195 research outputs found

    Investigation of Gate Dielectric Materials and Dielectric/Silicon Interfaces for Metal Oxide Semiconductor Devices

    Get PDF
    The progress of the silicon-based complementary-metal-oxide-semiconductor (CMOS) technology is mainly contributed to the scaling of the individual component. After decades of development, the scaling trend is approaching to its limitation, and there is urgent needs for the innovations of the materials and structures of the MOS devices, in order to postpone the end of the scaling. Atomic layer deposition (ALD) provides precise control of the deposited thin film at the atomic scale, and has wide application not only in the MOS technology, but also in other nanostructures. In this dissertation, I study rapid thermal processing (RTP) treatment of thermally grown SiO2, ALD growth of SiO2, and ALD growth of high-k HfO2 dielectric materials for gate oxides of MOS devices. Using a lateral heating treatment of SiO2, the gate leakage current of SiO2 based MOS capacitors was reduced by 4 order of magnitude, and the underlying mechanism was studied. Ultrathin SiO2 films were grown by ALD, and the electrical properties of the films and the SiO2/Si interface were extensively studied. High quality HfO2 films were grown using ALD on a chemical oxide. The dependence of interfacial quality on the thickness of the chemical oxide was studied. Finally I studied growth of HfO2 on two innovative interfacial layers, an interfacial layer grown by in-situ ALD ozone/water cycle exposure and an interfacial layer of etched thermal and RTP SiO2. The effectiveness of growth of high-quality HfO2 using the two interfacial layers are comparable to that of the chemical oxide. The interfacial properties are studied in details using XPS and ellipsometry

    Electrical characterization of high-k gate dielectrics for advanced CMOS gate stacks

    Get PDF
    The oxide/substrate interface quality and the dielectric quality of metal oxide semiconductor (MOS) gate stack structures are critical to future CMOS technology. As SiO2 was replaced by the high-k dielectric to further equivalent oxide thickness (EOT), high mobility substrates like Ge have attracted increasing in replacing Si substrate to further enhance devices performance. Precise control of the interface between high-k and the semiconductor substrate is the key of the high performance of future transistor. In this study, traditional electrical characterization methods are used on these novel MOS devices, prepared by advanced atomic layer deposition (ALD) process and with pre and post treatment by plasma generated by slot plane antenna (SPA). MOS capacitors with a TiN metal gate/3 nm HfAlO/0.5 nm SiO2/Si stacks were fabricated by different Al concentration, and different post deposition treatments. A simple approach is incorporated to correct the error, introduced by the series resistance (Rs) associated with the substrate and metal contact. The interface state density (Dit), calculated by conductance method, suggests that Dit is dependent on the crystalline structure of hafnium aluminum oxide film. The amorphous structure has the lowest Dit whereas crystallized HfO2 has the highest Dit. Subsequently, the dry and wet processed interface layers for three different p type Ge/ALD 1nm-Al2O3/ALD 3.5nm-ZrO2/ALD TiN gate stacks are studied at low temperatures by capacitance-voltage (CV),conductance-voltage (GV) measurement and deep level transient spectroscopy (DLTS). Prior to high-k deposition, the interface is treated by three different approaches (i) simple chemical oxidation (Chemox); (ii) chemical oxide removal (COR) followed by 1 nm oxide by slot-plane-antenna (SPA) plasma (COR&SPAOx); and (iii) COR followed by vapor O3 treatment (COR&O3). Room temperature measurement indicates that superior results are observed for slot-plane-plasma-oxidation processed samples. The reliability of TiN/ZrO2/Al2O3/p-Ge gate stacks is studied by time dependent dielectric breakdown (TDDB). High-k dielectric is subjected to the different slot plane antenna oxidation (SPAO) processes, namely, (i) before high-k ALD (Atomic Layer Deposition), (ii) between high-k ALD, and (iii) after high-k ALD. High-k layer and interface states are improved due to the formation of GeO2 by SPAO when SPAO is processed after high-k. GeO2 at the interface can be degraded easily by substrate electron injection. When SPAO is processed between high-k layers, a better immunity of interface to degradation was observed under stress. To further evaluate the high-k dielectrics and how EOT impacts on noise mechanism time zero 1/f noise is characterized on thick and thin oxide FinFET transistors, respectively. The extracted noise models suggest that as a function of temperatures and bias conditions the flicker noise mechanism tends to be carrier number fluctuation model (McWhorter model). Furthermore, the noise mechanism tends to be mobility fluctuation model (Hooge model) when EOT reduces

    Atomic layer deposited hafnium-based gate dielectrics for deep sub-micron CMOS technology

