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ABSTRACT 

Self-driving vehicles demand efficient and reliable depth-sensing technologies. Lidar, with 

its capacity for long-distance, high-precision measurement, is a crucial component in this 

pursuit. However, conventional mechanical scanning implementations suffer from 

reliability, cost, and frame rate limitations. Solid-state lidar solutions have emerged as a 

promising alternative, but the vast amount of photon data processed and stored using 

conventional direct time-of-flight (dToF) prevents long-distance sensing unless power-

intensive partial histogram approaches are used.  

This research introduces a pioneering ‘guided’ dToF approach, harnessing external 

guidance from other onboard sensors to narrow down the depth search space for a power 

and data-efficient solution. This approach centres around a dToF sensor in which the 

exposed time widow of independent pixels can be dynamically adjusted. A pair of vision 

cameras are used in this demonstrator to provide the guiding depth estimates.  

The implemented guided dToF demonstrator successfully captures a dynamic outdoor 

scene at 3 fps with distances up to 75 m. Compared to a conventional full histogram 

approach, on-chip data is reduced by over 25 times, while the total laser cycles in each 

frame are reduced by at least 6 times compared to any partial histogram approach. The 

capability of guided dToF to mitigate multipath reflections is also demonstrated.  

For self-driving vehicles where a wealth of sensor data is already available, guided dToF 

opens new possibilities for efficient solid-state lidar. 
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1 INTRODUCTION 

1.1 Self-Driving Vehicles 

1.1.1 Motivation 

In 1939, General Motors captured the public’s imagination with its highly acclaimed Futurama exhibit 

at the New York World's Fair, presenting a glimpse into the future of automotive transport [5]. The 

exhibit featured revolutionary concepts of autonomous vehicles driving continuously along automated 

highways and intersections [6]. However, beyond improving transport efficiency within a rapidly evolving 

society, the development of self-driving cars carries a noble mission: to save human lives. Every year, 

over a million lives are lost due to road accidents [7], of which over 90% are due to driver error [8].  

While the widespread self-driving concept of 1939 is not yet realised, technological advancements and 

more permissive road regulations make such visions increasingly viable [9, 10]. Developers of self-driving 

vehicles continue to reach significant milestones including driving over a million miles on public roads 

with no human behind the wheel [11]. With a market pull for safer ways to commute and a market 

push from governments in the form of regulations [12], a driverless car future is imminent. 

1.1.2 Levels of Autonomy 

It could be argued that autonomous vehicles are already on the road today. The ability of vehicles to 

maintain a separation distance, or to drive within designated lane boundaries, is already commonplace. 

 

Fig. 1: Levels of driving autonomy as defined by J3016. Adapted from [13]. 
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To adequately describe the full spectrum of autonomous driving abilities, the Society of Automotive 

Engineers (SAE) has set out a taxonomy for automated driving solutions. In keeping with the 

engineering stereotype, it was given the eloquent name of J3016 [14]. This landmark document in the 

field of self-driving vehicles defines 6 levels of driving autonomy which are summarised in Fig. 1. 

The prestigious title of “fully autonomous” can only be given to those vehicles which achieve level 4 

automation or above. At the time of writing, no commercial vehicle is yet to achieve this. A key enabler 

is the need for reliable and affordable long-range depth-sensing. 

1.1.3 Depth-Sensing for Fully Autonomous Vehicles 

Table 1 combines the guidelines outlined in J3016, along with the requirements of vehicle manufacturers 

[15-20] to summarise the performance of depth perception needed for commercial, fully autonomous 

vehicles. These specifications set the benchmark automotive depth-sensing performance targeted by 

research and industry today. 

Specification Description Target 

Maximum range Furthest measurable distance > 200 m 

Field of view  Observable horizontal (H) and vertical (V) window H120° x V25° 

Angular resolution Horizontal/vertical step size < 0.1° 

Frame rate Image update rate > 25 Hz 

Distance error Measured depth compared to actual depth < 0.1 m 

Target reflectivity Minimum reflectivity of target that can be measured > 10% 

Ambient intensity Maximum brightness of environment 100 klux 

Reliability Qualified robustness of mechanics after stress test AEC-Q100 

Cost Price per unit < $1,000 

Power Average power consumed < 10 W 

Table 1: Depth-sensing performance required for commercial, fully autonomous vehicles. 
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1.2 Depth-Sensing Technologies  

1.2.1 Ultrasound 

Ultrasound sensors measure the return time of emitted high-frequency sound waves to determine 

distance. These provide a cheap and compact method of measuring distance.  However, the large angular 

beamwidth of sound waves as they travel through air limits ultrasound to low-range, low-resolution 

tasks such as parking assist [21]. 

1.2.2 Radar 

Using a similar principle to ultrasound, radar uses radio waves which can propagate much further than 

sound waves. This allows it to achieve ranging over much longer distances.  First developed over 100 

years ago, radar is a proven and reliable method of depth-sensing [22], robust under poor weather 

conditions such as fog [23]. Automotive radar typically uses frequencies between 10-100 GHz to provide 

some angular resolution, however this is still limited to tens of centimetres [24].  

1.2.3 Camera 

Unlike the other sensors described in this section, cameras sense the environment without the use of an 

active emitter. This enables a low-power (few watts) method for sensing, detecting and classifying 

objects in the field of view.  

A single camera (monocular) can estimate depth by classifying objects and inferring their relative 

distance, or recently using machine learning techniques. More accurate depth-sensing can be achieved 

through the use of two (stereo) or more (multi-baseline) imaging cameras by identifying the relative 

displacement of points between each camera image. This displacement is termed disparity and is 

typically given in units of pixels. The disparity value determined for each pixel in the image from one 

camera can then be directly converted into distance.  

Objects close to the cameras experience a smaller displacement than those further away, as illustrated 

in Fig. 2. Therefore, the measurement accuracy of stereo depth reduces with distance, as the change in 

disparity becomes increasingly less pronounced. In addition, the challenge of matching points between 
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images on each camera, known as the correspondence problem is not trivial, particularly for large 

featureless objects [25]. Unlike radar and ultrasound, stereo depth is also susceptible to visibility 

conditions which further limit accuracy [26]. 

 

Fig. 2: Illustration of stereo disparity between a left (L) and right (R) camera. The tree 
in the foreground shifts more than the car in the background. 

Nevertheless, depth ranging further than 200 m using vehicle-mounted stereo cameras has been readily 

demonstrated [27, 28]. Stereo cameras also inherently provide colour and brightness information, both 

valuable for self-driving perception. Finally, the ability to determine depth without the need for an 

active, power-consuming emitter has led to a continued high level of interest in this technology as the 

industry transitions to fully electric vehicles.  

1.2.4 Lidar 

Lidar sensors measure distance by determining the roundtrip time of an emitted laser. By mounting one 

or more point lidar sensors onto a rotating platform, as illustrated in Fig. 3, mechanical scanning lidar 

can provide high-resolution 3D depth-sensing over hundreds of metres with centimetre precision [29]. 

The short wavelength of light allows for a narrow beam divergence compared to sound and radio waves, 

providing superior angular resolution over ultrasound and radar. Lidar also enables standalone object 

detection [30], although this is made more robust through fusion with camera data [31].  

 
Fig. 3: Traditional mechanical spinning lidar. 
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However, traditional mechanical scanning lidar using motors and/or rotating mirrors results in an 

expensive solution with a large form factor [32], sensitivity to shock/vibrations [33], high power [33, 34] 

and requiring frequent recalibration [16]. The scanning mechanism also limits the achievable frame rate 

which is an important characteristic for avoiding collisions. For example, three frames are typically used 

to detect and confirm the trajectory of an object [35]. Therefore, a typical highway vehicle, traveling at 

around 30 m/s, would have moved by almost 100 m before a system sensing at 1 fps can make a decision.  

Within the context of self-driving vehicles, the DARPA Grand Challenge has consistently shown lidar 

to be essential for safe and reliable autonomous vehicles. Lidar-equipped vehicles have consistently 

dominated this competition [36]. However, scaling this up to large scale deployment of self-driving 

vehicles brings inevitable challenges from mutual interference between lidars. While some initial research 

into solving interference issues have been made [37, 38], the full scale of the issue is yet to be realised. 

1.2.5 Multisensory Approach 

The performance and commercial viability of each prior-described sensor is summarised in Table 2. It 

shows that no single sensor achieves the level of performance required for safe autonomous vehicles.  

The resulting consensus from both market analysts and the industry is to combine these sensors in a 

multi-sensory approach [39]. This is reflected in the automated driving safety frameworks of vehicle 

manufacturers including Audi, BMW and Volkswagen [40]. Crucial self-driving tasks such as 

simultaneous location and mapping (SLAM) rely on further sensor data from a combination of satellite-

based positioning and inertial measurement units (IMUs) containing accelerometers and gyroscopes [41]. 

Combining this diverse range of sensors allows the vehicle to harness the advantages of each while 

providing redundancy. The development of other technologies including unmanned aerial vehicles 

(UAVs) have similarly come to rely on fusing multiple sensors with lidar for more robust navigation [42]. 

Despite the commercial viability limitations of mechanical lidar, it remains a critical component for safe 

and reliable self-driving vehicles. This has resulted in a significant growth projection for the automotive 

lidar market. According to forecasts by Yole Group (Fig. 4), the market size is expected to rise from 

$26 million in 2020 to $2.3 billion in 2026, establishing automotive as the leading application for lidar 

technology. However, for self-driving vehicles to be widely adopted, the barriers to commercial viability 

associated with mechanical lidar must be addressed. A new generation of lidar, solid-state lidar, aims to 

provide this solution. 
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Ultrasound Radar Camera 

Mechanical 
Lidar 

P
er

fo
rm

an
ce

 

Range < 10 m > 200 m > 200 m > 200 m 

Angular resolution > 10 cm > 10 cm < 1 cm < 1 cm 

Accuracy  
(short-range) < 1 cm < 1 cm < 1 cm < 1 cm 

Accuracy  
(long-range) N/A < 10 cm > 1 m < 10 cm 

Object classification No No Yes Medium 

Robustness in low 
ambient light High High Low High 

Robustness in high 
ambient light High High High Medium 

Robustness in 
rain/snow/fog/dust Medium High Low Medium 

C
om

m
er

ci
al

 V
ia

bi
lit

y Mechanical robustness Small Small Small Large 

Cost < $100 < $100 < $100 > $10k 

Power consumption ~ 1 W < 10 W < 10 W ~ 100 W  

Form factor Small Medium Small Large 

Table 2: Capabilities of the various sensor technologies integrated into self-driving 
vehicles, combining data from [23, 43, 44]. 

 

 

Fig. 4: Lidar market forecast as given by Yole Group [45]. 
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1.3 Solid-State Lidar 

Solid-state lidar aims to reduce expensive and bulky mechanical lidar down to a single (or few) chip(s). 

Currently, the two approaches closest to entering the automotive market are “flash” and “MEMS” 

(micro-electromechanical systems). The MEMS approach involves fabricating small micromirrors onto 

a chip to scan the laser around the scene, while flash removes scanning altogether by illuminating the 

entire field of view in a single flash. While the MEMS approach addresses the cost and form factor 

considerations for commercially viable lidar, it still relies on moving parts which deteriorate over time 

in an automotive environment. On the other hand, flash lidar is free from moving parts but requires a 

high laser power to illuminate the entire scene at once, leading to high power consumption and limited 

range. While technologies such as optical phased arrays (OPAs) may one day offer a complete solution 

[46], flash and MEMS are forecast to play a crucial role in the immediate future of automotive lidar, as 

shown in Fig. 5. 

 

Fig. 5: Forecast worldwide lidar sensors within the automotive market as of 2021 [47].  

1.4 Problem Statement 

The most established lidar technique for measuring long distances is direct time-of-flight (dToF). This 

works on the principle of emitting a short laser pulse and directly measuring the roundtrip time of the 

returning laser to calculate distance (Fig. 6(a)). In practice, ambient background light is also detected 

by the lidar sensor, so the laser is cycled many times to average out the background (Fig. 6(b)).  
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Fig. 6: Direct time-of-flight (a) ideal case with no ambient background photons (b) 
integrating multiple laser cycles to average out the background (c) compressing photon 

data into a histogram (d) proposed “guided” approach. Adapted from [3].  
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In most solid-state lidar implementations, particularly flash lidar, the sensor consists of a chip with a 

2D array of detection pixels. For dToF, each pixel typically consists of one or more single photon 

avalanche diode (SPAD) for detecting photons, alongside processing to digitise and time the detected 

photons. As a result, every pixel needs to accommodate area to detect, process, time and store the 

captured photon data. However, for long-range measurements, the longer exposure time results in a 

greater number of detected photons. Therefore, storing fine precision photon arrival data over multiple 

laser cycles is no longer practical. An established method to address this is to store the data into coarse 

time intervals to form a histogram [48, 49], as illustrated in Fig. 6(c). 3D stacking of CMOS chips into 

separate sensing and processing tiers [50, 51] further increases the amount of photon data that can be 

stored in each pixel. Nevertheless, on-chip capacity inevitably limits the photon data required to meet 

the maximum range and precision for self-driving vehicles. 

Many novel “partial histogram” solutions have recently been developed [52-54] to increase the maximum 

sensing range and/or precision in the face of limited on-chip capacity. However, these all require many 

additional laser cycles to complete a frame which increases sensor activity, limits the achievable frame 

rate and, above all, increases laser power consumption. This is particularly detrimental for flash lidar 

where the laser dominates system power consumption [54, 55]. For practical automotive lidar, a solution 

which makes optimal use of the emitted laser power is required. 

1.5 Objective and Hypothesis 

This work explores a new direct time-of-flight approach to enable long-range, high-precision lidar while 

making optimal use of the emitted laser power and collected photon data: guided direct time-of-flight. 

Self-driving vehicles already collect an excessive wealth of data [56] from sensors such as cameras, lidar, 

ultrasound and satellite navigation to name a few. Instead of treating the lidar as a closed system, 

inefficiently consuming laser cycles and collecting excessive data, this work proposes opening up the 

lidar to use the onboard data already available. 

The proposed guided time-of-flight sensor allows each of its pixels to be externally and independently 

set to only count photons within a reduced time window, as illustrated in Fig. 6(d). This would enable 

the sensor to efficiently collect the returning laser photons; making optimal use of the laser power while 

minimising the data imposed by the sensor. Furthermore, by relying on fewer laser cycles per frame, 

laser eye-safety and interference challenges as the number of self-driving vehicles on the road increases 
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[57] are simplified. This thesis presents a pioneering exploration into the newly proposed concept of a 

guided direct time-of-flight sensor and its feasibility as a depth-sensing solution for self-driving vehicles.  

1.6 Thesis Outline 

With the foundational overview in place, Chapter 2 offers a comprehensive literature review. It serves 

to provide the necessary background information and evaluate the scope of related work within the field 

of solid-state direct time-of-flight lidar. 

Chapter 3 reinforces the value of the proposed guided dToF system through the application of 

quantitative models. The limitations of both traditional full histogram and novel partial histogram 

approaches are explored. 

Chapter 4 presents the design and evaluation of the dToF sensor equipped with integrated guided 

functionality, developed for this project. The contingency sensor option upon which this project 

ultimately relied is also outlined. 

Chapter 5 explores different techniques for estimating depth using cameras, given their abundance 

onboard self-driving vehicles. The merits of various depth estimation techniques are evaluated to 

establish the most practical option for guiding the system for this project. 

Chapter 6 brings together the prior chapters, combining the guided sensor and the depth estimation 

source to showcase the first operational guided dToF system. The system is evaluated in a variety of 

challenging conditions to determine the feasibility of guided dToF for self-driving vehicles.  

Finally, Chapter 7 summarises and draws conclusions from the work presented in this thesis. The 

chapter finished by presenting areas of future work to further the development of guided dToF. 
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2 SOLID-STATE DTOF 

2.1 A Brief History of Lidar 

Following the development of the very first lasers in the late 1950s, the first lidar was invented in 1960 

by Hughes Aircraft Company [58]. Initial designs functioned as a single-point rangefinder and were used 

in military applications and space exploration. In 1962, MIT Lincoln Lab used lidar to measure the 

distance to the moon [59] and in 1971 the first lidar-assisted moon landing was completed by Apollo 15 

[60]. Meanwhile, applications in terrain (topography) and shallow water (bathygraphy) mapping were 

being explored as far back as 1965 [61] by mounting lidar onto aircraft.  

Improvements in laser technology soon allowed for more compact lasers. Bulky single-point rangefinders 

evolved into multi-point mechanical scanning lidars. Early examples include the first general-purpose 

mobile robot “Shakey” developed by Stanford Research International and funded by DARPA (1968-

1972) using lidar mounted on a rotating mechanical stepper motor [62]. This was followed shortly-after 

by NASA’s Scanning Laser Rangefinder in 1977 which used a gimballed mirror driven by a stepper 

motor in both horizontal and vertical directions [63]. Notably, a succession of leading-edge innovations 

at the Environmental Research Institute of Michigan (ERIM) between 1984-1987 culminated in a 

scanning lidar onboard the Autonomous Land Vehicle (ALV) that achieved a frame rate of 2 Hz covering 

a FOV of 80° × 30° (256 × 64 pixels) [64]. Once again, these innovations were funded by DARPA. 

Flash lidar was first conceived and demonstrated at Advanced Scientific Concepts [65] towards the end 

of the 1990s. By using a sensor containing a 2D array of pixels and illuminating the entire field of view 

with the laser, each pixel on the sensor can independently measure the laser return time. This made 3D 

ranging possible without the need for mechanical scanning. Once again, NASA was quick to adopt this 

new lidar technology, this time for lunar landing as part of its Autonomous Landing and Hazard 

Avoidance Technology (ALHAT) project in 2008 [66]. The flash architecture achieved a resolution of 

128 x 128 pixels at a frame rate of 1 Hz and importantly eliminated motion artefacts that would 

otherwise have been present through a scanning lidar approach. 
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The next evolution in lidar was galvanised by the 2004 DARPA “Grand Challenge”, a competition to 

accelerate the development of autonomous vehicles. This highlighted lidar as a crucial component for 

self-driving vehicles and prompted participant David Hall to develop the first scanning lidar with 

multiple laser points. By 2007, five of the six teams to successfully complete the challenge used Hall’s 

scanning lidar, which prompted its commercialisation through his company Velodyne [67]. 

The DARPA Grand Challenge kick-started the development of self-driving vehicles for the mass market 

which continues to this day. However, the high cost of multiple-point scanning lidar, coupled with 

advancements in CMOS fabrication has regenerated interest in flash lidar as a solution for self-driving 

vehicles. In 2003, the fabrication of single-photon avalanche diodes (SPADs) using standard CMOS 

processes was achieved [68]. This enabled arrays of highly sensitive pixels for detecting the returning 

laser to be integrated alongside auxiliary circuitry on a single silicon chip. By 2013, the integrated 

processing circuits evolved to include photon event timing and memory, producing the first array of 

direct time-of-flight pixels on a single chip [69]. The adoption of 3D chip stacking in SPAD sensor 

fabrication processes [50] has further increased the achievable pixel resolution of flash lidar using a single 

sensor chip. The culmination of all this development was the world’s first solid-state lidar in a 

commercial application: a stacked SPAD lidar sensor developed by Sony in 2020 for the Apple iPhone 

11 Pro [70]. A timeline illustrating the evolution of lidar as described here is given in Fig. 7. 

 

Fig. 7: A timeline of key events in the history of lidar. 
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2.2 Solid-State Lidar Technologies 

Although all lidar sensors measure depth, the underlying technologies used to achieve this vary widely, 

each with its advantages. The key aspects which define the operation of a lidar are the measurement 

principle, imaging system and wavelength. The main approaches adopted in solid-state lidar in each of 

these categories are summarised in Fig. 8. 

 

Fig. 8: The key aspects which define the operation of solid-state lidar. 

2.2.1 Measurement Principle 

Direct Time-of-Flight (DToF) 

The most intuitive measurement approach is to directly measure the roundtrip time of an emitted laser 

pulse. This method is known as direct time-of-flight (dToF) and is illustrated in Fig. 9(a). The target 

distance 𝑑𝑑 is simply given as a function of the laser return time 𝑡𝑡 and speed of light 𝑐𝑐 by (1): 

 𝒅𝒅 =
∆𝒕𝒕 × 𝒄𝒄
𝟐𝟐

 (1) 

While the principle of dToF is simple, implementing it requires the ability to detect photon arrivals 

with sub-nanosecond (for centimetre) precision. Early dToF sensors combined avalanche photodiodes 

(APDs) with analogue front-end circuitry to determine the peak return [71]. This progressed to using 

single-photon avalanche diodes (SPADs) with digital timing circuitry [72] for higher sensitivity in a 

more compact footprint, once the fabrication of SPADs in standard CMOS processes became established. 
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Since the returning laser power reduces over longer distances following the inverse square law, the signal 

becomes increasingly more difficult to detect over background noise. By utilising high peak, narrow 

pulse width laser signals, the returning signal can remain detectable over longer distances compared to 

indirect approaches which use a continuous laser signal (below). Shorter laser pulses also allow for higher 

peak laser power before eye-safety limits are breached [73]. As a result, dToF has been the dominant 

measurement principle for long-range automotive lidar since the earliest Velodyne HDL-64E automotive 

lidar in 2005 [74]. 

 

Fig. 9: Illustrations of lidar measurement principles: dToF, iToF and FMCW. 

Indirect Time-of-Flight 

By emitting an amplitude-modulated continuous wave (AMCW) and measuring the difference in phase 

of the returning pulse, the roundtrip time can be indirectly measured. This method is known as indirect 

time-of-flight (iToF). For a conventional four-phase iToF approach, illustrated in Fig. 9(b), the target 

distance 𝑑𝑑 can be determined as a function of the emitted wave period 𝑇𝑇 and the total signal in each 

integration phase 𝜑𝜑 using (2). 

 𝒅𝒅 =
𝑻𝑻 × 𝒄𝒄
𝟒𝟒𝟒𝟒

× 𝒕𝒕𝒕𝒕𝒕𝒕−𝟏𝟏 �
𝝋𝝋𝟑𝟑 − 𝝋𝝋𝟒𝟒

𝝋𝝋𝟏𝟏 − 𝝋𝝋𝟐𝟐
� (2) 

Since iToF requires only the ability to integrate the incoming light over coarse time periods, rather than 

accurate event timing, it can be implemented using established CMOS image sensing technology. Early 

implementation, known as “lock-in ToF cameras”, could be created from charge-coupled devices (CCDs) 

as far back as the early 1990s [75]. Early commercial products soon followed, starting with the 176×144 

resolution SR-3000 by Mesa Imaging. By 2012, Microsoft had replaced the active triangulation approach 

in favour of iToF [76]. Nowadays, modern iToF sensors such as Sony’s IMX556 take advantage of state-
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of-the-art CMOS image sensor (CIS) CIS fabrication such as backside-illuminate technology to achieve 

a pixel resolution of 640×480 and the latest generation Microsoft Kinect Azure achieves even megapixel 

resolution [77].  Nevertheless, optical power constraints and range ambiguity due to the laser pulse 

period wrapping around limits iToF to short-range indoor applications [78]. At the time of writing, no 

known iToF solutions have been developed for automotive applications.  

