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PREFACE 

 

Prior to my journey into the depths of the endless abyss that is the system 

engineering knowledge domain, my interest and field of study was predicated on 

structural engineering within the civil engineering domain, alongside its technical, 

collaborative relationship with architecture and design. However, notable works such as 

Albert-László Barabási, Mitchell Waldrop, Melanie Mitchell, Sauser & Boardman, and 

Christopher Alexander, revolutionized my former perceptions of artificial ecosystems. 

These systems are not composed of specialized disjointed infrastructural assets and 

mundane agents, but rather unified ecosystems composed of living systems that breathe 

life into the genuine fabric of cities, giving them emergent attributes such as precious 

history, culture, various evolutionary dichotomies of societies and communities, 

government, economics, technology, social networks, and so much more. Completely 

pivotal literary works such as Christopher Alexander bridged the gap between my 

technical understanding of the sphere of civil engineering and the holistic sphere of 

systems engineering, assisting in the realization that at the core of every system (e.g., 

organism, biological ecosystem, engineered scheme) is an organization – an architecture 
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– that is govern by recursive laws or rules – or patterns – giving a system an emergent, 

intelligent system structure that can’t be explained through technical means. 

Through meaningful introductions into fascinating subject areas such as Systems 

Thinking, Sociotechnical Systems, and Systems Architecture, my conceptual 

understanding of the civil environment began to rapidly morph, fostering the cultivation 

of reconceptualizing the way I previously observed the built environment. Retheorizing 

my personal perception of cities introduced me to a hierarchical and expanding world of 

systems with respect to cities and their evolution into smart cities. In many ways, 

developing an interest in smart cities, helped in understanding the main drivers for the 

spur of inefficiencies within cities and how they could be improved upon to make them 

more equitable environments for all individuals. One of these areas that seems to promote 

or is meant to encourage equity within a city is the sector of transportation/mobility. 

Interestingly, transportation seems to be one of the first sectors expected to transform into 

intelligent or smart sociotechnical systems due to sizable interests in urban futures and 

smart technologies such as autonomous vehicles. 

With Systems Thinking, Sociotechnical Systems, and System Architecture, 

providing the theoretical foundation for understanding civil systems such as cities from a 

holistic perspective, the introduction of tools such as agent-based modeling and 

programming basics through software development helped in practically and critically 

thinking more about smart cities and their respective smart technologies providing a 

glimpse into how applications developed for smart city use cases and how to model and 

simulate urban systems such as mobility systems. Throughout my doctoral odyssey, my 

research has provided me with the creative privilege of working in different virtual 
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environments from gaming engines to agent-based modeling and simulation 

environments to increase and expand my coding literacy, as well as find the most 

appropriate and best fit virtual environment tool for my dissertation through a trial-and-

error process. 

This dissertation is a representative amalgamation of the programming, modeling 

and simulation knowledge that has been accumulated over my doctoral journey, which 

attempts to succinctly thread these modeling and simulations efforts into one cohesive 

contributive body of knowledge that bolsters the ever-expanding systems engineering 

body of knowledge. Therefore, for the encouragement of the audience, this dissertation 

can be read as Chapters I and II acting as the foundational bedrock for which this 

manuscript is built upon to give you, the reader, much needed context for this 

dissertation. Chapters III, IV, and V are meant to be the practical application and 

expounding on in Chapters I and II. This is the demonstration of the accumulated 

knowledge that has been nurtured throughout my doctoral expedition. While Chapters VI 

and VII are addressing areas within Chapters III, IV, and V that can be expand upon for 

future research as a potential research enterprise to promote prospective collaboration on 

potential emerging topic areas of this dissertation. 

It is with great intention that this dissertation assists in supporting the meaningful 

change and progression of systems engineering and its impact on present and future 

generations to come. 

 

Ifezue Obiako, April 2022 
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ABSTRACT 

 

Obiako, Ifezue, V., Ph.D., University of South Alabama, May 2022. Toward A Bio-

Inspired System Architecting Framework: Simulation Of The Integration Of Autonomous 

Bus Fleets & Alternative Fuel Infrastructures In Closed Sociotechnical Environments. 

Chair of Committee: Dr. Robert Cloutier, Ph.D.  

 

Cities are set to become highly interconnected and coordinated environments 

composed of emerging technologies meant to alleviate or resolve some of the daunting 

issues of the 21st century such as rapid urbanization, resource scarcity, and excessive 

population demand in urban centers. These cybernetically-enabled built environments are 

expected to solve these complex problems through the use of technologies that 

incorporate sensors and other data collection means to fuse and understand large sums of 

data/information generated from other technologies and its human population. Many of 

these technologies will be pivotal assets in supporting and managing capabilities in 

various city sectors ranging from energy to healthcare. However, among these sectors, a 

significant amount of attention within the recent decade has been in the transportation 

sector due to the flood of new technological growth and cultivation, which is currently 

seeing extensive research, development, and even implementation of emerging 

technologies such as autonomous vehicles (AVs), the Internet of Things (IoT), alternative 
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fueling sources, clean propulsion technologies, cloud/edge computing, and many other 

technologies.  

Within the current body of knowledge, it is fairly well known how many of these 

emerging technologies will perform in isolation as stand-alone entities, but little is known 

about their performance when integrated into a transportation system with other emerging 

technologies and humans within the system organization. This merging of new age 

technologies and humans can make analyzing next generation transportation systems 

extremely complex to understand. Additionally, with new and alternative forms of 

technologies expected to come in the near-future, one can say that the quantity of 

technologies, especially in the smart city context, will consist of a continuously 

expanding array of technologies whose capabilities will increase with technological 

advancements, which can change the performance of a given system architecture. 

Therefore, the objective of this research is to understand the system architecture 

implications of integrating different alternative fueling infrastructures with autonomous 

bus (AB) fleets in the transportation system within a closed sociotechnical environment. 

By being able to understand the system architecture implications of alternative fueling 

infrastructures and AB fleets, this could provide performance-based input into a more 

sophisticated approach or framework which is proposed as a future work of this research. 
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CHAPTER I – OVERVIEW OF THE PROBLEM DOMAIN AND RESEARCH 

QUESTIONS 

 

1.1 Introduction/Background 

 

1.1.1 Smart Cities 

Cities or built environments, over the past millennia, have functioned as the cradle 

– the plinth for which human civilization has developed, prospered, and evolved its 

internal relationship between its people, its ever-emerging intellectual artifacts (i.e., 

systems), and its natural environment. As such, cities are often considered the epicenters 

of economic, cultural, political, and social advancement, due to their diverse aggregation 

of resources, people, and knowledge all confined within one strategic geological location. 

With modern cities having gone from regionally impactful cities back in the 19th century 

to globally impactful cities in the 21st century; this has created an abundance of welfare 

through the spread of knowledge which has affected numerous aspects of the fabric of 

cities, causing their inevitable evolution as large-scale living systems. However, none of 

these factors has affected cities more so than technology, which has started to mold cities 

in various unique ways. One of these manners is through the underlying and 

quintessential architecture of cities that supports the daily function of the city’s internal 

framework in the form of infrastructural systems. In their simplest form, infrastructures 
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are civil systems of the built environment that are responsible for performing tasks and 

functions to support the daily activities of denizens, which mainly consist of the mass 

movement of people and goods over large scale complex networks. These systems are 

vital lifelines critical to the promotion of wellbeing with respect to individuals that 

inhabit built environments such as urban centers. However, this lifeline is currently under 

stress in many urban environments due to the high demand levels from the immense 

influx of populations migrating from rural areas into various city centers across the globe 

seeking economic opportunities in urban centers. According to United Nations, 55% of 

the world’s population currently lives in urban centers with a projected 68% of the 

world’s population expected to live in urban areas by the year 2050 (United Nations 

Department of Economic Social Affairs, 2018), which equates to approximately 10 

billion people by the year 2050 (United Nations Department of Economic Social Affairs, 

2019). In order to keep up with this level of demand, cities are implementing devices 

such as sensors, cameras, actuators, etc. known as smart technologies that are capable of 

supporting infrastructural operation and maintenance efforts, ultimately making cities 

responsive entities similar to living organisms and artificial ecosystems capable of 

interacting with their environment or domain through pragmatic data farming. With this 

in mind, modern 21st century cities are beginning to exploit the rapid advancement of 

technology by integrating these smart technologies with one another through the Internet 

of Things (IoT) and ubiquitous computing, forming cognitively intelligent environments 

that are regarded as smart cities. 

To date, there is no definitive definition of what a smart city is; however, in its 

most fundamental essence, it is a city or built environment which uses various integrated 
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and cyber-enabled technologies through IoT and ubiquitous computing applications as 

well as citizen involvement to support the welfare or quality of life (QoL) of its 

inhabitants. As such, smart cities are considered to be next generation sociotechnical 

systems (STS) due to their integration of technical systems (i.e., smart technologies) and 

the human population in support of meeting intended city initiatives and goals. Predicated 

on infrastructural systems, smart cities are complex environments due to their added layer 

of sensory perception that has been integrated with the existing city’s environments. 

However, what is more, in addition to the cyber-physical aspects of the smart city which 

provides perceptional capabilities to the city, these built environments are expected to 

become significantly more complex and even cognitive with the advent, development, 

and integration of artificial intelligence (AI) into various urban systems. With the 

incorporation of AI within various urban systems, this adds an additional layer of 

complexity, which imparts a sense of “hyper-complexity” due to the interaction of 

various infrastructures, their respective IoT devices, and their various AI-enabled systems 

and components. Spearheaded by AI-enabled capabilities; hyper-complexity, in this 

sense, may lead to revolutionary emergent behavior from future cities in form of 

intelligent systemic self-preservation, decentralized collaboration among various 

infrastructures and devices, and large-scale self-organization. Furthermore, as these 

systems are commonly known for interacting with people within cities in a multitude of 

manners through means such as smart devices (e.g., smartphones), this can also create the 

notion of smart cities being a collection of infrastructures or sociotechnical systems – a 

system of socio-technical systems (SoSTS). In the context of smart cities, this 

collaborative SoSTS may consist of infrastructures which offer services in the form of 
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smart energy, smart transportation, smart manufacturing, etc., which may encompass and 

constitute the SoSTS architecture of smart cities (as seen in Figure 1.1). This manuscript 

will be focused on the smart transportation component of the smart city architecture. 

 

 

Figure 1.1. General architecture composition of a smart city [developed by Ifezue 

Obiako, based off (Silva et al., 2018)]. 
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1.1.2 Smart Transportation System – The Research System of Interest 

Considering the diverse industrial ecosystem of smart cities, many of the 

architectural components that form the composition of smart cities have been the focal 

point of emerging studies of research and development for the intended purpose of 

initiating a paradigm shift from the current conventions of industry to more sustainable, 

adaptable, and robust industry platforms for cities to operate upon. Though these shifts 

are large in magnitude, basically forcing entire industries to rethink the manner in which 

they operate, manage, and sustain their organizations, there are, however, monumental 

benefits to the cultivation and growth of smart cities and their accompanying 

technologies. In addition to increased QoL, the global market worth of smart cities was 

likely within the range of $1.3 – 1.6 trillion US dollars in 2020 (Frost & Sullivan, 2014; 

CB Insights, 2020). Furthermore, in 2018, within the US alone, investment in smart city 

technologies were estimated to reach $22 billion, with forthcoming investments expected 

to grow well into the future (CISA, 2020). However, among the components that make 

up the architectural composition of smart cities, the realm of smart transportation seems 

to be garnering a considerable amount of attention from notable institutions such as 

various national, state, and local governments, private and public companies, universities, 

and numerous transportation agencies, due to problems such as traffic congestion, 

excessive vehicular emissions, and traffic safety. For instance, within the US, the average 

American spends about 34 hours every year in traffic, which has amounted to a 

significant economic opportunity loss of $330 million daily and $124 billion every year 
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with a projected loss of $186 billion annually if nothing changes by 2030 (IRNIX, 2014; 

Viechnicki et al., 2015).  

Additionally, in terms of safety, within 2018 there were 36,560 fatalities and 

2,710,000 injuries caused from traffic-related crashes (NHTSA, 2020). Though this is a 

decline relative to 2017, it is a 3% increase compared to 2015 which had only 35,484 

fatalities. With these general trends within the US, findings from NHTSA have shown 

that more than 90% of crashes are caused by human or driver-related error (NHTSA, 

2015). Next to the issue of safety that embodies the smart city notion of QoL, there is 

also the transcendental dilemma of sustainability and the prevalence of climate change as 

its backdrop which has a direct impact on public health, systemic efficiency, and 

economic welfare within and beyond the periphery of cities. In fact, the transportation 

sector has been the most unsustainable sector in terms of greenhouse gas (GHG) 

emissions with 1,866 million metric tons of carbon dioxide equivalent or 28% of US 

GHG emissions surpassing the electric power generation sector (U.S. EPA, 2019). 

Furthermore, according to the EPA, 59% of these emissions are caused by light-duty 

vehicles, and the remainder is emitted from trucks and other highway vehicles, aircraft, 

trains, and ships and boats (U.S. EPA, 2019). Problematic aspects such as these which 

debilitate the functionality of cities has drawn significant interest by various global 

institutions into the smart transportation sector, due impart to the emergence of numerous 

disruptive smart technologies that could revolutionize mobility within cities, which could 

alleviate many of the issues and inefficiencies facing the transportation sector.  

Many of the issues facing the transportation sector (e.g., traffic congestion, traffic 

safety, and increased vehicle emissions) are a direct and underlying result from the 
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systemic issues of rapid urbanization, resource scarcity, and excessive population demand 

for infrastructural services which may constantly plague cities from the present into well 

into the future, due to unpredictable migration patterns of human populations in urban 

and regional environments if left ignored or neglected. As a means of addressing these 

issues, transportation systems have been undergoing an evolutionary process of digital 

transformation over the past decade by integrating cybernetic capabilities of smart 

technologies such as sensory-based networks, IoT, and cloud/edge computing systems 

with physical transportation infrastructure systems, ultimately metamorphosizing 

transportation systems into cyber-physical systems. This line of thinking has been 

affirmed through (Nam & Pardo, 2011) who proclaimed that the new intelligence of cities 

resides in the combination of digital telecommunication networks, ubiquitous embedded 

intelligence, sensors and tags, and software. Through the integration of smart 

technologies such as the IoT and information and communication technology (ICT) 

infrastructure systems such as cloud/edge computing systems; this creates a cybernetic 

layer that manifests an intricate network or web of interconnections between technologies 

or devices within transportation spaces which are composed of smartphones, vehicles, 

roadway infrastructure, traffic devices, etc. that are able to communicate and exchange 

data/information with one another (Woetzel et al., 2018). Figure 1.2 depicts this 

cybernetic blanket that is layered onto existing infrastructure. 

 



8 
 

 

Figure 1.2. Blanket of cybernetic network over existing physical infrastructure [from 

McKinsey Global Institute (Woetzel et al., 2018)]. 

 

With this concept in mind, these technologies, otherwise referred to as end user 

devices, function as a distributed network of sensors capable of continuously collecting 

significant amounts of data on human populations and the manner in which they use and 

interact with their contiguous transportation environment. While systems in industrial 

cities were mostly skeleton and skin, postindustrial cities and their respective 

transportation systems are akin to organisms that develop an artificial nervous system, 

which enables them to behave in intelligently coordinated ways (Mitchell, 2006). 

Considering the complex cybernetic or digital web of interconnections between 

technological devices, this promotes the harvesting of information, systemic connectivity, 

and intrinsic coordination and cooperation between transportation system technologies 

along with their various users. Through the fostering of information, connectivity, and 
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synergism between smart technologies, transportation infrastructure, and their servicing 

populations; this fosters the evolutionary nurturing of a transportation ecosystem that is 

highly responsive to its surroundings and system context, lending itself to consciously 

adapt, self-organize, and respond to a dynamic operational environment. This artificial 

biome that supports the efficient, coordinated, and intelligent movement of people and 

goods throughout the transportation corridor is often referred to as a smart transportation 

system (SmTS). Figure 1.3 provides a visualization and glimpse of what a SmTS may be 

like in the forthcoming future as smart technologies are successfully developed, 

deployed, and implemented in practical urban applications over time.  
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With this in mind, complex tendencies such as information cultivation, 

coordination, and synergism will be instrumental in addressing and alleviating 

transportation issues such as traffic congestion, traffic emissions, and traffic safety 

through their application and integration of emerging smart technologies such as 

autonomous vehicles (AVs) or self-driving cars, supporting infrastructure technologies, 

and their expanding array of alternative fueling platforms. For abstraction purposes 

moving forward, the use of the term smart transportation (system) will only refer to the 

ground transport environment that supports the movement cars, trucks, buses, and other 

vehicular modes of transportation (i.e., not trains, flight vehicles). 

1.1.2.1 Autonomous Vehicles – A Disruptive Component of the Transportation 

System. 

As of currently, AVs have been in research and development for the past four 

decades beginning in the 1980s when the first demonstration of autonomous driving was 

performed on a roadway (Campbell et al., 2010). Through the years of development, 

however, AV technology has been continuously cultivated and improved thanks to 

initiatives and efforts such as the DARPA Grand Challenge competitions which was held 

in March 2004, October 2005, and November 2007, consisting of competitors from 

various universities that participated in off-road desert environments (i.e., March 2004 

and October 2005 competitions) and urban environments (i.e. October 2005 and 

November 2007 competitions) (Campbell et al., 2010). Events such as the DARPA Grand 

Challenge competitions allowed for practical cutting-edge research into AV driving 
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within realistic environments for which these robotic systems may inhabit alongside 

humans in the coming future.  

Through the observation of current vehicle schemes it can be seen that 

conventional vehicles are predicated on the input of the human driver in order to operate 

the technical aspects of the vehicle; conversely however, the physical anatomy of AVs 

are quite different from their human-driven counterpart. As opposed to conventional 

vehicles, which consists of using the sensory attributes of the human driver, AVs utilize a 

distributed sensor network of cameras, ultrasonic sensors, radar sensors, video cameras, 

light detection and ranging (LiDAR) devices, geographic positioning system (GPS) and 

odometry sensors (i.e., referential sensors) to collect information about the state and 

condition of the AV’s local and global environment. Therefore, within the context of 

AVs, one can envision the architecture or anatomy of AVs as human senses that are 

distributed throughout the envelope and internal mechanisms of the vehicle providing for 

unparalleled sensory awareness. All of the data generated from these sensors are 

aggregated through the process of data fusion within the AV’s on-board unit (OBU) 

which is similar to a computer or “the brain” of the AV, allowing for logical processes 

such as planning, decision-making, and action commands to be executed through the 

software of the OBU, promoting quicker-than-human reaction times. As a result of these 

individualistic functionalities, all of these processes are continuously performed and 

monitored during drive time, meaning driving nuances such as distracted driving, sleep 

deprivation, and random human error are nonexistent at the wheel of an AV. Figure 1.4 

shows the basic system anatomy or architecture of an AV or self-driving vehicle. It is 

worth noting, that the autonomous driving technology seen in Figure 1.4 can be 
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implemented and retrofitted to any other vehicular configuration ranging from cars to 

buses that are commonly seen on public transit routes throughout the transportation 

landscape of cities. This indicates that there are an exhaustible number of vehicle 

arrangements and architectures that could manifest from the integration of autonomous 

driving technology with other vehicle arrangements, implying that other AV use cases are 

fairly bountiful and opportune niche mobility markets for economic development. 

 

 

Figure 1.4. General system anatomy of an AV based on Google’s self-driving car [Image 

from (monicaodo, 2016)]. 

 

 

Beyond its individual capabilities of traffic and transportation-based intelligence, 

AVs are also capable of communicating and sharing information with other smart entities 

outside of its own system boundary such as vehicles, traffic infrastructure, and 

pedestrians through the exploitation of the IoT network, ultimately promoting full digital 

integration in its own transportation space. This dissemination of information to other 
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entities within the transportation ecosystem or space is known as vehicle-to-everything 

(V2X) communication. V2X communication allows AVs to cooperate with other vehicles 

(V2V), traffic infrastructure (V2I), pedestrians (V2P), and even the energy grid (V2G) 

thereby creating an intelligent and cognizant transportation space.  

Through the application of V2X, “hive mind” behaviors can be performed within 

transportation spaces such as AV platooning (where in which AVs form close-following 

trains of vehicles) or even smart fuel integration (where in which AVs coordinate their 

route with the fueling infrastructure through communication). Through the observation of 

these possibilities, it can be seen that the capabilities supported by V2X communication 

in autonomous driving could have profoundly significant effects on the performance of 

transportation systems and their vehicles, which could lead to increases in fuel economy, 

roadway capacity, and reductions of travel times (Fagnant & Kockelman, 2015; Bagloee 

et al., 2016). In many ways, V2X communication protocols provide a crucial cybernetic 

bridge that supports the symbiotic relationship between the operation and maintenance of 

AVs and its interfaces at the boundary of the smart transportation ecosystem – one of 

which is the vehicle fueling infrastructure that is responsible for the procurement, storage, 

and dispensing of fuel/energy to vehicles to support the movement of people and goods 

within and throughout the smart transportation space.  

1.1.2.2 Alternative Fueling Sources & Infrastructure – Fueling Vehicles of the 

Future. 

Currently, conventional vehicle models are propelled through the use of 

combustion engines that utilize nonrenewable forms of fuel/energy derived from the 
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fossilized remains of organic matter from plants, animals, and other forms of microbial 

life that have been pressurized over thousands of years within the crust of the Earth. 

These non-replenishable fuels are the raw ingredients for formation of petrol-based fuels 

such as gasoline/petrol or diesel that are commonly utilized in today’s light-duty, 

medium-duty, and heavy-duty vehicles. Originally discovered in the form of crude oil by 

Edwin Drake in 1859 through the process of well digging, gasoline was considered to be 

a useless resource and byproduct of crude oil due to the value placed on the distill 

product of kerosene which were highly prized due to their uses in lighting lamps (U.S. 

EIA, 2020). As such, gasoline was discarded through either burning at the refinery it was 

produced at or simply disposed of due to impractical use at the time. However, gasoline 

did not see its practical implementation until 1890 and its outstripping of kerosene in the 

fuel marketplace until 1911. By the 1920s, there was a sizable population of automobiles 

running on gasoline with about nine million gasoline-powered vehicles in the United 

States alone, supported by a growing gasoline fueling infrastructure at the time meant to 

support burgeoning number of cars and trucks (U.S. EIA, 2020).  

Through its years of increased use, gasoline was delivered in two forms, “leaded” 

and “unleaded” gasoline, with leaded gasoline being the most inexpensive with increased 

engine performance (Thomas et al., 2017; U.S. EIA, 2020). However, in 1973 the US 

Environmental Protection Agency (EPA) set exhaust emissions regulations that required 

vehicle exhaust catalysts, and because of catalyst poisoning and lead toxicity concerns, 

the use of tetraethyl lead (TEL) was regulated, making a viable market for unleaded 

gasoline. Unleaded gasoline is the most common form of gasoline being sold at retail 

stations in order to satisfy enforced EPA regulations on leaded and unleaded gasoline and 
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internal combustion engine vehicle (ICEV) performance. Furthermore, with everchanging 

EPA regulations forcing more strict constraints on ICEVs and gasoline fuel, unique 

blends of unleaded gasoline have seen their use at retail stations as well in the form 

gasoline mixes contain 15 (E15) and 85 (E85) percent ethanol which derived from corn 

as feedstock material (AAA, 2015). The peak for crude oil and other petroleum products 

for US was in 2005 when imports increased to 5,005,541 thousand barrels and the net 

imports had risen to 12.6 million barrels per day (AAA, 2015). Figure 1.5 shows the 

quantity of crude oil and petroleum products imported into the US from 1981 to 2020. In 

the following year, August 2006, US imports of crude oil and petroleum products reached 

455,595 thousand barrels being imported, which has been the largest imported quantity in 

the US over the span of a month; however, import of crude oil and petroleum products 

have been on a steady decline since (U.S. EIA, 2021d).  
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Figure 1.5. US imports of crude oil and petroleum 1981-2020, data from (EIA, 2021d). 

 

As petroleum counterpart to gasoline, diesel is generated from crude oil similar to 

gasoline. In fact, diesel is the heavier component that is ultimately derived when crude oil 

is refined once it is extracted from a well. As opposed to gasoline, diesel is considered a 

slightly more clean-burning fuel in comparison to conventional gasoline, due to its lower 

sulfur content level than gasoline which is toxic to public health if combusted in a diesel 

engine. Contrary to this, prior to the year 1993, the sulfur content in diesel fuels were 

uncontrolled with levels as high as 5000 ppm until the enforcement of EPA regulations in 

1994 to reduce or limit emissions to 500 ppm ultimately creating what is known as low-

sulfur diesel fuel (Thomas et al., 2017). However, the retail price of diesel per gallon is 

relatively higher than gasoline with diesel fuel being $0.22/gal higher than gasoline based 

on the national average according to Clean Cities and EIA (U.S. DOE Clean Cities, 

2020). Similar to the path that gasoline has taken within the 21st century, diesel has seen 
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its blending with more renewable forms of organic feedstocks such as plant oils, animal 

fats, and recycled greases that allow for a more clean-burning fuel known as biodiesel. 

As advantages of petroleum-based fuels, gasoline and diesel have provided a 

relatively inexpensive source of fuel that has seen its extraction, production, and 

distribution on a global scale. However, considering the geological and geographical 

dependence of crude oil deposits, this has made the economic market for petroleum-

based products such as gasoline and diesel highly volatile fuels during times of global, 

regional, or even local crises such as wartime conflicts, natural or manmade disasters, or 

even seasonal event cycles which motivated by to their strong independence with geo-

political and socio-economic complexities between countries. Figure 1.6 provides an 

example of the erratic behavior of gasoline prices compared to alternative fueling 

platforms.  
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Figure 1.6. Comparison of the price per gallon of alternative fuels to gasoline from 2011 

to 2020, data from (U.S. DOE Clean Cities, 2020). 

 

 

Such an instance of this erratic behavior of petroleum-based fuels can be seen in 

the 1970s oil crisis which had seen supply for oil decrease and oil prices increase (i.e., 

$3/barrel to $12/barrel) in the years of 1973 and 1979 due to increases in geo-political 

tensions caused by the United States’ support of Israel in the Yom Kippur war against 

Egypt which resulted in the placing of an embargo on US oil imports (Macalister, 2011). 

In numerous ways this event led to the reexamination of the fueling/energy mix in the 

United States, spurring debates on the logical use of oil-based fuels, specifically those 

from foreign countries which impeded energy independence and) energy security. A 

bibliometric search performed by (Dahlgren, 2020) shows the manifestation of this 

phenomena occurring in economic energy markets such as natural gas (in the form 

renewable natural gas).  
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Aside from its economic volatility due to its geo-political, socio-economic, non-

local production issues; petroleum-based fuels are detrimental to the health of the natural 

environment and the general public once emitted into the atmosphere. In addition to this, 

with reductions in imported crude oil, common practices such as hydraulic fracturing (or 

fracking) have continued in domestic states such as Pennsylvania (CNBC, 2020) and 

Oklahoma, which have led to increases in domestic oil production and contamination of 

air and precious drinking water sources ranging from surface to underground water 

supplies, causing various health problems for the general public, with reports from 

agencies such as the EPA supporting these findings (U.S. EPA, 2016).  

Now in the 21st century, with the occurrences such as the 2020 Coronavirus 

Pandemic, renewable fuels are beginning to see a significant interest with the decline of 

the oil industry and growth of renewable energies in various energy sectors. In 2020, 

renewable energy generation managed to grow by a respectable 7%, whereas total energy 

demand sank by 1%, coal-generated energy by 4.6%, and effecting energy investments 

(IEA, 2021). What is more, fossil fuels are non-renewable sources of energy and are 

expected to be depleted within 50 years’ time (Chew et al., 2018). Add on to this the 

revolutionization of the automobile in autonomous driving and the revival and increased 

investment of renewable fuels, a reevaluation of the fueling/energy mix that is meant to 

support AVs needs to be examined considering the significant energy paths that can be 

taken in supporting AV operations. However, the major obstacle to implementation of 

these alternative energy/fueling paths is the availability of fueling infrastructure, cost of 

energy and implementation (i.e., well-to-tank efficiency), and in some cases, achieving 

adequate economies of scale. In this manuscript, low or near-zero carbon emission fuels 
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such as propane, natural gas, and biofuels as well as zero-carbon emission fuels such as 

electricity and hydrogen fuels will be the fueling infrastructures of interest in this study 

due to their emergence and advancement within the past decade. 

1.1.2.2.1 Low/Near-Zero Carbon Emission Fuels. 

Outside of nonrenewable fuels such as gasoline and diesel, there is a class of fuels 

that are regarded as renewable or alternative fuels known as low carbon emission fuels or 

near-zero carbon emission (L/NZC) fuels. The class of L/NZCE fuels consist of 

alternative fuels such as propane, biofuels, and natural gas which are used as vehicle 

fuels. These fuels are derived from hydrocarbon-based fuels such as fossil fuels but in 

comparison to gasoline and diesel they are typically more methodically refined so that 

they emit reduced levels of harmful emissions such as carbon monoxide (CO), carbon 

dioxide (CO2), nitrogen oxide (NOx), particulate matter (PMx), and volatile organic 

compounds (VOCs) into the atmosphere. In addition to this, since the chemical 

composition of these fuels are different from fuels such as gasoline and diesel, vehicle 

engines are required to undergo augmentation to run on a dedicated L/NZCE fuel. 

L/NZCE fuels aren’t necessarily utilized as zero-carbon fuel, but as fuels meant to reduce 

vehicle emissions to approach zero-emissions, increase energy independence and 

security, decrease dependence on nonrenewable fuels, and provide a “bridge” between 

carbon-positive and carbon-neutral, or even carbon-negative fuels. The ultimate goal of 

this fuel evolution is to meet ever-changing requirements in accordance with Executive 

Order (EO) 13693 which essentially states that Environmental Protection Agency’s 
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(EPA’s) goal is the reduction of emissions to 35 percent by FY 2025 relative to its FY 

2008 baseline (this EO was revoked however in 2018).  

1.1.2.2.1.1 Propane.  

Propane, alternatively known as liquified petroleum gas (LPG), autogas, and 

motor fuel propane, is a by-product of both crude oil and natural gas and can be 

formulate through two distinct production paths in the production of propane as an 

alternative vehicle fuel (California Energy Commission, 2006). With respect to natural 

gas processing and refinement, the naturally accompanying heavier hydrocarbons (HCs) 

such as LPG, butane, ethane, and pentane are removed prior to the injection of natural gas 

into pipeline distribution systems end use applications. On the other hand, with crude oil 

refining processes, propane or LPG is created as the first by-product produced as a result 

of the oil refinement process. Alternatively, as another energy pathway, biogases 

siphoned from the production of biodiesels which are composed of plant and vegetable 

oils, waste greases, and animal fats can be used to create biopropane or renewable 

propane rather than relying on fossil fuels such as crude oil and natural gas as feedstock, 

thereby further approaching zero-emission levels compared to conventional propane 

(Leonard, 2017). Once refined from its given feedstock, depending on its application 

propane is either kept in a gaseous state or pressurized (between 100-250 psi) into a 

liquified state that can be stocked in pressure tanks to maximize energy storage tailored to 

eclectic use cases (California Energy Commission, 2006; Sapienza, 2015; LeSage, 2015). 

As opposed to gasoline and diesel, propane possesses a lower carbon content meaning 

that it burns more cleanly than conventional fossil fuels. Additionally, if spilled or leaked 
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into the environment, little to no remediation or disaster impacts are imparted on the 

environment due to its nontoxic, noncarcinogenic, and noncorrosive properties, meaning 

that precious resources such as groundwater, surface water, and soil strata are not at risk 

of contamination.  In terms of its primary applications propane has been used in 

industrial-based applications as a feedstock material; in the agriculture sector as a motor 

fuel for farming vehicles, power generation, pest control, and heat for biodigesters; and in 

the in the residential and commercial sectors as heating, water heating, cooking, and 

grilling element (Werpy et al., 2010).  

Nevertheless, over the years, the use of propane has seen a diversification of its 

application into other sectors such as the transportation sector which has utilized propone 

in an assortment of vehicular engines ranging from buses to heavy duty vehicles to law 

enforcement vehicles which are all considered high-mileage vehicles. With this in mind, 

propane vehicles come in two unique engine-based configurations that consist of a 

dedicated or bi-fuel which run only on propone or a combination of gasoline and 

propane, respectively. Figure 1.7 shows a schematic of the two propone vehicle 

configurations – dedicated and bi-fuel propone vehicles. There are certain instances 

where retrofitting or conversion of engine components are needed to allow an ICEV 

vehicle to run on propane or a mix of propane and gasoline due to changes in fueling 

properties which are commonly undertaken in light-duty vehicles. This increases the 

after-sale value of conventional ICEV vehicle due to its extended life. (Sapienza, 2015) 

has shown that propane fueled vehicles can be competitive with gasoline vehicles given 

the capital and operational costs procured through their lifecycle.  
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(a) 

Figure 1.7. Propane vehicle component configuration for a) dedicated propane and b) bi-

fuel propane vehicles (AFDC, 2016c; AFDC, 2020a) 

 

 

 
(b) 

Figure 1.7, Cont. 
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In terms of supporting infrastructure for propone vehicles, propane refueling 

stations are typically supplied in a similar manner to gasoline stations, by transport trucks 

and/or LPG pipeline. The basic setup of propone fueling infrastructure stations 

commonly consist of a dispenser, a pump, and storage tanks for holding liquid fuel at 

appropriate pressures. Considering the organizational, as well as operational similarities 

between propane and gasoline infrastructures, there are limited differences between the 

two infrastructures meaning that a transition from a petroleum-based fueling ecosystem 

to a propane-based fueling ecosystem would be relatively seamless with some caveats 

and nuances. One of these nuances is that the infrastructure for propane fueling of 

vehicles is not as extensive as conventional fuels such as gasoline and diesel fueling with 

a total of 1,205 propane stations available in US (all of which are public stations) and 2% 

of which are located in the state of Alabama (24 primary propane fueling stations) 

(AFDC, 2021a). Figure 1.8 depicts existing locations of propane fueling stations within 

the US. Furthermore, (Werpy et al., 2010) has identified some barriers to the 

incorporation of propane in the marketplace which consist of:  

• lack of emission data 

• lack of interest or knowledge to promote propane vehicles by small-scale propane 

fuel distributors 

• VOC emission leaks in refueling infrastructure 

• price of fuel 
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Figure 1.8. Propane fueling station locations in the United States as of 2021, data from 

(AFDC, 2021a). 

 

1.1.2.2.1.2 Biofuels. 

Biofuels in comparison to other alternative fuels, are produced from the 

fermentation of biological feedstocks, containing fermentable sugar, lipid, or 

carbohydrates which are cultivated into different forms of energy such as heat, electricity, 

biogas, and liquid fuels (Mat Aron et al., 2020). In their quintessential form, biofuels are 

a unique class of L/NZCE fuel, due to the numerous ways or paths that it can be produced 

which are conducted through the natural decomposition of organic matter as its base or 

feedstock, accommodating itself to the utilization of renewable resources as part of its 

production process. Figure 1.9 shows the different ways biofuel can be attained through 

the various forms of organic, or microbial matter as essential feedstocks.  
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Figure 1.9. Biofuel energy pathways based on biofuel generation (Mat Aron et al., 2020). 

 

 

With the multitude of approaches that biofuels can be generated through, this has 

created a distinct and evolving/expanding taxonomy of biofuel subclasses that utilize 

organic matter and biological processes through innovative approaches that not only 

decrease time of natural processes but also increases biofuel yields to meet potential 

supply and demand needs and requirements. The subclasses of biofuels are typically seen 

as generations due to their progressive increase in technological advancement and 

proficient use of organic mechanisms that constitute biological processes from one 

biofuel generation to the next. In view of this concept, biofuels are composed of four fuel 

generations with each generation aimed at increasing the three major pillars of 

sustainability that are economic, social, and environmental sustainability where: 
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• first generation biofuels (1-GBFs)  are manufactured from two types of edible 

feedstocks, classified as starch- and sugar-based feedstocks such as potato, barley, 

corn, and wheat for starch-based feedstocks and sugarcane and sugar beets for 

sugar-based feedstocks (Alalwan et al., 2019; Mat Aron et al., 2020). The most 

commonly utilized feedstock among these starch-based options are corn, 

sugarcane, and wheat which are blended into ethanol due to their high production 

yield as biofuels (Cheroennet & Suwanmanee, 2017; Halder et al., 2019; Mat 

Aron et al., 2020). Additionally, corn, sugarcane, and wheat also provide adequate 

energy density that can help power engines in vehicles, with 44% less carbon 

emission intensity than petroleum gasoline (Wang et al., 2015). However, with 

populations expected to increase substantially over the decades, production of 1-

GBFs could compete with the production of foods crops, creating a less than ideal 

dichotomy between agricultural resources cause unwanted increases in food crop 

prices for the general population. 

• second generation biofuels (2-GBFs) harness and utilize organic matter from 

non-edible feedstocks such as agricultural waste and industrial and forest residues 

that are rich in lignocellulosic material once combusted for the ascertainment of 

their lignocellulosic biomass (Rahim et al., 2019). Since these feedstocks are 

enriched with cellulose, this means that the fuel source contains long polymer 

chains which will need to be refined or converted through pre-treatment, enzymes 

production, hydrolysis, fermentation, and biorefinery which could be energy 

intensive (Cardona et al., 2010).  
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• third generation biofuels (3-GBFs) build upon the limitations of the first- and 

second-generation biofuels by exploiting the biological operations of 

microorganisms such as algae to produce biomass which can be converted into 

biofuel. In order to develop third generation biofuels, algae are used as a 

feedstock that is cultivated in nutrient water conditions (containing large amounts 

of nitrogen and phosphorus) that are predominately observed in wastewater 

conditions making costs cultivation cost low (Wang, Ho et al., 2016). Nutrient-

enriched water supports the metastisization of algae which promotes more lipid 

growth for biofuel extraction which are accomplished through thermochemical or 

biochemical processes that are energy comprehensive in nature (Mat Aron et al., 

2020). However, the cultivation of microalgae is environmentally friendly 

because of its spatial needs which require a small cultivation area that is capable 

of quality outputs of biofuel that possesses high oil content, oxygen, and 

hydrogen, with high conversion efficiency and high energy densities being 

achieved as a biofuel (Feng & Wu, 2011; Chia et al., 2018; Khoo et al., 2018; 

Shah et al., 2018; Yi- Mat Aron et al., 2020).  

• fourth generation biofuels (4-GBFs) are an emerging fueling technology that use 

synthetic biology in the form of genetically modified microalgae to enhance the 

original capabilities and capacity of a given algal species in order to improving 

the accruement of biomass for biofuel extraction and fuel generation. These 

augmentations of microorganism behaviors, attributes, and capabilities range 

across an array of genetic modification possibilities that are meant to increase the 

intake of CO2 for photosynthesis, create an artificial carbon sink, and to enhance 
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biofuel production (Vassilev & Vassileva, 2016; Abdullah et al., 2019). Taking 

this a step further, according to (Aro, 2015), 4-GBFs are produced by designer 

photosynthetic microorganisms to produce photobiological solar fuels, by 

combining photovoltaics and microbial fuel production (electrobiofuels) or by 

synthetic cell factories or organelles specifically tailored for production of desired 

high-value chemicals and biofuels. Beyond this, 4-GBFs can be utilized as a 

carbon-balance technology where in which the genetically modified algae 

feedstock could be used for CO2 sequestration and assimilation, a medium for 

wastewater treatment for municipal, agricultural, and industrial applications, and 

the reduction of GHGs (Zhu et al., 2017; Beacham et al., 2017; Leong et al., 

2019). The downside of 4-GBFs are the uncertainties with respect to the of impact 

on plants, animals, and other natural fauna from the accidental leaching of 

genetically modified microalgae into natural ecosystems. 

With consideration of the four generations of biofuels, it can be said that there are 

various biofuels that inherently align with each of these fuel generations and are 

uncannily part of the evolutionary growth of biofuels as an emerging alternative fuel 

technology. For instance, ethanol is aligned with 1-GBFs, biodiesel is associated with 1-

GBFs and 2-GBFs, and biogas-based biofuels are correlated to either 2-GBFs or 3-GBFs, 

depending on the feedstock that is utilized to generate the required biomass for biofuel 

production. As the most advanced biofuel that is practically and currently utilized in 

vehicle engines such as cars and buses; biodiesel fuel has seen relatively extensive 

utilization in the transportation sector as a comparable clean fuel intended to replace or 
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displace its fossil fuel counterpart – conventional diesel.  Figure 1.10 shows a diagram of 

the typical configuration of a biodiesel vehicle. 

 

 

Figure 1.10. Diagram of biodiesel vehicle and its components (AFDC, 2018). 

 

 

Biodiesel is a 1-GBF and 2-GBF that can be domestically produced from 

biological and renewable sources such as vegetable oils, animal fats, and recycled 

restaurant grease which can then be blended with conventional diesel at various 

concentrations or blends. Common blends for biodiesel are typically produced at 2% (2% 

biodiesel and 98% petroleum diesel – B2), 5% (5% biodiesel and 95% petroleum diesel – 

B5), 20% (20% biodiesel and 80% petroleum diesel – B20), and 100% (pure – B100) 

biodiesel levels, with B20 being the most common utilized biodiesel blend in the US 

(Durbin et al., 2010; U.S. DOE EERE, 2011). By using increased blends of biodiesel, this 

allows for the displacement and progressive independence of petroleum diesel, thereby 
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supporting CO2 emission reductions of more than 15%, and more than 75% through the 

use B20 and B100, respectively (U.S. DOE EERE, 2011). Aside from reductions in CO2 

there are also reductions in other air pollutants such as PMx, CO, and HCs that are 

achieved as a result of utilizing biodiesel (U.S. EPA, 2002).  

This level of reduced emission is achieved due to the cleaning effect that biodiesel 

possesses as a solvent-based fuel or solution which dissolves oil residue that may be 

located in the engine from previous petroleum-based fuel usage, thereby extending the 

vehicle lifespan by improving engine lubrication. However, freeing of diesel nodules or 

deposits in the engine could affect the filtering system of vehicles resulting in frequent 

replacements of the vehicle’s fuel filter until trace diesel deposits are dissolved and 

removed from the engine over time. In addition to this, there are some further concerns 

with respect to the use of biodiesel in vehicles which has limited their use under certain 

operational conditions, such as its limitation in cold climates due to its high cloud and 

pour point which causes fuel filter plugging due to wax buildup, or reduced fuel flow 

with the increase of biodiesel percentages in biodiesel blends (Durbin et al., 2010). As a 

means of mitigating and eliminating this issue, actions such as adding cold flow 

additives, using a lower biodiesel to petroleum diesel ratio, and blending in a certain 

percentage of No. 1 diesel with biodiesel can improve the flow of biodiesel under cold 

environment conditions (Durbin et al., 2010). Also, at higher biodiesel blends exceeding 

B20, biodiesel fuel can impact fuel system components containing elastomer compounds 

by degrading and compromising their structural and functional integrity over time. 

Therefore, engine and engine component incompatibilities are essential to identify before 
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biodiesel is integrated with a given vehicle’s propulsion system to determine if retrofits 

are needed for meeting fuel-engine compatibility.  

In terms of infrastructure to support the distribution and fueling of vehicles, 

biodiesel fueling infrastructure is not nearly as extensive as petroleum gasoline or diesel 

nor propane’s infrastructural station network. Currently within the US, there only 651 

biodiesel stations that dispense biodiesel at grade B20 or above (as seen in Figure 1.11), 

with extensive infrastructure concentrated in the state of Minnesota at 147 stations, which 

is responsible for holding about 23% of the nations’ biodiesel stations (AFDC, 2021b). 

Biodiesel station configurations are similar to conventional petroleum stations with 

biodiesel stations possessing the fundamental components such as storage tanks (i.e., 

above or below ground), dispensers, and pumps for fuel tank injection allowing for the 

same fueling time as petroleum stations. However, difference between petroleum fueling 

stations and biodiesel fueling stations begin to emerge once maintenance procedures are 

considered for its upkeep. As opposed to petroleum-based fuels, biodiesel possesses non-

synthetic antioxidants meaning that once the biodiesel in placed into storage the process 

of oxidation immediately begins while in the storage tanks with blends such as B100 not 

permitted to be stored for more than several months (Durbin et al., 2010). In addition to 

this, microbial growth, water contamination, and gelling in cold climates also occur over 

time with the storage of biodiesel and measures such cleaning the fuel tanks, use of 

biocides, and the use of filters in the fueling dispensers can mitigate reductions in fuel 

quality from these issues. 
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Figure 1.11. Biodiesel Fueling Stations in United States as of 2021, data from (AFDC, 

2021b). 

 

 

In the forthcoming future, it is expected that biofuels will take significant leaps by 

migrating from 1-GBFs and 2-GBFs in biodiesels to 3-GBFs in algae-based biofuels or a 

combination of both. Through the observations of (Aro, 2016) biofuels will be produced 

in such a way that they will become the by-products synthetic cell factories that are 

microalgae or genetically modified algae or become micro-scaled solar cells or batteries 

for storage of luminescent energy and carbon dioxide during the process of 

photosynthesis. From the four biofuel generations, it can be seen that energy generation is 

being perpetuated more and more from the microscale (i.e., 4-GBFs – genetic-based 

manipulation) rather than the macroscale (i.e., 1-GBFs – ecosystem-based manipulation). 
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1.1.2.2.1.3 Natural Gas. 

Natural gas, similar to petroleum-based fuels such as gasoline and diesel are 

produced through the natural process of organic decomposition and temporally 

extenuated heating and pressure conditions within the crust of earth which formulates 

fossil fuels; however, depending on the physical and chemical composition of the 

surrounding strata or soil of the organic decomposition zone, other forms of fossil fuels 

aside from petroleum (i.e., crude oil) can be created. One of these fossil fuels comes in 

gaseous form rather than liquid form that is typically seen in crude oil and is commonly 

referred to as natural gas. Natural gas, otherwise known as fossil gas, is composed of 

predominately methane (CH4) with other small chemical compounds such as HCs 

forming part of its chemical composition.  

Once extracted, natural gas is generally refined to remove unwanted residuals or 

impurities that could reduce its quality in a given industrial sector or application, and 

once the natural gas has been refined it is stored or dispersed out by natural gas 

distributors to desired end users. Primary applications of natural gas range from uses as a 

heating element in the residential sector to transport fueling for high-mileage vehicles 

such as delivery vans and buses. In comparison to crude oil and its refined constituents 

(i.e., gasoline and diesel), however, natural gas is a highly versatile fossil fuel capable of 

being heated and compressed into a gas known as compressed natural gas (CNG) or 

being cooled and compressed into a liquid state known as liquified natural gas (LNG) to 

increase its energy density and therefore energy output. In addition to this, unlike 

gasoline and diesel fuels, natural gas can be found and produced in abundance in various 



36 
 

states within the US, making natural gas a local source of energy as well as an energy 

secure and energy independent fuel that is not prone to the erratic and unpredictable 

perturbations of economic markets caused by geo-politics or socio-economic nuance that 

are commonly seen in imported crude oil markets. Considering the fact that the US 

possesses an abundant amount of domestic natural gas and its domestic production levels 

have increased substantially over the years as seen in Figure 1.12; existing infrastructure 

for the transportation of natural gas can be tailored to support the movement of natural 

gas for use in the transportation sector as fueling for natural gas vehicles (NGVs). In fact, 

natural gas powers about 175,000 US vehicles and more than 23 million vehicles 

worldwide (NGVAmerica, 2021). The application of natural gas in vehicles has seen a 

wide array of success in its application as a vehicle fuel, especially in the arena of high-

mileage transportation predominantly seen in heavy-duty vehicles and regional public 

transport buses (Mitchell, 2015). Figure 1.13 shows the configuration of a typical 

dedicated NGV and a bi-fuel NGV. 
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Figure 1.12. US current and projected natural gas production (2012-2022), data from 

EIA – (Ameen, 2021). 

 

 

 
(a) 

Figure 1.13. Diagram of natural gas vehicle and its components in an a) dedicated and b) 

bi-fuel configuration (AFDC, 2020b; AFDC, 2020c). 
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(b) 

 

Figure 1.13, Cont. 

 

 

 

Natural gas, or conventional natural gas, in its unprocessed form is a fossil fuel-

based gas which is rich in carbon-based molecules which can contribute to GHG 

emissions once combusted within a NGV’s engine. Though conventional natural gas is 

less of an emitter of GHGs such as CO2, it still secretes some of levels of GHG emissions 

though they are lower in quantity at 6% to 11% lower levels over a NGV’s intended 

lifecycle (NREL, 2020). However, these emissions can be decreased even further over 

the lifecycle through the production, distribution, and use of renewable natural gas 

(RNG). RNG is natural gas that is produced through the decomposition of organic matter 

such as plant and animal waste, through the accelerated process of anaerobic digestion.  

By using waste as a feedstock from sources such as municipal solid waste (MSW) 

landfills, municipal water resource recovery facilities (WRRFs), and livestock farms that 

are placed in anaerobic digesters; biogas can be produced and syphoned from the 
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anaerobic digesters which can be refined further by removing moisture, CO2, and trace-

level contaminants such as siloxanes, VOCs, and hydrogen sulfide, to create RNG which 

can be supplied through existing natural gas infrastructure for NG usage. In fact, by 

supplying and fueling NGVs with RNG, lifecycle GHG emissions can be reduced by up 

to 83% (NREL, 2020).  With this in mind, diversification of the production of natural gas 

into RNG further increases energy security and energy independence through the 

localized production of natural gas as a fuel. Figure 1.14 demonstrates the basic 

mechanisms behind the development and distribution of RNG as a fuel for the 

transportation sector.  

 

 

Figure 1.14. Framework for biogas production and distribution to fueling infrastructure 

(Lumpkin, 2014). 

 

 

With an extensive existing natural gas pipeline network responsible for the 

transport of natural gas and RNG, this supports future development of the natural gas 

fueling infrastructure for NGVs. In many ways this reduces financial resources, materials, 
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and human resources to construct the necessary infrastructure due to the fact that natural 

gas stations only need to be placed where natural gas pipelines are located for inlet 

integration into the existing pipeline networks. With this in mind, accounting for public 

and private stations along with fueling stations that dispense CNG and LNG, the US 

possesses 1,643 natural gas stations with about 22% (i.e., 364 stations) of the nation’s 

natural gas stations being located in the state of California (AFDC, 2021h). For reference, 

Figure 1.15 and 1.16 shows the various location of CNG and LNG stations throughout 

the continental US. Beyond this, fueling stations have different station configurations 

with many stations varying in site layout, available power supply, space constraints, and 

proximity to natural gas pipelines, with the vehicle (i.e., fleets or personal vehicles) 

service type consisting of either a time-fill or fast-fill pump to keep pace with fueling 

demands (Smith & Gonzales, 2014). Time-fill stations are stations designed to meet 

fueling requirements for vehicles with long fueling windows whereas fast-fill stations are 

for those designed to meet requirements for vehicles with tight or highly constrained 

fueling windows. Combination-fill station where both time-fill and fast-fill stations are 

used to meet NGV fueling requirements, can be exploited as a means of meeting fueling 

demands for large vehicles fleets such as metropolitan bus fleets. 

 



41 
 

 

Figure 1.15. Natural gas fueling stations in United States as of 2021 considering CNG 

stations, data from (AFDC, 2021h). 

 

 

 

Figure 1.16. Natural gas fueling stations in United States as of 2021 considering LNG 

stations, data from (AFDC, 2021i). 
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1.1.2.2.2 Zero-Carbon Emission Fuels. 

The L/NZCE fuels presented in the previous section allow for significant 

reductions in GHG emissions that approach zero-level emissions depending on well-to-

wheels (WTW) aspects such as the energy/fuel production pathway, the fuel’s base 

feedstock, the mode of transportation of the moving the production-level fuel to its end 

user (e.g. pipeline or trucking tank transport), and the manner in which the fuel’s energy 

is converted within the vehicle’s engine for propulsion. With this in mind, alternative 

fuels such as propane, biofuels, and natural gas provide a quintessential technological 

bridge to reaching the goal of achieving zero-carbon emission levels for many countries 

such as the US, through an evolutionary-based progression or advancement of alternative 

fueling technologies meant to support the transportation sector. However, given the 

advantages that L/NZCE fuels possess, these alternative fuels still produce measurable 

levels of GHG emissions both in the production stages and during end use in vehicle 

utilization. In order to address this issue, zero-carbon emission (ZCE) fuels have provided 

a next generation solution in the elimination of not only GHG emissions (e.g., CO2, CH4, 

nitrous oxide (N2O), and fluorinated gases), but the removal of VOCs and particulate 

from the output stream of the transportation sector. As opposed to nonrenewable and 

alternative fuels seen in the L/NZCE taxonomy, ZCE fuels are derived from pure forms 

of energy with the most common and currently deployed forms of ZCE fuels being 

electricity and hydrogen fuels. Both electric and hydrogen fuels are considered fuels that 

do not exhibit the use of combustion as means of vehicle propulsion, but rather the use of 

electrochemical reactions within their vehicular manifolds, ultimately making emissions 
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nonexistent. However, since ZCE fuels are pure forms of energy, the energy/fuel 

production of these commodities are energy intensive making their well-to-tank (WTT) 

path more of a point of concern when using ZCE fuels in transportation applications. 

1.1.2.2.2.1 Electricity. 

In its purest form, electricity is considered the flow of electron particles through a 

substance, which can be quantified as a charge. Electricity is one of the most pristine 

forms of energy/fuel available as an alternative transportation fuel due its lack of need for 

supplemental processes such as refinement. In comparison to production of some 

L/NZCE fuels which were limited to geographical, meteorological, and even geological 

constraints; electricity can be produced at any place, at any time (depending on system 

scheme), and at any scale. Currently, however, the production or generation of electricity 

in the existing electric grid is dominated by fossil-based sources of energy such as natural 

gas and coal which are responsible for producing 40% and 19% of the electric grid’s 

power, respectively (EIA, 2021a). Whereas, on the other hand, renewables only make up 

20% of the energy mix responsible for electricity production within the US as seen in 

Figure 1.17, while Figure 1.18 shows the evolution of the US energy over time (U.S. 

EIA, 2021a).  
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Figure 1.17. Energy mix for electricity production in the US, data from (U.S. EIA, 

2021b). 

 

 

 

Figure 1.18. Evolution of US energy from 1950-2020, data from (U.S. EIA, 2021c).  
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Though electricity fueling can curb the effects of GHG emissions by eliminating 

their excretion from vehicular transport in electric vehicles (EVs), its production under 

current circumstances can have counterintuitive effects due to the emission of GHG in 

producing and transporting electricity to its intended end users. With increased demand 

expected to occur due to corresponding increases in EV sales, energy source supplies for 

electricity production will be vital in keeping up with electricity fueling demands. For 

instance, 21 million battery electric vehicles (BEVs) are expected to be sold in the year 

2030 due to maturation of economies of scale surrounding EVs (Wu et al., 2019). In 

order to keep up with this increase in electricity demand, further evolution of the US 

energy mix will be needed with more reliance on renewable sources of energy as 

limitations with respect to energy storage are resolved over time.  

The reason for the need for infrastructural reform in electricity production in 

support of the transportation sector is due to the fact that approximately 20 major cities 

worldwide have announced plans to ban gasoline and diesel cars by the year 2030 or 

sooner (Deloitte). These revolutionary changes have resulted in EVs becoming the 

vehicles to replace ICEVs by default in many different instances around the world due to 

their capabilities and expanding new infrastructure. Alongside this, electric vehicles 

(EVs) come in various different configurations ranging from plug-in hybrids to battery-

powered vehicles known as battery electric vehicles (BEVs) which use modular battery 

packs as the source of its propulsion. The focus of this manuscript, however, will be 

placed on EVs (as seen in Figure 1.19) for simplistic purposes and due to their increasing 

popularity in future mobility applications in various vehicular powertrains such as cars, 
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transit bus systems, and heavy-duty trucking which have some mixed forms of success 

(Eudy et al., 2016; Horrox & Casale, 2019; Macon Transit Authority, 2020; Orange 

County Transportation Authority, 2020). Though EVs have become the de facto ZCE 

vehicle with significant environmental advantages beyond gasoline and diesel vehicles, 

this transition is being made with little information about the system-level implications of 

utilizing EVs for mobility applications. In order to truly understand and identify the 

intricacies that come with the utilization of electric vehicles, one needs to look beyond 

the use of EVs from a consumer perspective and into the realm of electricity production 

or even the original equipment manufacturers’ (OEM) standpoint of the production of EV 

components such as batteries of the EV. 

 

 

Figure 1.19. Diagram of natural gas vehicle and its components (AFDC, 2016b). 
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As stated previously, one of major advantages of using EVs is its nonexistent 

emission of GHGs; however, more than this, by using electricity their EVs have sizable 

increase in vehicle performance such as torque that make EVs quicker at accelerating 

than ICEVs. Additionally, since EVs propulsion system doesn’t rely on pyro-based 

chemical reactions as ICEVs, noise is reduced significantly to almost nonexistent levels 

making them interesting prospects for military applications. However, current EVs have a 

relatively low driving range of 160 miles (which is less than ICEVs) giving drivers a 

psychological discomfort commonly known as “range anxiety”. On the other hand, future 

EVs are expected to offer longer ranges approaching 250 miles and in some cases 

exceeding 300 miles which has been the case for manufacturers such as Tesla and Lucid 

Motors (IRENA, 2017; IDTechEx, 2020).  

In addition to range anxiety, once the battery of an EV is depleted, there is also 

the additional problem of charging the vehicle in a timely manner that is conducive to the 

user’s lifestyle. With EVs charging periods typically taking up to 8 hours, this can make 

EVs seem impractical for some transportation applications. In order to overcome this 

issue, rather than using conventional low charging stations (i.e., level 1 charging), fast 

charging stations (i.e., level 2 charging) can be used to decrease the charging time. 

However, by using fast charging to decrease charging time, wearing of the battery pack 

can occur ultimately reducing its charge capacity over its lifetime. Additionally, batteries 

can be added to EVs, but this will increase vehicle weight and reduce range economy of 

the EV and vice versa ultimately causing an EV design paradox.  

Considering more macro-level implications, EVs use lithium and other heavy 

earth metals such as cobalt and nickel. Extraction of these metals for manufacturing into 
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lithium-ion battery packs can be energy intensive emitting high-levels of GHG emissions 

and also come with geo-political complexities due to the fact that much of the materials 

such as cobalt and graphite entering the supply chain for lithium-ion batteries is sourced 

from poorly regulated and heavily polluted mines in Congo and China (Frankel, 2016; 

Whoriskey, 2016). In fact, China mines about 10% of world’s lithium and processes more 

than two-thirds of the raw metals, while only 1% of the world’s lithium is currently 

mined in the US (Editors, 2021). Non-domestic materials such as these could potentially 

hamper EV battery supplies for the US and many other countries in the future if supply 

chains are not considered as part of EV fueling ecosystems, ultimately increasing costs of 

lithium-ion batteries. Lastly, once lithium-ion batteries have reached their useful life 

inside EVs there is the issue of disposing or even salvaging the battery. Some use cases in 

resolving this issue have consisted of using EV batteries in their second life (once they 

have lost capacity) for stationary applications such as renewable energy storage (IRENA, 

2015).  

Considering the drawbacks of lithium-ion batteries, however, there are emerging 

battery technologies such as lithium-air batteries that are in development to increase 

performance of batteries, along with battery technologies such as lithium-oxygen 

developed by MIT researchers and an organic material-infused battery that can recharge 

in 30 minutes (IRENA, 2017). There are also emerging battery technologies such as the 

pyrite or “fool’s gold” battery which utilizes sulfur, iron, sodium, and magnesium – all 

abundant domestic elements – to address the global lithium shortage problem since these 

elements are abundant in other countries and provide domestic raw material supply 

sources (Empa, 2015).  
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With respect to supporting fueling infrastructure, electric fueling stations are 

rapidly and continuously expanding with all 50 states and territories in the US possessing 

some form of electric fueling infrastructure (i.e., level 1 or level 2 charging). In total, the 

US possesses about 44,749 electric fueling stations with California possessing the most at 

13,432 stations which is about 30% of existing charging stations in the US (AFDC, 

2021c; AFDC, 2021d). Figure 1.20 shows existing electric fueling stations that exist 

within the contiguous US. Many of these electric fueling stations depicted in Figure 1.20 

typically possess a prong-like charge port and dispenser for repeated charging 

capabilities; however, instead of relying heavily on conventional forms of charging, the 

use of infrastructure as a service (IaaS) can make the operation of EVs within 

transportation spaces more efficient, opening new niche markets centered around support 

of the electric vehicle. For instance, infrastructure could be set up so batteries could be 

exchanged or swapped rather than continuously charged which has been the notion of A 

Better Place (an Israeli startup), Ample, and various operations in Denmark and China 

(IRENA, 2015). Figure 1.21 provides a depiction of a battery swapping kiosk or station 

for an EV. Beyond this, the idea of smart road technologies which incorporate 

photovoltaics, sensory-based devices, and inductive charging into roadways has been 

proposed and demonstrated by various agencies and companies such as Integrated 

Roadways, ElecReon, Highways England, Solmove, and many more (Kafyeke, 2015; 

Schmidt, 2017; Rayner, 2018). Many of these roadway infrastructure technologies would 

allow for peace of mind with respect to range anxiety and long downtimes for EV 

charging ultimately making EVs more competitive than previously thought. 
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Figure 1.20. Electric fueling stations in United States as of 2021, data from (AFDC, 

2021e). 
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Figure 1.21. Fully automated battery swapping station developed by Ample (Ample, 

2021). 

1.1.2.2.2.2 Hydrogen. 

Hydrogen is a chemical element with an atomic number of 1 and is the most 

abundant element found in the universe due to its natural occurrence as a fundamental 

building block in both simple and complex molecular structures. An example of this can 

be seen and illustrated in the case of petroleum-based sources of energy such as natural 

gas which are composed of methane (CH4) which is derived from four hydrogen atoms, 

making the production of hydrogen possible given an adequate amount of energy is 

available to free the carbon atom from the four hydrogen atoms. However, once freed 

from their respective constituent elements (which in the case of methane is carbon) 

hydrogen becomes a relatively unstable element because of its violent reaction with 

oxygen through the process of combustion. Phenomena such as this have made hydrogen 
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a complicated alternative fuel to utilize given its history in applications such as first-

generation airships which saw early age airships such as Hindenburg explode and crash 

on May 6, 1937 (Webster, 2017). Since then, apprehension to using hydrogen fuel has not 

fully wanned, making there utilization somewhat scarce over the years to an extent with 

use intensive and special use such as aeronautical space flights or in portable power 

applications. In the US, hydrogen has been primarily used in industries for refining 

petroleum, treating metals, producing fertilizers, and processing foods (U.S. EIA, 2021e). 

However, with safety and regulated measures put in place throughout the production 

process of hydrogen, issues of combustion have proven to be of little to no issue in 

harnessing the power behind hydrogen fuels in modern times.  

Nonetheless, similar to the production of electricity for EVs, the current 

production of hydrogen faces the same energy source diversity due to high consumption 

of nonrenewable sources of energy to support hydrogen production and energy-intensive 

refining processes of converting hydrogen into its purest form. Global hydrogen 

production today is dominated by the use of fossil fuels accounting for 96% of hydrogen 

produced globally, with 48%, 30%, and 18% derived from natural gas, 

hydrocarbons/crude oil, and coal, respectively (Deloitte, 2020). What is more, 95% of the 

hydrogen produced in the US is produced through fossil fuel-based means such as natural 

gas (Deloitte, 2020). These forms of hydrogen production that utilize nonrenewable 

sources of energy are what is referred to as grey hydrogen. The second form of hydrogen 

is what is referred to as blue hydrogen, where nonrenewable sources are still used, but 

their respective carbon emissions are captured and stored before being emitted into the 

ambient air and atmosphere. The third form of hydrogen production is commonly known 
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as green hydrogen and involves the utilization of renewable sources of energy such as 

wind, solar, hydroelectricity, etc. to produce hydrogen yields through means such as 

water electrolysis. 

Supported by the production and distribution of hydrogen, hydrogen vehicles are 

ZCE vehicles that store and utilize compressed hydrogen gas (pressurized on-board 

tanks) as its primary fuel to support the necessary propulsion of the vehicle. In order to 

utilize the hydrogen, these vehicles exploit the hydrogen within its tanks through the use 

of hydrogen fuel cells which are responsible for converting the stored hydrogen gas into 

locomotive energy. Figure 1.22 depicts the typical architecture for a FCEV.  

 

 

Figure 1.22. Diagram of natural gas vehicle and its components (AFDC, 2016a). 

 

 

Commonly referred to as fuel cell electric vehicles (FCEVs), the fuel cell in FCEVs 

takes in the hydrogen that has been stored in the on-board tank and into a fuel cell stack 
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which is commonly composed of an anode, two platinum catalyst layers, a proton exchange 

membrane (PEM), and a cathode. In its simplest form, the hydrogen acts as an anode which 

passes through the fuel cell’s gas diffusion layer where upon which the hydrogen contacts 

the platinum catalyst layer where the hydrogen is then stripped of its electrons, and its 

protons are allowed to go through the catalyst layer and the PEM to the second catalyst 

layer found on the other side of the fuel cell. Meanwhile the stripped electrons are forced 

to bypass the PEM and are used to power the electric motor of the FCEV to drive the wheels 

of the vehicle for propulsion. Some of the stripped electrons are then allowed to reenter the 

fuel cell stack and merge back with the hydrogens’ protons and oxygen molecules to create 

water vapor as an emission of the FCEV. Figure 1.23 depicts the basic functionality and 

structure of a hydrogen PEM fuel cell stack. By utilizing fuel cells rather than combustion 

or battery-powered vehicle powertrains, FCEVs possess numerous advantages in their 

implementations which consist of:  

• higher energy efficiency compared to ICEVs due to fuel cells imparting high 

engine efficiency (i.e., 65% for fuel cells compared to 35% for combustion 

engines), better fuel efficiency, and constant engine torque which is driven by the 

elimination of vibrations and noise from energy and propulsion generation (Turoń, 

2020). 

• high vehicle driving range compared to most EVs and ICEVs (as a developing 

technology), with FCEVs possessing 310 miles (500 km) on average and near-

future FCEV models expected to reach 900-mile driving ranges (Kubik et al., 2018; 

Turoń et al., 2018; Gilroy, 2021). 
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• short refueling times that are on par with ICEVs with FCEVs only taking 3 to 5 

minutes to refuel during trips as opposed to 8 hours typically taken by EVs (Ezzat 

& Dincer, 2018). 

However, with some of the advantageous capabilities that FCEVs possess as an emerging 

technology (more so than EVs), there are also some disadvantages to their implementation 

as an alternative form of mobility within the transportation ecosystem some of which 

consist of: 

• use of platinum in the fuel cell which is consider a precious earth metal. Platinum 

is produced in a limited number of countries, with South Africa, Russia, Zimbabwe, 

Canada, and the USA possessing a sufficient capacity for the mining and production 

of platinum without exceeding global material thresholds due to the continuously 

decreasing amount of platinum required in fuel cell stacks because of technical 

improvements (Deloitte, 2020). Also, the platinum in the fuel cell stacks can be 

recycled once the fuel cell stack reaches the end of its lifecycle. Obtaining platinum, 

however, causes a series of environmental impacts such as emissions of sulfur 

oxides produced during the extraction of the material (Pehnt, 2002; Garraín & 

Lechón, 2014; Miotti et al., 2015). 

• vehicle cost that ranges from $60,000 – $70,000 making FCEVs about 1.6x more 

expensive than ICEVs (IDTechEx, 2020). This is expected to change as 

infrastructure and economies of scale begin to take shape for FCEVs in various 

countries around the globe. 
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Figure 1.23. Fuel cell stack that drives propulsion with FCEVs (Geek.com, 2015). 

 

 

In terms of their practical application, FCEVs are seeing a rapid expansion of uses 

in diverse automotive markets such as consumer cars, public transit buses (Ballard, 

2019a; Ballard, 2019b; Ballard, 2019c; Ballard, 2020a), trucks (Ballard, 2019d; Ballard, 

2020b), and even delivery vehicles in various countries around the globe. For instance, 

car companies such as Hyundai, Toyota, and Honda, have been frontrunners in the 

development, implementation, and deployment of FCEVs across various different vehicle 

powertrains. Additionally, OEM companies such as Ballard are helping to reduce costs of 

FCEVs by cultivating economies of scale, thereby making FCEV components more 

available to automotive manufacturers, and increasing the robustness of the FCEV OEM 

supply chain. What is more, countries such as Japan have currently set ambitious goals to 

develop and transform its existing economy around the production, transportation, and 

utilization of hydrogen rather than fossil fuels in its forthcoming future, potentially 

making Japan the world’s first hydrogen-based economy. In Japan, government 
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investments amounting to $400 million USD are being expended for the development of 

infrastructure for FCEVs and to provide recipients with the appropriate purchase 

incentives for FCEVs (Frost & Sullivan, 2018; Turoń, 2020). The situation in the 

countries of China and South Korea are being shaped in a similar developmental manner 

(Frost & Sullivan, 2018, Turoń, 2020). 

Hydrogen infrastructure is one of the least developed alternative fueling 

infrastructures in the US, with only 47 public and private hydrogen fueling stations online 

for service in the US, 45 of which are located in the state of California and one in Hawaii 

(AFDC, 2021f). However, 63 hydrogen fueling stations are in the planning stages of 

being developed or built for service within the US in the coming future (AFDC, 2021f). 

Figure 1.24 shows the existing locations of hydrogen fueling stations across the 

contiguous US. Considering the amount of hydrogen fueling stations in Figure 1.24, this 

lack of infrastructure is primarily due to three major factors or obstacles: the capital cost 

with respect to the installation of the hydrogen fueling stations which can cost on the 

order of about $2 million to $3 million USD per station (Isenstadt & Lutsey, 2017); 

technical and economic issues and considerations with developing the appropriate energy 

ecosystem to support hydrogen fueling stations (e.g. hydrogen pipelines, truck delivery of 

hydrogen, energy sourcing of hydrogen, etc.); and perceptions about the use of hydrogen 

as a fuel source for vehicles. Some of these hydrogen infrastructure configurations 

consist of centralized reforming at plant (with truck or pipeline delivery), chemical by-

product hydrogen (through oil refineries or steam reforming), onsite reforming at fueling 

stations, or onsite electrolysis at fueling stations. Figure 1.25 provides a depiction of the 
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different architectural configurations of hydrogen fueling infrastructure that can be 

utilized in supporting the operation of FCEVs within the transportation ecosystem. 

 

 

Figure 1.24. Hydrogen fueling stations in United States as of 2021, data from (AFDC, 

2021g). 
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Figure 1.25. Different configurations for support of hydrogen fueling infrastructures 

(Ogden, 1999). 

 

 

1.2 Overview of Problem Domain 

With the burgeoning realm of complex systems manifesting within the 21st 

century alone, sophisticated approaches such as computer modeling and simulation are 

becoming more of a commonplace and reliable tool in capturing and understanding the 

intricacies of various complex systems such as sociotechnical systems. According to 
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(Abar et al., 2017), computer modeling and simulation relates to the manipulation of 

systems’ behavior to assess strategies for its functioning in the descriptive or predictive 

modes. Aside from using costly, time-prohibitive methods such as large-scale testing and 

evaluating of AVs on public roads where issues of legality, public anxiety, safety, 

security, and user privacy can inhibit the progression of AV research and development; 

use of more data-driven or virtual means such as modeling and simulation (M&S) can be 

utilized in testing the performance of AVs.  

With numerous ways of virtually testing AVs, ranging from the component-level 

to the systemic level, there are a myriad of ways to assess these autonomous systems 

without their significant impediment into the public domain. However, systemic scale 

M&S of AVs within the realm of transportation research seems to be garnering quite a bit 

of interest due to the impacts that these disruptive smart technologies may have on 

various stakeholders. Over the past decade, a prominent approach to assessing the 

systemic implications of AV and other technology integration within the transportation 

ecosystem has emerged through the use of agent-based modeling and simulation 

(ABMS). Agent-based simulation (ABS), or agent-based modeling (ABM), is a modeling 

and computational framework for simulating dynamic processes that involve autonomous 

agents (Macal & North, 2014).  In its simplest form, ABMs are considered virtual-based 

abstract constructs of real-world systems, processes, and phenomena that are achieved 

through the establishment of low-level rules which are assigned to autonomous entities or 

objects known as agents in order to understand their collective effects at the macro- or 

systemic level. Agents are entities representative of people, technology, a message, etc. 
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that are situated in some environment, and are capable of autonomous action in this 

environment in order to achieve its delegated objectives (Weiss, 2013).  

In terms of their practical application within this manuscript, ABMS are intended 

to be used in understanding the behavior, interactions (i.e., symbiotic relationships), and 

collective performance of AVs and alternative fueling infrastructures along with their 

impact on the social and technical dimension of the transportation ecosystem, allowing 

for an entire sociotechnical system architecture to be analyzed and evaluated as a result. 

Furthermore, ABM offers a way to model social systems that are composed of agents 

who interact with and influence one another, learn from their experiences, and adapt their 

behaviors so they are better suited to their environment (Macal & North, 2010). 

Considering the widespread influence that AVs will have on cities, ABMS is an 

extremely advantageous tool to utilize in order to understand not only the technical aspect 

of cities, but the unintended consequences that new disruptive technologies such as AVs 

may have on the social ecosystem of cities. Through the use of ABMS, a dynamic 

perspective of the system architecture is revealed showing the real-time evolution of the 

system architecture and its relationship with its environment. 

