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Abstract
Handheld robots are intelligent tools that can process task and context information to help

the user in a manual task. This concept bridges the gap between two traditional categories

of robots, i.e. fully autonomous independent robots and highly controlled and dependent

wearable devices. They enable novice users to complete a task through the provided task

knowledge and accuracy, while the user can effortlessly navigate through uncontrolled

environments. Recent work shows that the robot’s autonomy can improve performance,

however, this presents new challenges as the occurrence of mismatches between the robot’s

plans and the user’s intention leads to frustration in users. To overcome this obstacle, we

explore interaction concepts that could suit the requirements for handheld robots.

The first part of this work, concerns ways for the system’s perception of the user and

their intention. We use a tool-mounted gaze tracking system, which we use as a proxy for

estimating the user’s attention. This information is then used for cooperation with users

in a generic reaching task, where we test various degrees of robot autonomy. Our results

measure performance and subjective metrics and show how the attention model benefits

the interaction and preference of users.

In the second part, we then use the attention profile over time to make predictions about

the user’s decisions. Using a support vector machine and the mounted eye tracker, the

model derives users’ intention from perceived gaze patterns. It yields real-time capabilities

and reliable accuracy up to 1.5 s prior to predicted actions being executed. That way, the

robot predicts one step ahead in the task and can align its plans accordingly. We assess

the model in an assisted pick and place task and show how the robot’s intention obedience

or rebellion affects the cooperation with the robot.

In the third part, we go one step further in the dimension of human interaction and

propose a system that involves three collaborating parties: a local worker, a remote

helper and the handheld robot, carried by the local worker. The system enables a remote

user to assist the local user through diagnosis, guidance and physical interaction through

telemanipulation, with the robot completing subtasks autonomously. We show that the

handheld robot can mediate the helpers remote instructions and actions, while the robots

semi-autonomous features improve task performance by 24%, reduce the workload for the

remote user and decrease required communication bandwidth between both users.

In this work, we explored new ways to interact with a handheld robot. We demonstrate

that a tool that makes task decisions can collaborate more effectively when taking into

account user intention during real-time task planning. Moreover, this study is a first

attempt to evaluate how this new type of collaborative robot works in a remote assistance

scenario, a setup that we believe is important to leverage current robot constraints and

existing communication technologies.

i





Acknowledgements

First of all, I want to thank Walterio for all his help and support throughout my PhD

and job as an associate teacher. He helped me to keep the big picture in mind with

many inspiring ideas and discussions. I learnt a big deal about leading from him and

I value most that for him, an individual’s wellbeing has number one priority. This was

particularly important to me during the times when my life outside the lab felt like being

turned upside down. Thank you, Walterio.

Thanks to Austin, for making the handheld robot in the preceding generation of my PhD.

His exciting work inspired me to start a PhD.

Thanks to my funding sources, namely the Studienstiftung des Deutschen Volkes and the

EPSRC, keeping me fed and watered. The Studienstiftung connected me to incredible

people and boosted both my personal and professional development.

Also thanks to my PGR colleagues, specifically Yannick, Louis, Michael, Hazel, Will, the

other Will, Abel, Miguel and Faegheh and everyone associated with the VILab and 1CS.

Thanks to everyone participating in my pilot trials and experimental studies.

Thanks to the great support by the members of Bristol SU and special thanks to everyone

I met at Magic Society, especially George and William. It’s been a very exciting time and

I’m honoured that I could participate in the impact we made as a student group.

I also want to thank all my friends who supported me. Special thanks to Djen, without

him I would never have ended up in Bristol. We had very inspiring fruitful discussions

both about work and life in general. Thanks to Tobi and Zay for proofreading pretty much

everything I produced during my PhD time and fruitful exchange of thoughts. Thanks

to Ellie for her patient support when teaching me all the statistic methods you can find

in this thesis, making it a rock solid piece of work. Thanks to Zottty, my oldest friend,

for great times we had despite the distance that results from moving to another country.

Your visits in Bristol are now in my little treasure box of memories. Thanks to Maurice

and Amelia for being great friends and for providing me shelter during the pandemic.

ii



Presumably, I would have completed my PhD much sooner without meeting Maurice and

yet, it would have felt much longer, he’s a great pal. Thanks to Luke for his support

during challenging times in Bristol.

Thanks to all the house mates I’ve been living with, making my time in Bristol a really

nice experience. Special thanks to Sara, who made me smile even during tougher times

and also to Andy, Chiara, Mimi, Pi, Niharika and Laura. You all made me feel safe and

home in the little flat we shared.

Great thanks to my family members. My sister Miriam was always there when I needed

support, which took the edge off some difficult periods. I’m also grateful for the support

from the other siblings too. Thanks to Oma and Opa for being the best grandparents I

could ever ask for. May you rest in peace. Thanks to Mom and Dad for their encourage-

ment and support too.

Finally, I want to thank Bristol and all the people I met during my journey there. It truly

is a very special place on this planet. The friendly environment really made me feel home

and enjoying my time. These years were by far the most interesting and intense ones I’ve

had so far and they had a very positive impact on how I’m seeing the world now.

iii



Outcomes
This research has the following publications and outcomes. The associated abstracts can

be seen in Appendix A.

Publications

• Janis Stolzenwald and Walterio Mayol-Cuevas. I Can See Your Aim: Estimating

User Attention From Gaze For Handheld Robot Collaboration. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 3897–

3904, October 2018.

• Janis Stolzenwald and Walterio W Mayol-Cuevas. Rebellion and Obedience: The

Effects of Intention Prediction in Cooperative Handheld Robots. In 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 3012–

3019, Macau, China, November 2019.

• Janis Stolzenwald and Walterio W Mayol-Cuevas. Reach Out and Help: Assisted

Remote Collaboration through a Handheld Robot . arXiv preprint, pages 1–8, 2020.

(In submission for publication)

Contributions to the Following Workshops

• IEEE/RSJ IROS 2019: Human Robot Collaboration (HRC): Biomechanical Lim-

its, Modeling and Testing to Support Safe Robot Contacts with Humans.

• RSS 2020: AI and Its Alternatives in Assistive and Collaborative Robotics: De-

coding Intent.

• IEEE/ASME AIM 2020: Workshop on Supernumerary Robotic Devices.

In the Press

• Tech HQ: Computer scientists have made a robot that rebels against its user.

24 October 2019.

• New Scientist: Robot arm lets you remotely lend friends a helping hand with

repairs. 6 November 2019.

iv



• Digital Trends: Robot overlords? More like co-verlords. The future is human-

robot collaboration. 13 November 2019.

• Popular Mechanics: This Robotic Arm Can Lend a Helping Hand With Repairs.

17 November 2019.

Supplementary Demo Videos

youtu.be/lsQ4k71NLTA

youtu.be/H245WdJpNpE

youtu.be/cTJ8tNJJXV0

.

Video 1: Estimating User Attention From

Gaze For Handheld Robot Collaboration. A

summary of Chapter 3.

.

Video 2: The Effects of Intention Prediction

in Cooperative Handheld Robots. A summary

of Chapter 4.

.

Video 3: Assisted Remote Collaboration

through a Handheld Robot. A summary of

Chapter 5.

v





Declaration

This dissertation is submitted to the University of Bristol in accordance with the require-

ments of the degree of PhD in the Faculty of Engineering. It has not been submitted for

any other degree or diploma of any examining body. Except where specifically acknowl-

edged, it is all the work of the Author.

Schachar Janis Immanuel Stolzenwald, Wednesday 7th April, 2021

vii





Contents

Outcomes iv

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Single-User Interaction with the Handheld Robot . . . . . . . . . . 6

1.3.2 Multi-User Interaction in Handheld Robot Collaboration . . . . . . 7

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background: A Review of Handheld Robots, Intention Prediction and

Remote Assistance 11

2.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 State-of-the-Art Handheld Robots . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 4-DoF Handheld Robot . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 6-DoF Handheld Robot . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Assisted Painting Using a Handheld Robot . . . . . . . . . . . . . . 16

2.3 Intelligent Handheld Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Tremor Suppression for Medical Devices . . . . . . . . . . . . . . . 17

2.3.2 Guidance Active Avoidance in Surgery . . . . . . . . . . . . . . . . 20

2.3.3 Non-Medical Intelligent Handheld Tools . . . . . . . . . . . . . . . 22

2.4 Wearables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Supernumerary Robotic Limbs (SRL) . . . . . . . . . . . . . . . . . 26

ix



2.4.2 Wearable Robotic Arms . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Mixed-Initiative Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Intention Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Motion as an Intention Predictor . . . . . . . . . . . . . . . . . . . 32

2.6.2 Brain Computer Interfaces . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.3 Inferring Attention and Action Intent from Gaze . . . . . . . . . . . 34

2.6.4 Summary of Methods for Intention Prediction . . . . . . . . . . . . 37

2.6.5 Mathematical Representation of the Eye Gaze . . . . . . . . . . . . 37

2.7 Remote Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.1 Instructions Through Video Markups . . . . . . . . . . . . . . . . . 40

2.7.2 Augmented Reality (AR) Headsets in Remote Guidance . . . . . . 42

2.7.3 360° Cameras and Virtual Reality (VR) for Telepresence . . . . . . 42

2.7.4 Guidance through Natural Gestures . . . . . . . . . . . . . . . . . . 44

2.8 Telemanipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8.1 Semi-Autonomous Slave in Teleoperation . . . . . . . . . . . . . . . 46

2.8.2 Robots for Remote Maintenance . . . . . . . . . . . . . . . . . . . . 47

2.8.3 Teleoperation of Wearable Robots . . . . . . . . . . . . . . . . . . . 50

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 I Can See Your Aim: Estimating User Attention From Gaze For Hand-

held Robot Collaboration 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Eye Tracking for a Handheld Robot . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Eye Tracker Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Gaze Ray Construction . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3 Merging Eye Tracking and Motion Capturing . . . . . . . . . . . . 61

3.2.4 Gazed and Fixated Objects . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Eye Tracking Accuracy Study . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 Eye Gaze Data Collection . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.2 Experiment Execution . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.3 Eye Gaze Modelling Results . . . . . . . . . . . . . . . . . . . . . . 68

3.3.4 Gaze Tracking Discussion . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Head Gaze as a Proxy for Visual Attention? . . . . . . . . . . . . . . . . . 70

3.4.1 Head Gaze Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.2 Collection of Head Gaze Data. . . . . . . . . . . . . . . . . . . . . 71

3.4.3 Results and Discussion of Head Gaze Study . . . . . . . . . . . . . 71

3.5 An Attention-Aware Cooperative Handheld Robot . . . . . . . . . . . . . . 72

3.5.1 The Attention Model . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.2 Validation Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

x



3.5.3 Attention Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Results of Attention Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6.1 Mode Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6.2 Task Load Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6.3 Helpfulness and Obstruction . . . . . . . . . . . . . . . . . . . . . . 80

3.6.4 Qualitative Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6.5 Qualitative Observations . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Discussion of Attention Study . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Rebellion and Obedience: The Effects of Intention Prediction in Coop-

erative Handheld Robots 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Prediction of User Intention . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 User Intention Model . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Results of Intention Modelling: Quantitative Analysis . . . . . . . . . . . . 98

4.4 Results of Intention Modelling: Qualitative Analysis . . . . . . . . . . . . . 99

4.4.1 One Dominant Type . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.2 Trending Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.3 Incorrect Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Discussion of Intention Modelling . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Intention Prediction Model Validation . . . . . . . . . . . . . . . . . . . . 106

4.6.1 Intention Affected Robot Behaviour . . . . . . . . . . . . . . . . . . 107

4.6.2 Experiment Execution . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Results of Model Validation Study . . . . . . . . . . . . . . . . . . . . . . 109

4.7.1 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.8 Discussion of the Intention Validation . . . . . . . . . . . . . . . . . . . . . 113

4.9 Chapter Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . 114

5 Reach Out and Help: Assisted Remote Collaboration through a Hand-

held Robot 117

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.1 Challenges in Remote Collaboration . . . . . . . . . . . . . . . . . . 118

5.1.2 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Remote Assistance Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.3 Collaborative Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xi



5.2.4 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.5 Remote Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.6 Robot Assistance Condition . . . . . . . . . . . . . . . . . . . . . . 130

5.2.7 Trial Procedure and Data Collection . . . . . . . . . . . . . . . . . 131

5.3 Experiment Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3.1 Training Effect on Performance . . . . . . . . . . . . . . . . . . . . 133

5.3.2 Training Effect Results . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.3 Remote Collaboration Study . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.1 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Discussion of Remote Assistance Study . . . . . . . . . . . . . . . . . . . . 138

5.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Conclusion and Further Work 143

6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Discussion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.1 Human Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3.2 User Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3.3 Robot-to-Human Communication . . . . . . . . . . . . . . . . . . . 150

6.3.4 Remote Collaboration through Handheld Robots . . . . . . . . . . 150

6.3.5 You Are Free: Releasing the Robot from the Lab Environment . . . 151

6.3.6 The Impact of Handheld Robots on Society . . . . . . . . . . . . . 151

References 153

A Publication Abstracts 167

B An Attempt to Detect Frustration of Handheld Robot Users 169

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.2 A Review of Physiologic Stress Detection . . . . . . . . . . . . . . . . . . . 170

B.3 Heart Rate Variability and Stress Levels . . . . . . . . . . . . . . . . . . . 171

B.4 Method of Frustration Detection Study . . . . . . . . . . . . . . . . . . . . 172

B.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C Bill of Materials 177

D Questionnaires 181

xii



List of Figures

1.1 Evolution of Handheld Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Possible Future Handheld Robot Applications . . . . . . . . . . . . . . . . 3

2.1 The Concept of a Handheld Robot . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Updated design of the handheld robot with increased acceleration and dex-

terity of the 6-Degrees of Freedom (DoF) tip [59]. . . . . . . . . . . . . . . 14

2.3 6-DoF handheld robot pointing its tip towards the point it needs to be

positioned in order to indicate goal direction. In this example, an Liquid

Crystal Display (LCD) display is used for visual feedback [59]. . . . . . . . 14

2.4 Decoupling Execution Speed from Accuracy Demands . . . . . . . . . . . . 15

2.5 Intelligent Paint Spraying Gun . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Micron, an Intelligent Surgical Tool . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Micron Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Microsurgical instrument with high accuracy actuated tip and integrated

motion sensing for tremor suppression [248]. . . . . . . . . . . . . . . . . . 19

2.9 Tremor cancelling surgical instrument . . . . . . . . . . . . . . . . . . . . . 19

2.10 Devices for the Suppression of Unintended Motion . . . . . . . . . . . . . . 20

2.11 Medical intelligent Sculpting Tools . . . . . . . . . . . . . . . . . . . . . . 21

2.12 Mechatronic surgical instruments with integrated force limitation to pre-

vent damage of tissue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.13 Intelligent Air Brushes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.14 Performance Comparison of Painting Devices . . . . . . . . . . . . . . . . . 22

2.15 Enhanced Scissors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.16 Position Correction 2D Milling Tool . . . . . . . . . . . . . . . . . . . . . . 23

2.17 FreeD Sculpting Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.18 Intelligent Welding Gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.19 Handheld Robots Bridging Traditional Robotic Concepts . . . . . . . . . . 25

2.20 Supernumerary Robot Limbs (SRL) . . . . . . . . . . . . . . . . . . . . . . 26

xiii



2.21 Supernumerary Fingers. An Overview of recent prototypes in the field of

robotic extra fingers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.22 Wearable Robotic Forearm. An elbow-mounted supernumerary arm that

cooperates with humans in augmented task completion. . . . . . . . . . . . 28

2.23 Waist-Mounted Extra Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.24 Arbitration in HRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.25 Human Action Anticipation for Service Robotics . . . . . . . . . . . . . . . 33

2.26 Fixations During Every-Day Tasks . . . . . . . . . . . . . . . . . . . . . . 34

2.27 Anticipatory Robot Control . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.28 Homogeneous Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.29 Comparison of two Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.30 Remote Guidance in Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.31 Product Support through Telemaintenance . . . . . . . . . . . . . . . . . . 41

2.32 Handheld AR System for Remote Maintenance . . . . . . . . . . . . . . . . 41

2.33 AR Maintenance Instruction System . . . . . . . . . . . . . . . . . . . . . 42

2.34 The Body-Ghost Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.35 Examples of Remote Guidance with Gesture Use . . . . . . . . . . . . . . . 44

2.36 Master-Slave Manipulator Mk. 8 (MSM-8) . . . . . . . . . . . . . . . . . . 46

2.37 Semi-Autonomous Control of Redundant Slave Systems . . . . . . . . . . . 47

2.38 Semi-Autonomous Telemanipulation . . . . . . . . . . . . . . . . . . . . . . 47

2.39 Master-Slave Setup for Maintenance . . . . . . . . . . . . . . . . . . . . . . 48

2.40 System for Remote Maintenance . . . . . . . . . . . . . . . . . . . . . . . . 48

2.41 Mobile Maintenance Robot System . . . . . . . . . . . . . . . . . . . . . . 49

2.42 Snake-Like Robot. Multi-DoF robot by OC Robotics for inspection and

maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.43 Fusion. A bi-manual robot, which is attached to a host (right) and con-

trolled by a teleoperator (left) for collaborative tasks. . . . . . . . . . . . . 51

3.1 Tobii Eye Tracker 4C 3, used for gaze tracking in this work (see application

details in Figure 3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Eye Tracker Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Illustration of the handheld robot with the mounted eye tracker. The

mount supports 2-DoF adjustment so that the user’s head remains in the

(red) trackable volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Handheld Robot with extended user perception capabilities through a newly

integrated eye tracking system. . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 3D Eye Gaze Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Gaze Tracker with IR Markers . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Camera Setup for Motion Capturing . . . . . . . . . . . . . . . . . . . . . 63

xiv



3.8 Eye Gaze and 3D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9 Demonstration of real-time capabilities of the 3D gaze model . . . . . . . . 64

3.10 Incorporating Gaze Tracking with the Handheld Robot . . . . . . . . . . . 65

3.11 Illustration of a Mesurement Iteration . . . . . . . . . . . . . . . . . . . . . 68

3.12 Eye Gaze Error over the Gaze Shift . . . . . . . . . . . . . . . . . . . . . . 69

3.13 Angle Boundaries for Eye Tracking . . . . . . . . . . . . . . . . . . . . . . 69

3.14 Head Gaze Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.15 Head Gaze Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.16 Parameters for the Robot’s Behaviour Modes . . . . . . . . . . . . . . . . . 73

3.17 Attention Experiment Task and Setup . . . . . . . . . . . . . . . . . . . . 75

3.18 Comparison of Performance for the Robot’s Modes . . . . . . . . . . . . . 79

3.19 Results of the Task Load Index Questionnaire . . . . . . . . . . . . . . . . 80

3.20 Helpfulness and Obstruction for the Behaviour Modes . . . . . . . . . . . . 81

3.21 Conflicting Plans in the Autonomous Mode . . . . . . . . . . . . . . . . . . 82

3.22 Plan Adaptation in the Cooperative Mode . . . . . . . . . . . . . . . . . . 83

4.1 The Intention Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Linking Task Objects for Predictions . . . . . . . . . . . . . . . . . . . . . 91

4.3 Handheld Robot used in this Study . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Overview of the Block Copy Task . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Visual Attention Profile (VAP) . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Prediction Performance of the Proposed Model and How it Compares to

Existing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Real-Time Intention Prediction . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Correct Predictions with One-Type-Dominant Characteristic . . . . . . . . 102

4.9 Correct Prediction with Attention Build-Up . . . . . . . . . . . . . . . . . 103

4.10 Reasons for Incorrect Predictions . . . . . . . . . . . . . . . . . . . . . . . 104

4.11 Frustration Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.12 The Rebel Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.13 The Follow Intention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Overview of the Remote Assistance Experiment Setup . . . . . . . . . . . . 122

5.2 Handheld Robot in the Remote Setup . . . . . . . . . . . . . . . . . . . . . 124

5.3 Overview of the Mockup Pipe System . . . . . . . . . . . . . . . . . . . . . 126

5.4 Gauge Display with Pipe System Response . . . . . . . . . . . . . . . . . . 127

5.5 Remote Workstation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Remote Control of the Handheld Robot . . . . . . . . . . . . . . . . . . . . 129

5.7 Illustration of Workstation Views . . . . . . . . . . . . . . . . . . . . . . . 130

5.8 Illustration of Participant Matching . . . . . . . . . . . . . . . . . . . . . . 131

5.9 Results of the Training Study . . . . . . . . . . . . . . . . . . . . . . . . . 134

xv



5.10 Comparative Analysis of Robot Conditions . . . . . . . . . . . . . . . . . . 136

B.1 This illustrates how RR-intervals are derived from an ECG signal, which

serve as a basis to calculate heart rate variability. . . . . . . . . . . . . . . 172

B.2 CoreSense: a high resolution RR-sensor that was used to derive HRV in-

formation from experiment trials. . . . . . . . . . . . . . . . . . . . . . . . 173

B.3 This picture shows the integration of the CoreSense sensor in the handheld

robot setup. It is placed close to the handle so that the participant’s thumb

can rest in it while holding the robot. . . . . . . . . . . . . . . . . . . . . . 173

B.4 Comparison of results from physiological and subjective metrics for stress/frus-

tration. For each metric, the frustration induced trials get compared to the

control condition. The Pairwise t-tests (see Table B.1) yield no significance

(ns) for the physiological metrics and high significance ( p = .008 ***). . . 175

xvi



List of Tables

2.1 Usage of Background in the Specific Work Sections . . . . . . . . . 52

3.1 Summary of Recent Eye Gaze Trackers. The accuracy is the error

of the visual angle. The Open Source collumn indicates whether there is

open software available for the device. . . . . . . . . . . . . . . . . . . . . . 57

3.2 Pairwise t-test results. This table shows the Bonferroni corrected p-

values of pairwise t-test results for the mode-depended mean differences of

TLX outcomes. Significant (p < 0.05) values are displayed in bold. . . . . . 80

4.1 Intention Prediction Performance. This shows the accuracy of the

tested prediction models, namely Support Vector Machine (SVM), Artificial

Neural Network (ANN) and a Logit model. The SVM yields the highest

accuracy of the prediction models and outperforms the straight forward

”choose last attended object” approach. . . . . . . . . . . . . . . . . . . . 97

4.2 Mode-Dependent Frustration Levels. Means and standard deviations

of the frustration component of the TLX questionnaires . . . . . . . . . . . 110

4.3 The t-test Results. Bonferroni corrected p-values of pairwise t-test re-

sults for the differences in mode depended frustration means. The starred

value is significant (p < .05). . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Summary of Quantitative Analysis. t-test results for the analysis of

differences in average completion time, word count, Task Load Index (TLX)

and System Usability Scale (SUS) scale depending on whether the robot’s

assistive features were enabled. Starred values indicate a significant differ-

ence. The distribution of the data can be seen in the associated diagrams

in Figure 5.10. Levels of Significance: * p < .050; ** p < .010; *** p < .001. 137

xvii



B.1 This shows the means and SDs of the frustration metrics for the two ex-

periment conditions, i.e. control and frustration. To the right are the

associated t-test results for the mean differences. The starred value is sig-

nificant while non-starred values yield no significance. A plot of the data

can be seen in Figure B.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

xviii



List of Abbreviations

ANN Artificial Neural Network

ANOVA Analysis of Variance

ANS Autonomic Nervous System

API Application Programming Interface

AR Augmented Reality

AI Artificial Intelligence

BCI Brain-Computer Interface

BPM Beats Per Minute

CAD Computer-Aided Design

CNN Convolutional Neural Network

CPU Central Processing Unit

CV Computer Vision

DoF Degrees of Freedom

ECG Electrocardiography

EMG Electromyography

EEG Electroencephalography

GSR Galvanic Skin Response

HF High Frequency

HMD Head Mounted Display

HMM Hidden Markov Model

xix



HRI Human-Robot Interaction

HR Heart Rate

HRV Heart Rate Variability

IK Inverse Kinematics

IPA India Pale Ale

IR Infra Red

LED Light-Emitting Diode

LF Low Frequency

LF/HF Low Frequency over High Frequency

LSTM Long-Short Term Memory

LCD Liquid Crystal Display

MMTS Magnetic Motion Tracking System

pHRI physical Human-Robot Interaction

PNS Parasympathetic Nervous System

RGB Red Green Blue

RGB-D Red Green Blue Depth

RNN Recurrent Neural Network

SD Standard Deviation

SDK Software Development Kit

SLAM Simultaneous Localisation and Mapping

SRL Supernumerary Robotic Limbs

SUS System Usability Scale

SNS Sympathetic Nervous System

SVM Support Vector Machine

TV Television

TLX Task Load Index

VAP Visual Attention Profile

VR Virtual Reality

xx



2D 2-dimensional

3D 3-dimensional

xxi





Chapter 1
Introduction

1.1 Background and Motivation

Handheld tools reach far back in human history with the earliest archaeological evidence

rooting back to the early Stone Age - 1.75 million years ago [119]. Since then, the use

of tools has been a major evolutionary advantage and their design has been developed

significantly towards devices that are characterised by high complexity and specialisation.

This allows humans to complete tasks that they could not achieve without these tools or

only with less efficiency. In other words, they enhance humans physical capabilities.

While the physical design of tools is at an advanced stage, there is a new aspect that has

been explored in recent years. That is the tool’s understanding of what it is used for and

its knowledge about the context and environment it is being used in. The evolution of

handheld tools concerning their degree of complexity and autonomy is depicted in Figure

1.1. In this thesis, we refer to intelligent tools as handheld devices that can assist in a task

through the control of some degrees of the tool, e.g. controlling the amount of power used

or the tool-tip position in a corrective manner. Our definition of handheld robots extends

the concept of intelligent tools as they are able to control multiple degrees of the device

and make high-level decisions about the task, i.e. choosing which object to interact with

and which action to perform with or on it. As such, they are robots, that can be hold in

hands.

Over the recent decades, a new taxonomy of intelligent tools has been established with

groundbreaking innovations in the field of medical applications [92, 128] and fabrication

[249, 251]. They can process context information, which allows for assistance concerning

accuracy and the suppression of unintended movement. However, these tools are limited

to a low number of DoF, small workspaces and high specialisation.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Evolution of Handheld Tools. This shows the development of handheld tools.
The earliest known today are from the early Stone Age [119]. Modern hand tools are exter-
nally powered (e.g. lawn trimmer), incorporate intelligent control based on task knowledge (e.g.
sculpting in surgery) and make high level decisions about the task (e.g. handheld robots).

In recent years, research in this domain [48, 49, 58–60] has led to a further develop-

ment from assisting tools to collaborative handheld robots that take into account task

knowledge such as progress, required steps and their sequence as well as knowledge about

relevant objects, including their identity and location. To date, person-oriented robots

have been developed mostly in the extrema of fully external autonomous devices such as

robot delivery systems or intimately linked to the body of users such as in exoskeletons

[56, 120, 195] or Supernumerary Robotic Limbs (SRL) [168, 175, 226]. Handheld robots

have the potential to bridge the gap between these extremes and combine the benefits of

an autonomous helper and the physical proximity to users that allows for intuitive and

immediate control.

The purpose of handheld robots goes beyond assistance that would be limited to some

aspects of the task. Their autonomy allows for a collaboration between the robot and the

user concerning decision making and progress tracking. Moravec’s Paradox [150], which

states that tasks that are easy to complete for humans provide difficult challenges for

machines and vice versa, is turned into a profit through the new paradigm of handheld

robots: The robot can complete tasks that overlap with machine capabilities, e.g. me-

chanical accuracy and speed, whilst the human can focus on the parts of the task that they

can naturally complete with little effort, e.g. overall task planning, and the negotiation

of obstacles.

This synergy has been observed in recent work on handheld robot prototypes. Notably,

tasks could be completed more accurately and with less task load for the users with an
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increase of the robot’s autonomy, i.e. its share of made decisions. Analogous to hand tools

mechanically enhancing humans, the robot can assist on a cognitive level, i.e. novice users

could complete tasks with the robot, which they could not achieve without it, e.g. due to

a lack of expertise.

The developments away from specialised hand tools and towards general purposed hand-

held robots open up new application fields. For example, in the future such devices could

be applied to assist workers in the manufacturing industries, e.g. through assisted as-

sembly or welding. Another conceivable application would be in agriculture, e.g. the

robot could pull unwanted weeds or selectively irrigate crop plants while the user carries

it through uncontrolled environments and uneven terrain. Even the arts industries could

benefit from the progress in handheld robots, e.g. in assisted free-hand sculpting. An

overview of envisioned handheld robot applications is presented in Figure 1.2.

(a) Assisted Assembly (b) Semi-Automated Farming

(c) Maintenance (d) Tool-Aided Sculpturing

Figure 1.2: Possible Future Handheld Robot Applications. Handheld robots have the
potential to transform the way we use tools as they participate in task decisions, e.g. in assembly
(a), farming (b), maintenance (c) and sculpting (d).

Beyond an improvement in productivity, handheld robots might also help with a more

positive association to task outcomes. With the human being involved in some of the

steps of an otherwise completely automated production chain, this participation could

lead to an increased valuation of the products because they could be considered self-made

- a phenomenon that is also known as the IKEA Effect [138, 157].

Early work on handheld robot focused on the mechanical design of first prototypes [58, 59]

and explored the introduction of robot autonomy to a handheld tool. Furthermore, work
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in this domain explored various ways to communicate the robot’s high-level plans to the

user [60]. While these contributions paved the way towards the vision of handheld robots,

there are still obstacles that need to be overcome to make it a reality. New challenges

arise from the fact that the tool itself makes decisions about the task and participates in

task planning. In their studies on cooperative handheld robots, Gregg-Smith and Mayol-

Cuevas [58, 60] observed that in some instances the robot’s plans did not match users’

expectations as they conflicted with their intention. This effect is a general problem in

the collaboration with machines and known as automation surprise [188].

The introduction of robot-human communication strategies, e.g. rudimentary tooltip

gestures [58, 60] helped to leverage the collaboration but also led to the robot’s actions

dominating user decisions, resulting in irritation and frustration. Therefore, Gregg-Smith

and Mayol-Cuevas [58, 60] suggested that handheld robots require more sophisticated

strategies for communication in the opposite direction, i.e. human-robot. This raises the

question of how robots can gain an understanding about the user’s plans, i.e. what they

want to interact with next and what sequence of steps they choose to carry out in their

underlying solution strategy. I argue that a system for the prediction of user intention can

leverage smooth cooperation between these two agents and can help users in regaining

their position of control over the task. This thesis looks at explicit and implicit human-

robot communication cues and explores how handheld robots can interpret and process

them for cooperative task solving.

Another interesting aspect of intelligent tools is that, in contrast to traditional tools, they

can be controlled by more than one person. Shared control concepts of this kind have been

explored in collaboration studies with multiple users controlling the same robot, e.g. for

the training of surgeons [10, 162]. Other work explored the overlap of the workspaces of a

human and a remotely controlled robot [193]. Often, the purpose of such arrangements is

to consult the help of a remotely located user. While these setups yield promising results

concerning remote collaboration, there is a gap in the existing research with regards to the

possibility of a hand tool being controlled remotely, e.g. for remote assistance. Remote

assistance is a research field that has gained importance due to the continuous growth of

complexity in machinery and plants [21], since more expertise is required for tasks such as

maintenance or when an unexpected problem occurs. Consulting an expert, who might

be located oversea, is expensive and relying on manuals for technicians is inefficient [231].

For this reason, there is a high demand of solutions for remote guidance systems (e.g.

[53, 54, 106]) that allow the efficient instruction of novice users by a remote helper.

An alternative to guidance for remote helping is to use teleoperation, i.e. to carry out

inspection and maintenance tasks through a robot [16, 17, 195, 204]. Current solutions

for this are expensive because they require locomotion systems. I suggest that a handheld

robot can combine aspects of remote guidance and teleoperation. Its tactical motion
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could be performed by a host carrying the robot, whilst the remote expert could have

physical access to the worksite through the remote control of the robot’s tooltip. In other

words, the handheld robot could mediate instructions and tooltip motion to combine the

competencies of the two collaborating parties.

Work in the domain of remote collaboration involves robotic devices that are controlled

in a strict master-slave manner (see Section 2.8). However, we believe that the handheld

robot itself could be considered as an agent that is part of the collaborating team. That

way, some parts of the tasks could be delegated to the robot’s autonomy to be completed

on a smaller local level, whilst humans could focus on task planning and navigation. We

hope that an introduction of automation of some parts of the robot’s control would benefit

the collaborating humans analogue to the already explored single-user setups.

1.2 Aims and Objectives

This research is guided by two main goals. The first one concerns the interaction between

the handheld robot and its user in a single-user setup. The second one addresses the

challenge of bringing together three collaborating agents, i.e. the robot, its host and a

remote user in a remote assistance setup.

With this in mind, our first aim is to explore new ways of human-robot communication

for handheld robots with a focus on predicting a user’s intentions. We use gaze data as

the main predictor for the intention model, employ it to bias the robot’s decisions towards

a user’s plans and assess its effect on cooperation quality through experimental studies.

This can be broken down into the following objectives:

• Incorporating gaze tracking and evaluating eye gaze with respect to the poses of

the handheld robot and task objects, i.e. creating a 3-dimensional (3D) model that

allows for a proxy of a user’s visual attention. Subsequently, this requires testing

the gaze model in a feasibility study through user experiments.

• Creating a representative example task that covers common human-robot interac-

tion challenges such as coordinated navigation and subtask decision timing. This

can then serve as a basis for the collection of training data. The main require-

ment for the data set is to contain information about a user’s aims and associated

preceding gazing patterns as a basis to train an intention model.

• Selection and training of a machine learning model to anticipate user intent. Incor-

porate predictions in the robot’s online task planning and assess it in action through

experimental studies.
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Secondly, we aim to better understand how handheld robots can mediate remote collab-

oration and do so through experimental validation of both performance and measures

of usability and collaboration in our proposed human-robot-human telepresence setup.

Consequently, we derive the following objectives:

• The development of an overall concept for human-robot-human remote collaboration

with the handheld robot as a mediator between a remote helper and a local hosting

user. This requires a definition of the respective roles involved, i.e. the remote user,

the local user and the robot.

• Adaptation of the existing handheld robot setup. This includes the integration of

sensors for remote perception of the environment, e.g. cameras for visual feedback.

Moreover, the setup requires a work station for the remote expert that allows for

5-DoF control inputs and incorporates a display of sensor data.

• Testing the system requires a representative example task that imposes common

remote collaboration challenges such as remote inspection, diagnosis, guidance and

instruction.

• Developing a concept for mixed-initiative interaction to merge remote and au-

tonomous control and define a subset of tasks that can be delegated to the robot.

Then assessing the task in a feasibility study, which are based on experiments and

usability questionnaires to assess the performance of the robot as a mediator and

its effect on human collaborators concerning task load and usability scores.

1.3 Contributions

This research contributes to an understanding of how humans can interact and collaborate

with a handheld robot system with the main subdomains being single-user and multi-user

interaction.

1.3.1 Single-User Interaction with the Handheld Robot

Estimation of Visual Attention

• We deliver a method to combine an existing gaze tracking solution with motion

capturing to convert in-plane gaze-information to a ray in 3D space. This allows

for an estimation of where users are looking at in the robot’s environment. The

experimental validation delivers the limits of the tracking setup and informs the

boundaries of applications for the handheld robot.
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• We introduce gaze-based user attention estimation and demonstrate how this infor-

mation can be used to parametrise the robot’s cooperative behaviour.

• To assess the attention system, we propose a reaching task as basis for an experi-

mental setup that allows measuring collaborative performance for validation of the

model. Parts of the tasks are simulated in a TV screen, which makes it easy to

adapt to future experiment proposals.

Intention Modelling

In contrast to the more reactive attention model, an intention model allows for predictions

of user action in the proximate future based on the recent history of the user’s attention.

Concerning intention modelling, this research makes the following contributions:

• We introduce an intention model for handheld robots with real-time capabilities. It

predicts users’ intentions to interact with objects in the work scene based on eye

gaze and task states. We show how context information can increase the model’s

accuracy, which we suggest generalises to applications beyond handheld robots.

• We propose a block copy task as a generic example, which is used for data collection

and model validation. The task demands timely decisions from the user concerning

accuracy and sequence of task steps. Therefore, the resulting completion times serve

as a proxy for collaborative performance.

• As a new way of model validation, we introduce obedience and rebellion as intention-

based anticipatory behaviour modes. In the absence of universally accepted physi-

ological metrics, this serves as a proxy to evaluate the intention model in action via

the differences in robot-induced user frustration levels.

1.3.2 Multi-User Interaction in Handheld Robot Collaboration

The second set of contributions concerns the interaction between two users via the hand-

held robot.

• We introduce a paradigm of remote collaboration between two humans, with the

handheld robot at its core mediating instructions and movement commands between

a remotely located helper and a novice user at the local worksite.

• The proposed remote maintenance task imposes common challenges in remote as-

sistance, i.e. problem diagnosis, guidance and collaborative problem-solving. We

suggest that this can serve as a benchmark task to compare remote assistance sys-

tems.
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• We demonstrate that the cognitive load can be transferred from the remote operator

to the robot through the delegation of parts of the task to the robot, which in turn

completes sub-tasks on a local scale autonomously.

• Our qualitative analysis reveals new collaboration behaviours that emerge between

the three cooperating agents, i.e. the remote expert, the robot and the local user. We

observed a common task solving pattern with a repeated sequence of exploration,

guidance, local task solving and retraction. This information can be used as a

guideline for future designs of collaboration systems.

1.4 Thesis Outline

This section gives an overview of the subjects addressed in the remainder of this thesis

which is organised as follows:

• Chapter 2 — Background: A Review of Handheld Robots, Intention

Prediction and Remote Assistance presents an overview of related work that

is required for an understanding of the technical chapters. In particular, it reviews

the current state-of-the-art of handheld robots and compares their capabilities with

existing specialised intelligent handheld tools for medical applications and fabrica-

tion purposes. Furthermore, this chapter outlines the overlap between the field of

handheld robotics with wearable devices and its implications for challenges concern-

ing mixed-initiative interaction between the tool and its user. Finally, a summary

of methods for intention prediction and concepts for remote guidance and telema-

nipulation form the background basis that informs decisions made concerning single

and multi-user setups for collaborative interaction with the handheld robot.

• Chapter 3 — I Can See Your Aim: Estimating User Attention From

Gaze For Handheld Robot Collaboration explores user-gaze as a new basis

for attention-driven human-robot interaction for handheld robots. We integrate a

remote eye gaze tracker with the existing robot hardware. The eye gaze data that

is delivered with respect to the frame of the tracking device is then coupled with

a motion capturing system to construct a 3D gaze ray, which is used as a proxy

for the user’s attention. The limits of this gaze tracking setup are assessed through

experimental studies. In a second step, the gaze model is used to implement an

attention-driven behaviour model to assist in a reaching task. The setup is tested

for a range of temporal demands in the task and the robot’s behaviour assessed

with varying levels of autonomy and gaze-awareness. We show that the teamwork

performance between a fully autonomous robot versus an attention-driven robot is

similar. However, we found that less task load was perceived with attention bias
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enabled, particularly when task completion required fast reactions.

• Chapter 4 — Rebellion and Obedience: The Effects of Intention Predic-

tion in Cooperative Handheld Robots takes the interaction concepts that were

developed in the previous chapter one step further. The gaze model and the user’s

gaze pattern is used to make predictions about the user’s intention with a generic

block copy task as an example. The intention model predicts which object the user

wants to pick up next and where they want to place it. The chapter consists of

two main parts. The first part describes the procedure of data collection through

experiments. This data is then used to train an SVM, which forms the basis of the

prediction model. Data modelling and validation is completed offline to determine

the model’s accuracy based on the generated training and cross-validation data. In

the second part of the chapter, the intention model is used to bias the robot’s task

decisions during assistance to validate the intention model in action. Employing the

counter-intuitive strategy of using the attention model to make the robot perform

the opposite of the predicted user intention, we introduce a new method of intention

validation via frustration levels. The idea is that the robot can only frustrate users if

the rebellion was based on correct predictions. Thereby, we show that the intention

system can make reliable online predictions one step ahead during task completion.

• Chapter 5 — Reach Out and Help: Assisted Remote Collaboration

through a Handheld Robot extends the challenge of efficient interaction with

the handheld robot through the introduction of another user. We explore a remote

assistance setup with the handheld robot at its core. It involves a local novice user

holding the robot, who receives assistance from a remote expert with the handheld

robot serving as a basis for remote guidance and manipulation. In contrast to tra-

ditional remote guidance setups, the handheld robot allows for physical access to

the local work scene. Furthermore, the robot is considered as a semi-autonomous

agent that can assist through decision making and compensation of unintended mo-

tion as main assistive features. In a first step, the robot is equipped with cameras

for visual feedback to the remote operator and a remote workstation designed that

allows them to access the robot and to control it. The system is tested through

experimental studies with a remote maintenance task as a generic example for re-

mote collaborative task solving. Our results show how handheld robots can bring

together the competences of both the local user and the remote expert and show

how the assistive features of the robot can help in higher performance and better

usability scores.

• Chapter 6 — Conclusion and Further Work. This chapter summarises the

research presented in this thesis, outlines and discusses our main findings and puts

them into perspective concerning their implications for the robotics research com-

9
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munity. We close with an outlook for future work, which could serve as a starting

point to accelerate innovation and research in this domain.

10



Chapter 2
Background: A Review of Handheld Robots,

Intention Prediction and Remote

Assistance

This chapter covers the related work on which our motivation introduced and described

in Chapter 1 is based on. Furthermore, this chapter introduces the reader to background

material that informs the methodical decisions made in Chapter 3, 4 and 5.

2.1 Chapter Overview

The research presented in this thesis explores the design scope of handheld robot interac-

tion with a focus on the collaboration between the robot and the humans involved in the

respective setups. This chapter reviews related hardware and existing interaction con-

cepts. Each of the technical chapters contains a summary of related works as part of the

respective introductions. In that way, the chapters are self-contained and the interested

reader is referred to the following sections for details about relevant literature.

Firstly, we introduce the reader to recent literature on handheld robots (Section 2.2). This

research mainly builds on this literature with the hardware presented in Section 2.2.2 at

its core.

Handheld robots, in a more general sense, can be understood as intelligent tools that

make autonomous task-related decisions. An overview of this type of intelligent devices is

presented in Section 2.3. These are mostly from the fields of surgery and fabrication.

Wearable robots are close relatives of handheld robots as they are characterised by high

physical proximity to the user. Some of the interaction problems that result from this
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property can be found in this domain as well. Therefore, Supernumerary Robotic Limbs

(SRLs) and initial designs of wearable robotic arms are covered in Section 2.4.

All studies presented in this thesis concern Human-Robot Interaction (HRI) within hand-

held robotics and particularly the aspect of shared control. For this reason, a summary

of existing strategies for the implementation of mixed-initiative interaction can be found

in Section 2.5.

A key strategy of aligning the robot’s actions with the user’s plans is to bias the robot’s

decisions based on the predictions of an intention system. This subject is introduced in

Section 2.6, where we discuss different approaches based on various modalities and cues

for intention prediction and examples for their application in robotics.

Finally, we are interested in exploring shared control of the handheld robot with the

introduction of an external remote helper. The principal elements of this part of our

work are remote guidance and teleoperation, which are introduced in Section 2.7 and 2.8,

respectively. The chapter closes with a summary that links the background sections to

the technical chapters.

2.2 State-of-the-Art Handheld Robots

This section presents the latest developments in handheld robotics. Here, the focus is on

work by Gregg-Smith and Mayol-Cuevas [58, 59, 60], as the research of this thesis is based

on the hardware of the 6-DoF Handheld Robot (see Section 2.2.1), which is the successor

of a 4-DoF design (see Section 2.2.2). Furthermore, related designs and their applications

are summarised in Section 2.2.3.

2.2.1 4-DoF Handheld Robot

The notion of non-medical, generic handheld robotics was proposed by Gregg-Smith and

Mayol-Cuevas [58]. They introduced a trunk-shaped lightweight tool, which is tactically

moved by the user while being able to carry out small-scale motion with its 4-DoF tip.

The tool itself is aware of the task and its progress and can use this knowledge to augment

users. For instance, it can provide task-related guidance using its 4-DoF end effector to

point towards the goal or execute local manipulation. An overview of this concept can be

seen in Figure 2.1.

Within a feasibility study, the authors investigated the effect of the robot’s autonomy

on task performance, using a pick and place task and virtual paint spraying as exam-

ples. In both tasks, the experiment was repeated for three different levels of the robot’s
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autonomy:

• Manual: the robot’s tip would not be actuated at all and remain in its initial

position so that the user is completely in charge of moving the tooltip.

• Semi-Autonomous: the robot’s tip is actuated to guide the user to the next goal

of the task and to support spacial and angular aiming.

• Fully Autonomous: the robot would not only control the tip’s orientation but

would also override the input of the trigger. Therefore, it could refuse to colour

wrong pixels within the painting task or to pick up an unnecessary item (see Figure

2.1 b and c).

The results show that increasing the level of autonomy improves critical aspects of ef-

ficiency such as time-to-complete and perceived workload. At the same time, increased

autonomy led to frustration in some participants which was expressed through statements

like: The tool won’t go where I want it to[58]. The authors assumed that a high level of

the robot’s autonomy would increase the demand for effective human-robot cooperation.

Therefore, they suggested improving the communication of the robot’s plans and predict-

ing user intention to address this problem in future research.

(a)

(b)

(c)

Figure 2.1: The Concept of a Handheld Robot. Overview of the cooperative handheld robot
and its main components during a tiling task (a). In autonomous mode, the robot refuses to
place the tile at a wrong position (b) but assists when the user aims for the correct one (c) [58].
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Figure 2.2: Updated design of the handheld robot with increased acceleration and dexterity of the
6-DoF tip [59].

Figure 2.3: 6-DoF handheld robot pointing its tip towards the point it needs to be positioned in
order to indicate goal direction. In this example, an LCD display is used for visual feedback [59].

2.2.2 6-DoF Handheld Robot

The 4-DoF design of the handheld robot was later updated to a new version that fea-

tures 6 DoF in the joint space and 5 DoF in the workspace [59]. The joint redundancy

allows for local obstacle avoidance and the new cable-driven design enables motion with

high acceleration, speed and dexterity, realised in a lightweight design that can be carried

rather comfortably. Figure 2.2 shows the handheld robot, which is also available as an

open-hardware project [1]. Another contribution of the aforementioned work is the imple-

mentation of the path planner which is based on their derived Inverse Kinematics (IK).

Their method allows for solving the IK for a given point outside the robot’s workspace.

In that case, the robot points towards this point, which is an essential feature for user

guidance through tooltip gestures.

Within experimental studies, Gregg-Smith and Mayol-Cuevas [60] investigated the impact

of visual feedback on user performance in a 5-DoF reaching task. In addition to the robot’s

rudimentary tip gestures, an arm-mounted LCD screen, see-through AR or a VR headset

were used to communicate the robot’s plans as shown in Figure 2.3. The experiment

participants were asked to fulfil the job as quick as possible while the level of difficulty

was adapted by modifying the desired angular accuracy. For a reference, the task was

repeated using a handheld wand for reaching instead of the robot’s tooltip. Rather than
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(a) (b)

Figure 2.4: Decoupling Execution Speed from Accuracy Demands. This diagram visu-
alises the results of the feasibility study concerning the relationship between accuracy and comple-
tion time for the condition when the wand is used (a) and when the robot is used (b) to complete
a reaching task. Note that the completion time remains constant over accuracy demands when
the robot is used, whereas more time is needed to complete the task for higher accuracy when the
task is done manually [59].

containing any robotic features, the wand was used for tracking purpose only to be able

to determine task completion.

The results of the experiments show the participants performing much better when using

the robot compared to using the handheld wand, regardless of which means of visual

feedback was used. At the same time, participants benefit from increased accuracy while

perceiving less workload. Another interesting aspect of the results is the relationship

between accuracy and completion time (see Figure 2.4). According to [51, 207], human

motor performance is limited to the combination of accuracy and speed so that accuracy

performance would suffer from speed increase at a certain level and vice versa. This

theory about 2-dimensional (2D) hand pointing is well known as Fitt’s Law and has

recently been extended by [31] to 3D reaching with similar results. This property is

reflected in the wand-use experiment result as accuracy decreases with the decrease of

completion time and thus a higher level of speed (see 2.4b). Interestingly, this is not

true for cases where the robot was used as results yield a constant level of completion

time independent of required accuracy. Gregg-Smith and Mayol-Cuevas [59] suggest that

this indicates that the use of robots has the potential to decouple human’s accuracy from

performance speed which is an essential efficiency criterion for a wide range of manual

tasks. At the same time, the research question arises how to determine user intention to

enhance cooperation.

We note that the above works convey useful information in terms of the design of handheld

robots and their impact on cooperative task solving. At the same time, the results raise
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new research questions such as how an effective human-robot communication could look

like, what other means of guidance beyond visual feedback could be used and how the

robot could retrieve the task knowledge, which its behaviour is based on.

2.2.3 Assisted Painting Using a Handheld Robot

Another contribution in the field of handheld robots is the work by Elsdon and Demiris

[48, 49], who introduce an intelligent paintbrush for the application of skin medication on

human bodies. Whilst their concept follows the one of Gregg-Smith and Mayol-Cuevas

[58] concerning the robot’s levels of autonomy, their design is adapted to the specific

application of paint spraying. The device houses a trigger to control the valve to spray

paint through a nozzle, which can move with 1 DoF along a gentry (see Figure 2.5a).

The intelligent paintbrush enables the possibility of leveraging the user’s ability to move

around the environment while the robot performs the final actuation and keeps track of

the task progress. This is fed back to the user through AR in-scene highlighting of the

3D object to be painted to indicate over-spray, under-spray or correct amount. The set

up is cooperative in the way that no entity can fulfil the task without the other one. A

system overview can be seen in Figure 2.5b.

(a) (b)

Figure 2.5: Intelligent Paint Spraying Gun. 1-DoF handheld robot with actuated nozzle (a)
proposed by Elsdon and Demiris [48, 49]. The robot is aware about the task goals and progress,
can feedback the task states through a head-mounted display and provides the final actuation (b).

Analogous to Gregg-Smith and Mayol-Cuevas [60], the authors found that the use of

the robot and the provided feedback helps increasing the quality of the work outcome

in terms of accuracy. At the same time, some users found that the fully automated

mode spoiled their plan or they found that they were fighting with the system. We
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note that these studies demonstrate the necessity of a form of human-robot or robot-

human communication to overcome differences of plans when dealing with tools that

make decisions about the task at hand.

2.3 Intelligent Handheld Tools

Intelligent tools can assist their users through enhanced accuracy and the correction of

motion. In contrast to more general handheld robots, they are purposed for a specific task.

They can process task knowledge such as a work part’s location and spacial relationship

to the tool. Commonly, this information is used to stabilise the tooltip or to start/stop

its main function as the user approaches the boundaries of an underlying target model,

e.g. the contour of a painting [202] or the surface of delicate tissue in surgery [92, 128]. In

contrast to more complex robots, these devices assist but do not make decisions about a

task, e.g. the order of steps to complete it. The following presents examples of intelligent

tools the majority of which are purposed for medical applications (Section 2.3.1/2.3.2)

and fabrication (Section 2.3.3).

2.3.1 Tremor Suppression for Medical Devices

Physiological tremor becomes a problem when its magnitude exceeds the size of the object

that is handled. This is particularly true for operations on delicate tissues in microsurgery

[184]. One solution for this problem would be to use a stationary robot that downscales

the surgeon’s motion such as implemented in the da Vinci surgical system [11, 23]. Such

systems offer many features of the human hand, however, they are expensive and take up

substantial of space. One could argue, that the required dexterity was already provided

through the surgeon’s hand and making their movements more precise could be a rather ef-

ficient solution while they retain their naturalness of feel [248]. For these reasons, research

groups started investigating handheld solutions concerning tremor suppression.

A majority of contributions in this field concern the development of Micron, an instrument

for microsurgery, which was introduced by Riviere et al. [185] and can be seen in Figure

2.6a. It features a 3-DoF actuated tip, which is driven through a parallel sequence of

piezoelectric actuators. This design was later updated with a flexure-based manipulator

which increased the size of the workspace [33]. The device enables active compensation

of tremor with a magnitude of 50µm at a frequency of up to 12 Hz. An overview of the

Micron concept can be seen in Figure 2.6b.

Becker et al. [14] then further improved the system in terms of its estimation of erro-

neous motion through vision-based control and optical tracking, which was then tested
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(a) (b)

Figure 2.6: Micron, an Intelligent Surgical Tool. (a) First prototype of the device as
introduced by Riviere et al. [185]. (b) Overview of the Micron concept and its interactions with
a human in the loop [33].

for operations on retinal vessels [14], photocoagulation [13], retinal membrane peeling [15]

and intraocular laser surgery [241]. Figure 2.7a shows the device and the differences in

performance depending on the tremor suppression being enabled or not.

(a) (b)

Figure 2.7: Micron Application. (a) Updated version of Micron with a novel delta kinematic
for eye surgery and (b) it’s performance of tremor suppression during cannulation [14, 15].

Important for safe vitreoretinal surgery is not only the ability of precise motion but

also the force applied to delicate tissue. Therefore, Gonenc et al. [55] added a control

mechanism that limits the tool-to-tissue interaction forces with real-time capabilities that

helps to prevent irreversible tissue damage. Subsequent studies [130–132], however, found

that in some cases the device was difficult to use for ophthalmic surgery due to the limits

of the sensing workspace, which resulted from the fact that it relies on external measuring
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systems which require an unobstructed sight.

(a) (b)

Figure 2.8: Microsurgical instrument with high accuracy actuated tip and integrated motion
sensing for tremor suppression [248].

ITrem [115] is another microsurgical instrument with incorporated active tremor sup-

pression. The compact sensing design is based on accelerometers in the handle so that

external tracking is no longer required, as shown in Figure 2.9a. Recently, Chang et al.

[32] and Zhang et al. [248] combined an improved version of the delta kinematic from the

Micron system with the idea of a handle-integrated sensing, which is based on a high-

performance inertia measurement unit (see Figure 2.9b and 2.8). The result is a high

precision instrument for tremor suppression in a compact design.

(a) ITrem by Latt et al. [115], a
slimmed version of Micron.

(b) Surgical instrument proposed by Chang et al. [32].
.

Figure 2.9: Tremor cancelling surgical instrument with built in position sensing to over-
come weaknesses of navigation solutions based on external tracking systems.

Works on the compensation of unintended motion are not restricted to microsurgery.

Wagner and colleagues [172, 197, 229] present a handheld tool for orthopaedic surgery. It

is operated two-handed and the trajectory is stabilised using an optical tracking system

for sensing and a 6-DoF parallel kinematics (shown in Figure 2.10a) for the positioning of
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the tooltip. The fast and accurate position corrections help to control the relative position

between the drill and the bone. Note that this method goes beyond the suppression of

larger-scale tremor as the system holds knowledge about a pre-planned trajectory which

enables active tooltip control to follow that path.

Liftware [146, 148, 189] is an example for a tremor suppression device outside surgery (see

Figure 2.10b). A set of eating utensils can be snapped into a mechatronic handle that

measures and cancels high frequent hand motion. This allows patients with Parkinson’s

disease or essential tremor to overcome their otherwise severely limited ability to eat while

keeping track of the development of their symptoms.

(a) (b)

Figure 2.10: Devices for the Suppression of Unintended Motion. (a) A handheld robot
for orthopedic surgery [197]. (b) Liftware, a feeding utensil to compensate Parkinson-related or
Essential Tremor.

2.3.2 Guidance Active Avoidance in Surgery

In surgery, there is a strong demand for high accuracy movement since small deviations

from an ideal trajectory can result in irreversible damage of tissue. Therefore, intelligent

handheld tools were investigated to assist the surgeon through the planning phase, follow

a pre-defined trajectory or to avoid specific features.

NavioTM [30, 128, 241], shown in Figure 2.11a, is one of the most advanced devices of its

kind today. It is a precision freehand sculpturing tool which allows surgeons to detect

landmarks of bones and tissue to construct 3D models which are then used to plan and

execute a trajectory for substance removal. A similar device [25] was introduced before,

however, it lagged the feature of online mapping and instead required insertions of markers

in the bone. This is also true for the Craniostar [92], a cutting device that helps surgeons

follow a pre-planned trajectory for a cutting procedure of the skull surface as demonstrated
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(a) NavioTM sculpting tool, Lonner et al. [128]
.

(b) Craniostar device for skull cut-
ting operations, Kane et al. [92]

Figure 2.11: Medical intelligent Sculpting Tools. This shows modern surgical instruments
for cutting along predefined 3D profiles based on optical motion tracking and multi-DoF semi-
autonomous tool tip control.

in Figure 2.11b. All of those devices share the property of active guidance, based on an

infrared optical tracking system for localisation and navigation.

(a) Instrument for arthroscopy,
Dario et al. [35].

(b) Surgical tool for beating heart operations, Yuen et al.
[244].

Figure 2.12: Mechatronic surgical instruments with integrated force limitation to prevent damage
of tissue.

Other instruments provide active avoidance instead of guidance. They provide the surgeon

with a free workspace that is constrained by safety-relevant features such as force limits.

For example, Dario et al. [35][36] introduce a minimally invasive handheld tool, which

limits the contact forces between the tooltip using a strain gauge as a sensor and a Hall

effect angle sensor for the 1-DoF tip control. Similarly, Yuen et al. [244, 245] present a

tool with 1-DoF actuation that maintains a constant distance to tissue during beating

heart surgery, which helps reducing contact forces by 75% compared to using a manual

tool. The designs of both tools are displayed in Figure 2.12.
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2.3.3 Non-Medical Intelligent Handheld Tools

While extensive work on intelligent instruments was carried out in the field of surgery, the

application of handheld smart tools outside the scope of medicine is rather new. Apart

from the handheld robots mentioned in Section 2.2, there are only a few examples, which

are mostly from the area of intelligent crafting and augmented arts.

(a) Air Brush by Prévost et al. [176] (b) Air Brush by Shilkrot et al. [202]

Figure 2.13: Intelligent Air Brushes with localisation and pose-dependent valve control for
assisted large scale painting.

(a) Painting result,
Prévost et al. [176]

(b) Target image [176, 202]
.

(c) Painting result,
Shilkrot et al. [202]

Figure 2.14: Performance Comparison of Painting Devices. This shows example results
of intelligent painting experiments.

Prévost et al. [176] present an example of an intelligent handheld airbrush (see Figure

2.13). The combination of optical motion tracking and active control of the airbrush’s

valve allows control of paint application as a function of the position of the tool. This

allows novice users to produce large scale wall paintings from a pre-defined 2D image

after a short time of training. The system is aware of the task progress and can feedback

under-painted areas to the user through a separate work station. Similar to the evolution
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of surgical tools, Shilkrot et al. [202] introduced another intelligent airbrush that has

on-board localisation through a Magnetic Motion Tracking System (MMTS), as shown

in Figure 2.13b. This allows for higher accuracy in paint application and eliminates

common problems of external tracking systems such as occlusion and the necessity of a

large physical setup and calibration. Figure 2.14 shows a comparison of painting results

using the two different airbrushes based on a given target image.

Figure 2.15: Enhanced Scissors (left) only cuts in pre-defined areas. The system overview
(right) shows the design principle, which based on conductive ink [240].

Figure 2.16: Position Correction 2D Milling Tool (left) with integrated actuation to follow
a complex profile while the user leads along an approximation of the path (right) [183].

The concept of enabling or disabling a tool depending on its pose and position can also

be found in the area of crafting. Yamashita et al. [240] introduced a pair of scissors that

only cut in an area that was predefined with conductive ink. An overview of the system

can be seen in Figure 2.15. In the field of fabrication, there are milling tools that help to

align the cutting head through an active motion control to conform with a trajectory to

the shape of an underlying Computer-Aided Design (CAD) model. For example Rivers

et al. [183] present a 2D milling device that corrects a user’s motion to match details of

a cutting profile using an onboard camera for localisation (see Figure 2.16).

Zoran and Paradiso [249] transferred this concept to 3D sculpting. Their semi-autonomous

handheld FreeD localises through a MMTS and incorporates a 3-DoF tooltip control,

which allows for freehand sculpting as shown in Figure 2.17. In [250, 251], the authors
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extend the system’s interactive capabilities and add a feature, which allows for online

customisation of the underlying mesh model.

(a) (b)

Figure 2.17: FreeD Sculpting Device. (a) Overview and example of usage [249]. (b) Mesh
model and sculpting result, Zoran et al. [250].

While the above-mentioned tools mainly assist the user through actuation, the Intelligent

Welding Gun [47] for vehicle assembly is an example of a non-actuated device that assists

users through visual feedback, which is shown on a display that is mounted on the welding

gun. Attached markers allow outside-in tracking to determine the relative position of the

tool to the work part. The device holds knowledge, which is used to lead welders to the

right location and to improve their positioning of the stud as demonstrated in Figure

2.18. On-display animations such as compass and notch and bead serve as navigation

guidance. The authors report a faster and more precise task completion of welders using

the intelligent welding gun compared to a regular one. This example shows the importance

of guidance features for effective collaboration and communication of the systems task

plan. This subject will be covered more in-depth in Section 2.7.

Figure 2.18: Intelligent Welding Gun in operation. Reflective markers enable localisation
and a mounted display delivers feedback to the welder Echtler et al. [47].
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2.4 Wearables

Wearable robots are closely related to handheld robots as they share the characteristics

of proximity and physical dependency to the user. Gregg-Smith [57] suggests that the

handheld taxonomy fills the gap between external robots and wearables as illustrated in

Figure 2.19.

External robots are characterised by their user-independent interaction with their envi-

ronment and a high level of autonomy. They might be able to interact with humans

as well but can be left without supervision for some tasks. Robots of this kind are for

example used in search and rescue applications [126] and service robotics [40].

Opposed to that, wearable robots such as exoskeletons [155] and soft exosuits [39] enhance

humans’ body functions, which requires synchronous movement and thus makes both

agents highly co-dependent. Typically, such devices are fully controlled by the user as

they follow their lead and thus possess a limited level of autonomy.

This review focuses on wearables that are attached to the human body but have a local

independent workspace, which excludes other technologies such as exo-suits and actuated

prosthetics. The interested reader is referred to recent extensive reviews on powered pros-

thetics [114] as well as on upper and lower limb exoskeleton systems [116, 201]. Instead,

this section summarises work on SRL and a worn gripper.

(a) (b) (c)

Figure 2.19: Handheld Robots Bridging Traditional Robotic Concepts. A new taxonomy
of personal robotic platforms (b) bridging traditional applications of external robots (a) and
wearable devices (c) [57].
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2.4.1 Supernumerary Robotic Limbs (SRL)

SRL are a class of wearables that are distinct from traditional technologies such as ex-

oskeletons and prosthetics as instead of substituting or enhancing, they aim to add effec-

tors, for example, extra legs, arms or fingers, to the human body.

A prototype of SRL was first introduced by Parietti and Asada [166] within their work

on a set of two robotic arms, which are attached to a human’s hips. They help to com-

pensate for involuntary motion and provide bracing in an assembly task. In subsequent

work [165, 167], the authors present an updated version of the robotic system, which is

assessed through an aircraft assembly task as an example application. The focus of theses

works is on optimising the robot’s bracing functions. Unlike exoskeletons, SRL can take

on a variety of postures to optimise the effect of load-bearing. Similarly, Llorens-Bonilla

and Asada [127] introduce a design that is shoulder worn and helps workers supporting

assembly parts above their head. Moving from manufacturing to the medical field, Pari-

etti et al. [168] later introduced a set of hip-mounted extra legs, which provide balance

augmentation for bipedal walking by reducing the weight load on the human’s legs. An

overview of torso-mounted SRL can be seen in Figure 2.20.

(a) (b) (c) (d)

Figure 2.20: Supernumerary Robot Limbs (SRL). Concepts and prototypes for manufac-
turing and medical use. (a) Concept of SRL proposed by Parietti et al. [167]. (b) Hip-mounted
SRL for assembly, Parietti and Asada [165]. (c) SRL for balance augmentation, Parietti et al.
[168]. (d) Shoulder-worn SRL for over-head tasks, Llorens-Bonilla and Asada [127].

Furthermore, SRL technology was explored for the case of additional robotic fingers that

are mounted to the hand wrist. Wu and Asada [236, 237] introduced a prototype of

this kind in their work on two extra fingers that extend the human hand (see Figure

2.21a). This enhances users’ grasping capabilities through an enlarged workspace [236]

and helps in completing bi-manual tasks one-handed, which is useful for people with

impaired motor functions. Similarly, Prattichizzo et al. [173, 174, 175] introduced a 4-

DoF robotic Sixth-Finger that helps users grasping large objects. A prototype can be

seen in Figure 2.21b.

Later, Hussain et al. [76, 77, 79] refined the design of the Sixth-Finger and added haptic
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(a) Wu and Asada [237] (b) Hussain et al. [76]
(c) Malvezzi et al.
[135]

Figure 2.21: Supernumerary Fingers. An Overview of recent prototypes in the field of robotic
extra fingers.

feedback, which allows users to estimate the magnitude of force load on the device. This

improved task performance and users’ perceived effectiveness. This technology was then

tested with stroke patients who suffer from lower limb motor dysfunction [78]. With the

haptic feedback device on the healthy hand, the extra finger enabled subjects to execute

bi-manual manipulation tasks, which they could not complete without the robot [78].

Another design iteration led to a cable-driven design of the Soft-SixthFinger [80, 83],

which can be controlled through an Electromyography (EMG)-based interface [80, 81].

The authors’ experiments show that this technology helps to compensate for missing

grasping capabilities in chronic stroke patients [82, 84, 85]. Recent research in this field

by Malvezzi et al. [135] concerns a multi-finger design, which allows grasping of objects

with complex geometries. Figure 2.21 shows the technological evolution of supernumerary

robot fingers.

2.4.2 Wearable Robotic Arms

Building on the aforementioned SRL ideas and works, Vatsal and Hoffman [221–223]

introduced a wearable supernumerary robotic forearm. Their work is highly related to

the handheld robot used for our studies, as their design has a similar workspace and shares

physical dependency of the user’s arms. Its base is attached to the human’s elbow and

its 5-DoF design carries a 1-DoF gripper, which makes it similar to a human forearm.

The authors suggest that this technology falls in between torso-mounted [167] and wrist-

mounted [76] SRL in terms of weight, power and scale.

Their concept aims to enhance wearers’ reaching extent and supports work processes

through bracing, stabilisation and reduction of cognitive load. Vatsal and Hoffman [224]

validated their design in simulations and experimental user studies and found that the
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(a) First prototype of the wearable forearm by Vat-
sal and Hoffman [221]
.

(b) examples of self-handing, object stabili-
sation and assisted human-human coopera-
tion using the wearable robot [224]

Figure 2.22: Wearable Robotic Forearm. An elbow-mounted supernumerary arm that coop-
erates with humans in augmented task completion.

robot can increase a user’s workspace by 246%. Furthermore, they investigated the HRI

aspect of the robot and found that the robot’s autonomy increases task efficiency in

test cases of fetching an object while the human’s hands are occupied and during object

stabilisation.

These findings go in line with results by Gregg-Smith and Mayol-Cuevas [58] concerning

the autonomy of handheld robots. Notably, Vatsal and Hoffman [224] also found that the

robot’s autonomous control is preferred over voice-commands. However, similar to Gregg-

Smith and Mayol-Cuevas [58], they suggest that the interaction between an autonomous

robot and a wearer requires further studies.

In their most recent work Vatsal and Hoffman [225] introduced a prediction system that

helps to infer users’ involuntary motion 77 ms ahead, which allows its suppression for

end effector stabilisation resulting in an increase of accuracy of 20.1%. However, the

presented approach only works for small movements and not for larger ones such as

turning towards a specific object. One could argue that these large-scale movements

result from the human’s task decisions and that predicting those could help planning the

robot’s trajectory in augmented task completion. An overview of the prototype and its

applications can be seen in Figure 2.22.

Similar to the elbow-mounted design presented above, Veronneau et al. [226] introduced

a teleoperated robotic arm that is attached to the user’s waist. Its characteristics are a

3-DoF lightweight design with a 3-fingered soft gripper as a manipulator. The device is

similar to a human arm concerning shape and mass and driven through magnetorheological
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Figure 2.23: Waist-Mounted Extra Arm. This shows a number of example tasks used to test
the robot: fruit picking (a,b), painting (c) window cleaning (d), assistive power tool handling
(e,f), hands-free badminton [226]

.

clutches and hydrostatic transmission lines. The current design depends on a tethered

external power unit, which is located on the ground. This is due to its weight being too

high to be carried comfortably (4.2 kg), which limits the mobility of the system.

The robot has high dynamic characteristics with an end effector top velocity of 3.4 m/s.

At the same time, its strength is sufficient to hold industrial hand tools. The authors

demonstrate its application for various tasks, such as picking fruits, painting, fetching

and holding of hand tools and badminton playing (Figure 2.23).

Notably, the control of the device lies with a remote user who steers it through a joystick.

During the execution of the presented experiment tasks, the controlling user is located at

the worksite and has full visual access to the scene. As such, remote control by a third

person is set in place to demonstrate the hardware rather than to explore interactions

between the two humans through the robot. Nonetheless, the setup sets an example of

how a user-carried robot can bring together the capabilities of two people working together

towards common goals.

The work demonstrates that robot’s and humans can benefit from each other’s abilities

when working together in close proximity, which underlines the importance of further

exploration of this field. Similar to Vatsal and Hoffman’s [221–223] robot forearm design,

the mechanical characteristics of Veronneau’s device are at an advanced stage and suffice

for requirements of many applications. New challenges mainly concern the design of the

interaction between robot and human to bring the system closer to the vision of human-
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robot synergy. Thus the question remains open, to what extent a robot of this type could

help in a task based on autonomous motion and which user cues could be used to inform

the robot’s decision to conform with the user’s intent.

2.5 Mixed-Initiative Interaction

Over the last decades, interaction between humans and machines evolved from rudimen-

tary physical interaction with a mechanical apparatus to sophisticated interaction with

robotic tools. These are characterised by increased complexity through higher integration

of sensors and sophisticated control systems [129]. This development led to a need for

new concepts of humans and machines working together towards a common goal. Hearst

[67] argues, that an important aspect of an efficient multiagent collaboration setup was

the implementation of a mixed-initiative interaction concept, i.e. a flexible interaction

strategy that enables each agent to contribute to the task with what it does best. The

subdomains of mixed-initiative interaction that matter most in the context of this work

on handheld robots are teleoperation, shared control, traded control and teaming. Here

is a brief description of each, listed in order of increasing level of autonomy:

• Teleoperation: The robot is controlled by a human through a remote interface

[105]. Traditionally, robots do not have any autonomy in such setups as the user is

fully in charge of the robot’s motion.

• Shared Control: The human and the robot manage the task simultaneously [163]

through a fusion of operator inputs and autonomy inputs [217], which requires

arbitration, i.e. a mechanism that decides to what extent each agent has control.

For example, the human might be in charge of the main body of a tool while the

robot is in control of fine-tuning the motion of the end effector [129].

• Traded Control: The human and the robot take turns in controlling a robotic

system so that each agent is in charge of a specific part of the task [105]. Usually,

the human takes over control to solve a difficult subtask or navigate the robot out of

a dangerous situation such as in devices for disaster response [158]. Afterwards, the

control is handed back to the robot. For intelligent tools, roles for these tasks are

often swapped so that the user navigates to a target where the robot then completes

a task.

• Teaming: This domain describes the collaboration of two independent agents.

Each contributes to the task autonomously, however, they communicate their plans

to coordinate their actions [105]. Due to the physical proximity between users and

tools, the two agents cannot be considered as completely independent agents. How-
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ever, they can be independent concerning decision-making, therefore coordinated

planning is an important aspect in this context.

Uncertainty-based Arbitration of Human-Machine Shared Control

Parker Owan, Joseph Garbini, and Santosh Devasia

Abstract— Manufacturing requires consistent production
rate and task success for sustainable operation. Some manu-
facturing tasks require a semi-autonomous approach, exploiting
the combination of human adaptability and machine precision
and speed, to be cost effective. The main contribution of this
paper is a new approach to determine the level of autonomy
for human-machine shared control based on the automation
uncertainty. Moreover, the haptic feedback is scaled by the level
of autonomy to indicate machine confidence to the operator.
Experimentation results, with a human-robot peg-in-a-hole
testbed, show more than 5 times improvement in the error
tolerance for task completion with the shared control approach
when compared to a purely autonomous method.

I. INTRODUCTION

Fully autonomous systems are becoming increasingly
prevalent in manufacturing facilities throughout the world,
some of which operate with minimal human supervision [1].
Some manufacturing operations such as aircraft production
have been unable to adopt a fully autonomous policy be-
cause, according to Felder [2]: (i) new aircraft design tends
to be a modification of previous designs where autonomous
production was not a primary design consideration; (ii) the
deliverable product is larger than most of the machines used
in its assembly; and (iii) the delivery rate is much lower
than required rates of facilities that have transitioned to
fully-autonomous production. In order to transition from the
current state to increased autonomy in aircraft manufacturing,
there is interest in semi-autonomous solutions wherein the
human shares some aspect of control with the machine.
Such semi-autonomous approach can allow for more cost-
effective solutions to support aircraft manufacturing when
compared to the fully autonomous approach. For such semi-
autonomous manufacturing, there is a need to develop shared
control strategies wherein both the machine and the human
are simultaneously managing a task.

Shared human-machine control requires an arbitration
approach to select the relative amount of human and machine
control. One approach is for the human (or humans) to fully
guide the machine as in teleoperation [3], [4]. Alternatively,
the machine might facilitate human operation, e.g., through
artificial potential fields [5] for lane keeping or hazard avoid-
ance [6] and through virtual fixtures [7] to guide task com-
pletion [8]. In contrast to these human-centered or machine-
centered approaches, blending of both the human and the
machine input [9], [10] can leverage both the adaptability of
the human as well as the computing power and bandwidth
of the machine controller. One approach to blend the human
input qh and the machine input qm is through an adjustable
level of autonomy (LOA) ↵ 2 [0, 1] [9], e.g., to determine

+

Human: qh

Machine: qm

Command: qref1 � ↵

↵ Shared
Control

Fig. 1. Arbitration: inputs from the human qh and the machine qm are
blended to determine a single shared-control input qref by using the level
of autonomy ↵ 2 [0, 1].

the reference input qref to the system (such as the desired
position of a robot)

qref = ↵qm + (1 � ↵)qh, (1)

as represented in Fig. 1. As opposed to a fixed level [11], [12]
or discrete levels of autonomy ↵ [13], this work considers
the more general shared-control case where the level of
autonomy ↵ is allowed to slide continuously as in [14], [15],
which has been used in applications such as active mobility
devices [9], [16], control of multi-agent UAV systems [17],
semi-autonomous operation of large manipulator arms [10],
and active driver assistance systems for lane keeping [18].

The main contribution of this paper is a new approach to
determine the level of autonomy for human-machine shared
control based on the automation uncertainty, e.g., to reflect
the level of machine confidence in the goal prediction, which
can be used to determine when the automation can take over
from a human [19]. In aerospace manufacturing operations,
there can be uncertainty in the location of the obstacles
and the goal location for a manufacturing operation such as
drilling. If these uncertainties are substantial, then a human
might need to take over the manufacturing operation. The
current work proposes a method for using apriori knowledge
of automation uncertainty and the probability of failure to ar-
bitrate the level of autonomy in shared control. For example
as the probability P (E) of the failure event E increases, the
level of autonomy (LOA) tends to zero, ↵ ! 0, and more
control authority is relinquished to the human. Conversely,
the level of autonomy becomes larger, ↵ ! 1, when the
probability of a failure event is low, giving more control
authority to the machine. Additionally, the proposed level of
autonomy ↵ is also used to scale the haptic feedback [20],
[21] assisting the user in task completion [22] to convey
the level of automation confidence to the operator [23].
Experimentation results, with a human-robot peg-in-a-hole
testbed, show more than 5 times improvement in the error
tolerance for task completion with the proposed shared
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Figure 2.24: Arbitration. The control ration between the human input qh and the machine
input qm is balanced to create a desired output qref with the robot’s autonomy level α as a
parameter [163].

