
RADIAL BASIS FUNCTION-BASED NUMERICAL

METHODS FOR THE SIMULATION OF

PLATELET AGGREGATION

by

Varun Shankar

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

August 2014

Copyright c© Varun Shankar 2014

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Varun Shankar

has been approved by the following supervisory committee members:

Robert M. Kirby , Chair 04/18/2014
Date Approved

Aaron L. Fogelson , Member 04/18/2014
Date Approved

Christopher R. Johnson , Member 04/18/2014
Date Approved

Adam W. Bargteil , Member 04/18/2014
Date Approved

Grady B. Wright , Member 04/22/2014
Date Approved

and by Ross T. Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Platelet aggregation, an important part of the development of blood clots, is a complex

process involving both mechanical interaction between platelets and blood, and chemical

transport on and off the surfaces of those platelets. Radial Basis Function (RBF) interpo-

lation is a meshfree method for the interpolation of multidimensional scattered data, and

therefore well-suited for the development of meshfree numerical methods. This dissertation

explores the use of RBF interpolation for the simulation of both the chemistry and mechanics

of platelet aggregation.

We first develop a parametric RBF representation for closed platelet surfaces represented

by scattered nodes in both two and three dimensions. We compare this new RBF model to

Fourier models in terms of computational cost and errors in shape representation. We then

augment the Immersed Boundary (IB) method, a method for fluid-structure interaction,

with our RBF geometric model. We apply the resultant method to a simulation of platelet

aggregation, and present comparisons against the traditional IB method.

We next consider a two-dimensional problem where platelets are suspended in a sta-

tionary fluid, with chemical diffusion in the fluid and chemical reaction-diffusion on platelet

surfaces. To tackle the latter, we propose a new method based on RBF-generated finite

differences (RBF-FD) for solving partial differential equations (PDEs) on surfaces embedded

in 2D domains. To robustly tackle the former, we remove a limitation of the Augmented

Forcing method (AFM), a method for solving PDEs on domains containing curved objects,

using RBF-based symmetric Hermite interpolation.

Next, we extend our RBF-FD method to the numerical solution of PDEs on surfaces

embedded in 3D domains, proposing a new method of stabilizing RBF-FD discretizations

on surfaces. We perform convergence studies and present applications motivated by biology.

We conclude with a summary of the thesis research and present an overview of future

research directions, including spectrally-accurate projection methods, an extension of the

Regularized Stokeslet method, RBF-FD for variable-coefficient diffusion, and boundary

conditions for RBF-FD.

I lovingly dedicate this dissertation to my wife, Dr. Divya Raghavan, for her unwavering

love, patience, encouragement, and support. She is my best friend and my first love.

I also dedicate this dissertation to my amazing parents, Latha and Ramalingam, who

always listened, never judged, and continue to inspire.

CONTENTS

ABSTRACT . iii

LIST OF TABLES . viii

ACKNOWLEDGMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Overview . 2
1.2 Simulating Platelet Mechanics . 3
1.3 Simulating Platelet Chemistry . 6
1.4 Radial Basis Function Interpolation . 8

1.4.1 Overview . 8
1.4.2 RBF Interpolation . 9
1.4.3 Symmetric Hermite Interpolation . 10

1.5 RBFs for the solution of PDEs . 11
1.5.1 RBF-based Pseudospectral Method (RBF-PS) . 12
1.5.2 RBF-generated Finite Differences (RBF-FD) . 13
1.5.3 RBF Partition of Unity Method (RBF-PUM) . 15

1.6 Overview of Thesis Topics . 16

2. GEOMETRIC MODELING OF PLATELETS . 18

2.1 Introduction . 18
2.2 Geometric Modeling Strategies . 19

2.2.1 Piecewise Linear Models . 19
2.2.2 Parametric Models . 20

2.2.2.1 Fourier Models . 22
2.2.2.2 RBF Models . 24

2.3 Immersed Boundary Modeling . 26
2.3.1 Components for 2D . 27
2.3.2 Components for 3D . 27

2.4 Implementation Details . 28
2.4.1 Piecewise Linear Models . 29
2.4.2 Parametric Models . 29
2.4.3 Node and Evaluation Points . 30

2.4.3.1 Fourier Models . 30
2.4.3.2 RBF Models . 32

2.5 2D Platelet Modeling Results . 33
2.5.1 Test Cases . 34
2.5.2 Comparison of Reconstructing the Objects . 34

2.5.2.1 Shape Parameter Study . 36
2.5.3 Comparison of Normal Vectors and Forces . 37

2.5.4 Comparison of the Computational Cost . 38
2.6 3D Platelet Modeling Results . 40

2.6.1 Test Cases . 40
2.6.2 Comparison of Reconstructing the Objects . 41

2.6.2.1 Shape Parameter Study . 42
2.6.3 Comparison of Normal Vectors and Forces . 43
2.6.4 Comparison of the Computational Cost . 44

2.7 Summary . 46

3. THE RBF-IMMERSED BOUNDARY METHOD 48

3.1 Introduction . 48
3.2 Geometric Modeling of Platelets . 49

3.2.1 Piecewise Linear Model . 49
3.2.2 Parametric RBF Model . 49

3.3 Numerical Discretization . 53
3.3.1 The Piecewise-Linear IB Method . 54
3.3.2 The RBF-IB Method . 55

3.4 Results . 58
3.4.1 Description of a Standard Fluid-structure

Interaction Problem . 58
3.4.2 Convergence Studies . 59

3.4.2.1 Convergence of the Fluid Solver . 60
3.4.2.2 Convergence of the PL-IB Method . 61
3.4.2.3 Convergence of the RBF-IB Method for Nd = 25 62
3.4.2.4 Convergence of the RBF-IB Method for Nd = 50 63
3.4.2.5 Convergence of the RBF-IB Method for

Nd = 0.25Ns . 64
3.4.2.6 Effect of the Shape Parameter ε . 65

3.4.3 Area Loss and Time-step Size . 66
3.4.4 Energy Estimates . 67
3.4.5 Timings for Platelet Simulations . 69

3.4.5.1 Effect of the RBF Representation on
the Fluid Solver . 71

3.4.6 Platelet Aggregation . 72
3.5 Summary . 73

4. RBF-FD ON 1D SURFACES WITHIN THE AFM 75

4.1 Introduction . 75
4.2 Problem Statement . 75
4.3 Grid and Platelet Geometry . 77
4.4 Numerical Solution of Reaction-diffusion

Models for Platelet Chemistry . 78
4.4.1 Interpolating Fluid-phase Concentrations . 78
4.4.2 Approximating the Surface Laplacian . 80
4.4.3 Simulating Models 1 and 2 . 83

4.5 Symmetric Hermite Interpolation
for the AFM . 83

4.5.1 Computing rbc . 84
4.5.2 Enforcing Boundary Conditions with Matrix E 85

4.6 Results . 89

vi

4.6.1 Selection of Shape Parameters . 89
4.6.2 RBF-FD on a Circle . 90
4.6.3 Convergence of the Modified AFM . 91
4.6.4 Effect of Forcing Point Locations . 91
4.6.5 Convergence on Coupled Problems for Model 1 92
4.6.6 Convergence on a Coupled Problem for Model 2 94

4.7 Summary . 95

5. RBF-FD FOR TWO-DIMENSIONAL SURFACES 98

5.1 Introduction . 98
5.2 Surface Laplacian in Cartesian

Coordinates . 99
5.3 RBF-FD Approximation to the

Surface Laplacian . 99
5.3.1 Implementation Details . 102
5.3.2 Method-of-lines . 103

5.4 Shape Parameter and Eigenvalue
Stability . 104

5.5 Convergence Studies . 108
5.5.1 Convergence Studies with Increasing

Condition Number . 109
5.5.1.1 Diffusion on the Sphere . 109
5.5.1.2 Forced Diffusion on the Sphere . 110
5.5.1.3 Forced Diffusion on a Torus . 111

5.5.2 Convergence Studies with Fixed
Condition Number . 114

5.5.2.1 Forced Diffusion on the Sphere . 114
5.5.2.2 Forced Diffusion on a Torus . 116

5.6 Application: Turing Patterns . 117
5.6.1 Turing Patterns on Manifolds . 119
5.6.2 Turing Patterns on More General Surfaces . 120

5.7 Summary . 120

6. SUMMARY AND FUTURE WORK . 123

6.1 Summary . 123
6.2 Future Work . 126

6.2.1 A Spectrally-accurate Projection Method . 126
6.2.2 RBFs in the Regularized Stokeslet Method . 127
6.2.3 RBF-FD for Variable-coefficient Diffusion

on Surfaces . 128
6.2.4 Boundary Conditions for RBF-FD on Surfaces 130

REFERENCES . 132

vii

LIST OF TABLES

3.1 Results of a refinement study on the fluid solver. Errors were measured against
the solution computed on 256× 256 grid with a time-step of ∆t = 6.25× 10−4. 60

3.2 Results of a refinement study with the PL-IB method. We show the conver-
gence of the velocity field, with errors measured against the velocity field of a
simulation on a 256× 256 grid with Ns = 400 sample sites and ∆t = 2.5× 10−5. 61

3.3 Results of a refinement study with the PL-IB method. We show the conver-
gence in the IB point positions, with errors measured against the IB point
positions from a simulation on a 256× 256 grid with Ns = 400 IB points and
∆t = 2.5× 10−5. 61

3.4 Results of a refinement study with the RBF-IB method with Nd = 25 data
sites. We show the convergence of the velocity field, with errors measured
against the velocity field of a simulation on a 256 × 256 grid with Ns = 400
sample sites, Nd = 100 data sites, and ∆t = 2.5× 10−5. 62

3.5 Results of a refinement study with the RBF-IB method with Nd = 25 data
sites. We show the convergence in the sample site positions, with errors
measured against the sample site positions of a simulation on a 256 × 256
grid with Ns = 400 sample sites, Nd = 100 data sites, and ∆t = 2.5× 10−5. . . 62

3.6 Results of a refinement study with the RBF-IB method with Nd = 50 data
sites. We show the convergence of the velocity field, with errors measured
against the velocity field of a simulation on a 256 × 256 grid with Ns = 400
sample sites, Nd = 100 data sites, and ∆t = 2.5× 10−5. 63

3.7 Results of a refinement study with the RBF-IB method with Nd = 50 data
sites. We show the convergence in the sample site positions, with errors
measured against the sample site positions of a simulation on a 256 × 256
grid with Ns = 400 sample sites, Nd = 100 data sites, and ∆t = 2.5× 10−5. . . 63

3.8 Results of a refinement study with the RBF-IB method with Nd = 0.25Ns

data sites. We show the convergence of the velocity field, with errors measured
against the velocity field of a simulation on a 256 × 256 grid with Ns = 400
sample sites, Nd = 100 data sites, and ∆t = 2.5× 10−5. 64

3.9 Results of a refinement study with the RBF-IB method. We show the conver-
gence in the sample site positions, with errors measured against the sample
site positions of a simulation on a 256× 256 grid with Ns = 400 sample sites,
Nd = 100 data sites, and ∆t = 2.5× 10−5. 65

3.10 Percentage area loss in the RBF-IB method as a function of grid size, the
number of sample sites Ns, and the time-step ∆t. The PL-IB method gives
area losses similar to the Nd = 50 case, except on the coarsest grid, where the
percentage area loss is three times that of the RBF-IB method. 66

3.11 Percentage of time per time-step spent in fluid solver as a function of grid
size by both methods for Np = 60 platelets. The percentages for the RBF-IB
method are the same for both Nd = 25 and Nd = 50 data sites, with the total
time for the latter being larger. All results use Ns = 100 sample sites (or IB
points in the PL-IB method) per platelet. 71

4.1 The effect of geometric accuracy on the RBF-FD solution to the diffusion
equation. The errors were measured against the exact solution at t = 2. 90

4.2 Results of a refinement study for the modified AFM. The errors were measured
against a solution computed on a 256×256 grid as a gold standard. The errors
were measured at t = 3. 91

4.3 Results of a refinement study for the modified AFM on Coupled Problem 1.
The errors were measured by using a solution computed on a 256×256 grid as
a gold standard. The number of sample sites was also increased from Ns = 50
to Ns = 200 as the grid was refined. All errors were measured at t = 3. 93

4.4 Results of a refinement study for the RBF-FD solution to reaction-diffusion
equations on the surface of platelets in Coupled Problem 1. The errors were
measured using a solution computed on a 256 × 256 grid with analytically
computed normals at Ns = 400 sample sites as a gold standard. The fluid grid
was also refined as the number of sample sites was increased. All errors were
measured at t = 3. 93

4.5 Results of a refinement study for the modified AFM on Coupled Problem 2.
The errors were measured by using a solution computed on a 256×256 grid as
a gold standard. The number of sample sites was also increased from Ns = 50
to Ns = 200 as the grid was refined. All errors were measured at t = 3. 94

4.6 Results of a refinement study for the RBF-FD solution to reaction-diffusion
equations on the surface of platelets in Coupled Problem 2. The errors were
measured using a solution computed on a 256 × 256 grid with analytically
computed normals at Ns = 400 sample sites as a gold standard. The grid was
refined as the number of sample sites was increased. All errors were measured
at t = 3. 94

4.7 Results of a refinement study for the modified AFM on Coupled Problem 3.
The errors were measured by using a solution computed on a 256×256 grid as
a gold standard. The number of sample sites was also increased from Ns = 50
to Ns = 200 as the grid was refined. All errors were measured at t = 3. 95

4.8 Results of a refinement study for the RBF-FD solution to the reaction-diffusion
equations for bound chemical concentrations on the surface of platelets in
Coupled Problem 3. The errors were measured using a solution computed on
a 256×256 grid with analytically computed normals at Ns = 400 sample sites
as a gold standard. The grid was refined as the number of sample sites was
increased. All errors were measured at t = 3. 95

4.9 Results of a refinement study for the RBF-FD solution to the reaction-diffusion
equations for unbound chemical concentrations on the surface of platelets in
Coupled Problem 3. The errors were measured using a solution computed on
a 256×256 grid with analytically computed normals at Ns = 400 sample sites
as a gold standard. The grid was refined as the number of sample sites was
increased. All errors were measured at t = 3. 95

ix

5.1 Parameters of Equations (5.17) and (5.18) used in the numerical experiments
shown in Figures 5.11 and 5.12. In all cases, we set δu = 0.516δv. The last
column shows the final time tfinal to which each of the simulations was run. . . 118

5.2 Parameters used in the RBF-FD discretization of Equations (5.17) and (5.18)
for the numerical experiments shown in Figures 5.11 and 5.12. In all cases,
the time-step was set to ∆t = 0.01. 118

x

ACKNOWLEDGMENTS

First, I would like to express my deepest gratitude to my advisor, Professor Robert M.

Kirby, for being the most intelligent, perceptive, and compassionate mentor a student could

ask for, for teaching me how to be a scientist, and for “going meta” and explaining to me his

methodology for advising students. I would like to thank my co-advisor, Professor Aaron

Fogelson, for spending huge amounts of time bouncing around ideas with me, for his wry

humour, his wisdom, and his support. I would also like to thank Professor Grady Wright,

who has been a third mentor to me over the past few years, for his guidance and support and

for showing me the intricacies and the beauty of RBFs. I thank Professor Adam Bargteil

for spending months answering my questions on physical simulation and for being a great

mentor when I really needed one. I thank Professor Chris Johnson for listening and offering

comments on my research. I also thank Professor Sarah Olson for her excellent advice and

support.

Second, I wish to acknowledge the different sources of financial support that I received

over the course of my studies. This research was supported by a National Institutes of

General Medical Sciences grant (NIGMS R01-GM090203). I truly appreciate the investment

made by NIGMS (and, more broadly speaking, the United States) in training a foreign

citizen for so many years, and shall endeavor to give back to this country by teaching at

the University level and collaborating with researchers here. I am grateful to the Bharat

Petroleum Corporation Ltd. (BPCL) for awarding me the Bharat Petroleum Scholarship

for Higher Studies; this scholarship partially supported me during the first two years of grad

school. I am also grateful to have been awarded the TataChem Golden Jubilee Foundation

Scholarship, which assisted me in coming abroad to study.

I also express my gratitude to Konstantin Shkurko, Dan Maljovec, Scott Ruhnau, Mark

Kim, and Jon Bronson for their support and friendship over the past few years.

Lastly, I wish to thank my wife and my parents for all the support, joy, and love they

have given me for the past ten years. I also thank the rest of my family for their support

and encouragement, and for being the coolest family anyone could ask for.

CHAPTER 1

INTRODUCTION

The goal of this dissertation is to develop efficient numerical methods based on Radial

Basis Function interpolation for the simulation of models of important subprocesses of

platelet aggregation. The thesis underlying this work, then, is that Radial Basis Function

interpolation forms an excellent foundation for the development of numerical methods

in multiple dimensions, especially in the complex geometries and rheologies arising from

the study of biological systems. This work was done under the guidance of Professor

Robert M. Kirby and Professor Aaron L. Fogelson, and in collaboration with Professor

Grady B. Wright. Each chapter of the dissertation will indicate or reference the published

or submitted journal article that originally documented the research which the chapter

discusses.

Intravascular blood clots (thrombi) are initiated by damage to the endothelial cell lining

of a blood vessel and involve the formation of clumps of cells intermixed with a fibrous

protein gel on the damaged surface. The cells involved in this process are platelets. This

introduction will present the background material for the dissertation by first introducing

the mechanics of platelet aggregation and the primary tool for the simulation of these

mechanics; next, we will discuss the chemistry of platelet aggregation, and the state of the

art in simulating those dynamics. We will then present an overview of Radial Basis Function

(RBF) interpolation, the primary tool in this dissertation for developing and/or extending

the current state of the art; this overview will attempt to outline the important theoretical

and algorithmic developments related to RBF interpolation. Finally, we will discuss the

current state of the art in RBF-based numerical methods for the solution of PDEs. At the

appropriate points in the narrative, we will allude to our extensions to the current state of

the art, with each major extension being documented in its own chapter. We will conclude

the introduction by presenting an overview of the remainder of the dissertation.

2

1.1 Overview

In general, this introduction and this dissertation focus on two specific aspects of platelet

aggregation: the mechanics and the chemistry. Both problems are essentially fluid-structure

interaction problems, with platelets deforming in response to fluid flow and in turn affecting

the fluid as they deform, and with chemistry in the fluid and on the platelet surfaces

dependent on the geometry of the domain (including the platelets in the domain). We

focus on the Immersed Boundary (IB) method for platelet mechanics and the Augmented

Forcing method (AFM) for platelet chemistry; our focus on the IB method and the AFM

is due to the fact that the implementations of current platelet aggregation and chemistry

models depend on and use these two methods. However, to gain an understanding of the

alternatives, we will now present a brief overview of some recent fluid-structure interaction

methods for moving objects on irregular domains from the literature.

A specific type of Finite Element Method (FEM) has recently been developed to handle

fluid-structure interactions [96]. This so-called Immersed Finite Element (IFE) method can

be viewed as a generalization of the IB method to use Finite Elements for both the solid

and fluid representations. A unified representation was thus developed for both the solid

and the fluid using the weak formulation of the Navier-Stokes equations. To delineate the

Lagrangian solid from the Eulerian fluid, different velocities are used for each and they are

coupled using a Reproducing Kernel Particle Method (RKPM) delta function. This method

is quite promising and continues to be researched. In a different paradigm, researchers

have investigated a unified Eulerian description for fluid-structure interactions [79]. A

volume fraction formulation is used to keep track of solid and fluid separately, but the

entire system, solid immersed in the fluid, is treated as an incompressible continuum. A

stress balance equation is written for both solid and fluid stresses. The left Cauchy-Green

deformation tensor for the solid is updated (the stress tensor arising from that work’s choice

of constitutive models) in order to reflect the deformation of the solid by motion within the

fluid. The authors evade numerical instability in the fluid by modifying the deformation

tensor, which would otherwise exhibit a rough deformation within the fluid domain. The

advection terms are discretized using fifth-order differences, while all other spatial terms

are discretized with second-order differences. The time-stepping scheme is a combination of

second-order Adams-Bashforth for the advection terms and Crank-Nicolson for the implicit

terms. However, both these methods are much more expensive than the IB method, since

they use a single paradigm for both the fluid and the structure; in addition, they are

first-order accurate just like the IB method. An interesting hybrid method is the so-called

3

Finite Element IB method which is a method that uses Finite Element elasticity for platelets

but retains the fluid solver of the traditional IB method. The method has two formulations:

the partitioned formulation maintains two separate Lagrangian forces, an internal force

density (throughout the volume) and a transmission force density (restricted to the surface),

while the other maintains a unified formulation of both forces. For more, see recent work

by Boyce Griffith [43]. This method uses a coarser Lagrangian mesh than the traditional IB

method, despite higher accuracy. It also exhibits improved volume conservation properties

over both the traditional IB method and the IFE method. The method also allows for

the easy evaluation and inclusion of constitutive models in the well-studied finite element

formulation. The unified formulation conserves energy. The Finite Element formulation

works well with both structured and unstructured surfaces (and/or volumes). In a sense,

this method is similar to the method we will introduce in Chapters 2 and 3, but is too costly

to use for platelets, given that platelets are usually modeled as simply connected objects

that are homeomorphic to the sphere (either S1 or S2).

1.2 Simulating Platelet Mechanics

In the unactivated state in which platelets circulate, they are fairly rigid ellipsoidal cells

with a major axis of 2 to 3 microns and an aspect ratio of close to four. Unactivated

platelets do not adhere to one another or to the intact endothelial cell lining of the blood

vessels. While very numerous in the blood (≈ 250,000/µliter), they are much smaller and

far less numerous than the red blood cells, which comprise 40-45% of the blood’s volume. It

is the red blood cells rather than individual platelets that determine the blood’s rheological

properties [84].

Among the many changes that an activating platelet undergoes, two are most relevant

for modeling and simulating the mechanics of aggregation. One is that αIIbβ3 integrin

receptors embedded in its surface membrane become activated and capable of binding

dimeric fibrinogen molecules and multimeric vWF molecules from the blood plasma. By

binding to receptors on two platelets, these molecules serve as links between the platelets

that allow them to cohere. The second is that the platelet’s cytoskeleton is reorganized,

and as a result, the platelet initially becomes more spherical. However, it also becomes

sufficiently flexible that over time, it can spread out over the surface to which it is adhered.

Activation can also be triggered when a platelet is exposed to sufficiently high concentrations

of specific chemicals that are secreted into the plasma by other activated platelets. Thus,

platelets near the injury site (but which do not directly contact the damaged vascular

4

wall) can be activated, and these chemically-activated platelets can also cohere with one

another and with the wall-adherent platelets. Through these mechanisms, a platelet clump

or aggregate grows at the injury site. As it grows, the aggregate can profoundly change

the local fluid dynamics (to the extent that vessel occlusion can occur). Conversely, the

changing fluid dynamics influence the further growth of the platelet aggregate both in terms

of changes in the transport of platelets and chemicals to and from the injury site, and in

terms of fluid forces which affect the binding and unbinding kinetics of the bonds between

platelets and the subendothelium and between pairs of platelets.

Disruption of the endothelial cell lining exposes collagen and adsorbed von Willebrand

factor (vWF) molecules in the subendothelial matrix to the blood. Platelets adhere to both

molecules via specific receptor molecules on the platelets’ surfaces. In addition to slowing

or stopping platelet motion over the subendothelium, this binding triggers intracellular

signaling pathways that lead to platelet activation [49, 71].

The platelet aggregation models developed by Fogelson et al. [17, 21, 24, 23, 95] track

the motion and behavior of a collection of individual platelets as they interact with the

suspending fluid, one another, and the vessel walls. They also track fluid concentrations

of platelet activating chemicals, cell-cell and cell-surface forces, fluid motion, and the local

fluid forces on the growing thrombus. In the models, nonactivated platelets are activated

by proximity to reactive sites on the injured wall, or through exposure to a sufficiently

high concentration of activator in the fluid. Activation enables a platelet to cohere with

other activated platelets, and to secrete additional activator. The platelets and the secreted

chemical are advected with the fluid and diffuse relative to it. Each platelet is represented

as an IB object, i.e., as a collection of elastically-linked Lagrangian points that each move at

the local fluid velocity. New elastic links are created dynamically to model the adhesion of

a platelet to the injured wall or the cohesion of activated platelets to one another. Multiple

links can form between a pair of activated model platelets or between a model platelet and

the injured wall, and these links collectively represent the ensemble of molecular bridges

binding real platelets to one another or to the damaged vessel. The links exert forces on

the surrounding fluid to resist motions which would otherwise separate the linked entities.

Links may break if subjected to sufficiently high stress. Model variables are fully coupled:

the fluid carries the activator and platelets, while the interplatelet forces, potentiated by

chemically-induced activation of the platelets, determine the local flow.

The Immersed Boundary (IB) method was developed to study the interactions of a

viscous incompressible fluid with one or more moving and/or deformable elastic objects in

5

contact with that fluid. To review the IB method, we focus on a simple two-dimensional

model problem in which a single fluid-filled closed elastic membrane is immersed in a viscous

fluid.

The physics of the model problem is that an elastic membrane is under tension and exerts

forces on the adjacent fluid. These forces may cause the fluid to move and, correspondingly,

cause points on the membrane to move along with the fluid. In the IB method, the fluid

is described in the Eulerian frame through a velocity field u(x, t) and pressure field p(x, t)

defined at every point x in the physical domain Ω. The elastic membrane is described in the

Lagrangian frame. Let the elastic membrane be parameterized by q, and denote by X(q, t)

the spatial coordinates at time t of the membrane point labeled by q. The IB equations are

the following coupled equations of motion for the fluid variables u(x, t) and p(x, t) and the

membrane configuration X(q, t).

ρ(ut + u · ∇u) = −∇p+ µ∆u+ f , ∇ · u = 0, (1.1)

F (q, t) = F

(
X(q, t),

∂

∂q
X(q, t)

)
, (1.2)

f(x, t) =

∫
F (q, t) δ(x−X(q, t)) dq, (1.3)

∂X

∂t
(q, t) =

∫
Ω
u(x, t) δ(x−X(q, t))dx. (1.4)

Equations (1.1) are the Navier Stokes equations which describe the dynamics of a viscous

incompressible fluid, of constant density ρ and constant viscosity µ, driven by a force

density f which here arises because of the elastic deformation of the immersed membrane.

Equation (1.2) specifies the elastic force (per unit q) at each point of the immersed boundary

object. The functional dependence of this force on the state of the boundary is specified

appropriately to the material being modeled. Equation (1.3) defines the fluid force density

f(x, t) in terms of the immersed boundary elastic force density F . Equation (1.4) specifies

that the velocity of each immersed boundary point equals the fluid velocity at the same

location, a formulation of the no-slip boundary condition for viscous flows. In the model

problem and the platelet applications, we assume that the IB objects are neutrally buoyant;

the IB membrane itself carries no mass and each object’s mass is attributed to the fluid in

which it sits. For more on the IB method, see [67].

Chapters 2 and 3 of this dissertation will focus on extending the IB method for more

efficient platelet simulations. Chapter 2 will focus on exploring different modeling strategies

for static platelet-like shapes, and compare them to the traditional modeling strategies

used for Lagrangian structures in the IB method. Chapter 3 will then augment the IB

6

method with the model developed in Chapter 2 and explore the ramifications within a full

fluid-structure interaction setting.

1.3 Simulating Platelet Chemistry

Consider a stationary fluid in which there are a number of suspended objects on whose

surfaces chemical reactions may occur. Some of the chemical may unbind from the surface

of a particular object, thus entering the fluid phase, and undergo diffusion in the fluid. This

chemical may bind to the surface of the same or a different one of the suspended objects,

and when bound may diffuse on the surface of the suspended object. At each point on

the objects, the flux of chemical to (from) that surface should exactly balance the rate of

consumption (production) of the chemical on that surface. That is, there should be no

flux of the chemical across the surfaces of the moving objects. We wish to determine the

surface density (amount/area) of the chemical bound at each point of the suspended objects’

surfaces and determine the concentration of chemical at points of the fluid phase as well.

The specific situation we have in mind is intravascular blood clotting. The fluid is blood

plasma, and the objects are small blood cells called platelets that normally circulate in the

blood. During the clotting process, platelets can become activated, allowing them to stick

to one another and to the vascular wall. We have modeled this process (following [22])

using the Immersed Boundary method [67] to determine the coupled motion of the fluid

and platelets. In these calculations, the no-slip condition holds on the platelet surfaces, i.e.,

the velocity at each point of the platelet matches that of the immediately adjacent fluid.

The chemicals of interest in the current work are those involved in conveying ‘activation’

signals between platelets [22] and those involved in the coagulation enzyme network [54].

In summary, we seek to solve a reaction-diffusion equation for each chemical on a platelet

surface, where the reactions are coupled to diffusion equations in the blood around the

platelet. Appropriate boundary conditions are to be satisfied at all points of the surfaces

of the platelets (and external boundaries).

There are a variety of Cartesian grid methods that can be used to solve partial differential

equations (PDEs) in the presence of irregularly-shaped objects within the domain. The

widely-used Immersed Boundary (IB) method introduced by Peskin [65, 66] uses a discrete

delta function to spread boundary forces from the IB surface to the fluid, and then the

discrete fluid dynamic equations are solved using a regular discretization on a rectangular

grid everywhere in the domain. The forcing methods introduced by Goldstein [39], Mohd-

Yusof [61], and Kim et al. [53] follow the idea of the IB method in using forces to represent

7

objects embedded in a flow, but calculate the forces using feedback terms or numerical

corrections to approximately enforce boundary conditions. Fadlun [14] introduces direct

forcing without modification of the stencil; but, in the end, he applies the forcing in an

implicit way by modifying the stencil at grid points near the irregular boundaries. The

Immersed Interface method of LeVeque and Li [57], the Embedded Boundary (EB) method

of Johansen and Collela [51], the sharp interface method of Udaykumar and coworkers

[85, 94], and the capacity function finite volume method of Calhoun and LeVeque [7] all

modify the stencil at grid points near the irregular surfaces. Because of the explicit inclusion

of the boundary conditions in the linear system, the methods with changed stencil often

have better accuracy and stability than the direct forcing methods, while the simpler grid

and uniform stencils of the latter make them easier to implement and allow use of fast

solvers.

The Augmented Forcing Method (AFM) was developed to solve the problem of simu-

lating chemical diffusion for stationary fluid and platelets, with the end goal of eventually

simulating chemical transport for full platelet simulations within the IB method [93]. The

key idea of the AFM (as presented in [93]) is to solve a discrete PDE at all NT grid points,

except that at some specific NF forcing points on the grid, the discrete PDE is modified by

the addition of a forcing term that enforces boundary conditions. The hope is to capture the

accuracy of implicit forcing while retaining some measure of the computational efficiency of

direct forcing.

We discretize the PDE for fluid-phase chemical concentrations using a second-order five

point stencil for the Laplacian in space and the second-order Crank-Nicolson scheme in

time. Let A be the matrix formed from the discretization of a chemical diffusion equation

(see Equation (4.1)) and r be the right-hand side vector from that discretization. Let P be

an NT ×NF matrix that maps each forcing point index to the index of the corresponding

grid point in the overall ordering of the grid unknowns used in the vector of chemical

concentrations c, i.e., all the entries of P are zero except for those locations corresponding

to forcing point locations, which are one. Let F be a vector whose NF entries contain the

forcing values. Let E be an NF ×NT matrix that enforces boundary conditions as described

below. Then, we require the solution of the following block system of equations:(
A P
E 0

)(
c
F

)n+1

=

(
r
rbc

)
. (1.5)

This system is solved in two stages.

8

• First, we find F by solving the Schur Complement system of the above block system

using the BiCGSTAB iterative method. This system is as follows:

−EA−1PF = rbc − EA−1r. (1.6)

• Having solved for F, we then solve for the chemical concentrations by solving Ac =

r−PF. We use a conjugate gradient solver preconditioned by the modified incomplete

Cholesky factorization of A.

In the AFM as implemented in [93], for each forcing point, the boundary condition at

the corresponding boundary point (see Section 4.3) and the concentrations at five nearby

fluid points are used to construct a bivariate quadratic interpolant tht satisfies the boundary

condition at the boundary point. A value of c at the forcing point is obtained by evaluating

this polynomial at the forcing point. Since the fluid concentrations are still to be determined,

this gives an implicit relationship between the forcing point concentration and those at the

five fluid points. This relationship is used to populate one row of the matrix E. With this

approach, if two platelets are close to one another or the shape of the platelet is concave,

there may not be a sufficient number of points necessary to perform this interpolation. In

such a case, grid refinement is necessary to introduce sufficient spacing between objects.

Chapter 4 in this dissertation will focus partly on overcoming this limitation of the AFM

using symmetric Hermite interpolation (to be discussed shortly). The primary focus of

Chapter 4, however, will be the development of a new method based on RBF-generated

finite differences for the simulation of reaction-diffusion equations in the context of our

Hermite interpolation variant of the AFM.