Frequency Modulated Continuous Wave (FMCW) 

Frequency modulated continuous wave (FMCW) lidar works by emitting a laser beam with a 

continuously changing frequency. The reflected signal is compared with the original to measure the 

frequency shift ∆𝑓𝑓 which is directly proportional to the roundtrip time ∆𝑡𝑡, as illustrated in (c).  

Since FMCW measures changes in signal frequency rather than amplitude, it is less sensitive to 

background light and could therefore operate at a lower peak laser power than dToF. The signature of 

the frequency-modulated signal also adds inherent robustness against interference from nearby lidar. In 

practice, integrating the complex laser and optics required for long-range FMCW lidar into a cost-

effective solution for self-driving vehicles remains a major obstacle [15]. 

Nevertheless, the potential advantages of FMCW lidar have attracted considerable effort to address 

these challenges. Advances in optical phased arrays (discussed further in Section 2.2.3) have provided 

a key technology for realising the FMCW scanning mechanism on-chip [79, 80]. More recently, a 

collaboration between Photodigm and Lumentum took this a step further by developing the first FMCW 

with all transmit and receiver optics integrated into a single chip [81].  

 

Fig. 10: Summary of published lidar performance for each measurement principle. 
Adapted from [82]. 
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Fig. 10 summarizes the achieved ranging performance of published lidar research. While iToF remains 

suited for short-range applications and dToF is the dominant measurement principle for long-range 

lidar, the full potential of FMCW is yet to be realized and continues to improve in both range and 

precision. Commercial development from Insight [45], Intel Mobileye [47], and Aeva [83] shows strong 

interest in FMCW lidar, meaning that it could soon become a practical alternative for long-range lidar. 

2.2.2 Wavelength 

Automotive lidar commonly operates at a laser wavelength within either the near-infrared (NIR) or 

shortwave infrared (SWIR) regions. Due to established laser technology from telecommunication 

applications [84], the most common wavelength of operation are within the 850 nm to 940 nm band for 

NIR (referred to as 9xx) and 1550 nm for SWIR. Choosing the operating wavelength of a lidar within 

these values is influenced by many factors which are explored here. 

Laser Eye Safety 

For long-range dToF, operating at a high laser power is critical. However, this poses a danger to eye 

safety. The International Standard IEC 60825-1 defines four classes of laser safety, with Class 1 

certifying safe operation under all conditions of normal use. In general, the maximum permitted laser 

power for a system increases as the laser wavelength moves away from the visible spectrum (between 

380 nm and 700 nm). While exact values depend on multiple factors such as laser pulse shape, divergence 

angle and exposure time, operating within the SWIR over NIR typically permits a 10× increase in laser 

power. This is illustrated in Fig. 11 where the accessible emission limit from NIR to SWIR for a 100 s 

exposure of a collimated laser (i.e. angular extension less than 1.5 mrad) has been calculated.  

 

Fig. 11: IEC 60825-1 class 1 eye safety limit for a 100 s exposure of a collimated laser.  
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Solar Radiation Spectrum 

The majority of unwanted background photons detected by the lidar sensor come from solar radiation. 

However, the solar irradiance on the surface of the earth depends on the wavelength being observed. 

ASTM International provide a reference for the solar spectral irradiance at each wavelength [85]. This 

has been reproduced in Fig. 12 and reveals two crucial characteristics which are relevant to lidar. 

 

 

Fig. 12: ASTM G173 - 03(2020) solar spectral irradiance reference data. 

Firstly, solar irradiance peaks in the visible range and continues to reduce for increasing wavelengths, 

allowing SWIR lidar to operate with lower background noise from ambient light compared to NIR. The 

second notable feature in the solar irradiance spectrum are various notches caused by absorption of 

different atmospheric constituents such as oxygen (O2), and water vapour (H2O). While operating within 

these notches such as 940 nm or in the SWIR band around 1400 nm may seem appropriate, the same 

atmospheric effect which attenuates solar irradiance at these wavelengths also attenuates the laser [86]. 

This effect is particularly problematic in wet and foggy conditions [23]. Furthermore, the irradiance 

spectrum provided at sea level does not precisely replicate solar absorption across the range of altitudes 

in which a vehicle is likely to operate, adding further complications. Nevertheless, many lidar developers 

choose to operate within these solar irradiance notches [87]. 
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Detection Efficiency 

While silicon-based image sensors benefit from well-established mass-market manufacturing processes, 

their peak sensitivity is within the visible spectrum and often extends out to the NIR. Beyond these 

wavelengths, the sensitivity of silicon-based falls to zero. An example of the photon detection efficiency 

(PDE) for a commercially available CMOS SPAD sensor [88] is presented in Fig. 13.  

To achieve SWIR-sensitive photon detection, compound materials are required. Commercialisation of 

indium gallium arsenide (InGaAs) detectors is now realised but these require expensive fabrication 

processes such as molecular beam epitaxy (MBE). Furthermore, elaborate cooling mechanisms are 

typically required to mitigate high dark count rates (i.e., noise) [89]. State-of-the-art research now 

focuses on Group IV-based materials such as germanium-tin (GeSn) [90] where more easily tuneable 

bandgaps and larger wafers could one day make SWIR photon detectors more viable. Silicon-based 

detectors therefore remain the most common choice for consumer self-driving vehicle lidar, while 

manufacturers focus on employing cutting-edge fabrication techniques to enhance photon detection 

efficiency (PDE) at in the NIR band.  

The mass-market manufacturability of silicon-based photons detectors mean that they remain the most 

common choice for consumer self-driving vehicle lidar. Working within the practical limits of silicon-

based detectors, manufacturers focus on employing cutting-edge fabrication techniques to enhance 

photon detection efficiency (PDE) at in the NIR band for improved lidar performance.  

 

 

Fig. 13: Sensitivity of SPADs in a currently available process (at 2.5 V excess bias) [88]. 
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Laser Technology 

While both NIR and SWIR lasers are well established, NIR lasers can take advantage of low-cost 

technology such as vertical-cavity surface-emitting lasers (VCSELs) and edge-emitting lasers (EELs). 

Although some recent progress has been made towards VCSELs and EELs operating at SWIR 

wavelengths [91], current implementations rely on fibre lasers using complex optical components, 

resulting in expensive and bulky solutions [92]. In addition, the reduced peak power of SWIR lasers 

limits them to short-range iToF / FMCW applications. 

Summary 

A summary of automotive lidar wavelength considerations is given in Table 3. While SWIR lidar offers 

the potential for higher laser power before breaching eye safety limits, the availability of low-cost silicon 

detectors and lasers makes NIR the dominant choice for automotive lidar developers at present [45]. 

 

Characteristic NIR (9xx nm) SWIR (1550 nm) 

Permissible laser power Low High 

Performance under high solar irradiance Low High 

Performance under adverse weather  High Low 

Detector affordability High Low 

Laser affordability High Low 

Table 3: Summary of wavelength considerations for automotive lidar. 

  



 

32 
 

2.2.3 Imaging System 

Within the context of the lidar imaging system, the first design choice is whether or not to implement 

a scanning-based system. This can typically involve scanning both the sensor and laser (Fig. 14(a)) or 

only the laser (Fig. 14(b)). In the latter approach, a lens focuses the laser returning from each point in 

the scene onto a chip containing a 2D array of detectors. This can be taken a step further by using a 

laser which illuminates the entire field of view (Fig. 14(c)) and removes the need to scan altogether, 

known as flash lidar.  

 

Fig. 14: Illustrating of lidar imaging systems (a) scanning both laser and sensor (b) laser 
only (c) no scanning (flash). 

The scanning pattern used is primarily dictated by the characteristics of the chosen imaging system. 

Mechanical scanning lidar typically scan multiple vertical points in a 360° motion, while many MEMS-

based system adopt a back-and-forth pattern referred to as raster scanning. Smarter scanning patterns 

such as foveated prioritizes high-resolution data capture in the region of interest (similar to the human 

eye fovea) while reducing resolution in peripheral areas. These are more novel but have seen recent 

development including commercial products by Baraja [93].  

While scanning enables higher signal-to-background noise compared to flash [94], transitioning from 

problematic mechanical-based solutions (Section 1.2.4) to solid-state implementations has proved 

challenging. Additionally, scanning inherently imposes a constraint on the system frame rate contingent 

upon the scanning FOV. Furthermore, the narrow beam of a scanning lidar is more susceptible to 

blockage from dust and dirt particles [95]. In contrast, flash lidar removes the need to implement laser 

scanning and its associated complexities. However, illuminating the full FOV with a single flash places 

a high demand on the laser power. A review of the most established solid-state lidar approaches follows.  
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Micro-Electromechanical Systems  

Micro-electromechanical system (MEMS) solutions attempt to address the manufacturability and cost 

issues of traditional mechanical scanning lidar by fabricating micromirrors to steer the laser. Movement 

is typically controlled using either electrostatic, electromagnetic, electrothermal or piezoelectric 

actuation and can be either resonant or non-resonant. Resonant scanning MEMS mirrors are easier to 

implement and offer a wider scanning angle. However, properties exhibit a strong dependence on 

environmental factors like temperature. The final aspect of a MEMS-based lidar to consider for 2D 

scanning is the mirror configuration. This can be configured using either single- or dual-axis mirrors. 

Using two single-axis mirrors (Fig. 15(a)) increases the number of moving parts, hence further 

deteriorating the robustness of the system. However, single-mirror solutions require either a more 

complex mirror or laser solution, illustrated in Fig. 15(b) and Fig. 15(c) respectively. An extensive 

review of MEMS mirror development for lidar is presented by Wang et al. [96]. 

 

Fig. 15 MEMs scanning configurations (a) single laser, two single-axis mirrors  
(b) single-laser, one dual-axis mirror (c) laser array, one single-axis mirror. 

While MEMS lidar offers a step towards affordable lidar compared to a mechanical approach, the high 

scanning frequency requirement for automotive lidar inevitably requires expensive mirrors with a high 

mechanical quality factor (Q) value [96]. The mirrors also introduce inefficiencies due to reflection losses 

and place constraints on the allowable peak laser power to prevent damage [36]. Nevertheless, MEMS 

lidar is currently the most realisable solid-state scanning approach and has therefore seen significant 

development from key industry players including Innoviz, Blickfeld and Robosense [97]. While the 

robustness of MEMS lidar for automotive remains uncertain, Robosense achieved a significant milestone 

in 2023 with the first MEMS lidar to qualify for AEC-Q100 automotive grade reliability [98]. 
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Optical Phased Array  

By directing the laser beam through an optical phase array (OPA), the phase of the laser can be 

individually controlled in each channel. This allows for precise manipulation and steering of the laser 

beam without any moving parts.  

Due to the complexity of implementing a 2D array of phase shifters, 2D beam steering is commonly 

realised using a 1D array of phase shifters to steer in one direction (𝜑𝜑) and by varying the laser 

wavelength to change its diffraction angle through a grating in the second direction (𝜃𝜃), illustrated in 

Fig. 16(a). 2D OPA scanning in this way was first demonstrated on a silicon chip by Van Acoleyen et 

al. in 2019, achieving a maximum phase shift steering angle (𝜑𝜑) of 2.3° and wavelength steering angle 

(𝜃𝜃) of 14.1° [99]. For independent phase and amplitude control in both directions using a constant laser 

wavelength, a more complex 2D OPA array is required (Fig. 16(b)). The first integration of this on a 

single silicon chip was eventually demonstrated by Abediasl and Hashemi [100], albeit with a maximum 

steering angle of 1.6°.  

 

Fig. 16: 2D OPA beam steering using (a) combined phase shift and wavelength tuning or 
(b) a 2D array of phase shifters. 

Achieving a steering angle wide enough to cover the required FOV for automotive continues to be an 

area of active research [46]. Equally as critical is the limited maximum laser power that can be achieved 

using OPAs [33]. Despite these challenges, solid-state scanning lidar with no moving parts is an 

attractive prospect, attracting companies such as Analog Photonics to pursue the commercial 

development of OPA-based lidar [101]. 

Sequential Switching 

Scanning can also be achieved by discretely switching between emitter elements within a matrix. This 

can be done either electronically by controlling the current through separate laser elements (Fig. 17(a)), 
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or optically (Fig. 17(b)) by sequentially routing the laser path using optical switches for example. A 

lens can then angle the illumination produced from each point in the array onto the scene [102]. 

 

Fig. 17: Sequential switching (a) electronically and (b) optically. 

Electronic sequential switching is achieved by integrating a matrix of lasers on a substrate and 

sequentially addressing the row and column line of individual or groups of lasers. For automotive lidar, 

this approach is being pursued most prominently by Ibeo (now Microvision) [103]. However, a similar 

scheme is also adopted by Apple [104] for indoor smartphone lidar applications. While electronic 

sequential switching presents a simple solution for solid-state laser scanning with no moving parts, the 

peak laser power in each step is limited by the maximum power of individual (or small groups of) lasers.  

On the other hand, optical switching controls the path of laser illumination to be channelled out of a 

single antenna within a matrix of antennas, as illustrated in (Fig. 17(b)). A variety of state-of-the-art 

nanophotonics techniques have emerged to implement optical switching for lidar and are well-reviewed 

in [105]. While this approach is still in the early phases of development, the potential of this approach 

for power-efficient solid-state scanning lidar with no moving parts has gathered a lot of research 

momentum. Early developments in 2020 achieved a 10×10 array of elements [106]. By 2022, a 128×128 

switch array had already been demonstrated and integrated into a lidar setup achieving 10 m range 

with a FOV of 16°×16° [107]. At present, the slow switching time achieved (currently many 

microseconds), among other properties, makes optical switching unsuitable for long-range dToF lidar. 

But with continued development, this early technology has the potential to soon become a viable option 

for long-range scanning lidar. 
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Flash 

Flash lidar is performed by illuminating the entire field of view in a single flash, and a chip containing 

a 2D array of detectors times the laser returning from each point in the scene. This achieves a solid-

state lidar solution without the need for any scanning mechanism. Not only does this avoid all the prior 

challenges of implementing scanning, but it also avoids image artefacts introduced by various scanning 

patterns [97]. 

The feasibility of high-resolution iToF sensors, coupled with a low laser power requirement, makes flash 

the principal choice for short-range indoor lidar. Examples include the 1-megapixel Microsoft Kinect 

Azure with a maximum range of 4.2 m [77]. However, for long-range dToF, the principal challenges are:  

1. high peak laser power required to illuminate the entire field of view over long distances 
2. detecting and precisely timing photons simultaneously across all pixels 

State-of-the-art laser developments (see Section 2.3.1) and single-photon sensitivity detection (see 

Section 2.4.1) significantly increase the maximum range capabilities of dToF. While compression of 

photon data into histograms (see Section 2.4) and 3D chip stacking (see Section 2.5.1) allows more 

photon data to be collected simultaneously across all pixels. In 2019, flash dToF ranging up to 50 m in 

daylight conditions with a pixel resolution of 64×64 was demonstrated using a 3D stacked sensor [108]. 

By 2021, flash lidar operating outdoors at 100 m was demonstrated, adopting on-chip background light 

suppression to reduce the data load on the sensor [109]. 

While high laser power and data volume remain a limiting factor for long-range automotive flash lidar, 

the ease of achieving a solid-state solution with no moving parts brings numerous commercial 

development interests. Companies developing flash lidar for automotive applications include 

Fastree 3D [110], PreAct [111] and Ouster [112]. 

2.2.4 This Work 

Given the current state of lidar technology reviewed here, the lidar developed in this work will use the 

dToF measurement principle, operating in NIR wavelengths to achieve a long-range solution for 

automotive applications. While a flash system will be implemented, this work applies to any lidar 

imaging system using a 2D dToF sensor array. 
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2.3 Overview of DToF Systems 

Independent of the imaging system, the main components of a dToF lidar system are the laser, sensor, 

control logic, lens and optical filter. These are illustrated in Fig. 18(a).   

 

Fig. 18: Main components of (a) a dToF lidar system and (b) a dToF sensor pixel. 

2.3.1 Laser 

The spatial coherence and narrow spectrum of lasers make them ideal illumination sources for lidar. 

While the first gas-based lasers made lidar possible, modern solid-state lidar requires a more compact 

solution in the form of semiconductor lasers, most notably edge-emitting lasers (EELs) and vertical 

cavity surface-emitting lasers (VCSELs). The typical characteristics of both VCSELs and EELs as 

described in [113, 114] are summarised in Table 4. 

Wall-plug efficiency (WPE) describes the efficiency of converting electrical to optical power. While this 

depends on temperature and drive current, EELs are generally considered to have a better WPE than 

VCSELs, with up to 100 times greater achievable brightness being their most attractive characteristic 

[113]. On the other hand, to make optimal use of the laser power, it is crucial to have an evenly 

distributed laser beam that matches the FOV of the lidar sensor and VCSELs produce a native circular 

beam that is well-suited to this requirement [115]. Additionally, matching the laser's bandwidth to that 

of the background filter is necessary to minimize filtering of the laser signal, and the wavelength stability 

of VCSELs makes them more suitable for this reason. Finally, the ability to test individual VCSELs at 

the wafer stage before dicing makes them more suitable for large-scale manufacturing [116].  
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Characteristic EELs VCSELs 

WPE @ 60 °C (at nominal operating current) 45%  40% 

Brightness 1 MW/mm2-sr  10 kW/mm2-sr  

Wavelength stability ~0.3 nm/°C  ~0.08 nm/°C  

Beam shaping Complex  Simple 

Manufacturability Complex  Simple  

Table 4: Comparison of typical EEL vs. VCSEL characteristics. [113, 114] 

While EELs have their advantages, the choice of laser type for a specific lidar application ultimately 

depends on a range of factors including range, sensitivity, field of view and cost. It should be noted that 

both VCSELs and EELs are rapidly evolving technologies (e.g. recent innovations in multi-junction 

high-power VCSELs [117]) and the relative advantages of each laser type continue to shift. 

2.3.2 Lens 

The function of the lens is to focus light returning from the scene onto the lidar sensor. The main 

characteristics of a lens are focal length, diameter, and aberration. The relationship between these 

characteristics and the trade-offs they induce are illustrated in Fig. 19.  

 

Fig. 19: Lens design trade-offs. 

The focal length is the distance between the lens and the point where the light rays converge, also 

known as the focal point. A lens with a shorter focal length will have a wider FOV. The ratio of focal 

length (𝑓𝑓) to lens diameter (𝐷𝐷) is referred to as the f-number (𝑓𝑓#).  

 𝑓𝑓# =
𝑓𝑓
𝐷𝐷

 (3) 
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A larger lens diameter (lower 𝑓𝑓#) allows more light onto the sensor. In lidar, where maximizing the 

number of returning laser photons is critical, this is a highly desirable feature.  However, lenses with 

lower 𝑓𝑓# result in a narrow depth of field, meaning that only objects within a narrow distance region 

will appear in focus. Furthermore, the complexity of designing lenses with low 𝑓𝑓# results in high cost 

and poorer optical quality. The optical quality of a lens is determined by its ability to refract light 

without distortion or aberration. High-quality lenses will produce clear, sharp images with minimal 

distortion, while lower-quality lenses may produce blurred or distorted images. 

2.3.3 Filter 

An optical bandpass filter is used to remove any ambient light outside of the chosen system (laser) 

wavelength. While a narrow bandwidth reduces the number of unwanted background photon detections, 

a filter with too narrow of a bandwidth may result in the laser wavelength falling outside of the passband 

which varies due to process and environmental factors such as temperature. While VCSELs offer 

improved temperature stability, the broad operating range of 40 °C to 105 °C required for automotive 

qualification [118] means that even a small temperature coefficient result in a large variation. This is 

illustrated in Fig. 20 where a typical VCSEL temperature of ~0.08 nm/°C is assumed, along with 

+/- 10 nm process variation, resulting in over 30 nm of wavelength variability. Not only does the optical 

filter need to cover this large laser wavelength variability but the environmental sensitivity of the filter 

itself also needs to be accounted for. 

 

Fig. 20: Example of VCSEL wavelength variability over process and temperature. 

910

920

930

940

950

960

970

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110

W
av

el
en

gt
h 

(n
m

)

Temperature (°C)

~3
0 

nm



 

40 
 

2.4 DToF Sensors Overview 

With an overview of all the other key lidar components illustrated in Fig. 18(a), the final section of this 

discussion focuses on the sensor. The four key components of a dToF sensor, as shown in Fig. 18(b), 

consist of detection, digitisation, timing, and storage. 

Much of the early work regarding CMOS dToF sensors is attributed to MIT Lincoln Laboratory, with 

the first published work in 2001 [119]. This was made possible by two enabling technologies: solid-state 

lasers capable of producing short pulses and the use of avalanche photodiode (APD) sensors to produce 

a digital pulse from even a single photon arrival. The fabrication of APD arrays in CMOS had not yet 

been achieved and, as such, an array of APDs was stacked on top of a separate chip containing an array 

of CMOS timing circuitry. Over the years, this would develop to stack a third chip layer, allowing for 

more complex and precise timing circuitry to be integrated [120].  

In 2003 however, the fabrication of single photon avalanche diodes (SPADs) in CMOS was achieved 

[68]. This breakthrough made it possible to integrate highly sensitive photon detectors and timing 

circuitry on the same chip, without the complexity and cost of stacking different chips. It was followed 

shortly by the first CMOS SPAD ToF sensor in 2004 [72]. Over time, CMOS SPADs developed to 

achieve greater sensitivity [121-123], lower noise [124, 125] and timing circuitry evolved to process 

multiple events per laser cycle (multievent TDCs) [126].   

2.4.1 Detection 

A photodiode serves as the fundamental building block for CMOS light sensors. When the photodiode 

is reverse-biased, it allows incident light to generate a current flow within the device. The extent of 

reverse biasing determines the operational state of the photodiode. At a low reverse, the current 

increases linearly with the amount of light. Operating in this way, the low light levels must be integrated 

for long periods of time to detect the resulting low current. A SPAD is formed when the reverse bias 

exceeds the breakdown voltage (𝑉𝑉𝐵𝐵𝐵𝐵) of the diode by an excess voltage (𝑉𝑉𝐸𝐸𝐸𝐸). Under these conditions, a 

single photon is enough to cause an avalanche of current. This provides the instant signal required to 

accurately measure the return time of the laser pulse even when the returning laser signal is small at 

long distances. 
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Upon the SPAD avalanche current being induced, it must be quenched by reducing the SPAD bias 

voltage below breakdown and recharged by restabilising the overdrive voltage (Fig. 21(a)). The most 

basic method of achieving this is through a passive quench series resistor (Fig. 21(b)), which reduces 

the voltage across the SPAD when the avalanche current flows. This is typically followed by a logic 

gate or comparator which converts the signal to a low-voltage domain. The combination of quench and 

voltage conversion is referred to as the SPAD front-end (FE). While numerous quench/recharge 

topologies exist, these are beyond the scope of this thesis. The key takeaway is that, between a photon 

arriving and the SPAD recharge, a dead time (𝑡𝑡𝑑𝑑) exists during which additional photon arrivals are 

not counted (Fig. 21(c)). For this reason, SPADs can be grouped in parallel to form a macropixel, 

allowing SPADs within the group to fire while others recharge. Various techniques are used to combine 

and process the signals from macropixels containing multiple SPADs as will now be discussed. 

 

Fig. 21: (a) SPAD avalanche, quench, and recharge phases (b) passive quench 
configuration (c) dead time causing photon arrivals to be missed. 