    Get PDF
    Master'sMASTER OF SCIENC

    Advanced gate stack for sub-0.1 (mu)m CMOS technology

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Study of High-k Dielectrics and their Interfaces on Semiconductors for Device Applications

    Get PDF
    This thesis has focused on two emerging applications of high-k dielectrics in Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) and in Metal-InsulatorSemiconductor High Electron Mobility Transistors (MIS-HEMTs). The key aim has been to propose the best routes for passivation of semiconductor/high-k oxide interfaces by investigating the band alignments and interface properties of several oxides, such as Tm2O3, Ta2O5, ZrO2, Al2O3 and MgO, deposited on different semiconductors: Si, Ge, GaN, InGaAs and InGaSb. The electrical characterisation of fabricated MIS capacitor and (MIS)-HEMT devices have also been performed. Thulium silicate (TmSiO) has been identified as a promising candidate for integration as interfacial layer (IL) in HfO2/TiN MOSFETs. The physical properties of Tm2O3/IL/Si interface have been elucidated, where IL (TmSiO) has been formed using different post-deposition annealing (PDA) temperatures, from 550 to 750 °C. It has been found that the best-scaled stack (sub-nm IL) is formed at 550 °C PDA with a graded interface layer and a strong SiOx (Si 3+) component. A large valence band offset (VBO) of 2.8 eV and a large conduction band offset (CBO) of 1.9 eV have been derived for Tm2O3/Si by X-ray photoelectron spectroscopy (XPS) and variable angle spectroscopic ellipsometry. Further increase of device performance can be achieved by replacing Si with GaN for high frequency, high power and high-temperature operation. In this thesis, several GaN cleaning procedures have been considered: 30% NH4OH, 20% (NH4)2S, and 37% HCl. It has been found that the HCl treatment shows the lowest oxygen contamination and Garich surface, and hence has been used prior sputtering of Ta2O5, Al2O3, ZrO2 and MgO on GaN. The large VBOs of 1.1 eV and 1.2 eV have been derived for Al2O3 and MgO on GaN respectively, using XPS and Kraut’s method; the corresponding CBOs are 2.0 eV and 2.8 eV respectively, taking into account the band gaps of Al2O3 (6.5 eV) and MgO (7.4 eV) determined from XPS O 1s electron energy spectra. The lowest leakage currents were obtained for devices with Al2O3 and MgO, i.e. 5.3 ×10-6 A/cm2 and 3.2 ×10-6 A/cm2 at 1 V, respectively in agreement with high band offsets (> 1 eV). Furthermore, the effect of different surface treatments (HCl, O2 plasma and 1-Octadecanethiol (ODT)) prior to atomic layer deposition of Al2O3 on the GaN/AlGaN/GaN heterostructure has been investigated. The MIS-HEMTs fabricated using the low-cost ODT GaN surface treatment have been found to exhibit superior performance for power switching applications such as a low threshold voltage, VT of -12.3 V, hysteresis of 0.12 V, a small subthreshold voltage slope (SS) of 73 mV/dec, and a low density of interface states, Dit of 3.0 x10^12 cm-2eV-1. A comprehensive novel study of HfO2/InGaAs and Al2O3/InGaSb interfaces have also been conducted for use in III-V based MOSFETs. The addition of the plasma H2/TMA/H2 pre-cleaning has been found to be very effective in recovering etch damage on InGaAs, especially for (110) orientation, and led to the improvement of electrical characteristics. Furthermore, the combination of H2 plasma exposure and forming gas anneal yielded significantly improved metrics for Al2O3/InGaSb over the control HCltreated sample, with the 150 W plasma treatment giving both the highest capacitance and the lowest stretch out