1.4 Radial Basis Function Interpolation

1.4.1 Overview

In this section, we will present background information and the formulation for two

important variations of RBF interpolation that will be used in this thesis. First, we

will discuss RBF interpolation of function samples on scattered node sets; this could

be called RBF Lagrange interpolation, but we do not use that title and so avoid any

inadvertent confusion about Lagrange interpolating polynomials. Next, we will discuss RBF

Hermite interpolation, an important generalization of polynomial Hermite interpolation.

RBF interpolation will be used extensively in this thesis, and RBF Hermite interpolation

will be used in Chapter 4.

9

1.4.2 RBF Interpolation

We present an overview of RBF interpolation, which is essential to understanding

the RBF-based geometric modeling approach outlined in Chapters 2 and 3, the RBF-FD

approach used in Chapters 3 and 4, and the symmetric Hermite interpolation approach used

in Chapter 4. This section also presents notation that is more convenient for expressing

the RBF interpolation problem on point clouds, which will be modified (as appropriate) in

later Chapters depending on the context in which RBF interpolation is used. Let Ω ⊆ Rd,

and φ : Ω× Ω→ R be a kernel with the property φ(X,Y) := φ(‖X − Y ‖) for X,Y ∈ Ω,

where ‖ · ‖ is the standard Euclidean norm in Rd. We refer to kernels with this property as

radial kernels or radial functions. Given a set of nodes X = {Xk}Nk=1 ⊂ Ω and a continuous

target function f : Ω → R sampled at the nodes in X, we consider constructing an RBF

interpolant to the data of the following form:

Iφf(X) =
N∑
k=1

ckφ(‖X −Xk‖) + cN+1. (1.7)

The interpolation coefficients {ck}N+1
k=1 are determined by enforcing Iφf |X = f |X and∑N

k=1 ck = 0. This can be expressed as the following linear system:
φ(r1,1) φ(r1,2) . . . φ(r1,N) 1
φ(r2,1) φ(r2,2) . . . φ(r2,N) 1

...
...

. . .
...

...
φ(rN,1) φ(rN,2) . . . φ(rN,N) 1

1 1 . . . 1 0

︸ ︷︷ ︸

AX

c1

c2
...
cN
cN+1

︸ ︷︷ ︸

cf

=

f1

f2
...
fN
0

︸ ︷︷ ︸
fX

, (1.8)

where ri,j = ||Xi−Xj ||. If φ is a positive-definite radial kernel or an order one conditionally

positive-definite kernel on Rd, and all nodes in X are distinct, then the matrix AX above

is guaranteed to be invertible (see, for example, [88, Ch. 6–8]).

For completeness, it is useful to extend the above discussion to the interpolation of

vector-valued functions g(X) : Ω→ Rd sampled at a set of nodes X = {Xk}Nk=1 ⊂ Ω. For

this problem, we simply apply scalar RBF interpolation as given in Equation (1.7) to each

component of g(X) and represent the resulting interpolant as IΦg. For example, if d = 3

and g =
[
gx gy gz

]T
, then the vector interpolant is given as

IΦg(X) =
[
Iφg

x(X) Iφg
y(X) Iφg

z(X)
]
. (1.9)

The interpolation coefficients for each component of IΦg can be determined by solving a

system of equations similar to Equation (1.8), but with the right-hand side replaced with

10

the respective component of g sampled on X. This allows some computational savings for

determining the interpolation coefficients for Iφf and IΦg with a direct solver since the

matrix AX then only needs to be factored once. We exploit this fact in Chapter 5.

There are many choices of positive definite or order one conditionally positive definite

radial kernels that can be used in applications; see [15, Ch. 4, 8, 11] for several examples.

These kernels can be classified into two types: finitely smooth and infinitely smooth. It

is still very much an open question about which kernel is optimal for which application.

Typically infinitely smooth kernels such as the Gaussian (φ(r) = exp(−(εr)2)), multiquadric

(φ(r) =
√

1 + (εr)2), and inverse multiquadric (φ(r) = 1/
√

1 + (εr)2) are used in the RBF

methods for numerically solving PDEs [77, 91, 3, 12, 18, 36].

All infinitely smooth kernels feature a free “shape parameter” ε, which can be used

to change the kernels from peaked (large ε) to flat (small ε). For smooth target func-

tions, smaller values of ε generally lead to more accurate RBF interpolants [28, 55]. The

standard way of computing the interpolant by solving Equation (1.8) becomes increasingly

ill-conditioned as the size of the system grows, or as ε → 0 [29]. While stable algorithms

have been developed for bypassing this ill-conditioning (see [27]), these algorithms require

knowledge of surface topology. In Chapter 5, we will detail strategies for selecting the

shape parameter based on condition numbers of RBF interpolation matrices. We will also

introduce (in the same chapter) a strategy for modifying the shape parameter to produce

interpolants that compensate for irregularities in point spacing.

1.4.3 Symmetric Hermite Interpolation

Thus far, we have seen how RBFs can be used for the interpolation of function data

on scattered node sets. This can be viewed as the RBF-analog of Lagrange interpolation,

with the term “Lagrange interpolation” not referring to the use of a Lagrange basis for

a polynomial interpolant, but rather the fact that polynomial interpolation is being used

to reconstruct a function using samples of that function. However, it is possible with

polynomial methods to incorporate extra information in the form of samples of successive

derivatives of functions into the interpolant. This form of interpolation (of function values

and successive derivative values) is called Hermite interpolation and is well-known in the

literature. While this is commonly used in 1D settings, polynomial Hermite interpolants

are often difficult or impossible to generalize to higher dimensions or to more general linear

functionals than derivatives, especially when the data locations are nonuniform. For these

problems, the RBF Hermite interpolation method [15, Chapter 36] offers a powerful solution

that can be generalized to scattered nodes and various differential and integral constraints

11

(e.g., see [4, 91]). This method is also called symmetric Hermite interpolation, or generalized

Hermite interpolation. We now present an overview of Hermite interpolation in the RBF

context. The following discussion is adapted primarily from [15, Chapter 36].

Let Ω ⊆ Rd, and φ : Ω × Ω → R be a radial kernel. Given a set of nodes X =

{Xk}N+M
k=1 ∈ Ω, a continuous target function f : Ω → R sampled at a subset of the nodes

in X so that we have {fi}Ni=1, and samples of linear functionals applied to that function

{Ljfj}Mj=N+1, we consider constructing an RBF interpolant of the following form:

Iφf(X) =
N∑
i=1

ciφ(‖X −Xi‖) +
M∑

j=N+1

c′jL
Xj

j φ(‖X −Xj‖), (1.10)

where the superscript in LXj

j refers to the argument with respect to which Lj is applied.

We obtain a 2×2 block system of linear equations by imposing the interpolation conditions

Iφf(Xi) = fi, i = 1, 2, . . . , N, (1.11)

LjIφf(Xj) = Ljfj , j = N + 1, . . . ,M. (1.12)

Note that despite our selection of continuous indices for notational convenience, this method

requires no ordering on function samples or samples of linear functionals applied to the

function. Indeed, both the function data and derivative data can be scattered over the nodes

in X, possibly overlapping on some nodes and not overlapping on others. It is also worth

noting that the second interpolation condition requires applying functionals to functionals.

This block system is symmetric and nonsingular for both positive-definite and conditionally

positive-definite kernels provided the functionals are linearly independent [80, 62, 48]. This

now provides us a powerful tool to interpolate scattered samples of linear functionals applied

to functions in arbitrary dimensions. For completion, we note that much like in Section

1.4.2, this discussion can be easily extended to vector-valued data as well. In the context of

this work, however, we will be applying symmetric Hermite interpolation to scalar-valued

data in 2D domains, with linear functionals arising from Robin boundary conditions on

PDEs.

1.5 RBFs for the solution of PDEs

In this section, we present an overview of numerical methods for the solution of PDEs

based on RBF interpolation. Every scheme discussed in this section uses some form of RBF

interpolation and differentiation for the spatial discretization of a PDE, leveraging the ad-

vantages of RBFs to enable the solution of PDEs on point clouds and in a meshfree fashion.

We will discuss the RBF-based Pseudospectral (RBF-PS) method, the RBF-generated finite

12

difference (RBF-FD) method, and some other popular methods that we do not use in this

work. In our discussion, we will focus on methods applicable to platelet aggregation. Since

current discretizations of the IB method and the AFM use Eulerian grids for fluid dynamics

and are reasonably numerically efficient, we will emphasize the use of RBF methods for the

solution of PDEs on closed surfaces (like platelets and red blood cells) without boundary

conditions.

1.5.1 RBF-based Pseudospectral Method (RBF-PS)

The idea behind pseudospectral (PS) methods is to represent the solution of a PDE

using a smooth and globally-supported set of basis functions [25]. Unlike numerical methods

based on the weak form of a PDE, PS methods are collocating methods, i.e., they attempt

to satisfy the PDE at a discrete set of points in the domain (known as collocation points or

nodes). If û is the approximate solution to a PDE, we write

ûi =

N∑
k=1

ckBk(xi), (1.13)

=⇒ u = Ac. (1.14)

where A is the matrix of basis functions evaluated at the collocation points xi, u is the vector

of samples of the solution û at the collocation points, and c is the vector of coefficients.

Given a linear PDE of the form Lu = f , where L is a linear differential operator, we may

write

u′ = ALc, (1.15)

where u′ is the discrete form of the linear operator L applied to the vector u and AL is the

matrix formed by applying the operator L to the basis functions and evaluating the resulting

function at the collocation points. Simplifying, we have u′ = Lu, where L = ALA
−1. The

matrix L is traditionally called a differentiation matrix because it usually involves derivatives

of the basis functions. For a fixed set of collocation points, L can be precomputed and

reused through the simulation. A popular choice (in 1D) of basis functions is Chebyshev

polynomials, an orthogonal family of polynomials, with the collocation points being selected

as Chebyshev points. With appropriate boundary conditions, the Chebyshev differentiation

matrix Lc is usually invertible and therefore usable in an implicit time-stepping scheme for

the PDE, though this is not always the case [83]. When one opts to use smooth RBFs

with global support (like the (Inverse) Multiquadric or the Gaussian) as the basis by

setting Bk(x) = φ(||x − xk||), we obtain an RBF-PS method; this approach generalizes

13

to higher dimensions because of the previously discussed features of RBF interpolation.

Boundary conditions can be incorporated into the differentiation matrix using the Hermite

interpolation approach outlined previously. If the solution to the PDE is smooth, this

method can give spectral accuracy and convergence. Further, if the RBF is positive definite

and L elliptic, the differentiation matrix L is always invertible, even on ill-posed problems!

For a more detailed discussion on RBF-PS methods on planar domains, see [15].

An application of great interest is the solution of PDEs on closed surfaces (and mani-

folds), where the only boundary conditions are the restriction of the solution to the surface

itself. Several of the applications of RBF-PS to the solution of PDEs on surfaces focused

on approximating differential operators on the sphere [19, 20, 26]; these methods were

so-called intrinsic methods, in that they used points only on the sphere S2 to solve PDEs

on that surface. Another class of methods is the set of embedded, narrow-band methods,

that extend the PDE to the embedding space and solve it in a narrow-band around the

surface, thus enabling the method to handle more arbitrary surfaces. One such method is

the popular Closest Point method, a polynomial-based method [60]. A similar method is the

recently-developed (RBF-based) Orthogonal Gradients method [68]. However, narrow-band

methods are not as computationally efficient as intrinsic methods. This problem was

addressed by Fuselier and Wright in their recent work [36]. This is the first RBF-PS

method that works on general surfaces. The method combines the efficiency of intrinsic

methods with the stability of the narrow-band approaches. It was tested on diffusion and

reaction-diffusion equations. Chapter 5 of this thesis is focused on modifying Fuselier and

Wright’s method to use a finite-difference approach rather than a pseudospectral approach.

1.5.2 RBF-generated Finite Differences (RBF-FD)

Finite-difference (FD) methods have been used for decades in the spatial and temporal

discretization of PDEs. As in the previous subsection, we focus on the spatial discretization.

While PS methods offer an excellent accuracy-cost profile, they depend on the solution

being globally smooth. In addition, PS approximations of linear operators result in dense

matrices, which can be very expensive to invert especially if the collocation nodes themselves

change as a function of time (which will happen on an evolving surface or a problem with

mesh/node refinement). FD methods offer a compromise between cost and accuracy by

approximating derivatives. To compute an n−point finite difference formula, one uses the

function value at a point and its n− 1 nearest neighbors, where n << N , the total number

of nodes in the discretization of the domain . They thus have a cost scaling as O(N) when

n << N . This is in contrast to the O(N3) cost incurred by PS methods. FD methods, on

14

the other hand, display algebraic convergence rather than spectral convergence. However,

they can be more accurate than PS methods on problems that have rough solutions.

There are many ways to generate FD approximations to derivatives. The simplest way

is by returning to the limit definition of a derivative, dropping the limit, and using a

very small space (or time) step. A more principled way of generating FD approximations

to the derivatives of a function is by expanding the Taylor series of the function in the

neighborhood of the point at which we wish the derivative, rearranging terms in the Taylor

series to express the derivatives that appear in the Taylor expansion in terms of linear

combinations of function values, and then truncating the Taylor expansion at a desired

number of terms. The leading order of the Taylor expansion determines the order of the FD

approximation to the derivative. However, this procedure can grow tedious as one proceeds

to higher-order approximations or higher derivatives. Further, this procedure can be even

more cumbersome when the points at which we require derivatives are not evenly-spaced.

In 1D, the simple solution is to realize that standard FD formulae for some derivative can

also be generated by interpolating those derivatives with a monomial basis and computing

the interpolation weights (which turn out to be identical to the finite difference weights

from Taylor polynomials). This procedure was described in detail by Fornberg [30], and has

a cost of O(n3) for an n−point FD formula. If all points in the domain are equispaced, one

can calculate the weights once and reuse them throughout the domain, resulting in a sparse

N × N differentiation matrix. This approach generalizes to equispaced nodes in higher

dimensions as well. However, given a set of scattered nodes in two or three dimensions,

the multivariate polynomial interpolation matrix may be singular. Instead, one can use

the fact that RBFs are extensions of polynomial interpolants to scattered node sets (for a

shape parameter of ε > 0) and replace the monomial basis with an RBF basis, allowing us

to generate finite-difference formulae on platelet surfaces.

For clarity, consider generating a 3-point RBF-FD approximation for the first deriva-

tive at some point x = xc using points x1, x2 and x3 in 1D. Defining the vector b =

[d
dxφ(||x− x1||)

∣∣
x=xc

, d
dxφ(||x− x2||)

∣∣
x=xc

, d
dxφ(||x− x3||)

∣∣
x=xc

]T , the unknown vector of

RBF-FD weights w1 and the RBF interpolation matrix Aij = φ(||xi − xj ||), we have

Aw1 = b. (1.16)

The only difference from the monomial case is the way the matrix A is generated. Note

that we could have taken another approach, one that is similar to the PS approach but

using only n = 3 points out of all N points in the domain. This approach involves forming

and inverting the RBF interpolation matrix A, then premultiplying it by the matrix of

15

derivatives of basis functions evaluated at x = xc. In the notation we just developed, this

matrix is simply bT . We thus have a second possible set of weights w2 = bTA−1. It is easy

to see that w1 = wT
2 if A = AT . In other words, if the matrix is symmetric (as it is when

using RBF interpolation), both approaches yield the same set of weights. In Chapter 4, we

will use the approach described by Equation (1.16) to generate the RBF-FD weights for

the gradient of a function on a 1D surface, and then combine those weights appropriately

to generate an approximation to the surface Laplacian. However, in Chapter 5, we will use

the second approach of interpolating and differentiating successively to compute Laplacians

on a 2D surface. The rationale for this will be explained in Chapter 5. Also, as we will

mention in Chapter 5, even when solving PDEs on arbitrary manifolds, it is sufficient to

perform RBF interpolation in the embedding space, despite the overall method being an

embedded method.

We note that while the RBF-FD method has proven successful for a number of other

applications in planar domains in two and higher dimensions (e.g., [82, 77, 8, 91, 9, 78]),

and on the surface of a sphere [26, 18], this work represents the first application of RBF-FD

to general 1D surfaces (Chapter 4) as well as 2D surfaces (Chapter 5).

1.5.3 RBF Partition of Unity Method (RBF-PUM)

We will now discuss the use of RBFs within the so-called Partition of Unity method

(PUM) for interpolation and the solution of PDEs. Let Ω ⊆ Rd be the domain of interest.

The idea of the Partition of Unity method is to partition this domain into some set of M

overlapping subdomains. Each domain has a compactly-supported, nonnegative continuous

function wj associated with it such that for every point x in Ω, we have

M∑
k=1

wj(x) = 1. (1.17)

The next step is approximate the function of interest and its derivatives on each subdomain

by constructing a local RBF interpolant u(x). The global approximation to the function

on the domain is then
∑M

k=1 uk(x)wk(x). Note the similarity to the RBF-FD approach

in the local interpolation strategy; however, the RBF-PUM has the added advantage of

“stitching” together the local interpolants into a global approximant using the partition of

unity functions wk. If the M partitions are chosen well, this method can give very high

orders of convergence, with the computational cost growing as O(N), N being the total

number of collocation points in the domain. The constant associate with this method is

higher than that in the RBF-FD method, but again, this method is very promising. Recent

16

work by Safdari, Heryudono, and Larsson (see [70]) has demonstrated the viability of using

the RBF-PUM method for the solution of convection-diffusion equations on planar domains.

Work is currently in progress on implementing the RBF-PUM for the solution of transport

equations on the sphere. For a detailed review on the RBF-PUM, see [15]. In this work, we

will not focus on the RBF-PUM.

1.6 Overview of Thesis Topics

To substantiate the thesis that RBF interpolation is well-suited to the development of

numerical methods for platelet aggregation, we propose the following contributions, outlined

in each chapter of this dissertation:

• In Chapter 2, we present a new RBF-based parametric approach to modeling platelets,

to facilitate simulations of mechanical interactions between platelets as well as simu-

lations of chemical transport during platelet aggregation. This work was published in

Applied Numerical Mathematics [72].

• In Chapter 3, we augment the IB method with our RBF-based parametric model, and

explore the effects of this choice on the IB method. We compare the new RBF-IB

method to the traditional IB method in terms of accuracy and computational cost

for two-dimensional problems, and present the results of a simple platelet aggregation

simulation. This work has been submitted to the Journal of Computational Physics

[74].

• In Chapter 4, we present the first RBF-FD method for the simulation of reaction-

diffusion equations on arbitrary surfaces embedded in 2D domains. We also modify

the Augmented Forcing Method (AFM) with symmetric Hermite interpolation to

remove a significant limitation of that method. We present a numerical method that

uses our RBF-FD method within the modified AFM for the solution of a coupled

problem involving chemical reaction-diffusion on platelet surfaces and chemical diffu-

sion in the domain in which the platelets are embedded. We show that this method

exhibits second-order convergence in space and time. This work was accepted to the

International Journal for Numerical Methods in Fluids [73]. This chapter also used

the RBF geometric model developed in Chapter 2.

• In Chapter 5, we extend the RBF-FD method from Chapter 4 to surfaces of co-

dimension 1 embedded in 3D domains. This is the first RBF-FD method for diffusion

and reaction-diffusion equations on general surfaces. We also present a method based

on modification of shape parameters for the stabilization of the differential operators

17

arising in the context of reaction-diffusion equations, removing the need for popular

hyperviscosity-based stabilization approaches. We present convergence results on the

sphere and torus, and present applications based on Turing pattern generation on

surfaces and point clouds. This work has been submitted to the Journal of Scientific

Computing [75].

• In Chapter 6, we summarize the contributions of this dissertation as outlined in

Chapters 2-5. We then present four potential lines of research as a natural extension

of the research outlined in this dissertation; all four research projects continue to

develop the theme of RBF-based numerical methods for biological applications.

CHAPTER 2

GEOMETRIC MODELING OF PLATELETS

2.1 Introduction

In IB modeling, inactive platelets are approximately elliptical or ellipsoidal in 2D and

3D, respectively, while activated platelets are approximately circular in 2D and spherical

in 3D. Piecewise linear approximations of platelets are currently used within IB methods

applied to platelet aggregation (e.g., [17, 21, 24]). We seek to explore alternative methods for

the modeling of platelets that might decrease the computational time necessary to maintain

and update platelet geometry and motion with comparable or better error characteristics

to the standard piecewise linear models.

In this chapter, we examine two alternative representations for platelets: interpolation

with Fourier-based techniques (trigonometric polynomials in 2D and spherical harmonics

in 3D) and interpolation with radial basis functions (restricted to the unit circle in 2D

and unit sphere in 3D). Fourier methods have frequently been used for the modeling of

circular and spherical objects (e.g., [76]). A recent result of Fornberg and Piret shows that

both trigonometric polynomials and spherical harmonics are just special cases of radial

basis functions (RBFs) when one chooses the shape parameter in a particular limit [27].

Additionally, error estimates for RBF interpolation on the circle and sphere have been given

for a much wider range of target functions than just C∞ [47, 50, 63].

To perform a platelet IB computation, one must (1) have a representation of the surface

of the platelet and (2) be able to compute forces (internal structural forces) at a specified

collection of material points on the platelet surface. Once forces are determined, they are

“projected” to an Eulerian mesh in which they are incorporated into the solution of the

Navier-Stokes equations for determining the motion of the fluid. Based upon the updated

fluid velocity field, the platelet’s position and shape are updated. We will not detail how

the projection and interpolation are accomplished as this has been amply discussed in

other works (e.g., [64]). Our focus is instead restricted to models for representing the

platelet objects and how these can be used for constructing and maintaining the object’s

representation, computing the normal vectors to the object, and computing the internal

19

structural forces.

For results, we will compare the piecewise linear, Fourier, and RBF methods for two dif-

ferent shapes in 2D and two different shapes in 3D that typify observed platelet geometries.

We compare the errors in reconstructing these shapes, computing the normal vectors, and

computing the forces. We provide a discussion of the engineering trade-offs we observe with

respect to error and computational costs. Our results indicate that the RBF and Fourier

models are viable alternatives to the piecewise linear models for platelet-like geometries in

terms of errors versus computational cost. We furthermore find that the RBF models give

better results for objects of varying smoothness than the Fourier models, and thus appear

to be more promising in applications.

2.2 Geometric Modeling Strategies

In this section, we present the three different geometric modeling approaches to be

examined. We first present the (traditional) piecewise linear approach for modeling two-

and three-dimensional platelet structures. We then present our two alternative strategies

based on a parametric representation of the surface: Fourier-based models (trigonometric

series in 2D and spherical harmonic series in 3D) and radial basis function (RBF) models.

Implementation details for all three methodologies are provided in Section 2.4.

2.2.1 Piecewise Linear Models

In the traditional (IB) method, parametric representations of the surface are rarely

formed explicitly. Typically, a piecewise linear representation of the boundary is maintained.

In 2D, the piecewise linear interpolant is a set of line segments between pairs of IB points.

However, to perform secondary computations (such as computing normals) with a greater

level of accuracy than what the piecewise linear interpolant would offer, piecewise quadratic

interpolants are typically fitted to a set of IB points (e.g., [92, §3.1.1]).

Given a parameter λ, the piecewise quadratic representation is therefore defined as:

x(λ) ≈ axλ2 + bxλ+ cx, (2.1)

y(λ) ≈ ayλ2 + byλ+ cy. (2.2)

The coefficients are computed by solving two linear systems of equations for each IB point;

the right-hand sides to these systems of equations are simply the x and y coordinates of

the three IB points to which the piecewise quadratics are fitted. Once the coefficients are

obtained, one can now compute derivatives (and therefore normals and other quantities) at

each IB point.

20

In 3D, the piecewise linear interpolant is a triangulation of the IB points (e.g., [24]).

An example of such a triangulated surface is given in Figure 2.1. Secondary computations,

such as computing normals and forces, are computed from the triangulation as discussed in

Section 2.4.1.

2.2.2 Parametric Models

The Fourier and RBF models we propose are both based on explicit parametric represen-

tations of the objects. Since our target objects are platelets, which in 2D models are nearly

elliptical or circular and in 3D models are nearly ellipsoidal or spherical, we choose circular

(or polar) and spherical parameterizations in 2D and 3D, respectively. Before discussing

the two modeling approaches, we introduce some notation and put the modeling problem

in the context of a reconstruction problem using interpolation.

In 2D, we use the following polar parametric notation to represent any of the objects:

x(λ) = (x(λ), y(λ)), (2.3)

where −π ≤ λ ≤ π and x(−π) = x(π). In the case the object is a circle of radius r, x(λ) =

(r cosλ, r sinλ). In general, given a finite collection of values of the object, {x(λk)}Nd
k=1 =

{(x(λk), y(λk))}Nd
k=1, our goal is to reconstruct x(λ) from smooth interpolations of each of

Figure 2.1: Illustration of the triangulation of a set of IB points in 3D.

21

its components. We refer to these values as the data sites and the set of values {λk}Nd
k=1 as

the nodes. Figure 2.2 illustrates this reconstruction problem, of which the main ingredient

is the interpolation of a function defined on the unit circle.

In 3D, we represent any of the objects using the following spherical parametric notation:

x(λ, θ) = (x(λ, θ), y(λ, θ), z(λ, θ)), (2.4)

where −π ≤ λ ≤ π and −π/2 ≤ θ ≤ π/2. Here the end conditions on x in λ are x(−π, θ) =

x(π, θ), while the end conditions in θ are x(λ, π/2) = x(λ + π, π/2) and x(λ,−π/2) =

x(λ + π,−π/2) for −π ≤ λ ≤ 0 and x(λ, π/2) = x(λ − π, π/2) and x(λ,−π/2) = x(λ −

π,−π/2) for 0 < λ ≤ π. These end conditions on θ are to enforce continuity of x at

the poles of the spherical coordinate system. In the case the object is a sphere of radius

r, x(λ, θ) = (r cosλ cos θ, r sinλ cos θ, r sin θ). Similar to 2D, our goal is to reconstruct a

general object x(λ, θ) from smooth interpolations of each of its components which are given

0.85 0.9 0.95 1 1.05

0.85

0.9

0.95

1

Object

x(λ) = (x(λ), y(λ))

x(λk) = (x(λk), y(λk))

−3 −2 −1 0 1 2 3

0.85

0.9

0.95

1

1.05

x(λ)

λ
−3 −2 −1 0 1 2 3

0.85

0.9

0.95

1

y(λ)

λ

Figure 2.2: Illustration of the parametric representation of a 2D object x(λ) and the
reconstruction from a finite number of data sites. The top figure shows the 2D object
together with discrete data sites x(λk) = (xk, yk). The bottom left figure shows the x
component of the object in parametric space and its values at the node set {λk}Nd

k=1, while the
right figure shows the y component and its corresponding values. The goal is to reconstruct
x(λ) and y(λ) from interpolations of these values at the node sets shown and then use these
to reconstruct x(λ).

22

at some finite collection of locations {x(λk, θk)}Nd
k=1 = {(x(λk, θk), y(λk, θk), z(λk, θk))}Nd

k=1.

We again refer to these values as the data sites and {(λk, θk)}Nd
k=1 as the nodes. Figure 2.3

illustrates this reconstruction problem, of which the main ingredient is the interpolation of

a function defined on the unit sphere.

2.2.2.1 Fourier Models

Since the modeling problems involve interpolation on the unit circle in 2D and the

unit sphere in 3D, a natural choice for constructing these interpolants are Fourier-based

methods: trigonometric function for 2D objects and spherical harmonics for 3D objects.

These methods have been used extensively for geometric modeling (see, for, example [76]

and the references therein). We briefly review both of these interpolation techniques in the

context of Figures 2.2 and 2.3.

Figure 2.3: Illustration of the parametric representation of a 3D object x(λ, θ) and the
reconstruction from a finite number of data sites. Top left figure shows the 3D object
together with discrete data sites represented as black solid spheres. Top right figure shows
the x component of the object in spherical parametric space and its values at the node
set {(λk, θk)}Nd

k=1 (marked by black solid spheres), while the bottom left and right figures
show the respective y and z components and their corresponding values. The goal is to
reconstruct x(λ, θ), y(λ, θ), and z(λ, θ) from interpolations of the values at the node sets
shown and then use these to reconstruct x(λ, θ).

23

Using the notation from Figure 2.2, we first discuss the case of reconstructing the x(λ)

component of x(λ). In the case that the number of nodes Nd is even, we consider a

trigonometric interpolant to these data of the form

px(λ) = cx0 +

Nd/2∑
k=1

cx2k−1 cos kλ+

Nd/2−1∑
k=1

cx2k sin kλ. (2.5)

While there is an analogous formula for odd values of Nd, we omit this discussion and

limit our current study to even values of Nd. The coefficients cxk are determined by the

interpolation conditions px(λk) = x(λk), k = 1, . . . , Nd. The solution to this problem can

be written in terms of the following linear system:
1 cosλ1 sinλ1 · · · cos Nd−2

2 λ1 sin Nd−2
2 λ1 cos Nd

2 λ1

1 cosλ2 sinλ2 · · · cos Nd−2
2 λ2 sin Nd−2

2 λ2 cos Nd
2 λ2

...
...

. . .
...

...
...

...

1 cosλN sinλN · · · cos Nd−2
2 λN sin Nd−2

2 λN cos Nd
2 λN

cx0
cx1
...

cxNd−1

 =

x1

x2
...

xNd

 ,
(2.6)

where xk = x(λk), k = 1, . . . , Nd. A similar construction to Equation (2.5) is given for the

y(λ) component of x(λ), which we denote by py(λ). Our trigonometric representation of a

2D object like the one in Figure 2.2 is given by

p(λ) = (px(λ), py(λ)). (2.7)

We turn our attention now to interpolation with spherical harmonics and use the notation

from Figure 2.3 to describe the reconstruction of the x(λ, θ) component of x(λ, θ). The

dimension of the space of all spherical harmonics of degree Ns is given by (Ns + 1)2. For

simplicity, we thus restrict our attention to the case that the number of nodes is given by

Nd = (Ns + 1)2. In this case, we look for a spherical harmonic interpolant of the form

px(λ, θ) =

Ns∑
`=0

[∑̀
m=0

cx`,2mY
2m
` (λ, θ) +

∑̀
m=1

cx`,2m−1Y
2m−1
` (λ, θ)

]
, (2.8)

where Y 2m
` and Y 2m−1

` are defined as follows:

Y 2m
` (λ, θ) :=

√
2`+ 1

4π

(`−m)!

(`+m)!
cos(mλ)Pm` (sin θ), m = 0, . . . , `, (2.9)

Y 2m−1
` (λ, θ) :=

√
2`+ 1

4π

(`−m)!

(`+m)!
sin(mλ)Pm` (sin θ), m = 1, . . . , `. (2.10)

24

Here Pm` is an associated Legendre function of degree ` and order m. The coefficients cxk

are determined by the interpolation conditions px(λk, θk) = x(λk, θk), k = 1, . . . , Nd. The

linear system corresponding to these conditions is given by
Y 0

0 (λ1, θ1) Y 0
1 (λ1, θ1) Y 1

1 (λ1, θ1) Y 2
1 (λ1, θ1) · · ·

Y 0
0 (λ2, θ2) Y 0

1 (λ2, θ2) Y 1
1 (λ2, θ2) Y 2

1 (λ2, θ2) · · ·
...

...
...

...
...

Y 0
0 (λN , θN) Y 0

1 (λN , θN) Y 1
1 (λN , θN) Y 2

1 (λN , θN) · · ·

cx1
cx2
...
cxN

 =

x1

x2
...

xNd

 , (2.11)

where xk = x(λk, θk), k = 1, . . . , Nd. Unlike the trigonometric case, this linear system can

be singular depending on how the nodes are arranged [16, §2]. We avoid this possibility

by choosing the nodes in an “optimal” manner as discussed in Section 2.4.2. For a good

review of the properties of spherical harmonic interpolants, see [89]. A similar construction

to Equation (2.8) is given for the y(λ, θ) and z(λ, θ) components of x(λ, θ), which we denote

by py(λ, θ) and pz(λ, θ). Our spherical harmonic representation of a 3D object like the one

in Figure 2.3 is given by

p(λ, θ) = (px(λ, θ), py(λ, θ), pz(λ, θ)). (2.12)

2.2.2.2 RBF Models

While Chapter 1 presents a detailed overview of RBF interpolation, we use a variant of

the standard RBF interpolant in this chapter, and in Chapter 3, based on restriction of the

RBF method to interpolation on a circle and on a sphere. This approach began to receive

considerable attention from a theoretical standpoint starting in the mid-1990s (see [16,

§6] for a discussion). When restricted to these domains, the RBF method is sometimes

referred to as the zonal basis function (ZBF) or spherical basis function (SBF) method in

the literature [88, Ch. 17]. We will, however, use the more popular term RBF to describe

the interpolation technique. Several studies have been devoted to providing error estimates

for RBF interpolation on circles and spheres; see, for example, [50, 63]. In the first of these

papers, it is shown these interpolants can provide spectral accuracy provided the underlying

target function is sufficiently smooth. The latter of these studies gives error estimates in the

case that the target function belongs to some Sobolev space. As was mentioned in Chapter

1, the RBF method has been successfully used for approximating derivatives of scalar- and

vector-valued quantities on the surface of a sphere and incorporated into methods for solving

partial differential equations numerically in spherical geometries [38, 19, 20].