Currently, research efforts within the AV M&S research community have 

concentrated on the applicational use of AVs within public domain environments such as 

the city-wide usage of AVs and emerging fueling technologies in existing transportation 

schemes. Research such as this can help uncover various systemic effects of AVs on 

transportation performance within cities. However, current research efforts do not try to 

sensibly dissect the complex issue of AV integration within built environments by 

looking at the entire SmTS, which is not a just a technical system, but a sociotechnical 
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system. Reducing the area of study, by simulating in a closed sociotechnical 

environment, which is innately smaller than cities, could provide for more insight into the 

effects and impacts that AVs could have on social and technical behaviors and 

performance levels as an integrated system. With this idea in mind, existing research 

efforts seem to come up short when it comes to simulating the integration of AVs with 

other emerging technologies (i.e., fueling infrastructures) within specialized 

environments such as closed sociotechnical environments. Furthermore, with a relatively 

diverse taxonomy of closed environments, logical inferences could potentially be 

connected from one closed sociotechnical environment to another. For instance, findings 

made from simulating AV and alternative fueling infrastructure usage in a university 

environment could provide insight into AV deployment on military installations/Forward 

Operating Bases (FOBs) which could prove to be beneficial for governmental agencies 

such as the Department of Defense (DoD) in efforts of planning, developing, and 

managing their various military installations. 

 

1.2.1 Simulation of the Integration of Autonomous Vehicles with Alternative 

Fueling Infrastructures 

Considering the fact that the SmTS is a highly collaborative system with a 

distributed architecture of numerous parts, subsystems, and collective systems that 

constitute its internal composition; there are potential systems or subsystems that can be 

overlooked. This mistake of overlooking subsystems that could be potentially vital for the 

transportation ecosystem’s sustainment, can occur due to the complex coevolutionary 
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relationship dynamics, scale of the system, and emerging technologies that could be 

integrated within its framework over time. These numerous overlooks can lead to the 

potential corruption of comprehensively observing and assessing the system’s potential 

functions and needs spanning the entirety of its lifecycle. In order to put this complexity 

into perspective, understand the magnitude of, and capture all aspects of the domain of 

the smart transportation ecosystem, a domain diagram can be seen in Figure 1.26.  
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The issue with many of these existing simulation studies is that they assume that 

EVs will be the fuel of chose for AVs in the forthcoming future, which can be a 

dangerous proposition to perpetuate in research. The reason why this is dangerous is 

because it can “pigeonhole” or limit the fueling infrastructure that is needed to support 

the operation of AVs, especially when the systemic aspects of electric batteries are 

considered at a macroscale deployment level. Rather than perceiving the transportation 

ecosystem as an environment that utilizes one form of fuel/energy source, the emergence 

of AVs can be exploited as an inflection point in technological development where 

fueling diversification can be cultivated to allow for the growth of more economic, social, 

and environmental robustness and sustainability for the transportation sector. Therefore, 

aside from electricity, a consideration of other fueling infrastructure schemes such as 

propane, natural gas, biofuels, hydrogen, or a combination of these fueling regimes needs 

to be considered in the simulation of AVs to understand the architectural implications 

that the integration of each of these different fueling infrastructures may have in AV 

operations. Therefore, this certainly begs the question of: is there another fueling 

infrastructure or infrastructure arrangement that is better than electric fueling stations? 

1.2.1.1 Simulation of the Integration of Autonomous Vehicles with Fueling 

Infrastructure Improvements. 

When it comes to the interaction and cooperation between AVs and infrastructure 

within the SmTS, unwanted interactions are relatively easy to come by due to 

cumbersome aspects such as the vastness of transportation network infrastructures, and 

on the other hand, the early-stage maturity level of AVs. As a conduit for vehicles, 
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transportation infrastructure systems such as roadways cover well over 100,000 miles, 

making this system an arduous system to operate, maintain, manage, and finance. This of, 

course is apparent within the US where according to the 2021 American Society of Civil 

Engineers (ASCE) Infrastructure Report Card, America’s road infrastructure received a 

“C-” based on criteria such as: 

• capacity 

• existing and near-future conditions 

• future needs  

• owner’s ability to operate and maintain the infrastructure to meet government 

regulations  

• public safety  

• resiliency following events to serve the public  

• innovation 

In the decomposition of ASCE’s Report Card, US roads received a “D” which has 

remained the same since 2013 and was worse in the 2009 ASCE Infrastructure 

Assessment at “D-” (ASCE, 2009; ASCE, 2013; ASCE 2017; ASCE, 2021). 

Nevertheless, with this grade the US’s infrastructure is not up to appropriate standards 

due to aging transportation infrastructure; lack of investment to support road repairs, 

system expansions, and system enhancements; along with high death rates due to 

vehicular crashes. Vehicles are addressing some these issues due impart to increasing 

levels of automation in driving applications or use case within current and future 

automotive models; however, infrastructure and vehicles alike need to integrate with one 

another to form a symbiotic relationship between one another to increase the performance 
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of vehicles at the micro level, and traffic conditions at the macro level. By neglecting 

infrastructure, AVs could suffer technologically, leading to slowdowns and declines in 

further AV technology development in the future, ultimately resulting in the destruction 

of the symbiotic relationship between AVs and infrastructure. With this in mind, 

infrastructure is one of the major factors which determines if a given country, city, or 

environment is ready for the implementation of AVs within its transportation system. 

This fact is indicative through the KPMG’s pillars for Autonomous Vehicle Readiness 

Index (AVRI) which has the US ranked 3rd out of 20 countries behind Singapore and the 

Netherlands who possessed top-tier road and cyber infrastructure as well as policy and 

legislation capacity to help with regulating AVs. Figure 1.27 shows the pillars for 

determining the AVRI for a country. 

 

 

Figure 1.27. Pillars of the Autonomous Vehicle Readiness Index (AVRI) (KPMG 

International Cooperative, 2018). 

 

 

As has been the case since the automobile’s inception, the purpose of 

transportation infrastructure such as roads, traffic signals, and fueling stations, have all 

been essential elements in supporting and sustaining the operation of automobiles within 

the transportation space. Within the context of autonomous driving, the same notion 
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holds true, if not, even more so than in the 20th century context. This is due to the fact 

that AVs will not rely on humans as part of their control subsystem, but rather robotic 

control subsystems that will consist of actuators, software, communication systems, and 

various sensors which will perceive its surrounding environment more differently than 

human drivers. What is more, transportation infrastructure, can even assist in making 

AVs thrive in transportation environment which has been discussed in literature through 

(Grembek et al., 2019) and in the case of section 1.1.2.2.2.1 where the use of emerging 

infrastructure technologies such smart roads, battery swapping stations, and innovative 

inductive charging technologies and schemes can make fueling infrastructure in support 

of AVs such as electric AVs or hybrid-fueled AVs more competitive with other fueling 

schemes such as hydrogen, biofuels, propane, and natural gas. However, with all of these 

revolutionary infrastructural improvements that can be used to support AVs in fueling 

applications, the question becomes how will the implementation of these infrastructural 

improvements effect the performance of given transportation system within a specific 

system context? 

1.2.2 Simulation of Autonomous Vehicles in Different Vehicle Configurations 

AVs are commonly regarded or visualized as sedans, family vans, or light-duty 

vehicles due to the number of automated features such as adaptive cruise control, lane-

change detection, automated braking capabilities, automated parking, etc. that make the 

experience of driving more safe drivers in their daily commutes. Furthermore, with 

research and development involving technology, transport service, and automotive 

companies such as Tesla, Waymo, Uber, Lyft, Nissan, Ford, and many more utilizing 
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light-duty vehicle configurations, a significant amount of attention is focused on the use 

of autonomous cars. This interest by automotive industries with autonomous cars has 

ultimately reverberated into the simulation research community where researchers are 

showing significant interests in various use cases for autonomous cars which are 

commonly referred to as shared autonomous vehicles (SAVs) or even shared autonomous 

electric vehicles (SAEVs) due to assumptions of running on electric rechargeable 

batteries as the vehicle’s propulsion subsystem. The application of SAVs as cars have 

seen numerous investigations in literature with studies of SAVs in use cases such as 

carsharing, ridesharing, demand-responsive transport (DRT), and autonomous taxi 

services. However, there is limited focus on the application of AV technology in its use 

with different vehicle configurations such as mass transit bus types. Furthermore, 

research efforts into how different autonomous bus configurations (i.e., standard bus, 

paratransit bus, mini coach bus, shuttle bus) can affect the architectural performance of a 

given autonomous bus service system doesn’t seem to be a highly emphasized point of 

interest within autonomous bus simulation modeling; however, they are considered 

within autonomous car simulations to certain extent with SAVs and SAEVs (Leich & 

Bischoff, 2019). 

1.2.3 Diversification of the Simulation of Autonomous Vehicles and Alternative 

Fueling Infrastructures in Unique Sociotechnical Environments 

One the most difficult obstacles to overcome in the adoption and integration of 

AVs in existing transportation systems is the issue of trust which is dependent on 

perceived reliability, security, and privacy that the technology or system in question 
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provides (Kaur & Rampersad, 2018). One of the ways some institutions or companies are 

trying to encourage this trust and forge quintessential synergy between pedestrians and 

users with AVs is by deploying AVs in closed sociotechnical environments such as 

universities (Santos, 2021; Caldwell, 2021), national military installations (Salmon,  

2019; Descant, 2019), and even airport facilities such as near airplane hangars (King, 

2021) to gather information and data about how people interact with AVs in close-to real 

urban and working environments. These pockets of small cities in many ways can form 

phenomenal testbeds for AV research and development due to their relatively controlled 

traffic environment and realistic social fabric and community that mimics behaviors one 

would find in a city-based environment.  

Considering this concept, closed sociotechnical environments such as universities, 

military base environments, and retirement villages can act as the nexus or catalyst point 

from which AVs can emerge as a maturated technology that can be implemented in large-

scale use cases in cities due to the fact that they will have already built up a necessary 

rapport with diverse ages ranging from teenagers/young adults to retirement age groups. 

An approach such as this would allow for the cultivation of trust between AVs and 

people from not only different generational cohorts, but also socioeconomic standings as 

well, giving unique insights into what can be done to make AVs more socially accepting 

to diverse populations. However, these closed sociotechnical environments have only 

been used for large-scale testing, development, and deployment of AVs, and it is quite 

astounding that this unique built environment has not been used extensively in simulation 

modeling applications to not only explore interaction of AVs with human drivers and 
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pedestrian/rider populations, but their interaction with other emerging technologies such 

as alternative fueling infrastructure schemes outside electricity.  

What is more, most simulations conducted in literature perform simulations of 

AVs in city-based simulation modeling context, which is highly practical for future 

projections and predictions for municipalities; however, diversification in simulation 

environments could provide a wider perspective about the capabilities of AVs across 

different built environment scenarios. This, once again, shows that closed sociotechnical 

environments are idyllic simulation environments to explore, test, and observe alternative 

fueling technologies that could prove to be advantageous to utilize in integration with 

AVs, or more specifically, autonomous bus fleets. This form of information could prove 

to be vital once large-scale deployment of AVs is deemed to be appropriate in city traffic 

flows which will allow for a smooth transition from small-scale deployment in closed 

sociotechnical environments to city-wide integration in complex transportation networks. 

 

1.3 Problem Statement 

AVs are an attractive smart technology within the transportation sector due its 

many benefits that would promote quality of life for various citizens. Currently, the 

approach to incorporating AVs within the sociotechnical fabric of cities has been fairly 

rapid, impromptu, and less premeditated in nature, ultimately helping exacerbate fears 

and a lack of trust with respect to the future adoption of AVs. Instead, psychological fears 

within the public are being stoked by some tech companies such as Tesla and Uber due to 

their large-scale testing and development regimes in public traffic domains that do not 
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seem to fully take social context into consideration. In addition to this, in a majority of 

cases whether in large-scale testing and development or modeling and simulation (M&S) 

of AVs, the propulsion system and fueling infrastructure expected to support AVs in the 

future has been mostly presumed to be battery electric powertrains fueled and supported 

by electric charging infrastructure. Given the systemic implications of using EV 

configurations in AVs, this is a potentially dangerous presumption to solely perpetuate 

and could lead to unwarranted outcomes if other alternative fueling and propulsion 

schemes or even a hybridization of them are not considered before large-scale AV 

deployment occurs.  

If large-scale testing and development of AVs continues in open sociotechnical 

environments (e.g., city streets, highways, etc.), this could put the public at risk, 

introducing crash-related injuries or even fatalities in the future and ultimately putting the 

future adoption of AVs at risk due to increases in fear and lack of trust in the reliability, 

performance, security, and privacy of AVs. This will not bode well with the growth of 

AV technology considering that there are 9.1 crashes per million driven by current AVs 

as compared to 4.1 crashes per million miles driven under a human driver (Schoettle & 

Sivak, 2015). In order to address this problem, many companies that are performing 

research and development on AVs have forgone the testing of AVs in open traffic flow 

environments and have performed large scale testing of AVs in the form of autonomous 

or automated buses (ABs), specifically automated shuttles, in more controlled 

sociotechnical environments such as universities, military base installations, and airports. 

By default, this has implicated institutions such as universities and national militaries, 

thereby consequentially revealing the inefficiencies that are present in the operation and 
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management of their respective environments and the risks that these inefficiencies pose 

to their corresponding populations. However, since large-scale testing of AVs only tests a 

small number of AVs (i.e., about 2 or 3), not a lot of system-level information is 

generated on how AV fleets perform and could be managed in these closed 

sociotechnical environments. Furthermore, since most of these large-scale tests presume 

these ABs are electric buses (EBs), exploration into the impact of different alternative 

fueling infrastructures would prove to be prohibitively expensive to conduct along with 

observing the impact of different AB configurations and how they impact bus services. 

Due to prohibitively high cost and risks, simulation and virtual environments are 

meant to circumvent the need for large-scale testing efforts that may put the public at risk 

and to explore the impact of different system architecture technologies, but the virtual 

exploration into the various scenarios that AVs could be placed in are by no means 

exhaustive, or conscientious towards understanding the systemic effects of AVs within 

built environments such as closed sociotechnical environments mentioned above. 

Coupled with this fact, with this lack of modeling and simulation (M&S) context, aspects 

such as the impact of alternative fueling infrastructures and vehicle types on the 

performance of AB services in closed sociotechnical environments has not been 

extensively investigated. Aspects such as alternative fueling infrastructures are expected 

to become imperative as diversity in fueling sources becomes more prominent within the 

transportation sector. Additionally, in many cases, the integration of different alternative 

fueling infrastructures and vehicle types may have a reverberating impact on the 

architecture of a transportation system, effecting aspects such as performance, reliability, 

availability, capacity, and other systemic parameters. Therefore, considering this fact, 
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with SmTSs and their accompanying technologies, there are an assortment of ways to 

organize the various alternative technologies within a given architecture, and being able 

to find the most beneficial architecture to meet desired system requirements will be 

important to know as technologies and systems evolve over time. With this idea in mind, 

not being able to understand the potential architectural alternatives and their implications 

on the performance level of AB services within a closed sociotechnical environment can 

not only effect functionality of transportation operators in these closed environments, but 

the manner in which closed environments’ administration clusters and user populations 

functions or behaves as well. 

The aim of this research is to understand the system architecture implications of 

integrating different alternative fueling infrastructures with AB fleets in a transportation 

system within a closed sociotechnical environment. This aim will be reached through the 

use of ABM in order to observe and understand social and technical behaviors and 

interactions as well as explore different AB transportation architectures (i.e., alternative 

fueling infrastructures and vehicle types) for closed sociotechnical environments. 

 

1.4 Research Hypotheses 

Considering the diversified set of problems posed within the problem statement of 

this manuscript, the research hypotheses is that:  

• Research Hypothesis 1: Using automated buses improves transportation mobility 

throughput within closed sociotechnical environments/systems. 
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• Research Hypothesis 2: Automated bus system integration with propane, natural 

gas, biodiesel, hydrogen, and electricity fueling infrastructures does not provide 

equally reliable transportation mobility throughput within closed sociotechnical 

environments/systems. 

• Research Hypothesis 3: Using different or hybridized automated bus 

configurations improves transportation mobility throughput within CSEs. 

It is expected that the incorporation of automated buses and alternative fueling 

infrastructures will improve the performance level of bus services from within a closed 

sociotechnical environment such as a university campus environment. Basic 

transportation measures of effectiveness (MOEs) that will look at both the social and 

technical aspect of the bus service system in the closed sociotechnical environment will 

help in indicating these improvements in systemic efficiency. 

 

1.5 Research Questions 

Through the research hypothesis presented in the previous section, it is expected 

that the following research questions will contribute to validating the research hypothesis. 

Therefore, the research questions that are expected to be acknowledged within this 

manuscript consist of: 

• Research Question 1: Can alternative fueling infrastructures within a closed 

sociotechnical environment effect a transportation system architecture in terms of 

average passenger wait times as ridership demand increases over time? 
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o Research Question 1a: Can the best alternative fueling infrastructure keep 

pace with increasing ridership demand of autonomous bus fleet? 

• Research Question 2: Can the incorporation of different autonomous bus vehicle 

type(s) (i.e., capacity) effect the transportation system architecture in terms of 

average passenger wait time in an autonomous bus service system? 

• Research Question 3: Can a diverse or hybridized implementation of alternative 

fueling infrastructures within a closed sociotechnical environment effect a 

transportation system architecture in servicing its ridership demand? 

• Research Question 4: Are there infrastructure improvements that can be made to 

improve the overall efficiency of autonomous or hybridized bus fleets? 

1.6 Research Objectives 

The objective of this research effort is twofold, with the first objective being the 

primary research objective and second research objective acting as an ancillary aim for 

future research efforts. Therefore, the objectives for this research consist of: 

• Understanding the system architecture implications of integrating different 

alternative fueling infrastructures with AB fleets in the transportation system 

within a closed sociotechnical environment 

• Obtain performance data from simulation and modeling of AVs and fueling 

infrastructures as an output that can be utilized as an input for a proposed and 

novel bio-inspired system architecting framework. 
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1.7 Contribution of Research 

The uniqueness of this research lies in the scenario development of AVs which 

considers distinct scenarios of AV integration within unique transportation architecture 

configurations in a unique built environment. This considers the modeling and simulation 

of ABs in conjunction with other forms of alternative fueling schemes which has been a 

lagging aspect in this area of research for M&S of AVs. With a focus on the M&S of 

ABs, rather than the M&S of autonomous cars, this research intends to understand the 

architectural impacts of integrating ABs of different vehicular configurations and 

alternative fueling infrastructures in an AB service system to provide comprehensive or 

systemic insight of AV and alternative fuel integration into sociotechnical 

systems/environments.  

Compared to existing research efforts, this research utilizes M&S to examine the 

architectural implications on AB bus service performance with respect to the integration 

of new alternative fueling infrastructure improvements. In addition to this fact, with 

current research mostly concerned about the city-wide application of AVs within M&S 

community, this research focuses on understanding the systemic effects of deploying, 

integrating, and operating AVs and their alternative fueling technologies within closed 

sociotechnical environments such as in a university campus and military installation/FOB 

landscape. Unlike current studies, this research seeks to draw communicable parallels and 

insights between two distinct closed sociotechnical environments ultimately aiding in the 

system lifecycle management of both systems that are both architecturally similar yet 

different in terms of operational environments.  
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In order to grasp uniqueness within this study, Figure 1.28 shows the knowledge 

gaps within each problem domain along with their relation to one another and how they 

coalesce to form this research. Lastly, though simulation results are typically used to 

inform decision making through policymaking protocols, this research intends to begin 

the conversation of utilizing simulation data for informing novel system architecting 

frameworks, one of which is expected to be proposed in this research as a future research 

effort or endeavor. 
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Figure 1.28. Uniqueness of Research based on Problem Domain. 

 

 

 

1.8 Dissertation Organization and Structure 

The organization of this research paper will consist of a chapter-based, portfolio 

style format that will be composed of publishable journal article papers, where Chapter I 

provides an essential introduction into smart cities, which is the system domain for this 

research paper’s SoI – the Smart Transportation System. In addition to this, an overview 

of the problem domain and important research deliverables (e.g., problem statement, 

Research 

Area 
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research hypothesis, research questions, research objectives, and uniqueness of research 

(i.e., research contributions)) are discussed in subsequent subsections. Chapter II consists 

of an extensive review of existing literature pertaining to the topic areas discussed within 

the introduction/background and overview of the problem domain in Chapter I. Chapter 

III, otherwise referred to as Proposed Article 1, will be used to establish the M&S context 

and motivation for this research paper by acting as a connector of M&S knowledge into 

this research effort, thereby extending research efforts undertaken in Proposed Article 1. 

Chapter IV, which is regarded as Proposed Article 2, will provide an introduction to the 

system domain and system architecture of closed sociotechnical environments by using 

the university campus and military installation/FOB environments as exemplars and 

metaphorical analogs of one another. Furthermore, Chapter IV (Proposed Article 2) will 

also act as a research platform in supporting the case as to why information or insight 

from one distinct closed sociotechnical environment could be utilized to glean insight 

into operation and management another closed sociotechnical environment. Chapter V, 

commonly referred to as Proposed Article 3, will build upon the framework, concepts, 

and foundational knowledge discussed in Chapters I, II, III and IV and act as the main 

research dissertation through the provisioning of research approach/methodology, sharing 

of research results along with discussion of notable findings, and validation of research 

result findings. Chapter VI will provide conclusionary remarks which will be composed 

of final remarks regarding this research study and its findings, reinforcing the research 

contributions of this study, and an overview of future works that can stem from this 

research effort. Finally, in Chapter VII, future research is discussed and a novel system 
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architecting framework is proposed as research that can be expanded upon as part of 

future work.  
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CHAPTER II – LITERATURE REVIEW 

 

“I think in order to move forward into the future, you need to know where you've been” – 

Charles Williams, Editor & Novelist 

This chapter will act as a bridge to connect this novelty research by exploring 

existing literature to ultimately identify gaps that may exist within the existing research 

knowledge base. As a means of providing literary context, this section will be comprised 

of a prelude to provide preliminary, systemic, and reasoning-based insight into the 

emergence of the desired research approach. The subsequent sections will consist of a 

literature review pertaining to the approaches that are intended to be utilized within this 

research paper. 

 

2.1 Approaching the Smart City – Literature Review Prelude 

As economic, technological, social, and institutional engines of entire countries, 

cities have traditionally played a crucial role as incubational environments meant to 

cultivate the growth and spread of innovation, knowledge, and technology amongst and 

in support of its citizenry that constitutes its social organization. However, as epicenters 

to mankind’s development and blossoming, cities within the 21st century are experiencing 

unparalleled rapid urbanization due to the mass influx of populations that are leaving 
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areas such as towns, decaying cities, and countries lacking economic and social promise. 

This mass migration of people has ultimately placed a significant strain on existing urban 

infrastructural systems, natural resources, and their corresponding natural ecosystems, 

encouraging the creation of resource destabilization events and environmental 

degradation on ever-growing scales. In addition to this fact, with cities responsible for 

consuming approximately two thirds of the world’s global energy and contributing 70% 

of CO2 emissions (Fausing, 2020), cities can be considered an enormous energy and 

resource sink that that will have a significant impact on its surrounding environment. This 

means that cities will need to be more efficient in the manner that they utilize, manage, 

and dispose of their various resources, citizens, and assets.  

As a response to this challenge, cities are intending to combat this monumental 

problem through the integration of smart technologies within the manifolds of their 

physical city infrastructure systems, merging the physical with the cybernetic world, 

through incorporation and aid of information and communication (ICT) infrastructure; 

thereby enabling communication and information dissemination amongst various systems 

and their respective devices. These smart technologies can range from sensor-based 

devices such as surveillance cameras to actuators and interactive displays. With the 

aggregation of these connected devices that are capable of sensing their environment as 

well as sharing and communicating information with one another through the cyber 

landscape; this has ultimately created an interconnected web of devices and technologies 

commonly referred to as the Internet of Things (IoT). In its quintessential form, IoT is a 

communication paradigm that envisions a near future, in which the objects of everyday 

life will be equipped with microcontrollers, transceivers for digital communication, and 
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suitable protocol stacks that will make them able to communicate with one another and 

with their users, becoming an integral part of the Internet (Atzori et al., 2010). Through 

these technologies and their high level of interconnectivity and unprecedented cyber-

based ubiquity, city physical infrastructure and cyber-based infrastructure (i.e., IoT and 

ICT) have merged to become what are referred to smart cities.  

Currently within existing literature, there is not a conclusive definition of what a 

smart city truly is due to numerous and conflicting preconceived notions of the essence of 

smart cities. (Hall, 2000; Partridge, 2004; Giffinger et al., 2007; Rios, 2008; Harrison et 

al., 2010; Washburn et al., 2010) have provided distinct and unique definitions of what 

smart cities are with respect to their intended functionality, structure, and objective as an 

urban system framework. (Nam & Pardo, 2011) have provided a comprehensive list of 

smart cities that exist around the globe based on each major continent or geographical 

region. Nevertheless, based on the many definitions that are available, the reoccurring 

pattern that consistently appears amongst working definitions is the use of highly 

integrated systems or organizations in the form of a collection of sociotechnical systems 

that are meant to improve the QoL for its constituent citizens. In fact, (Silva et al., 2018) 

provides a rather cohesive synthesis of the numerous concepts and dynamical 

components that formally make up the composition of smart cities that are commonly 

seen within literature through the establishment of a visual four pillar framework (as seen 

Figure 2.1).  
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Figure 2.1. Smart city four pillar framework (Silva et al., 2018). 

 

 

 

Through this framework it can be seen that technical infrastructures and the social 

fabric (in the form of citizen involvement) in smart cities formulate the bedrock for the 

development of smart cities, its initiatives, and various unique attributes. However, as an 

approach to ascertaining the various directives and goals of smart cities, cities are 

beginning to transfigure themselves by intertwining both cyber and physical 

infrastructure systems with one another in helping inform the social organization of 

cities, forming cyber-physical systems. By being able to integrate cyber-based systems 

with physical infrastructure systems, information dissemination is not only possible 

between technical components or agents, but between social entities within the city 

environment as well, creating a highly connected, intelligent, and collaborative 
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sociotechnical system where all agents (e.g., people, technology, etc.) are sensibly aware 

of one another and their respective environments. Through the merging of the cyber, 

physical, and social domains within the urban environment, cities have ultimately 

become highly receptive to their surrounding environment due to sensor networks that 

allow for the collection of large sums of environmental data that can be stored, processed, 

and distributed amongst its internal agents.  

Therefore, connectivity and cooperation at the level of smart cities supports the 

emergence of systemic adaptation and evolution in response to changes within the city’s 

environment. This heterogenous mix of agents, interactions, and their distinct behaviors 

can often give the sense that as a collective whole, the city is constantly trying to 

gravitate towards a state of stability, equilibrium, or organization by going through 

numerous dissipative states or structures that constitutes a complex fitness landscape. To 

demonstrate this phenomena, Figure 2.2 provides a theoretical representation of this 

complex fitness state space.  
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Figure 2.2. A theoretical and hypothetical fitness state space (drawing by Ifezue Obiako). 

 

Smart cities can also be perceived or thought of as self-organizing systems which 

are also commonly encountered within nature. (Banzhaf, 2009) describes self-organizing 

systems as a class of systems that are able to change their internal structure and their 

function in response to external circumstances. Literature from (Heylighen, 1989; Ashby, 

1991; Heylighen, 1999; Heylighen, 2008; Banzhaf, 2009) have provided insight into the 

characteristic traits of self-organizing systems, which often exhibit nonlinear behavior, 

co-evolutional and synergistic tendencies, hierarchy and holistic emergence, resilience, 

bifurcative-based and far-from-equilibrium dynamics, and distributed control. Self-

organizing systems, in many ways, were inspired by the theory of self-organization which 

is cultivated from the idea that the spontaneous creation of globally coherent patterns are 

derived from small or local scale interactions (Heylighen, 1999). This basic principle is 

based on the phenomenon known as entropy, the measure of disorder, which is conceived 
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from the second law of thermodynamics, where the entropy of an open system (e.g., city) 

can be described theoretically and mathematically as; 

 

 
𝑑𝑆

𝑑𝑡
=

𝑑𝑖𝑆

𝑑𝑡
+

𝑑𝑒𝑆

𝑑𝑡
< 0 Equation. 2.1 

 

where, S is entropy, diS is internal entropy process of system, and deS is the entropy flux 

across the system boundary (Banzhaf, 2009).  

As a means of pragmatically solidifying these concepts of self-organization, Batty 

states cities are the example par excellence of complex systems: emergent, far from 

equilibrium, requiring enormous energies to maintain themselves, displaying patterns of 

inequality spawned through agglomeration and intense competition for space, and 

saturated flow systems that use capacity in what appear to be barely sustainable but 

paradoxically resilient networks (Batty, 2008), which hints at a self-organizing system. 

Through the use of the theory of self-organization and its application in helping identify 

self-organizing tendencies within systems, it is becoming clear that cities are more than 

just mechanical behemoths but rather living organisms.  

Through the concepts set forth by self-organization theory, one can see how cities 

are being molded into living systems due to the eclectic clash of various technologies 

with their diverse interactions with people who make up the social construct of the urban 

environment. Considering this line of reasoning, in a metaphorical and imaginative way, 

these interconnecting relationships between various technologies, infrastructures, and 

people can be thought of as symbiotic relationships between different “species” (classes) 
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of agents (i.e., technology, infrastructure, and people) thereby resembling the 

phenomenon of symbiosis and coevolution that is naturally seen within ecosystems. 

Furthermore, considering the sensory and automation-based capabilities smart cities will 

possess, the built environment of cities will become cognizant landscapes that are likened 

to their biological counterparts. Many existing literature sources have noted the various 

attributes exhibited by cities and their uncanny similarity to biological systems through 

mimicking the various biological structures and processes seen in organisms and natural 

ecosystems (Spiegehalter & Arch, 2010; Nam & Pardo, 2011; Toor & Kaur, 2017; Buck, 

2017; Yan et al., 2018; Batty, 2018). For instance, (Batty, 2008) has shown that the 

structure of the built environment matches patterns of growth of biological systems for 

which Batty refers to as “organic order” (Harrison and Donnelly, 2011). This bio-inspired 

approach is known as biomimetics or biomimicry, which is composed of two words “bio” 

and “mimic(ry)”, where “bio” means life in Greek and mimic means to emulate; in other 

words, emulating or learning from life (i.e., nature). Considering the fact that cities are 

becoming more geared toward the preservation of life (both environmental and social in 

nature) by increasing the QoL, Prashant Dhawan furthers the resemblance of cities to 

natural systems by stating that smart cities, with their various technologies, people, and 

economies, are “life-centered entities” (TED Talks, 2017), which is a basic hallmark of 

biological systems design and biomimicry. 

Considering the biological parallels that cities possess, smart cities are expected to 

further close the artificial and biological gap that partitions the differences between the 

two disparate systems, creating a unified biome of artificial and organic biospheres that 

interact and communicate with one another. Previous to smart cities, traditional city 
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infrastructural systems were thought to be dissimilar and siloed systems responsible for 

their own operations and maintenance activities. However, with the advent and usage of 

ICT and the IoT, cities are evolving into not only cyber-physical systems, but a collection 

of sociotechnical systems that are constantly coordinating their operational data and 

conditions with other urban systems. This interconnected web of systems, known as 

system of systems (SoS), is hierarchical and transcendental from the scale of connectivity 

of the IoT networks for which infrastructural systems are comprised of, and possess 

(Maier, 1998); 

• Operational Independence of their Components: If the system-of-systems is 

disassembled into its component systems the component systems must be able to 

usefully operate independently. That is, the components fulfill customer-operator 

purposes on their own. 

• Managerial Independence of their Components: The component systems not 

only can operate independently; they do operate independently. The component 

systems are separately acquired and integrated but maintain a continuing 

operational existence independent of the system-of-systems. 

(Sheard & Mostashari, 2009) provides a comprehensive and expanded list of the qualities 

and behaviors that make up the essence of a SoS. In addition to this, as a collection of 

sociotechnical systems, this doesn’t necessarily make cities or smart cities a system of 

systems, but more akin to a system of sociotechnical systems (SoSTS).  
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2.1.1 Artificial Intelligence in Smart Cities – Cultivating Super Coordination and 

Hyper-complexity in Smart Cities 

With the current evolution of cities and their underlying infrastructure, the 

barriers placed by the traditional siloed framework of infrastructure operation and 

management will inevitably dissolve due to the increase merging and interconnection 

between infrastructural systems promoted by smart technologies in the SoS or SoSTS 

framework that is becoming predominate in smart city frameworks (Hughes, 2019). With 

the cities’ infrastructural systems becoming more interconnected, the need for the spread 

of information and data will be paramount in order to know the state or condition of a 

system at any given time. Knowing information such as this can make urban 

environments operate more efficiently and provide increased levels of service to their 

respective social organizations. (Arata & Hale, 2018) has discussed the implications of 

incorporating a data-centric paradigm within the management of city services and 

systems alike which is visualized in Figure 2.3. Emerging technologies such as ICT will 

only reinforce and forge these interconnections between infrastructures even further due 

to their ability to amass large sums of information – known as big data – which can 

promote the growth of knowledge thereby leading to feedback (i.e., programmatic action) 

and the self-organization of the city environment.  
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Figure 2.3. Paradigm of data-centric management in city environment (Arata & Hale, 

2018). 

 

According to (Al Nuaimi et al., 2015) most big data applications for smart cities 

require having smart networks connecting their components including residents’ 

equipment such as cars, smart house devices, and smartphones. The smart city evaluation 

framework system by (Yan et al. 2018) further legitimizes this fact through its realization 

that ICT will act as the backbone for smart cities both in achieving and sustaining vertical 

and horizontal hierarchies and synergies by supporting quintessential information flows 

between smart technologies. Literature from other existing sources support the 

importance of the presence of ICT in supporting data collection and management in the 

urban environment (Neirotti et al., 2014; Aguilera et al., 2017; Allam, 2018; Allam & 

Newman, 2018; Soyata et al., 2012). 

As a SoSTS composed of intricate network technologies, smart cities will become 

the purveyors of big data regarding its corresponding systems and environment. The 
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practical question then becomes, how does one harness all of this information to turn it 

into meaningful knowledge that can be utilize for the future in gaining the edge in 

unpredictable situations? Thinking in this manner has led to a paradigm shift in the way 

that built environments have been observed and utilized over the years, ultimately 

formulating the necessary dialogue, and focusing in on the aspect that makes a city a true 

smart city environment. Thus, in recent years, knowledge has been recognized as an 

invaluable and manageable asset, capable of accrediting a competitive advantage to an 

enterprise, organization, or city (Angelidou et al., 2015).  

In many ways, cities have recognized the power behind big data and have utilized 

its aggregated capacity to ascertain unparalleled knowledge on patterns and trends with 

respect to the behavior of technical systems and human populations in urban 

environments. This information would typically be managed by decisionmakers and 

policymakers as well as government or city officials. However, with the magnitude of 

data generated by cities, more timely and sophisticated approaches that harness the sheer 

quantity of a given city’s data would be needed. This problem has essentially resulted in 

the appliance of AI as a management tool for handling complex and large data and 

information structures. Some of the practical applications AI has started investigating 

include use cases in areas such as security camera and surveillance systems for policing 

and law enforcement; vehicle parking and traffic management systems to support smart 

transportation applications; healthcare for diagnostic purposes (Shaban-Nejad et al., 

2018; Al-Trujman et al., 2019); face detection cameras and movement for public safety; 

smart waste and disposal management system; governance and planning management in 

arenas such as city and land use planning; energy and water management (Fallah et al., 
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2018; Tureczek et al., 2018; Wang, Chen et al., 2018; Karimipour et al., 2019; Du et al., 

2019); and much more (Bisen, 2020). Through existing literature one can see the ever-

evolving power, usage, and transformation of data/information and its benefit and 

potential in driving various sociotechnical systems, which has been noted by (Arata & 

Hale, 2018) as seen in Figure 2.4. 

 

 

Figure 2.4.The evolutionary transformation of data and the benefit of data capturing 

(Arata & Hale, 2018). 

 

 

When looking at the framework proposed by (Silva et al., 2018) in Figure 2.1, 

almost all facets that encompass the appropriate functioning of a smart city can be 

observed; however, with the increasing incorporation of AI into the sociotechnical fabric 

of cities beginning to emerge, the incorporation of AI also needs to be considered as well. 

Therefore, Figure 2.4 depicts a smart city framework developed by (Allam & Dhunny, 
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2019) with the inclusion of AI and its relation to other smart city aspects to encourage 

livability in smart cities. 

 

 

Figure 2.5. Smart city framework that takes into the consideration of artificial 

intelligence (Allam & Dhunny, 2019). 

 

 

Considering that the implementation of AI within city applications are only within 

its embryonic stage, widespread use of AI will warrant the necessary support and 

nurturing of a much-needed infrastructure to bolster not only data needs, but the 

AI/machine learning (ML) lifecycle through which aspects such as verification and 

validation (V&V), testing and evaluation, and virtual training repositories and 

environments can be utilized. This concept is reinforced by the fact that notable 

institutions such as NVIDIA are in the process of creating a virtual “metaverse” for the 
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testing and development of new systems under realistic simulated conditions containing 

digital twins of cars, entire cities, and people (Smith, 2021). ICT infrastructure such as 

cloud computing or edge computing frameworks which use centralized and distributed 

architectures to support data transmission and retrieval, can help in this endeavor through 

their data-enriched backend environments that support data storage, processing, and 

computing capabilities that enable software (AI) development. Extensive research has 

been conducted in the area of ICT infrastructures due to their necessity in supporting 

smart city functionality with numerous frameworks having been proposed (Goyal & 

Carter, 2004; Chun & Maniatis, 2009; Satyanarayanan et al., 2009; Cuervo et al., 2010; 

Chun et al., 2011; Verbelen et al., 2011; Lee, 2012; Marinelli, 2009). (Shahzadi et al., 

2017) has performed an extensive comparison of the properties of these cloud-based 

frameworks. This is an important fact to consider for smart city development due to the 

fact that it is forecasted that the global datasphere will grow to 163 zettabytes by 2025, 

ten times the data generation in 2016 (IDC, 2017). With this in mind, rather than 

consisting of cyber and physical environments, the smart city environment in its purest 

form may actually consist of three predominate landscapes, two of which is currently 

being inhabited to some capacity. These environments will consist of the physical, cyber 

(information), and artificial landscapes that will support the functionality of smart city 

environments. 

Once cities evolve into maturated smart cities, these three environments (i.e., 

physical, cyber, and artificial) will be coincidentally aligned with the three “axial ages” 

that are proposed by the philosopher Karl Jaspers in his work “The Origin and Goal of 

History” (Jaspers & Bullock, 1953). These “axial ages” otherwise referred to as “axial 
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worlds” according to the 20th century scientific philosopher Karl Popper consist of Axial 

Age I—The Physical World, Axial Age II—The Mental World, and Axial Age III—The 

Artificial World with each being representative of human civilizations’ challenges and 

breakthroughs in intellectual achievements and accumulation in knowledge. Figure 28 

shows a depiction of Popper’s axial world concepts as it intercorrelates with (Wang, 

Zhang, & Wang, 2018) framework for smart infrastructure for parallel intelligence. These 

philosophical abstractions are from which (Wang, 2010, Wang, 2017; Wang, Zhang, & 

Wang, 2018) draws inspiration for a new approach to AI development and lifecycle 

cultivation called parallel intelligence (PI). Fundamentally, there are two approaches to 

AI, reasoning-oriented formal logic approach and the function-oriented computational 

intelligence approach (Wang, Zhang, & Wang, 2018). PI is a third approach to AI meant 

to establish a mechanism of acquiring, creating, and supporting intelligence for parallel 

systems that consist of two or more pairs of actual physical systems and artificial 

software-defined systems (Wang, Zhang et al., 2016; Wang, Zheng et al., 2017; Li et al., 

2017). In many ways, this idea is highly similar to what NVIDIA’s “virtual metaverse” is 

attempting to accomplish by linking the virtual/artificial world with the physical world. 

Through the observation of Figure 2.6, one can see the coincidence of the natural 

evolution of cities starting from its primordial and elemental beginnings to its future 

sophisticated levels of utilizing information and knowledge to form intelligence through 

information building.  
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Figure 2.6. Correlation between Karl Jasper’s Axial Ages and Wang’s Smart 

Infrastructure Framework for Parallel Intelligence (Wang, 2017; Wang, Zhang, & Wang 

2018) (modified by Ifezue Obiako). 

 

 

At its cornerstone, driving the evolution of cities from the 2nd axial age to the 3rd 

axial age will be the integration of AI into city systems to support data gathering, data 

analysis, system operations, and decision-making processes to promote the cultivation of 

knowledge from the physical domain in environments such as smart cities. If this is the 

case, then one can see how the urban environment and its corresponding systems are 

becoming increasingly complex and layered, coalescing into a “hypercomplex” SoSTS. 

Considering the level of attention being garnered by the smart city community in smart 

transportation, specific interest in areas such as autonomous transport (Li et al., 2017), 
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ICT infrastructure (Li et al., 2017; Shahzadi et al., 2017), and traffic management 

systems (Stolfi et al., 2016) have increased over the years. Therefore, as a component 

system of the hypercomplex SoSTS that is the smart city, transportation systems maybe 

one of the first urban systems to see a revolutionary flood of AI capabilities and 

capacities that are expected to come with the 3rd axial age as it builds on the knowledge 

base from the previous axial ages. Instances of this can be seen in a myriad of extensive 

research programs that are being performed within various US transportation agency 

initiatives such as the (Vasudevan et al., 2020): 

• Federal Highway Administration (FHWA) Traffic Analysis Tools (TAT) 

Program which is investigating the use of AI for developing prediction 

techniques and evaluation tools (FHWA ATDM, 2020; Vasudevan et al., 2020),  

• FHWA’s Advanced Transportation and Congestion Management Technologies 

Deployment (ATCMTD) Program which is developing AI-powered solutions for 

multimodal transportation management (USDOT, 2020; Vasudevan et al., 2020). 

Many of these research efforts could potentially see deployment and integration into 

existing transportation systems, allowing for the emergence of intelligence within the 

domain of transportation infrastructure systems. 

With the level of hyper-complexity that smart cities will impose due the seamless 

integration of physical, cyber (information), and AI-enabled technologies and systems, no 

industry sector appears to be seeing the level of emergence of these attributes more 

rapidly and frequently than the transportation sector of cities. In various respects, many 

of these attributes are being manifested through the increased digitalization of the 

transportation sector which has started the integration of ICT and IoT networks within its 
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transportation infrastructure systems. This has made transportation infrastructural 

systems curators of a large and diverse array of traffic and pedestrian data which can be 

gathered, managed, and stored by facilities such as their transportation management 

centers (TMCs).  

Through the use of collected big data from various sensors and IoT devices that 

may support AI capabilities, resolving major issues such as improving traffic congestion 

(Shaheen & Finson, 2013), traffic performance levels (Logi & Ritchie, 2001), reducing 

vehicular crashes, and decreasing GHG emissions (Caminiti et al., 2010; Tupper et al., 

2012) are possible due to the increased efficient movement of traffic throughout the 

transportation environment. These cybernetic transportation corridors are known as 

Intelligent Transportation System (ITS) and are beginning to be implemented rather 

extensively within various cities through discrete use cases which range from Advanced 

Traveler Information Systems (ATIS) to Advanced Public Transportation Systems 

(APTS) (Shaheen & Finson, 2013; Singh & Gupta, 2015).  

Within the traditional context of transportation engineering, the notion of 

improving traffic flow or throughput has almost always been aligned with the theory of 

highway expansion (e.g., increased lanes, new routes, and interchanges, etc.), but in many 

cases this action often leads to further traffic congestions due to perceived increase in 

road capacity and driving speed from drivers. This phenomenon is proven through the 

influential paper of (Braess, 1968), and is commonly known as the Braess Paradox. In 

addition to this anomaly, given the spatial constraints that cities possess, roadway 

expansions can often be infeasible approaches to address traffic management within 

urban environments due to spatial constraints. However, ITS advantageously exploits 
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technology through the use of ICT and IoT networks, allowing for less extensive 

construction of hard infrastructure, thereby encouraging a less invasive approach by 

retrofitting existing transportation through cybernetic upgrades. (Agarwal et al., 2015) 

reinforces this sentiment stating that an artificial ITS can maximize the capacity of 

transport systems by applying real-time traffic data through traffic signal lights which can 

improve traffic flow, thereby reducing the need to build additional highway capacity. 

With the pervasive use of technologies in ITS, however, there is the added problem of 

security and privacy with respect to the protecting the cyber infrastructure and its 

accompanying data that will support ITS and its underlying performance. Literature from 

(Ganin et al., 2019) have modeled cyber-attack scenarios on ITS assets such as 

intersections and roadways controlled by ITS to observe network efficiency and 

resilience of the ITS network in the face of random and targeted disruptions within 10 

unique urban environments. However, with various pragmatic problems along with 

technical and social challenges facing the realistic manifestation of smart cities, this urges 

the question of how far or close are current cities from becoming actual smart cities? 

2.1.2 Attaining the Smart City – Are we any Closer to Smart Cities? 

Smart cities are set to become the next significant evolutionary step in the 

continuous and progressive development of cities and their urban ecosystems. With the 

proliferation of revolutionary technologies and the radical groundbreaking ideas and 

knowledge base created from the city’s human society in ways to utilize these 

technologies, cities will be bound to this continuous evolutionary pathway throughout 

time as it has in the past, helping to create clusters of knowledge societies. Though smart 
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cities are expected to have a widespread effect on various aspects ranging from 

economics to agricultural supply chain development; current cities are only emerging as 

partial apparitions or segmented conglomerates of interconnected smart technologies that 

are meant for directed objectives and use cases (Zanella et al., 2014; Silva et al., 2018; 

Wall Street Journal, 2019; IMD, 2020). Smart cities are environments that function in 

some capacity in at least one of the areas seen in Figure 1 with some form of 

sociotechnical or socioeconomic improvements being the outcome. However, through the 

observation of existing literature, these smart city components and initiatives need to 

cohesively integrate with one another rather than making a “cacophony of smart 

technologies and frameworks” which leads to a disjointed city that results in social 

discourse rather than welfare (TEDx Talks, 2017).  

Existing literature sources such as (Silva et al., 2018) have provided meaningful 

insight into the challenges of realistically implementing smart technologies and initiatives 

into the fabric of a given city. However, as stated previously by (Al Nuaimi et al., 2015; 

Yan et al., 2018), establishing the appropriate means or infrastructure to connect devices 

that supports sufficient performance is paramount to the cultivation of smart city 

applications such smart mobility. However, many cities and researchers are in the process 

of deliberating which ICT infrastructures offer the most advantages to support smart city 

applications and initiatives, such as in the work (Shahzadi et al., 2017), meaning that 

cities are not quite at a level of being regarded as “smart” but are more intelligent than 

what they previously were. Figures 2.7 and 2.8 shows the predominate ICT 

infrastructures that have been gaining a significant amount attention in supporting various 

the data management tasks for the various smart city initiative domains.  
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Figure 2.7. General cloud computing architecture as an ICT infrastructure for smart cities 

(illustration by Ifezue Obiako). 

 



104 
 

 

Figure 2.8. General edge cloud computing architecture as an ICT infrastructure for smart 

cities (illustration by Ifezue Obiako). 

 

 

Beyond the technical aspects, there is the implication of smart technologies on 

social welfare that hasn’t been fully understood or considered with issues such as 

homelessness, poverty, and targeted discrimination being potential concerns and have 

been deep-seated issues in existing cities which may transfer over to smart cities. These 

complex issues are brought to the forefront by an interesting quote from William Gibson, 

an American speculative fiction author, who states that the “the future is already here – 

it’s just not very evenly distributed” (Chatterton & Newmarch, 2017). This implies that 

urban futures such as smart cities are certainly existent, but only for a select few, 

insinuating that the percolation of inequality within the fabric of modern civilization 

continues to threaten any societal progression to meeting these desire visions. This fact 
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essentially hints at the lack of “smartness” within some cities because of their ineptitude 

or unwillingness to fully address various inequalities (i.e., social, spatial, 

structural/hierarchical, and temporal in nature). 

(Camero & Alba, 2019) has shown that smart initiative domains such as smart 

living and smart people are considered secondary and tertiary domains, respectively, 

relative to smart environments and smart mobility in research areas. Not considering 

these smart initiative domains (i.e., smart living and smart people) could potentially lead 

to a lack of knowledge in these smart initiative domain areas, thereby ultimately inducing 

the exacerbation of social exclusion of specific populations in smart cities as well, just as 

they may have been in the past city developments (IMD, 2020). As such, the (IMD, 

2020) has stated that smart cities will not generate their full potential unless priory 

attention is devoted to the necessary balance of the technological aspects of smart cities 

and their human aspects. This certainly implies that if the technical and social balance is 

disrupted, there isn’t truly a smart city at work due to its lack of consideration of QoL for 

all its intended citizens that are seeking economic and social opportunities.  

Nevertheless, the foundation of the smart city is the ICT infrastructure which is 

integrated into every smart city domain from smart mobility to smart living initiatives 

and schemes. Without this facet the smart city environment cannot truly manifest and 

exist as it theoretically should in supporting its social organization. However, there are 

major challenges and issues regarding the sociotechnical implications of incorporating 

ICT infrastructure into the urban fabric of existing cityscapes which have brought up 

technical, social, and ethical concerns. These concerns revolve around the flood of 

anticipated data generated from various devices in the smart city environment and how 
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individuals or groups of individuals such as law enforcement and insurance agencies may 

access, handle, and manage data on vulnerable individuals such as citizens in cases such 

as surveillance (e.g., security detailing, maintenance, etc.), incidents (e.g., terrorism, 

theft, assault, natural disasters, etc.), vehicular accidents (e.g., AV-related crashes). With 

external entities such as law enforcement and insurance companies, in addition to citizens 

influencing the behavior and performance of smart city environments like SmTSs; this 

will put: 

• increased demands on the ICT infrastructure (specifically storage capacity) 

through the emergence of new intelligent integration surfaces with other devices 

for a more fine-grained, yet holistic view of specific events;  

• extensive and unique security and privacy measures for stored data; and  

• further emphasis on the clarification of data ownership 

as important obstacles that need to be systemically overcome to successfully integrate 

ICT infrastructure and allow for the true manifestation of smart cities to emerge. The 

following subsections will briefly review over the three major influences that external 

entities (law enforcement and insurance companies) will have on data storage needs in 

smart cities. In order to make these challenges more tangible and concrete, the smart city 

domain of smart transportation (or smart mobility) will be used to elaborate on these 

challenges to show the amount work that needs to be done before only one domain 

initiative of the smart city is reached. 
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2.1.2.1 The Challenges in Becoming a Smart City – Establishing the Roots is Key. 

To provide some biomimetic inspiration, ecosystems are commonly composed of 

complex interactions between various different species which rely on other species for 

survival through competition or cooperation. These symbiotic relationships are directly, 

and some cases, indirectly derived and supported by the plants that are in turn bolstered 

by relationships with fungi, which form a quintessential and intricate infrastructure 

network for sustaining life known as the mycelium, or more symbiotically – the 

mycorrhiza. The mycorrhiza is a complex web of roots (often referred to as the “Wood 

Wide Web”) that interconnects plants along with fungi of various distinct species and 

fauna, and in many ways can be referred to as the information or nutrient highway of 

nature, supporting inter and intraspecies coevolution, cohabitation, and synergy through 

economic flows information and nutrients. Without the mycorrhiza entire ecosystems 

would ultimately collapse due to lack of vegetation and nonequilibrium states in natural 

food chains. Metaphorically, the ICT infrastructure can be perceived as the mycelium or 

mycorrhizae of the smart city and its dedicated biomes (i.e., smart transportation, smart 

energy, etc.), supporting life in the smart city by promoting the cultivation of technology, 

people, and itself as the infrastructure through the form of self-preservation.  

Figure 2.9 shows the basic full-scale schematic of the “ICT mycelium and 

mycorrhiza” network of smart cities, where the backend of the ICT infrastructure is 

indicative of the mycelium (i.e., fungi roots); whereas the middleware (e.g., Internet, 

RSU, base stations, and edge servers) and the frontend of the ICT infrastructure are 



108 
 

indicative of the mycorrhiza (i.e., symbiosis between fungi and plant roots) that helps 

foster life in the intended ecosystems. 
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2.1.2.1.1 Storage Demand Increase from the IoT Network Expansion – The 

Price for Virtual Space. 

In smart city domains such as SmTSs, there will be a plethora of stakeholders in 

the general public such as pedestrians, bicyclists, and drivers that will be accessing the 

various services of the transportation system that will be supported by an ICT 

infrastructure; with many of these services assisting in application like AV transportation. 

As the mainstay service of the SmTS, transportation through AVs will be a highly 

integrative service through the collection, use, and storage of data from smartphones, 

vehicles, and other IoT devices that will form the virtual landscape of the transportation 

ecosystem.  In addition to this, many of the transportation services will be data-intensive 

in nature, generating a significant amount of data to meet the demands of the general 

public. To put this in perspective the current average person produces or uses about 650 

MB of data per day with future projections having this increase to 1.5 GB by the year 

2020 (Barua & Raheja, 2019). This of course is only considering individual people (with 

their use of the internet) and not their artificial symbiotic counterpart, AVs, which 

produce magnitudes larger than they will. According to industry experts, the average AV 

produces about 4,000 GB of data in one hour of driving (Barua & Raheja, 2019).  

With all this data being generated within this integrated sociotechnical system, 

demand for virtual infrastructure will be at a premium to support the movement, 

processing, and storage of mass monolithic datasets from there users to destinations such 

as public/private servers and vice versa. Furthermore, with the additional presence of 

external entities of law enforcement and insurance this creates an additional group of 
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individuals that will be utilizing the ICT capabilities of the SmTS for computing, data 

analysis, data processing, and organizational optimization rather than entertainment and 

information streaming for traffic updates, weather updates, and “intermodality” 

integration with existing mass transit systems. In other words, the data needs for the 

SmTS may require virtual storage realms for private and public domains, where the 

private storage area is suited toward storing data for external entities such as law 

enforcement institutions and insurance agencies which can consist of sensory data from 

cameras, Light Detection and Ranging (LiDAR) sensors, ultrasonic sensors, long and 

short-range radar, and more from AVs and transportation infrastructure devices. On the 

other hand, for the public there could be a storage area for public transportation data 

storage which could consist of data from past service dates that which show serviced 

population based on district or metropolitan area. 

With the private and public data storage in the ICT infrastructure of SmTS, law 

enforcement and insurance will be able to access public and extremely sensitive data to 

help in applications such as forensic studies of AV accidents where limited data is 

present, building structure forensics in extreme weather events through transportation 

infrastructure IoT, intelligent evacuation determination for disaster or emergency 

planning for law enforcement, and litigation cases where liability is being discerned to 

determine negligence in the case of AV incident. Many of these applications will require 

a significant amount data and therefore storage footprint that supports the movement of 

data from user to data storage repository. With this mind, as the IoT network expands 

with addition of more IoT devices such as AVs within AV fleets and transportation 

infrastructure sensors in roadway networks, this creates a positive feedback loop giving 
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more data to ICT storage and requiring more storage space that needs to be made to 

support data storage, computing, and processing capabilities. It worth keeping in mind 

that well over 1,000 AVs maybe utilized at any given instant within a smart city making 

data quantities and demands quite massive on the astronomical order – about 96,000,000 

GB of data from 1,000 in one day according to (Barua & Raheja, 2019). 

2.1.2.1.2 Security and Privacy – Protecting the Virtual World of Smart 

Cities. 

Possessing adequate space in the integrated systems of smart cities such as SmTS 

is vital in keeping historical data for applications such as event archiving; however, data 

storage is irrelevant if it is easily hacked and manipulated with for one person’s or 

group’s personal gain. Security and privacy are complementary characteristics which are 

imperative to consider in a hypercomplex system such as the SmTS, which is composed 

of physical and cyber-based interconnections. These interconnections, though 

advantageous in terms of increasing lines of communication and information among 

various devices, also vie as weak points for security breaches and ultimately invasions of 

privacy. There are many cases of ways to infiltrate various technologies found within the 

SmTS, however, there is no technology more vulnerable in this transportation ecosystem 

than AVs themselves. AVs are a vocal point of the ecosystem considering their numerous 

connections that constitute V2X communication: V2V, V2I, and V2P which is all held 
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together by some form of an ICT or computing architecture. Figure 2.10 shows the smart 

transportation ecosystem and its interconnection.1  

 

 

Figure 2.10. Smart Transportation Ecosystem which consists of People, Infrastructure, 

Vehicles, & Devices (Drawing by Ifezue Obiako). 

 

 

In the smart city ecosystem, many of these technologies and assets form a direct 

connection to the brains of the operation, the ICT infrastructure, through their need for 

conveying information to ICT for storage and processing purposes. The tendrils (i.e., 

devices) of this ecosystem are excellent for obtaining a significant amount of data from a 

heterogeneous array of devices, but this also makes them easy access points for imparting 

malicious attacks on the SmTS as whole. For instance, literature from (Petit & Shladover, 

2015; Petit, Stottelaar et al., 2015) have demonstrated how to spoof sensors such as 

cameras by infiltrating the AV’s camera and imparting imagery of fake traffic lights, 

 
1 Note: Arrows in Figure 2.10 are not indicative of dependence between technologies; 

they are meant to show how ICT is the centerpiece of the smart transportation ecosystem. 
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traffic signs, and traffic objects such as cars and pedestrians. This of course can cause 

AVs to make inappropriate decisions at the wrong time and ultimately generate false data 

that is not in agreeance with verification or synthetic datasets or algorithms. Other means 

of breaching security, and thereby user privacy, have been identified in other literature 

sources and have been abundantly reported. Table 2.1 shows a list of security threats 

corresponding to respective SmTS components that will be crucial in enabling 

autonomous driving and the technologies that could be utilized to safeguard against these 

threats in the SmTS.  
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Table 2.1. Security Threats to Smart Transportation System Components (adapted from 

Liu et al., 2019).  

Security Category Security Threats Defense Technologies 

Sensors 

• Spoofing cameras by fake traffic 

objects. 

Multi-sensor data fusion: 

System check and correct the 

sensor data from multiple 

sources. 

• Jamming GPS receiver by high-power 

false GPS transmitter. 

• Jamming IMU sensor by powerful 

magnetic field. 

• Jamming LiDAR by light laser pulse. 

• Jamming and Spoofing ultrasonic 

sensors and MMW radars by specific 

signal generators. 

Operating Systems 

• Hijacking ROS node to consume 

system resources. 
Linux container: Use the 

container technology to throttle 

the resource utilization of each 

ROS node. 

Trusted execution 

environment: Run the key ROS 

node in trusted execution 

environment. 

• Hijacking ROS node to send 

manipulated messages. 

• Sniffing ROS message to steal private 

data. 

• Repeating the intercepted ROS 

message to disturb other ROS nodes. 

Control Systems 

• Hijacking CAN bus by OBD-II port. 

Message encryption: Encrypt 

message in CAN bus. 

• Hijacking CAN bus by media player. 

• Hijacking CAN bus by Bluetooth. 

• Injecting manipulated messages on 

CAN bus. 

• DoS attack on CAN bus. 

V2X 

• DoS and DDoS attack on vehicle and 

infrastructure. 
Authentication and 

certification: The node access 

the V2X network should be 

authenticated and provide 

security certificates and keys. 

• Sybil attack by creating multiple fake 

vehicles in road. 

• Sniffing private data by short-range 

wireless protocol. 

• Broadcasting fake traffic information to 

nearby vehicles. 

 

 

 

Security and privacy threats such as these can not only affect the frontend 

technology in the functionality of AVs, but they could also cause harm on the backend 

technology of data storage systems within ICT infrastructure where once the data storage 

system stores the data, it could become corrupted rendering some data meant for law 

enforcement or insurance applications unusable or useless. As a result, this could make 
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reconstructing or even recording events difficult or near impossible for external entities to 

perform necessary analysis, assessment, or processing. Therefore, security threats to 

privacy, in the case of sensors, may influence SmTS by requiring the need for systems 

checks and correcting the sensor data from multiple sources (Liu et al., 2019). In addition 

to this, as a security redundancy, various types of threats at the frontend or middle portion 

of the SmTS may influence data storage systems to have some form of an incoming data 

check, verification, or treatment process before storage protocol is initiated assuring that 

data such as user information, transaction data or imagery data is not being harvested, 

destroyed, manipulated while in storage. Aspects such as this are imperative in the case 

of private data storage system where more sensitive data may be stored for proprietary 

usage (i.e., law enforcement and insurance sector). In order to reinforce some of the ideas 

or solutions discussed, Table 2.2 has been provided regarding some of challenges and 

needs regarding security and privacy with respect to use of AVs, and to a certain extent, 

other aspects of the SmTS that are responsible for data management. 
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Table 2.2. Research and deployment challenges in autonomous cars adapted from 

(Hussain & Zeadally, 2019). 

Class Key Challenges Possible solutions 

Technical Challenge 5: 

Security and hacking 

threats 

• Autonomous car operates in 

networked environment and is 

prone to network attacks  

• CAN bus (in)security 

• Malicious code injection, jamming, 

fuzzing, and hacking threats 

•  DDoS attacks 

• Separate data security from 

communication security 

• Efficient and effective 

authentication  

• AI-based security 

approaches 

• Security by design 

Technical Challenge 6: 

Privacy 
• Who stores the data? 

• Sharing personal and location data 

has privacy implications 

• Convincing consumers to share 

personal data 

• Conflict between privacy and 

quality of service 

• Consumer awareness 

• General Data Protection 

Regulation (GDPR) 

• Acceptable trade-off 

between anonymity and 

quality of information 

 

 

 

2.1.2.1.3 Clarification of Data Ownership – Virtual Breadcrumbs. 

With the needs for meeting a flood of data from various devices and meeting that 

demand with tightly coupled security measures, the last major needs that external entities 

such as law enforcement and insurance needs for storage of data is the clarification of 

data ownership. With critical systems such as infrastructure which support operation of 

logistical applications becoming more information or data driven, and further fueling 

national and even global economies; the lifeblood of these systems, data, is proving to be 

more valuable than one of the most heavily used raw materials – petroleum (The 

Economist, 2017; Bhageshpur, 2019; Sadowski, 2019). This is indicating an economic 

paradigm shift from hardware-based value to software-based or virtual-based value where 

importance is now being placed on the virtual highways and arterials of the Internet and 

its many virtual domains. With conversations such as data rights being pushed and 

brought into the light by the cases such as that seen in the scandal of Cambridge 
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Analytica in collaboration with Facebook (Amer & Noujaim, 2019; Hinds et al., 2020), 

there has been an emergent debate on who is the owner of the data, given circumstances 

of the data belonging to, and describing the individual, yet being managed by a third 

party. These indeed are ethics questions that will need to be answered within the next 5 

years or less considering that the virtual environment is now expanding to physical 

environments in the form of highly complex environments such as cities and their 

infrastructural systems.  

In the case of SmTSs, law enforcement and insurance companies rely heavily on 

laws and regulation created by state, and in some positions, the government. With an 

emergent technology such as AVs, these external entities will be unable to come to 

necessary, sensible, and logical conclusions if legislations regarding data ownership 

aren’t in place. Not only this, as an entity such as law enforcement that is meant to serve 

the public, in a scenario in which ownership policy of stored data is not yet placed can 

lead to potentially contradictory and unethical uses of data storage systems in various 

smart city domains. Cases of concern such as this have been expressed in existing 

literature sources such as (Fagnant & Kockelman, 2015) who provides various scenarios 

where security and privacy are mishandled due negligence or lack of initiative in 

legislation measures to protect users. Agencies such as (CISA, 2020) have focused on the 

consideration of security and privacy in planning smart city projects. Therefore, retrieval 

and exploitation of stored data for use cases such as determining liability in accidents or 

developing emergency evacuation plans with ethical datasets (i.e., datasets with certain 

redacted personal information) is paramount to ensure humane storage and usage of data 

when needed. Clarification of data ownership, whether if the data belongs to creator of 
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the data, third party for storing, a specific municipality, or conditionally to an 

organization, institution, or agency could prevent the unethical and malicious use of one’s 

own data. This could ultimately help in laying the groundwork (or regulations) for need 

of ethics for law enforcement and insurance companies with respect to exploiting stored 

data generated from the SmTS and its various technologies. 

2.1.2.2 The Leaders in Attaining the Smart City – Cities Nearing the Smart State. 

Currently, cities are going through a development stage of becoming smart cities, 

with some cities being smarter than others and possessing some degrees of “smartness”. 

This facet is put on display in smart city ranking and assessment indices which have been 

developed and published by notable groups such as the Institute of Management 

Development (IMD, 2020), CityKeys VTT (Huolvia et al., 2017), and Cities in Motion 

Index (CIMI) (Berrone & Ricart, 2016; Silva et al., 2018; Berrone et al., 2018; Berrone & 

Ricart, 2020) which measure aspects such as health, mobility, livability, economy, 

ubiquity of the Internet, access to education/knowledge, and much more in each city. 

(Sharifi, 2019; Patrão et al., 2020) have performed a comprehensive review of existing 

smart city assessment (SCA) tools, ultimately identifying well over 30 SCA tools that 

parametrizes some aspect of the emergence of “smartness” in cities through indicators. A 

comprehensive list of these SCA tools can be found in Table A2.1 of this dissertation. 

(IMD, 2020) for example looks at health and safety, mobility, opportunities (i.e., work 

and school), governance, etc. in the capacity of social and technical spheres of influence 

within the city environment. In addition to this, some literature sources such as (Silva et 

al., 2018) rather than rank cities  at quantified metrics of smartness, have identified some 
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the world’s highly ranked smart cities based off the CIMI and provided an extensive 

examination of 6 of these cities (i.e. San Francisco, CA; London, UK; Barcelona, Spain; 

Santander City, Spain; Nice, France; and Padova, Italy) by looking into the aspects that 

make these cities inherently “smart” cities.  

Given the varying geospatial scale that cities possess, in some of the smart city 

projects implemented in the cities found in (Silva et al., 2018; IMD, 2020), these sources 

reported some level improvements in societal behaviors, but there are no indications or 

tangible quantification as to how or who these “smart” capabilities and services are 

benefitting from a social perspective. Is it those individuals primarily of a certain 

socioeconomic status in specific portions of the city center or is it those near the outskirts 

at the periphery of these respective cities? Questions such as these are extremely 

important to consider in large sprawling cities where diversity in socioeconomic status 

can vary widely across the geospatial fabric of urban environments (e.g., San Francisco, 

Los Angeles, Chicago, New York City, etc.). This concept is reinforced by a survey 

(Simpson, 2017) conducted on an array of potential smart city stakeholders (e.g., 

policymakers, OEMs, service providers, etc.), which revealed that 57% of stakeholders 

interviewed believe that the key components of a smart city is city-wide connectivity. In 

addition to this, quantitative measurements such as these can determine if a city is truly 

becoming smart or has reached the level of being called a smart city by addressing 

neglected populations to increase city inclusion and therefore city efficiency.  

Since implementing smart city projects on a city-wide scale requires a fair amount 

of financial resources to implement, cities with an insufficient amount of monetary 

resources may see small pockets of smart or intelligent capabilities in its typological 
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fabric. However, there are cities which seem to be nearing a state of urban “smartness” or 

intelligence. Among these cities, Singapore seems to be unanimously the smartest city in 

the world due to its constant top 10 appearance in the smart city rankings for IMD and 

CIMI which use similar measuring metrics but different calculation approaches. Table 

2.1 provides a comparison of the CIMI and IMD SCA ranking tool results showing a 

consistency of Singapore being in the top tier of cities regarded as possessing some form 

of smartness to its urban environment. This occurrence is due the fact that Singapore 

possesses a digital-enabled population (e.g., e-services and social innovation through 

data), skilled tech talent, vibrant industry and startup ecosystem, technology-enabled 

sectors (e.g., ICT development growth for healthcare, education, mobility, and 

government sectors), pervasive connectivity, and trusted regulatory framework (Lee et 

al., 2016). What is more, robots are being extensively utilized as a means of supporting 

citizen involvement and welfare in Singapore as well, with its robot population on the 

order of 918 robots per 10,000 employees nearly doubling its 2016 robot population 

density of 488 robots per 10,000 employees (IFR, 2018; Guerry et al., 2020). Figure 2.11 

provides a graphical overview of the population densities for each country around the 

globe to offer quantitative perspective.  
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Table 2.3. Comparison of Smart City Index and CIMI SCA tools.  

Ranking No. Smart City Index (IMD, 2020) CIMI (Berrone & Ricart, 2020) 

1 Singapore, Singapore London 

2 Helsinki, Sweden New York, USA 

3 Zurich, Switzerland Paris, France 

4 Auckland, New Zealand Tokyo, Japan 

5 Oslo, Norway Reykjavik, Iceland 

6 Copenhagen, Denmark Copenhagen, Denmark 

7 Geneva, Switzerland Berlin, Germany 

8 Taipei, Taiwan Amsterdam, Netherlands 

9 Amsterdam, Netherlands Singapore, Singapore 

10 New York, USA Hong Kong, China 

 

 

 

 

Figure 2.11. Robot density within countries, data from (Guerry et al., 2020). 

 

The city of Singapore almost nearly integrates all facets and domain initiatives of 

what makes a city a smart city, whereas most other cities around the globe seem to 

integrate only portions of what Singapore seems to be incorporating into its city to 

support its citizenry. With this in mind, cities such as Copenhagen, Helsinki, Zurich, New 

York City, and Oslo are not far behind relative to Singapore, specifically Copenhagen 
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with its consistent ranking at the 6th position on both IMD and CIMI SCA tools, implying 

that smart cities may be here in the near future (i.e., within the next 10-20 years, 

potentially). 

As (Angelidou, 2015) has elaborated, there are four conjectural forces that mold 

smart cities which consist of visions of urban futures, knowledge and innovation 

economies, technology push (adoption), and application pull (demand). Many cities are 

feeling these forces converging onto their cities requiring them to evolve in order to 

overcome their unique problems. This has ultimately led to cities utilizing technologies as 

a means of invoking efficiency in terms productivity, welfare, and resourcefulness. In 

many cities some of these technologies have already become pervasive aspects in city 

living that have had far-reaching implications on the urban fabric of cities – one of these 

being the Internet. M. Weiser, head of the Xerox Palo Alto Research Center in California, 

once stated that “the most profound technologies are those that disappear. They weave 

themselves into the fabric of everyday life until they are indistinguishable from it” 

(Weiser, 1991; Angelidou, 2015). This has systemically occurred with the seamless 

integration of the internet into the urban and social fabric of cities, but could this 

phenomenon be happening again within the mobility aspect of cities where instead of an 

interconnection of people there is interconnection and heighten intelligence of vehicles? 

Could this be what is going on with the increasing levels of autonomy in vehicles of 

today? It may be wise to say that seeing a progressive disappearance and merging of 

autonomous robotic capabilities and the Internet within the automotive platform creating 

AVs, is certainly an example of what Weiser was referring to. 
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Within the transportation domain, vehicles which are expected to traverse through 

city transportation spaces are gradually evolving into intelligently aware vehicular 

platforms regarded as AVs by seamless integrating automated functionality into, 

otherwise, traditional automotive frameworks. AVs will utilize infrastructures such as 

ITS and ICT as a supportive system in numerous facets ranging from supporting V2I 

applications to in-vehicle infotainment, creating a diverse and broad ecosystem meat to 

support these capabilities. Figure 2.12 provides a holistic view of the technological 

ecosystem surrounding and bolstering the functionality of AVs. If implemented 

appropriately, AVs will help in further increasing traffic safety and efficiency within the 

transportation space ultimately making vehicles part of the complex IoT ecosystem of 

devices. Considering the emerging technologies and extensive work being done within 

the transportation sector, the transportation systems within the city ecology is set to 

become the nexus from which smart cities could potentially blossom, and from which 

transportation technologies such as ITS and AVs will act as the seedling for growth.  
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Figure 2.12. Technological ecosystem supporting AV capabilities (ENISA, 2019). 

 

2.2 Autonomous Vehicles – A Unique Agent 

Autonomous vehicles (AVs), automated vehicles or self-driving cars, as they may 

be alternatively called within existing literature, are vehicular systems integrated with 

robotic systems and artificial intelligence in order to support and increase automotive 

driving capability and capacity, with little to no human intervention. Outside of the 

current development and deployment of ITS, AVs are expected to become the one of 

catalyst for bringing forth SmTSs into reality. This claim is supported primarily due to 

the automated nature of future mobility in the form of AVs, which are predicated on their 

system architecture that is composed of a highly integrated organization of hardware and 

software components that coordinate and synchronize with one another to create an 
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autonomous entity (or smart cell (Yan et al., 2018)). Considering the prototypical AV 

architecture presented in Chapter I (Figure 1.4), AVs are considered cyber-physical 

systems themselves, composed of various cybernetic and physical components that are 

distributed throughout its architecture to help the AV with sensing, data fusion, data 

analysis, and tactical mobility-based execution. In terms of sensing, AVs utilize a suite of 

sensors to perceive their surrounding environment which may consist of: 

• cameras which are used to visually inspect its environment through sophisticated 

tools such as image processing that is enabled through computer vision. These 

cameras will require constant calibration subject to the road and weather 

conditions and this is still an active research thread in robotic science (Olson et 

al., 2010; Wan et al., 2014) 

• LIDAR sensors which are used to generate 3D dimensional representations of the 

AV’s immediate environment, giving the AV a sense of perceptual depth to its 

perspective of the environment. This feat is achieved through measuring distances 

by illuminating surrounding objects with a laser beam and analyzing the reflected 

light and its time-of-flight (Lillesand et al., 2014). The main limitations of the 

LIDAR system are their lack of coverage and range (i.e., unsuitable for long 

range) and reflectivity issues (Bagloee et al., 2016) 

• radar sensors which use radio frequency waves to detect objects or obstructions 

that may be within the vicinity of the AV. This is accomplished through the 

emission of radio waves which are bounced back and received by the sensor, 

providing information on the distance to the nearest object. The reflectivity 

limitations of radar sensors are even more severe than those seen with LiDAR; 
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due to the fact that it is only able to detect metallic objects such as other vehicles 

while objects such as pedestrians remain invisible to the sensor (Bagloee et al., 

2016) 

• ultrasonic sensors which use high-frequency acoustic waves to detect objects or 

obstructions that may within the vicinity of the AV. Ultrasonic sensing follows 

the same sensing mechanics as radar sensing, but through the exploitation of 

acoustic waves. Given the relatively low cost, ultrasonic capabilities are 

instrumental in backup warning systems and parking assistance systems 

(Paromtchik & Laugier, 1996; Alonso et al., 2011; Wang et al., 2014; Anderson et 

al., 2016) 

• infrared sensors which use spectrum waves from the AV’s surrounding 

environment to detect objects or obstacles. Infrared sensors are used in detecting 

lane departures, pedestrians, and cyclists, particular at night (Mathas, 2011; John 

et al., 2015) 

• Geographic Positioning Systems (GPS) which uses global positioning data from 

satellites orbiting Earth, providing real-time coordinate status of the AV relative 

to the surface of Earth. GPS errors can occur specifically within areas where 

terrain obscures GPS signals such as in urban areas where tall buildings create 

“urban canyons” in which GPS capabilities are severely limited (Dupuis et al., 

2014; Tao & Bonnifait, 2014) 

• inertial navigation systems (INS), which comprises accelerometers/odometers 

(motion sensors), gyroscopes (rotation sensors), and a computer as a navigation 

aid to constantly calculate position, velocity, and orientation of the AV without 
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external references (Bagloee et al., 2016). These systems should ideally be 

coupled with suite sensors complement its own capabilities, which are often 

accomplished through integration GPS. 

