning process through future-directed rewards. Human guidance
can reduce the action space by narrowing down the action choices [98], which speeds up
the training process by accelerating the convergence towards an optimal policy.

In the context of HRI, the human can be in the learning loop by way of varying types of
inputs, such as providing feedback via a GUI (e.g., by button or mouse clicks). Alternatively,
the feedback can be delivered more naturally, via emotions, gestures and speech. Therefore,
this category comprises two subcategories: (1) explicit feedback, when the feedback is
direct, provided through an interface such as ratings, and labels; (2) implicit feedback,
if the human feedback is spontaneous behavior or reactions such as non-verbal cues
and social signals. The terms “explicit feedback” and “implicit feedback” are adopted
from Schmidt [99]’s “implicit interaction” study in human-computer interaction. For a
quick summary of the studies, see Table 1.
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Table 1. Summary of Interactive Reinforcement Learning approaches in social robotics.

Reference Subcategory Type of RL Reward Social Robot

Barraquand et al. [52] Explicit
feedback Q-learning User provides reward by using

robot’s tactile sensors Aibo

Suay et al. [26,30] Explicit
feedback Q-learning Human teacher delivers reward

or guidance through a GUI Nao

Knox et al. [29] Explicit
feedback TAMER Human teacher provides reward

by using a remote Nexi

Yang et al. [53] Explicit
feedback Q-learning User gives reward by

touching robot’s tactile sensors Pepper

Schneider et al. [44] Explicit
feedback Dueling bandit User provides feedback

through a button Nao

Churamani et al. [87] Explicit
feedback DDPG

User gives reward whether
robot’s expression is appropriate to

affective context of dialogue
Nico

Tseng et al. [49] Explicit
feedback Modified R-Max User provides reward

through a software ARIO

Gamborino et al. [69] Explicit
feedback SARSA User’s transition between

bad and good mood state RoBoHoN

Ritschel et al. [4] Explicit
feedback k-armed bandit User gives reward via buttons Reeti

Patompak et al. [32] Implicit
feedback R-learning Verbal reward by the user

based on robot’s social distance Pepper

Thomaz et al. [31] Implicit
feedback Q-learning Human teacher provides

reward or guidance Leonardo

Thomaz et al. [28] Implicit
feedback Q-learning Human teacher provides guidance

through speech or gestures Leonardo

Gruneberg et al.
[100,101]

Implicit
feedback Not specified Human teacher’s smile and frown Nao

Addo et al. [55] Implicit
feedback Q-learning Verbal reward of the user Nao

Zarinbal et al. [54] Implicit
feedback Q-learning Human teacher’s facial expressions Nao

Mitsunaga et al.
[90,91]

Implicit
feedback PGRL Discomfort signals of the user Robovie II

Leite et al. [45] Implicit
feedback

Multi-armed
bandit

User’s affective cues and
task-related features iCat

Chiang et al. [56] Implicit
feedback Q-learning

Numerical values based on
attention and engagement

levels of the user
ARIO

Gordon et al. [68] Implicit
feedback SARSA Weighted sum of

facial valence and engagement Tega
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Table 1. Cont.

Reference Subcategory Type of RL Reward Social Robot

Ritschel et al. [57] Implicit
feedback Q-learning Change in user engagement Reeti

Weber et al. [59] Implicit
feedback Q-learning Vocal laughter and visual smiles Reeti

Park et al. [58] Implicit
feedback Q-learning Weighted sum of engagement

and learning Tega

Ramachandran et al.
[102]

Implicit
feedback POMDP Engagement level of the user Nao

Martins et al. [50] Implicit
feedback

Model-based RL
and POMDP

The robot’s actions’ impact
on the user GrowMu

5.1.1. Explicit Feedback

In the explicit feedback approach, the feedback of the human teacher is given by
direct manipulations and generally through an artificial interface. The human teacher
observes the agent’s actions and environment states and subsequently provides feedback
to the agent through a graphical user interface (GUI) or through the robot’s (touch) sensors.
In this approach, the feedback from the human teacher is noiseless and direct in the form
of numerical values provided via a button, a Graphical User Interface (GUI), or through
the robot’s touch sensors. In general, the main purpose of the interaction is to teach
the robot to do something in this category. Unlike the explicit feedback category, in the
implicit feedback category, the majority of studies include a social scenario such as robot
tutoring, robots supporting the human in a game, etc. The studies under this category
are [4,26,29,30,44,52,53].

5.1.2. Implicit Feedback

Human social signals are widely used as reward in social human-robot interaction.
The most commonly used signals are human emotions, as these have a great influence on
decision-making [103]. Computational models of emotions have been studied by many
researchers as part of the agent’s decision making architecture, by modelling the RL agents
with emotions or incorporating human emotions as an input to the learning process. As
an example, Moerland et al. [104] surveyed RL studies focusing on agent/robot emotions.
Since emotions also play an important role in communication and social robots [7], there
exist various studies considering these aspects for RL and social robotics. In the implicit
feedback approach, the agent learns from spontaneous natural behavior and reactions of
the interactant, i.e., emotions, speech, gestures, etc. This type of feedback is noisy and
indirect. In other words, in this approach, human feedback requires pre-processing and the
quality of the feedback depends on the perception and recognition algorithms being used.
Unlike explicit feedback, the implicit feedback is not provided directly through an interface.
Instead, the human’s emotions or verbal instructions serve as reward or guidance signals.
The studies in this category are [28,31,32,45,50,55–57,59,68,90,91,100–102].

5.2. Methods Using Intrinsic Motivation

It is a common approach to examine the biological and psychological decision-making
mechanisms and to use a similar method for autonomous systems. One such approach
consists in combining intrinsic motivation with reinforcement learning. Intrinsic motiva-
tion is a concept in psychology, which denotes the internal natural drive to explore the
environment, as well as gain new knowledge and skills. The activities are performed
for inherent satisfaction rather than external rewards [105]. Researchers have proposed
computational approaches that use intrinsic motivation [106]. In intrinsically motivated RL,
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the main idea is using intrinsic motivations as a form of reward [107]. There are different
intrinsic motivation models within the RL framework [20]. However, in social robotics,
the idea of maintaining the internal needs of the robot (detailed in Section 5.2) has received
much attention [13,34,63–66,108]. One exception is [74], in which prediction error of social
event occurrences was used as intrinsic motivation. For a quick summary, see Table 2.

Homeostasis-Based Methods

Homeostasis, as defined by Cannon [109], refers to a continuous process of main-
taining an optimal internal state in the physiological condition of the body for survival.
Berridge [110] explains homeostasis motivation with a thermostat example that behaves as
a regulatory system by continuously measuring the actual room temperature and compar-
ing it with a predefined set point, and activating the air conditioning system if the measured
temperature deviates from the predefined set point. In the same manner, the body main-
tains its internal equilibrium through a variety of voluntary and involuntary processes and
behaviors. The homeostasis-based RL in social robotics is presented in [13,34,64–66,108].
These studies introduced a biologically inspired approach that depends on homeostasis.
The robot’s goal was to keep its well-being as high as possible while considering both
internal and external circumstances. The common theme in these studies is that the robot
has motivations and drives (needs), where each drive has a connection with a motivation
as in Equation (15).

i f Di ă Ld then Mi “ 0

i f Di ě Ld then Mi “ Di ` wi
(15)

Motivations whose drives are below the activation levels do not initiate a robot
behavior. This was formulated as i f Di ă Ld then Mi “ 0 where Di is a drive, Ld the
activation level, and Mi is the related motivation. The motivation depends on two factors:
the associated drive and the presence of an external stimulus, this was formulated as
i f Di ě Ld then Mi “ Di ` wi where wi is the related external stimulus. These motivations
serve as action stimulation to satiate the drives. A drive can be seen as a deficit that leads
the agent to take action in order to alleviate this deficit and maintain an internal equilibrium.
The ideal value for a drive is zero, corresponding to the absence of need. The robot learns
how to act in order to maintain its drives within an acceptable range, i.e., to maintain its
well-being. The well-being of the robot was defined as:

Wb “ Wbideal ´
ÿ

i

αiDi (16)

where Wbideal is the value of the well-being when all drives are satiated, and αi is the set
of the personality factors that weight the importance of each drive. The variation of the
robot’s well-being is used as reward signal and calculated with the Equation (17)

ΔWb “ Wbt ´ Wbt´1 (17)

i.e., the difference between the current well-being Wbt and the well-being in the previous
step Wbt´1.