The construction of the 2D and 3D RBF models of the objects is similar, so we discuss

them together. Using the notation of Figures 2.2 and 2.3, and focusing on the reconstruc-

25

tions of the x(λ) and x(λ, θ) components of the objects, the corresponding RBF interpolants

are given by

2D : sx(λ) =

Nd∑
k=1

cxkφ
(√

2− 2 cos(λ− λk)
)
, (2.13)

3D : sx(λ, θ) =

Nd∑
k=1

cxkφ
(√

2(1− cos θ cos θk cos(λ− λk)− sin θ sin θk)
)
. (2.14)

Here φ is some scalar-valued, positive (semi-) definite radial kernel. The square root

term in Equation (2.13) is just the Euclidean distance between the points described in

polar coordinates by λ and λk, while the square root term in Equation (2.14) is similarly

the Euclidean distance between the points described in spherical coordinates by (λ, θ)

and (λk, θk). The coefficients cxk in either Equation (2.13) or Equation (2.14) are again

determined by the interpolation conditions. These conditions lead to the following linear

system of equations:
φ (r1,1) · · · φ (r1,Nd

)
φ (r2,1) · · · φ (r2,Nd

)
...

. . .
...

φ (rNd,1) · · · φ (rNd,Nd
)

︸ ︷︷ ︸

A

cx1
cx2
...
cxN

 =

x1

x2
...
xN

 , (2.15)

where xk = x(λk) and rj,k =
√

2− 2 cos(λj − λk) for 2D objects, and xk = x(λk, θk) and rj,k

=
√

2(1− cos θj cos θk cos(λj − λk)− sin θj sin θk) for 3D objects. Note that rj,k = rk,j so

that the linear system Equation (2.15) is symmetric. More importantly, this linear system is

guaranteed to be nonsingular for the appropriate choice of φ. In this study, we restrict our

attention to the multiquadric (MQ) and inverse multiquadric (IMQ) radial kernels, which

are popular in applications and are given explicitly by

MQ: φ(r) =
√

1 + (εr)2, (2.16)

IMQ: φ(r) =
1√

1 + (εr)2
. (2.17)

Here ε is called the shape parameter. For both the MQ and IMQ, the linear system Equation

(2.15) is guaranteed to be nonsingular (provided ε > 0). Furthermore, for the IMQ, the A

matrix in this linear system is guaranteed to be positive definite. A full discussion of the

nonsingularity of Equation (2.15) for various radial kernels can be found in either [15] or [88].

We postpone the discussion of choosing ε to Section 2.4.3.2. However, we note that in the

limit that ε→ 0 a RBF interpolant on a circle converges to a trigonometric interpolant, while

a RBF interpolant on a sphere converges to a spherical harmonic interpolant [27] (strictly

26

speaking this was only shown for the case of the sphere, but the arguments from [27] carry

directly over to the case of the circle as well). Thus, trigonometric and spherical harmonic

interpolation can be viewed as a special case of RBF interpolation.

We denote the RBF representations of a 2D object like the one in Figure 2.2 by

sB(λ) = (sx(λ), sy(λ)), (2.18)

where sy(λ) interpolates y(λ) and has the form of Equation (2.13). Similarly, we denote

the RBF representation of a 3D object like the one in Figure 2.3 by

sB(λ, θ) = (sx(λ, θ), sy(λ, θ), sz(λ, θ)), (2.19)

where sy(λ, θ) and sz(λ, θ) interpolate y(λ, θ) and z(λ, θ), respectively, and have the form

of Equation (2.14). We conclude this section by noting that the RBF method is more

flexible than the Fourier-based methods in regard to altering the parameterization for the

objects. For example, if one were to find that a more general ellipse or ellipsoid provided

a better parameterization of the object than a circle or sphere, then the RBF method can

be naturally extended to this new parameterization. The only change to Equation (2.13)

or Equation (2.14) would be to replace the distance measure in the argument of φ with

the appropriate (Euclidean) distance measure on the target object for the parametrization.

More general objects, including ones with higher genus, are also possible; see [31] for a

theoretical and numerical discussion.

2.3 Immersed Boundary Modeling

In this section, we review the components needed for an immersed boundary model of

platelets. Our focus here is on the computation of normal vectors and on the modeling of

elasticity. For a discussion of how forces generated from immersed objects are transferred to

the underlying Eulerian mesh and how the fluid velocity is updated, see, for example, [64].

Normal vectors do not play a prominent role in most traditional IB calculations. Our

interest in them is motivated by their other uses in the modeling of platelet aggregation.

In addition to the fluid-structure interactions modeled using the IB method, the platelet

problem requires solution of advection-diffusion equations for chemicals in the fluid domain

outside of the moving platelets, along with boundary conditions on the chemical concentra-

tion at the fluid-platelet interface. Normal vectors along the platelet boundary are needed

for determining when an Eulerian grid point is inside or outside of the platelet, and for

imposing the boundary conditions. For further discussion of this, see [93].

27

2.3.1 Components for 2D

We denote the 2D platelet using the parametric representation x(λ) given in Equation

(2.3) and define

τ :=
∂

∂λ
x(λ) =

(
∂

∂λ
x(λ),

∂

∂λ
y(λ)

)
= (τ x, τ y). (2.20)

The unit tangent and normal vectors to x(λ) are then given as

τ̂ : =
τ

‖τ‖
= (τ̂ x, τ̂ y), (2.21)

η̂ : = (−τ̂ y, τ̂ x) (2.22)

For the force model in 2D, we use the fiber model defined in [67]. According to this model,

the elastic force density on x(λ) at the location x(λi) is given by

F(x(λi)) =
∂

∂λ
(T τ̂)

∣∣∣∣
λi

, (2.23)

where T = K(‖τ‖) is the fiber tension. In our platelet model, we choose K as a linear

function, K = K0‖τ‖, where K0 is the Hookean spring constant. In this case, Equation

(2.23) reduces to

F(x(λi)) = K0
∂

∂λ
(‖τ‖τ̂)

∣∣∣∣
λi

= K0
∂2

∂λ2
x(λ)

∣∣∣∣
λi

. (2.24)

The 2D spring force model traditionally used in piecewise linear representations is a scaled

second-order, central-difference approximation to the above fiber model (assuming springs

of zero rest length). From the physical standpoint, each IB point in a 2D object is thought

to be connected to each of its neighbors via springs. For tension forces, there are only two

neighbors attached to each IB point via springs. This spring force is expressed as:

F(xi) = K0(xi+1 − 2xi + xi−1). (2.25)

2.3.2 Components for 3D

We denote the 3D platelet using the parametric representation x(λ, θ) given in Equation

(2.4) and define

τλ :=
∂

∂λ
x(λ, θ) =

(
∂

∂λ
x(λ, θ),

∂

∂λ
y(λ, θ),

∂

∂λ
z(λ, θ)

)
, (2.26)

τ θ :=
∂

∂θ
x(λ, θ) =

(
∂

∂θ
x(λ, θ),

∂

∂θ
y(λ, θ),

∂

∂θ
z(λ, θ)

)
. (2.27)

The unit tangent vectors to x(λ, θ) are then given by

τ̂λ :=
τλ

‖τλ‖
and τ̂ θ :=

τ θ

‖τ θ‖
, (2.28)

28

while the unit normal vector is given by

η̂ :=
τλ × τ θ

‖τλ × τ θ‖
. (2.29)

The force model we use in 3D differs depending on whether a piecewise linear representation

for the object is used or a parametric representation. Traditionally, piecewise linear repre-

sentations (triangulated surfaces) in 3D have been used in conjunction with spring forces.

In this model, a spring is assumed to be placed along each triangle edge (again, we assume

these springs have a rest length of zero). Then, the total force acting on an IB point at xi

due to its k nearest neighbors is:

F(xi) = K0

∑
j 6=i

(xi − xj), (2.30)

where the sum is over k IB points. The nearest neighbors are typically defined from the

triangulation, i.e., as members of the adjacency list of xi. This is the same strategy that

we follow.

For our parametric representation of platelets, we use surface tension as the model to

compute tension forces. The force due to surface tension is then given by

F = γ(2H)η̂, (2.31)

where γ is the coefficient of surface tension. H is the mean curvature of the surface, and

can be computed as [41, §16.5]

H =
eG− 2fF + gE

2(EG− F 2)
, (2.32)

where E, F , and G are coefficients of the first fundamental form,

E = τλ · τλ, F = τλ · τ θ, G = τ θ · τ θ, (2.33)

and e, f , and g are coefficients of the second fundamental form,

e =

(
∂

∂λ
τλ
)
· η̂, f =

(
∂

∂θ
τλ
)
· η̂, g =

(
∂

∂θ
τ θ
)
· η̂. (2.34)

(2.35)

2.4 Implementation Details

In this section, we present the implementation details for evaluating the positions on

the Lagrangian objects, computing normals to the surface of the object, and computing the

internal forces as presented in the previous section. For the piecewise linear representation,

29

these surface normals and forces are computed at the IB points. For the parametric

representations using Fourier and RBF models, these values are computed at some set of

sample sites, which do not necessarily correspond to the data sites. With these operations

defined, it is possible to employ the traditional spreading and interpolation operators

for transferring the forces and velocity respectively between the Lagrangian and Eulerian

discretizations.

2.4.1 Piecewise Linear Models

In 2D, normals are computed at the IB points using the piecewise quadratic repre-

sentation presented in Section 2.2.1. For each IB point, we first solve for the coefficients

in Equation (2.1) and Equation (2.2) using the IB point and its two neighbors. Using

Equation (2.1) and Equation (2.2), we next compute the tangent vector at each IB point

using Equation (2.21) and then determine the normal vector using Equation (2.22).

In 3D, we compute the normal vectors at each IB point by first computing the normal

vector at the circumcenter of each of the triangles. We then obtain the normal vector

at a vertex (IB point) by a weighted average of the values of the normal vectors at the

circumcenters of the triangles connected to the vertex. Specifically, we weight these facet

normals by the angle at which that facet is incident on the vertex at which we require a

normal. This approach takes into account the geometric configuration of each facet [81].

The implementation of the forces follows directly from the simple spring force model

in both 2D Equation (2.25) and 3D Equation (2.30). We note that while the 2D imple-

mentation follows naturally from a constitutive model, the 3D implementation is a purely

algorithmic extension of the 2D case.

2.4.2 Parametric Models

For the parametric models, we use the continuous representations of the objects from

either the Fourier- or RBF-based interpolants to approximate the normal vectors and forces.

This involves analytically computing derivatives of these interpolants and then evaluating

the derivatives at some set of Ns locations in the parametric space that corresponds to the

set of sample sites. In 2D, we denote the set of sample sites by {x(λe
j)}

Ns
j=1 and refer to

the set of parametric values {λe
j}
Ns
j=1 as the evaluation points. Similarly for 3D, we denote

the sample sites by {x(λe
j , θ

e
j)}

Ns
j=1 and refer to {(λe

j , θ
e
j)}

Ns
j=1 as the evaluation points. The

method we use is similar to the pseudospectral or spectral collocation method (e.g., [25, 83]),

except that the derivatives are not evaluated at interpolation nodes.

30

Before describing the implementation details for the Fourier and RBF models, we discuss

the node and evaluation points used.

2.4.3 Node and Evaluation Points

For our 2D objects, we use Nd equally-spaced points on the interval (−π, π] as the node

set {λk}Nd
k=1, and take Nd to be even. This gives a uniform sampling in the parametric space

and allows fast algorithms to be used for computing the interpolants as discussed below.

Additionally, since the shape of our target objects are near circular or elliptical, these nodes

give a good distribution of data sites on the object. We also use Ns >> Nd equally-spaced

points in the interval (−π, π] as the set of evaluation points {λe
j}
Ns
j=1 since this also results

in a set of sample sites that are well distributed over the object.

To get a good sampling of our nearly ellipsoidal or spherical objects in 3D, we cannot

resort to using equally spaced points in the spherical coordinate system as our node sets

{(λk, θk)}Nd
k=1 because of the inherent “pole problem”. Instead we use node sets that give

a quasi-uniform distribution of data sites on the unit sphere. Since only a maximum of

20 points can be evenly distributed on a sphere, there are a myriad of methods to define

and generate a quasi-uniform distribution for larger numbers of points [45]. We use two of

these methods: maximal determinant (MD) for our spherical harmonic models and minimal

energy (ME) for our RBF models. Both of these methods are discussed in [89] and many

of these two point sets for various Nd can be downloaded from [90]. The MD points are

generated by finding a distribution of points that maximize the determinant of a certain

“Gram matrix” related to Equation (2.11). The ME points are generated by finding a

distribution of nodes that minimize an electrostatic type energy potential. For spherical

harmonic interpolation, the MD points lead to much better results both in terms of accuracy

and stability [89]. For RBF interpolation, the ME points typically yield better results in

terms of accuracy [19, 20] for larger shape parameters ε. For smaller values, the MD points

give better results because of the connection to spherical harmonics as ε→ 0 [27]. For the

set of evaluation points, {(λe
j , θ

e
j)}

Ns
j=1, we use Ns >> Nd minimum energy points for both

the spherical harmonic and RBF models, which again results in a well-distributed set of

sample sites on the object.

2.4.3.1 Fourier Models

The first step in computing the normal vectors and forces for the 2D trigonometric

model Equation (2.7) is to compute the interpolation coefficients cxk and cyk, k = 1, . . . , Nd

(see Equation (2.5)). Since we are using equally spaced node points {λk}Nd
k=1, we can avoid

31

having to solve Equation (2.6) directly for these coefficients and can instead compute them

by means of the fast Fourier transforms (e.g., [83, §3]) at a cost of O(Nd logNd).

We next compute the derivatives of the interpolants to obtain the following approxima-

tion to Equation (2.20):

∂

∂λ
x(λ)

∣∣
λ=λej

≈ ∂

∂λ
p(λ)

∣∣
λ=λej

, j = 1, . . . , Ns. (2.36)

We then determine the normal vector at x(λe
j) by normalizing the vector above and switch-

ing the components according to Equation (2.21) and Equation (2.22). We similarly obtain

an approximation of the force Equation (2.24) from the second derivative of the interpolants:

∂2

∂λ2
x(λ)

∣∣
λ=λej

≈ ∂2

∂λ2
p(λ)

∣∣
λ=λej

, j = 1, . . . , Ns. (2.37)

For the 3D spherical harmonic model Equation (2.12), the first step in computing the

normal vectors and forces is again to compute the interpolation coefficients cxk, cyk, and

czk, k = 1, . . . , Nd, (see Equation (2.8)). Unlike the trigonometric interpolant, there are

unfortunately no fast algorithms for computing these coefficients. Since we use relatively

small values of Nd, we thus resort to determining the coefficients by solving the linear system

Equation (2.11) using a direct LU factorization of the interpolation matrix. By using the

MD points as the nodes in this model, we are guaranteed that this system is nonsingular

and relatively well conditioned [89]. We note that in context of the IB method simulation,

the node points will stay fixed throughout the simulation so that the LU factorization of the

interpolation matrix from Equation (2.11) needs to be done only once at the initial time-step

and then stored. Thus, for all other time-steps, the coefficients can be determined in O(N2
d)

computations.

After the coefficients are determined, we compute the following six derivatives to obtain

approximations to Equation (2.26) and Equation (2.27):

∂

∂λ
x(λ, θ)

∣∣
(λ,θ)=(λej ,θ

e
j)
≈ ∂

∂λ
p(λ, θ)

∣∣
(λ,θ)=(λej ,θ

e
j)
, j = 1, . . . , Ns, (2.38)

∂

∂θ
x(λ, θ)

∣∣
(λ,θ)=(λej ,θ

e
j)
≈ ∂

∂θ
p(λ, θ)

∣∣
(λ,θ)=(λej ,θ

e
j)
, j = 1, . . . , Ns. (2.39)

We then compute the normal vectors using these approximations in Equation (2.28) and

Equation (2.29).

The computation of the force requires the approximation to the normal vectors and an

approximation to the mean curvature Equation (2.32). For the values of E, F , and G in the

32

mean curvature computation (see Equation (2.33)), we use the approximations Equation

(2.38) and Equation (2.39). For the values of e, f , and g, we use the approximations

∂2

∂λ2
x(λ, θ)

∣∣
(λ,θ)=(λej ,θ

e
j)
≈ ∂2

∂λ2
p(λ, θ)

∣∣
(λ,θ)=(λej ,θ

e
j)
, j = 1, . . . , Ns, (2.40)

∂2

∂θ∂λ
x(λ, θ)

∣∣
(λ,θ)=(λej ,θ

e
j)
≈ ∂2

∂θ∂λ
p(λ, θ)

∣∣
(λ,θ)=(λej ,θ

e
j)
, j = 1, . . . , Ns, (2.41)

∂2

∂θ2
x(λ, θ)

∣∣
(λ,θ)=(λej ,θ

e
j)
≈ ∂2

∂θ2
p(λ, θ)

∣∣
(λ,θ)=(λej ,θ

e
j)
, j = 1, . . . , Ns. (2.42)

2.4.3.2 RBF Models

The normal vectors and forces for the RBF models are computed in the same fashion as

for the Fourier models discussed above; one just needs to replace the Fourier interpolants

p(λ) and p(λ, θ) with the RBF interpolants sB(λ) from Equation (2.18) and sB(λ, θ) from

Equation (2.19), respectively. We thus omit a full description. We will, however, discuss

the shape parameter ε and the computation of the interpolation coefficients.

As was mentioned in Chapter 1, infinitely smooth radial kernels like the MQ Equation

(2.16) and IMQ Equation (2.17) feature a free shape parameter ε. It has generally been

reported in the literature that there is typically an optimal value of ε that produces the best

accuracy in the interpolants with these kernels and that this value tends to decrease with

increasing smoothness of the underlying function being approximated (e.g., [69]). However,

as ε decreases to zero, these smooth kernels become increasingly flat and the shifts of

φ in Equation (2.13) and Equation (2.14) become less and less distinguishable from one

another. If one follows the direct approach of solving for the expansion coefficients via

Equation (2.15) and then evaluating the interpolant via Equation (2.13) or Equation (2.14)

(which is denoted by RBF-Direct in the current literature) for ε in this flat regime, then ill-

conditioning can entirely contaminate the computation. For RBF interpolation on a sphere,

this ill-conditioning can be completely bypassed by replacing the RBF-Direct algorithm with

the RBF-QR algorithm of Fornberg and Piret [27]. The framework for this algorithm can

also naturally be adapted to the task of computing RBF interpolants on the unit circle in

a stable manner for all ε.

We have implemented both the RBF-QR algorithm and the RBF-Direct approach and

present results in Sections 2.5.2.1 and 2.6.2.1 illustrating the behavior of the RBF inter-

polants for the full range of ε and the connection to Fourier-based methods. However, we

have opted to use the RBF-Direct approach in implementation since it is computationally

more efficient and the coding is much less involved for computing the normals and forces.

Additionally, we have found that with the RBF-Direct approach and the values of Nd that

33

we considered, it is possible to get as good or better results than the Fourier-based methods.

For increasingly large values of Nd, or objects whose parameterizations are very smooth, it

may be necessary to switch to the RBF-QR algorithms to exploit the better accuracy that

can sometimes be achieved for increasingly small values of ε.

For the RBF-Direct approach, the interpolation coefficients for both the 2D and 3D ob-

jects can be determined by solving the linear system Equation (2.15) (with the appropriate

choice of rj,k for the dimension of interest). In the case of 2D objects with equally spaced

points, solving this system directly can be bypassed by means of the fast Fourier transform

and the coefficients can be computed in O(Nd logNd) operations [46]. This follows by

observing that the matrix in Equation (2.15) is circulant (for any radial kernel φ) and can

be diagonalized via the discrete Fourier transform matrix [40, §4.7.7]. For the 2D models,

we use the MQ radial kernel Equation (2.16).

As in the case of the spherical harmonic model, there are no fast direct algorithms

for determining the interpolation coefficients for the 3D RBF model Equation (2.19) and

we thus resort to using a direct method. However, unlike the spherical harmonic model,

the system is symmetric and, as discussed in Section 2.2.2.2, for the right choice of φ, is

positive definite. Thus, a Cholesky factorization of the matrix can be used which reduces

the memory costs and the need for pivoting over the LU factorization method used in the

spherical harmonic model. We also note that the initial cost of computing the Cholesky

factorization is lower than the LU factorization, but since this is only done once initially,

there is no real savings in an IB simulation. We have opted to use the IMQ kernel Equation

(2.16) to exploit the use of the Cholesky factorization.

2.5 2D Platelet Modeling Results

In this section, we present the results of our comparative study between using the

piecewise linear approach as traditionally used within the IB method and our two alternative

parametric approaches in 2D: RBF and Fourier (trigonometric polynomials) interpolation.

Recall that within an IB time-step, the typical procedure employed is as follows. Given

the locations of the immersed boundaries, both the normals and forces on an object are

computed. The forces are then projected to an Eulerian grid and used as right-hand-side

forcing to the Navier-Stokes equations. Based upon an update velocity field, the positions

of the IB points are updated. In our comparison, we thus examine the geometric modeling

capabilities, accuracy of the normal computations, and accuracy of the computation of

the forces. As discussed in the previous section, we distinguish between the data sites and

34

sample sites for the parametric models. Data sites are the positions along the object at which

the parametric models are interpolating. It is at these positions that we propose updating

the geometric information of the object (for instance, at the conclusion of a time-step when

the object’s movement within the flow field is updated). Sample sites (which are normally

more numerous compared to the data sites) are the positions along the object at which

normals and forces are computed. It is from these positions that we propose projecting the

IB forces. In all experiments, 100 sample sites are used as this represents the typical number

of IB points that would be used per platelet object in a traditional 2D immersed boundary

computation (and hence a reasonable standard against which to compare our new methods

for the purposes of determining the feasibility of replacement). All errors are computed by

taking the maximum of the two-norm difference between the approximations and the true

values.

2.5.1 Test Cases

We consider two prototypical test objects and define them based upon perturbations of

idealized shapes (an ellipse and a circle). Let xideal be a function representing the idealized,

unperturbed shapes as given by the following equation:

xideal = (xc + a cosλ, yc + b sinλ) (2.43)

where −π ≤ λ ≤ π. Here (xc, yc) denotes the object center and a and b denote the radii.

The two objects used for our comparison are defined as follows:

Object 1: x2d obj1 =

[
1.0 +A exp

(
−(1− cosλ)2

σ1

)]
xideal, (2.44)

Object 2: x2d obj2 =

[
1.0 +B exp

(
(−(1− cos2 λ)1.5)

σ2

)]
xideal. (2.45)

For Object 1, we use the following parameters: xc = yc = 0.9, a = 0.04, b = 0.05, A = 0.09,

and σ1 = 0.1. For Object 2, we use the following parameters: xc = yc = 0.2, a = b = 0.1,

B = 0.04, and σ2 = 0.9.

Figure 2.4 displays the two test objects Equation (2.44) and Equation (2.45). Object 1

is a smooth (in terms of regularity) yet highly perturbed ellipse, while Object 2 is a rough

perturbation of a circle. It can be shown that the parameterization Equation (2.45) for this

object has only two continuous derivatives.

2.5.2 Comparison of Reconstructing the Objects

RBF and Fourier approaches. In Figure 2.5 we present the errors in reconstructing the

objects as a function of the number of data sites. The error at the sample sites gives an

35

Figure 2.4: The test objects Equation (2.44) and Equation (2.45) for the 2D study.

Figure 2.5: Error in the reconstruction of the shape of the objects (left is Object 1 and
right is Object 2) evaluated at Ns = 100 sample sites as a function of the number of data
sites. Circles denote the errors in the RBF model and squares denote the errors for the
Fourier model. For the RBF model, the shape parameter for Object 1 was set to ε = 0.9
and for Object 2, it was set to ε = 3.6.

indication of the modeling capability of the RBF and Fourier methods. We can see from this

figure that both the RBF and Fourier models are converging at a spectral rate for Object

1 (left figure), but at a much slower rate for Object 2 (right figure). This is expected since

Object 1 is infinitely smooth, while Object 2 has only two continuous derivatives. The

RBF and Fourier models perform similarly for Object 1. For Object 2, the RBF model

shows better reconstruction properties as the number of sample sites increases above 20.

No direct comparison with the piecewise linear model is given as the piecewise linear IB

method always samples at the interpolating points.

36

2.5.2.1 Shape Parameter Study

In this section, we examine the impact of the shape parameter on the reconstruction

errors of the RBF model. Figure 2.6 (left) displays the reconstruction errors for the two

objects as a function of the shape parameter using Nd = 24 data sites. A similar comparison

for Nd = 56 data sites is given in Figure 2.6 (right). For ε . 0.85, it was necessary to use the

RBF-QR algorithm [27] (adapted to the unit circle) to compute the model in a numerically

stable manner for the Nd = 56 case. We can see from both figures that the errors are

smallest for ε ≈ 0 for the smooth Object 1 and increase quite dramatically as ε increases.

For the rough Object 2, there is a much larger range of ε for which the errors are small, and

this range includes values for which the RBF-Direct approach can be used without issues

of numerical instabilities.

We used Figure 2.6 to help guide our selection of ε for the numerical experiments.

However, we found from extensive tests on other objects that if the object is smooth, and

RBF-Direct is to be used, then one generally wants to choose ε as small as the numerical

conditioning allows. For rough objects, there is much more freedom in the choice and the

results will not vary that greatly. It is unclear if we should expect smooth or rough objects

in an IB simulation.

We conclude this section by noting that there are several algorithms that have been

devoted to selecting an “optimal” shape parameter [15, §17]. However, these are too costly

to be used every time-step of an IB simulation. We are thus advocating using a fixed ε

for all time-steps. This value could be selected based on an expected typical shape for the

Figure 2.6: The figure on the left shows errors in the RBF reconstructions of the objects
using Nd = 24 data sites and Ns = 100 sample sites as a function of the shape parameter.
The figure on the right shows errors in the RBF reconstructions using Nd = 56 data sites
and Ns = 100 sample sites as a function of the shape parameter.

37

immersed objects and one of the algorithms from [15, §17] or from trial and error. We will

report on these strategies in the next chapter.

2.5.3 Comparison of Normal Vectors and Forces

We next focus on the errors in the parametric models in the approximation of the normal

vectors to the objects and the forces. In this case, we compare the results to the traditional

piecewise linear models.

Figure 2.7 displays the errors in the normal vectors at Ns = 100 sample sites as a

function of the number of data sites Nd for both the RBF and Fourier models. A solid line

denoting the errors in the normal vectors for 100 IB points is given for comparison using

the method for the piecewise linear models discussed in Section 2.4.1. We can see from this

figure that at about Nd = 18 data sites, the errors for both the RBF and Fourier models

of Object 1 are lower than the piecewise linear model. The errors are similar between both

parametric models and decrease rapidly with increasing Nd. The results for Object 2 are

even more favorable for the parametric models compared to the piecewise linear model. For

increasing Nd, the RBF model appears to have an advantage over the Fourier model.

We lastly examine the errors in the force computation incurred by the two parametric

models and the traditional piecewise linear model. Figure 2.8 shows the errors in forces

evaluated at 100 sample sites as a function of the number of data sitesNd. In all experiments,

the force constant K0 is set to 0.2. The solid line in Figure 2.8 denotes the error for the

Figure 2.7: Errors in the approximations of the normal vectors to the objects at 100
sample sites as a function of the number of data sites Nd. The left plot is for Object 1,
while the right one is for Object 2. The line denotes the error for the method used in the
piecewise linear model with 100 IB points. Circles denote the errors for the RBF model and
squares denote the Fourier model. For the RBF model, ε = 0.9 for Object 1 and ε = 3.6
for Object 2.

38

Figure 2.8: Errors in the approximation of the forces evaluated at Ns = 100 sample sites
as a function of the number of data sites Nd for Object 1 (left) and Object 2 (right). The
black line denotes the errors for a piecewise linear model with 100 IB points. Circles denote
the errors for the RBF model and squares denote the errors for the Fourier model. For the
RBF model, ε = 0.9 for Object 1 and ε = 3.6 for Object 2.

piecewise linear model computed at 100 IB points. For Object 1, we can see from the left

plot of this figure that the errors for both parametric models are lower than the piecewise

linear model starting at about Nd = 30 data sites. Again, both the RBF and Fourier models

give similar results for this object. For the rough Object 2, it requires about Nd = 32 data

sites for the RBF model to match the errors of the piecewise linear model, while it takes

approximately Nd = 56 data sites for the Fourier model to give similar errors. We note that

the errors for both the RBF and Fourier models do not fall as sharply for the rough Object

2 as the number of datasites is increased. This is because Object 2 is generated from

a function that has only two derivatives, and the force computation involves computing

a second derivative. It therefore follows that these global methods would therefore not

converge as they would in the case of the smooth Object 1.

2.5.4 Comparison of the Computational Cost

We conclude the 2D results experiments with an examination of the computational cost

associated with the three methods. We measure the computational cost as the elapsed

wallclock time required to compute the interpolation coefficients, evaluate the interpolants,

compute the normal vectors, and compute the forces. Under the assumption that all objects

will be evaluated at the same parametric sites at each time-step, for both parametric models,

we precompute the matrices for evaluating the interpolants, the derivatives, and the force

operator once the interpolation coefficients have been determined (see Section 2.4.2 for

details). We do not account for this setup time in our timing results.

39

Since for the piecewise linear model the number of evaluation sites is the same as

the number of data sites, the total computational cost includes only the time required

to compute the normal vectors and forces (see Section 2.4.1 for details).

All computations were performed in Matlab version 7.10.0499 (64-bit) on a Windows

desktop with a Intel Core i7 Sandy Bridge 3.4 GHz processor and 4 GB of 1600 MHz RAM.

Times were measured using the tic and toc functions in Matlab . All results presented are

averages of 100 trials and are in units of seconds.

Figure 2.9 displays the elapsed time between the RBF, Fourier, and traditional piecewise

linear models. The results for the RBF and Fourier models are displayed as a function of

the number of data sites Nd for a fixed number of Ns = 100 sample sites. The results for

the piecewise linear model are for a fixed number of 100 IB points. We can see from the

figure that the parametric models require significantly less time than the piecewise linear

model. For Nd = 56 data sites, the parametric models are over one order of magnitude

faster.

We note that all the evaluation and derivative computations for the parametric models

can be formulated in terms of matrices in order to avoid the need to first solve for the

coefficients every time-step of the IB simulation. Thus, the results we present are not

optimal in terms of computational time. If, however, during the IB simulation the sample

sites change, then the step of going first through the coefficients as we have done will be

necessary.

Figure 2.9: Elapsed wallclock time (in seconds) for one object to perform interpolation,
evaluation, the computation of normal vectors, and the computation of forces at Ns = 100
sample sites as a function of the number of data sites Nd. The piecewise linear computations
were done with 100 IB points for comparison.

40

2.6 3D Platelet Modeling Results

Following a similar approach to the last section, we present here the results from a

comparative study between using the traditional piecewise linear approach as used within

the IB method and our two alternative parametric approaches in 3D: RBF and Fourier

(spherical harmonics) interpolation. We examine the reconstruction capabilities of the

models and the accuracy in computing normal vectors and forces. As in the 2D tests,

we distinguish between data sites and sample sites. In all experiments unless otherwise

specified, Ns = 1024 sample sites are used as this represents the typical number of IB

points that would be used per platelet object in a traditional 3D IB computation (and

hence a reasonable standard against which to compare our new methods for the purposes of

determining the feasibility of replacement). All errors are computed by taking the maximum

of the two-norm difference between the approximations and the true values.

2.6.1 Test Cases

We again consider two prototypical test objects and define them based on perturbations

of idealized shapes (an ellipsoid and a sphere). Let xideal be a function representing the

idealized, unperturbed shapes as given by the following equation:

xideal = (xc + a cosλ cos θ, yc + b sinλ cos θ, zc + c sin θ), (2.46)

where −π ≤ λ ≥ π and −π
2 ≤ θ ≤ π

2 . Here (xc, yc, zc) denotes the object center, a and b

are the equatorial radii, and c is the polar radius. The two objects used for our comparison

are defined as follows:

Object 1: x3d obj1 =

[
1.0 +A exp

(
r2
c

σ1

)]
xideal, (2.47)

Object 2: x3d obj2 =

[
1.0 +B exp

(
r2.5
c

σ2

)]
xideal. (2.48)

where rc = 1 − cos θ cos θc cos(λ − λc) − sin θ sin θc. For Object 1, we use the following

parameters: xc = yc = zc = 0.9, a = 0.1, b = 0.2, c = 0.09, A = 0.09, and σ1 = 0.2.

For Object 2, we use the following parameters: xc = yc = 0.1, zc = 0.2, a = b = c = 0.1,

B = 0.04, and σ2 = 16
25 . For both objects, λc = 0 and θc = π

2 .