Through the use of these sensors throughout the duration of the AVs 

operation, data is collected from each of these sensors and sent to the OBU where the 

segregated sensor data is aggregated through the process of data fusion, allowing the 

AV to make logical sense of the sensor data and the AV’s current environment status. 

The OBU is a computer unit that integrated into the AV and houses the software that 

propels the logical operations of the AV, which consist of performing localization, 

object recognition, and object tracking which ultimately drive decision-based 

algorithms within the OBU (Liu et al., 2019). This process takes place on the scale of 

milliseconds, insinuating data amounts that are expected to be quite astronomical in 

quantity and scale. Considering the copious amount of data, which can be on the 

order of 4 TB generated within one hour (Barua & Rajeha, 2019), software in the 

form of AI/ML is often used to process and analyze the large amount of sensor data to 

provide seamless execution of the AI’s decision-making platform through AV 

system’s actuation. Besides this, the OBU is also responsible for supporting and 

managing communication protocols with other vehicles (V2V), infrastructure (V2I), 

and other devices (V2P, V2G, or V2X) that lie beyond its system boundary, 

ultimately creating a heterogenous network of mobile (e.g., vehicles, pedestrians, 

bicycles, etc.) and fixed nodes (e.g. roadside units (RSU), base stations, etc.). Once 

effective data fusion, analysis and decision-making is completed, execution through 

actuation components is performed, allowing the AV to maneuver under dynamical 



129 
 

and complex conditions. With the integration of the sensory network, the OBU, and 

the actuating system, the emergence of new capabilities are manifested in the form of 

automated features such as adaptive cruise control (ACC), collision avoidance, lane 

departure warning. Figure 2.13 shows how the taxonomy of sensors that form the 

composition of the AV architecture unify to create emergent automated vehicular 

functions. (Fagnant & Kockelman, 2015; Hussain & Zeadally, 2019) have revealed 

how modern vehicles components, though different from AV technological 

components, are enabling increasing autonomy within current vehicles through the 

modular incorporation of automated vehicular features. 

 

 

Figure 2.13. Emergence of automated functionality from AV architecture (Hussain & 

Zeadally, 2019). 
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As opposed to “autonomous” vehicles (AVs), automated vehicles or automated 

driving systems (ADS) are considered the evolutionary precursor to AVs, as these are 

automotive systems possessing a wide spectrum of functional modules to be offered in 

modern vehicles at various levels of automation (Chan, 2017). In fact, with automated 

features such as automated parking being integrated within vehicles at incremental 

automated levels; the Society of Automotive Engineers (SAE) designated levels of 

autonomy (as seen in Figure 2.14) were used to differentiate the distinct levels of 

automation and to identify when full autonomy is reached through the establishment of 

the SAE J3016 Standard. These six levels are also indicative of the progressive evolution 

of automation technology in increasing aspects such as safety, efficiency, and reliability 

within transportation systems, many of which have been put on display through 

demonstrations (Chan, 2017). Literature from (Chan, 2017), however, suggests that there 

may be two deployment paths with respect to the deployment of driving automation 

systems, that is an “evolutionary path” of gradual automation increase as depicted in 

Figure 2.15 or a “revolutionary path” consisting of an abrupt and sudden technological 

jump to full automation bypassing Levels 2, 3, and 4 (L2, L3, and L4) to get to Level 5 

(L5).  

 



131 
 

 

Figure 2.14. SAE Automation levels from SAE J3016 Standard (SAE International, 

2018). 

 

 

 

Figure 2.15. AV deployment paths based on AV technology integration approaches 

(Chan et al., 2017). 
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Nevertheless, automated and autonomous driving has garnered interest from 

notable automotive companies such as Audi, BMW, Tesla, Toyota, Nissan, Ford, Local 

Motors, and more, along with tech service industry companies such as Google (Waymo), 

Uber, Lyft and others and even national militaries such as the US Army, ultimately 

creating competition between institutional entities, and therefore, increasing the current 

automation levels of vehicles through extensive testing, development, and deployment. 

For instance, Waymo’s vehicle fleet operates at L4 (Bartlett, 2020) while the Army 

Engineer Research & Development Center (ERDC) has extensively tested L5 and L4 

vehicles at Fort Carson, CO, and Joint Base Myer-Henderson Hall at Arlington, VA, 

respectively (Daugherty 2020; Allen et al., 2020). On other hand, vehicles at L1 and L2 

are currently existing within the automotive marketplaces in the form of most, if not, all 

modern car models and models such as General Motors Super Cruise, respectively. L3 

automated vehicles, on the other hand, are at the cutting edge of production development 

due to its automated feature of Traffic Jam Pilot. Companies such as Honda have been 

granted permission to mass produce L3 automated vehicles and will begin production of 

the Honda Legend in Japan March 2021 (Bigelow, 2019; Etherington, 2020; Ramey, 

2020). In order to provide a synopsis and glimpse of the AV leaders within the 

automotive service ecosystem, Figure 2.16 depicts the various automotive and OEM 

manufacturers, mobility service providers, and start-ups relative to one another with 

respect to their capacity for execution and strategy in the autonomous vehicle 

development and deployment landscape. 

 



133 
 

 

Figure 2.16. Visualization of AV industry leaders relative to their execution and strategy 

capabilities (Abuelsamid & Woods, 2020). 

 

With respect to the research and development effort of L4 and L5 automated 

vehicles, these large-scale testing efforts are great for uncovering the microscale, and to 

some extent, mesoscale impacts AVs may have within the transportation ecosystem by 

understanding the individualistic behavior of how AVs perceive, reason, and act within 

complex operational environments. However, large-scale testing of AVs specifically 

within open, complex, and uncontrolled environments such as cities, can often have 

disastrous consequences in the form of accidents, injuries, and loss of life which has been 

well documented in literature through (Kurdock, 2018; Grembek et al., 2019; Hawkins, 

2019; Harris, 2019) and various government agencies such as the National Transportation 

Safety Board (NTSB). Unfortunately, as a result of these events, this has led to a distrust 
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in the use of AVs which could affect future adoption trends of AV technology within 

transportation systems. This fact is supported by the fact that according to a 2019 AAA 

survey poll, 71% of US drivers stated they would be afraid to ride in a fully self-driving 

vehicle (Edmonds, 2019).  

What is more, this fact regarding technological trust is theoretically reinforced by 

the notion of the technology adoption model (TAM) (Davis, 1989) and the unified theory 

of acceptance and use of technology (UTAUT) (Venkatesh et al., 2003), which are 

composed of relevant factors such as reliability, performance expectancy, trust, security, 

and privacy (Kaur & Rampersad, 2018) that can effect technology adoption. (Kaur & 

Rampersad, 2018) applies these influential factors to the technological adoption of AVs 

as seen in Figure 2.17. Additionally, from a pragmatic perspective, it is expected AVs 

will be operating in the form of autonomous-based fleets, meaning more than two 

vehicles will be in operation at any given time or duration, rather than singular standalone 

systems that are seen in current research and development efforts. This can have far-

reaching and widespread repercussions on aspects besides traffic flow within 

transportation systems and can percolate into other aspects of cities. As a means of 

overcoming this issue, modeling and simulation (M&S) as well as field testing in closed 

sociotechnical environments (e.g., universities, military installations, etc.) has provided a 

relatively cost-effective means for testing and evaluating transport use case scenarios, 

mobility schemes, and traffic management frameworks for which AVs may be part of 

within the transportation environment of smart cities. 
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Figure 2.17. Relevant factors influencing the adoption of AV technology (Kaur & 

Rampersad, 2018). 

 

 

2.2.1 Modeling and Simulation of Autonomous Cars 

Considering the psychological effects that large scale field testing of AVs can 

have on the general public, especially after unwanted events such as crashes occur, data-

driven and virtual means have shown to be worthwhile platforms to utilize in order to test 

and evaluate AVs without potential risk to the general population of cities. Not only this, 

but through the data-driven approaches such as M&S, conservation of financial, 

temporal, and technical resources can be achieved. At the microscopic scale, virtual test 

environments, such as Software-in-the-Loop (SiL), Vehicle-in-the-Loop (ViL), and 

Scenario-in-the-Loop (SciL) technologies, are becoming increasingly common (Szalay et 

al., 2019). Sophisticated testing regimes such as SiL and SciL are beginning to see 

significant use within the testing and development of AVs, specifically within the critical 

software-based components of AV systems such automated driving stacks (Cottignies et 

al., 2017; Szalay et al., 2019; Vukic et al., 2019). (Szalay et al., 2019) for instance, has 
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developed a proof of concept for SciL in order to test AV technologies under specific 

scenarios through the integration of the gaming engine Unity, MatLab, and traffic 

simulation tool – Simulation of Urban Mobility (SUMO) – to create a Digital Twin of a 

pedestrian-based driving scenario. Virtual environment testing regimes such as in-the-

loop and field testing provides the groundwork for understanding the microscopic 

behavior of AVs in respect to attributes such as acceleration, deceleration, lane changing, 

and headway integrity tendencies, allowing for differentiation between human-driven 

vehicles (HDVs) and AVs to be identified.  

Throughout existing literature there exists a common consensus that AVs are 

capable of cognitively and conscientiously accelerating, decelerating, lane changing, and 

maintaining headway integrity to promote transportation benefits such as smoother 

driving, reduced injuries and fatalities from decreased accidents, increased fuel 

efficiency, reduced trip times, increased road capacity, increased passenger productivity, 

and much more (Tientrakool et al., 2011; Burns et al., 2013; Fagnant & Kockelman, 

2015; Bagloee et al., 2016; Friedrich, 2016). These behaviors of AVs when implemented 

into a HDV traffic flows at an appropriate scale, can lead to marketed improvements in 

traffic flow conditions, with AVs acting as “automated traffic flow regulators”. This 

concept is presented by (Bose and Ioannou, 2003) who states that if 10% of all vehicles 

on a given freeway segment were AVs, there could be smooth traffic for all travelers in 

the freeway segment. This concept is further reverberated and agreed upon by other 

literature sources from (Pau, 2013; Soubra, 2013; Ross; 2014). What is more, (Liu et al., 

2017) has developed a microsimulation model of heterogenous traffic consisting of AVs 

and HDVs at various AV market penetration levels, which showed increases in road 
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capacity and free flow speed as the AV market penetration level of AVs increased due to 

traffic smoothing effects from AV presence in the simulated traffic flow. Shladover et al. 

estimated that cooperative adaptive cruise control (CACC) deployed at 10%, 50%, and 

90% market-penetration levels will increase lanes’ effective capacities by around 1%, 

21% and 80%, respectively (Shladover et al., 2012; Fagnant & Kockelman 2015). Studies 

from (Ramezani et al., 2017; Rahmati et al., 2019) have also seen significant difference in 

traffic flow characteristics and parameters with the incorporation of AVs into 

microsimulation environments. 

Based on these micro traffic simulations, it can be observed that the mere 

integration and presence of a small percentage of AVs within a conventional traffic flow 

(i.e., composed of HDVs) can have profound effects, causing either unwarranted impacts 

of traffic congestion (i.e., AV market penetration less 10%) or positive influence of self-

organizing traffic smoothing (i.e., AV market penetration equal to or greater than 10%). 

However, given the effect that AVs may have on a general traffic flow, it certainly does 

force the question of how a fleet or population of AVs may affect, not only the traffic 

flow and its human driver constituents, but how may the fleet affect the typology and 

land use patterns of the built environment; the social behavior and organization of cities; 

the way in which transportation networks function and operate; and the business models 

for the transportation sector, specially within a urban context? In order to answer these 

questions, large-scale field-testing approaches would be deemed to be prohibitively 

expensive to undertake due to the lack of economies of scale in mass producing AVs. 

Therefore, M&S approaches such as agent-based modeling (ABM) which utilizes low-

level rules to understand system-level complexity, is often used within literature to 



138 
 

understand, model, simulate, and analyze both mesoscopic and macroscopic 

transportation phenomena.  

(Kagho et al., 2020) provides an overview of the state of art with respect to ABM 

application within transportation planning and management, as well as pressing insights 

into some questions that need to be addressed through ABMs. One of these pressing 

questions is how to optimize transport policies to cater for new modes of transit such as 

autonomous vehicles [AVs], urban air mobility, ridesharing, e-bikes, etc. (Fagnant & 

Kockelman, 2014; Schroder et al., 2014; Ruch et al., 2018; Balac et al., 2019). 

Emphasizing the mode of AVs and ridesharing within this statement, existing literature 

has been extensively exploring the system-level implications of incorporating AVs within 

the transportation network scheme of cities, especially within the sharing economy use 

case scenario of mobility-as-a-service (MaaS) paradigm. The use of ABMs in 

understanding the sociotechnical implications of AV integration within transportation 

systems and their surrounding city environment is rather comprehensive in nature as seen 

through the literature review of (Jing et al., 2020). Through the observation of existing 

literature, it has been observed that a significant portion of literature is concerned with 

ssuse case of shared mobility whether in the form of a ridesharing, taxi, or carsharing 

applications. These vehicle business models have shown significant promise within 

existing literature with significant improvements in systemic transportation performance, 

capital and operation costs, and environment conditions having been observed.  

The MaaS paradigm consists of well-known existing uses cases such as 

ridesharing, carsharing, and demand response transport (DRT) which maximize the 

throughput of people rather than vehicles through transportation space by encouraging 



139 
 

increased occupancy within vehicles. Considering the fact that MaaS allows a person on-

demand access to shared or publicly owned vehicle or car through the pervasive use of 

smartphones; this nearly eliminates the need of privately owned vehicles. (Donkers & de 

Wit, 2017) have provided a qualitative examination into the use case of AVs or self-

driving cars within the context of the sharing economy and how these new forms of 

transportation platforms may impact car ownership regimes, social transportation modal 

tendencies, and the potential performance of transportation networks. Findings from 

Donkers & de Wit revealed that in order to see desired outcomes with respect to 

implementation of AVs in mobility systems, aspects such as legislation and policy within 

municipalities, states, and countries will need to take center stage before their 

deployment.  

In a study conducted by Schoettle & Sivak it was revealed that there is a 

significant reduction in vehicle ownership which is being accompanied by a shift to 

vehicle sharing platforms such as ridesharing and carsharing transportation models. 

Martin et al. further reinforces this claim through the fact that their aggregate analysis of 

shared-use vehicle survey data suggests that carsharing has taken between 90,000 to 

130,000 vehicles off the road, equating to 9 to 13 vehicles for each carsharing vehicle 

(Martin et al., 2010). (Fagnant & Kockelman, 2014; Zhang et al., 2015; Fagnant, 

Kockelman, & Bansal 2015; Martinez & Crist, 2015) have also conducted studies that 

have found shared applications of AVs (i.e., SAVs) could lead to decreases in the number 

of conventional vehicles in traffic flows with figures ranging from 10 to 12. Additionally, 

by offering and introducing AV services such as carsharing and ridesharing with the 

establishment of supporting policies and legislation, this could increase the number of 
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occupants within vehicles on a temporal basis in transportation corridors, reducing the 

number of vehicles on roadways even further thereby significantly increasing roadway 

capacity, reducing congestion, decreasing travel times, reducing the need for parking 

spaces, and reducing collective emissions.  

The US possesses the economic infrastructure to implement shared economy 

solutions through companies such as Uber, Lyft, Waymo, and many others that are 

readily available within the US’s domestic domain. Studies conducted by (Shaheen et al., 

2009; Shaheen & Finson, 2013) seem to support the framework of ridesharing and 

carsharing, but it has yet to be seen how the public or pedestrians will respond to the 

added dimension of the AV in these business model schemes. It is yet to be seen how 

AVs will change the mere typologies of cities, considering their revolutionary impact on 

how citizens will function in urban spaces. Therefore, through the incorporation of AVs, 

specifically SAVs, it can be seen that fairly significant changes in terms of transportation 

network efficiencies are bound to occur if sensible legislation and policymaking 

regarding the deployment of AVs is undertaken by various institutions. However, 

considering the wide spectrum of sectors AVs are anticipated to impact as hinted at by 

(Donkers & de Wit, 2017), studies from (Zhang et al., 2015; Zakharenko, 2016) have 

provided significant insight that due to the characteristics exhibited by AVs, the layout 

and typology of cities and their transportation ecosystems may change. For instance, 

(Zhang et al., 2017) have successfully performed simulations on determining the effects 

of shared AVs (SAVs) on parking facilities in cities stating that parking surfaces can be 

reduced by about 4.5% with only a 5% AV market penetration in the city of Atlanta 

(Zhang & Guhathakurta, 2017). This is an efficient use of space considering that 
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traditional vehicles are parked about 95% of the time as compared to shared AVs (SAVs) 

which will be in near constant use for most of the day (Greenblatt, 2016). In addition to 

this, existing literature from (Bagloee et al., 2016), (Zakharenko, 2016), (Tettamanti et 

al., 2016), (Hussain & Zeadally, 2019) supports this data stating that if SAVs (under car 

sharing and ridesharing schemes) are deployed this will allow sizable reduction in 

parking surfaces across a city’s landscape.  

AVs, but more specifically SAVs, could reclaim the cityscape for the pedestrians, 

encouraging pedestrian centered development and planning regimes which has been 

hinted numerous times (Shaver, 2019; Short et al., 2019). With this information in mind, 

in order to mitigate unwanted coevolutionary feedback effects in the smart transportation 

ecosystem, it is important that zoning ordinances are revised or modified to support the 

implementation of new facilities, structures, or infrastructure that will support the new 

roles pedestrians may play in urban cityscapes. As part of this urban transformation, 

freed-up available parking facilities could be removed entirely or repurposed in an 

appropriate manner that enhances both the functionality of the transportation 

infrastructure and supports the movement and safety of pedestrians within transportation 

corridors as a tightly coupled integrated system. With the consideration of this idea, there 

are various ways of utilizing freed-up spaces from parking facilities and they may consist 

of the utilization for: 

• light vehicle infrastructure (i.e., bicycles, scooters, Segways, etc.) for replacing 

former on-street parking space; 

• public green spaces for replacing parking garage facilities and on-street parking 

space; 
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• residential spaces for replacing parking garages or spaces to promote more 

affordable living accommodations in city centers 

Figure 2.18 provides visualizations for these innovative urban transformation tools that 

may be used in some capacity once AVs reach appropriate market penetration levels. 

Interestingly, it is worth noting that all three of these repurposing tools invokes an 

architectural pattern encouraged by Christopher Alexander’s, “A Pattern Language: 

Towns, Buildings, and Construction” (Alexander, 1977) where: 

• light vehicle infrastructure is indicative of the 56th pattern – bike paths and racks 

• public green spaces are indicative of the 67th pattern – common land 

• residential spaces are indicative of the 48th pattern – housing in between 

Furthermore, what is even more interesting is how these pattern languages developed by 

Christopher Alexander coincide with some of the needs that make cities, smart cities 

through the use of bike paths and racks (i.e., smart mobility), green spaces (i.e., smart 

environment/community), and support of affordable housing (i.e., smart living). 
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Figure 2.18. Implementation of Christopher Alexander’s pattern language after AV 

deployment (adapted from Archinect, 2011). 

 

 

Considering the wide implications AVs may have on the urban fabric, ABMs 

have provided a means for modeling, simulating, analyzing, and contributing decision 

support in helping understand the various sociotechnical aspects and implications AVs 

may have in various transport use cases in terms of transportation network performance 

and social behavior. In many ways, this has led to an extensive amount of literature in 

this emerging research area, which can be observed through the comprehensive literature 

review performed by (Jing et al. 2020). Through the literature review study of Jing et al., 

notable trends in the M&S of AVs could be discerned revealing areas of plentiful 
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knowledge as well as knowledge gaps. Some the areas that seem to have a sizable amount 

of knowledge are in areas of fleet sizing, transport/trip demand, and, to some extent, AV 

strategies (e.g., deployment, operation, hailing strategies, etc.) For instance, literature for 

fleet sizing has been fairly comprehensive with (Burns et al., 2013; Fagnant et al., 2015; 

Boesch et al., 2016; Bischoff & Maciejewski, 2016; Hörl, 2017; Levin et al., 2017) 

having found AV fleet sizes for different sized cities. On the other hand, transport/trip 

demand effects on AV fleet performance have been a point of emphasis in studies such as 

(Burns et al., 2013; Fagnant & Kockelman, 2014; Martinez & Crist, 2015; Boesch et al., 

2016). (Hyland & Mahmassani, 2018; Fagnant & Kockelman, 2018; Wang, Medina, 

Fourie, 2018) have utilized simulating and modeling for different AV strategies within 

realistic and theoretical virtual environments to test the performance of unique strategies 

in distinct environments.  

A commonality in existing literature is that many of these simulations are 

concerned with city-wide M&S of AVs in order to gain insight into practical application 

use cases. AVs are expected to encounter an assortment of urban environments with 

various complex pedestrian and vehicular scenarios; therefore, it is somewhat concerning 

that only urban zones of cities are being simulated. With this in mind, understanding the 

implications of integrating AVs within any given built or urban environment setting will 

be imperative, truly giving researchers insight into the impact AVs have on any given 

sociotechnical environment. Furthermore, Jing et al. points out the lack of research in the 

realm of the simulation of refueling/recharging AVs which seems to only have three 

literature sources investigating or considering the fueling implications with AVs (Chen et 

al., 2016; Loeb et al., 2018; Loeb & Kockelman, 2019). It is worth noting that among the 
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literature that simulate refueling/recharging of AVs in ABMs have only considered 

gasoline and electric vehicle integration in their simulation schemes.  Aside from this, 

there is also the fact that a limited amount of papers look into the impact of vehicle 

capacity on the service performance levels of AVs (Farhan & Chen, 2018; Wen et al., 

2018; Leich et al., 2019). Considering, this line of thinking, this ultimately solicits the 

question: what impact may different AV configurations such as buses or other forms of 

vehicles have on the level of service for a given mobility system trying to meet its 

targeted demand levels within a given environment? 

2.2.2 Modeling and Simulation of Autonomous Buses 

When it comes to the visualization of AVs within transportation systems, these 

disruptive smart technologies are often seen or envisioned as sedans or cars utilized car-

heavy, low occupancy vehicle applications such as ride-hailing, taxi services, ridesharing, 

or even private transport. These use cases of cars in the AV format in the shared economy 

has shown to have positive implications with the potential removal of private 

conventional HDVs in transportation spaces and the allocation of their occupants into 

SAVs that maneuver through the transportation environment in a more intelligent and 

strategic manner than their human counterparts. However, as has been observed in 

existing literature, over-reliance on one mode of transportation can be detrimental to the 

stability of mobility within cities and their transportation networks (Fagnant & 

Kockelman 2015; Lu et al., 2018). This has been emphasized by (Smith, 2012) who hints 

that emissions per vehicle mile traveled may decrease, but total emissions (throughout the 

day) may actually increase (Fagnant & Kockelman 2015). Therefore, diversity of 
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transportation modes will be key in reducing congestion, travel times, and vehicle 

emissions with the implementation of AVs in transportation spaces. 

Public mass transportation such as bus services can be utilized as a means of 

handling the transportation demand in many cities to offer citizens an alternative mode of 

traversing the city environment without significantly adding to the daily flow of traffic. 

After all, compared to its ground-based counterpart – cars – buses offer more capacity 

transport for citizens, allowing for more efficient movement of people through 

transportation corridors. However, these buses are typically constrained to fix routes 

making their service area rather limited in scope and coverage. With the integration of 

AV technology with vehicular configurations such as buses, however, public 

transportation options may attract more attention and widen its intended coverage due to 

its increase in factors such as passenger safety, if Christopher Alexander’s patterns are 

effectively utilized to support efficient movement of people through urban spaces. 

Nevertheless, with the likelihood of AV technologies being implement in public transport 

expected to increase in the coming years, their impact on commuting in real-world road 

networks is insufficiently studied when compared to autonomous cars, which has 

garnered quite a bit of attention throughout the years (Lu et al., 2018). Reasons for why 

autonomous cars have gained more attention than buses may be due to an assortment of 

factors such as increased privacy in cars compared to buses, increased levels of 

productivity in autonomous cars relative to buses, and meaningful personable space in 

cars relative to buses. 

Considering the amount of attention that autonomous cars are getting compared to 

autonomous buses (ABs), a lot of technical attention has been focused on the application 
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of the autonomous car in urban environments. In fact, given the rate at which AV 

technologies are developing, AV technologies in support of sedan or private vehicle-

based platforms and applications are set to be fully autonomous or reach L5 by the year 

2025 or within this decade, whereas the AV technology in support of bus platforms and 

applications are set to reach L5 autonomy sometime after the year 2030 (Azad et al., 

2019; Wintersberger et al., 2019). Figure 2.19 shows a comparison between the 

development of AV technology for light-duty consumer vehicles and heavy-duty transit 

vehicles. However, researchers should pay close attention to the feedback of the people 

that will be utilizing these technologies, as these individuals are the system stakeholders 

that will affect the technological adoption of AV technology. With this idea in mind, a 

recurring pattern has been observed where a significant proportion of sampled 

populations in studies have articulated more trust in the utilization of transport services in 

ABs as compared autonomous cars, ultimately contradicting current focus in lines of 

research. Instances of this can be seen in Kaur & Rampersad, whose research identified 

that the situations when people are most likely to adopt driverless [vehicles] cars is in 

closed environments, finding a carpark, public transport with a chaperone, and on 

highways where drivers can then take full control (Kaur & Rampersad, 2018).  
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Figure 2.19. Comparison of expected temporal evolution of consumer car (Wintersberger 

et al., 2019) and transit vehicle automation (Azad et al., 2019). 

 

 

With respect to Kaur & Rampersad’s claim of driverless technology in public 

transit, it was further revealed that other studies on user acceptance of AV technology in 

public transport applications were completely due to most individuals’ trusted perception 

of ABs. (Alessandrini et al, 2014) found user preference is higher for automated public 

transport compared to traditional buses across cities (Azad et al., 2019). (Piao et al., 

2016) determined that approximately two thirds of surveyed respondents would consider 

riding an AB if both ABs and conventional buses were available (Azad et al., 2019). 

(Portouli et al., 2017) was able to determine that younger people are more willing to 

accept and use autonomous minibuses (Azad et al., 2019). Of course, there are plenty 
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more instances of the public’s level of trust in ABs that have been aggregated in a study 

conducted by (Azad et al., 2019). This is more optimistic compared to the incorporation 

of AV technology in autonomous cars which have been perceived with more skepticism 

from the general public due to a sizable amount of crashes that have occurred during their 

testing and development on public roads. In fact, in one research study it was noted that 

among Austrian drivers, despite the higher number of traffic accidents, the subjective 

feeling of safety in conventional cars was significantly high among consumers when 

compared to autonomous cars (Wintersberger et al., 2019). Therefore, considering the 

technological stage that AV technology for buses are at, there high level of demonstration 

in countries and states across the globe (Ainsalu et al., 2018; Descant, 2019; Delaughter, 

2019; Iclodean et al., 2020; Caldwell, 2021; Allen et al., 2020; Santos, 2021), and the 

relatively high social acceptance level of ABs; this warrants the query as to why more 

efforts haven’t been placed into the investigation of the impact that bus fleets have in 

various urban environments in order to potentially jumpstart the emergence of smart 

mobility platforms in cities?  

As mentioned in the previous subsection (Section 2.2.1), ABMs are a logical tool 

and approach to utilize to understand the system-level implications that emerging 

technologies such as AVs may have on sociotechnical systems/environments and their 

operations. Considering the efforts taken in understanding the impacts ABs may have in 

the transportation environment, existing literature has performed M&S studies at various 

scales ranging from microscopic vehicular behaviors to macrolevel network flows. With 

respect to microscopic transportation simulation of ABs, hybridized or mixed AV-HDV 

traffic flow scenarios have been modeled and simulated by (Muhammad et al., 2020) 
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where the AVs are representative of autonomous cars and ABs and the HDVs are 

representative of human-driven cars and buses. Through the use of cellular automata 

(CA) based simulations, Muhammad et al. were able to realize marketed improvements in 

traffic speed, density, and flow rate could be achieved with varying market penetration 

ratios of autonomous cars, ABs, HDVs, and distinct driving styles (e.g. polite and 

aggressive driving styles). Furthermore, results showed that the introduction of the AB is 

a critical factor in increasing the effectiveness of road capacity as not only will the flow 

rate of traffic increase, but also more passengers can be accommodated (Muhammad et 

al., 2020). (Lam & Katuipitiya, 2013) developed a simulation model that considers and 

examines the dynamic control of vehicular platoon of three ABs along a segmented 

roadway path as the platoon’s point of reference, showing the operation and interaction 

not only between vehicles but between multiple AB platoons convoys as well. Kinematic 

properties such as vehicle position, speed, acceleration, and time gaps (i.e. headways) 

between each vehicle were utilized by Lam & Katuipitiya as measures of performance to 

determine the effectiveness of the bus platoon control scheme. 

Though microscale simulations due not necessarily provide systemic viewpoint 

nor outputs on the effects of AB integration into transportation networks, they do provide 

insight into what could potentially happen with the incorporation of ABs on a more 

macroscopic spatial dimension. However, large scale mesoscopic and macroscopic 

transportation simulations can glean more insight into the holistic repercussions of the 

integration of ABs within existing transportation ecosystems. Considering this concept, 

with respect to large scale M&S, a sizable amount of research effort has been performed 

in this area of M&S of ABs but more work is still needed in this area compared to the 
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M&S of autonomous cars. Nevertheless, given the limited amount literature on the M&S 

of ABs, plenty of meaningful insights and information with respect to their impact has 

already emerged. An example of this can be seen in the literature from (Hatzenbühler et 

al., 2020) who studied the impact of AB deployment in line-based public transport 

systems. From this study Hatzenbühler et al. was able to recognize that the operational 

cost savings outweighed the capital costs thereby lowering the total system costs which 

ultimately resulted in a total savings about 34%, where the user cost is reduced by 6%, 

the capital cost has increased by 51%, and the operating cost has decreased by 49% in 

comparison to conventional buses (Hatzenbühler et al., 2020). Other literature sources 

have found through their research efforts that vehicle automation could be significantly 

beneficial in the transit and government industries, through the emergence of advantages 

such as improved labor productivity and reduced subsidies, while vehicle automation in 

more flexible modes (i.e. taxi-based service platforms) could benefit metropolitan 

residents as well as the transit industry (Abe, 2019). 

Considering the reductions in costs that ABs may bring to the forefront in various 

transit agencies such as reductions operation costs due to decreases in labor costs because 

of possible bus fleet downsizing; ABs, similar to autonomous cars, can directly have an 

impact on the performance of public transport systems and by default their typical 

scheduling patterns. One of nuances of conventional buses is that their schedules often 

rotate around the schedule of the driver, meaning that there are times when bus services 

may not be available due to rest periods, shift changes, human-related errors, or technical 

issues during transport operations. In fact, just by utilizing ABs within a city bus fleet and 

within a vehicle schedule; in one study it was realized that it is possible to save on human 
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resource costs associated with hiring 90 drivers and capital costs that are connected to 

purchasing two vehicles (Nagy & Horváth, 2020). Once amortization surplus and other 

cost elements were considered, literature from (Nagy & Horváth, 2020) was able to 

realize 17-24% cost decrease by implementing ABs in bus fleet time schedule for city of 

Eger, Hungary. However, Nagy et al. did not utilize simulations to come to this 

conclusion but calculations instead, nevertheless, these outcomes are meaningful results 

to consider moving forward.  

Research studies such as that performed by (Zhai et al., 2020) which are at more 

of a mesoscopic scale, have utilized ABM to model and simulate the urban environment 

of Fuyang, Zhejiang, China as the study area to investigate the impact of replacing 

inefficient bus routes with a proposed autonomous bus-on-demand (ABoD) system that 

utilizes different bus dispatching and operation control schemes for AB fleets. Through 

M&S of the ABoD’s bus dispatching and operational control strategies it was ultimately 

determined that the utilization of ABoD was effective at saving road resources, 

efficiently using vehicle capacity, and adapting to surges in transport demand (Zhai et al., 

2020). Conversely, (Gasper et al., 2018) investigated the implementation and deployment 

of autonomous shuttles or RoboShuttle in a pedestrian-heavy transportation environment 

with the consideration of site elevation using SUMO. Simulation of the RoboShuttles in 

the pedestrian-dense environment showed noticeable improvements with pedestrian or 

agent travel times decreasing as the number of autonomous shuttles increased from 

scenario-to-scenario under the peak conditions of morning and evening hours. Similar to 

Gasper et al., (Dandl et al., 2019) also performed a study on the utilization of shuttle-

based buses for meeting transportation demand; however, the transportation system was 
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designed and simulated based meeting mobility demand for a large company within the 

urban context of Munich, Germany. Findings from this literature, concluded that 

designed shuttle service would be expensive to operate if drivers were considered as bus 

operators; however, if autonomous capabilities are considered within the framework of 

the shuttle bus service, then costs could be as low 0.16 Euro/km (or $0.31/mile) with 

rates being even lower if subsidization of the proposed shuttle services are possible 

(Dandl et al., 2019).   

Through the observation of existing literature, it can be observed that most of the 

literature sources are concerned with the implementation and use of ABs to support 

future transportation demand. However, what is interesting to note is the different 

vehicular configurations that are considered in some of the literature sources which 

examined aspects ranging from M&S of ABs to the investigation of user preference for 

public transport with respect to ABs (Portouli et al., 2017; Gasper et al., 2018; Dandl et 

al., 2019; Zhai et al., 2020;). The reason why this is such a curious fact is because bus 

configurations can vary fairly widely in terms of general taxonomy, capacity, and 

technical engine performance in comparison to car configurations which are typical in the 

form of a sedan, SUV, or truck powertrain configuration; buses on the other hand, can 

consist of:  

• standard buses – 40 seat capacity  

• mini coach buses – 30 seat capacity 

• paratransit buses – 15 seat capacity 

• shuttle buses – 8 sear capacity  
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Figure 2.20 depicts the different taxonomies that exist for bus vehicles and that could be 

potentially integrated with different AB vehicle configurations.  

 

 

Figure 2.20. Different vehicular configurations for buses: a) standard bus (Morby, 2016), 

(b) mini coach bus, c) paratransit bus (Lowry, 2015), d) shuttle bus (Allen et al., 2020). 

 

a) 

b) 

c) 

d) 
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2.2.3 Modeling and Simulation of Autonomous Vehicles with Alternative Fueling 

Systems & Infrastructures 

Considering the fact that the SmTS is a highly collaborative system with a 

distributed architecture of numerous parts, subsystems, and collective systems that 

constitute its internal composition, there are potential systems or subsystems that can be 

overlooked. This mistake of overlooking subsystems that could be potentially vital for the 

ecosystem’s sustainment, can occur due to the complex coevolutionary relationship 

dynamics, scale of the system, and emerging technologies that could be integrated within 

its framework. These numerous overlooks can lead to the potential corruption of 

comprehensively observing and assessing the system’s (ecosystem’s) potential functions 

and needs spanning the entirety of its lifecycle. In order to put this complexity into 

perspective and understand the magnitude of the smart transportation ecosystem, a 

domain diagram was created in the system architecting tool Cameo Enterprise as seen in 

Figure 1.26. It is worth noting in Figure 1.26 that the domain diagram is looking at other 

systems, technologies, and entities that may interact with SmTS viewing the SmTS (i.e., 

the system of interest) as a black box. In the case of the smart transportation ecosystem, 

aspects such as service-oriented platforms (i.e., ridesharing or car sharing), effects of AV 

technology on urban form (such as parking spaces), traffic flow behavior, and 

optimization of AV-based traffic flows are significant points of emphasis in research that 

provide indispensable insight into the issues, benefits, and considerations for 

implementing AV technology or SmTS. However, there are systems and subsystems on 
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the periphery of these topics which are responsible for supporting the operations of AVs 

in meeting demand within transportation environment. 

In many ways, these subsystems or systems act as interfaces between the 

transportation system and many other external systems that form the SoSTS context of 

cities or smart cities discussed earlier in this manuscript. One of these peripheral systems 

or subsystems of transportation systems is the fueling infrastructure system, which are 

indicative of the interface between fueling/charging infrastructure for vehicles in the 

transportation ecosystem and as an energy/fuel dispensing location in the energy 

infrastructure ecosystem. With this mind, with energy or fueling sources such as 

biodiesel, natural gas, propane, electricity, and even hydrogen vying as suitable 

alternative fuels to support vehicles in the future to reduce GHG emissions many people 

are asking what the best alternative fuel may be? In order to answer this question, some 

research efforts in literature (Nocera & Cavallaro, 2016) have performed evaluative 

scenario-based studies to analyze the potential role of hydrogen and electricity in 

reducing CO2 emissions with findings that tank-to-wheel (TTW) emission can see 

reductions of up to about 59% in comparison to using conventional fossil-based fuels. 

Furthermore, it was further determined that a mix of alternative fuels such as hydrogen, 

electricity, and biofuels can become a commercially viable transport option to achieve 

climate policy targets as well (Nocera & Cavallaro, 2016).  

Claims and recommendations from literature sources such as Nocera and 

Cavallaro have shown and reinforced the need for diversification of alternative fueling 

sources in support of the transportation sector, especially with the consideration of 

economic and environmental volatility that lies behind fossil fuels. As such, similar to 
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their human-driven counterparts, AVs will have fueling requirements just as HDV do. 

Currently, however, literature such as (Fagnant & Kockelman, 2014; Fagnant & 

Kockelman, 2015; Martinez & Crist, 2015) show that AVs will increase vehicle miles 

traveled/vehicle kilometers traveled (VMT/VKT) due to empty passenger miles between 

meeting customer requests in SAV-based applications. Instances of this can be seen in the 

M&S studies of the incorporation of AVs in transportation networks where increases in 

VKT ranged from 8% to 24% or even higher between 3% to 30% (Gucwa, 2014; 

Childress et al., 2015).  

If society is still reliant on fossil fuels once AV technology fully develops, then 

AVs could pose to be a threat to public health, rather than an aid in increasing public 

health and reducing social disparities in transportation. As a means of averting this 

potential crisis from occurring many automotive companies are turning toward more 

renewable-based fueling platforms for AV propulsion systems, with one of the most 

prominent forms being electric AVs. As discussed at length in Chapter I, EVs do not 

excrete any form of GHG emissions into the atmosphere, however, given the current 

energy sector mix, electricity is generated primarily from fossil fuels such as coal and 

crude oil ultimately negating the zero-carbon emissions that are produced from EVs. 

Nevertheless, most researchers have considered the use of battery electric autonomous 

vehicles (BEAVs) in their studies to investigate their performance in supporting 

transportation demand in existing traffic and transportation networks and scenarios. 

Literature with respect to the implementation of EAVs transportation are fairly 

numerous with most literature sources examining the application of EAVs in shared 

economy scenarios such as ridesharing, carsharing, and ride-hailing (Chen et al., 2016; 
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Jäger et al., 2017; Loeb et al., 2018; Farhan & Chen, 2018). With this in mind, the major 

obstacle with respect to the large-scale deployment of EVs is the lack of adequacy in 

providing charging stations in logical and ethical locations within cities so as to reduce 

range anxiety of drivers. With the shared autonomous electric vehicles (SAEVs) being 

responsible for monitoring charging levels, anxiety from the drivers can be reduced, but 

consideration of recharging or refueling needs to be accounted for, considering that it is a 

weak point to the adoption of EVs or BEVs.  

Simulation studies such as that from (Loeb et al., 2018) showed that SAEV fleets 

can keep up with traveler demand, however, meeting targeted traveler demand is highly 

dependent on vehicle range, station location, and vehicle fleet size to allow for recharging 

downtime of vehicles that aren’t in service. In this study, it was discovered that about 

19.6% of the SAEVs’ mileage average were unoccupied traveling miles, while driving to 

the charging stations accounted for 31.5% of the empty-vehicle mileage (Loeb et al., 

2018). Other literature studies such as (Zhang & Chen, 2020) have looked at the use of a 

smart charge management framework for SAEV use case in the Seattle Puget Sound area 

to determine potential cost reductions, charging requirements and system efficiency with 

the use of solar generation; while (Chen et al., 2016; Jäger et al., 2017) have also 

investigated the integration of SAEVs with charging infrastructure in realistic 

transportation network environments. (Farhan & Chen, 2018) have utilized ABMs to 

study the impact of ridesharing on the operations of SAEVs with the inclusion of 

refueling protocols and infrastructure. However, among these literature sources, there are 

efforts to simulate autonomous cars with alternative fueling infrastructures, but there 
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doesn’t seem to be any studies investigating the integration of AB fleets with electric 

refueling infrastructure. 

Considering the quantitative work that has been done within literature, 

quantitative-based work has been conducted on the other side of the fueling interface in 

the energy infrastructure sector ecosystem to harmonize the transportation sector with the 

energy sector through V2G interfacing. The concept of vehicle-to-grid (V2G) has been 

familiar to literature for some years, but due to some issues such as the potential stress 

placed on existing electrical grid systems and technological immaturity, there has only 

been a handful of quantitative studies while the rest are qualitative and conceptual 

studies. Literature from (Ota et al., 2010; Hosseini et al., 2012; Iacobucci et al. 2018) are 

convenient examples of quantitative research that has been conducted to observe the 

performance of V2G communication in the context of supporting SAEV operations in the 

energy infrastructure by taking into account aspect such as energy system supply during 

operating hours. With this in mind, though literature exists on this subsystem it can be 

said that refueling systems or subsystems (both current and future) need to be considered 

as part of the SmTSs due to the effect that they will have on the logic of AVs and 

ultimately the traffic flow organization. Aspects such as charge scheduling and charge 

sharing with the electrical grid infrastructure for SAEVs have been discussed in relative 

depth in (Chen et al., 2016), and is a feature of the refueling subsystem of the smart 

transportation ecosystem that can have a reverberating effect if not considered.  

Outside of the consideration of electricity as an alternative fuel to bolster the 

operation of EVs, hydrogen fuel and its infrastructure has also been considered by (Offer 

et al., 2010; Ligen et al., 2018) who compared the use of both BEVs and fuel cell plug-in 
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hybrid electric vehicles (FCHEVs). Results from Offer et al., revealed that FCEVs could 

achieve lifecycle cost parity with ICEVs by the year 2030, with FCEV lifecycle cost 

ranging from $7,360 to $22,580; BEVs lifecycle costs ranging from $6,460 to $11,420; 

and FCHEV costs ranging from $4,310 to $12,540 (Offer et al., 2010). (Zhang, Zhang, & 

Xie, 2020) considered the lifecycle costs for hydrogen fuel cell electric bus (FCEB) 

implementation for the city of Zhangjiakou’s transit bus route, by performing the 

lifecycle inventory (LCI) analysis in ISO14040, with results showing that FCEB would 

be feasible to implement. This study provides proof that hydrogen fuel cell powertrains 

may see their best use in high mileage applications such as freight and bus transit use 

cases.  

Whereas literature such as (Offer et al., 2010; Ligen et al., 2018; Zhang, Zhang, & 

Xie, 2020) are focused on lifecycle costs parameters, studies from (Fox et al., 2012; 

Lajunen, 2015; Lane et al., 2017; Bucher & Bradley, 2018; Lane et al., 2020) have not 

only focused on cost of FCHEVs and FCEVs but also facets such as their performance, 

infrastructure requirements, and operational tendencies. For instance, the study by 

(Lajunen, 2015) examined and considered the lifecycle costs and operational output (e.g., 

vehicle power output, speed, and energy loss) of EBs, diesel plug-in hybrid bus with a 

fuel cell extender (SERs), and hydrogen fuel cell hybrid electric buses (FCHEBs). 

However, considering existing literature of M&S of AVs’ integration with alternative 

fueling infrastructures, the use of electricity as an alternative fuel is the only alternative 

fueling infrastructure scheme that has been considered to support fueling objectives and 

requirements in M&S efforts. In literature sources that have been discussed with respect 

to FCEVs and FCHEVs, these studies do not assume any level of AV technology in their 
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vehicles nor are they truly concerned with traffic-based performance measures. 

Therefore, existing literature leaves a lot to be desired in terms of understanding how 

AVs or ABs integrate with other alternative fueling infrastructures such as propane, 

biofuels, natural gas, and hydrogen fueling schemes. 

One of the interesting aspects noted through existing literature, was the study 

performed by Loeb et al. who found that there appears to be a limit on how much 

response time can be improved through decreasing charge times or increasing EV range 

during the operation for SAEVs (Loeb et al., 2018). Furthermore, considering some of 

the technical limitations that some alternative fuel vehicles face such as EVs, 

infrastructure improvements can be made through the use of smart road technologies such 

as wireless power transfer (WPTs) charging tracks or battery swapping technologies at 

designated stations to reduce range anxiety and increase battery life. Studies from 

existing literature have been done on the integration of WPT infrastructure in roadways 

to support AVs (Doubleday et al., 2016; Mohamed, Meintz, & Zhu, 2019; Mohamed, 

Zhu, Meintz, & Wood, 2019) with promising results showing that aspects such as battery 

capacity and thereby weight of the AV can be reduced. For example, (Mohamed, Zhu, 

Meintz, & Wood, 2019) utilized M&S (i.e., SUMO) along with a genetic algorithm (GA) 

that used parameters such as vehicle, roadway design, and charging infrastructure 

parameters to optimize an inductively charged, on-demand automated electric shuttle 

system for the city of Greenville, South Carolina. Findings from the study revealed that 

with proper design of the WPT infrastructure, sustained operations of EVs, infinite range 

and zero recharge downtime, and reductions of 36% in on-board battery size were 

possible at minimum cost (Mohamed, Zhu, Meintz, Wood, 2019). With regard to the 
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consideration of the M&S of AVs with battery swapping technology, there were no forms 

of existing literature that studied the implications of using such a technology with AVs. 

Considering what has been done in existing literature, none of these studies have looked 

at the use WPT charging infrastructure in conjunction with battery swapping for battery 

recycling efforts or looked at how WPT infrastructure would perform in support of a 

hybridized AV fleet of composed of different vehicle types and alternative fueling 

infrastructures. Would such a setup be more efficient in meeting transportation demands 

or less efficient in terms of performance? Not to mention, how would other vehicular 

configurations far in such a hybridized transportation system architecture? 

2.2.4 Modeling and Simulation Contexts for Autonomous Vehicles 

Existing literature studies have investigated and analyzed the use of AVs under 

unique system contexts, however, these research efforts by no means include all the 

aspects that need to be considered in order to give a complete synopsis in regard to the 

natural capabilities and capacity of AVs under unforeseen and paradoxical conditions, 

ultimately giving a rather incomplete understanding of AV performance in 

unconventional circumstances. With this idea in mind, there are numerous aspects with 

regard to the M&S of AVs that are not commonly considered within the M&S context or 

environment of AVs that need to be considered. These modeling aspects consist of the 

inclusion of unique built environments that have unorthodox traffic flow patterns within 

their transportation network, unique architectural layout features, and self-sustaining 

attributes, in addition to the consideration of adverse or inclement weather patterns in the 

M&S of AV fleets. Facets such as these, are commonly overlooked or haven’t been 
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extensive investigated and can have drastic impacts on AV performance in any given 

environment, ultimately effecting the manner in which AV fleets meet transport demand 

requirements. Furthermore, there doesn’t seem to be a significant amount of 

consideration for this at the macro-level of M&S of AVs, but there is quite a bit of focus 

on it at the microscopic level of AV M&S. Considering these lines of thinking, this 

subsection will act as a bridge, connecting Chapter II to ideas developed in Chapter III. 

2.2.4.1 Modeling and Simulation of Autonomous Vehicles in Various Built 

Environments. 

Integrated within the architectural fabric of cities are special zones or ecosystems 

that partially constitutes the architectonic landscape of these built environments. Referred 

to in this research as closed sociotechnical environments, these architectural patterns of 

the urban landscape could act as technological incubators for the cultivation smart 

technologies such as AVs during research, development, deployment, and beyond to 

support gentle and smooth integration of AVs within a city-wide transportation 

ecosystem. A closed sociotechnical environment is a human-developed ecosystem which 

possesses relatively controlled or low flow of people, vehicles, and infrastructural 

resources entering and leaving its premises in comparison to its surrounding or adjacent 

environment which may consist of the city or larger-scale built environment. Examples of 

a closed built environment are universities, retirement villages, research and industrial 

parks, urban residential loops, and in extreme (militaristic) cases, military 

installations/FOBs. In order to solidify this concept, Figure 2.21 provides a concrete 
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comparative depiction of two distinct yet similar closed environments that are a 

university campus (i.e., University of South Alabama) and an FOB environment.  

 

 

Figure 2.21. Comparison of closed sociotechnical environments land use for (a) FOB 

(ATP, 2013) and (b) University campus (University of South Alabama, 2017), colors of 

(b) are indicative of building land use category (i.e., student housing, admin, etc.). 

 

 

In contrast to closed built environments, cities are considered to be open 

sociotechnical environments due to their unbounded and high quantity of social agents 

(a) 

(b) 
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(i.e., people), vehicles, and resources traversing through the city’s various corridors and 

spaces. Suggested by (Kaur & Rampersad, 2018), use of AVs in these closed 

sociotechnical systems would reduce the eminent risk that developing AVs may pose to 

pedestrians and other vehicles within the public domain due to the fact these closed 

environments are relatively controlled environments as compared to cities. The same 

sentiment is echoed by (Lessel et al., 2017) claiming that the military has the opportunity 

to serve as an important incubator for some of these emerging technologies that can be 

reintroduced to the civilian market after being refined in the military to make for a safer 

nation. In fact, there have been successful large-scale implementations of AVs within 

closed environments such as the University of Michigan’s MCity Shuttle, Fort Carson 

base in Colorado (Descant, 2019; Daugherty, 2020), the University of Waterloo 

(Caldwell, 2021), the University of Texas A&M at Corpus Christi (Santos, 2021), Texas 

Southern University (Delaughter, 2019), Joint Base Myer-Henderson Hall in Arlington, 

Virginia (Salmon, 2019). Scaling down operations in this manner allows for some of the 

major sociotechnical concerns regarding AVs and their various obstacles to be 

uncovered, explored, analyzed, and addressed in more detailed within a controlled 

environment. 

As part of the digital transformation of cities into smart cities, closed 

sociotechnical environments could undergo digital transformation quicker than cities 

themselves, by transforming into smart closed sociotechnical environments (SCSE), 

where various smart technologies could be used in conjunction with AVs to test their 

integration with AVs, pedestrians, and transportation infrastructure formulating a 

miniature smart city testbed environment. In fact, Colonel Don Lewis of the 42nd Mission 
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Support Group Commander has intriguingly reinforced this idea by stating that “military 

bases function as small cities…they [we] face a lot of the same challenges municipalities 

face” (Arata & Hale, 2018). In addition to testing the integration of smart technologies 

alongside AVs, these environments are also idyllic for testing the emerging use of AI 

integration within some of its urban systems such as its transportation system. In many 

ways, closed environments could act as small-scale reference architectures for large-scale 

AV deployment, implementation, and integration efforts for smart cities, essentially 

utilizing the architectural building block concept suggested by (Pribyl et al., 2019), the 

closed sociotechnical environment can act as a modular building block to large-scale AV 

deployment.  

In terms of studies that have been performed in existing literature sources, only 

(Doubleday et al., 2016; Gasper et al., 2018) have performed M&S studies on the use of 

AVs in closed sociotechnical environments which is not an extensive amount of research 

performed in this area. (Gasper et al., 2018) examined the implementation of 

RoboShuttles in a small research campus in Renningen, Germany, whereas (Doubleday et 

al., 2016) investigated the use of an autonomous shuttle in conjunction with WPT 

infrastructure in the National Renewable Energy Laboratory (NREL) research campus 

facility. Figure 2.22 depicts the two distinct closed sociotechnical environments that were 

used as M&S contexts by Gasper et al. and Doubleday et al. to gain insight into 

autonomous shuttle deployment strategies for closed sociotechnical systems. 
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Figure 2.22. Closed sociotechnical environment simulated under (a) (Gasper et al., 2018) 

and (b) (Doubleday et al., 2016). 

 

Beyond this, it is worth noting that in both of these studies the use of AVs or 

autonomous shuttles are completely isolated from general traffic flow, meaning that the 

only form of interaction that the AV agents are encountering in the simulated 

environment are pedestrian agents. Being able to observe how AVs or ABs integrated 

into general traffic flows within large transportation network of closed sociotechnical 

system can be insightful for beginning to bridge the gap of small-scale AV deployment 

and large-scale AV deployment which seems to be lacking from both of these literature 

studies from Gasper et al. and Doubleday et al. Furthermore, considering the claim made 

by Colonel Don Lewis and the knowledge gap seen in (Doubleday et al., 2016; Gasper et 

(a) 

(b) 
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al., 2018), insights or information from closed sociotechnical systems can potentially 

even be transferred from research parks or university campuses to military base 

installations/FOBs to help in making their planning, design, operation, and maintenance 

phases more efficient, thereby reducing resources, materiel, risk to soldiers, and 

environmental impact to potential indigenous areas (in the case of FOBs) during military 

operations. 

2.2.4.2 Modeling and Simulation of Autonomous Vehicles under Various 

Weather/Environmental Conditions. 

Even though AVs may undergo testing, development, deployment, 

implementation, and even use in closed sociotechnical environments that offer some form 

of control with respect to the sociotechnical context of using AVs, there always the 

unpredictable and uncontrolled factor of weather that can impact sociotechnical systems 

and therefore social and technological behaviors (i.e., social decisions and technological 

performance of vehicles during inclement weather). It is a known fact that adverse 

weather conditions such as rain, snow, hail, and fog can impair the movement and 

decision-making capacity of people/pedestrians and drivers alike. In fact, in regard to 

vehicles, according to the FHWA, 21% of crashes each year spanning from 2007 to 2016 

were caused by weather-related hinderances or issues on the road, while 16% of the 

crashes per year resulted in fatalities. Additionally, outside of the traffic safety, adverse 

weather can have a direct systemic impact on the flow of traffic in the case of road 

capacity, traffic volumes, vehicle travel times, vehicle speeds, fuel consumption, and 

much more. Literature in the study of adverse weather conditions on traffic flow and 
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driver behavior such as reduced speeds has been extensively studied by (Hall, 1998; 

Goodwin, 2002; Goodwin & Pisano, 2004; Hranac et al., 2006; Unaru & Andrey, 2006) 

in various different weather conditions and environments. Table 2.4, for instance shows 

how unique weather conditions can lead to sizable reductions in various traffic flow 

parameters. Considering the numerous effects that these adverse environmental 

conditions have on human-based traffic flows, this begs the question of how this impacts 

mixed AV-HDV or full AV traffic flows? 

 

Table 2.4. Effects of inclement weather conditions on traffic flow parameters (Hranac et 

al., 2006). 

Traffic Parameter 
Weather Condition Range of Impact 

Free-flow speed 

Light Rain (<0.01 cm/hr) -2% to -3.6% 

Rain (~1.6 cm/hr) -6% to -9% 

Light snow (<0.01 cm/hr) -5% to -16% 

Snow (~0.3 cm/hr) -5% to -19% 

Speed at Capacity 

Light Rain (<0.01 cm/hr) -8% to 10% 

Rain (~1.6 cm/hr) -8% to 14% 

Light snow (<0.01 cm/hr) -5% to -16% 

Snow (~0.3 cm/hr) -5% to -19% 

Capacity 

Light Rain (<0.01 cm/hr) 

and Rain (~1.6 cm/hr) 
-10% to -11% 

Light Snow (<0.01 cm/hr) -12% to -20% 

 

 

 

As opposed to HDV and human drivers, the mechanisms of locomotive behavior 

of AVs are drastically different from their human-based counterpart. Composed of 

technologies such as spectral sensors, optical sensors, actuators, navigation systems (i.e., 

GPS), and software-based systems; AVs are expected to perceive their environment quite 

differently than human drivers, not only under normal conditions but adverse weather 

conditions as well. In fact, weather conditions such as rain can affect the performance of 
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optical sensors such as cameras or even ultrasonic sensors due interference from weather 

phenomena. Figure 2.23 provides a look into the other ways that weather conditions can 

affect the operation of AVs. In addition to this, (Ainsalu et al., 2018) has identified the 

technical limitations or specifications of autonomous shuttles (from EasyMile and Navya) 

under environmental conditions as seen in Table 2.5. Furthermore, this decrease in the 

technical performance of AVs have been proven through the research study by (Zang et 

al., 2019), where it was realized that detection range of mm-wave radar can be reduced 

by up to 45% under severe rainfall conditions. Studies from (Hespel et al., 2011) have 

shown that fog, rain, and snow conditions can affect the performance of LIDAR fairly 

significantly which can indirectly hamper other sensors as well. Failure of any of the 

AV’s sensors could be catastrophic to its performance and the safety of the passenger and 

other individuals within a given transportation space. There is a myriad of weather-based 

scenarios that hamper the performance of AVs during their operation. Understanding how 

AVs will sense, plan, act, and manage these various unique and precarious corner case 

scenarios will be key in overcoming yet another adoption obstacle in the use of AVs 

within transportation spaces. (Sundararajan & Zohdy, 2016) have identified various 

challenges that need to be overcome to move toward adoption of AVs such as technical 

performance issues and data needs, along with opportunities for further growth and 

technology maturity for AVs. Therefore, considering the multitude of scenarios that can 

be created, many researchers have turned to the testing of sensor software or vehicle 

algorithms in virtual environments. 
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Figure 2.23. Weather impacts on AVs (Sundararajan & Zohdy, 2016). 

 

Table 2.5. Autonomous bus limitations/specifications for EasyMile and Navya based on 

weather conditions (Ainsalu et al., 2018). 

 EasyMile Navya 

Operating temperature -10 °C and 40 °C -10 °C and +35 °C 

Humdity <95% <95% 

Wind (continuous) <55 km/h <55 km/h 

Wind (temporary) <85 km/h <85 km/h 

Rain <5 mm/h <5 mm/h 

Max snow on the road (light snow) 10 cm (light snow) 10 cm 

Minimum friction coefficient >0.2 >0.2 

Ice on the road No ice No ice 

Fog/steam/smoke No No 

 

 

 

Considering the challenge facing AV adoption with respect to performing under 

inclement weather conditions, there have been studies performed in existing literature 
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that have been used M&S to help in the development of algorithms or new data for 

machine learning (ML) training applications. Best et al. developed a high-fidelity 

simulation platform used for autonomous driving data generation and driving strategy 

testing that supports rapid prototyping, development, and testing of autonomous driving 

algorithms under unique environmental conditions (Best et al., 2018). In addition to this 

(Rong et al., 2020) have utilized a high-fidelity simulator known as LGSVL simulator (as 

seen in Figure 2.24) to test an autonomous driving stack under realistic virtual 

environments that included agents such as traffic systems, non-ego cars, pedestrians, time 

of day illuminations, and various weather-based conditions which are detected through 

virtual sensors. (Cottignies et al, 2017; Szalay et al., 2019; Vukic et al., 2019; Elmquist et 

al, 2021) have utilized M&S to develop virtual testing platforms for the development and 

testing of algorithms that will drive AV software such as sensors for recognition 

applications, however none of these studies considered meteorological aspects such as 

weather conditions as Best et al. and Rong et al. were able to accomplish. Considering the 

simulators utilized in existing literature, these simulators only model the software logic 

behind one AV autonomous driving stack due to its intended M&S abstraction level 

which is at the microscale. However, there aren’t any literature studies that have looked 

at the effect of weather conditions or patterns on the performance of an entire AV or AB 

fleet with the consideration of static or dynamic transport demand with a M&S context 

such as ABMs. Possessing such a simulation would be advantageous for fleet managers 

or transportation operators to have so as to help in predicting the required fleet size at 

various points throughout the day to anticipate demand or modal shifts in cities during 

peak hour events for example. 
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Figure 2.24. LGSVL simulator environment for automated driving used by (Rong et al., 

2020)
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CHAPTER III – PROPOSED ARTICLE 1 – TOWARDS THE USE OF 

MODULAR, PATTERN-BASED SYSTEMS PROTOTYPING TO SUPPORT THE 

MODELING, SIMULATION, AND EVOLUTION OF CUTTING-EDGE AND 

NONEXISTENT SYSTEMS 

 

3.1 Proposed Article 1 – Prelude 

Systems engineering (SE) is a transdisciplinary and integrative approach to enable 

the successful realization, use, and retirement of engineered systems, using systems 

principles and concepts, and scientific, technological, and management methods (Sillito 

et al., 2019). SE provides the necessary basis and framework for the holistic 

understanding and assessment of complex systems throughout their system lifecycle, 

supporting system development, sustainment, and evolution. This comprehensive process 

is often manifested in the form of the notorious SE V-model, which systematically 

describes and depicts the system activities necessary for cultivating a desired system into 

existence (i.e., conception) and putting it to rest (i.e., disposal). Figure 3.1 shows the SE 

V-model in its entirety.  
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Figure 3.1. System Engineering V-Model (FHWA, 2007). 

 

 

The primary purpose of Chapter III is to provide the quintessential motivation and 

research context for this dissertation in regard to the M&S of AVs and their application in 

sociotechnical systems of the future. As a future mode of transport, AV mobility, will 

require the necessary understanding of the behavior and impact of AVs under various 

distinct social, environmental, and technical operational conditions that may align with 

normal, corner, and edge cases. Facets such as this will be paramount in capturing, 

analyzing, and assessing before the complete fruition of AV adoption occurs in order to 

promote safety, reliability, security, and privacy for all potential users of AVs. Therefore, 

early-stage SE lifecycle activities such as system prototyping that supports scenario 

development through M&S of system architectures such as SmTS architectures could 

provide early knowledge into different fleet operation schemes for a given transportation 

system architecture. Thus, the secondary purpose of Chapter III is to show how M&S can 

be used in conjunction with early-stage SE activities (i.e., CONOPS, system 



176 
 

requirements, high-level design) of the SE process for rapidly understanding nonexistent 

sociotechnical systems. 

 

3.2 Introduction 

As society moves further into the 21st century, new technologies and innovative 

solutions meant to better humanity’s progression have presented themselves through 

unique industries and problem domains. However, opposite to their beneficial attributes 

many of these emerging technologies possess high levels of complexity that can hinder 

their usage. Furthermore, many of these complex systems interact, and in some cases 

integrate with humans, adding another level of complexity. This unique class of systems, 

referred to as sociotechnical systems (STS), are the quintessential marriage of human and 

machine due to their artificial symbiosis which gives rise to various service applications 

that are offered to the user or social entity, and the technological system or technical 

entity. With this in mind, STS and their elements are not isolated entities, but a cohesive 

collection of interconnected entities of subsystems, components, or component systems 

that are open and integrated with their environment. This concept of STS has been 

echoed through the extensive literature of (Trist, 1981; Fox, 1995) who were concerned 

about the application of STS in labor-based environments. Though in a 20th century 

context, many of Trist’s and Fox’s concepts regarding STS remain fundamental to 

understanding STS in the 21st century. Beyond this, aspects such as emergent behavior 

can often lead to the collapse or cultivation of a system, making it imperative be 

identified in many systems that involve humans or software within its system boundary. 
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As the 21st century has started to reveal, complex systems such as STS are expected to 

become more complex with the integration of artificial intelligence (AI) being used in 

diverse systems, making unforeseen systemic feedback more difficult to detect. Instances 

of AI integration can be seen starting to emerge within existing urban transportation 

systems that are already beginning to act as the nexus points for smart city cultivation, 

forming what is otherwise referred to in this manuscript as a Smart Transportation 

System (SmTS). 

3.2.1 Smart Transportation Systems 

Smart Transportation Systems (SmTS) consists of physical transportation 

infrastructure integrated with information communication technology (ICT) infrastructure 

and AI-based systems used to improve the efficiency, safety, and performance 

capabilities. In addition to these smart technologies, technologies such as autonomous 

vehicles (AVs) will inhabit the SmTS space to help improve mobility efforts. As a next 

generation transportation system, a SmTS will likely be a mobility ecosystem consisting 

of a wide variety of AVs (e.g., shared robotaxis, carsharing, public line transport, and 

robocabs). Responsible for the logistics within cities, the SmTS will be an essential 

infrastructure within the context of smart cities creating a new level of complexity – 

hypercomplexity. As part of this hypercomplex interconnected web of infrastructures that 

will consist of other smart infrastructural systems, SmTS will form only a portion of the 

“artificial biome” that constitutes the smart city domain that is a System of 

Sociotechnical Systems (SoSTS). With this, many details remain unknown about SmTS, 

specifically with respect to the systemic (i.e., social, economic, technical, and 
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environmental) implications of incorporating technologies such as AVs within 

transportation spaces, despite numerous news articles (Haydin, 2019; Shaver, 2019; 

Short, 2019; Oliver et al., 2018) and existing literature (Zakharenko, 2016; Fagnant & 

Kockelman, 2014; Fagnant & Kockelman, 2015; Zhang & Guhathakurta, 2017; Donkers 

& de Wit, 2017; Grembek et al., 2019). Disruptive technologies, such as AVs can impact 

the entire fabric of cities, and their continued development and growth. Furthermore, with 

cities, being dynamic living complex systems, conventional means for understanding and 

analyzing STS will not be sufficient due to their nonlinearity, stochasticity, adaptation, 

and constant evolution. To help resolve this issue, ABMs have been used to help forecast, 

give decision-making support, and provide use-case scenario exploration for various 

system stakeholders managing diverse array of complex systems. The use of ABMs to 

analyze the effect of emerging technologies such as AVs on transportation systems has 

seen ample use in literature (Martinez & Crist, 2015; Bischoff & Maciejewski, 2016; 

Fagnant et al., 2016). However, within literature, it appears that the system architecture of 

transportation systems and their respective use cases (i.e., dynamic shared taxi service) of 

AVs are similar, with the only difference being the distinct city environments. Therefore, 

diversification in the simulation of AV use-cases is needed to further explore beyond a 

single use-case and into potential AV futures that are all-inclusive in disparate 

environments. 

3.2.2 Agent-Based Modeling  

In its simplest form, Agent Based Models (ABMs) are abstractions of real-world 

systems, processes, and phenomena that are modeled using low-level rules for objects 
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(agents), in order to understand their collective effects at a systemic level. In an ABM, 

there are 3 major elements – agents, agent relationships, and the agent’s environment 

(Macal & North, 2010). The agent is logical abstraction that inhabits the environment 

predetermined by the ABM modeler. Agents may be self-contained and autonomous, 

possess multiple states/conditions and social predispositions, with the ability to adapt to 

its environment and other agents. Agents possess goal-oriented tendencies and exhibit 

heterogeneity both physically and behaviorally (Macal & North, 2010). As social 

creatures, agents naturally interact and communicate with other agents, and their 

environment, thereby forming relationships. The agents’ relationships act as the catalyst 

for the cultivation of emergent behavior, causing various patterns and structures to 

manifest within the environment. In an ABM, realism and abstractionism begin to 

intersect, if the interactions between agents are identified appropriately. Lastly, systems 

are typically part of a larger system ultimately forming the system context. Within the 

framework of an ABM this system context is considered the agents’ environment. In the 

agents’ environment, all aspects that are meant to represent the system’s ecosystem in the 

real world are abstracted within the ABM. All objects in the ABM possess their own 

rules of interaction with agents. 

The ABM is bound by the coding language that determines the activities, 

states/conditions, and communication/interaction between each agent. Over the years, 

there have been many coding languages used to drive the logic behind ABMs, from Java 

to C++ to proprietary languages that are unique to their own modeling programs. For 

those less skilled in programming, this area of ABM has proven to be a hinderance to the 

adoption of ABMs within some applicational domains. However, the Logo programming 
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language has helped overcome this and introduce newcomers to the world of ABMs. As 

the brainchild of the mathematician Seymour Papert, Logo was developed in 1967 and 

1968 (Logo Foundation, 2015). Related to the programming language known as LISP, 

Logo was created by Papert as an educational learning tool for children and adults. 

Within Logo, the agent is referred to as a turtle – early iterations of Logo used robotic 

turtles controlled through computer code on sheets of paper to draw pictures and shapes 

(Logo Foundation, 2015). Papert saw Logo as a tool for children to engage in novel 

interactions with computer[s] – [ultimately] breaking down barriers between children and 

the language and customs of science and mathematics (Powell, 2017). The turtle robot 

was eventually replaced by a digital turtle and then multiple agents as seen in modern-day 

ABMs. Programming environments include Programmable Bricks, LEGO Mindstorms, 

StarLogo, NetLogo (were developed in the 1990s) and Scratch, StarLogo TNG, 

UCBLogo, MSWLogo, and FMSLogo (were created in the 2000s) (Logo Foundation, 

2015). With a flood of new Logo environments in the 1990s and 2000s, Logo 

environments such as Logo Blocks, StarLogo, StarLogo TNG, Snap! and Scratch, this 

eventually allowed for rapid model creation.  

StarLogo is a family of simulation programs developed by Mitchel Resnick at the 

Massachusetts Institute of Technology (MIT) which is comprised of StarLogo Nova and 

StarLogo TNG. Both programs utilize coding blocks as a means of programming the 

various agents and their respective interactions. The ABM capabilities of StarLogo for 

multi-agent simulation have also been used in diverse applications such as to understand 

the stochastic phenomena that emerge from building evacuations (An et al., 2006) and to 

analyze foraging patterns and behaviors of ant colonies to give insight into swarm 
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intelligence (Liu et al., 2007). Many ABMs developed in StarLogo provide insightful 

information to support decision-making, understand disruptive effects on systems, and 

assist in the comprehension of complex concepts. Alongside StarLogo, in terms of the 

most frequently used Logo ABM used in research rigor is NetLogo. Unlike StarLogo, 

NetLogo is a text-based programming platform developed by Uri Wilensky at 

Northwestern University. NetLogo is more widely utilized within research due to its 

ability to simulate the three elements of ABMs: agents, agent interactions, and the 

environment. NetLogo has been used in literature in a variety of research applications 

such as transportation planning, management, and policy (McDonnell & Zellner, 2011, 

Kponyo et al., 2016; Calabrò et al., 2020); biological systems modeling (Colosimo, 2008; 

Chiacchio et al., 2014); technology diffusion modeling (Sopha, 2017); evacuation 

modeling (Almeida et al., 2012; Poulos et al., 2018); communication systems M&S 

(Babis & Magula, 2012; Kponyo et al., 2016; Glass et al., 2017), and more. Additionally, 

with a review of the state of the art in ABMs having been performed by (Abar et al., 

2017) it can be inferred that NetLogo is a more sophisticated ABM tool than StarLogo 

due to its applicational domain encompassing various topic areas and fields of study, 

making it more versatile and inclusive ABM environment.  

 

3.3 Materials and Methods 

In this study, the methodology in effectively comprehending and applying ABMs 

consisted of utilizing more than one ABM tool. This was accomplished through 

exploration of the Logo ABM space. The first ABM tool that was learned in relative 
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depth was StarLogo Nova. As familiarity for the modeling process was cultivated and 

matured within the StarLogo Nova modeling scheme, more complex and refined ABMs 

that possessed more computational modeling strength and model scalability potential 

were then investigated into. The second ABM tool that was chosen was NetLogo. 

Throughout the use of these ABM tools learning observations were developed in order to 

attain comprehensive concrete experience of approaching ABM utilization from a novice 

perspective. In order to effectively master the various concepts within the learning 

process as well as provide some form of knowledge to existing literature, the SmTS (i.e., 

a nonexistent system) was chosen as the SoI to be modeled and simulated within both 

StarLogo Nova and NetLogo.  

Within this study, the application of AVs within a fixed stop/public line transport 

architecture is simulated in a city space. A total of six agent classes or breeds were 

created which consisted of: AV agents, traditional vehicle (TV) agents, station agents, 

AV rider agents, walker/biker agents, building agents, and weather-based agents such as 

cloud and raindrop/precipitation agents.  

 

3.3.1 Citizen Agents 

The human population are a vital component of the integrated framework of 

socio-technical systems (STS). STS, such as cities, are comprised of emergent behavior, 

which is embodied through the movement people and goods creating population 

densities. In the study simulations, the citizen agents are restricted to two major breeds 
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“breeds” that constitute the social organization system within SmTSs. These “breeds” of 

citizen agents are AV riders and walking/biking agents. 