2.4.2 Digitisation 

A simple method of digitising and combining photon activity from multiple SPADs is using a 

combination of pulse-shaping (PS) followed by a network of OR gates [127] as illustrated in Fig. 22(a). 

Each PS shortens the period of electrical pulse signal that arises from the FE to decouple it from the 

SPAD’s deadtime period. This increases the maximum achievable photon count rate of all SPADs in 

the macropixel when combined at the OR gate which changes state to indicate one or more SPADs 

have fired. Nevertheless, even with pulse shaping the OR gate eventually saturates under high enough 

photon rates, resulting in no change at the output and producing ambiguity in the number of SPADs 

that fired. The toggle flip-flop + XOR tree technique (Fig. 22(b)) removes the dependence on pulse 

width altogether, increasing the maximum count rate of the macropixel [128]. This technique eventually 

reaches its limit when the photon rate exceeds the time required for the XOR gates to switch state. 
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Under even higher photon return rates, coincidence detection (Fig. 22(c)) further extends the maximum 

count rate of the macropixel [48] by summing photon arrival events and only outputting the result if 

the sum exceeds a predetermined threshold. This is an effective technique for increasing the maximum 

count rate of the macropixel but requires prior knowledge of the expected arrival rate for each pixel to 

ensure the threshold does not result in missed photon arrivals.   

The high photon rates experienced by a lidar sensor operating outdoors demand extremely high 

throughput from each macropixel. Even though the toggle flip-flop XOR approach improves throughput 

over the OR technique, the resulting lidar depth image is still severely degraded using this technique in 

an outdoor environment [129]. To address this, the synchronous summation technique (SST) enables all 

detected SPAD events to be combined without missing a count. The implementation is illustrated in 

(Fig. 22(d)) [130]. By using a distributed clock (CLK) and summing SPAD events within each clock 

cycle, SST trades off photon arrival timing precision for dynamic range. SST exceeds the count rate 

achieved by OR/XOR techniques without relying on prior knowledge of the scene (as required for 

coincidence detection) [129].  

 

Fig. 22: SPAD SiPM digitization techniques (a) pulse-shaping + OR tree (b) toggle + 
XOR tree (c) coincidence detection (d) synchronous summation technique (SST). 

Adapted from [129]. 
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2.4.3 Timing 

An integral part of a time-of-flight sensor is the ability to count the elapsed time between the laser 

firing and photons arriving. This is achieved using a time-to-digital converter (TDC). The most common 

types of TDC are counter, gated ring oscillator (GRO) and delay-line (DL). 

Counter 

Of these, counter TDCs are the simplest, achieved by distributing a clock to increment a local counter 

in each ToF pixel. A globally distributed START or STOP signal indicates the start/end time intervals. 

While a counter TDC achieves timing with high linearity, the precision that can be achieved from the 

period of a globally distributed clock is typically limited to a few nanoseconds. In addition, driving and 

rebuffering the clock signal over increasing numbers of pixels leads to high power consumption. 

 

Fig. 23: (a) Gated ring oscillator and (b) delay line TDC architectures. 

Gated Ring Oscillator (GRO) 

A faster counter clock can be achieved by generating the clock locally to each TDC using a GRO. A 

GRO is a chain of an odd number of inverters, with the output of the first fed back to the input of the 

first as shown in Fig. 23(a). This feedback creates an oscillation when the inverters are enabled, clocking 

the local counter. The faster clock period that can be achieved by removing the need for a globally 

distributed clock allows for much finer precision, with the achievable period 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 determined by the time 

delay of a single inverter 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 and the number of inverters in the chain 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖. 

 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 (4) 

Typical inverter delays lie in the range of few to tens of picoseconds, leading to sub-nanosecond time 

resolution. Further precision can be extracted by reading the state of the inverters when the TDC is 

stopped, given by OUTF in Fig. 23(a). Implementing a GRO in every pixel leads to significant power 
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consumption. The poorly defined delay time of each inverter also creates ambiguity in the clock period 

and varies with process, supply voltage, and temperature (PVT). Furthermore, the clock period of each 

GRO is likely to differ between pixels, requiring each pixel to be independently calibrated. However, it 

has been demonstrated that coupling neighbouring GROs can effectively synchronize the phase and 

frequency of adjacent oscillators, offering a potential solution to this issue [131]. This is achieved by 

either resistively or capacitively coupling between matching nodes in neighbouring GRO. Given enough 

time the coupled GROs will converge and “lock” to the same frequency and phase. This technique is 

known as injection locking.  

Delay Line (DL) 

A delay line TDC, shown in Fig. 23(b), measures time by triggering a chain of delay elements and 

observing the number of elements that the signal has propagated through once the STOP signal is 

raised. As with GROs, these remove the need for a globally distributed clock, allowing a finer timing 

resolution limited by the minimum inverter delay time (roughly 6 ps for a 40 nm CMOS process) [132]. 

Fewer toggling elements compared to GRO result in reduced power consumption and for solutions 

requiring only a few counting intervals, DL TDCs also provide a more compact solution.  

The main disadvantage of DL TDCs is the non-linearity arising from different delay times through each 

step in the chain. While this can be partially compensated for by calibration, these also have a strong 

dependence on process, voltage and temperature. 

Time-to-Analog Converter (TAC) 

A review of TDCs would not be complete without an overview of time-to-analogue converters (TAC). 

This typically involves sinking a current into a capacitor, producing a voltage proportional to time 

which can then be digitised using an analogue-to-digital converter (ADC). As CMOS (and lidar sensors) 

scale to use smaller technology nodes with lower supply voltages, this approach has been largely 

abandoned in favour of a fully digital TDC approach such as those described above.  

  



 

45 
 

2.4.4 Storage 

An established technique for measuring the laser return time is time-correlated single photon counting 

(TCSPC). In this approach, the laser is pulse and a TDC measures the first photon arrival with high 

precision. The data is read from the sensor and the cycle is repeated multiple times to establish the 

peak signal return time over background noise events, as illustrated in Fig. 24(a).  

 

Fig. 24: (a) Fine precision TCSPC over multiple laser cycles under low background light 
(b) compression of photon data into a histogram under high background light. 

For low-resolution imaging with low background noise such as fluorescent lifetime imaging, this 

technique provides an adequate solution [133, 134]. However, for long-range (i.e. long exposure time) 

lidar under high ambient background conditions and high image resolution, timing each photon event 

in every pixel with high precision and reading out all this data between laser cycles is not feasible.  

As a result, CMOS dToF sensors evolved to not only detect and time photon arrivals but also to store 

and process arrivals from multiple laser cycles. A key technique which allows all this functionality to be 

integrated on-chip is histogramming. By sorting photon arrival times into coarse time bin intervals, the 

amount of photon data required to be stored is reduced, as shown in Fig. 24(b). Precision can then be 

recovered by interpolation between peak bins. This was first realised by Niclass et al. in 2013 in which 

ranging up to 100 m was demonstrated with 16 dToF pixels on a single CMOS chip [69].  
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Fig. 25: Timing photon events using (a) TCSPC with a single channel TDC (b) TCSPC 
with multiple TDC channels and (c) METDC to histogram. 

Sensor architectures adopting histogramming can also exploit the use of multi-event TDCs (METDCs) 

[126, 135], illustrated in Fig. 25. In the presence of high background noise, counting only the first photon 

event per laser cycle results in missed signal events. While using multiple time-interleaved TDC channels 

increases the maximum throughput of events per laser cycle, it results in a proportional increase in TDC 

area. An METDC architecture on the other hand, allows multiple photon events to be timed. While a 

multi-channel TDC approach can achieve timing precision independent of the final histogram resolution, 

the matched resolution of an METDC with the final histogram is a well-suited solution. 
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2.5 State-of-the-Art DToF Sensors 

While histogramming plays a vital role in enabling high pixel resolution dToF lidar, additional 

advancements have been necessary to meet the long-range outdoor depth-sensing performance required 

for self-driving vehicles. Two extensively adopted techniques are 3D chip stacking and partial 

histogramming. These have found widespread application in the current state-of-the-art dToF CMOS 

sensors, either individually or in combination. 

2.5.1 3D Chip Stacking 

Traditionally, CMOS image sensors (CIS) were designed as single-tier chips where the detection 

components and the supporting circuitry were integrated together (Fig. 26(a)). However, as the demand 

for higher resolution, improved image quality, and enhanced performance grew in the early 2000s, CIS 

manufacturers started exploring new approaches. They began developing 3D stacked sensors, which 

involved fabricating the detection components and support circuitry on separate wafers and vertically 

stacking them (Fig. 26(b)). This stacking technique allowed for greater pixel density while creating 

space for more advanced circuit processing. The development of stacked CIS began in the mid-2000s, 

and it reached a significant milestone in 2012 when Sony introduced Exmor RS, the first commercially 

available stacked CIS process [136]. Early stacked implementation such as these used through silicon 

vias (TSVs) to make electrical connections between the top and bottom tier [137] while modern stacked 

sensors employ hybrid bonding to further increase the total silicon area available for detection [138]. 

 

Fig. 26: Arrangement of photon detectors and supporting circuitry using (a) single-tier 
(b) 3D stacked chips. 
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With 3D chip stacking established for commercial image sensors, interest in this technology re-emerged 

for time-of-flight sensors, recognising the opportunities for increased photon detection and/or processing. 

In 2016, the first 3D-stacked chip containing a 2D array of SPAD detectors was published by Al Abbas 

et al. [50], a collaboration between  STMicroelectronics and the University of Edinburgh, paving the 

way for 3D stacked time-of-flight SPAD sensors. 

The first 3D stacked direct time-of-flight sensor making use of 3D stacking was developed in 2018 by 

Ximenes et. al [139] from École Polytechnique Fédérale de Lausanne (EPFL) and fabricated by 

Taiwan Semiconductor Manufacturing Company (TSMC). It features 16×8 macropixels in groups of 

8×8 SPADs, a 64×21-bit memory in each macropixel and a ring-oscillator TDC shared between pairs 

of macropixels. Rather than using a histogram, the sensor employs a digital infinite impulse response 

(IIR) filter, taking advantage of increased processing area. This filter averages successive photon arrival 

times to reach an estimated peak arrival time in the presence of ambient photons (noise) without the 

need to store all photo events. The filter can also be weighted towards either new photon events or the 

average of previous arrival times to allow trading off filtering for response time. Each filtered value is 

stored in the corresponding SPAD memory address to maintaining ToF pixel resolution equal to the 

total number of SPADs. The option of using a laser signature to scramble interfering laser signals is 

also available. In a follow-up publication [51] the sensor demonstrates ranging up to 300 m with 0.5 m 

error, although this is only given for a single-point (2D) measurement and neither the frame rate nor 

ambient background conditions are provided. Given the sensor’s reliance on an IIR to produce the laser 

return time, ranging under the influence of high ambient background is likely to severely limit precision 

and/or increase acquisition time. 

In 2019, Henderson et al. [108] (University of Edinburgh) presented QuantIC4×4, a stacked SPAD 

sensor featuring 64×64 macropixels with 4×4 SPADs in each. This sensor utilised the additional 

processing area to implement reconfigurable pixels capable of performing various functions including 

high dynamic range imaging, TCSPC and direct time-of-flight. Each macropixel is capable of storing 

16×14-bit histogram bins and contains a METDC which can be configured to use either a global clock 

counter or a local GRO. In a follow-up publication [49], the sensor is demonstrated to range at 50 m 

while running at 30 fps under daylight conditions. 

New 3D stacked SPAD dToF sensors were not published again until 2021. The first of which was 

published at the International Solid-State Circuit Conference (ISSCC). Kumagai et al. [55] (Sony) 
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presented a 189×600 stacked SPAD array which can be grouped into 63×200 macropixels of 3×3 SPADs, 

or 31×100 macropixels of 6×6 SPADs. Processing area is dedicated to SRAM banks for storing 

histogram data (amount undisclosed) as well as a filter to interpolate the peak return time on-chip. The 

sensor achieved the highest SPAD PDE performance in the NIR region at the time, 22% at 905 nm. 

The features combined to achieve a maximum sensing distance of 200 m with 30 cm accuracy running 

at 20 fps under maximum daylight conditions. In 2023 Sony would go on to announce the release of 

their first commercial dToF sensor, IMX611, based on this work [140]. In the same conference, Preethi 

et al. [141] (EPFL) showcased Jatayu, a stacked SPAD dToF sensor of 16×8 macropixels containing 

16×16 SPADs each. As with EPFL’s first stacked dToF sensor, histogramming was not adopted. 

Instead, a TCSPC-like approach was adopted, capturing the first photon event in each half-macropixel 

with fine (14-bit) precision, and the next 8 events with coarse (2-bit) precision. This is combined with 

coincidence detection and a programmable time (distance) window for each macropixel, reducing the 

effect of background photons which otherwise severely limits TCSPC-based lidar in long-range outdoor 

applications (see Section 2.4.4). Ranging up to 100 m with 0.7 m error is demonstrated under low 

outdoor lighting conditions (10 klux), although this is only given for a single-point (2D) measurement 

and at an undisclosed frame rate. 

Continuing the publications of stacked SPAD dToF in 2021, Stoppa et al. [54] (AMS-Osram) 

presented a stacked SPAD dToF sensor aimed at indoor smartphone applications at the International 

SPAD Sensor Workshop (ISSW). It is comprised of 80×60 macropixels, each containing 4×4 SPADs; 

capacity for 32×12-bit histogram bins; and a configurable delay line TDC. The sensor also adopts a 

novel sliding partial histogram method to maximise the utilisation of limited histogram bins, discussed 

further in Section 2.5.2. The combination of these attributes results in 4.4 m ranging within 5% accuracy 

running at 30 fps under outdoor conditions of 50 klux. Note another stacked SPAD sensor with dToF 

functionality was presented at the same conference [142]; however, since no performance metrics were 

disclosed, it is not further discussed here. 

Zhang et al. [143] closed off 2021 with a 240×160 stacked SPAD dToF, grouped into macropixels 

containing 4×4 SPADs. Macropixels are time multiplexed (rolling shutter) in groups of 4, sharing a 

delay line TDC and SRAM memory of 32×8-bit histogram bins for each SPAD. Each macropixel 

stores both photon return time and SPAD address, allowing the full 240×160 image resolution to be 

preserved. The sensor is designed for indoor smartphone applications and achieves a suitable 9.5 m 

maximum range with 1 cm accuracy. Finally, in 2022 Taloud et al. [144] (AMS-Osram) built upon 
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the previously described work of Stoppa et al. [54]. By switching from 40 nm technology to 22 nm on 

the bottom tier, the sensor accommodates an exceptional 59×12-bit bins per macropixel with a 

resolution of 42×32 ToF pixels. The delay line TDC is also upgraded to adopt dynamic element 

matching, allowing the nonlinearity in this style of TDC (see 2.4.3) to be averaged out. The result is a 

maximum range of 8.2 m indoor/5 m outdoor (60 klux) with 30 cm accuracy for a target with 92% 

reflectivity.  

2.5.2 Partial Histogramming 

Even with the use of 3D stacking, the total area available for storing dToF photon histogram data 

reaches a limit, constraining the achievable maximum range and/or precision. To address this, various 

novel partial histogram approaches have recently been adopted. These aim to resolve the photon return 

time with the same maximum range and precision of a conventional full histogram approach but with 

only a limited number of histogram bins.  

The amount of reduction achieved by a given partial histogram implementation is termed the histogram 

reduction ratio (HRR). To date, all partial histogram approaches can be classified into two main 

categories, zooming and sliding, illustrated in Fig. 27. 

 

Fig. 27 Illustration of partial histogram methods (a) zooming over “Z” steps and  
(b) sliding over “L” steps. 
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Zooming 

Fig. 27(a) illustrates the principle of zooming. The reduced set of histogram bins is initially allocated 

to cover the full distance range and, after multiple laser cycles, a peak is identified. The histogram range 

is then readjusted to a narrower time interval centred around the identified peak and another iteration 

of lidar acquisition is performed. Multiple zooming steps Z can be carried out until the desired resolution 

is achieved. A zooming histogram architecture using M bins at each step achieves a histogram reduction 

ratio of: 

 𝐻𝐻𝐻𝐻𝐻𝐻 =  
𝑀𝑀
𝑀𝑀𝑍𝑍 (5) 

In 2019, Zhang et al. [52] (EPFL) published the first dToF sensor capable of independent per-pixel 

histogram zooming. The sensor contains 252×144 SPAD pixels, each with SRAM memory for 8×10-bit 

histogram bins. Each frame is composed of 3 zooming steps to achieve a HRR of 1/64. The resulting 

performance is a maximum range of 50 m with 8.8 cm accuracy using a 60% reflective target. However, 

this is a result of a single-point (2D) measurement and, while the sensor can achieve a frame rate of 30 

fps, the frame rate for this measurement is not disclosed. By moving to a stacked process, a revised 

sensor by the same author was able to increase the histogram bin capacity from 8 to 32 bins [143], 

allowing zooming to be reduced to a 2-step approach.  

In 2021, Kim et al. [53] published an ambitious effort using only 2 histogram bins for each dToF pixel. 

By zooming 8 steps per frame (HRR of 1/128), this arrangement effectively trades off histogram bin 

capacity for frame rate. Reducing the photon timing to allocation into one of two bins removes the need 

for a TDC altogether; relying on a simple up-down counter. The result is a single-tier dToF sensor with 

48×40 macropixel and 6 SPADs per macropixel, achieving a maximum range of 45 m with 4 cm 

accuracy. Relying on a high number of zoom steps undoubtedly has implications on the achievable frame 

rate, which is not disclosed as a result. This was noted in a follow-up publication by Park et al. [145] 

and addressed by dividing each zoom step into 2 halves, with separate up-down counters for each half. 

Equivalent This effectively covers 4 histogram bins at each zoom step and reduces the number of 

zooming steps from 8 to 4. This enables the sensor to range up to 9 m at 30 fps and 33 m at 1.5 fps, 

although the frame rate at the maximum quoted range of 45 m is not disclosed. 
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Sliding 

In a sliding approach, the pixel starts by spreading its reduced histogram bins across only a subset of 

the full distance range. After sufficient laser cycles have been integrated, the time window is slid to a 

new time range and the process repeats until the full distance range has been covered. Assuming non-

overlapping time windows, a sliding achieves a histogram reduction ratio equal to the number of slide 

steps L.  

The sensor presented by Stoppa et al. [54], described earlier in Section 2.5.1, was the first sliding 

published sensor to adopt the sliding histogram approach. Each pixel uses 32 histogram bins to slide 

across 16 time windows with 6 bins of overlap between windows to cover edge cases. The next iteration 

of this sensor by Taloud et al. [144], also already described in Section 2.5.1, maintained a sliding 

histogram approach. While the number of slide steps is not disclosed, the nearly twofold increase in the 

maximum range from 4.4 m to 8.2 m for the equivalent increase in histogram bins suggests that a similar 

number of steps was adopted. 

Finally, a sensor by Gyongy et al. [146], first presented in 2021 at ISSW, can be programmed into a 

continuous sliding histogram mode with up to 128 steps. Each of the 32×16 macropixels accommodates 

8×12-bit histogram bins. While operating in continuous sliding is not the primary mode of this sensor, 

outdoor performance running in continuous sliding over a limited 16 steps has been demonstrated at 

6.25 fps in a follow-up publication [147]. 

Laser Power Penalty 

Partial histogram techniques allow dToF lidar sensors to increase the maximum range and/or precision 

of a dToF sensor in the face of limited on-chip area, they impose a severe laser power penalty. In 

zooming, many laser cycles need to be used to determine the time window of interest, often over multiple 

zoom steps. In sliding, most time windows being observed at each step do not contain the returning 

laser signal while it is being pulsed. While additional laser power is generally undesirable, this is 

particularly problematic for flash implementation which already require a high laser power to illuminate 

the entire field of view at once.  
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Table 5: A summary of state-of-the-art CMOS dToF publications. 

 
1 Single point measurement. 
2 Frame rate not specified at maximum distance. 
3 Frame rate not given in sliding partial histogram mode. 
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2.5.3 Summary 

A performance summary of published state-of-the-art CMOS dToF sensors discussed in this chapter is 

presented in Table 5. It shows that, for state-of-the-art dToF performance, almost all sensors have 

adopted chip stacking and/or partial histogram. To illustrate the importance of 3D stacking as a key 

enabling technology for dToF, the histogram capacity per ToF pixel of sensors in Table 5 has been 

plotted in Fig. 28. It shows the growing development to push the boundaries of 3D stacking to increase 

the per-pixel histogram bin capacity. Sensors which cannot utilise this technology are limited to low bin 

count (8 or fewer) and resort to partial histogram approaches at the cost of a severe laser power penalty. 

 
Fig. 28: Histogram bin capacity per pixel of published dToF sensor arrays.  

(a) Henderson 2019 [108] (b) Zhang 2019 [52] (c) Kim 2021 [53] (d) Gyongy 2021 [146] 
(e) Stoppa 2021 [54] (f) Zhang 2021 [143] (g) Park 2022 [145] (h) Taloud (2022) [144]. 

2.6 Conclusion 

Direct time-of-flight (dToF) lidar is currently the most established lidar measurement principle to 

achieve the long-range performance required for self-driving vehicles. Of all solid-state implementations 

being developed for a low-cost scalable alternative to mechanical lidar, flash lidar is the most 

immediately feasible implementation which does not use moving parts. However, flash and even many 

scanning lidar solutions, require a 2D array of dToF pixels, each capable of detecting, processing, timing, 

and storing photon arrivals. This makes it difficult to achieve long-range without resorting to expensive 

3D chip stacking or partial histogram techniques which incur a severe laser power penalty. This is 

particularly detrimental for flash solutions, which already consume a high amount of laser power to 

illuminate the entire field of view at once. Therefore, a 2D dToF sensor solution that makes optimal 

use of the returning laser power would be a significant breakthrough in enabling solid-state lidar that 

can deliver the depth-sensing performance required for self-driving vehicles. 
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3 MODELLING DTOF SYSTEMS 

3.1 Introduction 

The requirement of every pixel to accommodate detection, processing and storage of photon arrivals 

limits the ranging capabilities of a dToF sensor. This chapter quantitively explores these limits for a 

conventional full histogram approach, explaining the growing trend of partial histogram approaches. 

The laser power penalty imposed by adopting a partial histogram approach is then quantified to 

establish the advantage of a guided dToF approach, as proposed in this thesis.  

The chapter begins by introducing fundamental concepts and models related to dToF lidar. These are 

then applied to a realistic set of automotive lidar system parameters. The models and methodology 

developed here not only enable the analysis carried out in the chapter but also allow the developed 

guided lidar system to be benchmarked in subsequent chapters.  

3.2 Models 

3.2.1 Photon Budget 

A photon budget is fundamental to modelling a lidar system. It quantifies the number of detected signal 

and background photons for a given system. Tontini et al. [149] provide a valuable resource for 

calculating the photon budget of SPAD-based dToF lidar systems. As such, this model is utilised here, 

with some minor modifications to simplify dependencies. An overview of the model is provided here for 

completeness, but for further details the reader is encouraged to refer to the original paper. 

