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Abstract

This thesis proposes a solution to the problem of modeling and optimizing the field
sensor network in terms of the coverage performance. The term field sensor is referred
to a class of sensors which can detect the regions in 2D/3D spaces through non-contact
measurements. The most widely used field sensors include cameras, LiDAR, ultrasonic
sensor, and RADAR, etc.

The key challenge in the applications of field sensor networks, such as area coverage,
is to develop an effective performance measure, which has to involve both sensor and
environment parameters. The nature of space distribution in the case of the field sensor
incurs a great deal of difficulties for such development and, hence, poses it as a very
interesting research problem. Therefore, to tackle this problem, several attempts have
been made in the literature. However, they have failed to address a comprehensive and
applicable approach to distinctive types of field sensors (in 3D), as only coverage of a
particular sensor is usually addressed at the time. In addition, no coverage model has
been proposed yet for some types of field sensors such as LiDAR sensors.

In this dissertation, a coverage model is obtained for the field sensors based on the
transformation of sensor and task parameters into the sensor geometric model. By pro-
viding a mathematical description of the sensor’s sensing region, a performance measure
is introduced which characterizes the closeness between a single sensor and target con-
figurations. In this regard, the first contribution is developing an Infinity norm based
measure which describes the target distance to the closure of the sensing region expressed
by an area-based approach. The second contribution can be geometrically interpreted
as mapping the sensor’s sensing region to an n-ball using a homeomorphism map and
developing a performance measure. The third contribution is introducing the measure-
ment principle and establishing the coverage model for the class of solid-state (flash)
LiDAR sensors. The fourth contribution is point density analysis and developing the
coverage model for the class of mechanical (prism rotating mechanism) LiDAR sensors.

Finally, the effectiveness of the proposed coverage model is illustrated by simulations,
experiments, and comparisons is carried out throughout the dissertation. This coverage
model is a powerful tool as it applies to the variety of field sensors.
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Chapter 1
Introduction

Have patience. All things are
difficult before they become easy.

Saadi Shirazi (1210-1291)

1.1 Background
Sensing the environment plays an important role in the development of robotics and
autonomous systems. A sensor is an instrument that can detect and respond to a wide
variety of inputs from the physical, chemical or biological environments.

Field Sensor

Regarding the sensing value of the surrounding objects, sensors can be classified into two
types: point sensor and field sensor. A point sensor is a sensor that measures a discrete
value such as temperature, pressure force, etc. A field sensor, in contrast, can cover a
2D or 3D region through non-contact measurement. Basically, the coverage area/region
of a field sensor is regulated by its configuration (pose).

The field sensors are essentially a subset of all directional sensors which possess the
feature of orientation in their function. They have received so much attention in both
industries and academic communities due to their particular interesting characteristic-
s and performance in many applications. Typically, the field sensors can be used to
provide valuable information from the environment; however, they tend to need high
computational power. Some examples of field sensors are listed as follows.

A. Camera

Camera sensors are the most widely used field sensors in many industrial applications.
They are remote-sensing devices which being used to record and preserve the scenes
captured through their lenses. Most cameras being employed today are the digital
camera which is incorporated into a variety of devices such as mobile phones (called
camera phones), autonomous robotic systems [1], and vehicles [2].

Operating Principle. The light reflected from the object surface enters an enclosed
box through the lens, and an image is recorded on the light-sensitive medium. The
length of time that light enters is controlled by a shutter mechanism. They have a range
up to 1 Km and have a wide field of view, and can observe the colors (Figure 1.1).
Nevertheless, they are ineffective in harsh weather conditions and darkness.
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1.1. Background

Figure 1.1: Camera sensor sensing region (viewing frustum).

B. Ultrasonic

An ultrasonic sensor (sometimes called ultrasonic transducer) is a device which measures
the distance to an object utilizing sound waves. They are mostly used for low speeds
and short-range detection. Ultrasonic sensors are used in industrial applications such
as water level detection [3], process industry [4], composite structures [5], inspection of
welded joints[6], obstacle avoidance [7], fire apparatus [8], and robotic seam tracking [9].

Operating Principle. It operates through recording the elapsed time between sending
out a sound wave at a frequency greater than 20 KHz (above the range of human hearing)
and the reflected waves (echo) back from them. It works based on the time of flight
(ToF) principle. Therefore, considering the speed of the sound wave and the elapsed
time, the distance to the object can be determined. However, they cannot recover the
position of the targets in 3D space as they have a planar sensing region (Figure 1.2),
the atmospheric conditions greatly affect the sensor performance [10]. The ultrasonic
beam has a conical shape beam and the distance to the object basically depends on
its size, shape, and orientation as well as target surface reflectivity, the temperature,
and relative humidity are two major influencing parameters from the environment [11].
The maximum detection range is typically less than 10m [12]. Ultrasonic sensors are
short-range sensors due to the attenuation of the sound wave in the air and their slow
response time because of the low propagation speed [13]. Furthermore, they are capable
of capturing the material property and structure of the object by measuring the reflected
signal strength [14].

C. RADAR

The RADAR, which stands for radio detection and ranging, is a system that uses radio
waves reflected from the surface of the object to detect the distance, direction, and speed
of the object [12]. While common RADARs have 2D coverage and they can only provide
range and bearing, the 3D RADARs [15] can also determine the elevation information.
Unlike ultrasonic sensors, RADAR sensor is less influenced by temperature. RADARs
function mainly for environmental monitoring as it is less affected by environmental
factors compared to other sensors [16]. They are used for many applications such as
people tracking and data fusion [17], in wind energy applications [18], human motion
classification [19], autonomous navigation [20], and safe landing [21].
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1.1. Background

Figure 1.2: Ultrasonic sensor sensing region.

Figure 1.3: Magnetic-field sensor(magnetometer) sensing region [29].

Operating Principle. The RADAR system has five main parts: Transmitter, Du-
plexer, Receiver, Radar Antenna and Indicator. It transmits a high power pulse with
speed of light into space and receives a part of the scattered energy reflected back from
the target. It calculates the distance to the target utilizing the time of flight (ToF)
measurement, and locate the direction of the target by using the directional antennas.
They can be operated at day or night and in all weather conditions (such as fog and
rain).

D. Magnetic-field

A magnetic-field sensor is a transducer which can detect a magnetic field from a per-
manent magnet, an electromagnet, or a current [22] and converts it into an electronic
signal [23](Figure 1.3). Different from other sensors, these sensors do not directly mea-
sure the physical property of the environment. In addition, the object requires being
equipped with a magnet as they are only in reaction to magnets. They are being used for
detection, localization, tracking, and discrimination of objects for security and military
applications [24]. Nondestructive evaluation, medical [25] and biomedical engineering
[26], and obstacle detection and avoidance systems [27] are other examples of the sensor
applications [28].
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1.1. Background

Figure 1.4: Classification of the single and network of field sensors.

Operating Principle. The magnetic-field sensor detect variations (disturbances) with-
in the magnetic fields and provide information on properties such as direction, presence,
rotation, angle, or electrical currents [22]. In other words, the output signal also needs
to be translated into the desired parameter through some signal processing. This vari-
ation would depends on object material and size, view angle (approaching angle), and
the distance between the magnets and object. The sensor spatial resolution is usually
on the scale of micrometer and it is affected by the distance between the two pairs of
magnets [30]. A typical low-cost magnetic sensor having a resolution of 0.1 microteslas
would have the maximum detection range of 4cm [31].

So even though it is not easy to implement these type of sensors, they have a diverse
range of interest in different applications. This is due to the fact that not only they
provide accurate and reliable data measurements [32], environmental effects such as
temperature, rain, snow, day, or night have no significant impact on the magnetic signal
[33]. According to the sensing variation of the magnetic field, they are often categorized
into three groups of the low field [25], Earth field [34], and bias magnetic field [35] sensors.

Field Sensor Network

The field sensors are usually implemented in groups to collect data and share information
between each other. They are categorized into two groups of anisotropic (directional) or
isotropic based on their dependence on the sensor orientation. In network applications,
based on their sensing range, they are generally classified into two groups of homogeneous
and heterogeneous networks as depicted in the Figure 1.4.

When it comes to the optimization of the field sensor network deployment, it usu-
ally requires minimization or maximization of a performance function which could be a
quantitative or qualitative optimization approach. This includes developing a coverage
model for the field sensors to assist us to find the position and orientation of sensors
placed in the network. In fact, it is a challenging task to measure the performance of a
sensor network as it is intimately linked to the coverage quality of the sensors.

Accordingly, there is still a great demand to construct the coverage model of the
field sensors which involves developing the sensor and task models as two main parts
of the coverage model. The sensor model typically comprises of intrinsic and extrinsic
parameters while the task model describes the task-related parameters which are required
to be performed (varying with applications).
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1.2. Motivation

1.2 Motivation

Autonomy is one of the key elements of the fourth industrial revolution (Industry 4.0
[36]). In autonomous operations, the perception of the environment plays a critical role
which needs high-performance sensing accuracy and precision. An economical way to ac-
complish autonomous operation needs is the implementation of cost-effective field sensor
networks. Consequently, the sensors benefit from complementing each other and provid-
ing a large scale of field coverage. These types of tasks tend to be difficult for human
operators when it is associated with the increase of coverage area or surface complexity.
Therefore, the automatic or semi-automatic approaches of field sensor deployment could
provide significant advantages over manual solutions to obtain high performance and
efficiency.

Generally, two of the most important questions arise out of these types of approaches
are: ’How well a single field sensor work?’ and ’How well a field sensor network sense
some phenomenon?’. One way to address these questions is to establish a coverage
performance model of the sensor.

There are various types of field sensors being used for perception of the environment.
In contrast to traditional omni-directional field sensors, directional sensors require their
own method for modeling the coverage performance [37, 38, 39, 40, 41]. Thus, it is
desirable to have a general solution for modeling the coverage of various directional field
sensors which is proposed here. In other words, the scope of this dissertation is not
limited to developing an approach for modeling the coverage of a particular sensor but a
variety of field sensors such as camera, LiDAR, ultrasonic, and RADAR, etc. This will
bring us one step closer toward the autonomous operations.

Since there has been no coverage model developed in the literature for the LiDAR
sensors, it is selected here as an example of directional field sensor. LiDAR sensor, among
other field sensors, is a remote-sensing which can provide required sensing accuracy and
precision for autonomous operations. Compared to the camera, the LiDAR measured-
data requires low processing power, which allows fast object detection, localization and
tracking [42]. LiDAR sensor has been used extensively in today’s industries such as
mining [43, 44], marine [45], oil [46, 47], etc. to aid real-world automation. Currently,
it has received a great attention due to recent advances in LiDAR technology and its
application in autonomous driving vehicles [48].

1.3 Proposition
This dissertation addresses the problem of coverage optimization for the field sensors
with application to LiDAR sensor networks. One of the difficulties encountered in the
modeling of the coverage of directional field sensors is interpreting a measure which can
sense not only the position changes but also variations in the orientation of the target
with respect to the sensor.

There are many coverage models developed for the camera sensor in the literature
which rely on the transformation of different sensor and task parameters into geometric
constraints [49, 50]. A geometric model of visual coverage for multi-camera systems
was introduced by Mavrinac [38]. They formulated a coverage model based on eight
different task parameters described by geometrical constraints. Despite his improvement
in providing a comprehensive coverage model for camera sensor, it was a range-limited
partially binary model. Thus, it is necessary to establish a more general coverage model
that can function as a continuous performance measure which also has a flexible sensing
range based on the applications.
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1.3. Proposition

Figure 1.5: The geometric model of the camera approximated by ellipsoid [39].

Figure 1.6: The geometric model of the camera represented by a circle [40].

Recently, an appealing idea was proposed by Alarcon [39] in which a geometric model
was constructed based on the geometric constraints (Figure 1.5). They developed and
validated a sensor-based coverage model (named vision distance), and showed its better
performance compare with the coverage model developed by Mavrinac [38] due to the
existence of multiple local optima. Nevertheless, this model did not provide sufficient
information about the physics of the sensor as the sensing region of the sensor was
approximate with an ellipsoid.

To solve this problem, a performance measure (coverage distance) was developed
based on an idea of homeomorphism mapping to utilize the sensor exact geometric model
(the model obtained from the geometric constraints) [40]. They developed a coverage
model based on mapping the 2D anisotropic sensing region to isotropic sensing one
(circle)(Figure 1.6). This approach was further extended for developing a coverage model
for camera sensor by mapping a 4D visual frustum (a combination of the 3D viewing
frustum and view angle) to a 4D unit cube [51](Figure 1.7). They used the infinity norm
of an array to construct the performance measure. However, from the optimization point
of view, the performance function suffers from the existence of the multiple local optima
in some configurations of the sensor and target. This is due to the nature of the infinity
norm.

Different from previous works, this dissertation proposes an approach for modeling
and optimizing the coverage which is generalized to various types of field sensors where
no coverage modeling approach has been reported throughout the literature that can be
applied to all types of field sensors. The coverage model for the field sensor is introduced
through developing a performance measure which characterize the closeness of the target
to the field sensor with considering the position and orientation changes.