3.3.1.1 Autonomous Vehicle Rider Agents. 

AV riders are those individuals utilizing AVs as their desired mode of 

transportation. These agents are a subset of the citizen agent population and compose a 

varying percentage of the simulated population. AV riders initially traverse their 

environment hailing an AV or moving to an AV service station where it will wait an 

allotted time for an AV to arrive for pick-up. If the AV doesn’t arrive within the allotted 

time, the AV rider choses another mode of mobility such as walking/biking thereby 

changing their state. If the AV does arrive within the allotted time, then the AV rider is 

transported to its intended destination within the simulation space. The allotted time takes 

into account the environmental conditions through simulated weather conditions. Once 

serviced by an AV, the AV rider goes from unserved to served.  This cycle is ultimately 

repeated until the simulation reaches its intended runtime limit. In terms of their 

relationships or interactions, AV riders are intended to interact with: 

• AV rider agents which is representative of socialization between other riders; 

• AV agents which is indicative of the AV riders hailing an AV at the start location 

or service AV station; 

• AV service stations are where the AV riders wait for an available AV agent to 

arrive  

• Building agent which is the AV rider’s destination 
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3.3.1.2 Walking/Biking Agents. 

Walking/Biking agents are citizen agents that take non-motorized modes of 

transportation within the city. These agents move from location to location within the 

simulation space without the need of going to an AV station.  

3.3.2 Vehicle-Based Agents 

Vehicle-based agents in the simulation space consisted of two major classes: 

autonomous vehicles and traditional vehicles (i.e., no automation). Both of these vehicle 

types were responsible for the transportation or movement of their intended service 

population which were AV riders for AV vehicles and personal drivers in the case of 

traditional drivers. The following subsections discuss the functionality and interactive 

relationships that govern each of this vehicle-based agents in their respective simulation 

space. 

3.3.2.1 Autonomous Vehicle Agents. 

Within the SmTS boundary, a certain percentage of vehicles within a given traffic 

flow may consist of AVs. AVs will be capable of intelligent travel planning, quick 

situational or scenario-based decision making, communication with other vehicles and 

information systems, and much more, making its behaviors distinct from its humanistic 

counterpart. AV agents are capable of driving to meet AV rider demand at designated AV 

rider locations and AV service station stops. AV agents are capable of moving from one 

AV rider location to the next or from one AV station to the next. The interactions of an 

AV agent are plentiful; AV agents interact with: 
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• AV rider agents for the purpose of picking up hailing AV riders at AV rider 

locations or designated AV service stations 

• Walking/biking agents through the process of AV-pedestrian collision avoidance 

• AV agents through the process of AV-AV collision avoidance 

• TV agents through the process of AV-TV collision avoidance 

• AV Station agents which detect any AV riders present and notify the AV agent 

3.3.2.2 Traditional Vehicle Agents. 

The traditional vehicle (TV) agent is representative of a conventional vehicle 

being driven by a human driver. TV agents are placed within the simulation space as a 

means of simulating hybrid vehicle flows that are forthcoming within transportation 

spaces as AVs begin to enter the automotive marketplace in the coming years. TV agents 

are expected to interact with: 

• AV agents through the process of AV-TV collision avoidance; 

• TV agents through the process of TV-TV collision avoidance; 

• AV riders and Walking/Biking agents through the process of TV-pedestrian 

collision avoidance 

3.3.2.3 Autonomous Vehicle Station Agents. 

The AV station agents are static agents that act as intermodal facilities or bus 

stations/stops commonly seen in cities. AV station agents are expected to develop 

relationships with entities such as: 
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• AV agents through their interaction of detecting the nearest AV station agent; 

• AV rider agents by acting as a waypoint for AV riders to wait for the arrival of an 

AV agent 

3.3.3 Building Agents 

Cities are composed of intricate spatial topologies that are formed through the 

manifestation of the transportation network system. This space is responsible for the 

movement of vehicles, allowing for the movement of people and goods through its 

infrastructural corridors, thereby driving economic, social, and even technological 

welfare of the city. The interaction that building agents will have within the simulation 

space will consist only of the interaction with the AV rider, in which the building will act 

as a destination waypoint (i.e., office, home, shopping, etc.) for the AV rider agents. 

3.3.4 Weather-Based Agents  

Externalities are often an unconsidered facet in some instances within the realm of 

systems modeling. By not considering various unique external factors that are 

consequential to the SoI, through its functions and behaviors, inaccurate conclusions 

could be made by the system modeler causing unintended reverberations within the SoI 

once implemented within its intended operational environment. In the following sections, 

two agents that make up the weather-based agents’ class are described briefly. 

3.3.4.1 Cloud Agents. 

Clouds create varying conditions for drivers traversing through transportation 

spaces. This affects the drivers’ driving habits and attentiveness in different ways, and 
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also affects automated-based vehicles. With the presence of clouds in a realistic 

environment, phenomena such as glares, darken environments, and flares could create 

exaggerated environments to AV’s optical sensors (e.g., cameras), which may trick the 

AV into performing erroneous actions. In terms of its agent interactions, cloud agents do 

not interact with any other agent besides the raindrop/precipitation agent. (Note: the 

cloud agents are unique to the StarLogo ABM and are not present in the NetLogo ABM.) 

3.3.4.2 Raindrops/Precipitation Agents. 

Raindrops/precipitation affect how human drivers traverse their transportation 

environment and interact with other drivers; however, precipitation agents have a more 

direct impact on driver behaviors due to their immediate physical interaction with the 

vehicles. The same concept can be applied to self-driving vehicles, which may be at more 

of a disadvantage because of their need to account for a suite of weather conditions and 

scenarios and being capable of perceiving, planning, and acting through a robust 

situational awareness logic. With respect to their interactions, raindrop agents are 

expected to interact with the following agents: 

• AV agents to reduce their speed 

• TV agents to reduce their speed 

• AV rider agents which are expected to wait longer during inclement weather for 

AV transport service before transitioning to the Walking/Biking “breed” 

As a means of consolidating the interactions within the simulation models 

developed in StarLogo and NetLogo, an interaction matrix is developed. The interaction 



188 
 

matrix is an extension of the Multi-Domain System Matrix (MDSM), which observes the 

inter-actions between specific system domains and their respective attributes (Bartolomei 

et al., 2011). In the interaction matrix, only the social and technical domains are 

considered based on the agents and agent interactions considered. Table 3.1 shows the 

general interaction matrix for modeling the SmTS with agents described above. The 

convention of Table 3.1 can be understood by reading one of the primary cause agents 

first, followed by the “interacts with…” column then one of the primary effected agents. 

The intersection of the primary cause agent column and primary effected agent shows the 

nature of their in-tended interaction. 
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Table 3.1. Interaction Matrix for StarLogo and NetLogo Simulation of Smart Transportation System. 
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3.3.5 Experiences from StarLogo Nova 

To effectively apply StarLogo Nova in modelling the SoI; platform assets which 

consisted of learning resources are utilized as tools for creating familiarity with StarLogo 

Nova; becoming accustomed to the ABM model development process; and providing an 

additional reference source for block programming. Many of the learning and platform 

resources are comprised of tutorial documents, introductory documents, and a resource 

modeling community. To refine the skills taught within the learning resources, a simple 

epidemic model was developed in accordance with the learning documents, however, as 

comfort with StarLogo Nova developed, the basis of the epidemic model was morphed 

into a simulation model resembling that of the SmTS with dynamic ridesharing (referred 

to as Case S1). With the creation of Case S1, exploration into an alternative system 

architecture is investigated. Through StarLogo Nova’s feature called “Remix”, Case S1 

was copied and altered through the modification of the coding blocks which promoted 

reusable code and thereby rapid code generation. Through this process, two architectural 

variants of the same SoI were developed – a SmTS with no fixed AV stops (i.e., Case S1) 

and a SmTS with defined AV stops that resembled intermodal facilities (i.e., Case S3).  

In order to push the limits of StarLogo Nova, exploration into the simulation of 

weather in the simulation space with the SmTS was also performed. Though simulating 

weather is cumbersome in StarLogo Nova and less accurate (i.e., realistic), this 

experiment showed that simple weather events can be simulated within StarLogo with 

some form of ease to symbolize externalities of the SmTS operations. This simulation 
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model is referred to as Case S2 since it is directly derived from the code block scheme 

generated in Case S1. 

Pushing StarLogo Nova towards realism, another remixed simulation (i.e., Case 

S4) was created where the city environment within the simulation space was altered to 

resemble an existing city in terms of its density typology. The remixed simulation 

model’s city environment was modeled after the US city of Mobile, Alabama. This 

experimentation in city typology within StarLogo Nova was performed not only for 

invoking realism, but to overcome the lack of built-in Geographical Information System 

(GIS) capabilities in StarLogo Nova. Within Case S4, the general building density of the 

city of Mobile, Alabama, was roughly recreated in StarLogo Nova, with some of its bus 

stops which would act as AV stops during runtime. In the Case S5 simulation, one of the 

AV stops from Case S4 is used for more detailed simulation, with the code from Case S4 

used as the basis of the simulation. The Case S5 simulation is representative of an AV 

station located at the site of the Mobile Regional Airport. In the context of an SmTS, this 

AV station would function as an intermodal facility connecting air travel through 

incoming and departing flights with ground-based transport in AVs entering and leaving 

the airport facility. Areas for AV pick-up were designated throughout the simulation 

space along with tarmac loading areas for airplanes to pick-up passengers. Through the 

observation of the pick-up zones in Case S5 (as well as in Case S4 and Case S3) a 

recurring pattern can be seen in the simulation code. This pattern has allowed similar yet 

highly different simulation models to be created in a rapid manner. Furthermore, through 

the gradual development of different StarLogo Nova models, it has become clear that 

though simulation models may be created separately, they can be connected through the 
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incorporation of model abstractions that may be established in each model. Figure 3.2 

shows the collective model exploration process that was produced in StarLogo Nova. 

 

 

Figure 3.2. Different simulation models developed in StarLogo Nova to accumulate 

ABM knowledge. 
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ABM constituents, but a proprietary text-based programming language. With a text-based 

programming language, the NetLogo had more flexibility in coding more complex 

systems. However, numerous rules for appropriate semantics and syntax showed the 

intricacies of coding in NetLogo. From a novice’s perspective, NetLogo made modularity 
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more difficult to observe and comprehend. This can cause the abstracted view of the SoI 

being modeled to become lost due to concerns with meeting technical coding 

requirements. What is more, within the NetLogo framework, exist three primitive 

constructs that give its simulations realism. These primitive constructs are referred to as 

turtles, patches, and links. With NetLogo’s more complex semantic and syntax rules, 

agent types, and lexicons, a more involved learning process with various types of 

learning resources was required. The learning materials used in comprehending NetLogo 

consist of NetLogo’s Application Programming Interface (API), tutorial videos and 

documents, textbooks, forum communities, and other external and third-party learning 

resources. In terms of support resources for learning, NetLogo possessed a significant 

amount of support material for understanding the various aspects of its framework and its 

programming language, making the learning curve steeper. Rather than modeling the use 

case scenarios of the SmTS (i.e., Case S1, S2, S3, S4, and S5), only two model cases 

from Section 3.3.5 were modeled in NetLogo. The model cases that were selected were 

from Case S3 and Case S4, which correspond to Case N1 and N2, respectively, where 

“N” stands for NetLogo. Figure 3.3 shows the model progression in the NetLogo 

environment. 

In the process of developing Case N1, it became clear that significantly more 

realistic agent behaviors, agent interactions, and simulated environments could be created 

due to NetLogo’s abstraction and incorporation of its three primitives (i.e., turtles, 

patches, and links), which act as building blocks for ABM development and execution. In 

NetLogo, Case N1 was recreated with the same concept of the Case S3 in mind, however 

aspects such as the use of city typology were possible. Therefore, Case N1 was developed 
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with a generic city grid pattern with the integration of AV station agents to offer some 

form of transportation-based realism. In conjunction with Case N1, further examination 

was performed within NetLogo by using its GIS extension for the importation of GIS 

data into the NetLogo. GIS data for the city of Mobile’s roadway network was used to 

provide a realistic representation of the implementation of a SmTS within a desired city. 

However, there was a major limitation encountered while incorporating GIS data in 

NetLogo which was the inaccurate portrayal of agent movements on designated GIS 

zones such as roadways causing a more imprecise simulation model. This GIS-

augmented simulation model is referred to as Case N2 and is meant to correspond with 

the Case S4 simulation model generated in StarLogo Nova. 

 

 

Figure 3.3. Different simulation models developed in NetLogo to accumulate ABM 

knowledge. 
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3.4 Reflecting on Progress to this Point 

This section takes a pause to reflect on the progress to this point of the research 

through the perspective of a novice learning coding and how to appropriately build an 

ABM with no prior knowledge in simulation modeling. The recounting of experiences in 

this manuscript will consist of taking a full look into the advantages and disadvantages of 

utilizing StarLogo Nova and NetLogo as ABM tools. This will reveal insights such as 

challenges that were encountered in trying to grasp the concepts and approaches to 

developing ABMs. 

Based on the experiments, StarLogo Nova is a simple ABM tool for modeling 

complex systems such as the SmTS. However, through the activities performed in 

Section 3.3.5, a high-level “black box” perspective of the SmTS was obtained due to the 

block coding paradigm present within StarLogo Nova’s model development framework, 

allowing for more systemic thinking and modeling of the SoI without worrying about 

code-based technicalities. In this section, a retrospective examination of the activities and 

experiments will be performed in order to reflect on the observations that were made 

throughout the modeling process in StarLogo Nova.  

From the perspective of a novice, holistic ideas such as a system of system 

models (SoSM) would not have been realized without the presence of StarLogo’s block 

programming interface. With this, StarLogo’s modular approach to programming aids 

modelers in not worrying about the technicalities of programmatic syntax and semantics, 

permitting the modeler to forgo the consideration of coding technicalities so that they are 

able to focus on generating the big picture of the SoI that is being constructed from the 



196 
 

bottom up. Of course, when it comes to understanding the architecture of a nonexistent 

system such as the SmTS, understanding the architectural characteristics can be unclear 

to the modeler creating conflicting and inaccurate results when more detailed system 

modeling and analysis conducted. Therefore, with a rudimentary tool such as StarLogo 

Nova, aspects such as: level of abstraction, external interfaces, and 

components/subsystems can be considered early in the system modeling process due to 

ease of code production and assemblage.  

Addition to observing an SoI holistically, StarLogo Nova does provide for the 

support of some relatively realistic agent behaviors which aids in creating near-realistic 

models that resemble real processes. However, to invoke such realism within a given 

system model in StarLogo Nova, creative and resourceful means of exploiting 

interactions need to be undertaken in programming due to the prefabricated coding 

blocks. An example of this was seen in the creation of weather patterns in StarLogo 

where precipitation and rain intensities were simulated with their impact on the speed of 

AVs and TVs in the simulation space, allowing for the ridesharing system being modeled 

to incur some performance impacts (i.e., service degradation). Section 3.6 expands on 

this observation more through the pragmatic implementation of Case S2 through S5 and 

even in Case N1. 

 

3.4.1 Disadvantages in Using StarLogo Nova – Technical Performance 

As powerful of a tool as StarLogo Nova is, in terms of modularity, when it comes 

to reusing code or accelerating the production of code, there are numerous disadvantages 
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behind these positive features of StarLogo Nova, which have proven to hinder StarLogo 

Nova’s performance as a reliable research simulation tool. In this subsection, the 

technical performance disadvantages of StarLogo Nova will be discussed at length. The 

technical performance disadvantages are essentially shortcomings that were discovered in 

the simulation tool while StarLogo Nova was being utilized in the learning process. 

These shortcomings can affect aspects in the simulation through agent interactions, agent 

behaviors, abstractions or assumptions that are imparted in the simulation model, and 

simulation data collection. With this concept in mind, one of the biggest disadvantages or 

limitations in the utilization of StarLogo Nova is the incapability of assigning agents to 

stay specific zones (e.g., streets, runways, etc.).  

3.4.2 Advantages and Disadvantages in StarLogo Nova – Supporting Platform 

Beyond development of system simulation models, there is also the supporting 

platform of the ABM that needs to be considered. This is the element which helps engrain 

program tendencies such as tool-specific heuristics, syntax, and semantics that may be 

overlooked by beginners. Therefore, with a limited background in simulation modeling, 

having supportive or supplementary learning resources such as online course material, 

tutorial videos, tutorial documents, and reference guides can have a significant impact in 

reducing the learning curve in comprehending an ABM’s format and coding language. In 

this section, the advantages with respect to the supporting resources (or platform) of 

StarLogo Nova are discussed to provide knowledge on the availability of simulation 

modeling support. With this in mind, in terms of the support platform for StarLogo Nova, 

there is an adequate amount of learning resources to utilize in order master StarLogo 
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Nova within a short time frame. In this study, learning resources such as tutorial 

documents from MIT’s Scheller Teacher Education Program (STEP) Lab website were 

utilized as introductory support tools for learning, conceptualizing, and referencing 

purposes. Since StarLogo Nova, supports web-based programming ABM capabilities, 

sharing models publicly (or privately) is possible allowing for a community of modelers 

to share modeling and programming ideas. Use of the resources in the modeling 

community was exploited once the basics of modeling in StarLogo Nova were achieved 

because some models contained advanced and complex sequences of coding blocks. 

Resources such as the modeling community were pivotal assets in examining and 

researching other individuals’ simulations to understand how to implement certain 

dynamics within the simulation models formulated in this study. Supporting assets such 

as learning videos (e.g., YouTube) were also present within the StarLogo Nova support 

platform, though not directly associated with MIT’s STEP Lab project. 

Concerning the disadvantage using StarLogo Nova, there are two major issues 

behind using this ABM tool. The first issue is the inability of exporting code from 

StarLogo Nova for the purpose of general optimization or software library generation. 

Modularity with respect to code production in StarLogo Nova plays a critical role in its 

usage as ABM tool but being unable to impart these characteristics beyond the 

boundaries of the StarLogo Nova platform makes it a less powerful ABM tool to utilize. 

Modular code created in StarLogo Nova, would basically act as the building blocks for 

larger modular code that would be exported into software libraries for use in other 

StarLogo Nova simulations as modules composed of modular code ultimately developing 

an interesting software pattern. The second issue is that software libraries can’t be used to 



199 
 

import some form of capabilities within StarLogo Nova or to extend its initial 

functionality. Being able to extend the initial capabilities of StarLogo Nova through the 

use of external software libraries could help alleviate the problem of generating more 

realistic agent behaviors and interactions, making simulations in StarLogo Nova less 

rudimentary in nature and more realistic. Additionally, the inability of calling a specific 

library whether proprietary or not may also have an effect on the level of creativity left to 

the modeler’s discretion, limiting the modeler to only what is available in StarLogo 

Nova, rather than other extensions or libraries which can increase the modeler’s creative 

apertures. To solidify this rationale, Figure 3.4 shows the interdependencies of StarLogo 

relative to potential software libraries from which it could benefit from for purposes such 

as data analytics, data visualization, and even machine learning applications. 
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Figure 3.4. Potential interdependencies StarLogo could benefit from if not for being a 

closed platform. 

 

 

3.4.3 Advantages and Disadvantages of Using NetLogo – Technical Performance 

Through experiments performed in NetLogo, it was seen that NetLogo is less of a 

simple ABM tool with a more technical ABM framework that is more fine-grained in 

terms of modeling capability and capacity. Based on NetLogo’s capabilities, the NetLogo 

environment seems to exfoliate the “black box” shell of the SoI (i.e., SmTS) and reveals 

its internal mechanisms by requiring more knowledge about SoI through its agent 

behaviors and their relationships. Opposite to this, the NetLogo ABM framework is 

centered on more of the modeling of the “white box” perspective of the SoI rather than 

the “black box” perspective. In this section, a retrospective examination of the activities 

and experiments will be performed in order to reflect on the observations that were made 

throughout the modeling and learning process in NetLogo.  
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As opposed to StarLogo Nova, NetLogo, uses hard coding as a form of 

programming various agents within its environment. This allows modelers a nearly full 

range of creative freedom of how specific classes or breeds of agents should behave, 

interact, and communicate with one another, giving more realism to simulations to 

resemble real system behaviors. The only issue with hard coding with NetLogo is that 

similar to StarLogo, NetLogo uses a proprietary coding language that imposes a learning 

curve to understand its unique programming language. Aside, from the text-based coding 

aspect in NetLogo, NetLogo possesses what are considered three classes of basic 

elements – turtles, patches, and links. In comparison to StarLogo, which doesn’t abstract 

these elements; NetLogo’s three elements allow for truly fine-grained interactions and 

behaviors to circulate through the simulation from agent (e.g., low system level) to (high) 

system-level as emergent behavior. In addition to this, with modeling elements such as 

patches being location-specific and with the simulation space capable of being expanded 

to almost any size, large scale virtual simulations can be created that are heavily 

dependent on parameters such as spatial reference; an issue that was impossible to 

address in StarLogo Nova due to a fixed (unadaptable) simulation space. As a 

compliment to this capability, NetLogo’s code also allows for patch elements within the 

simulation space at specific locations to be customized promoting the creation of unique 

patterns such as grids or other non-uniform patterns. Parts of these patterns can be 

designated as no walk zones for certain agents adding further realism to the simulation 

space, another aspect that couldn’t be achieved in StarLogo Nova. NetLogo also supports 

the importing of GIS data through the reading of shapefiles, allowing for real geospatial 

data to be used as a reference layer for any form of simulation that is placed on its 
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overlay. Considering these facts, NetLogo could be a reasonable candidate for building 

and executing a transportation network analysis for a specific city given that information 

such as signal timings, GIS information, and traffic movements at specific intersections 

are known in lieu of simulation programming.  

In comparison to StarLogo Nova, there is one truly important aspect that 

standouts when programming in NetLogo and that is the ability of “selective action” 

among agents or a class of agents. What is meant by “selective action” is that when an 

action is applied to another agent or its environment, only stimuli is applied to that one 

agent and if conditions are met within that agent class or nearby agents in different 

classes, then the effects of the stimuli will reverberate through the simulation space. This 

action is truly what makes an agent independent or autonomous within an ABM.  

In terms of the graphical interface, NetLogo’s interface, is almost completely left 

up to the modeler’s discretion similar to StarLogo Nova, but there seems to be a lot more 

options and flexibility in NetLogo which integrates with the coding program making 

simulating scenarios more interactive. Interface element options such as choosers, input, 

outputs, and switches are some of the interface elements that are not found in StarLogo 

and can help in creating a robust dashboard environment where exploratory research can 

be supported and conducted to verify against system requirements. Though StarLogo 

Nova is capable of plotting and exporting data from the simulation model to external 

programs like Excel, there is a lack of diversity when it comes to graph types in StarLogo 

Nova as opposed to NetLogo. In NetLogo, the modeler is able to create two more 

additional graph types than in StarLogo Nova with use of Bar and Dot/Scatter plots that 

dynamically change with the simulation models’ states, providing more data visualization 
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and analytical capabilities to the modeler or researcher as data is collected from 

simulation runs. 

The programming extensions in NetLogo add an almost limitless possibility of the 

features that can be performed within its environment making it a suitable space for 

activities such as systemic tests and evaluations especially for the prototyping of large 

nonexistent complex systems. From a visual perspective, this is significantly different 

from the StarLogo Nova abstraction seen in Figure 3.4, where instead one would see an 

integrated NetLogo environment with other external libraries as seen in Figure 3.5. 

 

 

Figure 3.5. Interdependencies NetLogo possesses with its extensions and potential 

external libraries. 
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3.4.4 Disadvantages and Shortcomings in Using NetLogo – Supporting Platform 

The platform that supports the modelers’ capabilities and capacity for modeling in 

NetLogo are robust in comparison to the platform for StarLogo Nova, but this is due to 

the fact that StarLogo Nova’s programming language, is more intuitive and simpler than 

that of NetLogo. With this in mind, this can effectively reduce the learning curve for 

StarLogo Nova. Conversely, however, NetLogo’s learning curve has been somewhat of a 

vulnerable point which has been caused due to a lack of intuitiveness in NetLogo’s 

programming language. Furthermore, aspects such as semantics, syntax, and their various 

error messages are parts of the reason for NetLogo’s relatively steep learning curve and 

nonintuitive coding framework. Though learning sources such Stack Overflow and 

NetLogo’s Modeling Commons are available to help, resources in resolving the 

confusion around semantic and syntax issues and errors need to be more prevalent as a 

supportive amenity for modelers, especially those of neophyte status. Therefore, what 

could be done is establishing a repository of semantic and syntax error meanings in 

NetLogo’s API explaining the rationale behind certain error messages. This supportive 

learning resource would be helpful to beginners of NetLogo and could reduce the 

learning curve and adoption time of understanding NetLogo’s programming language, 

potentially bypassing the issue of overcoming NetLogo’s nonintuitive programming 

language. 

 



205 
 

3.5 ABM Frameworks 

The focus of this section is to investigate further into the ABM frameworks of 

StarLogo Nova and NetLogo as separate environments or, in this case, as learning or 

system modeling modules containing their own internal levels of modeling abstraction. 

Furthermore, it is intended that this section will begin to reveal the respective modeling 

abstractions between these separate ABM schemes that could be linked to one another to 

form a high order ABM modeling framework composed of two ABM tools. This section 

is meant to provide a universal or connected understanding between the two ABM 

frameworks of StarLogo Nova and NetLogo, showing their potential as a collective unit – 

a system. 

Through the various observations made throughout the learning process 

performed in this manuscript, it can be seen that StarLogo Nova and NetLogo possess 

different modeling capabilities, which are affected by various aspects ranging from code 

language format to ABM platform capacity such as the presence of modeling extensions. 

In fact, the modeling abstractions found in StarLogo Nova and NetLogo is what makes 

them distinctly different ABM tools. 

 

3.5.1 ABM Toolkit 

In this section the act of applying the knowledge that has been learned in the 

previous sections is executed to connect the cerebral or theoretical with the physical 

learning process. Therefore, this section will begin to look at StarLogo Nova and 

NetLogo not as separate distinct ABM tools, but rather as a logically cohesive ABM 
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toolkit that are interconnected through their inherent model abstractions that provide for 

“black box” and “white box”-leaning views of the SoI. A new ABM framework will 

allow for the cultivation of a toolbox approach to developing system models of 

nonexistent systems in a progressive and conscientious manner. 

As discussed in Section 4, StarLogo Nova and NetLogo are distinctly different 

ABM frameworks due not only to their isolated modeling environments, but because of 

their inherent predisposition in their modeling abstraction levels which is derived from 

lower-level ABM scheme aspects such as the programming language format. These 

fundamental framework dispositions are caused by each ABM’s respective modeling 

abstraction limitations creating shortcomings, weak points, or gaps in gaining the unified 

picture of the SoI, which is problematic from a systemic perspective. However, to 

overcome the weaknesses inherent in each ABM tool, integrating these tools through 

their modeling abstraction capabilities could allow for coverage of singular modeling 

weak points found within each ABM’s framework. This concept essentially revolves 

around the idea of visualizing each ABM tool as a separate learning or system modeling 

module connected with each other through their modeling abstraction layers. In other 

words, one could see StarLogo and NetLogo as “modeling modules” with each 

possessing its own internal components and internal abstractions. These modeling 

modules are connected through external abstractions which are meant to cover the 

abstraction gaps in each modeling module thereby promoting progressively more detailed 

or lower-level modeling abstraction from one modeling module to the next. Figure 3.6 

gives an abstract depiction of this concept.  
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Figure 3.6. Conceptualization of Interconnectivity of ABM Frameworks through 

Modeling Abstraction. 

 

 

As seen in Figure 3.6, the external abstractions act as logical interfaces between 

the modeling modules. With the difference in modeling abstraction from left to right, as 

one progresses further to the right, the ABM framework will allow for more detail and 

lower-level system abstraction to be revealed to the system modeler leading to the growth 

of internal and external modeling abstractions due to increased realism and complexity in 

the system modeling. Through this process, it is expected that the SoI being modeled will 

evolve, becoming more realistic in its agent’s behavior, interactions, and environment as 

more knowledge is gradually known about the SoI. In this case, the external abstractions 

between modeling modules act as connectors or interfaces between two modeling 
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modules to support system modeling evolution. This idea can be taken a step further. 

These modeling modules (i.e. StarLogo Nova and NetLogo) can be integrated through 

their external abstractions to form a unique framework for prototyping nonexistent 

systems, where StarLogo Nova acts as a preliminary system modeling tool based on high-

level modeling abstraction, NetLogo acts as an intermediary system modeling tool based 

on intermediate modeling abstraction, and a more detailed system modeling module (e.g. 

VISSIM, MATSim, SUMO, etc.) utilizes parametric-based and low-level modeling 

abstractions to support its system modeling efforts (in the case of modeling the SmTS). 

Figure 6 shows what a scheme such as this would conceptually be like. A framework 

such as this would form a comprehensive prototyping pipeline for the virtual prototyping 

and development of any system, whether existent or nonexistent in nature where the 

system modeling modules can be augmented, removed, or added to the framework 

depending on the SoI and SE process. Additionally, this pipeline could be used as an 

educational roadmap or even a preliminary framework for the system model development 

of a nonexistent system such as what was done in this manuscript with a SmTS. From the 

separate use of StarLogo Nova and NetLogo, a new and emergent pipeline framework (or 

system) referred to as the System Prototyping Pipeline Framework (SPPF) has been 

created, which could be used in the initial stages of a system’s developmental lifecycle, 

allowing for information about nonexistent systems to be garnered by system modelers 

before they are appropriately implemented within their intended environment.  
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Figure 3.7. System Prototyping Pipeline Framework (SPPF). 

 

 

3.6 Results and Discussion 

To this point, the purpose of the research was to formulate the various simulation-

based experiments, observations, and conceptualizations that were garnered from the 

collective experiences accumulated while modeling within the StarLogo Nova and 

NetLogo ABM frameworks.  
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With the advent of AVs, it is expected that this disruptive technology will be 

introduced to the automotive market in the coming decades according to experts and 

researchers. However, the shared consensus about when AVs or self-driving vehicles will 

enter the market for technological diffusion amongst the masses is highly variable at best 

with individuals placing 2040 as the anticipated time or 2060 as a more conservative 

estimate. In addition to this, it also isn’t known how the system and service architecture 

of the SmTS will be structured, specifically how AVs may be utilized in transportation 

services for the public. Architectural aspects such as these are imperative to investigate 

and analyze due to their systemic effects on the environmental, economic, social, 

political, and technological facets of cities. Therefore, in this section, a brief discussion 

about each system model use case, which roughly models some of these architectural use 

cases and AV futures as seen in Figures 3.2 and 3.3, are briefly examined through 

illustrations of the ABMs used to model AVs within a SmTS service environment.  

 

3.6.1 Case S1 – Simulation of SmTS with Dynamic Ride Hailing Use Case 

Scenario 

One of the most popular SmTS architectures or AV use case scenarios within 

literature is the implementation of AV dynamic ridesharing services. In this use case, the 

potential AV riders hail an AV taxi through the use of a smartphone where in which the 

client is then added to a virtual ledger or list of waiting clients that have requested service 

for a ride to a desired destination.  
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In Case S1, the dynamic ride hailing feature that AVs could be used for in the 

future was approximately modeled with basic agent behaviors driving the emergent 

behavior within the simulation. The citizen agents were allowed to run errands and 

socialize within other agents allowing their states to change with some given probability. 

Additionally, citizen agents were able to get picked up or dropped off at any location 

within the environment, but this was dependent on the movement regime that was 

specified before the simulation runs. There are two movement regimes that were modeled 

in StarLogo Nova: inner city migration which is similar to people going into the city 

center for work, and outer city migration which indicative of people going home after 

work. With respect to the vehicle agents, there were two types of vehicle agents modeled. 

The first were AV agents and the second were TV agents. The AV agents were allowed 

to pick up and drop off citizen agents whereas the TV agents drove through the 

environment acting as unpredictable obstacles for the AV agents. Lastly, the building 

agents which are static objects that are meant to act as urban typological obstacles that 

resemble driving environments in dense and less dense areas of a city. Figure 3.8 shows 

an illustration of the simulation environment of Case S1. 
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Figure 3.8. Illustration of Case S1 being simulated in StarLogo Nova. 

 

 

3.6.2 Case S2 – Simulation of SmTS with Dynamic Ride Hailing and Weather 

Inclusion Use Case Scenario 

Existing literature efforts with respect to modeling the use of AVs within 

transportation systems have investigated their use under ideal conditions with operational 

limitations that may inhibit the function of optical or sonorous instrumentation. 

Precipitation can severely limit the driving capabilities of AVs by causing erroneous 

behaviors to emerge putting not only the passenger at risk, but other drivers and 

pedestrians. Literature from (Zang et al., 2019, Sundararajan & Zohdy, 2016) provides 

plenty of information regarding the lack of knowledge of the effects that weather 

conditions have on AV performance.  
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In Case S2, the Case S1 model was used as a base model with the addition of 

further code to generate weather-based agents to simulate different weather conditions. 

The Case S2 model possessed two additional agents from those mentioned in Section 

3.6.1, which consisted of cloud agents and raindrop/precipitation agents. In Case S2, the 

clouds acted as cloud and rain coverage, where the more clouds there are the higher the 

chance for precipitation within the environment. The raindrops/precipitation was allowed 

to drop from the clouds with varying intensity allowing for light, moderate, and heavy 

rain intensities to be simulated in StarLogo Nova. In terms of abstraction, the raindrop 

agents could be thought of as rain, snow, or hail.  

The AV and TV agents, on the other hand, behaved differently in Case S2 with 

the AV and TV agents slowing their speed down to represent more cautious driving 

behavior during the inclusion of weather events. Figure 3.9 shows a depiction of Case S2 

being simulated in the StarLogo Nova environment. 
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Figure 3.9. Illustration of Case S2 being simulated in StarLogo Nova environment. 

 

 

3.6.3 Case S3 – Simulation of SmTS with Fixed AV Stations Use Case Scenario 

Practically, the use of dynamic ridesharing or ride hailing through the use of AVs 

would allow for an unbridled accessibility of new and disruptive mode of transportation. 

However, negative feedback could arise from the unsustainable use of AVs which may 

manifest in the form of increased congestion, increased vehicle miles travelled (VMT), 

increased GHG levels depending on the fuel type of the AVs use, and reductions in the 

use of mass public transportation (Campbell et al., 2010; Smith, 2012; Fagnant & 

Kockelman, 2014; Martinez & Crist, 2015; Fagnant & Kockelman, 2015; Fagnant et al., 

2016; Bagolee et al., 2016). As a transportation service architecture that is capable of 

serving a wide area and a large population, the dynamic ride hailing use case seen Cases 

S1 and S2 could be highly attractive to lower income neighborhoods because of the lack 
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of transition between different modes of transportation to get from one location in a city, 

reducing travel time and cost for the individuals.  

The Case S3 model was based on the ABM developed in Cases S1 and S2; 

however, the behavior of AV and citizen agents were different due to the dramatic 

change in the internal mechanisms of the model. Firstly, new agents were added in the 

form of new subclasses of the citizen agents which consisted of AV riders and 

walking/biking agents. Additionally, AV stations were also added as a new agent, which 

consisted of four outer city stations and one intercity station that was meant to accept AV 

riders for service pick up in the simulation space. In terms of AV rider agents, these were 

the designated agents that are expected to ride the AVs as their desired mode of 

transportation. The behavior of AV rider agents requires them to move to the nearest AV 

station to be picked up where upon which they are required to wait for a set period of 

time until they decide to use a different mode of transportation. Once picked up, AV 

riders are immediately transported to their desired location in the environment. The 

walking/biking agents are meant to inhabit the simulation space to add a form of realism 

to the simulation by walking/biking from one place to the next. As opposed Case S1 and 

S2, the AV agents, rather than picking up AV riders throughout the simulation space, 

only moves to the AV stations where the AV riders are located. In addition to this, the 

weather features from Case S2 were kept in Case S3 to see the effect that adverse weather 

had on the AV rider’s chose of transportation and system demand for AV transportation 

since inclement weather can increase demand for motorized transport (Gerte et al., 2018). 

Figure 3.10 shows StarLogo Nova being used to model Case S3 as an elementary 

prototype system model of the SmTS. 
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Figure 3.10. (a) Plan view of Case S3 model; (b) Depiction of Case S3 with no weather; 

(c) Illustration of Case S3 with weather. 

 

 

3.6.4 Case S4 – Simulation of SmTS with Fixed AV Stations implemented in 

Mobile, AL Use Case Scenario 

Modeling, simulating, and drawing conclusions on findings relative to what is 

known in reality is what makes ABMs such a powerful tool. One of the aspects or facets 

that are intended to help extract this information from ABMs is the use of geospatial 

information in the form of GIS data, which adds a level of realism within the simulation 
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of ABMs. StarLogo Nova, however, does not possess GIS importation capabilities. 

Therefore, a sense of realism was imparted into the StarLogo Nova environment by 

roughly recreating some of the WAVE bus transit locations that make up the 19 city bus 

routes in the city of Mobile, Alabama. Figure 3.11 shows comparative depictions of the 

simulated city topology and the actual city topology in satellite view. 
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Figure 3.11. Comparison between the (a) simulation model in StarLogo and (b) the 

realistic satellite imagery of the city of Mobile. 

 

 

In the Case S4 model, no new agent classes were added to the simulation space 

but the coding from the Case S3 model was used as a base for the Case S4 model. 
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Furthermore, a new configuration in Case S4 was established which consisted of six AV 

stations that corresponded to the approximate position of the city’s WAVE transit bus 

stops. In addition to this, the building agents were rearranged to resemble Mobile’s 

general building density and typology structure to compensate for StarLogo Nova’s lack 

of GIS importation capability. All AV, TV, AV rider, and walking/biking agents 

possessed the same behaviors as they had in Case S3 in order to simplify modeling 

efforts. Through modeling Case S4, it was realized that tailoring ABMs to specific cities 

can provide for some interesting use case scenarios.  

3.6.5 Case S5 – Component Simulation of SmTS implementation in Mobile, AL – 

Mobile Regional Airport 

Possessing the ability to model various hierarchical scales of a SoI within one 

model environment allows for not only multi-scale modeling to be accomplished, but for 

information to be collected and visualized at varying levels of detail. Multi-world ABMs 

such as that proposed by (Mboup et al., 2017), prove that exceptional promise exists in 

developing these types of ABMs, though complex in nature due to their geospatial, 

temporal linkage and synchronization between each hierarchical model. Though 

StarLogo Nova is unable to do this level of modeling, the concept of multi-scale 

modeling within the context of ABMs was attempted through the detailed modeling of 

one of the AV stations from Case S4. The AV station agent that was modeled was the 

Mobile Regional Airport AV station because of its function as an intermodal facility 

supporting modes for air (i.e., airplane) and ground (i.e., AVs) transportation 

simultaneously.  
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In this detailed simulation model, the code developed for Case S3 and S4 were 

used as the base for the development of the Case S5 model. However, alterations were 

made which consisted of implementing three AV loading stations, placing a 

representative structure for the airport building, repurposing the citizen agents, 

incorporating airplane agents, and placing loading zones for the airplanes that represent 

part the airport’s tarmac. This simulation model specifically showed that creating a SoSM 

through a collection of ABMs are possible as long as their abstractions are connected 

from one model to the next. Figure 3.12 provides an illustration of the Case S5 model that 

was developed in StarLogo Nova.  
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Figure 3.12. Conceptual simulation models of Mobile Regional Airport (a) without and 

(b) with weather conditions in StarLogo Nova
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3.6.6 Case N1 – Simulation of SmTS with Fixed AV Stations and Weather 

Inclusion Use Case Scenario 

NetLogo was used to replicate what was performed in StarLogo Nova through 

Cases S3 and S4. Therefore, the system modeling abstractions along with the same agent 

classes created in StarLogo Nova were replicated and carried over to the NetLogo 

simulation environment to show the abstract-based connectivity between the two ABM 

frameworks. However, due to NetLogo’s abstraction in using lower-level abstractions 

such as turtles, patches, and links; there were supportive low-level model building blocks 

in the form of primitives that provided for exceptional modeling freedom. In terms of the 

of turtle agents, this NetLogo primitive was assigned to AV rider, AV, and TV agents 

since they are representative of individuals with an identity and attributes. Agents such as 

walking/biking agents, as seen in Cases S3 through S5, were not simulate in Case N1 to 

simplify the modeling and simulating effort. The patch primitive in NetLogo, on the other 

hand, was assigned to demarcate the location of AV stations, roads, sidewalks, and 

crosswalks; something that was not possible in StarLogo Nova. The patch primitives are 

used to create a basic grid pattern with a dense intercity core and less dense outer city 

zone, mimicking the simulation environment that was seen in the StarLogo Nova 

modeling cases. Additionally, irregularity with road geometry was integrated in the 

simulation space through the incorporation of a widen main street in the center of the city 

environment. These features added some level of complexity to the simulation through 

the introduction of relatively accurate spatial attributes within the simulation space. Aside 

from this, building agents were also imparted into the simulation for realism purposes and 
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were allowed to be turned on and off before simulation runtimes. In terms of the agent 

behavior, AV rider, AV, and TV agents’ behaviors were significantly more refined and 

realistic due to walkable zones. The mechanisms behind the Case N1 model is the same 

as those seen in Case S3 and S4, but there are three AV stations present rather than five 

due to time constraints and simplification purposes. Weather was also imparted into this 

model just as in Cases S2 through S5 by using the patch agents, which could be turned on 

and off before simulation runtime. Figure 3.13 provides an illustration of the SmTS being 

simulated within the NetLogo ABM framework. Figure 3.14 shows the different adverse 

weather cases modeled within the NetLogo ABM framework. 

 

 

Figure 3.13. Illustration of SmTS with AVs being modeled in NetLogo. 
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3.6.7 Case N2 – Simulation of SmTS with Fixed AV Stations implemented in 

Mobile, AL Use Case Scenario 

Though StarLogo Nova does not possess any capacity for GIS exploitation, 

NetLogo provided this needed feature through the presence of its GIS extension. In order 

to model the SmTS and its AVs, GIS data of the city of Mobile’s roadway network and 

bus stops were imported into NetLogo allowing for more accurate geo-referencing within 

NetLogo’s simulation space. For simplification and time constraint reasons, TV agents 

and citizen agents (i.e., AV riders and walkers) were not placed in the simulation space. 

Similar to the simulation model created in Case S4, the AV agents’ behaviors are the 

same, with the AV agents moving from one AV station to the next. The main purpose of 

this simulation model was to show that AVs with fixed AV stations (similar to city bus 

lines) could be modeled within the NetLogo as one of many potential architectural 

variants of the SmTS. Figure 3.15 shows a depiction of the Case N2 model within the 

NetLogo environment. 
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Figure 3.15. Illustration of (a) light, (b) moderate, and (c) heavy weather conditions 

being modeled in NetLogo. 

 

 

3.7 Conclusions 

There has been an increase in the emergence of complex systems being utilized 

within unique and diverse application domains, however, future nonexistent systems such 

 



227 
 

as SmTS are expected to go beyond the realm of complex systems with their combination 

of coexistence between complex systems and sociotechnical systems. With the 

anticipated integration of AI expected to enter the system domain of SmTS, further 

complexity will manifest, giving rise to a new form of complexity – hypercomplexity – 

which involves the interplay of physical, cyber, and artificial-based systems. Possessing a 

space to be able to virtually test the configuration of these next generation nonexistent 

systems at a systemic level to support system M&S, system prototyping, and system 

architecting could allow for early-stage SE lifecycle knowledge about the SoI. Problems 

such as this are an excellent space for the utilization of ABMs. As such, ABMs are 

powerful and meaningful tools to utilize in understanding, analyzing, and quantifying 

complex systems, allowing for the intelligent assessment, operation, and management of 

a SoI. In this manuscript, a novice-based perspective is used to learn ABM development 

and programming in two ABM tools – StarLogo Nova and NetLogo. Through the 

learning process, five simulation models were made in StarLogo Nova and two 

simulation models in NetLogo to solidify the concepts that were mastered throughout the 

learning process. The system modeled within these ABM frameworks were centered 

around the SmTS which is expected to utilize disruptive technologies such as AVs. Based 

on the modeling experiences in StarLogo Nova and NetLogo, advantages and 

disadvantages with respect to each ABM tool’s technical performance and supporting 

platform were investigated. Through the combination of the experiences and 

observations, various patterns in the form of modeling abstractions were identified from 

one ABM tool to next, showing the connectivity between StarLogo Nova and NetLogo. 

From this, the System Prototyping Pipeline Framework (SPPF) was created to not only 
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show the progressive shift in modeling capability, paradigm, and abstractionism, but to 

create an expandable sandbox toolkit for modeling nonexistent systems. Lastly, this 

manuscript provides illustrations of the application of ABMs being used to roughly 

model AVs within each ABM tool to show the practicality of the concepts presented in 

this manuscript.  
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3.9 Appendix – Chapter III 

 

3.9.1 Appendix 3.1 – Multi-Domain System Matrix (MDSM) 

Considering the fact that cities are composed of a group of sociotechnical systems 

that can be connected through the cultivation of their relationships and interactions to 

form an even larger hierarchical structure regarded as SoSTS, fully grasping the 

dynamical attribute of cities can be quite perplexing in nature due their converging 

technological, social, economic, environmental, and political domains and constraints. In 

order to get a since of this, (Bartolomei et al., 2012) created a conceptual model for 

engineering systems that seems to be in alignment with complex sociotechnical systems 

(as seen Figure A3.1). However, if one were to place Bartolomei et al. theoretical model 

in the complete context of cities or smart cities for that matter one would find just how 

complex cities can be, with city complexity approaching hyperspace dimensionality. 

Figure A3.2 shows a depiction and modification of Bartolomei et al. conceptual model as 

applied to an SoSTS. 
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Figure A3.1. Engineering system conceptual model developed by (Bartolomei et al., 

2012). 

 

 

 

Figure A3.2. Hyper-model of Engineering system conceptual model based on SoSTS 

framework (drawing by Ifezue Obiako, based on (Bartolomei, et al., 2012). 
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In Figure A3.2 each of the panels in the hyper-model are representative of a 

sociotechnical system such as transportation system, energy systems, etc. that can 

constitute the SoSTS framework, with each face having their own functions, behaviors, 

attributes, and internal and external connections with other sociotechnical systems 

through their various domains which can be described and understood through the use of 

a Engineering Systems Multi-Domain Matrix (ES-MDM) or Multi-Domain Matrix 

(MDM). Therefore, considering the hyper-model in Figure A3.2, in the context of a smart 

city, one face in this hyper-model can be represented as the SmTS which can be 

understood through the use of an MDM. Table A3.1 shows an MDM being used to 

conceptualize and assess the interaction of each system domain for the SmTS.
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Table A3.1. Application of a Multi-Domain Matrix on a Smart Transportation System. 

 System Drivers Stakeholders Objectives Functions Objects Activities 

S
y
st

em
 D

ri
v
e
rs

 

• Extreme events can 

affect electricity 

distribution and 

generation 

efficiencies 

• Governmental 

funding can affect 

national security  

• Regulatory 

environment can 

affect the financial 

and economic 

environment of the 

nation 

• Car emissions and 

inputs (i.e. charges) 

can potentially affect 

climate parameters 

(e.g. temp., humidity, 

etc.) 

• Smart technologies in 

system can affect the 

job market; creating 

new jobs in specific 

regions 

• Economic (index) 

prosperity can affect 

consumption/populatio

n health 

• Quality of life can 

affect influxes in 

regional demographics 

• Wait times can 

influence needed 

government funds 

• Carrying driverless 

cars & people can 

affect infiltration 

of rainwater into 

underground 

aquifers 

• Location 

awareness/recognit

ion can impact the 

enterprise 

ecosystems (i.e. 

supply chain) for 

movement of 

goods and services 

• Driverless cars can 

impact 

environmental 

safety 

• Detection systems 

can influence 

community 

involvement (i.e. 

data availability) 

• Maintenance can 

affect economic 

environment (i.e. 

use of traded goods) 

• Transmission of 

information to open 

source can influence 

community 

awareness/ 

intelligence 

S
ta

k
eh

o
ld

er
s 

• Weather can affect 

first responders 

during emergencies 

• City codes can 

affect the personnel 

agency for O&M of 

the system 

• Infrastructure policy 

makers needs to 

accommodate public 

can affect operators 

need for resources 

• System maintainers 

need to upkeep the 

system can affect the 

citizens need to utilize 

the system under its 

peak conditions 

• Meeting operating 

demands can affect 

operator and 

maintainer awareness 

• Resource utilization 

reduction can affect 

personnel’s decision 

between competing 

systems in smart 

mobility infrastructure 

• Recognition of 

passengers can 

impact privacy of 

customers, safety 

drivers, or other 

surrounding 

vehicles 

• Pay-as-you-Go can 

affect 

cybersecurity of 

individual 

passengers 

• Interactive GPS 

can impact 

passenger’s 

environmental 

navigation 

cognition 

• Driverless vehicles 

can impact 

pedestrian safety  

• Monitoring 

devices can 

influence operator 

decisions 

• Maintenance 

protocol can impact 

government and 

state infrastructure 

budgets 

• Sensing 

environmental 

conditions can 

impact pedestrians 

and passengers 
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Table A3.1, Cont. 

 System Drivers Stakeholders Objectives Functions Objects Activities 

O
b

je
ct

iv
es

 

• Cyber terrorist threats or 

organizations can 

effect/disrupt the 

movement of individuals 

from place to place 

• Weather events can affect 

the efficiency of meeting 

the system goals 

• Surrounding dependent 

infrastructures can affect 

the goal of the system if a 

failure occurs 

• Conflict between 

decision makers and 

operators can affect 

the system meeting 

public needs 

• Incompetence of 

software systems in 

the system can affect 

the intelligent 

movement of people in 

the system 

• Reduce waiting times 

can influence system 

demand which 

provides financial 

support of system 

• Reduce operating 

costs can conflict 

with demand needs 

for meeting monetary 

needs 

• Vehicle 

location/recognition 

can impact goal of 

time efficient 

movement of people 

• Consuming electrical 

power for system 

functions can affect 

supporting other 

infrastructure 

systems (i.e. resource 

competition) 

• Gathering smart 

device data can 

influence system 

network security 

• Traffic control 

systems can 

affect the goal 

of meeting 

customer 

demands 

• Guidance 

system can 

affect the 

intelligent 

transport of 

citizens 

• Maintaining 

roadways can 

affect the time 

efficient and safe 

movement of 

passengers 

• Recharging or 

refueling can 

impact ability 

meeting 

anticipated 

system demand 

F
u

n
ct

io
n

s 

• Increased telecom. 

presence (i.e. mobile 

devices) effects the 

systems functionality in 

IoT of smart city 

• Natural disaster can 

prevent the normal 

queuing of logistical flows 

• Government subsidies can 

affect the system by 

allowing investment in 

learning capability 

functions for optimization 

of traffic flows 

• People with 

disabilities can affect 

the function of system 

by performing safety 

protocols for the blind, 

deft, or other 

• Operators can affect 

smart tracking of 

vehicles and their 

attributes 

• Movement of mass 

people can affect the 

system meeting time 

constraints 

• Reduce operating 

costs can influence 

the number of 

customer pick ups  

• Satisfying demands 

can influence 

transmission of 

telecom. signals in 

the IoT 

• Consumption of 

energy can affect 

data gathering and 

management 

• Augmented reality 

for digital 

visualization can 

impact system 

command navigating 

capabilities  

 

• Traffic signals 

can interact 

with vehicle 

energy 

consumption 

• Inductive 

charging 

system can 

interact with 

vehicle in-field 

diagnostics  

• Updating vehicle 

software can 

impact system 

retrieval of 

passengers 

• Maintaining 

roadways can face 

influence 

provision of 

safety throughout 

the system 

• Paying the vehicle 

can affect the 

vehicle moving or 

not 
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Table A3.1, Cont. 

 System Drivers Stakeholders Objectives Functions Objects Activities 

O
b

je
ct

s 

• EMPs can affect the 

communication and 

monitoring devices in 

the system 

• Regulations can ban 

monitoring or control 

systems that can 

compromise 

confidential areas 

• Customers can affect 

the navigation system 

of driverless cars 

through desired 

destinations 

• Customers and 

operators can interact 

with monitoring 

system for criminal 

identification 

applications 

• Citizens can act on or 

influence the 

driverless through 

commands or visual 

cues 

• Time efficient 

movement of 

citizens can 

influence GPS or 

Traveller 

Information 

Systems 

• Reduction of 

operation costs can 

influence mobile 

communications 

systems 

• Electrical 

loading/charging 

can affect the 

battery and 

monitoring system 

of driverless 

vehicles 

• Diagnostics of 

driverless vehicle 

and roadway can 

affect vehicle and 

infrastructure 

detection devices 

• Facial recognition 

can influence door 

systems for safety 

purposes 

• Sensory detection 

systems can 

influence ABS of 

vehicle 

• Traveller 

Information 

Systems can impact 

smart devices 

• Security of 

management 

devices can impact 

GPS  

• Boarding a vehicle 

can influence the 

fuel efficiency of 

the vehicle 

• Telecom. 

interaction with a 

vehicle can impact 

the vehicle’s 

dynamic attributes 

(e.g. direction, 

speed, 

acceleration, etc.) 

A
ct

iv
it

ie
s 

• Government funding 

strategies can affect 

O&M tasks for smart 

mobility systems 

• Emergent complex 

environmental 

conditions can affect 

driverless cars from 

continuing the 

movement of 

individuals 

• Operators can affect 

the system the 

movement of vehicles 

through manual 

queuing  

• Operators can affect 

the system warning 

protocol activities for 

mitigating traffic flows 

• Intelligent 

movement of 

citizens to 

destinations act on 

task of receiving 

mobile comm. 

Signals 

• Meeting customer 

demands is 

constrained by the 

task of filling up to 

vehicle to 

appropriate capacity 

• Vehicle 

transmission of data 

can affect periodic 

maintenance tasks 

on infrastructure 

• Facial recognition 

can influence the 

system’s passenger 

database log checks 

• Wheels can affect 

the vehicle from 

moving itself and 

passengers 

• Condition of 

roadway networks 

can affect 

restoration and 

rehabilitation tasks 

• Roadway conditions 

can impact moving 

drivers from 

location to location 

• Telecom. 

interactions can 

affect time of 

boarding the 

vehicle 

• Maintenance on 

roadways can 

affect the pickup 

of passengers 

• Open public 

transmission of 

information can 

effect performing 

of maintenance 

tasks 
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CHAPTER IV – PROPOSED ARTICLE 2 – A TALE OF TWO 

ARCHITECTURES: A COMPARATIVE ANALYSIS OF TWO DISTINCT 

CLOSED SOCIOTECHNICAL ENVIRONMENTS TO SUPPORT EARLY 

MARKET AUTONOMOUS VEHICLE DEPLOYMENT 

 

4.1 Introduction 

The automobile is currently undergoing an evolutionary metamorphosis where in 

which automated capabilities such as adaptive cruise control (ACC), collision avoidance, 

and lane departure detection are becoming the building blocks for autonomous driving. 

These automated functions are derived from various enabling technologies such as 

sensors, processors, and actuators within existing vehicles. This has led to the emergence 

of six vehicle autonomy levels ranging from Level 0 (no driving automation) to Level 5 

(full driving automation) (ORAD Committee, 2018). At the highest level of this 

taxonomy (Level 5), are vehicles that integrate all automated functions with other 

artificial intelligence (AI) features. The AI connects various automated functions and 

gives AVs full cognition of their environment without the aid of a driver. The gradual 

implementation of enabling technologies that support autonomous driving have gradually 

been incorporated into the framework of the automobile over the past years. This has 

allowed for automated driving functions to be adopted by the drivers in current market 

vehicle models. This gentle approach of incorporation should also be considered when it 

comes to integrating AVs within today’s existing built environments as well. 
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4.1.1 Autonomous Vehicle Deployment 

AVs are a disruptive emerging technology that will revolutionize the 

transportation sector, along with other connected sectors such as energy, economics, 

health, political science, law, and many others. Composed of an integrated architecture of 

cameras, light detection radar (LiDAR), sensory-ranged radar, actuators, on-board unit 

(OBU) software, and GPS; these technologies provide an AV with the capability to 

observe, plan, and act relative to its operational environment (Van et al., 2020). With 

these capabilities, AVs will be able to anticipate behaviors from surrounding drivers and 

pedestrians. They will also enable communication with other vehicles to create safe and 

efficient traffic flows for various use cases such as emergency vehicle through 

movement, co-operative parking, and creating a social internet of vehicles (SIoV) (Alam 

et al., 2015; Atzori et al., 2018; Butt et al., 2018), and platooning. Communication 

between AVs and other sensors such as those in infrastructure will increase 

environmental awareness (Grembek et al., 2019). 

Understanding the emergent behavior of AVs as a collection of subsystems (i.e., 

fleet) through testing is an essential method for validating that AVs will perform as 

intended in a given operational environment. If factors external to AVs are considered, 

one would find an expanding array of distinct aspects and domains that may transcend 

any preconceived technical notions of AVs. These issues span aspects such as ethics, 

social inclusion (e.g., disability, racial, etc.), technology adoption (e.g., evolution of trust 

in populations), economics, legal considerations, and more, impacting multiple industries 

as depicted in Figure 4.1. A more systemic and inclusionary viewpoint needs to be taken 
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regarding the ethical implementation and deployment of AVs within society to ensure 

sustainable, safe, and secure operation of AVs in the coming decades. 

 

 

Figure 4.1. Industrial sectors effected by systemic disruption of autonomous vehicles. 

 

 

Systemic aspects such as those seen in Figure 1 are important to consider in 

respect to AVs. This is because AVs are capable of reconfiguring and reassembling the 

existing fabric on which entire organizations, cities, and institutions have been built upon 

(Zakharenko, 2016; Marshall & Davies, 2018; Shaver, 2019). The consideration of these 

systemic impacts is what could make the difference between trust and adoption of AVs 
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and distrust and disapproval of AVs within society. Companies such as Google (Davies, 

2016, Markoff, 2010), Uber (Hawkins, 2017), Tesla, Waymo, and others (Siddiqui, 2020) 

have conducted some of their AV tests on the public roadways, in some cases without the 

full awareness of the general public. This has led to a fear of AVs, causing many 

individuals to distrust AVs as a future mode of transportation. They perceive collision 

risk, a lack of safety, and insufficient data privacy to be associated with AVs (Jardim et 

al., 2013; Kurdock, 2018; Naing, 2018; Edmonds, 2019; Tennant et al., 2019; West, 

2019; Hawkins, 2020; Wiggers, 2020; Othman, 2021;). Some studies show that fear and 

pessimism toward the acceptance of AVs in-creased from 2017 to 2019, with 56% of 

surveyed people in 2017 unwilling to use AVs if given the opportunity (Smith & 

Anderson, 2017) increasing to 71% in 2019 (Othman, 2021). Major AV incidents such as 

the first AV accident in Tempe, Arizona (Hawkins, 2019) and others (Kurdock, 2018) 

have already begun to shape the relationship between AVs and the public. The negative 

impact of AVs crashes on public perception can be significant, specifically in the realm 

of social media (Penmetsa et al., 2021). 

As a neophyte technology, AVs are prone to mistakes due to their continuous 

need for data that is typically generated from being in new and unfamiliar scenarios. As 

the technology matures, the maneuvers from all the unique cases encountered will im-

prove AV performance. Unfortunately, mistakes made while encountering these unique 

cases have led to, in some cases, collisions or near-misses with pedestrians, drivers, 

cyclists, and other roadways objects. Based off their current behavior, AVs are involved 

in 9.1 crashes per million miles as compared to 4.1 crashes per million miles for 

conventional vehicles driven by humans (Schoettle & Sivak, 2015; Miller, 2015). 
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However, most of these crashes are not necessarily caused by AVs but from human 

actions such as the disengagement of the AV from autonomous mode to conventional 

driving mode coupled with a lack of driver alertness, unconscientious and unpredictable 

behavior of pedestrians and cyclists around AVs, and aggressive driving styles from 

surrounding human drivers. These external factors can potentially cause AVs to behave 

in an erroneous or un-wanted manner leading to accidents (Miller, 2015; Kokalitcheva, 

2018). These accidents derived from human related errors are further supported by 

(Singh, 2015) from a conventional vehicle perspective. However, this may not be the case 

in terms of AV operations in adverse weather conditions. The incidence of non-human 

caused AV crashes increases in adverse weather which impede the functionality of the 

sensor suite due to attenuation of signals from sensors (Sundararajan & Zohdy, 2016; 

Zang et al., 2019; Song et al., 2020). Potential solutions to overcome these weather-

related challenges have ranged from the use of radar sensors that detect through weather 

conditions (Praveen et al., 2017; Best et al., 2018) to more holistic solutions such as 

integrating weather data within the AVs operating system to optimize vehicle routing 

(Sundararajan & Zohdy, 2017; Hogan, 2020). 

With various factors effecting the performance of AVs and how they are 

perceived by the public, better care needs to be taken into how AVs are tested and 

development, especially in the latter stages of development when large-scale tests and 

deployment are undertaken. This concern has been examined within literature with a 

focus on a more appropriate and holistic introduction of AVs to the public which has 

shown that gentle integration is needed to support trust and widespread adoption amongst 

the public (Kaur & Rampersad, 2018; Edmonds, 2019). As (Penmetsa et al., 2021) has 
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suggested, this cultivation of trust and adoption can be promoted by providing the public 

with opportunities to interact with AVs, helping alleviate negative stigmas surrounding 

AV technology. 

The increasing inclusion of driver-assisting technologies has enabled the current 

state of the art in vehicles to be of Level 3 autonomy. This suggests that a similar 

evolutionary approach could be taken to introduce AVs in our cities. In a controlled 

environment, AVs could be incrementally introduced allowing the population to become 

accustomed to their presence gradually. This would improve public perception of AV 

technology. We propose that a closed sociotechnical environment (CSE) could be used as 

an effective testbed for gradual AV introduction. 

4.1.2 Why use CSEs? 

Gentle introduction of AVs can be achieved in various innovative ways, but none 

more so than the use of closed sociotechnical environments (CSEs). A CSE is a built 

environment which possesses a relatively controlled or low flow of people, vehicles, and 

infrastructural resources entering and leaving its premises. Examples of these niche 

ecosystems are universities, research parks, industrial parks, airports, and military bases. 

A CSE may be either partially or fully self-sustained. For example, if a CSE is in a 

remote location and in-situ resources are inadequate, the CSE may be fully self-sustained; 

whereas if a CSE is located within a city where resources are abundant, the CSE may be 

only partially self-sustained. 

Considering the attributes of CSEs and the lack of distrust between AVs and the 

public, use of CSEs as testbeds or environments to remove the distrust between AVs and 
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the public have been suggested or used as developmental platforms in various sources 

(Kaur & Rampersad, 2018; Christensen, 2017; Othman, 2021; Penmetsa et al., 2021). 

Some suggest these environments use AVs as people-movers (Edmonds, 2019; Nicefaro, 

2019). This concept has gained traction, with some AV R&D studies using various CSEs 

such as universities (Delaughter, 2019; Caldwell, 2021; Santos, 2021), airports (Gittens, 

2019; International Airport Review, 2019; King, 2021; Gindrat, 2021; ACRP, 2021), 

theme parks (Storey, 2019), and military bases (Lessel et al., 2017; Descant 2019; 

Salmon, 2019; Allen et al., 2020; Daugherty, 2020; Miller, 2021) as AV testbeds or pilot 

environments. The CSEs presents a “miniature city” environment providing an 

opportunity to not only test AVs, but the chance to build up, integrate, and observe the 

impacts of AVs on supporting Information Communication Technology (ICT) 

infrastructure, social systems, laws, regulations and policies, and community planning. 

Scaling down testing scope in this manner allows for major sociotechnical concerns 

regarding AVs and their obstacles to be uncovered, explored, analyzed, and addressed. 

Scaling down would mean: 

• reductions in the size of AV effects, ultimately reducing risk to the population 

• aspects such as lifecycle costs could be reduced prior to large-scale 

implementation and deployment of AVs and their supporting systems 

• the allowance of a new age industrial ecology supporting partnership cultivation 

and development between manufacturers and institutions can be nurtured 

Positive testing conditions could then be scaled up and reproduced for large-scale 

deployment and practical applications outside of the controlled context of the CSE. This 
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has been tried in countries such as Singapore, France, and Norway (Christensen, 2017; 

KPMG, 2019; Ribeiro 2021). 

4.1.3 What is a Smart Closed Sociotechnical Environment (SCSE)? 

CSEs can evolve into artificial biomes whose transport/mobility systems could 

become the nexus for the emergence of autonomous systems that support smart 

communities. As result, CSEs could potentially become the building blocks for the 

emergence of whole smart cities (Pribyl et al, 2019). CSEs can function as technological 

incubators for AV R&D and initial deployment, allowing AVs the opportunity to evolve 

and continue to be cultivated for large-scale deployment. This approach is not a foreign 

concept considering various agencies, institutions, and organizations have begun to take 

this gen-tle approach to AV R&D and implementation (Lessel et al., 2017; Kaur & 

Rampersad, 2018; Edmonds, 2019; Delaughter, 2019; International Airport Review 2019; 

Storey, 2019; Descant, 2019; Salmon, 2019; Daugherty, 2020; Allen et al., 2020; 

Caldwell, 2021; Santos, 2021; King, 2021; Gindrat, 2021; ACRP, 2021; Miller, 2021). 

Considering AV integration with ICT infrastructure to support AV cyber-based needs and 

autonomous systems, CSEs integrated with these smart systems will more than likely 

form a taxonomy of environments that can be referred to as smart closed sociotechnical 

environments (SCSEs). 

A SCSE is a physical, cyber, and artificial ecosystem that integrates intelligent 

and autonomous systems to support sustainable capabilities for reducing internal cost, 

waste, energy, time, and manpower while simultaneously improving quality of life 

(QoL), safety, and security for its occupants or inhabitants. These environments are 
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essentially equivalent to a miniature smart city. However, with respect to SCSEs, due to 

increased awareness through sensory interconnectivity, these environments are capable of 

detecting systemic conditions, making them adaptive and cognizant systems that 

harmonize with their internal and external elements. As opposed to traditional CSEs, 

SCSEs are enhanced through the interconnectedness of physical, cyber, and artificial 

systems referred to as the Internet of Things (IoT). This allows for the improvement of 

efficiency, safety, security, and cooperation amongst various subsystems/components 

during internal operations. Instances of these smart environments have already begun to 

emerge in CSEs with universities (Matthew & Halgali, 2019; Manning, 2020), airports 

(Zmud et al., 2018; Mariani et al., 2019), and military bases (Lessel et al., 2017; Allen et 

al., 2020; Miller, 2021) being referred to as smart campuses, smart airports, smart bases; 

respectively. As interconnected systems at various distinct hierarchies (i.e., physical, 

cyber, and/or artificial), understanding the integration of the different enabling 

technologies and each of their impacts at a system-level will be imperative in 

understanding the nature of SCSEs. 

SCSEs can come in various forms depending on the objective of the SCSE, which 

are typically based on verifiable requirements or needs of the system. In some cases, 

different SCSEs can have distinct objectives and requirements yet possess nearly the 

same architectural structure making some of these environments highly similar to one 

another. A prime example of this can be seen in the comparison between university 

campuses and military bases, both of which are considered to be CSEs from a physical 

and operational standpoint. Though these CSEs share a significant amount of similarities, 

the university campus environment is closer to a SCSEs than military bases due to 
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limitations (i.e., time or schedule, risk, and cost) that are placed on the planning, 

construction, and maintenance of military bases which can often overlook new 

technologies being implement within military bases (Nottage & Corns, 2011; Poreddy & 

Daniels, 2012; Deluca & Mills, 2013). However, this is expected to change with new 

innovations in the R&D of emerging technologies occurring to sup-port their eventual 

deployment into more military-based frontiers. 

The intent of this manuscript is to show that CSEs such as universities and 

military bases, can be used to help cultivate trust and adoption of AVs in the public 

through the use of a thought experiment. This manuscript proposes that this intent can be 

achieved by having CSEs function as a bridge from early market deployment of AVs to 

mainstream market deployment of AVs in entire cities. Section 4.2 of this manuscript 

will discuss the methodology utilized in this manuscript. Sections 4.3 and 4.4 will 

perform an extensive investigation into the system components of each of the two CSEs 

by drawing contrasts be-tween the two CSEs. Section 4.5 will identify and examine the 

similarities that are shared between the two CSEs. Section 4.6 of this manuscript will 

provide results of the thought experiment performed in the form of an aggregated table 

that looks at the relationship of land use patterns relative to each CSE to visualize 

similarities between each of the CSEs. These results will then be proceeded by a 

discussion as to why these findings are significant and important existing research. In 

Section 4.7, this manuscript provides closing remarks regarding this experiment and its 

applicability to future work. Figure 4.2 shows a visual organizational layout of this 

manuscript following Section 4.2. 
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Figure 4.2. Logical flow of paper and its intended goal or objective endpoint. 

 

 

4.2 Methodology 

This manuscript presents an in-depth comparative analysis between two distinct 

CSEs. The analysis was performed to reveal architectural contrasts and similarities 

between two CSEs – the university and military base environment. This comparative 

analysis used the Conceptagon (Boardman & Sauser, 2013) as a conceptual framework to 

examine various system at-tributes such as the system context, system boundary, and 

internal system workings. The Conceptagon is conceptual framework which helps 

facilitate systems thinking about a specific system of interest (SoI) (McGee & Edson, 

2010). This study compared the basic architectural layout (i.e., external, boundary, and 

internal) between the University of South Alabama (USA) and two types of military base 
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environments (i.e., continental United States (CONUS) base and base camps). These are 

three distinct CSEs, however, in this study both CONUS bases and base camps 

environments are considered to make up the military base-type environments The only 

difference is CONUS bases inhabit homeland/allied environments, while base camps 

inhabit more austere-type environments. This gives this study a total of two CSEs that 

will be compared rather than three. 

Sources used to obtain an understanding of the system attributes of each of the 

two CSEs included presentations, technical reports, regulations and standards, and field 

observations as well as published studies. These CSEs were collected for this 

comparative analysis because they have seen extensive, large-scale use of AVs for re-

search, development, and testing purposes while the other CSEs have not. This is 

primarily due to the fact that these two environments are similar to “miniature cities”. 

Findings from this thought experiment were then aggregated into a table to observe how 

these two CSEs compare with one another from an architectural (or land use) perspective. 

 

4.3 University CSEs 

In this section, a comprehensive examination of the basic architectural 

components of a university campus as a CSE will be performed. The USA campus 

environment will be divided into three major components: the external component (i.e., 

system context), the system boundary component, and the internal system components. 

This was based off of the seven concept triads of the Conceptagon (Boardman & Sauser, 
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2013). Figure 4.3 depicts an image of the systems thinking framework known as the 

Conceptagon. 

 

 

Figure 4.3. The Conceptagon systems thinking framework. 

 

 

4.3.1 The System Context – Beyond the Architectural Edge & into the City 

The external environment beyond the boundaries of the USA campus is varied 

ranging from woodlands to urbanized developments. University CSEs inhabit contextual 

spaces that are rather complex in scale, hierarchy, and interdependent-based structure at 

the local, state, and federal levels. When considering aspects such as the surrounding 

municipal system, logistical hubs (i.e., ports), cities, influencing standards, protocols, and 

regulations, and other stakeholders, the scope and scale of the university’s external 

environment is seen to be quite large. A system context diagram (Figure 4) was created to 
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illustrate the passive and active stakeholders that contribute to the enormity and 

complexity of the system context of the USA campus environment. The selection of 

stakeholders shown on this diagram is not exhaustive but includes those more closely 

concerned with the implementation of AVs and other enabling smart technologies within 

the CSE framework. The context diagram was also created to succinctly address the 

various triads of Conceptagon. By using the context diagram, five of the seven triads of 

the Conceptagon are visualized providing an understanding of the system relationships, 

harmony of system components, the function and role of each component within the USA 

CSE, its transformation of inputs to outputs for each com-ponent of the CSE, and, to 

some extent, its emergence as system or a system of sociotechnical systems (SoSTS). The 

boundary and communication triads, on the other hand, are addressed in-depth through 

the remainder of the subsections in Section 3 as well as in Section 5 of this manuscript. 

This approach was utilized in Section 4.4 to analyze and assess the military base CSE. 
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4.3.2 The System Boundary – Passive Permeability 

The system boundary is specifically what gives a CSE its name and 

characteristics. The system boundary for a CSE is an architectural component that acts as 

a filtration entity between the general public and on-site personnel (i.e., students, 

employees, designated third party individuals, etc.). System boundaries in the university 

CSE can also transcend the physical dimension and enter the cyber and artificial 

dimensions as well, with cyber and artificial systems possessing their own unique and 

respective boundaries. The cyber dimension is fairly well known, as this is the system 

where information and data are transported through. The artificial dimension would be a 

akin to virtual ecosystem or space where artificial intelligence (AI) would be sustained 

and nurtured throughout its lifecycle. Such a space would include simulation, training, 

and learning environments for AI (Wang, 2017; Wang et al., 2018) virtual communities 

for AIs, etc. However, such as place does not, yet exist, but research areas such as Digital 

Twins and the Metaverse are making artificial ecosystems possible with connectivity to 

cyber and physical systems and its eventual use of AI. On the other hand, physical system 

boundaries for the USA environment consists of University Blvd and Parkhill community 

to the east, Old Shell Road to the south, Hillsdale Subdivision to the west, and Alpine 

Hills community to the north. Figure 4.5 shows these system boundaries overlaid on a 

satellite map of the university and surrounding area. 
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Figure 4.5. University of South Alabama physical system boundary. 