Figure 2.10 displays the two test objects Equation (2.47) and Equation (2.48). Object

1 is a smooth (in terms of regularity) yet highly perturbed ellipsoid, while the Object 2 is a

rough perturbation of a sphere. It can be shown that the parameterization Equation (2.48)

has only three continuous derivatives.

41

Figure 2.10: The test objects Equation (2.47) and Equation (2.48) for the 3D study.

2.6.2 Comparison of Reconstructing the Objects

As in the 2D results, we first examine the errors in reconstructing the objects using the

two parametric models. Figure 2.11 displays the errors in reconstructing the objects as a

function of the square root of the number of data sites Nd. We use
√
Nd since these are 2D

objects and thus the reciprocal of this value gives a good measure of the spacing between

data sites. These errors give a indication of the modeling capability of the RBF and Fourier

Figure 2.11: Error in the reconstruction of the shape of the objects (left is Object 1 and
right is Object 2) evaluated at Ns = 1024 sample sites as a function of the square root of the
number of data sites Nd. Circles denote the errors in the RBF model and squares denote
the errors for the Fourier model. For the RBF model, the shape parameter for Object 1
was set to ε = 0.9 and for Object 2 was set to ε = 1.5. Data sites for the RBF model are
the ME points, while the data sites for the Fourier model are the MD points.

42

methods.

The results are similar to what we observed in 2D. For the smooth Object 1 (left plot in

Figure 2.11), the RBF and Fourier models are converging at a spectral rate, but at a much

slower rate for rough Object 2. The RBF and Fourier models are giving similar errors for

Object 1, with a few values of Nd where the spherical harmonic method is clearly better.

For Object 2, the RBF model consistently gives better results than the spherical harmonic

model as Nd increases. No direct comparison with the piecewise linear model is given as

the piecewise linear IB method always samples at the interpolating points.

2.6.2.1 Shape Parameter Study

Figures 2.12 and 2.13 display the reconstruction errors of the RBF model for the two

objects as a function of the shape parameter using Nd = 256 data sites and Nd = 529 data

sites, respectively. The left plot of each of these figures contains the results for the ME

points, while the right plot contains the results for the MD points. For ε . 0.85, it was

necessary to use the RBF-QR algorithm [27] to compute the model in a numerically stable

manner for the Nd = 529 case.

We see similar results to the 2D shape parameter study from Section 2.5.2.1. For the

smooth Object 1 and the MD points, the errors decrease rapidly as ε decreases and reach

a minimum near ε = 0 (at ε = 0 in the Nd = 256 case), which correspond to a spherical

harmonic interpolant on these nodes. For the ME points, we see the error rise right as ε gets

to zero. For the rough Object 2 and both types of nodes, we see that the error reaches a

minimum at a larger value of ε that is well within the numerically safe range of RBF-Direct.

Figure 2.12: Error in the shape at 1024 sample sites as a function of the shape parameter
for 256 data sites on Object 1 (solid circles) and Object 2 (open circles) using minimal
energy points (left) and maximal determinant points (right) for the data sites.

43

Figure 2.13: Error in the shape at 1024 sample sites as a function of the shape parameter
for 529 data sites on Object 1 (solid circles) and Object 2 (open circles) using minimal
energy points (left) and maximal determinant points (right) for the data sites.

The errors then increase slightly as ε decreases toward zero (with a jump up at ε = 0 in

the case of the ME points). From both Figures 2.12 and 2.13, we see that the errors in the

RBF model are much better for the MD points when ε is near zero, but as ε increases away

from zero, the errors are better for the ME points.

We make similar comments to those at the end of Section 2.5.2.1 in regards to selection

of the shape parameter for the 3D case, and thus refer the reader there.

2.6.3 Comparison of Normal Vectors and Forces

We next focus on the errors in the parametric models in the approximation of the

normal vectors to the objects and the forces. In the case of computing the normal vectors,

we compare the results to the traditional piecewise linear models based on triangulations

of the surface. As discussed in Section 2.4.1, a comparison against the traditional piecewise

linear 3D force model is not appropriate since this model is described purely algorithmically,

and hence the underlying material constitutive model is not known and cannot be computed

exactly.

Figure 2.14 displays the errors in the normal vectors at Ns = 1024 sample sites as a

function of the square root of the number of data sites Nd. The solid and dashed lines in

both plots from this figure denote the errors in the normal vectors at 1024 and 10242 IB

points. We see that increasing the number of IB points, decreases the errors in the normal

vectors. However, unlike the 2D case, both parametric models always give better results in

the normal vector computations even for the high value of 10242 IB points. Additionally,

the errors in these computations for Object 1 are similar for the RBF and Fourier models.

For Object 2, the RBF model gives consistently better results for increasing data sites Nd.

44

Figure 2.14: Errors in the approximations of the normal vectors to the 3D objects at
Ns = 1024 sample sites as a function of the square root of the number of data sites Nd

for Object 1 (left) and Object 2 (right). The solid line denotes the error for the piecewise
linear model with 1024 IB points and the dashed line corresponds to the error with 10242
IB points. Circles denote the errors for the RBF model and squares denote the Fourier
model. For the RBF model, ε = 0.9 for Object 1 and ε = 1.5 for Object 2. Data sites for
the RBF model are the ME points, while the data sites for the Fourier model are the MD
points.

We lastly focus on the errors in the computation of the forces in both parametric models.

Figure 2.15 displays the errors in forces evaluated at 1024 sample sites as a function of the

square root of the number of data sites Nd. In all experiments, both the coefficient of

surface tension γ and the spring constant K0 are set to 0.2. We see that the results are

consistent with those from the shape reconstruction and normal vector approximations.

2.6.4 Comparison of the Computational Cost

We conclude the 3D results experiments by examining the computational cost associated

with the three methods. As in the 2D experiments, we measure the computational cost as

the elapsed wallclock time required to compute the interpolation coefficients, evaluate the

interpolants, compute the normal vectors, and compute the forces. We precompute and

store the LU decomposition of the spherical harmonic interpolation matrix Equation (2.11)

and the Cholesky decomposition LLT of the RBF interpolation matrix Equation (2.15).

We also precompute matrices for evaluating the interpolants, the derivatives, and the force

operator once the interpolation coefficients have been determined (see Section 2.4.2 for

details). We do not account for these precomputations in our timing results. As in 2D, all

computations were performed in Matlab using the machine described in Section 2.5.4.

Since for the piecewise linear model the number of evaluation sites is the same as the

number of data sites, the total computational cost includes only the time required to

45

Figure 2.15: Errors in the approximations of the forces evaluated at Ns = 1024 sample
sites as a function of the square root of the number of data sites Nd for Object 1 (left)
and Object 2 (right). Circles denote the errors for the RBF model and squares denote the
Fourier model. For the RBF model, ε = 0.9 for Object 1 and ε = 1.5 for Object 2. Data
sites for the RBF model are the ME points, while the data sites for the Fourier model are
the MD points.

compute the normal vectors and forces (see Section 2.4.1 for details), we do not include

the time to compute the triangulation of the surface.

Figure 2.16 displays the elapsed time between the RBF, Fourier, and traditional piece-

wise linear models. The results for the RBF and Fourier models are displayed as a function

of the number of data sites Nd for a fixed number of Ns = 1024 sample sites. Two results

are presented for the piecewise linear model: one with 1024 IB points (solid) line and one

with 10242 IB points (dashed line). We can see from the figure that the parametric models

Figure 2.16: Elapsed wallclock time (in seconds) for one object to perform interpolation,
evaluation, the computation of normal vectors, and the computation of forces at Ns = 1024
sample sites as a function of the number of data sites Nd. The piecewise linear computations
were done with 1024 IB points (solid line) and 10242 IB points (dashed line) for comparison.

46

require significantly less time than the piecewise linear model, especially for the 10242 case.

For Nd = 529 data sites, the parametric models are over an order of magnitude faster than

the piecewise linear model with 1024 IB points and nearly three orders of magnitude better

with 10242 IB points.

2.7 Summary

One of the fundamental ingredients in platelet aggregation simulations with the IB

method (and many others involving immersed structures) is how to model the platelets

geometrically, so that internal structural forces can be computed at specified locations on

the platelet surface. The current strategy is to use piecewise linear models for representing

the platelets. In this work, we have presented two alternative geometric models for platelets:

RBFs and Fourier-based methods. Both of these models are based on a parametric rep-

resentation of the surface using polar coordinates in 2D and spherical coordinates in 3D.

This choice of parameterization is motivated by the observed shape of platelets both during

their inactive and active states. We have described how these new models can be used for

constructing and maintaining the platelet’s representation, computing the normal vectors

to the platelet surface, and computing the internal structural forces. We have presented

numerical comparisons between the traditional piecewise linear models and the new RBF

and Fourier-based models in both 2D and 3D. Our findings indicate that both the RBF

and Fourier methods provide viable alternatives to the traditional approach in terms of

geometric modeling accuracy, force accuracy, and computational efficiency.

Although both the RBF and Fourier-based methods provided comparable results in

terms of error characteristics and computational efficiency, we would advocate the use of

the RBF-based models for the following reasons:

• they are easier to implement;

• they have accuracy similar to that of Fourier methods for smoothly-perturbed objects

with similar computational costs;

• they are more accurate than Fourier methods for roughly perturbed objects with

similar computational costs;

• they are more flexible than Fourier methods in terms of changing the underlying

parameterizations of the objects (e.g., changing to an elliptical parameterization

rather than polar) [31].

One issue with the RBF models is how to choose an appropriate shape parameter. We

will study this issue as part of our next step in applying the RBF-based models in an

47

IB simulation. This step will involve implementing the RBF-based models in a full IB

simulation of platelet aggregation. The simulation will require projection of the forces from

the sample points to the Eulerian mesh, computation of the Navier-Stokes system with

forcing based upon the platelets, and then movement of the platelets via updating of the

RBF data points. We will study how the shape parameter affects the simulations and

compare the results of these simulations to those based on the traditional piecewise linear

models for platelets. We will also attempt to understand the effects of the RBF-based

models (if any) on the fluid solver used in the full IB simulation.

CHAPTER 3

THE RBF-IMMERSED BOUNDARY

METHOD

3.1 Introduction

In Chapter 2 (and in previous work [72]), we explored alternative methods for the

modeling of platelets, focusing on methods that decreased the computational time nec-

essary to maintain and update platelet geometry and motion and had comparable or

better error characteristics to the standard models. Specifically, we compared interpolation

with Fourier-based techniques (trigonometric polynomials in 2D and spherical harmonics

in 3D) and interpolation with radial basis functions (restricted to the unit circle in 2D

and unit sphere in 3D). We found that interpolation with radial basis functions offered

accuracy and computational cost comparable to that offered by Fourier-based methods (and

better than that offered by standard finite-differences and piecewise-quadratic interpolation

used in conjunction with traditional platelet simulations) in modeling a target shape, its

normals, and tension forces computed on its surface when the target shape was infinitely

smooth. Furthermore, interpolation with radial basis functions resulted in better accuracy

than that offered by both Fourier-based methods and the standard combination of finite-

differences and piecewise-quadratic interpolation used in many versions of the IB method

(e.g., [17, 21, 24]) when the target shape had only one or two underlying derivatives. In

this situation, use of radial basis functions led to a computational cost comparable to that

of Fourier-based methods and lower than that of the standard combination of techniques

used in many IB methods.

We now turn our attention to exploring the consequences of using a parametric RBF

geometric model within the full IB method, with platelet aggregation as our target appli-

cation. In this work, we propose a new immersed boundary algorithm that utilizes the

features afforded by our RBF geometric model. We will compare the convergence of the

RBF-IB method to that of the traditional IB method on a fluid-structure interaction test

used frequently in the IB literature. We also determine the extent of volume loss and the

maximum time-step size allowed by each method. We then provide timing comparisons

49

between the two methods as a function of grid size and the number of platelets in a

simulation. Our results show that the RBF-IB algorithm offers significant savings in terms

of computational cost with greater accuracy than in the traditional IB method. We then

present results from a 2D platelet aggregation simulation computed using the RBF-IB

method.

3.2 Geometric Modeling of Platelets

In this section, we review the two geometric modeling strategies to be compared in

the context of the Immersed Boundary method applied to platelet aggregation. For a full

description of these strategies, see Chapter 2.

3.2.1 Piecewise Linear Model

In the traditional IB method, the surfaces of platelets are represented by a collection

of Immersed Boundary points. We henceforth alternatively refer to the IB points in the

traditional IB method as sample sites, and denote them byXs(t) = X(q, t) for each discrete

q ∈ Γ and at a particular time t. The surface elastic forces of the platelets are spread from

these sample sites into the neighboring fluid. Both tension and bending forces are computed

using a collection of springs (typically linear springs) between pairs of sample sites. An

explicit piecewise linear interpolant of the surface is not formed. If other information

(such as normal vectors) is needed at the sample points, an approximation to the surface

represented by the sample sites may be formed by a piecewise quadratic interpolation

of the sample sites (e.g., [93]). After the incompressible Navier Stokes equations are

solved, velocities from the portions of the Eulerian grid surrounding the sample sites are

interpolated to the sample sites using a discretization of Equation 1.4 and used to move the

platelets.

3.2.2 Parametric RBF Model

Here, we briefly review the RBF model developed in Chapter 2, with the notation

adapted for use with the IB method. Throughout this chapter, we use lowercase letters

for Eulerian quantities and uppercase letters for Lagrangian quantities. We denote vectors

with as many components as the spatial dimension in bold. We denote vectors with as

many components as the number of data sites (Nd) or sample sites (Ns) by underlining.

We indicate matrices with (Nd) or (Ns) rows and two columns in bold with underlining.

We use our model to define operators necessary for the computation of geometric and

mechanical quantities required by the IB method.

50

We represent a platelet surface at any time t parametrically by

X(λ, t) = (X(λ, t), Y (λ, t)) (3.1)

where 0 ≤ λ ≤ 2π is the parametric variable and X(0, t) = X(2π, t). We explicitly

track a finite set of Nd points Xd
1(t), . . . ,Xd

2(t), which we refer to as data sites. Here

Xd
j (t) := X(λj , t), j = 1, . . . , Nd, and we refer to the parametric coordinates λ1, . . . , λNd

as

the data site nodes (or simply nodes). We construct each component ofX by using a smooth

RBF interpolant of the data sites in parameter space as discussed in detail below. We also

make use of derivatives of the interpolant at the data sites and we use the interpolant and

its derivatives at another set of prescribed sample points or sample sites, which correspond

to Ns parameter values: λe
1, ..., λ

e
Ns

.

We first explain how to construct an RBF interpolant to the X component of X using

the data (λ1, X
d
1 (t)), ..., (λNd

, Xd
Nd

(t)); the construction of the Y component follows in a

similar manner. Let φ(r) be a scalar-valued radial kernel, whose choice we discuss below.

Define X(λ, t) by

X(λ, t) =

Nd∑
k=1

cXk φ
(√

2− 2 cos(λ− λk)
)
. (3.2)

Note that the square root term in Equation (3.2) is the Euclidean distance between the

points on the unit circle whose angular coordinates are λ and λk. For this paper, we use

the multiquadric (MQ) radial kernel function, given by

MQ: φ(r) =
√

1 + (εr)2, (3.3)

where ε is called the shape parameter. To have X(λ, t) interpolate the given data, we

require that the coefficients cXk , k = 1, ..., Nd satisfy the following system of equations:
φ (r1,1) · · · φ (r1,Nd

)
φ (r2,1) · · · φ (r2,Nd

)
...

. . .
...

φ (rNd,1) · · · φ (rNd,Nd
)

︸ ︷︷ ︸

A

cX1
cX2
...
cXNd

︸ ︷︷ ︸
~cXd

=

Xd

1 (t)
Xd

2 (t)
...

Xd
Nd

(t)

︸ ︷︷ ︸
~Xd(t)

, (3.4)

where rj,k =
√

2− 2 cos(λj − λk). Since rj,k = rk,j , the matrix A in this system is

symmetric. More importantly, for the MQ kernels, A is nonsingular, with the global

support and infinite smoothness of φ(r) lending itself to spectral accuracy and convergence

on smooth problems [15, 88].

51

In our application, we want to be able to evaluate X(λ, t) at sample sites corresponding

to parameter values λe
1, ..., λ

e
Ns

, that stay fixed over time. While we could use Equation (3.2)

to do this, it is much more convenient from a notational and computational perspective to

construct an evaluation matrix that combines the linear operations of constructing the

interpolant to ~Xd(t) = [~Xd(t), ~Yd(t)], for any t, and evaluating it at λe
1, ..., λ

e
Ns

. The

evaluation matrix can be constructed by first noting that Equation (3.2) can be written as

X(λ, t) =
[
φ
(√

2− 2 cos(λ− λ1)
)
· · · φ

(√
2− 2 cos(λ− λNd

)
)]

︸ ︷︷ ︸
~b(λ)T

~cXd . (3.5)

Since ~cXd = A−1 ~Xd(t), we can write Equation (3.2) as X(λ, t) = ~b(λ)TA−1 ~Xd(t). The

evaluation of X(λ, t) at λe
1, ..., λ

e
Ns

can then be obtained as follows: X(λe
1, t)
...

X(λe
Ns
, t)

︸ ︷︷ ︸

~Xs(t)

=

 ~b(λ
e
1)T

...
~b(λe

Ns
)T

︸ ︷︷ ︸

B

A−1 ~Xd(t) = BA−1︸ ︷︷ ︸
Es

~Xd(t). (3.6)

So, given the data sites ~Xd(t) at any time t, we can interpolate their coordinates with an

RBF expansion and evaluate the interpolant at the sample site nodes λe
1, ..., λ

e
Ns

to get

~Xs(t) by the matrix-vector product Es
~Xd(t). In fact, this same procedure can be used

to give values at sample site nodes for any quantity whose values we have at data site

nodes and which we represent using an RBF expansion (e.g., ~Yd(t) = [Y d
1 (t) · · ·Y d

Nd
(t)]T).

Furthermore, the evaluation matrix Es can be precomputed once at t = 0 and used for all

subsequent times.

We also need to compute geometric quantities such as tangent vectors, and mechanical

quantities such as forces at data sites and/or sample sites. These quantities require com-

puting derivatives with respect to λ of the platelet surface coordinates (X(λ, t), Y (λ, t)).

We use the RBF-based representation of the surface to compute these derivatives, and we

will express derivatives of the RBF interpolant in matrix-vector form. Toward this end, we

use similar notation to Equation (3.5) and define the vector

~bnλ(λ̃) :=
∂n

∂λn
~b(λ)

∣∣∣∣
λ=λ̃

=

[
∂n

∂λn
φ
(√

2− 2 cos(λ− λ1)
)∣∣∣∣
λ=λ̃

· · · ∂n

∂λn
φ
(√

2− 2 cos(λ− λNd
)
)∣∣∣∣
λ=λ̃

]T
,

52

for any 0 ≤ λ̃ ≤ 2π. Just as ~b(λ̃)TA−1 ~Xd(t) gives the value of X(λ̃, t), we can use ~bnλ(λ̃) to

obtain the nth derivative of X(λ, t) with respect to λ as

∂n

∂λn
X(λ, t)

∣∣∣∣
λ=λ̃

= ~bnλ(λ̃)TA−1 ~Xd(t).

The evaluation of the nth derivative of X(λ, t) at the data site nodes λ1, . . . , λNd
can then

be obtained as follows:
∂n

∂λn
X(λ, t)

∣∣∣∣
λ=λ1

...
∂n

∂λn
X(λ, t)

∣∣∣∣
λ=λNd

 =

 ~b
n
λ(λ1)T

...
~bnλ(λNd

)T

︸ ︷︷ ︸

Bn
λ

A−1 ~Xd(t) = Bn
λA
−1︸ ︷︷ ︸

Dnλ

~Xd(t). (3.7)

In a similar manner, the evaluation of the nth derivative of X(λ, t) at the sample site nodes

λe
1, . . . , λ

e
Nd

can be obtained by

∂n

∂λn
X(λ, t)

∣∣∣∣
λ=λe1

...
∂n

∂λn
X(λ, t)

∣∣∣∣
λ=λeNs

 =

 ~b
n
λ(λe

1)T

...
~bnλ(λe

Ns
)T

︸ ︷︷ ︸

Bn
λe

A−1 ~Xd(t) = Bn
λeA

−1︸ ︷︷ ︸
Dnλe

~Xd(t). (3.8)

For given data sites ~Xd(t) at any time t, we can interpolate these values with an RBF

expansion and evaluate the nth derivative of the interpolant at the data site nodes by the

matrix-vector product Dnλ ~Xd(t) and at the sample site nodes by Dnλe ~Xd(t). We refer to the

Nd ×Nd matrices Dnλ and the Ns ×Nd matrices Dnλe as RBF differentiation matrices.

The matrices Dnλ and Dnλe can be used to give values at respective data site or sample

site nodes of the nth derivative of the RBF interpolant of any quantity whose values we

have at the data site nodes (e.g., ~Yd(t) = [Y d
1 (t) · · ·Y d

Nd
(t)]T). These matrices can also be

precomputed once at t = 0 and used for all subsequent times.

Having defined the operators to compute derivatives of the RBF interpolant, we define

the quantity

τ :=
∂

∂λ
X(λ, t) =

(
∂

∂λ
X(λ, t),

∂

∂λ
Y (λ, t)

)
= (τX , τY). (3.9)

The unit tangent vector to X(λ, t) is then given by

τ̂ : =
τ

‖τ‖
= (τ̂X , τ̂Y). (3.10)

In our experiments, we assume that the Lagrangian force at a point on a platelet is the sum

of a tension force, a bending-resistant force, and possibly a force due to a bond between

53

that point and a point on another platelet or the vessel wall. For the tension force, we

use the fiber model defined in [67], according to which the elastic tension force density at

X(λi, tk) is given by

FT(λi, tk) =
∂

∂λ
(T τ̂)

∣∣∣∣
λi,tk

, (3.11)

where T = kt(‖τ‖ − l0) is the fiber tension and kt > 0 is constant. We set l0,i = ‖τ‖|λi,t0 ,

where t0 is the initial time of the simulation. For a bending-resistant force, we use a linear

variant of the force defined in [42] and define the elastic force density at X(λi, tk) due to

how much the platelet surface there is bent to be

FB(λi, tk) = − kb

(
∂4X

∂λ4
− ∂4X0

∂λ4

)∣∣∣∣
λi,tk

. (3.12)

Here X0 = X(λi, t0) is the initial configuration of the platelet and kb > 0 is constant. Ide-

ally, the constants kt and kb would be chosen to reflect values determined from experiments

involving real platelets. In our work, we choose kt and kb that keep the platelets rigid, and

scale them as we refine the background Eulerian grid.

We defer discussion of how we compute the forces given by Equations (3.11) and (3.12)

to the next section, since the implementation is different for the RBF and piecewise-linear

representations of the platelet boundary. However, the force acting on a platelet due to

other platelets (and/or walls) is common to both methods. We use the spring force defined

in [24]: let p1, p2, ..., pNp be the indices corresponding to the platelets in the domain. Let

p1 and p2 be the indices of two platelets which are linked at sample sites Xp1(λsi1) and

Xp2(λsi2). The force at Xp1(λsi1) is then given by:

FC
p1(λsi1 , tk) = KC(||Xp2(λsi2)−Xp1(λsi1)|| − l0,C)

Xp2(λsi2)−Xp1(λsi1)

||Xp2(λsi2)−Xp1(λsi1)||
, (3.13)

where KC and l0,C are the interplatelet cohesion spring stiffness and the resting length,

respectively; we also set FC
p2(λsi2 , tk) = −FC

p1(λsi1 , tk). The formulation for platelet-wall links

is similar.

3.3 Numerical Discretization

In this section, we present the implementation details for both IB methods. For each

method, we briefly describe the spatial discretization for both the Lagrangian and Eulerian

quantities. We then describe the time-stepping scheme for each method.

54

3.3.1 The Piecewise-Linear IB Method

Traditionally, finite-difference approximations of Equations (3.11) and (3.12) are used

in conjunction with piecewise linear methods in 2D (e.g., [42]). We use a second-order

central difference involving triads of sample sites or IB points to discretize the derivatives

involved in the computation of both the tension and bending forces (including tangent

lengths). It is useful to think of these finite difference approximations to the constitutive

model as Hookean springs connecting pairs of IB points. Note that these differences are

only second-order assuming a near-uniform sampling. This is one of the sources of error for

the IB method.

For the Eulerian spatial discretization, we use a second-order centered finite-difference

approximation to the Laplacian on a staggered grid. We discretize the advection term using

second-order centered differences, averaging quantities to cell edges or nodes as required.

For the approximate δ-function, we use the “cosine” form described by Peskin [67] which

ensures that the entire IB force is transmitted to the grid, that the force density on the grid

is a continuous function of the IB point locations, and that the communication between

grid and IB points is very localized. After each update of the IB point locations, new links

are formed and existing ones are broken using the model’s rules for these types of events.

To prevent leakage, it is common to enforce a restriction that the IB point spacing on the

surface be no greater than 0.5h, where h is the Eulerian grid cell width.

We use the formally second-order Runge-Kutta time-stepping scheme outlined in [13].

This time-stepping scheme appears to show second-order convergence in time for a smooth

forcing function, or for an elastic material that fills the whole domain, as demonstrated in

[13]. However, as our results will show, this scheme will produce only first-order convergence

in time in the presence of a sharp interface between the fluid and the elastic material, as is

typical of IB methods. The full scheme is presented below:

1. Advance the structure to time level tn+1/2 using the current velocity field on the grid

ung . This is done by updating each IB point Xq (for each q) using the equation

Xn+1/2
q = Xn

q +
∆t

2
Un
q ≡Xn

q +
∆t

2

∑
g

ung δh(xg −Xn
q)h2, (3.14)

where h is the fluid grid spacing, and δh is a discrete approximation to a two-

dimensional δ-function. Here, xg and X
n+ 1

2
q are the coordinates of grid point g and

IB point q, respectively.

2. The resultant F
n+ 1

2
q of all of the force contributions that act on an IB point X

n+ 1
2

q is

calculated for each q.

55

3. These forces are distributed to the Eulerian grid used for the fluid dynamics equations

using a discrete version of Equation (1.3):

f
n+ 1

2
g ≡ fn+ 1

2 (xg) =
∑
q

F
n+ 1

2
q δh(xg −X

n+ 1
2

q)dq. (3.15)

Here, F
n+ 1

2
q is the Lagrangian force (per unit q) on the IB point, dq is the increment in

parameter q between consecutive discrete sample sites, and δh is the same approximate

δ-function as used in Equation 3.14.

4. With the fluid force density f
n+ 1

2
g now known at each grid point, the fluid velocity is

updated taking a half step (∆t/2) with a discrete Navier-Stokes solver. As in [13], we

use a fractional-step projection method. First, a backward Euler discretization of the

momentum equations is used. The pressure that enforces discrete incompressibility

is determined [44]. This gives us the velocity field u
n+ 1

2
g , the mid-step approximation

required in an RK2 method.

5. Using the mid-step fluid velocity u
n+ 1

2
g and the mid-step IB point positions X

n+ 1
2

q ,

update the IB points Xn
q for each q to the time level tn+1 using

Xn+1
q = Xn

q + ∆tU
n+ 1

2
q ≡Xn

q + ∆t
∑
g

u
n+ 1

2
g δh(xg −X

n+ 1
2

q)h2, (3.16)

where δh is the same approximate δ-function we have used throughout.

6. Update the velocity ung to time-level tn+1 using the mid-step velocity u
n+ 1

2
g and the

force f
n+ 1

2
g . The mid-step velocities are advected, while a Crank-Nicolson scheme is

used for time-stepping the momentum equations. The pressure projection gives us

the discretely-incompressible velocity field un+1
g . Note that this step could have been

performed as soon as u
n+ 1

2
g was computed. It is independent of step (5).

3.3.2 The RBF-IB Method

In order to construct the operators utilized by our algorithm, we must first choose

an appropriate node set. We use Nd equally-spaced values on the interval (0, 2π] as the

data site node set {λk}Nd
k=1. This gives a uniform sampling in the parametric space. More

importantly, since our target objects are either circular or elliptical in 2D, these node

points correspond to a nearly uniform distribution of data sites on the object. We also

use Ns >> Nd equally-spaced points in the interval (0, 2π] as the set of sample site nodes

{λe
j}
Ns
j=1 since this results in a set of sample sites that are well distributed over the object.

As in the piecewise-linear IB method, we make sure to start with enough points that the

56

sample site spacing is never greater than 0.5h, though the data site spacing can be much

greater. In the results section, we explore the ramifications of this choice.

We have formulated our operators to ensure that operations like evaluation of the

interpolant and computing derivatives (and therefore the constitutive model) do not require

solving a linear system for any time step of the platelet simulation except the initial step.

This is possible because, though the data sites and sample sites move over the course of

the simulation, their values in parameter space do not change. For the RBF model of the

platelets, the evaluation matrix Es in Equation (3.6) and differentiation matrices Dnλ and Dnλe
in Equations (3.7) and (3.8), respectively, can be computed using the FFT as discussed in

our previous work [72]. This is possible since the data site nodes {λk}Nd
k=1 are equally-spaced,

which results in the A matrix defined Equation (3.4) having a circulant matrix structure.

The costs and accuracy of the RBF models are elaborated upon in the discussion of the

results. The algorithm to compute forces on platelets using these operators is presented

below.

In the description of the algorithm below, we use standard matrix-vector operations such

as multiplication as well as nonstandard operations like element-by-element multiplication

of matrices and vectors (sometimes called the Hadamard product). We denote this latter

operation with the ◦ operator. For example, if ~J and ~L are Nd × 2 matrices and ~R is a

vector of length Nd, then the ith row of ~J ◦ ~L and ~R ◦ ~J are given by

(~J ◦ ~L)i,1:2 = [(~J)i,1(~L)i,1, (~J)i,2(~L)i,2]

(~R ◦ ~L)i,1:2 = [(~R)i(~L)i,1, (~R)i(~L)i,2]

where i = 1, . . . , Nd. We define ~τ d = D1
λ
~Xd(t), the Nd× 2 matrix of tangent vectors at the

data sites at time t and ~‖τ d‖, the Nd vector containing the two-norm of each row of ~τ d.

The algorithm for computing platelet elasticity is as follows:

1. Initialization (t = t0): After creating and storing the RBF evaluation matrix as in

Equation (3.6) and differentiation matrices as in Equations (3.7) and (3.8), compute

for each platelet:

(a) The rest lengths for the tension force at the data sites: ~l0 = ~τ d = D1
λ
~Xd(t0).

(b) The bending-resistant force term for the platelet’s initial configuration at the

data sites, D4
λe
~Xd(t0).

2. For each time-step (t = tk, k ≥ 1), compute for each platelet:

(a) The length of the tangent vectors ~τ d = D1
λ
~Xd(tk) at the data sites: ~‖τ d‖; and

the unit tangents at the data sites: ~̂τ d.

57

(b) The tension at the data sites, using the constitutive model: ~Td = kt(~‖τ d‖ − ~l0).

(c) The tension force at sample sites: ~F
T

s = D1
λe
~Zd, where ~Zd = ~Td ◦ ~̂τ d.

(d) The bending force at sample sites: ~F
B

s = −kb

(
D4
λe
~Xd(tk)−D4

λe
~Xd(t0)

)
.

(e) The interplatelet cohesion force from Equation (3.13) at the sample sites: ~F
C

s .

(f) The total Lagrangian force at the sample sites: ~F s = ~F
T

s + ~F
B

s + ~F
C

s .

The RBF-IB method uses the same time-stepping scheme and Eulerian discretization

as the piecewise linear IB method, with one important difference. When computing the

forces at time level n+ 1
2 , we advance the data sites to time level n+ 1

2 , generate a set of

sample sites at that time level, and compute forces at the sample sites. Similarly, we use the

mid-step approximation to the velocity field to advance the data sites to time level n + 1.

We thus generate only a single set of sample sites every time-step, since the sample sites

are only needed when the data sites are advanced to time level n+ 1
2 . It is clear that if

the number of data sites is fewer than the number of sample sites, this results in improved

computational efficiency over the piecewise linear IB method. However, it is important to

explore the effect of our changes on the convergence of the algorithm. We explore these

questions in the results section. We present the full algorithm below:

1. Advance the structure to time level tn+1/2 using the current velocity field un. This is

done by updating the data sites (Xd)nj by a discrete analog of Equation (1.4)

(Xd)
n+ 1

2
j = (Xd)nj +

∆t

2
(Ud)nj ≡ (Xd)nj +

∆t

2

∑
g

ung δh(xg − (Xd)nj)h2. (3.17)

2. Generate a new set of sample sites ~Xs(tn+ 1
2
) by applying the RBF evaluation operator

to the data sites ~X
n+ 1

2
d := ~Xd(tn+ 1

2
), i.e.,

~Xs(tn+ 1
2
) = Es

~Xd(tnew). (3.18)

3. The total force at the sample sites ~F
n+ 1

2
s is calculated using the algorithm from above.