The aspects of a lidar system which contribute to the photon budget are illustrated in Fig. 29. For each 

point incident on the target, only a proportion of the reflected light radiates back to the lens (i.e., that 

contained within the angle 𝛼𝛼). Assuming a Lambertian target (i.e., one whose brightness appears equal 

from any angle) this proportion of returning light 𝑅𝑅 is given by: 

 𝑅𝑅 =  sin2 𝛼𝛼 =
𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

4𝑧𝑧2 + 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2  (6) 
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Fig. 29: Diagram of parameters which contribute to the photon budget of a lidar system. 

The total laser power incident on each point on the target, known as radiance exitance, is given by the 

emitted laser power 𝑃𝑃𝑡𝑡𝑡𝑡 over the total area covered by the projection. For a rectangle spot optimised 

around the projected sensor area, as illustrated in Fig. 30(a), the radiance exitance is simply given as: 

 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2 𝑃𝑃𝑡𝑡𝑡𝑡
𝑧𝑧2 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝

 (rectangle spot) (7) 

For an optimised round laser spot, the laser power spills over a larger area, with a radiant exitance of:  

 
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

4 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
2 𝑃𝑃𝑡𝑡𝑡𝑡

𝑧𝑧2 𝜋𝜋 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 +  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2)  𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝
 (round spot) (8) 

While a rectangle spot can be more challenging to implement than a circle spot, the advantage of less 

wasted laser power is clear. The minimum wasted laser power for an optimised round spot and a sensor 

with equal rows and columns is 𝜋𝜋/2 ≈ 1.6 times greater than the equivalent optimised rectangle spot. 

The remainder of this derivation will assume an optimised rectangle spot.  

A portion of light incident on a target is absorbed. This is represented by the reflectivity 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The 

sensor lens also presents a medium for absorbing power, characterised by the lens transmittance 𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜. 

Finally, assuming a Lambertian surface (i.e. uniform radiance) a factor of 1/𝜋𝜋 gives the projected area 

over which the radiance is emitted [150]. The overall irradiance 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is therefore: 

  
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜  𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
2 𝑃𝑃𝑡𝑡𝑡𝑡

𝑧𝑧2 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 𝜋𝜋
 (9) 
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Fig. 30: (a) Projected dimensions of a square laser spot (b) wasted laser power from a 
circle laser spot. 

The solar background radiant exitance on the target 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏𝑏𝑏 is independent of the laser source and 

therefore of the system parameters too. It can be obtained at maximum brightness (100 klux) by 

integrating the solar irradiance spectrum [85] over the wavelengths of interest. The observed solar 

background irradiance for any pixel is therefore given by: 

 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏𝑏𝑏 =
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏𝑏𝑏 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜  

𝜋𝜋
 (10) 

The total power (laser or background) observed by any pixel is a product of the observed irradiance 

across the target and the overlapping projected pixel area given by: 

 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 �
𝑧𝑧

𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
�
2
 (11) 

The observed laser 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and background 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏 power for each pixel is therefore expressed as: 

 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑅𝑅 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     

  
                    =

𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

4𝑧𝑧2 + 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 ×
𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜  𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2 𝑃𝑃𝑡𝑡𝑡𝑡
𝑧𝑧2 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝  𝜋𝜋

× 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 �
𝑧𝑧

𝑓𝑓𝑙𝑙𝑒𝑒𝑛𝑛𝑛𝑛
�
2
 

  

                     =
𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜  𝑃𝑃𝑡𝑡𝑡𝑡  𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

 4𝑧𝑧2 𝜋𝜋 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
 (assuming 4𝑧𝑧2 ≫ 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 ) (12) 

  𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏 =
𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

4𝑧𝑧2 + 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 ×
𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜  𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏𝑏𝑏

𝜋𝜋
× 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 �

𝑧𝑧
𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�
2
   

               =
𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜  𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏𝑏𝑏 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

4 𝜋𝜋 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2  (assuming 4𝑧𝑧2 ≫ 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 ) (13) 



 

58 
 

Two key observations can be drawn from Equation (12) and Equation (13). First, assuming the projected 

laser and sensor FOV are always matched, the received laser power is independent of pixel area. As an 

example, if pixel area is increased the total projected FOV increases and hence the same laser power 

must be projected over a wider area. The increase projected pixel area is therefore directly countered 

by a reduced laser power per unit area. Second, the received background power is independent of the 

target distance because the projected pixel area, and hence total solar power within this area increases 

with the square of the target. However, this is directly countered by the returning power from the target 

decreasing with the square of the target distance.  

Using Planck’s relation, the number of photons 𝛾𝛾 present in the received power of wavelength 𝜆𝜆 and 

energy 𝐸𝐸 over an interval 𝑡𝑡 is given by Equation (14) where ℎ is Planck’s constant and 𝑐𝑐 is the speed 

of light: 

 𝛾𝛾 =
𝜆𝜆
ℎ 𝑐𝑐

�𝑃𝑃 𝑑𝑑𝑑𝑑 (14) 

Since the laser power 𝑃𝑃𝑡𝑡𝑡𝑡 in a dToF system is not continuous, it is more useful to relate the returning 

laser photons as a function of the total emitted energy 𝐸𝐸𝑡𝑡𝑡𝑡 of each laser pulse. Accounting for SPAD 

photon detection efficiency (PDE) which relates the ratio of received to detected photons, the total 

number of detected photons per laser pulse 𝑃𝑃ℎ𝑠𝑠 and background photon arrival rate 𝑃𝑃ℎ𝑏𝑏/𝑡𝑡 is given by: 

 
𝛾𝛾𝑠𝑠 =

𝑃𝑃𝑃𝑃𝑃𝑃 𝜆𝜆 𝜌𝜌𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜  𝐸𝐸𝑡𝑡𝑡𝑡  𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

ℎ 𝑐𝑐 4𝑧𝑧2 𝜋𝜋 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 (Laser photons per pulse) (15) 

 𝛾𝛾𝑏𝑏
𝑡𝑡

=
𝑃𝑃𝑃𝑃𝑃𝑃 𝜆𝜆 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜  𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏𝑏𝑏 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

ℎ 𝑐𝑐 4 𝜋𝜋 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2  (Background photon rate) (16) 

3.2.2 Peak Detection 

In a dToF system, the returning laser signal is identified by a peak in the resulting histogram. However, 

under high background/low signal conditions, the highest bin value may correspond to a non-signal bin 

if sufficient laser cycles have not been integrated, as illustrated in Fig. 31. After completing a frame of 

𝑁𝑁 laser cycles, the probability that the peak bin is correctly identified as the signal bin is known as the 

probability of detection 𝑃𝑃𝐷𝐷 and depends on (i) the expected signal photon count per laser pulse; (ii) the 

ambient background photon arrival rate; (iii) the number of laser integration cycles. The model provided 
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here aims to determine the minimum number of laser cycles required to meet a set probability of 

detection for any given dToF system. 

 

Fig. 31: The histogram bin containing the laser signal becomes increasingly more 
distinguished as more laser cycles are integrated. Adapted from [1]. 

Using a computationally intensive Monte Carlo method is a common method for characterising 𝑃𝑃𝐷𝐷 for 

a given dToF system. In this approach, a Poisson-distributed background photon count is generated 

over 𝑀𝑀 histogram bins based on the expected count per bin after 𝑁𝑁 laser cycles. A Poisson-distributed 

signal photon count is then added to a single pre-determined bin based on the average expected signal 

photon after 𝑁𝑁 laser cycles. By observing the ratio of runs in which the signal bin contains the most 

photon counts, the probability of detection can be characterized. 

Here, a derivation of 𝑃𝑃𝐷𝐷 is introduced to provide an alternative deterministic method over the common 

Monte Carlo approach method. This model is based on the following simplifying assumptions: 

1. The laser signal falls entirely within a single time bin. 
2. No dead time associated with photon detection, thereby negating any pileup effects. 
3. All photon arrivals per cycle are counted. 

Let 𝜇𝜇𝐵𝐵 represent the average background photon arrivals per bin after 𝑁𝑁 cycles, and 𝜇𝜇𝑆𝑆 the average 

signal photon arrivals after 𝑁𝑁 cycles. For a system with 𝑀𝑀 bins, 𝑃𝑃𝐷𝐷 can be described as: the probability 

that the signal bin takes on a given photon count value 𝑥𝑥 “and” all 𝑀𝑀 − 1 non-signal bins take on a 

value lower than 𝑥𝑥, for all possible photon count values of 𝑥𝑥: 

 
𝑃𝑃𝐷𝐷 = �𝑓𝑓𝑆𝑆(𝑥𝑥) × 𝐹𝐹𝐵𝐵(𝑥𝑥)𝑀𝑀−1 

∞

𝑥𝑥=0

 (17) 
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Here, 𝑓𝑓𝑆𝑆(𝑥𝑥) is the probability density function (PDF) of the signal bin and 𝐹𝐹𝐵𝐵(𝑥𝑥) is the cumulative 

density (CDF) of any non-signal bin. These are formally expressed using a Poisson distribution. 

However, since a typical dTof system involves integrating thousands of laser cycles, it is practical to 

approximate these to a Gaussian form to further simplify computation: 

 𝑓𝑓𝑆𝑆(𝑥𝑥) ≈
1

(𝜇𝜇𝑆𝑆 + 𝜇𝜇𝐵𝐵)√2𝜋𝜋
𝑒𝑒
−12�

𝑥𝑥− (𝜇𝜇𝑆𝑆+𝜇𝜇𝐵𝐵)
(𝜇𝜇𝑆𝑆+𝜇𝜇𝐵𝐵) �

2

 
(Gaussian PDF with mean and 
standard deviation of (𝜇𝜇𝑆𝑆 + 𝜇𝜇𝐵𝐵)) 

(18)  

    

 𝐹𝐹𝐵𝐵(𝑥𝑥) ≈ 𝛷𝛷 �
𝑥𝑥 − 𝜇𝜇𝐵𝐵
𝜇𝜇𝐵𝐵

� (Gaussian CDF with mean and 
standard deviation of 𝜇𝜇𝐵𝐵) 

(19) 

These can be solved using standard mathematic computing software (e.g. MATLAB) after applying 

appropriate limits. Recognizing that the photon count value 𝑥𝑥 cannot take on negative values binds the 

lower limit to zero. The upper limit can be set by recognizing that values of 𝑥𝑥 multiple times greater 

than 𝜇𝜇𝑆𝑆 + 𝜇𝜇𝐵𝐵 result in negligible accuracy improvement.  

To examine the accuracy of the derived expression for probability of detection 𝑃𝑃𝐷𝐷, it is tested on a 

system composed of the following parameters: 

• average signal photon count per laser cycle is 𝛾𝛾𝑠𝑠 = 0.1 counts 
• average background photons in each 𝑀𝑀 bin per laser cycle is 𝛾𝛾𝑏𝑏 = 1/𝑀𝑀 counts 
• total of 2, 4, or 8 histogram bins 

 The probability of detection for the test system is evaluated for different values of total laser cycles 𝑁𝑁. 

A Monte Carlo approach is used to evaluate the probability of detection of the system at 20 different 

values of 𝑁𝑁 using 5000 runs at each point. A deterministic approach by solving Equation (17) at each 

point is also used to evaluate the system. The results of both approaches are plotted in Fig. 32. 
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Fig. 32: Evaluating the probability of detection on an example system with is 𝜸𝜸𝒔𝒔 = 𝟎𝟎.𝟏𝟏 
and is 𝜸𝜸𝒃𝒃 = 𝟏𝟏/𝑴𝑴 using a Monte Carlo approach. This is shown to match closely with the 

derived deterministic approach Equation (17). 

The first significant observation is how closely the deterministic approach matches the computationally 

intensive Monte Carlo approach. The matching deteriorates for low values of total laser cycles as the 

assumption of Gaussian distributed photon arrivals deteriorates, however thousands of laser cycles are 

typically conducted in dToF.  

The second observation worth noting is the inflexion point below-which a lower bin value exhibits a 

higher probability of detection. Under these conditions, too few laser cycles have been integrated to 

provide a sufficient laser photon count above the evenly distributed ambient background level. As a 

result, every bin has an equal chance of being the peak bin after 𝑁𝑁 laser cycles and so the probability 

of detection converges to 1/𝑀𝑀. Note this behaviour is also successfully captured by the deterministic 

approach (although not fully captured within the scale bounds of Fig. 32).   

Arguably more useful, Equation (17) can be used to determine the minimum number of laser cycles 

required for a dToF system to achieve a given 𝑃𝑃𝐷𝐷. This can be solved as an optimization problem, again 

using simple mathematic computing software, by searching for the value 𝑁𝑁 which minimises the 

difference between Equation (17) and the desired value of 𝑃𝑃𝐷𝐷. An example of one such function is 

MATLAB’s “fminsearch” function [151]. This provides a useful tool in the design of lidar systems as 

will be seen in subsequent sections. 
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3.2.3 Peak Precision 

While the previous section focused on the minimum number of laser cycles required to detect the 

presence of a signal, multiple more cycles must be integrated to achieve a degree of precision. This is 

thoroughly examined by Korner [152] where the following 4 parameters are identified as determining 

the achieved precision (𝛿𝛿) of a dToF lidar system: 

• histogram bin interval 𝑎𝑎 
• signal standard deviation (primarily laser pulse width) 𝜎𝜎 
• average background photons per bin after 𝑁𝑁 cycles 𝜇𝜇𝐵𝐵 
• average signal photons after 𝑁𝑁 cycles 𝜇𝜇𝑆𝑆 

The two key models described are (1) Thompson and (2) Cramér Rao bound (CRB). The Thompson 

model provides an intuitive relation between the system parameters affecting precision and is given as: 

 
𝛿𝛿 = �𝜎𝜎

2 + 𝑎𝑎2/12
𝜇𝜇𝑆𝑆

+
4 √𝜋𝜋 𝜎𝜎3 𝜇𝜇𝐵𝐵
𝑎𝑎 𝜇𝜇𝑆𝑆2

 (20) 

The first term of the Thompson model attributes the effect of quantisation due to the finite dToF 

histogram bin width, while the second term attributes the effect of background noise. Under high signal-

to-noise ratio (SNR), the first term dominates and reducing the histogram bin or laser width produces 

the most significant improvement in precision (lower 𝛿𝛿 is better). Under low SNR conditions, the 

returning laser power becomes an increasingly more significant factor and has a greater effect on 

precision than an opposite change in background power by the same amount.  

While the Thompson model provides valuable insight into tuning system precision, its accuracy degrades 

when modelling systems with low SNR. The error in matching Monte Carlo results under these 

conditions can be as high as 20%. For such cases, the alternative CRB model is shown to provide better 

matching of system precision. While the CRB model does not take the form of an identity equation like 

the Thompson model, Koerner provides a Python toolbox to execute the model [153].  
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The deviation of the Thompson model is illustrated in Fig. 33 for a system with the following 

parameters: 

• histogram bin interval 𝑎𝑎 = 1 ns 
• laser pulse 𝜎𝜎 = 1.5 ns 
• average background photons per bin 𝜇𝜇𝐵𝐵 = 100 
• average signal photons 𝜇𝜇𝑆𝑆 = 100 to 100k 

As with the probability of detection model (Equation (17)), the CRB model can also be solved using 

optimization to estimate the minimum number of laser cycles for a given precision requirement. This is 

included in Koerner’s Python toolbox under the function name “exp_search”. 

 

Fig. 33: Deviation of Thompson model in approximating dToF precision compared to the 
more accurate CRB as system SNR decreases. Example model uses 𝒂𝒂 = 𝟏𝟏, 𝝈𝝈 = 𝟏𝟏.𝟓𝟓 ns and 

𝝁𝝁𝑩𝑩 = 100. 

One final key takeaway from the work by Koerner on dToF precision is a rule-of-thumb for the optimal 

histogram bin interval relative to the laser pulse width. Using excessively wide histogram bin intervals 

leads to severe precision degradation irrespective of the SNR, while excessively narrow intervals result 

in an overengineered solution. A practical ratio of histogram bin interval to pulse width is therefore 

suggested and reproduced in Equation (21). For a Gaussian-shaped laser pulse, this is equivalent to 

Equation (22) as a function of the laser full-width half maximum (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹). 

 𝑎𝑎
𝜎𝜎
≈ 1.5 (21) 

   

 𝑎𝑎
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

≈ 0.64 (22) 
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3.3 Analysis 

3.3.1 Design Specification 

To evaluate both full and partial histogram approaches, a lidar design specification typical of long-range 

automotive lidar is outlined in Table 6.  

Component Parameter Value 

Target 
Maximum distance 200 m 

Minimum reflectivity 10% 

Ambience 
Maximum intensity 100 klux 
Irradiance reference ASTM G173 

System 

Probability of detection 99.7% 

Precision 0.1 m 

Frame rate 30 fps 
Field of view 26° × 8° 

Laser 

Pulse energy 50 µJ 

Pulse shape Gaussian 
Pulse width (FWHM) 8 ns 

Wavelength 905 nm 

Spot shape Rectangle 

Sensor  
(achievable SPAD  

characteristics based on [55]) 

Photon detection efficiency  22% 
Pixel pitch 30 µm 

SPADs per pixel 3 × 3 

Pixel resolution 200 × 63 

Lens 

Diameter 6 mm 

F# 2.2 

Filter bandwidth 20 nm 
Transmission 100% 

Table 6: A typical set of system requirements for long-range lidar. 
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3.3.2 Photon Budget 

Applying the system parameters in Table 6 to Equation (15), the average signal photons per laser pulse 

(𝛾𝛾𝑠𝑠) as a function of distance (𝑧𝑧) comes to 𝛾𝛾𝑠𝑠 = 1140𝑧𝑧−2. This is equivalent to 0.03 photon counts per 

laser pulse at the maximum distance of 200 m.  

To determine the solar background photon budget, the ASTM solar irradiance spectrum [85] must first 

be integrated within 905 nm ± 10 nm, resulting in a calculated solar background radiance across the 

target of 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏𝑏𝑏 = 13.8 W/sr1/m2 at maximum ambient brightness (100 klux). Combining this with 

Equation (16), the average background photon arrival rate comes to 20 Mcounts/s.  

The resulting photon budget of the system as a function of distance is plotted in Fig. 34. While the 

optimal bin interval for the laser in this design specification is around 5 ns following Equation (22), a 

range of values are plotted to illustrate how this influences the distance beyond which 𝜇𝜇𝑆𝑆/𝜇𝜇𝐵𝐵 < 1. 

 

Fig. 34: Modelled photon budget for the lidar systems described in Table 6. Average 
background photon count per bin plotted for various bin interval values. 
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3.3.3 Laser Cycle Requirement 

Having established the expected signal and background photon return rates, the CRB model can now 

be used to find the minimum number of laser cycles required to achieve the target system precision of 

0.1 m. This is plotted as a function of distance in Fig. 35 assuming a bin interval of 5 ns (0.8 m) 

optimised for precision following Equation (22). The roundtrip time of the laser, in combination with 

the frame rate specification (30 fps), also place a limit on the maximum number of laser cycles that can 

fit in a frame.  

For this system, the minimum required to meet the target precision, and the maximum required to meet 

the target frame rate, converge to around 25,000 laser cycles at 200 m. Any requirement to further 

increase the total laser cycles per frame will breach the frame rate specification for this design. 

  

Fig. 35: Applying the calculated photon budget in Fig. 34 to find the minimum number 
of laser cycles for the lidar systems in Table 6 to achieve 0.1 m precision assuming 5 ns 

(0.8 m) bin interval size as determined by Equation (21). 
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3.3.4 Histogram Size Requirements 

The histogram stored on each pixel needs to accommodate both (a) the maximum expected bin count 

and (b) the total number of required bins. For the former, the chosen histogram bin interval sets the 

average background photon count per bin. To have capacity for storing signal counts, the histogram in 

each dToF pixel (containing 3 × 3 SPADs in the example case) needs to at least accommodate the 

baseline expected background count.  

The scope of bin count values for this system is shown in Fig. 36, along with the full design space of 

possibilities that a given dToF system might exhibit. For long-distance outdoor dToF lidar, 12-bit bins 

are considered a bare minimum, which is consistent with state-of-the-art implementations (see 

Section 2.5).  

 

Fig. 36: Minimum bin count values required for a dToF sensor to achieve the system 
specifications in Table 6. Expanded to show a broad range of background counts and bin 

interval sizes to illustrate the range of possible values for a generic dToF system.   

If a full histogram approach is adopted, the total number of histogram bins required in each pixel is 

simply a function of the maximum sensing distance and the chosen bin interval. This is plotted in Fig. 

37, showing that 256 bins are required using the optimal bin interval of 5 ns (0.8 m). The full design 

space of possible bin interval values and maximum distance is presented for a more complete picture. 
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Fig. 37: Total histogram bins required for a dToF sensor to achieve the system 
specifications in Table 6 using a full histogram approach. Expanded to a broad range of 
maximum sensing distances and bin interval sizes to show the potential design space.   

Note that, while increasing the histogram bin interval of the system increases the minimum required 

bin count value, it decreases the total number of required bins. In terms of overall storage, the trend 

remains that increasing the histogram bin interval reduces the total number of required bits per pixel 

because the minimum count value only increases the total bits required for each bin as a function of 

log2. This is exemplified in Fig. 38 which combines both the minimum capacity per bin (in bits) with 

the total number of bins for a full histogram approach. For this design, where 256 bins with a minimum 

of 12 bits per bin are required, each dToF pixel would need to accommodate over 3 kbits of storage. 

 

Fig. 38: Minimum storage capacity required for a dToF pixel using a full histogram 
approach ranging at 200 m. Plotted for various background photon rates. 

  

16

32

64

128

256

512

1024

2048

1 2 4 8 16

To
ta

l h
ist

og
ra

m
 b

in
s

Bin interval (ns)

this design

1,024

2,048

4,096

8,192

16,384

1 2 4 8 16

M
in

im
um

 to
ta

l s
to

ra
te

 (b
its

)

Bin interval (ns)

this design



 

69 
 

3.3.5 Pixel Capacity 

Having established the full histogram storage required (3 kbits) to implement the design specification 

in Table 6, an examination of pixel capacity for storing this data follows. Static random-access memory 

(SRAM) is increasingly adopted for storing histogram data on dToF sensors, as reviewed in Section 2.5. 

It provides a compact solution while being easily integrated in standard CMOS processes.  

 

Fig. 39: Typical area of a single-bit SRAM cell at each technology node.  
Reproduced from [154]. 

Fig. 39 shows the typical on-chip area occupied by a single bit of SRAM memory in different technology 

nodes. Following this, the total required full histogram area for the studied design can be compared 

relative to the dToF macropixel area, as illustrated in Fig. 40. To implement a full histogram, this 

design would not only require an expensive 3D stacked technology, but also adopt at least a 40 nm 

process for the circuit-level tier. In reality, an even smaller (more expensive) technology node would 

need to be used to accommodate circuitry processing and timing of photon events at the very least.  

A more general overview of the constraints posed by limited in-pixel storage area is possible by 

decoupling bin capacity from the number of histogram bins. Assigning a realistic ¼ of the available 

pixel area (225 µm2) all achievable combinations of histogram dimensions can be produced (Fig. 41). 

Both Fig. 40 and Fig. 41 highlight the impracticalities of using a full histogram approach for outdoor 

and long-distance dToF. Even if such area constraints are overcome through exotic and expensive 

semiconductor processes, transferring many kbits of data from potentially millions of pixels between 

every frame (Tbits/s) poses yet another challenge which is yet to be solved. 
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Fig. 40: Histogram area required for a dToF macropixel at various technology nodes to 
achieve the design specification in Table 6 using a full histogram approach. 