 

 

USA owns and controls its own cyber infrastructure making the cyber boundary 

for this dimension of the CSE all servers and cyber-based assets (i.e., cloud database, 

storage, processing, etc.) within the IT infrastructure’s architecture (USA, 2020). This 

boundary expands and contracts regularly as it includes all IoT devices that connect from 

the campus-wide network such as mobile devices and AVs. In the future, with campuses 

of the future, this cybernetic boundary may change to become increasingly more dynamic 

because of the presence of more machine-to-machine (M2M) interactions being sup-

ported by IoT networks such as AVs and other devices that may be entering and leaving 

the USA CSE. These M2M interactions will consist of numerous communication 

protocols such as vehicle to vehicle (V2V), vehicle to devices (V2D), vehicle to infra-
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structure (V2I), or vehicle to everything (V2X) communication. These channels of 

interaction may become essential ways for smart technologies to communicate with one 

another and surrounding infrastructure in university environments of the future. Figure 

4.6 shows conceptual visualization of the cyber, and to some extent, artificial boundary of 

the USA CSE. 

Aside from the stationary physical and flexible cyber boundaries that make USA a 

CSE it will require an environment that supports the needs of AI capabilities to become a 

SCSE. These capabilities include things such as verification and validation for AI, and 

may also support creation spaces for new algorithms, or virtual sharing spaces with 

partners for AV maintenance and management. 

The physical system boundary for the USA environment is permeable with hidden 

security (camera surveillance) and visible security (campus police presence, keycard 

access points). Visible means of security such as watch towers and security posts are 

undesirable in this CSE as they imply a level of threat to the CSE that is not present. That 

implication, in turn, affects the humans in the CSE negatively. 
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Figure 4.6. Cyber and artificial boundary of University CSE (USA Campus used as a 

basis).2 

 

 

4.3.3 The System Internals – Looking within the Boundary of the University 

CSE 

The USA CSE mission is to support the needs of students, faculty, and other 

employees. This often consists of sustaining them through their studies, 

teaching/research, and services, respectively. In order to accomplish this, the USA CSE is 

disseminated into seven major land use patterns each with the prime responsibility of 

supporting their student, faculty, and staff populations. The academic land use pattern is 

 
2   Visual assets aside from satellite imagery created by macrovector, <a 

href="https://www.freepik.com/vectors/abstract">Abstract vector created by macrovector - 

www.freepik.com</a> 



260 
 

an area for preparing students for the future within respective learning domains (e.g., 

libraries, department buildings, student service facilities, etc.). The administration land 

use pattern for managing, supporting, and coordinating resources across the University 

system and acts as the organizational interface between external public/private 

organizations and the internal organizational subsystems/components of the USA CSE 

(e.g., admissions, student affairs, student accounting, payroll, etc.). The athletic facility 

land use pattern are areas which support the optimal fitness of student athletes to 

sustaining their training and recreational needs (e.g., football stadium and training 

facilities, track and field facilities, baseball stadium and training facilities, etc.). The 

student housing land use pattern are areas for comfortably housing students for multiple 

months or years in pursuit of their academic goal. The recreational land use pattern is an 

area that fosters students, faculty, and staff physical, mental, and spiritual well-being 

through interactive modes or socialization with peers or the community. The facility 

management land use pattern is an area or group of facilities that support the management 

of various civil works such as providing on-campus transit, managing on-campus storage 

and supply, supporting maintenance of university facilities (e.g., buildings, roads, and 

university grounds). For example, this was observed in the facility management’s 

responsibility in regulating and managing its own internal nonhazardous and hazardous 

waste flows. This consisted of the USA CSE following the Department of Transportation 

(DOT), Material of Trade (MOT), and other university regulations and guidelines to 

reinforce and augment waste operations as needed (USA, 2016). The last land use pattern 

is not technically considered a land use, but it is called the expansion land use zone. This 

land that can be expanded upon at any time within USA CSE boundary to augment its 
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current capabilities. These land use patterns are generally managed through the 

University’s administration which performs an assessment of university needs and 

budgetary constraints that are then imparted into a master plan scheme that will be 

implemented over the next coming years. Figure 4.7 shows a land use drawing of the 

USA environment that was derived by the USA’s master planning effort. Note the grey 

area is considered to expansion land use zones for future growth of the USA 

environment. 

 

 

Figure 4.7. Internal land use patterns within the University of South Alabama 

environment. 
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4.4 Military Base Installations of the Future – CSEs within Military Missions 

Before delving into military base CSE is important to establish the foundational 

purpose of why these expansive establishment exist. As the nature of military warfare has 

changed over the years, there are two aspects that have rapidly accelerated its reach and 

impact across the globe – technology and strategic scope. These two aspects have led to 

the emergence of complex logistical and transportation networks that are responsible for 

sustaining expeditionary missions at the strategic, operational, tactical levels command. 

Based on a hierarchal structure, these expeditionary transportation networks (ETNs) are 

responsible for the movement of soldiers, equipment, supplies, personnel, etc. from 

continental US (CONUS) military bases (e.g., Air Mobility Command, Military Sealift 

Command, etc.) to tactical locales such as FOBs. This large movement of assets across 

vast distances is accomplished through various modes of transportation ranging from sea 

(through Voluntary Intermodal Sealift Agreements and Joint Logistics Operations) to air 

(e.g., Civil Reserve Air Fleet). From here transportation from the CONUS base to the 

operational area often leads to the establishment of an operational presence through the 

use port openings, port/terminal operations, and intermodal operations. 

Establishing an operational presence in ETN allows for soldiers, equipment, 

personnel, and supplies to be transported to tactical fronts within the ETN for forward 

distribution. These tactical fronts are often where FOBs are located in supporting tac-tical 

transportation providers by facilitating mobility services both within and outside FOBs 

for extended mission durations. Accessibility to tactical locations where FOBs are located 

within the ETN can be limited depending on the scope of the strategic mission, with 
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waterway, ground-base, and aerial delivery generally being utilized to supply FOBs. The 

entirety of this system is all connected and enveloped cybernetically through an In-

Transit Visibility National Server that allows for chains of communication, command, 

and control to be exploited at all levels of the ETN. Figure 4.8 provides an il-lustration of 

the ETN and the role of CONUS bases and the FOBs as it relates to the ETN systems and 

its mission. 
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Figure 4.8. Expeditionary Transportation System and its relation to military base CSEs in 

the overarching mission.3,4,5,6 

 

 

Within the ETN, military base CSEs, unlike university CSEs, are broadly defined 

by type and function, with facilities and standards based on the camp’s anticipated life 

span and population (USCENTCOM, 2007). These CSEs are commonly referred to as 

military installations in the case of CONUS bases, and base camps in the case of bases 

 
3 All military vehicle and craft drawings created by macrovector, <a 
href='https://www.freepik.com/vectors/design'>Design vector created by macrovector - www.freepik.com</a> 
4 Military Sealift Command emblem by MSC Public Affairs Office, 

https://www.msc.navy.mil/images/logos/MSC_Seal_large.png, Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=83683213 
5 Air Mobility Command emblem by United State Army of Heraldry, 

http://www.amc.af.mil/shared/media/ggallery/hires/afg_021220_021.jpg 
6   USTRANSCOM emblem by U.S. Army Institute of Heraldry, http://www.msc.navy.mil/mediacenter/ 
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responsible for forward operations in military theaters. The taxonomy of base camps 

consists of Main Operating Bases (MOBs), Forward Operating Bases (FOBs), 

Cooperative Security Locations (CSLs), and Combat Outposts (COPs) (USCENTCOM, 

2007; Hsia, 2008; Noblis, 2010; Nottage & Corns, 2011; Nottage et al., 2015). In addition 

to these base camps, are CONUS military installations which are located on US home 

soil and are responsible providing strategic command of the overall mission. For 

simplicity, this study will only focus on the CONUS military bases and FOBs, since these 

are where the strategic and tactical assets of the mission lie, respectively. 

This analysis will be performed by considering an abstraction of an FOB (due to 

information sensitivities) and an actual instance of a CONUS military base environment. 

The assessment approach used in this section will be different from the previous section 

due to the difference in available information regarding the military base environment’s 

internal organization. This section will examine and explore the architectural facets of 

military base environments by decomposing the CSE to its components which are the 

external system components (i.e., system context), the system boundary, and the internal 

system components. 

4.4.1 The System Context – Beyond the Walls into Chaos 

Military bases are generally located in either a remote or populated area where 

some form of minimal infrastructure is present or in more remote areas where resources 

are limited. The system context of military bases is similar in some ways to that of the 

university environment because they both have complex and dynamic system contexts 

that involve convoluted social typology structures. Where contrasts tend to manifest, 
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however, is the behavioral aspects of entities within the military base’s system context. 

The system environment for military base CSEs possess unpredictable actions and 

reactions that may be caused by either allied forces, adversarial forces in-fringing on the 

base and its operations, or other circumstances (Toffler Associates, 2019). Furthermore, 

military base environments have irregular operating schedules due to their nature, re-

quiring continuous adaptation and realignment with changing mission requirements. 

Changes in mission requirements and planning trajectory are also typically caused by the 

military base CSE being part of a “constellation” of installations that support an 

overarching mission at the strategic level (U.S. Army, 2014; U.S. Army, 2020). 

The system context of military bases includes various strategic and operational 

scales ranging from the international down to the local community scale depending on 

the mission requirements. A system context on this scale can involve numerous 

stakeholders that are supporting the warfighting capability of military bases making the 

system context for military base CSEs complex in terms of scale, hierarchy, 

organizational interconnectivity, and technical management (Deluca & Mills, 2013; 

Anderson & Kinnevan, 2013; U.S. Army, 2020). The next generation of military bases – 

Installations of the Future (IotF) and Forward Operating Base of the Future (FOBoF) – 

are expected to become SCSE. These system contexts will become even more complex 

with stakeholders such as AV OEMs, AV manufacturers, and other smart technology-

based stakeholders adding to the current complexity of military base eco-systems. In 

order to understand the level of complexity for supporting the lifecycle of current and 

future military bases, a context diagram was created as seen in Figure 4.9. 
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4.4.2 The System Boundary – Active Permeability 

With regard to the physical system boundary, military bases possess an actual 

physical boundary meant to deter and discourage enemies from attacking or entering the 

base. These physical boundaries come in different forms including an earthen berm, a 

constructed wall, or Hesco barriers, which consists of a mesh container, lined with a 

geotextile fabric, and filled with soil for protective applications. This defense is further 

fortified with by lookout points, guard towers, entry control points (ECPs), and perimeter 

patrols. 

The cyber system boundary encompasses all cybernetic and communications as-

sets operated, managed, and maintained by the armed forces. This includes servers, cloud 

mainframes, ground-based communications units, spaceborne assets, etc. with any entity 

outside of these systems and their line of communication (LOC) considered outside of the 

cyber system boundary (Deluca & Mills, 2013; U.S. Army, 2017). In the future, with IotF 

or FOBoF, this cybernetic boundary may change to become more dynamic because of the 

presence of more machine-to-machine (M2M) interactions being supported by IoT 

networks such as AVs. These M2M interactions will consist of numerous communication 

protocols such as vehicle to vehicle (V2V), vehicle to devices (V2D), vehicle to 

infrastructure (V2I) (Allen, 2021), or vehicle to everything (V2X) communication. These 

channels of interaction may become essential ways for smart technologies to 

communicate with one an-other and surrounding infrastructure in military bases of the 

future. 



269 
 

The current military base environment possesses both a physical and cyber-based 

boundary. In an IotF the CSEs may also possess an artificial system boundary for 

enabling the lifecycle of AI/ML capabilities that may support operation of AI-enabled 

IoT devices (i.e., cars, appliances, body wearables, etc.) on bases. These artificial 

boundaries are virtual layers that are responsible for separating AI entities from entities in 

the cyber domain such as information and data. With IoT devices becoming ever present 

within military base CSEs these devices may be excellent sensors for digitizing military 

bases and transforming them into SCSEs (Walker et al.,2021). With the presence of 

appropriate sensors within military bases the IotF and potentially FOBoF could have the 

ability to leverage digital twins and the metaverse as mission readiness platforms (Cohen, 

2021; Fawkes, 2021). With these capabilities, however, there will need to be virtual 

environments for the purpose of analyzing, testing, and evaluating the software 

components of the autonomous systems that may be used within the internal or external 

operations of military bases. This will require artificial environments that may be 

connected and interoperable through cyber infrastructure by utilizing ICT systems to 

support transport of information and data to provide a common operating picture across 

various AI-enabled systems. This forms this information could be in is in the form of 

algorithms to support updating autonomous systems such as AVs from a distant 

headquarter or a reachback point for expertise consultations. In essence, the artificial 

environment is an instance that would acknowledge the existence of the “virtual soldier” 

(AI agents) in the battlespace, that will be piloting autonomous systems within military 

bases or army theaters. 
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4.4.3 The System Internals – Looking within the Boundary of the Military Base 

CSE 

The internal workings of military bases are similar to university environments in 

terms of their land use patterns, operations, and allocation of facilities (Deluca & Mills, 

2013). However, the difference between a university environment and a military base 

environment, is the amount parking area for vehicles, specifically in FOBs which tend to 

have less than university CSEs. Within military base environments, such as FOBs land 

use patterns are relatively more compact because their design needs to take into account 

standoff distances between facilities and the perimeter structure (USACE, 2009). 

Furthermore, parking size allocation can increase or decrease as the military bases’ 

mission requirements change. FOBs must be capable of augmenting their base 

capabilities quickly to support the overarching strategic mission which requires rapid 

changes to military bases layouts (Deluca & Mills, 2013; U.S. Army, 2017). 

Based on the mission of a military base, the environments may possess an airfield 

and heliport land use zones to support intermodal and joint operations. Land use zones in 

FOBs tend to stay separated as modular and evolvable land units of the base’s lay-out. 

The land use typology is different in CONUS military bases, which tends to be more 

complex and more closely resemble a “miniature city”. Figure 4.10 shows an abstract 

visual and a satellite overlay on a satellite image of the land use patterns that are used to 

organize the internal architecture of an FOB (a) and CONUS military base (b) 

environment. In the operational flow of CONUS bases almost all services such as 

nonhazardous and hazardous waste management are handled on-site (Callan, 2019). 
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Hazardous waste management on FOBs may be more complicated and require personnel 

augmentation based on special regulations from the US military and the international host 

nation where the FOB may be located (U.S. Army, 1999; Deluca & Mills, 2013). 

 

 
(a)  

Figure 4.10. Land use patterns for an (a) FOB (Deluca & Mills, 2013) and (b) CONUS 

Base of Fort Carson (DPW, 2015). 

 

 Housing/Living  Training Support 

 Administration  Operational 
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 Facility Management   

 

ECP – Entry Control Point 
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(b) 

Figure 4.10, Cont. 

 

 

 

In the land zone scheme of a CONUS military base such as Fort Carson, it can be 

seen that land zones are more generalized yet still align with an FOB military base 

environment with zones such as those seen in Table 4.1. 
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Table 4.1. Comparison of land use zone patterns for CONUS military bases and FOBs. 

CONUS Military Base FOB (Base Camps) 

Land Use Patterns 

Residential Land Use Zone  Billeting Land Use Zone  

Community Land Use Zone Soldier/Marine Support Land Use Zone 

Industrial Land Use Zone Supply and Storage, Maintenance and 

Petroleum, Oil and Lubricant (POL) 

Storage Land Use Zone 

Professional/Institutional Land Use Zone Administration Land Use Zone 

Troop Land Use Zone Soldier/Marine Support and 

Administration 

Training Land Use Zone Training Support (and Range Fan) Land 

Use Zone 

 

Therefore, CONUS military bases such as Fort Carson can be placed into the 

military base category and used alongside FOBs to be compared against university 

environments such as the USA campus environment. 

 

 

4.5 More than Meets the Eye 

In this section, the characteristics of the university and military base environments 

are unified together to provide evidence of their architectural and organizational parallels 

as two distinct CSEs. This unification consists of a comparison between the university 

and military base environments, rather than a contrast as seen in the previous sections. As 

part of the comparison process, this section is composed of two subsections with the first 

section examining the technical structure of each CSE and the second section identifying 

the objective of each CSE and exploring the organizational/social structure of each CSE. 
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4.5.1 The Technical Side of the CSE Architecture – The Technical Systems 

Technical systems are an integral aspect of these CSEs as they are the 

architectural elements that enable functionality and drive the internal mechanisms within 

their respective environments. Many of these systems possess interfaces which allow 

them to communicate, and in some cases, collaborate with one another, allowing for the 

emergence of a system of systems (SoS) as the technical organization of the CSE. The 

integration of smart technologies could allow for a more unified and efficient flow of 

communication between different systems. This would allow for the availability of 

needed services for all its constituents that make up the social system that is intended to 

be supported within each of their respective frameworks. This interconnectivity of 

services could not be emphasized any more than what was depicted in Figures 4.4 and 

4.6. Each CSE’s land use patterns hint at both architectural, operational, and even 

technical similarities between the two classes of CSEs. For example, from an 

architectural perspective, university, and military base CSEs have similar individual land 

use patterns that use different phrasing for land use zones but possess a common general 

organization or layout. These commonalities between their land use patterns are also 

noticeable within their daily functions and responsibility within the grand scheme of their 

respective systems or CSEs. Lastly, from technical standpoint these land use patterns are 

similar because of the same applications they are utilized for they are utilized within their 

CSEs. These applications may come with some caveats due to each CSE’s surrounding 

environment, but the core of each land use pattern is similar in nature. 
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When looking at the composition of both CSE, there are various common features 

that can be detected by the observer. For instance, it can be seen that academic facilities 

for university environments and training support facilities for installation environments 

are supporting on-site personnel training requirement needs. The same thinking can be 

applied between aspects such USA and military base CSE facilities which were compared 

relative to one another in Table 4.2. 

 

 

Table 4.2. Comparison of USA and military base CSE facilities. 

USA CSE Military Base CSE 

USA CSE Land Use 
Facilities 

Military Base CSE Land 
Use Facilities 

Military Base CSE Description 

University Housing  Billeting Facilities Support living amenities for personnel 

(e.g., tent pads or barrack buildings) 

University Administration 

Facilities 

Base Administration 

Facilities  

Allows for the internal organization to 

interact with external organizations such 

as the Department of Defense (DoD) 

(e.g., unit headquarters, communication 

facilities, and administration buildings) 

Student Support Facilities Soldier/Marine Support 

Facilities  

Help facilitate meeting a mixture of 

personnel daily physical, psychological, 

and other supporting needs. 

University Utility Base Utility Facilities Support the movement, treatment, and 

disposal of power, water, and waste 

through on-site roadway, utility lines and 

sidewalk networks. 

 

 

 

Beyond these architectural aspects, some form of abstraction by the observer is 

needed in order to fully realize the commonalities between the two environments. Such 

an in-stance is encountered when observing the technical systems that supported facility 

management capabilities within the university environment. This abstraction consists of 

identifying and grouping land use patterns so that certain land use zones such as 

nonhazardous material storage, hazardous material and waste, and motor pool/vehicle 
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parking facilities. These aggregations directly align with the facility management 

capabilities of the military base CSE with that of the university CSE. 

Based on this assessment of the technical systems that constitute the architecture 

of the university and military base CSE, there seems to be an almost complete overlap 

between the two CSEs. The exception in this overlap, however, were the technical 

systems and land use zones that support the security and defense capabilities of each 

CSE. The military base security and defense capabilities are more physically visible and 

robust than the university’s security and defense capabilities. This divergence 

architectures are mainly due to each of their environmental or contextual circumstances. 

4.4.2 The Social Side of the CSE Architecture – The Social System/Structure 

Though it is true that technical component systems such as roadway networks, 

facilities, and communication nodes are crucial for these CSEs to achieve their intended 

goal technical systems alone cannot satisfy the requirements on their own. These 

technical systems require a social system or organizational structure which gives the 

environment direction toward a mission objective, and a sense of autonomy in governing 

its own internal mechanisms. The university and military base environments are 

considered sociotechnical systems or SoSTS. The organizational structure of the 

university environment reveals that the general mission of a university CSE is to: 

Provide sufficient support to students, faculty, staff, and other employees 

through the sustained provisioning, operation, and maintenance of facilities, 

resources, supplies, and equipment to further the University’s projection into various 

knowledge domains (for students and faculty), national and international communities, 
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and capabilities (for staff and employees) to allow for increased QoL on and off 

campus. 

Assessing the mission of a military base reveals a similar mission objective to that 

of the university CSE. 

Provide the support, sustainment, and projection of allied forces (i.e., soldiers, 

contractors, commanders, and civilian augmentees) at home and aboard against 

adversarial forces within a given theater of operation through the effective 

management and provisioning of materiel and other resources to allow for adequate 

QoL and personnel safety and security in any operational environment (Cave et al., 

2011; Deluca & Mills, 2013; Anderson & Kinnevan, 2013; JP 4-04, 2019). 

Exceptions are the social/organizational structure within the respective 

environments, the intended points of operational projection, and the increase in 

capabilities and information. For instance, the social entities of the organizational 

structure within the military base CSE would be soldiers, commanders, contractors, etc. 

not students, faculty, staff, etc. The intended point of operational projection for both of 

these CSE are common in nature because of their desire to extend their influence or 

reputation be-yond their boundaries into the global domain. The method used to achieve 

this influence or reputation is different between the two CSE. In the case of the university 

CSE, this is achieved through study abroad, cooperative education, and internship pro-

grams where universities cross-pollinate with other universities and companies. In the 

military base CSEs, the point of operational projection, are achieved either combatively 

or peacefully. Both of these CSEs desire to expand their capabilities and repositories of 

information to inform their social systems. It is done through research in the case of 
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university CSEs or information and communication techniques in the case of military 

base CSEs. 

The organizational system/structure of university and military base CSE are simi-

lar as well although the university CSE organizational system is more complex than the 

military base’s strictly hierarchical organizational system. This lack of complexity in the 

social structure in military base environments supports quick lines of command and 

communication which isn’t a major issue for university organizational structures. In order 

to get a sense of the scale and interdependencies within each of the organizational 

structures or social systems for each environment, Figure 4.11a and 4.11b show the social 

system that formulates the composition of university and military base environments, 

respectively. 
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(a)  

Figure 4.11. Comparison of the (a) University (University Organization Structure, n.d.) 

and (b) FOB environment Organizational Structure (Deluca & Mills, 2013). 
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(b) 

Figure 4.11, Cont. 

 

 

 

4.6 Results & Discussion 

Table 3 illustrates the similarities and contrasts between the university and 

military base environments through the depiction the mission pattern and land use 

patterns exhibited by each CSE. 

It is worth noting that in the land use patterns column, these are land use zones 

taken from the military document of (Deluca & Mills, 2013), which were used to match 

the university land use patterns through the same color-coding scheme seen in Figure 4.6 
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of this manuscript. Although some land use patterns matched between the military base 

and university environments, there were some discrepancies between the two CSEs in 

some of the land use zones. For instance, there is no designated zone within the 

university CSE that is strictly dedicated to student support but, there is for soldier support 

in the military base CSE. Student support land use areas are spaces that the common 

student use (i.e., excluding housing/billeting zones) to fulfill their objective for the day as 

part of the university collective. By investigating into the zones that supports students 

within the university CSE it was found that zones such as administration, recreation, and 

to some extent, athletic land use zones assist in collectively supporting students, making 

these three land use zones align analogously with the soldier support zones commonly 

seen in the military base CSEs. Examples of this grouping were also used in aggregating 

the land use patterns that support facility management within military bases since these 

land use patterns existed in the form of nonhazardous material storage, hazardous 

material and hazardous waste, and motor pool/vehicle parking land use zones. 

In comparison, unlike military bases, the university environment does not possess 

a high level of security and defense, this is because higher environmental awareness is 

needed to handle unwanted entities and events from compromising the integrity of the 

military base environment. The USA CSE compared to the military base is more of a 

paradoxical with an open environment yet secured through with measures such as on-

campus police presence, cameras, and personal authentication technologies (e.g., keycard 

access points). The cyber system boundaries of USA are similar with some given 

exceptions. This exception is revolving around the fact that the cyber boundary for 

military base CSEs is larger than the USA CSE in terms of scale because of the numerous 
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devices that could be interfacing at any given time. With highly sensitive and even top-

secret information on some servers, the cyber boundary of military bases may be more 

highly safeguarded than cyber infrastructure the USA CSE. 

 

 

Table 4.3. Comparison of the university campus and military base environments. 

 

 

 

 

 

 

 

 System of Interest (SoI) 

Mission Pattern University Campus Military Base  

Mission of 

System 

Provide sufficient support to students, faculty, 

and staff through the sustained provisioning, 

operation, and maintenance of facilities, 

resources, supplies, and equipment to further 

the University’s projection into knowledge 

domains (for students and faculty) and 

efficiency (for staff) to allow for increased 

QoL on and off campus. 

Responsible for providing the support, 

sustainment, and projection of allied forces (i.e. 

soldiers, contractors, commanders, and civilian 

augmentees) against adversarial forces within a 

given theater of operation through the effective 

management and provisioning of materiel and 

other various resources to allow for adequate 

QoL and personnel safety and security. 

Land Use      

Patterns 
 

 

Operational 

• N/A – Dedicated land use area is 

nonexistent on the University’s main 

campus site, but are prevalent at its off-

site healthcare system facilities – USA 

Medical Center 

• Land use environment supports and provides 

a space where air vehicles can land allowing 

for intermodal and joint capabilities to shape 

and support base requirements and missions 

• Military base operational facility areas 

contain:  

o Airfields 

o Unmanned aircraft system landing 

strips 

o Landing zones 
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Table 4.3, Cont. 

 

Training Support 

• Environment for preparing students for the 

future within respective domains 

• Academic facility zoning areas contain: 

o Archaeology Building (Bldg.) 

o Archaeology Lab 1 & 2 

o Chemistry Bldg. 

o Communication Bldg. 

o Education & Outreach Bldg. 

o Engineering Laboratory Bldg. 

o Glass Arts Bldg.  

o Health, Kinesiology & Sport Bldg. 

o Health Sciences Bldg. 

o Health Simulation Bldg. 

o Humanities Bldg. 

o Laboratory of Infectious Diseases 

Bldg. 

o Laidlaw Performing Arts Center 

o Life Sciences Bldg. 

o Life Sciences Greenhouse 

o Life Science Lecture Hall 

o Mathematical Sciences & Physics 

Bldg. 

o Medical Sciences Bldg. 

o Mitchell College of Business 

o Mitchell Learning Resource Center 

o Molecular Research Center 

o Science Laboratory Bldg.  

o Shelby Hall 

o University Commons 

o Visual Arts Complex 

• Environment for preparing 

soldiers/personnel for future combat 

situations and conditions 

• Military base training facility zoning 

areas contain: 

o Institutions/Educational 

Facilities 

o Training areas 

▪ Mock rehearsal 

zones 

▪ Cyber-based 

training 

environments 

o Weapons firing ranges 

Billeting 

• Environment for comfortably housing students 

for multiple months 

• Housing facility zoning areas contain: 

o Azalea Hall 

o Beta/Gamma Commons 

o Beta Apartments Residence Halls (1-

5) 

o Camellia Hall 

o Delta Commons 

o Delta Residence Halls (3-6) 

o Epsilon Residence Halls (1-2) 

o Gamma Residence Halls (0-9) 

o Grove Apartments (2-21) 

o Stokes Hall 

• Environment for reducing 

soldier/personnel stress during combat 

engagement, through housing and 

amenity provisioning 

• Military base housing facility zoning 

areas contain: 

o Forward Operating Bases 

(FOBs) 

▪ Tent pads 

▪ Barrack buildings 

o CONUS & International 

Bases 

▪ Assortment of 

Traditional 

Housing Unit types 
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Table 4.3, Cont. 
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• Environment for supporting and sustaining students 

throughout the day and their semesters on campus 

between classes or work.  

o On-campus options allow for quicker access 

to services 

o Opposed to military base, options are also 

found off-campus for more service variety 

• Student support facility zoning areas contain: 

o On-campus medical facilities 

▪ BMA Dialysis Center 

▪ Student Health Center 

▪ University Physicians Group 

▪ USA Speech & Hearing Clinic 

o USA on-campus dining facilities 

o Student activities facilities 

▪ Baptist & Catholic Student 

Centers 

▪ Student Center  

▪ Wesley Foundation Center 

o On-campus student services facilities 

▪ Academic Services Center 

▪ Bookstore 

▪ Education Services Building 

▪ Meisler Hall  

▪ University Counseling and 

Testing Center Building 

▪ University Police/Parking 

Services 

o USA Library System 

▪ Charles M. Baugh Biomedical 

Library  

▪ Marx Library 

▪ Mitchell Learning Resource 

Center 

o USA Athletic Facilities 

o JagFIT@South Network - Recreation 

▪ Glenn Sebastian Nature Trial 

▪ Intramural Fields 

▪ Jag Fitness Trail 

▪ Student Recreation Center 

• Environment for supporting and 

sustaining soldiers for long 

duration and long-distance 

missions away from CONUS 

• Military base soldier support 

facility zoning areas contain: 

o Medical treatment 

facilities (includes 

medical, dental, and 

veterinary services, 

etc.) 

o Dining facilities 

o Laundries 

o Barbershops 

o Post exchanges and 

food courts 

o Morale, welfare, and 

recreation facilities 

o Fitness facilities 

o Chapels 

o Education centers 

(Libraries) 

o Entertainment facilities 

Student/Soldier 

Support 

Recreational 
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Table 4.3, Cont. 

 

 

 

Nonhazardous 

Material Storage 

• Environment for handling or holding 

resources, supplies, supplies, equipment, 

recycled waste, and other materials (i.e. 

construction) that may be used either in the 

near future or in the long-term as salvage 

• Nonhazardous material storage zoning 

areas contain: 

Warehousing facilities 

o Construction facilities & services 

warehouse 

o Property inventory warehouse 

Storage space facilities 

o Recycle Center 

o Treatment Storage & Disposal 

o Sports Storage Facilities 

• Environment meant for handling or holding 

resources, supplies, equipment, and other 

materiels that may be used later on to 

perform various lifecycle activities within 

in the military base. 

• Military base nonhazardous material 

storage zoning areas contain: 

• Warehouses  

• Space for the placement of military vans or 

containers 

Hazardous Material 

& Hazardous Waste 

• Environment for safely handling, 

managing, and disposing of hazardous 

materials/waste procured at the University 

so as to reduce and eliminate 

environmental implications (i.e. damage or 

degradation) 

• Hazardous material and hazardous waste 

facility areas contain 

o Education & outreach building – 

Department of safety & 

environmental compliance 

• Environment for facilitating the appropriate 

handling and management of 

environmental and biologically hazardous 

materials within the base 

• Military base hazardous material and 

hazardous waste facility areas contain: 

o Petroleum, oils, and lubricants 

storage areas 

o Ammunition and explosives 

storage areas 

o Hazardous waste accumulation 

points 

Motor Pool/Vehicle 

Parking 

• Land use environment that supports the 

lifecycle needs of on-campus service 

vehicles (e.g., JagTran, athletic buses, Jag 

carriage vehicles) that are meant to allow 

for the mobility of students and other 

personnel throughout the campus.  

• This area may include meeting refueling 

needs for on-campus vehicle fleet. 

• Motor pool/vehicle parking facility areas 

contain: 

o Transportation services building 

& facility 

• Land use environment for managing 

vehicle fleets that support on-base and off-

base logistical operations and 

requirements.  

• Military base motor pool/vehicle parking 

facility areas contain: 

o Vehicle maintenance facilities 

o Specified parking areas for 

nontactical vehicles 
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Table 4.3, Cont. 

 

 

 

These findings are significant because they reveal that although university and 

military base environments are different environments and possess their own unique 

Utilities 

• Land use environment for operating, 

maintaining, and constructing on-campus 

infrastructure for the distribution of power, 

natural gas, and water to end users 

• This land use is also allocated to the city of 

the University and its Municipal electric, 

water, and waste management agencies (e.g., 

Alabama Power, MAWSS, WM) off-campus 

o Specific wastes are handled by city 

contracted company/agency  

• Utility facility areas contain: 

o Power, water, and waste 

treatment/disposal  

▪ Central utilities plant 

▪ Satellite utilities plant 

▪ Treatment Storage & 

Disposal – Waste 

treatment/disposal 

o Facilities for right of ways or 

easements 

▪ University sidewalk 

network 

▪ University roadway 

network 

• Land environment for managing and 

facilitating the procurement and distribution 

of utility flows for electricity, water, and 

waste to and from end-users 

• Military base utility facility areas contain:  

o Facilities for power, water, and 

waste treatment/disposal 

o Right of ways or easements 

Security &  

Defense 

• Land use areas that support student, faculty, 

and staff safety along with university asset 

protection, from external forces or individuals 

with malicious intent. 

• Universities are a paradoxical system with 

closed yet open environments with free 

access to the public, but constantly being 

monitored by cameras by the on-campus 

police for security yet transparent defense. 

• Security and defense facility areas contain: 

o University police – physical 

security 

o Telecommunications facility – 

cyber/information security 

o Camera outlets 

• Environment parcel for meeting security 

and defense requirements for repelling, 

deterring, and discouraging adversarial 

forces from gaining a point of strategic 

advantage against soldiers within the base. 

• Military base security and defense facility 

areas contain: 

o Guard towers 

o Entry control points (ECPs) 

o Staging areas for quick response 

forces with adequate entry and 

exit points 
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missions, they have many striking commonalities from a technical and social architecture 

perspective. This shows that these two environments might be interchangeably used as 

the first deployment backdrops for early market deployment of AVs.  

From a systemic perspective, CSEs can be utilized to help foster trust and growth 

of adoption of AVs in closed and controlled environments that allow the public to interact 

with AVs and AVs to be used in near-realistic operational environments for increased 

learning. This notion is only reinforced by the fact that CSEs are like miniature cities 

(Arata & Hale, 2018) making them excellent environments to introduce AVs through 

small scale early market deployment. With CSEs such as university and military bases 

possessing strong similarities from an architectural standpoint, these similarities could be 

capitalized on to further AV adoption and testing. Knowledge such as insights, lesson 

learned, and challenges from using AVs in one CSE should directly transfer to other 

CSEs. Expanding this approach would allow for quicker AV integration into other CSEs 

improving proliferation of AV adoption into city environments leveraging architectural 

similarities where they exist. This, of course, is all dependent on the establishment of 

trust between AVs and the public being gained within CSEs. 

This concept is significant because it shows how AV research and development 

observations, testing insights, and lesson learned from one CSE could be harnessed and 

transferred to another CSE. This will support quicker and more ethical AV 

implementation and deployment in other CSEs, through the introduction of a system-

level framework. 

With the challenge of overcoming trust and adoption of AVs, CSEs could play a 

vital role in supporting and helping accelerate trust in AVs and ultimately its adoption. 
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With AV technology currently being in the development and testing stage (Litman, 2020) 

of the technology adoption curve, it has yet to be seen if AVs will endure what is 

commonly known as the “Valley of Death” or “The Chasm”. This region of the adoption 

curve is a crucial zone that determines the success of a given technology because it is a 

major milestone that needs to be overcome for a technology to go from small-scale 

deployment (i.e., early market phase) to large scale deployment (i.e., mainstream market 

phase). 

As the general trend for technology adoptions go, the initial onset of the technol-

ogy gains a small gathering of individuals known as the innovators. As momentum builds 

and he popularity and reputation of the technology flourish early adopters begin to 

emerge from the group of people utilizing the technology. At this point in the early 

market deployment stage of AV deployment, usage is only at the small across CSEs that 

similar in nature. However, the since AVs are in being used in university and military 

base CSEs, these technologies are being exposed to diverse group people from different 

age groups, socioeconomic backgrounds, and demographics increasing the chances for 

widespread adoption in different CSEs. These next CSEs may consist large theme parks, 

busy airports, urban loops, or high traffic industrial parks. Large CSEs with higher 

vehicular and foot traffic demand would be the next steppingstone for AV deployment 

and would correspondent with the chasm of the adoption curve. This shows that large and 

busier CSE will act as the bridge to going from small-scale AV deployment to large-scale 

deployment in cities. If this approach is able to cultivate trust between AVs and humans, 

the emergence of the mainstream market may begin to flourish with the early majority 

and late majority follow behind the early adopters. At these points trust and adoption 
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between AVs and humans have crystallized leading to widespread use of AVs in cities. 

Laggards will round the remaining adopters of the AV technology. Figure 4.12 provides a 

visualization this potential AV future as it relates to the technology adoption curve and 

deployment paradigms. 

 

 

Figure 4.12. Systemic path of gentle deployment and adoption of AVs in the near and 

intermediate future.7  

 
 

If AVs aren’t terminated at the chasm, studies have shown that AVs could reach 

mainstream markets as early as the 2030s (Walker & Johnson, 2016; Keeney, 2017; 

Airbib et al., 2017; Shabanpour et al., 2018) and as late as the 2040s and 2050s, while 

 
7  City image created by tananuru763225, <a href="https://www.vecteezy.com/free-vector/hand">Hand 

Vectors by Vecteezy</a> 
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AV saturation levels occur by the 2060s (Litman, 2020). In order to reach the main-

stream market, CSEs could act a pivotal bridge from the early market phase to the 

mainstream market phase of technology adoption. One of the downsides to using CSEs is 

that implementing AVs in these environments will be expensive and time consuming in 

nature, only allowing a small set of scenarios to be explored relative to simulation testing 

approaches such as hardware-in-the-loop (HiL) (Techbriefs Media Group, 2020; Metz 

2021). Regardless, some form of large-scale testing approach will be needed to verify 

outcomes generated from simulation testing of the AV. 

 

 

4.7 Conclusion 

AVs are a disruptive yet promising smart technology that is expected to 

systemically transform and benefit cities and their industrial sectors. However, before 

these large-scale benefits are reached in the forthcoming future, various barriers such as 

obtaining trust and acceptance of adoption of AVs will need to be overcome through 

more sensible and gentle testing, development, and deployment strategies. These 

strategies must place the cultivation of trust and adoption the public and AVs while at the 

same time promoting increased safety to the public and AVs alike. In order to achieve 

this, it is proposed that CSEs such as university and military base environments be used 

to support the early nurturing of trust and adoption between AVs and humans in a 

controlled and closed environment. This proposal is justified by the demonstration of the 

similarities in these two CSEs – the university and military base environment – enabling 
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their interchangeable use as potential early market deployment environments for AVs and 

other smart technologies. 

Findings determined that though CSEs such as university and military bases are 

different in terms of their purpose, there are a sizable number of commonalities be-tween 

these environments with respect to their system attributes. These likenesses be-tween 

CSEs consist of: 

• commonalities between the level of complexity, scale, and hierarchy of the 

system context surrounding the university and military base CSE 

• similarities between the dimensionality of the system boundary which 

possessed both a physical, cyber, and emerging artificial boundary  

• an architectural closeness between the university and military base CSE 

land use patterns and their respective function and purpose  

• a resemblance of social organizational structures between the university 

and military base CSE, though the university CSE was slightly more complex in 

nature 

These similar attributes can be exploited to include current smart technologies and 

other emerging enabling technologies. A way of exploiting these commonalities would 

consist of transferring and sharing AV deployment insights, lessons learned, and 

challenges from one CSE into another. This would allow for quicker AV deployment in 

other CSEs during the early market phase and eventually the proliferation of AV 

adoption into mainstream market through its incorporation into cities. The intended 

contribution of this manuscript within the existing body of literature is to propose a way 
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in which the gap between the early phase of AV research and development and main-

stream market phase of large-scale implementation and integration of AVs in cities could 

be bridged. 

 

 

4.8 Future Work 

This manuscript is the first in a set of papers, meant to establish the fundamental 

theory and framework that will act as the foundation for experimentation in a follow-up 

pa-per. Future work will expound upon this theoretical work through the use of simulated 

experimentation with agent-based modeling (ABM) in a representative CSE. This is 

concept forms the focus and context of Chapter V of this dissertation.  
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CHAPTER V – PROPOSED ARTICLE 3 – SIMULATION OF ALTERNATIVE 

FUELING INFRASTRUCTURES WITH AUTONOMOUS BUS FLEETS IN 

CLOSED SOCIOTECHNICAL ENVIRONMENT 

 

5.1 Introduction 

This chapter builds on the concepts, frameworks, and foundational knowledge 

discussed at length in Chapters II, III, and IV by putting forth a practical methodology 

and approach for successfully fulfilling the intended research objectives, and answering 

the appropriated research hypothesis and questions stated in Chapter I. In Chapter II – 

Literature Review, gaps in literature were recognized with respect to: 

• the limitation of the M&S of the integration of ABs with alternative fueling 

infrastructures outside of electric recharging platforms, 

• the lack of M&S with different AB vehicle configuration (e.g., shuttle bus/pods, 

paratransit buses, mini coach buses, and standard buses),  

• an inadequate amount of M&S performed in the simulation of infrastructure 

improvements beyond wireless power transfer technologies in support of AB 

fleet operations.  

Also, through Chapter II it was identified that there is a significant gap in the 

M&S of AVs or ABs in closed sociotechnical environments/systems and under adverse 

weather conditions s. What is more, edge or corner cases such as the impact of typical or 
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severe inclement weather patterns have not been investigated with regard to the 

performance of AV or AB fleet services in meeting required changing demand within a 

given environment. After all, not only will the AV’s operational environment be affected, 

but the social behaviors of potential AV customers or users as well, thereby increasing 

the demand for motorized modes of transportation based on convenience preferences. 

Chapters III and IV built upon these gaps through rudimentary scenario exploration and 

development of AVs in theoretical and hypothetical environments with M&S in StarLogo 

Nova and NetLogo. While, in Chapter IV, architectural comparisons are made between 

within taxonomy of CSEs to show that the incorporation of smart technologies such as 

AVs in anyone of these environments could provide information that could be transferred 

from one CSE to another for quick-time deployment potentially requiring less extensive 

tests in the operational environment of interest. This chapter, on the other hand, will 

provide research approach/methodology, model validation, and research findings from 

practically applying the ideas from Chapters III and IV of this dissertation within an 

agent-based simulation framework. 

 

 

5.2 Research Approach/Methodology 

In this research effort, an M&S approach was taken to understand the impact of 

integrating ABs and alternative fueling infrastructure systems. As part of this approach, 

the University of South Alabama’s (USA) JagTran system was utilized as the system of 

interest. The JagTran system at USA is responsible for the public transit and mobility of 

the university’s student, faculty, and staff population on the university’s main campus 
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site. The intent of the JagTran system is to reduce private vehicle dependence around and 

within the confines of the USA campus environment, thereby relieving traffic congestion, 

vehicle emissions, student campus parking requirements, and support more sustainable 

modes of transportation (e.g., micro-mobility). Moving into the future, one of the ways 

that these desired outcomes could be achieved and improved upon is through the 

integrative use of ABs and alternative fuels. This section will review the approach taken 

throughout the duration of this study in order to attain the research results that were 

generated as a part of this research investigation. 

Before entering into this section, it is worth remembering, that entities or 

technologies such as AVs or ABs are an emerging technology, and assumptions in this 

research study made on these technologies are based intuited conjecture informed 

through a combinatorial use of experience or existing literature. 

 

5.2.1 Data Collection 

In order to implement a M&S approach as part of this research effort, extensive 

data collection efforts needed to be undertaken at the frontend of this research study as 

these were important data points that would dictate all agent behaviors and relationships 

with one another and their surrounding environment. The process of data collection in 

this work consisted of four taxonomies of data which were composed of: 

• JagTran bus service data 

• Traffic demand data 

• Automated Bus (AB) data 
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• Fueling infrastructure data 

Figure 5.1 shows a taxonomy and hierarchy of all data types that formulates the 

input data for the M&S approach taken in this research. The following sections will 

discuss what each data category entails in terms of attaining the necessary data to support 

M&S compilation and execution. Additionally, the proceeding sections will also disclose 

the assumptions made within each of the data types to reveal limitations of the model 

developed in this research study. 

 

 

Figure 5.1. Data hierarchy that describes the data collected during data collection 

process.  
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5.2.1.1 JagTran Data. 

As the mainstay for mass transit on the USA campus, the JagTran bus service 

provides a full and highly distributed transportation service to all extremities of the CSE 

that is the USA campus. The JagTran bus service is responsible for providing timely 

transportation services to student, faculty, staff, and visitor populations within and around 

the university campus environment through a fleet of paratransit buses that traverse the 

campus on five distinct bus routes. Each bus route is distinguished based on color 

designations of red, blue, yellow, green, and orange. Each JagTran bus route possesses at 

a maximum of two buses servicing its ridership demand on each color designated route 

with the exception of the red and orange JagTrans, which possess one JagTran bus at all 

times (except for when its ridership demand is high). Figure 5.2 shows the network layout 

and lengths of the JagTran bus routes relative to the USA campus. 
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The bus route layout in Figure 5.2 is based on operational bus routes provided by 

the USA Transportation Services department during the 2018-2019 academic year. 

Through the examination of Figure 5.1, the JagTran data collected at the frontend of this 

research possesses a sub-hierarchy of input data which consists of JagTran operations 

data, ridership demand data, and JagTran GPS data. These input data points were used as 

the basis for developing the model and simulation of the JagTran system and will be 

discussed in further detail in the following subsections. 

5.2.1.1.1 JagTran Operations and Specifications Data. 

In order to grasp the behavior and performance of the existing JagTran bus 

system, questions regarding JagTran operations were developed with the intent of 

determining the daily needs and actions of the university bus system and its drivers. 

These set of questions also queried into the operational desires and wants of the JagTran 

personnel as well as to assess what future improvements could be made to USA’s on-

campus transit system and their opinions towards automated systems. Once developed, 

the questions were used for elicitation which was performed through video conference 

with USA’s Transportation Services department personnel who were responsible for 

operation, maintenance, and disposal of the buses within the JagTran bus fleet. 

Information that was disclosed consisted of operational information such JagTran bus 

specifications, operational downtime of buses, bus service specifications (i.e., bus route 

headways), and personal opinions on integration of automated bus technology within the 

USA Transportation Service framework. Audio recordings of these questionnaire/survey 

sessions were taken with permission from USA Transportation Services personnel as part 
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of the data collection process. Operational data garnered from this data collection process 

were then utilized as input data for the M&S approach in this research study. 

Furthermore, by using elicitation to gather JagTran data, other data sources such as 

ridership and JagTran global positioning system (GPS) tracker data were shared and 

provided. Section 5.7.1 – Appendix 5.1 provides a table of the questions utilized in the 

elicitation to gather data on the JagTran buses, their personnel, and their daily operation. 

From the elicitation, important specifications defining the JagTran buses were 

extracted to model the physical attributes of the JagTran bus agents used in the M&S 

simulation approach of this study. In addition to the extraction of bus specifications 

during operation hours, the use of other external sources was also used to fill in technical 

gaps regarding bus performance which are unknown to interviewed personnel. These bus 

specifications can be seen in Table 5.1 and were used as behavioral inputs for human-

driven buses in the simulation.  

 

 

Table 5.1. Specifications used for Modeling JagTran Buses. 

Specification Attribute Value Source 

Engine Fuel Type Conventional Diesel USA Transportation Services 

Fuel Capacity 30 gal USA Transportation Services 

Person Seating Capacity 15 Assumed based Empirical Data 

Vehicle Chassis Ford E450 USA Transportation Services 

Length 7.28 m (23.88 ft) Based on specs. (Champion, 2017) 

Width 2.44 m (8.01 ft) Based on specs. (Champion, 2017) 

Height 2.88 m (9.45 ft) Based on specs. (Champion, 2017) 

Weight 5262 kg (11578.7 lb) 
Assumed 20% reduction in Gross 

Vehicle Weight Rating (GVWR) 
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5.2.1.1.2 Ridership Demand Data. 

Ridership data collected from USA Transportation Services consisted of data that 

counted the number of boarding persons per hour period utilized the JagTran services 

through the fleet’s operational hours. Data obtained from the data collection process 

consisted of ridership data generated over a one-month time period. Therefore, the hourly 

counts collected over the one-month period were aggregated within each hour period to 

assess ridership variation throughout a given the day of operation. This ridership 

variation was then used as a means of validating if a specific bus within the simulation 

aligns with behaviors of those seen in the actual JagTran bus system. The ridership 

variation data is also used as an input data source for the simulation to provide realistic 

ridership demand within simulation environment. Ridership within the simulation was 

based on assumed person behaviors which consisted of a person agent appearing or 

spawning at a desired bus stop and waiting until a bus on a designated route arrives. 

Since information that describe rider movement throughout campus was not collected, 

this made it impossible to know what bus stop destinations riders were disembarking 

from as they were using the JagTran buses. Therefore, to circumvent this issue, it was 

assumed riders were allowed to take trips between bus stops that laid in a different land 

use zone that its current location. This made sure that the riders’ trips to other bus stops 

covered a reasonable distance for taking the JagTran bus system. Figure 5.3 show land 

use patterns for the USA campus relative to its JagTran bus stops to see how bus trips 

were generated. Activities such as balking from the bus station and taking another mode 

of transportation was not assumed or considered as part of this research study. 
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5.2.1.1.3 GPS Tracking Data. 

As a means of imparting intelligent transit management within the campus 

environment, JagTran buses are equipped with GPS trackers that provide real-time 

positional data. This GPS data is transmitted to a smartphone application known as 

JagTran tracker which provides information to the university body at large allowing for 

university populations to use the JagTran service more efficiently. The organization or 

group responsible for or in possession of the GPS tracking data was made aware through 

the elicitation of USA Transportation Service personnel. This data was then collected 

from the USA Computer Services department who was responsible for managing and 

storing the sums of GPS data generated from the JagTran buses. GPS tracker data was 

only collected during 2020-2021 academic year due to a lack of availability and recent 

implementation of the technology within JagTran bus systems (i.e., December 2019).  

The GPS tracking data consisted of data from multiple JagTran vehicles that serve 

different bus routes within the JagTran transit system. Data within the GPS dataset was 

composed of vehicle speed, vehicle latitude position, vehicle longitudinal position, 

vehicle heading, and vehicle time of operation. The purpose of the use and collection of 

GPS tracking data was to determine and assess how JagTran buses should be moving 

throughout the USA campus space within the simulation environment. This included 

aspects such as determining the duration of how long it should take the JagTran buses to 

loop around their respective bus routes once. With this in mind, a geographical 
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information system (GIS) tool known as QGIS was used in order to visually map the GPS 

tracker data based on time of day which can be seen Figure 5.4.  

 

 

 

Figure 5.4. GPS mapping of JagTran loop routes based on time of day. 

 

 

 

The GPS mapping process was composed of generating single bus route loops for 

each JagTran bus route and measuring the bus travel duration through each bus route 

loop. Based off the GPS tracking data for each route, 18 random loop readings (10 loop 

readings for the orange bus route due to limited data) were taken spanning over different 

days and times of day to invoke variability within the sampling size. These duration 
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measurements were then aggregated together to assess route time variations to observe 

and locate acceptable route time ranges for each bus route.  

One aspect to note, however, is that there was a significant spatio-temporal 

discrepancy between GPS data and ridership data. Current GPS data from JagTran bus 

operations were from the year 2020, which was during the COVID-19 timeframe. As part 

of this timeframe, JagTran bus routes were altered due to the closing of certain facilities 

in order to meet COVID protocols throughout the USA campus, meaning some bus stops 

were not in service, ultimately resulting in JagTran bus routes being changed from pre-

COVID conditions, which ridership demand data from section 5.2.1.1.2 is based on. This 

resulted in many bus routes becoming shorter than the general JagTran bus routes from 

previous years of service. Ridership during this time period was also different from pre-

COVID conditions with significantly more riders utilizing the JagTran bus services 

according to USA Transportation Service personnel. Furthermore, ridership for JagTran 

services was only collected during the early months of 2019 (i.e., 2018-2019 academic 

year), meaning the bus routes were quite different than during COVID conditions. This 

discrepancy can have a significant effect on the realism of the simulation that will be 

generated as part of this study due to aspects such as imprecise bus route lengths, 

inaccurate ridership demand, and inappropriate bus fleet size for each bus route. 

To circumvent this issue, the GPS data of the JagTran bus routes during the 

COVID conditions was utilized as base for developing JagTran bus routes during pre-

COVID conditions. This process consisted of using certain similar lengths of the COVID 

condition bus routes and superimposing them over parts of the JagTran routes during 

COVID and removing certain segments of the JagTran route that existed during COVID 
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conditions. This process consisted of not only removing and adding lengths of the bus 

route, but also adding and removing the temporal dimension of each bus route as well. 

Net changes from superimposing and removing certain segments were applied to the 

COVID condition JagTran bus routes, thereby making adjustments to the route and 

making JagTran bus routes that are similar, if not, exactly resembling JagTran bus routes 

during pre-COVID conditions which are longer than peri-COVID conditions. Figure 5.5 

shows the unadjusted, aggregated bus route variation times for each respective JagTran 

bus route during COVID conditions, while Figure 5.11 (in Section 5.3.1) depicts the 
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adjusted aggregate bus route variation times for each respective JagTran bus route based 

on pre-COVID conditions. 

 

 

 

Figure 5.5. Unadjusted bus route time variations based on peri-COVID conditions. 

 

 

5.2.1.1.4 JagTran Agent Bus Behavior. 

To extend the operation, specification, and behavior data for JagTran agents 

modeled in the simulation environment, assumed values from existing literature were 

used for vehicle behaviors such as acceleration, deceleration, minimum headway 

maintenance, etc. These values were not known by the USA Transportation Services 

personnel requiring external investigation for further simulation realism. Table 5.2 shows 

the behavior parameter assumptions made as input data for the M&S approach used in 
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this research study. The data in Table 5.2 is based on HDB JagTran configuration (the 

existing configuration) of the JagTran system. 

 

Table 5.2. HDB JagTran bus agent parameter assumptions for modeling and simulation 

input. 

HDB Agent Attribute 

Behavior 
Assumptions Citations 

Acceleration 1.19 m/s2 (3.9 ft/s2) 
(Elbanhawi et al., 2015; Bae et 

al., 2019) 

Deceleration -1.45 m/s2 (-4.76 ft/s2) 
(Elbanhawi et al., 2015; Bae et 

al., 2019) 

Max. Deceleration -2 m/s2 (-6.56 ft/s2) 
(Moon & Yi et al., 2008; 

Bossetti et al., 2014) 

Headway 4 meters (13.12 feet) (Muhammad et al., 2020) 

Car Following Model 
Krauss 

Model 

Sigma 0.5 Assumed 

Tau (Reaction 

Time) 
2.5 sec. (Khoury et al., 2019) 

Bus Loading Duration 

(per Passenger) 

tservice = tboarding + 0.5 sec. = 1.75 + 0.5 = 

2.25 sec. 

(Kittelson et al., 2003; Ryus et 

al., 2013) 

 

 

 

In addition to these behaviors, bus schedules were also assigned to each JagTran 

bus on their respective routes as well, with each having a designated starting bus stop 

position which was provided through the elicitation process mentioned in Section 

5.2.1.1.1. The bus schedule for HDBs consisted of varying bus stop wait times which 

were dependent on the route designation of the bus in question. These bus stop wait times 

were based on the route loop time for a given bus taken from JagTran GPS data. For 

reference, Section 5.7.2 – Appendix 5.2 provides further detail on the timing of bus 
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schedules that were utilized to represent HDBs within the M&S approach of this research 

study 

5.2.1.2 Traffic Demand Data. 

As part of the operational environment of JagTran buses, there are unique and 

varying transportation conditions that JagTran buses find themselves in during their 

service time. These environment conditions can consist of single lane, lone traffic roads 

in the interior of campus or busy high traffic flows found at the boundary of the USA 

campus environment. In these busier thoroughfares, are traffic signals that are responsible 

for the movement of respective traffic approaches which contain designated signal 

timings and sequences along the City of Mobile’s major roadways – University Blvd and 

Old Shell Road. Located at the boundary of the USA campus environment, both traffic 

flow and traffic light signals have an effect on the movement of the JagTran buses within 

their respective routes and are accounted for as part of the system abstraction within the 

simulation space. Traffic demand data in this research is composed of two major 

components – traffic signal data and general traffic flow/traffic demand data. The 

methodology for attaining both traffic demand and traffic signal data will be discussed in 

the following subsections. 

5.2.1.2.1 Traffic Signal Data. 

Following the process of elicitation of the USA Transportation services personnel, 

traffic signal data – data that describes the operational environment of the JagTran system 

– was then collected. The data collection process for obtaining traffic signal data 
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consisted of using historical data and field observations to understand the signal timing 

and sequencing configuration at each intersection found at the boundary of the USA 

campus. Traffic signal data was collected for 11 of the traffic intersections surrounding 

the USA campus environment. Figure 5.6 shows the intersections of interest used for data 

collection along the boundary of the campus. The traffic signal data used in this research 

study was obtained through the provision of the Mobile Department of Traffic 

Engineering (MDoTE) in the form of historical traffic timing data. This data consisted of 

lighting durations and phase organization at specific intersections. 
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On the other hand, field observations were used to take note of traffic light signal 

sequencing, by observing which lane movements were first or last within a given lighting 

cycle. The approach of field observations consisted of not only physical observation, but 

the use of camera to capture video footage of traffic signal movement at each 

intersection. In addition to this, field observations were used as a means to compare 

actual observations of some of the traffic lights relative to the traffic signal timings 

reported by the MDoTE. If discrepancies existed between the two then assumptions 

would have to be made for conduciveness to M&S conditions. By using the historical 

traffic signal data in concert with field observations, typical traffic phase durations were 

obtained which were then used as inputs for the traffic light logic capabilities in the M&S 

simulation approach proposed in this study. 

5.2.1.2.2 General Traffic Flow Pattern/Traffic Demand Data. 

Similar to the approach seen in the previous subsection, the approach for 

collecting general traffic flow demand data, consisted of using a combination of historical 

data and field observation data. For traffic demand data involving historical data, this 

information was collected by two traffic agency sources: MDoTE and the Alabama 

Department of Transportation (ALDOT). Traffic demand data collected from MDoTE 

consisted of limited traffic flow data on certain segments of University Blvd and Old 

Shell Road and was not comprehensive in nature. Therefore, in order to fill this data 

disparity, data from ALDOT’s Alabama traffic demand database was utilized to collect 

traffic demand (i.e., vehicle flowrate) at specific points of interest along the arterials 

roadways that formed the boundary of the USA campus environment. Furthermore, 
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traffic demand data from ALDOT was more complete in the sense that traffic flow 

volumes were taken over a 24-hour period allowing for general traffic demand to be 

modeled in tandem with the times of operation for the JagTran bus system. 

One of major limiting aspects about the historical data collected from both the 

MDoTE and ALDOT is the level fidelity that is provided by both data sources. Traffic 

demand data provided by MDoTE possessed data about turning movements at one 

intersection while data provided by ALDOT did not. To overcome this data gap, field 

observations were conducted at traffic intersections along the boundary corridors of the 

University of South Alabama to gain a more complete dataset for traffic flow patterns 

around the campus environment. Field observations at the intersections surrounding the 

USA campus were conducted by taking 1 hour and 30-minute videos during morning and 

evening peak hour periods of 7:30-9:00 am and 4:30-6:00 pm, respectively. These time 

references were selected based off of traffic flow values provided by ALDOT’s traffic 

demand data. Video field observations were taken at a total of 10 of the 11 intersections 

surrounding the University of South Alabama campus. This is because turning 

movements at the intersection of University Blvd and Old Shell Road were obtained 

through MDoTE. From the video data gathered from field observations, turning 

probabilities were ultimately obtained through the counting of vehicle movements at 

certain approaches entering the respective intersections such as left turn lanes, through 

lanes, or right turn lanes. Data generated from extracting turning probabilities from video 

field observations can be seen in Section 5.7.4 – Appendix 5.4 of this work in its entirety 

for more details. These probability values were then used as input data values that were 
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imparted into the simulation tool, providing for more realistic traffic movements and 

behavior within the desired simulation space.  

Hourly traffic demand in the simulated roadway network were dynamic in nature 

with flowrates varying based on hour of day. However, traffic flow data was not available 

for certain roadways that feed into main thoroughfares of the roadway network. 

Therefore, traffic demand during field observations were used. These readings, however, 

were based on peak-period traffic demand flows. To resolve this issue, synthetic traffic 

demand data was generated through the process of interpolation with other roads that 

were close by. These roads have less traffic demand but were assumed to have the same 

or nearly the same distribution or demand trend as their neighboring roads that run 

parallel to them. Figure 5.8 in Section 5.2.3.1 shows a distribution of traffic demand 

relative to time for the major traffic thoroughfare points entering the road network in the 

simulation space. 

5.2.1.2.3 General Traffic Flow Behavior Data. 

General traffic demand was considered in conjunction with the simulation of 

HDB (i.e., current scenario) and AB (i.e., future scenario) fleets to allow for a more 

systemic understanding of the effect that the implementation of ABs and general traffic 

flow conditions have on each other within a given transportation space. Furthermore, the 

purpose of the general traffic demand agents is to create natural noise within JagTran 

systems’ routes in order to resemble realistic conditions. The simulation of the traffic 

flow within the simulation space will not be microscopic nor macroscopic but will 

instead lie in between these two simulation modeling regimes at a mesoscopic scale. This 
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will require the modeling of the flow of individual vehicles, rather than as mass vehicle 

flows. Therefore, each vehicle agent will manifest localized behavior that is akin to a 

conventional human driver’s behavior. Agents that are part of general traffic demand will 

not possess fueling behavior or tendencies. Table 5.3 provides a table of parameters and 

their respective assumptions that will be utilized for the driver-based behavior of the 

vehicles that make up the traffic demand aspect of the simulation model in this research 

study. 

Table 5.3. General traffic flow agent behaviors and their assumptions. 

General Traffic 

Flow Vehicle Agent 

Attributes 

Assumptions Citations for Assumptions 

Acceleration 2.47 m/s2 (8.10 ft/s2) 

(PB Team, 2004; Hugemann 

& Nickel, 2003; El-Shawarby 

et al., 2007; TCRP, 2012; 

Bogdanović & Ruškić, 2013; 

Karjanto et al., 2017) 

Deceleration -3.27 m/s2 (-10.73 ft/s2) 

(Hugemann & Nickel, 2003; 

PB Team, 2004; El-Shawarby 

et al., 2007; TCRP, 2012; 

Bogdanović & Ruškić, 2013; 

Karjanto et al., 2017) 

Max. Deceleration -7.47 m/s2 (-24.52 ft/s2) 
(El-Shawarby et al., 2007; 

Karjanto et al., 2017) 

Headway 3 meters (9.843 ft) (Muhammad et al., 2020) 

Car Following Model Krauss Model 

Sigma 0.4 Assumed 

Tau 

(Reaction 

Time) 

2.5 sec. (Khoury et al., 2019) 

 

 

 

In Table 5.3, the kinematics and headways for the vehicles that make up the 

general traffic demand were assumed from existing literature. For the car following 

model, the value of sigma (i.e., driver imperfection factor) could not be found in literature 

and therefore was assumed to be about 40% because of the inherit flaws that human 

drivers possess because of their susceptibility to errors while driving (e.g., texting, talking 
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on the phone, mind wondering, visual impairment, etc.). On the other hand, value tau was 

obtained through existing literature sources that disclosed the typical reaction time value 

for human drivers. 

5.2.1.3 Automated Bus Data. 

The previous sections have focused more on the human-driven agents or vehicles 

that will inhabit the simulation space of this research approach. In this section, emphasis 

will be placed on the process taken in order to collect input data concerning the behavior 

and attributes of the AB agents that will occupy the simulation space of this research 

investigation. 

5.2.1.3.1 Automated Bus Specification Data. 

This study is concerned with the use of ABs in place of HDBs. As such following 

the collection of JagTran data which consisted of buses that were driven by human 

drivers, specification data regarding ABs were then collected. Since the bus configuration 

for the JagTran buses are mass produced at sufficient economies of scale, specification 

data for these buses were readily available to access. However, economies of scale for 

ABs are not as extensively established, meaning data availability on ABs are minimal in 

nature. Furthermore, most ABs are available within one fueling powertrain configuration 

– electric – as opposed to other fueling powertrains such as hydrogen, CNG, propane, etc. 

This limitation led to various assumptions regarding AB specifications used as input 
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within the M&S approach used in this research investigation. Table 5.4 shows the 

assumptions that were utilized in this research study as inputs into the M&S approach. 

 

Table 5.4. AB specifications and values assumed for the Modeling & Simulation 

approach. 

Specification 

Attribute 
Values Sources 

Engine Fuel 

Type(s) 

Diesel/ 

Biodiesel 

Propane/ Natural 

Gas 
Electric Hydrogen  

Fuel Capacity 
30 gal (1,111.1 

kWh)8 

30 DGE (1,108.5 

kWh)9 
144 kWh10 

9.78 kg H2 + 28 

kWh (354 kWh)11 

See footnote for 

reference 

Person 

Seating 

Capacity 

15*, will vary based on Simulation Case 
*Assumed based on 

Empirical Data 

Vehicle 

Chassis 
Ford E450 Ford E450 Ford E450 Ford E450 

Assumed to be based on 

JagTran bus chassis 

Length 
7.28 m (23.88 

ft) 
7.28 m (23.88 ft) 

7.28 m 

(23.88 ft) 
7.28 m (23.88 ft) 

Based on specs. 

(Champion, 2017) 

Width 2.44 m (8.01 ft) 2.44 m (8.01 ft) 
2.44 m 

(8.01 ft) 
2.44 m (8.01 ft) 

Based on specs. 

(Champion, 2017) 

Height 2.88 m (9.45 ft) 2.88 m (9.45 ft) 
2.88 m 

(9.45 ft) 
2.88 m (9.45 ft) 

Based on specs. 

(Champion, 2017) 

Frontal Area 

m2 (ft2) 

7.03 m2 (75.7 

ft2) 
7.03 m2 (75.7 ft2) 

7.03 m2 

(75.7 ft2) 
7.03 m2 (75.7 ft2) 

Based on specs. 

(Champion, 2017) 

Weight 
5,262 kg 

(11,578.7 lb.)12 

6124 kg 

(13,501.1 lb.)13 

6577 kg 

(14,500 

lb.)14 

5561 kg 

(12,259.9 lb.)15 

See footnote for 

references 

Air Drag 

Coefficient 
0.7 0.7 0.7 0.7 

Based on (Engineering 

Toolbox, 2004; Koch et 

al., 2020) 

Roll Drag 

Coefficient 
0.008 0.008 0.008 0.008 

Based on (Kivekäs et al., 

2019; Koch et al., 2020) 

Radial Drag 

Coefficient 
0.9 0.9 0.9 0.9 Assumed 

Propulsion 

Efficiency 
0.33 0.33 0.73 0.44 

Based on (Schwertner & 

Weidmann, 2016) 

Recuperation 

Efficiency 
0 0 0.54 0.54 

Based on (Schwertner & 

Weidmann, 2016) 

 

 

 

In Table 5.4 there are a few major caveats to how some of the values were 

obtained. As part of the nuance of the simulation environment intended to be used in this 

 
8 From USA Transportation Services personnel elicitation process 
9 Assumption based on CNG fueling capacity requirement from (Morongo Basin Transit Authority, 2009)  
10 Assumption based on battery capacity from electric paratransit bus from (Endera Motors, 2021). 
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study, fuel is typically observed or read in terms of energy (e.g., W, Wh, etc.). This 

requires that bus specifications such as fuel-related attributes be converted to energy 

equivalent units to more effectively model and interpret results. This is the reason for 

why data in row 3 of Table 5.4 is given in terms of their typical units of measure 

followed by their equivalent units in terms of energy or electricity. Further details 

regarding fuel capacity conversion and how typical fuel units of gal, kg, and lb. were 

converted to and from kW can be consulted through Section 5.7.5 – Appendix 5.5. 

The weight value assumptions in Table 5.4 were obtained through specification 

manuals that would represent these ABs in a realistic manner. Natural gas and electric, 

fuel powertrain configurations were assumed to be heavier than combustion engine diesel 

buses because of their use of heavier elements such as gas tanks and batteries. Hydrogen 

buses, on the other hand, were assumed to be heavier than diesel buses but lighter than 

electric and natural gas buses, primarily due to their hydrogen tanks being a smaller size 

because hydrogen possesses a larger energy content (120–142 MJ/kg) (Zheng et al., 

2021; Tashie-Lewis, 2021) compared to 47.2 MJ/kg (Rodrigue, 2020), 50.3 MJ/kg 

(Rodrigue, 2020), 42.9 MJ/kg (Wu et al., 2007), and 39–41 MJ/kg (Demirbas, 2007) for 

natural gas, propane, low sulfur diesel, and biodiesel; respectively. With the energy 

content of each fueling infrastructure in mind, it is worth noting that in Table 5.4 certain 

fuel infrastructures were grouped together. This is because some fuels possessed similar 

 
11 Fueling capacity assumption based on fuel capacity from (US Hybrid, 2015). 
12 Assumed 20% reduction in GVWR, (Ford North America, 2018) 
13 Based on 862 kg (1,900 lb) increase due to heavier fuel configuration of CNG, (ANL, 1997). 
14 Assumption based on GVWR for a Ford E450 chassis (Ford North America, 2018) 
15 Based on percentage difference in curb weight between electric (New Flyer, 2017) and hydrogen (New 

Flyer, 2018) city bus. 
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energy contents that were within 10% of one another for example natural gas and propane 

were within 10% of each other as well as diesel and biodiesel which were nearly identical 

in energy content values also. Electricity, on the other hand, was kept separate because of 

its low energy content at 0.5 MJ/kg (Rodrigue, 2020). Moving forward, for those 

infrastructures that are grouped together, these fuels were also modeled together with 

only the attributes from the fuel that contains the highest energy content (i.e., diesel and 

propane) being used as input data for the M&S approach used in this study. The only 

exception was the fuel capacity for propane/natural gas bus scenario. In this scenario, the 

fuel capacity for each bus was based on a natural gas configuration because it allowed for 

a more conservative assumption (in terms of natural gas having the lowest fuel pricing 

compared with propane) and its near similar fuel capacity to diesel buses, which propane 
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buses also resembles but with a higher fuel price that is nearly double the fuel price of 

natural gas.  

Additionally, there were no literature existing for some bus configuration weights 

such as a paratransit natural gas and hydrogen bus. This required the following 

assumptions to be made about each configurations weight: 

• Assumption for diesel/biodiesel bus: The diesel bus will have a weight equal to 

a 20% reduction in its GVWR 

• Assumption for propane/natural gas bus: Natural gas bus will be 1,900 lb (862 

kg) heavier than a diesel/biodiesel bus 

• Assumption for electric bus: Electric buses will be the heaviest bus 

configuration but will not exceed the GVWR (14,500 lb. (6577 kg)) for Ford 

E450 chassis (i.e., which based on the existing JagTran chassis) in Table 5.4. 

• Assumption for hydrogen bus: Hydrogen fueled buses will have a weight that is 

about 15% less than electric buses. This was achieved by comparing the weights 

of two 60-foot New Flyer buses (i.e., one electric, one hydrogen) and determining 

the percent difference in their weights and correlating them to that of a paratransit 

bus configuration in terms of weight. 

5.2.1.3.2 Automated Bus Behavior Data. 

Vehicle performance behavior concerning the implementation of ABs is little to 

nonexistent in nature. To circumvent this lack of data, existing literature was used to 

draw reasonable assumptions on the expected vehicle performance behavior of ABs if it 
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were used as part of an existing public transportation system. Table 5.5 shows the AB 

behaviors, their assumptions, and their corresponding citations that justified their usage. 

 

 

Table 5.5. AB agent behavior and their assumptions. 

AB Agent Attribute 

Behavior 
Assumptions Citations for Assumptions 

Acceleration 0.9 m/s2 (2.95 ft/s2) (Bae et al., 2019) 

Deceleration -0.9 m/s2 (-2.95 ft/s2) (Bae et al., 2019) 

Max. Deceleration -1.0 m/s2 (3.28 ft/s2) (Bae et al., 2019) 

Headway 1 meter (3.28 ft) (Muhammad et al., 2020) 

Car Following Model 
Krauss 

Model 

Sigma 0 Assumed 

Tau 

(Reaction 

Time) 

1 sec Based on (Khoury et al., 2019) 

Bus Loading Duration 

(per Passenger) 
1.5 sec Assumed  

 

 

 

Some of prominent caveats commonly encountered when it comes to making 

assumptions regarding the ABs behavior is the lack of knowledge and foresight of 

vehicle behavior and architectures ABs will take on. For example, since AVs or ABs are 

currently under research and development, behavior of these buses are somewhat fully 

known in theory, but not in reality. Table 5.5 portrays this fact through the assumption of 

smaller headways along with at- or near-perfect driving (i.e., sigma) and quicker reaction 

times (i.e., tau) due to onboard sensors and computing capabilities. 

Furthermore, instances such as the AB from Zoox has showed how revolutionary 

architectural designs could be manifested in the architecture of ABs (Zoox, 2021). This 

could have an impact on rider accessibility, potentially reducing loading durations as an 

end result which is why a lower value is used in the bus loading duration row in Table 5.5 

as compared to Table 5.3. This ultimately influences bus wait times at bus stops which 
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end up reducing bus schedule times. This concept was invoked in the bus schedules for 

the AB behaviors in helping delineate HDBs from ABs. Section 5.7.2 – Appendix 5.2 

provides further detail concerning the bus route schedule timings for ABs. Further 

instances of this concept can be seen in Sections 5.2.3.2 and 5.2.3.4.  

Another aspect that may not be fully understood, from a more technical 

perspective, is the kinematics of ABs, where studies such as (Bae et al. 2019) has 

suggested ABs will possess the capability of reducing jerk effects in transportation (i.e., 

quick acceleration), leading to a more comfortable ride than in its human counterpart. 

The second and third rows in Table 5.5 communicates this idea. Headways between 

buses and their respective leader vehicles may also be reduced, impacting time and 

energy to accelerate and decelerate the bus, leading to a smoother driving profile and 

more fuel efficiency than HDBs. Lastly, ABs will also be able to react quicker than their 

human-counterpart providing the capability of reducing headways between buses, which 

is the idea behind the headway parameter seen in Table 5.5. 

5.2.1.4 Fueling Infrastructure Data. 

As an important facet to fulfill operational needs, the fueling infrastructure is 

responsible for ensuring that all bus agents (both HDBs and ABs) are kept at optimal or 

near optimal fueling capacity to allow for appropriate service levels to be reached. In this 

section technical aspects such as refueling rate and duration with respect to each fueling 
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infrastructure will be disclosed, as each fueling infrastructure fuels at different rates 

effecting the duration that each vehicle takes to fuel between operational runs.  

5.2.1.4.1 Refueling Rate. 

Refueling rates often vary across different fueling infrastructures due a myriad of 

factors such as safety. Refueling rates that were imparted into the simulation of this 

research was obtained through various resources which were used as an initial rate value 

in making sure the JagTran agents were refueling at reasonable duration. Refueling rates 

were adjusted from values found in literature to accommodate meeting appropriate 

refueling duration values which is the focus of the next section. Table 5.6 shows the 

refueling rates that were selected as data input values relative to source that they were 

based on.  

 

 

Table 5.6. Refueling rates supporting JagTran buses in the simulation. 

 Fueling Infrastructure Type 

 
Diesel/ 

Biodiesel 

Propane/ 

Natural 

Gas 

Electricity Hydrogen 

Battery 

Swapping 

Technology 

Inductive 

Charging 

Fueling 

Rate 

3000 kW/h 

(13.50 

gal/min.) 

3000 kW/h 

(39.10 

kg/min.) 

180 kW/h 

2890 kW/h 

(7.2 kg 

H2/min.) 

750 kW/h 

(Figurative 

Value) 

200 kW/h 

Citation 

Source 

for Fuel 

Rate 

Based on 

(Office of the 

Federal 

Register 

NARA, 

1996)) 

Based on 

(Research & 

Markets, 

2018) 

Based on 

(Endera 

Motors, 

2021) 

Based on 

(Caponi et 

al., 2021) 

Based on 10 

min charge 

time 

(Ample, 

2021) 

Based on 

(Momentum 

Dynamics, 

2021) 

 

 

 

These refueling rates are converted from their respective units of measure (e.g., 

gallons of diesel, GGE of natural gas, kg of H2) to W/h to conform to input requirements 
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set by the simulation software used in this study. In Table 5.6 both normal and electric 

equivalent values are displayed to show what refueling rates were used as a bases to 

model off of. All fueling rates were based on flow rate requirements set in either 

literature or technical regulations such as SAE J2601/2 which is used to set safety 

restrictions on the refuel rate of hydrogen infrastructure (Fuel Cell Standards Committee, 

2014). Equation 5.1 shows a general formula for how the electric equivalent values in 

Table 5.6 were converted to normal fuel rate values and vice versa. 

 

 

𝐹𝑅𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐹𝑅𝑠𝑖𝑚.(𝑡𝑐ℎ𝑎𝑟𝑔𝑒)0.027 ∙ 𝐹𝑇𝑐𝑓 

 

𝑤ℎ𝑒𝑟𝑒, 𝐹𝑇𝑐𝑓 = {

1.0, 𝑑𝑖𝑒𝑠𝑒𝑙 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙⁄

2.896, 𝑝𝑟𝑜𝑝𝑎𝑛𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠⁄

1.111, ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛
 

Equation 5.1 

 

 

where, FRsim is the simulated fuel dispensing flow rate in electric or energy equivalence 

(i.e., kW/h) of the actual fuel flow rate (e.g., gal/min, kg/min, etc.) observed in reality, 

tcharge is the fueling duration, and FTcf is the fuel type conversion factor which is 

dependent on the fuel type being used. This factor ensures that simulated fuel rate is 

converted to its intended actual unit of measure (e.g., kg and gal) seen in reality. The 

0.027 value seen in Equation 5.1 is a constant that converts the simulated fuel rate to 
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DGE. The calculations behind the derivation of this conversion equation can be seen in 

Section 5.7.6 – Appendix 5.6 of this chapter. 

5.2.1.4.2 Refueling Duration. 

Refueling durations can vary depending upon various technical factors such as the 

type of fueling infrastructure being used which is correlated with the rate at which the 

fuel can be safely discharged into a specific vehicle. Table 5.7 depicts the maximum 

refueling durations used in the M&S approach of this study. 

 

Table 5.7. Maximum refueling durations for JagTran buses in the simulation. 

 Fueling Infrastructure Type 

 Diesel/ Biodiesel 

Propane/ 

Natural 

Gas 

Electricity Hydrogen 

Battery 

Swapping 

Technology 

Inductive 

Charging 

Fueling 

Duration 

15 mins – HDB; 

10 mins – AB 
10 mins 

50 mins  

(Based on 

fast 

charging) 

5 mins 10 mins 

As Long 

as Bus 

Stop Wait 

Duration 

Citation 

Source 

Elicitation with 

USA 

Transportation 

Services 

(AFDC, 

2021) 

(Endera 

Motors, 

2021) 

(US. 

Hybrid, 

2015a) 

(Ample, 

2021) 
- 

 

 

 

In Table 5.7, it is worth noting the different fueling infrastructures were modeled 

relative to their fueling durations; however, the diesel/biodiesel fueling infrastructure has 

two refueling times. The first refueling duration is the amount of time for refueling a 

HDB for JagTran, whereas the second refueling duration is the amount of time it takes to 

refuel an AB without a driver present. The refueling duration for HDBs was based on the 

idea that drivers would use additional time for stretching (i.e., driver health-related 

measures), code input to access fuel pump, and satisfy any other technical or safety 
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protocols before refueling is initiated. All values seen above were all chosen as 

conservative-based assumptions with empirical data from external sources. 

 

5.2.2 Research Tool 

Tools for this research study mainly consisted of a camera phone, storage 

equipment for multimedia storage of observations (e.g., videos, data analysis, etc.), a 

traffic simulation software called Simulation of Urban Mobility, QGIS software, and an 

ASUS Republic of Gaming (ROG) laptop to handle simulation memory, computer 

processing, and graphics processing demand. The research tools were used as follows 

within this research effort: 

• Camera phone was used to collect video of traffic patterns at specific 

intersections, collecting field observations such as traffic flow patterns, turning 

probabilities, and traffic light signal sequencing. 

• Storage equipment was used in order to support storage of various data types 

ranging from video to data generated from simulation execution. This storage 

equipment consisted of: 

o External Hard Drives 

o SD Cards 

o Flash Drives 

o Cloud Storage 

• QGIS software was GIS software utilized to map JagTran bus routes from the 

JagTran tracker data relative to time of day and geographical locations on the 
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USA campus to support model validation in the early experimentation stage of 

this research study. 

• Simulation of Urban MObility (SUMO) was used as the traffic M&S software 

platform for which the input data was imparted into as a part of the M&S 

approach of this research study. 

• ASUS Republic of Gaming (ROG) was used to support the simulation demands 

(e.g., memory, graphic processing, and computer processing requirements) from 

using large scale simulations in the SUMO environment. 

5.2.3 Experimentation – Simulation Cases & Scenarios 

Following data collection process of gathering input data for the M&S approach, 

all necessary measures were taken to process all input data so that M&S tool known as 

SUMO could interpret the data for runtime manipulation and execution. Experimentation 

was then conducted which consisted of five different simulation cases that contained their 

own scenarios of interest. These five simulation cases consisted of: 

• Fueling Infrastructure Simulation Case which contains infrastructure related 

scenarios. 

• Ridership Demand Variation Simulation Case which possesses scenarios 

concerned with the impact of ridership on the JagTran system’s performance. 

• Vehicle/Fleet Configuration Variation Simulation Case which has scenarios that 

investigate the impact of vehicle/fleet capacity on the JagTran system’s 

performance. 
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• Infrastructure Improvement Simulation Case, which are cases, dedicated to 

understanding the impact of using other fueling infrastructure technologies in the 

JagTran system. 

• Hybrid Infrastructure Simulation Case, which are cases, concerned with looking 

at simultaneous use of more than one fueling infrastructure and buses with 

different autonomy levels within the transportation architecture of the JagTran 

system. 

Each of these cases are not isolated case studies but are in fact linked case studies 

that form a coherent process where in which one case cannot be performed without 

insight and input from the other. Table 5.7 shows the simulation cases and their 

corresponding scenarios that were simulated in SUMO. The following subsections will 

discuss the design of experiment used in this research study within each one of these 

simulation cases. 
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Table 5.8. Simulation cases and scenarios used as experimentation in M&S approach. 

 Simulation Cases 

Scenario 

ID 

Fueling 

Infrastructure 

Simulation 

Case 

Ridership 

Demand 

Simulation 

Case 

Vehicle/Fleet 

Configuration 

Simulation 

Case 

Hybrid 

Fueling 

Infrastructure 

Simulation 

Case 

Fueling 

Infrastructure 

Improvement 

Simulation 

Case 

BASE 

HDB w/ Diesel 

Fueling 

Infrastructure 

0% Increase in 

Ridership w/ 

Best Fueling 

Infrastructure 

+0 Seats per 

Bus w/ Best 

Fueling 

Infrastructure 

HDB w/ Diesel 

Fueling 

Infrastructure 

on all Routes 

HDB w/ Diesel 

Fueling 

Infrastructure 

S-0 

AB w/ Diesel/ 

Biodiesel 

Fueling 

Infrastructure 

5% Increase in 

Ridership w/ 

Best Fueling 

Infrastructure 

+1 Seats per 

Bus w/ Best 

Fueling 

Infrastructure 

ABs & Best 

Fueling 

Infrastructure 

on Average 

Length Route 

AB w/ Battery 

Swapping 

Technology 

S-1 

AB w/ Propane/ 

Natural Gas 

Fueling 

Infrastructure 

10% Increase in 

Ridership w/ 

Best Fueling 

Infrastructure 

+2 Seats per 

Bus w/ Best 

Fueling 

Infrastructure 

ABs & Best 

Fueling 

Infrastructure 

on Longest 

Length Route 

AB w/ 

Inductive 

Charging 

Infrastructure 

at All Bus 

Stops 

S-2 

AB w/ Electric 

Fueling 

Infrastructure 

15% Increase in 

Ridership w/ 

Best Fueling 

Infrastructure 

+3 Seats per 

Bus w/ Best 

Fueling 

Infrastructure 

- - 

S-3 

AB w/Hydrogen 

Fueling 

Infrastructure 

20% Increase in 

Ridership w/ 

Best Fueling 

Infrastructure 

+4 Seats per 

Bus w/ Best 

Fueling 

Infrastructure 

- - 

S-i - 

n% Increase in 

Ridership w/ 

Best Fueling 

Infrastructure  

+n Seats per 

Bus w/ Best 

Fueling 

Infrastructure 

- - 

 

 

 

All cases and there corresponding scenarios were simulated on a road network based on 

GIS data taken from the USA campus. This data captured roadways and the location 

certain buildings/facilities on the USA campus. Figure 5.7 shows a depiction of the road 
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network that was utilized to support and manage the traffic demand within the SUMO 

simulation space. Pane in image of the fueling area is also shown in Figure 5.7 to show 

how buses within the simulation environment refueled themselves when appropriate 

conditions arose during runtime. Of course, some modifications were made to this road 

network to support certain simulation case studies and the nuances of their respective 

scenarios.  

 

(a) 

Figure 5.7. (a) The general road network and layout used across all simulation case 

studies, and (b) and a close up of the refueling station. 

 

 

Refueling Station 
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(b) 

 

Figure 5.7, Cont. 

 

 

 

5.2.3.1 Priming the Simulation Environment. 

Before extensive experimentation was performed, traffic demand had to be 

adjusted so that the traffic demand within the simulation resembled real traffic flow 

patterns. The data collection process in this research study consisted of observing how 

ALDOT’s traffic demand in the simulation environment was entering the network and to 

assess if these demand patterns were reasonable within the simulation. Based on 

observations, certain inflows into the simulation required adjusting due to overcrowding 

at input points and the inability of some buses to successfully merge into traffic due to 

excessively high traffic flows for extended periods of time throughout the simulation, 

which were not fully realistic in nature. In this case, these input points were slightly 

reduced until issues of overcrowding were resolved, and traffic demand was at more 

appropriate levels within the simulation. On the opposite end, there were instances, where 



346 
 

traffic demand may have needed to be increased due certain externalities effecting the 

collected traffic demand data.  

Traffic demand data generated from ALDOT consisted of longitudinal traffic 

count data over multiple years; however, traffic demand data for certain years for specific 

points or roads of interest were missing. An example was seen when attaining traffic 

demand data for the year 2019 was not available for some roadways. The reason the year 

2019 was chosen is because of its alignment with the year of the ridership demand data 

which was collected in 2019. Circumventing this issue was accomplished by choosing the 

closest year available relative to 2019, which in many cases was 2020. The year 2020 

saw the emergence of the COVID-19 Pandemic which more than likely had an impact on 

traffic flow patterns causing them to be lower than under hypothetical normal conditions. 

One of the major thoroughfares that may experience this effect was connecting 

roadway known as Hillcrest Road. Hillcrest Road is a roadway directly connected to a 

major lateral arterial roadway for the city of Mobile, AL, referred to as Airport Boulevard 

and is responsible for handling deviating traffic flows off of Airport Boulevard. This 

means during peak hour conditions, with traffic flows feeding into Hillcrest Road from 

the east bound, west bound and north bound traffic flows from roads such as Airport and 

Hillcrest demands on are liable to high, especially under seasonal conditions (e.g., school 

semester in session, summer break, etc.). One aspect to not is that traffic demand data for 

this roadway segment was taken December 16, 2020, from ALDOT. During this time 

period university and surrounding schools were not in session, so traffic demand 

definitively may have been lower than expected than when school is typically in session. 

Therefore, with traffic demand on Hillcrest subject to change due high seasonable traffic 
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demand, the road was initially assumed to have a higher traffic demand during PM traffic 

flow than what was originally prescribed in the ALDOT traffic counts.  

Furthermore, ALDOT readings that were used in this research were based on 

conditions during the COVID-19 Pandemic, meaning traffic counts may have been lower 

than normally expected. With the presence of both COVID-19 and schools not being in 

session because of the holiday season, these two externalities were thought to be 

responsible for driving down traffic demand on Hillcrest Road. Furthermore, field 

observations (as described in Section 5.2.1.2.2) reinforced this idea due to a higher traffic 

count for the Hillcrest northbound traffic movement at intersection of Hillcrest Road and 

Old Shell, which was downstream of the location ALDOT performed their traffic flow 

readings. Therefore, it was considered appropriate to increase the traffic demand on this 

roadway for only the PM peak period. This large increase was accompanied by a 

sensitivity analysis during experimentation where the actual traffic count was used to see 

if this increase in traffic demand for Hillcrest Road impacted the models’ outputs (e.g., 

bus route loop duration, hourly ridership demand, passenger wait time) (see Section 

5.4.1). Following this, all traffic demand entering the simulation space were increased by 

5% to see how significantly this effected passenger wait times, bus route loop duration, 

and hourly ridership demand since traffic demand entering the road network had to be 

adjusted to conform certain conditions in the simulation environment. Lastly in the 

sensitivity analysis, the actual or real traffic demand with no adjustments was then tested 

to assess its impact on the various model outputs. Figure 5.8 shows the distribution of the 

entering traffic demand for only the main thoroughfares of the simulation environment. A 

more comprehensive plot of the traffic demand can be seen in Section 5.7.3 – Appendix 
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5.3 along with a tabular format of the plot to discern where adjusted values from non-

adjusted values. Note in Figure 5.8 that separate lines are used to show the profile of the 

actual ALDOT traffic demand (i.e., dash line) and the adjusted ALDOT traffic demand. 

 

 

Figure 5.8. Hourly traffic demand distribution of vehicles entering the simulation road 

network. 

 

 

 

Figure 5.9, on the other hand, depicts only the roadways that underwent traffic 

demand adjustment in order to accommodate realistic bus and traffic behaviors. This 

figure is meant to isolate the adjusted traffic demand so that the differences between the 

actual and the adjust traffic demand are emphasized. As one can see slight adjustments 
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were made on all, but one of the roadways (i.e., Hillcrest Road), showing that for the 

most part, adjustments to the traffic demand was rather small in nature. 

 

 

Figure 5.9. Isolation and comparison of actual and adjusted traffic demand data. 

 

 

 

5.2.3.2 Alternative Fueling Infrastructure Case. 

The design of experiment used for simulating alternative fueling infrastructures 

consisted of using the existing JagTran system configuration of HDBs and diesel fueling 

infrastructure as the base (control) scenario within this case study. Following the 

simulation of the base scenario, other alternative fueling infrastructures were simulated. 

Some of these fueling infrastructures were grouped due to similar properties such as 

energy content. Additionally, all other fueling infrastructures that were simulated were 
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assumed to be integrated with ABs only in order to examine the impact of integrating 

ABs with other alternative fueling infrastructure systems. The scenarios that were 

simulated within this case study consisted of: 

• HDBs integrated with Diesel Fueling Infrastructure (Base Scenario) 

• AB integrated with Diesel/Biodiesel Fueling Infrastructure  

• AB integrated with Propane/Natural Gas Fueling Infrastructure  

• AB integrated with Electric Fueling Infrastructure 

• AB integrated with Hydrogen Fueling Infrastructure  

In this study, the fueling infrastructure was assumed to be placed at the location 

behind USA’s maintenance facilities where JagTran buses tend to go for refueling 

throughout their operation hours (see Figure 5.8). Aspects such as vehicle type or 

capacity were kept constant using paratransit-based buses – similar to what is used in the 

existing JagTran system. The only variable that was allowed to change was the fueling 

infrastructure and fueling powertrain used in the bus agents, which is an extension of the 

fueling infrastructure system. 

In this case study, JagTran buses followed an algorithm which considered factors 

such as fueling protocols, driver breaks (HDBs), and maintaining appropriate bus 

headways between other buses on their respective routes. Each of these protocols 

possessed time values which differentiated them from other scenarios within this case 

study. These unique time values were used differently in this case study wherever 

needed. For example, the assumed JagTran break scheduling are quite different between 

HDBs and ABs which can be seen in Table 5.9. In the break time for the HDBs, the most 

conservative maximum break times were given to each break type which were assumed 
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to be 10 mins in duration. In conjunction with this, bus headways were also assumed, but 

these times were assumed through a combination of elicitation from USA Transportation 

services and a trial-and-error process that allowed for appropriate spacing between buses, 

while also maintaining route duration integrity.  

Bus headways were maintained through the use of a “Holding Strategy”, where if 

there is a potential for or if bus bunching has occurred, the follower bus is required to 

hold or delay its departure from its current bus stop. This position is held for some 

duration for a set time until the leader bus is at least one bus stop away from the follower 

bus, allowing adequate headway between buses so bus bunching has a less likelihood of 

occurring again on the route. The delay is reset until the leader bus is more than 1 bus 

stop ahead of the follower. This is the actual bus bunching strategy used within the real 

JagTran system and was assumed based on the information provided from the elicitation 

performed with USA’s Transportation Services department. Table 5.10 shows the delay 

times that was used to support bus headway integrity throughout the simulation for both 

HDBs and ABs. 

 

 

Table 5.9. Break times used for buses in simulation. 

Break Type 
Human-Driven JagTran 

Bus (mins.) 

Automated JagTran 

Bus (mins.) 

AM Break Period 10 0 

Lunch Break/Shift Change 10 0 

PM Break Period 10 0 
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Table 5.10. Hold delays used for maintaining bus headways in simulation. 

Route Designation 
Human-Driven 

JagTran Bus (mins.) 

Automated JagTran Bus 

(mins.) 

Red N/A – One Bus on Route N/A – One Bus on Route 

Blue 5 (300 sec.) 4 (240 sec.) 

Yellow 3.33 (200 sec.) 2.33 (140 sec.) 

Green 2.67 (160 sec.) 1.67 (100 sec.) 

Orange N/A – One Bus on Route N/A – One Bus on Route 

 

 

 

In Table 5.10, since large fleets of ABs are not in operational use and data 

surrounding large fleet use is not readily available, it was assumed that the headway 

delay between buses in the case ABs would be decreased by a minute. This is based off 

the assumption, that ABs, unlike their human counterpart, may be capable of supporting 

higher frequency service on bus routes (i.e., higher loop count around fixed routes) 

(Mouratidis & Serrano, 2021). To satisfy this notion, the bus stop wait time was assumed 

to be equal to 25 sec. to increase the bus service frequency on each route. The value of 25 

sec was assumed based on the number of seats multiplied by the loading duration (i.e., 

1.5 sec.). This bus wait time value was then rounded to the nearest fifth second for 

conservative estimate and transit safety reasons. This resulted in bus stop wait time 25 

sec. which was an improvement of 18–75% due to a reduction in unnecessary idling that 

was present in the HDB JagTran case. This assumption was also based on the premise 

that ABs may operate at lower limit of route loop times for HDBs, which may correspond 

to the minimum route time values seen in Figure 5.5 of this chapter. 

In terms of the fueling protocols, all HDBs and ABs have the same behavior in 

the sense that they constantly check their fuel levels and once 40% (or nearly 50%) of the 

fuel is depleted. Additionally, as part of their fueling protocol buses have to check that 
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there are no passengers on the bus before refueling. This is common practice in transit 

operation which helps promote safety. The reason for fueling at about 40% depletion has 

two reasons 1) this promotes maximum fuel efficiency within vehicles (Admin, 2020) 

and 2) this ensures that there is plenty of fuel capacity in the bus until person capacity 

reaches zero even if 40% of fuel capacity has been depleted. Tertiary to these reasons, 

this 40% depletion level is also used because this level typically occurs around the time 

ridership demand is at its maximum during JagTran operation hours, allowing for 

observations of how using different fueling infrastructures can impact JagTran 

throughput. One aspect considered with respect to the fueling protocols for ABs was that 

it is expected that ABs may possess more opportunistic and sophisticated refueling 

strategy schemes than the simplistic protocol proposed in this study, but this is outside of 

the scope of this study and may be a focal point of future research. This study is meant to 

observe the impact of a simple refueling scheme instead. 

Once the depletion level is reached or exceeded and the number of passengers in 

the bus is equal to zero, bus agents are required to perform their refueling protocol. As 

part of the refueling protocol, buses are required to fill up to at least 95% of their fuel 

capacity before the refueling protocol is considered satisfied and the bus is allowed to 

leave the fuel station to continue its daily operations. For fueling infrastructure such as 

battery swapping, on the other hand, the maximum fill-up level was assumed to be 100% 

of the fuel capacity since it was presumed that the depleted battery within the buses 

would be exchanged for a fresh and fully charged battery. 

Figure 5.10 shows the entirety of the bus behavior algorithm used in the M&S 

approach of the research study. The algorithm shown in Figure 5.10 was used as the basis 
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of the JagTran bus behavior in the proceeding simulation case studies as well, with some 

adjustments being made to the algorithm for an accurate representation of each scenario.
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Figure 5.10. Visualization of general bus agent behaviors for both HDBs and ABs. 
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In Figure 5.10, tdelay is the time delay for a bus to hold its current bus stop 

position, tbus op. is the current time within the bus’s operation hours, tmax op. is the total 

operational time span for the bus system which is dependent on the route designation 

(i.e., some routes end early than others). For reference to the actual simulation code 

Section 5.7.10 provides further details on the structure and logic behind the code used to 

run the scenarios within this research study. 

Scenarios in this case were run 10 times to perform statistical analysis across 

simulation runs and support hypothesis testing. Since throughput of each of the JagTran 

system architectures is a major performance measure in this research study, the metric of 

passenger wait times along with fuel cost per kilometer (km) were used to assess the 

effectiveness of using each fueling infrastructure relative to one another. The assumed 

prices of fuel as part of this experimentation can be seen in Table 5.11. Once compared to 

one another, the best fueling infrastructure in terms of passenger wait time and fuel cost 

per km was chosen for use in the ridership demand, vehicle/fleet configuration, and 

hybridized infrastructure simulation cases following this case study. Results can be seen 

in Section 5.4.1 of this chapter. 

 

Table 5.11. Assumed fuel prices for fuel cost per km calculations. 

 Fueling Infrastructure Type 

 Diesel 
Biodiesel 

(B20) 
Propane Natural Gas Electricity Hydrogen 

Average 

Cost per 

Unit 

Fuel 

$3.48/gallon 

($0.09/kWh) 

$3.29/gallon 

($3.32/DGE) 

($0.09/kWh) 

$3.17/gallon 

($4.80/DGE) 

($0.13/kWh) 

$2.33/GGE 

($2.65/DGE) 

($0.07/kWh) 

$0.14/kWh 

($5.19/DGE) 

$5/kg H2 

($5.56/DGE) 

($0.15/kWh) 

Citation 

Source 

(DOE Clean 

Cities, 2021; 

EIA, 2022) 

(DOE Clean 

Cities, 2021; 

EIA, 2022) 

(DOE Clean 

Cities, 2021; 

EIA, 2022) 

(DOE Clean 

Cities, 2021; 

EIA, 2022) 

(DOE Clean 

Cities, 2021; 

EIA, 2022) 

(Vickers et 

al., 2020) 
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Though some fuels such as diesel and biodiesel, along with propane and natural 

gas were grouped together due to their similar energy contents, for cost calculations in 

this simulation case, the different alternative fuel infrastructure categories were separated. 

This was primarily done because of their differences in cost per unit fuel. Also, within 

Table 5.11 all values were based on annual fuel cost report data, except for the hydrogen 

which was based on a production analysis report assuming state-of-the-art use of 

renewable energy and electrolyzers, which would allow for hydrogen fuel to be produced 

on-site with minimal CO2 pollutants from production and usage.  

5.2.3.3 Ridership Demand Case. 

Once the best fueling infrastructure was determined from within the fueling 

infrastructure simulation case study in the previous section, it was then utilized as the 

infrastructure of choice in the ridership demand case. In the ridership demand case, all 

variables were kept constant except for the ridership demand. In this case, ridership 

demand from scenario to scenario, was allowed to increase by 5% to understand the 

impact of incrementally increasing ridership on passenger wait times during the JagTran 

bus’s operation. This increase was achieved by using the following formula: 

 

 

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝 =  ∑ [[∑ 𝑅𝑖

𝑛

𝑖=1

+ [(∑ 𝑅𝑖

𝑛

𝑖=1

) ∙ 𝑃𝑖𝑓]] [
𝑅𝑖

∑ 𝑅𝑖
𝑛
𝑖=1

]]

𝑛

𝑖=1

 Equation 5.2 
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where, n is number of 1-hr periods of ridership data recorded (i.e., n=15), Ri is the 

ridership within a 1-hr time period i in bus operations, and Pif is the percentage increase 

factor of the total ridership. The second term within the outer summation is a probability 

or frequency distribution factor that distributes ridership counts for each percent increase 

based on the distribution of riders when there was no increase in ridership. This factor 

assures that the probability distribution of riders across all ridership scenarios have the 

same ridership distribution but shifted upward based on the given percent increase. By 

removing the outer summation in Equation 5.2, this allows one to determine the ridership 

within a 1-hr time period i based on a desired percentage increase.  

In each of the 1-hr time periods, from scenario to scenario, one person was added 

at each bus stop of the JagTran system based on the ridership increase amount. These 

incrementally increased ridership values were placed into SUMO and were ran 10 times 

for each scenario in the case study. In each scenario average passenger wait times were 

determined. With this in mind, ridership was increased until passenger wait times reached 

and passed the passenger wait time that was obtained for the base (or existing) fueling 

infrastructure scenario. This was considered the stress point for the best fueling 

infrastructure and provided a means to see how much demand the best fueling 

infrastructure could handle until the wait time for the existing wait transit system was 

realized. Distribution of passenger wait times were also assessed with significant focus 

being placed on the percentage of passengers that waited 5 mins or more and 10 mins or 

more. Results for this simulation case study can be seen in Section 5.4.2 of this chapter 

for further consultation. 
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5.2.3.4 Vehicle/Fleet Configuration Case. 

The ridership demand case was then followed up by the vehicle/fleet 

configuration case which investigated the implementation of different vehicle/fleet 

configurations based on seating capacity (or fleet capacity). The objective of this 

simulation case study was to examine the impact of seating capacity on passenger wait 

times within the university campus environment. In this simulation case, seating capacity 

was allowed to vary from scenario to scenario, but other variables were not allowed to 

change. Variables such as the fueling infrastructure remained constant, with the best 

fueling infrastructure being used throughout this simulation case study.  

From scenario to scenario, seating capacity was only allowed to increase by 1 seat 

per bus (or 8 seats added to the entire fleet) per scenario. Also, with an increase in seat 

capacity for each bus configuration, a bus stop wait time of 1.5 sec times the number of 

seats (rounded to nearest second) in the bus configuration was assumed. Though using a 

bus stop wait time of this magnitude is somewhat different from the bus wait time seen in 

Section 5.3.2.2, the difference in their intended stop wait times is considered to be 

negligible in nature (i.e., within 10% of one another). The value of bus stop wait time was 

assumed in this manner in order to observe the sensitivity of each vehicle configuration 

relative to the average passenger wait time and the distribution of wait times over the 

ridership population. These assumptions are based on the fact that in the future, ABs are 

expected to possess precise movements that are concerned with minimizing passenger 

time spent in the vehicle, while maximizing transportation safety. One of the ways this 

could be accomplished is through more precise wait times that align with a buses cabin 
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capacity, where in which the number of seats is related to the length of time the bus waits 

at a given bus stop for alighting and boarding of riders. 

Each scenario, similar to the previous sections were run a total of 10 times to 

support statistical analysis. Seating increases in buses were stopped once a secondary or 

even tertiary trend in passenger wait times were detected. Once these trends were 

detected, an additional simulation run was executed but with a bus configuration that 

possessed a reduced passenger wait time and but a different bus configuration that seen in 

used on the previous simulation case studies. This was achieved by simulating a bus 

configuration with more appropriate dimensions, fuel tank capacity, mass, and other 

vehicle bus class attributes to observe the effects of bus configuration on passenger wait 

times. 

5.2.3.5 Hybridized Fueling Infrastructure. 

The hybridized fueling infrastructure case was performed following the 

vehicle/fleet configuration case. In the hybridized fueling infrastructure case, emphasis 

was placed on the combinatorial application of two different fueling infrastructures being 

used in tandem as part of the JagTran transportation architecture. Beyond this, the idea 

behind this case study is to show an evolutionary approach to implementing both ABs 

and alternative fueling could integrated into existing system and releasing the impact of 

this evolutionary change on throughput and fuel cost per km. With this idea in mind, this 

case study was approached by creating five major scenarios. Each of these scenarios were 

concerned with investigating the use of both existing fueling infrastructure and the best 

fueling infrastructure selected from the methodology discussed in Section 5.2.3.2. In the 
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first scenario, an 100% HDB fleet with diesel fueling infrastructure was simulated. 

However, since technical modeling issues such as the ability to overtake other buses 

prevented realistic behaviors from being simulated in later hybrid scenarios, one of the 

driver break bus stops was moved to different bus stop locations on the same bus route. 

This change in the model required for the simulation to be revalidated. Once model 

validation was achieved the all-HDB scenario was used as a based case to compare with 

other hybrid model scenarios. In addition to this change, additional bus stops next to 

existing bus stops were added to represent bus stops where ABs could go to pick up and 

drop off their passengers. The reason for giving HDBs and ABs separate bus stops was 

done to prevent significant impediment of ABs and HDBs under hybridized conditions as 

this has a potential to increase passenger wait times and is also not a realistic portrayal of 

what reality may exhibit. 

Following the first scenario, the second scenario simulated both the HDB with 

diesel and best fueling infrastructure with one another, but the best infrastructure was 

used on the route that possesses an average route length among all the JagTran routes. 

The third scenario was used to simulate the use of the existing fueling infrastructure and 

the best infrastructure, but with the best infrastructure being used on the longest route. 

Lastly, the fourth scenario within the case study investigated the use of the best fueling 

infrastructure being used on both the average-sized route and the longest route. Finally, 

there was also a fifth scenario which investigated the implementation of AB-hydrogen 

configurations across all JagTran bus routes. This scenario was akin to the hydrogen 

scenario described in Section 5.2.3.2, but with a different road network that was 

enhanced to accommodate hybridization changes that were made throughout this case 
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study. In each of the scenarios the same bus configuration or capacity seen in the first two 

simulation case studies (Section 5.2.3.2 and 5.2.3.3) were used and kept constant 

throughout this case study. All of these scenarios were executed a total 10 times each for 

statistical analysis. From the statistical analysis, average passenger wait times and cost 

per kilometer were determined for all scenarios and compared to one another. 

5.2.3.6 Fueling Infrastructure Improvement Case. 

Following the hybridized fueling infrastructure case, the fueling infrastructure 

improvement case was then performed. The intent behind this case is to investigate the 

impact that emerging electric technologies have on the throughput performance of the 

JagTran system if implemented, and to reveal potential viable options aside from 

traditional plug-in fueling infrastructure architectures. This simulation case consisted of 

conducting two major simulation scenarios. The first simulation scenario was concerned 

with understanding the impact of using battery swapping technology (BST) in place of 

plug-in charging stations that are typically seen as part of public infrastructure. The 

location of the battery swapping station (BSS) was placed in a different location than the 

fueling stations in previous case studies and scenarios but was located in parking lot area 

next to USA’s maintenance facility similar previous fueling infrastructure systems. The 

reason for this assumption is because BSSs/BSTs tend to take up more space than 

traditional fuel pumps or charging stations (Baldwin, 2021a; Baldwin 2021b), and these 

swapping stations would be servicing buses that could be larger than expected. 

Furthermore, BSSs/BSTs are also responsible for housing the battery packs or modules 

that are eventually swapped once the battery reaches a certain threshold. Not only this, 
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but the BSS also possess automated components which would further contribute to their 

size. 

The second simulation scenario within this case study, investigated the impact of 

using inductive charging pads at every JagTran bus stop on campus, so as to eliminate the 

need for deviating from existing routes to charge and allow for full-time service levels to 

be achieved. Each scenario for both the use of BSSs/BSTs and inductive charging were 

ran 10 times to allow for statistical analysis to be performed. From each of these 

simulated scenarios, average passenger wait times and cost per km were determined and 

compared against the existing JagTran transportation architecture’s performance. 

For the fuel cost per km for using BSSs/BSTs, this was obtained through the 

assumption that the fuel cost consisted of two major components: an electricity fuel cost 

and a battery swapping service cost (or fee). In this research study, the use of the battery 

swapping technology was assumed to be a service platform (i.e., Battery as a Service 

(BaaS)) that may be offered by a third-party organization, meant to offer rapid battery 

exchange services throughout the JagTrans’ buses operational hours. If such a business 

model is assumed, then this means that there will be a monthly service fee charge for 

utilizing the proprietary technology of this third-party organization. This cost is assumed 

because this BaaS platform would consist of the third-party providing battery packs, 

automation services, maintenance on battery swap station, etc. In addition to the service 

cost or fee, it was also assumed that an additional cost would stem from electrical fueling 

of battery packs that would be exchanged or replaced in the buses. Battery swap stations 

need access to electricity in order to recharge and support the supply chain of in-house 

batteries. It is worth noting that further cost for electricity may stem from powering other 
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components and elements of the BSS itself (e.g., automated systems), but this is not 

within the scope of this research study. With this in mind, the fuel cost per km for using 

the BSS as fueling infrastructure technology was determined through the use of 

Equations 5.3 and 5.4. 

 

 
𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡𝐵𝑆𝑇 = 𝑐𝑜𝑠𝑡𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 + 𝑐𝑜𝑠𝑡𝐵𝑆𝑆 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 Equation 5.3 

  

𝑤ℎ𝑒𝑟𝑒, 𝑐𝑜𝑠𝑡𝐵𝑆𝑆 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 =  
𝑆𝑓𝑒𝑒 ∙ 𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑑𝑖
 Equation 5.4 

 

 

 

where, costelectricity is the price or cost of electricity as a fuel, sfee is the monthly 

reoccurring service fee in hours, toperation is the total amount of time that the battery swap 

station is being used during the JagTran’s hours of operation, and di is the total distance 

driven throughout a given day. The fuel cost for electricity was assumed to be equivalent 

to $0.14/kWh, the same value used in Table 5.11. for the price of electricity. On the other 

hand, the service fee for using BSSs for buses was nonexistent within literature. 

However, the service fee for passenger cars was available. Therefore, to circumvent this 

issue, the service fee provided by NIO’s BaaS plan was used as basis for this assumption. 

NIO’s BaaS plan consisted of to two major pricing or payment subscriptions, the first for 

a 70-kWh battery and the second for a 100-kWh battery (NIO, 2020). The electric buses 

used in the M&S approach of this research possessed a 144-kWh battery. This is about a 

36% discrepancy between battery capacities, and therefore, payment plans. To 

compensate for this, 40.65% increase was applied to the 100-kWh service fee plan from 

NIO, which resulted in a cost of about $330/month. Additionally, since these plans are 
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also meant for passenger cars, it was further assumed that an additional 15% was added 

on to the $330/month fee. The additional 15% is based on findings showing that about 

25% of the cost of a passenger electric car under the BaaS of NIO comes from the battery 

(The Digital Trend, 2021), while 40% of the cost from an electric bus comes from its 

battery (Worford, 2021; ReportLinker, 2021). The difference between these percentage 

were used to fill the gap between the percentage of cost between electric cars and electric 

buses. This result in a final cost of about $380/month or about $18.10/day if a 5-day work 

week in a 30-day month is assumed. Therefore, sfee in Equation 5.4 was assumed to be 

equal to $380/month (or $18.10/day). 

For the inductive charging infrastructure improvement, the only fuel cost inquired 

was the cost of electricity at $0.14/kWh. Table 5.12 shows the fuel cost for each fueling 

infrastructure improvement scenario. 

 

 

Table 5.12. Fuel price for using battery swapping stations/technology and inductive 

charging infrastructures. 

Fueling Infrastructure Improvement Scenario 

Battery Swapping Stations/Technology Inductive Charging 

Fuel Price Battery Service Fee Fuel Price 

$0.14/kWh 
$380/month 

($18.01/day) 
$0.14/kWh 

 

 

 

5.3 Model Validation 

Model validation in this research study was performed in two ways: through the 

use of route variation analysis and ridership demand variation analysis. The following 

sections discuss the approach taken in each model validation process. 
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5.3.1 Route Variation Analysis 

Route variation analysis was used in order to determine the appropriate bus 

schedule taken for each JagTran bus agent within the SUMO simulation environment. 

This assured that bus agent behaviors were representative of what was observed within 

the real JagTran system. As stated in Section 5.2.1.1.3, random samples from a large GPS 

dataset of JagTran data provided by USA’s Computer Services department, were used to 

represent the typical loop times that the JagTran buses take on their respective routes. 

Statistical analysis allowed for the median, minimum, and maximum route times to be 

determine and used as modeling thresholds for validation. Results of the route time 

within the simulation can be seen in Figure 5.11 as dots, which visually shows that model 

within this research study is a valid based on the real adjusted route data (i.e., box plot).  
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Figure 5.11. Model validation through simulated and real data of route time variation. 

 

 

5.3.2 Ridership Demand Analysis 

Ridership demand analysis was used in order to assure that the demand being 

modeled was representative of those conditions seen throughout the USA campus 

environment. Similar to Section 5.3.1, a large dataset (composed of a weekly month’s 

worth) of ridership data was used in order to determine the distribution of ridership over a 

typical day, which was provided by USA’s Transportation Services department. 

Statistical analysis was used to determine median, minimum, and maximum ridership 

demand levels and create a general ridership demand distribution, in the form of a box 

plot to determine lower and upper thresholds of ridership demand prevalently seen on 

campus. Figure 5.12 shows the ridership distribution for every bus in the actual JagTran 
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system network relative to ridership demand results from the simulation developed in this 

research study. 

 

 
(a) 

 

 

 
(b) 

Figure 5.12. Model validation through actual and simulated ridership demand data 
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(c) 

 

 

 

 
(d) 

 

Figure 5.12, Cont. 
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(e) 

 

 

 

 
(f) 

 

Figure 5.12, Cont. 
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(g) 

 

 

 

 
(h) 

 

Figure 5.12, Cont. 
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5.4 Results and Discussion 

This section will provide and discuss the research findings that were generated 

from this study across simulated cases and scenarios. After results have been disclosed, 

research hypothesis results will be disclosed to confirm or deny the research hypotheses 

that were posed at the beginning of this research effort. This section will then be 

concluded with discussions, which will denote major research findings and 

recommendations based on the results generated from this research study. 

 

 

5.4.1 Fueling Infrastructure Simulation Case Results 

The purpose of this section is to disclose the results generated from the first 

simulation case study (i.e., fueling infrastructure case). Results will be revealed through 

three subsections, two of which align with the variables of interest in this research. These 

three subsections are focused on the 1) average passenger wait times, 2) fuel cost per km 

for implementing different alternative fuel infrastructures in the JagTran system, and 3) 

deciding on the best JagTran transportation architecture based on the average passenger 

wait times and fuel cost per km. 

 

 

5.4.1.1 Passenger Wait Times. 

Through the process of varying infrastructure types as discussed Section 5.2.3.1, 

results from modeling these various different scenarios can be seen Figure 5.13.  

 

 



373 
 

 

Figure 5.13. Average passenger wait times relative to fueling infrastructure type. 

 

 

 

Findings from this simulation case study showed that passenger wait times 

consisted of 7.40 + 6.22 mins, 5.66 + 4.01 mins, 5.65 + 3.96 mins, 11.58 + 15.95 mins, 

and 5.73 + 4.04 mins for HDB-diesel, AB-diesel/biodiesel, AB-propane/natural gas, AB-

electric, and AB-hydrogen infrastructures; respectively. Additionally, this case study 

showed that ABs integrated with propane/natural gas offers the best performance in terms 

of reduced passenger wait times. In tandem with this, simulation findings from this 

research showed that by replacing HDBs with ABs only (i.e., keeping diesel fueling 

infrastructure), the average passenger wait time decreased by about 26.6%. On the other 

hand, by replacing the HDBs and existing fueling infrastructure, passenger wait times 

were reduced by 26.8% and 25.4% based on the use of AB with propane/natural gas 

infrastructure and AB with hydrogen infrastructure; respectively. The only fueling 
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infrastructure that didn’t observe any improvement or reduction in passenger wait time 

was the use of ABs integrated with electric fueling infrastructure, which saw a 28.1% 

increase in passenger wait times relative to the use of the existing transportation system 

architecture (i.e., HDBs integrated with diesel fueling infrastructure). 

Beyond the average passenger wait times, this study also investigated the relative 

distribution of passenger wait times at specific thresholds that students may deem to be 

acceptable levels of service for the JagTran bus system. With this in mind, the percentage 

of passenger wait times that were equal to or greater than 5 mins and/or 10 mins in wait 

time were emphasized in Table 5.13. Table 5.13 also gives insight into the level of 

service that each transportation architecture provided based off its integration of HDBs or 

ABs with a particular fueling infrastructure. 

 

 

Table 5.13. Percentage of riders that wait > 5 mins and > 10 mins. 

 Fueling Infrastructure Type 

 HDB - 

Diesel 

AB - Diesel/ 

Biodiesel 

AB -Propane/ 

Natural Gas 

AB - 

Electric 

AB -

Hydrogen 

% of Passenger 

Wait Times > 5 

mins 

56.52% 49.40% 49.58% 61.71% 50.49% 

% of Passenger 

Wait Times > 10 

mins 

26.41% 14.74% 14.62% 32.71% 14.44% 

 

 

 

Table 5.13 shows that using ABs with a diesel/biodiesel infrastructure has the 

least number of riders waiting 5 mins or more for a bus, followed closely by the use of 

ABs with propane/natural gas infrastructure and AB with hydrogen infrastructure. This 

meant that about 50.6% and 85.3% of riders using the AB with propane/natural gas 

infrastructure system experienced a wait time less than 5 mins and less than 10 mins; 
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respectively. However, in terms of number of riders having wait times of 10 mins or 

more, the use of ABs with a hydrogen fueling infrastructure had the least amount riders 

waiting past the 10 min threshold, which was followed by AB with propane/natural gas 

and AB with diesel infrastructure systems. These results mean that 49.5% and 85.6% of 

the riders using the AB-hydrogen infrastructure saw a wait time less 5 mins and less than 

10 mins; respectively. Conversely, the use of ABs with electric fueling infrastructure 

performed the worst amongst all alternatives including the existing (or base) case, with 

38.3% of served riders having a wait time less than 5 mins and 67.29% having a wait 

time less than 10 mins. This was not an improvement from the base case which saw 

43.48% and 73.6% of their riders wait less than 5 mins and less than 10 mins; 

respectively. 

5.4.1.2 Cost per km. 

Passenger wait times were only one dimension of assessing throughput within this 

research. The second was assessing the quality of throughput or mobility, which was 

quantified through the economic parameter of fuel cost per km. With this in mind, though 

the national average for the cost of fuel may be considered a conservative or less 

conservative estimate relative to state or country, each fuel cost within this research study 

was assumed to be based on the US national average. Distance and fuel deposited into 

each vehicle’s fuel tank or battery was considered in this study in order to determine cost 

per km. Equation 5.5 shows how fuel cost per km was determined in this experiment. 
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𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑘𝑚 =
𝑈𝑆𝐷

𝑈𝑛𝑖𝑡 𝐹𝑢𝑒𝑙 𝑖𝑛 𝐷𝐺𝐸⁄

𝑑𝑖
𝑓𝑢𝑒𝑙𝑖𝑛𝑝𝑢𝑡

⁄
 Equation 5.5 

 

 

 

where di is the distance traveled by the bus between fueling/recharging periods and 

fuelinput is the amount of fuel that was discharged into the bus during refueling downtime. 

Results for the fuel cost per km for each JagTran bus route using each type of fueling 

infrastructure can be seen in Figure 5.14. 

 

Figure 5.14. Fuel cost per km relative bus route and fueling infrastructure type. 
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integrated with natural gas fueling infrastructure. The worst performing amongst all the 

alternatives was the use of ABs with propane fueling infrastructure, followed by the use 

of HDBs with diesel fueling infrastructure system. Results also seemed to show trend 

where routes with shorter lengths seemed to accrue the most fuel cost per km which may 

have been due to frequent stop-and-go patterns as compared to longer routes that had 

more stops but more driving miles between bus stops. 

5.4.1.3 Best Fueling Infrastructure System. 

Based on visual inspection and quantitative findings in Figure 5.13, it was 

determined that the best fueling infrastructure or transportation architecture configuration 

based on wait times is the use of ABs that are integrated with a propane/natural gas 

fueling infrastructure. Of course, other options such as ABs integrated with 

diesel/biodiesel and hydrogen would make reasonable alternatives as well, but ABs 

integrated with propane/natural gas infrastructure is the best fueling infrastructure 

amongst all five alternatives based on passenger wait times. However, based on fuel cost 

per km, ABs integrated with electric fueling infrastructure was the best fueling 

infrastructure. Considering these contradictory outcomes, the total (fleet) fuel cost per km 

relative to average passenger wait times were plotted against one another to come to an 

overarching decision on the best fueling infrastructure. This plot can be seen in Figure 

5.15 and takes into account the total fuel cost of diesel, biodiesel, propane, and natural 

gas as their own fuel sources rather than aggregating them together. Furthermore, it is 

worth noting that in Figure 5.15 the cost per km is based on total or fleet fuel cost per km 
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for implementing an alternative fueling infrastructure on all bus routes in the JagTran 

system. 

 

 

Figure 5.15. Comparison of fueling infrastructures based on cost per km and average 

wait times. 

 

 

Through the consideration of Figure 5.14, since the hydrogen-based infrastructure 

is at a “balanced minimum” relative to total fuel cost per km and average passenger wait 

times, it was ultimately determined that the use of ABs integrated with a hydrogen 

fueling infrastructure was the best overall transportation architecture to utilize. This 

meant that ABs integrated with hydrogen infrastructure provide the highest quality of 

transportation mobility based on both passenger wait times and fuel cost per km. This 

choice is further reinforced by four major factors for the selection of AB-hydrogen 

infrastructure alternative which consisted of: 1) significant reductions in fuel cost; 2) no 

harmful emissions at the vehicle/local-level; 3) production of fuel on site; and 4) potential 
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for innovative integration of transportation operations with existing built environment 

(i.e., scalable integration and augmentation).  

• Reductions in fuel costs: Using ABs with hydrogen infrastructure saw a 33.3% 

and 84.3% decrease in total fuel cost/km relative to ABs integrated with natural 

gas infrastructure and HDBs integrated with diesel fueling infrastructure (i.e., 

base scenario); respectively. 

• No harmful emissions: Since it was assumed green hydrogen was being used in 

this research study, this means that little to no emissions would be generated from 

hydrogen production (Skiker & Dolman, 2017; Logan et al., 2020). As an added 

benefit, using hydrogen in the buses themselves produces zero emissions due to 

its only byproducts being water and heat. Currently, the lifecycle emissions of 

hydrogen fuel are significantly lower than diesel, but higher than that for electric.; 

this is expected to change in the years to come making hydrogen more of an 

attractive long-term fuel source (Logan et al., 2020).  

• Production of fuel on-site: Electrolyzers and the capability of using renewable 

energy allows for hydrogen to be generated locally within an existing 

environment and used as needed. All that is needed is access to water and 

electricity. Peak demand from renewable energy generation can also be imparted 

into the hydrogen infrastructure to double not only for fuel use but for energy 

storage use as well. 

• Scalable integration and augmentation: Existing infrastructure (i.e., buildings, 

power, etc.) surrounding the transportation system can be used to support the 
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fueling infrastructure and vice versa creating symbiotic relationships between the 

two systems in the intermediate- and long-term lifecycle of the hydrogen fueling 

infrastructure. 

Other factors such as reductions in noise pollution and high energy independency 

are secondary aspects that also played a significant role in choosing the AB-hydrogen 

fueling infrastructure alternative over the other alternatives as well.  

Figure 5.16 provides an additional dimension by looking at the comparison of 

potential CO2 emissions relative to fuel cost. This helped in solidifying the best fueling 

infrastructure by resolving any conflicting fueling alternatives that were in competition 

with one another initially (e.g., AB-natural gas and AB-hydrogen transportation 

architectures).  

 

 

 

Figure 5.16. Comparison of fueling infrastructures relative to fuel cost per km and CO2 

emission factors based on fleet size. 
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In Figure 5.16, it can be seen that the best fueling infrastructure based on fuel cost 

and emission factor (or potential) is the AB-electric fueling infrastructure, but with its 

poor passenger wait times this makes the AB-hydrogen fueling infrastructure the best by 

default. The AB-hydrogen fueling infrastructure is followed by the AB-natural gas 

fueling infrastructure alternative which produces CO2 emissions, but at lower rate than 

diesel, biodiesel, and propane. One aspect to note in Figure 5.16 is that the values for the 

CO2 emission factor were based on emission factors taken from EPA’s greenhouse gas 

emissions inventories and guidance (U.S. EPA OAR, 2014; U.S. EPA, 2016). The 

calculations performed to convert the CO2 emission factors from their conventional units 

of measure (i.e., kg CO2/gal, kg CO2/scf, etc.) to DGE can be consulted for further 

inquiring in Section 5.7.7 – Appendix 5.7. 

5.4.2 Ridership Demand Case Results 

The objective of this section is to reveal findings ascertained from varying 

ridership demand from scenario-to-scenario within the ridership demand case, which 

based on 5% incremental increases. Emphasis for these simulation cases were placed on 

measuring the impact of ridership demand on average passenger wait time and wait time 

distribution across ridership population; that is, looking at the percentage of passenger 

wait times that are equal to or exceeding a 5 min or 10 min threshold based on using the 

best JagTran transportation system architecture from Section 5.4.1.3. Figure 5.17 shows 
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the results that were obtained from varying the ridership demand and its impact on 

passenger wait times and its distribution over the ridership population.  

 

 

Figure 5.17. Impact of ridership demand on average wait time and ridership demand 

distribution. 

 

 

Results from performing ridership demand experimentations showed three major 

trends as ridership demand increased. These major trends consisted of an initial and 

relatively stable group of average passenger wait times at around the 0-10% ridership 

increase range, followed by a gradual increase in passenger wait times around the 10-

20% ridership increase range which was then proceeded by an exponential increase in 

wait times at around the 20-60% ridership demand increase range. From this observation 

it can be seen that the best transportation architecture begins to become stressed at around 

a 15-20% ridership demand increase. On the other hand, the AB-hydrogen infrastructure 
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system reaches the same passenger wait time as the existing transportation system when 

the ridership demand has increased to about 49% ridership demand. This means that pass 

a 49% increase in ridership, an additional bus may be needed to compensate for excessive 

passenger wait times in the JagTran system. 

In terms of the percentage of riders whose wait times were at or exceeded the 5 

min and 10 min threshold; the percentage of riders that met this threshold ranged from 

14.4–19.7% and 50.4–54.2% of riders for the 5 min. and 10 min. thresholds; respectively. 

Each wait time threshold saw a relatively linear increase in the percentage of riders 

exceeding both the 5- and 10-min. threshold values as ridership demand increased.  

5.4.3 Vehicle/Fleet Configuration Case Results 

In this section, results pertaining to the variation of bus seating capacity, and 

therefore, fleet configuration (or capacity) are revealed. Results in this section are 

concerned with the impact of changing the AB configuration to meet baseline ridership 

demand levels and to observe to what degree passenger wait times can be improved by 

changing bus configurations. As opposed to the previous simulation case study, bus 

capacity was increased on a seat-by-seat basis, where 8 seats in total were added to bus 

fleet (or 1 seat is added to each bus) from one scenario to another. Results from this 

experimental process can be seen in Figure 5.18. 
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Figure 5.18. Impact of bus configuration on passenger wait times and wait time 

distribution. 

 

 

From Figure 5.18, it was ultimately determined that by varying the bus 

configuration through bus seating capacity, average passenger wait times would 

significantly decrease at an exponential rate ranging from seating capacities of 5–12 seats 

per bus (i.e., fleet capacity of 40–96 seats). These bus configurations corresponded to 

average wait times that ranged from 71.9–6.10 mins. This exponential decrease trend was 

then followed by a uniform trend with little variation between wait time values, which 

consisted of average passenger wait times that tended to stay around 5.68 mins. This 

range of average passenger wait times aligned with bus configuration (or seat capacities) 

ranging from buses that contain 13 – 23 seats per bus (i.e., fleet capacity of 104 – 184 

seats). Following this zone, the collection of average wait times began to gradually 
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increase towards 10 mins, which corresponded with seating capacities ranging from 24 – 

70 seats per bus (i.e., fleet capacity of 192 – 560 seats).  

Results from investigating the impact of vehicle configuration on the passenger 

wait time showed a similar, yet more dramatic trend of the average passenger wait times. 

Both the percentage of passenger wait times that reached or passed the 5 mins and 10 

mins threshold had exhibited a U-shaped trend with wait times decreasing at an 

exponential rate followed by uniform profile, and finally increasing gradually as bus/fleet 

seating capacity increased. 

From the findings in Figure 5.18 a bus configuration other than the paratransit 

(which was used in the previous simulation cases) was chosen to observe if there were 

any significant improvements in passenger wait time that could be attained relative to the 

wait time achieved through the use of HDBs with a diesel fueling infrastructure. 

However, bus attributes were changed to those seen in Table 5.14. 
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Table 5.14. Vehicle attributes changed to observe impact of vehicle bus configuration on 

average passenger wait time. 

Specification 

Attribute 
Assumption Citation for Assumption 

Fuel/Engine Type Hydrogen  

Fuel Capacity 19.28 kg H2 + 28 kWh (670667 kWh) Based on (US Hybrid, 2015b) 

Person Seating 

Capacity 
23 seats 

From Vehicle Configuration 

Analysis 

Engine Power 280 kW Based on (US Hybrid, 2015b) 

Vehicle Chassis Ford F-550 
Based on specs. from (US 

Hybrid, 2015b) 

Length 10.06 m (33.01 ft) 
Based on specs. from (Eldorado 

Bus, 2017) 

Width 2.44 m (8.01 ft) 
Based on specs. from (Eldorado 

Bus, 2017) 

Height 3.16 m (10.37 ft) 
Based on specs. from (Eldorado 

Bus, 2017) 

Frontal Area 7.71 m2 (83.06 ft2) 
Based on specs. from (Eldorado 

Bus, 2017) 

Weight 9014 kg (19,782 lbs.) 

Based on specs. from (US 

Hybrid Bus, 2015b; Eldorado 

Bus, 2017) 

 

 

 

Bus attribute values such as drag coefficient, radial drag coefficient, propulsion 

efficiency, recuperation efficiency, etc. were assumed to remain constant from previous 

simulation case since it is expected that these values may change but at relatively 

insignificant level when the bus configuration changes. 

Through the process of adjusting the bus attributes to more realistic conditions, it 

was determined that the average wait time was 6.04 + 4.78 mins. Compared to the 

average passenger wait time from the best fueling infrastructure, this is an increase of 

about 5.27%. However, relative to the existing transportation architecture, this is about 

20.2% decrease in average passenger wait time. The passenger wait time distribution in 

using a mini-coach type configuration saw that 50.86% and 17.06% of riders experienced 

a wait time greater than or equal to 5 mins and greater than or equal to 10 mins; 
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respectively. These results are somewhat similar to what can be seen in Table 5.13 for the 

hydrogen fueling infrastructures. Additionally, with a change in bus configuration, this 

also effected the fueling capacity, and therefore, parameters such as driving range, refuel 

time, etc. With this change in bus configuration in mind, this ultimately led to an increase 

in fuel cost per km for almost all routes which can be seen in Figure 5.19. 

 

 

 

Figure 5.19. Comparison of fuel cost per km for AB hydrogen buses using paratransit 

and mini-coach bus configurations. 
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using HDBs with a diesel-based fueling infrastructure, the use of a hydrogen mini-coach 

bus (rather than a paratransit bus) saw a total fuel cost reduction of about 42.2% for its 

entire fleet. 

5.4.4 Hybridized Fueling Infrastructure Case Results 

The objective of this section is to show the results obtained from implementing a 

hybrid-based fueling infrastructure that consisted of combining a hydrogen-based fueling 

infrastructure within an existing diesel fueling infrastructure as part the JagTran bus fleet 

configuration. Within this scenario, refueling area was changed from a single pump 

configuration to a multi-refueling pump area consisting of an area for hydrogen ABs and 

diesel HDBs to refuel. Figure 5.20 shows the configuration used at the refueling location 

of the road network in the SUMO simulation environment.  

 

 

Figure 5.20. Hybrid fueling infrastructure configuration for combination of hydrogen and 

diesel fueling infrastructures. 

 

 

Diesel Human-Driven Bus (HDB) 

Refueling Location 

Hydrogen Automated Bus (AB) 

Refueling Location 



389 
 

As mentioned previously, the idea behind this simulation case study was to show 

the evolutionary path or paths toward an automated and sustainable bus fleet that the 

JagTran transit system could take and to observe the performance of each of these 

hybridized transportation architectures. This section consists of three major sections with 

first section was concerned with sharing the results of model revalidation, while the 

second section reveals the average passenger wait times of each scenario within this case 

study, and the third section emphasizes the fuel cost per km that was determined in each 

simulated scenario. 

5.4.4.1 Model Revalidation. 

Since there were some technical modeling issues that came from using hybridized 

JagTran system such as excessive bus stop impeding (i.e., blocked bus stops), changes 

such as adding additional bus stops designated for ABs and changing bus stop break 

locations for HDBs were made, ultimately altering the system-level behavior of the 

model used in previous simulation scenarios. This required that the model be revalidated 

to air on the side of caution. The same process as that discussed in Section 5.3 which 

used a combination of route variation and ridership demand variation analysis was used 

for model revalidation purposes. Results showed that by adding AB-designated bus stops 

and moving driver bus stop breaks to a different location, the model was still considered 

to be valid. Since the values in the revalidation process did not vary significantly relative 

to the values obtained in the original model validation process in Section 5.3, these values 

were placed in Section 5.7.8 – Appendix 5.8 as supplemental material for referencing 

purposes. 
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5.4.4.2 Passenger Wait Times. 

In this case study, average passenger wait times across all scenarios performed 

possessed high variation due to systemic changes in the transportation architecture of the 

JagTran system. With ABs and alternative fueling infrastructure being added to specific 

routes (i.e., blue route, green route, or both) this significantly changed the performance of 

the hybrid system relative to the existing JagTran system architecture. Research results 

from this study showed that the average passenger wait time for the revalidated JagTran 

system under base case conditions was 7.49 + 6.46 mins. Relative to the passenger wait 

times from the original validated base case model (i.e., 7.40 + 6.22 mins), this is only 

about a 1% difference in wait times, which insignificant in nature. Statistically, both the 

validated and revalidated base case models are one in the same with little to no variation 

between the two models. The same idea can be applied to the difference in average 

passenger wait time of the AB hydrogen system reported in Section 5.4.1 (i.e., 5.73 + 

4.04 mins.) and the AB-hydrogen system wait time in this section (i.e., 5.70 + 4.07 mins) 

which only possessed less than a 1% difference between the two wait times (i.e., 

0.525%). The difference in these wait times shows that the differential between the two 

wait times is negligible meaning these average wait times can be treat as one in the same. 

Beyond the revalidated base case model, further results from this case study 

showed that when an AB-hydrogen configuration was integrated into the bus routes with 

an average route length (i.e., blue route), long route length (i.e., green route), and both an 

average and long route length, noticeable reductions in wait times were observed. Figure 
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5.21 shows the average wait times that were obtained through the gradual hybridization 

the JagTran bus system.  

 

 

 

Figure 5.21. Average passenger wait times relative to hybrid fueling infrastructure 

configuration and AB fleet integration. 

 

 

Based on Figure 5.21, by introducing ABs integrated with a hydrogen-based 

infrastructure to bus routes with an average route length, long route length, and both an 

average and long route lengths, this provided an average passenger wait time of about 

6.84 + 5.58 mins, 6.28 + 4.96 mins, and 5.96 + 4.67 mins; respectively. Based on these 

results, a gradual decreasing trend can be seen in the passenger wait times as the level of 

autonomy and alternative fueling infrastructure type increases in the JagTran bus fleet. 

With respect to the passenger wait time distribution encountered in this simulation case 
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study, Table 5.15 shows the wait time distributions that were obtained as bus fleet 

attributes such as bus autonomy and fueling infrastructure mix varied. 

 

 

Table 5.15. Average passenger wait time and wait time distribution with the variation 

bus autonomy and fueling infrastructure mix. 

 Bus Fleet Configuration Type 

 

No ABs – 

HDBs-Diesel 

(Base) 

AB-Hybrid-

Med. Route 

Length 

AB-Hybrid-

Long Route 

Length 

AB-Hybrid 

Med. & Long 

Route Length 

AB All 

Route 

Lengths 

Average 

Passenger 

Wait Times  

7.49 mins 6.84 mins 6.28 mins 5.96 mins 5.70 mins 

% of 

Passenger 

Wait Times 

> 5 mins 

57.34% 55.0% 51.75% 49.81% 49.98% 

% of 

Passenger 

Wait Times 

> 10 mins 

26.0% 22.0% 20.21% 17.54% 14.82% 

 

 

 

Similar to the results for the average passenger wait times, the passenger wait 

time distribution values within this simulation case study followed a similar decreasing 

trend both for the percentage of passenger wait times that were 5 mins or greater and 10 

mins or greater. From the base case of using no ABs or alternative fueling infrastructure 

to using ABs with hydrogen fueling infrastructure on all routes, it was observed that there 

was a 7.36% reduction in the percentage of riders waiting 5 mins or more for bus service, 

while there was a 11.2% reduction in the percentage of riders waiting 10 mins or more 

for bus service. 



393 
 

5.4.4.3 Fuel Cost per km. 

Results for the fuel cost per km across the JagTran bus fleet varied depending on 

the level of automation (e.g., none or full automation) and the fuel type being used on 

each specific route. Figure 5.22 shows the fuel cost per km across JagTran bus routes 

when hybridization of automation and fueling infrastructure is used. 

 

 

Figure 5.22. Fuel cost per km across JagTran fleet for base case, hybridized fleet case, 

and pure hydrogen fleet case. 

 

 

Results from Figure 5.22 revealed that sizable cost reductions can be made to the 

JagTran bus fleet when an AB-hydrogen configuration is applied to one of the routes 

from a route perspective. However, this is dependent on the route on which the AB-

hydrogen configuration is implemented on. For example, when investigating total fuel 

cost across the entire JagTran fleet, based on implementing a AB-hydrogen configuration 
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on one route in the JagTran network, it was observed that placing the AB-hydrogen 

configuration on the blue route saw the highest reduction in fuel cost per km. This was 

due to the fact that relative to the base case, when implementing the AB-hydrogen 

configuration on the longest route (i.e., the green route) this only led to a 9.79% reduction 

in fuel cost per km, whereas if the AB-hydrogen configuration were implemented on an 

average route length (i.e., the blue route) this led to a 20.6% decrease in fuel cost per km. 

Considering the total fuel cost per km, these values were plotted against average 

passenger wait time to assess the performance (i.e., throughput) and quality of 

transportation (i.e., fuel cost per km) relative to one another. Figure 5.23 depicts a 

comparison of each hybridized transit architecture in terms of average passenger wait 

time relative to total or fleet-level fuel cost per km. 

 

 

 

Figure 5.23. A comparison between hybridized bus fleets relative to the base case and all 

AB-hydrogen bus fleet configuration. 
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From Figure 5.23 it can be seen that the best performing is the all AB-hydrogen 

bus fleet followed by a hybridized bus fleet that uses an AB-hydrogen configuration on 

its average and longest length routes simultaneously (i.e., blue, and green routes). 

Amongst these bus fleet configurations, the base case provides the worst level of mobility 

both in terms of performance (or throughput) and quality (or financial expenditure on 

fuel). Furthermore, since these hybridized bus fleets were not considered to be a zero-

emission fleet, Figure 5.23 was created to show the CO2 emission potentials for each 

hybridized bus fleet as the bus fleet configuration changed or evolved. Figure 5.23 

depicts a comparison of CO2 emission factors relative to total fuel per km (for the bus 

fleet) as the number of routes using the JagTran bus system architecture changes. 

 

 

Figure 5.24. A comparison of total fuel cost per km vs CO2 emissions factors for each 

JagTran hybridization scenario. 
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As seen in Figure 5.23, as the number of routes begin to incorporate the use of 

AB-hydrogen configurations more in their system architecture, the JagTran bus fleet 

transitioned further into a low carbon emission bus fleet, and eventually evolved into a 

zero-emission bus fleet with the complete incorporation of AB-hydrogen configuration 

throughout all its bus routes. In addition to this finding, one aspect that was determined in 

Figure 5.23 was that as the fuel emissions potential decreased, so did the total fuel cost 

per km for the entire bus fleet, showing how the JagTran system could evolve with the 

incorporation of ABs and a hydrogen fueling infrastructure system. 

5.4.5 Fueling Infrastructure Improvement Case Results 

The purpose of this section is to discuss the results of using and integrating 

emerging fueling technologies such as battery swapping and inductive charging 

technologies with ABs. The idea behind this section is to show and understand if a pure 

electrified and automated future is taken, what infrastructural changes need to be made to 

make use of electric ABs more efficient in their operation as compared to traditional 

plug-in counterpart. This is inspired by the fact that the plug-in electric infrastructure 

seen in Section 5.4.1 is significantly inefficient in terms of passenger wait times (as seen 

in Figure 5.13). Furthermore, the intent of this section is to show how emerging and 

alternative electric fueling technologies can be used to make up for the shortcomings of 

traditional plug-in fueling platforms with electric ABs. Therefore, the following 

subsections provide the results that were obtained from using BSSs/BSTs and inductive 

charging technologies with electric ABs; respectively. 
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5.4.5.1 Results from using Battery Swapping Technology with Electric ABs. 

Research findings from using BSSs or BSTs as a fueling infrastructure 

improvement alternative showed that from a throughput perspective, BSSs/BSTs show a 

significant promise in supporting the fueling operation of electric ABs. This was 

observed through the fact that the average passenger wait times that were achieved when 

using BSSs/BSTs were on the order of 6.08 + 4.53 mins., which was about 62.3% 

reduction in average wait times relative to using plug-in electric fueling infrastructure 

integrated with ABs. This average wait time correlated to a 19.5% reduction in average 

passenger wait time relative to the average wait provided from the existing JagTran 

system architecture. Figure 5.26 shows the average passenger wait times for the 

BSS/BST relative to other fueling alternatives. 

Considering the economic and business model for BSSs/BSTs and their 

integration into existing transportation systems, this is an emerging enabling technology 

for automated cars, let alone ABs. As such, understanding this technology from a 

financial perspective can provide a sense of how feasible and sustainable the use 

BSS/BST could be when integrated with electric ABs. Research results investigating the 

feasibility of using BSS/BSR in this study were performed at preliminary level, only 

considering cost associated with the fuel itself, which in this case was the energy from the 

battery and the monthly fee for covering the BSS/BST service. To comprehend the 

magnitude of fuel cost for using BSSs/BSTs, Figure 5.27 shows a relative comparison of 

fuel cost per km for using BSSs/BSTs across each JagTran route. 
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5.4.5.2 Results from using Inductive Charging Technology with Electric ABs. 

Experimentation results from using inductive charging as the primary fueling 

infrastructure in supporting AB operations showed more potential than using BSSs/BSTs 

with ABs from a throughput perspective. Research findings from this scenario showed 

that the use of inductive charging with ABs were capable of delivering an average 

passenger wait time of 5.47 + 3.76 mins, which correlated to a reduction of about 71.7% 

and 30% in wait times relative to using ABs with plug-in electric fueling infrastructure 

and the existing transit system (i.e., HDBs with diesel infrastructure); respectively. Figure 

5.26 (in Section 5.4.5.3) shows the average passenger wait times for using inductive 

charging as a fueling infrastructure for supporting electric AB operations. 

Results for the passenger wait time distribution were also collected alongside the 

average passenger wait time to assess and compare the general wait time profile and 

service level achieved by using both BSSs/BSTs and inductive charging. With the 

average wait times from this section and Section 5.4.5.1, Table 5.16 shows a comparative 

output of data regarding wait time performance when it comes to using BSS/BST and 

inductive charging as supportive infrastructure systems for AB operations. 

 

 

Table 5.16. Comparative results of passenger wait times and passenger wait time 

distribution for BSS/BST and inductive charging integration with ABs. 

 Fueling Infrastructure Improvement Type 

 Battery Swapping Technology Inductive Charging 

Average Passenger 

Wait Time 
6.08 mins 5.47 mins 

% of Passenger Wait 

Times > 5 mins 
51.52% 48.82% 

% of Passenger Wait 

Times > 10 mins 
17.97% 12.77% 
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Aside from its exceptional performance in terms of average passenger wait times, 

since inductive charging does not require for ABs to deviate from their fixed routes to 

satisfy refueling requirements, results showed that with inductive charging pads at ever 

bus stop, limitless or infinite range for electric buses were achieved. This by design 

reduces range anxiety and increases level of service which was indicated through 

increased throughput of passengers. In fact, results showed that the inductive charging 

infrastructure provides nearly a surplus of energy to the ABs causing the bus fuel 

capacity to never drop below 50% fuel capacity. Figure 5.25 depicts the aggregated 

variation of battery capacity for electric ABs in the JagTran system when inductive 

charging is used as the fueling infrastructure.  
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Figure 5.25. Aggregated battery capacity variation with the use of an inductive charging 

infrastructure. 

 

 

Observations of Figure 5.25 show that the average battery capacity of all buses 

generally stayed within 90% of the full battery capacity. In Figure 5.25, these statistical 

values are based on results for one simulation run. This was done because of the large 

magnitude of data that was produced from the simulation in SUMO which was unable to 

be processed all at once. Therefore, in order to successfully process the data, only one 

simulation run was used to represent the battery capacity variation experienced when 

using inductive charging in place of plug-in charging infrastructure.  
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5.4.5.3 Comparison of Alternative Fueling Infrastructure & Emerging Fueling 

Infrastructures. 

The purpose of this subsection is to show how well emerging fueling 

infrastructure technologies perform relative to existing (e.g., diesel, biodiesel, natural gas, 

propane, electric) and early-stage (e.g., hydrogen) infrastructure systems.  

Considering the benefits and shortcomings of BSS/BST and inductive charging 

use with ABs, a comparative investigation of these two infrastructures with other 

alternative infrastructures from Section 5.4.1 was also performed to understand potential 

improvements in average wait times and fuel costs that could be achieved. Figure 5.26 

shows the comparison of average passenger wait times of the existing transit system and 

its fueling infrastructure relative to using ABs integrated with electric-plug-in, hydrogen, 

BSS/BST, and inductive charging fueling infrastructures.  
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Figure 5.26. Comparison of average wait times between existing JagTran system and 

other infrastructures relative to emerging fueling infrastructures technologies (i.e., 

BSS/BST and inductive charging). 

 

 

Figure 5.26 shows that both of the fueling infrastructure improvements reduce 

passenger wait times relative to the existing JagTran transit system and its existing 

fueling infrastructure. In terms of fuel cost per km, Figure 5.27 provides a comparative 

examination into the individual fuel cost procured for each bus on each bus route.  
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Figure 5.27. Comparison of fuel cost for each bus and fueling infrastructure type. 

 

 

Results from this comparative analysis revealed that the least expensive fueling 

infrastructure was the electric plug-in infrastructure, with the most expensive fueling 

infrastructure being the inductive charging infrastructure. Combining all of these research 

findings together, Figure 5.28 shows comparison of wait time performance and fuel cost 

output between the existing fueling infrastructure (i.e., HDBs with diesel fueling 

infrastructure), the best fueling infrastructure (i.e., hydrogen fueling infrastructure), and 

the lowest fuel cost infrastructure (i.e., electric plug-in infrastructure) relative to the use 

of BSS/BST and inductive charging infrastructure. 
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Figure 5.28. Comparison of existing and early-stage fueling infrastructures relative to 

emerging fueling infrastructures. 

 

5.4.6 Hypothesis Test Results 

This section is devoted to addressing the three research hypotheses posed at the 
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hypothesis so as to address and emphasize the outcomes of hypothesis testing aimed at 

each hypothesis. 

5.4.6.1 Research Hypothesis 1. 
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Throughput in this research was measure in the form of passenger wait time of 

individuals utilizing the JagTran bus system. Furthermore, using the scenario that uses 

ABs with diesel/biodiesel fueling infrastructure is a fairly similar representation of if 

HDBs were replaced with ABs, but fueling infrastructure was kept the same. Noticeable 

improvements could be determined through visual inspection in Figure 5.13, but through 

the use of a Mann-Whitney-Wilcoxon test, the results seen in Table 5.17 these results are 

further validated through statistical means. 

 

 

Table 5.17. Output and setup of Mann-Whitney-Wilcoxon hypothesis testing for research 

hypothesis 1. 

Mann-Whitney-Wilcoxon Test Outputs – Hypothesis 1 

Ho μcurrent < μab_d_bd 

H1 μcurrent > μab_d_bd 

z-scores -24.054 

 p-value < 0.00001 

alpha - α 0.05 

Conclusion p < 0.05, Reject Ho 

 

 

 

In Table 5.18, μcurrent is the average wait time for the existing transportation 

system architecture and μab_d_bd is the average wait time for using AB with 

diesel/biodiesel infrastructure. The outcome of this hypothesis test proves that by 

changing the level of autonomy of the JagTran buses from human-driven to fully 

automated yields a significant improvement in passenger wait times (i.e., throughput). 
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5.4.6.2 Research Hypothesis 2. 

The second research hypothesis of this research consisted of the following 

research hypothesis: 

Research Hypothesis 2: Automated bus system integration with propane, natural 

gas, biodiesel, hydrogen, and electricity fueling infrastructures does not provide equally 

reliable transportation mobility throughput within closed sociotechnical 

environments/systems. 

This research hypothesis was addressed through the use of fueling infrastructure 

case studies as well, which looked at the impact of varying fueling infrastructure within 

the JagTran system architecture. As seen in Figure 5.13 through visual inspection, an AB 

system integrated with any alternative fueling infrastructure does not provide equally 

reliable transportation mobility throughput (relative to the existing JagTran system) in a 

CSE. To prove this claim statistically, the same Mann-Whitney-Wilcoxon test was used, 

but instead of looking at all fueling alternatives and comparing them all to the existing 

transportation architecture, the best performing transportation architecture (i.e., AB with 

hydrogen fueling infrastructure) was used to compare against the existing transportation 

architecture in terms of throughput performance (i.e., passenger wait time). Table 5.18 

provides the hypothesis testing setup and outputs generated from the Mann-Whitney-

Wilcoxon test performed as part of this research study. 
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Table 5.18. Output and setup of Mann-Whitney-Wilcoxon hypothesis testing for research 

hypothesis 2. 

Mann-Whitney-Wilcoxon Test Outputs – Hypothesis 2 

Ho μcurrent < μab_h2 

H1 μcurrent > μab_h2 

z-scores -22.3784 

 p-value < 0.00001 

alpha - α 0.05 

Conclusion p < 0.05, Reject Ho 

 

 

 

In Table 5.18, μab_h2 is the average wait time for using ABs with a hydrogen-based 

fueling infrastructure. Based on the findings from this hypothesis test, it can be concluded 

that the fueling infrastructure such as hydrogen provide more reliable transportation 

mobility than the existing JagTran transportation architecture. 

5.4.6.3 Research Hypothesis 3. 

The third research hypothesis of this study consisted of the following: 

Research Hypothesis 3: Using different or hybridized automated bus 

configurations improves transportation mobility throughput within CSEs. 

The main purpose of this research hypothesis is to show or prove that 

unconventional and hybridized automated transportation system architectures can 

improve passenger wait times within CSE such as a university campus environment. This 

research hypothesis was addressed in two ways. The first approach consisted of utilizing 

one of the average passenger wait time results from the vehicle configuration simulation 

case study and utilizing the Mann-Whitney-Wilcoxon test to statistically confirm the 

claim made in this research hypothesis. Based on findings from Section 5.4.3, it can be 
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seen that the best vehicle configuration was a transportation system that utilized AB-

hydrogen infrastructure with a seating capacity of 15. This is the same bus configuration 

that was used in the alternative fueling infrastructure and the ridership demand variation 

simulation case studies. However, contrary to this, this research hypothesis states that 

“different vehicle configurations can improve transportation mobility throughput”. In 

order to truly test this claim, rather than chose the vehicle configuration with the lowest 

average wait time which aligns with a bus configuration with seating capacity of 15; the 

vehicle configuration closest to the lowest average wait time, yet outside of the 10-20 

seating capacity range was chosen instead. Therefore, through consultation of Figure 

5.18, it was determined that bus configuration with 23 seats would be used due to seating 

capacity being in a different class of bus and its average wait time being only being about 

4% higher than a bus configuration with a seat capacity. The reason for choosing a bus 

outside of the 10-20 seating range is because this range is representative of a paratransit 

bus class which has already shown to have improved throughput (i.e., average wait 

times). A bus configuration higher than this range would be in a different bus 

configuration class referred to as mini-coach buses, which possess a seating capacity 

ranging from 21-35. Figure 5.29 shows the seating range relative to bus 

class/configuration type, which was based on personal observations in various literature 

sources (e.g., journal papers, specifications, etc.). 
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Figure 5.29. Visual representation of assumed seating ranges relative to vehicle class or 

configuration. 

 

 

The second approach was performed through the statistical comparison of 

passenger wait time results between the case study conducted in Section 5.4.4 (i.e., 

hybridized fueling infrastructure case study) and those obtained from the base scenario of 

Section 5.4.1. In both of these cases statistical comparison was done through the use of 

the Mann-Whitney-Wilcoxon test since the passenger wait time distribution was non-

normal in nature. Results for the hypothesis testing of each of these approaches can be 

seen in Table 5.19 and 5.20. 
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Table 5.19. Output and setup of Mann-Whitney-Wilcoxon hypothesis test for research 

hypothesis 3 – Part 1. 

Mann-Whitney-Wilcoxon Test Outputs – Hypothesis 3 

Ho μcurrent < μab_h2_MiniCoach 

H1 μcurrent > μab_h2_MiniCoach 

z-scores -19.6965 

 p-value < 0.00001 

alpha - α 0.05 

Conclusion p < 0.05, Reject Ho 

 

 

 

In Table 5.19, μcurrent is the average passenger wait time for the currently used 

JagTran transportation architecture, and μab_h2_MiniCoach is the average passenger wait time 

for a JagTran transportation architecture that uses AB with hydrogen in a mini-coach 

configuration rather than paratransit configuration. Though the mini-coach configuration 

did not reduce the average passenger wait times lower than the AB-hydrogen-paratransit 

configuration (as seen in Section 5.4.1), it did improve passenger wait times significantly 

according to this hypothesis test. Results with respect to the second portion of the third 

hypothesis regarding the impact of using hybridization in the JagTran bus fleet 

configuration can be seen in Table 5.20. The same statistical test, the Mann-Whitney-

Wilcoxon test, was used to assess the statistical significance of the simulation output 

generated from the simulation approach used in this study. 
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Table 5.20. Output and setup of Mann-Whitney-Wilcoxon hypothesis test for research 

hypothesis 3 – Part 2. 

Mann-Whitney-Wilcoxon Test Outputs – Hypothesis 3 

Ho μcurrent < μab_Hybrid_Medium 

H1 μcurrent > μab_Hybrid_Medium 

z-scores -7.4446 

 p-value < 0.00001 

alpha - α 0.05 

Conclusion p < 0.05, Reject Ho 

(a) 

 

Mann-Whitney-Wilcoxon Test Outputs – Hypothesis 3 

Ho μcurrent < μab_Hybrid_Long 

H1 μcurrent > μab_Hybrid_Long 

z-scores -15.9769 

 p-value < 0.00001 

alpha - α 0.05 

Conclusion p < 0.05, Reject Ho 

(b) 

 

Mann-Whitney-Wilcoxon Test Outputs – Hypothesis 3 

Ho μcurrent < μab_Hybrid_Med._Long 

H1 μcurrent > μab_Hybrid_Med._Long 

z-scores -20.9431 

 p-value < 0.00001 

alpha - α 0.05 

Conclusion p < 0.05, Reject Ho 

(c) 

 

 

In Table 5.20, μab_Hybrid_Med. is the average passenger wait time generated when the 

AB-hydrogen configuration is used on the bus route with an average or medium route 

length (i.e., blue bus route), μab_Hybrid_Long is the average passenger wait time generated 

when the AB-hydrogen configuration is used on the bus route with longest route length 

(i.e., green bus route), and μab_Hybrid_Med._Long is the average passenger wait time when the 

AB-hydrogen configuration is used on both the bus routes with the average and longest 

route length. Statistical tests from utilizing the Mann-Whitney-Wilcoxon test showed that 
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in all degrees of hybridization, significant improvement in throughput (i.e., passenger 

wait time) was achieved relative to the existing transportation system architecture. This 

means that the third hypothesis posed in this research study has been proven to be true or 

failed to be rejected due to statistical significance. 

5.4.7 Sensitivity Analysis 

The objective of this section is to assess the impact of changing the traffic demand 

of the validated simulation of this research. With the model validated and appropriate 

scenarios executed, a sensitivity analysis was conducted through the variation of traffic 

demand within the simulation environment. Recall that there were adjustments made to 

the actual traffic demand data in order to reduce the likelihood of overcrowding at 

simulation input boundaries and to prevent the occurrence of erroneous bus behaviors 

such as the inability to turn or merge into major thoroughfares. Since the traffic demand 

was changed, three major traffic demand sensitivity analysis scenarios were performed 

which consisted of 1) assessing the impact of removing the large traffic demand increase 

at Hillcrest, 2) assessing the impact of using the unadjusted traffic demand data; and 3) 

assess the impact of increasing the adjusted traffic demand by 5% on simulation outputs 

such as wait times, bus route loop duration, and ridership demand. 

In the first case, when the large traffic demand increase at a time of 18:00-19:00 

was removed and replaced with the actual traffic demand data an average passenger wait 

time of about 7.47 + 6.57 mins was obtained. In terms of bus route loop duration, there 

were no major differences or impacts detected between the bus route loop times when the 

adjusted and actual traffic demand for Hillcrest were used in the simulation space. Table 
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5.21 shows a comparison of the bus route loop durations under the use of adjusted and 

actual traffic demand conditions. Lastly, with the removal and replacement of the large 

traffic demand at Hillcrest, simulation sensitivity analysis results showed that with the 

reduction of the traffic demand from 1792 veh/hr to 448 veh/hr, this did not significantly 

impact the ridership demand within the simulation environment. Figure 5.30 shows the 

ridership demand profile of when the traffic demand at Hillcrest Road is decreased 

relative to other sensitivity cases and the adjusted traffic demand which was used 

throughout this research study.  

In the second case, when all adjusted values were changed to their original or 

actual values and simulated, an average passenger wait time of 7.31 + 6.13 mins was 

obtained as a simulation output. On the other hand, when using the original traffic 

demand values in place of the adjusted traffic flow values, most of the bus route loop 

durations did not vary significantly relative to when the adjusted traffic demand data was 

used. The only bus route loop duration that saw a somewhat significant change was the 

average bus route loop duration for JagTran Blue Bus 2 which deviated by about 1.91 

mins (i.e., 8.68%) which was still in acceptable limits. Table 5.21 shows the average bus 

route loop duration for when the original (or unadjusted) traffic demand is used. 

Ridership demand from using the original or unadjusted traffic demand did not show 

excessive variation relative to when the adjusted traffic demand data was used, nor 

relative to when the traffic demand to Hillcrest Road was increased and decreased (Case 

1). However, around the 1-hour interval of 13:30-14:30, the ridership demand deviates 

from the outside the maximum ridership demand threshold by one person. From a logical 

perspective, it is safe to say that this is not considered to be a significant deviation since 



414 
 

the other traffic demand sensitivity cases follow the same path (but some being within the 

threshold). Figure 5.30 depicts the ridership demand output of when the original traffic 

demand is used relative to other sensitivity cases and the use of adjusted traffic demand 

which was used throughout this research study. 

The third case which added an additional 5% increase in the adjusted traffic 

demand data used throughout this research study, also did not observe a significant 

change average passenger wait times with a wait time of 7.30 + 6.06 mins be obtained 

from the simulation output. This value is similar to what was obtained in the second case 

when the original or unadjusted traffic demand values were used. The average bus route 

loop duration relative to Case 1, Case 2, and the using the adjusted traffic demand values 

did not incur any significant changes. Table 5.21 shows the average bus loop duration 

when the adjusted traffic demand within the simulation environment is increased by 5%. 

Observations showed that there was not significant deviation between the past two 

sensitivity cases and the use of the adjusted traffic demand data with all values staying 

within reasonable limits. Similarly, ridership demand output from this sensitivity case 

showed that for all buses, except for Blue Bus 2, there was no significant variation 

between the two sensitivity cases and adjusted traffic demand case used throughout this 

research study. However, there was a small deviation outside of the max ridership 

demand at about the 13:30-14:30 interval, which is not considered significant because the 

ridership only surpassed the maximum ridership by only one person. Every else in the 

ridership demand profile follows a similar path with the other sensitivity cases and the 

ridership demand when the adjusted traffic demand used. Figure 5.30 shows the ridership 

demand output of when a 5% increase in the adjusted traffic demand is used relative to 
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other sensitivity cases and the use of adjusted traffic demand which was used throughout 

this research study. 

 

Table 5.21. Average passenger wait times and bus route loop times from sensitivity 

analysis. 

  JagTran Bus Route Designation 

 
 

Red 

Bus 

Blue 

Bus 1 

Blue 

Bus 2 

Yellow 

Bus 1 

Yellow 

Bus 2 

Green 

Bus 1 

Green 

Bus 2 

Orange 

Bus 

 Wait 

Times 

(mins) 

Bus Route Loop Duration (mins) 

Adjusted 

Traffic 

Demand 

7.40 15.26 20.97 21.17 23.15 22.72 23.14 23.36 20.12 

Unadjusted 

Traffic 

Demand @ 

Hillcrest Rd 

7.47 15.31 21.14 21.10 23.03 22.76 23.28 22.98 20.12 

Unadjusted 

Traffic 

Demand 

7.31 15.31 21.25 23.02 22.75 22.49 23.19 22.95 20.12 

5% 

Increase in 

Traffic 

Demand 

7.30 15.28 21.09 21.20 23.55 22.91 23.43 23.13 20.12 
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(a) 

 

 
(b) 

Figure 5.30. Sensitivity analysis results for ridership demand for all JagTran bus routes. 
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Figure 5.30, Cont. 
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Figure 5.30, Cont. 
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Figure 5.30, Cont. 
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Overall, based on the results from the sensitivity analysis performed in this 

subsection, changing the traffic demand in assortment did not lead to any significant 

impact on simulation output such as average passenger wait time, average bus route loop 

duration, and ridership demand. 

5.4.8 Discussion 

This section will discuss the findings obtained in Sections 5.4.1 through 5.4.6 of 

this chapter in further detail, offering recommendations and potential improvements 

moving forward. As such, this section will be segmented into five subsections with each 

subsection corresponding to each simulation case performed in this research study. These 

subsections are then followed by a sixth subsection that discusses the errors or 

discrepancies that were encountered during experimentation and provides reasons for the 

emergence of these issues and suggestions to resolve them. 

5.4.7.1 Fueling Infrastructure Case Study. 

Changing the fueling infrastructure in tandem with bus type showed a sizable 

reduction in passenger wait times and fuel cost per km relative to the existing 

transportation architecture that is currently in place on the USA campus. However, none 

of the alternative fueling infrastructures were able to exceed a 5 min average wait time 

which may be considered an acceptable wait time for students, faculty, and staff that 

utilize the JagTran bus service. In order to accomplish this what could be instituted is the 

addition of another bus on the routes containing the longer wait times to bring down the 

average passenger wait times. Alternatively, another option could be to use a “filler bus” 
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for when long refueling times begin to emerge, when a bus is needed to fill-in for human 

bus drivers needing to take a break, or during any form of unexpected downtime of any 

of the JagTran buses. This filler bus may be automated or even semi-automated which 

may not take any breaks like HDBs. These filler buses would act as buses that would 

make sure there are no significant disruptions in rider wait times during operation hours 

by providing redundancy within the JagTran system. 

Using filler buses would be advantageous for fueling infrastructures such as the 

AB-electric fueling infrastructure which saw the highest average wait time among all 

fueling types. In fact, this is an inherit characteristic of using electric buses. When it 

comes to using electric ABs, though electric provides excellent reductions in fuel costs 

out of all fueling alternatives, significant capital cost expenditures may be accrued due to 

the fact that using an all-electric bus fleet will require the use of more buses within the 

fleet as compared to the best overall fueling infrastructure – AB-hydrogen fueling 

infrastructure. This expenditure in acquiring the appropriate fleet size for electric ABs is 

primarily due to excessive passenger wait times that are caused by long refueling times 

for electric vehicles, and with only one fuel station this issue is exacerbated. Based on 

this finding, it can also be said that, besides from using filler buses, if the real estate is 

present and financial resources are available, then an additional electric charging station 

can be installed to further handle the bus demand. This, however, isn’t needed for 

hydrogen buses which only require one charging station. This is because during the 

simulation, at least one bus for a given route was in service while the other was refueling 

(in paired bus routes).  If there is a disadvantage to using hydrogen, it is its high upfront 

capital cost which can be as high as $1.27 million (Eudy & Post, 2021), whereas electric 



422 
 

bus capital cost is little more than half the price of hydrogen buses at about $550,000 

(Quarles et al., 2020). This study only considered fuel cost per km to make a well-

informed decision on the best fueling infrastructure, however, a more extensive economic 

analysis of all fueling alternatives should be the focus of research studies to come to help 

in further informing the decision-making process. 

Another reason for why the average passenger wait times couldn’t be reduced past 

the 5 min threshold may have also been influenced by the prevailing headway strategy 

that was used. The holding strategy allows for buses to maintain headway in a simplistic 

manner, but the strategy prevents the follower bus from continuing on its intended 

trajectory even when it has caught up to the leader bus. This could cause unwanted delays 

in service time for passengers using the JagTran bus system, thereby increasing the 

average wait time. Therefore, alternative headway maintenance strategies such as 

follower-leader overtaking, bus stop skipping, or any other form of adaptive headway 

maintenance strategy could lead to further sizable reductions in passenger wait times. 

Sophisticated headway maintenance strategies for ABs would also be more realistic 

considering that these vehicles will be interconnected with one another (V2V), 

surrounding infrastructure (V2I), and pedestrians and their devices (V2X) around the 

campus environment creating smart CSE (SCSE). Nonetheless, this aspect is beyond the 

scope of this research study and should garner further study in future research, however. 

In addition to these observations, another aspect to consider is that the M&S 

approach utilized in this research study doesn’t take topological features into 

consideration. This is primarily done for model simplification purposes. The USA 

campus is a naturally hilly campus composed of unique terrain gradients. This factor can 
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have a significant impact on fuel economy and fuel usage of the JagTran buses, meaning 

electric buses may seem like a inefficient fueling infrastructure to utilize given terrain 

variation throughout the landscape of this CSE. This is true, especially considering the 

fact that topological features could place a further strain on electric buses’ batteries and 

propulsion efficiency. The same can’t be said for hydrogen-based propulsion systems 

whose output power resembles that of internal combustion engine buses, but with a 

higher efficiency. As a fairly hilly campus whose routes are liable to adapt and change to 

ridership demand this should be accounted for in the future if a technology such as 

electric (automated) buses are expected to be used as part the JagTran fleet (or any fleet 

used in hilly terrain for prolonged durations for that matter). 

Above all else, however, one aspect to keep in mind is that fueling technologies 

such as electric vehicles (EVs) and hydrogen fuel cell electric vehicles (HFCEVs) are 

only in the embryonic stages of development and use, and each shows early promise, 

especially if one considers the outcomes seen in Figure 5.15 and 5.16. 

5.4.7.2 Ridership Demand Case Study. 

Results from the ridership demand simulation case study showed that there is a 

significant amount ridership capacity (in terms of wait time) for the AB-hydrogen fueling 

infrastructure to handle, while at the same time minimizing fuel cost and fleet level CO2 

emissions. This was observed by the fact that the AB-hydrogen fueling infrastructure 

could withstand up to a 49% increase in ridership while maintaining average wait times 

that are less than or comparable to wait times provided by the existing HDB-diesel 

infrastructure provided on the USA campus. In addition to this, AB-diesel/biodiesel, and 
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AB-propane/natural gas infrastructure provides a better advantage in terms of passenger 

wait time, but with the presence of a higher fuel cost and larger fleet level CO2 emissions. 

Also, in Figure 5.18 a deviation in the general trend in the beginning of the 

average passenger wait time curve can be seen. This change in passenger wait time may 

have been caused by the placement of additional persons that are usually placed at 

specific bus stops from one scenario to another. In this particular case, this abnormal 

change in average passenger wait time may have been due to overcrowded buses which 

led to added rider/person agents within the simulation staying at bus stops longer than 

normal, causing a shift in the average passenger wait time as depicted in Figure 5.18. 

5.4.7.3 Vehicle /Fleet Configuration Case Study. 

Findings from varying the seating, and therefore, fleet capacity of the AB transit 

system showed that average passenger wait times can be reduced significantly, on the 

order of nearly 30% relative to the existing HDB-diesel fueling infrastructure. More than 

this, however, this simulation case study showed that there was a suite of AB 

configurations that can be used, while simultaneously improving the transit throughput. It 

is worth noting, however, that some of these bus configurations did not exhibit the same 

physical features (i.e., length, width, engine specifications) that they would possess in 

reality. To assess this, the bus configuration closest to the lowest average wait time value, 

but in a different vehicle classification was chosen to show the impact that realistic 

vehicle configurations have on passenger wait times.  

As discussed in Section 5.4.3, based on a realistic bus configuration, considering 

aspects such as power, fuel capacity, refuel duration, etc. the average passenger wait time 
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when using an automated hydrogen mini-coach bus increased but not significantly. This 

increase in average passenger wait times is mostly attributed to a longer fueling time and 

a longer stop time at each bus stop. In fact, out of these two factors, the stop time at each 

bus stop could be shortened through the incorporation of an adaptive behavior to look at 

the number of riders at an upcoming bus stop and have the bus decide to reduce its wait 

time at each bus stop accordingly. However, this is considered outside the scope of this 

research study and would be more aligned with examining bus headway strategies. A 

focus such as this would be an avenue for future work to assess its impact on wait times 

and other transit metrics. Though beyond the scope of this manuscript, another future 

avenue that could be exploited in future research is investigating how the hybridization of 

different bus configurations could impact passenger wait times and fuel cost per km. The 

reason for this is because, in Figure 5.18 seating capacity of the varying bus fleet sizes 

are depicted. This means that these varying bus fleet sizes and their seating capacities can 

be reconfigured and assorted in unique ways allowing for different bus classes or sizes to 

be utilized on each route. For example, for a fleet containing a 120-seat capacity, this 

uniformly equates to about 15 seats per bus. However, under hybridized conditions, one 

could reconfigure the bus fleet so that the green and blue routes (i.e., 2 buses on each 

route) are using buses with 20 seat capacity per bus, the buses on the yellow route (i.e., 2 

buses on each route) are using buses with a seating capacity of 15 seats per bus, and the 

buses on the red and orange routes (i.e., one bus on each route) are each using buses with 

a 5 seat capacity. As part of this example, the fleet would consist of 6 automated 

paratransit buses and 2 automated shuttle/pod buses with each configuration conforming 

to the ridership demand on their respective routes. 
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5.4.7.4 Fueling Infrastructure Improvement Case Study. 

The objective of this section is to disclose the logic behind some of the research 

findings obtained in Section 5.4.4. 

In the BSS/BST simulation scenario, it was determined that the use of BSS/BST 

with ABs was competitive with the hydrogen fueling infrastructure in terms of passenger 

wait time. This was mainly due to a shorter refueling time (i.e., < 10 mins) as compared 

to its counterpart – the electric plug-in fueling infrastructure. This finding is beneficial for 

the future of BSS/BST and electric ABs because it, not only shows reductions in wait 

time, but that if electric ABs are to be used, there exists a fueling infrastructure 

alternative that doesn’t require augmentation of the existing size of the bus fleet for 

electric vehicles. As compared to the use of BSSs/BSTs, findings from using electric 

plug-in fueling infrastructure showed that since electric buses take more time to refuel 

(i.e., < 50 minutes based on fast charging), a larger electric bus fleet would be needed to 

compensate longer downtimes due to refueling. With the integration and use of BSS/BST 

this downtime is reduced by at least a third, reducing the need for a large bus fleet, and 

therefore capital cost.  

With many benefits in terms of performance, the use of BSSs/BSTs does come 

with some negatives or nebulous aspects to consider. The first is the cost that is procured 

from battery management. In using a BSS/BST depending on the individual or 

organization managing the facility, a primary requirement is making sure that there is a 

steady supply of batteries in the BSS/BST’s inventory to promote battery swapping 

capabilities. Though BSSs/BSTs provide the opportunity to prolong the lifecycle of an 
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individual battery pack, they will eventually degrade, meaning an external supply source 

of batteries will be needed. Therefore, battery supply management is an additional 

external (and logistical) cost that will need to be considered as part of the total cost (e.g., 

maintenance, operating, salvaging costs) of using BSS/BSTs as a fueling infrastructure, 

further adding expenditures throughout the system lifecycle. 

The second downside is complexity behind BSSs/BSTs as a component system of 

the JagTran transit system. Simply put, BSSs/BSTs are systems on to themselves. 

Composed of different unique components ranging from power subsystems to software-

based subsystems that handle automated functions, BSSs/BSTs have unique 

interconnected component systems that will or may need extensive care. One such system 

is the automated battery exchange system which may need to undergo periodic 

maintenance for calibration, updating, testing, upgrading, etc. overtime to satisfy system-

level requirements. Maintaining all of these components within the BSS/BST alone can 

potentially incur significant costs over the lifetime of the BSS’s/BST’s lifecycle in 

comparison to an electric plug-in fueling system which requires less maintenance and 

incurs less maintenance cost than BSSs/BSTs. 

Aside from the economic feasibility of using BSSs/BSTs there is also the 

environmental repercussions of using BSSs/BSTs. The use of BSSs/BSTs as a fueling 

infrastructure does not eliminate the fact that it is an enabler of battery usage in vehicles. 

Batteries, though they produce no emissions at the local scale (i.e., vehicle usage), do 

produce a significant amount of harmful pollution at the systemic level due to mining for 

heavy metals (such as nickel, cobalt, lithium, etc.), manufacturing of the batteries, and 

end of life disposal due to a current lack of battery recycling measures. Of course, there 
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are some emerging and promising solutions such as the use of pyrite and aluminum 

batteries (in substitution of lithium-based batteries) that are expected to solve the disposal 

and recycling issue, but these technologies are currently in their infancy. In addition to 

the notion of negative environmental impact, there is also the concern that using logistics 

of moving the batteries to the BSS/BST from an off-site supplier could potentially stress 

existing road infrastructure. Batteries are by far the heaviest component on a bus. With 

this in mind, if a shipment of exchangeable bus batteries is trucked from an off-site 

source location this could lead to excessive rutting of roadways around campus 

potentially making some of the roads difficult to drive on. This will only accelerate the 

rutting of roadway pavements due to heavier axle weights, not only from moving large 

battery packs to the BSSs/BSTs, but from continuous use of heavy electric buses or ABs 

using these roadways 5 days a week for most of the year. As a result, this can add 

addition infrastructural maintenance expenditures and even cause long-term safety 

concerns as well (Johnston et al., 2017). 

Conversely, as a cohort of the fueling infrastructure improvement case study, the 

use of inductive charging showed the lowest average wait time among all fueling 

infrastructures in this research study, but it also possessed the highest fuel cost per km 

among all fueling infrastructures investigated (from a fleet-level perspective). The high 

cost was due to continuous charging along each bus route which would vary depending 

on how long the bus in question stayed at a given bus stop. This duration varied due to 

the fact the buses in the simulation used a holding strategy, which varied charging time at 

some bus stops. This ultimately led to buses having varying levels of battery capacity 

levels throughout their operation. Considering the results from Section 5.4.4.2, the route 
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with the most charge variation were the green and yellow bus routes which were two of 

the longest routes in the JagTran network. The buses on the yellow route had the largest 

battery capacity variation of the two buses because the buses on the yellow route 

encountered unique exposure to different transportation environments ranging from quiet 

streets to high traffic environments such as arterial intersections. 

Results from investigating the impact of using inductive charging showed that this 

fueling infrastructure technology can have both positive and negative implications. In 

terms of the positive implications, the ability to place inductive charging pads at all bus 

stops showed that an infinite driving range can be achieved with no need to deviate from 

fixed bus routes. The negative impact is that with the implementation of inductive 

charging at every bus stop, this increases fuel cost per km for each bus, and therefore, the 

bus fleet at large. From a technical perspective what could be done to alleviate this 

problem is have the bus and the infrastructure be appropriately sized based on social and 

environmental conditions. For instance, since electric buses are heavier than their internal 

combustion counterpart, they can lead to quicker rutting and decay of existing roadways 

(possessing asphalt) requiring additional infrastructure costs outside of bus operating, 

labor, and maintenance cost be accounted for. However, one of the ways this issue can be 

overcome or reduced is by having buses or ABs use smaller batteries and use inductive 

charging at select stations when they stop. This is conceptually and architecturally similar 

to the mechanism behind electric trolleybuses and the way they operate, but in a wireless 

format. 

As compared to the use of the electric plug-in infrastructure option, the use of 

inductive charging and BSS/BST showed that there isn’t a major need to increase fleet 
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size to keep up with ridership demand and provide an adequate level of service. However, 

there is some relatively significant fuel costs that come with using these emerging 

infrastructures. Nevertheless, fuel costs for BSS/BST may decrease over time as the 

component systems within BSSs/BSTs becomes more mainstream and the economies of 

scale mature, potentially making the use of BSSs/BSTs more competitive with hydrogen 

fueling and the electric plug-in infrastructures. Fuel cost per km for inductive charging 

was the most expensive fueling infrastructure because of its continuous use of electrical 

power to fuel the JagTran buses at every bus stop location. With this in mind, this is 

where fueling optimization could be used to establish an inductive charging scheme 

throughout campus that maximizes bus range, while minimizing aspects such as fuel cost, 

passenger wait times, and bus idling times. This has been the focus in the literature of 

(Doubleday et al., 2016; Mohamed, Zhu, Meintz, Wood, 2019), but a more systems- or 

sociotechnical-oriented framework needs to be incorporated, to allow for a more multi-

objective end goal to be reached. Literature from (Hylton et al., 2021) shows how more 

of a systems- or sociotechnical-oriented framework would support a more inclusive and 

multi-objective end goal to support transit operations within a given built environment. 

Such an approach would be advantageous considering the advent of autonomous driving 

and its impact not only on driving, but other modes of mobility as well (e.g., walking, 

bicycling, micro-mobility, micro-transit, etc.). Nonetheless, this is beyond the scope of 

this research, but it warrants further investigation beyond this research study. 

Overall, the use of electric ABs show promise, but there are many systemic issues 

ranging from battery lifecycle issues to impacts on existing infrastructure such as the 

health and lifespan of roadways. These concerns are reinforced by the fact that this study 
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doesn't take into consideration topological features which can reduce battery and 

propulsion efficiency further. Relative to other fueling powertrains, topology is not as 

significant of an issue for engine configurations such as diesel, propane, natural, and 

hydrogen due to their higher energy content as compared to battery electric buses or ABs. 

The USA campus, for instance, is considered to be a fairly hilly campus, and as such this 

should be accounted for in the future if a technology such as electric ABs are expected to 

be used as part the JagTran fleet (or any bus fleet for that matter). 

5.4.7.5 Hybridized Fueling Infrastructure Case Study. 

In this case study, hybridization of not only fueling infrastructure, but bus 

autonomy across the entire bus fleet showed that significant improvement can be made in 

reducing passenger wait times of prospective riders though autonomy levels in the bus 

fleet consisted of buses with only no automation (i.e., SAE level 0) and full automation 

(SAE level 5) levels. The main advantage and purpose of this simulation case study was 

to show an evolutionary path that the JagTran system architecture could take out of 

numerous pathways or alternate futures as system requirements changed over time. It 

provides a pathway in which piecemeal implementations are used in order to meet 

financial needs while at the same time assuring future sustainability needs are ultimately 

met as well. Alternatively, with the gradual proliferation of ABs within the JagTran fleet, 

this progressive implementation of ABs and their corresponding infrastructure could also 

be thought of as a “bus fleet penetration rate” which in this research case study were 

placed at 0%, 25%, 50%, and 100%. As these “fleet penetration rates” increased, 

passenger wait times decreased as the percentage of hydrogen ABs approached 100%. As 
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opposed to this, if a fleet penetration rate was allocated to electric ABs with the same 

fleet size (of 8 buses), an increasing trend in wait times, may occur due to factors such as 

longer charge times and an inadequately sized bus fleet based on ridership demand. In 

order to compensate for this, a larger bus fleet size of electric ABs, faster charging, or the 

implementation of a new fueling infrastructure (e.g., BSSs/BSTs, inductive charging 

pads, or an additional plug-in charging station) could be used in tandem with the existing 

diesel fueling infrastructure as the transportation system architecture evolves into a fully 

electric-powered system or with another alternative fueling infrastructure platform such 

hydrogen. 

Recalling the results from Section 5.4.4, it should be considered that the fueling 

infrastructure mix for the hybridized JagTran bus fleet used a combination of carbon 

emitting buses and zero-carbon emission buses yet still showed promising results. 

However, based on the fuel cost per km and average passenger wait times, it can be seen 

that there is still room for further reductions to be made. For instance, with both the 

longer and average sized bus routes using hydrogen ABs there was about a 17.6% 

reduction in average wait time, in addition to a 35.9% reduction in total fuel cost per km 

relative to the base case of using diesel fueling infrastructure with HDBs on all bus 

routes. This hybridization can be taken a step further by having bus routes such as the 

red, orange, and yellow routes use electric ABs rather than diesel HDBs but with a 

fueling infrastructure that will reduce refueling downtime such as inductive charging. 

However, if inductive charging is used, it will more than likely have to be placed at 

strategic locations that allow for the maximization of opportunistic-based charging. This 

will more than likely maximize charge time but reduce fueling cost per km on their 
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respective bus routes. Not only this, but by using electric as a complement, to hydrogen 

the fleet ultimately produces zero emissions. Also, production of both fuel types (i.e., 

electricity and hydrogen) can be produced locally on site through renewables as well 

giving these fuels a high level of energy independence as compared to diesel fuel. Based 

on this, the question then becomes how much fuel cost savings can be achieved through 

the integrative and hybridized use of hydrogen and electric ABs within a given bus fleet? 

This question, however, is beyond the scope of this research. 

With the presence, of hybridization of not only fueling infrastructures but bus 

autonomy as well, concern regarding the impact of ABs on the human labor aspect of the 

JagTran system may need to be investigated through a more introspective lens. Utilizing 

CSEs such as a campus environment can provide sampling and inference into larger 

transportation agencies that manage more complex environments, their attitudes toward 

bus automation, and potentially how automation should be sensibly integrated into 

human-based transportation operations while not significantly disrupting the existing 

human-machine symbiosis of their transit systems. This is where scaling down the 

operational environment to a CSE can be an advantage because it provides a microcosm 

for assessing systemic aspects such as impact of automated driving on the human labor 

economy which may get overlooked when ABs are integrated into existing transportation 

systems. Assessing the human labor part of this system may require more of a 

transdisciplinary-based approach and would be considered beyond the scope of this study 

but would be a much-needed path for future research efforts moving forward.  

With respect to issues in this simulation case study, the only aspect that seemed to 

cause concerns was the impediment of some buses’ movements at certain bus stops. For 
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example, recall, that at certain stops two bus stops had to be placed for HDBs and ABs to 

pick-up and drop-off their respective passengers. However, at times HDBs can take long 

breaks (e.g., snack breaks, bathroom breaks, lunch breaks, etc.) at some of these 

designated bus stops and hold up other buses in the end. This impeding or holding of 

buses can ultimately lead to increases in average passenger wait times as a result. To 

overcome this problem vehicles were allowed to overtake leader bus ahead them, but 

since they tended to act more conservative or less aggressive in their maneuvers (for 

passenger safety purposes), the buses were not likely to overtake their respective leader 

buses ahead them. In this simulation, conservative or less aggressive driving more than 

likely had a significant influence in the wait times being at the values that they were 

reported at in Figure 5.21 

5.4.7.7 Model Limitations and Discrepancies. 

The model developed and utilized in this research study provided numerous 

useful insights regarding the potential that lies behind the integration of ABs and 

alternative fueling infrastructures. However, this model possesses some discrepancies and 

limitations that should be brought to the forefront. This subsection will discuss and 

disclose some of the issues encountered in the model that should be considered along 

with the results and discussion points made in previous sections. 
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5.4.7.6.1 Limitations in the Modeling and Simulation of System 

Environment/Context. 

Environmental aspects and scenarios can have a significant impact on bus systems 

and how they perform in meeting mobility demands for a specific service population. 

With this in mind, there are numerous environmental scenarios that could be modeled 

within the CSE context of the USA campus environment, most of which were not 

modeled due to time, resource, and data limitations. These context-based limitations 

consist of temporal, case-based phenomena which comprised of events that occur at 

specific times of the day, week, month, or year that leads to perturbations throughout the 

CSE. In this research study, the only temporal phenomena that is modeled is the daily 

peak from traffic and ridership demand. However, larger, and more occasional temporal 

phenomena like special events such as when sporting events, scheduled road closures, or 

ceremonial events (e.g., graduation, conventions, concerts, etc.) that occur annually or 

weekly are not considered in this study. This is primarily due to a lack of availability of 

time, data, and resources.  

Alongside this edge case phenomena, weather events can have a direct impact on 

the behavior of social entities within the fabric of sociotechnical systems (as discussed in 

Chapter IV), causing fluctuations in ridership demand when weather becomes less than 

idyllic. As an end result, this can lead to surges in demand that reduces the level of 

service for transport system. However, one of the features to be mindful of in this 

interplay between service demand and weather conditions is the fact that accurate and 

synchronized spatiotemporal data is needed in order to assure that results from the M&S 
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effort are in agreement with realistic conditions. This includes making sure that 

transportation environment conditions such as the presence of road closures, construction, 

and other transportation features that may have been occurring during the weather, need 

to be included in the model to match realistic conditions for validation purposes. 

Additionally, aspects such as operational protocols for AVs under adverse weather 

conditions are not fully known, limiting the knowledge about the performance of AVs in 

adverse weather conditions. With this in mind, inclement weather, and its impacts on 

agent behavior such as vehicles and people, were not considered in this simulation 

modeling effort because of a lack of access meaningful data and also due to time 

constraints. Nevertheless, this edge case scenario can be examined further through future 

M&S efforts that utilize a combination of weather models and transportation models. 

5.4.7.6.2 Limitations in the Modeling and Simulation of HDB and AB Agents. 

Considering the complexities that come with developing sophisticated algorithms 

that assist in exploring how different bus service schemes may fair within a given 

context, the goal of this study is not to perform or execute system optimization of the 

USA JagTran bus system, but rather to perform exploratory research to gain insight on 

new disruptive smart technologies such as ABs impact transportation mobility within 

CSEs. Therefore, one of the limitations of this research study is that it does not seek to 

optimize bus fleet operations within the existing CSE setting. Beyond this, in Section 

5.2.1.1 and 5.2.1.2, various assumptions were made about the attributes of both the HDBs 

and ABs all of which were based on findings from literary sources. Examples of these 

attributes consisted of transportation kinematics (e.g., acceleration, deceleration, reaction 
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time, minimum gap/headway between vehicles, etc.), fueling and vehicle powertrain 

features, and physical dimensions. For transportation kinematics of the HDB and AB 

agents this was highly dependent on literature source. Since fueling and vehicle 

powertrain such as diesel, biodiesel, propane, natural gas, and to some extent, hydrogen 

are nonexistent in ABs, assumptions for all of these fueling and vehicle powertrains were 

based on HDB configurations for simplification. With more space in ABs as compared to 

HDBs because of a lack of a driver, these specifications (i.e., fuel capacity, weight, 

efficiency, etc.) are liable to change, thereby changing the research findings and 

subsequent interpretation. The same can be said for the transportation kinematic of ABs 

as AV technology continues to progress. Therefore, due to the evolving nature of AV 

research, attributes used to describe the behavioral and physical attributes of ABs and 

HDBs limited this research study, ultimately making the study lean more on conservative 

side in terms of its assumptions. 

In research study some adaptive behaviors that may or may not be exhibited in the 

real system are ignored, due to a lack of knowledge about their existence or use within 

the actual JagTran system. An example of this would be how exactly the fueling protocol 

is handled in the real JagTran system. It is made clear if only one bus is allowed to be at 

the fueling pump or if a queue is allowed to develop at the fueling station. If the former is 

the case, then this would be a significant limitation of this research study, because it has a 

direct impact on passenger wait times and fuel cost per km. If the former is used, this 

allows for more opportunistic refueling scheme, but also does run the risk of buses 

running out fuel before bus operations hours end. Nevertheless, fueling strategies for ABs 
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is another avenue that could be explored for future research to assess their impact on 

passenger wait times, fuel costs, and other mobility-based metrics. 

As discussed in Section 5.2.1.1.3, the presence of the COVID-19 pandemic led to 

closing of certain facilities on USA campus, ultimately changing bus stop pick up points 

and destinations. This ended up impact route lengths and durations relative to pre-

COVID conditions, which the ridership demand data in this research study is based on. 

This discrepancy is significant because according to the USA Transportation Services 

department, they reported that they did not have any ridership during times of operation 

during the early or later stages of the COVID pandemic. Therefore, assumptions had to 

be made to the JagTran GPS data which is based on routes taken during the COVID-19 

pandemic. These assumptions elongated route lengths and time to pre-COVID (i.e., 

January 2019) conditions which is what the ridership demand data is based on. 

Assumptions made to elongate route length and time, may not be exact to pre-COVID 

conditions, but they are a close representation of what the routes would have look liked 

before the pandemic impacted campus (i.e., February/March 2020). Furthermore, with 

some routes (e.g., orange) changing in layout quite frequently pre-COVID, the routes in 

this research study may not be exact, but their lengths and stops are approximations of the 

different route layouts that were provided by the USA Transportation Services 

department. These assumptions and approximations regarding route length and duration 

are influential data generated in study and could suffice as a general limitation of this 

research effort. 
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5.4.7.6.3 Limitations in the Modeling and Simulation of Traffic Flow 

Demand Agents. 

In order to provide realism within the simulation space, vehicular composition 

data is typically collected for a specific traffic flow and is then simulated within a given 

traffic simulation tool to aid and contribute to traffic analysis assessments. Given the lack 

of physical data and constraints placed on time, rudimentary physical observations were 

used through Google Maps and on-site inspections to assess the vehicle composition 

along boundary of and within the confines of the University environment. Data from 

ALDOT regarding heavy duty truck composition of the traffic flow was also investigated 

and was shown to be low at around 4% of annual traffic demand. Therefore, it was 

assumed that most the traffic demand agents in the simulation would be passenger cars in 

order to simplify the model. Though these means of assessing vehicular composition are 

coarse in nature, they did provide a means of ascertaining inputs for vehicular flow 

attributes. Nevertheless, this is not fully accurate nor realistic in nature and constitutes a 

limitation or this research study. To circumvent this limitation moving forward, a more 

detailed methodology of measuring and obtaining traffic flow data can be performed in 

the future to evaluate how more realistic traffic patterns effect on-campus service levels 

of the JagTran system. This can even be taken a step further by future research work 

looking into how dynamic traffic flow patterns and their attributes (i.e., flow speed, 

vehicular composition, etc.) effect AB services within a CSE which can allow for the 

supporting of more predictive traffic analytics capabilities for edge use cases such as 

special occurrences or events (e.g., construction, college gamedays, etc.)  
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Aside from limitations in the consideration of the vehicular composition of the 

traffic flow, there are limitations from the historical traffic flow data that was utilized to 

inform the simulation model were also inherited by this model. This temporal limitation 

is due to the lack of availability of traffic flow data at specific times of the year. For 

instance, the ridership data in this study was taken in the month of January 2019, 

however, the MDoTE performed their traffic flow counts during the months of July and 

September of 2019 creating a seasonal data discrepancy between the ridership and traffic 

flow data. This ultimately can have an impact on the data interpretation of results and 

also data input for the M&S approach, generating a limitation of this study in allowing 

full understanding of the impact of traffic flow and other aspects on the JagTran bus 

system architecture within a CSE. With this limitation in mind, this research study 

ignored the factor of seasonality or other large scale temporal attributes because of the 

temporal patchwork that exists between available datasets (of traffic and ridership 

demand). 

5.4.7.6.4 Limitations in the Modeling and Simulation of Pedestrian/Person 

Agents. 

One of the major constraints that was identified in Section 5.2.1.1.2 was that 

individualized journey data of student movement was not available. Therefore, certain 

assumptions had to be made about the journey take for each person agent in the 

simulation. As a result of not possessing fine-grain ridership data in the form of activity-

based data, this has placed limitations on the level of knowledge of the transportation 

modality of person agents, leaving only the bus stint of their journey known and other 
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transport modes such as biking, walking, and personal car transport unknown. These 

other forms of mobility are common modes of mobility often seen in use around campus 

and share in the modal split of each individual within CSE that the USA campus. In order 

to gain fine-grained data on the activities of these types of agents, more sophisticated 

research approaches or methodologies such as crowdsourcing or surveys/questionnaires 

will need to be utilized to understand modal splits within the university campus 

environment. This can be another interface for future research and have its own ethical 

issues due to privacy concerns. Nevertheless, constraints were placed on the 

consideration of other modes of transportation integrating with the JagTran bus system in 

this research study for simplification. 

In addition to this, this research study doesn’t consider factors such as allowing 

the person agents who arrive at their respective bus stops to balk/abort from their 

respective queues at the station and chose another mode of transportation. This is a 

significant limitation of the model of this research because it gives insight into the wait 

time tolerance of riders and the performance and service level provided by the of the 

JagTran system (using either HDBs or ABs). However, this aspect of balking is 

accounted for to some degree with consideration of passenger wait time distributions 

which use thresholds of 5 mins and 10 mins as assumed potential wait time tolerance 

levels of riders. Simply put, these wait time thresholds can be thought of as 

balking/aborting thresholds for riders. 
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5.4.7.6.5 Modeling Discrepancy in Execution. 

Modeling discrepancies that were experienced in this research study consisted of 

two major issues or obstacles: 

• Traffic demand agent accidents/crashes during simulation  

• Moderate errors from code execution 

In transportation modeling and simulation, it is common practice to minimize 

collision or crash errors within a given simulation. In this research study crashes did 

occur and were detected, but out of over the thousands of vehicles that entered the 

simulation environment there were less than 30 collisions that occurred during simulation 

execution. Some of these collisions were suspected to have been caused by a command in 

the SUMO code referred to as ignore-junction-blocker <TIME>. The purpose of this 

command is to assure that traffic jamming doesn’t occur at junctions or intersections in 

the road network due to conflicting movements. They are primarily applied to 

intersections that have priority-based rules to their vehicle movements and that are non-

signalized in nature. The idea behind this command’s use is that if a vehicle has a 

trajectory being impeded by another vehicle at a priority-based, non-signalized 

intersection, it is assumed the driver/vehicle will eventually be able to figure out how to 

get around the impediment scenario in a minute or less (i.e., TIME), thereby reducing the 

chance of a traffic jam from occurring. When this command is used sometimes vehicles 

may come in contact with one another, making the SUMO count the contact as crash or 

accident, which is not the case. Another cause for crashes may also stem from the fact 

that acceleration, deceleration, and driver reaction time values used in this study may be 
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less than ideal to use under some special circumstances in the simulation. To solve this 

problem acceleration, deceleration, driver times, and minimum headways could be 

adjusted to prevent any collisions from happening. It is worth noting that collisions in this 

simulation did not involve any buses, just cars that were part of the general traffic 

demand population. 

Aside from vehicle collisions, there were also discrepancies during code 

execution. These errors did not prevent the simulation from running, but was used as a 

sign to the modeler, that an error has occurred. One of these errors, commonly known as 

the “tuple out range” error, was a Pythonic error regarding the list of vehicles being used 

in the simulation. The tuple error statement was observed toward the end of the 

simulation when buses were beginning to leave the simulation due to reaching the end of 

operational hours. This error, however, would only appear when a bus that is part of a 

pair of buses on the same route disappears from the simulation at the end of their bus 

operation hours. To prevent this error from occurring, lines of code were added to handle 

situations when one bus in a pair of buses on a given route (e.g., blue, green, or yellow) 

leaves the simulation. Another discrepancy model of this research study consisted of an 

error regarding the fueling protocol of the buses within the simulation. In this error, when 

the simulation program was executed and when the buses eventually arrived at the 

charging station for refueling, the program would assume that the charging station would 

be a bus stop which is not true. However, this didn’t have an impact on refuel times (for 

simulation scenarios modeled in Sections 5.2.3.1, 5.2.3.2, 5.2.3.3, and 5.2.3.5), which 

refueled buses to their appropriate fuel levels. In the hybridized infrastructure case study, 

however, this became a significant issue due to the simultaneous use of two different 
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fueling infrastructures which each had different refuel times. In order to circumvent this 

issue, modifications had to made to the existing simulation program so that 

differentiation between charging station and bus stops as well as refuel time between 

different bus types were made apparent so that appropriate refueling durations were 

achieved in the simulation. 

 

5.5 Conclusions 

Automated cars have seen an extensive amount of research attention in existing 

literature over the years in use cases such as ridesharing and carsharing applications; 

however, this hasn’t been the case for automated buses and their use cases in the public 

transportation domain. Furthermore, with the trend of AVs or ABs consistently being 

assumed to possess electric powertrain systems when considered; as production and use 

of these electric vehicles are scaled up over time, critical questions regarding the 

environmental impact of unearthing raw materials for their batteries, the human rights 

issues for mining the battery metals, and disposing of batteries at the end of their lifecycle 

have yet to be fully answered. These concerns begin to make one wonder if society 

confining itself to one fueling technology to support a disruptive technology such as AVs 

or ABs, is repeating the mistakes of the past when fossil fuels, a non-independent energy 

source, were used as a primary fuel to support transportation operations? Therefore, 

further investigation into the architectural possibilities of automated or smart 

transportation systems and their integration with other alternative fueling infrastructures 

need to be explored further.  
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In order to investigate the architectural possibilities that could exist with 

automated or smart transportation systems; in this chapter, a M&S approach was utilized 

to assess the impact of implementing ABs and different alternative fueling infrastructure 

systems could have on transit throughput performance (i.e., passenger wait times) and the 

quality of transportation from an economic perspective (i.e., fuel cost per km). In this 

M&S approach, the USA campus was used as the system context in the form of closed 

sociotechnical environment (CSE), in order to scale down, explore, and experiment with 

different transportation architectures for its JagTran transit system. The experimentation 

in this research study consisted of five major simulation case studies which focused on 

the impact of: using distinct alternative fueling infrastructure systems; varying ridership 

demand while using the best alternative fueling infrastructure; utilizing unique bus/fleet 

configurations; implementing emerging fueling infrastructure technologies such as 

BSSs/BST and inductive charging to substitute traditional plug-in charging infrastructure; 

and imparting a hybridized fueling infrastructure automated fleet into the JagTran system. 

Results for the alternative fueling infrastructure case study showed the fueling 

infrastructure that reduced passenger wait times the most was the use of ABs with a 

natural gas fueling infrastructure with a reduction of about 26.8% in average wait time. 

However, when fuel cost per km and other systemic features (e.g., emissions, energy 

independence, on-site production capabilities, etc.) of hydrogen fueling are factored into 

the decision process, the best fueling infrastructure was the use of ABs with a hydrogen 

fueling infrastructure which had about a 25.4% reduction in passenger wait time relative 

to the base case. Additionally, findings showed that just by adding ABs to the JagTran 

fleet and keeping the existing diesel fueling infrastructure, significant reductions in wait 
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time of about 26.6% can be achieved, but fuel costs per km remained relatively high 

compared to using natural gas and hydrogen-based fueling infrastructures. 

On the other hand, results from using the AB-hydrogen configuration and varying 

the levels of ridership demand showed that at about a 49% ridership increase, the AB-

hydrogen transit architecture exhibited the same level of service as the existing JagTran 

system. This meant that the AB-hydrogen system possesses a significant amount of 

capacity for future ridership growth compared to the existing system. Conversely, in the 

bus/fleet configuration case study, when bus/fleet seating capacities varied, a U-shaped 

trend in passenger wait times was observed. At the bottom of this U-shaped trend were a 

group of bus configurations that can provide some of the lowest passenger wait times for 

the bus fleet if implemented. From this collection of configurations, a 23-passenger bus 

configuration for each JagTran was chosen to assess its impact on wait times and total 

fuel cost per km in the JagTran system. Relative to the existing JagTran system 

architecture, findings from this experimentation showed that by using a different fleet/bus 

configuration it resulted in a 20.2% reduction in wait time and 42.2% reduction in total 

fuel cost per km if an automated mini-coach bus configuration with a hydrogen fueling 

infrastructure is utilized. 

With sales of EVs continuing to grow in the future, an electrified future for ABs 

was not completely disregarded in this study because electric ABs could have a 

significant impact on transportation if many of its systemic issues are resolved. In the 

case that these inherent issues are resolved, however, using emerging fueling 

technologies such as BSSs/BSTs and inductive charging could be advantageous for 

electric bus fleets as compared to bus fleets that use fast-charge plug-in stations 
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especially from a battery lifecycle perspective. Nevertheless, relative to plug-in charging, 

using BSSs/BSTs and inductive charging showed that passenger wait times could be 

reduced by as much as 62.3% and 71.7%; respectively. However, total fuel cost per km 

for BSSs/BSTs and inductive charging would be significantly higher relative to plug-in 

charging with increases as high as 116% and 156%; respectively. In the case of the 

hybridized bus fleet simulation case study, using both diesel and hydrogen fueling 

infrastructure with HDBs and ABs decreased in passenger wait times and fuel cost per 

km as the JagTran system increased its using the AB-hydrogen configuration across its 

designated route. Covering all simulation case studies performed in this research study, 

significant improvements were observed relative to the existing transportation 

architecture and the use of electric ABs. Findings in this research showed the numerous 

possibilities that lie outside of using electric ABs with traditional plug-in charging 

infrastructure and that the consideration of other alternative fueling infrastructure systems 

and technologies should be heavily considered to support AVs or ABs in their operations. 

After all, AVs are a technology that will systemically change the transportation sector 

and the enabling systems that support their functionality in various different 

environments and system context spaces. Therefore, more systemic thinking toward their 

integration in existing sociotechnical systems (i.e., cities or built environments) needs to 

be used moving forward as the future of mobility is further envisioned.  

Looking toward future work, though it could not be achieved within this study 

due to time constraints, the intent of this research in the future is to observe if the 

transportation system architectures within this study can provide mobility improvements 

within other CSEs such as military base installations given their operational needs. 
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5.7 Appendix – Chapter V 

 

 

5.7.1 Appendix 5.1 – USA Transportation Services Elicitation Questions 

In order to appropriately model the existing JagTran’s attributes and behaviors, personnel 

at USA’s Transportation services department consulted through an elicitation process to 

uncover operational routines, desired improvements, attitudes towards automation of the 

JagTran transit system, and much more. Table A5.1 provides the questions used in the 

elicitation process in order to query appropriate personnel within the department. 
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Table A5.1. Elicitation questions used for obtaining JagTran data. 

Question 

ID 
Elicitation Question 

1 Are there any planned improvements to the on-campus transportation system? 

1.a What are your unrealistic plans or improvements you would make to the system? 

2 What are your perceptions of JagTran’s value to USA? 

3 
What do you believe your organization is not doing well or what you would like 

to see improve? 

4 
What improvements would you like to see be made to the transportation services 

current operations (i.e., fueling, maintenance, operating times, etc.)? 

5 What type of fuel does your JagTran fleet use? 

5.a How does transportation services feel about alternative fuels? 

5.b 
Has the Transportation Services department been looking at alternative fuels it 

could be using to make its fleet cleaner and efficient from a fueling perspective? 

5.c 
Do you think alternative fuels will make a sizable difference in your fleet 

operations? 

6 

What data is collected on the operational specifications of JagTran buses (e.g., 

downtime, mpg, expected length of service before disposal, mileage before 

needed maintenance, ridership, bus scheduling, headway between buses, and 

other service specifications)? 

6.a Can this operational data be given to the public upon request? 

7 
Have you considered or discussed implementing AVs as part of the JagTran 

system? 

8 

How do you feel about autonomous buses functioning within the framework at 

transportation services at the University of South Alabama? Would you and your 

team be opened to researching this idea? 

8.a 
If so, how would you go about implementing autonomous buses while appealing 

to your own ideals and mission at transportation services? 

9 
Can the public get access to the JagTran tracker GPS data for research purposes? 

Does Transportation Services have access to the JagTran Tracker data? 

 

5.7.2 Appendix 5.2 – Bus Scheduling Scheme 

The bus transit system modeled within this research study utilized transportation 

service architecture that utilized a fixed bus route configuration. As such, the buses 

within this simulation utilized a fixed bus schedule based on its stops and their temporal 
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scheme (i.e., duration at stops) was highly dependent on the level of autonomy for the bus 

in question. Bus scheduling was also dependent on the route for which a given bus was 

placed on and was liable to change due to factors such as other conflicting bus routes, 

extended stay at bus stops to maintain bus headway integrity, and bus driver breaks at 

designated bus stops. Table A5.4 shows the bus schedules used for HDBs, while Figure 

A5.5 depicts the bus schedules that were utilized for ABs within the simulation 

environment.  

 

 

Table A5.2. JagTran bus schedule for Human-Driven Buses (HDBs). 

Simulation 

Time (sec) 
JagTran Red Bus Schedule (HDB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3630 30 Student Center N.  30 

3750   120  

3780 30 College Medicine  180 

3900   120  

3930 30 Allied Health NB  270 

4050   120  

4080 30 
Health Services Rd 

Parking 
 390 

4200   120  

4230 30 Research Park  510 

4350   120  

4380 30 Allied Health SB  630 

4500   120 2010 

(a) 
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Table A5.2, Cont. 
Simulation 

Time (sec) 
JagTran Blue Bus 1 Schedule (HDB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec)  

3630 30 Grove Apart.  30 

3780   150  

3810 30 Stadium Dr.  210 

3960   150  

3990 30 Gamma Conn.  390 

4140   150  

4170 30 Student Center  570 

4320   150  

4350 30 Humanities S.  750 

4500   150  

4530 30 Delta  930 

4680   150  

4710 30 Dining Hall WB  1110 

4860   150  

(b) 

 

 

 
Simulation 

Time (sec) 
JagTran Blue Bus 2 Schedule (HDB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec)  

3630 30 Grove Apart.  30 

3780   150  

3810 30 Stadium Dr.  210 

3960   150  

3990 30 Gamma Conn.  390 

4140   150  

4170 30 Student Center  570 

4320   150  

4350 30 Humanities S.  750 

4500   150  

4530 30 Delta  930 

4680   150  

4710 30 Dining Hall WB  1110 

4860   150  

(c) 
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Table A5.2, Cont. 

Simulation 

Time (sec) 
JagTran Yellow Bus 1 Schedule (HDB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3655 55 UComm  55 

4035   380  

4090 55 Student Center S.  490 

4145   55  

4200 55 Humanities S.  600 

4265   65  

4320 55 MCOB/Laidlaw  720 

4375   55  

4430 55 MCOB/Shelby Hall  830 

4490   60  

4545 55 Mitchell Center  945 

4920   375  

(d) 

 

 

 

Simulation 

Time 
JagTran Yellow Bus 2 Schedule (HDB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3655 55 Student Center S.  55 

3710   55  

3765 55 Humanities S.  165 

3830   65  

3885 55 MCOB/Laidlaw  285 

3940   55  

3995 55 MCOB/Shelby Hall  395 

4055   60  

4110 55 Mitchell Center  510 

4485   375  

4540 55 UComm  940 

4920   380  

(e) 

 

 

 

 

 



463 
 

Table A5.2, Cont. 

Simulation 

Time (sec) 
JagTran Green Bus 1 Schedule (HDB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3645 45 Grove Apart.  45 

3765   120  

3810 45 Gravel Parking  210 

3835   25  

3880 45 Greek Row  280 

3905   25  

3950 45 Dining Hall EB  350 

4070   120  

4115 45 Delta WB  515 

4235   120  

4280 45 Humanities N.  680 

4370   90  

4415 45 Marx Library  815 

4445   30  

4490 45 Student Center Circle  890 

4730   240  

4775 45 Delta EB  1175 

4835   60  

4880 45 Dining Hall WB  1280 

4940   60  

(f) 
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Table A5.2, Cont. 

Simulation 

Time (sec) 
JagTran Green Bus 2 Schedule (HDB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3645 45 Delta_EB  45 

3705   60  

3750 45 Dining Hall WB  150 

3810   60  

3855 45 Grove Apart.  255 

3975   120  

4020 45 Gravel Parking  420 

4045   25  

4090 45 Greek Row  490 

4115   25  

4160 45 Dining Hall EB  560 

4280   120  

4325 45 Delta_WB  725 

4445   120  

4490 45 Humanities N.  890 

4580   90  

4625 45 Marx Library  1025 

4655   30  

4700 45 
Student Center 

Circle 
 1100 

4940   240  

(g) 
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Table A5.2, Cont. 

Simulation 

Time (sec) 
JagTran Orange Bus Schedule (HDB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3645 45 Student Center N.  45 

3810   165  

3855 45 ILB/Visual Arts  255 

3955   100  

4000 45 Admin.  400 

4065   65  

4110 45 MCOB/Laidlaw  510 

4175   65  

4220 45 MCOB/Shelby Hall  620 

4285   65  

4330 45 HKS - Student Services  730 

4815   485  

(h) 

 

 

 

Table A5.3. JagTran bus schedule for Automated Buses (ABs). 

Simulation 

Time (sec) 
JagTran Red Bus Schedule (AB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3625 25 Student Center N.  25 

3735   110  

3760 25 College Medicine  160 

3870   110  

3895 25 Allied Health NB  245 

4005   110  

4030 25 Health Services Rd Parking  355 

4140   110  

4165 25 Research Park  465 

4275   110  

4300 25 Allied Health SB  575 

4410   110 1825 

(a) 
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Table A5.2, Cont. 

Simulation 

Time (sec) 
JagTran Blue Bus 1 Schedule (AB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3625 25 Grove Apart.  25 

3745   120  

3770 25 Stadium Dr.  170 

3890   120  

3915 25 Gamma Conn.  315 

4035   120  

4060 25 Student Center  460 

4180   120  

4205 25 Humanities S.  605 

4325   120  

4350 25 Delta  750 

4470   120  

4495 25 Dining Hall WB  895 

4615   120  

(b) 

 

 

 

Simulation 

Time (sec) 
JagTran Blue Bus 2 Schedule (AB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3625 25 Student Center  25 

3745   120  

3770 25 Humanities S.  170 

3890   120  

3915 25 Delta  315 

4035   120  

4060 25 Dining Hall WB  460 

4180   120  

4205 25 Grove Apart.  605 

4325   120  

4350 25 Stadium Dr.  750 

4470   120  

4495 25 Gamma Conn.  895 

4615   120  

(c) 
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Table A5.2, Cont. 

Simulation 

Time (sec) 
JagTran Yellow Bus 1 Schedule (AB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3625 25 UComm  25 

3870   245  

3895 25 Student Center S.  295 

3950   55  

3975 25 Humanities S.  375 

4040   65  

4065 25 MCOB/Laidlaw  465 

4120   55  

4145 25 MCOB/Shelby Hall  545 

4205   60  

4230 25 Mitchell Center  630 

4525   295  

(d) 

 

 

 

Simulation 

Time (sec) 
JagTran Yellow Bus 2 Schedule (AB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3625 25 Student Center S.  25 

3680   55  

3705 25 Humanities S.  105 

3770   65  

3795 25 MCOB/Laidlaw  195 

3850   55  

3875 25 MCOB/Shelby Hall  275 

3935   60  

3960 25 Mitchell Center  360 

4255   295  

4280 25 Ucomm  680 

4525   245  

(e) 
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Table A5.2, Cont. 

Simulation 

Time (sec) 
JagTran Green Bus 1 Schedule (AB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3625 25 Grove Apart.  25 

3745   120  

3770 25 Gravel Parking  170 

3795   25  

3820 25 Greek Row  220 

3845   25  

3870 25 Dining Hall EB  270 

3990   120  

4015 25 Delta_WB  415 

4135   120  

4160 25 Humanities N.  560 

4250   90  

4275 25 Marx Library  675 

4305   30  

4330 25 Student Center Circle  730 

4570   240  

4595 25 Delta_EB  995 

4655   60  

4680 25 Dining Hall WB  1080 

4740   60  

(f) 
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Table A5.2, Cont. 

Simulation 

Time (sec) 
JagTran Green Bus 2 Schedule (AB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3625 25 Delta_EB  25 

3685   60  

3710 25 Dining Hall WB  110 

3770   60  

3795 25 Grove Apart.  195 

3915   120  

3940 25 Gravel Parking  340 

3965   25  

3990 25 Greek Row  390 

4015   25  

4040 25 Dining Hall EB  440 

4160   120  

4185 25 Delta_WB  585 

4305   120  

4330 25 Humanities N.  730 

4420   90  

4445 25 Marx Library  845 

4475   30  

4500 25 Student Center Circle  900 

4740   240  

(g) 
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Table A5.2, Cont. 

Simulation 

Time (sec) 
JagTran Orange Bus Schedule (AB)  

3600 Bus Stop Duration (sec) 
In-Transit 

(sec) 

Route Time 

@ Stop (sec) 

3625 25 Student Center N.  25 

3790   165  

3815 25 ILB/Visual Arts  215 

3915   100  

3940 25 Admin.  340 

4005   65  

4030 25 MCOB/Laidlaw  430 

4095   65  

4120 25 MCOB/Shelby Hall  520 

4185   65  

4210 25 HKS - Student Services  610 

4610   400  

(h) 

 

 

 

5.7.3 Appendix 5.3 – Traffic Demand Flow Patterns 

An assortment of externalities caused the traffic demand data from ALDOT to be 

altered. These external factors ranged from ranged from the presence of COVID-19 

causing lower traffic counts to perceived simulation issues from overcrowding at the 

point of input for traffic flows within the simulation environment. To accommodate these 

various discrepancies and issues adjusted were made to the traffic demand data with the 

intent of making a more realistic simulation environment. Table A5.4 depicts a 

comprehensive table of all traffic flow inputs into the simulation for easier observation of 

altered traffic flow values at each traffic inflow point within the simulation environment. 

Traffic demand was not placed into a graphic format due to the fact that traffic demand 

for smaller capacity roads would be difficult to discern from one another. 



471 
 

Table A5.4. Traffic demand data input for simulation (in vehicles per hour). 

Time 

of Day 

Old 

Shell 

EB 

Old 

Shell 

WB 

Univ 

NB 

Adj. 

Univ 

SB 

Adj. 

Hillcrest 

NB Adj. 

Foreman 

NB 

Gaillard 

WB 

East 

NB 

USA 

Commons 

EB 

William 

& Mary 

EB 

Jaguar 

Blvd 

NB 

Student 

Services 

NB 

Univ SB 

(Actual) 

Hillcrest 

NB 

(Actual) 

Univ 

NB 

(Actual) 

6:00-

7:00 
705 188 354 359 354 88 30 33 30 38 12 20 359 354 354 

7:00-

8:00 
1358 403 718 660 530 212 137 83 30 38 12 20 760 530 718 

8:00-

9:00 
908 401 541 587 427 137 238 78 30 38 12 20 587 427 541 

9:00-

10:00 
666 378 576 493 408 80 123 66 30 38 12 20 493 408 576 

10:00-

11:00 
582 421 626 490 421 56 110 58 30 38 12 20 490 421 626 

11:00-

12:00 
611 517 707 519 531 47 140 52 30 38 12 20 519 531 707 

12:00-

13:00 
624 524 777 580 593 38 155 46 30 38 12 20 580 593 777 

13:00-

14:00 
628 497 784 555 558 31 182 37 30 38 12 20 555 558 784 

14:00-

15:00 
596 506 799 544 540 23 143 30 30 38 12 20 544 540 799 

15:00-

16:00 
787 622 756 575 641 25 211 26 30 38 12 20 575 641 864 

16:00-

17:00 
714 573 790 630 715 18 226 20 30 38 12 20 630 715 812 

17:00-

18:00 
688 563 810 562 768 244 272 80 30 38 12 20 562 768 803 

18:00-

19:00 
518 404 721 517 1792 146 196 58 30 38 12 20 517 448 721 

19:00-

20:00 
340 307 681 449 315 77 85 43 30 38 12 20 449 315 681 

20:00-

21:00 
273 357 536 331 296 49 77 27 30 38 12 20 331 296 436 

21:00-

22:00 
210 155 276 246 204 30 30 11 30 38 12 20 246 204 276 

22:00-

23:00 
143 133 204 167 173 17 8 7 30 38 12 20 167 173 204 
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In Table A5.2, the bolden and colored values are the hourly traffic demands that 

were adjusted (i.e., red) and the actual traffic demand before adjustment was invoked 

(i.e., dark green).  

5.7.4 Appendix 5.4 – Traffic Demand Turning Probabilities 

Accompanying the traffic demand data was the use of turning probabilities which 

dictated where vehicles (aside from the JagTran buses) were supposed to go when they 

enter an approach for a given intersection. These probabilities assured that realistic or near-

realistic traffic flow patterns were attained on all roadway segments within the simulation 

space. Table A5.5 depicts the turning probabilities which were obtained through extensive 

field observations at various intersections around the USA campus boundary. 

Table A5.5. Turning probabilities used as data input at intersections of interest within the 

simulation environment. 

Turning Probabilities – John Counts/Foreman Rd & Old Shell Rd 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM)  

Movements LT THRU RT LT THRU RT 

J
o

h
n

 C
o

u
n

ts
 

R
d

/F
o

re
m

a
n

 R
d

 

NB 0.213115 0.04918 0.737705 0.403846 0.021978 0.574176 

SB 0.217391 0.130435 0.652174 0.086957 0.152174 0.76087 

O
ld

 S
h

el
l 

R
d

 

WB 0.203457 0.789894 0.006649 0.14745 0.850887 0.001663 

EB 0.03108 0.866356 0.102564 0.029602 0.875116 0.095282 

(a) 
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Table A5.5, Cont. 

Turning Probabilities – Old Shell Rd & Hillcrest Rd 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM)  

Movements LT THRU RT LT THRU RT 

S
ta

d
iu

m
 

D
r/

H
il

lc
re

st
 R

d
 

NB 0.224927 0.100292 0.674781 0.401575 0.089764 0.508661 

SB 0.713178 0.255814 0.031008 0.389041 0.356164 0.254795 

O
ld

 S
h

el
l 

R
d

 

WB 0.386412 0.537155 0.076433 0.327743 0.605621 0.066636 

EB 0.030921 0.745207 0.223871 0.063776 0.655612 0.280612 

(b) 

 

 

 

Turning Probabilities – Old Shell Rd & Jaguar Dr. 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM) 

Movements LT THRU RT LT THRU RT 

J
a

g
u

a
r 

D
r NB 0.333333 0.190476 0.47619 0.25 0.208333 0.541667 

SB 0.547945 0.006849 0.445205 0.396226 0.008086 0.595687 

O
ld

 S
h

el
l 

R
d

 

WB 0.00363 0.893829 0.102541 0.007135 0.927552 0.065313 

EB 0.179594 0.81856 0.001847 0.080431 0.912603 0.006966 

(c) 
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Table A5.5, Cont. 

Turning Probabilities – Old Shell Rd & Mitchell Center/East Dr. 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM)  

Movements LT THRU RT LT THRU RT 

M
it

ch
el

l 
C

e
n

te
r 

D
r/

 E
a

st
 D

r
 

NB 0.186047 0.24031 0.573643 0.356436 0.059406 0.584158 

SB 0.47619 0.02381 0.5 0.320197 0.108374 0.571429 

O
ld

 S
h

el
l 

R
d

 

WB 0.04524 0.886899 0.067861 0.044675 0.941299 0.014026 

EB 0.081035 0.910523 0.008441 0.041641 0.927128 0.031231 

(d) 

 

 

 

Turning Probabilities – Old Shell Rd & Student Services Dr. 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM)  

Movements LT THRU RT LT THRU RT 

S
tu

d
en

t 
S

er
v

ic
es

 

D
r
 

NB 0.2 0.16 0.64 0.352941 0 0.647059 

SB 0.318182 0.022727 0.659091 0.315789 0 0.684211 

O
ld

 S
h

el
l 

R
d

 

WB 0.015079 0.861905 0.123016 0.03397 0.944798 0.021231 

EB 0.141791 0.853042 0.005166 0.016158 0.983842 0 

(e) 
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Table A5.5, Cont. 

Turning Probabilities – Old Shell Rd & University Blvd 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM)  

Movements LT THRU RT LT THRU RT 

U
n

iv
er

si
ty

 B
lv

d
 

NB 0.382289 0.464363 0.153348 0.344099 0.568996 0.086905 

SB 0.101438 0.574565 0.323997 0.131889 0.499071 0.36904 

O
ld

 S
h

el
l 

R
d

 

WB 0.163239 0.587404 0.249357 0.146249 0.749288 0.104463 

EB 0.263026 0.464532 0.272442 0.328264 0.386565 0.285171 

(f) 

 

 

 

Turning Probabilities – University Blvd & USA South Dr. 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM) 

Movements LT THRU RT LT THRU RT 

U
n

iv
er

si
ty

 B
lv

d
 

NB 0.072243 0.927757 0 0.022727 0.977273 0 

SB 0 0.941748 0.058252 0 0.976966 0.023034 

U
S

A
 S

o
u

th
 

D
r 

EB 0.576271 0 0.423729 0.448052 0 0.551948 

(g) 
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Table A5.5, Cont. 