4. These forces are distributed to the Eulerian grid used for the fluid dynamics equations

using a discrete version of Equation (1.3):

f
n+ 1

2
g ≡ fn+ 1

2 (xg) =
∑
q

F
n+ 1

2
q δh(xg − (Xs)

n+ 1
2

q)dq. (3.19)

Here, xg and (Xs)
n+ 1

2
q are the coordinates of grid point g and sample site q, re-

spectively, F
n+ 1

2
q is the Lagrangian force (per unit q) on the sample site, dq is the

increment in parameter q between consecutive discrete sample sites, and δh is the

same approximate δ-function as used in Equation 3.17.

58

5. With the fluid force density f
n+ 1

2
g now known at each grid point, the fluid velocity

is updated taking a half step (∆t/2) with a discrete Navier-Stokes solver. Again, we

use a fractional-step projection method, with a backward Euler discretization of the

momentum equation, and a projection to determine the pressure that enforce incom-

pressibility [44]. This gives us the velocity field u
n+ 1

2
g , the mid-step approximation

required in an RK2 method.

6. Using the mid-step fluid velocity and the mid-step data site positions (Xd)
n+ 1

2
j , update

the data sites (Xd)
n+ 1

2
j for each j to the time level tn+1 using

(Xd)n+1
j = (Xd)nj +∆t(Ud)

n+ 1
2

j ≡ (Xd)nj +∆t
∑
g

u
n+ 1

2
g δh(xg− (Xd)

n+ 1
2

j)h2, (3.20)

where δh is the same approximate δ-function we have used throughout.

7. Update the velocity ung to time-level tn+1 using the mid-step velocity u
n+ 1

2
g and the

force f
n+ 1

2
g . The mid-step velocities are advected, while a Crank-Nicolson scheme is

used for time-stepping the momentum equations. The pressure projection gives us

the discretely-incompressible velocity field un+1
g .

Observe that the data sites are updated twice per time-step in the RK2 scheme, but

the sample sites are only generated once. Since the data sites are typically a fraction of the

number of IB points from the PL-IB method, the computational cost is significantly lower

for the RBF-IB method, even factoring in the interpolation and the sample site generation.

3.4 Results

In this section, we first compare the convergence of both methods on a canonical test

problem. We also use this test problem to explore the relationship between the number of

data sites (Nd) and the Eulerian grid spacing (h). We then compare the area loss in an

elastic object simulated by each method on the same problem, and discuss the time-step

sizes allowed by both methods. We follow with a discussion of the change in energy over time

in the RBF-IB method. We then provide timings for platelet simulations and discuss both

foreseen and unforeseen results of using the RBF model within the IB method. Finally, we

present the results of platelet aggregation simulations conducted using the RBF-IB method.

3.4.1 Description of a Standard Fluid-structure
Interaction Problem

We describe a standard fluid-structure interaction problem on which we test both

versions of the IB method. This problem is commonly used in the IB literature (e.g.,

59

[64]). The problem involves placing an elliptical object with its center of mass at the center

of the [0, 1]2 physical domain. The elliptical object has a circle of the same area as its rest

configuration, and attempts to attain the rest configuration subject to a combination of

tension and bending forces. The physical domain is filled with a fluid that is initially at

rest, with periodic boundary conditions in the x-direction and no-slip Dirichlet boundary

conditions in the y-direction. We set the radius of the target circle to be r = 0.1 units, with

the ellipse initially having a major axis of a = 2r and a minor axis of b = 0.5r. This test is

visualized in Figure 3.1.

3.4.2 Convergence Studies

In previous work [72], we compared the accuracy and convergence of both RBF and

traditional IB geometric modeling strategies for static platelet-like shapes. We now compare

the accuracy and convergence of the full RBF-IB and PL-IB methods, both for the velocity

field and for the immersed elastic structure.

For the fluid, on each grid with cell width h, we define the quantity uc,h, the coarsened

discrete velocity field from the 256 × 256 grid. For each grid point i on a grid with cell

width h, we compute the quantity fhi = ||uhi − u
c,h
i ||. We define the l2 error in the velocity

field as e2(h) =
√∑

i f
h
i h

2, and the l∞ error in the velocity field to be e∞(h) = maxi f
h
i .

Figure 3.1: A visualization of the fluid-structure interaction test. The dashed lines show
the initial ellipse, while the filled line indicates the near-circular object at the final time
t = 2.0. The small arrows indicate the velocity field at the final time. The maximum
velocity is very close to zero at this time as the object is almost at rest.

60

The convergence rate for errors e(2h) and e(h) is measured as pu = log2

(
e(2h)
e(h)

)
.

For the Lagrangian markers (sample sites or IB points), we adopt the following proce-

dure:

1. Given the number of sample sites Ns and the radius of the target circle r, we define

λ = 2π
Ns

, the angle subtended at the center of the circle if the points were evenly-spaced.

2. We define the quantity C = 2r sin(0.5λ), the chord length between any two points in

a set of evenly-spaced points on an ideal circle. We also define Cexact to be the ideal

chord length for Ns = 400.

3. We compute the actual distances di between the sample sites (or IB points) for a

simulation computed on the 256 × 256 grid with Ns = 400. We then compute the

quantities se∞ = maxi |di − Cexact| and se2 = (1/Ns)
√∑

i |di − Cexact|.

4. We compute sNs
∞ and sNs

2 for Ns = 50, 100, 200. We then define the l2 error to be

e2(Ns) = |sNs
2 − se2| and the l∞ error to be e∞(Ns) = |sNs

∞ − se∞|.

We define the convergence rate for errors e(Ns) and e(2Ns) to be pX = log2

(
e(Ns)
e(2Ns)

)
.

3.4.2.1 Convergence of the Fluid Solver

Before testing both IB methods, we verify the convergence of our fluid solver. The RK2

time-stepping scheme used for the IB method in this paper is designed to give second-order

convergence for smooth problems. To test this scheme, we specify a smooth initial condition

to the Navier-Stokes equations on a [0, 1]2 domain. The initial condition is a simple parabolic

velocity profile. The maximum fluid velocity was set to umax = 5.0, the fluid density to

ρ = 1.0, and the nondimensionalized viscosity to µ = 8.0 . We also force the Navier-Stokes

equations with a constant forcing function to give us a Poisseuille flow. We impose periodic

boundary conditions in the x direction and no-slip boundary conditions in the y direction.

We then simulate on successfully finer grids and compute errors in the velocity field as

outlined previously, using the solution computed on a 256× 256 grid as our gold standard.

We run the simulation to time t = 1.0. Our results (see Table 3.1) show that the fluid solver

exhibits second-order convergence in both space and time for a smooth initial condition.

Table 3.1: Results of a refinement study on the fluid solver. Errors were measured against
the solution computed on 256× 256 grid with a time-step of ∆t = 6.25× 10−4.

Grid Size ∆t L2 error Order L∞ error Order

32× 32 0.0050 6.4090e-03 6.4176e-03

64× 64 0.0025 1.5259e-03 2.07 1.5281e-03 2.07

128× 128 0.00125 3.0518e-04 2.322 3.0572e-04 2.321

61

We note that for full Immersed Boundary simulations involving thin interfaces, it is unlikely

that we will see second-order convergence.

3.4.2.2 Convergence of the PL-IB Method

We now test the convergence of the PL-IB method on the standard fluid-structure

interaction problem. We compare the velocity field and IB point positions to those computed

for the same test problem on a 256× 256 grid with Ns = 400 IB points, and compute errors

as outlined previously. It is important to note that the time-steps used for IB simulations

with explicit time integrators are necessarily smaller than what we could use for a standard

fluid solver. We simulate to final time t = 2. Our results are shown in Tables 3.2 and 3.3.

For both the velocity field and the IB points, we see high convergence when refining from a

32× 32 grid to a 64× 64 grid, and closer to first-order convergence when refining from the

64× 64 grid to the 128× 128 grid. Indeed, as was mentioned earlier, one expects first-order

convergence on this problem with the IB method. The high-order convergence seen with the

first refinement is likely due to the solution being fairly inaccurate on the coarsest grid. For

completeness, we note that se2 = 5.0994e− 07 and se∞ = 4.3042e− 05. Below, we compare

these quantities to the corresponding ones computed from the RBF-IB method.

Table 3.2: Results of a refinement study with the PL-IB method. We show the convergence
of the velocity field, with errors measured against the velocity field of a simulation on a
256× 256 grid with Ns = 400 sample sites and ∆t = 2.5× 10−5.

Grid Size Ns ∆t L2 error Order L∞ error Order

32× 32 50 2× 10−4 4.8302e-03 2.6640e-02

64× 64 100 1× 10−4 4.4352e-04 3.45 3.5463e-03 2.91

128× 128 200 5× 10−5 1.1651e-04 1.93 1.6403e-03 1.11

Table 3.3: Results of a refinement study with the PL-IB method. We show the convergence
in the IB point positions, with errors measured against the IB point positions from a
simulation on a 256× 256 grid with Ns = 400 IB points and ∆t = 2.5× 10−5.

Ns Grid Size ∆t L2 error Order L∞ error Order

50 32× 32 2× 10−4 3.1545e-05 5.9530e-04

100 64× 64 1× 10−4 4.4447e-06 6.15 8.7363e-05 2.76

200 128× 128 5× 10−5 9.2942e-07 2.26 2.5866e-05 1.76

62

3.4.2.3 Convergence of the RBF-IB Method for Nd =
25

Here, we test the convergence of the RBF-IB method on the fluid-structure interaction

problem described above. Once again, we compare the velocity field and sample site

positions to those computed for the same test problem on a 256× 256 grid with Ns = 400

sample sites and Nd = 100 data sites. Tables 3.4 and 3.5 show the results obtained with

Nd = 25 data sites for the fluid and the object, respectively.

Table 3.4 shows that the errors produced in the RBF-IB method (for the same initial

configuration and final time as in the PL-IB method) are lower for the same grid resolution.

We see that the RBF-IB method for Nd = 25 does not offer good convergence rates for the

fluid velocity in any norm, despite producing lower errors on each grid level than the PL-IB

method. Table 3.5 shows results for the errors on the object. The errors on the coarsest

grid are high, leading to a higher-than-expected convergence rate in both norms when we

measure the errors on a 64×64 grid. However, even on the coarsest grid level, the errors are

already lower than those shown by the PL-IB method for the same number of sample sites

and initial configuration. Further refinement gives us lower errors than the PL-IB method,

but with lower convergence rates as well.

We note that the l2 and l∞ errors for the structure on the 256×256 grid for Nd = 25 data

sites are se2 = 4.3694e− 08 and se∞ = 1.1113e− 06. These are each an order of magnitude

Table 3.4: Results of a refinement study with the RBF-IB method with Nd = 25 data sites.
We show the convergence of the velocity field, with errors measured against the velocity
field of a simulation on a 256 × 256 grid with Ns = 400 sample sites, Nd = 100 data sites,
and ∆t = 2.5× 10−5.

Grid Size Ns ∆t L2 error Order L∞ error Order

32× 32 50 2× 10−4 1.7666e-04 8.8682e-04

64× 64 100 1× 10−4 1.5097e-04 0.23 5.4255e-04 0.71

128× 128 200 5× 10−5 8.4247e-05 0.84 3.0738e-04 0.82

Table 3.5: Results of a refinement study with the RBF-IB method with Nd = 25 data
sites. We show the convergence in the sample site positions, with errors measured against
the sample site positions of a simulation on a 256 × 256 grid with Ns = 400 sample sites,
Nd = 100 data sites, and ∆t = 2.5× 10−5.

Ns Grid Size ∆t L2 error Order L∞ error Order

50 32× 32 2× 10−4 3.1188e-06 2.3238e-05

100 64× 64 1× 10−4 3.5898e-07 3.12 3.0048e-06 2.95

200 128× 128 5× 10−5 1.5310e-07 1.23 1.7905e-06 0.75

63

lower than those produced by the PL-IB method on the 256× 256 grid.

3.4.2.4 Convergence of the RBF-IB Method for Nd =
50

We repeat the above test problem with Nd = 50 data sites. As before, we compare the

velocity field and sample site positions to those computed for the same test problem on a

256 × 256 grid with Ns = 400 sample sites and Nd = 100 data sites. Tables 3.6 and 3.7

show the results for the fluid and the object, respectively.

Examining Table 3.6, we see high convergence when going from the coarsest grid to a

finer grid. However, we see that when moving to the finest grid, we have recovered first-order

convergence. The errors on the 128 × 128 grid for Nd = 50 with the RBF-IB method are

close to those on the same grid with Nd = 25, and much lower than those produced by

the PL-IB method in both norms. Table 3.7 shows errors similar to those seen in Table

3.5, albeit with less erratic convergence. Indeed, we recover first-order convergence in the

l2 norm and close to second-order convergence in the l∞ norm. Of course, the errors are

much lower than those seen in Table 3.3.

We note that using Nd = 50 data sites does not result in significantly better convergence

on the structure than Nd = 25. There are two possible explanations. The first is that

the function representing the shape of the object is of limited smoothness (as seen in our

previous work [72]), with higher values of Nd causing the interpolation error to saturate

Table 3.6: Results of a refinement study with the RBF-IB method with Nd = 50 data sites.
We show the convergence of the velocity field, with errors measured against the velocity
field of a simulation on a 256 × 256 grid with Ns = 400 sample sites, Nd = 100 data sites,
and ∆t = 2.5× 10−5.

Grid Size Ns ∆t L2 error Order L∞ error Order

32× 32 50 2× 10−4 5.5617e-03 3.7404e-02

64× 64 100 1× 10−4 2.2436e-04 4.63 1.2403e-03 4.91

128× 128 200 5× 10−5 7.8934e-05 1.51 2.8859e-04 2.10

Table 3.7: Results of a refinement study with the RBF-IB method with Nd = 50 data
sites. We show the convergence in the sample site positions, with errors measured against
the sample site positions of a simulation on a 256 × 256 grid with Ns = 400 sample sites,
Nd = 100 data sites, and ∆t = 2.5× 10−5.

Ns Grid Size ∆t L2 error Order L∞ error Order

50 32× 32 2× 10−4 3.6212e-05 5.2794e-04

100 64× 64 1× 10−4 3.8824e-07 6.54 7.8472e-06 6.07

200 128× 128 5× 10−5 1.7236e-07 1.17 2.0636e-06 1.93

64

or even increase. The alternate (and more likely) explanation is that, since our RBFs

are parametrized on the circle, Nd = 25 would already have a very high accuracy when

the object becomes a circle, considering the spectral accuracy of RBF interpolation on the

circle; in such a scenario, using Nd = 50 data sites would only serve to increase the rounding

errors in the representation of the structure. However, it is clear that using Nd = 50 results

in better convergence in the velocity field.

The l2 and l∞ errors for the structure on the 256× 256 grid for Nd = 50 data sites are

the same as those for Nd = 25 data sites. Once again, these are each an order of magnitude

lower than those produced by the PL-IB method on the 256× 256 grid.

3.4.2.5 Convergence of the RBF-IB Method for
Nd = 0.25Ns

In the PL-IB method, the number of IB points depends on the grid spacing h. Specifi-

cally, the number of IB points is chosen so that the distance between any two sample sites

is always less that 0.5h. In all the tests above, we have maintained that relationship for the

IB points in the PL-IB method and the sample sites in the RBF-IB method. In the RBF-IB

method, we always use fewer data sites than sample sites, i.e., Nd < Ns, with the choice of

Nd being justified by the results in previous work [72]. Furthermore, in the tests above, we

fix Nd even as we refine the fluid grid. For Nd = 25, this means that as we refine Ns the

distance between data sites increases from 0.8h to 3.2h (at the start of the simulation).

In order to gain intuition on the relationship between Nd and h, we now perform a

convergence study (using the same test problem given above) with increasing values of

Nd as h is reduced. To accomplish this, we use values of Nd = 12, 25, 50, 100 for Ns =

50, 100, 200, 400, i.e., we enforce Nd = 0.25Ns. We use the solution computed with Nd = 100

and Ns = 400 on a 256 × 256 grid as our gold standard, just as we have in all the other

tests.

Table 3.8 shows the results for the fluid. Clearly, the errors are higher and the con-

Table 3.8: Results of a refinement study with the RBF-IB method with Nd = 0.25Ns

data sites. We show the convergence of the velocity field, with errors measured against the
velocity field of a simulation on a 256×256 grid with Ns = 400 sample sites, Nd = 100 data
sites, and ∆t = 2.5× 10−5.

Grid Size Ns ∆t L2 error Order L∞ error Order

32× 32 50 2× 10−4 4.7909e-04 2.4700e-03

64× 64 100 1× 10−4 1.5097e-04 1.67 5.4255e-04 2.19

128× 128 200 5× 10−5 9.0802e-05 0.73 3.3020e-04 0.72

65

vergence more erratic than for the fixed Nd = 50 tests previously presented, but varying

Nd certainly seems to give better convergence than fixing it to Nd = 25. However, the

convergence in the structure is comparable, with lower errors being achieved than both

Nd = 25 and Nd = 50 (and the PL-IB method as well). This can be seen in Table 3.9. The

advantages of varying Nd with Ns are not clear. Using Nd = 50 yields the lowest errors

in the fluid on the finest grid level, and reasonably low errors on the structure for all grid

levels. Given the similarity of the errors achieved with Nd = 50 to those achieved with

increasing Nd, we choose the simpler strategy of using a fixed value of Nd = 50 for our

tests, though we present timings with Nd = 25 as well.

3.4.2.6 Effect of the Shape Parameter ε

In previous work [72], we found that the RBF shape parameter ε > 0 had to be selected

carefully to achieve spectral accuracy in the representation of the elastic structure. In that

work, we found that small values of ε were ideal for interpolating smooth target shapes and

larger ones for rougher target shapes. In our tests, we found that the errors depended on

ε even in the case of fluid-structure interaction, with smaller values of ε giving the lowest

values of se2 and se∞ on the 256 × 256 grid. However, as we mentioned in our previous

work, lower values of ε can make the RBF interpolation matrix more ill-conditioned. While

methods (such as RBF-QR and RBF-RA) have been developed to overcome this poor

conditioning [27], they are much more expensive than forming and inverting the standard

RBF interpolation matrix. We thus choose a small value of ε = 1.2 for all our tests. When

using Nd = 100, we use ε = 2.0. These are the smallest values we were able to pick without

the interpolation matrix becoming ill-conditioned, a strategy consistent with the one used

in our previous work [72].

Table 3.9: Results of a refinement study with the RBF-IB method. We show the
convergence in the sample site positions, with errors measured against the sample site
positions of a simulation on a 256 × 256 grid with Ns = 400 sample sites, Nd = 100 data
sites, and ∆t = 2.5× 10−5.

Ns Grid Size ∆t L2 error Order L∞ error Order

50 32× 32 2× 10−4 9.7439e-06 7.0459e-05

100 64× 64 1× 10−4 3.5898e-07 4.76 3.0048e-06 4.55

200 128× 128 5× 10−5 1.2694e-07 1.50 1.4362e-06 1.07

66

3.4.3 Area Loss and Time-step Size

In this section, we study the area loss in the RBF-IB method in a refinement study. We

then explore the maximum stable time-step size afforded by each IB method.

The PL-IB method enforces an IB point separation distance of 0.5h in order to reduce

area loss over the coarse of the simulation. In the RBF-IB method, while the sample site

spacing is maintained at 0.5h, we use a much coarser data site discretization, with the data

site separation being almost 3.2h in some cases. In addition, we use the same strategy for

interpolating velocities that we do in the PL-IB method, i.e., we interpolate velocities to

data sites from a 4×4 patch of fluid around each data site. While this can result in signifcant

computational savings, it is important to explore the area loss in our discretization. We

turn once again to our standard fluid-structure interaction problem. We run that simulation

on successively finer grids until time t = 2. For both the RBF-IB method and the PL-IB

method, we measure the initial area of the object for the same initial configuration of points.

We then measure the area at time t = 2 and compute the percentage change in area.

In order to get an accurate estimate of the area in both methods, we fit an RBF

interpolant to each object’s Lagrangian markers (data sites for the RBF-IB method and

a subset of the sample sites for the PL-IB method). We then sample that interpolant at

a fixed number of points (400 points), and use the trapezoidal rule to compute the area.

As was mentioned earlier, we ensure that the initial ellipse has the same area as the target

circle by picking its radii to be a = 2r and b = 0.5r, where r = 0.1 is the radius of the target

circle. The exact area is then π
100 . Our approach of sampling each object and computing

the area with the trapezoidal rule gives an area estimate that agrees with this value up

to 7 digits at t = 0. We record the results of our refinement study in Table 3.10. From

the table, it is clear that the area loss for fixed Nd = 25, 50 and Nd = 0.25Ns are all

close to each other. On the coarsest grid, it appears that smaller values of Nd result in

Table 3.10: Percentage area loss in the RBF-IB method as a function of grid size, the
number of sample sites Ns, and the time-step ∆t. The PL-IB method gives area losses
similar to the Nd = 50 case, except on the coarsest grid, where the percentage area loss is
three times that of the RBF-IB method.

Ns Grid Size ∆t
Percentage area loss

Nd = 25 Nd = 50 Nd = 0.25Ns

50 32× 32 2× 10−4 0.0680 0.3081 0.0450

100 64× 64 1× 10−4 0.0047 0.0049 0.0047

200 128× 128 5× 10−5 0.0023 0.0025 0.0025

400 256× 256 2.5× 10−5 0.0015 0.0015 0.0015

67

lower area loss. The area losses for Nd = 50 match with those given by the PL-IB method

(results not shown), except in the case of the coarsest grid, where the PL-IB method gives

almost a 1% area loss. The convergence is initial second-order but quickly saturates. This

saturation is likely due to two sources of error: the first is the interpolation of velocities

to the Lagrangian markers, which does not preserve the divergence-free nature of the fluid

velocity; the second is the fact that the time-integration itself is not specifically designed to

preserve area. Nevertheless, it is clear from this study that the RBF-IB method produces

similar area losses to the PL-IB method despite using a smaller number of Lagrangian

markers to move the structure through the fluid.

Another measure of interest is the maximum stable time-step size afforded by each

method. We measure this by increasing the time-step size in small increments and observing

the forces produced on the structure in the fluid-structure interaction test. Using a time-

step that is too large can result in the forces blowing up and the simulation halting. We

immediately note that the PL-IB method allows a maximum time-step size of ∆t = 2×10−4

on the 32 × 32 grid when Ns = 50 IB points are used, and a maximum time-step size of

∆t = 10−4 on the 64×64 grid when Ns = 100 IB points are used. We use these values of ∆t

as the starting point when testing for the time-step sizes allowed by the RBF-IB method,

and increase the value of ∆t in increments of 10−4. We found that on the 32 × 32 grid,

the RBF-IB method allows us to take time-steps that are 3× larger than the time-steps

allowed by the traditional IB method; on the 64 × 64 grid, the RBF-IB method can use

time-steps that are 1.5× larger than the time-steps allowed by the traditional IB method.

This pattern holds both when Nd = 25 and Nd = 50 data sites are used.

In simulations involving platelet-like shapes (ellipses that attempt to maintain their

elliptical configuration), we found that the RBF-IB method allows time-step sizes that

are 6× larger than those allowed by the PL-IB method on a 32 × 32 grid, and 3× larger

than those allowed by the PL-IB method on a 64 × 64 grid. This is likely due to the

fact that platelet simulations involve smaller deformations than those seen in the standard

fluid-structure interaction test.

3.4.4 Energy Estimates

In this section, we compute energy estimates for the RBF-IB method in the context of

our standard fluid-structure interaction problem. We run our simulation out to time t = 2.0

on two grid sizes, 32× 32 and 64× 64, with time-step sizes ∆t = 2× 10−4 and ∆t = 10−4

respectively. We use Nd = 50 data sites.

In this test, one expects the changes in energy to be mainly due to the deformation of

68

the stiff elastic object. Eventually, the energy of the system must damp out as the elastic

object reaches its target configuration. We compute the change in energy to demonstrate

that the energy is bounded within the RBF-IB simulation. The energy change in a time-step

is computed as the sum of the difference in kinetic energy of the fluid over the time-step

and the change in potential energy of the elastic object. This can be written as

E =

∫
fluid

ρun+1 · un+1 −
∫
fluid

ρun · un + ∆t

∫
X
F · ∂X

∂t
(3.21)

Here, the Lagrangian force F is computed at time level n+ 1 at the sample sites. The ∂X
∂t

term is computed by applying the evaluation matrix Es to the velocities obtained at the

data sites. This gives us sample site velocities, allowing us to compute dot products with

the F terms. We compute the discrete analog of Equation (3.21) for the fluid-structure

interaction problem.

The results of this test are shown in Figure 3.2. Both plots show the change in energy

of the system for the fluid-structure interaction problem on a 32 × 32 grid (left) and a

64×64 grid (right). Here, the fluid starts off stationary, so the initial kinetic energy is zero.

However, the elliptical elastic object starts off under tension, since its target configuration

is a circle. This means that the initial elastic potential energy of the system is high (though

negative by convention). As the elastic object attempts to minimize its elastic potential

Figure 3.2: Change in energy as a function of time in the RBF-IB method. The figure
on the top left shows the change in energy over a time-step as a function of time for the
standard fluid-structure interaction test on a 32×32 grid. The figure on the top right shows
the same quantity on a 64 × 64 grid. We use Nd = 50 data sites for both grid sizes. The
inset plots show the initial spikes corresponding to the change from an ellipse to a circle
which are difficult to see in the main plots.

69

energy, its deformation drives a change in the kinetic energy of the fluid, causing the kinetic

energy of the fluid to increase from its initial value of zero to some maximum. However, the

elastic object soon attains something close to its reference configuration, causing the kinetic

energy of the fluid to drop sharply. The spikes in both the left and right sides of Figure 3.2

correspond to that rise and fall in kinetic energy and the trending of the potential energy

to zero on both grids, and can be seen more clearly in the inset plots. The viscosity of

the fluid causes the kinetic energy to eventually damp out almost completely, with minor

perturbations due to possible deformations of the elastic object. The energy of the system

continues to decrease as the object becomes more and more circular. In fact, our estimates

show that the change in energy is negative, indicating that our method is dissipative. The

results are similar for Nd = 25 (not shown), though using more data sites appears to make

our method less dissipative on this particular test problem.

3.4.5 Timings for Platelet Simulations

We now present timings of simulations involving platelet-like shapes. The setup here

is different from the standard fluid-structure interaction test. We place ellipses (r = 0.05,

a = 2r, b = 0.5r) at the left end of a [0, 2]× [0, 1] domain that resembles a channel. These

ellipses represent platelets, and they attempt to maintain their elliptical shapes, i.e., their

configuration at time t = 0 is their preferred configuration. We apply a background force

that would result in parabolic velocity field in the absence of the platelets, with a density

ρ = 1.0, and a nondimensionalized viscosity of µ = 8.0. The field has a maximum velocity

value of umax = 5.0, with no-slip boundary conditions on the top and bottom of the domain

and periodic boundary conditions at the left and right ends. A platelet is removed from the

domain if its center of mass crosses the location x = 1.9.

Figure 3.3 shows timings for three grid sizes for each method as a function of the number

of platelets (Np) being simulated. The number of sample sites was fixed at Ns = 100 for

both methods and the number of data sites for the RBF-IB method was set to Nd = 25 for

one set of tests and then to Nd = 50 for the next set. We plot the average time per time-step

as a function of the number of platelets; this was computed by running simulations on each

grid for 105 time-steps, and dividing the total wall clock time by the number of time-steps.

We average this over three runs of each simulation.

While the cost of platelet operations always increases as we increase the number of

platelets, the increase in cost is slower for the RBF-IB method due to the RBF repre-

sentation. For example, for Np = 60, the PL-IB method directly spreads forces from,

interpolates to, and moves a total of 6000 IB points (twice per time-step due to the RK2

70

Figure 3.3: Average time per time-step for 105 time-steps of each simulation method as
a function of the number of platelets. In the first row, the figure on the left shows timings
on a 64 × 32 grid and the figure on the right on a 128 × 64 grid. The figure below shows
timings on a 256× 128 grid. The time-step was set to ∆t = 10−4 for the figures on the top
row, and was set to ∆t = 10−5 for the figure on the bottom.

scheme) while the RBF-IB method with Nd = 25 data sites computes forces at 6000 points,

and interpolates velocities to (and moves) only 1620 points twice per time-step. If the

number of platelets is doubled to Np = 120, the PL-IB method now computes forces at,

spreads from, interpolates to, and moves 12000 points twice per time-step, whereas the

RBF-IB method computes forces at 12000 points, but interpolates velocities to and moves

only 3240 points twice per time-step. The cost of the RBF-IB method shows better than

linear scaling with respect to the number of platelets on all the tested grid sizes for these

reasons. Furthermore, it is clear that there is not much of a difference in computational

71

cost between using Nd = 25 data sites and Nd = 50 data sites. It is clear that the RBF-IB

method is more computationally efficient than the PL-IB method.

3.4.5.1 Effect of the RBF Representation on
the Fluid Solver

In previous work [72], we showed that using an RBF interpolant for geometric modeling

is more computationally efficient (for a given accuracy) than using piecewise quadratics and

finite differences. However, that benefit alone does not explain the computational efficiency

of the RBF-IB method over the PL-IB method that we see in Figure 3.3.

To fully understand the speedup seen with the RBF-IB method, it is important to un-

derstand how the costs are distributed between the different operations (platelet operations

and fluid solves) in both IB methods. We show the results for Np = 60 platelets in Table

3.11. Clearly, as h is reduced, both IB codes spend more time in the fluid solver than

on platelet operations. However, the RBF-IB method clearly spends less time in the fluid

solver than the PL-IB method does as we refine the background Eulerian grid.

Indeed, this unexpected result is what gives the RBF-IB method an edge even when the

cost of the fluid solver dominates the cost of platelet operations. We hypothesize that this

may be caused by the RBF representation producing smoother Lagrangian forces than the

finite difference model used in the PL-IB method. Our experiments show that the RBF-IB

code needs fewer iterations in the linear solver used in the pressure projection– anywhere

from 10 − 30% fewer than the identical fluid solver used in the PL-IB method, depending

on the time-step size and the grid resolution, with larger savings on finer grids and smaller

time-step sizes.

Table 3.11: Percentage of time per time-step spent in fluid solver as a function of grid
size by both methods for Np = 60 platelets. The percentages for the RBF-IB method are
the same for both Nd = 25 and Nd = 50 data sites, with the total time for the latter
being larger. All results use Ns = 100 sample sites (or IB points in the PL-IB method) per
platelet.

Grid Size
Percentage time in fluid solver

RBF-IB method PL-IB method

32× 32 33.7 32.1

64× 64 56.2 58.0

128× 128 65.4 79.3

72

3.4.6 Platelet Aggregation

We now present the results of a platelet aggregation simulation with the RBF-IB simula-

tion. We used the same boundary conditions, domain size, fluid properties, and Poisseuille

flow as in the previous subsection, but allow platelets to form links with other platelets

and a portion of the chamber wall (x = 0.4 to x = 0.7) at the sample sites (Ns = 100 per

platelet). We used Nd = 50 data sites per platelet, making the data sites a subset of the

sample sites for convenience of visualization, and then visualize the data sites and the links

between sample sites. We allowed each platelet to form up to 10 links in total, either with

the wall or with a neighbor; we allow links to cross each other for the purpose of simplicity,

though this is usually prohibited in a platelet simulation. The simulation was run on a

128× 64 grid with a time-step of ∆t = 10−4.

Each platelet is initially an ellipse with radii a = 0.06 and b = 0.015. We initialize the

platelets so that their centers of masses are at locations (0.5, 0.02), (0.64, 0.02), (0.78, 0.02),

(0.55, 0.07), (0.68, 0.07), (0.4, 0.045), (0.23, 0.045), and (0.65, 0.14). We chose these locations

to ensure that three platelets lay on the wall, with three close enough to bind to the three

bound to the wall, and two slightly further away. Each platelet attempts to maintain its

initial elliptical shape. We then started the simulation and ran it to time t = 2.4. The

results are shown in Figure 3.4. The figure shows both the velocity field and the platelet

aggregate for a portion of [0, 2]× [0, 1] domain, the data sites on each platelet and the links

Figure 3.4: Results of a platelet aggregation simulations with the RBF-IB method. The
figure shows a snapshot of a platelet aggregation simulation achieved with the RBF-IB
method with a time-step of ∆t = 10−4. The snapshot was taken at simulation time t = 2.4.
The simulation was run on a 128× 64 grid on a [0, 2]× [0, 1] domain. The arrows show the
magnitude and direction of the velocity field.

73

between the sample sites corresponding to those particular data sites on the platelet.

There are two interesting features in Figure 3.4. The first is that the fluid flow gets

diverted around the growing aggregate, a consequence of the size of the aggregate and the

dynamics of the problem that mimics what one would hope to see in a realistic platelet

aggregation simulation. The second feature is that some platelets are quite deformed, e.g.,

the platelet with center of mass approximately at (0.5, 0.02), or its neighbor above and to

its left. This is a consequence (and function) of the stiffness of each platelet, the shear

rate of the flow, and the number of links we allow each platelet to form. Higher platelet

stiffness, lower shear rates, and/or fewer (or weaker) links would lead to less deformation.

The breaking model for interplatelet and platelet-wall links can also affect the mechanics

of aggregation. We note that our RBF model did not run into any instabilities in this

simulation even when we ran it out to a time at which all the platelets (except the three

closest to the wall) had left the domain.

3.5 Summary

In this chapter, we explored the ramifications of using the RBF geometric model devel-

oped in Chapter 2 within the IB method, and compared the behavior of this new RBF-IB

method against that of the traditional IB method. We discussed the issue of selecting

an appropriate shape parameter for the RBF-IB method. We then presented a series of

convergence studies for measuring errors and convergence both in the velocity field and in the

representation of the immersed elastic structure. We went on to compare the computational

costs incurred by both methods in the context of platelet simulations. We then compared

the area conservation properties of both methods and also the time-step restrictions on

both. We also remarked on the energy properties of our method.

We conclude the following:

• The RBF-IB method facilitates the use of constitutive models within the IB method

without having to resort to lower-order approximations;

• The RBF-IB method (especially with Nd = 50) produces lower errors in both the

velocity field and the immersed elastic structure in convergence studies;

• The RBF-IB is more computationally efficient than the traditional IB method for both

Nd = 25 and Nd = 50, both due to the utilization of a small number of data sites and

due to smoother forces being spread into the fluid resulting in a faster convergence

from the fluid solver;

74

• The RBF-IB allows for larger time-step sizes than those allowed in the traditional IB

method for a given grid size.

In previous work [64], a sufficient condition for unconditional stability of an implicit IB

method was established. The proof relied on the assumption that the set of points from

which IB forces are spread is the same as that to which grid velocities are interpolated

to update IB point positions. The RBF-IB method does not meet that condition, and

it remains to be seen how this would impact an implict version of our method. Finally,

an issue with the RBF-IB method is that it is dependent on the parametrization of the

immersed elastic objects. For objects that are not easily parameterized in terms of circles

and ellipses, the use of the RBF model as presented in our work (wherein the RBFs are

restricted to the circle) may not be ideal. In the future, we thus hope to explore the use

of RBFs in a meshfree variational form within the IB method so as to be able to easily

evaluate constitutive models on arbitrary shapes.

CHAPTER 4

RBF-FD ON 1D SURFACES WITHIN THE

AFM

4.1 Introduction

Thus far in this dissertation, we have presented an RBF geometric model for platelet

modeling, and tested the use of this model within the IB method. We now turn our focus

away from the mechanics of platelet aggregation, and toward the chemistry involved in the

process.

In this chapter, we present a new numerical methodology for the simulation of reaction-

diffusion equations on 2D stationary platelets that are suspended in blood and for simulating

diffusion of chemical species in the blood based on boundary conditions derived from those

reaction-diffusion equations. This methodology consists of two components: a new method

to solve reaction-diffusion equations on curves (1D surfaces) using radial basis function

generated finite differences (RBF-FD), and a version of the Augmented Forcing method

(AFM) for the simulation of the fluid-phase diffusion equations modified with symmetric

Hermite RBF interpolation to enforce boundary conditions. This is a documentation of

previously published work [73]. We also utilize the parametric RBF model from Chapter

2. Since the accuracy of normals can affect the enforcement of boundary conditions in the

AFM, our RBF geometric model for platelets is an important part of our methodology.

4.2 Problem Statement

Consider a two-dimensional region Ω consisting of those points x = (x, y) within the

rectangle Ω0 that are external to all of the nonoverlapping subregions Ωi, i = 1, ..., No (see

Figure 4.1). Let Γi denote the boundary of Ωi.

Let c(x, t) = c(x, y, t) be a concentration field defined for x ∈ Ω and t ≥ 0. For each i, let

Cb
i (X, t) and Cu

i (X, t) be chemical density fields defined for each point X = (X,Y) ∈ Γi

and t ≥ 0, representing the surface densities of occupied and unoccupied binding sites

respectively. We will describe these quantities in greater detail below.

76

Figure 4.1: Illustration of a rectangular domain and grid with irregular objects embedded.

We assume that c(x, t) satisfies the inhomogeneous diffusion equation

∂c

∂t
= D∆c+ s, (4.1)

at each point x ∈ Ω, and that it satisfies the boundary condition

−D ∂c

∂η̂
= konC

u
i c− koffCb

i , (4.2)

at each point X ∈ Γi. In these equations, s is a specfied source term, D is a diffusion

coefficient, kon and koff are second-order and first-order rate constants, respectively, and η̂

is the unit normal to Γi pointing into the domain Ω. Initial data for c is given at all points

of Ω.

For the surface densities Cb
i and Cu

i , we consider two variants of a reaction-diffusion

model. For model 1, we imagine that the density of binding sites Ctot
i (X) is a prescribed

constant at each point X on Γi, and we assume that the density of occupied binding sites

Cb
i (X, t), which we also refer to as the bound chemical density, satisfies

∂Cb
i

∂t
= kon(Ctot

i − Cb
i)cf − koffCb

i +Ds∆XC
bbi (4.3)

at each point X ∈ Γi. Here, cf is the value of the fluid-phase chemical concentration in the

fluid adjacent to X, Ds is the surface diffusion coefficient, and ∆X is the Laplace-Beltrami

operator on the surface.

77

In model 2, we instead consider a pair of coupled reaction-diffusion equations on each

surface Γi

∂Cb
i

∂t
= konC

u
i cf − koffCb

i +Db
s∆XC

b
i (4.4)

∂Cu
i

∂t
= −konCu

i cf + koffC
u
i +Du

s∆XC
u
i . (4.5)

Here, the quantity Cu
i (X, t) is the surface density of unoccupied binding sites at X ∈ Γi

at time t, and Du
s is the surface diffusion coefficient for these sites. In this variant, all

binding sites diffuse on the surface, so the total density of binding sites at X, Ctot
i (X, t) =

Cb
i (X, t) + Cu

i (X, t), can change in time. The setup of model 2 is intended to better

represent the biological fact that the binding sites are proteins embedded in the platelet’s

lipid membrane and that both occupied and unoccupied proteins may diffuse. For both

problems, initial data for Cb
i and Cu

i are given at all points on Γi.

The surface chemistry and chemical transport are coupled to that in the fluid because

of the appearance of cf in the surface Equations (4.3) or (4.4) and (4.5), and because of

the appearance of Cb
i and Cu

i in the boundary conditions (4.2) for the fluid-phase chemical.

(For Problem 1, we set Cu
i = Ctot

i − Cb
i for each point X ∈ Γi.) In our earlier work [93],

only the reaction portions of these equations were considered, that is, there was no surface

diffusion, and the chemical surface densities at different points were coupled only indirectly

through the diffusion of fluid-phase chemicals.

4.3 Grid and Platelet Geometry

In this section, we introduce some terminology relevant to the rectangular Eulerian grid

and to the Augmented Forcing Method.

We overlay a uniform Cartesian grid with spacing h over the domain of interest, Ω0. Let

(xi, yj) = (ih, jh) denote a point of the grid. We require c only within the domain Ω but

nevertheless define cij for all points of the mesh. Let tn = n∆t be the current time, where

∆t is the time-step.

To simplify the exposition, we assume that there exists a single irregular object Ω1 with

boundary Γ1. We may now classify each grid point based on its relation to the irregular

object. Grid points in the domain Ω are called fluid points; a grid point that is covered

by the object with at least one neighboring grid point not covered by the object is called

a forcing point ; finally, the grid points covered by the object that are not forcing points

are called solid points. We also define boundary points, which are points on the boundary

of the object whose inward normal vectors pass through forcing points; consequently, there

78

are as many boundary points as there are forcing points. This labeling process extends to

the case when multiple irregular objects exist in the domain.

We model our platelets using the RBF geometric model developed in Chapter 2. For

our convenience, we also define an evaluation matrix, as described in Chapter 3.

4.4 Numerical Solution of Reaction-diffusion
Models for Platelet Chemistry

In this section, we discuss our numerical method for simulating the two models presented

in Section 4.2, and our choices for approximating the different components of those models.

Before we proceed, it is useful to discuss our time-stepping scheme for the numerical solution

to the coupled problem presented in Section 4.2. As in [93], we use a fractional step approach

in which during each time-step, we first update the surface densities Cb
i and Cu

i for each

platelet i using known values of the fluid-phase concentrations to determine the values of

cf in Equation (4.3) or Equations (4.4)-(4.5). Then, using the new as well as older surface

densities in the boundary conditions (4.2), we update the fluid-phase concentration by

solving Equation (4.1). Hence, in describing how we advance each of the surface densities

or fluid-phase concentration, we regard the other as known.

In order to obtain the numerical solution of the PDEs of models 1 and 2, several

components are required. An approximation of the local fluid-phase chemical concentration

cf must be obtained at each sample site; then, an approximation to the surface Laplacian

must be computed; finally, stable and efficient time-stepping schemes must be selected to

advance the solutions in time.

4.4.1 Interpolating Fluid-phase Concentrations

In [93], Moving Least Squares (MLS) was used in order to construct a smooth ap-

proximation to cf using chemical concentrations from nearby patches of fluid points. This

performed better than an alternate approach with bivariate quadratic interpolation, which

produced undesirable spatial oscillations in Cb. However, there are two potential issues

with the use of MLS. First, it requires the solution of several (small) linear systems [86], in

this case constructed from the background Eulerian grid; on a very fine grid, this cost may

not be trivial. Second, if two platelets are very close to one another, an insufficient number

of fluid points may be available for the construction of the MLS approximation to cf for

each of those platelets.

In order to avoid these potential issues, we use bilinear interpolation, as shown in Figure

4.2; our reasoning is that bilinear interpolation has fewer degrees of freedom than bivariate

79

Figure 4.2: Illustration of the bilinear interpolation stencil for a platelet.

quadratic interpolation while not requiring the solution of several linear systems, like MLS

does. Our original approach, which we modify somewhat below, is as follows: For each

sample site, we first find the Eulerian grid cell in which the sample site is located. If all

four corners of the cell are fluid points or forcing points, we use bilinear interpolation of

the physically meaningful concentrations at the corners to the sample site. It is possible

that one of the corner points is a solid point for which there is no physically meaningful

concentration. In that case, we linearly interpolate concentrations from the other three

corner points to this fourth corner point.

When we used this approach, our experiments showed that the resulting interpolated

chemical concentration field cf was insufficiently smooth and that the overall accuracy was

lower than we expected. Therefore, we instead use this procedure to first interpolate grid

concentrations to data sites rather than sample sites. We then construct a parametric RBF

interpolant of these data in the manner described in Section 4.3. Lastly, we evaluate the

RBF interpolant at the sample sites, but with a shape parameter value slightly smaller

(by a factor of 0.99), than the value used to construct the interpolant. The theory (and

rationale) behind the procedure is described in detail in [5]; essentially, this procedure is a

smoothing operation where we interpolate the data with a basis function, and then replace

the basis function with a smoother basis function during evaluation. Figure 1 in [5] shows

this process with the Multiquadric RBF, where increasing the parameter (c) (equivalent

to reducing the shape parameter εgeom in our work to some εeval) smoothes a noisy Lidar

scan. Section 4 in [5] explains why this is equivalent to using a low-pass filter on the

interpolated data by writing out the procedure in terms of convolutions against a smoother

basis function. This procedure therefore gives us a smoother concentration field cf at the

80

sample sites. In our platelet applications, we use the same parametrization for the platelets

even when they are moving. This means that we can precompute the RBF interpolation and

evaluation operators and use them with a single matrix-vector multiplication per platelet

for each fluid-phase chemical species. Clearly, this approach retains the advantages of our

global RBF model while also not deviating from the philosophy of using a least-squares

approximant (like MLS) for this purpose.

This method can be used even when two platelets are a single grid cell apart, which is an

improvement over the method presented in [93] that requires that platelets be no closer than

two grid widths. This feature is required for physically-relevant modeling of aggregation; in

platelet aggregation simulations run by the IB method, platelets may indeed be very close

to one another when in an aggregate (e.g., see Figure 3.4).

4.4.2 Approximating the Surface Laplacian

Recently, RBFs have been used to compute an approximation to the surface Laplacian in

the context of a pseudospectral method for reaction-diffusion equations on manifolds [36], as

mentioned in Chapter 1. In that study, global RBF interpolants were used to approximate

the surface Laplacian at a set of “scattered” nodes on a given surface. To develop a less costly

method that is still sufficiently accurate for our purposes, we here use finite difference (FD)-

style approximations based on RBFs for the surface Laplacian. This is the first application

of the method to general 1D surfaces (curves).

We elect to use Cartesian coordinates rather than surface-based coordinates to formulate

the surface Laplacian. This is not very important for 1D surfaces, but very important for

generalizing our method to 2D surfaces in the future since a Cartesian-based formulation

completely avoids singularities that are associated with surface-based coordinates (e.g., the

pole singularity in spherical coordinates). Additionally, the Cartesian-based formulation is

quite suitable in the context of approximation with RBFs [36]. Central to this formulation

is the projection operator that takes an arbitrary 2D vector field at a point X on the surface

and projects it onto the tangent line to the surface at X. Letting η̂ = (ηx, ηy) denote the

unit normal vector to the surface at X (which in our applications is obtained from the RBF

parametric model of the platelets described in the previous section), this operator is given

by

P = I − η̂η̂T =

[
(1− ηxηx) −ηxηy
−ηxηy (1− ηyηy)

]
=

[
pTx
pTy

]
, (4.6)

where I is the 2-by-2 identity matrix, and px and py represent the projection operators in

the x and y directions, respectively. We can combine P with the standard gradient operator

81

in R2, ∇ =
[
∂x ∂y

]T
, to define the surface gradient operator ∇X in Cartesian coordinates

as

∇X := P∇ =

[
px · ∇
py · ∇

]
=

[
Gx
Gy

]
. (4.7)

Noting that ∆X = ∇X · ∇X , the surface Laplacian can then be written in Cartesian

coordinates as

∆X := (P∇·)P∇ = GxGx + GyGy. (4.8)

The approach we use to approximate the surface Laplacian mimics the formulation given

in (4.8) and is conceptually similar to that based on global RBFs given in [36]. It is

worth noting at this point that though the normal vector is obtained from the parametric

representation of the platelet, one could certainly use normal vectors derived from level set

representations or, more generally, signed-distance representations of the data sites. Since

the literature on computing normal vectors on point clouds is fairly rich, we focus our

attention on the exposition of the RBF-FD method, assuming that we are given reasonably

smooth normal vectors. The RBF-FD method we now describe is therefore a Cartesian

method that can easily handle nonparametrizeable geometries.

Given a set of N nodes, we first construct discrete approximations to Gx and Gy using

n-node RBF-FD formulas (as explained below). Letting Gx and Gy denote these respective

discrete approximations (or differentiation matrices), we then obtain the discrete approxi-

mation to the surface Laplacian, L, using the matrix-products as follows:

L := GxGx +GyGy.

This approach avoids the need to compute derivatives of the normal vectors of the surfaces,

but does have the effect of doubling the bandwidth of the L compared to Gx and Gy.

We explain the RBF-FD method for approximating the Gx component of the surface

gradient in (4.7) as the procedure for Gy is similar. Without loss of generality, let the

sample site where we wish to approximate Gx be Xs
1, and let Xs

2, . . . ,X
s
n be the n − 1

nearest neighboring sample sites to Xs
1. Given samples of a scalar valued function (say

chemical density) C(X) at these nodes, C1, . . . , Cn, the goal is to approximate GxC(X) at

X = Xs
1 using a linear combination of these samples:

GxC(X)
∣∣∣
X=Xs

1

≈
n∑
i=1

γiCi. (4.9)

82

In the RBF-FD method, the differentiation weights, γi, are computed by enforcing that this

linear combination be exact for each of the RBFs
{
φ(‖X −Xs

j‖)
}n
j=1

, i.e.,

n∑
i=1

γiφ(‖Xi −Xs
j‖) = Gxφ(‖X −Xs

j‖)
∣∣∣
X=Xs

1

, (4.10)

for j = 1, ..., n. Note that ‖ · ‖ is the standard two-norm (Euclidean distance) between

nodes on the surface and does not depend on any surface metrics (see [31] for a theoretical

discussion on using these types of RBF approximations on general surfaces). It has also been

shown through experience and studies [91, 26] that better accuracy is gained by additionally

requiring that the linear combination (4.9) be exact for a constant. Hence, we also impose

the following constraint on the weights γi:

n∑
i=1

γi = Gx1
∣∣∣
X=Xs

1

= 0. (4.11)

The conditions (4.10) and (4.11) can be combined into the following linear system for

determining the RBF-FD weights γi:
φ(‖Xs

1 −Xs
1‖) · · · φ(‖Xs

1 −Xs
n‖) 1

...
. . .

...
...

φ(‖Xs
n −Xs

1‖) · · · φ(‖Xs
n −Xs

n‖) 1
1 · · · 1 0

γ1
...
γn
γn+1

 =

Gxφ(‖X −Xs

1‖)
∣∣
X=Xs

1
...

Gxφ(‖X −Xs
n‖)
∣∣∣
X=Xs

1

0

 ,
(4.12)

where γn+1 is a dummy value that is not actually used in RBF-FD approximation after this

system is solved.

The solution to (4.12) gives the weights for the first row of the RBF-FD differentiation

matrix Gx corresponding to Xs
1 (recall the discussion in Section 1.5.2 on the equivalency of

the two different methods of computing RBF-FD weights). The weights for the second row

corresponding to Xs
2 are obtained by finding the n−1 nearest neighbors to Xs

2 and solving

an analogous system to (4.12). This procedure is repeated for determining the weights for

the remaining rows of Gx corresponding to sample sites Xs
3, . . . ,X

s
Ns . The differentiation

matrix Gy is obtained using the same procedure, but with the operator Gx in (4.12) replaced

with Gy. Note that each row of Gx and Gy contain only n non-zero entries.

In all the numerical results presented in Section 4.6, we used the Gaussian RBF φ(r) =

e−(εr)2 in (4.12) for computing the RBF-FD weights and set n = 3. In the definition of

φ(r), ε is again called the shape parameter. Provided it is positive and the sample sites are

distinct, the linear system (4.12) is guaranteed to be nonsingular, which means the weights

are unique. Although not presented here, we did test other RBFs (such as the multiquadric

83

and inverse multiquadric), but found that the Gaussian generally gave better results for the

experiments we ran.

4.4.3 Simulating Models 1 and 2

We use the discretization of the surface Laplacian just described with an implicit-explicit

(IMEX) time-stepping scheme, specifically the second-order accurate semi-implicit back-

ward differentiation formula (SBDF2) [1]. For model 1, Equation (4.3), this corresponds to

the following discretization:(
I − 2

3
∆tDsL

)
Cn+1 =

4

3

(
Cn + ∆tkon

(
Ctot − Cn

)
cnf −∆tkoffC

n
)

− 1

3

(
Cn−1 + 2∆tkon

(
Ctot − Cn−1

)
cn−1
f − 2∆tkoffC

n−1
)
,

(4.13)

where ∆t is the time-step, and Cn+1, Cn, and Cn−1 denote vectors containing values of the

density of unoccupied surface binding sites at the Ns sample sites and at time-steps n+ 1,

n, and n−1, respectively. Note that (4.13) results in an Ns×Ns sparse system of equations

to solve for Cn+1. Since Ns is small, we opt to use a direct method to solve this system

of equations, although an iterative method such as BiCGSTAB could have also been used.

We note that we bootstrap (4.13) with one step of SBDF1 in the initial time-step.

The discretization for Equations (4.4)–(4.5) in model 2 is similar, but contains a pair

of coupled equations. However, the implicit systems that result in these two equations are

not coupled, since the coupling is purely through the reaction terms, which are discretized

explicitly in time.

4.5 Symmetric Hermite Interpolation
for the AFM

In this section, we present our modifications to the AFM based on RBF Hermite interpo-

lation. We apply so-called symmetric RBF Hermite interpolation (presented in Chapter 1)

to the problem of enforcing boundary conditions on the fluid-phase chemical concentrations

within the AFM, exploiting the general nature of this formulation to overcome the separation

constraints imposed by the AFM on the irregular boundaries (platelets) and similar issues

that can arise in handling concavities in platelet shapes. In the following subsections, we

present our methods for computing the prescribed boundary conditions rbc and the matrix

E that enforces those boundary conditions in the AFM.

84

4.5.1 Computing rbc

Upon rearranging the boundary condition given in Equation (4.2), we obtain the equa-

tion (
−D ∂

∂η̂
− konC

u

)
c = −koffCb. (4.14)

We use this condition at each boundary point when updating the fluid-phase concentration

cn to cn+1. Because of our fractional-step approach to time-stepping, values of Cu and Cb

are known at the needed times at the locations of the sample sites (for Model 1, we set

Cu = Ctot − Cb.) These are used to compute values at the boundary points, as described

below, and so we can think of them as known in Equation (4.14) and regard this equation

as a Robin condition on cn+1. For later reference, we define the Robin boundary condition

operator by D = −D ∂
∂η̂ − konC

u.

The right-hand side of Equation (4.14) describes the known boundary conditions on the

fluid-phase chemical concentration and therefore, values of it at the boundary points define

the vector rbc. It is important to note that rbc is modified by the procedure to compute the

matrix E. It is this modified rbc that makes its way into the right-hand side of Equation

(1.5).

Since boundary conditions are enforced at boundary points in the AFM, we require

require values of Cb and Cu at those points. There are many ways this can be done.

For example, in [93], piecewise quadratic interpolants were fit to the concentrations at the

IB points, then evaluated at the boundary points. However, in this work, we have two

considerations when making this choice. First, we would like the resulting concentration

field to be smooth enough to ensure that the overall convergence of our method is not

affected. Second, we require that the interpolant (or more generally, approximant) be

efficient to compute and evaluate. This rules out directly interpolating concentrations at

the sample sites as the number of sample sites (Ns) is much greater than the number of data

sites (Nd) in our geometric model; it would be more efficient to construct an approximant

that had as many coefficients as the number of data sites. With these considerations in

mind, we determined that a parametric least-squares fit using the RBF geometric model,

described below, would be a good choice.

Let ~C = [C1, C2, . . . , CNs]
T be a vector of function values at the sample sites, repre-

senting either Cu or Cb values at those sites. As in Chapter 3, we define an Ns × Nd

RBF evaluation matrix, B. When B is applied to the known vector of coefficients of

an RBF interpolant of some quantity defined at the data sites, we obtain values of that

quantity at the sample sites. Here, we use B in a somewhat different way; as the coefficient

85

matrix in a least-squares problem. We seek Nd coefficients ~g that minimize the quantity

||B~g− ~C||22; that is, we seek the coefficients of the Nd-term RBF expansion that best fits the

Ns sample-site function values that are contained in ~C. Since the matrix B depends only

on the fixed parameter nodes of the data sites and sample sites, and not on their actual

spatial locations, it does not change in time. Thus, we precompute QR-decomposition of B

reuse in each time-step to solve these least squares problems.

Once we obtain the coefficients ~g, we evaluate the least-squares approximant at the

boundary points, giving us values of the chemical surface densities Cu and Cb at the NF

boundary points. This is done by building an NF ×Nd evaluation matrix, B̂, and applying

it to the coefficient vector ~g. In the current paper, since the platelets are stationary, B̂ can

be precomputed and reused every time-step. In the more general problem where platelets

are advected and deformed by a background flow, B̂ must be recomputed every time-step,

since the parameter values corresponding to the boundary points change as the platelets

move relative to the background grid.

4.5.2 Enforcing Boundary Conditions with Matrix E

We now introduce an alternative method for computing the interpolation matrix E,

which we refer to as Erbf . Our technique for enforcing boundary conditions is conceptually

similar to the technique used in the original AFM. However, there are some significant

differences, illustrated in Figure 4.3. For each forcing point, we now choose three, rather

than five, nearby fluid points immediately outside the boundary to use in constructing

an interpolant that satisfies the boundary conditions. Additionally, instead of using the

boundary condition at a single boundary point, we now use the boundary conditions at

three boundary points in constructing our interpolant. These changes (in conjunction with

the bilinear interpolation scheme outlined in Section 4.3) allow platelets simulated by our

modified AFM to be as close as a grid cell width apart, something which the original AFM

Figure 4.3: The figure on the left shows the number of fluid points and boundary points
used in the original AFM. The figure on the right shows the number of fluid points and
boundary points used within the modified AFM.

86

does not allow.

Suppose we wish to impose Robin boundary conditions for c along Γ1 using the Robin

boundary operator D from the previous subsection. Let forcing point B have coordinates

(xa, ya) and let the corresponding boundary point pa have coordinates (Xa, Ya). As a

prototypical example, consider the layout of points in Figure 4.4. Here, pb and pc are the

two boundary points closest to pa, and p1, p2, and p3 are the three fluid points that are

neighbors to the forcing point B. Let c1, c2, and c3 be the chemical concentrations at those

fluid points, and recall that the boundary conditions are known at pa and pb as at pc. We

note that fluid points need not necessarily be chosen as shown in Figures 4.3 and 4.4; our

method only requires that the selected fluid points be close to the boundary of the platelet.

We use the symmetric RBF Hermite interpolation technique to obtain an expression for the

chemical concentration at each forcing point. In this approach, we construct interpolants

of the form:

sB(p) =

3∑
i=1

aiφ(‖p− pi‖) + b1Dpaφ(‖p− pa‖) + b2Dpbφ(‖p− pb‖) + b3Dpcφ(‖p− pc‖),

(4.15)

where the boundary condition operator with subscripts is defined as

Dpιφ(‖p− pι‖) := Dφ(‖p− x‖)
∣∣∣
x=pι

, ι = a, b, c,

i.e., D acts on φ as a function of the subscript variable put on D, with the other variable

fixed. The interpolation conditions are given as

Figure 4.4: Illustration of the symmetric Hermite RBF interpolation stencil.

87

sB(pj) = cj , j = 1, 2, 3, (4.16)

DsB(p)
∣∣∣
p=pι

= Dc(p)
∣∣∣
p=pι

= dι, ι = a, b, c, (4.17)

where the chemical concentrations cj are unknown ones from the end of the current time-

step, and the boundary conditions dj are known. These interpolation conditions can be

written as the following block 2×2 linear system of equations for determining the unknown

coefficients, ai and bi in (4.15) [
G R
RT H

]
︸ ︷︷ ︸

VB

[
a
b

]
=

[
cB
dB

]n+1

, (4.18)

where a and b are vectors containing the unknown interpolation coefficients, cB and dB

are vectors containing the respective chemical concentration (4.16) and boundary condition

data (4.17) for the forcing point B, and the n + 1 superscript denotes that the values are

given at the next time-level. The matrix blocks in this system are defined as follows:

G =

φ(‖p1 − p1‖) φ(‖p1 − p2‖) φ(‖p1 − p3‖)
φ(‖p2 − p1‖) φ(‖p2 − p2‖) φ(‖p2 − p3‖)
φ(‖p3 − p1‖) φ(‖p3 − p2‖) φ(‖p3 − p3‖)

 , (4.19)

R =

Dpaφ(‖p1 − pa‖) Dpbφ(‖p1 − pb‖) Dpcφ(‖p1 − pc‖)
Dpaφ(‖p2 − pa‖) Dpbφ(‖p2 − pb‖) Dpcφ(‖p2 − pc‖)
Dpaφ(‖p3 − pa‖) Dpbφ(‖p3 − pb‖) Dpcφ(‖p3 − pc‖)

 , (4.20)

and

H =

Dpa(Dpaφ(‖pa − pa‖)
)
Dpa

(
Dpbφ(‖pa − pb‖)

)
Dpa

(
Dpcφ(‖pa − pc‖)

)
Dpb

(
Dpaφ(‖pb − pa‖)

)
Dpb

(
Dpbφ(‖pb − pb‖)

)
Dpb

(
Dpcφ(‖pb − pc‖)

)
Dpc

(
Dpaφ(‖pc − pa‖)

)
Dpc

(
Dpbφ(‖pc − pb‖)

)
Dpc

(
Dpcφ(‖pc − pc‖)

)
 . (4.21)

The matrices G and H are symmetric so that the composite matrix VB in Equation (4.18)

is symmetric. Moreover, for our choice of φ (again, the multiquadric RBF), the matrix is

guaranteed to be nonsingular provided the nodes p1, p2, p3, and pa, pb, pc are distinct [15,

Chapter 36]. Finally, we note that in our numerical tests, VB is also well-conditioned, thus

allowing us to not only use very closely spaced fluid points from a fine grid to perform the

interpolation, but also a low value for the shape parameter associated with the multiquadric

RBF. The goal is to use the interpolant (4.15) to construct the matrix Erbf for enforcing

boundary conditions on the interpolated chemical concentrations at the forcing points at

time-level n+ 1. This matrix has dimensions NF ×NT , where NF is the number of forcing

points and NT is the total number of grid points, and serves the same purpose as E does

in the original AFM matrix (1.5). The entries of Erbf can be obtained from (4.15) as

88

follows. First, we express the interpolated chemical concentration at the forcing point B

as a linear combination of the chemical concentrations at the fluid grid points and the

boundary conditions at the boundary points. The former are unknown as they are specified

at time n + 1, while the latter are known (see Section 5.2). The weights in this linear

combination can be determined by noting that the value of the interpolant (4.15) at the

forcing point p = B can be written as

sB(B) = SB

[
a
b

]
= SBV

−1
B︸ ︷︷ ︸

QB

[
cB
dB

]n+1

, (4.22)

where SB is the row vector

SB =

φ (‖B − p1‖)
φ (‖B − p2‖)
φ (‖B − p3‖)
Dpaφ(‖B − pa‖)
Dpbφ(‖B − pb‖)
Dpcφ(‖B − pc‖)

T

.

Thus, QB contains the weights for the linear combination of chemical concentrations and

boundary conditions. Letting cB := sB(B) and q1, q2, . . . , q6 denote the entires of QB, we

next write this linear combination as

q1c1 + q2c2 + q3c3 − cB = −q4da − q5db − q6dc, (4.23)

where we have arranged the unknown values of the chemical concentration at time-level n+1

on the left-hand side and the known values of the boundary conditions on the right-hand

side.

The weights on the left-hand side of (4.23) constitute the entries in one row of the

evaluation matrix Erbf corresponding to the forcing point B. The columns for these entries

correspond to the indices of the matching grid points for B, p1, p2, and p3. Specifically, if

B is the kth boundary point and has lexicographic grid-index j1, while p1 p2, and p3 have

lexicographic indices j2, j3, and j4, then the kth row of Erbf has non-zero entries

(Erbf)k,j1 = −1, (Erbf)k,j2 = −q1, (Erbf)k,j3 = −q2, and (Erbf)k,j4 = −q3.

Similarly, the vector of known boundary conditions rbc in (1.5) is populated with values

from the right-hand side of (4.23). Specifically,

(rbc)k = −q4da − q5db − q6dc,

where da, db, and dc depend on the location of the boundary point B (see Figure 4.4). Note

that prior to modification, (rbc)k had the value da, which was in turn determined according

to the method outlined in Section 5.2.

89

The above procedure is repeated for each of the NF forcing points B. The resulting

matrix Erbf is clearly sparse, with at most four non-zero entries per row (the matrix E from

[93] has up to six non-zero entries per row). This procedure can be used to enforce Dirichlet

and Neumann boundary conditions as well. We note that the matrix Erbf serves the same

function as the matrix E mentioned in Section 5.1 and described in [93], but requires fewer

fluid points in its construction. It is thus far more flexible in handling geometric features

of the immersed objects.

4.6 Results

In this section, we present the results of the numerical experiments performed to analyze

the effects of the changes made to the AFM, as well as the results of experiments performed

to analyze the new method for the coupled problems proposed in this paper. We first

comment on the selection of the various shape parameters used in this work. Then, we

analyze the properties of the RBF-FD discretization scheme for solving pure diffusion

equations on platelet surfaces. Next, we examine the behavior of the modified AFM when

using analytic boundary conditions (as opposed to deriving boundary conditions from the

reaction-diffusion equations on the irregular boundaries). Having tested the convergence of

the modified AFM with analytic boundary conditions, we examine the effect of varying the

distance between forcing points and boundary points on the accuracy of the modified AFM.

We then test the convergence of the combined method on two coupled problems, where

the boundary conditions for the AFM are derived from platelet surface reaction model

1. Finally, we test the convergence of the combined method on a single coupled problem

with boundary conditions for the AFM derived from platelet surface reaction model 2.

Throughout this section, we compute absolute errors on the Cartesian grid and RMS (root

mean squared) errors on the surfaces (as in [93]).

4.6.1 Selection of Shape Parameters

In this paper, we use RBFs in several contexts. Here, we list the shape parameters for

each of those RBFs and describe the process of obtaining those shape parameters.

1. Geometry: the RBF used for the geometric modeling of the platelets is a parametric

interpolant. For the selection of the shape parameter for this RBF, we follow the

results obtained in Chapter 2. For this work, we set that shape parameter to εgeom =

0.9.

2. Smoothing cf : we use εgeom as the shape parameter for the parametric fit of cf at the

data sites. To evaluate the RBF interpolant at sample sites and also smooth it, we

90

use εeval = 0.99εgeom.

3. Surface Laplace-Beltrami operator: local RBFs are used for computing the RBF-FD

approximation to the surface Laplace-Beltrami operator. For these RBFs, for all tests,

the shape parameter was set to εfd = 35. This choice was motivated, in part, by the

desire to compensate for irregular point spacings on some of the perturbed objects

in the tests. We note that the comparitively large value of εfd is due to the partial

dependence of the PDE to the Cartesian grid via the cf term, and also due to the fact

that we are using the Gaussian RBF with small node spacings for the interpolation.

4. Chemical densities on platelet surfaces: we once again use the parametric model,

albeit for a least-squares fit. We use the same value for the shape parameter as we do

for the geometric modeling.

5. Hermite interpolant: we set the shape parameter of all the RBF Hermite interpolants

(one for each forcing point) to εherm = 5. We found that a wide range of values could

be used for εherm without adversely affecting the accuracy of the AFM.

4.6.2 RBF-FD on a Circle

We test the RBF-FD method for solving a pure diffusion equation on the surface of a

platelet. In order to test the effect of the geometric model on the solution of the diffusion

equations on the irregular boundaries by the RBF-FD method, we prescribe an initial

chemical density C(λ, 0) = (cosλ + sinλ) on the unit circle with 0 ≤ λ < 2π. For t ≥ 0,

the function C(λ, t) = e−t(cosλ+ sinλ) is then an exact solution to the diffusion equation

on the circle when Ds = 1. We fix the number of data sites to Nd = 50 and vary the

number of sample sites. To test the errors in the spatial discretization, we fix the time-step

at ∆t = 10−4. The test was run from t = 0 to t = 2. The results of this test are

shown in Table 4.1. The results demonstrate that the RBF-FD solution to the diffusion

equation on a circle exhibits second-order convergence in the sample site spacing. Similar

experiments with irregularly-spaced points around the circle (results not shown) show that

the convergence of the RBF-FD method gradually decreases to first-order as the points

Table 4.1: The effect of geometric accuracy on the RBF-FD solution to the diffusion
equation. The errors were measured against the exact solution at t = 2.

Ns L2 error Order L∞ error Order

50 2.0591e-03 2.9106e-03

100 5.0705e-04 2.02 7.1672e-04 2.02

200 1.2152e-04 2.06 1.7185e-04 2.06

91

become more irregularly spaced. However, the method appears tolerant to mildly uneven

point spacings, both on the circle and on the test objects in Coupled Problems 2 and 3.

4.6.3 Convergence of the Modified AFM

Table 4.2 shows the results of a refinement study conducted with the modified AFM. The

solution was taken to be c(x, y, t) = sin(πx) sin(πy)e−π
2t. The initial chemical concentration

was prescribed using the values of this function at t = 0, and analytic boundary conditions

were prescribed by applying the boundary condition operator D to c. These boundary

conditions were enforced at boundary points on platelet surfaces in the modified AFM

calculations, and, on the computational domain boundary, the exact solution satisfies

periodic boundary conditions in the x-direction and Neumann boundary conditions in

the y-direction (though our results were similar for Dirichlet and Neumann boundary

conditions as well). For our refinement study, we used the Robin boundary condition

operator D = −D ∂
∂η̂ + 1 with a diffusion coefficient D = 0.1. Two objects were embedded

in the domain, a circle C1 and an ellipse E1. C1 has its center at (0.2,0.4) and a radius of

0.0995, while E1 has its center at (0.8,0.4), a semimajor axis of length 0.15 and a semiminor

axis of length 0.1. We compare the solution on grids of several sizes to a solution computed

on a 256 × 256 grid. We also reduce the time-step by half for each progressively finer

grid. The test was run from t = 0 to t = 3. The results demonstrate that the modified

AFM exhibits second-order convergence in both space and time when analytic boundary

conditions are prescribed.

4.6.4 Effect of Forcing Point Locations

We wished to test whether convergence of the modified AFM is sensitive to the distance

between the boundary of an irregular object and the forcing points on the grid. To

accomplish this, we placed an object that looks like a square with rounded corners in

the center of the domain; technically, this object is a superquadric and is shown in Figure

4.5. We generated the object parametrically as follows:

Table 4.2: Results of a refinement study for the modified AFM. The errors were measured
against a solution computed on a 256 × 256 grid as a gold standard. The errors were
measured at t = 3.

Grid Size ∆t L2 error Order L∞ error Order

32× 32 0.0050 9.0012e-07 3.3407e-06

64× 64 0.0025 2.2716e-07 1.99 8.8616e-07 1.92

128× 128 0.00125 5.2988e-08 2.10 2.0742e-07 2.10

92

Figure 4.5: Illustration of the quadric object used to test the effect of forcing point
locations on the modified AFM.

X = xc + r ∗ sign(cosλ)(px| cosλ|)m (4.24)

Y = yc + r ∗ sign(sinλ)(py| sinλ|)m (4.25)

where (xc, yc) = (0.5, 0.5), m = 0.2, r = 0.0995, and 0 ≤ λ < 2π. The test involved

squeezing the sides (or top and bottom) of the object in such a way that the boundary shifts

between grid lines without its actually crossing a grid line and thus causing generation of

a new set of forcing points. We accomplished this by varying the parameters px and py;

reducing px or py squeezes the object either along the horizontal or the vertical, respectively,

while increasing these parameters stretches the object. For this test, we successively reduced

either px or py from 1.1 to 0.7, with px = 1 and py = 1 corresponding to the unchanged

object.

We measured the error in approximating the manufactured solution to the test function

c(x, y, t) = sin(πx) sin(πy)e−π
2t for these different values of px and py. We used analytic

normals and sample sites locations for the rounded square so as to remove the effect of

interpolation error. We set D = 0.2 and perform our tests on a 64× 64 grid with time-step

∆t = 0.0025. We found that that the errors were unaffected by the distance between the

boundary and the forcing points.

4.6.5 Convergence on Coupled Problems for Model 1

We next report on tests of the convergence of the modified AFM in conjunction with

the RBF-FD method on two coupled problems. In Coupled Problem 1, the boundary

conditions at boundary points for the modified AFM were obtained from the solution of

reaction-diffusion equations on the surfaces of platelets C1 and E1. The diffusion coefficient

for the fluid-phase chemical concentrations was set to D = 0.1 and that for the surface of

93

the platelets was set to Ds = 1 for both platelets. The reaction rates were set to kon = 0.2

and koff = 0.4 for C1, and to set to kon = 0.4 and koff = 0.2 for E1. The fluid-phase

concentrations were initialized to c(x, y, 0) = sin(πx) sin(πy) while the platelet densities

were initialized to C(λ, 0) = cos(λ), for 0 ≤ λ < 2π for both C1 and E1. The test was run

from t = 0 to t = 3. Convergence was measured for both the fluid-phase concentrations

and the platelet-surface concentrations. The results shown in Table 4.3 and Table 4.4

demonstrate that the modified AFM with boundary conditions derived from the RBF-FD

solution of reaction-diffusion equations on simple platelet surfaces exhibits second-order

convergence in both space and time on Coupled Problem 1.

Coupled Problem 2 uses the same parameters as Coupled Problem 1, but differs from

that problem in solving surface reaction-diffusion equations on the ellipse E1 and on a

smoothly perturbed version of ellipse E1 that we will call PE1 (Perturbed Ellipse 1). The

motivation for this test was to study the behavior of the AFM on platelets which may

be oddly shaped or stretched ellipses (for example, as they may be when bound to other

platelets within a clot). The points on PE1 are given by Equation (2.44) from Chapter 2,

with the same parameters used there.

The results of a convergence study of the combined method on Coupled Problem 2 are

shown in Table 4.5 and Table 4.6. These results show that the modified AFM in conjunction

Table 4.3: Results of a refinement study for the modified AFM on Coupled Problem 1.
The errors were measured by using a solution computed on a 256 × 256 grid as a gold
standard. The number of sample sites was also increased from Ns = 50 to Ns = 200 as the
grid was refined. All errors were measured at t = 3.

Grid Size Ns ∆t L2 error Order L∞ error Order

32× 32 50 0.0050 1.2841e-03 1.9135e-03

64× 64 100 0.0025 3.2477e-04 1.98 4.9864e-04 1.94

128× 128 200 0.00125 7.5756e-05 2.10 1.2041e-04 2.05

Table 4.4: Results of a refinement study for the RBF-FD solution to reaction-diffusion
equations on the surface of platelets in Coupled Problem 1. The errors were measured
using a solution computed on a 256 × 256 grid with analytically computed normals at
Ns = 400 sample sites as a gold standard. The fluid grid was also refined as the number of
sample sites was increased. All errors were measured at t = 3.

Ns Grid Size ∆t L2 error Order L∞ error Order

50 32× 32 0.0050 1.5567e-03 2.1497e-03

100 64× 64 0.0025 3.6238e-04 2.10 5.0534e-04 2.09

200 128× 128 0.00125 8.3943e-05 2.11 1.1706e-04 2.11

94

Table 4.5: Results of a refinement study for the modified AFM on Coupled Problem 2.
The errors were measured by using a solution computed on a 256 × 256 grid as a gold
standard. The number of sample sites was also increased from Ns = 50 to Ns = 200 as the
grid was refined. All errors were measured at t = 3.

Grid Size Ns ∆t L2 error Order L∞ error Order

32× 32 50 0.0050 9.8668e-04 1.5650e-03

64× 64 100 0.0025 2.5374e-04 1.96 4.1418e-04 1.92

128× 128 100 0.00125 5.8373e-05 2.12 9.7048e-05 2.09

Table 4.6: Results of a refinement study for the RBF-FD solution to reaction-diffusion
equations on the surface of platelets in Coupled Problem 2. The errors were measured
using a solution computed on a 256 × 256 grid with analytically computed normals at
Ns = 400 sample sites as a gold standard. The grid was refined as the number of sample
sites was increased. All errors were measured at t = 3.

Ns Grid Size ∆t L2 error Order L∞ error Order

50 32× 32 0.0050 1.1976e-03 1.6179e-03

100 64× 64 0.0025 2.7351e-04 2.13 3.6505e-04 2.15

200 128× 128 0.00125 6.1624e-05 2.15 8.3978e-05 2.13

with the RBF-FD method for solving reaction-diffusion equations on perturbed platelet

surfaces exhibits second-order convergence in both space and time.

4.6.6 Convergence on a Coupled Problem for Model 2

Having tested the convergence of the combined method on Coupled Problems 1 and

2 that used model 1, we now test the convergence of the combined method on a coupled

problem that uses model 2. For this new coupled problem (Coupled Problem 3), we simulate

the equations of model 2 on the objects E1 and PE1 using the RBF-FD method within the

AFM. The reaction rates were set to the same as those in Coupled Problem 2, as were

the platelet positions. The bound and unbound chemical density fields were initialized to

Cb(λ) = cos(λ) and Cu(λ) = 1 − Cb(λ), for 0 ≤ λ < 2π, respectively. The simulation was

run from t = 0 to t = 3.

The results of the convergence studies are shown in Tables 4.7, 4.8, and 4.9. Having

used the same initial conditions and platelet configurations as in Coupled Problem 2, we

see identical results in terms of errors and convergence on Coupled Problem 3 for the AFM

and for the PDE for Cb. Furthermore, the errors and convergence for the PDE for Cu are

identical to the errors and convergence for Cb. We thus observe second-order convergence

using our methods on Coupled Problem 3 as well. The advantage of model 2 over model 1,

of course, is that one has greater flexibility in model 2, in terms of selecting initial conditions

95

Table 4.7: Results of a refinement study for the modified AFM on Coupled Problem 3.
The errors were measured by using a solution computed on a 256 × 256 grid as a gold
standard. The number of sample sites was also increased from Ns = 50 to Ns = 200 as the
grid was refined. All errors were measured at t = 3.

Grid Size Ns ∆t L2 error Order L∞ error Order

32× 32 50 0.0050 9.8668e-04 1.5650e-03

64× 64 100 0.0025 2.5374e-04 1.96 4.1418e-04 1.92

128× 128 200 0.00125 5.8373e-05 2.12 9.7048e-05 2.09

Table 4.8: Results of a refinement study for the RBF-FD solution to the reaction-diffusion
equations for bound chemical concentrations on the surface of platelets in Coupled Problem
3. The errors were measured using a solution computed on a 256×256 grid with analytically
computed normals at Ns = 400 sample sites as a gold standard. The grid was refined as
the number of sample sites was increased. All errors were measured at t = 3.

Ns Grid Size ∆t L2 error Order L∞ error Order

50 32× 32 0.0050 1.1976e-03 1.6179e-03

100 64× 64 0.0025 2.7351e-04 2.13 3.6505e-04 2.15

200 128× 128 0.00125 6.1624e-05 2.15 8.3978e-05 2.13

Table 4.9: Results of a refinement study for the RBF-FD solution to the reaction-diffusion
equations for unbound chemical concentrations on the surface of platelets in Coupled
Problem 3. The errors were measured using a solution computed on a 256 × 256 grid
with analytically computed normals at Ns = 400 sample sites as a gold standard. The grid
was refined as the number of sample sites was increased. All errors were measured at t = 3.

Ns Grid Size ∆t L2 error Order L∞ error Order

50 32× 32 0.0050 1.1976e-03 1.6179e-03

100 64× 64 0.0025 2.7351e-04 2.13 3.6505e-04 2.15

200 128× 128 0.00125 6.1624e-05 2.15 8.3978e-05 2.13

for Cu and Cb, and different coefficients of diffusion as well.

4.7 Summary

The Augmented Forcing Method (AFM) was developed in [93] for the simulation of

chemical transport in a stationary fluid in the presence of irregular boundaries (platelets).

In that work, an ODE model for chemistry on platelet surfaces was also presented, with

the ODEs contributing boundary conditions to the fluid-phase chemical diffusion equation

and the fluid-phase chemical diffusion equation contributing to the ODEs. When the AFM

was used in conjunction with a Crank-Nicolson time-stepping method for the simulation of

the combined problem, the resulting method was shown to have second-order accuracy and

96

convergence. However, the method had the following limitations:

• the ODE model was only a simple approximation to true platelet chemistry; a reaction-

diffusion PDE model would be more appropriate;

• the use of Moving Least Squares (MLS) scheme to obtain fluid-phase chemical concen-

trations at points on the platelet surface imposed a separation constraint on platelets

– the platelets had to be at least 2h apart, where h is the Cartesian grid spacing; and

• the AFM itself imposed another separation constraint of 2h on platelets because of

the biquadratic interpolation stencil chosen to enforce boundary conditions on the

fluid-phase chemical diffusion equation.

In this work, we introduced more complete models of platelet surface chemistry involving

diffusion of chemical densities on the surface. Two models (models 1 and 2) were presented.

Model 1 is a simple update to the ODE model that involved adding a surface diffusion term

to the ODE (thereby giving a PDE), while model 2 aims to better match the biology of the

problem by using a pair of PDEs at each point on the boundary (these PDEs are coupled

to each other through their equal and opposite reaction terms).

In order to facilitate the simulation of models 1 and 2 on oddly-shaped platelets (typically

seen in platelet aggregation simulations) in 2D and to remove the limitations of the AFM

in its original form, we presented the following numerical methodology:

• the first application of Radial Basis Function-Finite Differences (RBF-FD) to the

simulation of reaction-diffusion equations on surfaces in 2D;

• a modification to the AFM involving symmetric RBF Hermite interpolation (instead of

biquadratic interpolation) to enforce boundary conditions on the fluid-phase chemical

diffusion equation, thus eliminating the separation constraint on platelets simulated

by the AFM; and

• a replacement for the MLS scheme used in [93] with a simple bilinear interpolation and

a parametric RBF-based smoothing scheme, thereby eliminating the other separation

constraint on platelets in that work.

Through numerical experiments, we analyzed the behavior of our proposed methodology

and draw the following conclusions:

• the RBF-FD approximation to the surface Laplacian, when used in conjunction with a

BDF2 scheme, resulted in a method that exhibited second-order convergence in both

space and time when applied to the simulation of pure diffusion equations on circles;

97

• the symmetric RBF Hermite interpolation scheme for enforcing boundary conditions

within the AFM gave a modified AFM that also exhibited second-order convergence

in both space and time for diffusion of fluid-phase concentrations; and

• the combined methodology involving RBF-FD and the AFM showed second-order

convergence in both space and time on three coupled problems involving reaction-

diffusion equations on platelet surfaces and a diffusion equation for the fluid-phase

concentrations; Coupled Problems 1 and 2 used model 1 (simulated with SBDF2),

while Coupled Problem 3 used model 2 (also simulated with SBDF2).

While we have indeed shown that the RBF-FD method can be successfully applied to

the simulation of reaction-diffusion equations on platelet-like surfaces in 2D, we have yet to

explore the effects on this method of using different stencil sizes and different point spacings

on surfaces embedded in 3D domains. We will discuss this in Chapter 5. Also, like [93],

while our results are valid for stationary platelets in stationary fluid, we have yet to explore

the modified AFM and the RBF-FD method for platelets interacting with a moving fluid

as simulated by the Immersed Boundary method. This is a subject for future work.

CHAPTER 5

RBF-FD FOR TWO-DIMENSIONAL

SURFACES

5.1 Introduction

We now turn our attention to simulating reaction-diffusion equations on surfaces embed-

ded in 3D domains. The first natural step was to attempt to simply use the method from

Chapter 4, albeit adapted to 2D surfaces. However, in our experiments, a straightforward

extension of the RBF-FD approach presented in the previous chapter to 2D surfaces proved

to be unstable, requiring hyperviscosity-based stabilization, an approach commonly used

for the stabilization of RBF-FD operators.

In this work, we modify the RBF-FD formulation presented in Chapter 4, and present nu-

merical and algorithmic strategies for generating stable RBF-FD operators on general point

sets. This combined approach appears to do away with the need for hyperviscosity-based

stabilization. While this work deals with the formulation of RBF-FD surface Laplacians on

2D surfaces, it easily generalizes to both 1D and higher-dimensional surfaces of co-dimension

1 embedded in higher-dimensional domains.

We note that though we frequently interpolate function samples at scattered nodes that

lie on manifolds in this work, we still measure distances only in the embedding space of the

manifold, i.e., we use straight line distances rather than distances intrinsic to the manifold.

In previous work [31], the authors proved that favorable error estimates can be achieved even

when using such distance measures with RBF interpolation when applied to reconstruction

problems on general manifolds. We will take advantage of this result to formulate our

method, and mention some of the ramifications of the choice to use straight-line distances

in a later section.

For the remainder of this chapter, we will revert to the notation used in Section 1.5.1,

since that is the notation most convenient for discussing interpolation on point clouds and

scattered node sets on arbitrary surfaces.

99

5.2 Surface Laplacian in Cartesian
Coordinates

Again, as in the previous chapter, we elect to use Cartesian coordinates rather than

surface-based coordinates to formulate the surface Laplacian. Working with the operator

in Cartesian coordinates is fundamental to our proposed method as it completely avoids

singularities that are associated with using intrinsic, surface-based coordinates (e.g., the

pole singularity in spherical coordinates).

Let P denote the projection operator that takes an arbitrary vector field in R3 at a point

X = (x, y, z) on the surface and projects it onto the tangent plane to the surface at X.

Letting η̂ = (nx, ny, nz) denote the unit normal vector to the surface at X, this operator

is given by

P = I − η̂η̂T =

(1− nxnx) −nxny −nxnz
−nxny (1− nyny) −nynz
−nxnz −nynz (1− nznz)

 =
[
px py pz

]
, (5.1)

where I is the 3-by-3 identity matrix, and px, py, and pz are vectors representing the

projection operators in the x, y, and z directions, respectively. We can combine P with

the standard gradient operator in R3, ∇ =
[
∂x ∂y ∂z

]T
, to define the surface gradient

operator ∇M in Cartesian coordinates as

∇M := P∇ =

px · ∇py · ∇
pz · ∇

 =

GxGy
Gz

 . (5.2)

Noting that the surface Laplacian ∆M is given as the surface divergence of the surface

gradient, this operator can be written in Cartesian coordinates as

∆M := ∇M · ∇M = (P∇) · P∇ = GxGx + GyGy + GzGz. (5.3)

The approach we use to approximate the surface Laplacian mimics the formulation given

in Equation (5.3) and is conceptually similar to the formulation given in [36], with the

important difference being that we use local RBF interpolants.

5.3 RBF-FD Approximation to the
Surface Laplacian

Let X = {Xk}Nk=1 denote a set of (scattered) node locations on a surface M of dimension

two embedded in R3 and suppose f : M→ R is some differentiable function sampled on X.

Our goal is to approximate ∆Mf |X with finite-difference-style local approximations to the

operator ∆M. Without loss of generality, let the node where we want to approximate ∆Mf

100

be X1, and let X2, . . . ,Xn be the n − 1 nearest neighbors to X1, in terms of Euclidean

distances measured in R3. We refer to X1 and its n − 1 nearest neighbors as the stencil

on the surface corresponding to X1 and denote this stencil as P1 = {Xk}nk=1. We seek an

approximation to ∆Mf at X1 that involves a linear combination of the values of f over the

stencil P1 of the form

(∆Mf)
∣∣
X=X1

≈
n∑
j=1

wjf(Xj). (5.4)

The weights {wj}nj=1 in this approximation will be computed using RBFs, and will be

referred to as RBF-FD weights.

The first step to computing the RBF-FD weights is to construct an RBF interpolant of

f similar to Equation (1.7), but now only over the nodes in P1, i.e.,

Iφf(X) =

n∑
j=1

cjφ(rj(X)) + cn+1, (5.5)

where rj(X) = ‖X − Xj‖. The interpolation coefficients cj can be determined by the

solution to the system of equations given in Equation (1.8), but with X replaced with P1;

we denote this system by AP1cf = fP1 . Second, we compute the surface gradient of the

above interpolant using Equation (5.2) and evaluate it at the nodes in P1. In the case of

the Gx component of the gradient, this is given as

(GxIφf(X))
∣∣
X=Xi

=

n∑
j=1

cj (Gxφ(rj(X)))
∣∣
X=Xi︸ ︷︷ ︸(

BxP1

)
i,j

, i = 1, . . . , n, (5.6)

where the constant term from Equation (5.5) has vanished since its gradient is zero. We can

rewrite Equation (5.6) in matrix-vector form using the fact that cf = A−1
P1
fP1 as follows:

(GxIφf)
∣∣
P1

= Bx
P1
cf =

(
Bx
P1
A−1
P1

)
fP1 = GxP1

fP1 . (5.7)

Here GxP1
is an n-by-n differentiation matrix that represents the RBF approximation to

the x-component of the surface gradient operator over the set of nodes in P1. Similar

approximations can be obtained to the y- and z-components of the surface gradient operator

on this stencil as follows:

(GyIφf)
∣∣
P1

=
(
By
P1
A−1
P1

)
fP1 = GyP1

fP1 , (5.8)

(GzIφf)
∣∣
P1

=
(
Bz
P1
A−1
P1

)
fP1 = GzP1

fP1 , (5.9)

101

where the entries of By
P1

and Bz
P1

are given as

(By
P1

)i,j = (Gyφ(rj(X)))
∣∣
X=Xi

and (Bz
P1

)i,j = (Gzφ(rj(X)))
∣∣
X=Xi

.

In the third step, we mimic the continuous formulation of the surface Laplacian in Equation

(5.3) using the differentiation matrices GxP1
, GyP1

, and GzP1
in place of the operators Gx, Gy,

and Gz, respectively, which gives the following approximation to the surface Laplacian of f

at all the nodes in P1:

(∆Mf)
∣∣
P1
≈
(
GxP1

GxP1
+GyP1

GyP1
+GzP1

GzP1

)
︸ ︷︷ ︸

LP1

fP1 . (5.10)

This approximation is equivalent to the following operations: construct an interpolant of f

over P1, compute its surface gradient, interpolate each component of the surface gradient,

apply the surface divergence, and evaluate it at P1. Hence, we can use the vector interpolant

notation from Equation (1.9), to write Equation (5.10) equivalently as

(∆Mf)
∣∣
P1
≈ (∇M · IΦ (∇MIφf))

∣∣
P1
.

This approach of repeated interpolation and differentiation avoids the need to analytically

differentiate the surface normal vectors of M, which imples closed form expressions for these

values are not needed. This simplifies the computations and makes the method applicable

to surfaces defined by point clouds (as illustrated in Section 5.6).

While the approximation in Equation (5.10) is for all the nodes in P1, we are only

interested in the approximation at X = X1 (the “center” point of the stencil P1) according

to Equation (5.4). Because of the ordering of nodes in P1, the value of Equation (5.4) is

given by the first value in the vector that results from the product on the right of Equation

(5.10). Thus, the weights wj in Equation 5.4 are given by the entries in the first row

of the matrix LP1 from Equation (5.10). Extracting these entries from this matrix, and

disregarding the rest, then completes the steps for determining the RBF-FD weights for the

node X1.

For each node Xj ∈ X, j = 1, . . . , N , we repeat the above procedure of finding its

n − 1 nearest neighbors (stencil Pj), computing the corresponding matrix LPj according

to Equation (5.10), and extracting out of this matrix the row of RBF-FD weights for

Xj . These weights are then arranged into a sparse N -by-N differentiation matrix LX for

approximating the surface Laplacian over all the nodes in X.

The computational cost of computing each matrix LPj is O(n3), and there are N such

stencils, so that the total cost of computing the entries of LX is O(n3N) (this is apart

102

from the cost of determining the stencil nodes, for which an efficient method is discussed

below). In practice, n << N and would typically be fixed as N increases, so that the total

cost scales like O(N). Furthermore, each LPj can be computed independently from the

others and is thus a embarrassingly parallel computation. In contrast, the method from

[36], requires O(N3) operations and results in a dense differentiation matrix. However, the

accuracy of this global method is better than the local RBF-FD approach.

5.3.1 Implementation Details

To efficiently determine the members of stencils Pk, k = 1, . . . , N , we first build a k-d

tree for the full set of N nodes in X. The k-d tree is constructed in O(dN logN) operations,

where d is the number of dimensions. The members of stencil Pk can then be determined

from the k-d tree in O(logN) operations. Combining the computational cost of the k-d tree

construction and look-ups with computing the RBF-FD weights, the total cost of building

LX is O(N logN) +O(N), where the constants in the last term depend on the cube of n.

We note that points in each of the N stencils Pk on the surfaces are selected merely

using a distance criterion; in other words, for a node Xk, the stencil only comprises of its

n− 1 nearest neighbors, with the distances measured in R3, rather than along the surface.

While it is possible to include more information to form more regular or biased stencils, we

do not explore these possibilities in our current work. One consequence of using distances

in the embedding space is that one must exercise caution when simulating PDEs on the

surfaces of thin objects, or thin features of more general surfaces. If the distance between

points across a thin feature is smaller than the distance between points on the same sides

of the surface of the thin feature, a poor approximation to the surface Laplacian will result

in that region. We will not address this issue in our work, except by taking care to have a

sufficiently dense sampling of the surface around thin features.

In general, the nodes in X will lack any ordering, which may negatively impact the fill-in

of the sparse matrix LX . We therefore reorder the matrix using the Reverse Cuthill-McKee

algorithm [37] for all our tests. This usually results in faster iterations in an iterative

solver involving LX , and improved sparsity in stored lower triangular and upper triangular

factors within a sparse direct solver involving LX . Figure 5.1 shows two different surfaces, a

idealized red blood cell and a double-torus, with corresponding nodes X, and the resulting

sparsity pattern of LX after reordering with Reverse Cuthill-McKee.

103

Figure 5.1: The figure on the top left shows maximum determinant nodes mapped from the
sphere to the surface of the Red Blood Cell. The figure on the top right shows the reordered
matrix LX , obtained by applying the Reverse Cuthill-McKee reordering algorithm. 0.31%
of the entries of the matrix are non-zeros for the Red Blood Cell. The figure on the
bottom left shows a node set obtained on the double-torus. The figure on the bottom right
shows the reordered matrix LX , obtained by applying the Reverse Cuthill-McKee reordering
algorithm. 0.62% of the entries of the matrix are nonzeros for the double-torus. We use a
stencil size of n = 31 for both objects.

5.3.2 Method-of-lines

In Sections 5.5 and 5.6, we use the RBF-FD discrete approximation to the surface Lapla-

cian in the method-of-lines (MOL) to simulate diffusion and reaction-diffusion equations on

surfaces. We briefly review this technique for the former equation, as its generalization to

the latter follows naturally.

The diffusion of a scalar quantity u on a surface with a (nonlinear) forcing term is given

as

∂u

∂t
= δ∆Mu+ f(t, u), (5.11)

where δ > 0 is the diffusion coefficient, f(t, u) is the forcing term, and an initial value of

u at time t = 0 is given. Letting X = {Xj}Nj=1 ⊂ M and uX ∈ RN denote the vector

104

containing the samples of u at the points in X, our RBF-FD method for (5.11) takes the

form

d

dt
uX = δLXuX + f (t, uX) , (5.12)

where LX is an n-node RBF-FD differentiation matrix for approximating ∆M over the nodes

in X, as described above. This is a (sparse) system of N coupled ODEs and, provided it

is stable (see Section 5.4), can be advanced in time with a suitably chosen time-integration

method. For an explicit time-integration method, LX can be evaluated in O(N) operations.

For a method that treats the diffusion term implicitly, one can use an iterative solver such

a BICGSTAB, or form the sparse upper and lower triangular factors obtained from the

LU factorization of the implicit equations and use them for an efficient direct solver every

time-step. These are the two respective approaches we use in our convergence studies in

Section 5.5 and our applications in Section 5.6.

We conclude by noting that solving surface reaction-diffusion equations with an RBF-FD

method was also considered in our paper [73] for the case of 1D surfaces embedded in R2.

However, the approach used in that study for computing a discrete approximation to the

surface Laplacian differs in an important way from the RBF-FD formulation of the surface

Laplacian presented above. In that work, given a set of N nodes (X) on a surface, we

start by using n-node RBF-FD formulas to construct differentiation matrices for the Gx

and Gy over the node set X, which we denote by GxX and GyX . Next, the surface Laplacian

was approximated from these matrices as LX = GxXG
x
X + GyXG

y
X . As with the above

approach, this formulation also avoids the need to compute derivatives of the normal vectors

of the surfaces, but has the effect of doubling the bandwidth of the LX compared to GxX

and GyX . We tried extending this approach to two-dimensional surfaces in embedded in

R3, but encountered stability issues when combining this with the method-of-lines, as the

differentiation matrices LX had eigenvalues with (sometimes large) positive real parts. The

present method appears to be much less susceptible to these problems as discussed in the

next section.

5.4 Shape Parameter and Eigenvalue
Stability

A necessary condition for stability of the MOL approach described in the previous

section is that the eigenvalues of the RBF-FD differentiation matrices LX must be in the

stability domain of the ODE solver used for advancing the system in time. As a minimum

requirement, this will generally mean that all eigenvalues must, at the very least, be in the

105

left-half plane. The RBF-FD procedure does not guarantee that this property will hold for

LX , and it is possible to encounter situations in which this requirement is violated. In this

section, we discuss a procedure related to choosing a stencil-dependent shape parameter εk

when computing the RBF-FD weights that appears to ameliorate this issue and lead to LX

with eigenvalues in the left-half plane.

The idea is to choose a shape parameter εk > 0 for each stencil Pk that “induces” a

particular target condition number κT for the RBF interpolation matrix on that stencil.

In the previous section, we denoted this matrix by APk , but now we denote it by APk(ε)

since the entries of the matrix depend continuously on the shape parameter (see Equation

(1.8)). The condition number of RBF interpolation matrices increase monotonically as the

shape parameter decreases to zero (cf. [29]), so that the unique εk that induces the desired

condition number κT is given as the zero of the function

F (ε, κT) = log(κ(APk(ε))/κT), (5.13)

where κ(APk) is the condition number of APk(ε) with respect to the two-norm. Since APk(ε)

is symmetric, this is just the ratio of its largest singular value to its smallest. We view this

process as a homogenization that compensates for irregularities in the node distribution. It

is a generalization of the method from [18] for the surface of the sphere, where the nodes X

are quasi-uniformly distributed so that one shape parameter gives roughly equal condition

numbers amongst all the stencil interpolation matrices. In that study, the shape parameter

is chosen to be proportional to
√
N , which keeps all the conditions number approximately

equal as N grows.

We illustrate the effect of the proposed optimization process on the eigenvalues of the

matrix approximation to the surface Laplacian LX with two tests: one on a slightly distorted

but somewhat regular set of nodes and one on a very irregular set of nodes.