In several works [64–66], a variation of the traditional Q-learning algorithm was used
in addition to the homeostasis-based approach. In all of these, the authors referred to the
proposed algorithm as Object Q-learning. In this approach, there are actions associated
with each object in the environment, and the robot considers its state in relation to every
object independently. Thus, there is an assumption that an action execution in relation
to a certain object does not influence the state of the robot in relation to other objects.
However, in reality, an action execution may create collateral effects. In other words,
an action associated with a particular object, e.g., approaching it, may affect the robot’s
state in relation to other objects, e.g., moving away from them. The update of Q-values
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accounted for these collateral effects. The purpose of this simplification was to reduce the
number of states during the learning process. In their experiments, to reduce the state
space, the robot learned what to do with each object without considering its relation to
other objects. In other words, they assumed that an action execution associated with a
certain object will not affect the state of the robot in relation to the rest of the objects. The
proposed algorithm was implemented on the social robot Maggie that lived in a laboratory
and interacted with several objects in the environment (e.g., a music player, a docking
station, or humans). Castro-González et al. [65] appears to be closely linked to the other
papers discussed here with one difference being that a discrete emotion, fear, was used
as one of the motivations. Unlike other motivation-drive pairs, no drive was associated
with the ‘fear motivation’ (i.e., fear is not a deficiency of any need). ‘Fear motivation was’
linked to dangerous situations (that can cause damage the robot) and directed the robot
to a secure state. As an example, the motivation ‘social’ was not updated if the user who
occasionally hit the robot was around. For a quick summary, refer to Table 2.

Table 2. Summary of Intrinsically Motivated Methods in social robotics.

Reference Subcategory Type of RL Reward Social Robot

Malfaz et al. [108] Homeostasis based Q-learning Wellbeing of the robot Maggie

Castro-Gonzalez et al.
[64–66]

Homeostasis
based

Object
Q-learning Variation of robot’s wellbeing Maggie

Maroto et al. [13] Homeostasis
based Q-learning Maximization of robot’s well-being Mini

Perula et al. [34] Homeostasis
based Q-learning Well-being of the robot Mini

Da Silva et al. [63] - Economic TG Generated on the basis of
internal state estimate Robotic head

Qureshi et al. [74] - DQN Prediction error of an action
conditional prediction network Pepper

5.3. Methods Driven by Task Performance

Task performance denotes the effectiveness with which an agent performs a given task,
and the performance metrics can vary for different tasks. In these methods, the design of
the reward function is based on task-driven measures, which often include some problem-
specific information, especially the task performance of the robot, task performance of the
human, or both. For a quick summary, see Table 3.

5.3.1. Human Task Performance Driven Methods

In these human task performance driven methods, the reward function is based on
the user’s success in performing a task related to the interaction with the robot. The studies
in this category are [47,92].

5.3.2. Robot Task Performance Driven Methods

In these methods, the reward design depends on the robot’s task performance. Robot be-
haviors that satisfy the user’s preferences, accurate completion of the task, finishing the
task within a desired amount of time, visiting certain states, and robot actions that benefit
or satisfy the user are examples for task performance measures. The studies in this category
are [1,3,35,36,46,60,62,67,70,85,86].
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Table 3. Summary of Task performance driven methods in social robotics.

Reference Subcategory Type of RL Reward Social Robot

Tapus et al. [92] Human task
performance PGRL User performance Pioneer 2-DX

Gao et al. [47] Human task
performance

Multi-arm
bandit

User task performance and
user’s verbal feedback Pepper

Chan et al. [71,72] Human and robot
task performance MAXQ

Success of the robot’s actions
in helping or improving user’s

affect and task performance
Brian 2.0

Chan et al. [33] Human and robot
task performance MAXQ Task performance of

human and robot Brian 2.0

Moro et al. [61] Human and robot
task performance Q-learning

Numerical numbers based on
robot’s performance on user’s

activity state
Casper

Nejat et al. [62] Robot task
performance Q-learning User provides verbal feedback Brian

Ranatunga et al. [70] Robot task
performance TD(λ) Head and eye kinematic

scheme of the robot Zeno

Keizer et al. [1] Robot task
performance

Monte-Carlo
control

The robot’s performance
as a bartender iCat

Qureshi et al. [36] Robot task
performance

Multimodal
DQN

Numerical values based on
robot’s handshake success Pepper

Papaioannou et al.
[60]

Robot task
performance Q-learning Task completion of the robot Pepper

Qureshi et al. [73] Robot task
performance MDARQN Numerical values based on

robot’s handshaking success Pepper

Hemminghaus et al. [3] Robot task
performance Q-learning Robot’s task performance and

execution cost of the robot’s action Furhat

Chen et al. [67] Robot task
performance Q-learning Numerical values based on

correctly completed tasks Mobile robots

Ritschel et al. [46] Robot task
performance

n-armed
bandit

Robot’s performance at convincing
user to select healthy drink Reeti

Lathuiliere et al. [85,86] Robot task
performance DQN

Number of observed faces and
presence of speech sources

in the visual field
Nao

Cuayahuitl [35] Robot task
performance DQN Numerical values based on

robot’s performance in the game Pepper

5.3.3. Human and Robot Task Performance Driven Methods

In the previous two sections, we listed the studies using task performance of the robot
and human as reward signal. There are also studies that use a combination of the human’s
and the robot’s task performance as reward signal. As an example, in [33,72] the robot
received the highest reward if the user completed the task successfully. The robot also
received reward for its actions that were suitable for the current situation. Likewise, in [61],
the robot was rewarded based on actions that transitioned the user into a desirable state
(e.g., completing the activity). Other papers in this category are [33,71,72].
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6. Evaluation Methodologies

The past decade has seen a rapid growth of social robotics in diverse uncontrolled
environments such as homes, schools, hospitals, shopping centers, or museums. In this
review, we have seen various application domains in a range of fields including ther-
apy [3], eldercare [62], entertainment [59], navigation [32], healthcare [44], education [58],
personal robots [13], and rehabilitation [92]. Research in the field of social robotics and
human-robot interaction becomes crucial as more and more robots are entering our lives.
This brings many challenges as social robots are required to deal with dynamic and
stochastic elements in social interaction in addition to the challenges in robotics. Besides
these challenges, validation of social robotics systems with users necessitates efficient
evaluation methodologies. Recent studies underline the importance of evaluation and
assessment methodologies in HRI [111]. However, developing a standardized evalua-
tion procedure still remains a difficult task. Furthermore, in RL-based robotic systems,
there is a need to explore various human-level factors (personal preferences, attitudes,
emotions, etc.) to assure that the learned policy leads to better HRI. Additionally, how
can we evaluate whether the learned policy conveys the intended social skill(s)? As an
example, in Qureshi et al. [36,73,74]’s study, the model performance on a test dataset was
evaluated by three volunteers who judged if the robot’s action was an appropriate one
for the current scenario. In [87], there both annotators and participants rated whether
the robot was able to associate the facial expressions with the conversation context. The
independent annotators’ ratings were higher than the participants’, which, as the authors
argued, might be explained by discrepancies between the participants’ actual expressed
emotion and the intended emotion. In such cases, additional sensory information could
be useful for validating that the adaptive robot behaviors lead to better HRI. For example,
Park et al. [58] analyzed the body poses and electrodermal activity (EDA) of the participants
to check their correlation with participant’s engagement. This kind of approach could be
used to support subjective evaluations. A comparative evaluation methodology considering
both the learned policy and the user’s experience about the interaction is another way of
evaluation. As an example [32,33,56,90,91] presented the policy for each participant as
well as a discussion on the effectiveness of the robot behavior on the user based on their
comments and subjective evaluations.

The papers in the scope of this manuscript used different evaluation and assessment
methodologies for their algorithms and for their systems with users. We identify three types
of evaluation methodologies: (1) an evaluation from the algorithm point of view, (2) evalu-
ation and assessment of user experience-related subjective measures, and (3) evaluation of
both learning algorithm-related factors and user experience-related factors. Several studies
only reported the self-rated questionnaire results [45] or user opinions [55]. There are also
studies which do not include any evaluation, and only a short discussion regarding the
learned policy [53,57,100,101].

The cumulative collected reward over time is the most commonly used evaluation
method. As learning progresses, the frequency of negative rewards is expected to decrease
and positive rewards are expected to increase. Thus, the cumulative reward and comparing
the reward across different settings and variations of algorithms are one of the measures
for evaluating the efficiency of learning [49,50,52,85,86]. The evolution of the learning
algorithm over time (e.g., the evolution of Q values) is another evaluation method. Several
studies presented only the learning evolution of their system without mentioning how a
participant would perceive the learned robot behaviors [13,34,61,63–66,108]. Comparison
of user experiences (e.g., learning gains of children) for adaptive and non-adaptive robot
is another way of evaluation [68,102]. We also see evaluation by using only interaction
related objective measures such as the frequency of turn-taking and dialogue duration with
the robot [60]. Task-related evaluation measures (i.g., the number of moves needed to solve
a game with an adaptive versus a random robot) together with Q-matrix [3], or average
task success and average reward [35] are used. In some IRL studies, the purpose is only
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teaching a robot. In these studies, evaluation metrics are training time [26,29], or training
related parameters (e.g., the amount of positive and negative feedback) [28].

Studies reporting both subjective user opinions and algorithm related measures
are [30,44,46,59,92]. Interaction related objective measures such as interaction duration, dis-
tance to the robot, preferred motion speed of the robot in combination with questionnaires
are other measures for evaluating the efficiency of the learned policy. Studies also use a
comparison of different algorithms in terms of average steps, average reward, average exe-
cution time together with questionnaires [67], and the number of times the preferences of
the trainer match with the agent’s action [69], reward and discussion of observations from
the experiments [46], questionnaires and task-related parameters (e.g., time to complete
the task) [47].

7. Discussion

In this paper, we present the RL approaches in social robotics. In virtual game envi-
ronments (e.g., Atari, Go, etc.) which are commonly used testbeds for RL implementations,
the goal is well defined (e.g., getting higher scores, accomplishing a game level, or winning
the game). In social robotics, the goal is not that clear. Still, we argue that social robots
could provide a unique potential testbed for RL implementations in real-world scenarios, in
a sense that they can deal with transparency issues by showing their internal states through
social cues (e.g., facial expressions, gaze, speech, LEDs on their body, tablet). In Section 5,
we presented RL approaches based on reward types. IRL with implicit reward is the most
widely used approach in social robotics since human social cues occur naturally during
the interaction. However, the change in social cues can be slow, which leads to sparse
reward. A combination of the reward approaches presented Section 5, namely intrinsically
motivated methods, IRL with implicit feedback, and task performance-driven methods
could be an approach to deal with the sparse reward problem. This way the robot could
receive a reward even when there is no dramatic change in social cues or the task is not
completed in one step. Similar to the homeostasis-based approaches, combining emotional
models for robots’ decision-making mechanisms could be helpful. The interested reader
may refer to [104] which presents a thorough analysis and discussion of computational
emotional models incorporated within RL. Th sparse reward problem is not the only prob-
lem in real-world social HRI. We continue to the discussion with the proposed solutions
for real-world RL problems in Section 7.1. Later on, we present possible interesting future
directions in Section 7.2.

7.1. Proposed Solutions to Real-World RL Problems

RL is a powerful and versatile algorithmic tool and has been shown to perform
better than humans in simulated environments [43] However, the progress on applying
RL methods to real-world systems is not so advanced yet. This is due to the complexity
of the real-world. Dulac-Arnold et al. [112] discuss nine challenges of realizing RL on
real-world systems. Here, we discuss these challenges and how some papers tackled them
in real-world HRI with social robots.

The first mentioned challenge is “training off-line from the fixed logs of an external
behavior policy”. This challenge applies to HRI since users would not tolerate the long
pauses and action delays of the social robot. As an example, Qureshi et al. [36] suggested
an approach where they divided training into two stages. In the first stage, the robot
interacts with the environment and gathers data, whereas in the second stage the robot
rests and trains.

The second challenge is “learning on the real system from limited samples”. This chal-
lenge is especially valid for HRI since the interaction time with the users is limited in
controlled lab experiments. Moreover, users get bored and tired with longer interaction
duration. As mentioned [112] exploration must be limited. As an example, in [13,34],
exploration and exploitation phases are separated. A predefined duration is set for the
exploration phase, in which the robot runs through all possible states and actions. More-
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over, they also decreased the learning rate α throughout the exploration phase to in-
crease the importance of previously learned information as the learning progresses. In the
exploitation phase, they set α to 0. As mentioned in [112], for improving the sample
efficiency expert demonstrations can be beneficial to avoid learning from scratch. For exam-
ple, Moro et al. [61] combined LfD with Q-learning for a Casper robot helping older people
in a tea making scenario. Another mentioned solution was model-based RL, of which
we see two examples in social robotics [49,50]. In addition, long-term interactions (several
sessions [58,68,102]) are important for HRI and could be beneficial for RL to collect samples.

The third challenge is “high-dimensional continuous state and action spaces”. In
the context of social robotics, the problem also needs to be simplified due to the low
onboard computational power of most platforms. That might be another reason for a
small set of actions in the reviewed papers. To overcome this challenge we see several
approaches. As an example, human guidance was found to effective [26], as well as Object
Q-learning [64–66] and action elimination [35].

The fourth challenge is “safety constraints that should never or at least rarely be
violated”. The mentioned approaches for this challenge in [112] include imposing safety
constraints during the training. In the current literature, social robot interactions are gener-
ally conducted in a controlled laboratory environment and the researchers are available to
intervene if any problems occur. Therefore, this challenge seems to get little attention.

The fifth challenge is “tasks that may be partially observable, alternatively viewed
as non-stationary or stochastic”. We see several attempts in social robotics to deal with
this challenge such as in POMDP based approaches [50,102], and in DRL where several
frames are stacked together for incorporating the history of the agent observations. Another
mentioned approach to deal with this challenge was using recurrent networks which were
applied in [63].