    Characterization of high-κ dielectrics on Germanium

    Get PDF
    This study explores and describes the interface properties of various high-k materials deposited on the Ge substrate. Deposition/ growth of these material films has been achieved using multiple techniques such as atomic layer deposition (ALD), molecular beam epitaxy and thermal growth. High dielectrics (k) materials based on metal (4d and 5d) such as Y2O3, ZrO2, HfO2, Ta2O5, and from the lanthanide series, La2O3 and Tm2O3 were deposited on germanium and characterized to find out interface quality and band offset between Ge substrate and the oxides. Additionally, Al2O3 was considered, both as an interface barrier layer and as a high –k layer. Material and interface characterization was done using atomic force microscopy (AFM), capacitance-voltage (C-V), current-voltage (I-V), Variable Angle Spectral Ellipsometry (VASE), X-Ray diffraction (XRD), and X-ray photoelectron Spectroscopy (XPS) including the post growth micro-structural and compositional analysis using high resolution transmission electron microscope (HRTEM). Various physical and electrical studies were performed based on the above mentioned characterization techniques. The high-k material / Ge interface has been studied systematically using XPS and VASE characterization, considering the effects of temperature and thickness during deposition. Two germanium interface engineering methods were developed and discussed: (i) germanate formation using La2O3 and Y2O3, and (ii) using Al2O3 and Tm2O3 as barrier layers, and S passivation for Ta2O5 films. Based on the physical and electrical characterization carried out in this work, Ge interface engineering using rare-earth material inclusion happens to be a promising route to fabricate Ge CMOS devices with high performance. This statement is supported by the fact that these high-k materials provide a defect free interface and reduce the possibility of unstable GeOx formation at the interface, hence improving the interface quality. Post deposition annealing effects on Tm2O3 has been analysed using XPS and VUV-VASE. The stack prepared for the purpose was of EOT (equivalent oxide thickness) ~5 nm Tm2O3/epi-Ge/Si. Study with Tm2O3 presented 3 main findings, i) Valence band offset estimation using Kraut’s method was consistent within the experimental error, and found to be 3.05 ± 0.2 eV, ii) the VBO for thermal GeO2/Ge stack was found to be matching with the recently reported value by Toriumi’s group. The value of conduction band offset was estimated to be higher than 1 eV, indicating the favorability of GeO2 as a passivation layer for Ge, iii) the reactivity of Tm2O3 on Ge was found to be even lower than that of Si, indicating the possibility of a desirable interface. This thesis further explores the use of hafnia and alumina with Sulphur (S) passivated and un-passivated Ge samples. For this purpose HfO2/Ge and Al2O3/Ge stacks were prepared using ALD technique. It was observed that using H2O with O plasma, reduces the purge time and gives low carbon incorporation from metals. Hence O plasma and H2O were used as oxidizing agents and the interface properties were studied systematically, which is a new contribution by this work. Further the effects of adding TiO2 contents to HfO2 layer on interface properties were studied, using Al2O3 (0.3 nm) as surface passivation.In this work the achieved EOT of HfO2 with the controlled introduction of TiO2 was ~ 1.3 nm, giving a leakage current as low as10-7 A/cm-2 at ±1 V, which is in the acceptable limits. Finally, Ta2O5 films were characterized on Ge for band line up with respect to Ge. The deposition of the films was done by ALD technique at 250 °C. The analysis was done on both S passivated and un-passivated samples. The band line up parameters were estimated using XPS and it was observed that the valence band offset for S passivated sample was 2.67 eV whereas it was 2.84 eV for un-passivated Ge sample. Ta2O5 reflected a band gap of 4.44 eV (estimated from the energy loss spectrum of O1 s core level) for a 20 nm thick film deposited by ALD. Hence this thesis will cover the high-k materials and their application as a gate oxide and also the passivation layer for Ge substrates for Ge CMOS devices

    Manufacturable process and tool for high performance metal/high-k gate dielectric stacks for sub-45 nm CMOS & related devices

    Get PDF
    Off state leakage current related power dominates the CMOS heat dissipation problem of state of the art silicon integrated circuits. In this study, this issue has been addressed in terms of a low-cost single wafer processing (SWP) technique using a single tool for the fabrication of high-κ dielectric gate stacks for sub-45 nm CMOS. A system for monolayer photoassisted deposition was modified to deposit high-quality HfO2 films with in-situ clean, in-situ oxide film deposition, and in-situ anneal capability. The system was automated with Labview 8.2 for gas/precursor delivery, substrate temperature and UV lamp. The gold-hafnium oxide-aluminum (Au-HfO2-Al) stacks processed in this system had superior quality oxide characteristics with gate leakage current density on the order of 1 x 10-12 A/cm2 @ 1V and maximum capacitance on the order of 75 nF for EOT=0.39 nm. Achieving low leakage current density along with high capacitance demonstrated the excellent performance of the process developed. Detailed study of the deposition characteristics such as linearity, saturation behavior, film thickness and temperature dependence was performed for tight control on process parameters. Using Box-Behnken design of experiments, process optimization was performed for an optimal recipe for HfO2 films. UV treatment with in-situ processing of metal/high-κ dielectric stacks was studied to provide reduced variation in gate leakage current and capacitance. High-resolution transmission electron microscopy (TEM) was performed to calculate the equivalent oxide thickness (EOT) and dielectric constant of the films. Overall, this study shows that the in-situ fabrication of MIS gate stacks allows for lower processing costs, high throughput, and superior device performance

    Hf-based high-K gate dielectric and metal gate stack for advanced CMOS devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore