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Abstract

The challenging task of cellular network planning and optimization
will become more and more complex because of the expected het-
erogeneity and enormous number of cells required to meet the traffic
demands of coming years. Moreover, the spatio-temporal variations
in the traffic patterns of cellular networks require their coverage and
capacity to be adapted dynamically. The current network planning
and optimization procedures are highly manual, which makes them
very time consuming and resource inefficient. For these reasons, there
is a strong interest in industry and academics alike to enhance the
degree of automation in network management.

Especially, the idea of Self-Organization (SO) is seen as the key to
simplified and efficient cellular network management by automating
most of the current manual procedures. In this thesis, we study the
self-organized coverage and capacity optimization of cellular mobile
networks using antenna tilt adaptations. Although, this problem is
widely studied in literature but most of the present work focus on
heuristic algorithms for network planning tool automation. In our
study we want to minimize this reliance on these centralized tools
and empower the network elements for their own optimization. This
way we can avoid the single point of failure and scalability issues in
the emerging heterogeneous and densely deployed networks.

In this thesis, we focus on Fuzzy Q-Learning (FQL), a machine learn-
ing technique that provides a simple learning mechanism and an ef-
fective abstraction level for continuous domain variables. We model
the coverage-capacity optimization as a multi-agent learning problem
where each cell is trying to learn its optimal action policy i.e. the
antenna tilt adjustments. The network dynamics and the behavior of
multiple learning agents makes it a highly interesting problem. We
look into different aspects of this problem like the effect of selfish
learning vs cooperative learning, distributed vs centralized learning
as well as the effect of simultaneous parallel antenna tilt adaptations
by multiple agents and its effect on the learning efficiency.



We evaluate the performance of the proposed learning schemes using a
system level LTE simulator. We test our schemes in regular hexagonal
cell deployment as well as in irregular cell deployment. We also com-
pare our results to a relevant learning scheme from literature. The re-
sults show that the proposed learning schemes can effectively respond
to the network and environmental dynamics in an autonomous way.
The cells can quickly respond to the cell outages and deployments
and can re-adjust their antenna tilts to improve the overall network
performance. Additionally the proposed learning schemes can achieve
up to 30 percent better performance than the available scheme from
literature and these gains increases with the increasing network size.



Zusammenfassung

Die zur Erfüllung der zu erwartenden Steigerungen übertragener Daten-
mengen notwendige größere Heterogenität und steigende Anzahl von
Zellen werden in der Zukunft zu einer deutlich höheren Komplexität
bei Planung und Optimierung von Funknetzen führen. Zusätzlich er-
fordern räumliche und zeitliche Änderungen der Lastverteilung eine
dynamische Anpassung von Funkabdeckung und -kapazität (Coverage-
Capacity-Optimization, CCO). Aktuelle Planungs- und Optimierungsver-
fahren sind hochgradig von menschlichem Einfluss abhängig, was sie
zeitaufwändig und teuer macht. Aus diesen Grnden treffen Ansätze
zur besseren Automatisierung des Netzwerkmanagements sowohl in
der Industrie, als auch der Forschung auf groes Interesse.

Selbstorganisationstechniken (SO) haben das Potential, viele der ak-
tuell durch Menschen gesteuerten Abläufe zu automatisieren. Ihnen
wird daher eine zentrale Rolle bei der Realisierung eines einfachen und
effizienten Netzwerkmanagements zugeschrieben. Die vorliegende Ar-
beit befasst sich mit selbstorganisierter Optimierung von Abdeckung
und Übertragungskapazität in Funkzellennetzwerken. Der Parameter
der Wahl hierfür ist die Antennenneigung. Die zahlreichen vorhan-
denen Ansätze hierfür befassen sich mit dem Einsatz heuristischer
Algorithmen in der Netzwerkplanung. Im Gegensatz dazu betrachtet
diese Arbeit den verteilten Einsatz entsprechender Optimierungsver-
fahren in den betreffenden Netzwerkknoten. Durch diesen Ansatz
können zentrale Fehlerquellen (Single Point of Failure) und Skalier-
barkeitsprobleme in den kommenden heterogenen Netzwerken mit ho-
her Knotendichte vermieden werden.

Diese Arbeit stellt einen ”Fuzzy Q-Learning (FQL)”-basierten Ansatz
vor, ein einfaches Maschinenlernverfahren mit einer effektiven Ab-
straktion kontinuierlicher Eingabeparameter. Das CCO-Problem wird
als Multi-Agenten-Lernproblem modelliert, in dem jede Zelle ver-
sucht, ihre optimale Handlungsstrategie (d.h. die optimale Anpas-
sung der Antennenneigung) zu lernen. Die entstehende Dynamik
der Interaktion mehrerer Agenten macht die Fragestellung interes-



sant. Die Arbeit betrachtet verschiedene Aspekte des Problems, wie
beispielsweise den Unterschied zwischen egoistischen und koopera-
tiven Lernverfahren, verteiltem und zentralisiertem Lernen, sowie die
Auswirkungen einer gleichzeitigen Modifikation der Antennenneigung
auf verschiedenen Knoten und deren Effekt auf die Lerneffizienz.

Die Leistungsfähigkeit der betrachteten Verfahren wird mittels eine
LTE-Systemsimulators evaluiert. Dabei werden sowohl gleichmäßig
verteilte Zellen, als auch Zellen ungleicher Größe betrachtet. Die en-
twickelten Ansätze werden mit bekannten Lösungen aus der Literatur
verglichen. Die Ergebnisse zeigen, dass die vorgeschlagenen Lösungen
effektiv auf Änderungen im Netzwerk und der Umgebung reagieren
können. Zellen stellen sich selbsttätig schnell auf Ausfälle und Inbe-
triebnahmen benachbarter Systeme ein und passen ihre Antennennei-
gung geeignet an um die Gesamtleistung des Netzes zu verbessern. Die
vorgestellten Lernverfahren erreichen eine bis zu 30 Prozent verbesserte
Leistung als bereits bekannte Ansätze. Die Verbesserungen steigen
mit der Netzwerkgröße.
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1
Introduction

Cellular mobile networks typically experience spatio-temporal variations in their
service demands because of users’ mobility and usage behavior. Therefore, tradi-
tionally these networks are designed based on average peak demand values. This
allows the networks to provide reliable communication means in most of the sce-
narios while ensuring that the capacity upgrades and network optimizations are
required only at relatively large time scales.

However, this kind of network design paradigm is highly expensive and non-
optimal. Meeting these peak demand values means densification of Base Station
(BS) deployment as more radio resources are needed, which increases the network
operators’ Capital Expenditure (CAPEX) significantly. In addition, the opera-
tion, maintenance and, optimization of these large number of BS increases the
Operational Expenditure (OPEX). Moreover, as the networks seldom experience
these peak demands, the networks usually remain underutilized.

In addition to the financial drawbacks of the current network design and oper-
ation paradigm, complexity is also becoming an increasingly important factor for
the network operators. The deployment, operation and, maintenance of cellular
mobile networks is becoming increasingly complex due to a number of factors.

First, the widespread usage of mobile Internet has lead to the development of
a number of Radio Access Technologies (RATs). In order to remain competitive,
operators have to migrate to these modern RATs. But instead of complete swap
of older deployed RAT, operators normally integrate the newer RAT in the ex-
isting infrastructure. This increases network heterogeneity and complicates their
management.

2



Chapter 1. Introduction

Second, for improved spectral efficiency and thus greater network capacity
with the limited spectrum, newer RATs offer complicated algorithms for radio
layer, which increases the number of operator tunable parameters enormously.

Third, to satisfy the ever increasing demand of modern data applications of
indoor users, new cell deployment concepts like femtocell and home eNodeB are
proposed. With the deployment of these cells, the number of network elements
in an operational network does increase tremendously. Moreover, these cells are
also expected to give some operational control to the users as well, which further
complicates the management tasks for the operator.

Fourth, instead of some network wide optimization, more and more optimiza-
tions are now done at the cell individual level in order to better exploit the
cell-specific characteristics.

To overcome this challenging task of modern cellular mobile network design
and operation, currently, there is a strong interest to enhance the degree of au-
tomation in cellular mobile networks. Particularly, the concept of Self-Organizing
Networks (SON) has got the attention of academia and industry alike.

The Next Generation Mobile Networks (NGMN) alliance of major network
operators has identified several use cases for the application of self-configuration,
self-optimization and self-healing ideas to automate different tasks in all the
phases of a network lifetime like deployment, operation and maintenance [10].
The importance of Self-Organization (SO) in future cellular mobile networks has
also been realized by 3rd Generation Partnership Project (3GPP). Currently, it
is working to identify different concepts, requirements and solution ideas for the
introduction of SO in Long Term Evolution (LTE) and Long Term Evolution Ad-
vanced (LTE-Advanced) [4] [5]. Moreover, some research projects involving both
academia and industry are focusing on developing solutions for these requirements
[31] [64] [75].

1.1 Coverage and Capacity Optimization

Coverage and Capacity Optimization (CCO) is one of the vital SO use cases for
future cellular mobile networks. It aims to maximize the network capacity while
ensuring that the targeted service areas remain covered.

The life cycle of every cellular mobile network starts with a target coverage
and capacity plan. Based on these targets, network planning then identifies how
many network elements need to be deployed at what location. However, as most
of the planning tasks for radio networks are done by simulation tools based on
network models, the actual performance after the deployment varies based on a
number of reasons, as shown in Fig. 1.1. On one hand, the modeling discrepan-
cies in the network planning tools result in variation of coverage and capacity of
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Figure 1.1: Coverage and Capacity Optimization Problem

the deployed network compared to the original targets. On the other hand, the
performance also varies based on the network and environmental dynamics. As
signal propagation is affected by environmental variations like changes in the ter-
rain and seasonal changes, so the network coverage also varies over large periods
of times. The spatio-temporal variations in user traffic patterns also create some
congestion problems in the network and affect the Quality-of-Service (QoS) of the
users. Sometimes, network elements like BSs also experience some software or
hardware malfunction. In the worst case this could also lead to coverage outages
in the respective BS coverage area. Currently, these degradations are rectified
over a long period of time by careful drive-test mechanisms, observing different
KPI logs of various network elements and the feedback from users experiencing
low QoS in their desired areas.

SO Coverage and Capacity Optimization helps to empower the cellular mobile
networks, so that, they can detect and overcome these performance degradations
in an autonomous manner. This could significantly reduce the network response
time by eliminating most of the manual time consuming tasks. In addition, the
OPEX could also be reduced by minimizing the costly drive-test campaigns and
site visits required for network optimization.

This autonomous network optimization requires that the cells can dynamically
change their coverage either to regain their own performance targets or to help
their neighbors, to improve the overall network performance as highlighted in
Fig. 1.1. For this purpose, we are considering the Vertical Antenna Tilt as the
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cell configuration parameter to change its coverage. Vertical Antenna Tilt is also
known as the Antenna Downtilt or simply Antenna Tilt and we use these terms
interchangeably in this thesis. As antenna tilt influences the vertical direction of
the main beam of the radiation pattern of the cell so it can be used to modify the
radio signal strengths in the coverage area of the cell. Higher antenna tilt values
mean more concentrated transmission of radiated power in the vicinity of the BS
and therefore reduced coverage and vice versa for lower antenna tilt values. But,
at the same time, for mobile users it means higher achievable capacity because of
better received signal strengths and less inter-cell interference. Therefore antenna
tilt affects both network coverage and capacity and needs to be optimized to
achieve the required tradeoff between the two.

1.2 Objective and Scope

Although a wide range of studies already exist on antenna tilt optimization for 3G
UMTS (Universal Mobile Telecommunications System) networks and now LTE,
there are still some issues that remain un-addressed. For example, the available
literature can be broadly divided into two major categories; offline approaches
that try to automate the network planning tools with the help of some heuristic
algorithms like Simulated Annealing (SA) and Genetic Algorithms (GA) in order
to quickly find near optimal solutions and online approaches that propose some
pre-defined rules to modify the antenna tilt depending upon the network state in
an operational network.

With both of these approaches, optimization intelligence remains mainly con-
centrated in the design phase with the optimization engineers. The performance
of the offline approaches heavily depend upon the modeling of the network as well
as the environment in which it is operating. As it is quite difficult to model all
the factors that influence the networks’ environment, the optimization solutions
implemented as a result of these approaches generally need to be fine tuned by the
network optimization engineers with the help of systematic drive test campaigns.
On the other hand, designing some general purpose optimization rules that can
produce optimal results in all kinds of scenarios also require a deep understanding
of the network and environmental dynamics by the design engineers.

Apart from this complex design phase issue, both of these approaches also
do not allow the optimization algorithms to learn from their experience. There-
fore, eventually it comes to the network operation and optimization engineers to
fine tune either the results of these optimizations or the optimization algorithms
themselves.

To overcome these challenges, in this thesis we focus on how we can shift
the optimization intelligence from humans to the cellular mobile networks. Es-
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pecially, we focus on Machine Learning (ML) techniques, so that, the networks
can themselves learn their optimization control structures. This on one hand can
simplify the design phase by allowing the networks to learn from their interaction
with the environment instead of requiring the design engineers to come up with
the optimal algorithms before the network deployment. On the other hand this
could also reduce the network response time to the network and environmental
dynamics by removing most of the manual tasks from the optimization phase.
Moreover, as the algorithms can learn from their past experience, so they can
effectively adjust to the local dynamics of each cell and can produce more and
more efficient solutions with the passage of time.

In addition to this algorithmic focus on ML, from a structural point of view,
we also focus on distributed solutions instead of a centralized solution like the
ones which rely on network planning tools. This helps to overcome single point
of failure problem as well as make it scalable even for very large network sizes.

1.3 Contributions of the Thesis

The thesis studies the effectiveness of machine learning for self-organized coverage
and capacity optimization of cellular networks using antenna tilt adaptations.
Especially, we focus on the interaction between different learning agents in such
a multi-agent learning environment and the associated problems.

In this regard the first contribution of the thesis is a comprehensive survey of
state of the art on antenna tilt optimization in chapter 2. It presents the available
literature on antenna tilt adaptation for different network optimization targets
like coverage-capacity optimization, load balancing, eNB deployment and energy
saving. Afterwards, the algorithmic approaches used for antenna tilt adaptation
are also analyzed, which shows heavy dependence on heuristic algorithms. These
algorithms can be used to automate the network planning tools to simplify the
network deployment and optimization tasks. In this thesis, we want to see, if we
can minimize the dependence on these centralized tools and shift most of these
optimization tasks to the individual cells. Therefore, we propose to use machine
learning to allow the cells to learn from their interaction with their environments
and build their own optimization controllers.

We propose to use Fuzzy Q-Learning (FQL) as the machine learning tool in
this thesis because of its ease and effectiveness in learning problems. In chapter
3, we provide the complete modeling of the antenna tilt adaptation in terms of
a multi-agent FQL problem where each cell acts as a learning agent. We also
propose different learning strategies for this multi-agent learning problem, which
takes into account different level of interaction among these learning agents. From
structural point of view, we analyze the performance of distributed learning and
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centralized learning in this problem. From behavioral point of view we study
the effect of selfish and cooperative learning schemes. Finally, we also study the
impact of various level of parallelism on the learning performance i.e. what if only
one cell can take an action in each learning snapshot or all of the cells or only a
cluster of cells?

All of these learning schemes are analyzed using a system level LTE simulator
and the results are presented in chapter 5. We provide the performance results
of the proposed learning schemes in a regular hexagonal cell deployment scenario
as well as an irregular cell deployment scenario having cells of different sizes. We
also compare our results to one of the related learning schemes from literature.

1.4 Thesis Organization

The rest of the thesis is organized as follows:
Chapter 2 presents an overview of antenna tilt optimization in cellular net-

works. The chapter starts with a brief description of different network parameters
that influence the coverage and capacity of the network. Antenna tilt that can
be adapted remotely and frequently is then discussed in more detail. Different
mechanisms for antenna tilt adaptation are discussed followed by related stud-
ies on antenna tilt optimization in different cellular networks. After that, the
optimization metrics and algorithms used for antenna tilt adaptation in litera-
ture are discussed. Finally, challenges and shortcomings of these techniques are
highlighted at the end.

Chapter 3 introduces reinforcement learning and its special form Q-Learning
as machine learning tools that can help automate the antenna tilt optimization
as well as allow the network to learn from its experience. As antenna tilt op-
timization problem involves continuous variables, Fuzzy Q-learning is described
as an effective combination of Fuzzy Logic and Q-Learning that can also solve
learning problems with continuous variables. Different learning strategies that
we propose for efficient reward characterization and learning are then described
at the end of this chapter.

Chapter 4 describes the LTE network simulator we use for our simulation
studies. It explains different radio network modeling concepts as well as the
performance metrics that we use for our evaluations.

Chapter 5 presents the results of our evaluation studies. The learning strate-
gies introduced in Chapter 3 are compared in a 3GPP compliant regular hexagonal
cell layout. After that, the results for a bigger and irregular cell layout are also
presented for more realistic evaluations.

Chapter 6 finally summarizes and presents the conclusions of the thesis. Fur-
thermore, possible future research directions are also highlighted at the end.
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In an operational cellular network, coverage and capacity is affected by a
number of factors; environmental aspects like topographic and seasonal variations
affect the wireless signal propagation, whereas, mobile users’ behavior influence
the service demand distribution of the network. As network operators have no
control over these issues, so, it is extremely challenging for them to maintain the
coverage and capacity targets. Therefore, enormous efforts are spent on network
planning and optimization in order to make sure that the required network re-
sources are available in the targeted areas of network operation. This chapter
provides an overview of different network parameters that the network operator
can modify to influence the coverage and capacity. After that, different mecha-
nisms to adapt antenna tilt are also explained. Finally, a detailed discussion of
the available literature on antenna tilt adaptation is provided.
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2.1 Network Parameters Influencing Coverage

and Capacity

Cellular network design offers a number of parameters to modify the network
coverage and capacity. The deciding factors in the selection of parameters for
SO coverage and capacity optimization are; the effectiveness of that parameter
to overcome the problem, the ease with which it can be modified especially in
an automatic manner and how quickly it can be modified. In the following sec-
tion, some of these parameters are discussed along with their effectiveness for SO
coverage and capacity optimization.

2.1.1 Frequency Spectrum and Frequency Reuse

Available frequency spectrum is a crucial factor in determining the capacity of
the system. To reduce the co-channel interference, second generation cellular
networks like GSM (Global System for Mobile Communications) split the available
frequency spectrum among the cells to have distinct frequencies in the adjacent
cells. This allows the possibility of dynamic spectrum allocation to the cells to
match the traffic dynamics. However, modern cellular networks like LTE are
frequency re-use 1 systems, meaning they use the complete available spectrum in
each cell, to increase the spectrum utilization [39]. Therefore in these networks,
dynamic capacity enhancement in a cell by spectrum allocation is not a feasible
solution.

2.1.2 Base Station Density

Today’s modern cellular mobile networks are based on the concept of “Cells”,
which was developed by Bell Labs, USA in late 1940s. The concept allows the
network coverage area to be divided into numerous small cells each with its own
Base Station (BS). This allows reusing the frequency spectrum for radio access,
thus enhancing the overall capacity of the network. Therefore, careful densifica-
tion of BS, so, that the interference remains under a certain limit can provide
significant gains in network coverage and capacity. However, BS cannot be de-
ployed at arbitrary places. Due to legal and health obligations, they can only
be deployed at some carefully selected places. Moreover, financial and timing
constrains also make this option feasible to cater for the long term coverage and
capacity upgrades only.
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Figure 2.1: Parameters for CCO
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2.1.3 Sectorization

BS coverage can be divided into multiple sectors using directional antennas. Un-
like omni-directional antennas, directional antennas radiate the transmitted sig-
nals in a particular direction and therefore can increase the capacity of the net-
work by reducing the interference in other directions. In traditional networks the
number of sectors each BS has, is decided at the planning phase. As it requires
site visit and hardware upgrades to change the sectorization configuration, it can
only be done over large periods of time. However, with modern smart antenna
systems it is also possible to dynamically change it in much shorter times [77].

2.1.4 Antenna Azimuth

Antenna azimuth is defined as the angle of main beam of a directional antenna
w.r.t. the North Pole in the horizontal direction. It can be used to steer the
antenna radiation pattern and to reduce the interference to the adjacent cells. If
the adjacent antennas point towards each other they produce more interference
compared to if they are directed away from each other as also shown in Fig.
2.1. The value of azimuth is normally influenced by the relative positions of
the adjacent BS and the targeted coverage areas. Therefore, the possibility of
dynamic capacity enhancements by antenna azimuth adaptation are limited.

2.1.5 Antenna Height

Antenna height of the BSs also influences the received signal strengths in its
coverage area. Higher the antenna height is, further the radio signals can propa-
gate and therefore larger is the coverage area. However, its value is fixed at the
planning phase and it is extremely difficult to modify it dynamically.

2.1.6 Antenna Tilt

Antenna tilt is defined as the elevation angle of the main lobe of the antenna
radiation pattern relative to the horizontal plane. If the main lobe moves towards
the earth it is known as downtilt and if it moves away it is known as uptilt. Higher
antenna downtilts move the main lobe closer to the BS and vice versa. Therefore,
the antenna tilt value has a strong influence on the effective coverage area of the
cell. Moreover, with relatively close direction of the main lobe to the BS the
received signal strengths in own cell improves and the interference to neighboring
cells reduces. This improves the signal to interference plus noise (SINR) ratio for
the mobile terminals and the network capacity increases. Therefore, antenna tilt
can be used to alter both coverage and capacity of the network at the same time.
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Figure 2.2: AntennaTilt

In our study, we also focus on antenna tilt adaptation for coverage and capacity
optimization.

2.2 Antenna Tilt Mechanisms

Primarily antenna tilt can be modified either mechanically or electrically.

2.2.1 Mechanical Antenna Tilt

Mechanical Antenna Tilt (MAT) involves, physically changing the BS antenna so
that the main lobe is directed towards the ground. The antenna radiation pattern
mostly remains unchanged only a notch develops at the end of main lobe [51].
This reduces the interference in the main lobe direction. However, the effective
tilt the side lobes experience varies and the rear lobe in facts experience an uptilt.
Adaptation of MAT also requires a site visit, which makes it an expensive and
time-consuming task.

2.2.2 Electrical Antenna Tilt

Electrical Antenna Tilt (EAT) involves, adjusting the relative phases of antenna
elements of an antenna array in such a way that the radiation pattern can be
tilted uniformly in all horizontal directions [80]. EAT can be performed in a
number of ways like, Fixed Electrical Tilt (FET), Variable Electrical Tilt (VET),
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Figure 1: The impact of antenna (a) mechanical and (b) electrical downtilts on the horizontal (azimuthal) radiation pattern in the boresight.
Antenna gain is normalized to zero and the scale is in decibels. “Uptilt” of back-lobe direction for mechanical downtilt is not illustrated.

requirement of the kth mobile in the DL, the following crite-
rion has to be fulfilled:

(
Eb
N0

)
k
= (W/Rk)pTCH,k

PMS
RX Lk − αPTOT

TX − (1− α)pTCH,k
. (4)

In (4), pTCH,k is the downlink traffic channel (TCH) TX
power for the kth connection, PMS

RX is the total received wide-
band power at the mobile station, Lk is the downlink path
loss, and PTOT

TX is the total TX power of a base station the sec-
tor mobile is connected to. The parameter PTOT

TX includes the
TX power of common pilot channel (CPICH), other com-
mon channels (CCCH), and traffic channels as well. The total
transmit power PTOT

TCH,m for the TCH of the mth base station
sector is thus the sum of all K connections (including soft
and softer handover connections):

PTOT
TCH,m =

K∑
k=1

pTCH,k. (5)

The downlink load factor, ηDL, is defined with the aid of
the average transmit power of TCHs of base stations for a
cluster of cells:

ηDL =
∑M

m=1 P
TOT
TCH,m

MPmax
TCH,m

, (6)

where M is the number of sectors in the cluster. The
downlink capacity is maximized when the minimum ηDL is
achieved with the same number of served users K .

3. ANTENNA DOWNTILT

3.1. Downtilt concepts

In mechanical downtilt (MDT), the antenna element is phys-
ically directed towards the ground. Naturally, the areas near
the base station experience better signal level due to the fact
that the antenna main lobe is more precisely directed towards
the intended dominance (serving) area. However, the effec-
tive downtilt angle corresponds to the physical one only ex-
actly in the main-lobe direction, and decreases as a function
of horizontal direction in such a way that the antenna radia-
tion pattern is not downtilted at all in the side-lobe direction
[1]. Nevertheless, interference radiation towards other cells
is reduced in the main-lobe direction. The relative widening
of the horizontal radiation pattern is illustrated in Figure 1a
for a horizontally 65◦ and vertically 6◦ wide antenna beam
as a function of increasing downtilt angle. The reduction of
the antenna gain towards the boresight, for example, with 8◦

downtilt angle, is as large as 25 dB, whereas towards 60◦ angle
the reduction is less than 10 dB.

As the downtilt angle increases, the soft handover (SHO)
probability in the cell border areas decreases [16]. On the
other hand, the relative widening of the horizontal radiation
pattern increases the overlapping between adjacent sectors,
which makes softer handovers (SfHO) more attractive. This
increase of softer handovers as a function of downtilt angle
depends on sector overlapping (i.e., sectoring and antenna
horizontal beamwidth) [7, 17].

Antenna electrical downtilt (EDT) is carried out by ad-
justing the relative phases of antenna elements of an an-
tenna array in such a way that the radiation pattern can
be downtilted uniformly in all horizontal directions [18].
This technique changes slightly the vertical radiation pattern

Figure 2.3: Mechanical Tilt (a) Vs Electrical Tilt (b)

Remote Electrical Tilt (RET) and Continuously Adjustable Electrical Downtilt
(CAEDT). FET comes with a fixed antenna tilt and the antenna needs to be
changed if the tilt needs to be modified or the tilt is adjusted mechanically.
VET offer the possibility of adjustable antenna tilt within a range of values.
Antenna tilts can also be modified without a site visit with the help of RET.
It can adjust the antenna tilt remotely e.g. from network management centers.
Hence, it can save the cost and time required for antenna tilt optimization. A
further enhancement of RET mechanism is the CAEDT mechanism, which can
change the antenna tilts continuously and remotely to overcome the coverage and
capacity problems due to network dynamics.

2.3 Potential for Antenna Tilt Optimization

Antenna tilt is an effective parameter to control the coverage of each cell and
therefore the interference it produces to the neighboring cells. For this reason,
it has been widely used by cellular network engineers for network optimizations.
Mechanical antenna tilt can reduce the other cell interference in the main lobe
direction [51]. Therefore, it has been extensively used in GSM networks to reduce
co-channel interference and achieve a tighter frequency re-use pattern. Capacity
gains of up to 25% are also reported for GSM networks using MAT [46] [88].
However, achieving these performance gains is resource extensive as each MAT
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requires a site visit. To make the process more efficient, a mechanism based
on mobile unit reports to prioritize the cells is presented in [79]. This allows,
identifying the cells where the MAT adjustment is most critical so that the human
resources can be efficiently used.

Code Division Multiple Access (CDMA) based third-generation mobile com-
munication systems like UMTS (Universal Mobile Telecommunication System)
are inherently interference limited. This makes it even more critical to design
these networks so that other cell interference is minimized. Capacity gains be-
tween 15% and 20% have been reported in WCDMA (Wideband CDMA) macro-
cellular environment with MAT [24] [58]. Similarly, MAT has also been observed
to be helpful in microcell environment [27] [83]. Unlike MAT, side lobes can also
be downtilt with the help of EAT, so EAT has been observed to given even better
performance compared to MAT both in macrocellular [32] and microcellular [48]
environment.

Apart from the type of antenna tilt mechanism, the performance gains of an-
tenna tilt as well as the value of the optimal antenna tilt also depends on other BS
configuration parameters like sectorization, antenna height, vertical beamwidth
and site spacing [42]. Capacity gains of 50% for 3 sectored site and 20% for 6
sectored site has been reported for CDMA based systems [50]. Depending upon
the horizontal beamwidth of the antenna radiation pattern, the gains for different
sectorization schemes can also vary. Therefore it is recommended to have smaller
horizontal beamwidth antennas like 65◦ for 3 sectored site and 33◦ for 4 or 6 sec-
tored site [44]. Moreover, the value of optimal antenna tilt is observed to increase
with increasing antenna height and decrease with increasing site spacing [57].

With the introduction of LTE (Long Term Evolution) systems, network opera-
tors are now planning to upgrade their networks. This transition would have been
easier and quicker if the BSs could be deployed according to the configurations
of the existing 3rd generation networks. However, this is not possible due to the
fundamental differences in the technologies. In a field measurement campaign,
throughput gains of about 26% have been reported by antenna tilt optimization
of LTE BS compared to the scenario when CDMA1x network settings are applied
[21].

In LTE systems, throughput gains by proper antenna tilt settings have also
been observed in simulation studies [39]. However, these gains are highly scenario
Dependant [86]. In 3GPP case 1, which is an interference limited scenario with an
inter-site distance of 500m, higher antenna tilts with wider horizontal beamwidths
are reported to provide better coverage and capacity performance. However, in
3GPP case 3, which is a noise limited scenario with an inter-site distance of
1750m, moderate antenna tilt and narrow horizontal beamwidths are observed to
provide noticeable capacity improvement but little effect on the coverage of the
cells. As LTE uses same frequency bands in all the cells and does not employ
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macro diversity, so higher cell isolation is desirable [39]. For this reason, EAT is
observed to perform better than MAT in LTE because it can tilt the side lobes
as well [15] [85].

Apart from the system performance enhancement features of antenna tilt it
has also been observed to simplify the network planning phase. The potential
of antenna tilt optimization to overcome sub-optimal antenna heights has been
reported in [8]. The results show that by optimizing the antenna tilt, optimal
system performance can still be achieved even if the antennas could not be placed
at the optimal height.

2.4 Antenna Tilt Optimization Objectives

It is clear from the above discussion that antenna tilt is an effective tool to influ-
ence the cellular network performance. Depending upon the network situation,
it can be optimized for a number of performance metrics. In the following sec-
tions an overview of different optimization studies is presented according to the
performance metric that antenna tilt adaptation can achieve.

2.4.1 Coverage and Capacity Optimization

The primary target of antenna tilt optimization is to ensure that the targeted
areas remain covered by the radio network and the available capacity is sufficient
to support the user demands. The simplest way is to utilize a fixed antenna tilt
value across all cells. This network wide antenna tilt optimization can enhance
the network performance compared to no tilt optimization [56]. However, the
environment in which the cells operate changes from cell to cell and in real net-
works all cells can hardly be symmetrical geographically. Therefore, the radio
environment changes and cell configuration parameters need to be adjusted in-
dividually [71]. This site-by-site optimization can achieve 15% capacity gains in
WCDMA macrocellular environments compared to network wide tilt adjustment
[76]. This capacity gain is a direct result of the inter-cell interference reduction
due to better focus of the radiated power in own cell [35] [36].

In WCDMA systems the total transmission power of a BS is split between
different control and traffic channels. The less power these control channels re-
quire the more power is available for the traffic channels. One of these control
channels is the Common Pilot Channel (CPICH), which is a downlink broadcast
channel used to announce the presence of the radio cell within its coverage area.
Its power level is crucial for clear demarcation of cell boundaries. With optimized
antenna tilt settings the power for CPICH can be reduced up to 60% [67] [68]
[70]. Moreover, the power level for many other control channels like SCH, PICH,
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CCPCH, and AICH whose power is set relative to the CPICH power can also be
reduced. All of this saved power can then be used for the traffic channels to en-
hance the capacity. These capacity gains can also help to lower the call blocking
[74] [81] and dropping [26] probabilities in a network.

For data communication, capacity is often measured in terms of achievable
throughput. Antenna tilt optimization is also observed to enhance the average
user throughput up to 30% in HSDPA (High Speed Downlink Packet Access)
networks [7] [69]. Apart from the average throughput values another important
performance metric is the cell edge throughput, especially in LTE networks, which
use the same frequency spectrum in each cell. Therefore, antenna tilt optimiza-
tion becomes even more critical in LTE networks to achieve better cell isolation
and improved SINR distribution, generally within the cell and particularly at
cell edges [73]. This improvement in the SINR distribution allows higher or-
der modulation and coding schemes to be used and thus enhance the achievable
throughputs both at cell center and at the edges [16] [17]. This performance gain
becomes even more evident in irregular cell deployment scenarios where average
performance is observed to increase by 10% and cell edge performance even up
to 100% compared to a network wide uniform antenna tilt setting [29].

2.4.2 Load Balancing

Traffic demands in cellular networks experience spatio-temporal variations. This
could lead to situations where some of the cells get overloaded. With static
network configurations Quality of Service (QoS) would degrade for users in those
cells. This degradation can be minimized, if the network configurations can be
changed dynamically, so that, the neighboring cells which have free resources
available share some of the traffic load of the overloaded cell.

As antenna tilt affects both coverage and capacity of the cell [40], it can be
used to change the cell boundaries to balance the load among neighboring cells.
This requires that the antenna tilts can be dynamically modified for individual
cells instead of applying one tilt value across all cells [33] [55]. This dynamic
adaptation of antenna tilt has been observed to produce capacity gains of about
15% in a WCDMA macrocellular environment [28] and significantly reduces the
number of overloaded cells by balancing the traffic load among different neighbor-
ing cells [34]. These capacity gains highly depend on the traffic distribution and
increase with the increasing imbalance among the cells [60]. This load balancing
ability also increases with increasing available capacity in the neighborhood. A
capacity gain of almost three fold has been observed for a hotspot scenario where
the neighbors are only 20% loaded compared to the scenario where the neighbors
are 80% loaded [82]. The utilization of antenna tilt for load balancing has also
been reported for LTE systems [49], where capacity gains up to 40% can also be
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achieved.

2.4.3 BS Deployment

Radio network planning involves the selection of the BS locations and their con-
figuration so that the required capacity can be provided in the targeted areas.
The constraints for the planning process involves a limited number of feasible
locations for BS deployment, cost of the deployment, minimum area that needs
to be covered and the minimum capacity that needs to be provided. Under these
constraints, the objective of the network planning optimization is to reduce the
overall cost of the network deployment. As BS configuration also plays a crucial
role in determining the effective coverage and capacity of the cell, considering
factors like transmit power and antenna parameters while optimizing the BSs lo-
cation can considerably reduce the number of BS required to meet certain targets
both for 2G GSM networks [9] [30] and 3G WCDMA network [6] [11].

2.4.4 Self-Healing

During operational state, cellular networks can also experience some malfunction-
ing cells either due to software or hardware failures. This could lead to service
degradation or in the worst case a coverage outage in the service area of that cell.
Presently, the detection and rectification of these outages is considerably manual
and slow process [12].

Self-healing mechanisms try to automate this activity, so that, the cellular
networks can themselves identify and resolve these service degradations in an
autonomous manner [4]. In extreme cases, where a hardware change is required,
self-healing tries to compensate for this outage by extending the coverage of the
operational neighboring cells. Antenna tilt is also an effective control parameter
to achieve this automatic coverage adjustments [13]. However, the potential for
this coverage compensation depends on a number of parameters [14]. The higher
the cell load of the compensating cell and bigger the inter-site distances are the
lower is the potential for compensation. Moreover, this compensation comes at
some quality degradation within the original coverage area of the compensating
cell as less radio resources are available per user. Therefore, operator policy about
the trade-off between outage compensation and acceptable quality degradation
can significantly affect the potential of self-healing mechanisms to overcome the
problem.

In isolated cells at the border of the network, by using antenna tilt, self-healing
can also dynamically adapt the coverage of an active cell to overcome the outages
due to planning errors [52].
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2.4.5 Energy Saving

Recently, a strong interest has developed in the reduction of energy consumption
of the cellular networks due to environmental and financial aspects [4]. As traffic
demands vary over time for different places, one of the possible solutions is to
switch off some of the cells during off-peak hours. Nevertheless, some basic cover-
age still needs to be provided in the service area of the switched off cells. Similar
to self-healing principles, dynamic antenna tilt adaption is one of the options
to provide this basic coverage for the switched-off cells [23]. The energy saving
potential varies from scenario to scenario depending upon the traffic distribution
and the ability of the neighboring cells to support the remaining network load.
Energy saving of 5% to 13% has been reported for LTE network simulations with
an inter-site distance of 500m [23] [84].

2.5 Optimization Approaches

Optimal antenna tilt value for a cell depends on the tilt values of its neighbors,
so that, traffic remains balanced between the cells and desirable cell isolation is
achieved. Additionally, antenna tilt can only have discrete values, so the opti-
mization problem translates to finding the best combination of antenna tilt values
across the neighborhood. However, the number of antenna tilt combinations that
different cells can have is extremely large even for very small networks. This
makes brute force search to select the optimal setting infeasible. Different op-
timization techniques have been proposed in literature to find reasonably good
solutions in a time-efficient manner. Some of these optimization approaches are
discussed below.

2.5.1 Meta-Heuristic Algorithms

Meta-heuristic algorithms define optimization algorithms that iteratively try to
improve the solution based on some measure of quality. These algorithms can
quickly search large portions of the solution space but do not guarantee to find
the optimal solution. For these reasons a vast majority of the available solutions
for antenna tilt optimization also focus on meta-heuristic algorithms to quickly
find a reasonably good solution. These techniques rely on network planning tools
to evaluate the quality of each candidate solution.

A Local Search (LS) based solution is proposed in [67]. It starts with one of
the possible solutions than iteratively checks the quality of the neighboring solu-
tions. Here, a neighbor solution is defined by changing one of the tilt values from
the current candidate solution. If the neighbor solution performs better than the
previous solution, it is selected as the best solution. This process repeats until a
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certain quality of solution is achieved or a fixed number of iterations is completed.
However, simple local search algorithm suffers from the local maxima problem.
Simulated Annealing (SA) tries to solve this problem by selecting neighbor solu-
tions even with lesser quality of measure as best solution with some probability.
This probability decreases as the iterations progress to stabilize the optimization
process. This technique has also been utilized for antenna tilt optimization and
has proved to be quite effective [9] [69] [70] [73] [74]. The performance of these
techniques depends on the parameter setting of the algorithm like the probability
of bad solution selection as well as the definition of neighbor solution. Appropri-
ate definition of neighbor solutions can enhance the quality of the final solution
as well as reduce the computational complexity [34].

Another local search algorithm used for antenna tilt optimization is Tabu
Search (TS) [11] [55] [68]. It tries to overcome the problem of local maxima by
maintaining a list of recently tested solutions. The solutions in this list remains
taboo for some time so that the optimizer does not remain stuck in a specific
region of the solution space.

Genetic Algorithms (GA) are also meta-heuristic algorithms that mimic the
process of natural evolution to find the best solution of the problem. Instead
of making a neighboring solution by slightly modifying the current solution, GA
combine two solutions from a population of solutions and tries to inherit the best
qualities of the parent solutions. GA has also been proposed to automate cell
planning tools for the optimization of antenna tilt and other BS parameters [28]
[43]. Another population-based approach, Particle Swarm Optimization (PSO)
has also been used for antenna tilt optimization [30]. In this approach, a popu-
lation of candidate solutions moves in the solution space and their movement is
influenced by their own best known solution and the global best known solution
at any time.

Comparative studies of the above mentioned algorithms for antenna tilt opti-
mization are also reported in [6] [7]. Under low or medium network load conditions
all the algorithms provide comparable performance, but at high network load GA
are reported to be more computational extensive and less efficient in terms of the
quality of the solution for the scenarios under study.

Taguchi’s method, a relatively unexplored technique in the domain of cellular
network optimization has also been used for BS parameter optimization recently
[16] [17]. This technique is based on the concept of Orthogonal Array (different
from orthogonal antenna array), which select a representative set of possible
parameter combinations from the full search space. The number of parameter
combination defines the number of tests to be carried out and compared against
a performance metric. Using the results of all the tests, a candidate solution
is selected and the process is repeated until the desired criterion is matched.
Compared to local search techniques, this OA offers a systematic approach to
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Figure 2.4: Algorithms for CCO with Antenna Tilt

explore the solution space and therefore has been reported to perform better
than SA in the studied scenarios [17].

2.5.2 Rule-Based Algorithms

Some rule-based techniques have also been proposed for antenna tilt optimization.
These techniques rely on traffic statistics to define the current state of the cell.
This could be based on uplink (UL) load [35], downlink (DL) load [81] or the
interference experienced by the cell [60]. Then rules are defined, so that, the cells
with higher load increase their tilt to reduce their coverage and the cells with
lower tilt decrease their tilt to increase their coverage for better load balancing
among the cells.

2.5.3 Gradient-Based Algorithms

Gradient-based schemes have also been exploited for antenna tilt optimization. A
utility function based on the active users and the dropped calls has been proposed
in [26]. At each control update, the gradient of the utility function is used to
modify the antenna tilt with a maximum limit of 2 degrees per update. Then
Game Theory (GT) analysis has been done to prove that the network converges
to the Nash Equilibrium (NE). In [29] a utility function based on the cell edge
and cell center spectral efficiency has been defined and the tilt at each cell is
iteratively adapted based on the gradient of the utility function.
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2.5.4 Benefits and Challenges of Optimization Approaches

The above mentioned optimization approaches have proven to be quite effective
for the antenna tilt optimization problem. Meta-heuristic algorithms are the most
widely used optimization approaches as they can provide solutions with significant
performance improvements in short intervals of time even for very large networks.
However, they can only be run in an offline manner because of the requirement of
a network planning tool to test different candidate solutions for specific quality of
measure. Therefore, the quality of these solutions highly depends on the network
and environmental modeling used in these tools.

In literature, the performance gains of rule-based algorithms are also proved
using simulations, but principally they can also be applied in an operational net-
work, as they define rules to iteratively adapt the antenna tilt in small steps based
on some load metric of the neighboring cells. However, most of these approaches
only consider synthetic hexagonal scenarios and therefore define rules based on the
load difference of only two adjacent cells. In reality, the cell structures are hardly
symmetrical because of the propagation conditions and the limited availability
of feasible site locations. Therefore, the designed rule base needs to consider a
broader neighborhood.

Another major problem with these approaches is that the optimization in-
telligence remains heavily concentrated in the design phase of the algorithms.
The performance of these algorithms heavily depends on their parameter settings
and the modeling used for the network and the environmental factors. Addi-
tionally, these algorithms are not able to learn from their experience of previous
optimization steps and rely on network optimization engineers to either fine tune
the results of these optimizations in the operational network or to adjust the
parameters of the optimization algorithms.

To overcome these challenges, Machine Learning (ML) can help to empower
the radio networks to learn from their optimization steps. This way radio net-
works can themselves become experienced with the passage of time and can fine
tune the optimization algorithm based on their local environmental interactions.
Additionally, if a distributed architecture is followed for the learning mechanism,
the optimization can adjust according to the local requirements of individual cells
as well.

2.6 Summary

In this chapter an overview of antenna tilt optimization is presented. The main
points are summarized below:

• Coverage and capacity of cellular mobile networks is affected by numerous
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BS parameters, but the ability to adapt antenna tilt remotely and frequently
makes it more suitable for SO network optimization.

• The remote adaptation is possible due to the electrical antenna tilt mech-
anism. Moreover, with electrical antenna tilt the radiation pattern expe-
rience the tilt in all horizontal directions and therefore produces higher
performance gains compared to the mechanical antenna tilt, which is only
effective in the main lobe direction.

• For any cell the optimal antenna tilt value depends on different factors
like traffic distribution within the cell, load difference between neighboring
cells, BS sectorization, horizontal as well as vertical antenna patterns and
antenna height.

• Most of the above mentioned BS parameters are fixed during the network
planning phase but mobile user distribution changes from time to time.
To provide the required capacity for this inhomogeneous and dynamically
changing traffic distributions, dynamic antenna tilt adaptation is required.
Additionally, for better load balancing, these antenna tilt adaptations need
to be optimized on individual cell basis instead of same antenna tilt value
across all cells.

• Numerous optimization algorithms exist for dynamic antenna tilt optimiza-
tion but their optimization intelligence is limited because of fixed pre-
defined algorithms. Therefore, network optimization engineers are still re-
quired to either fine tune the results of these optimizations or to adjust the
algorithms themselves.

• Machine learning can help to fully automate this process by allowing the
network to learn from its previous optimizations and adjust its behavior for
future actions.

• This kind of machine learning based optimization is quite new in the do-
main of cellular networks and requires more detailed studies to prove its
effectiveness.
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The SO features of cellular mobile networks require that most of the opera-
tional and maintenance tasks are automated. This minimizes the manual efforts
required for network deployment and optimization. These automated procedures
also benefit from machine learning to introduce some intelligence in their behav-
ior. The objective for this intelligence capability is to allow these procedures to
learn from their previous steps and amend their future actions accordingly.

In this chapter we look into Reinforcement Learning (RL) as a machine learn-
ing technique to learn the optimal control policy for antenna tilt adaptation.
First, we briefly explain the basic concept of RL and the Q-Learning algorithm
to solve RL problems. After that, Fuzzy Q-Learning (FQL) is described which
combines Fuzzy Logic with Q-Learning to handle RL problems where the state or
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action space is continuous. Next, the different components of an FQL controller
for our coverage and capacity optimization problem are explained. Finally, dif-
ferent variants of the FQL that we developed are also presented.

3.1 Reinforcement Learning

Reinforcement learning is a branch of machine learning that iteratively tries to
learn the optimal action policy through its interaction with the environment [47]
[72]. In a trial-and-error manner, a learning agent1 continuously analyzes the
consequences of its actions based on a simple scalar feedback (the reinforcement)
from the environment. Depending on this reinforcement signal the agent tries to
develop a ranking of all the possible actions for a particular state and preferen-
tially repeat the actions that in similar state produced better performance.

The reinforcement signal is only a qualitative feedback and tells the agent
whether the selected action was good or bad in terms of some performance metric.
It is less informative than the feedback in Supervised Learning (SL), in which
the learning agent knows the relation between the input state and the desired
output [25]. Therefore, in SL the agent always knows the error it commits based
on the difference between the actual and desired outputs and thus can apply
the corrective measures. However, the reinforcement feedback is better than
the Unsupervised Learning (UL), where the agent would be left to discover the
optimal actions on its own, without any explicit feedback from the environment
[41].

This interaction between the learning agent and its environment can be mod-
eled as a Markov Decision Process (MDP). An MDP is a 4-tuple 〈X,A, P, ρ〉,
where, X is the set of all possible states, A is the set of all possible actions,
P : X × A × X → [0, 1] is the state transition probability function and ρ :
X × A×X → < is the reward function.

The complete high level process is presented in Fig. 3.1. At each time step
k, the agent perceives its complete environment and determines the present state
xk ∈ X. The agent can choose one of the possible actions in this state ak ∈ A.
After the execution of this action, the environment changes from state xk to
another state xk+1 ∈ X, according to the state transition probability function
P (xk, ak, xk+1), the probability of ending in state xk+1 when taking an action
ak in state xk. As a result of this transition, the agent gets a reward rk+1 ∈ <,
according to the reward function ρ : rk+1 = ρ (xk, ak, xk+1). The reward provides
feedback about the immediate impact of action ak only without any regard to its
long term effect. This process repeats until the agent arrives in some terminal
state.

1Any system that is trying to learn

24



Chapter 3. Reinforcement Learning Based CCO

x(k)

a(k)

( )

r(k)
Agent

Delay ( )

x(k+1)

r(k+1)
Environment

Figure 3.1: RL System

The objective of the learning agent is to maximize the accumulated future
rewards as defined by the reward function R (k):

Rk = E

{
∞∑
i=0

γirk+i

}
(3.1)

where, γ ∈ [0, 1) is the discount factor. The value of γ allows to control the period
the learning agent takes the reinforcement into account. For γ = 0, the agent is
“myopic” and only considers the immediate reward; the more it is closer to 1,
the more the agent looks into the future. Therefore, the task of the agent is to
maximize its long term performance, based on the feedback about its immediate
one-step performance only.

The behavior of an agent is determined by its policy π, which specifies how
the agent ought to take actions given a state. The policy can either be stochastic,
π : X × A → [0, 1], or deterministic, π : X → A. The agent, values a policy by
the expectation of future reinforcements with the discounted reward. The value
of a state x under the policy π is given by:

V π (xk) = E
{
r (xk) + γ · r (xk+1) + γ2 · r (xk+2) + · · ·+ γk · r (xk+m) + · · ·

}
= E

{
rk + γ · rk+1 + γ2 · rk+2 + · · ·+ γm · rk+m + · · ·

}
= E

{
rk +

∞∑
m=1

γm · rk+m

}

= E

{
rk + γ

∞∑
m=0

γm · rk+1+m

}
(3.2)
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which is similar to the Bellman Equation also known as the equation of Dynamic
Programming.

V π (xk) = E {rk + γ · V π (xk+1)} (3.3)

which tells that the value of any state x is equal to the expected immediate reward
plus the expected value achievable from the next state. This allows to estimate
the value function recursively. The optimal value of a state is given as:

V π∗ (xk) = V ∗ (xk) = max
π
{V π (x)} (3.4)

Therefore, solving a reinforcement learning problems means, finding the op-
timal policy π∗ that maximizes the long-term expected cumulated reward that
the agent receives. This is achieved by learning the correct approximation of the
state value functions.

V̂ (xk) = V ∗ (xk)− e (xk) , with e (xk)→ 0 (3.5)

Once these state value functions are correctly estimated, the optimal policy
can be deduced from the optimal state values as:

π∗ (xk) = arg max
xk∈X

{V ∗ (xk)} (3.6)

RL problems can be classified along several different dimensions like the
amount of learning agents in the system, type of learning agents, type of learning
task, type of interaction among multiple agents etc. In the following sections
some of the major RL problem categories are discussed.

3.2 Single-Agent Reinforcement Learning

Single-Agent Reinforcement Learning (SARL) deals with problems where we have
only one agent in the system. The agent explore its solution space through its
interactions with the environment and iteratively improves its behavior (action
policy), hoping to reach the optimal behavior. A large number of algorithms with
good convergence and stability characteristics are already available to solve these
problems.

3.3 Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) deals with learning problems in-
volving multiple agents with constraints that these agents interact with each
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other and their performance depends on their joint behavior. These constraints
are important for the definition of MARL problem. If no interaction is required
then the problem can be decomposed into completely independent tasks each
solvable by a separate agent [59]. These constraints also differentiate MARL
problems from SARL problems in three important aspects. First, the existence
of multiple-agents expands the solution space enormously. Second, MARL may
involve multiple learners, each learning and adapting in the presence of others,
which makes the environment non-stationary and violates the basic assumption of
numerous SARL approaches. Third, because of the interaction between multiple-
agents, small changes in the learned behavior can often result in unpredictable
changes in the overall behavior of the whole system.

Depending upon the number of learning agents and their behavior in the
system, MARL problems can be broadly divided into two main categories, i.e.
team learning and concurrent learning [59].

3.3.1 Team Learning

In Team Learning, a single learning agent is used to learn the behavior for a team
of agents1. This simplifies the learning process compared to the scenario where
each team member is learning in the presence of other co-learning team members.
Consequently, team learning can utilize the better understood SARL techniques
with good convergence and stability characteristics [25]. Another advantage of
team learning is that it tries to improve the performance of the entire team and
not just that of a single agent.

However, team learning suffers from scalability issues as the number of agents
increases. The number of possible states that the team can have increases expo-
nentially with the increasing number of agents. This explosion of state space can
make it infeasible to maintain the state-value function or extremely slow-down
the learning process. Another disadvantage of team learning is its centralized na-
ture. The single learning agent needs to have information from all agents of the
system and all the computational resources need to be concentrated at a single
place.

3.3.1.1 Homogeneous Team Learning

Homogeneous team learning tries to learn a single agent behavior for all the
agents in the team, even if the agents have different capabilities. The search
space is drastically reduced for the learning process because all agents have the

1An agent is a system that can perform certain actions in its environment based on some
information (sensors, feedback) received from the environment. Whereas, a learning agent also
employs some machine learning techniques to learn from its interaction with the environment.
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same behavior. This is particularly important for problems where heterogeneous
solution space is infeasible to explore. Additionally, some problems do not require
agent specialization for better results. Here, homogeneous team learning can
perform better with less complexity.

3.3.1.2 Heterogeneous Team Learning

In heterogeneous team learning, a single learner tries to learn different behaviors
for different members of the team while improving the performance of the team
as a whole. This allows agent specialization within the team at the expense of
increased search space.

3.3.1.3 Hybrid Team Learning

Hybrid team learning tries to combine the benefits of both homogeneous and
heterogeneous team learning. It divides the team into multiple squads, with
each agent belonging to only one squad. All agents in a squad have the same
behavior, but different squads can have different behaviors to achieve specialized
characteristics.

3.3.2 Concurrent Learning

The second major category of MARL problems is concurrent learning, where
multiple learners are trying to partly solve the problem. It is especially useful
in problems where some decomposition is possible and each sub-problem can be
solved independently to some degree [45]. In such problems, concurrent learning
can reduces the search space and computational complexity of the learning agents
by projecting the large team search space onto smaller separate search spaces.

However, learning is more difficult in concurrent learning because of the pres-
ence of multiple learners. Each learner interacts with the environment and tries
to learn the behavior that improve its performance. However, other learners are
also co-learning and co-adapting their behavior. Each behavioral change in any
agent can make the assumptions of other learning agents obsolete and ruin their
learned behavior. This makes the whole environment non-stationary and the
learning agents can at best try to keep track of these changes in the environment
and their optimal behavior [59].

In concurrent learning, as each agent is free to learn individually, heterogeneity
vs homogeneity is not considered as a design decision but an emergent behavior
of the system. Many studies have investigated concurrent learning from a game-
theoretic point of view and classified it into the following categories.
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3.3.2.1 Cooperative Games

Fully cooperative games utilize global reward to divide the reinforcement equally
among all the learning agents. All agents have the same goal to maximize the
common utility.

3.3.2.2 Competitive Games

In competitive games agents compete against each other and the reward of one
agent acts as a penalty for others. Therefore, the sum of rewards of all agents
after each transition equals zero.

3.3.2.3 Mixed Games

Mixed games are the ones, which are neither fully cooperative nor fully compet-
itive.

3.4 Reinforcement Learning Algorithms

Fundamentally, RL problems can be solved in three different ways: Dynamic Pro-
gramming, Monte Carlo methods and Temporal Difference (TD) learning. Dy-
namic programming methods are very well developed mathematically but they
need a complete model of the environment in terms of state transition probabili-
ties and the expected immediate rewards. For many problems, this kind of model
is not known a-priori. Monte Carlo methods do not require a model but they are
not suitable for online learning, where the learning agent learns through its active
interactions with the environment. Finally, TD methods also do not require any
model of the environment but they can be implemented in an online manner for
step-by-step learning [72].

The study of MARL has also benefited from the advancements in Game-
Theory and Direct Policy Search. A number of algorithms have been developed
based on the tools provided by these fields as well as their combinations [25].

In this thesis we focus on Q-learning algorithm because of its simple imple-
mentation and effective results. The main components and the design of the
algorithm is explained in the following sections.

3.5 Q-Learning

Q-learning (QL) is one of the model-free learning method based on TD [78]. It
solves the learning problem by estimating a Q-value function or the Q-function
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for each state action pair. This Q-function defines the quality of choosing an
action a ∈ A in state x ∈ X in terms of its long-term expected reward.

Qπ (xk, ak) = E
{
r (xk, ak) + γ · r (xk+1, ak+1) + γ2 · r (xk+2, ak+2) + · · ·

+ γk · r (xk+m, ak+m) + · · ·
}

(3.7)

which is similar to the value function as defined in Eq. 3.2, but, here we explicitly
calculate the value of each action in every state. Similarly, the Q-function can be
shown to follow the Bellman Equation as:

Qπ (xk, ak) = E {rk + γ ·Qπ (xk+1, ak+1)} (3.8)

and the optimal Q-values, which define the expected reward of selecting an action
a in state s and then following the optimal policy π∗:

Qπ∗ (xk, ak) = max
π
{Qπ (xk, ak)} = max

ak
{Qπ (xk, ak)} (3.9)

and can be iteratively calculated as

Qπ∗ (xk, ak) = E

{
r (xk, ak) + γmax

ak+1

{Qπ (xk+1, ak+1)}
}

(3.10)

Q-Learning tries to learn the optimal Q-function in an online fashion by in-
crementally improving its estimate Q̂ (xk, ak).

Q̂ (xk, ak) = Q∗ (xk, ak)− e (xk, ak) (3.11)

where e (xk, ak) is the difference between the optimal and estimated value

e (xk, ak) = Q∗ (xk, ak)− Q̂ (xk, ak) = ∆Q̂ (xk, ak) (3.12)

This difference between the optimal and estimated value can be used to in-
crementally improve the estimate as the learning agent becomes more and more
experienced as follows:

ˆQk+1 (xk, ak) = Q̂ (xk, ak) + βk ·∆Q̂ (xk, ak)

= Q̂ (xk, ak) + βk ·
{
Q∗ (xk, ak)− Q̂ (xk, ak)

}
= Q̂ (xk, ak) + βk ·

{
rk + γ · max

ak+1∈A

{
Q̂k (xk+1, ak+1)

}
− Q̂k (xk, ak)

}
(3.13)

where β is the learning rate and describes how much impact the new information
has on the old estimate. For β = 0 no learning is done and for β = 1 the new
value completely overwrites the old estimate.
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3.5.1 Q-Learning Algorithm

The general Q-Learning algorithm is an iterative process of estimating the Q-
function and follows the following steps

1. Initialize the estimates of Q-values: Q̂ (x, a) := 0∀x ∈ X, a ∈ A

2. Observe the current state x = xk

3. Select an action ak and execute it

4. Receive the immediate reward rk

5. Observe the new state xk+1

6. Update the estimate Q̂ (xk, ak) as described in 3.13

7. x⇐ xk+1

8. Repeat steps from 3 to 7 until the terminal condition is met

3.6 Fuzzy Q-Learning

Reinforcement Learning problems are generally modeled as finite state Markov
Decision Process (MDP), which requires that the system can be represented as a
set of finite states. As a result, it is feasible to calculate Q-value for each state-
action pair. However, it becomes extremely difficult if the state or action space is
continuous. For example, in our study, coverage and capacity of cellular mobile
networks is usually based on the received signal strength, which are continuous
in nature. State definitions based on these continuous variables would make it
impossible to maintain the Q-values for each state-action pair. Moreover, using
fixed thresholds for partitioning the continuous variables into discrete variables
leads to abrupt transitions, which may lead to very different actions for two very
closely related states.

Fuzzy logic can overcome this problem by providing the required abstraction
and yet allowing a smooth transition from one state to another. Fuzzy logic uses
fuzzy sets, which have elements with graded degree of membership compared to
the classical set theory where the elements’ membership is measured in binary
terms i.e. either the element belongs to or does not belong to the set. This
graded membership allows smooth transition between different sets because as
the value of fuzzy variable changes, the degree of membership to a particular set
can gradually decrease while its membership to another set can increase at the
same time. However, designing a fuzzy logic controller requires human expertise
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to define the relation between the input states and the controller’s actions. These
expertise may not always be available or precise enough.

Fuzzy Q-Learning (FQL) is a combination of fuzzy logic and Q-Learning and
tries to overcome the problems of each while benefiting from the strong points
of each. Fuzzy logic provides a flexible framework for optimization problems and
q-learning can provide the learning and fine tuning mechanisms where supervised
learning is not possible.

3.7 FQL Controller Components

FQL controller (FQLC) represent the control system for the optimization of a
RL problem. For our studies we assume a distributed architecture where each
cell has its own FQLC and tries to optimize its performance using it, as shown
in Fig. 3.2. The major components of the FQLC are described in the following
sections:
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F

(Action)

Environment

Parameter Values

Reinforcement

Fuzzy 
Q-Learning
Controller

Performance Indicators (State)

A1 A2 A3 A4 A5Fuzzy Logic Controller
Fuzzy Q-Learning Controller

A1 A2 A3 A4 A5
S1 0 0 0 0 0

S2 0 0 0 0 0

S3 0 0 0 0 0

State Action
S1 A2

S2 A2

S3 A1

y g
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Figure 3.2: Distributed FQLC for CCO

3.7.1 States

States are used to describe different conditions of an environment. In cellular
mobile networks, the performance is usually measured in terms of network KPIs
(Key Performance Indicators). These KPIs represent various statistics of the BS
and mobile user activity and can be used to represent the current operational
state of a network.

For the CCO by antenna tilt adaptation, we consider the Spectral Efficiency
(SE) statistics to measure the coverage and capacity performance of an antenna
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tilt configuration. SE represents the transmitted information per unit bandwidth
and therefore clearly indicate the spectrum usage efficiency. The higher the value
of SE, higher the transmitted data rates achievable. In an operational network,
spectral efficiency can be derived from the Signal to Interference plus Noise Ratio
feedbacks from the mobile user equipments over a sufficiently large period of
time so that the optimization area is adequately covered. Therefore, we define
our input state vector as follows:

sc =
[
ATc SEcenter

c SEedge
c

]
(3.14)

where, ATc is the current antenna tilt of the cell c ∈ C, the set of all cells in
the network. SEcenter

c and SEedge
c are the central and edge spectral efficiencies

respectively of cell c. As LTE utilizes a re-use 1 frequency allocation scheme
among the cells, so the users at the cell edge experience significant inter-cell
interference. Therefore, it is important to not just look at the peak SE, but
its distribution within the cell. For this reason, we look at two distinct SE
metrics to represent the state of a cell. SEcenter

c is measured from the mean of
the SINR distribution and SEedge

c is measured from the lower 5-percentile of the
SINR distribution, which represent the values at the edge of a cell. The exact
procedure of converting the SINR report of mobile users into SE measurements
is described in the next chapter.

3.7.2 Actions and Policy

Actions are the possible steps that the FQLC can take in any state. As the
optimization parameter under study is antenna tilt so we define the FQLC actions
as the change to be applied to the current antenna tilt value. The optimization
target for FQLC is now to learn an action policy that represent a mapping from
states sc ∈ S to output actions ac ∈ A, where A is the set of all possible actions
for that state:

πc : sc → ac (3.15)

3.7.3 Membership Functions

Fuzzy logic is based on Fuzzy Set Theory introduced by Lotfi Zadeh [87]. Fuzzy
Sets are sets whose elements have degrees of membership. Unlike traditional set
theory, where the elements of a set have binary membership (an element either
belongs or does not belong to the set), fuzzy set theory allows gradual assessment
of the membership of an element to a set. This is achieved with the help of
a Membership Function valued in the real unit interval [0,1]. A membership
function represents the extent to which a statement is true generally known as

33



Chapter 3. Reinforcement Learning Based CCO
FQL Implementation

Very VeryVery
Low Low Medium High

1

0

Very
High Low High

1

0

Medium

9 12 15
0

6 18
Tilt

2 3
0

1
Center Spectral Efficiency

High No High
Low Medium High

0 2 0 3 0 4

1

0
0 1

High
Decrease Decrease Change Increase

1 0 1

1

0
2 2

g
Increase

0.2 0.3 0.40.1
Edge SpectralEfficiency

-1 0 1-2 2
Output

International Graduate School on MOBILE COMMUNICATIONSPage 8

Figure 3.3: Membership Functions

the degree of truth. Therefore, a fuzzy set consists of two things [54]: a linguistic
label or name of the fuzzy set, which describes some behavior of its contents and
the associated membership function, which represent the degree of truth for each
element.

For designing an FQLC, each variable of the input state vector sn and output
action a is discretized using a finite number of Fuzzy Sets. Each fuzzy set has its
own label and associated membership function denoted by µLn,m (sn), where Ln,m

is the mth label defined over the nth state vector component sn. A value of zero
means state variable sn does not belong to this label and one means it is fully
a member of this label. The labels used for our state and output variables are
shown in Fig.3.3. Antenna downtilt and output variables have five labels each,
whereas SEcenter and SEedge have three labels each. For membership functions we
use strict triangular membership functions, so that, for each value of the variable
the sum of degrees of membership of all fuzzy labels is equal to 1.

M∑
m=1

µ (snm) = 1 (3.16)

where, M is the total number of labels define for each fuzzy variable. For example,
for a downtilt value of 7 degrees the membership value is 0.667 for fuzzy label
Very Low and 0.333 for fuzzy label Low.
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3.7.4 Reinforcement Signal

In RL methods the environment provides the agent with the feedback about its
actions in the form of Reinforcement Signals (RS). These RS help the learning
agent to characterize which actions produce better results in which states. As
we describe the state of our CCO problem as a vector of current tilt, center SE
and edge SE, we define a term State Quality (SQc) to describe the cumulative
effect of both center and edge SE of a cell. SQc is defined as the weighted sum
of center and edge SE. Higher SQc means better spectral efficiency distribution
in the cell and thus higher achievable throughput.

SQc = SEcenter
c + w · SEedge

c (3.17)

where, w is a weighting factor and can be used as a policy control mechanism.
Higher values of w tend to give more importance to the edge values compared
to the center values. As edge values are normally significantly smaller than the
center values, a value greater than 1 for w is also important to make the edge
values comparable to the center values.

The RS is then calculated as the difference between the SQc of two consecutive
states. If the FQLC transits from state sc,t to sc,t+1, with state qualities SQc,t

and SQc,t+1 respectively, then the reward can be calculated as

rc,t+1 = SQc,t+1 − SQc,t (3.18)

3.7.5 Rule-Based Inference

In FQLC, the mapping between input states and output actions is defined by a
rule-based Fuzzy Inference System (FIS) based on Fuzzy Labels. A typical FIS
rule i in Fuzzy Q-Learning is initialized as [37]:

Rule i : IF s1 is L1,m
i and s2,m is L2,m

i and · · · sn is Ln,mi
THEN y = o1

i with Q
(
Li, o

1
i

)
= 0 or

y = o2
i with Q

(
Li, o

2
i

)
= 0 or

· · ·
y = oki with Q

(
Li, o

k
i

)
= 0

(3.19)

here, Ln,mi is a fuzzy label for a distinct fuzzy set m defined in the domain of the
nth component sn of the state vector and oki is the kth output action for rule i,
O being the set of K possible actions. The vector Li =

[
L1,m
i , L2,m

i , · · · , Ln,mi
]

is
known as the Modal Vector of rule i and represents one state of the controller.
Q
(
Li, o

k
i

)
is the q-value for state Li and action oki and is initialized to zero.
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These Q-values are defined for each rule-action pair. Because of overlapping fuzzy
sets, it is possible to have multiple activated rules for some states of the system.
Therefore, it is important to differentiate between the Q-values for state-action
pairs and rule-action pairs.

The total number of rules depends upon the dimension of the state vector as
well as the number of fuzzy labels defined for each of these. Therefore, it is also
a trade off factor between the accuracy of the system model and the speed of
convergence of the learning process. As we have five labels for antenna downtilt
and three each for SEcenter and SEedge variables, we have a total of 45 rules
(states) in our FIS. The target of FQLC is now to find the best action for each
rule that maximizes the overall reward. Each state has five possible actions with
the exception of the states with downtilt in very low state which can only increase
the downtilt or keep it constant and the states with very high downtilt which can
only decrease the downtilt or keep it at the same level. Therefore, the downtilt
can vary between 6 and 18 degrees only.

3.8 Fuzzy Q-Learning Algorithm

Similar to Q-learning the optimization target for FQL is also to find the optimal
policy that maximizes the long term rewards for the learning agent. This is
done by iteratively improving the estimated q-values for each state action pair as
described in Eq. 3.13. However, the major difference is that in FQL the q-values
are actually learned for the discrete states defined by the modal vector or rules of
the FIS instead of the actual continuous domain state variables. Therefore, FQL
algorithm is slightly different from the Q-learning algorithm.

The FQL algorithm starts with the identification of its current state based on
the degree of truth of each FIS rule, defined by the product of the membership
values of the corresponding fuzzy labels for each rule i:

αi (s) =
N∏
n=1

µLn,m
i

(sn) (3.20)

Let Ps be the set of activated rules for state s, i.e. their degree of truth is positive.
Then for each activated rule an action is chosen by the Exploration/Exploitation
policy. Here we use an ε-greedy policy, where ε defines the trade off between
exploration and exploitation in the algorithm. A value of 1 means no exploration
only the actions with maximum q-values are always chosen and a value of 0 means
totally random selection.

op = arg max
k∈K

Q
(
Lp, o

k
p

)
with prob. ε

op = randomk∈K
(
okp
)

with prob. 1− ε (3.21)
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Figure 3.4: Comparison between Q-Learning and Fuzzy Q-Learning

The actual continuous domain action to be applied by the controller is the
weighted average of all the proposed actions of the activated rules in state s:

a (s) =

∑
p∈Ps

αp (s) · op∑
p∈Ps

αp (s)
=
∑
p∈Ps

αp (s) · op (3.22)

where,
∑

p∈Ps
αp (s) = 1, because of strict triangular membership function that

we use.
Q-value for the continuous state action pair Q(x, a) is calculated as an inter-

polation of the q-values of the activate rules:

Q (s, a (s)) =
∑
p∈Ps

αp (s) ·Q (Lp, op) (3.23)

As a result of the execution of the action a (s), the controller transits to
another state st+1 and receives a reward r. The value function of the next state,
i.e. the expected reward from that state is defined as:

V (st+1) =
∑

p∈Pst+1

αp (st+1) max
k∈K

Q
(
Lp, o

k
p

)
(3.24)

This value function and the reward can be used to iteratively update the
q-values for each rule of the FIS similar to Eq. 3.13:

Qt+1 (Lp, op) = Qt (Lp, op) + αp (st) β {rt+1 + γV (st+1)−Q (st, a (st))} (3.25)

where β is the learning rate and αp is the degree of truth of activated rule p,
which is included here to highlight the contribution of each of the activated rule
in the calculation of the actual output of the FQLC.
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3.9 FQL Variants Studied for CCO

Cellular networks consist of a large number of cells, each with its own antenna tilt
configuration. The optimal antenna tilt value for each cell depends on the traffic
distribution within the cell as well as the antenna tilt values at the neighboring
cells. Therefore, the environment for each cell consists of its own coverage area
as well as the coverage area of other cells. In such a scenario, the optimal action
policy of any cell not only depend on its own propagation condition but also on
the actions of other cells. Therefore, antenna tilt optimization can be considered
as a MARL problem, where each cell interacts with its environment by adapting
its antenna tilt. In this thesis, we analyze different learning approaches for this
problem based on the classification presented in section 3.3. These approaches
are discussed in the following sections.

3.9.1 Concurrent vs Team Learning

In this multi-agent environment of coverage and capacity optimization, we need
to optimize the antenna tilt of each and every cell in the network. To achieve
this with RL, we can either have a learning agent for each cell (concurrent learn-
ing) or for the complete network (team learning). In this thesis, we analyze the
performance of both of these approaches and the modeling used to realize these
approaches is presented in the following sections.

3.9.1.1 Selfish Learning

The first basic approach is based on Non-Cooperative Concurrent Learning, which
tries to optimize the performance of each learning agent (cell) without any regard
to its effects on the performance of neighboring agents. Every cell in the network
acts as a learning agent and has its own FQLC for antenna tilt adaptation as
shown in Fig. 3.5. Each cell identifies its current state based on the input state
vector as defined in Eq. 3.14. It uses three cell specific parameters: ATc, the cur-
rent antenna tilt of cell c, SEcenter

c , the spectral efficiency experienced at the cell
center and SEedge

c , the spectral efficiency experienced at the cell edges calculated
from the mobile measurements.

Each cell interacts with it environment by changing its antenna tilt. This
change of antenna tilt modifies the SINR distribution in the cell and ultimately
changes the SE values. As a result, the cell moves to another state and receives
a reward rc as defined in Eq. 3.18. The reward is based on the difference between
the state qualities SQc of the two consecutive states, which is a weighted sum of
SEcenter

c and SEedge
c . Based on this local reward, the cell independently updates

its q-table. Therefore, each cell acts selfishly to optimize its own performance
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Figure 3.5: Selfish Learning

only.
The cells operate in a highly dynamic environment due to the fluctuations in

the traffic demand and the propagation condition. Therefore, to allow the cells
to effectively overcome the QoS degradation due to these fluctuations, the cells
continuously try to learn the optimal policy as long as they remain operational.
In simulations, this process is done sequentially over all cells, however, in a live
network as all the cells act independently so they can learn in parallel. This
makes this approach suitable for a distributed implementation even at the cell
level.

3.9.1.2 Cooperative Learning

The second learning approach is based on Cooperative Concurrent Learning,
where a learning agent is implemented for each cell but they cooperate with
each other to improve the overall performance of the network and not just the
performance of the cell itself. This cooperation is realized by defining a global
reward and all cells use this same reward to update their individual q-tables.

Similar to the selfish learning, each cell identifies its current state by the
input state vector sc and takes an action according to its exploration-exploitation
policy. This leads to change in the SQc values for all cells. These value are then
communicated among the cells to calculate the average state quality SQavg of the
complete network and the reward is calculated based on the difference of SQavg

before and after the actions are applied by cells:

SQavg,t =

∑N
c=1 SQc,t

N
(3.26)
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Figure 3.6: Cooperative Learning

rt+1 = SQavg,t+1 − SQavg,t (3.27)

here, N is the total number of cells in the network. As our simulation studies
consider network scenarios with a maximum of two-tier neighborhood of eNBs,
we can include all cells in Eq. 3.26. However, if bigger networks are considered, we
can also calculate it over a subset of cells like first or second-tier neighborhood.
This would ensure that the signaling effort is not increased too much.

Although, the cells share their SQc values but they still maintain their own q-
tables of state action pairs as shown in Fig. 3.6. This helps the cells to identify the
actions that lead to better performance of the network based on SQavg instead
of SQc, but, still allows the cells to act independently based on their own q-
tables for state action pairs. Additionally, this cooperation is also feasible in a
distributed manner in LTE networks, as these networks support a direct interface
(X2) between the neighboring eNBs.

3.9.1.3 Centralized Learning

The third learning approach is based on Team Learning, which uses a single learn-
ing agent to learn the optimal behavior for all cells in the network. As discussed
in section 3.3.1.1 and 3.3.1.2, if we consider different cells to have different be-
haviors then the centralized learning agent needs to learn based on joint action
of all the cells. Hence, the q-values to be maintained are of the form Q (s, a),
where a is a vector representing the combination of actions of all the agents
a = [a1, a2, a3, · · · , an]T , n is the number of all the agents in the system and T
represent the transpose of the vector. This joint action space grows rapidly and
becomes extremely large even for a very small network making it infeasible to
maintain such a q-table. Therefore, in this thesis we focus only on homogeneous
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Figure 3.7: Centralized Learning

team learning, where the single learning agent is trying to learn same behavior
for all cells. This means, we can maintain the q-values as Q (s, a) where a is one
of the possible actions, similar for all cells.

The FQLC is split into two parts as shown in Fig. 3.7. The current state
identification and action selection according to the exploration-exploitation policy
is still implemented at each cell as indicated by FQLC-P1 in Fig. 3.7. The cell
specific definition of input state vector sc helps to realize these procedures at
each cell. However, the q-table as the representation of the learned knowledge
is maintained centrally and shared by all cells in the network as indicated by
FQLC-P2 in Fig. 3.7.

In this centralized learning, each cell still individually identifies its current
state based on the input state vector. After that it takes an action using its
exploration-exploitation policy and the shared q-table, which changes its environ-
ment and the SQc value. The cell then communicate the activated state-action
pair as well as the updated SQc value to the central learning agent as shown in
Fig. 3.7. Once this information is received from all cells, the learning agent can
calculate the SQavg and global reward as given in Eq. 3.26 and 3.27 respectively.
This global reward can then be utilized to update the q-values for all the acti-
vated state-action pairs. The global reward is easy to calculate in this scenario
as the central learning agent already have an interface with all cells.

3.9.2 Learning Dynamics

Learning in a multi-agent environment is a difficult task because of the presence of
co-adapting agents. The learning agents not only have to keep track of the changes
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in the environment but also the changing behavior of other learning agents. This
is especially important for the problem of antenna tilt optimization, where each
change of antenna tilt not only modify the SE distribution within the cell but
also in the neighboring cells. Therefore, for better characterization of the reward
value as well as the impact of the previous action on the cell’s performance, it is
critical to identify how many cells update their antenna tilts simultaneously. In
our studies, we consider three different learning strategies to control the amount
of parallel antenna tilt updates in the network and are described in the following
sections.

3.9.2.1 One Cell per Learning Snapshot

In this strategy we allow only one cell per network snapshot to execute the FQLC
algorithm and thus update its antenna tilt as shown in Fig. 3.8-(a). The selection
of the cell follows a uniform random distribution in order to allow all cells to
update their antenna tilt. The SINR distribution within the cell depends not
only on the current antenna tilt of the cell itself but also on the antenna tilt of
the neighboring cells. Therefore, allowing only one cell to update its antenna tilt
at each snapshot makes it easier to identify the impact of that change on the SINR
distribution. This simplifies the learning process as the reinforcement signal the
cell receives after its update can accurately measures the impact of the previous
action. However, this strategy can severely limit the network adaptability in a
dynamic environment as the network size increases.

3.9.2.2 All Cells per Learning Snapshot

In order to speed-up the learning process the second strategy allows all cells to
update their antenna tilts in every snapshot as depicted in Fig. 3.8-(b). The
change in the SINR distribution now depends on the actions of all cells in each
snapshot. This somehow complicates the learning process as the reinforcement
signal now received by a cell is the result of the collective actions of all cells and
not just the action of the cell itself.

3.9.2.3 Cluster of Cells per Learning Snapshot

In order to combine the benefits of the above two strategies we propose to allow
a cluster of cells to update their antenna tilts per network snapshot. The cluster
should be formed such that no two direct neighbors are part of it as shown in
Fig. 3.8-(c). This ensures that a relatively large number of cells can update their
antenna tilts per snapshot and also the change in the environment can be easily
characterized.
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Figure 3.8: Parallel Learning Strategies Comparison

For this a simple clustering algorithm is used that starts by selecting one of
the cells as the center cell as shown in Fig. 3.9. The selection follows a uniform
random distribution. This center cell is than inserted into a list To Update Green.
All the first tier neighbors of that center cell are than inserted into a second list
To Ignore Gray. After that, starting from the center cell, we scan through all
cells in ascending order of their IDs. If the cell is not in To Ignore Gray list it is
inserted in the To Update Green list and all of its first tier neighbors are inserted
in the To Ignore Gray list. Once we reach the cell with highest ID, we again start
with the center cell and now scan the network in descending order of cell IDs and
repeat the same procedure to update the To Update Green list. After we reach the
cell with lowest ID we have all the cells in the To Update Green list, which makes
our cluster of cells that can perform the FQLC algorithm simultaneously. Here,
the common property of the cells in the cluster is that they are not immediate
neighbors of each other. Fig. 3.9 shows examples of such a clustering when we
start with cell 14 as the center cell. Cells with solid boundaries form our simulated
network, whereas, the cells with dotted lines are the wraparound cells.
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Figure 3.9: An Example of Clustering Algorithm Stages

3.10 Summary

This chapter introduces RL as the machine learning tool to optimize the cellular
network operation. Instead of some pre-defined optimization rules the RL mecha-
nisms allow cellular networks to learn from their interaction with the environment
and adapt their behavior accordingly. This helps to fully automate the network
operation and minimize the manual efforts required for network operation and
maintenance.

Many network optimization problems like antenna tilt optimization involves
continuous domain variables. This complicates the RL algorithms because they
need to maintain tables of state-action pairs and with continuous variables it is
unfeasible to build such a structure. Therefore, we particularly focus on FQL,
which is a hybrid technique of Fuzzy Logic and Q-Learning. Fuzzy logic provides
an effective abstraction level for continuous domain variables and Q-Learning pro-
vides the knowledge gathering and representation mechanism for the optimization
problem.

Although, the basic FQL algorithm is already known, but our focus is on its
application to cellular network optimization and the questions arising from it.
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Figure 3.10: Analyzed FQL Variants

In this regard, we particularly focus on the questions of interactions among the
different learning agents within the same network. We introduce several learning
approaches that effectively learn the optimal action policy and try to overcome
the problems of this multi-agent learning environment.

First, we use concurrent learning to develop two distributed learning ap-
proaches for CCO problem. Both of these approaches implement a learning agent
for each cell in the network, which tries to learn the optimal behavior for the cell.
But the approaches implement different reward functions to realize different level
of cooperation among the learning agents. Selfish Learning uses local rewards and
tries to reward the actions which produce better performance locally without any
consideration to its effect on other cells. Cooperative Learning uses global re-
ward and tries to learn actions that improve the overall performance of the whole
network.

For comparison purposes we also develop a Centralized Learning approach
based on team learning. This approach considers all cells to be part of one team
and implements a single learning agent for all of them. All cells use and update
the same central q-table to share their learned knowledge, which can help to
speed-up the learning process as well.

We also look into the effect of different levels of co-adaptation in the network.
In cellular networks the action of each cell like antenna tilt modification not
only effect its own performance but also the performance of its neighboring cells.
Therefore, we propose three different parallel update strategies i.e. only one cell
update per learning snapshot, all cell update per learning snapshot and a cluster
of cells update per learning snapshot. All three strategies vary in their ability
to react to the network dynamics and the learning accuracy. One cell update
strategy can accurately measure the affect of each update as the environment is
only affected by one antenna tilt change but it is quite slow especially for large
networks. All cell update strategy can quickly respond to network changes but it
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experiences a complex learning scenario as the change in the environment at each
learning snapshot is now the result of the combined actions of all cells. To combine
the benefits of both these strategies we propose a cluster-based update strategy
which tries to maximize the number of cells that can update their antenna tilt
at each learning snapshot while ensuring that no two direct neighbors update
their antenna tilt in same snapshot. This helps to speed-up the learning process
without making the feedback procedure complicated for cells.
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This chapter introduces the network simulator used for our studies. First a
brief introduction of the Long Term Evolution (LTE) is presented which is the
radio access technology under study in this thesis. After that, the fundamental
system model, assumptions and performance metrics are described that are used
to design and evaluate our simulation studies.
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4.1 Background and Objectives of LTE

Cellular mobile networks provide the flexibility of seamless communication while
on the move. The first generation cellular mobile networks focused mainly on
voice communication, but data communication became more and more important
in the later generations. The ability to have data communication while moving
led to the concept of anywhere and anytime Internet. This widespread usage of
mobile Internet and other data extensive user applications led to the development
of new core networks and RAT systems. Each newer generation of cellular mobile
networks mainly targets to improve two factors; mobility and data rate [53] as
shown in Fig. 4.1 .

Keeping in view the user traffic predictions and operators’ requirements of
a simple and inexpensive cellular mobile network, 3GPP started to define the
requirements of LTE in 2005. These requirements can be summarized as follows
[65]:

• reduced delays, in terms of both connection establishment and transmission
latency

• increased user data rates
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10 Mbit/s

100 Mbit/s
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wireless WLAN

PAN Fourth Generation
Cellular Networks

1 Mbit/s
Third Generation
Cellular Networks
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phones
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Satellite
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Stationary Nomadic Pedestrian Vehicular High-speed Trains
Planes

Mobility

International Graduate School on MOBILE COMMUNICATIONSPage 55Figure 4.1: Data rate vs mobility for various networks [53]
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• increased cell-edge data rates, for uniformity of service provision

• reduced cost-per-bit, implying better spectral efficiency

• greater flexibility of spectrum usage, in both new and pre-existing bands

• simplified network architectures

• seamless mobility, including between different RATs

• reasonable power consumption for the mobile terminal

LTE system design served as the last step in this evolution of cellular mobile
networks towards 4th Generation (4G) systems. It provides significant improve-
ment in terms of system performance compared to HSDPA/HSUPA Release 6
which was the state of art at the time of LTE development. The key system
performance parameters of LTE Release 8 and their comparison with Release 6
are given in Table 4.1.

4.2 LTE System Simulator

For the analysis of our proposed FQLC approaches we perform simulation studies
of an LTE network. The LTE system simulator we use for our evaluations is based
on the software libraries provided by Alcatel-Lucent Bell Labs, Germany and the
Institute of Communication Networks and Computer Engineering, University of
Stuttgart, Germany [66]. The libraries provides the means to simulate a 3GPP
compliant LTE radio network for downlink evaluations. They were extended to
allow each cell to act as an FQLC agent and to generate the required state and
reinforcement values. All the different learning strategies were also implemented
to observe their affect on CCO.

The basic features of the simulator for radio network modeling are explained
in the following sections.

4.2.1 Cellular Deployment

The basic cellular network used for our evaluations is the 3GPP “Case-1” with
7 eNBs (LTE base station) as shown in Fig. 4.2-(a). 3GPP Case-1 refers to a
interference limited scenario with an inter-site distance of 500m [2], [3]. Each
eNB operates 3 cells, where the term cell refers to the coverage area of a radio
transceiver (TRx). The eNBs are deployed in a regular hexagonal structure, such
that one center eNB is surrounded by one layer of eNBs.
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Table 4.1: LTE System Performance Parameters

Absolute Require-
ment

Release 6 (for com-
parison)

Comments

Downlink

Peak Transmis-
sion Rate

>100 Mbps 14.4 Mbps LTE in 20 MHz FDD, 2x2 spa-
tial multiplexing. Reference:
HSDPA in 5 MHz FDD, single
antenna transmission

Peak Spectral
Efficiency

> 5 bps/Hz > 3 bps/Hz

Average Cell
Spectral Effi-
ciency

> 1.6 - 2.1 bps/Hz 0.53 bps/Hz LTE: 2x2 spatial multiplexing,
Interference Rejection Com-
bining (IRC) receiver. Refer-
ence: HSDPA rake receiver, 2
receive antennas

Cell edge spec-
tral efficiency

> 0.04 - 0.06
bps/Hz/user

0.02 bps/Hz/user As above, 10 users assumed per
cell

Broadcast
spectral effi-
ciency

> 1 bps/Hz N/A Dedicated carrier for broadcast
mode

Uplink

Peak Transmis-
sion Rate

> 50 Mbps > 11 Mbps LTE in 20 MHz FDD, single
antenna transmission. Refer-
ence: HSDPA in 5 MHz FDD,
single antenna transmission

Peak Spectral
Efficiency

> 2.5 bps/Hz > 2 bps/Hz

Average Cell
Spectral Effi-
ciency

> 0.66-1
bps/Hz/Cell

0.33 bps/Hz/Cell LTE: single antenna transmis-
sion, IRC receiver. Reference:
HSUPA rake receiver, 2 receive
antennas

Cell edge spec-
tral efficiency

> 0.02-0.03
bps/Hz/user

0.01 bps/Hz/user As above, 10 users assumed per
cell

System
User plane la-
tency (2 way
radio delay)

< 10 ms LTE target approx. one fifth of
reference

Connection
setup latency

< 100 ms Idle state → Active state

Operating
bandwidth

1.4-20 MHz 5 MHz

To make our simulation scenario more realistic, a bigger and irregular cell de-
ployment is also considered in our evaluations. This scenario consists of 19 eNBs
(57 cells) such that the center eNB is surrounded by two layers of eNBs. In real
environments, eNBs can hardly be deployed in a regular hexagonal structure due
to limited number of feasible site locations. Therefore, the eNBs in this scenario
are displaced from their location of a perfect hexagonal deployment with an inter-
site distance of 500m. The displacement follows a uniform random distribution
between 0 and 200 meters in a random direction. The resultant cell structure is
shown in Fig. 4.2-(b).

In both scenarios, a wraparound is also implemented for better interference
calculation and avoiding the border effects. This effectively replicates the simu-
lation area six times around the original area such that the original area is in the
center and the replicates form a layer around it.
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Figure 4.2: Simulation Scenario

4.2.2 Propagation Model

In wireless communications, while the transmit power is under the control of the
transmitter, the received power is affected by a number of environmental factors
and device characteristics. For the accuracy of the simulation studies, it is vital
to have accurate propagation models for the calculation of received power as
all other metrics of system performance like SINR, capacity, coverage, etc are
calculated from it. Typically, the relation between transmit and received power
is expressed as:

PRx = PTx − PL − SF +GAnt +GDir (4.1)

where PRx is the received power in dBm, PTx is the transmitted power in dBm,
PL is the pathloss in dB, SF is the slow fading also known as shadow fading or
large scale fading in dB, GAnt is the maximum antenna gain in dBi and GDir is
the directional gain of antenna depending upon the position of the receiver with
respect to the transmitting antenna calculated in dB. In this equation fast fading
is ignored. In the following sections, the calculation of each of the terms in Eq.
4.1 is explained.

4.2.3 Pathloss

Pathloss (PL) defines the degradation in power with respect to the distance be-
tween the transmitter and the receiver. For LTE simulation studies, 3GPP defines
PL as [3]:

PL = 128.1 + 37.6 · x · log (d) (4.2)
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where, d is the distance between the transmitter and the receiver in meters, the
carrier frequency is assumed to be 2GHz and BS height above the average rooftop
is assumed to be 15 meters.

4.2.4 Shadow Fading

In wireless communications, fading is the variation in the attenuation, experi-
enced by a signal over a propagation medium. It may vary with time, the radio
frequency, or the geographical location of the transmitter and receiver and is
typically modeled as a random process.

Shadow fading is caused by large obstacles such as buildings or hills that
obscure the line-of-sight signal between the transmitter and the receiver. The
amplitude variations caused by shadow fading is often modeled as log-normal
distribution with an environment dependent standard deviation [1] [62]. Shadow
fading experience a slow variation, therefore, for moving users, the successive
shadow fading values are correlated. The normalized autocorrelation between
two successive values is given as [38]:

R (∆d) = e−
|∆d|
dcor

ln 2 (4.3)

where, ∆d is the distance between the two positions of the mobile user and dcor
is the environment dependent decorrelation distance in meters.

For example, if the shadow fading value at position D1 is SF1. The next posi-
tion is D2, which is ∆d meters away from D1. Then, shadow fading value SF2 at
D2 is normally distributed with mean R (∆d)·SF1 and variance

(
1−R (∆d)2)σ2,

where σ is the standard deviation.

4.2.5 Antenna Gain

In the simulator, directional antennas are utilized instead of omni-directional
antennas. Directional antennas allow transmission of radio signals in a particular
direction with higher gain and therefore, can reduce the inter-cell interference in
other directions. The maximum antenna gain, is the gain of a directional antenna
over the isotropic antenna and is included in Eq. 4.1 for received power calculation
as GAnt. The directional gain GDir, refers to the relative strength of the radiated
power depending on the vertical and horizontal location of the mobile user with
respect to the location of the BS antenna.

In this thesis, a 3D antenna model defined by 3GPP [2] is utilized, which
includes both horizontal and vertical antenna radiation pattern. The gain at any
position is calculated as the sum of both radiation patterns:

GDir = G (ϕ, θ) = −min {− [GH (ϕ) +GV (θ)] , FBR} (4.4)
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where, GH (ϕ) is the horizontal antenna gain in dB, GV (θ) is the vertical antenna
gain in dB, ϕ and θ are the angles between the antenna and the mobile user in
horizontal and vertical direction respectively and FBR is the front to back ratio,
which defines the ratio between the power of an antenna in the main lobe and
the back lobe. It is also referred as backward attenuation.

Both horizontal and vertical radiation patterns are normalized to the maxi-
mum antenna gain i.e. the maximum value GH (ϕ) and GV (θ) can have is 0 dB.
Therefore, the directional gain decreases as the mobile moves away from the main
lobe, .

4.2.5.1 Horizontal Pattern

In 3GPP specifications, the horizontal antenna pattern is models as [2]:

GH (ϕ) = −

[
12

(
ϕ

ϕ3dB

)2

, FBRH

]
(4.5)

where, ϕ, −180◦ ≤ ϕ ≤ 180◦, is the horizontal angle between the main beam
direction (0◦ direction) and the mobile user, ϕ3dB is the horizontal half power
beamwidth, which indicates the angle between the half power points (-3dB) on
the main beam of the antenna pattern and FBRH is the horizontal front to back
power ratio in dB. A plot of an example horizontal pattern with ϕ3dB = 70◦ and
an FBRH = 25dB is shown in Fig. 4.3.

4.2.5.2 Vertical Pattern

Similarly, vertical antenna pattern in 3GPP specification is defined as [2]:

GV (θ) = −min

[
12

(
θ − θetilt
θ3dB

)2

, SLAV

]
(4.6)

where, θ, −90◦ ≤ θ ≤ 90◦, is the elevation angle with respect to the horizontal
plane (θ = 0◦ means horizontal direction), θ3dB is the half power beamwidth, θetilt
is the electrical tilt angle and SLAV is the side lobe attenuation. Sample plots
of vertical pattern with θ3dB = 10◦, an SLAV = 20dB and θetilt of 0◦ and 15◦ are
shown in Fig. 4.4.

4.2.6 Signal to Interference plus Noise Ratio

A mobile user not only receive signals from its serving cell but also from other cells
in the network using the same frequencies. The received power at a particular
channel is the combination of the signals from the serving cell and other interfering
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9 

simpler, gain in the general direction ( , ) is obtained by adding the gains in both directions

with equal weights. So, the directional antenna gain ),( θϕG  can be defined as: 

[ ]{ }FBRGGG VH ,)()(min),( θϕθϕ +−−= (2.5)

where )(ϕHG  is the horizontal antenna gain, )(ϕVG  is the vertical antenna gain and FBR is 

the front to back ratio which represents the ratio between the power of an antenna in the main 

lobe and the back lobe. It is also called as backward attenuation.  All the terms in Eq. (2.5) 

are defined in dB.  

Although the approximation given in (2.5) is simple, the results are closer to the 

measured radiation pattern [7].  Gains in the horizontal and vertical directions are defined in 

3GPP specifications. Starting with the horizontal antenna gain, it is modeled as [8]:   

−= H
dB

H FBRG ,12min)(
2

3ϕ
ϕϕ (2.6)

where °° ≤≤− 180180, ϕϕ , is the horizontal angle relative the main beam direction (0°

direction) of the antenna, dB3ϕ  is the horizontal half-power beamwidth  and HFBR   is the 

horizontal front to back ratio in dB whose value equals to FBR used in Eq. (2.5). The plot of 

the horizontal antenna pattern with °= 703dBϕ  and dBFBRH 25=  is given in Fig. 2.2. 

Figure 2.2: Horizontal antenna pattern Figure 4.3: Horizontal Antenna Pattern

10 

In [8], the vertical antenna gain is modeled as: 

−
−= V

dB

etilt
V SLAG ,12min)(

2

3θ
θθθ (2.7)

where °° ≤≤− 9090, θθ , is the elevation angle relative to the horizontal plane ( =90° means 

downward direction), dB3θ  is the vertical half-power beamwidth , etilt is the electrical 

downtilt angle and VSLA   is the side lobe attenuation. With °= 103dBθ  and dBSLAV 20= , the 

plot of the vertical antenna pattern of an untilted and 15°  downtilted antenna is given in Fig. 

2.3.  

Figure 2.3: Vertical antenna pattern with different downtilt angles 

If the antenna is more downtilted, interference between the cells decreases, but on the 

other hand, the cell coverage reduced [7], [13]. Therefore, the downtilt angle should be 

adapted according to the deployed network and the user distribution. In [8], the optimum 

downtilt angle is given as 15° for the networks where the intersite distance is 500 m and it is 

given as 6° for the networks where the intersite distance is 1732 m.  

By using the 3D antenna model, the received signal power given in Eq. (2.1) can now 

be expressed as: 

[ ]{ }FBRGGGSFPLPP VHAnttxrx ,)()(min θϕ +−−+−−= (2.8)

Figure 4.4: Vertical Antenna Pattern with Different Tilt Angles

cells. The quality of the received signal depends on the ratio between the power
level of the desired signal and the interfering signals. This quality is generally
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measured in terms of Signal to Interference plus Noise Ratio (SINR) as:

SINR (dB) = 10 · log10

(
PServing∑

j∈AllCells and j 6=Serving Pj + Pnoise

)
(4.7)

where, PServing is the received power from the serving cell in watt, Pj is the
received signal power of the jth interfering cell in watt and Pnoise is the thermal
noise in watt. PServing and Pj can be calculated from Eq. 4.1. Whereas, the
thermal noise can be calculated in dBm as [1]:

Pnoise (dBm) = −174 + 10 · log10 (NBW ) +NFRx (4.8)

where, −174 is the thermal noise density in dBm/Hz, NBW is the noise band-
width in Hz and NFRx is the noise figure of the receiver (mobile)in dB.

4.2.7 User Throughput

User throughput defines the maximum achievable transmission date rate over
a given channel. It is expressed in bits per second (bps) and according to the
Shannon formula can be calculated as:

Th (bps) = BW × log2 (1 + SINR) (4.9)

where BW is the bandwidth available for each mobile in Hz. As resource fair
scheduler is utilized, which divides the available resources equally among the
mobiles, the bandwidth per mobile can be calculated as:

BWmobile =
BWsystem

Mobilecell
(4.10)

where, BWsystem is the available system bandwidth for each cell and Mobilecell is
the number of mobile users in a cell

However, the throughput given in Eq. 4.9 is the upper bound with perfect
modulation and coding schemes. Considering the realistic modulation and coding
schemes used in LTE an approximate function can also be developed for realistic
throughput calculations [61] as:

P (x) =


−0.0001x3 + 0.0074x2 + 0.1397x+ 0.6218 : −7.04 ≤ x ≤ 20.2

0 : x < −7.04
P (20.2) : x > 20.2

(4.11)
where, x is the SINR in dB.
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Eq. 4.11 gives the throughput in terms of bits/symbol. In LTE downlink with
15 kHz channel bandwidth, the symbol rate is 14000 symbols/sec. Using this
symbol rate, the throughput per Hz i.e. the Spectral Efficiency can be calculated
as

SE (SINRdB) = P (SINRdB)
bits

symbol
× 14000symbol/sec

15kHz
(4.12)

The SE (SINRdB) gives the throughput for 1 Hz. The throughput based on
the complete allocated bandwidth for the mobile user can be calculated as

Th (bps) =
BWsystem

Mobilecell
× SE (SINRdB) (4.13)

Finally, as LTE can be deployed with different system bandwidths, therefore,
it is better to look at throughput values normalized to system bandwidth for
comparison between different network settings.

Th (bps/Hz) =
1

Mobilecell
× SE (SINRdB) (4.14)

4.2.8 Simulation Model

The evaluation follows a snapshot-based analysis, where each snapshot is taken
after 200 msec of simulation time. The simulation starts with the deployment
of our test scenario as explained in Section 4.2.1. To generate user traffic in
the network and to get SINR measurements, mobiles are also deployed. The
deployment of mobiles follows a random distribution, such that we have 10 users
per cell on average. Therefore, we have a total of 210 mobiles in the small uniform
scenario and 570 mobiles in the larger non-uniform scenario.

At each snapshot, mobiles update their position depending on their mobility,
which follows a random walk model at a velocity of 30 km/h. Mobiles can then
measure the received power of the pilot signal from all the cells and can connect
to the cell with the strongest received pilot signal at the new location. If the
cell with strongest pilot signal is different from the serving cell in the previous
cell, the mobile performs a handover (HO) to the cell with strongest pilot power.
However, a perfect HO procedure is considered in this study without any delays
or timers. Therefore, mobiles are always connected to the best server during the
complete simulation.

After identifying the best serving cell, the SINR on the serving cell’s pilot
signal is calculated and reported back to the serving cell. This way, a total of
210 SINR measurements are generated and reported back to the cells at each
snapshot. These measurements are gathered over a period of 200 sec to generate
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the statistics of SINR distribution. Therefore, a total of 210,000 measurements
are generated in our small scenario and 570,000 measurements are generated
in our larger scenario for one evaluation of the network state. The number of
measurements that each cell receives depends upon the mobility of the mobiles.

The FQLC decision periodicity is also set to 200 sec i.e. the FQLC of each cell
estimates its current state on the statistics of last 200 sec. The FQLC then calcu-
lates its action in terms of change to be applied to the antenna tilt. This change
of antenna tilt modifies the environment and hence the SINR distribution. If the
SINR distribution improves then the action is rewarded with a positive feedback
otherwise it is punished with a negative feedback. This process continue for 4000
FQLC decision iterations.

The major simulation parameters are given in Table 4.2.

4.3 Performance Metrics

This section describes the Performance Metrics used in our simulation studies to
compare the performance of different network configurations. These metrics are
calculated from the Cumulative Distribution Function (CDF), which describes the
statistical distribution of a variable. For any given value x of a random variable
X, the CDF indicates the probability that the value of X is smaller than or equal
to x. Therefore, CDF can only have values between 0 and 1.

4.3.1 User Geometry

User Geometry refers to the serving cell’s pilot SINR at the mobile. As explained
in Section 4.2.8, each FQLC estimate the network state on the basis of statistics
of 200 sec. During this duration a total of 210,000 SINR measurements are
generated in the small scenario and 570,000 measurements in the large scenario.
Therefore, on an average each cell receives around 10,000 SINR measurements
during this duration of 200 secs. Based on these measurements each cell can then
generate a CDF of the SINR in its coverage area. If CDF of two configurations
are plotted, then the CDF whose plot is at right has higher SINR values than the
other.

4.3.2 User Spectral Efficiency

User spectral efficiency can be directly calculated from SINR values as explained
in Eq. 4.14. Therefore, similar to the user geometry CDF, a user spectral effi-
ciency CDF can also be generated, which describes the statistical distribution of
achievable data rates per unit bandwidth.
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User spectral efficiency distribution tells the overall distribution of achievable
data rates throughout the cell. However, it is important to clearly identify the
performance at cell center and cell edge. This is particularly critical in re-use
1 systems like LTE, which experience significant inter-cell interference at cell
edges. Therefore, we define two metrics SEcenter

c and SEedge
c which represent the

achievable spectral efficiency at cell center and cell edge respectively. These two
metrics also form the input state of our FQLC along with the current tilt of the
cell as explained in section 3.7.1. The calculation of these two metrics is explained
in the following sections.

4.3.3 Cell Center Spectral Efficiency

Cell center defines the coverage area close to the cell’s antenna, which experi-
ence less inter-cell interference and can achieve higher spectral efficiency values.
Therefore, Cell Center Spectral Efficiency (SEcenter

c ) is defined as the mean of the
spectral efficiency distribution.

4.3.4 Cell Edge Spectral Efficiency

Cell edges experience significant inter-cell interference, which reduces the SINR
and thus the achievable spectral efficiency. Therefore, Cell Edge Spectral Ef-
ficiency (SEedge

c ) is defined as the lower 5% quantile of the spectral efficiency
distribution. In other words, it is the spectral efficiency value where the cummu-
lative probability is equal to 0.05.

4.4 Summary

To evaluate the performance of our proposed learning strategies we perform sim-
ulation studies with an LTE system level simulator. The basic components of
this simulator are explained in this chapter. This includes the details of our
cellular radio network as well as the performance metrics used to quantify the
performance gains of each learning strategy.

The cellular radio network model includes our simulation scenarios, radio sig-
nal propagation modeling and our snapshot based simulation model. Especially,
we focus on 3D antenna model to instead of 2D antenna model for better evalu-
ation of antenna tilt effects.

The performance metrics include Cell Center Spectral Efficiency and Cell
Edge Spectral Efficiency. LTE is a re-use 1 system, which uses same frequency
resources in all cells. This could significantly increase the inter-cell interference
especially at the edges. Therefore, for an efficient optimization algorithm, it is
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important to also look at the cell edge performance improvement and not just
the average performance gains.

The simulation studies and the performance results will be discussed in the
next chapter.

59



Chapter 4. LTE Network Simulator

Table 4.2: Simulation Parameters

Scenario
eNBs Regular Scenario 7
eNBs Irregular Scenario 19
Cells per eNB 3
Number of mobiles 10 per cell on average
Learning Snapshot Frequency 200 sec

eNB Parameters
Max. Tx Power 46 dBm
Inter-Site Distance (ISD) 500 m
Antenna Height 32 m
Antenna Max. Gain 15 dBi

Random Displacement (Irregular Scenario)
Distance 0-200 meters uniform random distribu-

tion
Direction 0◦ − 360◦ uniform random distribution

Horizontal Antenna Pattern
Half Power Beamwidth 70◦

Backward Attenuation 25 dB

Horizontal Gain GH (ϕ) = −
[
12
(

ϕ
ϕ3dB

)2

, FBRH

]
Vertical Antenna Pattern

Half Power Beamwidth 10◦

Backward Attenuation 20 dB

Vertical Gain GV (θ) = −min

[
12
(
θ−θetilt
θ3dB

)2

, SLAV

]
Channel

Pathloss A+B log10(max(dkm , 0.035))
Pathloss A 128.1
Pathloss B 37.6
Shadow Fading Decorrelation Distance 50 m
Shadow Fading Standard Deviation 8 dB
Bandwith 10 MHz

Mobile
Receiver Noise 8 dB
Max. Tx Power 39 dBm
Antenna Height 1.5 m
Antenna Gain 2 dBi
Speed 30 kmph
Movement Random Walk
SINR Report Frequency 200 msec
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This chapter describes the results of our simulation studies. First, the ref-
erence systems used for benchmarking purposes are described. After that the
performance results of different learning strategies in our regular scenario are
discussed. Finally, the results for our irregular scenario are also described.

5.1 Reference System

To compare the performance gains of our proposed antenna tilt optimization
schemes, we have also defined two reference systems. One reference system is
based on a network wide static antenna tilt optimization and the other based
on a similar approach of FQL for dynamic optimization of antenna tilt. Both of
these reference systems are explained in the following sections.
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5.1.1 Static Network Wide Optimization

For a given network setting the optimal antenna tilt value of one cell depends
on the antenna tilt values of its neighbors. Therefore, antenna tilt optimization
problem actually translates into a problem of finding the best combination of
antenna tilts among the cells. Depending on the number of cells and the possible
values the antenna tilt can have, the number of possible combinations can be
extremely large making exhaustive search impossible.

The cellular deployment for our simulation studies is explained in Section
4.2.1. For our irregular scenario it is unfeasible to find the global optimal be-
cause of the enormous combinations of antenna tilts. But our regular scenario
consists of ideal hexagonal cells with equal inter-site distance and uniform traffic
distribution. The optimal antenna tilt angle for such a scenario can be considered
to be same for all cells and can be calculated by evaluating the performance of all
possible antenna tilt values. For this purpose, the performance of all integer val-
ues of antenna tilt between 0 and 18 was calculated, where the value of antenna
tilt for all cells was fixed to one integer value for one simulation run.

The results for this global search for a network wide tilt are shown in Fig. 5.1.
Figure 5.1-(a) shows the State Quality (SQ) averaged over the complete network
of 21 cells for different values of antenna tilt. The optimal antenna tilt angle
in this case corresponds to 15 degrees. The SQ as defined in Eq. 3.17 is the
weighted sum of edge spectral efficiency

(
SEedge

)
and center spectral efficiency

(SEcenter), the results for these components are also presented in Fig. 5.1-(b)
and Fig. 5.1-(c) respectively. The graphs show that there is a slight difference
in the optimal antenna tilt value for SEedge and SEcenter, while, 14 degrees is
optimal for the edge performance, 15 degrees is optimal in terms of cell center
performance. As we utilize SQ to calculate the reinforcement signals, we use a
network wide antenna tilt configuration of 15 degrees, which is optimal for SQ
as our “reference system” in the following results for our regular scenario.

5.1.2 Dynamic Network Optimization

Apart from a static network wide optimal configuration, we also compare our
results with a related scheme based on FQL. Parallel to our studies Razavi et
al. also proposed an FQL based antenna tilt optimization [63]. They introduced
the concept of State Strength and Action Strength to quantify the contribution of
each fuzzy rule in calculating the final action to be applied by the FQLC. This
helps to distribute the reward according to their individual contributions.

In FQL, the learning agent’s (cell in our case) state is represented by fuzzy
rules. These rules are based on overlapping fuzzy membership functions asso-
ciated with different fuzzy labels as also shown in Fig. 3.3. Because of these
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overlapping membership functions and graded membership of continuous domain
values to fuzzy labels, multiple fuzzy rules can be active (having positive degree
of truth) for one continuous domain state of the agent. All of these activated
rules select an action according to their exploration and exploitation policy and
the final output action of the FQLC depends on all of these selected actions. As
a result of the execution of the final action the change in the environment and
thus the received reward indirectly depends on the individual actions selected by
each activated rule. Therefore, for proper learning and ranking of the state-action
pairs it is important to quantify the contribution of each activated rule in getting
that particular reward.

In traditional FQL, this contribution of each rule is highlighted by including
the degree of truth of the activated rule in the q-value update equation as given

(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.1: Reference System Performance
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in Eq. 3.25. The equation is also given below

Qt+1 (Lp, op) = Qt (Lp, op) + αp (st) β {rt+1 + γV (st+1)−Q (st, a (st))}

where αp (st) is the degree of truth of the activated fuzzy rule p at time t, Lp
is the modal vector of the activated rule p and represents the fuzzy state of the
agent. As fuzzy states are represented by one and only one fuzzy rule, in the
following text we use fuzzy rule to indicate the fuzzy state as well. The inclusion
of degree of truth in the above equation helps to scale the update factor by the
degree of truth of the activated fuzzy rule in the previous state.

Razavi et al. extended this concept by introducing the idea of State Strength
(SS) and Action Strength (AS), which describe the relative strength of each
activated fuzzy rule (state) among all the activated rules and the relative strength
of the selected action among all the selected actions respectively. They are defined
as follows:

∀p ∈ P SS (p) ≡ fp∑
ṕ fṕ

(5.1)

∀a ∈ A AS (a) ≡
∑

p fp × Selected (p, a)∑
ṕ fṕ

(5.2)

Selected(p, a) =

{
1 : if a is selected for fuzzy rule p
0 : Otherwise

(5.3)

where fp is the firing strength (degree of truth) of the fuzzy rule p, SS is the
state strength of the fuzzy rule, AS is the action strength of the selected action
and Selected(p, a) is a binary parameter indicating if an action a is selected for
fuzzy rule p or not. If all the activated rules select distinct actions, then action
strength is equal to the state strength of that particular rule.

Razavi et al. propose to use these State Strength and Action Strength values to
modify the learning rate in the q-value update equation in order to incorporate
the effect of the relative strength of each activated rule and selected action as
follows:

βp = β × SS(p)× AS(a)× Selected(p, a) (5.4)

Qt+1 (Lp, op) = Qt (Lp, op) + βp {rt+1 + γV (st+1)−Q (st, a (st))} (5.5)

Although, we also use FQL for antenna tilt optimization, our studies are signifi-
cantly different from their approach in a number of ways. Firstly, we only use the
degree of truth in the q-value update equation as explained in Eq. 3.25. Secondly,
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we also look into the question of parallel learning in a multi-agent environment
like antenna tilt optimization. Unlike, Razavi et al. approach, which allows only
one cell to take an action at each snapshot, we also allow all cells and a clus-
ter of cells to take actions simultaneously. This helps to speed-up the learning
process at the expense of a complicated learning environment as explained in Sec-
tion 3.9.2. Thirdly, we also focus on the reinforcement signal definition and the
structure of the FQLC. We study the selfish, cooperative and centralized learning
strategies, which differ in terms of their reinforcement signal definition and the
FQLC structural implementation. We can say, Razavi et al. focus on the question
of how to provide feedback to the individual rules of one FQLC. But we focus on
the interaction among the different learning agents (FQLC) implemented among
different cells of the network in a multi-agent learning environment like ours.

Moreover, from simulation studies point of view, we also study the behavior
of our learning strategies in irregular scenario and not just the regular hexagonal
scenario.

5.2 Regular Scenario

This section describes the simulation results for our regular scenario as explained
in Section 4.2.1. The results include the performance results of individual learning
schemes and their comparisons.

5.2.1 Selfish Learning

The first learning strategy as explained in Section 3.9.1.1 is the selfish learning,
where all cells act independently and try to optimize their individual performance
without any consideration to its effect on the neighboring cells’ performance. In
this regard the first question we try to answer is, what amount of parallel learning
is suitable for this antenna tilt optimization problem?

We test the three different levels of parallel update mechanisms as explained
in Section 3.9.2. The first one only allows one cell to take an action and thus
update its q-table in each learning snapshot. The second one allows all cells to
take action and update their q-tables simultaneously in each learning snapshot.
And, the third one allows only a cluster of cells to take action and update their
q-tables simultaneously in each learning snapshot. The performance of these
schemes is compared to our Reference System with 15◦ fixed tilt across all cells
and the dynamic optimization scheme of Razavi et al.

The simulation results for all these schemes are presented in Fig. 5.2. The time
variation of our performance metric State Quality (SQ) is presented in Fig. 5.2-
(a). The x-axis represent the snapshot number T and y-axis represent the SQ in

65



Chapter 5. Simulation Results

(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i

Selfish

(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.2: Selfish Learning Strategy Comparison

bps/Hz averaged over all cells. SQ is a weighted sum of Edge Spectral Efficiency
(SEedge

c ) and Center Spectral Efficiency (SEcenter
c ) as defined in Eq. 3.17, the

results for these individual components averaged over all cells are presented in
Fig. 5.2-b and Fig. 5.2-c respectively. In all three plots, the term “Reference”
refers to our reference system’s performance and the term “Literature” refers to
the performance of Razavi et al. scheme.

For all four dynamic optimization schemes the starting value of the tilt is set
to six degrees across all antennas so that it is far away from the reference setting.
In our dense eNB deployment scenario with 500 meter inter-site-distance, this
small antenna tilt value produces significant inter-cell interference due to two
factors: firstly, because the main beam of antenna pattern is directed further away
from the eNB, this produces interference to the neighboring cells and secondly,
it reduces the antenna gain in the vicinity of the eNB. This degrades the SINR
distribution within the cells and results in a very low value of SQ at T = 1 as
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shown in Fig. 5.2-a.
The results show that all four strategies are able to overcome the initial bad

performance as the learning snapshot progresses. However, they all vary in terms
of their learning speed and convergence properties. Allowing only “one cell” to
update its tilt at each snapshot significantly reduces the learning speed and the
graphs show that it requires more than 1000 snapshots before it gets close to the
reference system performance. This is also true for the Razavi et al. scheme as
it also allows only one cell to update its tilt per snapshot.

On the other hand allowing “all cells” to update their antenna tilts at each
snapshot is quite quick to overcome the starting non-optimal performance. How-
ever, after the initial performance gain it remains stuck in a near optimal region
and never matches the performance of the reference system. In such a scheme of
simultaneous update of antenna tilt by all cells in every snapshot, the change in
the SINR distribution within each cell is not only the result of its own action
but of its neighboring cells as well. As a result, the reinforcement received by
the cell is not completely correct because the cell is unaware of the actions of its
neighbors. The ideal solution in such an environment would be to learn the best
joint action of all the cells. But the joint action space grows exponentially and
makes it impossible to maintain a q-table for state action pairs. Therefore, we
have to rely on independent learning, where each cell maintains its own q-table
of state action pairs regardless of the actions of the neighboring cells. For this
reason the reinforcement signal after each action of the cell is not accurate as it
also includes the effect of the actions of all the cells. Therefore, the performance
of the simultaneous update of all cells strategy gets affected and never matches
the optimal reference system.

To overcome this problem while maintaining a reasonable response time, we
proposed a clustering mechanism in Section 3.9.2.3. At each snapshot, the clus-
tering mechanism tries to maximize the number of cells that can take an action
under the condition that no two cells in the cluster are adjacent neighbors of each
other. This simplifies the reinforcement signal characterization problem as the
SINR distribution within the cell now only changes because of the action of the
cell itself. As a result the cells can better learn their action policy and achieve
higher performance. This also reflects in our results of Fig. 5.2. The “Cluster”
scheme outperforms all other schemes. It is quick to change the initial perfor-
mance degradation due to bad antenna tilt configuration and also reaches the
performance level of our reference system. For the system to be able to respond
to the network dynamics it needs to learn all the times. Therefore, the perfor-
mance curves are not monotonously increasing. Sometimes, the performance also
degrades a little bit because of the exploration of the solution space by the learn-
ing agents. But, they can quickly recover back without introducing too much
degradation.
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The graphs also show that in some snapshots, the performance of “Cluster”
scheme is even better than the reference system. This shows that even for a very
homogeneous hexagonal deployment of cells, the network wide fixed antenna tilt
configuration is not strictly optimal in terms of SQ measures. As we rely on mea-
surement feedbacks from the actual user equipments, the SQ varies with the user
distribution. Therefore, if the network is already performing close to the reference
system and in certain snapshots the user distribution is more concentrated in the
cell center the SQ values can get a little higher than the “Reference” values.

In reinforcement learning problems, an important aspect is to identify the best
learning parameters. For this reason all three strategies were tested with different
values of the learning variables i.e. Exploration Rate, Learning Rate and Discount
Factor. Table 5.1 shows the average SQ between snapshot 1 and 1000 over all cells
to reflect the convergence speed of the different strategies. The values show that
both “All” and “Cluster” schemes achieve much closer performance than “One”
scheme, but the “Cluster” scheme still perform slightly better than the “All”
scheme because of the ability to better characterize the reinforcement signal.

Table 5.2 represents the average SQ between snapshot 1000 and 4000 over all
cells to represent the stable behavior under different learning parameter settings.
Here, again the “Cluster” scheme performs better than other two schemes. But,
the system keeps on learning all the times, which also leads to some non-optimal
action selection in some snapshots, the performance of the “Cluster” scheme is
still never equal to the “Reference” performance. Finally, Table 5.3 summarizes
the above two tables and shows the overall average of SQ between snapshot 1
and 4000 over all cells.

Moreover, in all three tables there is not much difference in the performance
of different parameter settings for each strategy. One reason for this is the simple
homogeneous cell structure, which produces a simple performance curve w.r.t dif-
ferent antenna tilt settings as shown in Fig. 5.1 for reference system performance.
There is only one optimal region around 15 degree tilt without any other local
maxima points. The reward is also well-aligned with the overall objective of the
optimization problem. Therefore, all learning parameters produce similar results.

5.2.2 Cooperative Learning

The second learning scheme we presented in Section 3.9.1.2 is the “Coopera-
tive Learning”. Compared to the selfish approaches, which try to optimize the
performance of individual cells without considering its effect on the neighbors,
cooperative learning tries to optimize the performance of the complete neighbor-
hood. This is achieved by sharing the SQ values among the two tier neighbors
and then calculating the reinforcement based on the average SQ over the com-
plete neighborhood. The simulation results for the “Cooperative Learning” are
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Table 5.1: Regular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1 and 1000

Learning Parameters State Quality [bps/Hz]
Exploration
Rate

Learning
Rate

Discount
Factor

Reference One All Cluster

0.06

0.1
0 2.95 2.36 2.71 2.73
0.5 2.95 2.35 2.70 2.81
0.7 2.95 2.31 2.73 2.77

0.15
0 2.95 2.37 2.68 2.70
0.5 2.95 2.39 2.65 2.78
0.7 2.95 2.28 2.64 2.77

0.12

0.1
0 2.95 2.31 2.69 2.76
0.5 2.95 2.43 2.62 2.72
0.7 2.95 2.34 2.70 2.79

0.15
0 2.95 2.41 2.71 2.80
0.5 2.95 2.31 2.69 2.78
0.7 2.95 2.25 2.66 2.77

Table 5.2: Regular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1000 and 4000

Learning Parameters State Quality [bps/Hz]
Exploration
Rate

Learning
Rate

Discount
Factor

Reference One All Cluster

0.06

0.1
0 2.95 2.71 2.72 2.86
0.5 2.95 2.70 2.73 2.86
0.7 2.95 2.63 2.77 2.82

0.15
0 2.95 2.65 2.73 2.84
0.5 2.95 2.55 2.69 2.84
0.7 2.95 2.64 2.72 2.86

0.12

0.1
0 2.95 2.62 2.76 2.81
0.5 2.95 2.75 2.70 2.86
0.7 2.95 2.61 2.74 2.89

0.15
0 2.95 2.61 2.73 2.87
0.5 2.95 2.69 2.73 2.85
0.7 2.95 2.60 2.75 2.86

Table 5.3: Regular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1 and 4000

Learning Parameters State Quality [bps/Hz]
Exploration
Rate

Learning
Rate

Discount
Factor

Reference One All Cluster

0.06

0.1
0 2.95 2.62 2.72 2.83
0.5 2.95 2.61 2.72 2.85
0.7 2.95 2.55 2.76 2.81

0.15
0 2.95 2.58 2.72 2.81
0.5 2.95 2.51 2.68 2.83
0.7 2.95 2.55 2.70 2.84

0.12

0.1
0 2.95 2.54 2.74 2.80
0.5 2.95 2.67 2.68 2.82
0.7 2.95 2.55 2.73 2.86

0.15
0 2.95 2.56 2.73 2.85
0.5 2.95 2.59 2.72 2.83
0.7 2.95 2.51 2.72 2.84

69



Chapter 5. Simulation Results

presented in this section.
One Cell Update per Snapshot: Like selfish learning, first we analyze

the performance of different parallel learning mechanisms. Figure 5.3 depicts
the results for the learning mechanism where only one cell can take an action
and update its q-table in each learning snapshot. In all three graphs “Selfish”
means results for the selfish learning mechanism and “Cooperative” means results
for the cooperative learning mechanism. The performance for both selfish and
cooperative learning is quite similar in this scenario and the restriction that only
one cell can take an action per learning snapshot makes both of these schemes very
slow to react to the initial non-optimal configuration. Even in 4000 snapshots,
non of them is able to exactly match the performance of the reference system.
It takes almost 1000 snapshots to generate a performance close to the reference
system. In the next 3000 snapshots, all the schemes slowly try to minimize the
gap between their performance and the reference system, but cannot completely
reduce it to zero.

(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i

Cooperative - One

(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.3: One Agent per Snapshot Cooperative vs Selfish Learning
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(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i

Cooperative - All

(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.4: All Agents per Snapshot Cooperative vs Selfish Learning

All Cells Update per Snapshot: The results for the learning mechanism
where all cells can take an action and update their q-tables in each learning
snapshot are shown in Fig. 5.4. In this scenario, just like the selfish learning
mechanism, the cooperative learning mechanism is also quite quick to overcome
the performance degradation due to the initial non-optimal antenna tilt configura-
tion. However, the cooperation among the neighboring cells helps to improve the
convergence properties of this learning mechanism. As clear from the plots, with
cooperation, the simultaneous learning strategy of all cells does not get stuck in a
near optimal performance level, but can exactly match the performance of the ref-
erence system with the passage of learning snapshots. As the cells now calculate
the reinforcement signal based on the SQ results of the complete neighborhood,
they try to optimize to performance of the complete neighborhood instead of only
their local performance. This helps to stabilize the system even if all cells update
their antenna tilts in each snapshot.

Cluster of Cell Update per Snapshot: Figure 5.5 shows the results for
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(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i

Cooperative - Cluster

(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.5: Cluster of Agents per Snapshot Cooperative vs Selfish Learning

the learning mechanism where a cluster of cells can take an action and update
their q-tables in each snapshot. Here, the performance of selfish and coopera-
tive mechanisms are quite similar. All of them can quickly overcome the initial
performance degradation and can also match the reference system performance.
However, the cooperative learning makes the performance curves smoother com-
pared to the selfish learning as can be seen from the graphs of State Quality and
Center Spectral Efficiency. With selfish learning, all cells try to optimize their
own performance without any regard to performance of the neighboring cells.
But the optimal antenna tilt depends on the antenna tilt of the neighboring cells.
Therefore in selfish learning, we observe some fast oscillations in the performance
curves because all cells are trying to optimize their own performance and affecting
the performance of others, which try to adjust to these changes in the neighboring
cells, this adjustment continues and results in some oscillating behavior of our
performance metrics. However, with cooperative learning as the cells are trying
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(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i

Cooperative - Comparison

(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.6: Cooperative Learning Strategy Comparison

to optimize the performance of the complete neighborhood, these oscillations can
be reduced. These results are also in-line with the experiments of Balch [18],
[19] and [20], where different reward functions were tested and proved that local
reward can achieve faster learning rates but not necessarily better results than
global reward.

Comparison of Different Levels of Parallel Updates: The comparative
results for the three levels of parallel update mechanisms with cooperative learn-
ing are shown in Fig. 5.6. They are also compared to our reference system and
the learning scheme of Razavi et al. shown as the “Literature” curve in the three
graphs. Again, the Razavi et al. approach shows comparable performance to only
one cell update per snapshot strategy as it also relies on only one cell update per
snapshot. Both the “All” and “Cluster” strategies are quick to respond to the
performance degradations and can also reach the reference system performance
level. Moreover, compared to the selfish approach, the all cell update strategy
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does not get stuck in a near optimal performance level. This helps to avoid the
requirement of dividing the network into different clusters at each snapshot, as
required by selfish learning to reach the reference system performance level.

The above mentioned three parallel learning mechanisms were also tested
with different learning parameter settings. The results for the average SQ over
complete network between snapshot number 1 and 1000 are given in Table 5.4.
This serves to indicate how quickly each learning strategy can overcome the initial
performance degradation. The stable state behavior is presented in Table 5.5,
which shows the average SQ over the whole network between snapshot number
1000 and 4000. Finally, the overall results for the complete simulation run are
described in Table 5.6. From the results in all three tables it is clear that the
“All” cell update strategy performs better than the other two strategies both in
terms of its initial response time and the maximum achievable performance in
the stable state region.

Table 5.4: Regular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1 and 1000 for Cooperative Learning

Learning Parameters State Quality [bps/Hz]
Exploration
Rate

Learning
Rate

Discount
Factor

Reference One All Cluster

0.06
0.1

0 2.95 2.34 2.70 2.59
0.7 2.95 2.33 2.77 2.40

0.15
0 2.95 2.26 2.80 2.54
0.7 2.95 2.14 2.72 2.51

0.12
0.1

0 2.95 2.33 2.76 2.62
0.7 2.95 2.30 2.67 2.57

0.15
0 2.95 2.40 2.77 2.56
0.7 2.95 2.32 2.79 2.59

Table 5.5: Regular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1000 and 4000 for Cooperative Learning

Learning Parameters State Quality [bps/Hz]
Exploration
Rate

Learning
Rate

Discount
Factor

Reference One All Cluster

0.06
0.1

0 2.95 2.72 2.90 2.79
0.7 2.95 2.65 2.89 2.70

0.15
0 2.95 2.74 2.88 2.75
0.7 2.95 2.59 2.85 2.77

0.12
0.1

0 2.95 2.68 2.89 2.81
0.7 2.95 2.62 2.85 2.86

0.15
0 2.95 2.75 2.91 2.82
0.7 2.95 2.60 2.89 2.83
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Table 5.6: Regular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1 and 4000 for Cooperative Learning

Learning Parameters State Quality [bps/Hz]
Exploration
Rate

Learning
Rate

Discount
Factor

Reference One All Cluster

0.06
0.1

0 2.95 2.62 2.85 2.74
0.7 2.95 2.56 2.86 2.62

0.15
0 2.95 2.66 2.86 2.70
0.7 2.95 2.52 2.82 2.70

0.12
0.1

0 2.95 2.60 2.86 2.76
0.7 2.95 2.52 2.81 2.79

0.15
0 2.95 2.63 2.88 2.76
0.7 2.95 2.49 2.87 2.77

5.2.3 Centralized Learning

The third learning scheme presented in section 3.9.1.3 is the “Centralized Learn-
ing”. This scheme maintains a central q-table which is updated by all the learning
agents in the system. This way the learning agents can benefit from the learning
experience of all other agents. Moreover, as the central q-table already has ac-
cess to all the agents, the reinforcement is also calculated based on SQavg, which
helps to identify the actions that improve the overall performance and not just
the performance of a single cell. The results for this scheme are presented in this
section.

One Cell Update per Snapshot: First the comparison of one cell update
strategy is presented in Fig. 5.7. In all three graphs “Selfish” means results for
the selfish learning mechanism, “Cooperative” means results for the cooperative
learning mechanism and “Centralized” means results for the centralized learning
mechanism. The graphs show a significant difference between the performance
of the centralized approach and the distributed approaches. Unlike selfish and
cooperative schemes, where each cell tries to learn the optimal action policy in-
dependently, centralized learning allows sharing of the learned knowledge among
different cells. This knowledge sharing is proven to reduce tendencies for conver-
gence to sub-optimal behaviors [22] and speed-up the learning process [25]. The
simulated scenario also consists of a regular hexagonal cell deployment, which
also makes it feasible to re-use the learned optimal action policy at different cells.
These factors help to speed-up the overall learning process and even with one
cell update per snapshot strategy the centralized learning mechanism can quickly
overcome the initial non-optimal antenna tilt setting.

All Cells Update per Snapshot: The results for the centralized learning
mechanism where all cells can take an action and update the central q-table in
each learning snapshot are shown in Fig. 5.8. Knowledge sharing also helps in
this scheme as the centralized mechanism can overcome the initial performance
degradation quicker than selfish and cooperative learning mechanisms. However,
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(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i

Centralized – One - Seven

(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.7: One Agent per Snapshot Centralized vs Selfish vs Cooperative Learn-
ing

the initial performance gain is not stable and performance curves fluctuate around
the reference system performance. With each antenna tilt modification cells not
only adapt their own performance but also effect the performance of the neigh-
boring cells. Therefore, with all cells update at each snapshot strategy, cells face
a continuously changing environment where they have to always respond to the
actions of their neighbors. Moreover, to ensure continuous learning cells have to
explore the solution space which involves taking random actions instead of so far
best learned action in some snapshots. This could also degrade the performance
if the system is already performing close to the optimal level. In such a scenario,
with independent q-tables cells can converge to different action policies to improve
the overall stability of the whole system as shown by the results of “selfish” and
“cooperative” learning. However, in centralized learning with only one shared
q-table for all cells it becomes extremely difficult for all cells to converge to one
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(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i

Centralized – All - Seven

(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.8: All Agents per Snapshot Centralized vs Selfish vs Cooperative Learn-
ing

stable action policy and the performance keeps on fluctuating.
Cluster of Cells Update per Snapshot: Centralized learning was also

tested with the cluster of cells update per snapshot strategy and the results are
given in Fig. 5.9. Here, the centralized learning mechanism is also the quickest
to match the reference system performance. But the performance is not as stable
as with the selfish and cooperative schemes. However, the variations are less
than the all cell update per snapshot strategy because of a much better learning
environment and less number of simultaneous actions in the network.

Comparison of Different Levels of Parallel Updates: The comparison
between the three levels of parallel update strategies for centralized learning is
shown in Fig. 5.10. Apart from the reference system, the results are also compared
to the Razavi et al. approach indicated by the “Literature” curve on the graphs.
All three centralized parallel update strategies perform better than the Razavi
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(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i

Centralized – Cluster - Seven

(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.9: Cluster of Agents per Snapshot Centralized vs Selfish vs Cooperative
Learning

et al. approach. Although their scheme also uses one cell update per snapshot
but the centralized one cell update strategy performs much better because of the
knowledge sharing among the different cells. It reacts much faster to the initial
performance degradation and can also match the reference system performance
level.

The initial very quick match to the reference system performance means that
a number of states remain un-explored before reaching this performance level.
Cells reaching these un-explored states afterwards need to take random actions
because they are not aware of the optimal action. This random action selection
can worsen the performance if the network is already performing close to the
optimal level. The chances of reaching these un-explored states increases with
the increasing parallelism. If more and more cells take simultaneous actions,
the probability that they experience quite diversified states increases, which ulti-
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(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i

Centralized – Comparison

(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.10: Centralized Learning Strategy Comparison

mately increases the number of random actions being taken by cells. As a result,
the performance stability gets effected and shows an increasing fluctuating be-
havior with increasing parallel actions of different cells.

The centralized learning with three parallel learning mechanisms was also
tested with different learning parameter settings. The results for the average SQ
over complete network between snapshot number 1 and 1000 are given in Table
5.7. This serves to indicate how quickly each learning strategy can overcome
the initial performance degradation. The stable state behavior is presented in
Table 5.8, which shows the average SQ over the whole network between snapshot
number 1000 and 4000. Finally, the overall results for the complete simulation
run are described in Table 5.9. The one cell update strategy is relatively slower
in its response to the initial non-optimal antenna tilt setting due to its limited
adaptability but it is still better than the selfish and cooperative schemes using
one cell update per snapshot. However, due to its better stability, it shows overall
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better performance than the all cell and cluster of cell update strategy as shown
in Table 5.8 and Table 5.9.

Table 5.7: Regular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1 and 1000 for Centralized Learning

Learning Parameters State Quality [bps/Hz]
Exploration
Rate

Learning
Rate

Discount
Factor

Reference One All Cluster

0.06
0.1

0 2.95 2.60 2.77 2.79
0.7 2.95 2.66 2.75 2.73

0.15
0 2.95 2.62 2.77 2.82
0.7 2.95 2.64 2.54 2.81

0.12
0.1

0 2.95 2.72 2.80 2.76
0.7 2.95 2.57 2.61 2.72

0.15
0 2.95 2.61 2.62 2.78
0.7 2.95 2.65 2.79 2.73

Table 5.8: Regular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1000 and 4000 for Centralized Learning

Learning Parameters State Quality [bps/Hz]
Exploration
Rate

Learning
Rate

Discount
Factor

Reference One All Cluster

0.06
0.1

0 2.95 2.90 2.69 2.75
0.7 2.95 2.89 2.80 2.85

0.15
0 2.95 2.84 2.68 2.78
0.7 2.95 2.84 2.51 2.87

0.12
0.1

0 2.95 2.89 2.59 2.77
0.7 2.95 2.84 2.10 2.77

0.15
0 2.95 2.82 2.57 2.83
0.7 2.95 2.80 2.81 2.83

Table 5.9: Regular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1 and 4000 for Centralized Learning

Learning Parameters State Quality [bps/Hz]
Exploration
Rate

Learning
Rate

Discount
Factor

Reference One All Cluster

0.06
0.1

0 2.95 2.83 2.71 2.76
0.7 2.95 2.83 2.79 2.82

0.15
0 2.95 2.78 2.71 2.79
0.7 2.95 2.79 2.52 2.86

0.12
0.1

0 2.95 2.85 2.64 2.77
0.7 2.95 2.77 2.23 2.75

0.15
0 2.95 2.77 2.58 2.82
0.7 2.95 2.76 2.81 2.81
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5.2.4 Outage Recovery and eNB Deployment

Apart from the above mentioned self-optimization capability of the different learn-
ing strategies, self-healing and self-configuration performance was also analyzed.
Self-healing tries to mitigate the effect of a cell outage by autonomously adjust-
ing the coverage area of the neighboring cells. Whereas, self-configuration tries
to autonomously configure the parameters of a new eNB on its deployment.

Outage and eNB Deployment Realization: For the self-healing study
an outage is created by deactivating the center eNB with cells 12, 13 and 14 as
shown in Fig. 4.2-a. This creates a coverage hole and the neighboring eNBs try
to extend their coverage in order to compensate for this coverage loss. For self-
configuration analysis the center eNB is then reactivated but with a very high
downtilt value of 22◦. This can be referred as a gradual deployment of an eNB as
the higher value of downtilt ensures that the initial coverage of the deployed eNB
is very small and after that it tries to extend its coverage in order to balance the
coverage and capacity of the whole neighborhood.

SINR Distribution Throughout The Network: The SINR distribution
for different phases of this outage and deployment scenario is presented in Fig.
5.11. The initial non-optimal antenna tilt setting produces very low SINR values
across all cells as shown in Figure 5.11-a. Most of the simulated network shows
SINR values in dark blue color i.e. around 0 dB. The initial very small antenna
tilt values of 6◦ direct the main lobe of antenna radiation pattern further away
from the eNB site, which reduces the antenna gain values in the vicinity of the
eNB and produces significant interference to the neighboring cells. Therefore,
initially in most of the cells even the areas very close to the cell sites are not able
to have higher SINR values.

The situation improves as the cells learn optimal action policy and adjust
their antenna tilts accordingly. Figure 5.11-b shows the SINR distribution in
the simulated network at snapshot number 2000. With antenna tilt adjustments,
inter-cell interference decreases and the antenna gain increases in the vicinity
of the cells. Both of these factors improve the SINR distribution throughout
the network and the graph shows most of the regions in higher range of SINR
distribution with green color i.e. > 10 dB.

After this initial optimization of antenna tilt an outage is created by deactivat-
ing the center eNB with all its three cells as shown in Fig. 5.11-c. This degrades
the SINR distribution in the center of the network and some parts experience
very low SINR values of around −5 dB as shown by the light blue color in Fig.
5.11-c. One important thing to note here is that with the absence of center eNB
after deactivation, the coverage of some of the direct neighbors gets bigger even
without any antenna tilt adjustment, which provides coverage to some of the
outage regions. Antenna tilt adjustments further improve the SINR distribution
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Figure 5.11: SINR Distribution for Outage Recovery and BS Deployment

and most of the light blue regions convert to dark blue and the dark blue regions
to green at snapshot number 4000 as shown in Fig. 5.11-d.
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Finally, to test the gradual deployment scheme, the center eNB is reactivated
but with a very high antenna tilt of 22◦. This deploys the center eNB with
small coverage area as shown in Fig. 5.11-e. This addition of an eNB improves
the SINR distribution near the deployed eNB but degrades it at the cell edges.
This sudden appearance of a new eNB requires re-adjustment of antenna tilts
by the neighboring cells to balance the coverage area with the new cells. The
learning algorithm helps to identify this performance degradation and modifies
the antenna tilt of the new cells and the neighboring cells to improve the overall
SINR distribution within the network. The final SINR distribution is shown in
Fig. 5.11-f where all cells have achieved a balance between their coverage areas
and there are no light blue or red color regions indicating very low SINR values.

Learning Strategy Comparison: All the proposed learning strategies were
tested in this dynamic scenario of eNB outage and deployment and the results are
explained below. Outages are created by deactivating the center eNB at snapshot
number 2000 and 6000, whereas, they are re-activated with higher antenna tilt of
22◦ at snapshot number 4000 and 8000. The results always represent the average
over all 21 cells, even during the outages. For this reason, the values during the
outage are always lower than the normal operation even for the reference network.

One Cell Update per Snapshot: First the comparison of different learning
strategies using only one cell update per snapshot is presented in Fig. 5.12. The
results show that using only one cell update per snapshot limits the adaptabil-
ity of the network and slows down the learning process. In first 2000 snapshots
selfish and cooperative learning schemes can only reach a performance level that
is slightly better than the performance level of the reference system with out-
age. The performance further degrades with the appearance of outages. Both
the learning schemes can partially recover the performance degradation due to
the outage but cannot match the performance of the reference system within the
2000 snapshots of outage time. The re-activation of the central eNB improves the
performance significantly at snapshot number 4000 and 8000 because of the ad-
ditional radio resources being available in the area. However, the re-adjustment
process of the antenna tilts is slow due to the limited number of changes in each
snapshot. As a result, the performance slightly improves in the 2000 snapshots
after each re-activation but still remains lower than the reference system perfor-
mance.

Knowledge sharing of the centralized learning scheme helps the cells to quickly
learn the optimal action policy and can match the performance level of the fully
operational reference network in the first 2000 snapshots. But this performance
gain reduces as the environment becomes more and more dynamic with cell out-
ages and deployments. In such a scenario different cells experience different en-
vironments even in regular hexagonal deployments. The cells directly facing the
outage area have a different environment than the cell further away from the
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(a) State Quality

(b) Ed S t l Effi i ( ) C t S t l Effi i

Outage – One zero

(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.12: Regular Scenario Outage Comparative Results for One Agent Update
per Snapshot

outage. Using the same q-tables and thus the same action policy for all the cells
is not optimal in this scenario and the performance degrades. This is especially
visible in the second outage and re-activation between snapshot number 6000 and
10000. The situation can be improved by having a more elaborate state defini-
tion, which clearly represent the different network situation or by having different
q-tables for outage and normal scenarios. But both of these mechanisms increases
the computational complexity because the state space grows exponentially with
every component being added to the state vector.

All Cells Update per Snapshot: The outage and deployment of eNB
scenario was also tested with learning strategies using all cells update at each
snapshot and the results are presented in Fig. 5.13. In the first 2000 snapshots
all three learning strategies can quickly overcome the initial performance degra-
dation of the start-up configuration because of the increased adaptability of this
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(a) State Quality
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(b)  Edge Spectral Efficiency                    (c) Center Spectral Efficiency

Figure 5.13: Regular Scenario Outage Comparative Results for All Agents Update
per Snapshot

scheme compared to the one cell update per snapshot. However, the performance
gain varies for different strategies. Selfish learning can only produce a perfor-
mance close to the reference system but can not match it exactly. The central-
ized learning can match the reference system performance but is not stable and
shows a fluctuating behavior. However, cooperative learning can not only match
the reference system performance but can also maintain it over large number of
snapshots.

The performance gap among the different learning schemes widens as the net-
work experience the eNB outages and deployments. Especially, the performance
of centralized learning is extremely effected with this all cell update per snapshot
strategy. Compared to one cell per snapshot strategy, now the central shared q-
table is updated more often by cells having different local conditions. Therefore,
the q-table is not able to converge to a single best action policy for all the cells
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and negatively effects the overall performance of the network.
The cooperative learning scheme shows much better performance even with

the outages and deployment of eNBs. In fact it gives slightly better results than
the reference system during outages. Much of this gain comes from the improve-
ment in the cell edge performance as shown in Fig. 5.13-b. This is achieved
when the direct neighbors of the cells in outage extend their coverage areas by
lowering their antenna tilts. In cooperative learning the cells have independent
q-tables, which allows them to learn individual action policies according to their
local environment. Additionally, the reinforcement signal is based on the overall
performance of the network and not just the cell, therefore the cells independently
learn actions which are good for the whole neighborhood and improve the overall
performance.

Another important thing to note is that the gain in the cell edge performance
does not come at the expense of cell center performance. The simulated network
is an interference limited scenario with inter-site-distance (ISD) of only 500 m.
As also shown by the SINR distribution in Fig. 5.11 at such small ISD much of
the outage area is already covered by the neighboring cells without any antenna
tilt modification. Therefore, only small antenna tilt adjustments are made by the
learning algorithms, which does not adversely effect the cell center performance
but still improve the cell edge performance.

Cluster of Cells Update per Snapshot: Finally, this regular hexagonal
network with eNB outages and deployments was also tested with different learning
strategies using a cluster of cell update in each snapshot and the results are
presented in Fig. 5.14. The results show that all three learning schemes can
quickly respond to the changing conditions in the network. However, again the
centralized scheme is not able to maintain the initial performance gain and its
performance deteriorates with the passage of time as more and more cells update
and use the central q-table. In this case the performance fluctuations are less
severe than the all cell update strategy because of less changes per snapshot in
the network.

Both distributed learning schemes perform better than the centralized scheme.
They can quickly adjust the antenna tilts to improve the initial performance
degradation of the start-up configuration and can also maintain that performance.
Also during the outages they can slightly improve the cell edge performance
compared to the reference system but the gain is less than the all cell update
strategy. Our clustering mechanism simply tries to avoid neighboring cell to
update in the same snapshot and picks the center cell randomly without any
consideration to the special needs of any cell. Therefore, it reduces the antenna
tilt update ability of the neighboring cells to the outage area compared to all cells
update strategy and limits the performance gains in this scenario.
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(a) State Quality
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Figure 5.14: Regular Scenario Outage Comparative Results for Cluster of Agents
Update per Snapshot

5.3 Irregular Scenario

Apart from the regular hexagonal scenario we also tested our learning strategies
in an irregular scenario as described in Section 4.2.1. The performance results of
different learning strategies in this scenario are described in the following sections.

5.3.1 Learning Strategy Comparison

This section presents the temporal results of different learning strategies in the
irregular scenario. Because of long simulation times required for this larger sce-
nario, each simulation run was restricted to only 4000 snapshots with only one
outage at snapshot number 2000 instead of 10,000 snapshots and two cycle of
outage and eNB deployment for the regular scenario. The initial antenna tilt
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across all cells in this irregular scenario is also set to 11◦ instead of 6◦ as in the
regular scenario.

For the regular scenario, the reference system was created by testing different
values of uniform antenna tilt across all cells because of the regular hexagonal
deployment. However, for this irregular deployment with cells of different sizes, it
would be sub-optimal to have the same antenna tilt across all cells. Multitude of
antenna tilt combinations even for this small network also makes an exhaustive
search infeasible. Therefore, for this irregular scenario we do not have a reference
system and only compare our results with the results of Razavi et al. approach.

One Cell Update per Snapshot: First, the results of different learning
strategies using only one cell update per snapshot are presented in Fig. 5.15. Due
to similar update strategy the selfish and cooperative learning schemes perform
quite similar to the Razavi et al. approach shown as the “Literature” curve.
However, the performance gains are limited because of the limited adaptability
of these strategies in this bigger scenario. In the first 2000 snapshots of normal
operation, the SQavg over the complete network improves from around 2.1 bps/Hz
to around 2.3 bps/Hz only.

The centralized learning approach is much quicker to overcome the initial non-
optimal antenna tilt configuration. It can improve the SQavg from 2.1 bps/Hz
to 2.5 bps/Hz in the first 700 snapshots. But, unlike the regular scenario the
performance is not stable even for this one cell update per snapshot strategy in
this irregular scenario. As more and more cells with different cell sizes update the
central shared q-table and use it for their action selection, the performance starts
degrading and shows a fluctuating behavior. Especially, the edge performance
is extremely effected compared to the cell center performance, which shows a
more stable behavior. Although, we have cells with different cell sizes but the
difference is not too big to have significantly different optimal antenna tilt values
for these cells. Therefore, centralized learning using the same action policy at all
cells can still achieve an antenna tilt configuration that produces good cell center
performance but is not optimal because of the fine tuning required for the cell
edge performance and further improvement in the cell center performance.

The performance of all three distributed schemes is also quite similar in the
post outage scenario i.e. between snapshot 2000 and 4000. At snapshot num-
ber 2000 the graphs show a sudden decrease of performance because of the de-
activation of the center eNB with all its three cells. The cells respond to this
situation autonomously and adjust their antenna tilts accordingly. As a result,
the performance improves and becomes nearly equivalent to the pre-outage level.

Before the outage is realized, the achieved performance level for the central-
ized learning is higher than other schemes, therefore, the de-activation of central
eNB degrades its performance also to a lesser extent. In fact, the post-outage
performance of centralized learning is equal to the pre-outage performance of the
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Figure 5.15: Irregular Scenario Comparative Results for One Agent Update per
Snapshot

distributed schemes. However, it is not able to recover from this performance
degradation and at the end of the simulation the performance of all schemes is
nearly at same level. In this outage scenario, even the cell center performance is
not stable for the centralized learning. Because with this outage some of the cells
need to extend their coverage areas while others need to maintain their coverage
areas at the same time. The central shared q-table is not optimal in this scenario
and the performance gets effected as shown by the graphs.

All Cells Update per Snapshot: The results for the learning strategies
with all cells update per snapshot are presented in Fig. 5.16. The ability to up-
date the antenna tilt at all cells in all snapshots makes this scheme very quick
to respond to the initial non-optimal configurations and changes in the network.
However, the performance gains varies depending upon the learning strategy be-
ing used to maintain and update the q-tables.
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Figure 5.16: Irregular Scenario Comparative Results for All Agents Update per
Snapshot

The performance gain of the selfish learning scheme saturates after the initial
improvement in the first few snapshots. This is also true for its performance
during the outage in the network where it is unable to significantly recover the
performance degradation due to the central eNB de-activation. Because all cells
take simultaneous actions and only look into their own performance improvement,
a very dynamic and difficult situation arises for the learning mechanism to learn
the optimal action policy in this always changing environment. Therefore, cells
can although very quickly produce significant gain in the network performance
but after a certain level their performance remains at same level even for very
large number of snapshots.

The cooperative learning overcomes this problem by learning the actions that
improve the overall performance and not just the local performance of the cell.
Indirectly this schemes encourages the combinations of actions of all cells that
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improve the performance of the complete network and discourage the actions of
cells that improve the performance locally but not globally. The results show that
this scheme can achieve performance level higher than the selfish scheme even in
the presence of simultaneous actions by all cells because of that cooperation. Its
performance does not saturate and steadily builds on the initial very quick per-
formance gain achieved in the first few snapshots. Also during the center eNB
outage its performance is better than the other schemes. It can recover the per-
formance degradation due to this outage to a great extend and can even achieve
performance level close to the pre-outage performance of the selfish scheme. Es-
pecially, the cell edge performance can be recovered almost completely. The cell
center performance also shows some improvement but it is not equal to its own
pre-outage performance. The reason is that some of the cells directly facing the
outage area have to lower their antenna tilt to increase their coverage areas, which
reduces the antenna gain in the vicinity of the eNB and the average is also calcu-
lated over all 57 cells even if three of them are in outage. Therefore, the values
are always lower than the pre-outage values.

However, centralized learning with all cells update per snapshot does not
achieve stable performance. Initially, it reacts very quickly and show comparable
performance to the selfish and cooperative learning schemes but then it keeps on
fluctuating. The fluctuation are even worse than the one cell update per snapshot
strategy both for the cell edge and center performance because of larger amount
of simultaneous actions in the network and thus the update of q-table at much
greater frequency.

Cluster of Cells Update per Snapshot: Finally, the results for the learn-
ing strategies with cluster of cells update per snapshot are described in Fig. 5.17.
Compared to the smaller regular hexagonal scenario this schemes is a little slower
in this bigger irregular scenario. Our clustering mechanism tries to maximize the
number of cells that can take an action in a snapshot while ensuring that no two
adjacent neighbors take an action in same snapshot. This means for each selected
cell for an update in a particular snapshot its six adjacent neighbors cannot take
an action in that particular snapshot. Therefore, the number of cells which can-
not take an action in a snapshot grows with the increasing network size. This
slows down this strategy and the performance gains reduce. This is also visible in
the graphs as the achieved performance of both selfish and cooperative schemes
is slightly lower than the performance of these schemes with all cell update strat-
egy. However, the selfish learning does not stuck at a certain level like the all cell
update per snapshot strategy.

During the outage as well this strategy can only slightly recover the per-
formance degradation because of the central eNB de-activation. The clustering
mechanism does not give any priority to the cells close to the outage area but
selects them randomly, this limits the ability of these cells to respond to this
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Figure 5.17: Irregular Scenario Comparative Results for Cluster of Agents Update
per Snapshot

situation compared to the all cell update per snapshot strategy. Therefore, the
recovery is slower and not higher enough.

The centralized scheme here also gets effected by multiple simultaneous ac-
tions and update of q-table by cells of different environments. Only the scale
and frequency of the fluctuations is a little smaller than the all cell update per
snapshot strategy. But they are still worse than the one cell update strategy
because of more actions being taken in the network.

All the above mentioned learning strategies were also tested with different
learning parameter settings and the results are given below. First the SQavg

over the complete network between snapshot number 1 and 500 is presented
in Table 5.10. This shows how quickly each learning strategy can overcome the
initial non-optimal configuration and the achievable performance level. The more
stable state behavior is given in Table 5.11, which shows the achievable SQavg
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between snapshot 1500 and 2000 for this irregular scenario. Finally, Table 5.12
describes the achievable SQavg for the complete simulation run of the normal
network operation between snapshot 1 and 2000.

The results show that the amount of simultaneous actions in each snapshot
greatly influence the ability of the learning mechanism to respond to the initial
non-optimal configuration. The one cell update strategy achieves the least gain
and the all cell update strategy the largest gain for both the selfish and coopera-
tive schemes. However, the gains for the cooperative schemes are always a little
lower than the corresponding selfish scheme. The cooperative schemes need not
just to identify the actions of one cell that improve its own performance but the
combination of all cell’s actions that improve the overall performance. Therefore,
it always need more learning snapshots to achieve equivalent performance levels.
The centralized learning scheme on the other hand gives quite comparable initial
performance for all three learning strategies because the cells update the same
shared q-table and can benefit from the learning experience of each other.

In the stable state analysis, the amount of simultaneous actions still have the
same effect on the achieved performance as in the initial state. However, unlike
the regular scenario here the cluster based learning scheme is not able to out-
perform the all cell update strategy. The clustering scheme in a way limits the
adaptability of the network so the performance gain also reduces with the increas-
ing network size. Moreover, centralized learning with all three different update
strategies does not show significant improvement over the initial state results.
The temporal results shown in the previous graphs in fact show a fluctuating
behavior due to the single action policy being applied to cells with different local
conditions that are not fully represented in the state definition.

Table 5.10: Irregular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1 and 500

Learning Parameters Selfish Learning Cooperative Centralized
Learning Learning

Exploration
Rate

Learning
Rate

Discount
Factor

One All Cluster One All Cluster One All Cluster

0.06
0.1

0 2.09 2.57 2.42 2.08 2.43 2.21 2.28 2.24 2.44
0.7 2.14 2.57 2.39 2.07 2.43 2.14 2.28 2.34 2.36

0.15
0 2.12 2.52 2.38 2.02 2.45 2.19 2.29 2.43 2.44
0.7 2.16 2.51 2.39 2.05 2.33 2.20 2.33 2.37 2.47

0.12
0.1

0 2.03 2.50 2.37 2.03 2.44 2.20 2.33 2.39 2.47
0.7 2.10 2.51 2.37 2.03 2.41 2.23 2.33 2.39 2.45

0.15
0 2.08 2.53 2.38 2.02 2.46 2.34 2.24 2.38 2.42
0.7 2.08 2.54 2.43 2.02 2.42 2.30 2.45 2.23 2.38
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Table 5.11: Irregular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1500 and 2000

Learning Parameters Selfish Learning Cooperative Centralized
Learning Learning

Exploration
Rate

Learning
Rate

Discount
Factor

One All Cluster One All Cluster One All Cluster

0.06
0.1

0 2.33 2.59 2.55 2.21 2.72 2.38 2.44 2.37 2.44
0.7 2.54 2.62 2.55 2.32 2.66 2.38 2.51 2.33 2.46

0.15
0 2.44 2.63 2.52 2.23 2.68 2.47 2.42 2.43 2.44
0.7 2.46 2.61 2.53 2.16 2.64 2.38 2.43 2.42 2.23

0.12
0.1

0 2.40 2.59 2.57 2.19 2.70 2.53 2.52 2.42 2.47
0.7 2.51 2.58 2.52 2.21 2.65 2.45 2.47 2.34 2.44

0.15
0 2.39 2.61 2.56 2.16 2.69 2.48 2.18 2.38 2.09
0.7 2.32 2.60 2.56 2.23 2.67 2.46 2.49 2.12 2.42

Table 5.12: Irregular Scenario: Average State Quality [bps/Hz] Between Snap-
shot 1 and 2000

Learning Parameters Selfish Learning Cooperative Centralized
Learning Learning

Exploration
Rate

Learning
Rate

Discount
Factor

One All Cluster One All Cluster One All Cluster

0.06
0.1

0 2.24 2.58 2.51 2.19 2.63 2.31 2.41 2.35 2.43
0.7 2.36 2.60 2.49 2.18 2.56 2.30 2.44 2.36 2.46

0.15
0 2.30 2.59 2.47 2.14 2.59 2.39 2.41 2.39 2.39
0.7 2.35 2.57 2.48 2.10 2.51 2.36 2.41 2.35 2.41

0.12
0.1

0 2.21 2.55 2.50 2.11 2.62 2.37 2.45 2.40 2.41
0.7 2.36 2.56 2.47 2.13 2.58 2.39 2.44 2.40 2.42

0.15
0 2.30 2.58 2.48 2.08 2.62 2.41 2.33 2.38 2.32
0.7 2.21 2.58 2.51 2.13 2.59 2.40 2.46 2.20 2.39

5.3.2 SINR Distribution

The SINR distribution for different phases of this irregular scenario simulation
with an outage is presented in Fig. 5.18. The results represent the performance
of cooperative learning with all cell update strategy per snapshot, which shows
the best performance among all strategies.

The initial non-optimal antenna tilt configuration produces very low SINR
values in large portion of the simulated network as shown in Figure 5.18-a. Most
of the simulated network shows SINR values in dark and light blue colors i.e.
from 0 to -5 dB. The initial uniform antenna tilt values of 11◦ is not optimal
for this irregular scenario with cells of different sizes. But this relatively large
value of antenna tilt still ensures that most of the cells have a good cell center
performance also at the start. There are only a small number of cells that do not
have good SINR distribution close to the eNB deployment. The edge performance
is however more severely degraded with most of the cells having low SINR values
in large parts of the border regions.

The situation improves as cells learn their optimal action policy and adjust
their antenna tilts accordingly during the first 2000 snapshots. As a result the cell
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Figure 5.18: Pilot SINR During Outage Recovery in Irregular Scenario

edge performance improves and the blue regions in Fig. 5.18-b are significantly
smaller at snapshot number 2000. At this point the outage is realized by de-
activating the center eNB with its three cells. This degrades the performance in
this region to a great extent with SINR values reaching below -5 dB as indicated
by the yellow regions in Fig. 5.18-c.

With our learning strategies, cells can autonomously respond to this network
topological change and re-adjust their antenna tilts to improve the overall cover-
age availability. Figure 5.18-d, shows the SINR distribution at snapshot number
4000. Most of the outage regions now have positive SINR values as indicated by
dark blue and green colors in that region.
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5.3.3 Antenna Tilt Variation

The individual antenna tilt variations for all cells of this scenario are presented
in this section. First, the antenna tilt values of all cells at the start of the
simulation i.e. T = 1 are presented in Fig. 5.19. At the start all the cells have a
similar antenna tilt value of 11◦. This is not a very good configuration for this
irregular scenario and the system tries to learn a better configuration through
its interaction with the environment. This can be observed in Fig. 5.20, which
shows the antenna tilt values of all cells at T = 2000 i.e. just before the outage
is introduced into the network. Most of the cells adjust their antenna tilt within
14◦ and 18◦ based on their cell size and their neighborhood configuration. The
randomized deployment does not change the cell size drastically for most of the
cells therefore this range is quite reasonable. However, some of the cells like
7, 15, 19, 22, 26, 29, 32, 42, 49 and 52, which experience a large ISD either
maintain their initial antenna tilt values or decrease it even further to increase
their coverage areas.

Finally, the antenna tilt values at the end of simulation are shown in Fig. 5.21,
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Figure 5.19: Antenna Tilt for All Cells at T=1
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Figure 5.20: Antenna Tilt for All Cells at T=2000
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Figure 5.21: Antenna Tilt for All Cells at T=4000

which represent the response of the network to the center eNB outage. Cells 30,
31 and 32 are in outage and their values are not shown in this figure. Most
of the cells like 9, 13, 21, etc. maintain their pre-outage antenna tilts values or
experience only a slight change like cell 3, 6, 50 etc. But the cells adjacent to the
outage areas like 15, 26 and 34 lower their antenna tilts to around 8◦ to increase
their coverage areas and compensate for the coverage outage in their neighboring
areas.

Figure 5.22 depicts the CDF plots of SINR distribution for four different cells
at different network stages of the simulation. Two of the cells i.e. 3 and 25 are
far away from the outage area and the other two cells 15 and 34 are the direct
neighbors of the cells in outage. The graphs show the CDF at four distinct
simulation stages i.e. at T = 1, the start of the simulation, at T = 2000, just
before the outage, at T = 2001, right after the outage and T = 4000, at the end
of the simulation. Ideally, we would like to have higher spectral efficiency values
in most of the cell coverage area, which means the more the CDF plot is inclined
to the right the better is the performance.

The results show that the cells further away from the outage area experience
little of no degradation in their performance at the time of outage and they can
maintain or further improve their achieved pre-outage performance level. For
example, cell 3 and 25 are two such cells that are not the adjacent neighbors
of the cells in outage. Because of their small coverage areas and relatively small
antenna tilt values their performance is not very good initially as indicated by the
red dotted line. The CDF improves as both of these cells increase their antenna
tilt to around 15◦ and 17◦ respectively in the first 2000 snapshots as shown in
Fig. ??. At the outage both of these cells do not experience noticeable change
in their performance as shown by the blue and green dotted lines. However, cell
3 increases its antenna tilt further up to 17◦ until snapshot number 4000, which
brings additional improvement in the spectral efficiency distribution especially in
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(a) Cell 3                                                                              (b) Cell 15

Two Layer – tilt variation

(c) Cell 25                                                                              (d) Cell 34

Figure 5.22: Individual TRx’s SINR Distribution Variation for Irregular Scenario

the middle range.
Cells 15 and 34 are the example of cells located adjacent to the cells in outage.

Because of the large coverage area of cell 15, initial 11◦ antenna tilt is not bad
and it maintains it in the first 2000 snapshots as shown in Fig. ??. Therefore, the
CDF plots in Fig. 5.22 also do not show much variations from T = 0 to T = 2000.
However, cell 34 has a much smaller coverage area and it increases its antenna tilt
to around 14◦ until T = 2000, which also improves its spectral efficiency CDF.
The outage effect the performance of both of these cells and the CDF degrades
as indicated by the green and blue dotted lines for T = 2000 and T = 2001
respectively. But both of these cells autonomously respond to it and adjust their
antenna tilts to around 8◦ by T = 4000. This increases the coverage areas of
these cells and provide the required network coverage in the outage areas. As a
result the CDF plots of both cells show some improvement, especially in lower
and middle ranges. This is quite reasonable, because lowering of antenna tilt
increases the coverage area and the antenna gains at cell edge but at the expense
of lower antenna gains in the areas close to the eNB. Therefore, the higher CDF
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range shows little or no further improvement.

5.4 Summary

This chapter describes the simulation results and performance comparison of the
proposed learning strategies. The simulations are performed using both the reg-
ular hexagonal and irregular scenarios. For comparison purposes two reference
systems are also studied, one with static network wide antenna tilt optimiza-
tion for the regular hexagonal scenario and the second using a similar learning
approach from the literature for both the regular and irregular scenarios.

The simulation results show that the learning speed and convergence is greatly
influenced by different settings of the learning algorithm. For example the learn-
ing speed heavily depends on how many agents can take an action in each learning
snapshot. Allowing only one cell to take an action in each snapshot is good for
the learning as the environment is effected by only one agent and it can provide
good feedback to that agent about its action. However, it extremely slows down
the whole process as the network size grows.

Allowing all cells to take an action in each snapshot speed-up the learning
process but at the expense of a complicated learning environment. The change
in the environment from one snapshot to other is now the result of the combined
actions of all the agents, which makes it difficult to evaluate the impact of each
individual action. This is especially true for our problem where the actions of one
agent not only modify their own environment but also impact the environment
of their neighboring learning agents.

The impact of simultaneous actions of all learning agents becomes more evi-
dent in the case of selfish learning, where each agent is selfishly trying to maximize
its own performance only without any consideration to its effect on the neighbor-
ing agents. In this case, the agents can stuck into a sub-optimal policy, where
they are always responding to the actions of their neighbors in an oscillating
behavior.

In such a highly dynamic environment, a little cooperation among the learning
agents can help to achieve better performance as indicated by the results of our
“Cooperative Learning” scheme. The proposed cooperative scheme involves only
the sharing of local performance metrics among the learning agents and still allows
them to maintain their own learning tables. This helps the individual learning
agents to get a feeling of the overall performance of the neighborhood while
maintaining the distributed structure. The results show that this cooperation can
improve the learning performance even when all agents are taking simultaneous
actions.

Because of the performance gains of cooperation among the agents, a second
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level of higher cooperation among the agents was also tested in the form of pro-
posed “Centralized Leaning”. This scheme maintains a central shared q-table
to share the learning experience among all agents. The results show that this
knowledge sharing can help to significantly speed-up the learning process but the
differences among the local conditions of individual agents need to be taken care
of for better convergence. Especially, in non-homogeneous environments using the
learning experience of one agent for another agent with different local conditions
can make the whole system completely un-stable.

In situations where cooperation among the agents is not possible, another
method to improve the learning performance can be to select the agents for an
update in each learning snapshot in a way that they are far apart in the envi-
ronment to have little effect on each other’s actions. This was analyzed in the
proposed “Clustering” scheme and the results show that it can simplify the learn-
ing environment compared to all agents taking an action in each snapshot and can
achieve better performance without any cooperation among the agents. However,
the gains start to decrease with the increasing network size because the amount
of parallelism decreases, meaning the system requires more learning snapshots to
achieve equivalent performance level.
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6
Conclusions and Future Research

The increasing complexity of cellular network management and inhomogeneous
traffic patterns demand an enhanced level of automation in most of the network
deployment and operational phases. It can not only simplify the complex network
management tasks but also improve the user quality of experience by efficient
resource utilization and minimizing the network response time to the network
and environmental changes.

In this thesis, we study the self-organized coverage and capacity optimization
of cellular mobile networks using antenna tilt adaptations. We propose to use
machine learning for this problem in order to empower the individual cells to
learn from their interaction with the local environments. This helps the cells
to get experienced with the passage of time and improve the overall network
performance.

We model this optimization task as a multi-agent learning problem using
Fuzzy Q-Learning, which is a combination of Fuzzy Logic and Reinforcement
Learning-based Q-Learning. Fuzzy logic simplifies the modeling of continuous
domain variables and Q-learning provides a simple yet efficient learning mech-
anism. We study different structural and behavioral aspect of this multi-agent
learning environment in this thesis and propose several enhancements for the
basic FQL algorithm for this particular optimization tasks. Especially, we look
into the effect of parallel antenna tilt updates by multiple agents on the learning
speed and convergence, the effect of selfish and cooperative agent behavior and
the effect of distributed and centralized learning in this thesis.

For performance evaluation of our learning methods we perform system level
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simulations of an LTE network. We perform the evaluations for both regular
hexagonal cell deployment scenario as well as an irregular scenario. We also test
our learning schemes in a dynamic network where cells are switched-off to create
an outage and then switched-on to simulate the deployment of a new eNB in the
network.

The simulations are performed for a worst case situation from learning point of
view as no a-priori information is provided to the learning agents about the state-
action pairs. However, in reality a vast experience is available in the domain of
network management and can be included to further enhance the performance of
these learning schemes. Here, FQL is also quite effective as this a-priori knowledge
can be easily integrated by modifying the rules set or setting the q-values at the
design phase.

The performance of our proposed learning mechanisms is also compared to
a relevant learning method from literature for both the regular and irregular
scenarios and to a static network wide antenna tilt optimization for the regular
scenario. The main results from these studies are presented below.

Amount of Parallel Actions: Increasing the possibility of simultaneous
actions by multiple learning agents greatly enhance the learning speed of the
system. We tested three different levels of parallel actions i.e. only one agent
per learning snapshot, all agents per learning snapshot and a restricted group of
agents per learning snapshot. The results show that one agent per snapshot is
extremely slow to react to network dynamics and the performance decreases with
the increasing network size and the changes in the network topology.

Simultaneous actions of all agents makes it very quick to respond to the net-
work and environmental changes but it can stuck into an oscillating behavior
where agents are continuously responding to the actions of their neighboring
agents. This effects the achievable performance gains especially if the actions of
one agent not only modifies its own performance but also the performance of its
neighboring agents.

In such a scenario allowing only a restricted group of agents to take paral-
lel actions can help to simplify the learning problem and enhance the achieved
performance. But the gains are limited to only small network sizes. With the
increasing network sizes the restricted parallel actions limit the network adapt-
ability and more time is required to achieve same performance gains.

Selfish vs Cooperative Learning: The learning agent’s behavior also has
a strong impact on the performance of overall system. With selfish learning
behavior agents try to optimize their own performance without and consideration
to its effect on the performance of their neighboring agents. This becomes highly
relevant in problems like antenna tilt optimization where antenna tilt update at
each cell not only modifies its own coverage-capacity performance but also the
performance of its neighboring cells. The simulation results show that this kind
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of selfish behavior only achieves a sub-optimal performance level.
The situation improves if the agents cooperate with each other and try to

optimize the overall performance of the neighborhood and not just their own
performance. The results show that the proposed cooperative learning scheme
improves the convergence property of the learning system even in the presence of
simultaneous actions of all agents in all snapshots.

Distributed vs Centralized: Distributed learning means all the agents try
to learn their own optimal action policy. This can be done either selfishly or
cooperatively as long as each agent maintains its own learning tables and its
own action policy. This kind of learning is highly effective in non-homogeneous
environments where different agents experience different local conditions. In such
a scenario all agents can better exploit the local conditions and modify their
parameters accordingly.

With centralized learning all agents share the same central learning table.
Each action is based on this shared table and all agents update it based on their
local environmental interactions. The results show that this knowledge sharing
among the different learning agents greatly enhance the learning speed. Even
with only one agent update per learning snapshot this technique can overcome
the initial non-optimal configurations very quickly. However, it does not produce
stable results. As more and more agents with diversified environments try to build
a common action policy, the performance of this centralized learning deteriorates.
The performance degradation becomes even worse with high degree of parallel
actions by multiple agents. The performance can be improved by having more
elaborate state definitions in the learning table that accurately captures all the
local variations or by maintaining different tables for different types of cells like
the group of cells in normal operation and the group of cells facing an outage in
the neighborhood. However, both of these solutions increases the computational
complexity because the state space grows exponentially with each new element
being introduced.

From the overall results we can conclude that the cooperative learning scheme
with all cells update per snapshot performs best among all the proposed schemes.
All cell update per snapshot makes it highly responsive to the environmental and
network changes and cooperation among the cells helps improve the convergence
behavior. As a result this scheme can achieve up to 30 percent better performance
than the learning scheme taken from literature.

Future Research: The work in this thesis can be further extended to study
some more aspects of this multi-agent learning problem. Some of the ideas that
would be interesting to investigate are mentioned below.

The basic principle of all learning schemes is to explore the solution space and
to identify the best action for each possible state of the system. This exploration
also means sometimes taking random actions, which may not be optimal accord-
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ing to the present knowledge. Therefore, for the stability of the whole system it
is important to look into when to explore and when to only exploit the available
knowledge.

Another area of interest is to look into learning for control of multiple pa-
rameters like antenna tilt and transmit power of cells for coverage-capacity op-
timization. An important question in this regard is should it be a combined
learning problem or should it be divided into multiple problems and the results
are coordinated to stabilize the performance?

Network heterogeneity is also increasing because of the deployment of multiple
radio access technologies as well as different cell structures like macro/micro/femto
cells. Therefore, the multi-agent learning concepts presented in this thesis can
also be extended to study different aspects of these heterogeneous networks. This
would especially be interesting for the under-lay small cells like the micro- and
femto-cells because the overlay macro-cells can already ensure some basic connec-
tivity requirements and make it flexible for the small cells to explore and learn
through their interaction with the environment.

Finally, coverage and capacity optimization is just one aspect of the network
optimization. Cellular networks also need to be optimized for other targets like
handover performance, load balancing etc. Most of these optimizations are not
fully independent i.e. they either modify the same configuration parameters or
try to improve the same performance metric. Therefore, one optimization task
can effect the performance of others as well. In this domain the tools to study
multi-agent systems and multi-agent reinforcement learning can also be beneficial
to analyze the interaction among different optimization procedures and its effect
on the overall performance of the network.
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