The sixth challenge is “reward functions that are unspecified, multi-objective, or risk-
sensitive”. Some papers that use simulated environments for training and testing on real-
world interactions. In these papers, there are different reward functions for the simulated
world and the real-world. Generally, the real-world reward functions are simplified to
one parameter such as feedback of the user or predefined numeric numbers, whereas the
simulated world reward functions are more complex including several parameters.

The seventh challenge is “system operators who desire explainable policies and
actions”. This is particularly valid for social robotics, since ambiguous robot behaviors
might affect the user’s willingness to interact again. Moreover, if the human trains the
robot, the intention and internal state of the robot becomes crucial for the success of the
training. As an example, Knox et al. [29] discussed the transparency challenges and their
effect on the training time. Thomaz and Breazeal [28] observed that participants had a
tendency to wait for eye contact with the robot before saying the next utterance while
training the robot. These kinds of social cues on the robot could be used for explaining its
actions and internal states.

The eighth challenge is “inference that must happen in real-time at the control fre-
quency of the system”. The real-world is slower than the simulated world both in reaction
and data generation. To deal with this challenge, several researchers used an additional
interface between the robot and the human, so that the inference is received from the
interface rather than robot control.

The ninth challenge is “large and/or unknown delays in the system actuators, sensors,
or rewards”. We see several approaches to deal with this challenge, as an example [52]
considered to increase the effect of human-delivered positive reward in larger time frames
and to decrease the effect of negative reward in a shorter time frame. Another approach
was estimating reward from natural human feedback using the gamma distribution [49].

7.2. Future Outlook

There are still many interesting potential problems and open questions to be solved in
RL for social robotics. Applications on physically embodied robots are limited due to the
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enormous challenge of complexity and uncertainty in real-world social interactions. The
increased prevalence of RL in physical social robots will shed further light on this topic.
Another unanswered question is how RL-based social robotics may include the generation
of reward signals from ambiguous or conflicting sources of implicit feedback, and how
learned skills can be transferred to different robots. Further work could also investigate
larger state-action spaces, as current studies are mostly limited to a small sets.

Despite the fact that there are goal-oriented approaches for social robot learning [113,114],
in the current literature, the social robot that learns through RL has only one goal, such as
performing a single task and optimizing a single reward function. However, in many real-
world scenarios, a robot may need to perform a diverse set of tasks. As an example, socially
assistive robots designed with the purpose of assisting older people in their houses may
need to accomplish several tasks such as medication reminders, detecting issues, informing
caregivers, and managing plans. Multi-goal RL enables an agent to learn multiple goals,
hence the agent can generalize the desired behavior and transfer skills to unseen goals
and tasks [115]. This has been applied on robotic manipulation tasks in a simulated
environment [115]. However, applying the multi-goal RL framework to social robots
would be a fruitful area for future work.

Another interesting future direction might be the application of multi-objective RL in
social robotics. The task efficiency and user satisfaction can be two objectives where the
robot would try to maximize both objectives by formalizing the problem as a multi-objective
MDP. As an example, Hao et al. [116] presents a multi-objective weighted RL in which the
agent had two objectives: minimizing the cost of service execution and eliminating the
user’s negative emotions. We refer the interested reader to the survey on multi-objective
decision making for a more detailed explanation of the topic [117].

Recent developments in the field of deep neural networks have led to an increas-
ing interest in DRL. Applying DRL in social robotics has also received recent attention,
however, studies focused on small sets of actions and single task scenarios. In this re-
gard, social robots with larger sets of actions would be a promising area for further work.
Another future direction can be a further investigation of hyper-parameters of RL in so-
cial robotics. This was briefly discussed in [1], as an example, in turn-based interactions
relatively small discount factors (i.e., 0.7 ď γ ď 0.95) are more common, whereas for the
frame-based interactions with rather long trajectories, higher discount factors seem to be
more suitable (i.e., γ ě 0.99). In deep networks, the selection of different hyper-parameters
affects the accuracy of the algorithm [118]. This also applies to DRL, Lathuilière et al. [86]
presented several experiments to evaluate the impact of some of the principal parameters
of their deep network structure.

Thus far, model-free RL learning a value function or a policy through trial and error
is the most commonly used approach in social robotics. However, model-based RL that
focuses on learning a transition model of the environment serving as a simulation remains
to be further explored. In particular, having a user model can ease the learning process.
Although it is difficult to model human reactions, having a model can play a crucial role in
reducing the number of required interactions in the real-world. The model-based approach
can also help with the problem of hardware depreciation which may arise in model-free
RL in robotics because of the considerable amount of interaction time. Simulating the
interaction environment can ease the training without manual interventions and a need
for maintenance. Nonetheless, transferring the learned policies in simulation directly to
the physical robot may not be trivial due to undermodeling and uncertainty about system
dynamics [15]. A common limitation is that most of the works are not generalizable, i.e.,
utilizing the knowledge learned by one robot on the other or utilizing the task knowledge
for other tasks. The Google AI team trained a model-based Deep Planning Network
(PlaNet) agent which achieved six different tasks (i.e., cartpole swing-up, cartpole balance,
finger spin, cheetah run, etc.) [119]. A similar approach for a physical social robot would
be an interesting future direction.
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RL problems are formalized as MDPs in fully observable environments. However, in
the case of HRI not all of the required observations are available, due to the underlying
effect of psychological states on human behavior. It has been demonstrated that POMDPs
are able to model the uncertainties and inherent interaction ambiguities in real-world HRI
scenarios [120]. Hausknecht and Stone [121] proposed a method that couples a Long Short
Term Memory with a Deep Q-Network to handle the noisy observations characteristic of
POMDPs. A similar approach would be useful in social robotics problems to better capture
the dynamics of the environment. We included two examples of POMDP approaches
in social robotics, [50,102]. Further investigation would constitute an interesting line
of research.

8. Conclusions

In this work, we give an overview of the work on RL in social robotics. We sur-
veyed the literature and presented a thorough analysis of RL approaches in social robotics.
Social robots have two important characteristics: physical embodiment and interac-
tion/communication capabilities. Therefore, we included studies with physically em-
bodied robots. Moreover, we categorize the papers based on the used RL type. In this
categorization, we discuss and group the papers based on the communication medium
used for reward formulation. Considering the importance of designing the reward function,
we also categorize the papers based on the nature of the reward. The evaluation methods
of the papers are also grouped by whether or not they use subjective and algorithmic met-
rics. We then provide a discussion in the view of real-world RL challenges and proposed
solutions. The points that remain to be explored, including the approaches that have thus
far received less attention are also given in the discussion section. To conclude, despite
tremendous leaps in computing power and advances in learning methods, we are still a
long way from general-purpose, robust, and versatile social robots that can learn several
skills from naive users with real-world interactions. In spite of the immediate challenges,
we see steady progress of RL applications in social robotics with an increasing interest in
recent years.
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Abstract: In order to analyze the complex interactive behaviors between the robot and two
humans, this paper presents an adaptive optimal control framework for human-robot-human
physical interaction. N-player linear quadratic differential game theory is used to describe the
system under study. N-player differential game theory can not be used directly in actual scenerie,
since the robot cannot know humans’ control objectives in advance. In order to let the robot know
humans’ control objectives, the paper presents an online estimation method to identify unknown
humans’ control objectives based on the recursive least squares algorithm. The Nash equilibrium
solution of human-robot-human interaction is obtained by solving the coupled Riccati equation.
Adaptive optimal control can be achieved during the human-robot-human physical interaction.
The effectiveness of the proposed method is demonstrated by rigorous theoretical analysis and
simulations. The simulation results show that the proposed controller can achieve adaptive optimal
control during the interaction between the robot and two humans. Compared with the LQR controller,
the proposed controller has more superior performance.

Keywords: physical human-robot interaction; game theory; adaptive optimal control; robot control

1. Introduction

In the past decade, physical human-robot interaction has attracted the attention of the research
community due to the urgent requirement for robot technology in unstructured environment [1–4].
Physical human-robot interaction combines the advantages of humans and robots, which means that
humans are good at reasoning and problem solving with high flexibility, while robots perform well
in terms of execution as well as guaranteeing the accuracy of task execution [5,6]. The combination
of these advantages has led to the wide application of physical human-robot interaction, such as
teleoperation [7,8], collaborative assembly [9,10], and collaborative transportation [11–13].

Two types of specific human robot interaction strategies have been widely studied: co-activity type
of interaction strategy and master-slave control strategy [14,15]. Co-activity type of interaction strategy
is used in typical rehabilitation robots that help limb movement training or intelligent industrial
systems that support heavy objects to resist gravity, where robots completely ignore human users’
behaviors [16,17]. In contrast, the master–slave control strategy is used in the teleoperated robots
or force extender exoskeletons use where robots completely follow the control of human users [18].
However, these strategies can only be used for specific interactive behaviors, the general framework
for analyzing various interactive behaviors between robot and humans is still missing [19,20].

It has been pointed out that game theory can be used as a general framework to analyze complex
interactive behaviors between multiple agents because different combinations of individual cost
functions and different optimization objectives can be used to describe various interactive behaviors
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in game theory [21]. In [22], the human and the robot were been regarded as two agents and game
theory was used in order to analyze the performance of the two agents. In [23], the optimal control was
obtained for a given game with a linear system cost function by solving the coupled Riccati equation.
In [24], an optimal control algorithm was developed for human-robot collaboration by solving the
Riccati equation in each loop. In [25–28], policy iteration was used to solve the Nash equilibrium
solution in order to improve the calculation speed. In [29], cyber-physical human systems was modeled
via an interplay between reinforcement learning and game theory. In [30], haptic shared control for
human-robot collaboration was modeled by a game-theoretical approach. In [31], human-like motion
planning was studied based on game theoretic decision making. In [32], cooperative game was used
for human-robot collaborative manufacturing. In [33], a bayesian framework was proposed for nash
equilibrium inference in human-robot parallel play. In [19], non-cooperative differential game theory
was used to model human-robot interaction system that results in a variety of interaction strategies.
However, the above studies only consider two agents, that is, the interaction between one human and
one robot. Therefore, the aforementioned methods are not suitable for human-robot-human physical
interaction where more than one human interact with one robot physically. It is worth noting that
the physical interaction between one robot and two humans will bring greater advantages such as
operating larger loads, improving the flexibility and robustness of the system [28,34–37]. These greater
advantages are brought by the team collaboration between the robot and two humans. To the authors’
acknowledgment, no literature have researched the problem of the physical interaction between one
robot and two humans based on game theory.

In the paper, a general adaptive optimal control framework for human-robot-human physical
interaction is proposed based on N-player game theory. Accordingly, the robot and two humans
can interact with each other optimally by learning each other’s control. N-player differential game
theory was used to model the human-robot-human interaction system in order to analyze the complex
interactive behaviors between the robot and two humans. In N-player differential game theory,
humans’ control objectives are assumed to be knowledge [38,39]. However, N-player differential
game theory can not be used directly in actual scenerie since the robot cannot know humans’ control
objectives in advance. In order to let the robot know humans’ control objectives, the paper presents an
online estimation method to identify unknown humans’ control objectives based on the recursive least
squares algorithm. Subsequently, the Nash equilibrium solution of the multi-human robot physical
interaction is obtained by solving the coupled Riccati equation to achieve coupled optimization.
Finally, the effectiveness of the proposed method is demonstrated by rigorous theoretical analysis and
simulation experiments. This paper makes the following four contributions.

(1) N-player differential game theory is firstly used to model the human-robot-human
interaction system.

(2) An online estimation method to identify unknown humans’ control objectives based on the
recursive least squares algorithm is presented.

(3) A general adaptive optimal control framework for human-robot-human physical interaction is
propose based on (1) and (2).

(4) The effectiveness of the proposed method is demonstrated by rigorous theoretical analysis and
simulation experiments.

The remainder of this paper is organized, as follows: Section 2 models the human-robot-human
physical interaction system based on N-player differential game theory. Section 3 establishes an
adaptive optimal control law, and the control performance of the system is analyzed theoretically.
Section 4 verifies the effectiveness of the proposed method through simulation experiments. Finally,
Section 5 concludes this work.
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2. Problem Formulation

2.1. System Description

The system considered contains two humans and one robot. An example scenario is shown in
Figure 1, where the robot and the humans collaborate to perform an object transporting task. In this
shared control task, when the control objectives of humans’ change, the robot should recognize the
humans’ control objectives and response adaptively and optimally. The forces exerted by the humans
on the object are measured by force sensors at the interaction point. It is worth noting that the humans’
control objectives are unknown to the robot.

Figure 1. A scenario where the humans and the robot collaborate to perform an object transporting task.

The forward kinematics of the robot are described as

x(t) = φ(q(t)) (1)

where x(t) ∈ R
m and q(t) ∈ R

n are the positions in Cartesian space and joint space respectively, m and
n are degrees of freedom. Derivation of Equation (1) with time can be obtained

ẋ(t) = J(q(t))q̇(t) (2)

where J(q(t)) ∈ R
m×n is the Jacobian matrix.

The following impedance model is given in Cartesian space

Mdẍ(t) + Cdẋ(t) = u(t) + f1(t) + f2(t) (3)

where Md ∈ R
m×m is the desired inertial matrix, Cd ∈ R

m×m is the damping matrix, u(t) ∈ R
m is

the control input in the Cartesian space [40–42], f1(t) ∈ R
n is the contact force between object and

human 1, f2(t) ∈ R
n is the contact force between object and human 2.

To track a common and fixed target xd ∈ R
m (ẋd ∈ R

m) in cooperative object transporting task,
Equation (3) can be transformed, as following

Md(ẍ(t)− ẍd) + Cd(ẋ(t)− ẋd) = u(t) + f1(t) + f2(t). (4)
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In order to ease the design of the control, Equation (4) can be rewritten as the following
state-space form

ż = Az + B1u + B2 f1 + B3 f2

z =

[
x(t)− xd

ẋ(t)

]
, A =

[
0m 1m

0m −M−1
d Cd

]

B1 = B2 = B3 = B =

[
0m

M−1
d

] (5)

where 0m and 1m denote m × m zero and unit matrices, respectively.

2.2. Problem Formulation

According to non-cooperative differential game theory, in the paper, the interaction between the
robot and the humans is described as a game between N players (in this paper, N = 3) [43]. In the
game, each player will minimize their respective cost function

Γ ≡
∫ ∞

t0

zTQz + uTudt

Γ1 ≡
∫ ∞

t0

zTQ1z + f T
1 f1dt

Γ2 ≡
∫ ∞

t0

zTQ2z + f T
2 f2dt

Q =

[
Q01 0n×n

0n×n Q02

]

Q1 =

[
Q11 0n×n

0n×n Q12

]

Q2 =

[
Q21 0n×n

0n×n Q22

]

(6)

where Γ, Γ1, Γ2 are cost functions of the robot, human 1, and human 2, respectively, Q, Q1, Q2 are
state weights matrices of the robot, human 1 and human 2, respectively. Each player achieves the
cooperative object transporting task by minimizing the error to the target while minimizing their
own costs. Q, Q1, Q2 contain two components corresponding to position regulation and velocity,
respectively. Q01, Q11, Q21 correspond to position regulation and Q02, Q12, Q22 correspond to velocity.

In [27], the N-player game has been studied if the cost functions are known. However, Γ1, Γ2

are unknown to the robot because they are determined by the humans. Therefore, a method
is proposed in the paper to estimate Γ1, Γ2 in order to achieve adaptive optimal control and,
thus, the human-robot-human cooperative object transporting task.

2.3. N-Player Differential Game Theory

Based on the differential game theory of linear systems, for N-player game the following linear
differential equation [43] is considered:

ż = Az + B1u1 + · · ·+ BNuN , z(0) = z0. (7)

Each player has a quadratic cost function that they want to minimize:

Γi =
∫ ∞

0
zTQiz + uT

i uidt, i = 1, · · · , N (8)
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Different types of multi-agent behaviors are defined in game theory, which can be achieved
through different concepts of game equilibrium [44,45]. In this paper, Nash equilibrium is considered.
In the sense of Nash equilibrium, each player minimizes their cost function:

ui = −ηiz, ηi = BT
i Pi

(A −
N

∑
j �=i

Biηi)
T Pi + Pi(A−

N

∑
j �=i

Biηi)i + Qi − PiBiBT
i P = 0, i = 1, · · · , N

(9)

where N is equal to 3 in this paper. In the sense of Nash equilibrium, the humans and the robot
minimizes their own cost function:

u = −αz

α = BT Pr
(10a)

f1 = −βz

β = BT P1
(10b)

f2 = −γz

γ = BT P1
(10c)

AT
r Pr + Pr Ar + Q − PrBBT Pr = 02n, Ar = A − Bβ − Bγ (10d)

AT
1 P1 + P1 A1 + Q − P1BBT P1 = 02n, A1 = A − Bα − Bγ (10e)

AT
2 P2 + P2 A2 + Q − P2BBT P2 = 02n, A2 = A − Bα − Bβ (10f)

where α ≡
[

αe, αv

]
is the feedback gain of the robot, β ≡

[
βe, βv

]
is the feedback gain of the

human 1, γ ≡
[

γe, γv

]
is the feedback gain of of the human 2. αe, βe, γe are the position error gains,

αv, βv, γv are the velocity gains, Pr, P1, P2 are the solutions of the above well-known Riccati equation
consisting of Equation (10d–f). The robot and the humans influence each other through Ar, A1, and A2

in order to achieve the interactive control and the coupling optimization.
β, γ are unknown to the robot. Therefore, we aim to propose a method to estimate them in the

following section.

3. Adaptive Optimal Control

A recursive least squares algorithm with forgetting factors is used in this paper to get the estimate
β̂, γ̂ of β, γ in order to estimate the feedback gains of the humans in real time and avoid the data
saturation phenomenon caused by the standard least squares algorithm [46]. Subsequently, the estimate
Q̂1, Q̂2 of Q1, Q2 can be obtained using Equation (10e,f).

Equation (10e) is used as the model for identification. For convenience, we let θ1 = −βT , y1 = f T
1 ,

W = zT . Subsequently, Equation (10b) can be rewritten as

y1 = Wθ1. (11)

The feedback gain of the human 1 are estimated by minimizing the total prediction error

J1 =
∫ t

0
exp(−λ1t)‖y1(s)− W(s)θ̂1‖2ds (12)

where λ1 is the constant forgetting factor. The update rule of the parameter θ1 can be obtained as

˙̂θ1 = −PWTe1

Ṗ = λ1P − PWTWP

e1 = ŷ1 − y1.

(13)
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The estimated error of θ̂1 is

eθ1(t) = exp(−λ1t)P(t)P−1(0)eθ1(0). (14)

Thus, the estimate β̂ can be obtained as

β̂ = −θ̂T
1 . (15)

Similarly, we let θ2 = −γT , y2 = f T
2 , W = zT . Afterwards, Equation (10c) can be rewritten as

y2 = Wθ2. (16)

The feedback gain of the human 2 are estimated by minimizing the total prediction error

J2 =
∫ t

0
exp(−λ2t)‖y2(s)− W(s)θ̂2‖2ds (17)

where λ2 is the constant forgetting factor. The update rule of the parameter θ2 can be obtained as

˙̂θ2 = −PWTe2

Ṗ = λ2P − PWTWP

e1 = ŷ2 − y2.

(18)

The estimated error of θ̂2 is

eθ2(t) = exp(−λ2t)P(t)P−1(0)eθ2(0). (19)

Thus, the estimate γ̂ can be obtained as

γ̂ = −θ̂T
2 . (20)

Equations (13), (15), (18) and (20) are critical, because they enable each agent to recognize their
partners’ control objectives and use Equation (10a–f) to adjust their own control.

In order to ensure the performance of cooperative object transporting task, we let

Q + Q1 + Q2 ≡ C (21)

where C is the total weight. The cooperative object transporting task fixes the task performance
through the total weight C and uses Equation (21) to share the the effort between 2 humans and the
robot. Equation (21) makes the proposed controller be able to adjust the contributions between the
humans and the robot and makes the humans and the robot take complementary roles as well.

The control architecture is shown in Figure 2.
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Figure 2. Control Architecture.

A pseudo-code summarizes the implementation procedures of the proposed method as
Algorithm 1.

Algorithm 1 Adaptive optimal control algorithm based on N-player game

Input: Current state z, target xd.
Output: Robot’s control input u, estimated the humans’ cost function state weight Q̂1, Q̂2 in Equation (10e,f).
Begin

Define xd, initialize Q, Q̂1, Q̂2, u, f1, f2, ẑ, α, β̂, γ̂, Pr, P̂1, P̂2, set λ1 in Equation (13), λ2 in Equation (18), C in
Equation (21), the terminal time t f of one trial.
While t < t f do

Measure the position x(t), velocity ẋ(t), and form z.
Update β̂ using Equations (13) and (15), Update γ̂ using Equations (18) and (20).
Solve the Riccati equation in Equation (10d) to obtain P, and calculate the robot’s control input u.
Calculate estimated the humans’ cost function state weights Q̂1, Q̂2 in Equation (10e,f) using the Riccati
equation.
Compute robot’s cost function state weight Q according to Equation (21).

Theorem 1. Consider the robot dynamics shown in Equation (5). If the robot and the humans estimate the
parameters of their partners’ controller and adjust their own control according to Equations (10a–f), (13), (15),
(18), (20) and (21), then the following conclusions will be drawn:

• The closed-loop system is stable, and z, α, β̂, γ̂, u are bounded.
• limx→∞ Q̂1 = Q1, limx→∞ Q̂2 = Q2, which indicate that Q̂1, Q̂2 converge to the correct values Q1, Q2,

if z is persistently exciting.
• The Nash equilibrium is achieved for th human-robot-human interaction system.

Proof of Theorem 1. β̂, γ̂ influence u, f1, f2, z as following:

˙̂z = Aẑ + Bû + B f1 + B2. (22)

By subtracting Equation (5) from Equation (22), we have

ėz = Aez + B(û − u) + Be f1 + Be f2 (23)
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where ez = ẑ − z. By considering Equation (10a–c), we have

ėz = (A − Bα)ez + BeT
θ1

z + BeT
θ2

z. (24)

Consider the Lyapunov function candidate as following

W =
1
2

zTz +
1
2

eT
θ1

eθ1 +
1
2

eT
θ2

eθ2 +
χ

2
eT

z ez (25)

where χ = min( 2(λ1−ρ)π
ϕ2‖B‖2 , 2(λ2−ρ)π

ϕ2‖B‖2 ), with ρ being the upper bound of the maximum eigenvalue of

ṖP−1, π being the lower bound of the minimum eigenvalue of Bα − A, ϕ being the upper bound
of ‖z‖.

When considering function V = 1
2 zTz and differentiating V with respect to time, we obtain

V̇ = zTż = −zT(Bα + Bβ + Bγ − A)z. (26)

According to Equation (10d), Bα + Bβ + Bγ − A is positive definite if Q is positive definite,
it follows limt→∞‖z‖= 0. Therefore, z is bounded and we define ϕ as the upper bound of ‖z‖.
By differentiating Equation (25), with respect to time, and considering Equations (14), (19) and (24),
we obtain

Ẇ =zTż + eT
θ1

ėθ1 + eT
θ2

ėθ2 + χeT
z ėz

=− zT(Bα + Bβ + Bγ − A)z

− λ1eT
θ1

eθ1 + eT
θ1

ṖP−1eθ1 − λ2eT
θ2

eθ2 + eT
θ2

ṖP−1eθ2

− χeT
z (Bα − A)ez + χeT

z BeT
θ1

z + χeT
z BeT

θ2
z

≤− zT(Bα + Bβ + Bγ − A)z

− λ1‖eθ1‖2+ρ‖eθ1‖2−λ2‖eθ2‖2+ρ‖eθ2‖2

− χπ‖ez‖2+χϕ‖B‖‖ez‖‖eθ1‖+χϕ‖B‖‖ez‖‖eθ2‖
=− zT(Bα + Bβ + Bγ − A)z

− (
√

λ1 − ρ‖eθ1‖−
√

χπ

2
‖ez‖)2

− 2
√

λ1 − ρ

√
χπ

2
‖eθ1‖ez‖‖+χϕB‖‖ez‖‖eθ1‖

− (
√

λ2 − ρ‖eθ2‖−
√

χπ

2
‖ez‖)2

− 2
√

λ2 − ρ

√
χπ

2
‖eθ2‖ez‖‖+χϕ‖B‖‖ez‖‖eθ2‖

≤− zT(Bα + Bβ + Bγ − A)z

+ (−2
√

λ1 − ρ

√
χπ

2
+ χϕ‖B‖)‖ez‖‖eθ1‖

+ (−2
√

λ2 − ρ

√
χπ

2
+ χϕ‖B‖)‖ez‖‖eθ2‖

≤0 (27)

According to Equations (26) and (27), we have limt→∞‖z‖= 0, limt→∞ ‖ez‖ = 0. Therefore,
z(t) is bounded and limt→∞ ‖ėz‖ = 0. According to Equation (27), we have limt→∞‖eθ1‖= 0,
limt→∞ ‖eθ2‖ = 0. Because of eθ1 = θ̂1 − θ1 = (−β̂)T − (−β)T = βT − β̂T ,
eθ2 = θ̂2 − θ2 = (−γ̂)T − (− γ)T = γT − γ̂T , we can obtain limt→∞‖βT − β̂T‖= 0,
limt→∞‖γT − γ̂T‖= 0. β, γ are assumed to be bounded, since they are the feedback gains of the
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humans. Therefore, β̂, γ̂ are also bounded. According to Equation (10a–c), P1, P2 are also bounded.
According to Equation (10d), Ar is bounded. Therefore, P, α and u are bounded.

According to Equation (10e), we can calculate the estimated errors eQ1 = Q̂1 − Q1, eQ2 = Q̂2 − Q2.
eQ1 , eQ2 are due to the errors eP, eP1 , eP2 . Because eP, eP1 , eP2 converge to zero, we have limt→∞‖eQ1‖= 0,
limt→∞‖eQ2‖= 0, that is limt→∞ Q̂1 = Q1, limt→∞ Q̂2 = Q2.

Multiplying Equation (10d) by ẑT on the left side and by ẑ on the right side, and considering
Equation (13), we have

0 =ẑTQẑ + ẑT PrBBT Prẑ + ẑT Pr ˙̂z

+ ẑPr ˙̂zT + ẑT Pr Hez + ẑPr HeT
z

≡σ̂.

(28)

Considering limt→∞ ez = 0, limt→∞ ėz = 0, we can obtain

lim
t→∞

σ ≡ lim
t→∞

(zTQZ + zT PrBBT Prz

+ zT Prż + zPrżT)

=0.

(29)

Similarly, we can obtain

lim
t→∞

σ1 ≡ lim
t→∞

(zTQ1Z + zT P1BBT P1z

+ zT P1ż + zP1żT)

=0

lim
t→∞

σ2 ≡ lim
t→∞

(zTQ2Z + zT P2BBT P2z

+ zT P2ż + zP2żT)

=0.

(30)

limt→∞ σ = 0, limt→∞ σ1 = 0 and limt→∞ σ2 = 0 indicate that the Nash equilibrium is achieved for the
human-robot-human interaction system.

4. Simulations and Results

4.1. Experimental Design and Ssimulation Settings

With the development of the robot technology, in the future, robots will enter our homes and
become a member of family in our daily lives. In our daily lives, we often need to carry various
objects. Some objects (e.g., objects with smaller size and lower weight) can be successfully carried
by one human; some objects (e.g., objects with medium size and medium weight) need to be carried
successfully by two humans; some objects (e.g., objects with larger size and higher weight) can be
carried successfully by three or more humans. Consider one scenario: In our home, we have an
object (such as a table with a relatively larger size and higher weight) that need to be carried by three
humans. However, there are only two humans in the home. In this case, we can let the robot help
us carry the object together with the two humans. The robot can play the same role as one human.
A simulation is conducted with CoppeliaSim in order to verify the control performance of the controller
proposed in this paper. The version of CoppeliaSim that we used is CoppeliaSim 4.0.0 (CoppeliaSim
Edu, Windows). Figure 3 demonstrates the CoppeliaSim simulation scenario of cooperative object
transporting task. The humans cooperate with the robot to transport the object between −10 cm and
+10 cm back and forth along the horizontal direction.

209



Sensors 2020, 20, 5005

Figure 3. Simulation of cooperative object transporting task. The humans cooperate with the robot to
transport the object back and forth between −10 cm and +10 cm along the horizontal direction.
The forces that are exerted by the humans on the object are measured by force sensors at the
interaction point.

The controller that is proposed in this paper implements interactive control because every agent
considers the control of other partners. In order to present the advantages of the proposed controller,
we compare the proposed controller with the linear quadratic regulators (LQR) optimal controller.
The LQR controller can be obtained by setting Ar = A, A1 = A, A2 = A in Equation (10d–f). The LQR
controller allows each agent to form its own control input optimally, but it ignores the controls of other
partners. Let Q = Q1 = Q2 = diag(100, 0).

The cost functions of the humans usually change during the physical human-robot-human
interaction. The robot needs to identify the change and adaptively adjust its own cost function
in order to complete the cooperative object transporting task. In order to verify the ability of the
robot to adaptively interact with two humans when humans’ cost functions change, we simulated a
scenario where the robot cooperated with the humans to perform an object transporting task. The
task performance is achieved by setting the value of C in Equation (21). Let C = diag(300, 0). The
cost functions of the human 1 and the human 2 change randomly according to Q1 = diag(50, 0) + ρ ·
diag(50, 0), Q2 = diag(50, 0) + ρ · diag(50, 0) ( ρ is a uniformly distributed random number between
[0, 1]).

The human-robot-human cooperative object transporting task can be fulfilled with less effort with
the proposed controller. In order to make this affirmation, we made a comparison with a human-robot
cooperative object transporting task. In simulation of the human-robot-human cooperative object
transporting task, we let Q = Q1 = Q2 = diag(100, 0). In simulation of the human-robot cooperative
object transporting task, we let Q = diag(100, 0), Q1 = diag(100, 0), Q2 = diag(0, 0).

We assume that the humans and the robot do not have prior knowledge of each other
(thus, initially α̂ ≡ 0, β̂ ≡ 0, γ̂ ≡ 0 ). The control input of the robot are generated by Equations (5),
(10a–f), (13), (15), (18) and (20). The simulated interaction forces f1, f2 of the human 1 and the human 2
are generated by a similar set of equations. The simulation time is 40 s. Let the inertia of the robot
Md = 6 kg, the damping of the robot Cd = −0.2 N · m−1 [19], the real-time least squares algorithm
forgetting factor λ1 = λ2 = 0.95. Simulation time step is 0.005 s.

4.2. Results

Figure 4 depicts the change in position of the end effector with respect to time. The results plotted
in Figure 4 is a smooth curve that looks like a sinusoidal signal. This smooth curve is determined by
Equation (3). In Equation (3), u(t), f1(t), f2(t) are iteratively calculated by our proposed controller
based on game theory. Due to the fact that the humans and the robot do not transport the object
at a constant speed using our method, the end effector follows a curve signal rather than a straight
line signal. As can be seen from Figure 4, the end effector can reach the target position with the
proposed controller which means that the cooperative object transporting task is successfully fulfilled.
In contrast, the end effector can not reach the target position with the LQR controller, which means that
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the cooperative object transporting task is not successfully fulfilled. The reason why the cooperative
object transporting task can be successfully fulfilled with the proposed controller rather than with the
LQR controller is that the proposed controller considers the interaction with other partners. When one
partner decreases effort, the other partners will gradually increase their efforts to ensure the successful
fulfillment of the cooperative object transporting task. In contrast, the LQR controller does not consider
the interaction with other partners, so the cooperative object transporting task cannot be guaranteed to
be successfully fulfilled.

Figure 4. The end effector position value.

In Figure 5, we can see that the estimated humans’ feedback gains converge to the real values
in a few seconds. This means that the humans’ feedback gains can be successfully estimated by the
proposed method.

(a) (b)

(c) (d)

Figure 5. Control gains of humans. (a) the position error feedback gain of the human 1. (b) the velocity
feedback gain of the human 1. (c) the position error feedback gain of the human 2. (d) the velocity
feedback gain of the human 2.

Figure 6 demonstrates that fulfilling the cooperative object transporting task requires larger control
gains β, γ with the LQR controller compared with the controller proposed in this paper. It means that
accomplishing the same task requires less effort using the proposed controller. This is because that the
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proposed controller considers the interaction with other partners and calculates the minimal effort for
the humans and the robot to complete the task. In contrast, the LQR controller doesn’t consider the
interaction with other partners, so the humans and the robot only minimize their own cost function
and may, therefore, require larger effort.

(a) (b)

(c) (d)

Figure 6. Humans’ control gains (a) the position error feedback gain of the human 1. (b) the velocity
feedback gain of the human 1. (c) the position error feedback gain of the human 2. (d) the velocity
feedback gain of the human 2.

The feedback gains are affected by the state weights of the cost functions. In order to verify the
advantages of the proposed controller when the state weights vary, we let Q1 vary from 0 to 10Q
with Q2 = diag(100, 0) and let Q2 vary from 0 to 10Q with Q1 = diag(100, 0) respectively. It can be
seen from Figure 7 that accomplishing the same task always requires less effort using the proposed
controller. We can also see that the difference between the control gains with our proposed controller
and the control gains with LQR controller becoming smaller when Q1/Q or Q2/Q increases, this is
because that the robot’s relative influence decreases.

From Figures 4–7, we can conclude that the human-robot-human cooperative object transporting
task can be fulfilled with less effort and the system can be kept stable using the proposed controller.

It can be seen from Figure 8 that, when the cost functions of the human 1 and the human 2 change,
the cost function of the robot will also change adaptively. When the sum of the state weights of the
human 1 and the human 2 Q1 + Q2 increases, the state weight of the Robot Q decreases accordingly.
Conversely, when the sum of the state weights of the human 1 and the human 2 Q1 + Q2 decreases,
the state weight of the robot Q increases accordingly. The reason why the robot can change adaptively
is that we set the constant C value in Equation (21). Equation (21) makes the proposed controller able
to adjust the contributions between the humans and the robot and makes the humans and the robot
take complementary roles as well.

Figure 9 shows that, using the proposed controller, the adaptive cooperative object transporting
task can be fulfilled and the system can be kept stable.
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(a) (b)

(c) (d)

Figure 7. Control gains for different values of humans’ state weights. (a) and (b) the state weight of the
human 1 vary. (c) and (d) the state weight of the human 2 vary.

(a) (b)

(c) (d)

Figure 8. Humans’ state weights. (a) the state weight of the human 1. (b) the state weight of the
human 2. (c) the sum of the state weights of the human 1 and human 2. (d) the state weight of the
robot.

From Figures 8 and 9, we can conclude that the adaptive cooperative object transporting task can
be fulfilled with the proposed controller. During the physical interaction, the robot can successfully
identify the change of each human’s cost function, and then adaptively adjust its own cost function to
achieve interactive optimal control.

Figure 10 demonstrates that fulfilling the human-robot-human cooperative object transporting
task requires smaller control gains βe, βv as compared with the human-robot cooperative object
transporting task. It means that accomplishing the same task requires less effort by means of the
human-robot-human physical interaction. This is because the human-robot-human cooperative object
transporting task considers the interaction with more partners (two partners) and calculates minimal
effort for the humans and the robot to complete the task. In contrast, the human-robot cooperative
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object transporting task consider the interaction with less partners (only one partner), so the human
and the robot may therefore require larger effort.

(a) (b)

(c) (d)

Figure 9. The end effector position value. (a) The end effector position value in Trial 1. (b) The end
effector position value in Trial 2. (c) The end effector position value in Trial 3. (d) The end effector
position value in Trial 4.

(a) (b)

(c) (d)

Figure 10. Humans’ control gains. The dashed lines correspond to the human-robot cooperative
object transporting task. The solid lines correspond to the human-robot-human cooperative object
transporting task. (a) the position error feedback gain of the human 1. (b) the velocity feedback gain of
the human 1. (c) the position error feedback gain of the human 2. (d) the velocity feedback gain of the
human 2.

5. Conclusions

In this paper, the human-robot-human physical interaction problem has been studied. An adaptive
optimal control framework for the human-robot-human physical interaction has been proposed based
on N-player game theory. The recursive least squares algorithm based on forgetting factor has
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been used to identify unknown control parameters of the humans online. The performance of the
controller proposed in this paper has been verified by simulations of cooperative object transporting
task. The simulation results show that the proposed controller can achieve adaptive optimal control
during the interaction between the robot and two humans and keep the system stable. Compared
with the LQR controller, the proposed controller has more superior performance. Compared with
the human-robot physical interaction, accomplishing the same cooperative object transporting task
requires less effort by means of the human-robot-human physical interaction based on the approach
proposed in the paper. Although this paper only conducts simulations on the physical interaction
between one robot and two humans, it is worth mentioning that the framework that is proposed in
this paper has the potential to be generalized to the situation where multiple robots physically interact
with multiple humans. As future work, we will extend the framework to the interaction between
multiple robots and multiple humans.
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