While implementing a full histogram approach with this design specification would require using 16 nm 

technology at the very least, Fig. 41 indicates that a reduced set of 16 histogram bins would allow for 

a significantly more economical technology (90 nm in this example). This necessity to reduce the dToF 

histogram and make long-range solid-state lidar practical has resulted in the development of multiple 

novel “partial histogram” approaches (see Section 2.5.2). However, these impose a laser power penalty 

on the lidar, which will now be quantified.   

 

Fig. 41: Design space of possible histogram bit/bin configurations at each technology 
node that can fit into ¼ of the allocated dToF macropixel area (225 µm2). 
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3.4 Laser Power Efficiency of Partial Histogram Approaches 

A more practical 16-bin zooming or sliding partial histogram solution with equivalent precision to the 

256-bin full histogram approach can be configured as presented in Table 7.  

Parameter Zooming Sliding 

Bins 16 16 

Steps 2 16 

Bin interval 
12.5 m (step 1 “detection”) 
 0.8 m (step 2 “precision”) 

0.8 m 

Table 7: Partial histogram configurations equivalent to a 256-bin full histogram. 

3.4.1 Zooming 

At each step of an 𝑀𝑀-bin zooming approach, the bin interval is 𝑀𝑀× wider than in the next step. 

However, the number of laser cycles required in all steps, except the final step, only needs be enough to 

detect the peak signal bin, rather than to precisely interpolate the return time. The zooming 

configuration in this design is composed of one detection step (12.5 m bins) and one precision step 

(0.8 m bins) to result in equivalent bin intervals as the prior 256-bin full histogram design. 

The minimum number of laser cycles required in the detection step is a function of the maximum sensing 

distance. This can be evaluated using the probability of detection (𝑃𝑃𝐷𝐷) Equation (17) for a given photon 

budget. Below 12.5 m the detection step can be skipped altogether. Up to 25 m the signal location must 

be identified between one of two bins assuming a photon budget at the maximum distance of 25 m.  Up 

to 37.5 m the signal location must be identified between one of three bins assuming a photon budget at 

the maximum distance of 37.5 m. This is evaluated right up to the maximum sensing distance of 200 m 

and shown in Fig. 42. Since the minimum number of laser cycles required for the targeted precision 

using a bin interval of 0.8 m has already been evaluated for the full histogram case (Fig. 35), the sum 

of these two plots gives the total minimum required laser cycles to complete all required zooming steps. 
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Fig. 42: Minimum laser cycles required by a 16-bin zooming approach during the 
“detection” step to achieve the design specification in Table 6 

3.4.2 Sliding 

Sliding a reduced set of 16 × 0.8 m histogram bins across 16 window steps gives a final bin interval 

equivalent to the 256-bin full histogram design. For any distance up to the end of the first slide window, 

the minimum number of laser cycles required is the number required to achieve the target precision at 

the maximum distance in that window (12.5 m). For any distance up to the end of the second window, 

the minimum number of laser cycles is the value needed to achieve the targeted precision at the 

maximum distance in the second window (25 m) and the first window. In this way, the total laser cycles 

required up to any slide step distance can be evaluated, as illustrated in Fig. 43. 

 

Fig. 43: Process for calculating the minimum number of laser cycles at each slide step. 
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Fig. 44: Minimum laser cycles required for a full histogram (256-bin) approach and the 
equivalent sliding and zooming partial histogram (16-bin) approaches. 

 

 

Fig. 45: Laser power penalty of equivalent 16-bin zooming and sliding configurations for 
the design to achieve the design specification in Table 6 compared to a 256-bin full 

histogram approach. 
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3.4.3 Comparison 

The minimum number of required laser cycles for both partial histogram approaches, along with the 

full histogram approach are plotted in Fig. 44. The increase in total laser cycles required through the 

equivalent zooming or sliding approach infers a laser power penalty, plotted in Fig. 45. This analysis 

indicates that achieving the target specification in Table 6 using a partial histogram approach imposes 

a laser power penalty approach 4× compared to a conventional full histogram approach. 

While the result in Fig. 45 may suggest that zooming is preferred over sliding at longer distances, it is 

worth noting that the configuration presented here would require an additional zooming step above 

200 m, greatly increasing the laser power penalty. 

3.5 Conclusion 

To gain an intuition into the expected photon arrival rates for a dToF sensor used in automotive lidar, 

a realistic design specification was evaluated based on the achievable performance of a state-of-the-art 

sensor. For a solid-state dToF sensor, the expected photon arrival rates indicated that the total amount 

of in-pixel storage capacity required vastly exceeds the available area. Unless an expensive stacked 

sensor process on a 16 nm technology node (or smaller) is used, the histogram size must be reduced. 

While zooming and sliding partial histogram approaches allow reducing the histogram to a more 

realisable size, the equivalent configurations to the full histogram solution studies here are shown to 

impose a power penalty approaching 4×. The guided lidar approach proposed in this thesis, if realised, 

would therefore be of significant value, allowing for a practical dToF sensor implementation with no 

laser power penalty. 

The models outlined and developed in this chapter provide a valuable tool for benchmarking the final 

realised guided lidar setup against partial histogram approaches. 
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4 GUIDED DTOF SENSOR DESIGN 

4.1 Introduction 

The key feature of a guided dToF lidar sensor that distinguishes it from regular dToF sensors is the 

ability for each pixel to independently observe a different exposure time window. This chapter details 

the integration of guided dToF functionality into an existing dToF CMOS QuantIC4×4 using a 

programmable down counter (P-counter). The various P-counter design considerations are explored, 

along with the final implementation optimised for minimal pixel area impact. Finally, a contingency 

sensor option is presented in the event that the revised QuantIC4×4 sensor is unavailable, along with 

the repercussions of conceding to this contingency option.   

4.2 Primary Sensor “QuantIC4×4” 

The CMOS lidar sensor into which guided lidar functionality has been specifically integrated for this 

project is a revised version of the chip published in [49] known as QuantIC4×4. It was fabricated in 

STMicroelectronics 3D-stacked backside illuminated (BSI) SPAD process, allowing for photon 

processing, timing and storage on the bottom tier without impacting the SPAD detector fill-factor on 

the top tier.  

 

Fig. 46: Overview of the original QuantIC4×4 sensor into which guided dToF 
functionality has been integrated. Reproduced from [49] with author’s permission. 
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The sensor is to be revised to use an upgraded state-of-the-art fabrication process to achieve a SPAD 

photon detection efficiency (PDE) of 18.5% at 940 nm [123]. This presents the opportunity to integrate 

guided dToF functionality into the sensor during the design revision. 

An overview of the original pre-revised QuantIC4×4 sensor is shown in Fig. 46. The sensor comprises 

of 256×256 SPAD detectors on the top layer, grouped into macropixels of 4×4. Each macropixel has a 

dedicated processing block on the bottom tier containing a multievent time-to-digital converter 

(METDC) and storage 16×14-bit histogram bins. 

A functional overview of the sensor’s key macropixel sub-blocks when configured for dToF is shown in 

Fig. 47. Upon a successful photon detection, the raw SPAD pulses SPAD_RAW<15:0> are retimed to 

a clock CLK which is globally distributed to every macropixel on the sensor. The retimed SPAD events 

SPAD_TIMED<15:0> are then passed onto a correlation block. This consolidates the 16 SPAD 

detector signals into a single SPAD_EVENT signal, dependent on a programmable TYPE (less than, 

equal or greater than) and THRESHOLD (integer) condition. In the case of Fig. 47, the example 

condition is set to trigger whenever more than zero (i.e., one or more) SPADs fire within the same clock 

period. Finally, an METDC updates the in-pixel counters based on the detected SPAD events in the 

last 16 CLK periods preceding the rising edge of a globally distributed STOP signal. There are a total 

of 16 counters (i.e., histogram bins) per macropixel, hence if the STOP signal has a period longer than 

16 CLK periods, then only SPAD events within the final 16 periods before each rising STOP edge are 

counted. Table 8 provides a convenient summary of these signals for the reader's reference. 

Signal Type Description 

CLK Input A clock that defines the histogram bin width. Raw SPAD events are 
retimed to this signal and allocated into their corresponding bin.   

STOP Input A clock that defines the start of each laser pulse period. The 16 prior 
periods of CLK define the full histogram time window. 

SPAD_RAW Internal Raw SPAD events directly from the front-end output. 

SPAD_TIMED Internal RAW_SPAD retimed to the clock edge of CLK 

SPAD_EVENT Internal Indicates if the total SPAD events within a clock period has met the 
pre-programmed threshold. 

Table 8: Summary of signals which relate to timing and histogramming SPAD events on 
the original QuantIC4×4 sensor chip. 
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Fig. 47: Functional overview of a macropixel on the original QuantIC4×4 sensor chip 
when configured for conventional (i.e., non-guidable) dToF. 
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4.3 Integrating DToF Guiding 

To implement guided dToF functionality, each macropixel is given independent control of its own local 

STOP signal (LOCAL_STOP) triggered by a newly integrated programmable counter (P-counter). For 

every rising edge of the global STOP signal (i.e. the start of each laser pulse), each macropixel P-counter 

resets to an independent pre-programmed value and for every rising edge of the global CLK signal, all 

P-counters decrease by one count. Any P-counter that rolls over past zero raises the local STOP signal 

for that macropixel and triggers its METDC to update its histogram counters based on photon events 

within the previous 16 CLK periods. This new functionality is illustrated in Fig. 48, where “Macropixel 

1” counts for 52 CLK periods after the global STOP signal before raising its local STOP signal while 

“Macropixel 2”, programmed to count down from 49, triggers its METDC 3 CLK periods earlier. 

 
Fig. 48: Functional overview of QuantIC4×4 macropixels using the new "Local STOP" 
mode to create a guidable lidar sensor. In this example Macropixel 2 is programmed to 

update the METDC 3 CLK periods before Macropixel 1. 
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4.4 P-Counter Design 

For guided dToF to be a practical solid-state lidar solution, the addition of the required programmable 

counter (P-counter) should consume minimal pixel area to maximise capacity for detecting, timing and 

storing photon arrival times. With this in mind, the design decisions leading to the final implemented 

P-counter design are presented here.  

4.4.1 Comparator vs. Loadable Counter 

To determine when the programmed number of global CLK periods has passed, the most intuitive 

solution is to store the value in memory and use a comparator to flag when the count value has reached 

the programmed value, as illustrated in Fig. 49(a). However, the logic to implement a digital comparison 

between two multi-bit values results in an area-inefficient solution.  

 

Fig. 49: Triggering LOCAL_STOP using (a) a comparator to detect when the counter 
reaches the programmed value (b) a loadable counter with LOCAL_STOP connected to 

the counter’s most significant bit (MSB). 

Instead, the P-counter is configured such that it loads the programmed value from memory each time 

it is reset by a COUNTER_RST pulse (derived from the global STOP edge). The counter is 

decremented by one on every CLK edge and when it rolls over from zero to maximum, LOCAL_STOP 

connected to the counter’s most significant bit (MSB) is raised.  

  



 

80 
 

4.4.2 Synchronous vs. Asynchronous 

In a conventional synchronous binary counter, each bit is updated simultaneously when the counter is 

clocked. A typical n-bit synchronous counter implementation is shown in Fig. 50(a). Each bit consists 

of a D-type flip-flop (DFF), XOR gate and an AND gate. An asynchronous counter on the other hand, 

pictured in Fig. 50(b), requires only a single DFF per counter bit. This provides a more compact solution 

at the expense of introducing a ripple delay between the clock triggering and the MSB updating. For 

the P-counter, this delay does not pose an issue provided it does not cause the LOCAL_STOP signal 

to trigger the METDC within the sample and hold time of the global CLK. In the event that this does 

happen, the phase of the externally provided global CLK can simply be adjusted. As a result, the more 

compact asynchronous counter topology is an appropriate choice for the P-counter.  

 

Fig. 50: Circuit implementation of a (a) synchronous and (b) asynchronous binary down 
counter. 

4.4.3 Memory vs Memory-less 

In order to reset every P-counter to a pre-programmed value after each global STOP period, without 

requiring to reprogram all pixels after every laser cycle, a programmable memory must be integrated 

into every P-counter. An alternative memory-less approach using an n-bit P-counter can be implemented 

by constraining the global STOP clock to a value of 2n global CLK periods and simply letting every P-

counter wraparound at the same rate as the global CLK (laser cycle period). The limited combination 

of STOP period (laser cycle rate) and CLK period (histogram bin interval) introduced by a wraparound 

approach would greatly degrade the functionality of the sensor. As a result, the P-counter is designed 

with a programmable memory at the expense of additional pixel area. 
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4.4.4 Counter Unit Implementation 

To implement a loadable counter, the output value COUNTER_OUT of each ripple counter unit should 

reset to the value held by its corresponding memory bit MEMORY_IN, as illustrated in Fig. 51(a).  

 

Fig. 51: (a) required reset behaviour of each ripple down counter unit (b) 
implementation using a set/reset DFF (c) implementation using a basic DFF.   

One way of implementing the counter unit with this functionality is by using a DFF which features 

both a set and reset pin, as illustrated in Fig. 51(b). In this configuration, the COUNTER_RST pulse 

(derived from global STOP) resets all DFFs to logic low, followed shortly by a delayed pulse 

COUNTER_RST_D which sets any DFFs to logic high if their MEMORY_IN value is high. However, 

to keep the pixel layout compact, a custom verified DFF cell is used throughout the sensor design over 

the more elaborate library cells available in this technology. Fig. 52 shows the difference in layout area 

between a library cell DFF containing both set and reset, compared to the custom DFF which is around 

3× smaller but contains a reset pin. 

 

Fig. 52: D-type flip flop layout (a) library cell from process design kit with set and reset 
(b) custom cell with reset only. 

To take advantage of the custom DFF available, the implementation in Fig. 51(c) was adopted to create 

a down counter unit which can be reset to either logic high or low. Not only does this utilise the more 

compact DFF, but it only requires a 4-transistor multiplexor (mux) instead of a 6-transistor OR gate 

and removes the need to generate a delayed reset pulse.  
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4.5 P-Counter Top-Level 

The top-level P-counter schematic incorporating all the prior-described design decisions is shown in Fig. 

53. The core of the P-counter is a ripple down-counter, with an additional memory DFF for each bit to 

store the reset value loaded at the start of every laser cycle. By rerouting each ripple counter unit to 

connect to the next through either its 𝑄𝑄 or 𝑄𝑄� terminal based on the stored memory value in each unit, 

each bit of the counter is reset to either 1 or 0, allowing counting to begin from any chosen integer 

value. The compact design of each P-counter unit permitted a maximum 9-bit counter to be 

accommodated into each pixel of this sensor. 

 

Fig. 53: Circuit diagram of the implemented P-Counter and associated sub-blocks. 
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An auxiliary P-Counter Timing block enables gating of signals when the P-Counter is disabled, as well 

as deriving the required local signals for each P-counter from the global sensor signals: 

• COUNTER_RESET: a short pulse on every rising STOP edge to reset the counters. 
• COUNTER_CLK: compliment of CLK to maintain LOCAL_STOP rising on the negative edge 

of CLK (required for the successive METDC). 
• MEMORY_RESET: compliment of the sensor reset signal RESETB. 

An example timing diagram is given in Fig. 54. In this example, a value of 5 is programmed into the 

counter on the rising edge of MEMORY_LOAD. On the first rising STOP edge, all the counters are 

reset (remaining at a value of 5) and then proceed to count down on each rising COUNTER_CLK 

edge. Once the counter reaches 0, LOCAL_STOP tied to the MSB of the counter transitions high on 

the next COUNTER_CLK edge. The next rising edge of the global STOP signal resets the counter and 

the cycle continues until either a new counter value is programmed or the block is disabled. 

 

Fig. 54: Example timing of P-Counter programmed to enable LOCAL_STOP after every 
5×CLK cycles of the global STOP signal. 

The designed programmable down counter, requiring only 2 DFFs and 4 transistors per stage, allows 

for a compact solution to integrate guided dToF functionality into an existing dToF sensor. The final 

integrated circuit layout of a single macropixel circuit is given in Fig. 55, and shows the functionality 

required to implement guided lidar on this sensor consumes less than 5% of the total macropixel area.  
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Fig. 55: Integrated circuit layout of a single QuantIC4×4 macropixel and the circuit area 

added to enable guided dToF. 

4.6 Ripple Delay 

The disadvantage of this compact ripple counter implementation is the associated ripple delay, which 

increases with the number of stages (maximum count value). This results in LOCAL_STOP becoming 

out of sync with the global CLK signal. Since the METDC increments the macropixel counters 

corresponding to the photon events in the 16 CLK periods before the rising edge of LOCAL_STOP, 

this delay places constraints on the minimal clock period (i.e. histogram bin interval).  

 

Fig. 56: Simulated worst-case P-counter ripple delay. 

The post-layout ripple delay simulated at 50 °C in the typical process corner including all parasitic 

capacitances is shown in Fig. 56. If the global STOP signal is applied to the chip such that the rising 

edge is synchronised to the falling edge of CLK, then the worst-case ripple delay of 1.2 ns sets the 

minimum period of CLK to be around 2.4 ns (~400 MHz). However, if finer adjustment of global STOP 

with respect to CLK is achievable then the ripple can be compensated for, allowing for even smaller 

CLK period values. This issue could be avoided altogether by implementing a synchronous counter 

instead of a ripple counter at the cost of additional on-chip area should this be an acceptable trade-off.  
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4.7 Configuring Pixel Counters 

An essential aspect of a guided dToF sensor involves updating the initial value of every pixel’s P-counter 

at the start of every frame. The circuit diagram in Fig. 57 shows the blocks and signals responsible for 

configuring the pixel counters. To keep the sensor’s pin count to a minimum, the data containing the 

initial value (COUNTER_INITS) of every pixel’s counter is routed through a single pin. A deserialiser 

then converts the serial stream of data into the full 9-bit counter value (COUNTER_INIT_ROW) for 

every pixel in a given row. Once the initial counter values for a given row have been loaded, a row 

scanner triggers MEMORY_LOAD on all pixels in that row. The process repeats until all rows have 

been updated, as shown by the timing diagram in Fig. 57. 

 

Fig. 57: The blocks and signals relevant to configuring the pixel counters are shown in 
the circuit diagram. 
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In this implementation, the time taken to reconfigure all pixel counters is limited by the deserialiser. 

Routing typically limits the deserialiser clock to a few hundred megahertz, making the total time to 

write to all pixel counters (36.9 kbits) in the order of a few hundred microseconds. However, the 

deserialiser piping data into a sensor is typically a separate pipeline to the serialiser piping data out and 

can therefore be executed at the same time. Once the acquisition period is complete, both reading out 

the sensor data and writing in the new depth windows for the next acquisition period can happen 

simultaneously. Since the total depth window data (9-bits per macropixel for this sensor) is unlikely to 

ever exceed the total histogram data (16×14-bits for this sensor), adding guided functionality is not 

expected to ever impact the time required to capture a dToF frame. 

4.8 Design Limits 

The available on-chip area limited this P-counter implementation to a maximum of 9 bits. The impact 

of this on the performance of the guided dToF sensor is explored here.  

4.8.1 Maximum Range/Precision 

The maximum guided lidar sensing distance 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 using an 𝑛𝑛-bit P-counter can be related to either the 

TDC clock frequency 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 or the equivalent histogram bin interval distance 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏 as: 

 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 =
2𝑛𝑛 × 𝑐𝑐

2 × 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶
= 2𝑛𝑛 × 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏 (23) 

The 9-bit P-counter integrated into this dToF sensor enables each guidable time window to be shifted 

by up to 512 TDC clock cycles. To achieve a maximum sensing distance of 200 m, as per the self-driving 

depth-sensing requirements in Table 1, the maximum TDC clock frequency that permits this distance 

is 384 MHz, equivalent to a minimum histogram bin interval of 0.4 m. This in turn sets a limit on the 

achievable measured distance precision as related by Equation (20) but still makes it feasible to reach 

the targeted maximum measurement error specification of 0.1 m.  

In contrast, a conventional full histogram approach using the limited 16 bins would require a minimum 

interval of 12.5 m per bin to cover a maximum sensing distance of 200 m. This would make achieving 

0.1 m precision greatly impractical.  
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4.8.2 Depth Estimate Error Tolerance 

A second system design consideration is the maximum error that can be tolerated from the depth 

estimation source guiding the lidar sensor. For a sensor with 𝑀𝑀 bins per macropixel, the resulting 

histogram will span a distance 𝑧𝑧ℎ𝑖𝑖𝑖𝑖𝑖𝑖 of:  

 𝑧𝑧ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑀𝑀 × 𝑐𝑐

2 × 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶
= 𝑀𝑀 × 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏 (24) 

Assuming a guiding depth estimate source with normally distributed error 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, the following 

conditions should be satisfied for a pixel to be guided to the correct time window with 99.7% (±3𝜎𝜎) 

success rate: 

 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 <
𝑀𝑀 × 𝑐𝑐

12 × 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶
   ≡    𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 <

𝑀𝑀 × 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏
6

 (25) 

Continuing the same TDC clock example (384 MHz), this gives a maximum allowable distance error of 

standard deviation of 1 m for the depth estimates source guiding this guided dToF sensor up to 200 m. 

A reduction in TDC clock frequency would allow relaxing the guided depth error tolerance at the 

expense of coarser histogram bin intervals.  

A look-up table of various TDC clock frequency configurations and the corresponding maximum distance 

and allowable guiding depth error tolerance for this guided dToF sensor is provided in Table 9. 

TDC clock 
𝒇𝒇𝑪𝑪𝑪𝑪𝑪𝑪 (MHz) 

Maximum distance 
𝒛𝒛𝒎𝒎𝒎𝒎𝒎𝒎 (m) 

Histogram bin interval  
𝒛𝒛𝒃𝒃𝒃𝒃𝒃𝒃 (m) 

Maximum guiding depth error  
𝝈𝝈𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (m) 

100 768 1.50 4 

150 512 1.00 2.7 

200 384 0.75 2.0 

250 307 0.60 1.6 

300 256 0.50 1.3 

350 219 0.43 1.1 

400 192 0.38 1.0 

Table 9: Design parameter combinations using QuantIC4×4 as a guided dToF sensor. 
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4.9 Contingency Sensor “HSLIDAR” 

In the event of the revised QuantIC4×4 sensor not being available for this project, a recently developed 

dToF sensor developed within the same research group provides a contingency option. The silicon-

proven dToF sensor, known as HSLIDAR, was first published in [146] with further details provided in 

[147] and is fabricated in STMicroelectronics’ single-tier front-side illuminated SPAD process [122]. A 

micrograph of the sensor is shown in Fig. 58. Each dToF macropixel comprises of a 4×4 array of SPADs, 

an METDC and storage of 8×12-bit histogram bins. 

 

Fig. 58: Micrograph of the contingency sensor HSLIDAR. Reproduced from [146] with 
author's permission 

The unique feature of HSLIDAR is that each self-contained dToF pixel can independently step its 

histogram time window over successive distance intervals and then lock on to a peak when detected. 

The peak laser signal is then tracked if it moves across adjacent time windows. While HSLIDAR was 

not designed specifically for use as a guided dToF sensor, the ability to manually set every dToF pixel 

to an independent time window is available as a validation feature. Therefore, this sensor presents a 

valuable backup solution in the event of any issues related to the fabrication of the primary 

QuantIC4×4, albeit with some important differences which are now explored. 

4.9.1 Histogram Capacity 

The contingency sensor has half the number of histogram bins per macropixel, 8 instead of 16, which 

reduces the depth estimate error tolerance. It also has a fourfold reduction in the capacity of each bin, 

12 bits instead of 14. When targeting long distances, a greater number of laser cycles must be integrated 

to detect the reduced signal power. This raises the noise floor of the histogram making it more likely to 

saturate. The smaller bin capacity of this sensor therefore results in a reduced maximum measurable 

distance under high ambient background conditions. 
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4.9.2 P-Counter Bit Depth 

To implement programmable time windows into each dToF pixel, HSLIDAR uses a similar P-Counter 

architecture to the one designed into the revised QuantIC4×4. However, the P-counter unit 

implemented on HSLIDAR uses the larger OR-gate design with standard cell DFFs (Fig. 51(b)), limiting 

the P-Counter to 7-bits.   

4.9.3 Histogram Time Window Control 

In the QuantIC4×4 design, both the histogram bin interval (𝑎𝑎) and time window step size (𝑠𝑠), illustrated 

in Fig. 59, are defined by the global CLK period. In HSLIDAR, these are configured differently and also 

depend on what mode the sensor is operated under. In the context of this project, the two relevant 

modes can be referred to as “clocked” and “delay line”. In clocked mode, the timing of photons is 

performed by a counter TDC (Section 2.4.3) clocked by a global CLK signal. The bin interval is a single 

CLK period, while the time window steps in intervals of 4 CLK periods, equivalent to a 50% overlap 

between successive window steps. In delay line mode, a delay line TDC is used instead which sets the 

width of each histogram bin to the unit delay TDL. In this mode, the window step size is decoupled from 

the histogram bin interval and is set by the global CLK signal. These modes are summarised in Table 

10. 

 

Fig. 59: Parameters which define the controllable time window in HSLIDAR. 



 

90 
 

Mode a s 

Clocked 1/CLK 4/CLK 

Delay Line TDL 1/CLK 

Table 10: Configuring the histogram bin interval and window step size under the two 
relevant HSLIDAR modes. 

4.9.4 SPAD Performance 

The growing interest in SPADs for applications such as solid-state lidar has greatly boosted the 

development and performance of CMOS SPADs in a few short years. The SPADs on the revised 

QuantIC4×4 sensor, fabricated in a state-of-the-art 3D stacked BSI technology, are expected to achieve 

a typical PDE of 18.5% at a wavelength of 940 nm [123]. On the other hand, the typical probability of 

detection (PDP) of SPADs on HSLIDAR is characterised as 5% at a wavelength of 850 nm, equivalent 

to a PDE of 3.5% at 70% fill-factor [122], and the sensitivity continues to drop for higher wavelengths. 

The result is a near tenfold decrease in NIR photon sensitivity in the contingency sensor, and hence a 

near threefold (√10) reduction in the maximum measurable distance for a given exposure period.    

4.9.5 Updating Time Windows 

In order to write new configurations to HSLIDAR (i.e., to update macropixel time windows), the sensor 

needs to be reset each time. This is not an issue when operating the sensor in the way it was originally 

designed. However, when used as a guided dToF sensor, resetting the sensor between frames adds 

additional process steps to each frame, reducing the maximum achievable frame rate. 

4.9.6 Summary 

A summary of the above discussion regarding the drawbacks of resorting to the contingency HSLIDAR 

sensor over the revised QuantIC4×4 is provided in Table 11. 
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Parameter 
Primary 

“QuantIC4×4” 

Contingency 

“HSLIDAR” 

Histogram bins per macropixel 16 8 

Histogram bin capacity 14-bit 12-bit 

Macropixel resolution 64×64 64×32 

P-counter size 9-bit 7-bit 

SPAD PDE 18.5% @ 940 nm [123] 3.5% @ 840 nm [122] 

Reset sensor to update time windows? No Yes 

Table 11: Comparison of the primary and contingency sensor 

4.10 Conclusion 

This chapter presents a comprehensive overview of integrating direct time-of-flight functionality into 

an existing dToF sensor. A design upgrade of a sensor known as QuantIC4×4 to a state-of-the-art 

fabrication process presents the opportunity to integrate the proposed guided dToF functionality for 

this thesis.  

Guided dToF functionality is achieved through the addition of a compact 9-bit programmable down 

counter (P-counter) design with a minimal overhead of 5% of the pixel area. Along with the 16 histogram 

bins available in each macropixel, this allows for a guided dToF configuration to range 200 m using 

narrow 0.4 m bin intervals. In this configuration, the allowable error tolerance of the guiding depth 

estimate source to achieve 99.7% probability of detection is 1 m (single standard deviation). 

In the event that the upgraded QuantIC4×4 is not available to be physically integrated into the guided 

dToF demonstrator, a contingency sensor HSLIDAR is identified. The mechanism by which HSLIDAR 

can be configured into a reconfigured for use as a guided dToF sensor is described, along with the 

repercussions of using this contingency option. Most notably, the reduced number of bins from 16 to 8 

tightens the guiding estimate error tolerance requirement, while the lower SPAD sensitivity greatly 

reduces the maximum range for a given exposure time. 
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As well as the sensor, the other key component of a guided dToF system is the source of guiding depth 

estimates. The next chapter explores the imaging sensors available on a self-driving vehicle for providing 

depth estimates in a guided dToF system, along with their merits and limitations. 
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5 DEPTH ESTIMATION FROM IMAGES 

5.1 Introduction 

A key component of the proposed guided dToF system is the source of depth estimates for guiding the 

dToF sensor. Cameras are essential for autonomous vehicles and are capable of providing depth 

estimates after image processing, making them highly suited to guided dToF for self-driving vehicles. 

This chapter examines various methods of extracting depth information from images. These span from 

traditional techniques such as stereo depth estimation to novel methods involving the extraction of 

depth information from lidar intensity images. In each case, an imaging system is constructed and 

performance is evaluated within real-world environments. This allows a suitable depth estimation 

approach to be identified for integration into the guided dToF system.    

5.2 Stereo Depth Estimation 

The most established method of extracting depth information from camera images is stereo depth 

estimation using two (or more cameras). The principle is illustrated in Fig. 60 and involves matching 

pixels in the image of one (e.g., left) camera 𝑂𝑂𝑙𝑙 to its matching image pixel in the image of another 

(e.g., right) camera 𝑂𝑂𝑟𝑟. The number of pixels any point has shifted by (𝑑𝑑𝑙𝑙 − 𝑑𝑑𝑟𝑟) between camera images 

is termed disparity 𝑑𝑑 and can be directly related to distance. The left camera is typically chosen to be 

the principle with each pixel assigned a disparity with respect to the secondary camera. 

 

Fig. 60: Illustration of the parameters related to stereo depth estimation. 
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For a pair of cameras separated by a baseline distance 𝐵𝐵 with focal length 𝑓𝑓, the distance 𝑧𝑧 to the world 

point observed by a pixel is related to the disparity 𝑑𝑑 of that pixel by Equation (26). 

 𝑧𝑧 =
𝑓𝑓 𝐵𝐵
𝑑𝑑

 where 𝑑𝑑 = 𝑑𝑑𝑙𝑙 − 𝑑𝑑𝑟𝑟 (26) 

The method by which depth is estimated using this technique presents some inherent limitations which 

are explored in the subsequent section. 

5.2.1 Limitations of Stereo Depth Estimation 

Disparity Error 

The distance accuracy ∆𝑧𝑧 of stereo depth estimation is derived from Equation (26) to give Equation (27) 

below. This reveals the characteristic squared increase in error associated with stereo depth estimation. 

 ∆𝑧𝑧
∆𝑑𝑑

= −
𝑓𝑓 𝐵𝐵
𝑑𝑑2

  ⇒   |∆𝑧𝑧| =
𝑧𝑧2 ∆𝑑𝑑
𝑓𝑓 𝐵𝐵

 (27) 

Since each image is composed of discrete pixels, this can lead to quantised values of disparity uncertainty 

∆𝑑𝑑 which inevitably limits the achievable depth accuracy. However, many disparity correspondence 

algorithms can achieve sub-pixel matching using techniques such as interpolation [155].  

The matching of pixels between the principal camera image and the reference camera image is performed 

by the stereo-matching algorithm and is the foundational element for reliable depth estimation. In 

reality, the stereo depth estimation accuracy is limited by the stereo-matching ability of the chosen 

algorithm [26]. Stereo-matching algorithms can be broadly categorized into two main groups (i) 

traditional approaches use classic computer vision methods like block matching to find disparities 

between left-to-right camera images and (ii) Machine learning-based approaches employ convolutional 

neural networks (CNNs) to directly learn disparity estimation from large publicly available datasets.  

Mechanical Stability 

Any movement in the translation or rotation of either camera after calibration introduces a measurement 

error [156], this is particularly problematic for self-driving vehicles.  
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Occlusions 

Another limitation is the challenge of resolving objects which are occluded from the view of the 

secondary cameras. This is illustrated in Fig. 60 where the pedestrian is only visible to the left camera, 

hence there is no corresponding pixel in the right camera image to match to for estimating disparity.  

Visibility 

The captured signal quality of any image sensor working in the visible spectrum is susceptible to adverse 

weather and low light conditions. This in turn degrades depth estimation performance. Although in the 

context of self-driving vehicles, headlamps help mitigate this issue. 

Range 

Fig. 60 also illustrates how stereo depth estimation is limited to the region where both camera field-of-

views overlap. While the camera baseline, image sensor size and focal length physically limit this space 

and hence the minimum measurable distance, in reality this is limited by the maximum resolvable 

disparity. Allocating a wide disparity search range to the stereo-matching algorithms greatly increases 

the runtime. As a result, this is often limited to a maximum value of 128 pixels. The maximum practical 

range is limited by the squared increase in error at small disparity values. Setting a minimum disparity 

value of 10 pixels limits the distance error for ∆𝑑𝑑 = ±1 pixels to 10%. Combining these limits, the 

practical measurable distance range for a stereo depth rig with a 1 m baseline as a function of focal 

length is summarised in Fig. 61. 

 

Fig. 61: Practical distance limits for a stereo camera rig separated by a 1 m baseline. 
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5.2.2 Practical Setup 

A summary of the stereo camera setup built for this investigation is provided in Table 12. While basic 

camera models are used, the fast frame rate of these cameras should ensure that camera readout is not 

a bottleneck within the implemented guided dToF system. The 12 mm focal length lenses provide a 

balance between optical distortion and stereo depth estimation error which are inversely proportional 

to focal length, while having the potential to range at the automotive maximum distance target of 

200 m as set out in Fig. 61. The resulting FOV of each camera is 23° × 18°. Although state-of-the-art 

machine learning algorithms now outperform traditional computer vision algorithms for stereo depth 

estimation [157], the primary aim of this work is to explore the feasibility and practicability of guided 

dToF. Therefore, the established semi-global matching (SGM) algorithm is adopted for simplicity [158]. 

The 1 m rail provides a practical stereo camera baseline for vehicle integration. A photograph of the 

stereo camera rig for depth estimation is shown in Fig. 62.  

Part Parameter Value 

Cameras Model FLIR Blackfly BFS-U3-162M-CS 

 Sensor Sony IMX273 

 Chroma Mono 

 Maximum frame rate 226 fps 

 Image sensor resolution 1440 × 1080 

 Image sensor pixel pitch 3.45 µm 

Lens Model Computar M1224-MPW2-R 

 Aperture (f-number) 2.4 

 Lens focal length 12 mm 

Processing Processor 1.9 GHz Intel Core i7 8th generation 

 Stereo-matching algorithm Semi-global matching (SGM) 

Rail Length 1 m 

Table 12: Itemised summary of the implemented stereo camera rig  
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Fig. 62: Stereo camera rig used in this work. 

5.2.3 Process Flow 

The full pipeline from acquiring camera images to producing a stereo depth estimate image is shown in 

Fig. 63. Before stereo-matching can be conducted, the cameras must be carefully calibrated by taking 

images of a checkerboard in various poses using both cameras [26]. This allows camera parameters to 

be extracted in the form intrinsic and extrinsic camera matrices using the MATLAB Stereo Camera 

Calibrator [159]. The intrinsic camera matrix is a 3×3 matrix that describes the internal characteristics 

of a camera affecting image formation such as focal length and optical centre, while extrinsic camera 

matrix is a 3×4 defining the camera positions and orientations relative to each other. This enables (i) 

image rectification which aligns all points in both images along the same horizontal plane for simplified 

stereo-matching and (ii) conversion of disparity to distance. 

 

Fig. 63: Process flow diagram for estimating depth from stereo cameras. 
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5.2.4 Performance 

To assess the standalone stereo depth estimation performance of the implemented camera rig, a distance 

sweep is performed. A target is moved at various distance intervals up to a maximum distance of 200 m 

in a real-world outdoor environment. At each new target position, the distance to the target is estimated 

and compared to the ground truth value established using a Bosch GLM250VF laser rangefinder.  

 

Fig. 64: Sample capture during the distance sweep experiment (a) left camera image (b) 
estimated stereo depth image (c) both images overlaid. 

A sample image from this experiment is shown in Fig. 64, with further samples at various target 

distances shown in Fig. 65. While the target continues to be resolved as far away as 200 m, a couple of 

the prior discussed challenges of stereo depth estimation are evident in these images. Most notably, the 

region to the left of the target at 30 m is occluded from the perspective of the right camera, leading to 

unresolved stereo-matching. However, this effect becomes less pronounced as the target moves further 

from the cameras. Also evident is the limitation of resolving parts of the scene which are too close to 

the cameras, as established in Fig. 61. For this configuration of 12 mm focal length cameras with a 

baseline separation of 1 m, this minimum distance limit occurs at a distance of around 15 m. 

To quantify the accuracy and precision of the camera rig’s stereo depth estimates in an outdoor 

environment, a 5×5 pixel window of the target is sampled at each distance. The average estimated 

distance in each sample window, along with the spread of values (given as 3 standard deviations) is 

plotted in Fig. 66. The single standard deviation value (σ) is also plotted separately for each distance 

interval in Fig. 67 along with the estimated ±3σ interval based on fitting a second order polynomial to 

the data. Finally, the root-mean-square (RMS) error at each distance interval is shown in Fig. 68, 

exemplifying the squared increase in distance error characterised by Equation (27). The corresponding 

error given by Equation (27) for an alogrithm achieving a sub-pixel disparity of ⅓ pixels with perfect 

stereo-matching is also overlaid for reference. 
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Fig. 65: Sample capture during the distance sweep experiment at various target 
distances and the corresponding depth image from stereo depth estimates. 
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Fig. 66: Estimated stereo depth mean and variance (3 standard deviations) at each step 
in the distance sweep test over a sample window of 5×5 pixels. 

 

Fig. 67: Measured standard deviation (𝝈𝝈) at each distance interval and estimated ±3 𝝈𝝈 
range based on a squared polynomial best fit. 

 

Fig. 68: RMS error of stereo depth estimates at each distance step, alongside theoretical 
accuracy given by Equation (26) for sub-pixel disparity of ⅓ pixels. 
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As well as the quality of depth estimates, another factor which impacts the guided dToF system is the 

time taken to produce the guiding depth estimates. Fig. 69 shows the time taken for the full process 

chain (Fig. 63) from image acquisition to depth estimation.  

 

Fig. 69: Elapsed time for the implemented stereo camera rig to produce a depth image.  

This setup achieves a frame rate of 3 fps using full-resolution images, with the rectification and stereo-

matching steps equally dominating the frame time. As a result, the frame rate can be significantly 

improved by reducing the resolution of captured images, either through binning or cropping. 

Finally, the sensitivity of the rig to mechanical variations is investigated. Fig. 70 shows the change in 

measured distance for a target at a distance of 40 m when the camera angle is adjusted without 

performing recalibration. Even sub-degree movement is shown to exhibit substantial measurement error. 

 

Fig. 70: Effect of changing the camera yaw after calibration at a 40 m target.  
Positive angles represent the cameras verging away from each other. 
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5.2.5 Discussion 

The implemented stereo camera rig is able to provide depth estimates as far as the maximum distance 

of 200 m required for fully autonomous vehicles (Table 1), albeit with increasing error over longer 

distances. In Chapter 4 the relationship between the guided depth sensor’s histogram width and the 

error from the depth estimation source required to successfully guide a pixel 99.7% (±3σ) of the time 

was outlined in Equation (25). Based on the measured ±3σ depth estimation spread achieved by the 

implemented stereo camera rig shown in Fig. 67, a guideline for the equivalent minimum histogram bin 

interval for both sensor options presented in Chapter 4 is shown in Fig. 71. To recap, “primary” refers 

to the better suited revised QuantIC 4×4 sensor should it be available and “contingency” refers to the 

lesser suited HSLidar sensor which is already available. The pros and cons of each are summarised in 

Table 11. While adopting a smaller bin interval than that advised in this figure may be desirable for 

better lidar accuracy and precision, this would be at the expense of fewer than ±3σ (99.7%) of stereo 

depth estimates landing in the correct guiding window. 

 

Fig. 71: The minimum histogram bin interval required for each sensor option from 
Chapter 4 to achieve 99.7% of depth estimates landing in the correct guiding window.  

The minimum resolvable 15 m distance of the implemented stereo camera rig will place a limitation on 

the guided dToF system. While this could be resolved by implementing a three-camera (trinocular) rig, 

with various baselines providing a mixture of both long- and short-distance depth estimation, the added 

complexity of a trinocular system is superfluous for the purpose a guided dToF demonstrator. In 

addition, self-driving vehicle designs typically adopt a variety of short and long-range lidar [38, 160], as 

illustrated in Fig. 72. The limited short-range depth-sensing performance of a long-range guided dToF 

sensor using this stereo camera rig would therefore complement such a lidar configuration. 
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Fig. 72: Prospective lidar arrangement for fully autonomous self-driving vehicles. 

While faster and more accurate depth estimation may be possible through the adoption of graphics 

processing units (GPUs), better cameras or advanced learning-based algorithms, the exhibited 

performance of the implemented stereo camera rig is suitable to demonstrate the concept of guided 

dToF. 

5.3 Monocular Depth Estimation 

While stereo depth estimation is a well-established technique, methods of extracting depth information 

from a standalone camera also exist. This method is known as monocular depth estimation. As with 

stereo depth estimation, these techniques fall into two categories. Traditional methods use visual cues 

such as perspective projection to infer depth based on the apparent sizes and positions of recognised 

objects [161], motion parallax [162] and camera focus [163]. Challenges occurs when scenes lack any 

distinct features where these methods can be applied on. With the extensive development of deep 

learning, more modern approaches now use CNNs trained on large datasets to directly predict depth 

maps from single images [164]. While these can provide exceptionally dense depth maps [165], their 

performance relies on the availability of ground truth datasets of which are currently lacking in sufficient 

quantity. 

Although traditional stereo depth techniques such as SGM can produce accurate depth maps, traditional 

monocular depth techniques are less robust, particularly in scenes lacking reliable cues [164]. As a result, 

learning-based approaches have quickly assumed a more favourable choice for resolving monocular 

depth. In 2020, a pre-trained monocular depth neural network developed by Intel called MiDaS which 
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achieves state-of-the-art results on several benchmarking platforms [166] was made open-source. It is 

therefore also worthwhile exploring this as a means of guiding a guided dToF system. 

5.3.1 Process Flow 

Since there is no need to align images from multiple cameras via rectification, the preliminary step of 

calibration is not required for monocular depth estimation using MiDaS. However, image transformation 

is still a necessary step during runtime in order to scale images to the same pixel resolution in which 

the network is originally trained on. Once scaled, the image is passed through the trained MiDaS 

network to produce a disparity image which can then be transformed back to the original resolution.  

While the notion of disparity values is clear for stereo depth estimation (i.e., the number of pixels a 

point has shifted by between the left and right camera) it is not as trivial in the use if monocular depth 

estimation and as such requires further explanation which is provided here. Many large datasets of 

synthetic (e.g. Middlebury [25]) and real (e.g. KITTI [26]) scene images along with per-pixel ground 

truth distance have been gathered. These were established to accelerate stereo depth estimation given 

its long-established research efforts. As a result, these datasets provide ground truth in the form of 

disparity. Learning-based monocular depth algorithms such as MiDaS, which depend on large volumes 

of training data, are therefore trained on these stereo datasets and consequently output depth in values 

of disparity. However, if a reference point of known distance is available in the image, as will be the 

case in the distant sweep tests to follow, then converting from disparity to distance for that pixel and 

subsequently all pixels in the image can be performed.  

 

Fig. 73: Process flow diagram of learning-based monocular depth estimation. 

5.3.2 Performance 

To provide a direct comparison to the stereo depth estimation established earlier in the chapter, the 

same dataset of images is used for assessing monocular depth estimation using MiDaS. The resulting 

processed depth image using MiDaS on the same sample image of Fig. 64 is shown in Fig. 74.  
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The high density of the resulting depth image compared to the stereo depth estimate using SGM is 

immediately apparent. By eliminating the reliance on a second camera, both the inability to resolve 

distances close to the camera and the effect of occlusions are circumvented. However, the quality of a 

depth image hinges not on the abundance of depth estimates, but on their precision and accuracy. 

 

Fig. 74: Depth estimation using MiDaS (a) original camera image (b) estimated depth 
image (c) both images overlaid. 

Observing the depth image as the target moves further from the camera in Fig. 75, the limitation of 

this technique in its current state becomes apparent. Unlike the results using stereo depth estimation 

(Fig. 65), the target quickly disappears from the depth image as it moves further from the camera.  

In Fig. 76 the monocular depth estimate to the target at each distance step is benchmarked against the 

measured ground truth, the resulting RMS error is summarised in Fig. 77. The data demonstrates that 

the accuracy of this approach significantly lags behind that of the implemented stereo camera approach 

(Fig. 68). This discrepancy is evident not only at longer distances (e.g., beyond 120 m) where the 

accuracy substantially degrades but also at shorter distances where the RMS error is more than ten 

times greater than the equivalent stereo depth estimate.  

The last crucial aspect to take into account, especially when dealing with neural network-based methods, 

pertains to processing time. When implemented on the same system as the stereo camera setup, each 

frame of the monocular depth process requires approximately 15 seconds for execution, resulting in a 

frame rate of under 0.1 fps. As this is dominated by the depth estimation network which uses images 

transformed to a set resolution, the execution time is largely independent of the original image 

resolution, unlike the execution time using traditional stereo depth estimation (Fig. 69). 
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Fig. 75: Sample capture during the distance sweep experiment at various target 
distances and the corresponding depth image from stereo depth estimates. 
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Fig. 76: Average estimated monocular depth and variance (3 standard deviations) at 

each step in the distance sweep test over a sample window of 5×5 pixels. 

 

Fig. 77: RMS error of monocular depth estimates at each distance step. 

5.3.3 Discussion 

State-of-the-art learning-based monocular depth estimation algorithms such as MiDaS now allow 

notably dense depth data to be extracted from single camera images, without the artefacts present in 

stereo depth estimation such as occlusion. However, after benchmarking the accuracy of this technique 

on real-world distance sweep, it is clear that using MiDaS in its current state would not be suitable for 

a guided dToF system. Furthermore, the long execution time required for images to pass through the 

trained neural network would not only present a major bottleneck to the system frame rate but also 

cause motion artefacts by guiding pixels to regions where an object has already passed through.  
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5.4 Lidar Intensity Depth Estimation 

While vision cameras are the most direct means of capturing photographic images, lidar is also capable 

of producing camera-like images. In measuring the laser return time, the total light accumulated by 

each ToF pixel within the exposure period is data that is also inherently collected. This intensity data 

can be used to produce a monochromatic of the scene, as illustrated in Fig. 78. Consequently, it follows 

that analogous image processing techniques to those employed in traditional camera systems, can also 

be applied to lidar intensity data to infer depth information. This work presents the first known 

application of this inherent lidar intensity data to extract additional depth information.  

 

Fig. 78: (a) depth data from a lidar sensor (b) corresponding intensity data from the 
same scene. 

Consider the autonomous vehicle lidar configuration presented in Fig. 72. In any setup such as this 

where there is scope for overlapping lidar field of views, the applicability of stereo depth estimation 

techniques is a worthwhile investigation.  

While the work presented in this section specifically derive depth estimation from the lidar's intrinsic 

intensity image, an alternative and frequently explored approach involves augmenting the lidar depth 

image with additional vision cameras. These approaches can generally be classified into two categories 

(i) depth completion and (ii) error refinement. In depth completion, vision camera images are utilized 

to enhance the resolution of typically low-resolution lidar cameras. One of the earliest examples was 

introduced in [167], employing a Markov Random Fields (MRF) technique to match discontinuities in 

lidar depth with those in camera brightness. A comprehensive overview of similar methodologies 

stemming from this approach is provided in [168]. The MRF technique is further enhanced in [6] to 

better accommodate dynamic scenes. In error refinement, additional data from vision sensors is used to 

enhance the accuracy. A prominent examples is explored in [169] where a fusion algorithm is used to 

improve accuracy in scenes with varying texture.   
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Fig. 79 illustrates the proposed method of using lidar intensity data to enhance the final depth data of 

a pair of lidar sensors. By applying stereo-matching algorithms to the monochromatic intensity images, 

additional depth estimates are obtained which are then combined with the original lidar depth data to 

form a more complete depth image of the scene.  

 

Fig. 79: Illustration of extending depth range of a pair of lidar cameras by processing 
intensity images. Reproduced from [4]. 

5.4.1 Practical Setup 

A reasonable pixel resolution is required to estimate depth through image processing. As a result, the 

Basler Blaze-101 iToF solid-state flash lidar is used in this work to provide a pixel resolution of 640×480 

at an affordable cost. This lidar has a maximum range of 10 m indoors and operates at a wavelength of 

940 nm. Two units are mounted on a rigid dovetail rail to achieve an adjustable baseline of up to 1 m. 

The final setup is shown in Fig. 80. As with the earlier camera-based approach, the established semi-

global matching (SGM) algorithm is adopted. A Bosch GLM 250 VF rangefinder is used to assess the 

ground truth accuracy of the processed depth estimates. 

 

Fig. 80: Setup for lidar-based stereo depth estimation. Adapted from [4]. 
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5.4.2 Process Flow 

The process of enhancing the native lidar depth image using stereo depth estimates derived from the 

lidar intensity data is illustrated in Fig. 81.  

 

Fig. 81: Processing flow diagram used to extract depth from intensity images. Adapted 
from [4]. 

As with the process of estimating stereo depth using conventional imaging cameras (Section 5.2) 

checkerboard calibration is first performed. However, unlike imaging cameras, a unique challenge in 

checkerboard calibration using intensity data from a flash lidar is the presence of glare introduced by 

the flash, as shown in Fig. 82(a). This can be overcome by acquiring numerous checkerboard images at 

a variety of positions and angles (Fig. 82(b)) until a suitable number of glare-free images have been 

acquired. A calibration of less than 0.1 pixels of reprojection error was found to give sufficiently accurate 

camera parameters for stereo-matching.  

While rectification is a necessary step in the stereo depth estimation process, the transformation it 

applies to the acquired images prevents it from being directly superimposed onto the native lidar depth 

image. To resolve this issue, an optimization function [170] is applied to a sample pair of pre- and post-

rectification intensity images to estimate a geometric transform which converts the rectified image points 

back to the original coordinates. The value of this transform only needs to be computed once during 

setup and can then be reused during runtime for minimal processing overhead. 
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Fig. 82: (a) Glare from flash lidar intensity data which can degrade calibration and (b) 
use of various target angles to capture images without glare. Reproduced from [4]. 

During runtime, both depth and intensity images are acquired simultaneously. The first step in the 

process is an optional pre-filter (median) to improve the intensity image quality, degraded by the optical 

bandpass filter, to assist with stereo-matching. After rectification and stereo-matching (SGM), an 

optional post-filter can also be applied to replace small patches of missing pixel disparities. Pixel 

disparities are then converted to their corresponding distance by combining Equation (26) with the 

camera parameters extracted during calibration. Finally, the stereo depth estimate image is transformed 

using the pre-established geometric transform and combined with the original lidar depth image.  

5.4.3 Performance 

The first set of results is comprised of images taken in an indoor environment. Under these conditions, 

most of the light captured by the sensor is the reflected laser light. To assess the performance of the 

processed intensity depth within a real-world environment, images of a real human figure have been 

captured at varying distance away from the lidar cameras. The captured and processed images are 

shown in Fig. 83.  

At the shorter distances, the benefit of the additional processed intensity depth data in situations that 

are challenging for lidar sensors is apparent in (i) surfaces that are near-perpendicular to the sensors 

such as floor, ceiling and tables (ii) narrow objects such as chair legs. As the human target approaches 

8 m and beyond, the returning laser signal is no longer sufficient for the lidar to measure distance. 

However, the processed intensity images continue to resolve the distance to the human target.  
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Fig. 83: Combined native lidar depth data and stereo depth estimates from intensity 
data in an indoor environment. Adapted from [4]. 
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By trading off frame rate, multiple consecutive intensity images can be averaged to extract further 

detail. The resulting processed depth from averaging 25 intensity frames is shown in the final column 

of images in Fig. 83. Using this technique, the human figure is resolved as far as 18 m away, increasing 

the native lidar depth when ranging the human figure by over 2×. The processed intensity depth 

accuracy of the human figure at each distance step over a 5×5 window of pixels (25 samples) is 

summarized in Fig. 84. A degradation in accuracy with distance is observed with a root-mean-squared 

error of 1 m at the maximum distance. 

 

 

Fig. 84: Stereo depth estimation accuracy using an indoor dataset of lidar intensity data. 
Adapted from [4]. 

A second set of results is comprised of images taken in an outdoor environment. Under these conditions, 

most of the light captured by the lidar is ambient background light. The resulting processed images 

from this scene are shown in Fig. 85.  
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Fig. 85: Combined native lidar depth data and stereo depth estimates from intensity 
data in an outdoor environment. Adapted from [4]. 

The challenge of lidar ranging under these conditions compared to the indoor environment is evident 

by the lack of native lidar depth points beyond even 5 meters. The additional challenge presented to 

the lidar by dark surfaces is also evident in the lack of depth data points present on the plant pot in 

the foreground. In this scenario, the additional range data extracted from the intensity images not only 

fills in the missing plant pot image but also reveals the presence of a human figure at a distance of 

11.5 m which is otherwise undetected by the native lidar depth data. Furthermore, the processed 

intensity data adds depth estimation to buildings as far as 40 m from the target, extending the maximum 

range in this outdoor scenario by nearly 10×. 

 

Fig. 86: Time to produce the final depth image with processed intensity data. 

A breakdown of processing time for each step in the lidar-based depth estimation frame is provided in 

Fig. 86. The process adopted here allows additional depth to be extracted from the lidar sensors while 

achieving a minimum frame rate of 5 fps. While the image acquisition period is a fixed requirement of 
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the cameras used, further reduction in the total frame time could be achieved through implementing a 

more effective rectification or stereo matching algorithm (at the cost of potentially degraded stereo 

depth estimation). 

5.4.4 Discussion 

This work presents the first application of inherent lidar intensity data to extract additional depth 

information, increasing the maximum depth range with no additional power consumption or hardware 

modification. Missing depth information is also successfully extracted from features in the environment 

such as floors, ceilings and dark objects. By averaging multiple frames of intensity images, the native 

lidar maximum distance is increased by 2× in an indoor environment and almost 10× outdoors. 

Evidently, the amount of extra depth information that can be extracted using this technique diminishes 

with the amount of ambient light available within the wavelength of the lidar filter. However, this is 

complimentary to the native lidar depth performance which improves under low ambient conditions as 

seen in Fig. 83 (indoor) vs. Fig. 85 (outdoor).   

In the context of guided dToF, the arrangement of two forward-facing short-range lidar and a single 

long-range lidar depicted in Fig. 72 could open up the possibility of guiding the long-range lidar from 

stereo depth estimation provided by the short-range lidar intensity data. 

5.5 Future Work: Lidar Intensity Monocular Depth Estimation 

In the prior sections of this chapter, the ability to extract depth estimation from stereo cameras was 

extended to using single cameras (monocular depth estimation). Therefore, it stands to reason that the 

same logic could be applied for lidar-based depth estimation from intensity data, opening up the 

possibility for self-guided dToF. Such an implementation would require a monocular depth estimation 

model that is trained on lidar intensity data. This is presently not available. While such training could 

be conducted, for example by using the native lidar depth data as ground truth, it is beyond the scope 

of this thesis which aims to develop a proof of concept for the principle of guided lidar. However, this 

is left as an interesting development for future work.  
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5.6 Conclusion 

This chapter explores both established and novel depth estimation techniques based on imaging to 

establish a suitable method for guiding the dToF sensor. 

To evaluate a camera-based approach, a stereo camera rig is built and tested in an outdoor environment. 

Leveraging the established SGM algorithm, this setup effectively resolved distances up to the 200 m 

range required for fully autonomous vehicles. Subsequently, a novel learning-based monocular depth 

estimation approach using the MiDaS model is explored. This enables depth estimation using only a 

single camera. However, both depth accuracy and processing time performance currently prevent the 

integration of this approach into a practical guided dToF system. 

The final approach adopts a novel method of deriving depth information from lidar intensity data. Using 

stereo depth estimation techniques, it is shown that the native lidar maximum distance can be 

significantly enhanced. However, the optical bandpass filter in lidar reduces the total incoming light 

which necessitates long exposure times for useable images. As with the camera-based approach, it is 

proposed that monocular depth estimation may also be realisable with lidar intensity images, enabling 

self-guided lidar. However, a neural network trained on such data would need to be established.  

A summary of the different approaches is provided in Table 13. In the pursuit of developing the first 

guided dToF demonstrator, a balance between the quality of depth estimation and the simplicity of 

implementation is paramount. As a result, the camera-based approach using traditional stereo depth 

estimation techniques is adopted for the guided dToF developed in this work. 

Attribute 
Stereo 

(traditional)  
Monocular 
(learning) 

Lidar 
intensity  

Estimate density Medium High Medium 

Distance accuracy Medium Low Low 

Processing time Fast Slow Medium 

Table 13: Performance summary of explored image-based techniques for integrating into 
the guided dToF lidar demonstrator. 

Having established both key parts of a guided dToF system (i) the guidable sensor and (ii) the source 

of depth estimates, integration and evaluation of the full guided dToF system can begin.  
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6 GUIDED DTOF SYSTEM 

6.1 Introduction 

This chapter presents the integration and evaluation of the first guided dToF system; combining both 

the guided dToF sensor and stereo camera depth estimation developed in the preceding chapters. The 

setup of the lidar and stereo camera rig are first covered separately, before integrating the two together 

to implement the full guided dToF system. The operation of the system is then evaluated under a 

variety of practical test conditions to determine the feasibility of guided dToF for self-driving vehicles.  

6.2 Preface 

Chapter 4 outlined both the primary (QuantIC4×4) and contingency (HSLIDAR) choice of dToF sensor 

for this project. Due to unresolved technical hurdles, the primary sensor was not operational within this 

project's timeframe. As a result, the system implemented here uses the contingency sensor HSLIDAR. 

6.3 Setup 

6.3.1 Lidar 

Imaging System 

As discussed in Section 2.2.3, guided dToF can be applied to any type of lidar imaging system where 

the sensor is a 2D array of dToF pixels. To remove the added complexity of scanning, the guided dToF 

demonstrator developed in this work is built around a flash lidar system. 

Laser 

The laser inherited for this project has a wavelength centred around 940 nm. To ensure the dToF sensor 

is configured appropriately for the laser, the pulse shape is measured using a fast photodiode connected 

to an oscilloscope. The resulting pulse shape is plotted in Fig. 87 and measured to have a full width half 

maximum (FWHM) of around 4.5 ns.  
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Fig. 87: Measured pulse profile of the 940 nm laser source integrated into the guided 
dToF system. 

Sensor 

Given the measured laser FWHM of around 4.5 ns, the optimal bin interval (𝑎𝑎) to configure the sensor 

histogram as per Equation (22) is: 

 𝑎𝑎 = 0.64 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2.9 𝑛𝑛𝑛𝑛  

Recall from Section 4.9 that HSLIDAR can be operated in one of two TDC modes, as laid out in Table 

10 (i) clocked (ii) delay line (DL). In the first mode the histogram bin time intervals are defined by the 

period of an external clock signal and in the second they are defined by the timing between a line of 

delay elements in each individual macropixel.  While a clocked TDC achieves histogram bins with highly 

uniform intervals, the sensor is limited using a maximum external clock frequency of 200 MHz, limiting 

the minimum bin interval in this mode to 5 ns which exceeds the target interval of 2.9 ns. As a result, 

the sensor must be operated in DL mode.  

Operating the sensor in DL mode presents two key challenges. The first is in setting the desired bin 

interval, since there is no analytical relation between the global control voltage which supplies the delay 

elements and the resulting delay. Secondly, delay elements are sensitive to mismatch, producing 

nonuniform delay times across each bin and every pixel, as illustrated in Fig. 88. Since the average 

desired bin interval is in the order of a couple of nanoseconds, even small variation between delay 

elements will significantly degrade the final measured laser return time. Therefore, thorough 

characterisation of every histogram bin interval in each pixel is undertaken to determine the appropriate 

control voltage for the required bin interval and calibrate out the nonuniformity. 
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Fig. 88: Illustration of ideal vs. real histogram timing when configured using a delay line. 

DL mode calibration was conducted using the setup pictured in Fig. 89. It consists of the lidar sensor, 

a delay generator (Stanford DG645) and a picosecond pulse laser driver (Picoquant Taiko PDL M1) 

with a 940 nm laser head (Picoquant LDH-IB-940-B) pointed directly at the lidar sensor. The setup is 

automated such that the sensor triggers the laser source via the delay generator; the resulting histogram 

for each pixel is logged; and the delay generator is incremented by 10 ps. The cycle is repeated until 

the full histogram window time for every pixel has been covered. 

 

Fig. 89: Setup used to characterise every bin interval in each pixel by sweeping a 
picosecond pulsed laser source. 

After conducting a few iterations to establish close to the targeted bin interval, the full calibration 

sweep was performed. The identified peak bin in every pixel at various intervals during the calibration 

is shown in Fig. 90. As well as showing the peak bin incrementing roughly at the expected interval, the 

sweep shows a notable delay across the sensor from left to right as a result of clock routing.  
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Fig. 90: Sweeping the laser delay and identifying the peak bin to characterise the bin 
interval of every bin in every pixel.  

Once the sweep is performed, the time interval of every bin in each pixel is saved as a calibration profile 

to be used as a reference during histogram peak interpolation. Note that subtleties in the sensor chip 

design produce different delay profiles for even and odd-numbered time windows, as a result two 

calibration profiles are generated to cover both window types. An overview of all the bin interval values 

across every pixel in the sensor at the established delay line control voltage is shown in Fig. 91. The 

plot confirms the achieved average bin interval to be 2.6 ns value (equivalent to 0.39 m), while the 

spread of 0.4 ns single standard deviation highlights the importance of conducting calibration. 

 

Fig. 91: Bin interval values across every pixel of the dToF sensor at the chosen delay 
line control voltage. 
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This calibration data (containing the delay time between the laser trigger and the mid-point time of 

each bin interval in every pixel) corrects the final measured depth during runtime by using it as a 

correction factor 𝐶𝐶𝑖𝑖 in the histogram interpolation algorithm. The basic interpolation algorithm shown 

in Equation (28) interpolates the precise bin value for any 𝑀𝑀-bin histogram with a photon count 𝐵𝐵𝑖𝑖 in 

each 𝑖𝑖 bin. By adding a correction factor 𝐶𝐶𝑖𝑖 containing the actual bin mid-point time vs. laser trigger 

for a given pixel, the calibrated peak photon arrival time can be obtained using Equation (29). 

Uncalibrated peak arrival time (in bins) 𝑡𝑡 =
∑ 𝐵𝐵𝑖𝑖𝑀𝑀
𝑖𝑖=1 × 𝑖𝑖
∑ 𝐵𝐵𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (28) 

   

Calibrated peak arrival time (in seconds) 𝑡𝑡 =
∑ 𝐵𝐵𝑖𝑖𝑀𝑀
𝑖𝑖=1 × 𝐶𝐶𝑖𝑖
∑ 𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (29) 

Note that for simplicity the above equations consider all bins for a given histogram. In practice, only a 

pre-determined number bins either side the detected peak bin needs to be considered. 

To illustrate the value of calibrating the sensor in DL mode based on each individual histogram bin 

interval across all pixels, the lidar is used to image a flat surface at a distance of 2.5 m. The resulting 

point cloud is shown in Fig. 92.  

 

Fig. 92: The impact of calibrating the dToF sensor on the final depth image quality 
when used in DL mode. 

To further illustrate the effectiveness of this calibration, the histogram of distance values measured by 

each pixel is shown in Fig. 93. Before calibration, the measured distance to the 2.5 m target exhibits a 

standard deviation of 0.175 m (7%), whereas after calibration this is reduced to only 0.029 m (1%). 
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Fig. 93: Distance measured by each pixel to a 2.5 m target, before and after calibration. 

Optics 

The large pixel area (114 µm × 54 µm) combined with the limited pixel resolution (64 × 32) of the 

dToF sensor limits the practical focal length options for the optics in front of the sensor. While a short 

focal length would allow for a wider FOV, this would severely limit the size of objects that can be 

resolved. A focal length of 25 mm is chosen, equivalent to a 16° × 4° FOV.  

Photon Budget Characterisation 

Before its integration into the complete guided dToF system, standalone characterization of the flash 

lidar is first carried out to determine the achieved photon budget. This is performed using a 1 m2 

Lambertian target calibrated to 10% reflectivity as pictured in Fig. 94(a) under illuminance of 60 klux. 

A lidar acquisition performed with the laser turned off allows the background to be estimated for a 

given exposure time, while a follow-up acquisition with the laser on allows the signal count to be 

estimated when subtracted from the prior established background count. This is performed 20 times to 

determine an average value and assessed over a 3×3 pixel window at various target distances.  

Given the sensor macropixel pitch of 54 µm (Section 4.9) and the chosen 25 mm focal length, the 

distance at which the large 1 m2 Lambertian target becomes smaller than a projected macropixel area 

as given by Equation (11) is at over 400 m. Characterisation was conducted up to a distance of 30 m 

which ensured a wide enough range of measurements while leaving ample margin to keep the target 

within a projected macropixel area.    
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The results are summarised in Fig. 94(b). As per the photon budget model outlined in Section 3.2.1, 

the background return rate (4.8 Mcounts/s) remains independent of distance (𝑧𝑧) and the signal photon 

return rate follows an inverse square law, with a trendline fitted to 89𝑧𝑧−2 photons per laser cycle. 

 
Fig. 94: (a) Setup for characterising the photon budget of the implemented flash lidar 

and (b) measured signal and background photon budget at 60 klux. 

6.3.2 Stereo Cameras 

Recall that the processing time to perform stereo depth estimation is proportional to the pixel resolution 

of the images used (Section 5.2). Since the FOV of the stereo cameras (23° × 18°) is wider than the 

lidar (16° × 4°), there is scope to optimise depth estimation by reducing the processed image area, as 

illustrated in Fig. 95. Furthermore, the larger area of the projected lidar pixels means that many stereo 

camera pixels accommodate the same projected area. By applying pixel binning (2 × 2), the resolution 

of processed images is further reduced. The final result is an 8× reduction in stereo depth estimation, 

boosting the maximum achievable frame rate to 16 fps. Moreover, this also reduces the total data and 

processing time for subsequent steps in the guided dToF process including pixel mapping which is 

discussed in the next section. 

 
Fig. 95: Reducing the stereo camera pixel resolution to optimise processing time. 

Adapted from [3]. 
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6.3.3 System 

Pixel Mapping 

Once depth estimates of the scene have been acquired from the stereo camera, they must be mapped 

onto each individual pixel of the lidar sensor to guide it to the appropriate depth window. This process 

is illustrated in Fig. 96. 

 

Fig. 96: Pixel mapping from one stereo camera to the corresponding lidar sensor pixel. 
Reproduced from [3]. 

Camera calibration is first used to determine the critical intrinsic and extrinsic camera parameter 

matrices which describe the physical attributes of the camera and their positions between one another, 

as described in Section 5.2.2. For the lidar sensor, the checkerboard image can be captured by 

configuring it for photon counting and using the resulting intensity images, as described in Section 5.4.1. 

Once calibrated, the following parameters are known: 

• 𝐾𝐾𝑆𝑆 3×3 intrinsic camera matrix of the principal stereo camera 
• 𝐾𝐾𝑙𝑙 3×3 intrinsic camera matrix of the lidar sensor 
• 𝑅𝑅𝑙𝑙 3×3 camera rotation matrix of the lidar sensor with respect to the principal stereo camera 
• 𝑇𝑇𝑙𝑙 3×1 camera translation matrix of the lidar sensor with respect to the principal stereo camera 

The pixel mapping process is then performed in two steps: (i) map each pixel coordinate in the stereo 

depth image (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠) to its corresponding world coordinate (𝑋𝑋,𝑌𝑌,𝑍𝑍) and (ii) map each world coordinate 

to the corresponding lidar camera pixel coordinate (𝑥𝑥𝑙𝑙, 𝑦𝑦𝑙𝑙). In the first step, the inverse intrinsic camera 

matrix of the principal stereo camera 𝐾𝐾𝑙𝑙 is multiplied by the camera coordinate to give a normalized 
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world coordinate. The world coordinate can then be scaled appropriately by multiplying by the distance 

𝑍𝑍 to that point which has already been estimated by the stereo depth algorithm. 

 
𝐾𝐾𝑠𝑠−1 × �

𝑥𝑥𝑠𝑠
𝑦𝑦𝑠𝑠
1
� = �

𝑋𝑋�
𝑌𝑌�
1
� (30) 

 
              𝑍𝑍 ∙ �

𝑋𝑋�
𝑌𝑌�
1
� = �

𝑋𝑋
𝑌𝑌
𝑍𝑍
� (31) 

In the second step, the lidar camera's extrinsic matrix 𝑃𝑃𝑙𝑙  is multiplied by the prior calculated world 
coordinated. 

 
𝑃𝑃𝑙𝑙 × �

𝑋𝑋
𝑌𝑌
𝑍𝑍
1

� = �
𝑥𝑥𝑙𝑙
𝑦𝑦𝑙𝑙
1
� 

where 𝑃𝑃𝑙𝑙  = 𝐾𝐾𝑙𝑙 × [𝑅𝑅𝑙𝑙  𝑇𝑇𝑙𝑙] 

(32) 

 

In the case where multiple camera pixels map to one lidar pixel, the modal pixel value can be taken. In 

this work, duplicates are discarded to optimise processing time. 

Process 

An overview of each key step in the guided dToF processes is illustrated in Fig. 97. These are: 

1. Acquire images from the stereo camera rig 
2. Rectify images and process stereo depth estimates 
3. Pixel map each depth estimate to the corresponding dToF sensor pixel 
4. Update the time window of each dToF pixel based on the estimated distance 
5. Cycle the laser to build up a histogram in each pixel and interpolate the precise target distance 

 

Fig. 97: Overview of key steps in the guided dToF implementation. Adapted from [2]. 
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Final Assembly 

The culmination of the research presented here is the first guided dToF demonstrator shown in Fig. 98. 

The setup runs on a 1.9 GHz Intel Core i7 8th generation laptop, with a Bosch GLM250VF rangefinder 

providing ground truth distance for benchmarking. A summary of the system is provided in Table 14. 

 
Fig. 98: The first working guided dToF demonstrator. Adapted from [2]. 

Component Parameter Value 

Lidar 

Laser pulse width 4.5 ns FWHM 

Laser repetition rate 80 kHz 

Wavelength 940 nm 

Filter bandwidth 10 nm FWHM 

Pixel resolution 64 × 32 

Focal length 25 mm 

Field of view (H×V) 16° × 4° 

Histogram bins 8×12-bit 

Histogram bin interval 0.39 m (2.6 ns) 

Histogram window step 1.875 m (1.25 ns) 

Stereo Cameras 

Baseline 1 m 

Camera type BFS-U3-16S2M-CS 

Maximum resolution 1080×1440 

Focal length 12 mm 

Field of view (H×V) 23° × 18° 

Table 14: Summary of components and values which make up the guided dToF system. 
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6.4 Results 

To evaluate the guided lidar demonstrator, various dynamic scenarios are captured with the system 

running in real-time at 3 fps. Performance is then quantitively evaluated along with the resulting laser 

power reduction over equivalent partial histogram approaches.   

6.4.1 Scenarios 

Outdoor Clear Conditions 

The first test scenario is conducted under clear daylight conditions where the illuminance levels reached 

15 klux. This scene captures a van as it moves away from the lidar, and Fig. 99 showcases the various 

sub-processes within a single frame of guided lidar data from this environment. Configuring the lidar to 

a step size of 1.875 m, around half the full histogram width, ensures a seamless depth map across the 

van even as it spanned multiple time windows. 

 

Fig. 99: Each sub-process within a single guided lidar frame. Adapted from [3]. 

Fig. 100 shows the subsequent frames captured from the same scene. In each frame, the illustration 

depicts the histogram and guided time window of a sample lidar pixel, demonstrating how the pixel 

continues to update accurately as the van gradually distances itself from the setup. The guided lidar 

system successfully tracked and resolved the distance to the van at distances extending up to 75 m. 
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Fig. 100: Three further frames of the scene in Fig. 99 including the configured time 
window of a sample lidar pixel and the resulting histogram produced. Adapted from [2]. 

Outdoor Foggy Conditions 

The presence of fog poses a significant challenge for lidar systems. It not only diminishes the intensity 

of returning laser signals but also generates early laser returns as a result of fog-induced reflections [92]. 

Fig. 101 presents a scene captured under foggy conditions, featuring both a moving pedestrian and a 

car. This scene showcases how the system copes with these adverse weather conditions. Notably, it 

depicts the time window of a lidar pixel accurately updating while observing the pedestrian and 

separately tracking the car's distance. Even in these challenging conditions, the guided lidar system 

managed to resolve the car's distance up to 60 m. 

 

Fig. 101: Three frames from a scene on a foggy day. Sample lidar pixels show which time 
windows they are configured to and the resulting histogram produced. Adapted from [3]. 
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Transparent Objects 

Transparent objects such as glass, introduce unique challenges for lidar systems due to the multipath 

reflections they generate [171]. This issue can be particularly problematic for techniques like partial 

histogram zooming, which favour the first signal peak. In the scene presented in Fig. 102(a) featuring a 

human figure behind a glass door, the point cloud resulting from evaluating only the first peak is 

obscured by the door. Using guided dToF, Fig. 102(c) demonstrates how each lidar pixel is appropriately 

guided to resolve the presence of a human figure behind the glass door, highlighting the effectiveness of 

guided dToF in addressing scenarios involving transparent objects. 

 

Fig. 102: (a) Scene of a human figure behind a glass door (b) obscured when using only 
the first lidar peak (c) revealed using guided dToF. Adapted from [2] 

6.4.2 Performance 

Measurement Error 

To quantitatively assess the performance of the guided dToF demonstrator, the measured distances to 

a human target are compared with the ground truth distance obtained from the rangefinder. This 

evaluation was conducted by analysing a window of 3×3 pixels across 9 frames, providing a total of 81 

sample points at each distance step up to 50 m. The experiment took place outdoors under an 

illuminance level of 72 klux and the results presented represent the real system performance while 

running in real time at the nominal 3 fps.  
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Fig. 103: Measured guided dToF distance mean and variance (3 standard deviations) at 
each step in the distance sweep test over a sample window of 3×3 pixels. 

 

Fig. 104: Measured guided dToF standard deviation at each distance. 

 

Fig. 105: Guided dToF and stereo depth estimations RMS error, along with theoretical 
stereo depth error based on to Equation (2) for sub-pixel disparity of ¼ pixels. 
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The mean dToF measurement of all sample points at each distance, along with ±3 standard deviations 

are plotted in Fig. 103. The single standard deviation value is also plotted separately in Fig. 104 for 

clarity. The measurements across pixels and frames are narrowly distributed, exhibiting a standard 

deviation of around 0.1% of the measured distance at the maximum distance.  

The RMS error of all dToF measurements at each distance are summarised in Fig. 105. The error of 

the guiding stereo depth estimates is also included, exhibiting the characteristic squared increase in 

error. However, the error is sufficient to guide the dToF sensor, resulting in no more than 0.15 m RMS 

error up to 50 m. 

Processing Time 

The execution required for each of the most time-intensive processes within one frame of this guided 

dToF implementation is outlined in Fig. 106. Before the lidar exposure period, the total execution time 

of all other processes is around 145 ms, equivalent to a maximum frame rate of 7 fps. Within this, there 

is scope to further reduce the execution time by vectorising some processes within the pixel mapping 

algorithm. Furthermore, there exists many more modern stereo depth estimation algorithms which may 

provide faster processing time than the traditional SGM algorithm used in this design. The subsequent 

lidar exposure period of 200 ms allows the system to achieve the long-range outdoor performance 

described above, reducing the frame rate to 3 fps. 

 

Fig. 106: Execution time of processes within one frame of this guided dToF 
implementation. 

Motion Artefacts 

When assessing the standalone performance of the implemented stereo camera rig in Section 5.2.4, it 

was shown that even sub-degree variations in the camera angles post-calibration result in significant 

depth estimation error. For a target at 40 m, Fig. 70 showed the rig to exhibit a 1-2 m error from even 
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a 0.1° mechanical deviation. This has been reproduced in Fig. 107, causing the camera rig to 

overestimate depth and a pedestrian moving between depth windows to be allocated the incorrect depth 

window. As a result, the pedestrian disappears between frames. 

 

Fig. 107: Stereo cameras over-estimating depth due to sub-degree mechanical deviation 
in camera angle. This causes the dToF sensor to be guided to the incorrecr depth 

window as the pedestrian moves closer. 

Laser Power Efficiency 

In Section 3.4 of the modelling chapter, the laser power penalty incurred using a partial histogram 

approach instead of a full/guided histogram was evaluated on an example design specification. The 

same methodology can be applied using the actual photon budget of the implemented guided dToF 

lidar measured in Section 6.3.1. For convenience, the relevant parameters are collected in Table 15. 

Parameter Value 

Target precision 10 cm 

Target probability of detection 99.7% 
Histogram bins 8 

Histogram bin interval (full/guided/sliding) 2.6 ns 

Laser pulse width (FWHM) 4.5 ns 
Signal rate 89𝑧𝑧−2 counts/pulse 

Background rate 8 Mcounts/s 

Table 15: Parameters relevant for modelling zooming and sliding laser power penalty. 
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The Thompson model determines the minimum required number of laser cycles for a full histogram 

approach as given by the plot in Fig. 108. From this, the minimum number required to implement a 

sliding approach (assuming no overlap between windows) is directly related by using the same 

methodology outlined in the modelling chapter (Section 3.4). For a zooming approach, a second zoom 

step is required for distances over 3 m (using a bin interval of 20.8 ns) and a third zoom step is required 

for distances over 25 m (using a bin interval of 166 ns). Passing these through the probability of 

detection model and combining with the full histogram requirement results in the minimum number of 

laser cycles for an equivalent zooming approach as given in Fig. 108. By evaluating the increase in laser 

cycles compared to a full histogram approach, the laser power penalty of equivalent partial histogram 

approaches is plotted in Fig. 109. To operate at the 75 m distance achieved by the guided dToF system, 

an equivalent partial histogram approach is shown to require a minimum of 6× more laser cycles. 

 

Fig. 108: Minimum number of laser cycles required to achieve 10 cm precision using 
each dToF approach. Reproduced from [3]. 

 

Fig. 109: Resulting laser power penalty using an equivalent partial histogram approach 
instead of the presented guided dToF approach. Reproduced from [3]. 
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6.5 Discussion 

6.5.1 Performance Assessment 

The implemented guided dToF system achieves a maximum sensing distance of 75 m while running in 

full resolution at 3 fps under daylight conditions. This is achieved using a single-tier dToF sensor with 

storage for only 8 histogram bins per pixel. To achieve the same maximum distance, an equivalent full 

histogram approach would require each pixel to accommodate almost 200 histogram bins, a capacity far 

exceeding anything realised by the current state of the art (see Fig. 28). Even if such a sensor could be 

realized, the significant increase in data would only exacerbate the already problematic issue of excessive 

data loads on self-driving vehicles [56]. On the other hand, an equivalent partial histogram 

implementation would require at least a 6× increase in laser cycles per frame. Not only does a guided 

dToF solution provide a substantial power saving over the partial histogram approach, but it also 

enables a much higher frame rate. This is exemplified in the state-of-the-art dToF sensors summarised 

in Table 16, where no partial histogram or single-tier sensor is able to achieve the same long-distance 

sensing (75 m) in full resolution at the frame rate (3 fps) achieved by the implemented guided dToF 

system. The closest performing partial histogram or single-tier implementation (Park et al. [145]) 

achieves almost half the range (45 m) and frame rate (<1.5 fps).  

In addition to these quantitative merits, the ability to guide the sensor under multipath conditions is 

advantageous. While the glass obstruction tested in Fig. 102 shows one such example, many other real-

world conditions cause such multi-peak signatures including smoke [172] and reflective road signs [173]. 

The challenge of actually detecting transparent objects using lidar is an area of active research, 

particularly in mapping where the preference is to detect such objects rather than see through them 

[174, 175]. Under these preferences, guiding the DToF sensor using depth estimation from vision cameras 

in the visible spectrum may not be ideal. 
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Table 16: Performance overview of state-of-the-art direct time-of-flight lidar sensors 

  

 
1 Single point measurement. 
2 Frame rate not specified at maximum distance. 
3 Frame rate specified at 33 m, not maximum distance. 
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6.5.2 Practical Challenges 

In Fig. 70, it was illustrated that even minor deviations in camera orientation can lead to substantial 

errors in stereo depth estimation. These errors can cause undesired effects in the guided dToF system, 

such as objects disappearing between depth windows, as observed in Fig. 107. The specific guiding 

mechanism implemented here through stereo depth estimation presents a particular challenge, as any 

error not only degrades stereo depth estimation accuracy but also affects the pixel mapping of each 

depth estimate to the lidar sensor. For a guided dToF system employing stereo depth to be capable of 

robust performance onboard self-driving vehicles, continuous self-calibration techniques such as those 

presented in [176] should be implemented. 

6.5.3 Design Trade-Offs 

While the frame rate achieved by the guided dToF system is competitive with the state-of-the-art, it 

still falls short of the 25 fps requirement for fully autonomous vehicles (Table 1). This could have 

additional consequences for guided dToF, where slow depth estimation on a fast-moving target might 

lead the lidar to be guided to an incorrect depth window. For instance, consider a vehicle traveling at 

65 mph. At the current frame rate of 3 fps, the vehicle would cover a distance of 10 m per frame, 

exceeding the 3 m depth window size used in the implemented system.  

While further development to implement key processes within each frame (e.g., depth estimation and 

lidar acquisition) in parallel will make 25 fps more attainable, some trade-offs may also be adopted. By 

configuring the dToF sensor to wider depth windows, the system can tolerate less accuracy from depth 

estimation. In the context of a stereo camera guided dToF system, this allows for the use of faster 

stereo-matching algorithms [177]. Wider depth windows can be implemented by either (i) increasing the 

bin interval of each dToF pixel histogram at the expense of increased measurement error or (ii) 

increasing pixel capacity for more histogram bins. 
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6.6 Conclusion 

This chapter presents the implementation and characterisation of the first guided dToF system. The 

system is demonstrated under high ambient daylight conditions of 72 klux while operating at 3 fps and 

performs ranging up to 75 m using the full sensor resolution. This performance is unrivalled for any 

single-tier state-of-the-art sensor. Furthermore, this is achieved without relying on partial histogram 

approaches, of which an equivalent implementation would require at least 6× more laser cycles per 

frame. An overview comparing the proven merits of a guided dToF approach against conventional full 

or partial histogram approaches is provided in Table 17. Provided that camera alignment and frame 

rate limitations can be overcome, guided dToF presents a tangible solution for 3D depth-sensing onboard 

self-driving vehicles where a wealth of sensor data for guiding is readily available. 

Table 17: Comparison of full, partial and guided histogram dToF. Reproduced from [3].  

Parameter 
Full 

Histogram 
Partial Histogram 

Guided 
Zooming Sliding 

Laser power penalty  Low High High Low 

Area requirement High Low Low Low 

Data volume High Low High Low 

Multipath reflection artefacts Low Medium Low Low 

Motion artefacts Low Medium Medium Medium 

System complexity Low Low Low High 
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7 CONCLUSION 

7.1 Summary 

This thesis aims to contribute to a key piece of technology to enable the widespread commercialization 

of self-driving vehicles: 3D depth-sensing. Solid-state lidar offers a mass-market depth-sensing solution 

compared to traditional mechanical scanning approaches, and the direct time-of-flight (dToF) approach 

is currently the most suited to meet the depth-sensing requirement for autonomous vehicles. However, 

solid-state dToF requires a sensor chip containing a 2D array of pixels, each capable of detecting, timing 

and storing the laser return time. In the modelling conducted in Chapter 3, it was shown that a sensor 

would need to be manufactured in an expensive stacked process using no larger than a 16 nm technology 

node to meet typical automotive depth-sensing requirements. Even if such a sensor could be realised, 

the processing of all photon data would present a significant challenge. To address this problem, various 

partial histogram approaches have been developed which summarise into two distinct approaches: 

sliding and zooming. As also shown in Chapter 3, these impose a significant laser power penalty on the 

lidar system, approaching 4× the laser power requirement compared to a full histogram approach when 

modelled within the context of a typical automotive lidar system. This thesis documents the design, 

construction and evaluation of a new approach “guided dToF”, allowing auxiliary sensors to narrow 

down the depth search space for a guidable dToF sensor for a practical solution without power-hungry 

partial histogram techniques.  

The design of a guided dToF sensor is outlined in Chapter 4, showing that guided functionality can be 

easily integrated into any dToF sensor chip with minimal area overhead. In the case of the upgraded 

QuantIC4×4 sensor, the added guided functionality occupied only 5% of the total pixel area. The project 

ultimately relied on a contingency dToF sensor “HSLIDAR” which was not designed for guided dToF. 

However, the successful execution of the eventual guided dToF system despite these circumstances only 

further exemplifies the feasibility of guidable dToF sensors. 

Stereo cameras were chosen for proving depth estimates to guide the dToF sensor. This is an appropriate 

choice given the indispensable role of cameras in self-driving vehicles. A stereo camera rig is constructed 

with a 1 m baseline and the established semi-global matching algorithm used to perform stereo-

matching. The performance of the standalone camera rig is evaluated and, while the depth accuracy 



 

139 
 

degrades with distance, the designed guided dToF sensor would only need its histogram bin intervals 

configured to around 1 m for the system to operate at a maximum distance of 200 m. 

Once the guidable dToF sensor and the guiding stereo camera rig were in place, the entire system was 

integrated. To eliminate any additional complexities that might arise from scanning, a flash lidar 

illumination was adopted. The guided dToF system was evaluated running real time under a variety of 

scenarios to assess its practical performance. 

7.2 Key Findings and Results 

This research contributes to the current state-of-the-art by providing a power- and data-efficient 

approach to dToF in the form of “guided dToF”. The system is demonstrated under high ambient 

daylight conditions of 72 klux while operating at 3 fps and performs ranging up to 75 m using the full 

sensor resolution. This performance is unrivalled when compared against any state-of-the-art single-tier 

sensor. Furthermore, the system performs better than any published state-of-the-art partial histogram 

sensors, without the inherent laser power penalty associated with these approaches (calculated to be at 

least 6× greater). 

Guided dToF is also proven to be effective under conditions such as fog which typically prove 

challenging to lidar due to the presence of early reflections. The sensor can be guided to see past these 

problematic reflections. Similarly, transparent obstructions (e.g. glass) which cause multipath reflections 

can cause the scene behind it to be undetected in many lidar configurations, but a guided dToF system 

is shown to see through such obstructions.   

7.3 Limitations 

The primary limitations are identified surrounding this specific implementation of guided dToF are 

blind spots from stereo depth estimation, camera misalignment, maximum range and frame rate. These 

are each discussed separately here, along with proposed future solutions. 
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7.3.1 Stereo Blind Spots 

Stereo depth estimation is only possible in the region where both camera field-of-views overlap. As a 

result, there is a blind spot region at short distances before the overlap region begins as illustrated in 

Fig. 60. As a result, guiding cannot be performed in this region. For the specific implementation 

presented here, this region extends to the first 15 m in front of the cameras. While exploring a trinocular 

(three-camera) arrangement would reduce the extent of this blind spot, the anticipated integration of 

both short- and long-range lidar sensors in self-driving vehicles would effectively address this issue. 

7.3.2 Camera Misalignment 

In Chapter 5, even minor deviations in camera orientation were shown to produce substantial errors in 

stereo depth estimation (Fig. 70). The repercussions of this were realised in Chapter 6, causing objects 

to disappear between depth windows for example (Fig. 107). Furthermore, the pixel mapping technique 

adopted, as described in Section 6.3.3, is also sensitive to errors in stereo depth estimation. To ensure 

reliable performance under the harsh shock and vibrations experienced by the vehicle, self-calibration 

techniques would need to be employed to continuously update the cameras' extrinsic properties. 

7.3.3 Maximum Range & Frame Rate 

While the achieved maximum 75 m outdoor ranging at 3 fps using the full sensor resolution surpasses 

published state-of-the-art dToF sensor performances, it falls short of the 200 m range at 25 fps targeted 

for automotive lidar. Once the primary QuantIC4×4 sensor developed for this project becomes available, 

the improved SPAD sensitivity from 3.5% to 18.5% PDE at the 940 nm laser wavelength would 

significantly boost the maximum achievable range of the setup. Alternatively, the required number of 

laser cycles may be reduced to boost frame rate without degrading the maximum range. However, as 

shown in the process breakdown in Fig. 106, even without the lidar acquisition period the maximum 

achievable frame rate of the presented implementation is 6 fps. On the other hand, adopting the primary 

QuantIC4×4 would double the available histogram bins per pixel, giving wider depth windows that can 

tolerate faster stereo depth estimation at the expense of lower accuracy. Further frame rate boost could 

be achieved through use of graphics processing units (GPUs) for accelerated processing and executing 

the main processes within the guided system in parallel rather than sequentially. By exploring these in 

combination there is nothing to suggest that the system couldn’t achieve 200 m ranging at 25 fps. 
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7.4 Future Work 

7.4.1 Evolution of Guided dToF 

Further to addressing the current limitations of the system through the suggestions outlined above, 

there exist exciting possibilities in exploring entirely new methods of guiding in a guided dToF system. 

Depth estimation from single cameras, as explored in Section 5.3 brings significant benefits compared 

to a stereo camera guided system, including the elimination of occlusions and the short-range blind spot. 

While the monocular depth estimation techniques explored in this thesis did not perform to the level 

required for guided dToF, this is a rapidly evolving field and could soon present a viable option. As 

discussed in Section 5.5, this could even be evolved to extract depth information from the lidar sensor’s 

own intensity image, creating a self-guided dToF lidar.  

Beyond image sensors, guiding from other types of sensors onboard self-driving vehicles presents a 

valuable exploration. In particular, radar is a long-established technology which is more power-efficient 

than lidar over longer distances. While radar lacks the fine lateral resolution of lidar, it could point a 

guided dToF system to a broad area of interest, allowing the lidar to reveal the object with a dense and 

precise point cloud. 

Taking this a step further, guiding may even be realised without any auxiliary sensors at all. Through 

data processing and prediction techniques such as Kalman filtering, the historical depth data previously 

captured by the lidar sensor could be leveraged to guide its own depth windows. 

In practice, the most effective guided dToF solution would make use of the variety of data available 

onboard a self-driving vehicle. Exploring how to effectively combine different sources of data to provide 

the most appropriate guiding data for a given scenario would make for a robust guided dToF system. 

7.4.2 Further Evaluation 

The scenarios under which the guided dToF demonstrator was tested allowed it to be evaluated under 

real-world conditions. However, there is also value to be gained from testing under controlled 

environments. A large indoor test environment would allow quantitative evaluation of a guided lidar 

system for a variety of different target distances, object reflectivity, textures and lighting conditions, all 
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of which affect both the guiding source and the lidar. Using an automotive-grade lidar would also 

provide a greater amount of ground truth data for benchmarking in such tests, compared to the single-

point rangefinder used in this work. Finally, if a guided dToF sensor can be configured into equivalent 

sliding and zooming partial histogram modes, experimentally evaluating the laser power penalty 

incurred in a controlled environment would be valuable. 

7.5 Final Remarks 

The guided dToF system presented in this thesis marks the first implementation of this approach. The 

depth-sensing performance demonstrated, realised using a single-tier silicon chip sensor, while at the 

same time minimising laser and data usage already emphasises its substantial potential. As we look 

towards a future where self-driving vehicles become prevalent, not only does addressing excessive lidar 

laser usage save power, but also helps mitigate the looming problem of interference between vehicles. 

The versatility of guided dToF, coupled with limitless conceivable ways to guide the sensor, makes it 

an exciting forward-looking prospect for self-driving vehicles and a wide range of applications. 
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