The above domains are not strictly separated and can at times be combined in a single

application. For example Nudehi et al. [159] describe a control system that merges tele-

operation with shared control. A surgical robot is simultaneously remote-controlled by an

expert and a novice and their input is weighted according to their experience level before

being passed on to the robot’s control unit. Alternatively, a system could switch between

the aforementioned domains through arbitration. Owan et al. [163] suggest an approach

to merge human input qh with the input of the machine qm to create a desired output

qref , given the level of autonomy α ∈ [0, 1] as follows:

qref = αqm + (1− α)qh, (2.1)

which is illustrated in Figure 2.24. Note that the parameter α can be used to tune the

control ratio in a shared control setup and can be dynamically changed to transition

between the modes of mixed-initiative interaction.

In summary, the rise of more complex human-machine interaction scenarios comes with

a demand for collaboration concepts. The spectrum between teleoperation and shared

control defines the design space which we are exploring in this research.

2.6 Intention Prediction

The demand for prediction of user intention by robots traditionally stems from the field

of safe human-robot interaction. However, in recent years technological progress enabled

robots to become autonomous partners in collaborative setups [110, 220]. For a robot to

assist effectively, a channel to communicate a user’s intent is required for anticipating their

next move [71, 72]. Traditionally, this has been implemented through explicit commands

such as keyboard inputs or voice commands [73]. However, fluent collaboration requires
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multimodal implicit means of communication as it occurs in human-human collaboration.

For example, humans observe each other’s gaze to coordinate manual tasks in teamwork

settings [230]. In the context of assistive robots, the equivalent of such intuition is a

system for intention prediction.

Concerning tasks involving the handheld robot, we define intention as the user’s choice

which specific object they want to interact with next. With this in mind, we review

recent work on intention inference where different methods can be distinguished by the

predictor that was used as a basis for the respective prediction systems, mainly body

motion, Electroencephalography (EEG) signals and gaze data.

2.6.1 Motion as an Intention Predictor

Early work on human action prediction concerning manual tasks uses marker-based wrist

tracking to estimate sub-sequences of an assembly task [118]. The authors used the hands’

velocity, acceleration and jerk as predictors to train a Hidden Markov Model (HMM) and

achieved 92.26% accuracy in predicting basic classes of movements such as reaching out,

retraction and grasping. Similarly, Mainprice et al. [133] use upper limbs pose data from

optical motion tracking to predict future reaching movements in one-handed collaborative

tasks using inverse optimal control and iterative re-planning.

Ravichandar and Dani [178, 179] investigated intention inference based on human full-

body motion. They used a generic reaching task and a Microsoft Kinect for data collection,

which was then used to train an ANN to predict future reaching locations. The model

allows for accurate predictions within an anticipation time of approximately 0.5 s prior to

the hand touching the object. Later, they added human eye gaze tracking to their system

and used the additional data for pre-filtering to merge it with an existing motion-based

model [180], which helped increase the anticipation time to 0.78 s.

Similarly, Zunino et al. [252, 253] use onset motion, i.e. the beginning of an action to

predict an underlying intention using an ANN, which was trained based on 3D motion

tracking data from a Vicon system and 2D video data. Remarkably, their classification

system discriminates the actions passing, placing, pouring and drinking with an accuracy

of 80.5% even though they all start with similar onset, i.e. moving a bottle.

Furthermore, Koppula and colleagues [90, 103, 104] use body motion for prediction, which

is captured through an RGB-D camera. Their approach takes into account a predicted

task’s motion-based affordance, which allows for action predictions with 84.1%/74.4%

accuracy 1 s/3 s in advance, respectively. Figure 2.25 shows an example of an action

prediction and how a service robot might use this information to assist with a task.

Building on these contributions, Dutta et al. developed a probabilistic model through
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Figure 2.25: Human Action Anticipation for Service Robotics. The approach is based
on using an RGB-D as an input (a) to model associated action affordance (b) which serves as
a basis for the anticipation of a trajectory probability (c). In consequence, the robot augments
anticipated actions (d) [103].

their recent series of work [43–46] to predict human actions. It is based on a description

of object-affordance, that is the spatiotemporal relationship between a human and an

object. Together with the human’s latent body pose, this allows the prediction of motion

goals and the construction of a probability heat map that represents possible future hand

trajectories. Their concept was validated through experiments with basic actions such as

reaching, moving, pouring and drinking. In their most recent work [46], their motion-based

prediction model yields an accuracy of up to 93.02% for a variety of human activities.

2.6.2 Brain Computer Interfaces

Thanks to recent advances in neuroscience, sensor technology and methods for data anal-

ysis, a variety of neural methods is now available to measure intent information [149].

The growing field of Brain-Computer Interface (BCI) aims to extract electrophysiological

signals from neurons and use them as a basis for a communication link between the hu-

man brain and an external device [4]. Due to technological progress concerning real-time

temporal resolution, EEG attracted researchers’ attention with regards to implementing

BCI systems to derive cognitive functions, such as decision making, attention and motion

planning [228]. Put short, an EEG setup is an array of electrodes that measures regional

brain activity through the detection of fluctuating neural electric potential [20].

Different EEG methods vary with respect to the electrodes’ proximity to the neurons.

Sarac et al. [192] used surface EEG to detect user intent through electrodes, which were
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arranged noninvasively on the scalp. The EEG signals are decoded using a linear discrim-

inant analysis to infer patients’ motor planning in a rehabilitation robot setup. Within

their work about intention inference for prosthetics, McMullen et al. [144] use so-called

electrocorticography. This is a form of EEG where the electrodes get placed on the surface

of the brain through a surgical procedure. The electrodes’ proximity to the brain allows

for a higher resolution of the EEG signal. Using this BCI as an additional input for the

prosthesis controller, patients were able to perform grasping tasks more accurately.

Note that this kind of intent inference is at an early stage [4]. While existing solutions

are useful to derive a proxy of human motor intent, more neuroscientific knowledge is

required to develop BCIs that allow for intention prediction on a task planning level, i.e.

as envisioned for the handheld robot.

2.6.3 Inferring Attention and Action Intent from Gaze

Literature on using eye and/or head gaze for intention estimation is vast and spans many

decades. Standard methods to detect gaze directions commonly involve remote [154] or

head-worn [137] eye trackers or determining head orientation for example through 2D

cameras [117, 208]. The information about both head orientation and eye gaze has been

linked to a person’s focus of attention and intention in the past [152, 161]. Here, we

distinguish between attention as a person’s current object of involvement and intention

as the plan of future interaction.

Figure 2.26: Fixations During Every-Day Tasks. This figure shows the scene of a task
with an example of an according series of fixations of a participant during task execution. The
fixations correspond in time to the actions that are associated with the fixated objects [112].

Fixations are the short times between saccades, where the gaze rests at an object as a

visual scene is explored and usually have a duration of a few hundred milliseconds [187,

191]. Land et al. [112, 113] found that there is a close relationship between gaze fixations

and manual actions as the eye gaze precedes interactions. They conducted an experiment
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where subjects completed every-day tasks such as making a tea as demonstrated in Figure

2.26. The results yield that the fixation sequence had a time shift of around 500 ms

relative to the object interaction sequence. The fact that this relationship can be found

in automated tasks suggests that this phenomenon of unconscious attention might occur

in other life situations as well and might thus reveal underlying planning activities.

This goes in line with studies on hand-eye coordination where subjects were asked to

prepare a sandwich from a given set of ingredients [64] or to wash their hands [170]. Both

indicate that object fixations during task completion do not depend as much on salience as

on its functional relevance to the task. Furthermore, they found that while most fixations

were associated with the current sub-task, a small fraction of around 5% was dedicated

to future objects during task-switching for instance right before another ingredient was

picked by subjects during the sandwich-making task. Pelz and Canosa [170] concluded

that the planning of movements is done a few seconds prior to actions.

Similarly, Mennie et al. [145] studied human gaze behaviour during an assembly task where

they linked object fixations to task planning. The authors suggest that the human eye

gathers visual information about a task object trough look-ahead fixations right before

interaction rather than relying on longer-term visual memory when it comes to task

planning.

Beyond the planning of motion, gaze fixations are also linked to the process of making

decisions about a task. In experiments with virtual [12] and real [169] block design

tasks, participants were asked to copy a given block pattern. One might expect that the

subjects would look at the pattern and memorise it before replication. However, their gaze

behaviour was characterised by repeated saccades towards the model during the assembly

process, which, according to the authors supports a just-in-time planning process.

With the development of more accurate systems for head and eye gaze tracking, re-

searchers started using this data to infer human intention. The studies by Yi and Ballard

[243] is an example of early work, where eye gaze is used as a feature to recognise human

task behaviour in a sandwich-making task using a dynamic Bayes network. However,

the authors do not indicate that this model could be used to make predictions of future

actions. Furthermore, both head and gaze data were used to predict the behaviour of

car drivers in traffic [41]. The authors use a sparse Bayesian learning model [143] trained

on gaze data of a time window of 3 s prior to lane changes to predict driver’s decisions.

While their work demonstrates the importance of gaze cues for intention prediction, pre-

sumably, their model does not generalise well for the case of cooperative handheld robots

as head-turning movements were identified as the major predictor. Arguably, the occur-

rence of these movements is rather specific to the domain of car driving and less relevant

to interaction with intelligent tools, where users mainly direct their head towards the
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tooltip.

In recent work, Koochaki and Najafizadeh [100] present a vision-based approach to intent

prediction that is solely based on eye gaze data in every-day tasks. Their algorithm

first extracts the human’s regions of interests in the visual field by identifying clusters of

fixations. In a subsequent step, the objects in these image regions are identified using a

Convolutional Neural Network (CNN). Amount and temporal properties of the fixations

associated with the object are then used as features for an SVM-based task classification.

The model performs with 95.68% accuracy. In subsequent work [101], the authors change

the model and take into account the sequence of selected objects to predict tasks using a

Long-Short Term Memory (LSTM), which yields 82.27% average accuracy across tasks.

The authors suggest that the prediction model could be used as an input for motion

planners of assistive devices.

While the aforementioned works by Koochaki and Najafizadeh demonstrate the potential

of gaze-based early intent prediction, they come with two major limitations. Firstly,

the eye gaze data was not recorded during actual task execution. Instead, experiment

subjects were asked to look at relevant objects in a given 2D image after being told a task

for ground truth. However, it is unclear whether the subjects’ gaze behaviour is the same

as it would be during task execution. Secondly, the authors do not report to what extent

their method allows for predictions in the future, i.e. the model’s accuracy as a function

of the point in time of task anticipation.

The studies by Huang et al. [75] are of particular interest for our research as their approach

aims for intention prediction in collaborative setups rather than focusing on one person

only, like in the works mentioned above. Furthermore, their SVM-based prediction model

only uses eye gaze data as input. The data is derived from a customer-worker setup

where the customer chooses a set of sandwich ingredients through verbal requests while

their gaze is tracked using a head-mounted gaze tracker. In contrast to [100, 101], their

prediction approach is bottom-up, i.e. the position and identity of the objects in the

scene are known through visual tracking. This allows the construction of features such

as gazing duration and number of glances for individual objects, which are then fed to

the SVM’s input. Through this method, the authors achieved the prediction of ingredient

selection with an accuracy of 76% and correct predictions around 1.8 s prior to the verbal

request.

In subsequent work, Huang and Mutlu [74] used the model as an input to an assistive

robot’s path planner (Figure 2.27). The predictions were used for anticipatory control

in a collaborative pick and place task. The robot approached objects with increasing

likelihood of their selection through the human, which improved completion time com-

pared to following verbal commands only. While it is unclear whether this model would
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Figure 2.27: Anticipatory Robot Control. The robot derives user intention from eye gaze
and uses this information to plan proactive actions within a collaborative task Huang and Mutlu
[74].

be feasible in a shared-control setup such as we face with handheld robot applications,

it demonstrates that it is suitable for cooperative task solving and enables the robot to

accelerate task completion through proactive actions.

2.6.4 Summary of Methods for Intention Prediction

This literature review shows that intention prediction has been studied extensively in

recent years with a broad variety of modalities, deriving human intent from motion, gaze

or BCIs. At the same time, the use of intention models for the control of anticipatory

robots is at an early stage and has not yet been explored for setups with close proximity

between the user and the robot, i.e. such as we face in handheld robot setups. We suggest

that eye gaze is a promising predictor for the use in our work as it is accessible (easier to

detect than signals for BCIs) and not constrained by the setup itself (e.g. body motion is

tight to the robot’s position). For this reason, the reader shall also be introduced to the

mathematical representation of the user’s eye gaze in the following section.

2.6.5 Mathematical Representation of the Eye Gaze

The analysis of eye gaze for intention prediction requires a mathematical representation of

the gaze. Therefore, the reader shall be exposed to a brief excursion about the definition

of a ray and how it can be described with respect to related coordinate frames (e.g. the
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eye, a robot and the world) using homogeneous transformation. The remainder of this

section is based on the mathematical theories described in [24].

H

Figure 2.28: Homogeneous Transformation. Illustration of the transformation of a vector
with respect to two relative frames [24].

Let P be location and ix a vector that points to P , represented in the coordinate frame

Fi. Then P can be represented in coordinate frame Fj through jx (see Figure 2.28). The

relationship between ix and jx can be described using the homogeneous transform matrix
jHi:

xi = iHj xj. (2.2)

The transformation matrix H is a 4× 4 matrix with the following elements:

H =

(
R t

0 0 0 1

)
, (2.3)

where R is a 3 × 3 rotation matrix and t the translation vector. R can be constructed

through various ways, e.g. roll-pitch-yaw angles or Euler angles.

iHj can be calculated if the transformations of Fi and Fj are known with respect to a

fixed world frame Fw. The relationship between wHi and wHj is:

wHj = wHi
iHj, (2.4)

hence,
iHj = (wHi)

−1 wHj. (2.5)
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Figure 2.29: Comparison of two Rays. Illustration of the mathematical representation of a
ray which is defined by its origin a and its direction b. Two rays r1, r2 can be compared with
respect to the difference of their directions φ1,2.

An eye gaze can be represented using the definition of a ray r ∈ R3 through the equation

[26]:

r(λ) = a + λb with a, b ∈ R3, λ ∈ R, (2.6)

where a is a vector to the ray’s origin and b the orientation. The angle φ1,2 between two

rays r1, r2 (e.g. as illustrated in Figure 2.29) is equal to the angle between the according

direction vectors b1, b2:

cosφ1,2 =
b1 · b2

|b1| · |b2|
. (2.7)

If the gaze ray r is known in a local frame, e.g. of an eye tracking device, then it can be

transformed to world coordinates using the aforementioned transformation theory.

2.7 Remote Guidance

A collaborative remote assistance system is usually based on three parties: an unskilled

local worker, a skilled remote expert and a device that mediates information in both di-

rections and commands from the expert to the local worker. In this work, we demonstrate

how the handheld robot can serve the purpose of a remote collaboration device (Chapter

5). A major novelty is the physical access of the remote user to the worksite through

the remote control of the robot’s mechanism in a human-robot-human setup. Alongside

traditional communication, e.g. voice and vision, this can be used for guidance and ma-

nipulation. Therefore, the related literature draws from the field of remote guidance and

telemanipulation.

Remote guidance systems allow a remotely located person to assist a local person through

instructions and directions. Due to its relevance to industries, e.g. for maintenance and

training, extensive research has been carried out in this field in recent years, which aims

at overcoming the limitations of traditional consulting methods such as audio or video

calls [106]. Current solutions to communicate the local conditions of the task state require

a camera at the worker’s site, which is either stationary [69, 121, 162, 177, 231], portable
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(e.g. smartphone or tablet) [21, 53, 54, 140, 206], worn by the local user [22, 69, 186]

or operated by the helper [61, 107–109]. These solutions have in common that the video

feed of the local workspace is displayed to the remote helper either on a desktop screen,

tablet or smartphone alongside audio communication. However, the methods are distinct

in their respective communication features for the helper’s instructions to the local user,

which are outlined in the following.

2.7.1 Instructions Through Video Markups

In early work, Ou et al. [162] introduced video markups in addition to traditional video

consulting. They describe a remote assistance system that includes a camera on the

worker’s side, that is remotely controlled by a consulted specialist. The specialist can use

predefined forms and free-hand pen drawings to overlay the video stream with annotations

for the worker. These annotations are then transmitted to a screen at the worker’s side.

Their preliminary test results with physical tasks show that using the annotation system

improves the performance over the use of video-only systems. The authors suggest that

this could be used to consult a specialist in surgery (Figure 2.30). The problem with

video-markups is that annotations become meaningless when the camera is moved. This

problem was address in subsequent research involving AR solutions.

Figure 2.30: Remote Guidance in Surgery. Pen drawing video-overlay during specialist
consultation [162]

For example, Wang et al. [231] introduced a system for maintenance, where the remote user

can make annotations to the product, which is equipped with a QR-tag. This allows the

remote expert to create 3D animations and to label specific parts for detailed instructions.

The system is object-specific as the system requires a model of the maintenance object

at the remote site as a prerequisite. This is useful for complex machinery, with recurrent
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problems or maintenance task with user support through the manufacturer, i.e. in the

place of a manual for the technician. However, it does not work for objects that are large

(e.g. car maintenance) or that are new to the system.

(a) (b)

Figure 2.31: Product Support through Telemaintenance. The expert remotely instructs a
technician (a) with annotations and animations using a video overlay tool (b) [231].

For this reason, recent works [21, 53, 54, 140] focused on remote maintenance systems

with AR features for unstructured environments. The local technician is equipped with

a handheld screen, e.g. a smartphone or tablet computer (Figure 2.32). It displays the

camera image to which a remote expert can add annotations to. These are world-stabilised

with respect to the work scene, i.e. annotations stick with objects in the environment

even if the camera gets moved. The advantage of these systems is that they are based

on widely available consumer hardware and do not require any physical pre-setup at the

technician side, e.g. for tracking. However, as opposed to aforementioned solutions with

static cameras, the remote user is unable to move the camera and is thus fully dependent

on the technician following their instructions in the inspection and diagnosis part of the

collaborative maintenance task. In addition, a separate display can potentially distract

the technician from the real work site and occupies an otherwise free hand.

Figure 2.32: Handheld AR System for Remote Maintenance. The device records the
environment for a remotely located expert, who assists through world-stabilised annotations [54].

41



CHAPTER 2. BACKGROUND: A REVIEW OF HANDHELD ROBOTS,
INTENTION PREDICTION AND REMOTE ASSISTANCE

2.7.2 AR Headsets in Remote Guidance

The idea of free-hands instruction display was implemented in recent works [22, 151],

where instructions are displayed through an Head Mounted Display (HMD). For example,

in recent work in this field Mourtzis et al. [151] propose a remote maintenance system

where a technician creates a malfunction report, which is sent to an expert, who then

compiles a list of predefined AR instructions. The technician then works through the

instructions using an AR headset. Note that this solution allows for free-hand operation

and detailed instruction. However, expert consultation is an offline process. Hence, this is

useful for complex maintenance for special cases, i.e. in a customer support scenario.

Figure 2.33: AR Maintenance Instruction System. The illustration shows the hardware
setup for the local technician introduced by [151].

Tait and Billinghurst [213] experimented with a remote collaboration setup where the

remote users’ view is independent of the local user’s actions. The technician wears an AR

headset, which transmits a 3D model of the environment to the remote user and allows

an independent scene exploration on a 2D screen. They can place annotations in the

3D model which become visible for the local worker through the AR headset. Within

their experiments, the authors tested the setup with varying degrees of independence

of the remote user’s view to study its effect on collaborative performance. The results

show that higher levels of independence increase remote users’ confidence while less verbal

communication was required to complete the task. Subsequent studies on the effect of view

independence on video-mediated remote collaboration supported these results [97].

2.7.3 360° Cameras and VR for Telepresence

Following the idea of giving the remote user independent control, recent works [94, 141,

215] explored a new body-ghost paradigm (Figure 2.34). Cameras with 360° view angle

allow to record the environment and enable a remote user to observe it with a perspective

of their choice. Matsuda and Rekimoto [141] combined a 360° camera with a mobile
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platform as a telepresence system. Similarly, Tang et al. [215] describe a system where a

360° camera is mounted on the local user’s backpack while the remote user accesses the

video stream through a tablet. Notably, Kasahara et al. [94] present a system where the

local user wears a 360° recording device around the head which transmits to a remote

user’s VR environment, this allowing for a natural view control through tracking of their

head angle.

Similarly, Linn et al. [121] developed a telepresence solution purposed for remote mainte-

nance of machinery. A 360° camera is placed in the machine casing, which allows a remote

technician to perform an inspection and check for defects. Notably, the authors suggest

that the system could be improved through mounting the camera on a robot tip to give

the remote user a higher degree of control over the view perspective. To the best of our

knowledge, the question of how this could be implemented in a collaborative setup, e.g.

in a human-robot-human scenario is yet unanswered.

Figure 2.34: The Body-Ghost Paradigm. The Local user is equipped with a 360° recording
device. The remote user (ghost) can choose the view angle for independent inspection of the
environment.

Note that the above mentioned 360° vision solutions do not feature any visual feedback

to the local user or require expensive calibration procedures as is the case with Linn et al.

[121]. Previously, Gurevich et al. [61] presented TeleAdvisor, a remote assistance tool.

Its main components are a camera and a pico projector, both mounted at a teleoperated

robot arm. This allows a remote user to perceive the worksite environment and to project

annotations on to it to assist in physical tasks. Kangas et al. [93] combined this idea with

the aforementioned body-ghost paradigm for assisted maintenance. The local worker

carries a 360° camera and a projector. The remote expert wears a VR headset and

accesses the projector for annotations. Additionally, the projector is aligned with another
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camera for a detailed view of the local scene. Their user study shows that pointing is a

useful feature in combination with verbal instructions. Similar results can be expected

when using a handheld robot for remote pointing during remote assistance.

2.7.4 Guidance through Natural Gestures

A more natural approach to remote guidance is taken in works where the helper gives

instructions via hand gestures [69, 186, 206], captured full-body motion [239] or through

a robotic mechanism [108, 109].

Higuch et al. [69] experimented with a collaboration system where the remote user’s

hand gestures and gaze fixations are visualised in the worker’s scene. The setup was

tested for a static setup where a stationary projector was used for the visualisation and a

mobile case, which involved a see-through HMD and a head-mounted camera. They found

hand gestures and fixations were used in various ways to complement verbal instructions.

Notably, in some cases, the local user was able to predict instructions after observing the

remote user’s fixations.

Robert et al. [186] introduce a remote guidance prototype MobileHelper, implemented for

a tablet computer. It allows a remote expert to use hand gestures for instructions, to guide

a local technician through various physical tasks. The technician can work hands-free as

the gestures are visualised using an AR headset.

(a) Higuch et al. [69]
.

(b) Robert et al. [186]
.

(c) Sodhi et al. [206]
.

(d) Yamamoto et al.
[239]

Figure 2.35: Examples of Remote Guidance with Gesture Use. Existing solutions range
from in-screen overlays to scene projection and AR integration of a helper’s pointing gestures.

Sodhi et al. [206] present BeThere in a proof-of-concept study for future mobile technolo-

gies. Similar to the aforementioned work, the prototype allows the remote user to provide

guidance through hand gestures. However, rather than transmitting a segmented picture

of the expert’s hand, the authors used a Kinect to capture the hand pose. The local

user sees a hand animation in the work scene as an overlay in their phone screen. Their

user study demonstrates that the system can be used for various physical collaboration

tasks.

44



2.8. TELEMANIPULATION

The idea of using gestures for interaction was further extended through work by Yamamoto

et al. [239]. Their system captures an instructor’s full-body motion. Using an AR headset,

a 3D animation of the body pose is brought to the worker scene. The authors suggest

that such a system has the advantage of covering much bigger workspaces than previous

work that focused on hand gestures.

By comparison, less effort was spent on the exploration through embodied guidance, i.e.

mediated through a robot. An example is GestureMan [108, 109], which is a mobile robot

equipped with an actuated camera and pointing stick. However, the pointing mechanism

is limited by a few DoF and thus not suitable for manipulation.

The above examples demonstrate that collaboration in remote guidance setups greatly

benefits from deictic elements for multimodal instructions. The ability to highlight things

in the work scene often replaces wordy instructions. While existing methods offer efficient

solutions for the communication of instructions, they do not allow any direct physical

interaction within a collaborative setup. This leaves local workers in charge of carrying

out any manipulative actions by themselves.

2.8 Telemanipulation

In contrast to remote guidance systems, telemanipulation allows a remote operator to

execute physical operations, i.e. through a remote-controlled robot rather than instructing

another person. Early examples of such master-slave manipulation systems date back to

1945, when the company Central Research Laboratories1 developed a remote manipulation

device, which was purposed to handle highly radioactive goods (Figure 2.36).

Today’s application examples exist in the form of sedentary robots for remote maintenance

and inspection of machinery [16, 17], telerobotic surgical systems [62] such as da Vinci [11,

233]. Furthermore, remote manipulation is used for safe physical interaction in hazardous

environments, e.g. the outer space [195], nuclear [139, 214] or fusion [204] power plants

and for the handling of dangerous materials such as nuclear decommissioning [2]. In terms

of mobile robots for telemanipulation, the most advanced examples have been explored

in the context of disaster response [38, 65, 198] and exploration of the outer space [28, 87]

and deep sea [232]. These systems enable a remote user to navigate through unstructured

environments and manipulate physical objects.

The remainder of this section highlights the two areas of the field of telemanipulation that

are most relevant to this work, i.e. semi-autonomous teleoperation (Section 2.8.1) and

remote maintenance robots (Section 2.8.2). Furthermore, Section 2.8.3 describes initial

1www.centres.com
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developments towards remote collaboration through wearable robots.

Figure 2.36: Master-Slave Manipulator Mk. 8 (MSM-8). This shows an early example
of a remote manipulator developed by Central Research Laboraties in 1945.

2.8.1 Semi-Autonomous Slave in Teleoperation

While telepresence has been studied extensively concerning control problems emerging

from time delays [95] and the bilateral design of force feedback mechanism [153], there are

few examples for semi-autonomous control in this area. Liu and Chopra [124, 125] present

a method that allows the user to control a subset of a robot’s DoFs while the remaining

ones are autonomously controlled to deal with the subtasks of avoiding singularities, joint

limits and collisions, which increases the manipulability of the slave-robot (see Figure

2.37). While these features make the control easier and more robust during usage, the

system requires continuous supervision of the operator, i.e. the robot is unable to complete

parts of the task that require task knowledge for high level decisions.

In contrast, the master-slave telemaintenance system introduced by Marturi et al. [139]

demonstrates how operating a robot can be facilitated through the automation of local

subtasks. Brokk is an industrial robot that was developed for teleoperated sorting and

segregation of nuclear material (see Figure 2.38a). The authors experimented with a

stacking task setup and a 7-DoF robot as a mockup (Figure 2.38b ). Computer vision

was used to assist in grasping and releasing of objects with the idea being that this method

could later be transferred to the Brokk system. The operator manually navigates to a

task object and then delegates the grasping operation through on-screen selection. The

comparative user studies show that the semi-autonomous features reduce workload and

cut down completion time.
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1562 Y.-C. Liu, N. Chopra / Automatica 49 (2013) 1553–1565

(a) Without the use of sub-task control. (b) With the use of sub-task control for joint limits.

Fig. 4. Estimates of the dynamic uncertainty in the proposed semi-autonomous teleoperation system.

(a) Position configurations of the master and slave robot. (b) Configurations of the slave robot without sub-task control.

Fig. 5. Configurations of slave robot in the presence of an obstacle in the environment without using collision avoidance control. The green box is assumed to be the obstacle
in the remote environment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

first two joints, the slave robot regulates its configuration to avoid
colliding with the obstacle as seen in Fig. 6(b). Under the sub-
task control for collision avoidance, the teleoperation system still
achieves position tracking as shown in Fig. 6(a). Moreover, com-
paring the position configurations in Figs. 5(a) and 6(a), we can ob-
serve that the tracking performance is unaffected by the sub-task
control, provided a collision-free configuration and trajectory exist.

Finally, we demonstrate the performance of the semi-autono-
mous teleoperation when the slave robot contacts the environ-
ment. In this simulation, we consider the case where the sub-task
control ensures that the slave robot avoids singular configurations.
The human operator ismodeled as a spring–damper systemwhose
spring and damping gains are 30 N/m and 15 N s/m for both the x
and y directions. In the simulations, there is no human force before
t = 15 s, and the human operator pushes the master to the posi-
tion X1 = [�0.5, 1.5]T m at t = 15–30 s and X1 = [0.5, 1]T m
after t = 30 s. In order to evaluate the stability in the presence
of environmental force, we implement a wall in the remote envi-
ronment at x = 0 m, which means that the slave robot will suffer
an external force if its position in x direction is negative. The en-
vironmental force is modeled as a lightly damped spring–damper
system, whose spring and damping gains are selected as 80 N/m
and 0.1 N s/m. The simulation results are shown in Fig. 7(a) and (b)

with sub-task control. When there is no human force before t =

15 s, the master and slave robots converge to each other as in the
freemotion case. After t = 15 s, the human operator exerts force to
move themaster robot towards the first set-point. Around t = 19 s,
the slave robot contacts the wall in the remote environment, so
the position errors in Fig. 7(a) do not approach the origin. As seen
in Fig. 7(b), the human operator exerts a force to the master robot
in order to push it moving towards X1 = [�0.5, 1.5]T m. When
the slave robot contacts the wall, the environmental force is re-
flected to the master robot, and hence the human operator is not
able to push the master robot any further. When the human oper-
ator moves the master robot to another set-point after t = 30 s,
the environmental force disappears, and the tracking errors of the
teleoperation converge to the origin eventually. Moreover, the sin-
gularity avoidance sub-task control changes the configuration of
the slave robot to increase the manipulability (Nakamura, 1991;
Yoshikawa, 1984). The value of manipulability with and without
using sub-task control are shown in Fig. 7(c). It is evident that, the
sub-task control increases the manipulability as compared to the
case when no sub-task control is utilized.

Remark 5. Three cases are illustrated in this section showing
that by utilizing the proposed task-space teleoperation controller

(a) Configuration without sub-task control.

Y.-C. Liu, N. Chopra / Automatica 49 (2013) 1553–1565 1563

(a) Position configurations of the master and slave robot. (b) Configurations of the slave robot with sub-task control.

Fig. 6. Configurations of slave robot with an obstacle in the environment and using collision avoidance control.

(a) Position configurations of the master and slave robots. (b) External force and the distance between the end-effector of slave robot
to the wall.

(c) Manipulability of the slave robot with and without using sub-task
control.

Fig. 7. Simulation results of the proposed teleoperation system with hard contact and sub-task control to avoid configuration singularity.

(Section 3) and sub-task controller (Section 4), the system can
achieve semi-autonomous teleoperation successfully. The human

operator only needs to concern about manipulating the end-
effector of the master robot, and the slave robot can regulate its

(b) Configuration with sub-task control.

Figure 2.37: Semi-Autonomous Control of Redundant Slave Systems. Illustration of nu-
meric proof-of-concept study where the slave robot semi-autonomously controls redundant joints
to avoids singularities, joint limits or obstacles (shown here) [125].

(a)

2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA)
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Figure 2. Experimental set-up showing various components used in this
work. The test rig with seven buttons, used for the point-to-point dexterity
task, can be seen on the left.

tool center point of the robot and the camera is mounted on
top of the gripper whose optical axis coincides with the z-axis
of the gripper frame. The vision-guided control architecture
for semi-automatic tests was implemented in C++ and is
executed from a remote computer running Windows (8 GB
RAM, 2.3 GHz Intel core i7 CPU). The communication
between the PC and the robot controller has been realised
using UDP and the gripper control commands are transmitted
over serial port. Real-time matrix computations are performed
using ViSP [17].

B. Test-bed for Tele-operation

The tele-operation test-bed is an aluminium frame consist-
ing of seven industrial emergency stop push buttons marked
as S · · · 6 as shown in Fig 3. The outer dimensions of the
frame are 50 × 50 × 50 cm3 and the diameter of each button
head is 40 mm. Each button on the frame is electrically
connected to the work computer via U-HID (USB) interface
board in order to record the corresponding button press event
(with a beep sound) as well as the overall task time. Time
recording automatically starts when the start button S is
pressed and the total time is saved with a task label when the
last button i.e., button-6 is pressed. The directions to navigate
from point-to-point are pre-selected and are shown with the
arrows in Fig. 3(b).

A software user interface (UI) as shown in Fig. 4 has
been implemented in order to provide various functionalities
to tele-operate the robot as well as to control other system
components. Firstly, it allows the operator to jog the robot
in both Cartesian and joint spaces with different speeds.
However, for the sake of task simplicity only Cartesian
jogging in world coordinate frame is used in this work. Next,
it allows to configure and jog the robot using a standard USB
keyboard that acts like a low level haptic device in moving
the robot. Finally it allows to open and close the gripper
whenever required and provides views from all the scene
cameras.

(a) (b)

Figure 3. (a) CAD model of the test-rig used for point-to-point tele-operation
task. (b) Button-press order for navigation with arrows illustrating navigation
directions required for the point-to-point task.

Figure 4. Our user interface for controlling various components in the
system.

C. Task Description

The two tasks designed to analyse the differences between
fully supervised tele-operated handling and vision-guided
semi-autonomous manipulations are detailed below.

1) Point-to-point Dexterity Task: The initial task of point-
to-point robot navigation has been designed to evaluate the
performance of human subjects who are required to execute
the task by passive vision i.e., by looking at the camera-
provided views of the workspace (see Fig. 5). This is usually
the case in nuclear environments where tele-operated robots
are used with several camera views of the application area.
This task requires the participants to move the robot’s end
effector from button-to-button on the test-rig in a specific
order described by the arrows in Fig. 3. To successfully
complete this task, participants need to change both the
position and orientation of the end effector to be able to
reach the buttons.

(b)

Figure 2.38: Semi-Autonomous Telemanipulation [139]. (a) shows Brokk, a tele-operated
robot for nuclear decommissioning that might benefit from autonomous features. (b) shows the
testing setup for semi-autonomous stacking of blocks.

2.8.2 Robots for Remote Maintenance

Sedentary [16, 216, 242, 247] and mobile [205] maintenance robots allow a remotely located

operator to inspect, diagnose and interact with a physical structure at the work site.

In early work, Bellamine et al. [16, 17] introduce a remote maintenance system that allows

for planning and executing operations (Figure 2.39). A robot arm is located at the worksite

and equipped with a vibration sensor, which is used to detect cracks in the casing. The

operator can observe the site through a camera from a third-person perspective. There

are two operation modes for the robot. In continuous manual mode, the robot’s motion is

under control of the operator. In supervisory control mode, low-level tasks are executed

autonomously, following the operator’s high-level instructions, e.g. contact points at the
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Figure 2.39: Master-Slave Setup for Maintenance. Conceptual model of a remote main-
tenance system proposed in [17].

machinery to place the sensor. At the time of its reporting, the system is at an early

stage of development. The planning process is done offline using a 3D model and AR.

The alignment of the 3D model to the real world requires a time-consuming manual

matching procedure.

Similarly, Yew et al. [242] present a system for remote maintenance through an industrial

robot at the worksite, which is equipped with a camera at the tip. As a novelty, they

introduce AR-enhanced interaction between the operator and the robot. The components

of the worksite are in part available as a physical copy at the operator’s side and part

of the AR environment otherwise (see Figure 2.40). The components are aligned with

a virtual version of the robot, which is visualised in simulated part of the environments

too. This enables more spacial awareness and an intuitive estimate of joint limits during

robot control through a hand controller. The work is in its early stages, e.g. it neglects

obstacles that could be in the way and that are not part of the AR system. However,

using a plumbing maintenance task as an example, the authors demonstrate that novice

users could pick up how to control the robot quickly due to the intuitive design of the

interface.

Figure 2.40: System for Remote Maintenance. A mix of real and virtual components (left)
allows for intuitive operation of the robot at the work site (right) [242].

Today’s advanced maintenance robots are purposed for applications in environments that

are inaccessible to humans, such as industrial offshore platforms [216] and fusion reactors
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[205, 247]. For example, in the context of the fusion power project ITER [52], remote

handling of goods in hazardous environments is required as part of some maintenance

procedures. Soares et al. [205] present a mobile multi-purpose robot for safe routine

maintenance in the vacuum vessel of the power plant. The system has an omnidirectional

mobile platform, equipped with several sensors and two robot arms (Figure 2.41a). Each

has 6-DoF and is equipped with a camera for a detailed view during manipulation. A

central camera allows for a wide perspective around the worksite. The operator accesses

the robot through a workstation, which is equipped with a display and a joystick for

manual control (Figure 2.41b).

(a) (b)

Figure 2.41: Mobile Maintenance Robot System. CAD model of the robot platform (a) and
an overview of the workstation for remote control (b) [205].

Similarly, Zhang et al. [247] report about a robot that is highly specialised for inspection

and maintenance of the fusion vessel of the aforementioned ITER reactor. The snake-like

design of the robot has multiple DoF and a lightweight cable-driven mechanism. It is

mounted to an industrial robot which positions and inserts the robot through a small

opening in the vessel. The multiple DoFs allow the robot to follow complex paths while

its body follows the tip. This prevents collision with parts of the power plant during the

exploration of the vessel. The setup can be seen in Figure 2.42.

Existing solutions for telemanipulation are useful for environments that are inaccessible

for humans and scenarios with highly specialised robots and operators (i.e. surgery).

However, the research question of how remote guidance and telemanipulation could be

combined in a collaborative setup remains unanswered.
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Figure 2.42: Snake-Like Robot. Multi-DoF robot of OC Robotics for inspection and mainte-
nance. [247].

2.8.3 Teleoperation of Wearable Robots

A new approach in telerobotics is the concept of a teleoperated robot that is carried by

another person, e.g. Veronneau et al. [226] present a simple remote control scheme for

their waist-mounted robot (introduced in Section 2.4.1). While the remote control aspect

of this system is in its early stages, it demonstrates the feasibility of remote collaboration

through a robot and with the help of a proximate user as a carrier and helper.

Saraiji et al. [193] present a system with two remote-controlled robotic arms that are

attached to a user. The arms can be controlled through one or several remote users with

visual feedback provided through a camera system that is attached to the host. The

remote control implementation is based on a VR system (Figure 2.43). The system is a

first attempt of merging the capabilities and workspaces of several users. However, recent

works present challenges in teleoperation, particularly in the domain of remote assistance,

which need to be addressed in research that focuses on the teleoperator. For example,

in the aforementioned designs, the remote cannot control the viewpoint of the cameras.

Most importantly, the possibility of coupling teleoperation with semi-autonomous slave

control (as per Section 2.8.1) is yet unexplored for the case where a robot is used in

conjunction with a carrying host.

2.9 Summary

To summarise the usage of the background in the remainder of this thesis, Table 2.1

presents an overview of the reviewed material (in order of its presentation in this chapter)

and links the specific work sections to the discussed topics.

The presented literature shows that great progress has been made over the past years
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trainer would adjust physical the postural of the trainee by enforc-
ing his body to the correct posture. Also, the trainer might guide
the body movement by inducing forces to direct the trainee to fol-
low a certain route or sequence of actions. These three levels of
communications: Directed, Enforced and Induced are bodily driven,
which means they require the active involvement of body actions
to communicate our intentions. In remote situations, such collabo-
rative tasks become more challenging due to the lack of means to
represent our body actions.

In this research, we present “Fusion”, a novel wearable system
that can be used to achieve full body surrogacy, producing e�ec-
tive body driven communications. Fusion enables two people to
share the same point of view with the capacity to reproduce body
motion of an operator into the surrogate, enabling the operator to
e�ectively communicate and collaborate remotely. Figure 1 shows
the three levels of communication achieved using Fusion.

2 RELATED WORK
A body of work has explored the use of shared the same point
of view of other people for the purpose of remote collaboration.
[Kasahara and Rekimoto 2015] realized the concept of Jacking In1

into someone else’s point of view using a mounted omnidirectional
camera, allowing others to access one’s visual feed and used verbal
communication for collaboration. [Lee et al. 2017] uses a similar
concept, but also adding the ability to share non-verbal cues in
communication using Mixed Reality visual feedback. Such systems
provide lightweight solutions for direct communication, however,
they do not provide body driven actions towards the remote user.
Body action synchronization and matching systems were also pro-
posed to enable muscle control and mapping, such as [Nishida and
Suzuki 2016]. Although Electro Muscle Stimulation (EMS) based so-
lutions are promising for motor skills learning and control, however,
they still lack the ability to produce continues motion trajectory.
Also, such solutions are not suitable for long use due to the fatigue
caused to the muscles.

In this work, Fusion, we addressed the previous limitations, while
maintaining a high level of portability and accessibility of shared
actions for remote collaboration and e�ective body communication.

3 FUSION OVERVIEW
Fusion, as shown in Figure 2, consists of an operator and a surrogate
that are spatially separated. The operator uses o�-the-shelf HMD
(Oculus CV1) enabling him to access surrogate body. The surrogate
mounts a backpack that consists of three axes robotic head with
stereo vision and binaural audio, and two anthropomorphic robotic
arms (Six Degrees of Freedom) with removable hands shown in
Figure 3. The system is mobile, allowing the surrogate to freely
move and walk while wearing the backpack, enabling outdoor
applications. Fusion, as shown in Figure 1, enables three levels
of communication: (A) Direct actions using humanoid hands, (B)
Enforced postures by holding and moving surrogate hands, and (C)
Induced motions by moving surrogate hands beyond the physical
reach stimulating hand grasping e�ect.

Hands	&	Fingers	Control

Haptic	Feedback

Visual/Auditory	 Feedback

Head	Motion	Control

Figure 2: Fusion system overview, an operator (left) can ac-
cess a surrogate (right) to control and perceive feedback.

BA

Figure 3: Two types of hands depending on the intended col-
laboration scenario: (A) humanoid hands for general and
independent collaboration, and (B) mounted on surrogate
wrists for assistive collaboration.

4 EXPERIENCE
At SIGGRAPH’18, attendees can experience Fusion as either of two
roles (two attendees at a time): one surrogate, and other as an oper-
ator. The operator will be capable to access surrogate’s �eld of view
and uses robotic arms remotely as his own. The arms are operated
as either collaborative mode (independent arms) or assistive mode
(arm ends are linked to surrogate hands). The surrogate will mount
Fusion as a backpack, and work with the operator at a di�erent lo-
cation on cooperative tasks or assistive tasks. A variety of tools will
be provided to interact with. Also, auditing attendees can directly
interact with the surrogate.
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Figure 2.43: “Fusion”. A bi-manual robot that is attached to a host (right) and controlled by
a teleoperator (left) for collaborative tasks [193].

concerning the development of intelligent tools that can use task knowledge for assistance.

This is particularly true for highly specialised devices, e.g. surgery. With the recent

introduction of handheld robots for a more general-purpose, the tools’ assistance went

beyond corrective movement and mistake prevention towards a system that participates

in task decisions. Work in this field presents new challenges, e.g. we lack mechanisms

that allow smart tools to incorporate users’ plans in their decision processes. We argue

that this needs to be addressed to bring this type of robots one step further: away from

being purely assistive towards a collaborating agent that follows the paradigm of working

together.

New technologies allow the use of a single device through multiple users and existing

solutions demonstrate that teleoperation concepts are an effective approach to merge

workspaces of humans and robots. There are only a few examples of robots that can

be controlled whilst being hosted by another collaborating user, e.g. worn or carried,

which allows for new applications due to increased mobility. These examples are based on

master-slave concepts with direct control of every movement of the robots. However, we

see a great potential regarding the robot as a separate agent that could act as an intelligent

mediator between the collaborators. This requires the exploration of possibilities to bring

together the abilities of the involved agents and to consider how their respective strengths

could be combined in a complementary way.

Our work is a first step towards addressing the above challenges of human-robot inter-

action and human-robot-human interaction. With the aim for a better understanding of

how humans could interact with handheld robots, we hope to make a contribution to the

research community towards a future with collaborating tools.
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CHAPTER 2. BACKGROUND: A REVIEW OF HANDHELD ROBOTS,
INTENTION PREDICTION AND REMOTE ASSISTANCE

Background
Section

Background Topic /
Specific Work Topic(s)

Specific Work
Section(s)

2.2 State-of-the-Art Handheld Robots

Handheld Robot Hardware Adaptations
and HRI Challenges

3/4/5

Levels of Autonomy in Collaborative Task Solving 3.5.3/4.6.1/5.2.6

Metrics for Collaboration Performance and Quality 3.6/4.7/5.4

2.3 Intelligent Handheld Tools

Compensation of Unintended Motion
and Assisted Aiming

3.5/4.6/5.2

2.4 Wearables

Combining Attention/Intention with Task Knowledge
for the Control of Physically Dependent robots

3.5/4.2.2

2.5 Mixed-Initiative Interaction

Shared Control 3.5/4.6

Teleoperation and Traded Control 5.2

2.6 Intention Prediction

Gaze Ray Modelling in 3D Space 3.2

User Attention from Eye Gaze 3.5.1

Collection of Gaze Data for the Training Set

Gaze-Based Intention Modelling
and Algorithm Selection

4.2.2

Methods for Qualitative and Quantitative
Validations of Intention Models

4.3/4.4

Experiment Design for the Assessment of
an Anticipatory Robot

4.6

2.7 Remote Guidance

Remote Assistance Study Design 5.2.1

Remote Collaboration Setup 5.2.3

The Maintenance Experiment Task 5.2.4

Layout and Design of the Remote Workstation 5.2.5

Trial Procedure and Data Collection 5.2.7

2.8 Telemanipulation

Camera Setup for Visual Feedback 5.2.3

Layout and Design of the Remote Workstation 5.2.5

Semi-Autonomous Completion of Subtasks 5.2.6

Table 2.1: Usage of Background in the Specific Work Sections
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Chapter 3
I Can See Your Aim: Estimating User

Attention From Gaze For Handheld Robot

Collaboration

In this chapter, we explore the estimation of handheld robot user

attention, which is important for overcoming existing obstacles in

human-robot interaction as mentioned in the preceding Chapter 2.

The subsequent Chapter 4 will built on the attention model presented

here as it concerns gaze-based intention prediction.The outcomes of

this chapter are summarised in the supplementary video1 (scan QR

code).

The main results of this chapter were presented at the 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) [209].

3.1 Introduction

The vision of a handheld robot is one of an intelligent power tool that can lead its carrier

through a task by cognitive and mechanical augmentation (see detailed review in Section

2.2). That way, the use of such a robot could enable untrained or disabled people to

perform tasks which they would otherwise not be able to achieve without it.

Advanced systems in the area of intelligent handheld tools demonstrate how robots can

enhance users’ mechanical abilities and help prevent mistakes or suppress unintended

motion. For example, in the field of medical applications, some devices assist surgeons

1Chapter 3 Summary Video: https://youtu.be/lsQ4k71NLTA
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to cut bone substance along pre-defined 3D shapes [92, 128] or suppress hand tremor in

microsurgery [32, 248]. Tools in the field of fabrication and assembly can correct users’

motion in assisted 2D [183] and 3D [249, 250] milling and an intelligent welding gun [47]

can lead its users through a car manufacturing task. More examples of this kind are

described and discussed in Section 2.3.

The above works yield little evidence of aiming to understand intention or user attention

to enhance the cooperation between robot and user. Furthermore, the explored designs

are highly specialised towards specific tasks. Their small workspaces limit their actions

to corrections of human motion with few assistive DoFs. Arguably, a device that is a

more efficient collaborator requires the ability to make task decisions and carry out more

complex subtasks.

The notion of a general-purpose handheld robot with a larger workspace and more freedom

concerning the selection of subtasks has been explored over recent years by Gregg-Smith

and Mayol-Cuevas [58, 60] (see Section 2.2.1 and 2.2.2). They demonstrate how a robot’s

task knowledge can be used for augmentation even without explicit feedback to the user,

e.g. via rudimentary robot gestures [58], in some instances combined with visual feedback

[60]. While informing the user of the robot’s intention significantly improved task per-

formance, a remaining challenge was identified: the conflict between user intention and

the robot’s plans. This led to frustration in users and a negative impact on cooperative

work measures. The studies particularly yield that this problem is rooted in unidirec-

tional intention communication, i.e. the robot displays its aim without observing the

user. Therefore, the question of how user feedback could be integrated to enhance the

task performance remains open.

Furthermore, when the robot operates under idealised full autonomy, its planning and

performance tend to have high efficiency and its actions dominate the decisions of the

user [58]. This has conflicted with users’ perception of cooperative task solving, e.g.

sometimes there was confusion about what the robot will do next. This goes in line

with results from user studies about intelligent devices (Section 2.4) such as worn robots

[221–223].

Another limitation of the current state of research is the assumption of the robot being

omniscient concerning knowledge about both the task and the progress state. That way,

the robot’s plan is efficient and thus performance is higher when the robot’s decisions

dominate the user’s intention. However, an application in an uncertain environment

might require the robot to merge its plan with the user’s and we lack knowledge about

how that could be achieved. While this work still remains dependent on a high level of

omniscience, we explore how strategies to achieve the aforementioned merging process

could look like.
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An important aspect of efficient multi-agent collaboration is a careful selection of an

appropriate type of mixed-initiative interaction [67], i.e. deciding to what extent the

machine or the robot should have control over task-related actions (see Section 2.5).

Throughout this thesis, different types are tested in the context of the handheld robot and

this chapter focuses on shared control [163], i.e. the fusion of user inputs and autonomous

for simultaneous task management of the two parties.

The motivation for the work presented in this chapter stems from aiming to address the

issues above and here we start by looking at incorporating models of user attention so

that we can both

i) provide the robot with user information and a proxy for their intention and

ii) allow the evaluation of instances of conflicts between the user’s and the robot’s

plans.

Remote gaze tracking is a natural choice for this due to the extensive body of work linking

gaze and action prediction (Section 2.6.3). Land et al. [112] found out that eye gaze is

closely related to a person’s focus of attention as it precedes the location of actions during

every-day tasks. This raises the question of whether eye gaze information could be used to

inform a handheld robot about the user’s intention or preferences. Therefore, this chapter

is guided by the following research questions:

Q1 How can user attention be used to enhance cooperation with handheld robots?

Q2 How does the incorporation of attention affect task performance and the user’s

perceived task load?

For our study we use the open robotic platform2 reported in [59], and modify it with the

incorporation of a remote gaze tracker as described further down. The gaze information

is first modelled and then used to evaluate its utility in a gamified cooperative task.

This chapter consists of two principal parts, one that looks at the gaze tracker modelling

and characterization and another concerning the description and evaluation of the coop-

erative task under different modes of autonomy. The chapter sections are organised as

follows: In a first step, a remote eye gaze tracker is repurposed for its use in the handheld

robot (Section 3.2). Then, gaze data is combined with motion capturing data to construct

a 3D eye gaze in Section 3.3. Furthermore, its limits are tested in user studies and its

proximity to user focus compared against the use of head gaze as a predictor instead.

Subsequently, an attention model is introduced that is based on both eye gaze informa-

tion and task knowledge (Section 3.5). Its performance is then tested through user studies

and compared against behaviours that are based on task knowledge only, raw eye gaze or

non-motion, respectively.

23D CAD models available from www.handheldrobotics.org
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The research contributions of this chapter are summarised as follows:

• A 3D gaze tracking framework is proposed, which is purposed for mobile robots that

are working closely together with humans.

• A user attention system is introduced, where eye gaze and task knowledge are used

to inform the model for attention estimation.

• A target reaching task is introduced as an experimental setup for data collection

and model validation. Due to its main components being semi-simulated, it can be

customised swiftly for other testing scenarios.

3.2 Eye Tracking for a Handheld Robot

The aim of the integration of an eye tracking system into the handheld robot is to gain

attention-relevant gaze information of the user while the handheld robot is operated. In

this section, we describe how a 3D gaze ray is constructed by merging 2D in-plane gaze

information detected by a remote eye gaze tracker with support from motion capturing.

The objective is to make the 3D gaze model available for the already existing robot

simulation environment [57].

3.2.1 Eye Tracker Selection

Recent solutions for eye tracking are purposed to study human behaviour in correlation

with their gazing behaviour. Commonly, they involve a camera system to detect the

position of the pupil, from which the gaze can be derived [19, 137]. Existing models

can be divided into two categories: head-mounted mobile devices and stationary remote

trackers. Mobile trackers such as Tobii Glasses 2 3 and Pupil Core [29] benefit from a

continuous high accuracy that is independent of the head pose. Previous research used

them to study in-shop customers’ gazing behaviour prior to decision-making [98]. Current

models reach accuracies of visual angle detection of ∼0.6°. However, these mobile devices

are costly with open source eye trackers (e.g. Pupil Core) starting from $3,000 and

commercial products (e.g. Tobii Glasses 2) from $10,000, which exceeds the budget for

this project.

Apart from the cost difference, a remote gaze tracker is preferred with regards to its

application for handheld robots as it goes in line with the notion of a self-contained

handheld tool. That way, users are not imposed to wear anything to use the tool which

gets the concept closer to the handheld robot’s aim of pick up and use. Remote trackers

3Tobii Glasses 2: www.tobiipro.com/product-listing/tobii-pro-glasses-2
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are usually attached to a computer screen and deliver the 2D point of a user’s current

visual focus. Recent research made use of such devices to observe humans’ behaviour

during online shopping [235] and gaming [86]. Traditionally, remote tracking comes with

the constraint that the head has to be fixed, which is unfeasible for many applications.

However, new methods allow for remote gaze detection during natural head motion. Low-

cost solutions (e.g. WebGazer [164]) detect gaze from screen-mounted Red Green Blue

(RGB) cameras, e.g. webcams. However, their accuracy is low (∼3°) and they are prone

to poor facial illumination. The development of recent models is mainly driven by high

performance demands of the gaming industries. Hence there are now consumer products

available on the market that are cost-efficient while their accuracy compares well to mobile

trackers. This is a result of a combination of Infra Red (IR) illumination and a set of

IR cameras on which the measurements are based on. Existing models differ in sampling

rates from 90-150 Hz and their pricing ranges from $190 (e.g. Tobii Eye Tracker 4C 4) to

$1,995 (e.g. GP3 HD Eye Tracker 150Hz 5, hardware only).

Usually, manufacturers provide an Application Programming Interface (API) for their

devices. However, only some of them are open source (see Table 3.1). This is a problem

for 3D gaze modelling using remote trackers. Commercial APIs provide developers with

the 2D gaze intersection point in screen coordinates, however, the underlying ray model

is inaccessible. The gaze ray can be reconstructed for trackers that detect the 3D position

of the eyes (see Section 3.2.2).

Model Name Position Accuracy [°] Sample Rate [Hz] Weight [g] Open Source Price [$]
Pupil Core Head Mounted 0.60 200 23 Yes 3,000
Tobii Pro Glasses 2 Head Mounted 0.62 100 312 No 10,000

Tobii Eye Tracker 4C Remote ~ 0.50 90 95 No 190
GP3 HD Eye Tracker Remote 0.5 - 1.0 150 155 Yes 1,995

WebGaze Remote ~ 2.7 - 3.6 30 ~ 150 Yes ~ 50

3.58098622
2.685739665

Table 3.1: Summary of Recent Eye Gaze Trackers. The accuracy is the error of the visual
angle. The Open Source collumn indicates whether there is open software available for the device.

Figure 3.1: Tobii Eye Tracker 4C 3, used for gaze tracking in this work (see application details
in Figure 3.2).

Table 3.1 summarises the properties of recent tracker models. Based on this information,

the Tobii Eye Tracker 4C (see Figure 3.1) was chosen for this project. The API requires

4www.gaming.tobii.com/tobii-eye-tracker-4c
5www.gazept.com/product/gp3hd
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the development of a wrapper for the gaze ray construction but the bundle is cost-efficient

and accurate enough at tracking distances that suits attention estimation purposes for

the handheld robot. Moreover, it is light-weight and so the additional load to be carried

by users is small. The chosen tracker processes sensor information on an onboard chip,

which reduces the Central Processing Unit (CPU) load of the lab machine, which might

otherwise slow down the loop for attention estimation. With 90 Hz, its sampling rate is

on the lower end but faster than the update loop of the robot controller, which operates

at 75 Hz.

3.2.2 Gaze Ray Construction

We use a Tobii Eye Tracker6 which delivers gaze information such as the user’s current

eye position and the 2D intersection between eye gaze and screen surface in screen centre

coordinates.

For the following, let Fw,Fb,Fc be the frames of the world, the tracker’s base and the

centre of a screen plane, respectively. Furthermore, let ixeyes,
ixgaze and ixscreen be vectors

describing the eye’s position, the gaze direction and the gaze intersection with a screen

plane in the associated frames (i = w, b, c). Consequently, iHj represents the homo-

geneous transformation between two frames Fi,Fj [24]. The relationship between the

frames can be seen in Figure 3.2.

Fc

Fw

Fb

Hb c

Hw c

Hw c

eyesx

ggazex

Calibration 
Screen

sreenx
World

Gaze

Eye Tracker

Centre

Figure 3.2: Eye Tracker Calibration. This figure illustrates the calibration setup which is
used to determine the (white tipped) transformation bHc which is required for the construction
of the user’s gaze g.

Both the eye tracker’s base and the calibration screen are coupled to the motion tracking

system, hence wHb is known at any time, wHc is solely known during the offset calibration

process while bHc is initially unknown. As the tracking device delivers the eye-positions

6https://help.tobii.com/hc/en-us/articles/213414285-Specifications-for-the-Tobii-Eye-Tracker-4C
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and gaze intersection with an associated screen, we can obtain the local gaze cg with

respect to Fc as follows[26]:

cg(λ) = cxeyes + λcxgaze, (3.1)

where cxeyes is the mean of the two eye positions and cxgaze is the gaze direction which

can be derived by

xgaze =
xscreen − xeyes

|xscreen − xeyes|
. (3.2)

Furthermore, while the eye tracker is attached to the calibration screen, we store the

transformation bHc between tracker base and screen which is known through the equa-

tion:
bHc = (wHc)

−1 wHb . (3.3)

Now, we want to use the eye tracker without it being attached to the screen which means

we lose information about wHc. However, it can be derived from combining the tracker’s

base with the stored transformation

wHc = wHb
bHc, (3.4)

and finally, the gaze in world coordinates can be calculated in real time

wg = wHc
cg. (3.5)

Note that bHc remains time-invariant once the system is calibrated, hence, the gaze

ray wg can be calculated for any times given the user’s eye gaze is detected by the eye

tracker.

The eye tracker is mounted on to the handheld robot as can be seen in Figure 3.3. The

position and orientation of the eye tracker can be adjusted so that the system can be

adapted to varying user heights. In its generic configuration, the tracker is aligned such

that it has the best accuracy within the robot’s local workspace. Figure 3.4 shows a

picture of the complete system.
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Track Box

Eye Tracker

Handheld Robot

Figure 3.3: Illustration of the handheld robot with the mounted eye tracker. The mount supports
2-DoF adjustment so that the user’s head remains in the (red) trackable volume.

Gaze Tracker

6 DoF Cable
Driven Arm

Input ButtonsInput Buttons
Gaze Tracker

5-DoF Mechanism

 Eye 

Figure 3.4: Handheld Robot with extended user perception capabilities through a newly inte-
grated eye tracking system.
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3.2.3 Merging Eye Tracking and Motion Capturing

The implementation of the gaze ray construction requires the connection of eye gaze

tracking data and the tracker’s world localisation. This section describes practical issues

and how the equations from Section 3.2.2 are linked together using Tobii Eye X Software

Development Kit (SDK), OptiTrack and C#/XNA as the principal software modules. An

overview of the system can be seen in the flowchart illustrated in Figure 3.5.

Tobii SDK
2D Eye Gaze Trackig in 

Screen Coordinates

C# XNA Rendering
Visualisation of Gaze Ray Output 3D Gaze

Eye Model in World 
Coordinates

C# XNA
Merging 2D Tracking 

with 3D Motion Tracking

OptiTrack
Find World Coordinates of 

Screen Centre and Tracker Base

Calibration Setup
Find Tracker-Screen 

Relationship

Attention System
Gaze-Dependent Behavoiur

cg

wHc
wHb

cHb

xeyes
xscreen

wg

Figure 3.5: 3D Eye Gaze Construction. This illustration shows the data flow among the
software components used for the gaze construction.

As mentioned before, the Tobii SDK outputs eye gaze tracking data in 2D (screen) co-

ordinates and the eyes’ positions (with respect to the screen centre). This allows for a

ray construction in screen coordinates. OptiTrack is used to localise the screen during

the calibration step (see Figure 3.2) and the eye tracker base both during calibration and

while it is mounted on the robot (see Figure 3.3).

Ideally, a handheld robot should be able to localise itself using onboard sensors, e.g.

through Simultaneous Localisation and Mapping (SLAM) [9, 37]. However, external track-

ing systems are highly accurate and do not require additional sensors on the robot. At

the same time, it allows focusing on human-centred research in this work. OptiTrack is

an optical motion tracking system with two main components: a set of reflective markers

and cameras (model Flex 3). The markers are attached to rigid bodies and reflect IR

light coming from the IR Light-Emitting Diode (LED) that surround each camera. Opti-

Track then combines the marker images for the localisation of a rigid body. A successful
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localisation requires at least 3 markers to be visible to at least two cameras. Initially, 4

cameras were used to localise the handheld robot [57].

Figure 3.6: Gaze Tracker with IR Markers. This shows the setup of the markers for
motion capturing. Note that the markers were placed away from the IR light source to minimise
interference. Knowing the pose of the device is required for gaze ray construction (see Figure
3.8).

A problem with the Tobii tracker is that it emits pulsed IR light to illuminate the user’s

face. This interferes with the IR cameras of the OptiTrack system and leads to faulty

localisation. To solve this problem, the markers were placed on antennas away from the

IR LEDs. In addition, the camera set was extended to 7 cameras around the ceiling. That

way, the localisation still works even if some cameras are blinded by the IR source. The

eye tracker is not disturbed by the IR lighting from the cameras, presumably, because it

uses pulsed light for the eye’s illumination. Figure 3.6 shows the marker setup for the eye

tracker. The arrangement of the cameras in the lab and the associated representation in

the motion capturing software are displayed in Figure 3.7.
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Figure 3.7: Camera Setup for Motion Capturing. This figure shows the lab space with
the camera setup for motion capturing (top). The cameras are positioned around the ceiling
as indicated. The bottom part of the figure shows a screen shot of the camera poses rendered
through Motive (supplementary software for OptiTrack). The setup allows for tracking the pose
of the robot and the eye gaze tracker in real time. This is used to construct a 3D eye gaze ray
with respect to the robot and its current environment.
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The data from gaze and motion tracking systems is processed using C# library XNA. It

is a framework for game development, which offers efficient functions for real-time matrix

operations and rendering for visualisation. XNA was chosen because the API for the

handheld robot [57] is based on its libraries and so extending it with a module for eye

tracking was the fastest way of integration. As can be seen in the flowchart in Figure 3.5,

the XNA module reads the output of the gaze tracker and merges it with the OptiTrack

output to construct the eye gaze in the 3D environment using Equations 3.1 to 3.5. The

gaze model can then be used as an input for gaze-dependent robot control and gaze

rendering. An example of gaze capturing and visualisation can be seen in Figure 3.8. An

example implementation for the robot control with the eye gaze as an input can be seen

in Figure 3.9, where the user selects a target for the robot through gazing. Figure 3.10

shows an overview of the complete system.

(a) Looking Left (b) Looking Right

Figure 3.8: Eye Gaze and 3D Model. Observed eye gaze (top) and rendered output of the
gaze construction module (bottom) in screen coordinates.

(a) (b)

Figure 3.9: Gaze Following. Demonstration of real-time capabilities of the 3D gaze model. The
robot follows the user’s eye gaze as it shifts from target A to B. Left and right are the rendered
gaze model and the response of the robot, respectively. A demonstration video is available at
https://youtu.be/D1gk4BxGRPs.
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(a) Real Setup (b) Rendered Gaze Model

Figure 3.10: Incorporating Gaze Tracking with the Handheld Robot. This figure shows
an overview of the handheld robot system after the integration of the remote eye gaze tracker.
To the left is an example pose and to the right the rendered result of the proposed gaze model.

3.2.4 Gazed and Fixated Objects

Integrating task-related objects in an attention-driven cooperative behaviour for the robot

requires a measure of their visual attention. In the first step, gazed objects are identified

and gazing times are used to derive fixations. Recall that fixations are the small time

intervals that the eye spends on gathering visual information about an object of interest

during scene exploration and task planning [187]. With the proposed 3D gaze model in

place and the coordinates of an object to interact with, attention can be modelled as

gaze-probability:

Pgazed(t) = exp(
−d(t)2

2ε2
), (3.6)

where d is the angular distance between the measured eye gaze and the eye-to-object

direction at a given time t and ε is the angular distance at which there is a significant
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drop of Pgazed, i.e. the expected angular error of the gaze sample. Pgazed can then be used

to identify fixations on objects, i.e. when Pgazed exceeds a threshold for more than 200 ms

[191].

With this in mind, gaze-aware objects were introduced to the robot API that have the

following properties:

• isGazed: indicates whether the user is currently looking at this object, i.e. the gaze

intersects with the object’s boundaries

• t gazed: duration of time the user has been looking at this object.

• isFixated: indicates whether the user is just passing the gaze through the ob-

ject or is looking at it. isFixated is true if and only if isGauzed has been true

continuously for at least 100 ms.

These form the basis for the robot’s abstract behaviours such as following gazed or fixated

objects.

Initially, the estimation of ε (see Equation 3.6) was unknown for the new 3D eye gaze

model and needed to be identified through user studies. Furthermore, it is of interest to

investigate to what extent a user’s head direction indicates the visual attendance of an

object, i.e. whether the head gaze error εh is small enough to distinguish between gazed

objects. For these reasons, the following sections describe user studies concerning eye and

head gaze accuracies, in which we explore to what extent each serves as a proxy for visual

attention.

3.3 Eye Tracking Accuracy Study

The purpose of the accuracy study is to identify the limits of the introduced remote eye

tracking system. Within the context of handheld robot application, we are particularly

interested in constraints of the trackable area relative to the robot’s workspace; that

is how far the user can look away from the robot’s tip for an accurate gaze capturing.

Furthermore, we assess the accuracy of the measured gaze.

3.3.1 Eye Gaze Data Collection

The general approach is to keep track of eye gaze data throughout a task where a par-

ticipant would look and point (the robot tip) at a randomised sequence of targets which

are broadly scattered over a workspace. To generate a broad variety of target sequences,
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three typical workspace setups were selected: The floor, a table surface and a vertical

screen.

For each target of the sequence, a participant is asked to look at a target without moving

the robot and then touch the target with the robots’ end effector while looking at the

target. This would then be the starting posture for the next target iteration. For each

iteration, we keep track of the following data:

gpri / gpos the true eye gaze ray to a prior/posterior target

∆φgaze the angular gaze shift (difference) between posterior and prior true gaze

g the measured eye gaze

ε the angular error of the measured eye gaze

Tracked True, if an eye gaze could be captured for a given target. Note that this is is

different from isGazed and isFixated as those refer to a gazed object, whereas

Tracked refers to successful gaze tracking, e.g. it would be false if the tracker got

obscured or for large head angles away from the tracking device.

The relationship between those measurements can be seen in Figure 3.11. gpri and gpos

are obtained from the eye position which is known from a motion tracked helmet and the

associated target of which the position is known too. The angular gaze shift ∆φgaze is

defined as [26]:

cos∆φgaze =
gpri · gpos

|gpri| · |gpos|
. (3.7)

For each targeting iteration, these measurements are taken for the case where the robot

is pointed towards the prior target as well as when the robot tip touches the posterior

target.

3.3.2 Experiment Execution

We recruited 11 participants for the 1st pilot gaze estimation experiment, mainly students

from different fields (4 females, Mage = 25, SD = 4.8). Participation was voluntary as

there was no financial compensation for their time. The participants were asked to run

through the aiming task for each target set-up with a random sequence of targets.

Before the experiments, the eye gaze tracker was calibrated (see Section 3.2.2) and its

position on the robot adjusted to align it with the user’s individual height of eyes. Each

participant was asked to run through the aiming task for each target set-up, of which

the order was randomised. As part of their introduction, participants were given some

practice time to familiarise themselves with the robot and the trial procedure.
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tpri tpos

gpri
∆φ

εRobot
Targets
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Head

Prior Gaze
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Figure 3.11: Illustration of a measurement iteration where a participant is proceeding
from looking at a prior target tpri to looking at the posterior target tpos before moving the robot
towards it. Dashed lines represent calculated true eye gaze rays whereas the solid line is the
measured eye gazes.

For each of the three target set-ups, we took 2 data measurements for each target pair.

Taking into account the measurement of the initial pose, we got 63 measurements per

participant, so our final set contains 693 data points.

3.3.3 Eye Gaze Modelling Results

In order to determine the accuracy performance of the eye tracking system, we split the

data into the subsets Sl (N = 330), where the participant is looking at the next target

and Sp (N = 363), where the target was aimed with the eye gaze and the robot’s tip at

the same time. These are further split to distinguish between the cases where the eye gaze

was recognised (Tracked = true) or not which is denoted with an additional 1/0-index

(1 = true). That way, we get the subsets Sl,1, Sl,0, Sp,1 and Sp,0 with sizes N = 174, 156,

331 and 32, respectively.

Sl is used to investigate the effect of ∆φgaze on ε, whereas Sp is used to investigate the

accuracy for the case where the user’s gaze is close to the tip. For the analysis, data

points with a difference to the mean higher than two standard deviations are removed so

that 2.55% is discarded.

For Sp,1, we find a mean angular error of ε0 = 1.99 with 95%CI[1.83, 2.16]. The set

Sl,1 is analysed using a linear regression model. We calculate the values c1 = 1.243 and

c2 = 0.032 for the model of the shape

ε(∆φgaze) = c1 + c2∆φgaze, (3.8)

where the slope c2 is significant (p = .012, R2 = 0.032). A diagram of the model can be

seen in Figure 3.12.
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Figure 3.12: Eye Gaze Error over the Gaze Shift.This diagram shows a linear regression
model (blue) of the eye gaze error ε over the gaze shift ∆φgaze (red samples).

In order to estimate the limit of the gaze shift angle ∆φgaze for which gaze tracking

delivers reliable results, we use Sl, the whole subset of samples where the participant was

not looking at the tip. A logistic regression [89] is performed using the model

P (X) =
exp(β0 + β1X)

1 + exp(β0 + β1X)
, (3.9)

where the independent variable is ∆φgaze and P (X) is the probability of the eye gaze being

tracked (Tracked = true). To choose the optimal threshold value as a decision point for

the model, we run a 5-fold cross-validation over the range P (X) ∈ [.25, .75]. As a result,

we gain the decision point at P (X) = 0.65 for which the model fits 85.6% of the data and

we get the coefficients β0 = 5.407 and β1 = −0.177 (p < .001 each) using the complete

data set. By inverting the function at the decision point, we find that P (X) > .65 for

∆φgaze ∈ [0, 27] (see Figure 3.13).

Feeding the ∆φgaze range back into the linear model (Equation 3.8), we find ε27 =

ε(∆φgaze = 27) = 2.107 as an error prediction for the trackable range.
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Figure 3.13: Angle Boundaries for Eye Tracking. This shows a diagram of the logit model
(blue) to estimate the probability P (Y = 1|X) of successful eye tracking for a given gaze shift
∆φgaze. The (red) samples are the binary Tracked labels where true = 1 and false = 0.
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3.3.4 Gaze Tracking Discussion

In addressing the question about constraints of a workspace for eye tracking, it was found

that it is limited by a maximum angle of 27 deg away from the robot’s end effector. Within

this constraint, we anticipate a probability of successful eye tracking above 0.65 which

informs subsequent studies in terms of the limitations of experimental designs. As the

angular limit goes to any direction, the workspace has the shape of a cone with a tip angle

of 2 × 27 deg = 54 deg. For instance, for a user with an eye hight of 1.3 m this would

result in a workspace plane of 2 × sin(27 deg) × 1.3 m = 1.18 m, i.e. covering more than

the robot’s local workspace.

Concerning the angular accuracy of the eye tracking device in handheld robot applications,

we identified a link to ∆φgaze. However, the linear regression yields a small slope coefficient

indicating a small effect of the gaze direction on the error. The average error for a range

below 27 deg is smaller than the maximum of the error’s 95% CI of the Sp set. Therefore,

an average error of up to ε = 2.16 deg is anticipated.

This information is useful for estimating at what sizes and distances gazed objects can

be distinguished. In order to maintain a robust response for gaze awareness of objects,

i.e. detecting whether an object is being fixated by the user, an object size of at least 2

times the accuracy of the gaze model’s accuracy is suggested. For example for an object

at a distance of 1.3 m, the ideal size would be 2× sin(2.16)× 1.3 m ≈ 85 mm.

3.4 Head Gaze as a Proxy for Visual Attention?

Previous work [161] linked humans’ head pose to their current target of visual focus in

conversation settings. Therefore, one might assume that the head pose of handheld robot

users could serve as a proxy for their current visual attention. This part of the attention

study investigates whether this assumption is valid. In the first step, the head gaze is

constructed and in a second step, it’s relation to the eye gaze is investigated.

3.4.1 Head Gaze Tracking

Here, head gaze is defined as the direction of a person’s facing. Constructing the head

gaze requires the head position and the orientation of the face. As mentioned in Section

3.3.1, a tracked helmet was used to determine the head’s position and its centre. As the

orientation of the helmet relative to a person’s head varies between users, the experiments

were preceded by a calibration step to adjust the z-axis of the head gaze frame. For that,

participants were asked to wear the helmet and look at a distant point at eye level. The

70



3.4. HEAD GAZE AS A PROXY FOR VISUAL ATTENTION?

point is known to the tracking system, which allows alignment of the z-axis of the head

gaze frame with the line connecting the centre of the head and the distant point. An

illustration of this head gaze construction can be seen in Figure 3.14.

Fhg
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Eye Gaze

Head GazeMarker
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Figure 3.14: Head Gaze Tracking. The illustration shows how a helmet with markers was
used to track the head orientation. The z-axis of the head gaze frame Fhg was individually
calibrated prior to each experiment trial. The resulting head gaze is compared with the eye gaze
to derive the head gaze error εh.

3.4.2 Collection of Head Gaze Data.

The data for the head gaze study was collected as part of the previously described eye

gaze tracking accuracy study (Section 3.3.1). Recall that participants used the robot to

point at predefined targets in the workspace while looking at a different target, i.e. away

from the robot’s tip. As previously defined, the angular difference between the robot’s

tip and the new target is denoted as the gaze shift ∆φgaze, as per Equation 3.7. Similar

to the identification of the eye gaze error, the head gaze was recorded for each step of the

target sequence. The head gaze error εh was derived as the difference between the ground

truth eye gaze (see Section 3.3.1) and the measured head gaze, i.e. the difference between

the head gaze and the direction of subjects’ attention. As opposed to eye gaze tracking,

tracking of head gaze is free from angular limits as it is derived from the motion capturing

system and thus independent of the relative position to the robot. With 11 experiment

participants and a sequence of 33 targets per trial, the head gaze data set contains N=363

data points.

3.4.3 Results and Discussion of Head Gaze Study

To analyse how head gaze error deviates from the current focus of attention, a linear

regression was applied. For Sl we ran a linear regression with gaze angle difference ∆φgaze

as independent variable and angular head gaze error εh as observation [89]. We calculated

the values c1 = 11.762 and c2 = 0.392 for the model Yh of the shape

l(X) = c1 + c2X, (3.10)
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with a significant slope (p < 0.001, R2 = 0.236). A diagram of the regression model can

be seen in Figure 3.15.
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Figure 3.15: Head Gaze Error. This shows a linear regression model (blue) for head gaze
error data over the gaze shift.

The results show that the head gaze largely deviates from the direction of a focused

target. While the smallest error (i.e. εh > 11.72 deg) can be expected for targets close

to the robot’s tip, the error grows rapidly for targets with an increased angular distance

between the target and the robot’s tip. A reason for this could be that the user’s body is

constrained to the robot as both hands are required to hold the robot. Therefore, targets

outside the field of view are aimed with the eye gaze rather than with the head gaze.

The deviation between head gaze and user’s visual attention is too small to determine

which object the user is focusing on for common object sizes in handheld robot appli-

cations. However, the results suggest that the head angle could be useful to estimate

whether the user is currently focusing on the workspace of the handheld robot. This

could be useful to guideline systems for safe interaction with the robot. As the eye gaze

accuracy outperforms head gaze accuracy, this is chosen as a basis for the following at-

tention model.

3.5 An Attention-Aware Cooperative Handheld Robot

Having determined the boundaries of the gaze tracker for its application in the handheld

robot, the next step is to use the user gaze as a source of information about user attention

for the robot to assist in the task. This section describes how task-relevant objects
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are filtered for aiming using gaze awareness and task knowledge to parametrise assistive

behaviour. This is followed by user studies to investigate the attention model in action.

On the remainder of this chapter, the results from the eye tracking studies are applied for

incorporating the estimation of user attention.

3.5.1 The Attention Model

The attention model for the handheld robot is based on two factors: gaze awareness and

task knowledge. These factors are inspired by the work of Land et al. [112] who suggest

that eye gaze is closely related to the location of a person’s action. Therefore, we propose

the following assumptions:

A1 The part of a workspace which is watched by the user is within the user’s focus of

attention.

A2 A watched object is more likely to be in the user’s focus of attention when it is

task-relevant than when it is irrelevant to the task.

Based on these assumptions, we create a behaviour matrix with gaze awareness and task

knowledge as two principal axes determining behaviour. As attention awareness is the

product of both gaze awareness and task knowledge, it increases over the diagonal axis of

the matrix as illustrated in Figure 3.16.

Gaze 
Awareness

Task Knowledge

Gaze Slave

Manual Autonomous

Cooperative

Follow eye gaze

Remain 
motionless

Combine task knowledge

Move according to 
task state

and gaze information

No
Attention

Awareness

High Attention
Awareness

Figure 3.16: Parameters for the Robot’s Behaviour Modes. This behaviour diagram
illustrates how the four behaviour modes of the handheld robot are linked to the attention model
which is based on the level of gaze awareness and task knowledge.

The details about each behaviour mode are described in the following:

B1 Manual Mode: The robot remains motionless since neither gaze nor task knowl-

edge influences its behaviour. The user is fully in charge and can decide when and

with which objects to interact with, however, the robot does not assist in the task.

B2 Slave Mode: In this mode, the robot ignores the status of an object or whether

it is related to the task at all. Instead, the behaviour is purely determined by the

73



CHAPTER 3. I CAN SEE YOUR AIM: ESTIMATING USER ATTENTION FROM
GAZE FOR HANDHELD ROBOT COLLABORATION

estimation of the user’s area of attention. This goes in line with assumption A1 so

that the robot follows the user’s eye gaze in the workspace.

B3 Autonomous Mode: The robot ignores any user actions and follows its own plan

to complete the task. Choosing the sequence of task objects and finishing the job

is fully automated. Furthermore, it overrides the trigger input, i.e. it decides on

the time and duration of object interaction. The robot still depends on the user to

carry it close enough to a target for interaction.

B4 Cooperative Mode: The focus of attention is modelled as the intersection between

gazed-at area and location of a task-relevant object which goes in line with A2. The

robot follows the eye gaze and helps to aim when a task object is fixated. While

the robot finishes the job, the user can shift the visual focus to a subsequent object.

The robot catches up with the eye gaze once the task with the previous object is

completed.

3.5.2 Validation Task

Having developed different behaviour modes based on the novel attention model, the next

step is to assess the effect on cooperative task solving through user studies. This section

describes the experimental task used for the study and how the robot applies the above-

listed behaviour modes to assist in the task. The design of the experimental task was

guided by the following list of requirements:

• Cooperative. The robot should be able to assist in the task using the attention

model and its task knowledge. The task should be easy enough to be carried out

by novice users. At the same time, the robot would depend on being moved around

by a user, i.e. it could not solve the task by itself.

• Within the Gaze Tracking Constraints. The Workspace should fit within the

constraints of the field of view in which eye tracking works reliably and task objects

dimensioned with regards to gaze tracking accuracy.

• Cognitive Load. A design is required where the robot’s behaviour modes can be

assessed in the context of different cognitive loads.

With these in mind, a semi-simulated validation task was developed where participants

use the robot to catch targets on a screen. The game principle is inspired by Space

Invaders7 and displayed on an LCD screen with 105 cm diagonal. An overview of the task

setup can be seen in Figure 3.17.

7Available for example at http://www.pacxon4u.com/space-invaders/
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(a) (b)

Figure 3.17: Attention Experiment Task and Setup. Figure (a) shows the testing setup
with the interactive task. The user has to stop the dropping targets (red) using the robot to
increase the game score while distractors (green) can pass. The robot assists in the task based on
the user’s eye gaze. Figure (b) shows an example of the screen content. The targets randomly
appear with varying speeds and frequencies.

Markers were attached to the screen to determine its position relative to the robot and

the eye tracker. That way, the intersection points between rays (e.g. gaze or robot

tip direction) can be calculated in real-time and be fed to the control unit of the robot.

Another advantage is that the positions of every pixel of the screen are known in 3D space.

This framework offers a lot of flexibility for task design because the positions of targets

are known, even when moving, without the necessity of individual marker setups.

In the game setup, targets travel with constant speed from the upper edge of the screen

to the bottom line. The aim of the game is to stop as many targets as possible before

they reach the bottom.

The robot’s tip emits a virtual laser that can be used to stop a target. The laser needs to

be activated via a trigger on the robot’s handle and the tip needs to be close to the target

(< 100 mm). It takes some lasering time to stop a target but less time for quicker targets

since otherwise, it would be impossible to complete it before it reaches the bottom line.

The outcomes of the accuracy experiments are used to dimension both screen size and

target diameter.

To stimulate best possible performance, a scoring system was introduced where the score

increases for caught targets and decreases for missed ones, i.e. +100 and−100 respectively.

Over the series of trials, participants were motivated to beat their current high score.

The design of the game is greyscale coloured to avoid a disadvantage for colour blind
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people. The background of the game is a cartoon landscape and alongside the targets,

similar objects are dropping which cannot be stopped but are used as distractor stimuli

(see Figure 3.17). While 50% of the targets are spawned randomly, the rest are part of a

challenging scenario. For example, the targets would drop in line or triangle formations

or in arrangements, where some slower targets are being taken over by quicker ones.

This exposes users to situations where there are targets with equal priority. Equally, they

would face situations where a target’s priority suddenly becomes exceeded by a new faster

and thus more time-critical target. The purpose of those arrangements is to assess the

robot’s behaviour modes in scenarios with non-trivial solutions, i.e. there will likely be

times where the robot’s plan does not initially meet users’ intuition.

Concerning the modes of the robot (B1-B4) with regard to the concrete experimental

task, the robot behaves as follows: The user is fully in charge in the manual mode. This

mode is used as a reference to compare against for the other three modes. As the robot’s

tip remains motionless (see B1), users have to perform both tactical and aiming motion

to catch targets, which also includes pulling the trigger for laser activation at the right

time. In slave mode (B2), the robot keeps moving towards the point of intersection

between user’s eye gaze and screen. That way, users can use their eye gaze to steer the

robot towards a target of their choice. In cooperative mode (B3), the robot uses its task

knowledge to assist in the aiming task. Fixated objects are aimed at by the robot and

it overrides the laser trigger to assist with timing. The robot finishes the local job once

it started even if the user looks away, e.g. because they look out for the next target. In

autonomous mode (B4), the robot automatically decides which targets to aim for. The

user has to follow and help the robot reach the chosen target to complete the task. The

robot uses its task knowledge to optimise the target sequence to complete as many as

possible in the given time. Its decisions are based on an underlying greedy approach that

prioritises time-critical targets (i.e. that are close to the bottom line) and optimises for

short ways. The robot also knows whether a target is not worth aiming for, i.e. when

the completion time would exceed the target’s time to travel to the bottom line. Unlike

cooperative mode, the autonomous mode does not take into account the user’s eye gaze,

i.e. its strategy is independent of user attention.

3.5.3 Attention Experiment

For this new experiment of the attention study, we recruited 15 participants (6 females,

Mage = 25.5, SD = 5.6). Many were students from technical courses, however, there

was no expertise required to solve the task. 3 participants, i.e. 15% have participated

in eye tracking accuracy study in Section 3.3. However, every participant was trained

to use the handheld robot extensively, hence we argue that knowledge advantages from
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previous experiments are negligible. There was no financial compensation for their time,

however, many volunteers were thankful for trying the robot and the game and they were

offered some refreshments. Each participant ran 3 game trials in each behaviour mode for

a duration of 80 s each. They were exposed to targets with varying speeds and stopping

times and the order of the behaviour modes was randomised to cancel out training effects.

Before starting the experiment session, the participants were given an explanation and

demonstration for each mode plus some time for practising to get familiar with them.

For an objective measure of cooperative performance, the share of completed targets was

recorded, i.e. how efficient the task was solved. During trials, we kept track of the count of

targets that were completed as well as the total number of targets the subject was exposed

to. For the event of a target being stopped by the user or reaching the bottom line (i.e.,

the user failed to stop it), a data point was created, which contains the target’s speed

and the current behaviour mode of the robot. Over the 180 trials (i.e. 15 participants ×
4 robot modes × 3 speed ranges), we collected 17,000 target samples in total.

The game runs with an update rate of 70 Hz and when one of the gaze-based modes is

used (B2 - B4), we registered whether the tracker recognised the eye gaze. This was later

used to analyse the reliability of the gaze model during task execution.

After each trial, the participants were asked to complete a questionnaire to assess the

current trial and mode. The main parts of the questionnaire are the NASA TLX criteria

[63], which were used to measure the subject’s task load (see questionnaire in Appendix

D). This standardised questionnaire was used in previous studies to assess the cooperation

quality of the handheld robot [58, 60]. The test consists of a series of task load criteria,

measuring mental/physical/temporal demands, effort, subjective performance and frus-

tration on a continuous scale. Furthermore, we asked participants to what extent they

agree with the statements: The robot helped me with the task and The robot obstructed

me during the task on a 5-point Likert scale (Strongly agree, Agree, Neither agree nor dis-

agree, Disagree, Strongly disagree). Also, they were given the chance to provide feedback

comments for the current trial.

3.6 Results of Attention Study

The target data set is used to assess subject performance for each behaviour mode. Here,

performance is defined as the proportion of completed targets over the total targets pre-

sented. Furthermore, the set is split into three speed ranges R1,2,3: [70, 200), [200, 330)

and [330, 490] (in mm/s) for a separate analysis. The lower bound of 70 was chosen be-

cause below that, most people could stop every target in every mode, hence this would

not serve us with any valuable information. Initially, the ranges were then equally divided
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between 70 and 460, i.e. with an equal bin size of 130. The fastest bin was extended to

490 because a few participants managed to catch targets with such a high speed value,

i.e. those edge cases would have been excluded otherwise. 2.1% of the data points are

outside of these ranges and are thus discarded. This is due to some malfunctioning of

the randomisation function of the C# standard library that was used to vary the tar-

get speeds. A few percentage of the output is much higher or lower than the predefined

boundaries.

3.6.1 Mode Performance

The effect of the speed range and the behaviour mode on the performance is determined

using a two-way factorial repeated measures Analysis of Variance (ANOVA). As the

results yield a significant effect for each factor (p < 0.001), they are further explored

using post-hoc pairwise t-tests with applied Bonferroni correction. The mode-dependent

differences in performance for each speed range and associated t-test results can be seen

in Figure 3.18.

For every speed range, slave mode is outperformed by the other modes and the perfor-

mance yields a significant difference to each. Cooperative mode and autonomous mode

outperform manual mode for each speed range, however, significance can only be deter-

mined for the two higher speed ranges R2 and R3 and not for R1. In no case could a sig-

nificant difference between the performance of the cooperative mode and the autonomous

mode be found (see Figure 3.18)

We do not find any correlation between performance and age, gender, hours per week

that video games are played or whether vision aids such as glasses or contact lenses were

used.

Considering the set of game update frames where the eye tracker did not recognise the eye

gaze, we note that those add up to a share of 49.9%. However, they are evenly distributed

over the trial time so that in only 5.1% of the time, these frames locally add up to over

150 ms.

3.6.2 Task Load Index

For the analysis of the modes’ effect on the perceived task load, i.e. the combined NASA

TLX results, we applied an ANOVA for the combined dataset and determine significance

(p < 0.001). We proceed with a post-hoc pairwise t-test between the modes where the p-

values (displayed in Table 3.2) are Bonferroni corrected. The mode-dependent differences

of TLX results can be seen in the diagram in Figure 3.19. The results for slave mode yield
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Figure 3.18: Comparison of Performance for the Robot’s Modes. The performance
(higher is better) is measured in completed targets over total targets for each mode and speeds.
The speeds range from slow (1) to fast (3). The tables display the respective Bonferroni corrected
p-values of pairwise t-test results. Significant (p < 0.05) values are displayed in bold face. Note
that the cooperative and autonomous mode outperform the reference mode (manual) for higher
speeds. The manual job outperforms the slave mode consistently while no significant difference
was observed between the autonomous and cooperative mode.
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a significant difference to the cooperative mode and the autonomous mode. Furthermore,

the cooperative mode significantly outperforms the manual mode .
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Figure 3.19: Results of the Task Load Index Questionnaire. Perceived task load for each
behaviour mode measured by the combined NASA TLX (lower is better). Associated t-test results
can be seen in Table 3.2

Coop. Auton. Manual
Auton. 1 - -
Manual 0.038 0.102 -
Slave 1.30E-05 6.00E-05 0.202

Table 3.2: Pairwise t-test results. This table shows the Bonferroni corrected p-values of
pairwise t-test results for the mode-depended mean differences of TLX outcomes. Significant
(p < 0.05) values are displayed in bold.

3.6.3 Helpfulness and Obstruction

The 5-point Likert scales (from strongly disagree to strongly agree) for the statements

about the robot’s helpfulness and obstruction are scaled to numeric values on the interval

[−1, 1]. As can be seen in Figure 3.20a, the robot is rated most helpful in the cooperative

(0.64) and autonomous (0,59) mode followed by the slave mode (0.21) while the manual

mode tends towards unhelpful (-0.28).

3.6.4 Qualitative Feedback

As commenting on the trial behaviour was optional, the number varies for the different

modes. We received many comments on the cooperative and autonomous mode and a few

for the slave mode, whereas the manual mode remained mostly uncommented.

Comments on the cooperative mode are mostly positive and often refer to collaboration

experience, e.g. I feel comfortable with the robot’s assistance or It feels like a team and
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Figure 3.20: Helpfulness and Obstruction for the Behaviour Modes. Participant’s rating
of the robot being helpful (left) or obstructive (right) where 1 is strongly agree and -1 is strongly
disagree. Whiskers indicate standard errors.

The robot helped me with accuracy once I chose a target. Also, participants often pointed

out that they felt in control, e.g. I like the shared control or I feel more in control with

it.

For the autonomous mode, comments are positive when referring to accuracy, e.g. The

robot is better than me and negative (mostly for fast targets) in terms of the robot’s

predictability, e.g. I was irritated when the robot changed plans and Why are you going

there?

Within the slave mode, participants were complaining when eye tracking was faulty, e.g.

There was some offset, the robot did not follow accurately and I saw a target but [the

robot] did not follow.

The few comments on the manual mode were addressing physical workload, e.g. It was

exhausting and The robot feels heavy.

3.6.5 Qualitative Observations

Over the set of trials, there were a few issues that occurred repeatedly in the respective

modes. For example, in slave mode it was a common observation that the robot’s tip

motion was irritating for users when they were exploring the scene, i.e. before aiming

for targets. Furthermore, a feedback effect could be observed in some instances when the

user focuses on the robot’s tip. In that case, the robot’s tip started to drift due to the

inaccuracy of the gaze tracker.

In autonomous mode, users sometimes struggled with mismatches between their plans and

the robot’s autonomous actions. This occurred more frequently in settings with higher
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Figure 3.21: Conflicting Plans in the Autonomous Mode. This figure shows a typical
situation for a conflict between the user’s and the robot’s plan. After completing a previous
target (green), there are two targets available with similar priorities. The user points the robot
towards their chosen target (yellow) but the robot points towards its own choice (red) as it does
not take into account the user’s focus in the autonomous mode.

speed. In those cases, the user rushed to the next target and moved the robot towards it,

whilst the robot’s tip moved to a different target (see Figure 3.21). This often resulted in

missing both targets because the robot could not reach either of them in time.

Compared to slave mode, the gaze-dependent robot motion appeared to be less of a

problem but rather beneficial. Recall that the robot aims for a target once it got fixated

through the user’s gaze. That way, the robot only moved when the focus shifted to another

target definitively, rather than moving and jittering during visual exploration. This also

cancelled the aforementioned feedback issue that occurred in slave mode. Another benefit

of the cooperative mode is that it is more robust concerning occasionally occurring small

time gaps of a few hundred milliseconds where the eye gaze could not be detected by the

eye tracker. In slave mode, these instances would lead to a delayed or jittery following of

the robot’s tip along the gaze trajectory. However, since the cooperative mode is fixation-

based and takes into account task knowledge, it remains locked to a chosen object even

when there is no gaze data available for short periods.

Compared to the autonomous mode, the robot seemed to react more predictable in the

cooperative mode. Often, the user’s gaze was one step ahead in the task, i.e. while the

robot finished one target the subject already fixated the subsequent selection (see Figure

3.22). This made task solving more fluent even though their choices were not always as

efficient as the choices made by the robot during autonomous mode.
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Figure 3.22: Plan Adaptation in the Cooperative Mode. This figure shows a typical task
solving strategy with the robot in the cooperative mode. While the robot is finishing the current
target (in greed circle), the user already fixates a subsequent target (circled yellow). The robot
follows once the previous target is completed.

3.7 Discussion of Attention Study

This study aimed to explore how estimating user attention can benefit collaboration of

a handheld robot with a human and in particular, how the incorporation of attention

affects teamwork performance and users’ perceived task load.

In addressing research question Q1, two gaze-based attention models were introduced

where one additionally takes into account the robot’s task knowledge. These modes were

tested against the robot in a fully autonomous mode and for the scenario where the same

job was done manually.

Regarding Q2, the modes were analysed for performance and task load. We found that

using the primitive approach, where the robot is following eye gaze, performance decreases

while the workload is increased in comparison to the manual case. One explanation might

be the lack of accuracy for eye tracking and that peripheral view could not be taken into

account. Moreover, it was observed that the robot’s motion towards the focus of gaze

influenced the gaze behaviour which in turn caused more tip motion. This sometimes led

to off-set errors and jittering during the use of the slave mode which was also reported in

the feedback.

In contrast, we found that the attention-based cooperative behaviour of the robot exceeds

the manual analogue in terms of performance and decreases workload, which makes it
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appear similar to the autonomous mode. This statement, however, is constrained to the

requirement of a certain level of temporal demand for the effect to become apparent. The

specific speed constraints for each mode are subject to further investigation.

When the cooperative mode is compared to fully autonomous, the statistics do not yield

a difference in terms of task performance. However, we note that the autonomous mode is

modelled with full omniscience which might not be possible outside the lab environment.

For example, the robot might know which objects are task-relevant, while only the user

knows the right sequence of task steps. In that case, the attention model can inform the

robot’s control unit. Furthermore, qualitative feedback indicates that the robot is more

predictable in the cooperative mode, making it more preferable.

We note that the terms autonomous and cooperative were used interchangeably in previous

work [60] as the robot’s cooperation was solely based on the novel autonomous task

decisions, which were derived from task states but did not take into account user states.

In this chapter, we distinguish between autonomous and cooperative behaviour as we

start to see the benefits of the robot’s adaptation to a user’s plans. While the difference

in performances is small, we suggest that the feeling of working together is important for

humans in collaborative work with machines, hence why this will be further addressed in

the subsequent Chapter 4

3.8 Chapter Conclusion

This chapter presents a system for estimating user attention for handheld collaboration.

Gaze information and task knowledge are used as two factors of the attention model.

First, we developed a gaze model that estimates a 3D gaze ray from 2D gaze information

and motion capturing. The gaze model was used to inform a subsequent attention study

in which attention incorporated gaze-based behaviours with varying levels of robot’s task

knowledge. Performance and task load in these modes were compared against a fully

autonomous mode and a manual mode.

Results indicate that cooperative behaviour is more effective than completing the task

manually for cases where there is a high demand for speed. We also found that task load

is reduced when cooperative behaviour is based on both task knowledge and eye gaze, i.e.

with incorporated attention.

These findings can be seen as a big step in human-robot collaboration. As modern tools

become more complex and intelligent, their adaptation to users becomes more relevant

and capturing user attention is a first step towards a tool that understands the users’

plans.

84



3.8. CHAPTER CONCLUSION

The information of user attention could be used as a starting point for a more sophisti-

cated intention prediction system. The attention model is useful to determine low-level

decisions, e.g. in pick and place applications or other instances where users make quick

decisions, which the robot could in turn adapt to. More complex tasks that involve related

parts would require an intention model that can link task objects to a high-level solution

strategy. This new research question will be the subject of the subsequent chapter.
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Chapter 4
Rebellion and Obedience: The Effects of

Intention Prediction in Cooperative

Handheld Robots

This chapter presents a model for user intention prediction and its

effect on collaboration with handheld robots. It employs the attention

model that was introduced in Chapter 3 as main predictor. While

both Chapter 3 and this chapter focus on single-user applications, in

Chapter 5 we will look at multi-user applications. The outcomes of

this chapter are summarised in the supplementary video1 (scan QR

code).

The main results of this chapter were presented at the 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) [210].

4.1 Introduction

A handheld robot shares properties of powered hand tools while being enhanced with

autonomous motion as well as the ability to process task-relevant information and user

signals (see also Section 2.2 and 2.3). Since the robot holds task knowledge, such a system

could help cutting workers’ training times, as less user expertise is required for task solv-

ing. At the same time, the robot benefits from humans’ natural navigation and obstacle

avoidance capabilities. While this can arguably be beneficial for task performance, the

high proximity between user and robot also leads to codependencies that create the need

of communication methods between user and robot for efficient collaboration.

1Chapter 4 Summary Video: https://youtu.be/H245WdJpNpE
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Earlier work in this field explored robot-human communication for improved cooperation

[58, 60]. Such one-way communication of task planning, however, is limited in that the

robot has to lead the user and as users exert their will and decisions, task conflicts emerge.

This, in turn, inflicts user frustration and decreases cooperative task performance (see

Section 2.2).

Efforts towards involving user perception in robot’s task planning were made in our recent

work on estimating user attention described in the previous chapter (see Chapter 3). This

allows the robot to estimate the user’s point of attention via eye gaze in 3D space during

task execution. While the estimation of users’ visual attention helps just-in-time planning,

we lack an intention model which would allow the robot to infer the user’s goal in the

proximate future and go beyond reacting to immediate decisions only.

The results from Chapter 3 show that an estimate of users’ visual attention informs the

robot about areas of users’ interest. This is particularly helpful for the robot’s control

during tasks with high temporal demand. As opposed to an intention model, the attention

model would react to the current state of eye gaze information only, rather than using

its history to make predictions about the user’s future goals. What is necessary for

cooperative solving of more complex tasks like assembly where there is an increased depth

of subtasks is a system that goes beyond reacting to immediate decisions, i.e. a system

that predicts further than one step ahead.

In recent years, promising solutions for intention inference have been achieved through

observing user’s eye gaze [74], body motion [179] or task objects [123] and affordance [103].

An extensive review of methods for intention prediction is presented in the background

Chapter 2 (Section 2.6)

Using eye gaze as a predictor for actions is based on findings from studies that link gazing

behaviour to future actions. Land et al. [112, 113] found that fixations towards an object

often precede a subsequent manual interaction by a few hundred milliseconds, depending

on the type of interaction. Experiments with virtual [12] and physical [169] tasks show

that humans gather information through vision just in time rather than planning and

memorising a task solution strategy upfront. Notably, Huang et al. [75] used gaze infor-

mation from a head-mounted eye tracker to predict customers’ choices of ingredients for

sandwich-making using an SVM as a prediction model with 76% accuracy. It was later

used as a basis for a robot’s anticipatory behaviour, which led to more efficient collabo-

ration compared to following verbal commands only [74]. This supports our motivation

of replacing explicit commands with control through intention anticipation in the context

of handheld robot collaboration.

Another aspect of action prediction is the current task state. For example, Liu et al.

[122, 123] use information about object locations and about the sequence of previously
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Figure 4.1: The Intention Prediction Model. This shows an overview of the modules of
the intention prediction model and its application in the validation task. The system captures
the users’ eye gaze during their decision process and derives a visual attention profile for each
object in the scene, e.g. in this case, the building blocks. The Prediction model uses gaze data
and task knowledge to calculate the intention probabilities for each object. Finally, the handheld
robot uses the predictions to bias its behaviour during task solving. Depending on the behaviour
mode, it follows the intention (obedience choice) or chooses a different target (rebel’s choice) in
the validation experiment.

used objects to derive an estimation for a subject’s subsequent step in block assembly

tasks. To varying extents, this task knowledge is already available to the majority of

intelligent tools (Section 2.3) because it is required for their autonomous control. Using

this data to further support a prediction system could improve accuracies in comparison

to mono-modal models.

The above methods improve cooperation in a turn-taking human-robot collaboration

setup. However, we lack knowledge about their effect on cooperation performance within

a shared control setup such as we face with handheld robots. To the best of our knowledge,

such a scenario was never tested with a system for intention prediction that involves both

human behaviour cues and task knowledge. Thus, the question remains open whether

there is a model which suits the setup of a handheld robot, which is characterised by close

shared physical dependency and a working together rather than a turn taking cooperative

strategy. Hence, this is explored in this chapter, which is guided by the following research

questions:

Q3 How can user intention be modelled in the context of a handheld robot task?

Q4 To what extent does intention prediction of users affect the cooperation with a

handheld robot?

For our study, we use the open robotic platform, introduced in [59], combined with the

eye tracking system introduced in Section 3.2.2. The 3D CAD models of the robot design

are available from [1]. Within a simulated assembly task, which was inspired by [12], eye

gaze information is used to predict subsequent user actions. Figure 4.1 shows an overview
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of the proposed system.

At the core of this chapter is the validation of the intention model. This is a particularly

challenging problem, because of the physical codependencies that emerge from the shared-

control characteristics of the handheld robot. Namely, the robot cannot reach a target

without the user’s help and vice versa. Now, when the robot uses intention anticipation to

bias its decisions towards an aim for interaction, it is hard to judge, which party actually

took the lead. The fact that the actions of the two parties converge, i.e. the large scale

tactical motion of the user and the small-scale pointing movements of the robot, does not

immediately imply that this is due to a correct prediction of the user’s goal. This is due

to possible feedback loop because one could ask:

• Did the robot indeed follow the user’s will?

• Or did the user adapt their plans towards the robot’s (perhaps faulty) best guess?

In an attempt to overcome this obstacle, this chapter introduces the comparison of obe-

dience and rebellion as a paradigm to validate the prediction of intention. To clarify the

reasoning behind this concept, the reader shall be exposed to the following thought ex-

periment. Suppose the robot’s majority of predictions were correct. Such a robot would

have the power to choose to obey or to rebel against the user’s plans. As suggested in [58],

disobedience is a cause of users’ frustration. Comparing frustration levels within these

two conditions serves as implicit evidence for successful predictions, i.e. the accuracy of

the intention model. For this reason, rebellion and obedience are used as parameters to

test the handheld robot’s anticipation capabilities.

The two principal parts of this chapter consist of modelling user intention, followed by

the aforementioned validation procedure. The remainder of this chapter is organised

as follows: The development of the intention prediction model and the acquisition of

training data through experiments are described in Section 4.2. Section 4.3 and 4.4

outline strengths and weaknesses of the model and assess its accuracy, which is further

discussed in Section 4.5. The model is then applied and tested in practice through an

assistive pick and place task in Section 4.6 to 4.8, where the model is used for the robot’s

anticipatory behaviour. The chapter closes with conclusions in Section 4.9.

The contribution of this chapter is an intention prediction model with real-time capabili-

ties that allows for human-robot collaboration through online plan adaptation in assistive

tasks. Contribution details are summarised in the following list:

• We propose an online intention model, which predicts users’ interaction location

targets based on eye gaze and task states.

• For data collection and model validation, we propose an experimental setup of a

block copying task to emulate an example of assembly.
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• In the absence of universally accepted psychophysical metrics, we propose to mea-

sure the frustration induced through the robot’s rebellion to validate intention pre-

dictions.

4.2 Prediction of User Intention

In this section, we describe how intention prediction is modelled for the context of a

handheld robot based on an assembly task. The first part is about how users’ gaze

behaviour is captured and quantified within an experimental study. In the second part,

we describe how this data is converted into features and how these were further filtered

through task knowledge and used to predict user intent.

The first challenge in this work is to design an example task for experimental purposes

that covers the requirements needed for an investigation of the research questions Q3/Q4.

The core of this research is to understand users’ gazing behaviour during complex task

execution with one of the main assumptions being that task-relevant objects receive users’

attention prior to interactions. For example, suppose the robot is used in an assembly

task for manufacturing. Then the user might decide to pick a nut, required for a threaded

rod. According to Land et al. [112] and Huang et al. [75], it can be expected that this

interaction is presided by gaze fixations at the nut, which in turn allows for a prediction

of interaction or at least its selection, given a set of options.

My user observes a bolt. 
Likely, they need a nut.

Handheld Robot

User Eye Gaze

Bolt

Figure 4.2: Linking Task Objects for Predictions. This demonstrates the new prediction
paradigm introduced in this study. The user gazes at a a task object (e.g. a bolt) and the robot
predicts the need of a complementary object (e.g. a nut).

The concept of this work goes one step further and tests whether this assumption extends

to objects linked to another subtask. Specifically, for the aforementioned assembly exam-

ple, one could assume that users decide on picking a nut when they observe a counterpart

at the assembly object, where one is required, say a threaded rod (Figure 4.2). Arguably,

a cooperative robot should be able to use this task knowledge to link fixations of related
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objects, e.g. the robot should prepare for nut picking when the user observes a threaded

rod. This could result in more accurate predictions at an earlier point in time.

For this reason, a testing setup is required that fulfils the following criteria:

• It needs to be diverse enough to allow for a broad range of task solution strategies.

• It needs task-related dependencies between subsets of task objects.

Furthermore, the intention model requires data about object fixations and how the objects

are related to each other. The following describes the implementation of these criteria

concerning both the experimental setup and the intention model.

4.2.1 Data Collection

We chose a simulated version of a block copying task, which has been used in the context

of work in hand-eye coordination [12, 169], but was redesigned to fit the purposes of a

handheld robot setup. As this study focuses on the user’s interaction with the robot

rather than the robot’s interaction with objects the proposed setup refrains from physical

grasping of objects. Instead, participants use the robot to move blocks that are simulated

and displayed on an LCD TV display. The display is integrated with the motion capturing

system and so the robot’s interactions with the screen surface can be detected without a

need for additional sensors.

Figure 4.3: Handheld Robot used in this Study. It features a set of input buttons and a
trigger at the handle and a 6-DoF tip [59]. The intention prediction model is based on user
perception through gaze tracking, which was introduced in Chapter 3.

Participants of the data collection trials were asked to use the handheld robot (Figure

4.3) to pick blocks from a stock area and place them in the workspace area at one of the

associated spaces indicated by a shaded model pattern. Hence, for a given block type,
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the relationship between the piece in the stock area and the pattern spot where it needs

to be placed is equal to matching parts in an assembly process (e.g. as demonstrated in

Figure 4.2). While the user decides on which part of the pattern to complete, their gaze

information could already inform the intention model concerning a subsequent selection

of stock part.

Inspiration for the task was drawn from the block-copy task presented in [12], where

coloured blocks are used which subjects use to copy a pattern. However, for this study,

the block design was changed from colours to grey-scale patterns. This design adds

complexity due to the demand for matching orientation and eliminates any problems

related to colour blindness in participants. Similar designs can be found in tasks for IQ

tests [147]. Tasks in this field are characterised by high complexity, while the rules can

be learnt swiftly. These properties are beneficial for the presented study as well, since

subjects face high cognitive demands at the level of decision making, while training times

remain short.

For the initial data collection experiment, the robot remained motionless to avoid dis-

traction and the risk of user decisions being influenced by the robot’s motion. Using the

intention model for robotic motion will be subject to later validation (see Section 4.6). An

overview of the task can be seen in Figure 4.4a and example moves in Figure 4.4b.

To pick or place pieces, users have to point the robot’s tip towards and close to the desired

location and pull/release a trigger in the handle. The position of the robot and its tip is

measured via a motion capturing system2. A detailed description of the motion capturing

setup is presented in the previous chapter (Section 3.2.2 and Figure 3.7). Another button

in the handle allows the user to rotate a grabbed piece. The handle of the robot houses

another button which can be used to rotate the grabbed piece. The opening or closing

process of the virtual gripper is animated on the screen. If the participant tries to place

a mismatch, the piece goes back to the stock and has to be picked up again. Participants

are asked to solve the task swiftly and it is completed when all model pieces are copied.

Throughout the task execution, we kept track of the user’s eye gaze using a robot-mounted

remote eye tracker in combination with a 3D gaze model from Chapter 3. Figure 4.4c

shows an example of a participant solving the puzzle.

For the data collection, 16 participants (7 females, mage = 25, SD = 4) were recruited

to complete the block copy task, mostly students from different fields. Participation was

voluntarily and there was no financial compensation for their time. Each completed one

practice trial to get familiar with the procedure, followed by another three trials for data

collection, where stock pieces and model pieces were randomised before execution. The

pattern consists of 24 parts with an even count of the 4 types. The task starts with 5

2OptiTrack: optitrack.com, 7 camera setup (model Flex3)
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(a) Layout of the block copy task on a TV display. The area is divided into stock (red) and
workspace (blue). The shaded pattern pieces in the workspace area have to be completed by
placing the associated pieces from the stock using the real robot. Some blocks are pre-completed
at the beginning of the task to break trivial completion strategies (e.g. line-by-line filling).

(b) This shows a couple of possible example moves for block 1 and 4. Using the robot, a piece
from the stock (left column) has to be moved to an associated piece in the pattern (shaded blocks)
and match the model’s orientation to complete it.

(c) This picture shows a participant within our user intention prediction study who solves
the assembly task and is about to decide where to place the currently held block. Using the
eye tracker, the prediction system extracts the user’s gaze pattern, which is used for action
prediction.

Figure 4.4: Overview of the Block Copy Task. Layout and example moves are shown in (a)
and (b). (c) Shows an experiment participant during task execution.
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pre-completed pieces to increase the diversity of solving sequences leaving 19 pieces to be

completed by the participant. That way, a total amount of 912 episodes of picking and

dropping were recorded.

With 912 recorded episodes, 4 available stock pieces and 24 pattern parts, we collected

3,648 gaze history data points for stock parts prior to picking actions and 21,888 for

pattern pieces.

4.2.2 User Intention Model

In the context of our handheld robot task, we define intention as the user’s choice of which

object to interact with next, i.e. which stock piece to pick and on which pattern field

to place it. The studies on human gaze behaviour (introduced in Section 2.6.3) inspired

the use of gaze data for action prediction and form the basis of our assumptions for the

intention model listed in the following:

A1 An intended object attracts the users’ visual attention prior to interaction.

A2 During task planning, the users’ visual attention is shared between the intended

object and other (e.g. subsequent) task-relevant objects.

Moreover, as noted in [58], a mismatch between the robot’s plans and the user’s inten-

tion inflicts user frustration. Hence, with regards to the model’s experimental validation

(Section 4.6), we also assume that

A3 If the predicted intention is the true intention, a robot that rebels against following

the predicted goals induces user frustration.

Our method is constrained by the assumption that full task knowledge is available to the

system. This includes information about task objects’ positions and their relationships

such as task-specific matching.

As a first step towards feature construction, the gaze information for an individual object

was used to extract a Visual Attention Profile (VAP), which we define as the continuous

probability of an object being gazed. Let xgaze be the 2D point of intersection between

the gaze ray and the TV screen surface and xi the 2D position of the i-th object in

the screen. Then the gaze position can be compared to each object using the Euclidean

distance:

di(t) = ||xgaze − xi||. (4.1)

As a decrease of d implies an increased visual attention, the distance profile can be con-
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verted to a VAP using the following equation:

Pgazed,i(t) = exp(
−di(t)2

2σ2
). (4.2)

Here, σ defines the gaze distance resulting in a significant drop of Pgazed, which is set to

60 mm based on the pieces’ size and tracking tolerance, which was identified in the eye

tracker accuracy study of the preceding chapter (Section 3.3). The intention model uses

the VAP of the interval Tanticipate = 4 s before the point in time of the prediction. This

is to account for the average duration of subtasks (see Section 4.3). When tweaking the

window size, for the intention model, turned out that data points beyond 3.5 s would not

add much to the accuracy of the models, whereas real-time prediction becomes slower due

to increased input dimension. For this reason, 4 s were chosen as a compromise between

the two. Due to the data update frequency of 75 Hz, the profile is discretised into a vector

of 300 entries (see example in Figure 4.5).

The prediction for picking and placing actions was modelled separately as they require

different feature sets. As mentioned above, earlier studies about gaze behaviour during

block copying [12] and assembly [145] suggest that the eye gathers information about both

what to pick and where to place it prior to initialising manual actions. For this reason,

we combined pattern and stock information for picking predictions for each available

candidate, resulting in the features selection:

F1 The VAP of the object itself.

F2 The VAP of the matching piece in the pattern. If there are several, their VAPs are

combined using the element-wise maximum function.

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
0
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0.6

0.8
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Short 
Fixation

Long Fixation

Saccade towards 
the object

Saccade away 
from the object

Figure 4.5: Visual Attention Profile (VAP). This is an example for a VAP of a single object
in the scene. It demonstrates the characteristic changing visual attention over time within the
anticipation window of the prediction model for an individual object.

This goes in line with our assumptions A1, A2. Both features are vectors of real numbers

between 0 and 1 with a length of n = 300. For the prediction of the dropping location,
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A2 is not applicable as the episode finishes with the placing of the part, hence why only

F1 (a vector with length n = 300) is used for prediction. Note that this feature contains

implicit information about fixation durations as well as saccade counts.

An SVM [68] was chosen as a prediction model as this type of supervised machine learning

model was used for similar classification problems in the past, e.g. [75]. A strength of

SVM models is that they generalise well for complex problems, even for small training sets

[68]. Furthermore, the calculation for predictions is fast due to its linear mathematical

characteristics. The model analysis further down will also cover how the SVM compares

to other prediction methods, such as ANN and Logit model. Model design and train-

ing were done using the MATLAB Deep Learning and Statistics and Machine Learning

toolboxes.

We divided the sets of VAPs into two categories, one where the associated object was the

intended object (labelled as chosen = 1) and another one for the objects that were not

chosen for interaction (labelled as chosen = 0). Training and validation of the models

were done through 5-fold cross-validation [99].

The accuracy of predicting the chosen label for individual objects is 89.6% for picking

actions and 98.3% for placing. However, sometimes the combined decision is conflicting

e.g when several stock pieces are predicted to be the intended ones. This is resolved by

selecting the one with the highest probability P (chosen = 1) in a one-vs-all setup [182].

This configuration was tested for scenarios with the biggest choice, e.g. when all 4 stock

parts (random chance = 25%) would be a reasonable choice to pick or when the piece

to be placed matches 4 to 6 different pattern pieces (random chance = 17-25%). This

validation set Xvalid includes 540 picking samples and 294 placing samples. The one-vs-all

validation of the SVM results in a correct prediction rate of 87.9% for picking and 93.25%

for placing actions.

Accuracy [%]
SVM 87.9

Attention Only 77.1
ANN 75.9
Logit 70.1

Table 4.1: Intention Prediction Performance. This shows the accuracy of the tested predic-
tion models, namely SVM, ANN and a Logit model. The SVM yields the highest accuracy of the
prediction models and outperforms the straight forward ”choose last attended object” approach.

For a comparison to alternative prediction models, the same procedure was repeated using

a Logit model and an ANN. The ANN has 2 interconnected hidden layers with the size

of the input data (i.e. 300 nodes for each feature F1, F2). Table 4.1 shows that the SVM

outperforms the model alternative. Furthermore, it outperforms the straight forward use

of the attention model, i.e. using the latest fixated object as a prediction result. Further
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adjustment of the ANN’s hyper parameters, e.g. adding nodes and layers, might improve

its performance. However, this also bears the risk of overfitting. Therefore, we decided

to proceed with the SVM as a basis for the intention modelling analysis.

4.3 Results of Intention Modelling: Quantitative Analysis

The analysis of the intention model’s performance is divided into two parts, a quantitative

analysis and a qualitative assessment. The quantitative analysis focuses on the accuracy

of the intention model in comparison to established methods while the qualitative part

outlines common reasons for correct performance or failures.

Having trained and validated the intention prediction model for the case where VAPs

range over Tanticipate prior to t0, the time of interaction with the associated object, we

are now interested in knowing to what extent the intention model predicts accurately at

some prior time tprior < t0. To answer this question, we extend our model analysis by

calculating a tprior-dependent prediction accuracy where respective predictions are based

on data from the time interval [tprior − Tanticipate, tprior]. Within a 5-fold cross-validation

setup, tprior is gradually decreased while predictions are calculated using the trained SVM

model and compared against the ground truth at t0 to determine accuracy. The validation

is based on the aforementioned set Xvaild so that the random chance of correct prediction

would be ≤ 25%. The shift of the anticipation window over the data set is done with a

step width of 1 frame (13 ms). This is done for both the case of predicting which piece is

picked up next as well as inferring intention concerning where it is going to be placed. For

the time offsets tprior = 0, 0.5 and 1 seconds, the prediction of picking actions yields an

accuracy apick of 87.94%, 72.36% and 58.07%, respectively. The performance of the placing

intention model maintains a high accuracy over a time span of 3 s with an accuracy aplace

of 93.25%, 80.06% and 63.99% for times tprior = 0, 1.5 and 3 seconds, respectively. In order

to interpret these differences in performance, we investigated whether there is a difference

between the mean duration of picking and placing actions. We applied a two-sample t-test

and found that the picking time (mean = 3.61 s, SD = 1.36 s) is significantly smaller than

the placing time (mean = 4.65 s, SD = 1.34 s), with p < .001, t = −16.12.

As the prediction model of the picking actions implements the novel aspect of adding

the VAPs of related objects, its comparison to existing methods is of particular interest.

Figure 4.6 shows a comparison of the proposed model (where both features F1 and F2

are used) against the case where F1 is the single basis for a prediction, such as the model

recently explored in [75]. It can be seen that both models well exceed the chance of picking

randomly. Notably, the proposed model outperforms the existing one shortly after the

subject ends the preceding move and presumably starts planning the next one. To further
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Figure 4.6: Prediction Performance of the Proposed Model and How it Compares to
Existing Models. This diagram shows the performance of predicting pick up actions averaged
over 912 samples for two models: our proposed model (red) and an SVM (black), which is based
on the feature F1 only, such as proposed by Huang et al. [75]. It can be seen how both models
perform better than chance (dashed black) and predict the actions with increasing accuracy as
the prediction time t approaches the time of the action’s execution t = 0. tmean (with temporal
SD tSD) is the mean time of completing the last block and hence the earliest meaningful time of
predicting picking as a subsequent action.

investigate the effect of the chosen model on the prediction performance, a two-factorial

ANOVA was applied where the prediction time t relative to the action and the model

were set as the independent factors and the performance as the dependent variable, which

reveals that the correct prediction rate of the proposed model is significantly higher (p <

.001) than the one of the existing model. Moreover, the proposed model is able to predict

intention more reliable (improvement from 68.34% to 87.94%) and at an earlier point in

time than the existing method. The proposed model reaches the 60% accuracy mark at

t = −0.92s, i.e. 470 ms earlier in time than the existing model with t = −0.45s (see Figure

Figure 4.6). The prediction model performs fast enough to fit the time constraints set by

the eye tracker (30 Hz), which allows for real-time predictions during task execution, as

demonstrated in Figure 4.7.

4.4 Results of Intention Modelling: Qualitative Analysis

For an in-depth understanding of how the intention models respond to different gaze

patterns, we investigate the prediction profile, i.e. the change of prediction over time, for

a set of typical scenarios.
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Figure 4.7: Real-Time Intention Prediction. This shows an example for a prediction during
the pick-and-place task. The picture on the left shows a snapshot of the experiment setup. To
the right, is the visualised prediction for the different task objects (cubes). The probabilities are
indicated by the objects’ sizes. In this case, there are two matching alternatives and the model
predicts a higher probability for the object that the user is currently gazing at. Notably, the user’s
eye gaze is one step ahead of the task, i.e. the user observes a spot to place the block in the
future rather than focusing on the picking process. This enables the intention model to make
predictions for the proximate future.

4.4.1 One Dominant Type

A common observation was that the target object perceived most of the user’s visual

attention before interactions, which goes in line with our assumption A1 and findings

from [75]. An example of these one-type-dominant samples can be seen in figure 4.8a.

Furthermore, note that the prediction remains stable for the event of a short break of

visual attention, i.e. the user glances away and back to the same object (Figure 4.9b).

This is a contrast to an intention inference based on the last state of visual attention

only, which would result in an immediate change of the prediction. For the majority of

these one type dominant samples both the picking and placing prediction models predict

correctly.

Of particular interest are examples where the model made connections between objects of

the same type, i.e. when the model combines gaze data from pattern space with the data

from the matching stock part. An example for such a case can be seen in Figure 4.8c,

which shows the VAPs of a stock piece and its counterpart in the pattern right before

the stock piece get selected by the user. Notably, the VAP of the stock piece alone is
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characterised by large time gaps that yield no attention. However, because the pattern

counterpart is gazed at during those intervals, the model (correctly) calculates a high

prediction value. This supports assumption A2 and thus the proposed new paradigm of

linking task-related objects for more accurate predictions.

4.4.2 Trending Choice

While the anticipation time of the pick-up prediction model lies within a second and is thus

rather reactive, the placing intention model is characterised by a slow increase of likelihood

during the task, i.e. it shows a low-pass characteristic. Figure 4.9 demonstrates that the

model is robust against small attention gaps and intermediate glances at competitors,

however, the model requires an increased time window to build up confidence.

4.4.3 Incorrect Predictions

There is a number of reasons for occasional incorrect predictions with some examples

displayed in Figure 4.10. Most commonly, a close-by neighbour received more visual

attention and was falsely classified as the intended object. For example, Figure 4.10a

shows how the user’s gaze switches between a set of candidates without attending the

final selection long enough for the model to make a correct prediction. Hence, one of the

competitors is favoured by the model leading to an incorrect prediction.

In some rare cases, there were no intended fixations recorded for the candidate prior to

the interaction, which can occur due to offset errors in the eye tracking system or due to

the user making decisions based on peripheral view information (see Figure 4.10b).

In other few samples that led to faulty predictions, the eye tracker could not recognise

the eyes, e.g. when the robot is held so that the head was outside the trackable volume

or the head angle range. In that case, the tracking system is unable to update the gaze

model, which would lead to over or underestimation of perceived visual attention as can

be seen in Figure 4.10c.
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(a) One piece receives most of the user’s visual attention prior to placing.
The two highest competitors do not receive any attention, which leads to an
accurate prediction.
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(b) This demonstrates the model’s robustness for cases of small attention
gaps. While the attention drops for a few hundred ms, the prediction re-
mains stable. Dominance of visual attention with break gap: the prediction
model maintains the prediction.
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(c) User gaze alters between stock piece and matching workspace location.
This was a common observation prior to piece selection. The fact that
Pchosen is high towards the end, shows that the model is able to make a
connection between VAPs of task-related objects.

Figure 4.8: Correct Predictions with One-Type-Dominant Characteristic. These dia-
grams show examples for correct predictions of one type dominant samples. They demonstrate
how a long fixation time (blue) result into a high (red) probability (a), that the model is robust
against a short duration of an absence of user attention (b) and how pattern glances and stock
fixations are combined for predicting future interaction (c).
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(a) Increasing visual attention over time prior to object selection.
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(b) This shows a typical characteristic of increasing user attention of the selected
object over the time prior to the their decision. The model is robust against cases
where competitors receive short intervals of attention (Pchosen remains stable).
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(c) The user’s attention alters between a competitor and the selected piece. However,
the attention shifts towards the selected object as the user approaches their decision.

Figure 4.9: Correct Prediction with Attention Build-Up. These examples illustrate how
the visual attention (blue) of an object builds up during the user’s decision process in which case
the intention prediction (red) remains undecided (i.e. Pchosen < 0.5) for a longer time compared
to the case where no competition receives fixations (see Figure 4.8).
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(a) Favoured competing choice: underestimation of the piece selected by the user, due
to competitors receiving more attention in the immediate past.
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(b) Underestimation due to missing visual attention for the intended object. This
can occur when users use their peripheral view or due to an offset error of the gaze
model.
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(c) Overestimation due to missing gaze information. This can occur, e.g. for extreme
head angles away from the gaze tracker.

Figure 4.10: Reasons for Incorrect Predictions. This shows examples for incorrect predic-
tions due to the lack of fixations (a). The predicted probability (red) for this object remains low
despite being chosen by the user. (b) and (c) show situation that lead to the model’s underesti-
mation or overestimation, respectively.
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4.5 Discussion of Intention Modelling

Recall that the intention prediction modelling process aimed to derive an estimate of

which object the user wants to interact with next so it could later be used to bias the

robot’s actions.

In addressing research question Q3, we proposed a user intention model based on gaze

cues for the prediction of actions, which was assessed in a pick and place task. As a novel

aspect introduced through this study, the predictions are not only based on saccades

and fixation durations of an individual object but also those of related objects. In other

words, assessing the attention on objects in the workspace helps to predict which piece

outside the current workspace is needed next. When the subject turns their attention

towards the piece, the model interprets this as a confirmation rather than the start of a

selection process. This shows that the proposed model can create a link between attention

spans towards related objects. This helps to cut the time required for the model to

gather relevant gaze information and makes predictions more reliable than traditional

models.

We showed that, within this task, the prediction of different actions has different an-

ticipation times, i.e. the model allows predictions 500 ms before picking actions (71.6%

accuracy) and 1500 ms prior to dropping actions (80.06% accuracy). This can partially

be explained by the fact that picking episodes are shorter than placing episodes. More

importantly, we observed that users planned the entire pick-place cycle rather than plan-

ning picking and placing actions separately. This becomes evident through the qualitative

analysis, which shows altering fixations between the piece to pick and where to place it.

That way, the placing prediction model can already gather information at the time of

picking.

The fact that there is a difference between anticipation times for specific actions makes it

hard to estimate to what extent the proposed approach generalises to new tasks. This is

less surprising given that previous research showed that human gazing behaviour differs

between tasks, concerning how far the eyes go ahead of the task [113]. However, the

presented results indicate that actions can be predicted significantly earlier when task

knowledge is used to link related objects and their gaze fixations. Arguably, this might

generalise to other tasks where objects are linked through subtasks, e.g. pick and place,

assembly or when a specific tool is required to interact with a part that has attracted

the user’s attention. This could be useful for assistive robotic systems beyond handheld

robots as well, particularly when close collaboration is required.

The prediction model depends on a continuous gaze stream as an input. While the results

show that the model is robust against small gaps in the data stream, predictions will fail
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for extreme cases, e.g. when users would turn their head far away from the gaze tracker.

This rarely happens because most of the time, the user focuses on objects close to the tip

and the sensor is aligned accordingly. Therefore, large head angles away from the sensor

usually occur when the user aims for an object that is farther away. In most cases, the

robot is able to capture the eye gaze and make a prediction as the user approaches the

target and the gaze tracker gets realigned. This gives the robot enough time to react.

Extending the system with additional sensors could improve the trackable range of the

eye tracking system, which would make it more robust for these rare cases.

In terms of the system’s limitations, we point out that it is unclear how well the model

generalises and performs for new tasks as the differences in performances for the two

example actions (picking and dropping) indicate that the model is task-dependent. Fur-

thermore, the links between task objects were pre-defined, i.e. matching objects and their

locations were labelled. The classification and localisation of task-relevant objects is a

complex problem and thus subject to future work.

The results are encouraging for testing the prediction model in a real-time application.

Therefore, we proceed with an experimental study where the intention model is used to

bias the robot’s action for cooperative behaviour. The robot’s knowledge about the user’s

intention allows for a rebellion against user plans. The following section shows how this

counter-intuitive twist can be used to validate the intention model in action.

4.6 Intention Prediction Model Validation

In the second part of this study, we validate the proposed intention model for the case

where it is used to control the robot’s behaviour and motion. While the aforementioned

experiments and analysis demonstrate that the intention model is capable of predicting

users’ short term goals while having full control over the robot’s tip, it is unclear whether

this is true for the case where the robot reacts to these predictions. For example, users

might adapt their intention to the robot’s plans just by seeing it moving towards a target

that might differ from their initially intended move. That way, labelling the robot’s

predictions as being correct or incorrect in the same way as we did in the previous study

(Section 4.2) becomes invalid due to the lack of ground truth.

For this reason, we propose to assess the intention model indirectly instead by observing

users’ reactions to the predictions with a focus on frustration. We base our experimental

validation on assumption A3 and use frustration as a measure of correct predictions.

For the case of the validation task, this means that the robot predicts where the user

wants to reach next. The robot can then choose to avoid the predicted goal with the idea

being that if this frustrates users, this could serve as evidence of the prediction being
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correct. Arguably, frustration can only be induced through disobedience if the robot

rebels against the true intention. Equally, low user frustration is expected when the robot

aims for predicted objects, given the prediction was correct. Therefore, a correlation

between frustration and the robot’s prediction-based obedience would implicitly validate

the proposed intention model in action.

Rebellion in Artificial Intelligence (AI) is a subject that gained more importance over the

recent years as robots have become more complex and have reached a point where social

behaviour can be part of their interaction with humans [34]. For this reason, researchers

have been working on a framework with various types of rebellion for AI agents. For

example, Aha and Coman [6] introduce the concept of outward-oriented and inward-

oriented rebellion. In the first case, the agent rebels against a person’s (e.g. a user)

behaviour and objects to it. The inward-oriented rebellion is characterised by the agent’s

actions conflicting with expectations towards it. A rebel type suitable for the presented

study is rebellion through non-compliance [6]. This is a special case of the inward-oriented

rebellion, i.e. where the robot reacts through behaviour: after a request, the robot refuses

to respond with the requested behaviour. In the context of the presented experiment task,

the request is substituted with the prediction of user’s intention, i.e. the request is derived

implicitly.

The following describes how the level of rebellion can be quantified and implemented for

user studies.

4.6.1 Intention Affected Robot Behaviour

For the experimental validation of the intention model, we used the aforementioned (Sec-

tion 4.2.1) block copy task and introduced an assistive behaviour to the robot, which is

controlled based on the predictions of a user’s intended subsequent move, i.e. which piece

the user wants to pick up next or at which location they want to drop it. We created 3 dif-

ferent behaviour modes: Follow Intention, Rebel and Random. For each mode, the robot

retreats to a crouched position while there is a low probability for each available target.

When the probability of the target with the highest probability reaches a threshold, the

robot reacts as follows:

• Follow Intention: The robot moves towards the target with the highest predicted

intention. It estimates, which block the user wants to pick up next and assists with

reaching it. After the block is picked, the intention model is used to estimate where

the user wants to place it in the pattern and moves towards it (i.e. Obedience Choice,

see Figure 4.1).

• Rebel: After a prediction, the robot moves towards the target with the lowest
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intention prediction score (i.e. towards the Rebel’s Choice) and thus avoids the one

with the highest prediction value. This goes for the selection of stock pieces as well

as for predicted target locations to place the block in the pattern (see Figure 4.1).

• Random: This is the reference mode where the robot randomly chooses which

block to pick and where to place it. This is independent of predictions made, i.e. in

some cases, the choice randomly goes in line with the user’s intention.

For each mode, the target chosen by the robot will always be in the feasible set defined by

the task. For example, the robot would never move towards a stock piece that is already

completed throughout the model pattern.

As per assumption A3, we argue, that an observed reduction of user frustration in the

Follow Intention mode compared to the Rebel mode would validate that the predicted

user intention went in line with the true intention. A demo of the behaviour modes can

be seen in the supplementary video3 of this paper and on our webpage [1].

In rare occasions, none of the targets exceeds the probability threshold that invokes the

robot’s reaching actions. In that case, the robot chooses a random valid target after a

small period of anticipation time to prevent a deadlock.

4.6.2 Experiment Execution

We recruited 20 new participants (6 females, mage = 26, SD = 4) for the validation

study of which 2 were later removed from the set for data analysis due to malfunctioning

gaze tracking. The participants were mostly students from various fields, though an

academic background was not required. 2 participants, i.e. 10%, have participated in

one of the experiments in Chapter 3. However, due to extensive training with the robot

prior to experiments, we do not expect any impact of this circumstance on the outcomes.

Participation was on a voluntary basis as there was no financial compensation. Each was

asked to first complete the task without the robot moving for familiarisation with the

rules and the robot handling. This practice session was followed by 3 trials where, for

each, the robot’s behaviour was set to a different behaviour mode. The block pattern

to complete as well as the order of the behaviour modes were randomised. Furthermore,

5 (out of 24) randomly chosen blocks were pre-completed to stimulate some diversity in

solving strategies, e.g. to prevent repeated line-by-line completion.

The participants were told to solve the trial tasks swiftly and that their performance was

recorded, i.e. they were encouraged to outperform their own preceding trials concerning

completion time. They did not receive any information about the behaviour modes but

3youtu.be/H245WdJpNpE
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were told that the robot will move and try to help them with the task. Each trial

was followed by the completion of a NASA TLX form [63] and 3 min resting time (see

questionnaire in Appendix D).

4.7 Results of Model Validation Study

The analysis of the experiment results is divided into two parts. The first part covers the

quantitative analysis, which focuses on the statistical validation of the intention model,

while the qualitative review summarises common reactions to the respective behaviour

modes.

4.7.1 Quantitative Analysis

To determine the effect of the robot’s behaviour mode on the subjects’ frustration level,

we performed an ANOVA with the mode as the independent variable and the frustration

component of the TLX as a dependent variable. As the analysis yielded a significant

effect (p = .023), it was further explored using a post-hoc pairwise t-test with applied

Bonferroni correction. The frustration mean for the Rebel group was identified as being

significantly higher than in the Follow Intention group (p = .019). No significant mean

differences were found when comparing the Random group to the others. The results can

be seen in Table 4.3 and Figure 4.11.

We extended our analysis to both, the combined TLX results, which serve as an indicator

for perceived task load, and the measured performance, which is defined as the number of

completed blocks per minute. However, an applied ANOVA did not yield an effect of the

robot’s behaviour model, neither on the combined TLX nor on the performance.
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Figure 4.11: Frustration Results. Perceived frustration from the TLX results for each of the
tested behaviour modes. The mean values (see Table 4.2) of starred groups yield a significant
difference (see Table 4.3).

109



CHAPTER 4. REBELLION AND OBEDIENCE: THE EFFECTS OF INTENTION
PREDICTION IN COOPERATIVE HANDHELD ROBOTS

Frustration Means and SDs
Follow Intention 16.6 (13.2)

Random 27.0 (21.7)
Rebel 37.2 (27.6)

Table 4.2: Mode-Dependent Frustration Levels. Means and standard deviations of the
frustration component of the TLX questionnaires

Follow Intention Random
Rebel p = .019 * p = .495
Random p = .469 -

Table 4.3: The t-test Results. Bonferroni corrected p-values of pairwise t-test results for the
differences in mode depended frustration means. The starred value is significant (p < .05).

4.7.2 Qualitative Analysis

As part of a qualitative review of the robot’s behaviour, there were some common reactions

of subjects for the respective modes. Notably, an increased number of corrective motion

was observed with the robot in the Rebel mode (see Figure 4.12). Often, the user rushed

towards the intended target but then they had to change their decision as the robot tried

to reach a different target. Some participants started to give up on planning entirely and

started following the robots’ rebellion choices.

In contrast, the collaboration between users and the robot was characterised by a sense

of working together when the robot was in the Follow Intention mode. Because the robot

moved towards intended targets, its movement complemented the tactical motion of the

user in a timely manner, which lead to shortened travel paths (see Figure 4.13). Some

participants expressed their surprise during task execution and wondered how does it know

what I want to do?

Some participants commented on the behaviour modes after completing the task. The

Follow Intention mode was often preferred (e.g. “I liked being in charge and the robot

was helpful” and “The robot followed my decisions”), whereas the Random mode lead

to irritation in some users (e.g. “First I thought it would go where I wanted but then

it started moving unpredictably”). For the Rebel mode, we observed divergent reactions.

While some subjects struggled because of the mismatch between the robot’s motion and

their plans, others started following the robot’s lead. This was also reflected in the

comments, e.g. “Now the robot does its own thing, I don’t like it” versus “It was easier

because I did not have to think much”. Notably, some participants questioned their

abilities (e.g. The robot is better than me [at coming up with task solutions]) even though

they performed better in the Follow Intention mode. This might be due to the underlying

assumption that robots are better in term of efficient task solving.
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(a) The robot predicts where the user wants to place the piece that they are currently picking.
Due to the gazing history, the model predicts the highest probability value for the upper option
(green arrow) and the lowest value for the bottom option (orange arrow).

(b) Avoiding user intent leads to a mismatch with the user’s tactical motion. The robot avoids
the intended piece, which leads to conflicting motion as the robot aims for the lower option
(Rebel’s Choice) while the user rushes towards the intended option (User Intention). The user
is forced to follow the robot’s plans to continue.

Figure 4.12: The Rebel Mode. These figures demonstrate a common mismatch scenario that
was observed when the robot was in the rebel mode. While the user picks up a block from the stock
area, the robot uses the eye gaze data (yellow line) to derive a prediction about where they want
to place it (a). In the rebel mode, the robot moves towards the object with the lowest prediction
value. Because the prediction was correct, this leads to a mismatch between the user’s subsequent
motion (toward the upper option) and the robot’s aiming motion (towards the lower option). The
occurrence of these frustrating situations serves as indirect evidence for the robot’s prediction
being correct. (See more details in the supplementary demo video: youtu.be/H245WdJpNpE)
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(a) Prediction of the red piece during placing of the previous piece as a result of its preceding at-
tention history. Note that that the user is already looking at a subsequent piece while completing
the current block.

(b) The robot’s motion goes in line with the user’s intention as it adapts its plans. Both the
user and the robot move towards a common target.

Figure 4.13: The Follow Intention Mode. These figures illustrate the systems’ underlying
intention estimation (right) during task execution (left) and how the different modes affect coop-
eration. The users’ eye gaze model is represented as a yellow line while the estimated probability
for a piece to be chosen by the user is indicated by its size. (larger objects have higher probabil-
ity values). In these figures, the robot is in the cooperative obedience mode and thus follows the
highest prediction. (a) shows that the robot predicts which block the user is about to pick up while
they are finishing placing the previous one. (b) shows the robot after the user’s tactical reach-
ing movement. As the robot points towards the (correctly) predicted block, the robot’s motion
matches user movements leading to a smooth task flow. After picking the block, the prediction
episodes starts over again with the robot predicting where the user intends to place it.
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For a qualitative impression of participants’ behaviour for each mode, the reader is referred

to the supplementary video4 of this chapter.

4.8 Discussion of the Intention Validation

This part of the study aimed to validate the intention model implicitly, using levels of the

robot’s rebellion and users’ associated frustration responses as a basis of evidence in the

validation process.

The observed difference in frustration ratings between the mode where the robot sup-

ports the user’s predicted intention versus avoiding it is evidence for most of the intention

predictions matching the true intention. This validates the proposed intention model

and its application in assisted reaching. With regards to the question, to what extent

the prediction of user intention affects the robot’s collaboration (research question Q4),

our interpretation of the results is that during the Follow Intention trials, the robot did

follow the users’ preferred sequence rather than the users adapting it to the robotic mo-

tion. That way, the intention model enhances cooperation concerning action anticipation

between collaborators. This is an important element of a cooperative robot because it

is required for its response on time [29]. There are more layers to it such as intention

communication and the adaptation to other user preferences, which leaves space for future

exploration.

The difference in frustration levels is smaller than expected. Notably, the Standard De-

viation (SD) of frustration levels in the Rebel treatment is large compared to the other

two modes. Presumably, this is because some individuals did not blame the robot for

mismatching motion but themselves, hence why they would not feel frustrated about the

robot’s choice but believe that it knows better and so they were willing to follow its

implicit suggestions.

Mean frustration for the Random mode being between the other two modes is expected,

given that the robot’s choices contain both predicted and non-predicted targets. The effect

size is too small for a reliable distinction within this group size. Our analysis furthermore

shows that user frustration is more sensitive to the robot’s intention prediction than

perceived task load and performance. Therefore, we suggest that collaborative agents

should follow user intention when there are subtasks with similar priorities for enhanced

cooperation.

4https://youtu.be/H245WdJpNpE
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4.9 Chapter Summary and Conclusion

This chapter aimed to investigate the prediction of user intention as an approach to

overcome obstacles in handheld robot collaboration that result from the characteristics

of high physical proximity and dependency between the robot and its user. Namely,

conflicting movements that arise from mismatches between user’s intention and the robot’s

plan previously lead to frustration in users and was in the way of smooth cooperation.

What is necessary is a model that makes swift predictions to allow the robot to react to

the user’s intention and adapt its plans where possible in a timely manner.

In search of a method that suits the handheld robot setup, the proposed prediction model

builds on the previously introduced visual attention system that allows gathering user eye

gaze information with respect to task-relevant objects in the work scene. The proposed

method goes beyond already established gaze-based prediction models. Here, eye gaze

data is combined with context information that links scene objects that are related through

subtasks following the key-and-lock principle.

To gather training data for the model, a block copy task was introduced where the robot

was used to pick and place blocks to reconstruct a pre-defined pattern. Experimental

data was then used to train an SVM-based model for the anticipation of user actions.

The results show that picking actions can be predicted with up to 87.94% accuracy at

500 ms ahead and dropping actions with 93.25% accuracy at 1500 ms ahead in real-time.

We show that the prediction accuracy benefits from combining gaze data with context

information, leading to a significant improvement.

Using the block copy task setup, the model’s performance was validated through user

studies where the robot reacts to anticipated user intentions. The knowledge about the

user’s plans enabled it to choose to comply with it or to work against it. This allowed

for an indirect validation of the model’s accuracy as a significant difference in frustration

levels was observed in these two conditions. The ability of the robot to induce frustration

through rebellion is evidence that the predicted user plans the robot was objecting to were

the true intentions in users. The introduction of frustration via rebellion was used as a

new way to investigate the usually complex aspect of effectiveness of intention prediction

in human-robot interaction. This approach, together with the model proposed, could be

useful in other cooperative robot studies.

The proposed intention prediction model has real-time capabilities that allow the robot to

adapt its plans and motion planning to the user’s intention fast enough to assist in reaching

towards objects the user intends to interact with. This outcome demonstrates that the

robot’s cooperation could be enhanced through the intention model given the availability

of gaze data and context information, e.g. in assembly tasks with complementary parts
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or when a specific tool is required and needs to be fetched to complete work on specific

objects in the work environment. As such, the principle of using multiple sources of

information to make predictions is applicable to other domains that are characterised by

close collaboration and interaction with humans for example in shared workspace assembly

and assisted living.

The quality of a robot’s cooperation in collaborative task setups depends on many aspects

that are required for an efficient exchange of information and interaction that is safe,

efficient and reliable. The proposed method of intention prediction is a contribution to

the robotics research community that brings it one step further on its way towards a

future of assisting robots that humans can use effortlessly thanks to the evolution of the

machine’s counterpart to human intuition.

This chapter focused on the robot’s interaction with a user who essentially knows how

to solve the task hence why the prediction of intention became relevant. Another case to

consider is the scenario of a user with limited task knowledge. This raises the research

question, how task knowledge could be obtained and communicated to the user. Often,

another person (e.g. an expert) holds task knowledge that would enable the carrying user

to complete the task. For this reason, the subsequent chapter will bring the interaction

with the handheld robot to a new level that involves two people controlling the robot

simultaneously.
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Chapter 5
Reach Out and Help: Assisted Remote

Collaboration through a Handheld Robot

In the Chapter 3 and 4, we investigated interaction concepts for single-

user handheld robot setups. In this chapter, we extend our exploration

to a setup with two users that collaborate via the handheld robot in a

helper-worker setup. This addresses current problems in remote assis-

tance as the aspect of physical remote interaction facilitates efficient

collaboration, which opens up new handheld robot applications. The

outcomes of this chapter are summarised in the supplementary video1

(scan QR code).

The main results of this chapter are currently in submission for publication. The prelim-

inary article is available as preprint version [211].

5.1 Introduction

This work introduces an assistive collaboration system that allows a remote expert to

guide a local user through a task using a handheld robot which is carried by the local

user. The aim of this research is to explore how the robot could work as a mediator

between the two human parties based on the proposed collaboration concept. That is,

the expert can perceive and explore the work environment through the robot and then

delegate task operations to the robot that in turn completes them in part autonomously.

The proposed system is tested using the maintenance of a plumbing system as an example

task, which covers a broad variety of common human-robot-human interaction problems.

1Chapter 5 Summary Video: https://youtu.be/cTJ8tNJJXV0

117



CHAPTER 5. REACH OUT AND HELP: ASSISTED REMOTE COLLABORATION
THROUGH A HANDHELD ROBOT

We show that the robot’s autonomous contributions to the task leverage a workflow that

is characterised by efficient interaction.

5.1.1 Challenges in Remote Collaboration

Collaborative remote assistance tasks usually involve a less experienced person (local

worker) who has to manipulate a set of physical objects with the help of a remotely

situated expert. In the context of a complex problem, the local worker has limited knowl-

edge about required operations and relies on instructions of an expert. Examples for

such tasks are maintenance [53] and inspection [121] of remotely located systems and

expert-guided surgery to train remote novice surgeons [10, 162]. Current systems solve

collaboration challenges such as spacial referencing and communication, however, they

limit the expert’s view to a camera that is either stationary or worn by the local user

[54]. What is missing is a system that allows the remote user to explore the environment

for inspection and grants physical access to decouple the solution from the local worker’s

competences.

A new approach to remote collaboration is to use a robot to enable a remotely located

user to help with a task in the local user’s workspace. For example Veronneau et al. [226]

present a remotely actuated waist-mounted robot that can assist in various tasks through

the help of a remote assistant. With these recent developments, the question is raised

to what extent a robot’s partial autonomy and task knowledge could be used to leverage

remote interaction. Answering this question is particularly relevant for more complex

tasks, i.e. in tasks where the solution is not immediately obvious to the local user, e.g.

due to a lack of task expertise. With the robot as a partially autonomous assistant, such

a setup would go beyond a master-slave relationship and more towards a working together

paradigm with the users and the robot each contributing to the task.

Remote maintenance is of particular interest for industrial applications [21]. Modern prod-

ucts and plants are characterised by increasing complexity which requires high expertise to

diagnose and solve problems. However, it might be expensive to get an expert on site and

relying on the consultation of a manual is inefficient [231]. Therefore, the development

of remote assistance systems has caught researchers’ attention in recent years (Section

2.7 and 2.8). Some solutions have considered remote guidance through AR [21, 69] and

semi-autonomous telemanipulation systems [139], i.e. systems that solve some subtasks

such as grasping autonomously. However, what is missing is a remote assistance setup

that combines the advantages of physical access through telemanipulation with the ones

of cooperative guidance and task solving.

With humans and robots working together in complex tasks, defining the collaboration
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style in a scenario that is characterised by mixed-initiative interaction is of particular

importance to enable each party to contribute to the task with their respective strengths

at suitable times [67]. As outlined in Section 2.5, traded control is a subdomain of mixed-

initiative interaction, where a human is in charge of controlling the robot for some parts

of the tasks, while the robot is supervised but autonomous during other parts of the

task [105]. This concept could benefit interaction with remote maintenance robots: The

remote expert could control the robot during the inspection part, in which they explore

the scene, while the robot could take over control once the expert makes a diagnosis and

decides on what needs to be done. Regarding the proposed pipe maintenance test case,

examples for such semi-autonomous operations could be to adjust valves in the system

or to inspect gauges and pipe elements. What is necessary for the autonomous execution

is the robot’s knowledge about the task, i.e. the location and identity of task objects

and how to interact with them. For example, adjusting a valve is a different form of

interaction than checking a pipe element for cracks.

Previous work on handheld robots [58–60] demonstrates that task knowledge and en-

vironment information can be used to assist in collaborative task solving, which brings

together the robot’s precision and the natural navigation competences of human users (see

also Section 2.2). Arguably, a device with these characteristics could bridge the afore-

mentioned gap between remote guidance and telemanipulation, with the handheld robot

helping both effective communication between the workers and task outcomes.

While the introduction of the robot’s task knowledge brings advantages, a crucial aspect

remains unexplored, namely where this knowledge might come from, e.g. whether it

could be learned [3] or derived from a remote expert and mediated through the robot

[106]. In this work, we start with exploring to what extent a handheld robot is suitable

for a remote assistance human-robot-human setup and whether the benefits of the robot’s

partial autonomy can be observed analogous to aforementioned work.

Essentially, remote assistance systems are characterised by two key aspects: remote guid-

ance (introduced in Section 2.7) and telemanipulation (see Section 2.8). Remote guidance

systems allow a remotely located helper to assist another person through directions and

instructions. Usually, the remote helper can perceive the worksite through a camera

system, e.g. as part of portable systems [69, 121, 162, 177, 231] or in some instances

controlled by the helper [61, 108]. While these solutions enable communication and in-

struction, they do not allow for direct physical access, i.e. the local instructed users have

to carry out the tasks themselves by following directions. Physical manipulation of task-

objects through the instructor is not part of the aforementioned designs. The counterpart

to remote guidance is the field of telemanipulation. Here, remote physical manipulation is

the central aim. Instead of instructing another person, operators solve the task remotely

through a robotic system that can be controlled in a precise manner. Examples can be
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found in applications for surgery [62] and for tasks in maintenance and inspections in

hazardous environments such as fusion power plants [204], the deep sea [232] and outer

space [195]. These works are milestones for telemanipulation of highly specialised tasks

and for environments that are inaccessible for humans. However, the research question

remains open, how concepts of remote guidance and telemanipulation could be combined

in a single system for collaborative task solving.

5.1.2 Chapter Overview

This chapter explores a remote collaboration system that enables a remote expert to assist

a local worker in a task using the handheld robot as a basis. Its tooltip can be used for

spacial referencing, i.e. navigation through pointing gestures and the work environment

can be explored remotely using a steerable camera. Moreover, the system allows for the

remote expert’s physical access to the work through the tooltip interface and intuitive

control.

The spacial coordination between the remote user, the robot and the local user is a

challenging problem. Here, we explore multimodal communication and the robot’s ability

to assist through world stabilisation as a starting point to address this problem. We see

potential in the robot’s accuracy and motion capabilities to delegate small-scale tasks

to the robot. That way, remote users can focus on strategies and their communication

to complete the task rather than wasting their capacity on fine-tuned tool tip motion

required for the task execution.

The development of a remote assistance system requires the achievement of the following

objectives:

• A sensory extension of the existing handheld robot to allow for the remote perception

of the environment, e.g. through cameras.

• A workstation that allows a user to remotely interface the handheld robot including

visual feedback, tooltip control with the option of task delegation to the robot.

• To leverage task execution, we propose semi-autonomous assistive features for the

handheld robot, which are based on position correction and task knowledge. These

allow remote users to chose an object for interaction, while the local task execution

is taken over by the robot.

• For validation of the system, we propose a collaborative maintenance task with a

partially simulated pipe system. It covers common teleassistance problems such as

inspection, manipulation and coordinated navigation.

We explore this setup guided by the following research question:
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Q5 How does the handheld robot’s autonomy and task knowledge affect performance

and communication in a remote assistance setup?

This work involves an extended version of the open robot platform, introduced in [59],

which is coupled to the proposed workstation (Section 5.2.5) for telepresence access. As

the interaction between the handheld robot and its carrier has been investigated exten-

sively in previous studies [58, 60, 209, 210], the focus of this work lies on the experience of

the remote access, i.e. the role of the remote expert. We investigate the subjects’ inter-

action in this human-robot-human setup and assess proposed semi-autonomous assistive

features of the robot. An experiment overview can be seen in Figure 5.1. The outcome

of the studies are summarised in the following list of contributions:

• As the main contribution, a new paradigm for remote assistance through handheld

robot collaboration is introduced. It allows for remote-teamwork with the handheld

robot as a mediator of instructions and physical interaction.

• Another key contribution is the proposed concept of local task delegation through

the robot’s assistive features. We show that their use improves team productiv-

ity and usability, hence why we suggest that they could benefit other telepresence

systems too.

• The qualitative analysis reveals a repeated sequence of exploration, guidance, local

task solving and retraction as a common emerging strategy in this novel collab-

oration setup. This knowledge is useful to guide future developments of similar

human-robot-human setups.

A demonstration of the remote assistance system and examples for the robot’s semi-

autonomous assistance features can be seen in the supplementary video material2.

5.2 Remote Assistance Study

In this study, we propose and test a remote assistance system which consists of two main

parts. On the local workspace site, a camera-equipped handheld robot with 5-DoF motion

capabilities (displayed in Figure 5.2) is carried by a local user. A remote user accesses the

robot through a remote interface, which allows them to control the robot for inspection,

manipulation and gesturing.

2https://youtu.be/cTJ8tNJJXV0
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Figure 5.1: Overview of the Remote Assistance Experiment Setup. The remote assis-
tance system allows a remotely located user to assist a user at the local work site through a
remote-controlled semi-autonomous robot, which allows for inspection and physical interaction.
Using the remote workstation, the local workspace can be perceived through robot-equipped cam-
eras. The local user helps with reaching through moving the robot to specific locations in the scene
as they follow the remote user’s instructions. Detailed views of the respective setup elements can
be seen in Figures 5.3 to 5.7.
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5.2.1 Study Design

We investigate the collaborative interaction between the three agents involved in the

task, i.e. the remote user, the local user and the handheld robot. Our main focus lies

on the effect of the robot’s semi-autonomous assistance features on the collaborative

task performance and communication strategies. Figure 5.1 shows an overview of the

experiment setup. The experiment trials were divided into an initial phase to assess the

training procedure and a subsequent study to investigate the effect of the robot’s condition

on performance and user perception using a within-subject design (Section 5.3). In each,

the remote user and local user pairs use our proposed remote assistance system in two

different conditions:

Non-Assisted

The robot is steered manually by the remote user to guide the local user to task objects.

After reaching an object, the remote user completes the task manually. Some tasks require

verbal requests for information about the system’s current state from the local user.

Assisted

Initially, the robot is steered manually for guidance. When approaching a task object,

the remote user can select it to delegate the interaction to the robot. The robot assists

through locally fulfilling the task within its workspace and takes into account the system’s

current state (detailed description in Section 5.2.6).

In each condition, the local user’s responsibility is to follow the lead of the instructions

of the remote user and to assist in reaching through moving the handheld robot towards

task objects.

The setup is a semi-simulated pipe system, which we use as an example for a collaborative

maintenance task. Solutions for solving this task require elements of common real-world

assistance problems, such as inspection, diagnosing, instructing and manipulation.

5.2.2 Hypotheses

Concerning the effect of the robot’s assistance features on performance and collaboration,

we hypothesise that with those features enabled:

H1 The time to complete the task would be reduced as the robot’s assistance saves

time.
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H2 The robot’s task knowledge and autonomy reduce the required total amount of

communication and reduce the share of the local user.

H3 The perceived workload of both users would decrease as it gets transferred to the

robot.

H4 The users’ rating of the system’s usability would be increased.

H1 goes under the assumption that the robot performs local tasks faster when solving

them autonomously, due to its accuracy and precise timing, i.e. the time for aiming and

fine-tuning of motion is shorter and the robot can react faster. Moreover, the operator can

already start to plan a subsequent step, while the robot completes a previous step. With

regards to H2, it can be expected, that communication concerning coordination between

both parties gets reduced as the robot’s autonomy helps to regulate spacial inaccuracies.

Additionally, in autonomous mode, the robot accesses information about the workspace

site that is otherwise exclusive to the local user. Hence, a decrease in the local user’s share

of verbal communication is expected. As a result, executing the task becomes easier (H3)

and the robot more user friendly (H4).

5.2.3 Collaborative Setup

The task setup consists of two main areas, the local workspace site and the remote work-

station (see Figure 5.1). For the experiment, remote and local users were located in the

same room, however, a visual barrier prevented them from direct interaction. They were

allowed to speak to each other as if they were on a phone call.

Figure 5.2: Handheld Robot in the Remote Setup. It has a remote-controlled tooltip with
5 DoF, equipped cameras and a tooltip for sensor simulation. The workspace camera grants
the remote user a broad overview of the scene, while the camera at the tooltip allows for close
observation of tooltip operations.

For the experiment, we used the handheld robot reported in [59], of which the mechanical

design is publicly available on our research website [1]. The robot was adapted to suit the

requirements for a remote control setup. Inspired by examples from the field of remote

124



5.2. REMOTE ASSISTANCE STUDY

assistance [233], we followed a two-camera design to combine a detailed view with a more

distant scene view. As can be seen in Figure 5.2, the robot features a 5-DoF actuated tip

and two cameras. The first camera is fixed to the robot’s frame delivers the overview of

the current workspace. The second camera is positioned close to the tooltip so that it can

be directed for exploration, whilst allowing a detailed view on tooltip operations.

The remote user sat at a desk equipped with the remote interface, which allows the

perception of the robots’ workspace and features a 5-DoF input for remote control as well

as information about the system and its required goal states. The local user is located

in the workspace where the physical task has to be completed. The user holds the robot

in place for inspection and helps the remote user to reach objects for manipulation and

diagnosis. The collaborative setup is shown in Figure 5.1 and 5.3, additionally, a task

demonstration is included in the supplementary video3.

5.2.4 Experiment Design

To test the proposed hypotheses H1 to H4 (introduced in Section 5.2.2), the experiment

setup requires the following elements:

• Common remote collaboration tasks such as inspection, diagnosis, remote guidance

and manipulation.

• Some information about the task goal should be exclusive to the remote user. This

is their expertise in the system and part of the preceding training.

• Some information about the current state of the local work site should be exclusive

to the local user. This is the worksite specific knowledge.

Following the above criteria, a semi-simulated maintenance task of a pipe system was

chosen. The task is simple enough to fit the scope of a user experiment and allows adding

cognitive load to test more complex scenarios. The setup consists of a network of pipes,

valves and gauges. While the majority of the pipes are a physical system, the valves

are simulated through a display in the background of the pipe system (Figure 5.3). The

gauges are also simulated, but on a separate screen (Figure 5.4) diagonally behind the

local user. That way, the remote user cannot look at the gauges while carrying out work

on the pipes, i.e. information about their current state is exclusive to the local user. The

values of the gauges depend on the state of the valves.

The system contains 8 discrete valves, 2 continuous valves and 3 gauges (see Figure 5.3

and 5.4). There are two different kinds of valves, the first kind has two discrete states i.e.

open and close while the wheel-shaped valves are continuous.

3https://youtu.be/cTJ8tNJJXV0
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(a) Front View

(b) Side View

Figure 5.3: Overview of the Mockup Pipe System. The pipe system was used for the
maintenance experiment task. Its main elements are the (blue) two-state valves, the (yellow
and red) continuous wheel valves and the pipes. The piping is organised in three layers, one is
simulated in the TV screen (see front view) and the other two layers made of physical pipes in
front of it (see side view). A top view of the experimental layout is presented in Figure 5.1.
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Depending on their predefined contribution value, the two-state valves add 10 or 100 units

to the associated gauge when they are turned open and 0 when they are closed, i.e. the

blue gauge displays the sum of contributions for each opened blue gauge. This models

measuring combined currents with the valves controlling the sources with varying current

contributions [238]. The continuous valves contribute between 0 and 10 to the respective

gauges.

Figure 5.4: Gauge Display with Pipe System Response. Three gauges indicating the
current state of the pipe system. The readings result from the valve configurations, i.e. which of
the (blue) two-state valves are open or close and to what degree the (red and yellow) continuous
valves are turned open. Adjusting the valves to get the gauge values to a specified target value
is one of the main steps within the maintenance task. The position of the gauge display with
respect to the overall setup is presented in Figure 5.1.

The experiment consists of two main tasks, adjusting the valves and checking the pipes

for cracks. For the first task, the valves need to be changed so that the gauges get to a

predefined target value. As an example, suppose the target value was 230, 7 and 5 for the

blue, red and yellow gauges, respectively and all valves were closed. The operator would

then have to open 5 of the two-way valves, 2 with a contribution of 100 and 3 with the

contribution of 10. The continuous valves would have to be turned open until they match

the target values 7 and 5.

The remote user holds knowledge about the target values of the gauges and the contri-

butions of the respective valves and consequently knows what changes need to be done.

However, initially, the remote user does not know the pipe system’s current state, i.e.

valve states and readings of the gauges. Retrieving this information requires either a

visual exploration of the work scene or verbal requests.

When the soft tooltip of the robot touches the valve, the remote user can press an activa-

tion key to turn it open or close. This manipulation is simulated through a 2D animation

of the valve handle/wheel in the screen and the associated gauge value changes accord-

ingly. For simulation purposes, the touch of the robot’s tip is registered using motion

capturing4, which enables 3D localisation of the handheld robot and the screen surface.

4OptiTrack: optitrack.com
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For more details of the motion capturing setup see Section 3.2.2 and Figure 3.7.

For the pipe checking task, a sonar sensor is simulated. The procedure of taking a mea-

surement is inspired by [16] where a sensor tip is placed on a machine part for a short

duration to check the condition of the material, e.g. for crack detection. Similarly, here,

the robot’s tip needs to be in contact with a pipe to be checked for a few seconds while

the remote user activates the sensor reading.

There is no predefined order in which valves have to be opened or closed and pipes to be

checked. In that way, the remote user has to come up with an individual strategy for a

solution, which brings the task closer to real-world problems. The maintenance task is

completed when all gauges display the desired target values and a predefined set of pipes

is successfully checked with the sensor.

The task setup stimulates cooperation between the users since neither party could solve

the task on their own. The local user lacks knowledge about the specific task goals and

relies on the remote expert’s guidance, who would not be able to access the workspace

without the help of the local user.

5.2.5 Remote Interface

The workstation of the remote user consists of three main units: the robot control system,

a display with the robot states and another one containing task system information. This

design of the visual interface is in essence derived from solutions reported in several remote

assistance studies, e.g. [21, 54, 140], while the spacial input is inspired by work on remote

manipulation [204]. An overview can be seen in Figure 5.5.

Figure 5.5: Remote Workstation. The remote user has access to specific system information
(see system information view) and can see the local work site through the camera views. The
robot is remote controlled using the activation input and the 5-DoF control. The position of the
remote work station with respect to the overall experiment setup is presented in Figure 5.1.
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Input Control Unit

The main part of the control unit is the 5-DoF input. It is realised through a wand,

which is tracked through motion capturing. Its relative position and pose to the input

base socket is replicated by the robot arm with respect to its home position as a local

reference frame. To account for the limits of the robot’s workspace, the wand is wired to

the input base. When the wand rests on the input base, i.e. in its initial position, the

robot is half crouched, i.e. at the centre of the task space.

The initial position allows the remote user to either reach out or retreat as demonstrated

in Figure 5.6. Tooltip operations such as manipulation and sensor activation can be

triggered by pressing the space bar of a keyboard.

Figure 5.6: Remote Control of the Handheld Robot. Example of a remote user’s 5-DoF
spacial input and the robot response (transparent images). The non-transparent position is the
home position, which is centred within the robot’s work space.

Control Views

Two displays of the workstation provide the remote user with system information (Figure

5.7). The view for the robot states contains a split view for the two cameras, a progress bar

for the simulated sensor state and a log protocol of robot actions. The screen with system

information contains essential details that are required for the remote user to develop

a strategy. That way, the display serves as a manual for the remote user, where they

can pick up detailed system information e.g. how the components are connected through

pipe routing. Additionally, the display shows valve contributions, respective gauge target

values and indicates which pipes require checking. For diversity, these change randomly

between trials. Quickly looking up the details for the individual tasks is part of the remote

user’s training prior to the experiments. does not show the current state of the system on

the working site, e.g. valve configurations and current gauge readings. This information

has to be gathered as part of the diagnosis process.
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(a) Screen 1 (b) Screen 2

Figure 5.7: Illustration of Workstation Views: The system information view (a) provides
the remote user with information that is required to derive a solution. This includes valve
contributions, the target values for the gauges and which of the pipes need to be checked (purple
circles). The screen for robot states, contains a split view that shows both camera perspectives
and at the bottom section features progress information. The screen setup is part of the remote
workstation (see Figure 5.5).

Experimental Limitations

The setup described here is a first attempt of collaborative telepresence with two humans

in the loop with a focus on the subjects’ interaction. As the robot is wired to the remote

interface, the proposed testing setup does not take into account possible lags of the camera

or time-delays in tip actuation, which might affect collaboration in a long-distance setup,

e.g. over the internet. Dealing with time-delays is a complex problem in telemanipulation

[95], which exceeds the scope of this work. Furthermore, some existing solutions for

spacial input that are specialised for telemanipulation provide haptic feedback in the

form of force reflection [153] in addition to direct control. However, since this work

focuses on the investigation of collaboration, object manipulation was simulated and so

haptic feedback becomes non-critical. Therefore, this feature was not implemented in the

presented solution.

5.2.6 Robot Assistance Condition

When the robot is in the assisted condition, a set of features are enabled which incor-

porate task knowledge and navigation capabilities. In this state, the remote user is no

longer required to complete detail motion. Instead, they select an object to interact with

and the robot aims for it when the activation key is pressed. For example, the remote

user could roughly direct the local user to a valve, activate the assistant and the robot

completes the manipulation. The robot has knowledge about the gauges target values

and can, for example, turn open the continuous valves until the associated gauge matches
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the required value. Similarly, the robot helps with a world-stabilised positioning of the

sensor on the pipes’ surface during crack detection and retreats when the measurement

is complete.

5.2.7 Trial Procedure and Data Collection

Both, the initial training study (Section 5.3.1) and the remote collaboration study (Section

5.3.3) are based on the same trial procedure. However, they differ in the distribution

and matching of participants to satisfy the respective study purposes (see Figure 5.8).

Therefore, this section describes the general trial procedure, while specifications about

participant counts and distributions are reported separately.

Ri = the i-th remote user       Lj = the j-th local user

R1

L1 L2 L3

R2

L4 L5 L6

R5

L13 L14 L15

…

R6

L16

R7

L17

R12

L22
…

+ + +

Training Study

Collaboration 
Study

Participants: 20
Pairs: 15

New Participants: 14
Total Participants: 24

Total Pairs: 12

Add 1st pairs to Collaboration Study

Figure 5.8: Illustration of Participant Matching to create subject pairs for the training
study and the collaboration study, e.g. R1 was paired with L1, L2 and L3, respectively. Each
pair completed the task once for both conditions: assisted and non-assisted (randomised). In the
training study, the experiment was repeated twice for each remote user to investigate possible
improvement over time. The collaboration study contains unique pairs only and focuses on user
perception. Note that every first pair of the training study was added to the collaboration study
to increase statistic power.

For a given remote-local pair of subjects, the experiment task was executed one time for

each of the conditions non-assisted and assisted, which were counterbalanced across the

trials. This was done to cancel out within-pair training effects and preferences. The initial

state of the valves, the gauges’ target values and which pipes would require checking were

randomised in such a way that the number of actions required to solve the task remained

constant for each trial. Participants were asked to complete the task swiftly and were

informed that their completion time was recorded to measure their performance.
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Investigating the proposed research question Q5 requires metrics for the effectiveness and

quality of human-robot interaction. As the focus of this work is on collaboration rather

than solving the specific task, using the result of a task as a measure of performance

(e.g., traditionally in surgical robotics [219]) is unsuitable here. In accordance with the

evaluation criteria established by Nielsen et al. [156], we use task completion time as

a measure of performance and perceived task load and usability as measures of users’

involvement.

With this in mind, the completion of the experiment task was followed by recording the

NASA TLX [63] and a SUS [27] for both subjects and for each condition (see questionnaires

in Appendix D).

As mentioned in Chapter 3 (Section 3.5.3), the NASA Task Load Index (TLX) [63] is a

standardised test that measures an individual’s perceived task load based on an average

rating of the six aspects: Mental Demands, Physical Demands, Temporal Demands, Own

Performance, Effort and Frustration. The test quantifies perceived task load with a score

from 0 to 100, i.e. low to high (lower is better), respectively. The NASA-TLX has been

in use for over 30 years now and it has already proven useful in previous handheld robot

studies, e.g. in [58, 60] and in our work presented in Chapter 3 and 4.

The System Usability Scale (SUS) [27] is a technology-independent rating based on 10

Likert scale questions focusing on an individual’s experience during usage. The test

quantifies usability on a scale from 0 (low) to 100 (high), where a higher value is better

than a lower one. The test has been in place since the late 90s and has been used to assess

telerobotic systems before [5].

Furthermore, the required time to complete the task was recorded as well as voice record-

ings from microphones, which were placed close to the respective users. The audio material

was later transcribed to derive word counts for the analysis. As an estimate of prior expe-

rience with video games, all subjects were asked for the average weekly amount of hours

they usually spend on gaming. Furthermore, video recordings of the trials were taken for

a qualitative assessment.

5.3 Experiment Execution

The experiments were executed in two parts an initial phase to assess the preparative

training of participants and a subsequent collaboration study. The results of the initial

phase were used to inform and continue with the second study to assess our hypotheses

(Section 5.2.2) based on the research question Q5.
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5.3.1 Training Effect on Performance

We aim to simulate a scenario where a skilled remote user works in collaboration with

a local user. This requires suitable training that allows local workers to familiarise with

the handling of the handheld robot. Furthermore, the training aims to qualify remote

user subjects as experts in the given task. Therefore, we repeat trials in a pilot study for

a small group of remote users to assess whether their improvement went into saturation

after the training procedure. The following lists the steps taken during the training:

S1 General introduction and system demonstration for both subjects (∼ 10 min).

S2 System demonstration with the remote user subject in the position of the local user

and the experimenter being the remote operator (∼ 10 min).

S3 Training of the remote user with the experimenter being the local user for both

robot conditions as per Section 5.2.1 (∼ 20-30 min).

S4 Training of the local user with the experimenter being the remote user for both

robot conditions (∼ 10 min).

S5 Training of both subjects in their respective roles (∼ 10 min).

Step S3 to S5, respectively, were repeated until both subjects yielded confidence.

20 participants (4 females, mage = 30.3, SD = 4.9) were recruited and split into two groups

for the role of the remote user (n = 5) and the local user (n = 15). The volunteers were

staff and students from our department, however, no technical knowledge was required

for either of the roles. There was no benefit or financial compensation in exchange for

participation.

Each of the 5 participants of the remote user group was matched with 3 unique participants

of the local user group. The roles were never swapped and local users were never matched

with another remote user to avoid additional hierarchical dependencies in the experimental

data. That way, 15 pairs were created and each received the training as per Section

5.3.1. Subsequently, each pair completed two trials (see Section 5.2.7), where both robot

conditions (non-assisted and assisted) were tested in randomised order to cancel within-

pair training effects. If it was a remote user’s second or third trial, the pre-experimental

training solely consisted of step S5, i.e. without the steps of the individual training. The

experiment series was completed with:

15 pairs × 2 conditions = 30 data points (see Figure 5.8).
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5.3.2 Training Effect Results

This analysis aims to assess the effectiveness of the proposed training procedure, i.e.

whether it takes the remote users to a point of expertise in the task where they no longer

improve. Therefore, experiment data were analysed concerning completion time as a

measure of performance with regards to the number of trials completed by the remote

user.

We performed a two-way ANOVA with the robot’s mode and the trial number as inde-

pendent factors, respectively, and the time to complete as a dependent variable. One data

point (∼ 3% of the total set) was considered as an extreme outlier as its difference from

mean exceeded three standard deviations. The results yield that the completion time sig-

nificantly increases when the robot is in the non-assisted mode compared to the assisted

mode (p = .016). Whereas no evidence (p = .681) was found for further improvement

over the trials after the initial training and there is no significant interaction (p = .331)

between mode and trial count. A diagram of the data can be seen in Figure 5.9.

We conclude that the training procedure is effective enough to take the remote user sub-

jects to a level of performance where they no longer improve over time, which motivates

further trials. Furthermore, the results imply that the robot’s autonomous features im-

prove the teams’ task performance.
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Figure 5.9: Results of the Training Study. Task completion time (lower is better) over
subsequent trials for two different robot conditions. A set of 3 trials represents the progression
of 1 remote user matched with 3 different local users. The even performance for a given mode
indicates that the remote user’s performance has levelled out during the training while it is greatly
impacted by the robot’s condition. The outliers are outside 1.5 times the interquartile range of
the respective distribution.

The assessment of the effect of robot condition on the two user groups (remote and local),

requires a paired within-subject study design [190]. Therefore, we take the subset of every

first trial of this study, i.e. 5 pairs (see Figure 5.8) and continue testing in unique pairs

in the subsequent collaboration study.
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5.3.3 Remote Collaboration Study

We recruited 14 new participants (all male, mage = 26.1, SD = 4.1), who were teamed up

to form 7 new unique pairs. Most were students from our Computer Science Department,

however, technical knowledge was not required. Again, there was no financial benefit

for their voluntary participation. They completed the same training and experiment

procedure as the 5 pairs from the previous study, i.e. one trial for each mode in randomised

order. This allows for merging the two data sets so that the final set contains:

12 pairs × 2 conditions = 24 data points (see Figure 5.8).

3 out of the 24 participants, i.e. 12.5%, participated in experiments of previous chapters

(Chapter 3, 4). However, the experiment in this chapter is based on a completely different

setup to which previous experience does not apply to an extent where one would expect

an impact on the results.

5.4 Results

The analysis of the experiment data is divided into two parts, a quantitative and a qual-

itative assessment.

5.4.1 Quantitative Analysis

To assess the effect of the robot’s condition on task performance and collaboration, we

compare completion time and dialogues’ word counts as well as TLX and SUS results

between the two condition groups. Concerning these metrics, a series of paired t-tests

was performed with the robot’s condition as an independent variable. The results are

summarised in Table 5.1 and illustrated in the diagrams of Figure 5.10.

Concerning task performance, a significant (p < .001) decrease of mean completion time,

from 189.3 s to 138.2 s, is observed when the robot is in assisted mode compared to the

non-assisted mode (see Figure 5.10a). Hence, the teams performed the task 37% faster

in assisted mode. Furthermore, no significant correlation (as per Pearson [18]) between

completion time and demographics was found for either of the participant groups, which

is also true for the prior gaming experience.

Regarding the dialogue required for task coordination, from non-assisted to assisted mode

there is a significant drop of word count for the remote users (p = .005) as well as for

the local users (p = .008) leading to a total word count reduction of 38% (Figure 5.10b,
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Figure 5.10: Comparative Analysis of Robot Conditions. The diagram shows completion
times, word counts, TLX and SUS scores for the assisted and non-assisted condition of the robot.
Starred samples yield a significant within-subject difference depending on the robot’s condition
(see Table 5.1). Levels of Significance: p ≥ .050; * p < .050; ** p < .010; *** p < .001.
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Mean SD Mean SD t p
138.2 28.8 189.3 37.9 t(11) = -6.010 p < .001 ***

Remote User 116.1 45.6 186.8 90.7 t(11) = -3.476 p = .005 **
Local User 24.2 13.0 38.8 17.5 t(11) = -3.186 p = .008 **
Total 140.3 54.0 225.7 95.2 t(11) = -3.857 p = .002 **
Ratio [%] 82.8 6.7 81.3 7.7 t(11) =  0.723 p = .484
Remote User 30.0 15.4 40.0 13.0 t(11) = -4.281 p = .001 **
Local User 29.0 14.7 35.0 14.7 t(11) = -2.113 p = .058
Remote User 81.9 11.7 70.0 20.7 t(11) =  2.828 p = .016 *
Local User 72.5 13.3 70.8 9.9 t(11) =  0.795 p = .443SU

S

Time To Complete [s]

Assisted Non-Assisted t -test Results
W

or
d 

Co
un

t
TL

X

Table 5.1: Summary of Quantitative Analysis. t-test results for the analysis of differences
in average completion time, word count, TLX and SUS scale depending on whether the robot’s
assistive features were enabled. Starred values indicate a significant difference. The distribution
of the data can be seen in the associated diagrams in Figure 5.10. Levels of Significance:
* p < .050; ** p < .010; *** p < .001.

5.10c). The effect of the robot’s condition on the word count ratio between remote and

local user is non-significant.

In terms of participants’ perceived workload, the robot’s assistance significantly (p = .001)

decreases from an average TLX score of 40 to 30 (lower is better), i.e. by 25%. However,

no significant effect (p = .058) is identified for the TLX score of the local user (see Figure

5.10e and 5.10f). In both conditions, the TLX ratings by the local users are close to the

lower boundary of the scale.

The overall system usability, as per the SUS questionnaire, is rated significantly higher

(p = .016) by the remote users when the robot is in Assisted Mode. Per the TLX ratings,

the robot’s condition (i.e. Assisted/Non-Assisted Mode) has no significant (p = .443)

effect on the SUS ratings for the local user group and they approach the upper boundary

of the scale in both cases. The SUS results are summarised in Figure 5.10g and 5.10h.

We note that for the Assisted Mode, the perceived task load, as per TLX, was rated

low, i.e. ≤ 30.0 out of 100 (lower is better) for both user groups. Furthermore, the SUS

ratings were high for both groups, i.e. with usability scores ≥ 72.5 out of 100 (higher is

better).

5.4.2 Qualitative Analysis

The major novelty of the proposed remote assistance scenario is the remote user’s ability

to physically interact with the workspace environment. This introduces new solution

strategies and behaviours which are reflected in the collected video material.

Across the different participant pairs, a general problem-solving strategy could be ob-

served, which consists of four phases: scene exploration, spacial guidance, local task
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solving and retraction. During scene exploration, the remote user uses both camera views

to diagnose a problem. Once the problem is identified, the local user is guided to a scene

object through tooltip gestures and verbal instructions. The ratios between the usage

of those two means of communication vary strongly between remote users. While some

participants gave many verbal instructions, others preferred the use of the tooltip for

directions. Notably, in one instance, the remote user was able to guide the local user

through the pipe checking task without using any verbal instructions. Instead, they used

pointing gestures with the manipulator for navigation to a pipe that required checking and

made the robot retreat to a crouch position to signal to the local user that the checking

process was completed.

Another observation was that in this phase the remote user can in some instances control

the motion speed of the local user by the amount of tip deflection. The bigger the angle

with which the remote user steers the tip to one side, the higher the speed of the local user

following it. This multimodal guiding strategy led to a more smooth interaction compared

to ones where the remote user would solely use verbal instructions for navigation.

After the object of interest is reached, there is a transition from shared control over the

robot to remote user control as the local user holds the robot in place during manipulation.

After a subtask is solved, the local user retreats away from the workspace to allow the

remote user further exploration of the scene and the working cycle starts over again.

5.5 Discussion of Remote Assistance Study

In terms of task performance, we found that the handheld robot’s autonomy and task

knowledge contributes to a more efficient collaboration as it reduces the time to complete

the task, which supports H1. Regarding communication between the remote user and the

local user, the qualitative results show that the remote control of the robot’s tip extends

the means of communication as it can be used for deictic gestures, such as pointing for

navigation, which is true for both modes of the robot.

H2 is partially supported as the robot’s assistance features reduce the amount of verbal

communication required to solve the task. We suggest that the reason for this is that the

robot’s aiming feature replaces the remote user’s instructions for low scale motion. For

example, in the non-assisted condition, remote users often relied on verbal instructions

such as Go a bit more to the left, please or Up, up, up during navigation to a task object.

Whereas, when aiming was assisted, it was more clear to the local user where to go since

they could just follow the tip’s direction until reaching their aim. Furthermore, the robot’s

task knowledge accelerates processes which are otherwise interrupted through information

requests.
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The findings concerning H1 and H2 were expected for this specific task, given they are

a direct consequence of the system design. That is, we tried to make the task easier

for the remote user, e.g. through task delegation and information short cuts. However,

what is interesting is that the pointing gestures during the navigation phase were more

effective when the robot completed them autonomously compared to manual execution by

the remote user. There are several factors that we believe contribute to this observation.

Firstly, once the robot knows which object to go towards, the robot is fast at readjusting

the tip towards the object when the robot is moved around the scene. In comparison,

it seems to be hard for the remote user to coordinate the robot’s tip direction given the

motion introduced by the local user and the visual feedback. Secondly, it seems that local

users sometimes struggled to distinguish between intended tip gestures and tip motion

that results from visual exploration. However, in autonomous mode, the robot’s motion

becomes distinctively faster and more precise, particularly concerning world-stabilisation.

This makes it easier for local users to distinguish exploration from navigation. Addition-

ally, the robot retreats into crouch position after a local job is completed. At the time of

its design, this was intended to bring the end effector to a safe position before handing

over its control back to the remote user. However, we observed that this also helped with

the collaborative workflow as it signalled to the local user to prepare for a transition to

another subtask.

As the introduction of task knowledge in assisted mode changes the distribution of knowl-

edge between the three interacting agents, we expected to observe a change in relative

verbal communication amounts. However, for the given task this part of H2 is not sup-

ported by the results. Presumably, this is because in assisted mode the robot’s task

knowledge facilitates navigation, which cuts down required verbal commands by the re-

mote user. At the same time, the robot executes local tasks autonomously, which reduces

the number of instances where the local user has to report the system’s current state.

That way, the robot’s assistance reduces the communication amount evenly so that the

ratio won’t change.

In terms of the robot’s effect on collaboration quality, we argue that a collaborative robot

should reduce workload and offer high usability for users. While this is supported by the

overall TLX and SUS results for both users, improvement through the robot’s assistance

feature could only be found for remote users. This is less surprising, given that this work

is focused on remote access and the assistive features were mainly designed to facilitate

remote control of the robot. For example, the aiming feature takes away task load from the

remote user whereas the difference is small for the local user whether the tip is controlled

by the remote user or through the robot’s assistance. Therefore, H3 and H4 are partially

supported and we conclude that the assisted mode mainly benefits the work of the remote

user.
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The fact that the performance was independent of demographics and prior gaming expe-

rience, indicates that the system is suitable for people without technical expertise about

the robot or the user interface. This makes the robot and the remote control system ac-

cessible for a broad range of applications, however, we suggest that different tasks require

varying training approaches.

We note that the setup described here is a first attempt of collaborative telepresence with

two humans in the loop. As such, our observations might be specific to the experimental

task presented here. Further diverse examples are required to clarify to what extend our

findings generalise to other tasks. Here, we combine remote guidance and telemanipulation

which, on their own, are well established fields today. The proposed concept might not

outperform the existing methods in their respective domains. For example, pure guidance

might still be more effective using AR/VR and some remote tasks might be more efficiently

solved using specialised robots (e.g. surgery). However, we believe that combining the two,

as presented here, will make a difference when the task is suitable for task delegation to

the robot. Beyond maintenance tasks, this could include elements from other industries,

e.g. welding, farming or drilling. One might argue that some of these tasks could be

completed more effectively by humans but a human with the right skills is not always at

hand (e.g. a trained welder). We further suggest that an expert could use the proposed

system to demonstrate how to solve a task through the robot to train a novice technician.

They could then do it better or faster in the future if the task is indeed such that it

is easier to do for a trained human than for the robot, though this is subject to future

research.

Our study demonstrates that making the robot part of the team as an entity that makes

decisions rather than just a remote controlled device, is of great benefit to facilitate

efficient remote collaboration. The robot’s autonomous features and decisions require task

knowledge as a basis. In the presented example, the task was simple enough to implement

essential information of all task-relevant objects and their current states. However, this

might not be feasible for broader and more complex applications. In this case, we suggest

that specific subtasks could be learnt from demonstration, e.g. how to identify an object

and how to interact with it given a task’s constraints. In that context, it would be

interesting to explore whether there is more general task knowledge that could serve as a

basis for the robot to quickly adapt to new tasks as well.

5.6 Chapter Conclusion

So far, remote collaboration and assistance between two humans has been limited to

audio-visual instructions and feedback [21, 53, 54, 140]. At the same time, previous
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works on robot-based collaboration setups focused on specialised telemanipulation [16,

216, 242, 247] and remote controlled mobile platforms [205]. The work presented in this

chapter explores a combination of both fields so that the resulting system benefits from

the strengths of each. For remote assistance systems, that is the convenience of being

able to rely on a human partner on the local work site while the telemanipulation aspect

grants direct and immediate physical access to the helping expert.

In this chapter, we investigated the use of a handheld robot in our proposed collaborative

remote assistance setup within a helper-worker scenario. We assessed the robot’s capa-

bilities through user studies, where a local user operates the handheld robot while being

assisted by a remote user who gives verbal instructions and controls the robot’s tip.

Regarding the research question Q5 “How does the handheld robot’s autonomy and task

knowledge affect performance and communication in a remote assistance setup?”, our

studies show that a handheld robot can mediate task information and physical interac-

tion in collaborative assistance. Importantly, the robot’s partial autonomy improves task

performance with respect to time efficiency, workload and required communication band-

width in the context of the specific experiment task presented here. Namely, the task

was completed 37% faster, remote user’s work load decreased by 25% and the required

verbal communication by 38%. This means that when the robot was helping, the task

was completed in a shorter time, while being easier to carry out for the remote user as

less instructions were needed thanks to the delegation of subtasks to the robot.

From our observations, the use of the robot proved effective to facilitate diagnosis, guid-

ance and to interact with task objects. Enabling the operator to control the angle of

the detail view camera allows for dexterous aiming during inspection. Equally, spacial

gestures supported effortless communication as it could replace wordy instructions and

verbal information requests. Notably, aims concerning navigation and transitioning be-

tween subtasks were easier to interpret by local users when the arm was controlled by the

robot. This knowledge is useful to inform the design of future remote assistance systems,

especially for cases where the local user is confronted with a broad variety of choices such

as in our specific case.

The concept of object selection for task delegation to the robot is key to reduce the

operator’s cognitive task load, which we believe generalises to other telepresence setups.

It might also help with problems that are introduced by time-delays. As the robot is

autonomous for short durations, a fast feedback response from the remote user might

become less critical. We suggest that this could be investigated in future research of this

domain.

This work is a first attempt to evaluate handheld collaborative robots in a remote as-

sistance scenario. Our research delivers first indications that such a setup can overcome
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current robot constraints such as incomplete task knowledge and limited motion compe-

tences by using already well-established communication technologies.
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Chapter 6
Conclusion and Further Work

Handheld robots are a new generation of tools that hold knowledge about their own

purpose and the task at hand, which can be used to leverage task execution for both ex-

pert and novice users. In this thesis, we investigated the interaction between a handheld

robot and one or several users with a focus on user prediction and remote collaboration.

Previous work in this domain concentrates on surgery, free-hand fabrication and other

specialised tools (Section 2.3). Recent research regarding more general purposed hand-

held robots focused on the hardware design, how the robot can indicate its internal states

and how it can communicate feedback and instructions, e.g. through display informa-

tion or rudimentary gestures (Section 2.2). While these works yield promising results in

single-user applications, we believe that handheld robotics is still at an early stage. To

unfold their full potential, handheld robots should be able to estimate their user’s state,

which is required for any collaboration style where decision making is a bilateral process.

Furthermore, this work explores the idea of using a handheld robot as a mediator between

two human collaborators in a helper-worker setup. The presented concepts are validated

through experimental studies with a focus on collaborative performance and users’ work

experience.

6.1 Thesis Summary

This thesis explored new human-robot interaction strategies for handheld robots. Chapter

1 introduced the reader to the concept of handheld robots and placed it in the more general

historic context of hand tools. Furthermore, it outlined possible applications and which

problems need to be solved to realise those.

The background section (Chapter 2) presented related work in the domain of handheld

robots, e.g. existing wearables and intelligent tools with a focus on the hardware designs
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that were used as a basis for our experimental setups. Furthermore, the chapter sum-

marised transferable interaction concepts from other robotic domains concerning intention

prediction, remote guidance and telemanipulation.

Chapter 3 addressed the problem of user-to-robot feedback following a vision-based ap-

proach that is based on the finding by Land et al. [111–113], which suggest that a human’s

eye gaze precedes the steps throughout a task. Therefore, this information can be used to

inform the robot about the user’s decisions. A remote eye tracker was integrated with the

existing handheld robot hardware and coupled to a motion tracking system for 3D-eye

gaze construction. In experimental studies, the gaze model was used as a proxy for user

attention and this information was used to bias the robot’s autonomous motion. A target

reaching task was used to demonstrate that collaboration between the user and the robot

is more smooth when the robot’s autonomous decisions are biased by information about

the user’s gaze. Especially for higher speed demands, this mode exceeds the performance

of doing the same job manually or when the robot is completely gaze steered, i.e. without

the robot using its task knowledge. While it compares well with the fully autonomous

mode, we found that the gaze-biased collaborative mode is more accepted among users

as they felt more in charge rather than having to follow the robot’s plan at all times.

This suggests that in human-robot collaboration there can be a trade-off between task

performance and user satisfaction. At the same time, we demonstrate that the estimation

of users’ attention during the task was able to help to prevent automation surprise when

humans and robots work together. As the attention system is rather reactive, i.e. it

responds to users’ visual attention but does not infer intention, our findings are limited

to tasks with low task complexity such as pick-and-place, or following a trajectory with

only few alternatives.

Chapter 4 refined the idea of using users’ eye gaze to determine their plans. The data of

the attention model from the preceding chapter (Chapter 3) is used to make predictions

about which object the user wants to interact with in the proximate future. This intention

model is based on an SVM, a supervised learning model, that maps an object’s attention

profile over time to a probability for interaction. We used a block copy task to validate the

intention model as it is characterised by a variety of ways to complete the task while some

dependencies exist among task objects in a key-lock matching fashion. The results show

that the model can reliably predict user actions one step ahead (1.5s) and in real-time

and that its use significantly decreased user frustration in the specific block copy task. In

accordance with the findings of the attention study, we show that the most productive

(fully autonomous) mode is not always the most effective one concerning human-robot

collaboration as users preferred to be in charge of the high-level planning part of the

task.

In Chapter 5 we extended the exploration of human-robot interaction by introducing an-
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other user for a collaborative human-robot-human setup. The concept is built on the idea

that the robot could serve as a mediator between a remotely located expert and a local

novice user hosting the robot. Maintenance is a typical example of a scenario where a

technician might need help from an expert, who might be located at a different continent.

Thanks to the handheld robot, the remote user has visual and physical access to the work-

site while the local user was able to help with carrying the device through uncontrolled

environments and through providing local task state information. To adapt the robot to

the requirements for remote collaboration, it was equipped with cameras, which are con-

nected to a remote workstation that allows for visual feedback and controlling the robot.

The proposed inspection and maintenance of a pipe system was used as an example task

for the experimental proof-of-concept study. The core of this research is the integration

of the robot in the control loop, i.e. the remote user is in charge of task planning but

can delegate local tasks to the robot. The idea behind this is that this would free the

expert’s cognitive capacity to plan the subsequent step in the task rather than having to

deal with the fine-grain motion control of the robot. Our results suggest that the use of

the robot’s assistive autonomous features improve overall teamwork speed by 37%, while

the workload of the remote user is decreased by 25% in the given task.

6.2 Main Contributions

This research contributes to a better understanding of how humans can interact with a

handheld robot for a more natural and effortless collaboration with the assisting robot

as a teammate that is involved in decision processes. Starting points for the research

presented in this thesis are five research questions that were formulated to define the new

challenges in handheld robotics. In the following, contributions for the proposed research

questions are summarised.

Q1 How can user attention be used to enhance cooperation with handheld

robots? (Chapter 3)

• We demonstrate that eye gaze tracking can be used to estimate what the user directs

their attention at when working with the handheld robot. Our proposed framework

allows for gaze tracking in 3D space, based on a combination of a remote gaze

tracker and a motion capturing system. The results of the accuracy and calibration

experiments define the limits of the tracking setup and inform the boundaries of

applications for the handheld robot.

• We introduce gaze-based user attention estimation and demonstrate how this infor-

mation can be used to parametrise the robot’s cooperative behaviour, namely, with

the robot navigating to objects with visual focus.
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Q2 How does the incorporation of attention affect task performance and the

user’s perceived task load? (Chapter 3)

• To assess the attention system, we propose a reaching task as basis for an ex-

perimental setup that allows measuring collaborative performance for validation

of the model. As some parts of the experiment task are simulated, they can be

parametrised easily, e.g. concerning speed demands and cognitive loads. This makes

the proposed setup adaptable to future research experiments.

• The results of the attention experiment suggest that gaze tracking allows the robot

to move more predictable with users feeling more in control of the task while main-

taining the already high performance of the handheld robot in the fully autonomous

mode.

Q3 How can user intention be modelled in the context of a handheld robot

task? (Chapter 4)

• Beyond the attention model, that quantifies the level of user attention at a given

time, we introduce an intention model. It is based on the user’s gazing pattern over

time and allows for online predictions of pick up actions with up to 87.94% accuracy,

500 ms ahead and dropping actions with an accuracy of 93.25%, 1500 ms ahead in

real-time for the given task.

• We show that context information, such as the link between objects for a given task,

can increase the model’s accuracy, i.e. from 68.34% to 87.94%. We suggest that this

property generalises to other models concerning user anticipation in human-robot

collaboration too.

• The introduced version of a block copy task allows for a parametrisation of cogni-

tive demands and to measure the collaboration performance as it demands timely

decisions from the user, high-level planning and task coordination between the two

parties. This could be used to benchmark future collaboration concepts.

Q4 To what extent does intention prediction of users affect the cooperation

with a handheld robot? (Chapter 4)

• To assess the intention model in action, we use obedience and rebellion as two

principal modes for the robot’s anticipatory behaviour. In absence of universally

accepted physiological metrics, this serves as a proxy to evaluate the intention model

by comparing user frustration levels between the two conditions. We show that the

proposed intention model allows the robot to align its plans to the user’s intention,

which leads to a decrease of frustration and an increase in productivity.

Q5 How do the handheld robot’s autonomy and task knowledge affect perfor-
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mance and communication in a remote assistance setup? (Chapter 5)

• We explore remote collaboration as a new application for handheld robots in a

worker-helper setting. The helper is in the role of a remotely located expert that

instructs and acts through the robot to assist a local user.

• The proposed pipe system maintenance task imposes common challenges in remote

assistance, such as problem diagnosis, guidance, navigation through a 3D environ-

ment and collaborative problem-solving. While this was used to assess the handheld

robot setup, we suggest that this could serve as a benchmark task to compare re-

mote assistance systems. This is because it covers a broad variety of collaboration

challenges, while completion time, SUS and TLX values serve as meaningful and

generally applicable measures to compare different systems.

• Following the concept of the handheld robot as a partially autonomous member of

the team, some parts of the task can be delegated to the robot on a local scale, e.g.

aiming, turning open/shut a valve and placing a sensor for the detection of hidden

cracks in the pipe system. Our results demonstrate that the introduction of the

robot’s autonomous features can reduce the cognitive load perceived by the remote

user in the experiment task by 25% and increase collaborative performance by 37%.

• As per the results of the qualitative analysis, there are new collaborative behaviours

that emerge between the three cooperating agents, i.e. the remote expert, the robot

and the local user. We identified a repeated sequence of exploration, guidance,

local task solving and retraction as a common high-level task solving strategy. This

information is useful to guideline future designs of remote collaboration systems.

6.3 Discussion and Outlook

This work focused on the exploration of collaboration between a handheld robot and

its user as well as the one between two humans with the robot as a platform for the

transmission of instructions, information and actions. While this thesis covers theories

around these concepts and demonstrates their effectiveness through case studies, we still

see handheld robotics at an early stage with great potential for exciting future projects.

There are still many areas to explore concerning means of human-robot feedback and

robot-to-human communication. There is a vast variety of conceivable real-world appli-

cations for handheld robots that present many new research challenges. Furthermore, we

discuss which obstacles need to be overcome towards this vision and how we believe this

technology could change and impact our society.
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6.3.1 Human Factors

One of the major challenges in exploratory research in the field of HRI is the sample

size that experimenters rely on, which are often much smaller than data sets of other

robotic domains. Like in this work, they usually involve a few 10s of participants as

data collection is both time consuming and expensive. While we had a balanced gender

equality in most of our experiments, the demographics were constrained by eligibility

regulations, i.e. experiment participants had to be members of University of Bristol and

willing to offer around 60 min volunteering time. This resulted in narrowing the cohort to

an academic background and an average age of 27.1 years. All experiments were designed

in a way that no prior expertise was required as everyone was trained to a level where

they could handle the systems well before we started experimenting. We note that most

participants came from technical backgrounds but the fact that there were no notable

differences between performances of them compared to other participants suggests that

the effect on the results were negligible. Moreover, we introduced questions to probe

their technological familiarity, e.g. we asked them about their gaming habits, which did

not correlate with performance in any of our experiments. However, beyond the scope

of this work it would be interesting to investigate how people interact with the robot

who are non-computer natives. For them, it might be harder to handle the robot but on

the other hand, they might greatly benefit from the robot’s capability to adapt to their

attention.

Another limitation of our work is the fact that for all experiments, both the system and

the task was new to the experiment participants, i.e. we did not investigate differences

between levels of expertise. One could argue that, initially, the robot’s assistive features

are beneficial while the user is at a novice level but might at some point turns into a burden

one they have a deeper understanding of the task. The question remains open when and

in what situation the user should transition to completing the task without the robot or

without interfering autonomy. We suggest that this transition could be smoothed through

a gradual decrease of the robot’s autonomy with increasing expertise. For example, the

robot could stop deciding which object to interact next with but still assist in terms of

positioning accuracy, e.g. in a grid-lock manner for pick and place tasks. Detecting the

level of a person’s expertise in a given task is subject to current research, e.g. [42], and

could be applied to such HRI problems in the future.

Apart from demographics and expertise, a person’s personality is an important human

factor in HRI-related research. When we conducted the frustration-based intention valida-

tion experiments (Section 4.6), it was rather surprising to observe the diverging reactions

of subjects to the rebelling robot, i.e. when it refused to follow users’ intention. While

some were confident enough to (correctly) blame the robot, others assumed that the
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robot’s dominance was purposed to correct their faults. In this work, this phenomenon

was not dominating to an extent that it would have compromised our results. However,

it could be an interesting aspect to study, e.g. as part of a personality test in the pre-

screening phase of similar experiments. This could help to gain more detailed results

that take into account possible interaction between the robot’s behaviour and a person’s

personality.

6.3.2 User Perception

The majority of this thesis addresses the perception of the user with a focus on their

intention (Chapter 3 and 4). While gaze data proved to be a good choice for this specific

purpose, other channels might be a better fit for other types of feedback. For example,

the current stress level of the user might be an interesting property to detect, e.g. the

robot could adapt its pace or even suggest the user to take a break from working. For an

online, stress detection, physiologic signals could be key for immediate feedback. Exam-

ples are Brain-Computer Interfaces (BCI) [192], grasping force (e.g. at the handle) [212],

or cardiovascular metrics such as Galvanic Skin Response (GSR) [91], Heart Rate (HR)

and Heart Rate Variability (HRV) [50], i.e. the fluctuation of periods between heartbeats

[134].

As HRV receives increasing attention in literature on stress detection [7, 8, 50, 70], we

investigated its use for the handheld robot in a research excursion (see Appendix B). We

found that, at least for optical HRV detection, this metric was less reliable than reported

stress levels. For this reason, in our research, we relied on questionnaires to determine

frustration levels (i.e., work in Section 4.6). Nonetheless, we encourage to follow the

route of physiologic stress detection. Improved sensor technology might deliver more

accurate HRV signals for mobile applications in the near future. In addition, fusing HRV

sensors with other metrics, e.g. BCI and grasping force sensing might lead to much higher

accuracy in stress prediction.

Stress feedback could be particularly useful in tasks where the robot helps the user to

learn a new skill. One could think of a scenario where the user completes a task for

the first time with the robot to then continue without it. While the effectiveness of this

concept is subject to further research, we suggest that stress detection could help the

robot to adapt to the user and their skill levels. However, this would require knowledge

about how fast the detection system responds to a stress stimulus. We suggest that the

work at hand presents a broad variety of research questions that would be exciting to

explore.

For completeness, we also note that natural language processing is another conceivable
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channel for human-robot communication. This would enable the user to input commands

without using the already occupied hands. However, to our opinion, this option is less

preferable since it can make interactions rather awkward and slow, which can be in the

way of an intuitive and fluent usage of a device.

6.3.3 Robot-to-Human Communication

With regard to a single-user setup, the robot-to-human communication could be further

explored. This thesis focused on the human-robot side because possible feedback means

for handheld robots have already been studied extensively by Gregg-Smith and Mayol-

Cuevas [60] and so there was a higher demand for user perception. Nonetheless, we suggest

that feedback could be provided beyond HMDs and mounted displays. For example,

new generations of pico projectors and monochrome laser galvanometers could augment

through scene context information similar to [93]. This could also be useful for the

presented remote collaboration setup since the helper could use in-scene annotations as

another way of instructing the local user. Equally, more meaningful arm gestures would be

another possible channel with the advantage of this not requiring any additional hardware.

Compared to AR feedback, these approaches have the advantage of being less invasive for

the user. This suits the notion of a handheld self-contained tool rather than shifting the

system to the field of wearables.

Furthermore, with the proposed intention model in place, the question arises how this

information could be used. For example, the robot could feature alert sounds or handle

vibrations when it detects that the user is about to do a mistake before it happens.

This could be of particular practical interest for irreversible processes such as welding or

glueing.

6.3.4 Remote Collaboration through Handheld Robots

Concerning handheld robots for remote collaboration, this work can be seen as a first at-

tempt at using a mobile robot for human-robot-human collaboration (Chapter 5). While

the current general-purpose design could be further specialised for this application, e.g.

through the integration of the above-mentioned projectors, we suggest that there is more

to explore on the remote user side as well. For example, the question remains open

whether the robot’s partial autonomy could help to compensate delay effects in telema-

nipulation.

Another interesting aspect to explore would be the incorporation of an intention system.

Similar to the presented single-user case, this could be applied to the remote workstation,
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i.e. the robot anticipates the plans of the remote helper. In accordance with related

studies in the field of intention prediction, our results suggest that different tasks require

different prediction models. For example, we used two separate models to predict picking

and placing actions for the best results. Therefore, we expect that the prediction of the

decisions of the remote user would require a model tailored to this case too. This goes

beyond the scope of this thesis but could serve as a starting point for future research.

6.3.5 You Are Free: Releasing the Robot from the Lab Environment

We point out that all our experiments were carried out in a controlled lab environment

and the tasks were kept rather general, which was required to assess the proposed concepts

and theories. Given the vast range of possible applications, e.g. assembly, weeds removal

in organic agriculture, assisted welding, sculpting and remote assistance in various ways,

there is a pressing demand to initialise field studies with real-world application. A fun-

damental step towards this is to replace the motion tracking system with an on-board

localisation solution, e.g. SLAM for mobile devices such as [142]. Additionally, the robot

would require a form of object detection, e.g. through Computer Vision (CV) [181], which

is required for an informed decision concerning interactions.

Solving these problems would open up this technology to setups with multiple handheld

robots, e.g. crowd constructing of buildings or crowd farming. Our vision is that an

interconnected fleet of handheld robots would enable a group of novice users to work

together on large-scale projects. This presents new challenges with respect to scalability

of handheld robot technology. Apart from localisation challenges, a fleet of robots would

require a shared knowledge base, e.g. a cloud system. This is necessary to store task

information such as completion states, which is required to derive individual goals for

the robots and their users. With regards to our findings of Chapter 5, we could imagine

that while some robots of the fleet are autonomous, others might be controlled by remote

experts to give instructions for processes that have not been automated yet. Another

limitation of scalable solutions is the bottleneck of time-consuming programming of the

robots. This could be solved through facilitating the programming process, e.g. by

introducing learning from demonstration, which would significantly decrease the number

of technical experts required to setup a robot fleet.

6.3.6 The Impact of Handheld Robots on Society

Robotics and AI are one of today’s major disruptive technologies and as roboticists,

an important part of our responsibility is to think about the impact of our research on

society. Research in this field is guided by the vision of a future where heavy, dangerous or
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repetitive work is carried out by machines, which frees capacities for more creative tasks

to be completed by humans. However, in many instances, the reality looks somewhat

different. The introduction of robots in a capitalistic labour market comes with the

cost of fear of job loss. This connotation has attracted considerable attention of the

general public over the recent years [171]. This statement is backed up by an increasing

number of scholarly articles, as summarised in a recent MIT Technology Review [234].

Furthermore, working conditions for workers that have not been substituted (yet), do not

always improve. For example, workers at large and highly automated warehouses face

exhaustion as they try to keep pace with robots while there is little interaction with other

human workers [199]. To date, it is subject to speculation to what extent automation

leads to a job gain [234] or whether mechanisms such as a universal basic income [88] or

a tax on robots [246] could combat economic uncertainties and narrow wage gaps.

Concerning the developments in handheld robotics, we see this as a class of automation

technologies that have the potential to complement human workers through a synergy

effect, rather than replacing jobs. We believe that handheld robotics can enable human-

robot teams to complete jobs that the respective party could not do without the other one.

For example, locomotion and navigation through uncontrolled environments, i.e. outside

factory lines, is still one of the major challenges in current robotic research, while most

humans would find it trivial. Unlike humans, robots can process vast amounts of data in

real-time, which can augment human work in various ways. For this reason, we believe

that any form of collaborative HRI is an important contribution to a future society with

a meaningful work culture.
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[172] Peter Paul Pott, Achim Wagner, Andreas Köpfle, Essameddin Badreddin, Reinhard Männer, Hans-Peter Weiser,

Hanns-Peter Scharf, and Markus Schwarz. A handheld surgical manipulator: ITD - Design and first results. In CARS

- computer assisted radiology and surgery proceedings of the th International Congress and Exhibition, Chicago, USA,

2004.

[173] Domenico Prattichizzo, Monica Malvezzi, Irfan Hussain, and Gionata Salvietti. The Sixth-Finger: A modular extra-

finger to enhance human hand capabilities. In 2014 RO-MAN: The 23rd IEEE International Symposium on Robot

and Human Interactive Communication, pages 993–998. IEEE, August 2014.

[174] Domenico Prattichizzo, Gionata Salvietti, Francesco Chinello, and Monica Malvezzi. An object-based mapping

algorithm to control wearable robotic extra-fingers. In 2014 IEEE/ASME International Conference on Advanced

Intelligent Mechatronics (AIM), pages 1563–1568. IEEE, July 2014.

[175] Domenico Prattichizzo, Monica Malvezzi, and Gionata Salvietti. Supernumerary Robotic Fingers to Compensate and

Augment Human Manipulation Abilities. In Inclusive Robotics for a Better Society, pages 188–194. Springer, Cham,

October 2018.

[176] Romain Prévost, Alec Jacobson, Wojciech Jarosz, and Olga Sorkine-Hornung. Large-scale painting of photographs

by interactive optimization. Computers & Graphics, 55:108–117, April 2016.

[177] Abhishek Ranjan, Jeremy P Birnholtz, and Ravin Balakrishnan. Dynamic shared visual spaces: Experimenting with

automatic camera control in a remote repair task. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, pages 1177–1186, San Jose, California, USA, 2007. ACM Press.

[178] H C Ravichandar and A Dani. Intention Inference for Human-Robot Collaboration in Assistive Robotics. In Human

Modelling for Bio-Inspired Robotics, pages 217–249. Elsevier, 2017.

[179] Harish chaandar Ravichandar and Ashwin Dani. Human intention inference through interacting multiple model

filtering. In 2015 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems

(MFI), pages 220–225, San Diego, CA, USA, 2015.

[180] Harish chaandar Ravichandar, Avnish Kumar, and Ashwin Dani. Bayesian Human Intention Inference Through

Multiple Model Filtering with Gaze-based Priors. In th International Conference on Information Fusion FUSION,

pages 2296–2302, June 2016.

[181] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object

detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 779–788,

2016.

[182] Ryan Rifkin and Aldebaro Klautau. In Defense of One-Vs-All Classification. Journal of Machine Learning Research,

pages 101–141, June 2004.
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Publication Abstracts

Janis Stolzenwald and Walterio Mayol-Cuevas. I Can See Your Aim: Estimating User

Attention From Gaze For Handheld Robot Collaboration. In 2018 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 3897–3904, October

2018.

Abstract — This paper explores the estimation of user attention in the

setting of a cooperative handheld robot a robot designed to behave as a

handheld tool but that has levels of task knowledge. We use a tool-mounted

gaze tracking system, which, after modelling via a pilot study, we use as a

proxy for estimating the attention of the user. This information is then used

for cooperation with users in a task of selecting and engaging with objects

on a dynamic screen. Via a video game setup, we test various degrees of

robot autonomy from fully autonomous, where the robot knows what it has

to do and acts, to no autonomy where the user is in full control of the task.

Our results measure performance and subjective metrics and show how the

attention model benefits the interaction and preference of users.

Janis Stolzenwald and Walterio W Mayol-Cuevas. Rebellion and Obedience: The Effects of

Intention Prediction in Cooperative Handheld Robots. In 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 3012–3019, Macau, China,

November 2019.

Abstract — Within this work, we explore intention inference for user ac-

tions in the context of a handheld robot setup. Handheld robots share the

shape and properties of handheld tools while being able to process task in-

formation and aid manipulation. Here, we propose an intention prediction

model to enhance cooperative task solving. The model derives intention
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from the user’s gaze pattern which is captured using a robot-mounted re-

mote eye tracker. The proposed model yields real-time capabilities and

reliable accuracy up to 1.5s prior to predicted actions being executed. We

assess the model in an assisted pick and place task and show how the robot’s

intention obedience or rebellion affects the cooperation with the robot.

Janis Stolzenwald and Walterio W Mayol-Cuevas. Reach Out and Help: Assisted Re-

mote Collaboration through a Handheld Robot . arXiv preprint, pages 1–8, 2020. (in

submission)

Abstract — We explore a remote collaboration setup, which involves three

parties: a local worker, a remote helper and a handheld robot carried by the

local worker. We propose a system that allows a remote user to assist the

local user through diagnosis, guidance and physical interaction as a novel

aspect with the handheld robot providing task knowledge and enhanced

motion and accuracy capabilities. Through experimental studies, we as-

sess the proposed system in two different configurations: with and without

the robots assistance in terms of object interactions and task knowledge.

We show that the handheld robot can mediate the helpers instructions and

remote object interactions while the robots semi-autonomous features im-

prove task performance by 24%, reduce the workload for the remote user

and decrease required communication bandwidth between both users. This

study is a first attempt to evaluate how this new type of collaborative robot

works in a remote assistance scenario, a setup that we believe is important to

leverage current robot constraints and existing communication technologies.
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Appendix B
An Attempt to Detect Frustration of

Handheld Robot Users

The material in this appendix was generated in the context of the intention validation

study presented in Chapter 4 (Section 4.6) as part of our search for a feasible metric to

quantify user frustration. It justifies, why we chose subjective metrics over physiologic

metrics for our experiments, however, the material is non-essential for the overall argument

of Chapter 4. Therefore, we decided to exclude this part from the main body of the thesis,

but append it as this could be useful to inform future research routes in this field.

B.1 Introduction

In Chapter 4 we introduced an attention model for handheld robots. The core idea

of the validation method was to measure users’ frustration levels for two main robot

conditions, i.e. rebellion and obedience. This new way of model validation was based

on the assumption, that the robot could only inflict frustration in the rebel mode, if the

model predicts correctly. The reason is that the robot avoids steps that are predicted to

be intended by the user when it is in the rebel mode. Hence, an increased frustration

level (compared to the obedience mode) indicates that the predictions were correct. The

caveat of this method is that we had to rely on questionnaire results (TLX), i.e. subjective

metrics to determine frustration levels. While this was sufficient for our studies, the

question arises whether there exists an objective metric that offers a higher precision

due to the absence of subjective bias. Furthermore, objective detection would allow for

a real-time estimation of stress levels, e.g. as required for the robot to adapt to user’s

preferences.

Recent research reveals that physiological metrics such as the cardiovascular response are
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more sensitive and accurate to detect stress-based emotions [136]. These means cannot

directly measure the complex phenomenon of frustration but detect resulting stress re-

sponses such as arousal [194]. Therefore, we use physiological stress detection as a proxy

for determining a person’s frustration level. While several methods were explored in re-

cent works [8, 50], it is unclear whether these are suited for the complex constraints and

requirements we are facing within a handheld robot setup.

In this research excursion, we look at methods for physiological stress detection and how

they compare to questionnaire results. This study is based on user experiments in two

conditions, with and without frustration triggers during trials. We compare subjective

metrics with cardiovascular data from a handle-integrated sensor. The results informed

decisions made in the intention validation study in Chapter 4.

B.2 A Review of Physiologic Stress Detection

There are varying definitions for stress [196] depending on the specific context they are

used for. However, most share the common ground that psychological stress can be defined

as a reaction which changes an organism from a calm state to an excited state. This form

of arousal can be distinguished between eustress, such as joy, or distress which is often

referred to as a fight or flight response [102]. As we are interested in arousal that stems

from frustration, in this work we will refer to distress when stress is mentioned.

While to date there is no standardised form of physiologic stress evaluation that would

be universally recognised [96], in the past, physiological data such as cardiovascular or

GSR, EMG and respiration have been used for an estimate of humans’ stress levels. These

means were often used to detect the level of cognitive workload for example in a driving

scenario [66] or in office environments [7, 70].

In their real-world driving study, Healey and Picard [66] monitored participants’ physio-

logical data to determine a driver’s relative stress level. Measurements from Electrocardiography

(ECG), GSR, EMG and respiration responses were continuously recorded during the tri-

als. They found that GSR and ECG-derived features such as HR and heart rate variability

(HRV) correlate with stress levels.

In the aforementioned works on stress detection in office environments, subjects’ HRV

signals were recorded during in-lab computer exercises which were furthermore followed

by a questionnaire as part of the subjective stress assessment [7, 70]. In both studies,

each participant completed the same task in two sessions, a stress session and a control

session, where the stress session was marked by increased stress stimuli. While Al Osman

et al. [7] introduced an increased temporal demand for these sessions, Hjortskov et al.
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[70] used experimenters’ unfriendly attitude as a stressor. In both studies, HRV data was

used to successfully detect which kind of session it stems from. Interestingly, this was not

true for the results of the subjective stress results hence why Hjortskov et al. suggest that

physiological data might be a more sensitive measure of mental stress.

Another domain for the use of biofeedback, which has increasingly caught researchers’

attention over recent years, is the application for video games. That way physiological data

such as button pressure and GSR [160, 194] or HRV data [8] helps detecting frustration-

based stress which could help controlling it in real time through adapting the game in a

closed-loop setup.

As part of their search for an objective stress metrics, Kim et al. [96] identified HRV

data as the most promising candidate among a set of physiological metrics. In particular,

compared to other physiological metrics, HRV is less affected by positive arousal, therefore,

it can be considered as a robust feature for stress detection. Their suggestion is supported

by Endukuru and Tripathi [50] who explored a broad range of HRV metrics in their work

about human’s cardiac response to stress. Within their experimental studies, participants

were exposed to the Stroop test while ECG data was recorded. As part of their analysis

of the HRV components, they found that the power ratio of Low Frequency over High

Frequency (LF/HF) was most sensitive to the individual’s stress.

We note, that to date the literature does not suggest an absolute interpretation of HRV

data, i.e. there is no universal stress index [96]. However, the aforementioned works

demonstrate that HRV, and in particular the LF/HF component, can serve as a tool to

identify the relative stress levels of compared scenarios.

B.3 Heart Rate Variability and Stress Levels

Human heart activity is non-voluntarily controlled by the brain via the Autonomic Ner-

vous System (ANS) which consists of two main branches, the Sympathetic Nervous Sys-

tem (SNS) and the Parasympathetic Nervous System (PNS) [50]. While sympatic ac-

tivity has an exiting effect, e.g. in a challenging situation, parasympatic activity has a

prohibitory effect, e.g. lowering the HR during sleep. Their constant interaction is re-

flected in HRV [134], which therefore indicates the balance of the ANS and may thus be

considered as a stress indicator.

HRV is defined as the variation in time intervals between heartbeats, commonly referred

to as RR-intervals since the signal was historically derived from the R-peaks of an ECG

curve (Figure B.1). The components of the HRV signal can be divided into two domains,

the time domain and the frequency domain where the frequency domain plays a major
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Figure B.1: This illustrates how RR-intervals are derived from an ECG signal, which serve as
a basis to calculate heart rate variability.

roll in stress-related research [7, 8, 50, 70] as the power of some frequency bands have

been directly associated with ANS activity. Using Fast Fourier Transformation [200], this

can be extracted from the RR-based HRV signal. The following major bands have been

established in research:

• Low Frequency (LF) within 0.003 to 0.04 Hz

• High Frequency (HF) within 0.15 to 0.4 Hz

While the LF component is influenced by both SNS and PNS, HF has been closely linked

to parasympatic activity. the ratio LF/HF is therefore associated with the balance of SNS

and PNS activity in the ANS and aforementioned studies found a significant increase in

LF/HF when stress was induced [7, 8, 50, 70].

B.4 Method of Frustration Detection Study

Recall that this study aims to detect stress levels from physiological data in the context

of handheld robot applications. In a first step, we integrated a HRV sensor that allows for

real time detection of RR-intervals. There are a variety of sensors available in the current

market. There are models where electrodes are placed on the body, e.g. through sticky

patches or strapped around the chest1. However, this is a rather invasive option and does

not go in line with the notion pick up and go. Therefore, we decided to use the optical

finger clip sensor CoreSense2, which is based on measuring the periodic fluctuation of

1e.g. Garmin Heart Rate Monitor Chest Strap
2https://elitehrv.com/corsense
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vessel volume. The advantage is, that this sensor can be integrated in the robot’s handle

(Figure B.2/B.3). The device transmits the RR-data to the lab computer via Bluetooth,

which processes the signal to obtain HR and LF/HF using an open source toolbox for

cardiovascular waveform analysis [227].

Figure B.2: CoreSense: a high resolution RR-sensor that was used to derive HRV information
from experiment trials.

Figure B.3: This picture shows the integration of the CoreSense sensor in the handheld robot
setup. It is placed close to the handle so that the participant’s thumb can rest in it while holding
the robot.

To assess the HRV setup, we ran a series of experiments with a task that can be parametrised

with regards to frustration stimuli. We used the same block copy task, which we intro-

duced in Section 4.2.1 for intention modelling. Put short, the participant uses the hand-

held robot to pick blocks from a stock area and place them on matching locations in a

pattern. Recall that the block elements are simulated in a screen, which facilitates the

introduction of frustration triggers. We used two psychological tricks to generate what

would be perceived as user mistakes. The first one is based on the principle, that humans

struggle to identify detail changes in an environment that remains the same otherwise,

which is commonly known as change blindness [203, 218]. At the time, when the user picks

a block from the stock area, the associated target element in the pattern got swapped

out with another (non-matching) one. This leaves the participant with the impression

that they picked the wrong piece in the first place. The second trigger was an occasional
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dropping of the piece during placing, as though they placed it inaccurately. In that case,

the block needed to be picked from the stock area again.

We recruited 16 participants for our studies (females = 7, mage = 27, SD = 5.8), all

volunteers from our campus. There was no compensation for participating in the exper-

iments. Each completed to experiment trials, one with the frustration triggers enabled

(frustration condition) and one without (control condition). The order was counterbal-

anced to cancel training effects. The robot remained passive leaving the user in charge of

any action. For each trial the participant had 5 min and was asked to continue the task

until the time was up and to try to complete as many pieces as possible. During task

execution, their HRV data was recorded through the aforementioned sensor setup. Each

trial was followed by a TLX questionnaire of which the frustration component was later

used for the analysis.

B.5 Results

We performed a series of pairwise t-tests to analyse the differences in means of the control

condition compared to the frustration condition for each of the recorded metrics. Recall

these are the TLX frustration component as a subjective rating and HRV (in LF/HF) as

proposed objective metric. We also apply this analysis to the HR data, since it is available

from the HRV preprocessing step anyway, so we might as well include it. 3 individuals

were removed from the analysis of physiological metrics, due to malfunctioning of the

sensor during trials. The results are summarised in Table B.1 and a plot can be seen in

Figure B.4.

The t-test results show that the frustration component of the TLX questionnaire is rated

significantly (p = .008) higher in frustration condition compared to control condition.

Concerning heart rate variability, the mean LF/HF increased with induced frustration,

however, the difference is non-significant (p = .804). Regarding recorded heart rate, no

significant difference in Beats Per Minute (BPM) means could be determined.

Mean SD Mean SD t p
TLX Frustration 24.6 21.8 46.8 22.9 t(15) = -2.803 p = .008 ***
HRV [LF/HF] 2.5 2.2 2.3 1.4 t(12) = 0.251 p = .804
Heart Rate [BPM] 97.3 23.6 92.4 23.4 t(12) = 0.542 p = .592

t -test ResultsControl Frustration Triggered

Table B.1: This shows the means and SDs of the frustration metrics for the two experiment
conditions, i.e. control and frustration. To the right are the associated t-test results for the
mean differences. The starred value is significant while non-starred values yield no significance.
A plot of the data can be seen in Figure B.4

.
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Figure B.4: Comparison of results from physiological and subjective metrics for stress/frustra-
tion. For each metric, the frustration induced trials get compared to the control condition. The
Pairwise t-tests (see Table B.1) yield no significance (ns) for the physiological metrics and high
significance ( p = .008 ***).

B.6 Discussion and Conclusion

In this study we aimed to compare possible stress metrics as an indicator of frustration

with the constraint of applicability to handheld robots, i.e. non-invasive methods. We

proposed an experimental setup that allows for subtle and controlled frustration triggers

in a handheld robot task. Disabling and enabling these triggers serve as a parameter to

switch between the control condition and the frustration condition, respectively. The fact

that a significant difference could be observed in self reported frustration levels is evidence

that the proposed triggers are effective which justifies the analysis of their effect on the

physiological metrics.

Concerning HR measures, the given results were expected. As discussed in the background

(Section B.2), HR does not allow to distinguish between negative and positive arousal, i.e.

distress and eustress. In this aspect, our results go in line with previous research.

Based on the presented literature, we expected the LF/HF to rise with increased frus-

tration. Our results point towards that direction, however, the mean difference is not

significant. Although we had to exclude data points for the HRV analysis, it is surpris-

ing that reported frustration is more reliable than the physiologic response. One reason

might be that the sensor was not built for during-motion applications. Although, the

hand is resting relative to the handle and the sensor, the overall body motion during the

task might introduce too much interference for a reliable reading. Another reason for
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these results could be, that the frustration triggers were not stressful enough to stimulate

sympathetic activity in the ANS, i.e. unlike in the car driving example [66], a mistake

in the proposed task setup is not threatening and so the stress response is presumably

smaller. We also note that the mean reported frustration amount for the condition with

triggers enabled is below 50% of the possible scale. This supports the assumption that

the induced frustration was moderate and not enough for a physiological response. One

might argue, that the same was true in the studies by [50], where stress of office workers

was detected from HRV data. However, their control condition is resting rather than a

non-stressful task, which might lead to a much bigger difference since the body is inactive

in that state.

We conclude that non-invasive HRV sensors are still at an early stage of development and

to date insufficient for an application in handheld robots. However, this study also shows

that the TLX questionnaire is sufficient as a proxy to perceived frustration. This study

is a first attempt to bring physiologic frustration detection to mobile robotic platforms.

We suggest that research could continue in that direction in the future, as HRV sensors

continue to improve.
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Appendix C
Bill of Materials

General Materials (used in all chapters)

• Handheld Robot hardware introduced in [59], CAD models available at www.handheldrobotics.org

• Desktop Computer: Intel Core i7 CPU 3.4 GHz, 16 GB RAM, NVIDIA Quadro

M2000 Windows 7 (required for the XNA game studio framework)

• Motion Capturing: OptiTrack (Natural Point) with 7 cameras (model Flex 3), used

with the associated software Motive v1.8.

• Microsoft XNA Game Studio (requires Windows 7)

• Display for experimental content: TV screen (LCD display, 42”)

Materials Chapter 3 and 4

• Tobii Eye Tracker 4C

• Tobii X SDK

• Handheld Robot Supplements (see list below)

Materials Chapter 5

• Microsoft HD LifeCam Studio (2x)

• Handheld Robot Supplements (see list below)
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Material for Appendix B

• Elite HRV CoreSense (HRV sensor)

List of Handheld Robot Supplements

All CAD models are available at www.handheldrobotics.org (per listing below)
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Tumbnail Use in 
Chapter

Quantity File Name Comment

3 6 Marker Mount on Frame.ipt
Used to attach 
markers to the frame 
of the robot

3 2 MarkerMountTracker.ipt
Mounting frame to 
attach markers to the 
eye gaze tracker

3 1 TrackerAdapterMale.ipt
Adapter to attach the 
tracker to the 
mounting

3 1 TrackerArmMount Ext quick 55mm.ipt Top piece of tracker 
mounting

3 1 TrackerArmMount Ext extension.ipt Middle piece of 
tracker mounting

3 1 TrackerArmMountBase V2.ipt Mounting connection 
to the robot's frame

3 1 TrackerArmMountTop.ipt Base link of tracker 
mounting

5 1 6DoF input base.ipt 5-DoF input base



5 1 camera distal mount.ipt Camera adapter 
(distal worksite view)

5 1 camera endeffector2.ipt Camera adapter 
(close up tip view)

5 1 Wand Clip.ipt Attaches the wand to 
the base

5 1 Wand.ipt
Used as 5-DoF user 
input with attached 
markers



Appendix D
Questionnaires

181



Name   Task    Date

   Mental Demand How mentally demanding was the task?

   Physical Demand How physically demanding was the task?

   Temporal Demand How hurried or rushed was the pace of the task?

   Performance How successful were you in accomplishing what
you were asked to do?

   Effort How hard did you have to work to  accomplish
your level of performance?

   Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index
Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Very Low Very High

Very Low Very High

Very Low Very High

Very Low Very High

Perfect     Failure

Very Low Very High

(Shooter Game)

  Trial  ID   mode

When thinking about the robot’s behaviour, please rate how much you agree or disagree with the following statements:

The robot helped 
me with the task

The robot obstructed 
me during the task

Strongly 
agree Agree

Neither 
agree nor
disagree

Disagree Strongly 
disagree

Other comments: (after filling the form)

(e.g. thinking, deciding, estimating, 
looking, searching, etc. Was the task 
simple or complex, exacting or forgiving?)

(e.g. pushing, pulling, turning, controlling activating, 
eye movement etc.)? Was the task easy or demanding,
slow or brisk, slack or tiring, restful or laborious?

How much time pressure did you feel due to the
rate or pace at which the task or task elements occurred?
Was the pace slow and leisurely or rapid and frantic?

How hard did you have to work (mentally and physically)
to accomplish your level of performance?

How successful do you think you were in accomplishing
the goal of the task set by the experiment (or yourself)?
How satisfied were you with your 
performance in accomplishing the goals?

How insecure, discouraged, irritated, stressed and annoyed 
versus secure, gratified, content, relaxed and complacent 
did you feel during the task?



System Usability Scale 
ID:     Mode: 

Please indicate to what extent you agree with the following statements:     

Strongly 
disagree Disagree 

Neither 
agree nor 
disagree 

Agree Strongly 
agree 

  

1. I think that I would like to  
use this robot frequently. 
 

2. I found the system  
unnecessarily complex. 
 

3. I thought the robot  
was easy to use. 
 

4. I think that I would need the  
support of a technical person  
to be able to use this robot. 
 

5. I found the various functions  
in this robot were well  
integrated. 
 

6. I thought there was too  
much inconsistency in  
this system. 
 

7.  would imagine that most  
people would learn to use  
this robot very quickly. 
 

8. I found the robot very  
cumbersome (awkward)  
to use. 
 

9. I felt very confident using  
the robot. 
 

10. I needed to learn a lot of things  
before I could get going  
with this robot. 
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