5 research outputs found

    Self Organising Network Techniques to Maximise Traffic Offload onto a 3G/WCDMA Small Cell Network using MDT UE Measurement Reports

    Get PDF
    This paper presents a number of Self-Organising Network (SON) based methods using a 3GPP Minimisation of Drive Testing (MDT) approach or similar and the analysis of these geo-located UE measurements to maximise traffic offload onto lamppost mounted 3G/WCDMA microcells. Simulations have been performed for a real 3G/WCDMA microcell deployment in a busy area of central London and the results suggest that for the network studied a traffic increase on the microcell layer of up to 175% is achievable through the novel SON methods presented

    Optimizing Signal Behavior of Femtocells for Improved Network

    Get PDF
    The high demand for network coverage in an indoor setting brought about the acceptance of femtocell technology as a solution using the backhaul connectivity in the existing network. The quality of signal, voice calling, Internet, security and data are improved through the use femtocell at the indoor environment. Here the service provider attempts to reduce their operation cost by presenting self-organizing mechanisms for optimization of the network. The remarkable part is that, femtocells improves coverage, enhances the data rate at the indoor environment. Therefore, the challenges of the femtocell also known as interference deteriorates the capacity and quality performance of the whole cellular network. In this paper we simulate the bit error rate against signal behaviour at the indoor environment and we also simulate the transmitting power over signal for both macrocells and femtocells. We focus on the transmitting power that might cause interference within the cellular network

    Analysis of Cell Load Coupling for LTE Network Planning and Optimization

    Full text link
    System-centric modeling and analysis are of key significance in planning and optimizing cellular networks. In this paper, we provide a mathematical analysis of performance modeling for LTE networks. The system model characterizes the coupling relation between the cell load factors, taking into account non-uniform traffic demand and interference between the cells with arbitrary network topology. Solving the model enables a network-wide performance evaluation in resource consumption. We develop and prove both sufficient and necessary conditions for the feasibility of the load-coupling system, and provide results related to computational aspects for numerically approaching the solution. The theoretical findings are accompanied with experimental results to instructively illustrate the application in optimizing LTE network configuration.Comment: The paper contains 22 pages with 9 figures. The paper is submitted to IEEE Transactions on Wireless Communications. This is the version in Jan 2012 after one revisio

    Self-Organized Coverage and Capacity Optimization for Cellular Mobile Networks

    Get PDF
    ï»żDie zur ErfĂŒllung der zu erwartenden Steigerungen ĂŒbertragener Datenmengen notwendige grĂ¶ĂŸere HeterogenitĂ€t und steigende Anzahl von Zellen werden in der Zukunft zu einer deutlich höheren KomplexitĂ€t bei Planung und Optimierung von Funknetzen fĂŒhren. ZusĂ€tzlich erfordern rĂ€umliche und zeitliche Änderungen der Lastverteilung eine dynamische Anpassung von Funkabdeckung und -kapazitĂ€t (Coverage-Capacity-Optimization, CCO). Aktuelle Planungs- und Optimierungsverfahren sind hochgradig von menschlichem Einfluss abhĂ€ngig, was sie zeitaufwĂ€ndig und teuer macht. Aus diesen Grnden treffen AnsĂ€tze zur besseren Automatisierung des Netzwerkmanagements sowohl in der Industrie, als auch der Forschung auf groes Interesse.Selbstorganisationstechniken (SO) haben das Potential, viele der aktuell durch Menschen gesteuerten AblĂ€ufe zu automatisieren. Ihnen wird daher eine zentrale Rolle bei der Realisierung eines einfachen und effizienten Netzwerkmanagements zugeschrieben. Die vorliegende Arbeit befasst sich mit selbstorganisierter Optimierung von Abdeckung und ÜbertragungskapazitĂ€t in Funkzellennetzwerken. Der Parameter der Wahl hierfĂŒr ist die Antennenneigung. Die zahlreichen vorhandenen AnsĂ€tze hierfĂŒr befassen sich mit dem Einsatz heuristischer Algorithmen in der Netzwerkplanung. Im Gegensatz dazu betrachtet diese Arbeit den verteilten Einsatz entsprechender Optimierungsverfahren in den betreffenden Netzwerkknoten. Durch diesen Ansatz können zentrale Fehlerquellen (Single Point of Failure) und Skalierbarkeitsprobleme in den kommenden heterogenen Netzwerken mit hoher Knotendichte vermieden werden.Diese Arbeit stellt einen "Fuzzy Q-Learning (FQL)"-basierten Ansatz vor, ein einfaches Maschinenlernverfahren mit einer effektiven Abstraktion kontinuierlicher Eingabeparameter. Das CCO-Problem wird als Multi-Agenten-Lernproblem modelliert, in dem jede Zelle versucht, ihre optimale Handlungsstrategie (d.h. die optimale Anpassung der Antennenneigung) zu lernen. Die entstehende Dynamik der Interaktion mehrerer Agenten macht die Fragestellung interessant. Die Arbeit betrachtet verschiedene Aspekte des Problems, wie beispielsweise den Unterschied zwischen egoistischen und kooperativen Lernverfahren, verteiltem und zentralisiertem Lernen, sowie die Auswirkungen einer gleichzeitigen Modifikation der Antennenneigung auf verschiedenen Knoten und deren Effekt auf die Lerneffizienz.Die LeistungsfĂ€higkeit der betrachteten Verfahren wird mittels eine LTE-Systemsimulators evaluiert. Dabei werden sowohl gleichmĂ€ĂŸig verteilte Zellen, als auch Zellen ungleicher GrĂ¶ĂŸe betrachtet. Die entwickelten AnsĂ€tze werden mit bekannten Lösungen aus der Literatur verglichen. Die Ergebnisse zeigen, dass die vorgeschlagenen Lösungen effektiv auf Änderungen im Netzwerk und der Umgebung reagieren können. Zellen stellen sich selbsttĂ€tig schnell auf AusfĂ€lle und Inbetriebnahmen benachbarter Systeme ein und passen ihre Antennenneigung geeignet an um die Gesamtleistung des Netzes zu verbessern. Die vorgestellten Lernverfahren erreichen eine bis zu 30 Prozent verbesserte Leistung als bereits bekannte AnsĂ€tze. Die Verbesserungen steigen mit der NetzwerkgrĂ¶ĂŸe.The challenging task of cellular network planning and optimization will become more and more complex because of the expected heterogeneity and enormous number of cells required to meet the traffic demands of coming years. Moreover, the spatio-temporal variations in the traffic patterns of cellular networks require their coverage and capacity to be adapted dynamically. The current network planning and optimization procedures are highly manual, which makes them very time consuming and resource inefficient. For these reasons, there is a strong interest in industry and academics alike to enhance the degree of automation in network management. Especially, the idea of Self-Organization (SO) is seen as the key to simplified and efficient cellular network management by automating most of the current manual procedures. In this thesis, we study the self-organized coverage and capacity optimization of cellular mobile networks using antenna tilt adaptations. Although, this problem is widely studied in literature but most of the present work focuses on heuristic algorithms for network planning tool automation. In our study we want to minimize this reliance on these centralized tools and empower the network elements for their own optimization. This way we can avoid the single point of failure and scalability issues in the emerging heterogeneous and densely deployed networks.In this thesis, we focus on Fuzzy Q-Learning (FQL), a machine learning technique that provides a simple learning mechanism and an effective abstraction level for continuous domain variables. We model the coverage-capacity optimization as a multi-agent learning problem where each cell is trying to learn its optimal action policy i.e. the antenna tilt adjustments. The network dynamics and the behavior of multiple learning agents makes it a highly interesting problem. We look into different aspects of this problem like the effect of selfish learning vs. cooperative learning, distributed vs. centralized learning as well as the effect of simultaneous parallel antenna tilt adaptations by multiple agents and its effect on the learning efficiency.We evaluate the performance of the proposed learning schemes using a system level LTE simulator. We test our schemes in regular hexagonal cell deployment as well as in irregular cell deployment. We also compare our results to a relevant learning scheme from literature. The results show that the proposed learning schemes can effectively respond to the network and environmental dynamics in an autonomous way. The cells can quickly respond to the cell outages and deployments and can re-adjust their antenna tilts to improve the overall network performance. Additionally the proposed learning schemes can achieve up to 30 percent better performance than the available scheme from literature and these gains increases with the increasing network size
    corecore