Since there is a class of 2D field sensors having a circular sector sensing geometry
(such as 2D RADAR or LiDAR), a performance measure is developed based on Infinity
norm. In another attempt, the coverage model for the field sensor is developed through
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1.4. Thesis Outline

Figure 1.7: The geometric model of the camera represented by unit cube[51].

exploring the sensor parameters and employing the concept of star domain from the set
theory. Since the sensing region of the most widely used field sensors such as camera,
LiDAR, ultrasonic, and RADAR is star domain, mapping this region to an n-ball (Bn for
n = 2, 3) allows construction of a coverage model which can be implemented to different
types of 2D/3D field sensors. This is performed by deploying the radial projection of the
points of the surface which encloses the star domain, onto an n-sphere (Sn for n = 1, 2)
followed by developing a performance measure based on the Frobenius norm.

Based on the proposed performance measurements, the field sensor network is de-
ployed optimally for the area coverage problem through a gradient-based control law.
Additionally, simulation and experimental results are provided to assess the practical
aspect of the presented approach. To further validate this approach, a comparison with
the performance measure presented by Zhang et al. [51] is made.

1.4 Thesis Outline
The first part of the dissertation aims at providing a literature review of the sensor
coverage model and deployment of field sensor networks in Chapter 2. This includes
reviewing the state of the art in modeling the field sensors; in particular, mechanical
and solid-state LiDAR sensors in Section 2.2, followed by sensor network deployment in
Section 2.3. Chapter 3 introduces two performance measures based on Infinity-norm and
Frobenius-norm for construction of field sensor coverage model established in Chapter 4.
These non-negative scalar functions reveal the degree of closeness of a target to the
sensor considering both relative position and orientation. A performance measure is
developed for the class of 2D fields sensors in Section 3.2. Utilizing the definition of
star domain and considering orientation change of the target with respect to the sensor,
a Frobenius-norm based measure is introduced in 3.3 which can be applied to the field
sensors having in 2D/3D sensing regions. Chapter 4 presents the coverage of single
(Section 4.2) and network of field sensors(Section 4.3) along with optimization of field
sensor network coverage in Section 4.4 and simulations for validation of the proposed
performance measure as well as coverage of field sensor network in Section 4.5.1 and
4.5.2

The second part of this dissertation deals with the application of the field sensor
coverage model for LiDAR sensors. It begins with introducing the measurement prin-
ciples of two classes of solid-state (flash) and mechanical (prism rotating) LiDARs in
Chapter 5. The simulation and experimental verifications for the measurement princi-
ple of both LiDARs are provided in Section 5.2.3 and 5.2.3. Developing the coverage
model for solid-state (flash) LiDAR comes after in Chapter 6. The coverage model is
introduced by defining the sensor geometric model obtained from sensor and task pa-
rameters in Section 6.2. The optimization of the mechanical LiDAR sensor networks is
conducted in Chapter 7. In this chapter, coverage model of the LiDAR having Risley-
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prism rotating mechanism is proposed (Section 7.2) using the coverage model developed
in Chapter 4. This involves developing the geometric model of the sensor considering
sensor and task models. Simulation is also conducted for coverage optimization of the
mechanical LiDAR sensor network in Section 7.3 to verify the proposed coverage model
and the optimization framework for LiDAR sensor.

The contributions of the works performed in this dissertation are provided in Section
8.1 followed by proposing some potential future directions in Section 8.3.
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Part I

Coverage of Field Sensor
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Chapter 2
State of the Art

You yourself are your own
obstacle, rise above yourself.

Hafez (1315-1390)

2.1 Overview
In literature, there are several works addressing the coverage of a single or a network
of field sensors, some examples are taken and presented here. Since the LiDAR sensor
is selected as an application example for field sensor coverage model developed in this
dissertation, in this chapter more attention has been paid on the state of the art in
the modeling of the LiDAR sensor. The modeling of LiDAR sensor has not received
enough attention during recent years, especially in modeling the sensor coverage. Only
a few studies have been conducted on the modeling and deployment of LiDAR sensor
networks, which are presented throughout this chapter.

2.2 Coverage Model
The literature has lots of examples of sensor’s model demonstrating isotropic and homo-
geneous properties in their capability. An isotropic model for heterogeneous locational
optimization of autonomous agents was proposed by Guruprasad et al. [52] in which
they used an arbitrary non-optimal node function. The mobile agents equipped with
anisotropic (elliptic) sensors was studied [53] wherein they approximated the sensor
model with an isotropic model. Another study on anisotropic sensors performed by Ai
et al. [54] in which they attempted to maximize the coverage with a minimum number of
sensors via implementation of a distributed greedy algorithm (DGA). However, in this
study the sensing region was modeled with a binary detection model that is not often
an efficient and practical solution.

Since in real life applications, most of the commonly used field sensors networks are
dealing with anisotropic sensing area (region), the optimization of a planar heterogeneous
anisotropic sensor network deployment in area coverage problem is discussed in detail in
Section 4.5.1 for performance measure 3.2 validation purpose.

There are several studies reported to model LiDAR sensor behavior in the litera-
ture for both solid-state and mechanical LiDAR sensors which are listed in following
subsection.
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2.2. Coverage Model

Figure 2.1: The geometry sensor model of the LiDAR sensor represented by sixteen
medial beam axis[55].

Solid-State LiDAR

The solid-state LiDAR sensors (such as flash LiDAR) have many advantages over me-
chanical LiDAR sensors, including simplicity, efficiency, high measurement speed, and
lower price.

A geometry sensor model was considered by Mahlisch et al. [55] for a flash LiDAR
sensor. They modeled the sensor with sixteen medial beam axis, and projected the
rays onto the image domain in a detection and tracking framework (Figure 2.1). An
incoherent model was introduced by Dolce [56] to specify the relation between target
intensity and received intensity in the focal plane.

Flash LiDAR sensors are extensively implemented for surveillance and exploration
to detect obstacles for safety guidance of unmanned ground or aerial vehicles in the
defense sector [57]. Although these sensors currently have a smaller Field of view (FOV)
compare to mechanical LiDAR, the ongoing advances in FOV improvement make those
flash LiDAR sensors a more viable candidate for the sake of environmental surveillance
and exploration.

Zhao et al. [58] developed and implemented a flash LiDAR model to illustrate the
influence of atmospheric turbulence on 3D target range imagery. However, they obtained
blurred images due to the spreading impact of the optical-beam during turbulence effect.

Since the flash LiDAR and camera sensor have the similar structure, in a very recent
study, a geometrical model based on the pinhole camera model was developed by Jang
et al. [59] for modeling the flash LiDAR (Figure 2.2). In this study, a sensor performance
analysis was carried out by considering the focal length, resolution, and pixel size for
some advanced driver assistance system (ADAS) applications. However, the relative
geometry of emitter and detector as well as detector specifications were not considered
in modeling the LiDAR sensor.

Mechanical LiDAR

The performance of robots in localization and mapping is greatly influenced by the sensor
measurement models. Some models are constructed based on the LiDAR measurement
such as feature-based and correlation-based models [60]. A probabilistic model of LiDAR
sensor based on the interaction between the beam and the environment, including un-
certainty of measurement was introduced by Schaefer et al. [61] which can be considered
as a beam-based (ray cast) measurement model.
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Figure 2.2: Flash LiDAR geometrical model [59].

Figure 2.3: LiDAR schematic representation in 3D space[68].

A simple circular sensor model for application of tracking persons was proposed [62,
63] where the beam was modeled as an oriented planar (2D) triangular shape while
the lateral profile of the beam was not considered. The full-angle beam width and the
distance measurement error as the most effective design parameters were taken into
consideration.

Two sensor models for the LiDAR sensor were deployed for low and high-attenuation
returns providing information for occupied voxel space and the free voxel space [64]. A
mathematical model for point positioning of LiDAR sensor was developed based on the
physical sensor model [65]. This model determines the relation between system measure-
ments and LiDAR coordinates.

Several developed LiDAR models are based on the point-intersection model which
utilizes the ray tracing technique [66, 57]. However, they suffer from inaccurate behavior
prediction of the robot in the complex environments [67].

A 3D Lidar sensor model using probabilistic approaches proposed by Postigo Fer-
nández [68] for the problem of generating occupancy grid map with application to au-
tonomous driving (Figure 2.3). In this study, every laser beam mas modeled individually
to estimate the probability of occupancy. A probabilistic 2D occupancy map model for
an unmanned aerial vehicle is developed based on physics of the LiDAR sensor, includ-
ing measurement and clutter noise [69]. They showed that drifting motion is an inherent
issue in detection of large obstacles using LiDAR sensor. A geometric model of LiDAR
systems is suggested by Min et al. [70] that accounts for the LiDAR system sensors (GPS
and INS), laser scanner and their corresponding systematic error.
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To the best of our knowledge, no research has been conducted to address the coverage
model as a specific mechanism to evaluate the LiDAR sensor sensing capability and
quality.

2.3 Sensor Network Deployment
One of the important aspects of system integration is optimal sensor network deploy-
ment which has received significant attention in the field of robotics, control and sensor
networks.

Recent researches in the literature, have addressed the problem of locational opti-
mization for heterogeneous [40, 71, 72, 73, 74] and anisotropic [53, 75] networks. The 2D
k-coverage problem proposed by Shi et al. [76] in which a coverage model was developed
for an anisotropic sensor network. However, the sensor directions were selected random-
ly from a limited set of directions which may restrict the coverage performance. In fact,
deploying an efficient field sensor network requires an optimal sensor placement strategy.
A probability inspired binary particle swarm optimization (PI-BPSO) algorithm to solve
the issue of homogeneous sensor network placement was introduced in a research by Fu
et al. [77]. The sensor placement (deployment) problem was investigated by Chen et al.
[78] for the model-based vision tasks. In their study, the optimal sensor placement graph
was achieved using the concept of the genetic algorithm and evaluated by means of the
min-max criterion. While there are several researches performed for solving optimal
sensor placement problem using heuristic methods [79], there is no guarantee for these
methods to get the optimal solution as the sensor network deployment problem is an
NP-hard problem [80].

An recursive convex optimization approach was proposed by Zhang et al. [41] to
accelerate the computation speed. They defined a resolution criterion including both
the distance and the view angle simultaneously.

A coverage optimization approach based on differential evolution is proposed by
Zhang et al. [81]. They used a parallel visual occlusion detection algorithm to increase
the computing efficiency. The problem of isotropic sensor network deployment having a
limited sensing range was addressed by Cortes et al. [82].

A lot of works has been done on distributed optimization approaches [83], [84, 85,
86, 87, 79]. The deployment of the sensors is performed using the Voronoi partition
in a spatially distributed way. In addition, a quantitative assessment of the sensing
performance was conducted to formulate the problem through a function of the Euclidean
distance.

In another study, a non-Euclidian based coverage function is proposed by Farzadpour
et al. [88] in which the problem of optimal deployment of heterogeneous anisotropic field
sensor network, having different sensing range, is investigated. A more recent study
for area coverage problem which addresses the coverage control of mobile robots having
heterogeneous sensing capabilities is conducted by Santos et al. [89].

Since the majority of the existing works in this area are mainly conducted in the 2D
space, further investigation of sensor modeling in 3D space is required.

2.3.1 Camera Sensor

In many security and entertainment applications, visual information is of the extreme
importance [90, 91, 92]. There are many criteria such as camera FOV, resolution, blur,
view angle and occlusion, which need to be considered simultaneously in camera cover-
age modeling. Based on various task requirements, many different approaches have been
proposed for modeling of the visual coverage. For example, a multi-camera coverage
model was presented by Schwager et al. [84], including resolution-like criterion and FOV
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2.3. Sensor Network Deployment

constraint; however, other criteria are not modeled. A generic visual coverage model pro-
posed by Mavrinac [38], where the model was validated through simulation and applied
in industrial inspection tasks and view selection. They employed a linear interpolation
to assign coverage strength between 0 and 1 for each task point. In another attempt,
a coverage model was applied for the camera sensor network deployment [93]. Where
a camera overlap graph was constructed in which a greedy algorithm was designed to
obtain a better-optimized solution.

2.3.2 LiDAR Sensor

Deployment of an inexpensive network of LiDAR sensors can provide high-performance
sensing accuracy and high precision for autonomous operations. However, there is a
limited number of works in literature regarding LiDAR sensor network deployment op-
timization.

One example of LiDAR sensor’s network application is tracking objects inside the
surveillance area. The detection, localization, and tracking of the objects inside the
area of surveillance has been investigated through centralized [94] and decentralized [63]
manner. The solution to address the problem of LiDAR sensor network deployment
for a surveillance application was proposed by Wenzl et al. [62, 63]. In their study,
the configuration of the sensors was determined through selection from a limited set of
configurations. In addition, since the target area was not completely covered by the
sensor network beams, they used kinematics of moving objects to track them within
uncovered regions. Later, they further improved this issue by proposing a decentralized
architecture [95]. A liDAR sensor network was deployed to estimate motion parameters
of a small size aircraft having low landing speed [96]. They deployed a network of four
Velodyne VLP-16 along taxiways and runways to obtain the required geospatial data to
estimate the velocity.

In this dissertation, a generic framework for optimization of field sensor networks
deployment is presented. The key part of this framework is the development of a per-
formance measure for the field sensors. Although this framework borrowed in some part
from [38] and [41], it is intended to be a more comprehensive approach in scope than
previous work, as it not only provides a more competent performance measure but also
extends to most common types of field sensors (such as camera, LiDAR, ultrasonic, and
RADAR).
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Chapter 3
Performance Measure

He who searches for his beloved
is not afraid of the world.

Nizami Ganjavi (1141-1209)

3.1 Overview
In this chapter, two different approaches are proposed for construction of the performance
measure which reveals the coverage strength of the target to the field sensor. These
measures are a non-negative scalar-valued function which characterizes the closeness
between the target point and the field sensor in configuration space. Basically, to develop
these measures, a model of the sensor as well as the task to be performed are required.

3.2 Infinity-norm Based Performance Measure
Development of a performance measure for the class of field sensors which can be modeled
by a planar circular sector is presented in this section. In this approach, the Infinity-norm
is utilized to the performance measure along with defining the necessary and sufficient
condition for the coverage of target point.

Let consider a set M ⊂ <2. Let set B ⊂M denote the coverage region of a field sensor
which can be modeled by a planar circular sector. It has the radius of δi ∈ <+(which is
the set of positive numbers) and central angle of αi ∈ S1 in radians as depicted in Figure
3.1.

Let Fs(XioiYi) denote the frame attached to the i-th sensor with its origin located at
Oi, and defined in word frame Fw(XwowYw). The sensor configuration is encapsulated
as qi = [siT θi]T ∈ (<2 × S1), where si = [xi yi]T is the position of the sensor in frame
Fw and θi represents the angle defined by counterclockwise rotation of sensor frame
(Fs) about the axis perpendicular to the XwYw-plane. Let T ⊂ M denote the set of
(target) points whose coverage strength needs to be evaluated. It is assumed that for
all target points vt ∈ T∩B have the same coverage strength. Let rt = [xt yt]T denote
the coordinate of a target point vt ∈ T in frame Fw. Given the position of the a target
point vt in frame Fw, then its coordinate in frame Fs is obtained as:

rti = [rt − ri] (3.1)

and its distance from origin Oi defined by rti = ‖rti‖ where ‖·‖ denotes the euclidean
norm. Let’s define two geometric shapes U and E with the area of Ni,u and Ni,w,
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3.2. Infinity-norm Based Performance Measure

Figure 3.1: Planar circular sector sensing model coordinate assignment.

respectively (as shown in 3.2) such that subtracting W from U will be equal to the
sensor’s model with area of Ni. In other words, Ni = Ni,u−Ni,w. Then, the coordinates
of the vertices of the triangle (in shape U) are obtained as:

vs = ri (3.2)

vh = li
[

cos(σ) sin(σ)
]

(3.3)

vg = li
[

cos(ζ) sin(ζ)
]

(3.4)

where σ = 1
2 (π− αi) + θi, ζ = 1

2 (π+ αi) + θi ,and li ≥ δi is the side length of triangle
U , and all vertices (vs, vh and vg) are defined in frame Fw.

Definition 3.1 (Circular sector coverage). For a target point vt, to be covered by
a circular sector sensor model; it is required to satisfy the following two conditions: I)
Fall within or on the boundary of the geometry shape U . II) Its distance from the origin
of the sensor’s coordinate (rti) should be less than or equal to the sensor’s radius (δi),
In other words, rti ≤ δi.

Definition 3.2 (Area operator). Given three vertices a = [ax, ay], b = [bx, by] and
c = [cx, cy] ∈ <2 of a triangle in 2-D space, the operator Λabc which yields the area of
the triangle, is defined as follows:

Λabc =
1
2det

∣∣∣∣∣∣∣
ax ay 1
bx by 1
cx cy 1

∣∣∣∣∣∣∣ (3.5)

To check the first condition, an area test is performed as follows: Given a sensor
configuration qi and a target point vt ∈ T (as a vertex); three triangles are constructed
by making edges through connecting vt to the three vertices of the U denoted as vs, vg
and vh as shown in Figure 3.3, and calculating the total area of these triangles Aj ∈ <
for j = 1, 2, 3. Referring to the Definition 3.2, those areas of triangles for the i-th sensor
are computed as A1 = Λtgs, A2 = Λtsh and A3 = Λtgh. Now, we compare the total
area of these triangles with the area of U . The point is inside or on the boundary of
this geometric shape if ∑3

j=1Aj = Ni,1; otherwise, it is outside of this area, and first
condition is not satisfied. To check the second condition, the target point is transformed
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Figure 3.2: The sensor coverage modeling details.

Figure 3.3: Position of a target point with respect to the boundary of shape U .

from frame Fw to Fs using (3.1), and its distance (ri) is compared with the circular sector
radius (δi). By considering theses two conditions, the performance measure of a target
point (vt) with respect to the i-th sensor ds : <2 × S1 → D where D = {x ∈ <|x ≥ 1},
is obtained as

ds(qi,vt) =
∥∥∥[ Γ(qi,vt) Ψ(qi,vt) ]

T
∥∥∥
∞

= max (|Γ(qi,vt)| , |Ψ(qi,vt)|)
(3.6)

where Γ(qi,vt) and Ψ(qi,vt) are functions corresponding to the conditions one and two,
defined as

Γ(qi,vt) =
∑3
j=1Aj(qi,vt)

Ni,1
(3.7)

Ψ(qi,vt) =
ri
δi

(3.8)

Theorem 3.1 (Necessary and sufficient condition for coverage). A necessary
and sufficient condition for a target point to be covered is ds (qi,vt) = 1.

Proof. According to the definition 3.1, for any target point to be covered, first condition
should be satisfied, in other words, Γ(qi,vt) = 1. Also, when the second condition is
satisfied ri ≤ δi which means Ψ(qi,vt) ≤ 1. Therefore, max (|Γ(qi,vt)| , |Ψ(qi,vt)|) = 1.

�
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Figure 3.4: Representation of an irregular star domain sensing region.

3.3 Frobenius-norm Based Performance Measure
In this section, a performance measure is developed which can be applied to the field
sensors having 2D/3D sensing regions. This measure which is based on the frobenius-
norm is inspired from concept of star domain from the set theory. It is obtained by
mapping the sensing region of the field sensors to the Bn followed by considering orien-
tation change of the target with respect to the sensor. Furthermore, the necessary and
sufficient condition for coverage of target in 3D space by the field sensor is defined.

3.3.1 Homeomorphism Map

The preliminary concepts of convex and star-domain sets followed by introducing the
radial projection map for mapping a star domain onto a Bn is presented here. The
motivation behind this mapping is to enable us to define a measure that characterizes
the closeness of a point to the sensor sensing region.

Mathematical Preliminaries

Let’s first recall the definition of convex and star-convex sets.

Definition 3.3 (Convex set).
A set J ⊆ <n is convex, if for any two points p1, p2 ∈ J the line segment connecting p1
and p2 is also in J . In other words, λp1 + (1− λ)p2 ∈ J for λ ∈ [0, 1]. Visually, this
means that the set has no dents or holes.

Definition 3.4 (Star-convex set).
An open bounded set D ⊆ <nis star-convex set (star-shaped or star domain) if it contains
a point Oc ∈ D such that every ray issuing from Oc intersect ∂D (boundary) in exactly
one point. The set D is then called a star-convex set with respect to Oc (Figure 3.4).

Remark 3.1 (Convexity of star domain).
Acceding to the above definitions, any convex domain is star convex while the converse
is not true.

Although it can be shown that the sensing region D ⊂ <3 of the most common type
of field sensors are star domain, one possible solution to the real-world shapes that are
not star shaped is to segment the shape into a set of disjoint star shapes and finally
glue the patches together [97]. The definition 3.4 suggests a method for mapping such a
domain to Bn. This is performed through specifying an interior point Oc, namely the
center of the domain, and using the radial projection. Thus, this was the motivation for
the construction of proposed performance measure.
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Figure 3.5: The radial projection mapping of an irregular star region.

3.3.2 Radial Projection Mapping

Definition 3.5 (Homeomorphism map).
The map f : K → Y of the topological spaces is called a homeomorphism if it is bijective
and f−1 is also continuous. Thus, we say that K and Y are homeomorphic.

Proposition 3.1 (Radial projection map).
Let S is be regular and compact (closed and bounded) surface in <3, the radial projection
[98] map T : Sn+1 → Sn (n-sphere for n = 1, 2) is a homeomorphism map.

Proof. Since the unit n-sphere Sn ⊂ <n+1 is a compact space, then every continuous
bijective map from a compact space to a Hausdorff space is a homeomorphism map [99].
Therefore, T is a homeomorphism map. �

Proposition 3.2 (Homeomorphism between surface and sphere).
The surface Sn+1 which encloses the star domain is homeomorphic to Sn by radial pro-
jection.

Proof. Since the surface Sn+1 that encloses the star domain is compact, based on Propo-
sition 3.1, its radial projection map T : Sn+1 → Sn is a homeomorphism map. �

Generally, surfaces are being represented mathematically by either implicit or para-
metric functions [100]. Let F (X) = 0 for X ∈ <3 be an implicit surface defined in
Euclidean space. Let D ⊂ <3 denote a star domain by surface S ⊂ <3 (Figure 3.5).
Given a point x ∈ <3 − {Oc}, the parametric equation of the ray starting at the given
point Oc that extends in the direction of vector u, is given by

r(t) = Oc + tu (3.9)

where the unit vector u is defined as

u =
x−Oc

‖x−Oc‖
(3.10)

where ‖·‖ denotes the Euclidean norm and t ∈ <+is the distance along the ray. Then,
by inserting parametric ray equation r(t) into implicit surface representation of S,
F (r(t)) = 0, the intersection point xi ∈ <3 of ray r(t) and the surface S, is obtained
by solving F (r(t)) = 0 for t, given by

xi = r(ti) = Oc + tiu (3.11)
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Figure 3.6: The system coordinates description assigned to the sensor.

Therefore, the radial projection T which maps S ⊂ <3 to S2 (2-sphere of radius R) is
defined by

T (x) = r(t) R

‖r(ti)‖
; ∀x ∈ D, xi ∈ S (3.12)

3.3.3 Sensor Model

The sensor model is an abstract description of the physical sensors which includes two
sets of parameters termed intrinsic and extrinsic parameters. The former is a set of
generic parameters which often determined by the sensor manufacturer and varies from
one type of field sensor to another. For example, the pinhole model is usually adopted
for camera sensor which includes the focal length, pixel dimensions, principle point and
image size (height and width) as well as aperture size. The latter is a set of parameters
describing the position and orientation of the sensor in <3 with respect to a world frame.
Let Fs : (x, y,x) denote the frame attached to the field sensor with its origin located
at point Oc, and defined in world frame Fw : (X,Y ,Z) with the origin O ∈ <3 as
illustrated in Figure 3.6. The six degrees of freedom (DOF) of a sensor’s pose-namely,
position components and orientation angles relative to the world frame (Fw), are the
extrinsic parameters of the sensor, defined as

q = [xs, Φ]T (3.13)

where xs = [xs, ys, zs] and Φ = [η,ω, γ] (Euler angles). The position and orientation
of a triangular mesh (target) can be encapsulated in a vector vt ∈ <3 × [0,π]× [0, 2π],
named directional point [38], as vt = [x,ϕ]T where x = [x, y, z]T and ϕ = [ρ,σ]T are
the position and orientation terms, respectively, defined in the frame Fw.

3.3.4 Task Model

One of the most critical parts of the coverage model is the description of the task
model. It consists of a set of parameters specifying the required sensing quality of
the environment. For example, for an industrial surveillance application using camera
sensor, it could include FOV, focus (image blur), view angle and resolution.

3.3.5 Geometric Model

The effective sensing region of the field sensor (DE) is obtained from transformation
of sensor and task model parameters into geometric constraints. The mathematical
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description of this region is provided by sensor geometric model. To map DE to the Bn

using radial projection, it is required to have the implicit representation of the surfaces
available. In other words, the geometric model of the region should be available.

Definition 3.6 (Directional point coverage).
For a directional point, to be covered by a field sensor, it requires not only to fall inside
or on the boundary of the sphere but also needs to satisfy the view angle criterion. In
other words, its viewing angle should be less or equal to the acceptable view angle.

Position Consideration. Let T denote the set of all directional points whose coverage
strength needs to be evaluated. Let DE denote the given effective sensing region of a
field sensor. By using the radial projection T , the region DE ⊂ <3 is mapped to the
Bn. Thus, the distance of a target to the sensing center in the new (mapped) domain,
is obtained by ∥∥r′ (t)∥∥ = ‖r (t)‖ R

‖r (ti)‖
(3.14)

Thus, for any target point vt ∈ T ∩DE , according to Equation (3.12), we can define a
non-negative function Γ ∈ [0,∞) as,

Γ(x) = ‖r
′ (t)‖

‖r′ (ti)‖
(3.15)

where ‖r′ (ti)‖ = R is the radius of the Sn (for n = 1, 2). By substitution of Equation
(3.14) into above equation, we can define Γ(x) in the initial domain as

Γ(x) = ‖r (t)‖
‖r (ti)‖

(3.16)

Γ(x) is defined as the proximity of target with respect to the center of sensing region
in the Euclidean sense. In other words, when Γ(x) 6 1, the target is located inside the
sensing region.

Orientation Consideration. Once the position difference is specified between sensor
and target, it is required to calculate the orientation difference. The angle between
target’s normal (nt) and the opposite direction of the sensor optical z-axis ( ns) is called
(nominal) view angle parameter (θt), obtained by

θt = cos−1 (−ns · nt) (3.17)

where ns and nt are unit vectors, defined as follow:

ns =
wRsI3 (3.18)

nt =
[

sin (ρ) cos (η) sin (ρ) sin (η) cos (ρ)
]T (3.19)

where I3 = [ 0 0 1 ]T and wRs is the sensor rotation matrix with respect to the
world frame (Fw) and defined using Euler angles as wRs = Rz (γ)Ry (ω)Rx (η), which
is obtained by rotation about X, Y and Z axis by η, ω and γ, respectively, as follow:

Rz (γ) =

 cos (γ) − sin (γ) 0
sin (γ) cos (γ) 0

0 0 1

 (3.20)

Ry (ω) =

 cos (ω) 0 sin (ω)
0 1 0

− sin (ω) 0 sin (ω)

 (3.21)
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Rx (η) =

 1 0 0
0 cos (η) − sin (η)
0 sin (η) cos (η)

 (3.22)

Thus, the non-negative function Ψ : [0,π]→ [0,∞) is defined as,

Ψ (ϕ) =
tan (θt/2)
tan (θa/2) (3.23)

where θa is the acceptable view angle specified based on application. This function
determines the degree of alignment between target and sensor. In other words, Ψ (ϕ) ≤ 1
means the view angle criterion is satisfied. Now, we need to define a function which can
measure both position and orientation of the target with respect to the sensor. This is
performed by utilizing the Frobenius norm as follow,

ds (q, vt) =
∥∥∥∥[ Γ Ψ ∆ (Γ + Ψ)

]T ∥∥∥∥
F

(3.24)

where ds : <3 × [0,π]× [0, 2π]→ <+, ‖·‖F is the Frobenius norm, and ∆ is defined as

∆ = bmax(Γ, Ψ)c+ (3.25)

where bxc+ denote the largest integer smaller than x. For a given configurations of
target and sensor, this measure characterizes their closeness through providing a scalar
value.

Theorem 3.2 (Necessary and sufficient condition for coverage). A necessary and
sufficient condition for a task point to be covered by a field sensor is that ds(q, vt) ≤

√
2.

Proof. For any point x ∈ S inside or on the boundary of the sphere its distance from
the center of the sphere ‖r (t)‖ ≤ R, so that, Γ(x) = ‖r(t)‖

R ≤ 1.
Also, since any target point needs to satisfy the view angle condition of θt ≤ θa, so
that Ψ(ϕ) = tan(θt/2)

tan(θa/2) ≤ 1. Hence max (Γ, Ψ) ≤ 1. Then, according to Equation

(3.25), ∆(vt) = 0. So
∥∥∥∥[ Γ Ψ ∆ (Γ + Ψ)

]T ∥∥∥∥
F

=

∥∥∥∥[ Γ Ψ
]T ∥∥∥∥

2
. By consider-

ing Γ (x) = Ψ (ϕ) = 1, its maximum value is obtained as
√

2. This implies that∥∥∥∥[ Γ Ψ ∆ (Γ + Ψ)
]T ∥∥∥∥

F
6
√

2. �

3.4 Conclusion
Two performance measures are introduced in this chapter. While the first measure is
developed for the class of 2D field sensors, the second one is proposed for a more general
case (3D) which can be applied to any kind of field sensors. In addition, the necessary
and sufficient condition for coverage of target by the field sensor for both measures are
defined.

These measures, as an atomic unit, later will be used for construction of the coverage
of field sensor in next chapter. Furthermore, the validation of the proposed norm-based
measures will be carried out through simulation in Section 4.5 after introducing the
coverage of field sensor network.

22



Chapter 4
Coverage of Field Sensor

He who searches for his beloved
is not afraid of the world.

Nizami Ganjavi (1141-1209)

4.1 Overview
The problem of optimizing the field sensor network deployment includes developing a
coverage model for the field sensor and finding a sensor network configuration which
optimizes the overall coverage performance of the network, is conducted in this chapter.

The modeling of field sensor coverage is, in fact, the process of establishing a scalar
coverage performance measure as presented in Chapter 3. The sensor network coverage
performance is constructed from the extension of the single sensor coverage. In other
words, it is obtained from integration of all sensor coverage.This helps in the prediction
of the sensor network coverage performance and will be used to simulate and optimize
the deployment of field sensor networks.

4.2 Field Sensor Coverage
The capability and quality of a field sensor can be described by the sensor coverage
models which depends upon the physical properties of the sensor as well as required
parameters of the task that needs to be performed. For example, for a camera sensor,
it could include: resolution, FOV, view angle and focus [101].

Due to the existence of many factors such as signal attenuation and the presence
of noise, the sensor sensing quality decreases as the distance from the sensor increases.
Thus, to characterize the sensing quality of the sensor more accurately, the coverage
model of the sensor is constructed using an exponential attenuation model as follows,

Ci(qi, vt) = e−µds(qi,vt) (4.1)

where ds(qi, vt) is the performance measure and µ > 0 is the decaying rate which is
a property of the physical space. This model, as a single sensor to single target point
coverage model, is used to construct the performance function of the field sensor network.
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Figure 4.1: Field sensor network coverage performance function framework.

4.3 Field Sensor Network Coverage
A generic framework for optimization of the field sensor networks deployment is present-
ed in this section (Figure 4.1)1. The four inputs of this framework are sensor model,
task model, environment model and relevance model. The key part of this framework is
the construction of the coverage model developed in Section 3.2 using the proposed per-
formance measure. The sensor model and task model are already defined in Section 3.3.
The brief description of environment and relevance model is also provided in following.

4.3.1 Environment Model

Any 3D model of the environment may be expressed to an arbitrary degree of precision
by triangular mesh-based surfaces as basic atomic units (Figure 4.2). To evaluate the
coverage of any of these triangles, both the position (with considering the vertices) and
the normal direction of the triangle face should be considered. Therefore, to determine
any triangular mesh coverage mathematically, we utilize the definition of directional
point introduced in Section 3.3.3.

4.3.2 Relevance Model

The degree of importance of triangles in the environment model is described by the
relevance model which is the spatial distribution of each triangle and depends on the
task requirement. For example, the surveillance of selected forest areas, roads and mining
regions might require higher relevance value.

1This dissertation incorporates the outcome of a joint research which Dr. Xuebo Zhang has under-
taken in collaboration with myself under the supervision of professor Xiang Chen.
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Figure 4.2: Triangular mesh-based surfaces representing a bunny [102].

4.3.3 Sensor Network Performance Function

For distributed computation, dynamic partitioning of the working space is needed. One
of the most conventional techniques in the partitioning of an environment is using the
Voronoi diagram. The performance of a field sensor network can then be defined as sum
of the contributions of all sensors according to their assigned voronoi partition. In fact,
we are seeking to find a configuration of sensors that minimize the performance function.

Voronoi Partitioning

While traditional Voronoi partitioning approaches use Euclidian distance, here the en-
vironment model (triangular meshes) is partitioned into (disjoint) regions based on the
proposed performance measure. The domain of interest M (target domain) is the space
that requires to be partitioned. Let sn = {1, 2, ...,n} and Q(t) = {q1(t), q2(t), ..., qn(t)}
be the configuration of n sensors at time t. Let’s define a modified Voronoi partitioning
such that M = ∪i∈snVi, where V = {Vi} is a collection of mutually disjoint interiors,
defined as

Vi = {vt ∈ T|ds (qi, vt) 6 ds (qj , vt) , ∀j 6= i, j ∈ sn} (4.2)
Since ds (qi, vt) = Υ1 or Υ2, where

Υ1 =

∥∥∥∥[ Γ Ψ
]T ∥∥∥∥

F
(4.3)

and
Υ2 =

∥∥∥∥[ Γ Ψ ∆ (Γ + Ψ)
]T ∥∥∥∥

F
(4.4)

by dividing each partition Vi into two sub-partitions such that

Vi = V 1
i ∪ V 2

i (4.5)

we have
V 1
i = {vt ∈ T|ds (qi, vt) = Υ1} (4.6)

and
V 2
i = {vt ∈ T|ds (qi, vt) = Υ2} (4.7)

Therefore, the overall performance function of the network is given by

H(Q) =
∫

M
max
i∈sn

{Ci (qi, vt)}φ (vt) dM (4.8)
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Having dynamic Voronoi partitioning, the above equation can be written as

H(Q) =
∑
i∈sn

∫
Vi

Ci (qi, vt)φ (vt) dM (4.9)

where φ (vt) ∈ < is the relevance function which is a measure of relative importance of
target point vt. In other words, those points being associated with greater weighting
values will have smaller (better) coverage strength.

4.4 Optimization of Field Sensor Network Coverage
A gradient-based optimization approach is applied in this section to optimize sensor
network performance function H.

4.4.1 Control Law

Let consider a first-order sensor dynamics, the control law is defined as

q̇i(t) = ui(t) (4.10)

where
ui(t) =

[
xi ωi

]T
=

[
Kx

∂H

∂xsi(t)
Kϕ

∂H

∂Φi(t)

]T
(4.11)

where the control law ui guides the sensors toward gradient direction for a positive Kx

and Kϕ. The trajectories of the sensors governed by control law (4.4.1) with any initial
configuration having an appropriate constant step sizes (Kx and Kϕ) will converge to
the critical points of H (configurations where the ∂H

∂qi
is zero) [103, 52].

4.4.2 Constrained Control Law

Let’s define a speed constraints on the sensor’s linear velocity ε = ‖xi‖ where ‖·‖ is
the euclidian norm and angular ωi velocity as εi,max and ωi,max, respectively for i ∈ sn.
Thus, in order to take into account the speed constraints, the constrained control law is
defined as follows:

uci =
[
xci ωci

]T
(4.12)

where
xci =

{
xi ‖xi‖ 6 εi,max

εi,max
xi
‖xi‖ otherwise

(4.13)

ωci =

{
ωi ωi 6 ωi,max

ωi,maxsgn(ωi) otherwise
(4.14)

This control law, under a constraint on maximum speeds, guides the sensors toward the
gradient direction that leads to the critical points of H. Chapter 4 provides an example
of constrained control law implementation.

The gradient of the performance function H with respect to i-th sensors configu-
ration qi, is obtained through applying the general form of Leibniz theorem [104] for
differentiating an integral, as

∂H
∂qi

=
∫
Vi

∂

∂qi
Ci (qi, vt)φ (vt) dM (4.15)

To compute the partial derivative of ∂
∂qi
Ci (qi,vt) it is required that Ci be at least

piece-wise differentiable. It can prove that the proposed performance measure has this
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Figure 4.3: The visual representation of the sensor coverage model.

property. Since, the gradient given by Equation (4.15) depends only on the assigned
partition Vi, value of φ (vt) and the sensor’s coverage function Ci (qi,vt), by considering
sub-partitions of Vi, we have

∂H
∂qi

=
∫
V 1

i

∂

∂qi

(
e−µdΥ1

)
φ (vt) dM +

∫
V 2

i

∂

∂qi

(
e−µdΥ2

)
φ (vt) dM (4.16)

4.5 Simulation Validation
In this section, to evaluate the proposed measures in Chapter 3, simulations for the
problem of area coverage using a mobile field sensor network deployment is conducted
here. An example of heterogeneous planar field sensor network, having different sensing
range, is considered to validate the Infinity-norm based performance measure developed
in Section 3.2. In addition, to validate the Frobenius-norm base performance measure
developed in Section 3.3, optimization of a camera sensor network deployment is carried
out and a comparison validation is performed.

4.5.1 Circular Sector Sensor Network Deployment

A network of n = 13 sensors placed in a random initial configuration in a discretized 2-D
square environment with the size of 100× 100m (having a set of 10,000 target points) as
shown in Figure 4.4. The radius δi and FOV of circular sectors αi are selected randomly.
Let the relevance function φ (vt) = 1 for ∀vt ∈ T, and the decaying rate for all sensor’s
coverage model be µ = 4. The sensor coverage model Equation 4.1 is visualized in Figure
4.3.

For the given network configuration, two gradient based control laws have been imple-
mented: i) constrained, ii) unconstrained. The proportional constants are set as Kx = 5
and Kϕ = 0.02, and maximum linear and angular speeds are selected as εi,max = 5 m/s
and ωi,max = 0.2 rad/s, respectively. After t = 500 sec, sensors spread over almost the
whole area as it has shown in Figures 4.5(a) and (b).

Figures 4.6(a) and (b) shows the trajectories of sensors for both control laws. The
starting location of the sensors is shown with a circle marker.

Figure 4.7 illustrates the performance evaluation process of the overall coverage per-
formance function during the optimization under both control laws. It is clear that H
has gradually increased under both control laws.
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Figure 4.4: Initial sensor network deployment configuration for covering a 2D region.

(a) Under unconstrained control law. (b) Under constrained control law.

Figure 4.5: Final sensor network deployment configuration for covering a 2D region.

(a) Under unconstrained control law. (b) Under constrained control law.

Figure 4.6: Sensor’s trajectories history during optimization.
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Figure 4.7: The overall coverage performance functions.

According to the Figures 4.7 and 4.6, It can be observed that using constrained
control law, not only could cause the lower speed of convergence, but also different
trajectory histories compare to the unconstrained situation. This means that the system
under constrained control law, do not necessarily converge to the same critical point of
H for the unconstrained situation.

Figures 4.8(a) and (b) show the sensor’s linear and angular velocity changes un-
der both control laws. It is observed that the sensors do not exceed their predefined
maximum velocity.

It is clear that the number of overlapped points is significantly decreased when the
sensors spread out to achieve better coverage as shown in Figure 4.9.

29



4.5. Simulation Validation

(a)

(b)

Figure 4.8: Unconstrained sensor’s velocities history.
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Figure 4.9: Number of points covered by more than one sensor.

Figure 4.10: A set of different target configurations selected for sensitivity analysis.
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4.5.2 Camera Sensor Network Deployment

To evaluate the effectiveness of the introduced approach using Frobenius-norm Based
Performance Measure, two simulations are conducted here.

Sensitivity analysis and configuration optimization

(a) Previous measure (dv)

(b) Proposed measure (ds)

Figure 4.11: The performance measure behavior for a set of target configurations.

A simulation is conducted based on a comparison between developed measure and
the one (visual distance) proposed by Zhang et al. [51]. In that work, the infinity norm
based function (dv) is used to construct the performance measure which was effective
in optimization. However, it is important to note that changes in one component in
the array of the proposed measure (visual distance) will not be realized unless it is the
maximum value component of the array. This will result in the occurrence of multiple
local optima in some situation. To make it more clear, following simulation is conducted.

A simple scene having a field sensor and a target point with a set of 20 target
configurations defined in sensor coordinate(Figure 4.10) such that has a global minimum
point the configuration corresponds to (Γ, Ψ) = (1.5, 0). The simulation results of the
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Table 4.1: Simulation comparison of Zhang et al. [51] and the proposed measure for
optimization of camera sensor network deployment.

Methods Covered triangles / ratio Resolution Blur View angle
Zhang et al. [51] (dv) 347/98% 0.08 0.10 16.91
Proposed measure (ds) 352/100% 0.08 0.09 10.32

comparison between performance measure of two approaches are depicted in Figure 4.11.
As it can be seen from this figure, the infinity norm measure (dv) has a constant value
of dv = 1.56 for a configuration within the set. This shows multiple local optimum and
there is no guarantee achieving of the global optimum of the configuration’s sets. In
another hand, this configuration can be realized by the proposed measure (ds). Thus,
the infinity norm (dv) based measure is "unaware" of these changes, whereas the proposed
measure (in Section 3.3) can detect them. Having these results in hand, it is a better
measure for optimization of sensor network deployment.

Camera Sensor Network Deployment

With a 3D representation of a terrain’s surface, a simulation is conducted for the op-
timization of camera sensor network deployment in an area coverage task to validate
the proposed approach. Furthermore, a comparison is carried out between the measure
proposed here and the one developed by Zhang et al. [51]. The sensor and task model are
selected from [41] in which the maximum blur circle, resolutions and view angle allowed
are selected as 1.0mm, 2.0mm and 45◦, respectively.

The sensing region of the camera sensor is a frustum (truncated pyramid). The detail
of geometric model construction for camera sensor is not provided here as it has a similar
approach to flash LiDAR presented in Section 6.2.3. A network of n = 12 cameras is
placed in a random initial configuration (Figure 4.12).

The comparison between the number of covered triangles is depicted in Figure 4.13.
Despite Zhang et al. [51] method, the number of covered triangles are increased more
rapidly and reach 100% coverage of triangles in 200s duration by the proposed approach.

The final sensor network deployment for both approaches are illustrated in Figure
4.14(a) and Figure 4.14(b).

Table 4.1, demonstrate the quantitative comparative results of two approaches. The
proposed approach proves to have more promising results as it provides better coverage
ratio, blur, and view angle. The main reason could be the existence of multiple local
minima in the measure utilized by Zhang et al. [51] as explained is Section 3.3.

Figure 4.15 shows the Voronoi partitioning representation for the final sensor network
deployment where each color belongs to one camera and uncovered triangles have black
color. It is shown that some triangles have back color which means we have uncovered
triangles.

4.6 Conclusion
This chapter has presented a systematic framework for modeling and optimization of
field sensor network deployment through introducing a gradient based control law. It is
shown that an optimal deployment of the field sensor networks is achieved, which prove
the effectiveness of the proposed measures and deployment methodology.

Although the infinity norm-based performance measure has the advantage of both
simplicity and proven performance, it has multiple local minimum issue, and it cannot
provide the coverage strength variations of the target within the sensing region of the
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4.6. Conclusion

Figure 4.12: Initial configuration of camera sensor network which is randomly deployed
in 3D space.

Figure 4.13: Number of covered triangles by camera sensor network during optimization.
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(a) Previous measure (dv)

(b) Proposed measure (ds)

Figure 4.14: Final camera sensor network deployment configuration.

sensor. Therefore, the Frobenius-norm based performance measure has been selected to
construct the coverage model, and to optimize the LiDAR sensor network deployment
in Part II of this dissertation. This coverage model not only utilizes the sensor exact
geometric model but also overcomes the multiple local optima that exist in the perfor-
mance measure proposed by Zhang et al. [51] which make it an effective approach for
modeling the field sensor coverage.

35



(a) Previous measure (dv)

(b) Proposed measure (ds)

Figure 4.15: Target area partitioning based on different measures for final sensor network
deployment.
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Part II

Application to LiDAR sensor

37



Chapter 5
LiDAR Sensor Principles

Whoever acquires knowledge but
does not practice it is as one who
ploughs but does not sow.

Saadi Shirazi (1210-1291)

5.1 Introduction
The LiDAR, which stands for Light Detection and Ranging, is an active remote-sensing
system. It utilizes laser pulse to measure the distance to the objects. It is an active
remote-sensing system which determines the distance to a target surface by measuring
the flight time of the laser pulses transmitted to and reflected from the target surfaces
(Figure 5.1). According to the scanning mechanism of LiDAR sensors, they can be
categorized into two groups of mechanical and solid-state LiDARs. While the former
is based on the mechanism of either mirror/prism rotating or scanner rotating (Figure
5.2(a)), the latter is either optical phase array or flash LiDAR (Figure 5.2(b)).

Figure 5.1: The principle of LiDAR sensor sensing method.
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5.2. Solid-state (Flash) LiDAR

(a) Mechanical LiDAR. (b) Solid-State (Flash Li-
DAR).

Figure 5.2: Schematic presentation of LiDAR sensors.

5.2 Solid-state (Flash) LiDAR

5.2.1 Operating Principle

In general, emitter, receiver, and optics are the main components of the flash LiDAR
sensors. In the emitter, a laser diode shot a single short pulse usually from 5 to 10ns
with a wavelength of 905nm to 1550nm. The flashlight illuminates with high-intensity
energy over the target area. Then, the reflected pulse is collected by the receiver optics
and focused on the detector panel. The Focal Plane Array (FPA) receiver module is
extensively used in flash LiDAR design. Whereas the camera sensors utilize the passive
light source, and the receivers are often charged-coupled devices (CCD).

5.2.2 Measurement Principle

The general measurement principles of the flash LiDAR are listed and explained as
follows.

1) Field of View (FOV)

The flash LiDAR usually illuminate a pulsed laser beam with relatively wide divergence
angle to cover the target area. In the absence of occlusion, the visibility of a point feature
depends on whether it is within the FOV of the flash LiDAR sensor or not. Its FOV is
defined based on the intersection of emitter and receiver FOV. Although an increase in
FOV provides better coverage, the size of FOV is limited by the photo-detector sensitivity
of receiver and eye safety requirements.
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Figure 5.3: Schematic diagram of the laser emission FOV geometry.

Figure 5.4: Schematic diagram of the receiver FOV geometry.

Emitter FOV. In general, the beam divergence is considered as the FOV of the
emitter which is adjustable along horizontal and vertical axis (also termed slow and fast
axis) using laser optical unit based on task requirements. Since the beam divergence
angles are not necessarily equal in horizontal and vertical axis, the output beam has an
elliptical cone shape as shown in Figure 5.3. Thus, the emitter FOV is specified by laser
beam divergence angles θl,e and θl,a, as

θl,e = tan−1
(
de
2L

)
(5.1)

where de is the length of laser beam footprint along the Y-axis and L is the distance
from the emitter center in direction of the Z-axis

θl,a = tan−1
(
da
2L

)
(5.2)

where da is the length of laser beam footprint along the X-axis

Receiver FOV. The dimension of the detector and receiving lens specify the receiver
FOV. It is constructed from elevation θd,e and azimuth θd,a angles (Figure 5.4), defined
as

θd,e = tan−1
(
H

2f

)
(5.3)

where f is the focal length of the receiving lens, and H is the vertical number of the
pixels.

θd,a = tan−1
(
W

2f

)
(5.4)

where W is the horizontal number of the pixels.
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5.2. Solid-state (Flash) LiDAR

Figure 5.5: Description of flash LiDAR Horizontal, Vertical and Depth resolutions.

2) Resolution

The ability of an imaging system to distinguish between two objects located close to
each other in space is called spatial resolution, which is measured in the unit of distance.
The higher spatial resolution implies that smaller distances between objects can be
distinguished.

Spatial resolution can be divided into two categories: axial (range or depth) resolu-
tion which is defined in the detector normal direction (Z-axis) and lateral (cross-range)
resolution, that is the defined in the direction perpendicular to the Z-axis. Lateral
resolution is commonly further sub-categorized into horizontal and vertical resolutions.

The flash LiDARs are usually constructed from a 2D detector array, called Focal
Plane Array (FPA) detector, which captures 3D and intensity data through the illumi-
nation of a laser pulse over the entire scene. In fact, each pixel will enable the detector to
measure the travel time of each laser pulse independently. Due to structural similarity of
FPA with the 2D camera detector, the lateral resolutions are similar to the resolution of
camera sensor, and can be defined as the number of units of length that are represented
by a pixel [105]. Thus, the resolution is determined based on the receiver optics and the
pixel number of the array.

Horizontal resolution (m/pixel). It is defined as the resolution perpendicular to
the direction of the Z-axis along X (Figure 5.5), given by

RH =
2ZR tan

(
θd,a

2

)
W

(5.5)

where θd,a is the azimuth angle, ZR is the depth of imaging, and W is detector width
(horizontal number of the pixels).

Vertical resolution (m/pixel). It is defined as the resolution perpendicular to the
direction of Z-axis along Y, given by

RV =
2ZR tan

(
θd,e

2

)
H

(5.6)

where θd,e is the elevation angle and H is the detector height (vertical number of pixels).
Therefore, detector lateral resolution is defined by considering the worst case resolution
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5.2. Solid-state (Flash) LiDAR

Figure 5.6: Schematic representation of flash LiDAR resolution cell.

as
RL = max (RH ,RV ) (5.7)

In other words, detector lateral resolution is affected by detector dimension and the
depth of imaging.

Range (Depth) resolution(m). The ability of flash LiDAR to distinguish two points
that are separated along the single channel (pixel) on different azimuth or elevation
angles. It can be defined by

RRa =
cTw

2 =
cτ

2 (5.8)

where Tw(s) is pulse width, c = 3× 108m/s is the speed of light and τ is the resolution
of the timer for recording pulses. That is to say, the shorter pulse width, the higher
range resolution will be. It is affected by pulse width, target type, target size and the
efficiency of the receiver. In this study, only the effect of the pulse width is considered.

Resolution cell. The resolution cell (sampling volume) at depth Zi is a volume of
space which is constructed from sensor axial and lateral resolutions depicted in Figure
5.6. This means that any two objects that are located inside the same resolution cell, are
not distinguishable. This term is validated in the experimental section for the proposed
flash LiDAR (VU8).

3) Range Accuracy

In general, range accuracy is the error between the result of a depth measurement and
its true value. It is affected by many factors such as system temperature and calibration
algorithm, background light, laser pulse power fluctuation, noise from the detector, and
time resolution. In this study, only the impact of the time resolution is investigated.
The resolution is the smallest increment of measure that a device can make. Since the
accuracy of a system can never go beyond its resolution, it will specify an upper bound
on the range accuracy. For example, to have a desired range accuracy of Ad, the range
resolution should be RRa > Ad. Thus, the required time resolution (TR) could be defined
as,

TR =
2RRa
c

(5.9)

where c is the speed of light.

4) Detection Range

The detection range is a fundamental quantity measured by most of the remote sensors.
It is calculated from the speed of light in the medium and round-trip travel time of an
emitted pulse TR.
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5.2. Solid-state (Flash) LiDAR

Figure 5.7: Relative configuration of emitter and receiver for different systems.

Minimum Detection Range. Generally, LiDAR sensors have a minimum detection
range zm (blind range) limitation. This means that closer objects might not be detected
or sensor might deliver inaccurate values. Three most primary factors which affect the
minimum detection range are listed as follows,

(i) Relative configuration of emitter and receiver. The relative geometry of
emitter and receiver may limit detection at short distances. LiDAR sensors are
usually designed in either mono-static or bi-static systems (Figure 5.7) [106]. Clear-
ly, for short-distance detection, bi-axial configuration is more appropriate. For
Bi-static systems, the detection range is given by

ztr + zre = TR (5.10)

where ztr and zre are transmitted and received ranges, respectively. For mono-
static systems,

z =
cTR

2 (5.11)

where z = ztr = zre. During transmission of the pulse, some of the light from the
transmitter might scatter off the optical surface and reach the receiver. Thus, this
needs to be removed from the collected data chain to allow detection of nearby
objects.

(ii) Emitted pulse width. The emitted pulse duration also has impact on the mini-
mum range detection of the LiDAR sensor. Since the return pulses require to be
distinguishable at the detector, they should be sufficiently separated. Therefore, a
time interval equal to pulse duration is required for the detector before a new re-
turn can be handled. Therefore, according to (3.1), the minimum detection range
is given by

Zpw =
cTw

2 (5.12)

where Tw is pulse width and c is the speed of light in the free space. Thus, the
shorter pulse width will result in lower the minimum detection range.

(iii) Detector saturation level. Another factor affecting minimum detection range is
detector saturation. The detector can be temporarily blinded by relatively strong
pulses. Thus, the target should be far enough to avoid detector saturation effect.
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5.2. Solid-state (Flash) LiDAR

Maximum Acceptable Range. The acceptable maximum detection range along sen-
sor’s z-axis (zM ) is obtained by

zM = min (Zp,Zn) (5.13)

where Zn and Zp are the nominal and permissible detection range, respectively.

Nominal detection range (Zn). The nominal maximum detection range of a
LiDAR sensor is influenced by many factors. The most primary elements are listed as
follows,

(i) Laser power. The reflected beam energy needs to be sufficient to trigger the
detector, as it is required to define some limiting threshold to eliminate the ambient
light noise. This means that at far distances, some returns may be missed by the
detector.

(ii) Object reflectivity effect. The object reflectance property affects the nomi-
nal maximum detection range. A white surface usually has a better reflectance
property than a darker surface. The reflectance of the object’s material describes
the relationship between the power of the reflected and incident laser pulse. The
amount of the reflected pulse from the surface through the scanning probe is in-
versely proportional to the square of the surface distance. For instance, a surface
with 90% reflectivity might be detected three times farther as compare to a 10%
one.

(iii) Pulse-Repetition Frequency(PRF). The pulse repetition frequency (τf ) of a
laser emitter is defined as the number of transmitted pulses per second. According
to Equation (5.10), the longest distance it can achieve from a round trip of the
pulse during one pulse-repetition period, is called maximum (unambiguous) range,
and obtained by

Zpr =
cTR

2 (5.14)

where TR = 1
τf

and τf is pulse repetition frequency.

Although a high τf , short period between successive pulses, enhances resolution
and range accuracy by providing more target samplings, it will limit the maximum
range. In addition, there is a chance that an echo from a far target returns after
emitter has sent another pulse. Thus, it might not be possible to determine whether
the received pulse is the echo of the just transmitted pulse, or it is from preceding
pulse. This situation is referred as range ambiguity [107] which means the range
information is unreliable. Therefore, the emitter cannot send out a pulse until a
time window has passed. This will limit the nominal maximum detection range.

(iv) Atmospheric visibility. Another primary factor which influences the nominal
maximum detection range is atmospheric visibility. It is determined by the dis-
tributions of aerosol particles, which can be in the form of liquid water or solid
particles. Due to attenuation of the transmitted laser radiation as well as the
backward reflected radiation in low visibility conditions, this factor might have a
significant impact. One way to characterize atmospheric visibility effect is utilizing
experimental-based models such as the one proposed by Horvath [108].
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5.2. Solid-state (Flash) LiDAR

Figure 5.8: Flash LiDAR sensor (V U8− 100◦ × 3◦) used for experimental validation.

Permissible detection range. According to the application required resolution
(Rd), the permissible detection range Zp will be specified based on the task desired
lateral resolutions, as

Zp = min(ZR,W ,ZR,H) (5.15)

where
ZR,W =

RdW

2 tan
(
θd,a

2

) (5.16)

ZR,H =
RdH

2 tan
(
θd,e

2

) (5.17)

5.2.3 Experimental Validation

In this section, validation of the resolution cell is performed through verifying of horizon-
tal, vertical and depth resolution. For this purpose, an experiment is set up to validate
the resolutions obtained from theory.

The flash LiDAR sensor (V U8− 100◦ × 3◦) with the accuracy of ±10 cm, depicted
in Figure 5.8 is selected for the experiment which currently is the only affordable flash
LiDAR in the market. A box with the dimension of 15× 20× 60 cm is selected as the
target. The LiDAR specifications are listed in Table 5.1.

Table 5.1: LiDAR VU8 model specifications for experimental set up.

Parameters Variable Value
Pulse width Tω 20 ns
Azimuth angle θd,a 92◦ ± 4◦
Elevation angle θd,e 3◦ ± 0.6◦
Detector width W 8 channels
Detector height H 1 channel
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5.2. Solid-state (Flash) LiDAR

Figure 5.9: Experimental set up for vertical resolution validation.

Vertical Resolution Validation

Since the selected LiDAR has 8 channels that are placed horizontally, the number of
vertical pixels H = 1 and vertical FOV (with tolerance) is 3◦ ± 0.6◦. Thus, the ver-
tical resolution is determined as RV ,T = 2(1.37) tan

(
3◦
2

)
= 0.072m/pixel. To ver-

ify the vertical resolution, the LiDAR sensor is positioned above the ground to de-
tect the boundary of the channel, as depicted in Figure 5.9. The elevation angle
of the channel is obtained as 2.7◦. Thus, the Vertical resolution is determined by
RV ,E = 2(1.37) tan

(
2.7◦

2

)
= 0.065 m/pixel.

Horizontal Resolution Validation

The number of pixels W = 8 and horizontal FOV (with tolerance) is 92◦ ± 4◦. The
horizontal resolution of flash LiDAR at distance ZR = 1.37m/pixel is obtained as
RH,T =

2(1.37) tan
(

90◦
2

)
8 = 0.3425m/pixel. To verify the horizontal resolution, the LiDAR

sensor is placed on the ground and using a target box, all its channels are determined
as illustrated in the Figure 5.10. While there are some overlaps between channels, the
average angle of each channel is obtained as 11.6◦. Thus, the horizontal resolution is
determined as RH,E = 2(1.37) tan

(
11.6◦

2

)
= 0.28m.

Range Resolution Validation

The laser pulse width is Tw = 20ns, according to Equation (5.8), the depth resolution
(RRa,T ) for flash LiDAR is calculated as RRa,T = (3×108)×(20×10−9)

2 = 3m. To verify
the depth resolution, two target boxes were places on channel 4 (pixel) having different
azimuth angles as depicted in Figure 5.11 and Figure 5.12. The minimum detectable
distance between the boxes is obtained as RRa,E = 3.39m.

While the experiment implementation provided for different resolutions incurred in
some error, the result of resolution validations observation is listed in Table 5.2.

46



5.2. Solid-state (Flash) LiDAR

Figure 5.10: Experimental set up for horizontal resolution validation.

Figure 5.11: Experimental set up for depth resolution validation.

Table 5.2: Comparison of experimental and theoretical results for Flash LiDAR sensor
resolutions.

Parameters Theory Experiment Error (%)
Horizontal Resolution (m/pixel) 0.34 0.28 18
Vertical Resolution (m/pixel) 0.072 0.065 10
Range Resolution (m) 3.0 3.39 13
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5.3. Mechanical (Prism rotating) LiDAR

Figure 5.12: Screenshot from Leddar VU8 software for depth resolution validation.

5.3 Mechanical (Prism rotating) LiDAR

5.3.1 Operating Principle

The mechanical LiDAR sensor has three main parts: the light source, detector, and
scanning mechanism. The laser emits light that has an elliptical cone shape which is
collimated by emitter lens placed at the focal distance of the laser diode to generate
an appropriate laser beam. The echoes from the target surface will be focused on the
detector to eventually measure the distance of the target surface to the detector. Rather
than using a FPA as a detector to detect the return laser pulses such as in the case of
flash LiDAR, in these sensors usually, one detector is used to acquire data. Different
scanning mechanisms have been widely used in mechanical LiDARs such as oscillating
mirror, rotating polygon, palmer scanner (nutating mirror), Risley prism scanner [109],
[110]. In contrast to flash LiDAR, it typically enables a wider scanning area up to 360°
azimuth angle.

5.3.2 Measurement Principle

In this dissertation, a mechanical scanning LiDAR having prism rotating mechanism is
selected. In following the measurement principles are listed and explained.

1) Field of View (FOV)

The FOV is defined as the observable region of the sensor determined by analyzing
scanning mechanism. Since the selected mechanical LiDAR is OPAL-120 (conical), the
Risley prisms scanner is considered as the scanning mechanism in this thesis. For the
Risley-prism-based beam steering systems, the geometry and material properties of the
prisms determine the sensor FOV (θ′) which typically has a range from 15° to 120° [111].

2) Resolution

The ability of mechanical LiDAR to distinguish two points that are separated along a
single beam at different azimuth angles is called range resolution (Ra). For these types
of LiDAR sensors only range resolution is considered. This resolution relies upon the
emitter pulse width (Tw), object type and size as well as the efficiency of the LiDAR
receiver. However, among those mentioned parameters, the pulse width plays a key role
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5.3. Mechanical (Prism rotating) LiDAR

Figure 5.13: Point density requirement example for different applications [113].

Figure 5.14: Schematic diagram of Risley prism pair steering system.

in determining the range resolution[112], given by

Ra =
cTw

2 (5.18)

3) Point Density

The data obtained from the mechanical LiDAR is usually a point cloud. The most
significant aspect of the point cloud is clearly its point density (ρp). It is the number of
points defined in unit of area, given by

ρp =
Np

Ap
(5.19)

where Np (pts) is the number of points and Ap is the area (m2). The higher the scanning
point density, the more expensive LiDAR sensor will be. This is because the point
density is the dominant factor in overall cost of the sensor. The common point density
requirements based on different applications are listed in Figure 5.13.

A mechanical LiDAR sensor generally provides a collection of measurements within
sensor’s FOV through sweeping the beam direction. In case of OPAL-120, the Risley-
prism-based beam steering system is implemented for data scanning as it is depicted
in Figure 5.14. This is a system which can continuously scan the beam over a wide
angular range and depends on the geometry and material properties of the Risley prism
pair, which is performed through mechanical rotation of two wedge prisms. The coordi-
nate of the deflected beam point Pd = [xd,yd] can be determined through a first-order
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5.3. Mechanical (Prism rotating) LiDAR

(a) Scanning pattern.

(b) Point density distribution.

Figure 5.15: OPAL-120 (conical) sensor scanning pattern for duration of 1s with 200K
Hz PRF).

approximation [114], given by

xd = P ([δ1 cos (2πf1t+ θ1)] + [δ2 cos (±2πf2t+ θ2)]) (5.20)

yd = P ([δ1 sin (2πf1t+ θ1)] + [δ2 sin (±2πf2t+ θ2)]) (5.21)

where P is the depth along z-axis, f1, f2 denote the rotatory frequency of the two prisms,
δ1, δ2 are deviation angle of two prisms, θ1, θ2 are the initial rotatory angles of prisms.
The positive or negative sings are considered when two prisms rotate in the same or
opposite direction, respectively.
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Figure 5.16: Illustration of largest non-detectable circle within LiDAR FOV cross-
section.

Cross-range average (CRA) point density

Based on (5.19), the CRA point density is defined within LiDAR FOV cross-section as

ρcr(z) =
τf ts
Acr(z)

(5.22)

where ts is the scanning duration, Acr(z) is cross-section area defined as

Acr(z) = π

(
z tan

(
θ′

2

))2
(5.23)

The scanning pattern of physical sensor obtained for t = 1s duration at the range
z = 4.05m is depicted in Figure 5.15 where the ring shape elements are considered to
calculate the cross-range (CR) point density from the center to the boundary of the
sensor scanning pattern.

Definition 5.1 (Maximum undetectable circle).
The size of the largest undetectable circle with radius Rc, which can be fitted among laser
footprints along FOV cross-section is termed maximum undetectable circle (MUC)(Figure
5.16).

Although the location of MUC might not be unique, any circle greater that this size
will be detectable with at least one laser footprint, and it is affected by laser footprint
radius (rb) and depth of imaging (Z).

According to Figure 5.16, the laser footprint (rb) is defined as

rb =
1
2Dl =

1
2 (Do + L tan (α)) (5.24)

where Dl and Do are laser beam diameter at two different depths and α is beam diver-
gence.
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Target detection. One important question in the study of the target detection prob-
lems is the performance of the sensor in the detection of high-speed targets, and whether
the sensor can detect the presence of a target at a given time or distance from the sensor.
To answer these questions, analyzing the sensor point density is required.

The CRA point density ρcr is not a reliable indicator for evaluation of the target
point density when the scanning pattern distribution is not uniform (such as OPAL-120,
which has a non-overlapped scanning pattern). Thus, in such cases, the target point
density at a specific range within sensor FOV can be defined by considering the worst-
case scenario. This means finding a location within the FOV cross section in which the
target will have the minimum point density. It can be achieved by placing the target
at the point pc (center of MUC). To investigate sensor performance in target detection
problem, the following example task is proposed.

Definition 5.2 (Target effective area).
The area defined by the projection of the target on the plane perpendicular to the z-axis
is defined as target effective area.

Target sensing regions. Let consider a moving target approaching the LiDAR sensor
(Figure 5.17). The sensor FOV can be divided into three different regions based on the
size and the minimum point density requirement of the target, as follows:

1. Undetectable region. It is a sub-region of the sensor FOV calculated from Zp to
zn, where the target cannot be detected according to the minimum point density
requirement.

2. Detectable region. It is a sub-region of the sensor FOV calculated from lsafe to
Zp, where the target can be detected according to the minimum point density
requirement.

3. Safe region. The safe region is a sub-region of the sensor FOV defined from the
sensor minimum detection range to lsafe, where the presence of the target should
be determined before it enters this region.

Let assume a moving target with the known effective area has a circular shape or
can be approximated by a circle, is moving toward the sensor (within FOV). We need to
know how fast the target can move but still can be detected by the sensor before entering
the predefined safe distance (lsafe) from the sensor. Figure 5.17 illustrates LiDAR sensor
operation in the context of a moving target detection.

Maximum detectable speed. The presence of the target can be detected with at
most one time frame (tfr) after it entered the detectable region. This is because maxi-
mum CRA takes place at the end of the frame time. Thus, by defining the safe distance
lsafe, the maximum speed of target that still can be detected by sensor, is given by

Vmax =
Zp − lsafe

tfr
(5.25)

where Zp depends on the target size and type. In other words, for targets moving at
slower speed (by considering frame Rate), the detection within the detectable region is
guaranteed while if it moves faster, there is a chance to miss detection of the target.
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5.3. Mechanical (Prism rotating) LiDAR

Figure 5.17: Illustration of different target sensing regions for the target detection ap-
plication.

4) Detection Range

The result of detection range for flash LiDAR (Section 5.2.2) can be applied to mechani-
cal LiDAR. The only difference is the way the permissible detection range is determined.
In contrast to flash LiDAR which depends on lateral resolution, the scanner point density
(5.22) determines the permissible detection range (Zp) as

Zp =
1

tan
(
θ′

2

)√ τf ts
ρcrπ

(5.26)

5.3.3 Simulation and Experimental Validation

In this section, we present some simulation and experimental results for point density
evaluation of the LiDAR sensor model through analysis of scanning pattern. Further-
more, we analyze the scanning pattern for the cases of stationary sensor deployment. In
the following, it is assumed that the LiDAR is operated in a good visibility condition,
and the target has a high-reflectivity at least 90%. The specification of the selected
sensor is listed in Table 5.3.

Table 5.3: The selected LiDAR (OPAL-120) specifications for simulation and experi-
ment.

Parameters Variable Value
Frame rate tfr 2 Hz
Pulse Repetition Frequency (PRF) τf 200 kHz
Inner prism rotatory frequency f1 72.0 Hz
Outer prism rotatory frequency f2 21.37 Hz
FOV (conical) θ′ 90◦

We have set up an experiment to perform the stationary scanning as shown in Fig-
ure 5.18. The scanning data was gathered by placing the OPAL-120 (conical) sensor
d = 4.05m away from the wall.

The comparison between experimental and approximated (simulated) scanning pat-
terns within one time frame (tfr = 0.5s) is shown in Figure 5.19(a). According to Figure
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5.4. Conclusion

Figure 5.18: The LiDAR sensor (OPAL-120) is placed such that the sensor axis is vertical
to the wall for experimental setup.

5.19(b), the maximum error does not exceed 17cm. This error can further be improved by
implementation of a higher order approximation model. For OPAL-120 (conical) LiDAR
sensor, the FOV has the following relation to the scanning depth θ′ = 2tan−1

(
RM
zM

)
,

where RM is scanning radius at depth zM . Thus, having the depth of scanning pattern,
we have obtained the physical sensor FOV using Figure 5.19(b) as 108°.

Using the experimental data, the relation between ’target minimum point density’
and ’maximum detectable range’ as shown in Figure 5.20 for a single target size. The
target is approximated by a circle of radius 20cm. As it can be seen, the approximated
model predicts farther detection range for the majority of the time with a maximum of
30% which is due to an error in modeling sensor scanning pattern.

Using the experimental data and for different target size, the relation between ’target
size’, ’target minimum point density’ and ’maximum detectable range’ is illustrated in
Figure 5.21. Although the sensor might detect the presence of a target farther than
what is shown in the graph, the provided graphs show the worst-case scenario which can
guarantee detection of the target under proposed circumstances. Proceeding in a similar
manner, the effect of different target size and ’target minimum point density’ on the
’maximum detectable speed of the target’ is illustrated in Figure 5.22. It is shown that
for a given target size, the maximum detection speed increases as the target minimum
point density decreases.

5.4 Conclusion
The definition of the resolution cell provided in Section 5.2.2 is verified through validation
of the resolutions. This is done by comparing the theoretical values with experimental
measurements of the horizontal, vertical, and depth resolutions. Considering the accu-
racy of the selected flash LiDAR, the results show that the resolution definitions are
reliable.

Furthermore, experimental validation of the mechanical LiDAR scanning pattern is
carried out by using scanning data of a stationary sensor. The relation among ’target
size’, ’target minimum point density’ and ’maximum detectable range’ and ’maximum
detectable speed of the target’ was explored which assist us to find the maximum de-
tectable range (zM ) based on the desired application (task parameters) to construct the
geometric model of sensor.
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(a) Scanning patterns.

(b) Approximated pattern error.

Figure 5.19: Experimental and approximated scanning patterns comparison
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Figure 5.20: Target detection using experimental data and approximated data point
density.

Figure 5.21: Target detection using experimental data and maximum detectable range.
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Figure 5.22: Target detection using experimental data and maximum detectable speed.
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Chapter 6
Solid-state LiDAR Coverage

Model

Whoever acquires knowledge but
does not practice it is as one who
ploughs but does not sow.

Saadi Shirazi (1210-1291)

6.1 Overview

This chapter involves developing a coverage model for the class of solid-state (flash)
LiDAR sensors utilizing the coverage model proposed in Section 3.2. This is performed
through the identification of those sensor parameters which have the most significant
effect on the LiDAR coverage performance (as explained in Chapter 5) and establish-
ing a geometric model from mathematical constraints. Furthermore, an experimental
verification is performed to validate the resolution criterion.

6.2 Coverage Model of Flash LiDAR
The coverage model for flash LiDAR sensor is developed in this section by defining the
sensor, task and geoemrtic models as follow.

6.2.1 Sensor Model

According to the similarity that exists between sensing mechanism of flash LiDAR and
camera sensor, the flash LiDAR can be modeled using pinhole camera model. Therefore,
the intrinsic parameters of flash LiDAR sensor can be defined as focal length (f), number
and dimension of pixels (W ,H), pulse width (Tw), and pulse repetition frequency (PRF).
The sensor extrinsic parameters are defined based on the set of parameters presented in
Section 3.3.3.

6.2.2 Task Model

The most common parameters which determine the required sensing quality of the envi-
ronment for applications such as area coverage includes FOV, resolution, range accuracy
and detection range which are explained in Chapter 5. Having the task and sensor
models available, the sensor sensing region can be specified in the following section.
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Figure 6.1: Overlooking schematic of effective sensing area for co-axial configuration.

6.2.3 Geometric Model

While the effective sensing region of the field sensors (Figure 6.1) might have a regular
geometry such as pyramidal frustum (viewing frustum) for camera sensors or a coni-
cal frustum in case of co-axial flash LiDAR sensors, it could have an irregular shape,
depending on the relative configuration of emitter and receiver. Figure 6.2 shows an
example of irregular shape effective sensing region obtained from co-axial configuration
of the flash LiDAR sensor.

Thus, defining the implicit surface covering the sensing region might be very com-
plicated. Therefore, the following method is proposed to construct a geometric model
of the sensing region of the flash LiDAR sensor. It maps the region (which presumes to
be a star domain) to the ball through radial projection as explain in Section 3.3.2.

Based on the receiver FOV, the visibility region has the shape of the pyramid. Let
D1 ⊂ <3 denote the region of a double pyramid bounded by implicit surface function F1
(Figure 6.3(a)), given by

F1(xd, yd, zd) =
∥∥∥∥∥
[

xd
2

tan2 (θd,a
/
2)

yd
2

tan2 (θd,e
/
2)

]∥∥∥∥∥
∞
− zd2 (6.1)

where ‖·‖∞ is the infinity norm. Also, the emitter FOV has an elliptic cone shape. Let
D2 ⊂ <3 denote the region of a double elliptic cone modeled by the implicit surface
function F2 (Figure 6.3(c)), defined as

F2(xl, yl, zl) =
xl

2

tan2 (θl,a
/
2) +

yl
2

tan2 (θl,e
/
2) − zl

2 (6.2)
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6.2. Coverage Model of Flash LiDAR

Figure 6.2: Example of the effective sensing region for a co-axial configuration.

(a) Detector (F1). (b) Detector(F3, F4). (c) Emitter (F2).

Figure 6.3: Geometric modeling of effective sensing region of flash LiDAR.

Let D3 ⊂ <3 denote the region constructed by considering the minimum Zm and
maximum ZM detection ranges (Figure 6.3(b)), as∣∣∣∣ zd − Zm

ZM − Zm
− 1

2

∣∣∣∣ 6 1
2 (6.3)

by considering the equality sign, the solution will give us two functions,

F3(zd) =
zd − Zm
ZM − Zm

(6.4)

F4 = F3 − 1 (6.5)
where 0 6 zm < zM . In other words, the desired task requirements are finally converted
to a set of equality equations. Therefore, the effective sensing region (DE) of the flash
LiDAR is determined by

DE =
3⋂
i=1

Di (6.6)
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6.3. Conclusion

Eventually, instead of single implicit surface representation, there is a set of equations
describing the geometric model of the sensor using the implicit surface technique.

Proposition 6.1 (Flash LiDAR as a star domain). The effective sensing region of
the flash LiDAR (DE) is a star domain.

Proof. The intersection of D3 with double pyramid and elliptic cone regions includes
only upper half of those regions. Since the upper half of the double pyramid and elliptic
cone regions (bounded by F1 and F2 ) as well asD3 are convex regions, their intersections
DE is also a convex region in <3 [115]. Thus, according to Remark 3.1 , DE is a star
domain with respect to any point Oc ∈ DE . �

6.2.4 Sensor Coverage Model

Given the geometric model of the effective sensing region, the performance measure is
developed according to the approach explained in Chapter 3.

Let r(t) = Oc + tu for t > be the parametric equation of the ray issuing from
sensing center Oc in direction of u = x−Oc

‖x−Oc‖ where x ∈ <3 − {Oc}. Let Q be defined
as the set of all solutions to the system of equations Fj (r(t)) = 0 for j = 1, 2, 3, 4, as
Q = {t|Fj(r(t)) = 0, t > 0, for j = 1, ..., 4}.

Proposition 6.2 (Ray intersection point). For a given point x, the intersection
point xi ∈ <3 of the ray r(t) and the boundary of the effective sensing region (∂DE) is
determined by xi = r(ti) = Oc + tiu where ti = {q ∈ Q|q 6 h, ∀h ∈ Q}.

Proof. According to proposition 6.1 and definition 3.4, the ray r(t) should intersect ∂D
in only one point. Since the nearest intersection point will be on the ∂D, thus, the
smallest element of the set Q will be xi. �

Having the intersection point xi for a given target point Vt, by recalling from Equa-
tion (3.16),

Γ (x) =
‖r (t)‖
‖r (ti)‖

(6.7)

Note that scalar parameter ti ∈ <+ is the function of LiDAR FOV (θl,a, θl,e) and de-
tection ranges (Zm,ZM ). Finally, for a given directional point (vt) the performance
measure ds(q, vt) is defined as

ds (q, vt) =
∥∥∥∥[ Γ Ψ ∆ (Γ + Ψ)

]T ∥∥∥∥
F

(6.8)

where
Ψ (ϕ) =

tan (θt/2)
tan (θa/2) (6.9)

∆ = bmax(Γ, Ψ)c+ (6.10)

where bxc+ denote the largest integer smaller than x, and θt, θa are the nominal and
acceptable view angles defined in Section 3.3.5, respectively.

6.3 Conclusion

In this chapter, the coverage model for the class of solid-state (flash) LiDAR sensors
is introduced by developing the geometric model of the sensor, and proving that the
obtained geometric model is a star domain. In general, different relative configurations
of emitter and receiver (in the world coordinate) lead to different geometry shape of
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6.3. Conclusion

the effective sensing region of the sensor as the overlapped region will be changed. This
means redefining the surface model for the new configurations. This problem is solved
by the proposed method, no matter what is the relative configuration of sensor’s emitter
and receiver (as long as they have overlap), it can easily map the effective sensing region
into a ball.
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Chapter 7
Mechanical LiDAR Coverage

Model

The place you are right now.
God circled on a map for you.

Hafez (1315-1390)

7.1 Overview

In this chapter, we develop the coverage model for the class of mechanical LiDAR (Risley-
prisms rotating mechanism) sensors using the coverage model developed in Section 3.2.
This includes determining the sensing region of LiDAR sensor based on sensor and task
models. At the end of this chapter, optimization of the sensor network deployment
is conducted utilizing the framework proposed in Section 4.3 and validated through
simulation.

7.2 Coverage Model of Mechanical LiDAR
To develop the LiDAR coverage model, we need to derive the sensor and task models.

7.2.1 Sensor Model

The intrinsic parameters of this LiDAR sensor can be considered as focal length (f) for
both the detector and emitter optics, pulse width (Tw), and PRF. However, based on
selected scanning mechanism, other parameters might be taken into consideration such
as the parameters related to geometry and material properties is Risley prisms scanner
mechanism. The extrinsic parameters are defined according to the set of parameters
provided in Section 3.3.3.

7.2.2 Task Model

The several common parameters which define the required sensing quality of the envi-
ronment for applications such as area coverage includes FOV, resolution, point density
and detection range which is explained in Section 5.3
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7.2. Coverage Model of Mechanical LiDAR

(a) Emitter (F1) (b) Emitter
(F2, F3)

Figure 7.1: The geometric modeling of effective sensing region.

7.2.3 Geometric Model

In order to build the geometric of the sensor sensing region, it is required to convert the
sensor model and task model parameters into geometric constraints. According to the
LiDAR sensor configuration, the LiDAR visibility region has the shape of the truncated
cone. Thus, the sensing region of a double cone (D1 ⊂ <3) bounded by implicit surface
function F1 (Figure 7.1(a)), is given by

F1(xl, yl, zl) = xl
2 + yl

2 − tan2
(
θl,e
2

)
zl

2 (7.1)

Now, by considering sensor detection range and defining D2 ⊂ <3, similar to flash
LiDAR case, we have (Figure 7.1(b))

F2(zl) =
zl − Zm
ZM − Zm

(7.2)

F3(zl) = F2 − 1 (7.3)

where 0 6 Zm < ZM and Zm, ZM are minimum and maximum detection range, respec-
tively. Finally, the effective sensing region (DE) of the mechanical LiDAR is obtained
by DE = D1 ∩D2 Figure 7.2. Similar to the flash LiDAR sensor, it can be proved that
the effective sensing region of the mechanical LiDAR is a star domain. Therefore, we
have a set of equations representing the geometric model of the sensor using the implicit
surface technique.

7.2.4 Sensor Coverage Model

Having the effective sensing region of the sensor, we can construct the performance
measure according to the approach explained in Chapter 4. Let r(t) = Oc+ tu for t > 0
be the parametric equation of the ray issuing from sensing center Oc in direction of

u =
x−Oc

‖x−Oc‖
(7.4)

where x ∈ <3 − {Oc}. Let Q be defined as the set of all solutions to the system of
equations Fj (r(t)) = 0 for j = 1, 2, 3, as Q = {t|Fj(r(t)) = 0, t > 0, for j = 1, ..., 3}.
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7.3. LiDAR Sensor Network Coverage Optimization

Figure 7.2: Geometric model of the mechanical scanning LiDAR (prism rotating) sensing
region.

Let xi be the intersection point for a given target (directional) point vt, by recalling
from Equation (3.16), we have

Γ (x) =
‖r (t)‖
‖r (ti)‖

(7.5)

Finally, the performance measure ds(q, vt) is defined as

ds (q, vt) =
∥∥∥∥[ Γ Ψ ∆ (Γ + Ψ)

]T ∥∥∥∥
F

(7.6)

where
Ψ (ϕ) =

tan (θt/2)
tan (θa/2) (7.7)

∆ = bmax(Γ, Ψ)c+ (7.8)

and θt, θa are the nominal and acceptable view angles (defined in Section 3.3.5), re-
spectively. The coverage model of the mechanical LiDAR sensor is defined utilizing an
exponential attenuation model as

Ci(qi, vt) = e−µds(qi,vt) (7.9)

where µ > 0 is the decaying rate.

7.3 LiDAR Sensor Network Coverage Optimization
In this section, the optimization of LiDAR sensor network deployment is considered.
To evaluate the approach proposed in Section 4.3, a simulation is carried out for the
LiDAR sensor network deployment optimization in area coverage task. The environment
model considered for the area coverage task is shown in Figure 7.3. The target region
is an uneven surface having triangular meshes (directional points). Each triangle is
represented by a surface normal and the center of the triangle. A network of n = 7
sensors placed in random initial configuration (in 3D space) close to the target region
(Figure 7.4).

The LiDAR sensors have the conical frustum geometry with ZM = 70m, Zm = 0.6m
and θ = 60◦. The decaying rate of the sensor’s coverage is selected as r = 0.01. The
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7.3. LiDAR Sensor Network Coverage Optimization

Figure 7.3: The environment model (mesh-based surfaces) selected for area coverage
task.

Figure 7.4: Initial configuration of LiDAR sensor network which is randomly deployed
in 3D space.

relevance function φ (vt) = 1 for all vt. For the proposed control law, the proportional
constants are set as Kx = 0.5 and Kϕ = 1.0e− 05 with the step size of ts = 0.1s.

The sensors were regulated along the gradient direction of the performance function
using the control law and after t = 90s, the sensors spread over the whole area as
it has shown in Figure 7.5. Figure 7.6 shows the performance evaluation of the overall
coverage performance function during optimization. It can be observed that H increased
gradually under proposed control law and became stable after 90s. In fact, the system
has converged to a critical point ofH. It is observed that the number of overlapped points
gradually increased and reach its maximum value after overall coverage performance
changes became stable as shown in Figure 7.7. Figure 7.8 illustrates the partitioning
of target area using proposed vorovoid approach for initial (7.8(a)) and final (7.8(b)
deployments. As it can be seen that the final region is completely covered by the sensor
as each colored assigned to coverage area of one sensor.
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7.3. LiDAR Sensor Network Coverage Optimization

Figure 7.5: Final configuration of LiDAR sensor network after optimization.

Figure 7.6: The overall coverage performance function.
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7.4. Conclusion

Figure 7.7: The number of covered triangles by LiDAR sensor network during simulation.

7.4 Conclusion
The coverage model for a class of mechanical LiDAR having a pair of prism rotating scan-
ning mechanism is proposed and validated through optimization of the sensor network
deployment in the simulation environment for area coverage task.
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(a) Initial sensor deployment.

(b) Final sensor deployment.

Figure 7.8: Partitioning of the target area based on the proposed performance measure.
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Chapter 8
Conclusions

Intellect takes you to the door,
but it doesn’t take you into the
house.

Shams Tabrizi (1185-1248)

8.1 Summary of Contributions
This dissertation presents four main contributions. The first contribution of this disser-
tation is developing the Infinity-norm based performance measure derived in Section 3.2.
A gradient-based control law is introduced to optimize a heterogeneous anisotropic field
sensor network deployment having different sensing range in Section 4.5.1. The optimal
configuration of sensors is determined by making use of both unconstrained and con-
strained control laws. This approach offers the advantage of both simplicity and proven
performance for the proposed field sensors.

The second and the major contribution is developing a coverage model for field sen-
sors based on introducing a performance measures found in Chapter 3. This approach
has two inputs of sensor and task models which are translated into geometric constraints,
and later converted to geometric model. By employing this model, a performance mea-
sure is developed through mapping the sensor sensing region into an Bn. This measure is
a non-negative scalar-valued function that determines the proximity between an object
and the field sensor with regard to the position and orientation of the object. Thus,
by utilizing an exponential attenuation model of the performance measure the sensor
coverage model is proposed.

In contrast to some previous studies, the presented Frobenius-norm based perfor-
mance measure has the advantage of using the exact sensor geometric model, and it
does not suffer from existence of multiple local optima. More importantly, the suggested
coverage model proved to be a viable and promising approach that can be implemented
to the most commonly used field sensors as they eventually can be considered as inte-
gration of disjoint star shapes which is the most distinctive advantage of this method.

The third contribution is developing the geometric model from the sensor and task
models of the flash LiDAR sensors to establish the coverage model. This includes defining
the sensor (extrinsic and intrinsic) parameters, and the primary parameters required to
model the task with industrial inspection and surveillance application in Chapter 5.
The different configurations of emitter and receiver lead to distinctive shapes of region
boundaries. Therefore, the most important aspect of this approach is that it allows for
modeling the effective sensing region of the flash LiDAR, bounded by irregular surfaces,
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regardless of its computational complexity in a simple way. Furthermore, an experiment
is conducted to validate the resolution cell parameters.

Developing the coverage model for the class of mechanical LiDAR sensors is the
forth contribution proposed in Chapter 7. A mechanical LiDAR having the Risley-
prism rotating mechanism is selected to define the sensor and task models. This is
followed by the analysis of the scanning pattern along with performing simulation and
experimental validations for point density of the scanning mechanism. Utilizing the
sensor network deployment optimization framework provided in Section 4.4, optimization
of the mechanical LiDAR sensor network deployment for covering a 3D environment is
conducted, and then validated through simulation.

8.2 Conclusions
A comprehensive approach in the modeling of the field sensors coverage is addressed
in this dissertation based on developing a performance measure which is sensitive to
position and orientation changes of the target with respect to the sensor. Simulation
and comparison with the previous works demonstrate a more competent performance of
the proposed measure which leads to the extension of the coverage model for the most
commonly used field sensors such as camera, LiDAR, ultrasonic and RADAR.

By implementing this coverage model, an optimization framework for field sensor
networks deployment is presented. Although it is a gradient-based approach and there
is the possibility to get trapped into undesired local optima, it provides an efficient
solution technique for the deployment optimization problem in field sensor networks
having a feasible starting point.

The effectiveness of the developed idea was demonstrated and validated through a
mechanical LiDAR sensor network deployment. This measure is a powerful tool as it is
applicable to the variety of field sensors. Accordingly, we expect this new approach not
only reduces the complexity of modeling the performance of different field sensors but
also enhance requirement and cost-oriented designs of the sensors.

8.3 Future Research Directions
This dissertation and several related works have the assumption of availability of sensor
and target exact configurations where releasing this assumption can provide a more
realistic coverage model. One possible solution could be integrating the motion capture
system parameters into coverage model.

In modeling the detection range of the LiDAR sensor, only some primary factors
are directly implemented in the construction of the geometric model while the existence
of other factors that can play a significant role in affecting the detection range has
not yet been fully explored. The object reflectivity effect, atmospheric visibility (laser
attenuation) and saturation level of the detector are some examples of these factors that
can be used to develop a more comprehensive model which in turn can improve the
coverage model of the LiDAR sensors.

Owing to the unavailability of the information regarding the flash LiDAR emitter
unit, the laser emitter properties (such as laser beam profile) can also be further inves-
tigated to obtain a more accurate coverage model.

In this dissertation, a first-order approximation model is used for simulation of me-
chanical LiDAR scanning pattern while implementation of higher order model of Risley-
prism rotating mechanism could enhance the accuracy of scanning pattern model which
eventually improve the sensor coverage model through determining a more realistic de-
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tection range. In addition, the effect of other scanning mechanisms can be examined
and optimized from the coverage point of view.

A centralized approach is proposed for Voronoi partitioning in this study. Developing
a distributed partitioning approach is suitable for large-scale networks of heterogeneous
anisotropic sensors which is a possible future direction to extend this approach. However,
it introduces new challenges for developing an efficient distributed control for the sensor
networks.
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