Turning Probabilities – University Blvd & William & Mary St. 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM)  

Movements LT THRU RT LT THRU RT 

U
n

iv
er

si
ty

 B
lv

d
 

NB 0.027542 0.962924 0.009534 0.009894 0.979505 0.010601 

SB 0.010909 0.980909 0.008182 0.031276 0.959425 0.009298 

W
il

li
a

m
 &

 M
a

ry
 

S
t 

WB 0.245902 0 0.754098 0.444444 0 0.555556 

EB 0.333333 0 0.666667 0.314286 0 0.685714 

(h) 

 

 

 

Turning Probabilities – University Blvd & USA North Dr. 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM)  

Movements LT THRU RT LT THRU RT 

U
n

iv
er

si
ty

 B
lv

d
 

NB 0.18011 0.81989 0 0.030488 0.969512 0 

SB 0 0.886716 0.113284 0 0.95386 0.04614 

U
S

A
 N

o
rt

h
 

D
r 

EB 0.441558 0 0.558442 0.570732 0 0.429268 

(i) 
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Table A5.5, Cont. 

Turning Probabilities – University Blvd & Gaillard Dr. 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM)  

Movements LT THRU RT LT THRU RT 

U
n

iv
er

si
ty

 

B
lv

d
 NB 0.024818 0.706569 0.268613 0.001459 0.81984 0.178702 

SB 0.031527 0.935961 0.032512 0.02503 0.969011 0.005959 

G
a

il
la

rd
 D

r
 

WB 0.153191 0.761702 0.085106 0.879121 0.029304 0.091575 

EB 0.176471 0.235294 0.205128 0.538462 0.25641 0.205128 

(j) 

 

 

 

Turning Probabilities – University Blvd & USA Commons Rd 

Peak Period AM (7:30 AM - 9:00 AM) PM (4:30 PM - 6:00 PM)  

Movements LT THRU RT LT THRU RT 

U
n

iv
er

si
ty

 

B
lv

d
 NB 0.007701 0.950495 0.041804 0.027699 0.963068 0.009233 

SB 0.002116 0.984127 0.013757 0.003828 0.964778 0.031394 

U
S

A
 C

o
m

m
o

n
s 

R
d

 

WB 0.538462 0 0.461538 0.880952 0 0.119048 

EB 0.561404 0 0.438596 0.71831 0 0.28169 

(k) 

 

 

 

5.7.5 Appendix 5.5 – JagTran Bus Fuel Capacity Calculations 

The simulation tool used in this research study (known as SUMO) was able to 

track the real-time fuel level or capacity of the buses in simulation as electrical vehicles 

(in Wh) or non-electrical vehicles (in mL). In this research study, all buses were modeled 

as electric vehicles, but with an electric equivalent of their desired fuel powertrain. For 
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example, a hydrogen bus was modeled as an electric bus, but with electric parameters that 

were equivalent to a hydrogen bus. This was done because when indicate that a bus non-

electric in SUMO, specific bus attributes such as vehicle power, propulsion efficiency, 

recuperation efficiency, and vehicle mass can’t be specified. Therefore, the following 

calculations were used to determine the electrical-equivalent fuel capacity of the desired 

buses configurations in SUMO so that realistic refueling behaviors were imparted into the 

simulation environment: 

 

𝒌𝑾𝒉 𝒇𝒐𝒓 𝑫𝒊𝒆𝒔𝒆𝒍 𝑩𝒊𝒐𝒅𝒊𝒆𝒔𝒆𝒍⁄ =  30 𝑔𝑎𝑙 𝐷𝑖𝑒𝑠𝑒𝑙 ∗  (1 𝐷𝐺𝐸
1 𝑔𝑎𝑙 𝐷𝑖𝑒𝑠𝑒𝑙⁄ ) ∗ (1 𝑘𝑊ℎ

0.027 𝐷𝐺𝐸⁄ )

= 𝟏𝟏𝟏𝟏. 𝟏𝟏 𝒌𝑾𝒉 

 

𝒌𝑾𝒉 𝒇𝒐𝒓  𝑷𝒓𝒐𝒑𝒂𝒏𝒆 𝑵𝒂𝒕𝒖𝒓𝒂𝒍 𝑮𝒂𝒔⁄ = 34 𝐺𝐺𝐸 ∗ (1 𝐷𝐺𝐸
1.136 𝐺𝐺𝐸⁄ ) ∗ (1 𝑘𝑊ℎ

0.027 𝐷𝐺𝐸⁄ )

= 𝟏𝟏𝟎𝟖. 𝟓 𝒌𝑾𝒉  
 

𝒌𝑾𝒉 𝒇𝒐𝒓 𝑯𝒚𝒅𝒓𝒐𝒈𝒆𝒏 = 9.78 𝑘𝑔 𝐻2 ∗ (0.9 𝐷𝐺𝐸
1 𝑘𝑔 𝐻2

⁄ ) ∗ (1 𝑘𝑊ℎ
0.027 𝐷𝐺𝐸⁄ ) + 28 𝑘𝑊ℎ

= 𝟑𝟓𝟒 𝒌𝑾𝒉 

 

 

 

Converting the fuel capacities from their natural or normal unit of measure 

allowed for outputs from SUMO to be easily interpreted and converted back to their 

natural unit of measure. However, as previously seen in this study, natural units of 

measure for fuel were not used because this did not allow for comparisons to be made 

across all alternative fueling infrastructures used in this research study. Since, diesel is 

the existing form of fuel used on the USA campus, the unit of measure used in order to 

compare across all fueling infrastructures investigated in this study was diesel gallon-

equivalents (DGEs). 
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5.7.6 Appendix 5.6 – Refueling Rate Calculations 

As part of modeling realistic conditions, the buses had to refuel within a certain 

refueling rate range and in specific time frame. These selected values were disclosed in 

Section 5.2.1.4 of this dissertation. However, the key to determining refueling time is the 

dispensing rate at the fuel dispenser which was determined by conducting the following 

calculations: 

 

𝑫𝒊𝒆𝒔𝒆𝒍 𝑩𝒊𝒐𝒅𝒊𝒆𝒔𝒆𝒍⁄

=  3000 𝑘𝑊
ℎ𝑟.⁄ (0.1667 ℎ𝑟. )(1ℎ𝑟. )(0.027 𝐷𝐺𝐸

1 𝑘𝑊ℎ⁄ ) (
1 𝑔𝑎𝑙 𝐷𝑖𝑒𝑠𝑒𝑙

1 𝐷𝐺𝐸⁄ ) [(1
60 𝑠𝑒𝑐.⁄ )

∙ (60 𝑠𝑒𝑐
1 𝑚𝑖𝑛.⁄ )] = 𝟏𝟑. 𝟓𝟎 

𝒈𝒂𝒍 𝑫𝒊𝒆𝒔𝒆𝒍 𝒐𝒓 𝑩𝒊𝒐𝒅𝒊𝒆𝒔𝒆𝒍
𝒎𝒊𝒏.⁄  

 

𝑷𝒓𝒐𝒑𝒂𝒏𝒆 𝑵𝒂𝒕𝒖𝒓𝒂𝒍 𝑮𝒂𝒔⁄

= 3000 𝑘𝑊
ℎ𝑟.⁄ (0.1667 ℎ𝑟. )(1 ℎ𝑟. )(0.027 𝐷𝐺𝐸

1 𝑘𝑊ℎ⁄ ) (
2.896 𝑘𝑔 𝐶𝑁𝐺

1 𝐷𝐺𝐸⁄ ) [(1
60 𝑠𝑒𝑐.⁄ )

∙ (60 𝑠𝑒𝑐
1 𝑚𝑖𝑛.⁄ )] = 𝟑𝟗. 𝟏𝟎

𝒌𝒈 𝑪𝑵𝑮
𝒎𝒊𝒏.⁄  𝒐𝒓 𝟐𝟎. 𝟒𝟓 

𝒈𝒂𝒍 𝑷𝒓𝒐𝒑𝒂𝒏𝒆
𝒎𝒊𝒏.⁄  

 

𝑯𝒚𝒅𝒓𝒐𝒈𝒆𝒏

=  2890 𝑘𝑊
ℎ𝑟.⁄ (0.0833 ℎ𝑟. )(1 ℎ𝑟. )(0.027 𝐷𝐺𝐸

1 𝑘𝑊ℎ⁄ ) (
1  𝑘𝑔 𝐻2

0.9 𝐷𝐺𝐸⁄ ) [(1
60 𝑠𝑒𝑐.⁄ )

∙ (60 𝑠𝑒𝑐
1 𝑚𝑖𝑛.⁄ )] = 𝟕. 𝟐𝟐

𝒌𝒈 𝑯𝟐
𝒎𝒊𝒏.⁄  

 

 

 

In the diesel/biodiesel calculation only one value is output from this process. This 

is because both diesel and biodiesel have almost nearly the same fuel properties and the 

difference between them were assumed to be negligible or nonexistent. In the 

propane/natural gas calculation, two outputs were generated with the (compressed) 

natural gas (i.e., red) being used because this provides an opportunity for gaseous fossil 

fuel to be used within this research study (even propane and natural gas are similar in 

energy content). 
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5.7.7 Appendix 5.7 – Conversion of CO2 Emission Factors/Potentials 

In order to support the decision-making process of choosing the best fueling 

infrastructure, one the metrics that was used to help solidify the decision was the use of 

CO2 emission factors curated from the EPA’s GHG inventory. However, before these 

values could be used, there fuel units were converted to DGEs so that appropriate 

comparisons can be made between the different alternative fueling infrastructure 

scenarios and their potential production of CO2 emission. The conversion of the CO2 

emission factors was performed as follows: 

 

𝑫𝒊𝒆𝒔𝒆𝒍 𝑩𝒊𝒐𝒅𝒊𝒆𝒔𝒆𝒍 (𝑩𝟐𝟎)⁄ =
10.21 𝑘𝑔 𝐶𝑂2

𝑔𝑎𝑙 𝐷𝑖𝑒𝑠𝑒𝑙⁄  𝑜𝑟 
𝟏𝟎. 𝟐𝟏 𝒌𝒈 𝑪𝑶𝟐

𝑫𝑮𝑬⁄  

 

𝑷𝒓𝒐𝒑𝒂𝒏𝒆 =  
5.72 𝑘𝑔 𝐶𝑂2

𝑔𝑎𝑙 𝑃𝑟𝑜𝑝𝑎𝑛𝑒⁄ (
1 𝑔𝑎𝑙 𝑃𝑟𝑜𝑝𝑎𝑛𝑒

0.66 𝐷𝐺𝐸⁄ )

=  
𝟖. 𝟔𝟕 𝒌𝒈 𝑪𝑶𝟐

𝑫𝑮𝑬⁄  

 

𝑵𝒂𝒕𝒖𝒓𝒂𝒍 𝑮𝒂𝒔 =
0.0545 𝑘𝑔 𝐶𝑂2

𝑠𝑐𝑓 𝐶𝑁𝐺⁄ (
123.57 𝑠𝑐𝑓 𝐶𝑁𝐺

1 𝐺𝐺𝐸⁄ ) (1.136 𝐺𝐺𝐸
1𝐷𝐺𝐸⁄ )

=  
𝟕. 𝟔𝟓 𝒌𝒈 𝑪𝑶𝟐

𝑫𝑮𝑬⁄  

 

𝑩𝒊𝒐𝒅𝒊𝒆𝒔𝒆𝒍 =  
9.45 𝑘𝑔 𝐶𝑂2

𝑔𝑎𝑙 𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙⁄ (
1 𝑔𝑎𝑙 𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

0.93 𝐷𝐺𝐸⁄ )

=  
𝟏𝟎. 𝟏𝟔 𝒌𝒈 𝑪𝑶𝟐

𝑫𝑮𝑬⁄  

 

 

 

Aside from diesel and biodiesel, the CO2 emission factors for each alternative 

fueling infrastructure was disaggregated due to each of their differences in CO2 

production. The only reason for why diesel and biodiesel were not separated was because 

of their similar fuel properties and energy content.   
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5.7.8 Appendix 5.8 – Model Revalidation for Hybrid Fueling Infrastructure Case 

Since numerous aspects of the road network such as its bus stops and refueling 

locations were altered, including the bus agent behaviors, this required for model 

revalidation to be performed to assure that the model is still valid. The same approach as 

that seen in Section 5.3 of this chapter was used to perform the revalidation process. 

Graphical result for conducting this model revalidation process can be seen in Figures 

A5.1 and A5.2 in the form of route variation and ridership demand variation analysis. 

 

Figure A5.1. Model revalidation through simulated and real data of route time variation. 

 

5

10

15

20

25

30

35

40

Blue Route Green Route Red Route Orange Route Yellow Route

D
u

ra
ti

o
n

 A
ro

u
n

d
 R

o
u

te
 (

m
in

)

JagTran Route Designation

Adjusted Bus Route Time Variation - Model Revalidation



482 
 

 

(a) 

Figure A5.2. Model revalidation through actual and simulated ridership demand data 
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(b) 

 

 

 

 
(c) 

Figure A5.2, Cont. 
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(d) 

 

 

 

 
(e) 

Figure A5.2, Cont. 
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(f) 

 

 
(g) 

Figure A5.2, Cont. 
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(h) 

Figure A5.2, Cont. 

 

 

5.7.9 Appendix 5.9 – Simulation Code – One Fueling Infrastructure in Use 

This section will be used in order to disclose the code that was utilized in this 

research study. The programming language that was utilized to construct the simulation 

code for SUMO execution was Python. The code developed in this research study 

consisted of three major components as indicated through Sections 5.2.1.1 and 5.2.1.3 

which dictated the behaviors and actions of the bus agents were: refueling, maintaining 

bus headway integrity, and executing bus driver break protocols (for HDBs). With this in 

mind, the anatomy of the code firstly consisted of an “initialization block” which was 

responsible for establishing the conditions of simulation such as runtime, number of runs, 
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using the SUMO graphic user interface (GUI), importing supporting Python libraries 

such as the Traffic Control Interface (TraCI), etc.: 

 

if 'SUMO_HOME' in os.environ: 

     tools = os.path.join(os.environ['SUMO_HOME'], 'tools') 

     sys.path.append(tools) 

else: 

     sys.exit("please declare environment variable 'SUMO_HOME'") 

 

from sumolib import checkBinary 

from enum import Enum 

import traceback 

import argparse 

 

parser = argparse.ArgumentParser( 

    prog='runner.py', 

    #usage='%(prog)s [optional arguments] -- SUMOARGS', 

    description='Run SUMO and compute passengers per vehicle', 

    epilog="Examples\n" 

          '  runner.py -t 5000 \n' 

          '    run SUMO until 5000 sec' 

, formatter_class=argparse.RawDescriptionHelpFormatter) 

parser.add_argument('-f','--first', type=int, default=3600, help='From time') 

parser.add_argument('-l','--last', type=int, default=65000, help='last time step for 

simulation') 

parser.add_argument('-s','--seed', type=int, default=42, help='random seed') 

parser.add_argument('-g','--gui', action='store_true', help='Use sumo-gui') 

parser.add_argument('-L','--libsumo', action='store_true', help='Use libsumo') 

parser.add_argument('-F','--fcd', action='store_true', help='export fcd data') 

args = parser.parse_args() 

 

if args.libsumo: 

  import libsumo as traci 

else: 

  import traci 
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The proceeding block of code was responsible for the management of bus states 

and acted as a state machine as conditions within the bus’s environment changed 

throughout the simulation. This will be referred to as the “bus state management block” 

of code for modularity purposes. 

 

class BusState(Enum): 

  running = 0 

  goingToCharge = 1 

  charging = 2 

  waitingForGoingToCharge = 3 

 

class DriverBreakStatus(Enum): 

    running = 0 

    AMbathroomFood = 5 

    PMbathroomFood = 6 

    shiftChange = 7 

    Lunch = 8 

 

breakStates = {"0":0, "1":0, "2":0, "3":0, "4":0, "5":0, "6":0, "7":0} 

vehicles = ("0", "1", "2", "3", "4", "5", "6", "7")  

finishedBuses = []  

activeBuses = [] 

waitingBuses = {} 

chargingStationEdge = '-7855681#1' 

 

# a dictionary of vehicles and their states, initially all running 

busStates = {} 

 

 

 

Following the “bus state management block”, Python functions were established 

to support bus state identification and error handling within the program throughout the 

duration of the simulation. This was achieved through the use of messages that would be 

sent to the command line or terminal during Python or SUMO simulation execution. This 
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set of code is known as the “vehicle message block”, which consists of the following line 

of code: 

 

csvfile = None 

energyfile = None 

eventfile = None 

 

def fuelingHeadway(vehID, headway): 

    traci.vehicle.setMinGap(vehID, headway) 

 

def printVehicleStateMessage(vehicleId, message, states = busStates): 

    global eventfile 

 

    stateMessage = '(%s) %s' % (states[vehicleId].name, message) 

    printVehicleMessage(vehicleId, stateMessage) 

 

def printVehicleMessage(vehicleId, message): 

    global eventfile 

    global current_time 

 

longMessage = 'time %5ds vehicle %s %s' % (current_time, vehicleId, message) 

    print(longMessage) 

    print(longMessage, file=eventfile, flush=True) 

 

 

 

The “vehicle message block” acted as an input into all major bus behavior coding 

blocks including the fueling behavior function which was responsible for managing, 

maintaining, and monitoring the bus fuel status. Referred to as the “fuel behavior block”, 

the code for bus fuel management consists of the following line of code: 

 

def fueling_behavior(current_time): 

  global csvfile, energyfile, eventfile 

  global actualFuelLevel, numActualFuelLevel, numBusRiders 

  global activeBuses 
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  if 3600 <= current_time <= 65000: 

 

    simTime = [str(current_time)] 

    for e in activeBuses: 

        try: 

          actualFuelLevel = traci.vehicle.getParameter(e, 

"device.battery.actualBatteryCapacity") 

        except Exception as ex: 

          if str(ex).endswith(' is not known.'): 

            printVehicleStateMessage(e, 'error %s' % ( str(ex))) 

            finishedBuses.append(e) 

            activeBuses.remove(e) 

            printVehicleStateMessage(e, 'finishedBuses %s' % ( str(finishedBuses))) 

            printVehicleStateMessage(e, 'e in finishedBuses %s' % (e in finishedBuses)) 

          else: 

            traceback.print_exc(file=eventfile) 

          continue 

        numActualFuelLevel = float(actualFuelLevel) 

        numBusRiders, stopState = traci.vehicle.getPersonNumber(e), 

traci.vehicle.getStopState(e) 

 

        if busStates[e] == BusState.running: 

fuelingHeadway(e, 1) # if the vehicle is ABs; OTHERWISE COMMENT OUT 

          roadID = traci.vehicle.getRoadID(e) 

if numActualFuelLevel <= float (666667) and numBusRiders == 0 and (not 

roadID.startswith(':')): #666667: Diesel/Biodiesel, 665102: Propane/NaturalGas, 

86400: Electricity, 212400: Hydrogen, 402400:H2-MiniCoach (40% fuel depletion) 

            printVehicleStateMessage(e, 'send to charging station (fuel %10.2f, stopState 

%d)' % (numActualFuelLevel, stopState)) 

            try: 

                nextStop = 0 

                if stopState != 0: 

                  nextStop = 1 

                traci.vehicle.replaceStop(e, nextStop, "chargingStation_-7855681#1_0_0", 

duration=900, flags=32) # duration=900 (HDBs), ABs-duration: Diesel/Biodiesel:600, 

Propane/NaturalGas:600, Electricity:3000, Hydrogen:300 

                busStates[e], routeIndex, route = BusState.goingToCharge, 

traci.vehicle.getRouteIndex(e), traci.vehicle.getRoute(e) 

                if routeIndex >= 0: 

                  try: 

                    newStopIndex = route.index(chargingStationEdge, routeIndex) 

                  except: 

                    newStopIndex = -1 
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                  printVehicleStateMessage(e, 'New route from index %d to %d' % ( 

routeIndex, newStopIndex)) 

                #print('new route for vehicle %s = %s' % (e, ' '.join(traci.vehicle.getRoute(e)))) 

            except Exception as ex: 

                traceback.print_exc(file=eventfile) 

                printVehicleStateMessage(e, 'error cannot set new stop (%s)' % (str(ex))) 

                busStates[e], roadID = BusState.waitingForGoingToCharge, 

traci.vehicle.getRoadID(e) 

                printVehicleStateMessage(e, 'is at %s' % (roadID)) 

                # wait 100 sec and try again 

                waitingBuses[e] = 100 

        elif busStates[e] == BusState.waitingForGoingToCharge: 

          waitingBuses[e] -= 1 

          if waitingBuses[e] == 0: 

            busStates[e] = BusState.running 

            printVehicleStateMessage(e, 'is running again') 

        elif busStates[e] == BusState.goingToCharge: 

          roadID = traci.vehicle.getRoadID(e) 

          if roadID == chargingStationEdge: 

             fuelingHeadway(e, 8) # if the vehicle is ABs; OTHERWISE COMMENT OUT 

            busStates[e] = BusState.charging 

            printVehicleStateMessage(e, 'at %-30s fuel %10.2f' % (roadID, 

numActualFuelLevel)) 

        elif busStates[e] == BusState.charging: 

          roadID = traci.vehicle.getRoadID(e) 

          #printVehicleStateMessage(e, 'at %-30s fuel %10.2f' % (roadID, 

numActualFuelLevel)) 

          if roadID != chargingStationEdge: 

            busStates[e] = BusState.running 

          if numActualFuelLevel > 1055555: #1055555: Diesel/Biodiesel, 1053078: 

Propane/NaturalGas, 136800: Electricity, 336300: Hydrogen, 637137: H2-MiniCoach (95% full) 

            try: 

              printVehicleStateMessage(e, 'resume (fuel %10.2f)' % (numActualFuelLevel)) 

              traci.vehicle.resume(e) 

              busStates[e] = BusState.running 

            except Exception as ex: 

                printVehicleStateMessage(e, 'error cannot resume (%s)' % (str(ex))) 

            actualFuelLevel = 0 

        simTime.append(str(actualFuelLevel))  

        simTime.append(str(numBusRiders)) 

    #print('fuel and pass', ' '.join(simTime)) 

    print(','.join(simTime), file=energyfile, flush=True) 
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The headway between buses on the same respective routes were maintained 

through the use three major blocks of code or Python functions. The first function (also 

referred to as the “extendCurrentStop function”) was responsible for extending the bus 

duration at bus stops based on the stop data for the leader and follower bus at any given 

timestep. If the stop data for the leader and follower buses matched within one bus stop 

of one another, the “extendCurrentStop function” would be invoked, extending the 

duration of the bus question at its current bus stop by a new duration. The second 

function (alternatively known as the “maintainHeadway” allowed for buses to possess 

detection capabilities by supporting their capacity to identify their position relative to the 

other bus on their designated route through the process of recognizing if they are the 

leader or follower at a given bus stop location. This function was also used to invoke or 

call the “extendCurrentStop function” when the leader and follower bus on a given route 

were within two bus stops of one another. Conversely, the third Python function (also 

called the “maintain_headway function”) supported the ability for the maintainHeadway 

function to be called upon. The “maintain_headway function” allowed for bus delay 

times to be designated or input for specific bus routes based on the bus autonomy levels 

that were decided to be used on these bus routes.  

The “bus headway behavior block” is described by the following line of code or 

set of Python functions where the extendCurrentStop function is described as: 

 

 
def extendCurrentStop(vehID, newDuration, stopData = None): 

    '''Common routine to extend stop duration''' 

    try: 
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        if stopData == None:  

            stopData = traci.vehicle.getStops(vehID, 1) 

        stoppingPlaceID = stopData[0].stoppingPlaceID 

 

        #check whether the current stop is at a bus stop or charging station 

        if stoppingPlaceID.startswith('charg'): 

            traci.vehicle.setChargingStationStop(vehID, stoppingPlaceID, 

duration=newDuration) 

        else: 

            traci.vehicle.setBusStop(vehID,stoppingPlaceID, duration=newDuration) 

             

        newStopData = traci.vehicle.getStops(vehID, 1) 

         

        if newStopData[0].duration != newDuration: 

          printVehicleMessage(vehID, 'setting of duration does not work') 

    except Exception as ex: 

        printVehicleMessage(vehID, 'error with extendCurrentStop %s' % (str(ex))) 

        traceback.print_exc(file=eventfile) 

        printVehicleMessage(vehID, 'stopData old %s' % (stopData[0])) 

 

 

 

The “maintainHeadway function” for the “bus headway behavior block” of code 

is described by the following line of code: 

 

 
def maintainHeadway(leaderID, followerID, delay=160):  

    global finishedBuses 

 

    if leaderID in finishedBuses or followerID in finishedBuses: 

      return 

    try: 

        # First check if leader is at a bus stop (for performance) 

        leaderIsAtBusStop = traci.vehicle.isAtBusStop(leaderID) 

 

        if leaderIsAtBusStop:  

          followersStopData = traci.vehicle.getStops(followerID, 2) 

           

          if len(followersStopData) > 0 and followersStopData[0].duration != delay: 

            leaderStopData = traci.vehicle.getStops(leaderID, 1) 

            leadersCurrentStop = leaderStopData[0].stoppingPlaceID 
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            leadersCurrentLane   = leaderStopData[0].lane  

            followersCurrentLane = followersStopData[0].lane  

            followersCurrentStop = followersStopData[0].stoppingPlaceID  

 

            if len(followersStopData) >= 2 or len(leaderStopData) >= 2: 

                followersNextStopLane = followersStopData[1].lane  

                followersNextStop = followersStopData[1].stoppingPlaceID  

 

            else: 

                followersNextStopLane = None 

                followersNextStop = None 

 

            #Exclude the case the leader of the leader is actually the follower 

            if leadersCurrentStop == followersCurrentStop: 

                leader_of_leader = traci.vehicle.getLeader(leaderID) 

                if leader_of_leader != None: 

                    if leader_of_leader[0] == followerID: 

                        printVehicleMessage(leaderID, 'is not the leader of %s' % (followerID)) 

                        return 

 

            # do not extend or shorten charging stops 

            if followersStopData[0].stoppingPlaceID.startswith('charg'): 

              return 

            if (leadersCurrentStop == followersCurrentStop) or (leadersCurrentStop == 

followersNextStop): 

                if (leadersCurrentLane == followersCurrentLane) or (leadersCurrentLane 

== followersNextStopLane): 

                  printVehicleMessage(followerID, 'waits at %s for %d sec (headway)' % 

(followersCurrentStop, delay)) 

                  extendCurrentStop(followerID, delay, followersStopData) 

    except Exception as ex: 

      print('Vehicle %s error %s' % (followerID, str(ex))) 

      traceback.print_exc(file=eventfile) 

 

 

 

The “maintain_headway function” for the “bus headway behavior block” of code 

is described by the following line of code: 

 

 
def maintain_headway(current_time): 
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    #Maintaining headway between Yellow Buses, Blue Buses, & Green Buses; 

respectively 

    simulation_time = [str(current_time)] 

    if current_time >= 3600: 

        maintainHeadway('3', '4', delay=200) #HDBdelay=200, ABdelay=140 

        maintainHeadway('4', '3', delay=200) #HDBdelay=200, ABdelay=140  

        maintainHeadway('1', '2', delay=300) #HDBdelay=300, ABdelay=240 

        maintainHeadway('2', '1', delay=300) #HDBdelay=300, ABdelay=240 

        maintainHeadway('5', '6', delay=160) #HDBdelay=160, ABdelay=100 

        maintainHeadway('6', '5', delay=160) #HDBdelay=160, ABdelay=100 

 

 

 

In this research study, buses were modeled as buses that possessed either Level 0 

autonomy (i.e., no automation) or Level 5 autonomy (i.e., full automation). Within the 

M&S approach of this research study, HDBs were abstracted as Level 0 buses, while ABs 

were abstracted as Level 5 buses. As such Level 0 buses possessed human drivers which 

required driver breaks to be integrated into their respective bus schedules. In Python, this 

was represented by the “insertDriverBreak function” and the “takeDriverBreak function”. 

These two Python functions formed what was conceptualized as the “driver break 

behavior block” of the entire code. Among these two, the “insertDriverBreak function” 

was responsible for acting as a sort of modular constructor of driver break types such as 

AM snack/bathroom breaks, lunch breaks/shift change, or PM snack/bathroom breaks. 

The “insertDriverBreak function” consisted of following lines of code: 

 

 

def insertDriverBreak(vehId, stops, duration, reason, newDriverBreakStatus): 

  '''Construction area - one routine for all types of break''' 

  stopData = traci.vehicle.getStops(vehId, 1) 

 

  if (stopData[0].stopFlags & 8) and stopData[0].stoppingPlaceID in stops: # if bus is at a 

bus stop and bus stop is one of stops in break list 

    printVehicleMessage(vehId, 'is taking a %d min %s break' % 

                        (duration/60, reason)) 
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    extendCurrentStop(vehId, duration, stopData) 

    breakStates[vehId] = newDriverBreakStatus 

 

 

 

It is worth noting that the “extendCurrentStop function”, though it is part the “bus 

headway block” of functions, it does appear in the “driver break behavior block” of 

Python functions but is really considered part of the “bus headway block” because of its 

extensive use. The “takeDriverBreak function”, on the other hand, was used and 

responsible for establishing and executing the “insertDriverBreak function” when the 

appropriate conditions arose throughout the duration of the simulation for certain driver 

breaks to be executed based on the conditions. Simply put, the “takeDriverBreak 

function” acted as a “context constructor” for the “insertDriverBreak function”. The 

“takeDriverBreak function” consisted of following lines of code: 

def takeDriverBreak(current_time): 

    global DriverStops, currentDriverStop 

 

    stopsForAMbreak = ["busStop_-467228692#3_1_10", 

"busStop_JagTranRdSB7_1_8", "busStop_GreekRowSB20_1_1", 

"busStop_GreekRowNB4_1_0", "Y1"] 

    stopsForLunchbreak = ["busStop_-467228692#3_1_10", 

"busStop_JagTranRdSB7_1_8", "busStop_GreekRowSB20_1_1", 

"busStop_GreekRowNB4_1_0"] 

    stopsForPMbreak = ["busStop_-467228692#3_1_10", 

"busStop_JagTranRdSB7_1_8", "busStop_GreekRowSB20_1_1", 

"busStop_GreekRowNB4_1_0"] 

 

    for e in activeBuses: 

        if (10800 < current_time < 14400): 

            if (breakStates[e] != DriverBreakStatus.AMbathroomFood): 

                if busStates[e] == BusState.running and numBusRiders == 0 and 

numActualFuelLevel > float (666667): 

                    insertDriverBreak (e, stopsForAMbreak, 600, 'AM Bathroom/Snack', 

DriverBreakStatus.AMbathroomFood) 

        if (21600 < current_time < 27000): 
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            if (breakStates[e] != DriverBreakStatus.Lunch): 

                if busStates[e] == BusState.running and numBusRiders == 0 and 

numActualFuelLevel > float (666667): 

                    insertDriverBreak(e, stopsForLunchbreak, 600, 'Lunch', 

DriverBreakStatus.Lunch) 

        if (30600 < current_time < 37800): 

            if (breakStates[e] != DriverBreakStatus.PMbathroomFood): 

                if busStates[e] == BusState.running and numBusRiders == 0 and 

numActualFuelLevel > float (666667): 

                    insertDriverBreak(e, stopsForPMbreak, 600, 'PM Bathroom/Snack', 

DriverBreakStatus.PMbathroomFood)  

 

 

 

The fueling behavior, bus headway behavior, and driver break behavior code 

blocks were called upon in unison through the use of the “run function” in the Python 

code. This code integrated all bus behaviors into one function including data output 

collection across all simulation runs executed within the SUMO simulation environment. 

The “run function” was considered to be the “code integration block” of the entire 

Python program. The “code integration block” consisted of the following lines of code 

for execution: 

 

 

def run(seed, gui = False, endTime = 65000): 

  global busStates, breakStates 

  global csvfile, energyfile, eventfile 

  global current_time 

  global finishedBuses 

  global activeBuses 

 

  # define file names = HDB_Diesel_, AB_Diesel_Biodiesel_, AB_Propane_NaturalGas_, 

AB_Electric_, AB_Hydrogen_ 

  csvfile = open('passengers.%d.file names_out.csv' % seed, 'w') 

  energyfile = open("batteryCapacity.%d.file names_ out.csv" % seed, "w") 

  eventfile = open("events.%d.file names_out.txt" % seed, "w") 

  chargingOutput = "chargingstations. %d.file names_out.xml" % seed 

  stopOutput = "stop.%d.file names_out.xml" % seed 
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  batteryOutput = "battery.%d.file names_out.xml" % seed 

  personOutput = "person.%d.file names_out.xml" % seed 

 

  if gui: 

    sumoBinary = checkBinary ("sumo-gui") 

  else: 

    sumoBinary = checkBinary ("sumo") 

 

  sumoCmd = [sumoBinary, "--quit-on-end", "--start"] 

  sumoCmd.extend(['--seed', str(seed), '-c', 'test.sumocfg']) 

  sumoCmd.extend(['--chargingstations-output', chargingOutput]) 

  sumoCmd.extend(['--stop-output', stopOutput]) 

  sumoCmd.extend(['--battery-output', batteryOutput]) 

  sumoCmd.extend(['--tripinfo-output', personOutput, '--device.tripinfo.probability', '0']) 

  if args.fcd: 

    sumoCmd.extend(['--fcd-output', 'fcd.%s.out.xml' % seed, '--person-

device.fcd.probability', '0', '--fcd-output.distance']) 

 

  print('Run ' + ' '.join(sumoCmd)) 

 

  # reset global variables for each run 

  activeBuses = [] 

  for v in vehicles: 

    busStates[v] = BusState.running 

    breakStates[v] = DriverBreakStatus.running 

    activeBuses.append(v) 

  finishedBuses = [] 

  waitingBuses = {} 

 

  traci.start(sumoCmd) 

  step = 0 

 

  # main loop, current_time serves as step 

  while traci.simulation.getMinExpectedNumber() > 0: 

    traci.simulationStep() 

    current_time = traci.simulation.getTime() 

    if current_time <= 1: 

      printVehicleMessage('0', 'start simulation') 

 

    # Execution for Beginning of Simulation 

    # do nothing special 

    # Execution for collecting Ridership within Bus Vehicles 

    # stop if all buses are gone 
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    if len(activeBuses) == 0: 

      break 

 

    # call plugins 

    fueling_behavior(current_time) 

    maintain_headway(current_time) 

    takeDriverBreak(current_time) 

 

    if 3600 <= step: 

          # This set of code gets the number of riders currently within the bus 

        list_of_ridership = [str(current_time)] 

        for id in vehicles: 

          # take care, if vehicle does not exist 

          ridership = 0 

          if not id in finishedBuses: 

            try: 

              ridership = traci.vehicle.getPersonNumber(id) 

              vehicleDistance = traci.vehicle.getDistance(id) 

              vehicleEnergyCons = traci.vehicle.getElectricityConsumption(id) 

            except: 

              pass 

          list_of_ridership.append(str(ridership)) 

          list_of_ridership.append(str(vehicleDistance)) 

          list_of_ridership.append(str(vehicleEnergyCons)) 

          list_of_ridership.append(str(actualFuelLevel)) 

 

        # create a comma-separated list 

        print(','.join(list_of_ridership), file=csvfile, flush=True) 

    if current_time > endTime: 

      break 

    step += 1  

 

  csvfile.close() 

  eventfile.close() 

  traci.close() 

 

if __name__ == "__main__": 

  run(args.seed, args.gui, args.last) 
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The entirety of all these code blocks and their functions were run repeatedly 

through the use of a simple external looping Python program which consisted of the 

following lines of code: 

import runner_1b_4 

import sys 

 

for i in range(10): 

    try: 

        runner_1b_4.run(seed=i, gui=True, endTime=65000) 

    except Exception as ex: 

        print(“error %s” % (str(ex))) 

 

 

 

5.7.10 Appendix 5.10 – Simulation Code – Hybrid Fueling Infrastructure in Use 

Similar to the Python code in Section 5.7.9 which based on the use of one fueling 

infrastructure type, the same skeleton and code block abstraction was used in the case of 

simulating a hybridized fueling infrastructure system. Of course, there were some 

differences within the Python code, however the structure and logic remained the same as 

the code in Section 5.7.9. To prevent redundancy, the entirety of the code used to model 

and simulate the hybridized fueling infrastructure will be shown at once with the coding 

blocks described from Section 5.7.9 being color coded to group the similar Python 

functions with their coding respective block group. The color-coding scheme consists of: 

• Initialization Block: Purple 

• Bus State Management Block: Dark Yellow 

• Vehicle Message Block: Dark Teal 

• Fuel Behavior Block: Red 

• Driver Break Behavior Block: Blue 
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• Bus Headway Behavior Block: Green 

• Code Integration Block: Orange 

With this color-coding scheme in mind, the Python code for the hybridization of 

the fueling infrastructure comprised the following lines of code in their entirety. One 

aspect to not is that the hybridization code can be reconfigured so that hybridization can 

be modeled at different degrees (e.g., three bus routes using AB-hydrogen configurations 

and two other bus routes using HDB-diesel configurations). 

 

if 'SUMO_HOME' in os.environ: 

     tools = os.path.join(os.environ['SUMO_HOME'], 'tools') 

     sys.path.append(tools) 

else: 

     sys.exit("please declare environment variable 'SUMO_HOME'") 

 

from sumolib import checkBinary 

from enum import Enum 

import traceback 

import argparse 

 

parser = argparse.ArgumentParser( 

    prog='runner.py', 

    #usage='%(prog)s [optional arguments] -- SUMOARGS', 

    description='Run SUMO and compute passengers per vehicle', 

    epilog="Examples\n" 

          '  runner.py -t 5000 \n' 

          '    run SUMO until 5000 sec' 

, formatter_class=argparse.RawDescriptionHelpFormatter) 

parser.add_argument('-f','--first', type=int, default=3600, help='From time') 

parser.add_argument('-l','--last', type=int, default=65000, help='last time step for simulation') 

parser.add_argument('-s','--seed', type=int, default=42, help='random seed') 

parser.add_argument('-g','--gui', action='store_true', help='Use sumo-gui') 

parser.add_argument('-L','--libsumo', action='store_true', help='Use libsumo') 

parser.add_argument('-F','--fcd', action='store_true', help='export fcd data') 

parser.add_argument('-r','--route', type=str, help='Routing file') 

parser.add_argument('-d','--gdb', action='store_true', help='Run with gdb') 

args = parser.parse_args() 
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if args.libsumo: 

  import libsumo as traci 

else: 

  import traci 

 

class BusState(Enum): 

  running = 0 

  goingToCharge = 1 

  charging = 2 

  waitingForGoingToCharge = 3 

 

class DriverBreakStatus(Enum): 

    running = 0 

    AMbathroomFood = 5 

    PMbathroomFood = 6 

    shiftChange = 7 

    Lunch = 8 

 

class DriveType(Enum): 

    hydrogen = 0 

    hdb_diesel = 1 

 

# naming convention lists have always a plural 

breakStates = {"0":0, "1":0, "2":0, "3":0, "4":0, "5":0, "6":0, "7":0} 

 

vehicles = ("0", "1", "2", "3", "4", "5", "6", "7") # This was previously a list 

 

vehiclesDriveType = {'0' : DriveType.hdb_diesel, '1' : DriveType.hydrogen, 

'2':DriveType.hydrogen, '3':DriveType.hdb_diesel, '4':DriveType.hdb_diesel, 

'5':DriveType.hydrogen, '6':DriveType.hydrogen, '7':DriveType.hdb_diesel} 

refuelingDurations = {'0':900, '1':300, '2':300, '3':900, '4':900, '5':300, '6':300, '7':900} 

 

fuelDepletionLevels = {'0':666667, '1':212400, '2':212400, '3':666667, '4':666667, '5':212400, 

'6':212400, '7':666667} 

 

topOffLevels = {'0':1055555, '1':336300, '2':336300, '3':1055555, '4':1055555, '5':336300, 

'6':336300, '7':1055555} 

 

chargingStationType = {'0':'chargingStation_-7855681#1.111_1_1', '1':'chargingStation_-

7855681#1.111_0_0', '2':'chargingStation_-7855681#1.111_0_0', '3':'chargingStation_-

7855681#1.111_1_1', '4':'chargingStation_-7855681#1.111_1_1', '5':'chargingStation_-
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7855681#1.111_0_0', '6':'chargingStation_-7855681#1.111_0_0', '7':'chargingStation_-

7855681#1.111_1_1'}  

 

finishedBuses = [] 

activeBuses = [] 

 

waitingBuses = {} 

chargingStationEdge = '-7855681#1.111' 

 

# have a dictionary of vehicles and their states, initially all running 

busStates = {} 

 

csvfile = None 

energyfile = None 

eventfile = None 

 

def fuelingHeadway(vehID, headway): 

    traci.vehicle.setMinGap(vehID, headway) 

 

def printVehicleStateMessage(vehicleId, message, states = busStates): 

    global eventfile 

 

    stateMessage = '(%s) %s' % (states[vehicleId].name, message) 

    printVehicleMessage(vehicleId, stateMessage) 

 

def printVehicleMessage(vehicleId, message): 

    global eventfile 

    global current_time 

 

    longMessage = 'time %5ds vehicle %s %s' % (current_time, vehicleId, message) 

    print(longMessage) 

    print(longMessage, file=eventfile, flush=True) 

 

def fueling_behavior(current_time): 

  global csvfile, energyfile, eventfile 

  global actualFuelLevel, numActualFuelLevel, numBusRiders 

  global activeBuses 

 

  if 3600 <= current_time <= 65000: 

 

    simTime = [str(current_time)] 

    for e in activeBuses: 

        try: 
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          actualFuelLevel = traci.vehicle.getParameter(e, "device.battery.actualBatteryCapacity") 

        except Exception as ex: 

          if str(ex).endswith(' is not known.'): 

            printVehicleStateMessage(e, 'error %s' % ( str(ex))) 

            finishedBuses.append(e) 

            activeBuses.remove(e) 

            printVehicleStateMessage(e, 'finishedBuses %s' % ( str(finishedBuses))) 

            printVehicleStateMessage(e, 'e in finishedBuses %s' % (e in finishedBuses)) 

          else: 

            traceback.print_exc(file=eventfile) 

          continue 

        numActualFuelLevel = float(actualFuelLevel) 

        numBusRiders, stopState = traci.vehicle.getPersonNumber(e), traci.vehicle.getStopState(e) 

 

        # here is the state machine 

        if busStates[e] == BusState.running: 

          if vehiclesDriveType[e] == DriveType.hdb_diesel: 

              fuelingHeadway(e, 4) 

          elif vehiclesDriveType[e] == DriveType.hydrogen: 

              fuelingHeadway(e, 1) 

          roadID = traci.vehicle.getRoadID(e) 

          if (numActualFuelLevel <= fuelDepletionLevels[e]) and numBusRiders == 0 and (not 

roadID.startswith(':')): #666667:Diesel/Biodiesel, 665102: Propane/NaturalGas, 

86400:Electricity, 212400:Hydrogen (40% fuel depletion) 

            try: 

                nextStop = 0 

                if stopState != 0: 

                  nextStop = 1 

                vehicleDriveType = vehiclesDriveType[e]  

#                 chargingStationEdge = chargingStationsEdge[vehicleDriveType] 

#                 chargingStationID = chargingStationsEdge 

                chargingStationStop = chargingStationType[e] 

                refuelTime = refuelingDurations[e] 

                printVehicleStateMessage(e, 'send to charging station %s (fuel %10.2f, stopState %d, 

duration=%d)' % (chargingStationStop, numActualFuelLevel, stopState, refuelTime)) 

                traci.vehicle.replaceStop(e, nextStop, chargingStationStop, duration=refuelTime, 

flags=32) #chargingStation_-7855681#1_0_0 # duration=900 (HDBs), ABs-duration 

Diesel/Biodiesel:600, Propane/NaturalGas:600, Electricity:3000, Hydrogen:300 

                busStates[e], routeIndex, route = BusState.goingToCharge, 

traci.vehicle.getRouteIndex(e), traci.vehicle.getRoute(e) 

                if routeIndex >= 0: 

                  try: 
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                    newStopIndex = route.index(chargingStationEdge, routeIndex) 

#chargingStationEdge 

                  except: 

                    newStopIndex = -1 

                  printVehicleStateMessage(e, 'New route from index %d to %d' % ( routeIndex, 

newStopIndex)) 

            except Exception as ex: 

                traceback.print_exc(file=eventfile) 

                printVehicleStateMessage(e, 'error cannot set new stop (%s)' % (str(ex))) 

                busStates[e], roadID = BusState.waitingForGoingToCharge, 

traci.vehicle.getRoadID(e) 

                printVehicleStateMessage(e, 'is at %s' % (roadID)) 

                # wait 100 sec and try again 

                waitingBuses[e] = 100 

        elif busStates[e] == BusState.waitingForGoingToCharge: 

          waitingBuses[e] -= 1 

          if waitingBuses[e] == 0: 

            busStates[e] = BusState.running 

            printVehicleStateMessage(e, 'is running again') 

        elif busStates[e] == BusState.goingToCharge: 

          roadID = traci.vehicle.getRoadID(e) 

          if roadID == chargingStationEdge: 

            busStates[e] = BusState.charging 

            if vehiclesDriveType[e] == DriveType.hydrogen: 

                fuelingHeadway(e, 8) # if the vehicle is ABs; otherwise comment out 

            printVehicleStateMessage(e, 'at %-30s fuel %10.2f' % (roadID, numActualFuelLevel)) 

        elif busStates[e] == BusState.charging: 

          roadID = traci.vehicle.getRoadID(e) 

 

          # charging stops, when the stop at the charging station is finished or a resume command is 

issued 

          if roadID != chargingStationEdge: 

            busStates[e] = BusState.running 

          if numActualFuelLevel > topOffLevels[e]: #1055555: Diesel/Biodiesel, 1053078: 

Propane/NaturalGas, 136800: Electricity, 336300: Hydrogen (95% full) 

            try: 

              printVehicleStateMessage(e, 'resume (fuel %10.2f)' % (numActualFuelLevel)) 

              traci.vehicle.resume(e) 

              busStates[e] = BusState.running 

            except Exception as ex: 

                printVehicleStateMessage(e, 'error cannot resume (%s)' % (str(ex))) 

            actualFuelLevel = 0 

        simTime.append(str(actualFuelLevel)) 
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        simTime.append(str(numBusRiders)) 

    #print('fuel and pass', ' '.join(simTime)) 

    print(','.join(simTime), file=energyfile, flush=True) 

 

def extendCurrentStop(vehID, newDuration, stopData = None): 

    '''Common routine to extend stop duration''' 

    try: 

        if stopData == None: 

            stopData = traci.vehicle.getStops(vehID, 1) 

 

        stoppingPlaceID = stopData[0].stoppingPlaceID 

        #check whether the current stop is at a bus stop or charging station 

        if stoppingPlaceID.startswith('charg'): 

            traci.vehicle.setChargingStationStop(vehID, stoppingPlaceID, duration=newDuration) 

        else: 

            traci.vehicle.setBusStop(vehID,stoppingPlaceID, duration=newDuration) 

 

        newStopData = traci.vehicle.getStops(vehID, 1) 

        if newStopData[0].duration != newDuration: 

          printVehicleMessage(vehID, 'setting of duration does not work') 

    except Exception as ex: 

        printVehicleMessage(vehID, 'error with extendCurrentStop %s' % (str(ex))) 

        traceback.print_exc(file=eventfile) 

        printVehicleMessage(vehID, 'stopData old %s' % (stopData[0])) 

 

def insertDriverBreak(vehId, stops, duration, reason, newDriverBreakStatus): 

  '''Construction area - one routine for all types of break''' 

  stopData = traci.vehicle.getStops(vehId, 1) 

  if len(stopData) == 0: 

    return 

  if (stopData[0].stopFlags & 8) and stopData[0].stoppingPlaceID in stops: # if bus is at a bus stop 

and bus stop is one of stops in break list 

    printVehicleMessage(vehId, 'is taking a %d min %s break' % 

                        (duration/60, reason)) 

    extendCurrentStop(vehId, duration, stopData) 

    breakStates[vehId] = newDriverBreakStatus 

 

def takeDriverBreak(current_time): 

    global DriverStops, currentDriverStop 

    stopsForAMbreak = ["busStop_-467228692#3_1_10", "busStop_JagTranRdSB7_1_8", 

                       "busStop_GreekRowSB20_1_1", "busStop_357822997#2_0_3", 

                       "Y1"] 

    stopsForLunchbreak = ["busStop_-467228692#3_1_10", "busStop_JagTranRdSB7_1_8", 
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                          "busStop_GreekRowSB20_1_1", "busStop_357822997#2_0_3"] 

    stopsForPMbreak = ["busStop_-467228692#3_1_10", "busStop_JagTranRdSB7_1_8", 

                          "busStop_GreekRowSB20_1_1", "busStop_357822997#2_0_3"] 

 

    for e in activeBuses: 

        if vehiclesDriveType[e] != DriveType.hdb_diesel: 

            continue 

        if vehiclesDriveType[e] == DriveType.hdb_diesel: 

            if (10800 < current_time < 14400): 

                if (breakStates[e] != DriverBreakStatus.AMbathroomFood): 

                    if busStates[e] == BusState.running and numBusRiders == 0 and 

numActualFuelLevel > float(666667): 

                        insertDriverBreak(e, stopsForAMbreak, 600, 'AM Bathroom/Snack', 

DriverBreakStatus.AMbathroomFood) 

        if vehiclesDriveType[e] == DriveType.hdb_diesel: 

            if (21600 < current_time < 27000): 

                if (breakStates[e] != DriverBreakStatus.Lunch): 

                    if busStates[e] == BusState.running and numBusRiders == 0 and 

numActualFuelLevel > float (666667): 

                        insertDriverBreak(e, stopsForLunchbreak, 600, 'Lunch', 

DriverBreakStatus.Lunch) 

        if vehiclesDriveType[e] == DriveType.hdb_diesel: 

            if (30600 < current_time < 37800): 

                if (breakStates[e] != DriverBreakStatus.PMbathroomFood): 

                    if busStates[e] == BusState.running and numBusRiders == 0 and 

numActualFuelLevel > float(666667): 

                        insertDriverBreak(e, stopsForPMbreak, 600, 'PM Bathroom/Snack', 

DriverBreakStatus.PMbathroomFood) 

 

def maintain_headway(current_time): 

    #Maintaining headway between Yellow Buses, Blue Buses, & Green Buses; respectively 

    simulation_time = [str(current_time)] 

    if current_time >= 3600: 

        maintainHeadway('3', '4', 200) #HDBdelay=200, ABdelay=140 

        maintainHeadway('4', '3', 200) #HDBdelay=200, ABdelay=140 

        maintainHeadway('1', '2', 240) #HDBdelay=300, ABdelay=240 

        maintainHeadway('2', '1', 240) #HDBdelay=300, ABdelay=240 

        maintainHeadway('5', '6', 100) #HDBdelay=160, ABdelay=100 

        maintainHeadway('6', '5', 100) #HDBdelay=160, ABdelay=100 

 

def maintainHeadway(leaderID, followerID, delay = 160): 

    global finishedBuses 
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    if leaderID in finishedBuses or followerID in finishedBuses: 

      return 

    try: 

        # First check if leader is at a bus stop (for performance) 

        leaderIsAtBusStop = traci.vehicle.isAtBusStop(leaderID) 

        if leaderIsAtBusStop: 

          followersStopData = traci.vehicle.getStops(followerID, 2) 

          if len(followersStopData) > 0 and followersStopData[0].duration != delay: 

            leaderStopData = traci.vehicle.getStops(leaderID, 1) 

            leadersCurrentStop = leaderStopData[0].stoppingPlaceID 

            leadersCurrentLane   = leaderStopData[0].lane  

            followersCurrentLane = followersStopData[0].lane  

            followersCurrentStop = followersStopData[0].stoppingPlaceID  

 

            if len(followersStopData) >= 2 or len(leaderStopData) >= 2: 

                followersNextStopLane = followersStopData[1].lane  

        #            followersCurrentStop = followersStopData[0].stoppingPlaceID 

                followersNextStop = followersStopData[1].stoppingPlaceID  

 

            else: 

                followersNextStopLane = None 

                followersNextStop = None 

 

            #Exclude the case the leader of the leader is actually the follower 

            if leadersCurrentStop == followersCurrentStop: 

                leader_of_leader = traci.vehicle.getLeader(leaderID) 

                if leader_of_leader != None: 

                    if leader_of_leader[0] == followerID: 

                        printVehicleMessage(leaderID, 'is not the leader of %s' % (followerID)) 

                        return 

            # do not extend or shorten charging stops 

            if followersStopData[0].stoppingPlaceID.startswith('charg'): 

              return 

            if (leadersCurrentStop == followersCurrentStop) or (leadersCurrentStop == 

followersNextStop): 

                if (leadersCurrentLane == followersCurrentLane) or (leadersCurrentLane == 

followersNextStopLane): 

                  printVehicleMessage(followerID, 'waits at %s for %d sec (headway)' % 

(followersCurrentStop, delay)) 

                  extendCurrentStop(followerID, delay, followersStopData) 

    except Exception as ex: 

      print('Vehicle %s error %s' % (followerID, str(ex))) 

      traceback.print_exc(file=eventfile) 
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def run(seed, gui = False, endTime = 65000, gdb = False): 

  global busStates, breakStates 

  global csvfile, energyfile, eventfile 

  global current_time 

  global finishedBuses 

  global activeBuses 

 

  # define file names 

  csvfile = open('passengers.%d.filenames_out.csv' % seed, 'w') 

  energyfile = open("batteryCapacity.%d.filenames_out.csv" % seed, "w") 

  eventfile = open("events.%d.filenames_out.txt" % seed, "w") 

  chargingOutput = "chargingstations.%d.filenames_out.xml" % seed 

  stopOutput = "stop.%d.filenames_out.xml" % seed 

  batteryOutput = "battery.%d.filenames_out.xml" % seed 

  personOutput = "person.%d.filenames_out.xml" % seed 

 

  sumoBinary = '' 

  if gui: 

    if gdb: 

      sumoBinary = checkBinary ("sumo-guiD") 

    if not sumoBinary.startswith('/'): 

      sumoBinary = checkBinary ("sumo-gui") 

  else: 

    if gdb: 

      sumoBinary = checkBinary ("sumoD") 

    if not sumoBinary.startswith('/'): 

      sumoBinary = checkBinary ("sumo") 

 

  sumoCmd = [] 

  if args.gdb: 

    sumoCmd.extend(['gdb', '-ex', 'run', '--args']) 

  sumoCmd.extend([sumoBinary, "--quit-on-end", "--start"]) 

  sumoCmd.extend(['--seed', str(seed), '-c', 'test.sumocfg']) 

  sumoCmd.extend(['--chargingstations-output', chargingOutput]) 

  sumoCmd.extend(['--battery-output', batteryOutput]) 

  sumoCmd.extend(['--stop-output', stopOutput]) 

  sumoCmd.extend(['--tripinfo-output', personOutput, '--device.tripinfo.probability', '0']) 

  if args.fcd: 

    sumoCmd.extend(['--fcd-output', 'fcd.%s.out.xml' % seed, '--person-device.fcd.probability', '0', 

'--fcd-output.distance']) 

  if args.route: 
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    routes = args.route + ', SUMONewRoutingTest.rou.xml,  

PersonFlowTest_Red1_BASE.rou.xml, PersonFlowTest_Blue1_BASE_R_Hybrid.rou.xml, 

PersonFlowTest_Blue2_BASE_R_Hybrid.rou.xml, 

PersonFlowTest_Green1_BASE_R_Hybrid_MEDLONG.rou.xml, 

PersonFlowTest_Green2_BASE_R_Hybrid_MEDLONG.rou.xml, 

PersonFlowTest_Yellow1_BASE_R.rou.xml, PersonFlowTest_Yellow2_BASE_R.rou.xml, 

PersonFlowTest_Orange1_BASE.rou.xml' 

    sumoCmd.extend(['-r', routes]) 

 

  print('Run ' + ' '.join(sumoCmd)) 

 

  # reset global variables for each run 

  activeBuses = [] 

  for v in vehicles: 

    busStates[v] = BusState.running 

    breakStates[v] = DriverBreakStatus.running 

    activeBuses.append(v) 

  finishedBuses = [] 

  waitingBuses = {} 

 

  traci.start(sumoCmd) 

  step = 0 

 

  # main loop, current_time serves as step 

  while traci.simulation.getMinExpectedNumber() > 0: 

    traci.simulationStep() 

    current_time = traci.simulation.getTime() 

    if current_time <= 1: 

      printVehicleMessage('0', 'start simulation') 

 

    # Execution for Beginning of Simulation 

    # do nothing special 

    # Execution for collecting Ridership within Bus Vehicles 

    # stop if all buses are gone 

    if len(activeBuses) == 0: 

      break 

    # call plugins 

    fueling_behavior(current_time) 

    maintain_headway(current_time) 

    for i in vehiclesDriveType: 

        if vehiclesDriveType[i] == DriveType.hdb_diesel: 

            takeDriverBreak(current_time) 
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    if 3600 <= step: 

          # This set of code gets the number of riders currently within the bus 

        list_of_ridership = [str(current_time)] 

        for id in vehicles: 

          # take care, if vehicle does not exist 

          ridership = 0 

          if not id in finishedBuses: 

            try: 

              ridership = traci.vehicle.getPersonNumber(id) 

              vehicleDistance = traci.vehicle.getDistance(id) 

              vehicleEnergyCons = traci.vehicle.getElectricityConsumption(id) 

            except: 

              pass 

          list_of_ridership.append(str(ridership)) 

          list_of_ridership.append(str(vehicleDistance)) 

          list_of_ridership.append(str(vehicleEnergyCons)) 

          list_of_ridership.append(str(actualFuelLevel)) 

        # create a comma-separated list 

        print(','.join(list_of_ridership), file=csvfile, flush=True) 

    if current_time > endTime: 

      break 

    step += 1  

 

  csvfile.close() 

  eventfile.close() 

  traci.close() 

 

if __name__ == "__main__": 

  run(args.seed, args.gui, args.last, args.gdb) 

 

 

 

The Python program above can be placed into the repeating loop file in Section 

5.7.9 as imported Python script as well to allow for a number of simulation runs to be 

extecuted in order to support statistical analysis. 
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CHAPTER VI – CONCLUSIONS 

 

 

There has been an increase in the emergence of complex systems being utilized 

within unique and diverse application domains, however, future nonexistent systems such 

as SmTS will go beyond the realm of complex systems with their combination of 

coexistence between complex systems, sociotechnical systems, and AI. These layers of 

complexity can manifest a new of form of complexity – hypercomplexity. ABMs are 

powerful and meaningful tools for understanding, analyzing, and quantifying, allowing 

for the intelligent assessment, operation, and management of these “hypercomplex” 

systems. In this manuscript, a novice-based perspective is used to learn ABM 

development and programming in two ABM tools – StarLogo Nova and NetLogo. 

Through the learning process, five simulation models were made in StarLogo Nova and 

two simulation models in NetLogo to solidify the concepts that were mastered throughout 

the learning process. The SoI modeled within these ABM frameworks were centered 

around the SmTS. Modeling experiences in StarLogo Nova and NetLogo revealed 

advantages and disadvantages in both ABM tool’s technical performance and supporting 

platform. Through the combination of the experiences and observations, various 
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modeling abstractions were identified from one ABM tool to next, showing the 

connectivity between StarLogo Nova and NetLogo.  

Through the exploratory effort in Chapter III, numerous system use cases and 

overlooked edge cases for AVs were identified through a novel system prototyping 

framework that was developed known as the System Prototyping Pipeline Framework 

(SPPF). This framework formed part of the basis of this dissertation with the first two 

prototyping modules (i.e., StarLogo Nova & NetLogo) of the framework being used in 

Chapter III through higher-level system modeling and exploration which supported rapid 

system prototyping capabilities through model development, while the last module (i.e., 

the detailed systems modeling module) of the SPPF was addressed through both Chapters 

IV and V. The System Prototyping Pipeline Framework (SPPF) was also created as an 

expandable sandbox toolkit that can be augmented for modeling nonexistent systems.  

Within existing and transportation networks and SmTS, AVs will be a disruptive 

yet promising smart technology that is expected to systemically transform and benefit 

cities and their industrial sectors. However, before these large-scale benefits are reached 

in the future, various barriers of trust and acceptance of AVs will need to be overcome 

through more sensible and gentle testing, development, and deployment strategies. In 

order to achieve this, CSEs such as university and military base environments can be 

used to support the early nurturing of trust and adoption between AVs and humans. This 

proposal is justified by the similarities of these two CSEs – the university and military 
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base environment – enabling their interchangeable use as potential early market 

deployment environments for AVs and other smart technologies. 

CSEs such as university and military bases are different in terms of their purpose, 

yet there are a sizable number of commonalities between these environments in terms of 

their system attributes. These similar attributes can be exploited in the way smart 

technologies and other emerging enabling technologies deployed in CSEs. A way of 

exploiting these commonalities would consist of transferring and sharing AV deployment 

insights, lessons learned, and challenges from one CSE into another. This would allow 

for quicker smart technology or AV deployment in other CSEs during the early market 

phase and eventually the proliferation of AV adoption into mainstream market through its 

use in cities.  

In Chapter IV, the system context and boundaries for the M&S performed in 

Chapter V was established in order to setup an appropriate perimeter and system 

interfaces around the SoI for this dissertation. Within Chapter IV of this dissertation, not 

only is SoI and its attributes defined, but a taxonomy CSE’s for which this research can 

be extended were also defined to support the meaningful and further widespread adoption 

of AVs or ABs within other existing built environments besides the one used in this 

dissertation.  

However, Chapter V solidified the concepts from Chapters III and IV through the 

use of M&S of ABs within a CSE – the USA campus. The intent behind Chapter V was 



515 
 

to emphasize major aspects that are neglected in existing literature in regard to the M&S 

of ABs in a smart city context. These neglected facets consisted of: 

• A lack of diversification of the M&S of AVs or ABs and alternative fueling 

infrastructures in unique sociotechnical environments 

• An inadequate amount of M&S of AVs or ABs in different vehicle configurations 

• Insufficient M&S of the integration of AVs or ABs with alternative fueling 

infrastructures and emerging fueling technologies 

Findings from the consideration of all these literary gaps (in Chapter V), showed 

that by using ABs with different alternative fueling infrastructures, in distinct bus 

configurations, and in unique sociotechnical environments such as CSEs; marketed 

improvements can be achieved in regard to performance (i.e., passenger wait times) and 

the quality of mobility (i.e., cost per km and emissions). This means that ABs and their 

integration with alternative fueling infrastructures such as hydrogen possessed a 

significant level of promise in terms of its ability to support mobility needs in CSEs. 

However, with the technological advancements set to emerge in the coming years 

significant promise may lie in the use of both electric and hydrogen fueling 

infrastructures. This may make the idea of AB fleet hybridization more attractive in the 

future automated mass transit applications. Nevertheless, analysis from Chapter V are a 

crucial steppingstone in promoting a understanding and wider spread of trust, acceptance, 

and eventually adoption of ABs and AVs in existing sociotechnical 

systems/environments coming to fruition in the forthcoming future. 
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CHAPTER VII – FUTURE RESEARCH 

 

This dissertation, across multiple chapters has shown that automated-based 

transportation systems should not be confined to one type of use case, system 

architecture, or system context, if the use of these systems and their technologies are 

expected to see widespread adoption in the future and go beyond mere fantasy. Further 

study in the diversification into potential applications, environments, and system 

organization (or configuration) of automated or smart transportation systems need to be 

emphasized in future research. Therefore, moving into the future, a potential area of 

interest that may be of interest examine is the use of M&S of ABs or AVs in a different 

CSEs such as a military base or an airport to see if the insights from this research are 

transferable to those environments. If so, this means that CSEs could make for excellent 

environments to support the early widespread of deployment and adoption of AVs or 

ABs in sociotechnical systems that are reminiscent of the physical, social, and cultural 

typology of cities. 

What is more, with technologies such as AVs, fueling technologies, and enabling 

transportation infrastructure technologies constantly changing, it is imperative that the 

evolution of automated or smart transportation systems, and their integration and impact 

on their surrounding social fabric is placed at the forefront of the conceptualization, 
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planning, and deployment phases of transportation systems. Placing management at the 

frontend of the lifecycle of this automated transport system could potentially reduce later 

stage systems lifecycle costs (e.g., system implementation, use and maintenance, and 

disposal) through the identification of system risks, defects, and other system nuances. 

An interesting way this could be accomplished is through the combinatorial, circular, and 

cyclical use of the Systems Modeling Language (SysML), genetic algorithms (GAs), and 

ABMs or ABMS. The idea in such an approach is to initially establish a system 

architecture with all possible and viable alternative technologies that could be integrated 

into the system architecture through the use of SysML. Simply put, in this framework, 

SysML would act as a system architecting repository, supporting system architecture 

exploration for different component systems, component technologies, and their 

integration into the primary system architecture. Not only this, but SysML will allow for 

a unified view of the system architecture merging physical, cyber, and artificial (AI) 

dimensions of the system architecture. From the perspective of a transportation system 

and its potential application in genetic algorithms; alternative systems and technologies 

(e.g., fueling infrastructure, bus type, etc.) in the system architecture in SysML can be 

thought of or abstracted as the transportation system architecture’s genes which can be 

mutated or edited to make the architecture more conducive to its surrounding 

environment or system context. 

Evolutionary-based exploration of potential combinations of these “system 

architecture genes” in GAs can be used to determine the most fit system architecture and 

evolutionary approach to attaining the most fit system architecture based on multiple 

objectives or system requirements that need to be satisfied within a given problem space. 
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From the suggested fit architectures proposed by the GA, these synthetically evolved 

system architectures, referred to as “evolutionary architectures”, can be tested within 

virtual spaces or environments such as ABMs to allow for the assessment, analysis, and 

conclusions to be made about the performance and projected social impact of the 

proposed system architectures within the existing system context. Figure 7.1 shows what 

such a bio-inspired system architecting framework would be consist of.
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In its quintessential essence, the proposed architecting framework also known as 

the Biologically Inspired Organization for Transportation Architectures (BIOTA) 

framework, in Figure 7.1 uses the concept of generalizations in SysML (space) to support 

the ever-expanding array of technologies and systems that can be integrated into the 

smart transportation system architecture. These alternative technologies and systems can 

be incorporated into a GA by quantitively expressing their attributes in dimensions of 

sustainability, cost, system performance, reliability, and other system “ilities”. From here 

testing of suggested evolutionary architectures would be conducted through M&S in the 

ABMS space. This space of the BIOTA framework was the primary focus of this 

research study as indicated by the perforated red box in Figure 7.1. It is worth noting that 

the diagram in SysML block space in Figure 7.1 is not exhaustive in nature but is a mere 

example of what one of the system views in SysML could look like in supporting this 

framework.  

The idea of the BIOTA framework could be taken a step further through its 

practical use and integration with digital twins. With some built environments capable of 

collecting big data within their transportation systems and human populations, such data 

can be used as input into data repositories that do not depend on time sensitive data 

collection such as central cloud-based mainframes that may support comprehensive 

simulating of future transportation system architectures that may be proposed by GAs 

within digital twin environments. Such a platform may help determine long-term future 

outcomes of unique system evolutionary paths from using specific technologies such as 

emerging traffic management AI technologies, AV fleet management strategies in certain 

zones of an existing built environment such as a CSE, using novel infrastructure 
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management plans for supporting AVs or AV fleets and their service populations, and 

much more. Alternatively, due to less latency, data generated from edge devices at the 

frontend of distributed edge-based cloud computing systems could be used as inputs in 

supporting real-time or parallel simulations of proposed evolutionary transportation 

system architectures that may be suggested from the GA. This may support dynamic 

service applications such as predictive or proactive public transit scheduling, geofencing 

based on operational requirements, or dynamic energy/fuel allocation in supporting 

hybridized transit fleets. Possibilities such as these are already beginning to be uncovered 

in countries such as Singapore which has shown the pragmatic power and capabilities 

behind digital twins through its application of using digital twins in aspects of climate 

change, resiliency, and sustainability of its urban infrastructure and systems (Lawton, 

2022). Figure 7.2 shows what the variant of the BIOTA framework from Figure 7.1 

would consist of, if integrated with a digital twin for future practical applications from a 

SE perspective.
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In Figure 7.2, it is worth bearing in mind that the ABM space and simulation in 

the digital twin itself would be synonymous or one in the same as the digital twin which 

would or could function as a virtual M&S environment. Considering the possibilities that 

this scheme may hold in the SE practice, future work moving forward will consist of 

investigating how the BIOTA framework can be integrated with big data generated from 

transportation systems and digital twins along with their accompanying services as they 

relate to the practice of SE. 
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Appendix A – Chapter I and II Tables 

 

Table A2.1. Comprehensive list of SCA tools (adapted from (Sharifi, 2019; Patrão et al., 

2020)). 

SCA Tool Year Primary Developer(s) 

Lisbon ranking for smart 

sustainable cities 
2019 (Akanda et al., 2019) 

Smart Sustainable Cities 

China 
2019 (Li et al., 2019) 

Cities in Motion Index 2018 

Center for Globalization and Strategy and 

IESE Business School’s Department of 

Strategy (Berrone & Ricart, 2018) 

Global Power City 

Index 
2018 

The Mori Memorial Foundation’s Institute 

for Urban Strategies (IUS-MMF, 2018) 

Innovation TM Cities. 

Index 
2018 

China Academy of Telecommunication 

Research and 

China Communications Standards 

Association (Innovative Cities Index, 2019) 

EasyPark 2018 EasyPark Group  

IoT-Enabled Smart city 

framework 
2018 

National Institute of Standards and 

Technology (NIST, 2018) 

Smart Cities Council’s 

tools and frameworks 
2018 

Smart Cities Council, Australia and New 

Zealand (SCC, 2015; SCC, 2018) 

WhatWorks Cities 2018 
Bloomberg Philanthropies (Bloomberg 

Philanthropies, 2018) 

Code for Smart 

Communities 
2018 

Smart Cities Council Australian New 

Zealand and 

the Green Building Council of Australia 

(SCC & GBCA, 2018) 

China Smart City 

Performance 
2018 Shen (Shen et al., 2018) 

Smart City 

Governments 
2018 

Eden Strategy Institute and ONG&ONG Pte 

Ltd. (ESI, 2021) 

Assessing Smart City 

Initiatives for the 

Mediterranean Region 

2017 
Universidad Politécnica of Madrid (UPM) 

(Fernandex-Anez et al., 2018) 

 

 

 

 



578 
 

Table A2.1, Cont. 

SCA Tool Year Primary Developer(s) 

Juniper Research smart 

city frameworks 
2017 

Juniper Research (Fernandez-Anez et al, 

2018) 

UK Smart Cities Index 2017 Navigant Research (Woods et al., 2017) 

CITYkeys 2016 

Netherlands Organization for Applied 

Scientific 

Research (TNO) (Huolvia et al., 2017) 

Networked Society City 

Index 
2016 

Ericsson in collaboration with Sweco 

(Ericsson Ltd., 2014) 

Cities of Opportunity 2016 
PricewaterhouseCoopers (PwC) (Magill et 

al., 2016) 

Community KPIs for the 

IoT and Smart Cities 
2016 Future Everything (Hemment et al., 2016) 

Gulf States Smart Cities 

Index 
2016 Navigant Research (Woods et al., 2016) 

European Digital Cities 

Index 
2016 Nesta (Bannerjee et al., 2016) 

Smart City Strategic 

Growth Map 
2016 

ESPRESSO, European Commission (Walter 

et al., 2017) 

City IQ Evaluation 

System 
2015 Wu (Wu et al., 2016) 

International Data 

Corporation (IDC) 

Smart 

City Analysis 

2015 IDC (Achaerandio et al., 2012) 

Telecommunication and 

Standardization 

Sector of International 

Telecommunication 

Union (ITU) 

2015 
ITU-T Focus Group on Smart Sustainable 

Cities (ITU, 2016) 

United Nations 

Economic Commission 

for 

Europe-ITU Smart 

Sustainable Cities 

Indicators 

2015 

UNECE Committee on Housing and Land 

Management, Environment Agency Austria, 

and 

ITU (Economic Commission for Europe, 

2015) 

Smart Cities Ranking of 

European 

Medium-sized Cities 

2014 

TU Vienna, in cooperation with the 

University of 

Ljubljana and the TU of Delft (Giffinger et 

al., 2007) 

Boyd-Cohen Smart City 

Index 
2014 Boyd-Cohen (Cohen, 2014) 
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Table A2.1, Cont. 

SCA Tool Year Primary Developers 

Mapping Smart Cities in 

the EU 
2014 

RAND Europe, European Union (EU) 

(Manville et al., 2014) 

Smart City Maturity 

Model and 

Self-Assessment Tool 

2014 

The Scottish Government and Scottish 

Cities 

Alliance (Alliance, 2014; Urban Tide, 2015) 

Smart City Profiles 2013 

Austrian Climate and Energy Fund and 

Environment 

Agency Austria (Thielen et al., 2013) 

United Cities and Local 

Governments (UCLG) 

smart cities study 

2012 

City of Bilbao and Committee of Digital 

and 

Knowledge-based Cities of UCLG (UCLG, 

2012) 

Smart Cities 

Benchmarking in China 
2012 

China Academy of Telecommunication 

Research and 

China Communications Standards 

Association (China Academy of 

Telecommuncations Research of MIIT, 

2012) 
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