31 research outputs found

    MESHLESS METHODS FOR SOLVING REACTION-DIFFUSION PROBLEMS-A BRIEF REVIEW

    Get PDF
    Reaction-diffusion equations represent many important and critical applications in engineering and science. Numerical techniques play an important role for solving such equations accurately and efficiently. This paper presents a brief review of meshless methods for solving general diffusion equations, including reaction-diffusion systems

    Meshfree Methods for PDEs on Surfaces

    Get PDF
    This dissertation focuses on meshfree methods for solving surface partial differential equations (PDEs). These PDEs arise in many areas of science and engineering where they are used to model phenomena ranging from atmospheric dynamics on earth to chemical signaling on cell membranes. Meshfree methods have been shown to be effective for solving surface PDEs and are attractive alternatives to mesh-based methods such as finite differences/elements since they do not require a mesh and can be used for surfaces represented only by a point cloud. The dissertation is subdivided into two papers and software. In the first paper, we examine the performance and accuracy of two popular meshfree methods for surface PDEs:generalized moving least squares (GMLS) and radial basis function-finite differences (RBF-FD). While these methods are computationally efficient and can give high orders of accuracy for smooth problems, there are no published works that have systematically compared their benefits and shortcomings. We perform such a comparison by examining their convergence rates for approximating the surface gradient, divergence, and Laplacian on the sphere and a torus as the resolution of the discretization increases. We investigate these convergence rates also as the various parameters of the methods are changed. We also compare the overall efficiencies of the methods in terms of accuracy per computation cost. The second paper is focused on developing a novel meshfree geometric multilevel (MGM) method for solving linear systems associated with meshfree discretizations of elliptic PDEs on surfaces represented by point clouds. Multilevel (or multigrid) methods are efficient iterative methods for solving linear systems that arise in numerical PDEs. The key components for multilevel methods: \grid coarsening, restriction/ interpolation operators coarsening, and smoothing. The first three components present challenges for meshfree methods since there are no grids or mesh structures, only point clouds. To overcome these challenges, we develop a geometric point cloud coarsening method based on Poisson disk sampling, interpolation/ restriction operators based on RBF-FD, and apply Galerkin projections to coarsen the operator. We test MGM as a standalone solver and preconditioner for Krylov subspace methods on various test problems using RBF-FD and GMLS discretizations, and numerically analyze convergence rates, scaling, and efficiency with increasing point cloud resolution. We finish with several application problems. We conclude the dissertation with a description of two new software packages. The first one is our MGM framework for solving elliptic surface PDEs. This package is built in Python and utilizes NumPy and SciPy for the data structures (arrays and sparse matrices), solvers (Krylov subspace methods, Sparse LU), and C++ for the smoothers and point cloud coarsening. The other package is the RBFToolkit which has a Python version and a C++ version. The latter uses the performance library Kokkos, which allows for the abstraction of parallelism and data management for shared memory computing architectures. The code utilizes OpenMP for CPU parallelism and can be extended to GPU architectures

    Doctor of Philosophy

    Get PDF
    dissertationPlatelet aggregation, an important part of the development of blood clots, is a complex process involving both mechanical interaction between platelets and blood, and chemical transport on and o the surfaces of those platelets. Radial Basis Function (RBF) interpolation is a meshfree method for the interpolation of multidimensional scattered data, and therefore well-suited for the development of meshfree numerical methods. This dissertation explores the use of RBF interpolation for the simulation of both the chemistry and mechanics of platelet aggregation. We rst develop a parametric RBF representation for closed platelet surfaces represented by scattered nodes in both two and three dimensions. We compare this new RBF model to Fourier models in terms of computational cost and errors in shape representation. We then augment the Immersed Boundary (IB) method, a method for uid-structure interaction, with our RBF geometric model. We apply the resultant method to a simulation of platelet aggregation, and present comparisons against the traditional IB method. We next consider a two-dimensional problem where platelets are suspended in a stationary fluid, with chemical diusion in the fluid and chemical reaction-diusion on platelet surfaces. To tackle the latter, we propose a new method based on RBF-generated nite dierences (RBF-FD) for solving partial dierential equations (PDEs) on surfaces embedded in 2D domains. To robustly tackle the former, we remove a limitation of the Augmented Forcing method (AFM), a method for solving PDEs on domains containing curved objects, using RBF-based symmetric Hermite interpolation. Next, we extend our RBF-FD method to the numerical solution of PDEs on surfaces embedded in 3D domains, proposing a new method of stabilizing RBF-FD discretizations on surfaces. We perform convergence studies and present applications motivated by biology. We conclude with a summary of the thesis research and present an overview of future research directions, including spectrally-accurate projection methods, an extension of the Regularized Stokeslet method, RBF-FD for variable-coecient diusion, and boundary conditions for RBF-FD

    Numerical simulation of reaction fronts in dissipative media

    Get PDF
    Fronts of reaction in certain systems (such as so-called solid flames and detonation fronts) can be simulated by a single-equation phenomenological model of Strunin (1999, 2009). This is a high-order nonlinear partial differential equation describing the shape of the front as a function of spatial coordinates and time. The equation is of active-dissipative type, with 6th-order spatial derivative. For one-dimensional case, the equation was previously solved using the Galerkin method, but only one numerical experiment with limited information on the dynamics was obtained. For two-dimensional case only two numerical ex- periments were reported so far, in which a low-accuracy infinite difference scheme was used. In this thesis, we use a more recent and sophisticated method, namely the one-dimensional integrated radial basis function networks (1D-IRBFN). The method had been developed by Tran-Cong and May-Duy (2001, 2003) and successfully applied to several problems such as structural analysis, viscoelastic flows and fluid-structure interaction. In contrast to commonly used approaches, where a function of interest is differentiated to give approximate derivatives, leading to a reduction in convergence rate for derivatives (and this reduction increases with derivative order, which magnifes errors), the 1D-IRBFN method uses the integral formulation. It utilizes spectral approximants to represent highest-order derivatives under consideration. They are then integrated analytically to yield approximate expressions for lower-order derivatives and the function itself. In this thesis the following main results are obtained. A numerical program implementing the 1D-IRBFN method is developed in Matlab to solve the equation of interest. The program is tested by (a) constructing a forced version of the equation, which allows analytical solution, and verifying the numerical solution against the analytical solution; (b) reproducing one-dimensional spinning waves obtained from the model previously. A modified version of the program is successfully applied to similar high-order equations modelling auto-pulses in fluid flows with elastic walls. We obtained numerically and analyzed a far richer variety of one-dimensional dynamics of the reaction fronts. Two kinds of boundary conditions were used: homogeneous conditions on the edges of the domain, and periodic conditions corresponding to periodicity of the front on a cylinder. The dependence of the dynamics on the size of the domain is explored showing how larger space accommodates multiple spinning waves. We determined the critical domain size (bifurcation point) at which non-trivial settled regimes become possible. We found a regime where the front is shaped as a pair of kinks separated by a relatively short distance. Interestingly, the pair moves in a stable joint formation far from the boundaries. A similar regime for three connected kinks is obtained. We demonstrated that the initial condition determines the direction of motion of the kinks, but not their size and velocity. This is typical for active-dissipative systems. The settled character of these regimes is demonstrated. We also applied the 1D-IRBFN method to two-dimensional topology corresponding to a solid cylinder. Stable spinning wave solutions are obtained for this case

    Fundamental concepts and models for the direct problem

    Get PDF
    This book series is an initiative of the Post Graduate Program in Integrity of Engineering Materials from UnB, organized as a collaborative work involving researchers, engineers, scholars, from several institutions, universities, industry, recognized both nationally and internationally. The book chapters discuss several direct methods, inverse methods and uncertainty models available for model-based and signal based inverse problems, including discrete numerical methods for continuum mechanics (Finite Element Method, Boundary Element Method, Mesh-Free Method, Wavelet Method). The different topics covered include aspects related to multiscale modeling, multiphysics modeling, inverse methods (Optimization, Identification, Artificial Intelligence and Data Science), Uncertainty Modeling (Probabilistic Methods, Uncertainty Quantification, Risk & Reliability), Model Validation and Verification. Each book includes an initial chapter with a presentation of the book chapters included in the volume, and their connection and relationship with regard to the whole setting of methods and models

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    Damage modelling in fibre-reinforced composite laminates using phase field approach

    Get PDF
    Thin unidirectional-tape and woven fabric-reinforced composites are widely utilized in the aerospace and automotive industries due to their enhanced fatigue life and impact damage resistance. The increasing industrial applications of such composites warrants a need for high-fidelity computational models to assess their structural integrity and ensure robust and reliable designs. Damage detection and modelling is an important aspect of overall design and manufacturing lifecycle of composite structures. In particular, in thin-ply composites, the damage evolves as a result of coupled in-plane (membrane) and out-of-plane (bending) deformations that often arise during critical events, e.g., bird strike/ hail impact or under in-flight service loads. Contrary to metallic structures, failure in composites involves complex and mutually interacting damage patterns, e.g., fibre breakage/ pullout/ bridging, matrix cracking, debonding and delamination. Providing high-fidelity simulations of intra-laminar damage is a challenging task both from a physics and a computational perspective, due to their complex and largely quasi-brittle fracture response. This is manifested by matrix cracking and fibre breakage, which result in a sudden loss of strength with minimum crack openings; subsequent fibre pull-outs result in a further, although gradual, strength loss. To effectively model this response, it is necessary to account for the cohesive forces evolving within the fracture process zone. Furthermore, the interaction of the failure mechanisms pertinent to both the fibres and the matrix necessitate the definition of anisotropic damage models. In addition, the failure in composites extends across multiple scales; it initiates at the fibre/ matrix-level (micro-scale) and accumulates into larger cracks at the component/ structural level (macro-scale). From a simulation standpoint, accurate prediction of the structure’s critical load bearing capacity and its associated damage thresholds becomes a challenging task; accuracy necessitates a fine level of resolution, which renders the corresponding numerical model computationally expensive. To this point, most damage models are applied at the meso-scale based on local stress-strain estimates, and considering material heterogeneity. Such damage models are often computationally expensive and practically inefficient to simulate the failure behaviour in real-life composite structures. Moreover at the macro-scale, the effect of local stresses is largely minimised, which necessitates definition of a homogenised failure criterion based on global macro-scale stresses. This thesis presents a phase field based MITC4+ (Mixed Interpolation of Tensorial Components) shell element formulation to simulate fracture propagation in thin shell structures under coupled membrane and bending deformations. The employed MITC4+ approach renders the element shear- and membrane- locking free, hence providing high-fidelity fracture simulations in planar and curved topologies. To capture the mechanical response under bending-dominated fracture, a crack-driving force description based on the maximum strain energy density through the shell-thickness is considered. Several numerical examples simulating fracture in flat and curved shell structures which display significant transverse shear and membrane locking are presented. The accuracy of the proposed formulation is examined by comparing the predicted critical fracture loads against analytical estimates. To simulate diverse intra-laminar fracture modes in fibre reinforced composites, an anisotropic cohesive phase field model is proposed. The damage anisotropy is captured via distinct energetic crack driving forces, which are defined for each pertinent composite damage mode together with a structural tensor that accounts for material orientation dependent fracture properties. Distinct 3-parameter quasi-quadratic degradation functions based on fracture properties pertinent to each failure mode are used, which result in delaying or suppressing pre-mature failure initiation in all modes simultaneously. The degradation functions can be calibrated to experimentally derived strain softening curves corresponding to relevant failure modes. The proposed damage model is implemented in Abaqus and is validated against experimental results for woven fabric-reinforced and unidirectional composite laminates. Furthermore, a dynamic explicit cohesive phase field model is proposed to capture the significantly nonlinear damage evolution behaviour pertinent to impact scenarios. A strategy is presented to combine the phase field and the cohesive zone models to perform full composite-laminate simulations involving both intra-laminar and inter-laminar damage modes. Finally, the developed phase field model is employed within the framework of a multiscale surrogate modelling technique. The latter is proposed to perform fast and efficient damage simulation involving different inherent scales in composites. The technique is based on a multiscale FE2 (Finite Element squared) homogenisation approach, however the computationally expensive procedure of solving the meso- and macro-scale models simultaneously is avoided by using a robust surrogate model. The meso-scale is defined as a unit-cell representative volume element (RVE) model, which is analysed under a large number of statistically randomised mixed-mode macro-strains, applied with periodic boundary conditions. The complex damage mechanisms occurring at the meso-scale are captured using the anisotropic cohesive phase field model, and the homogenised stress-strain responses post-damage evolution are obtained. These anisotropic meso-scale fracture responses are used to train the Polynomial Chaos Expansion (PCE) and Artificial Neural Network (ANN) based surrogate models, which are interrogated at the macro-scale using arbitrary macro-strain combinations. The accuracy of the surrogate model is validated against high-fidelity phase field simulations for a set of benchmarks

    UKACM Proceedings 2024

    Get PDF
    corecore