11 research outputs found

    Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Get PDF
    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems

    Self-Tuning PID controller for autonomous car tracking in urban traffic

    Get PDF
    In this paper an on line self-tuned PID controller is proposed for the control of a car whose goal is to follow another one, at distances and speeds typical in urban traffic. The bestknown tuning mechanism is perhaps the MIT rule, due to its ease of implementation. However, as it is well known, this method does not guarantee the stability of the system, providing good results only for constant or slowly varying reference signals and in the absence of noise, which are unrealistic conditions. When the reference input varies with an appreciable rate or in presence of noise, eventually it could result in system instability. In this paper an alternative method is proposed that significantly improves the robustness of the system for varying inputs or in the presence of noise, as demonstrated by simulation

    Modelling, simulation and control of pedestrian avoidance maneuver for an urban electric vehicle

    Get PDF
    The mathematical model of an electric vehicle, as well as the control system for avoiding pedestrians in urban traffic is described. The vehicle is modeled as a continuous system consisting of several subsystems. In addition, a set of sensors and actuators along with a two-level discrete control system are modeled. Based on this model, a pedestrian avoidance maneuver for typical speeds in city traffic is simulated. When the sensory system detects a pedestrian in the vehicle's path, the decision system calculates its trajectory. Using this information, the speed and/or direction that the vehicle must take in order to avoid the accident are estimated. These values are sent to the low-level controllers of the accelerator/brake and steering, which generate the signals to be applied to such systems to achieve the desired trajectory and speed.This work is funded by the Spanish Ministry of Economy and Competitiveness, projects “AutomatizaciĂłn y Control Inteligente de VehĂ­culos ElĂ©ctricos Urbanos” (ACIVEU, DPI2012-36959) and “Assisted Navigation through Natural Language” (NAVEGASE, DPI2014-53525-C3-1-R)

    Vehicle Blind Spot Monitoring Phenomenon Using Ultrasonic Sensor

    Get PDF
    This paper evaluates a conceptualization of Vehicle Blind Spot Monitoring System (VBMS), which performs a more effective approach in eliminating blind spot of the driver. The newly developed smart blind spot monitoring system simply focusing on an advancement of the preceding work, along with compromising user compatibility and cost-effectiveness. Compact design, reliable and low-cost that contributes to a highly affordable safety feature are the flagship of this new system. Components selection is the main role in constructing an inexpensive blind spot detection system in the present work. Thus, Arduino UNO R3 model and HC-SR04 ultrasonic sensors were employed for the VBMS system due to reasonable market price. Plus, the ultrasonic sensor has demonstrated a remarkable performance in the past blind spot detection system application. Concerning easy installation as well as maintenance on any vehicle, the VBMS is designed as a compact device which assembles the main control unit and sensory partsin a single body to be located at the bottom of the side mirror. Meanwhile, the hazard-warning signal is separately located at the passenger compartment for easily visible by the driver. The angle and sensing range of sensors are both adjustable but vital as their projections define the blind spot limit accurately by characterizing low to a high potential hazard. At the end of this work, a complete VBMS functional prototype of has been establish which effective for real traffic on-road experimentation, with various conditions specified (static, various speed, and overtaken). From the data collected, all targets of the present work have been attained regarding monitoring phenomenon shown by the new-built system. Both pros and cons of VBMS are discussed for further improvement ideas on product developmen

    Autonomous vehicles: challenges, opportunities, and future implications for transportation policies

    Get PDF
    This study investigates the challenges and opportunities pertaining to transportation policies that may arise as a result of emerging autonomous vehicle (AV) technologies. AV technologies can decrease the transportation cost and increase accessibility to low-income households and persons with mobility issues. This emerging technology also has far-reaching applications and implications beyond all current expectations. This paper provides a comprehensive review of the relevant literature and explores a broad spectrum of issues from safety to machine ethics. An indispensable part of a prospective AV development is communication over cars and infrastructure (connected vehicles). A major knowledge gap exists in AV technology with respect to routing behaviors. Connected-vehicle technology provides a great opportunity to implement an efficient and intelligent routing system. To this end, we propose a conceptual navigation model based on a fleet of AVs that are centrally dispatched over a network seeking system optimization. This study contributes to the literature on two fronts: (i) it attempts to shed light on future opportunities as well as possible hurdles associated with AV technology; and (ii) it conceptualizes a navigation model for the AV which leads to highly efficient traffic circulations

    A new Measure for Optimization of Field Sensor Network with Application to LiDAR

    Get PDF
    This thesis proposes a solution to the problem of modeling and optimizing the field sensor network in terms of the coverage performance. The term field sensor is referred to a class of sensors which can detect the regions in 2D/3D spaces through non-contact measurements. The most widely used field sensors include cameras, LiDAR, ultrasonic sensor, and RADAR, etc. The key challenge in the applications of field sensor networks, such as area coverage, is to develop an effective performance measure, which has to involve both sensor and environment parameters. The nature of space distribution in the case of the field sensor incurs a great deal of difficulties for such development and, hence, poses it as a very interesting research problem. Therefore, to tackle this problem, several attempts have been made in the literature. However, they have failed to address a comprehensive and applicable approach to distinctive types of field sensors (in 3D), as only coverage of a particular sensor is usually addressed at the time. In addition, no coverage model has been proposed yet for some types of field sensors such as LiDAR sensors. In this dissertation, a coverage model is obtained for the field sensors based on the transformation of sensor and task parameters into the sensor geometric model. By providing a mathematical description of the sensor’s sensing region, a performance measure is introduced which characterizes the closeness between a single sensor and target configurations. In this regard, the first contribution is developing an Infinity norm based measure which describes the target distance to the closure of the sensing region expressed by an area-based approach. The second contribution can be geometrically interpreted as mapping the sensor’s sensing region to an n-ball using a homeomorphism map and developing a performance measure. The third contribution is introducing the measurement principle and establishing the coverage model for the class of solid-state (flash) LiDAR sensors. The fourth contribution is point density analysis and developing the coverage model for the class of mechanical (prism rotating mechanism) LiDAR sensors. Finally, the effectiveness of the proposed coverage model is illustrated by simulations, experiments, and comparisons is carried out throughout the dissertation. This coverage model is a powerful tool as it applies to the variety of field sensors

    Guided direct time-of-flight Lidar for self-driving vehicles

    Get PDF
    Self-driving vehicles demand efficient and reliable depth-sensing technologies. Lidar, with its capacity for long-distance, high-precision measurement, is a crucial component in this pursuit. However, conventional mechanical scanning implementations suffer from reliability, cost, and frame rate limitations. Solid-state lidar solutions have emerged as a promising alternative, but the vast amount of photon data processed and stored using conventional direct time-of-flight (dToF) prevents long-distance sensing unless power-intensive partial histogram approaches are used. This research introduces a pioneering ‘guided’ dToF approach, harnessing external guidance from other onboard sensors to narrow down the depth search space for a power and data-efficient solution. This approach centres around a dToF sensor in which the exposed time widow of independent pixels can be dynamically adjusted. A pair of vision cameras are used in this demonstrator to provide the guiding depth estimates. The implemented guided dToF demonstrator successfully captures a dynamic outdoor scene at 3 fps with distances up to 75 m. Compared to a conventional full histogram approach, on-chip data is reduced by over 25 times, while the total laser cycles in each frame are reduced by at least 6 times compared to any partial histogram approach. The capability of guided dToF to mitigate multipath reflections is also demonstrated. For self-driving vehicles where a wealth of sensor data is already available, guided dToF opens new possibilities for efficient solid-state lidar

    Toward a Bio-Inspired System Architecting Framework: Simulation of the Integration of Autonomous Bus Fleets & Alternative Fuel Infrastructures in Closed Sociotechnical Environments

    Get PDF
    Cities are set to become highly interconnected and coordinated environments composed of emerging technologies meant to alleviate or resolve some of the daunting issues of the 21st century such as rapid urbanization, resource scarcity, and excessive population demand in urban centers. These cybernetically-enabled built environments are expected to solve these complex problems through the use of technologies that incorporate sensors and other data collection means to fuse and understand large sums of data/information generated from other technologies and its human population. Many of these technologies will be pivotal assets in supporting and managing capabilities in various city sectors ranging from energy to healthcare. However, among these sectors, a significant amount of attention within the recent decade has been in the transportation sector due to the flood of new technological growth and cultivation, which is currently seeing extensive research, development, and even implementation of emerging technologies such as autonomous vehicles (AVs), the Internet of Things (IoT), alternative xxxvi fueling sources, clean propulsion technologies, cloud/edge computing, and many other technologies. Within the current body of knowledge, it is fairly well known how many of these emerging technologies will perform in isolation as stand-alone entities, but little is known about their performance when integrated into a transportation system with other emerging technologies and humans within the system organization. This merging of new age technologies and humans can make analyzing next generation transportation systems extremely complex to understand. Additionally, with new and alternative forms of technologies expected to come in the near-future, one can say that the quantity of technologies, especially in the smart city context, will consist of a continuously expanding array of technologies whose capabilities will increase with technological advancements, which can change the performance of a given system architecture. Therefore, the objective of this research is to understand the system architecture implications of integrating different alternative fueling infrastructures with autonomous bus (AB) fleets in the transportation system within a closed sociotechnical environment. By being able to understand the system architecture implications of alternative fueling infrastructures and AB fleets, this could provide performance-based input into a more sophisticated approach or framework which is proposed as a future work of this research
    corecore