For the first test, we start with the N = 10000 quasi-uniform Maximal Determinant

(MD) node set for the unit sphere (obtained from [90]). We then map this point set to

an idealized Red Blood Cell surface, which is biconcave in shape; see [36, Appendix B]

for the analytical expression and the upper left picture in Figure 5.1 for a plot of these

mapped nodes. While the MD points offer a quasi-uniform sampling of the sphere, they do

not offer a good sampling when mapped to the Red Blood Cell (for a true quasi-uniform

sampling of the latter, the correct procedure would be to solve an optimization problem

and directly obtain MD points on the Red Blood Cell). Next, we form two RBF-FD matrix

approximations to the surface Laplacian on the Red Blood Cell using n = 31 point stencils.

The first approximation uses an optimized shape parameter on each stencil with the target

106

condition number set to κT = 1012 in Equation (5.13). The second approximation uses

a single shape parameter of ε = 2.51 across all stencils. This value is the mean of the

shape parameters obtained in the first approximation. The eigenvalues of the corresponding

differentiation matrices for these two procedures are shown in the top row of Figure 5.2,

with the optimized ε per stencil on the left and the single ε on the right. We can see

from the figure that optimized version produces eigenvalues all in the left-half plane, while

the single-ε version results in one large positive eigenvalue. For the second test, we start

Figure 5.2: The figure on the left of the top row shows the eigenvalues of the n = 31
RBF-FD matrix LX for the surface Laplacian on the Red Blood Cell using N = 10000
MD nodes mapped to the Red Blood Cell and the per-stencil shape parameter optimization
strategy with κT = 1012. The right figure on the top row is similar, but shows the eigenvalues
of LX using a single shape parameter of ε = 2.51, which is the mean of the shape parameters
from LX in the left figure. The figures on the bottom row are similar to the top, but show
the eigenvalues of LX for the double tours using N = 5041 scattered nodes. In the left one,
the per-stencil shape parameter optimization strategy was used, while the one on the right
used the mean of the shape parameters from the right which was ε = 2.47.

107

with an N = 5041 set of nodes on the double-torus that were obtained from the program

3D-XplorMath. This node set offers a fairly irregular sampling of the double-torus. For

more on how the nodes were generated, see [36]. As on the Red Blood Cell, we form

two RBF-FD matrix approximations to the surface Laplacian on the double-torus using

n = 31 point stencils. The first approximation uses an optimized shape parameter on each

stencil with the target condition number set to κT = 1011 in Equation (5.13), the largest

condition number that we could safely use on the irregular node set for n = 31 nodes

(with larger condition numbers giving us eigenvalues with positive real parts). The second

approximation uses a single shape parameter of ε = 2.47 across all stencils. Again, this value

is the mean of the shape parameters obtained in the first approximation. The eigenvalues

of the corresponding differentiation matrices are shown in the bottom row of Figure 5.2,

with the optimized ε per stencil on the left and the single ε on the right. Again, we can see

from the figure that the optimized version produces eigenvalues all in the left-half plane,

while the single-ε version results in one large positive eigenvalue.

We note that it is possible to choose a single shape parameter in the above examples that

is sufficiently large so that LX have all eigenvalues in the left-half plane. However, this does

not produce equally good results. The reason is that smaller shape parameters generally

give better accuracy (cf. [91, 56]). Using the optimization procedure for selecting ε allows us

to benefit from the accuracy afforded by smaller shape parameters where possible, as well as

the stability afforded by larger shape parameters (when required by the irregularity of the

node set). The trade-off in this procedure is that optimizing the shape parameter adds the

cost of root-finding to the RBF-FD method. Additionally, fixing a target condition number

across all stencils could mean that we end up choosing a lower condition number on some

stencil than the condition number naturally dictated by the minimum width on that stencil.

In this scenario, we are sacrificing some degree of local accuracy for the overall stability of

the method. However, our tests did not reveal any impact of this on the convergence of the

method.

While the shape parameter optimization procedure adds to the cost of our method,

there are a few mitigating factors. First, we only solve the optimization problem to an

absolute tolerance of 10−4; this proved sufficient for the purpose of stability and achieving

the target condition number. Second (and more important), since the optimization is done

on a per-stencil basis and the stencil computations themselves are easily parallelized, the

overall optimization procedure itself is also embarassingly parallel. These advantages are

retained even if the surface sampled by the node set is evolving in time.

108

We conclude by noting that algorithms for the stable computation of RBF-FD matrices

for all values of the shape parameters are available [56], but efforts to make these work for

the case when the nodes are distributed on a lower dimensional surface embedded in Rd is

still needed. Though successful outcomes in this area would mean that we could use larger

target condition numbers in our method, this does not necessarily imply the obsolescence

of our optimization procedure. Given that current methods to stably compute RBF in-

terpolants in planar domains are currently at least 5 − 10 times as costly as the standard

RBF interpolation method, it is probable that new methods will have this drawback as

well. In such a scenario, our shape parameter optimization procedure will likely allow for

cost-efficient implementations of the RBF-FD method, allowing trade-offs between accuracy

and computational cost.

5.5 Convergence Studies

We now present the results illustrating the convergence of our method for the (forced)

diffusion equation given in Equation (5.11) on some standard surfaces. We present experi-

ments with two different optimization strategies. First, we present results for studies where

we fix the condition number across all stencils for a given N , but allow the target condition

number to grow with increasing N . Then, we present results for studies involving fixing

the condition number for increasing N (equivalent to increasing the shape parameter for

increasing N). In the latter case, we run into saturation errors [15] due to the employment

of stationary interpolation.

We use the Backward Difference Formula of Order 4 (BDF4) for all tests and set the time-

step to ∆t = 10−4, a time-step that allows the spatial errors to dominate the temporal error.

We use BICGSTAB to solve the implicit system arising from the BDF4 discretization; we

noticed that the solver needed at most three iterations per time-step to converge to a relative

tolerance of 10−12.

For convenience, we measure errors using the `2 and `∞ norms rather than approxima-

tions to the continuous versions of these norms on the test surfaces. The convergence of

our method is a function of the fill distance hX , defined as the radius of the largest ball

that is completely contained on the manifold which does not contain a node in X. For

quasi-uniformly distributed nodes on our test surfaces, we expect that h ∝ 1√
N

, where N is

the total number of nodes on the surface. In the following subsections, we therefore examine

convergence as a function of
√
N .

109

5.5.1 Convergence Studies with Increasing
Condition Number

In this section, we present the results of numerical convergence studies where the uniform

condition number across the RBF-FD matrices is allowed to grow as the number of points

(N) on the surface increases. In the absence of the shape parameter optimization procedure,

this would be equivalent to fixing the shape parameter while increasing N , the simplest

approach to take with RBF interpolation.

First, we examine the convergence of our MOL formulation by approximating the

diffusion equation on a sphere. Then, we examine the convergence of our method on

simulating two forced diffusion equations, one on the sphere and one on a torus. We present

results for different stencil sizes n and examine convergence as the total number of nodes

N increases.

5.5.1.1 Diffusion on the Sphere

This test problem was presented in [60], and involves solving the heat equation on

a unit sphere S2. The exact solution to this problem is given as a series of spherical

harmonics u(t, θ, φ) = 20
3π

∑∞
l=1 e

−l2/9e−tl(l+1)Yll(θ, φ), where θ and φ are longitude and

latitude, respectively, and Ylm is the degree l order m real spherical harmonic. Since the

coefficients decay rapidly, the series is truncated after 30 terms. As in [60], we evolve the

PDE until t = 0.5, using the exact solutions to boot-strap our BDF4 scheme. We test the

RBF-FD method for n = 11, 17, and 31 for N = 642, 2562, 10242, and 40962 icosahedral

points on the sphere [2], and plot the relative error in the numerical solutions. For all tests,

we start with a target condition number of κT = 105 and allow it to grow with increasing

N to κT = 1018. The results of this study are shown in Figure 5.3.

In addition to the errors, Figure 5.3 shows dashed lines corresponding to ideal p-order

convergence, where p = 2, 3, 4, 5. It is clear that our method gives convergence between

orders two and three for n = 11, close to order four for n = 17, and slightly higher than

order five for n = 31, both in the `2 and the `∞ norms. Our method achieves similar results

for smaller values of N than were used by the Closest Point method in [60], as is to be

expected from a method that uses points only in the embedded space S2. However, it is

important to be cautious when comparing errors against the Closest Point method. The

values of N given in the results in [60] are greater than the actual number of points used

in that work to compute approximations to the Laplace-Beltrami operator. The values of

N in that work correspond to all the points used in the embedding space R3.

We note that the RBF-FD weights for n = 31 and N = 40962 were computed in quad-

110

Figure 5.3: The figure on the left shows the `2 error in the numerical solution to the
diffusion equation on the sphere as a function of

√
N , while the figure on the right shows

the `∞ error. Both figures use a log-log scale, with colored lines indicating the errors in our
method and dashed lines showing ideal p-order convergence for p = 2, 3, 4, 5. All errors were
measured against the exact solution. The errors for n = 31 and N = 40962 were computed
in quad-precision.

precision, though the simulations that used the weights were only run in double-precision.

This is because our approach of allowing the condition number to grow with N leads to

condition numbers of 1018 for very high N and n, which correspond to nearly-singular or

singular matrices in double-precision. A possible way of remedying this is to start with a

smaller target condition number for N = 642. Of course, this will lead to a higher error

for each N , but can help offset the ill-conditioning for very large N and n. Later in this

section, we will present an alternative way of ameliorating this issue.

5.5.1.2 Forced Diffusion on the Sphere

This problem was first presented in [6], and used in [36] as well. For this test, we

manufacture a solution to the diffusion equation on the sphere, with the forcing term f(t, u)

in Equation (5.11) chosen so that this solution is maintain for all time. The manufactured

solution is given by

u(t,X) = e−5t
23∑
k=1

e−10 cos−1(ξk·X), (5.14)

where ξk, k = 1, . . . , 23 are randomly placed points on the surface of the sphere. The solution

is C∞(S2). As in [36], we compute the forcing function analytically and evalute it implicitly

111

in time. We compare errors in the numerical solution of the forced diffusion equation at

time t = 0.2 for different values of N and n. Again, we use N = 642, 2562, 10242, and 40962

icoshedral points on the sphere, with n = 11, 17, and 31 points in each of the N stencils

on the surface. The random placement of Gaussian centers makes this a more difficult test

than diffusion of a spherical harmonic. The results are shown in Figure 5.4.

Again, the figure shows dashed lines corresponding to ideal p-order convergence, where

p = 2, 3, 4, 5. For this test, our method gives convergence of order two for n = 11, close to

order four for n = 17, and close to order five for n = 31, both in the `2 and the `∞ norms,

which are similar to the previous experiment. Again, the weights for n = 31 and N = 40962

were computed in quad-precision, for the same reasons as before.

5.5.1.3 Forced Diffusion on a Torus

This test is similar to the test involving randomly placed Gaussians on the sphere, except

that this procedure is done on a torus. We consider the torus given by the implicit equation:

T2 =

{
X = (x, y, z) ∈ R3

∣∣∣∣(1−
√
x2 + y2

)2
+ z2 − 1

9
= 0

}
,

which can be parameterized using intrinsic coordinates ϕ and λ as follows:

Figure 5.4: The figure on the left shows the `2 error in the numerical solution to the forced
diffusion equation on the sphere given by Equation (5.14) as a function of

√
N , while the

figure on the right shows the `∞ error. Both figures use a log-log scale, with colored lines
indicating the errors in our method and dashed lines showing ideal p-order convergence for
p = 2, 3, 4, 5. All errors were measured against the solution given by Equation (5.14). The
errors for n = 31 and N = 40962 were computed in quad-precision.

112

x =

(
1 +

1

3
cos(ϕ)

)
cos(λ), y =

(
1 +

1

3
cos(ϕ)

)
sin(λ), z =

1

3
sin(ϕ), (5.15)

where −π ≤ ϕ, λ ≤ π. The surface Laplacian of a scalar function f : T2 → R in this

intrinsic coordinate system is given as

∆Mf(ϕ, λ) =
1(

1 + 1
3 cos(ϕ)

)2 ∂2f

∂λ2
+

9(
1 + 1

3 cos(ϕ)
) ∂
∂ϕ

((
1 +

1

3
cos(ϕ)

)
∂f

∂ϕ

)
.

The manufactured solution to the diffusion equation (given by Equation (5.11) with M = T2)

is

u(t, ϕ, λ) = e−5t
23∑
k=1

e−a
2(1−cos(λ−λk))−b2(1−cos(ϕ−ϕk)), (5.16)

where a = 9, b = 3, and (ϕk, λk) are randomly chosen values in [−π, π]2. The solution

is C∞(T2) and a visualization at t = 0 is given in Figure 5.5 (left). While the solution

and forcing function are all specified using intrinsic coordinates, the RBF-FD method

uses only extrinsic (Cartesian coordinates) without requiring knowledge of the underlying

intrinsic coordinate system. As with the forced diffusion test on the sphere, we compute the

forcing function corresponding to Equation (5.16) analytically and evaluate it implicitly. We

similarly compare errors in the numerical solution of the forced diffusion equation at time

t = 0.2 for stencils of size n = 11, 17 and 31 nodes. The node sets we use for experiments

on the torus are generated from a “staggered” grid in intrinsic variable space, and are

determined as follows:

1. Given m, choose m + 1 equally spaced angles on [−π, π] in ϕ and 3m + 1 equally

spaced angles on [−π, π] in λ.

Figure 5.5: Forced diffusion on a torus. The figure on the left shows the intial condition
for the forced diffusion problem on the torus given by Equation (5.15). The figure on the
right shows a node set containing N = 5400 quasi-uniformly spaced nodes on the same
torus.

113

2. Disregard the values of ϕ and λ at π and take a direct product of the remaining points

to obtain N = 3m2 points on [−π, π)2. Map these points to T2 using Equation (5.15)

and call the set of nodes X1.

3. Next, generate another set of N = 3m2 gridded points in [−π, π)2 from the previous

set by offsetting the ϕ coordinate by π/m and the λ coordinate by π/(3m), so they

lie at the midpoints of the previous gridded values. Map these to T2 and call the set

of nodes X2.

4. The final set of nodes is given by X = X1 ∪X2.

In the experiments, we use m = 10, 20, 30, 60, 80, corresponding to node sets of size N =

600, 2400, 5400, 21600, 38400. A plot of the nodes for N = 5400 is shown in Figure 5.5

(right). These points remain more or less uniformly spaced on the torus as N grows.

The results for the experiments are shown in Figure 5.6. Again, the figure shows dashed

lines corresponding to ideal p-order convergence, where p = 2, 3, 4, 6. On this test, our

method gives convergence of order two for n = 11, close to order four for n = 17, and

between orders five and six for n = 31, both in the `2 and the `∞ norms. The convergence

rates are comparable to the results seen for diffusion on the sphere, and slightly better

than those seen for the forced diffusion problem on the sphere. The results for n = 31 and

Figure 5.6: The figure on the left shows the `2 error in the numerical solution to the forced
diffusion equation on the torus given by Equation (5.15) as a function of

√
N , while the

figure on the right shows the `∞ error. Both figures use a log-log scale, with colored lines
indicating the errors in our method and dashed lines showing ideal p-order convergence for
p = 2, 3, 4, 6. All errors were measured against the solution given by Equation (5.16). The
errors for n = 31 and N = 38400 were computed in quad-precision.

114

N = 38400 were computed in quad-precision, for the same reasons as before.

5.5.2 Convergence Studies with Fixed
Condition Number

In Section 5.5.1, we saw that allowing the condition number to grow as N increases by

fixing the mean shape parameter can give excellent results, but will eventually cause the

RBF interpolation matrices to be ill-conditioning for large N and n.

In this section, we present an alternate approach. We choose to fix the target condition

number at a particular (reasonably large) value for all values of N and n. As N increases,

this has the effect of increasing the value of the average shape parameter. Our goal here is

to understand the relationship between the magnitude of the target condition number and

the value of n and N at which saturation errors can set in. This would also give us intuition

on the connection between the target condition number and the order of convergence of our

method.

With this in mind, we present the results of numerical convergence studies of forced

diffusion on a sphere and on a torus for two fixed condition numbers, κT = 1014 and

κT = 1020, for increasing values of N and n. For κT = 1020, the RBF-FD weights on each

patch were run in quad-precision using the Advanpix Multicomputing Toolbox. However,

once the weights were obtained, they were converted back to double-precision and the

simulations were carried out only in double-precision.

We test the behavior of our MOL formulation for forced diffusion on the sphere and

for forced diffusion on the torus, with the solution to the former given by Equation (5.14)

and the solution to the latter given by Equation (5.16). We again use a BDF4 method

with ∆t = 10−4, with the forcing term computed analytically and evaluated implicitly. The

errors in the `2 and `∞ measured at t = 0.2 are shown in Figures 5.7–5.8 for the sphere,

and in Figures 5.9–5.10 for the torus.

5.5.2.1 Forced Diffusion on the Sphere

The results for κT = 1014 are shown in Figure 5.7, and those for κT = 1020 are shown in

Figure 5.8. Figure 5.7 shows that fixing the target condition number at κT = 1014 produces

no saturation errors in the `2 or `∞ norms for n = 11. In fact, this value of κT appears to

produce saturation in the `2 norm only for large values of N for n = 17. We see similar

saturation errors in the `∞ norm. For n = 31, we see saturation for N > 2562; this is

a clear indication that generating high-order RBF-FD methods requires the ability to use

large target condition numbers (small values of the shape parameter ε).

115

Figure 5.7: The figure on the left shows the `2 error in the numerical solution to the forced
diffusion equation on the sphere given by Equation (5.14) as a function of

√
N , while the

figure on the right shows the `∞ error. Both figures use a log-log scale, with colored lines
indicating the errors in our method and dashed lines showing ideal p-order convergence for
p = 2, 3, 4, 6. The target condition number was set to κT = 1014.

Figure 5.8: The figure on the left shows the `2 error in the numerical solution to the forced
diffusion equation on the sphere given by Equation (5.14) as a function of

√
N , while the

figure on the right shows the `∞ error. Both figures use a log-log scale, with colored lines
indicating the errors in our method and dashed lines showing ideal p-order convergence for
p = 2, 3, 4, 6. The target condition number was set to κT = 1020 and all RBF-FD weights
were computed in quad-precision.

116

Figure 5.9: The figure on the left shows the `2 error in the numerical solution to the forced
diffusion equation on the torus given by Equation (5.15) as a function of

√
N , while the

figure on the right shows the `∞ error. Both figures use a log-log scale, with colored lines
indicating the errors in our method and dashed lines showing ideal p-order convergence for
p = 2, 3, 4, 5. The target condition number was set to κT = 1014.

It is clear from Figure 5.8 that there are no saturation errors for n = 11 and n = 17

for the values of N tested when κT = 1020. In addition, for n = 31, we see convergence

that is close to order six with no saturation errors for the values of N used. This confirms

that using small shape parameters within the RBF-FD method can give higher convergence.

This is further motivation for the development of algorithms to stably compute the RBF

interpolation matrices as ε→ 0.

5.5.2.2 Forced Diffusion on a Torus

The results for κT = 1014 are shown in Figure 5.9, and those for κT = 1020 are shown

in Figure 5.10. Figure 5.9 shows that fixing the target condition number at κT = 1014

produces no saturation errors in the `2 or `∞ norms for n = 11 or n = 17 in either norm, in

contrast to forced diffusion on the sphere. Indeed, κT = 1014 seems sufficient for methods

up to order 4 for the values of N tested. However, for n = 31, we see saturation errors for

N > 5400, again showing that larger target condition numbers are required for high-order

RBF-FD methods.

Figure 5.10 shows that convergence on the torus is a bit more erratic than on the

sphere for the forced diffusion problem when κT = 1020. While there are no saturation

errors for n = 11 and n = 17 for the values of N tested, the convergence is slightly lower

117

Figure 5.10: The figure on the left shows the `2 error in the numerical solution to the
forced diffusion equation on the torus given by Equation (5.15) as a function of

√
N , while

the figure on the right shows the `∞ error. Both figures use a log-log scale, with colored lines
indicating the errors in our method and dashed lines showing ideal p-order convergence for
p = 2, 3, 4, 6. The target condition number was set to κT = 1020 and all RBF-FD weights
were computed in quad-precision.

for smaller values of N , possibly indicating that the node set on the torus is not quite as

uniformly-spaced as the one on the sphere for those values of N . However, as N is increased,

the rate of convergence seems to be slightly better than what was seen on the sphere. This

becomes apparent when looking at the line for n = 31. We see large errors for N = 600,

but a rapid fall-off as N is increased, with the overall order of convergence for n = 31 being

between five and six.

5.6 Application: Turing Patterns

This section presents an application of our RBF-FD method to solving a two-species

Turing system (two coupled reaction-diffusion equations) on different surfaces. We present

two types of results, the first for surfaces where parameterizations or implicit equations

describing the surface are known, and the second where they are not.

To facilitate comparison, we use the Turing system first described for the surface of

the sphere in [87] and applied to more general surfaces in [36]. The system describes the

interaction of an activator u and inhibitor v according to

118

∂u

∂t
= αu(1− τ1v

2) + v(1− τ2u) + δu∆Mu, (5.17)

∂v

∂t
= βv

(
1 +

ατ1

β
uv

)
+ u(γ + τ2v) + δv∆Mv. (5.18)

If α = −γ, then (u, v) = (0, 0) is a unique equilibrium point of this system. Altering the

diffusivity rates of u and v can lead to instabilities which manifest as pattern formations.

The coupling parameter τ1 favors stripe formations, while τ2 favors spots. Stripe formations

take much longer to attain “steady-state” than spot formations. In the following subsec-

tions, We use the Semi-implicit Backward Difference Formula of order 2 (SBDF2) as the

time-stepping scheme, and set the time-step to ∆t = 0.01 for all tests. Since the diffusion

terms are handled implicitly, the RBF-FD matrix needs to be inverted every time-step. We

accomplish this by precomputing a sparse LU decomposition of the matrix, and using the

triangular factors for forward and back solves every time-step. The values for all parameters

for Equations (5.17) and (5.18), including final times for simulations, are presented in Table

5.1. The parameters used in the RBF-FD discretizations of Equations (5.17) and (5.18) on

different surfaces are shown in Table 5.2.

Table 5.1: Parameters of Equations (5.17) and (5.18) used in the numerical experiments
shown in Figures 5.11 and 5.12. In all cases, we set δu = 0.516δv. The last column shows
the final time tfinal to which each of the simulations was run.

Surface/Pattern δv α β γ τ1 τ2 tfinal
RBC/spots 4.5× 10−3 0.899 −0.91 −0.899 0.02 0.2 800

RBC/stripes 2.1× 10−3 0.899 −0.91 −0.899 3.5 0 6500

Bumpy sphere/spots 4.5× 10−3 0.899 −0.91 −0.899 0.02 0.2 800

Bumpy sphere/stripes 2.1× 10−3 0.899 −0.91 −0.899 3.5 0 7000

Double-torus/spots 2.1× 10−3 0.899 −0.91 −0.899 0.02 0.2 700

Double-torus/stripes 8.87× 10−4 0.899 −0.91 −0.899 3.5 0 6000

Frog/spots 2.87× 10−4 0.899 −0.91 −0.899 0.02 0.2 600

Bunny/stripes 2.87× 10−4 0.899 −0.91 −0.899 3.5 0 6000

Table 5.2: Parameters used in the RBF-FD discretization of Equations (5.17) and (5.18)
for the numerical experiments shown in Figures 5.11 and 5.12. In all cases, the time-step
was set to ∆t = 0.01.

Surface Number of nodes (N) Stencil size (n) Target Cond. No. (κT)

RBC 10000 31 1012

Bumpy sphere 10000 31 1012

Double-torus 12100 31 1011

Frog 7458 31 1010

Bunny 11339 31 1010

119

5.6.1 Turing Patterns on Manifolds

We first solve the Turing system on three surfaces: the Red Blood Cell (RBC) and

the double-torus described earlier, and on the Bumpy Sphere detailed in [36]. RBCs are

biconcave surfaces and can be represented parametrically, as described earlier. The Bumpy

Sphere is a point set downloaded from an online repository, and equipped with point unit

normals by parametric interpolation with the RBF parametric model presented in [72].

Also, since the downloaded model had N = 5256 vertices and we wished to demonstrate

the viability of the RBF-FD method on far more vertices, we sampled our parametric

model to generate N = 10000 vertices, and solve the Turing system on that point set. The

first three rows of Table 5.2 list all the parameters used in the RBF-FD discretizations of

Equations (5.17) and (5.18) on each of these three surfaces, and the last column of Table 5.1

lists the final times used for these simulations. The results of these simulations are shown

in Figure 5.11. The spot and stripe patterns are qualitatively similar to those shown in [36].

Figure 5.11: Steady Turing spots and stripe patterns resulting from solving Equations
(5.17) and (5.18) on the Red Blood Cell, the Bumpy Sphere, and the double-torus. In all
plots, red and blue correspond to a high and low concentration of u, respectively.

120

5.6.2 Turing Patterns on More General Surfaces

We now turn our attention to more general point sets: a Frog model (obtained from

the AIM@SHAPE Shape Repository) and the Stanford Bunny model (obtained from the

Stanford 3D Scanning Repository). Rather than as point clouds, these models are available

in the form of meshes and approximate normal data. In contrast to the previous two

examples, it is not clear if the surfaces represented by these meshes can be analytically

parametrized. To prepare these point sets for simulations, we first run the Poisson surface

reconstruction algorithm [52] to generate a water-tight implicit surface that fits the point

cloud. This algorithm requires both the point cloud and the approximate normals as input.

Forming an implicit surface smoothes the approximate normal vectors input into the Poisson

surface reconstruction, resulting in a more stable RBF-FD discretization. Having generated

an implicit surface, we sample that with the Poisson disk sampling algorithm to generate a

point cloud with the desired number of points. The other rationale for employing Poisson

disk sampling is that while the Poisson surface reconstruction will fix any holes in the mesh,

those former holes may not be sufficiently sampled. This preprocessing was performed

entirely in MeshLab [10].

After this preprocessing, we run a Turing spot simulation on the Frog model, and a

Turing stripe simulation on the Stanford Bunny. The last two rows of Table 5.2 list all

the parameters used in the RBF-FD discretizations of Equations (5.17) and (5.18) on each

of these surfaces, and the last column of Table 5.1 lists the final times used for these

simulations. The results are shown in Figure 5.12. Before the color-mapping for aesthetics,

the results are qualitatively similar to those shown in Figure 5.11.

5.7 Summary

In this chapter, we introduced a new numerical method based on RBF-generated Finite

Differences (RBF-FD) for computing a discrete approximation to the Laplace-Beltrami

operator on surfaces of codimension one embedded in R3. The method uses scattered nodes

on the surface, without requiring expansion into the embedding space. We improved on

the method presented in Chapter 4, designing a stable numerical method that does not

stabilization with artificial viscosity (a feature of most RBF-FD methods). This develop-

ment was facilitated by an algorithm to optimize the shape parameter for each interpolation

patch on the surface. We demonstrated that this optimization procedure can compensate

for irregularities in the sampling of the surface. We then presented error and convergence

estimates for our method using two approaches: allowing the condition number to grow

121

Figure 5.12: The figure on the top right shows a Turing spot pattern on a Frog model.
Green corresponds to a low concentration, and brown and black to higher concentrations.
The figure on the bottom right shows a Turing stripe pattern on the Stanford Bunny
model. Here, the lightest browns (almost white) correspond to low concentrations, and
darker browns correspond to higher concentrations. Both the figures on the left show the
point clouds used for the solution of the Turing system.

with the number of points on the surface, and fixing the condition number for an increasing

number of points. We discussed the trade-offs inherent in each approach, and provided

intuition as to the relationship between the condition number, shape parameter, and the

order of convergence of our method on the diffusion equation on a sphere and a torus.

We presented an application of our method to simulating reaction-diffusion equations on

surfaces; specifically, we demonstrated the solution of Turing PDEs on several interesting

shapes, both parametrizable and more general.

While our method currently works for static objects, our goal is to apply RBF-FD to

the solution of PDEs on evolving surfaces, with the evolution dictated by the interaction of

a fluid with the object as in Chapter 3. This will require efficient kd-tree implementations,

including algorithms for dynamically updating and/or rebalancing the kd-tree as the point

122

set evolves. The method will need to be parallelized to be efficient. Another issue with

the method is its ability to handle thin features on surfaces. For RBF-FD to be competent

on more general surfaces, it will be necessary to combine our method with an adaptive

refinement code that detects thin features and samples sides of the feature sufficiently (the

alternative would be to find an efficient way to measure distances along arbitrary surfaces).

A natural extension of this work would be to adapt the method to handle spatially-

variable (possibly anisotropic) diffusion. While this extension is not conceptually difficult,

the realization of this extension would make our method even more useful for biological

applications, like the simulation of gels or viscoelastic materials on surfaces. We briefly

discuss this idea for 1D surfaces in Chapter 6 and present some preliminary results there.

We intend to fully address this problem in a follow-up study. Finally, it would be interesting

to apply the method to solving PDEs on problems with boundary conditions. We discuss

this briefly in the 1D surface context in Chapter 6, but intend to fully study the problem

in a follow-up study as well.

CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

Before proceeding to describe future lines of research, we summarize the contributions

of this dissertation that substantiate the thesis that RBF interpolation forms an excel-

lent foundation for the development of numerical methods in the complex geometries and

rheologies arising from the study of biological systems.

In Chapter 1, we reviewed the state of the art for fluid-structure interaction, with a focus

on the Immersed Boundary (IB) method and the Augmented Forcing method (AFM). We

presented an overview of RBF interpolation, laying the foundation for its use throughout

this dissertation. We also discussed symmetric Hermite interpolation, an extension of

Hermite interpolation to handle scattered data and independent linear functionals. We

then described the state of the art in RBF-based numerical methods for the solution of

PDEs, focusing on RBF-PS, RBF-FD, and RBF-PUM.

In Chapter 2, we developed a parametric framework for modeling platelets. We then

used three different interpolants within that framework: RBF interpolants restricted to the

circle/sphere, Fourier interpolants (Fourier series in 2D, spherical harmonics in 3D), and

piecewise quadratic interpolants. We compared these three interpolation strategies on two

types of target shapes generated from perturbations of ideal shapes: an infinitely-smooth

target shape generated from a sharp perturbation of an ellipse (ellipsoid in 3D), and a rough

target shape generated from a small perturbation of a cirlce (sphere in 3D). Specifically, we

compared these interpolants in terms of accuracy, convergence, and computational cost. In

preparation for Chapter 3, we also computed tension forces on these shapes that were similar

to those used within the IB method. We concluded that interpolation with RBFs offered the

right balance between robustness, accuracy, and computational cost, by having costs similar

to those of Fourier methods and greater accuracy and convergence when interpolating rough

target functions (with identical accuracy on smooth target functions).

Having selected the RBF geometric model, we went on to augment the IB method with

RBFs for the modeling of platelets in the context of hemodynamic flows in Chapter 3.

124

We compared the convergence and accuracy of this new RBF-IB method to that of the

traditional IB method on a standard test problem (using an RK2 time-stepping scheme),

and concluded that the RBF-IB method had greater accuracy and similar convergence rates

to the traditional IB method. We also tested the area loss in both methods and determined

that the RBF-IB method had lower area loss on coarse grids; in addition, we tested the

time-step restrictions on both methods, and determined that the RBF-IB method allowed

larger time-steps on the same grid sizes than the traditional IB method. We estimated the

change in energy over a time-step for the RBF-IB method and determined that it was stable

and even dissipative for small Nd. Next, we compared the costs of the RBF-IB method for

different numbers of data sites against the traditional IB method in the context of simulating

platelet motion in channel flow; this test uncovered an unforeseen advantage of the RBF

representation, namely, faster convergence from the fluid solver due to smoother forces being

spread into the fluid. This allowed the RBF-IB method to be much more efficient than the

traditional IB method even on grid resolutions where the fluid solver had greater costs than

platelet operations. Finally, we presented the results of a simple 2D platelet aggregation

simulation, concluding that the RBF-IB method was indeed well suited to the simulation

of platelets in hemodynamic flows.

In Chapter 4, we turned our attention to developing numerical methods to enable sim-

ulations of platelet chemistry. We extended Ordinary Differential Equation (ODE) models

of platelet surface chemistry to account for platelet geometry, developing two PDE models

for describing the evolution of chemical density on platelet surfaces. We developed the first

RBF-FD method for simulating reaction-diffusion equations on arbitrary geometries, and

applied this method to solving the new PDE models on platelets in 2D domains. These

PDEs were coupled to diffusion equations that described how chemicals diffused in the

stationary fluid around stationary platelets, a special case of the situation encountered

in full platelet simulations with fluid flow and moving platelets. The state of the art in

solving PDEs on domains containing platelets, the AFM, had a significant limitation: it

could not handle the situation where two platelets were closer than two Eulerian grid cells

apart. However, the IB method that simulates the mechanics of platelets allows platelets

to be within the same grid cell. To overcome the limitation of the AFM and prepare

it for use in conjunction with the IB method, we modified the quadratic interpolation

scheme used within the AFM with symmetric Hermite interpolation, thereby “tightening”

the interpolation stencils around each platelet and allowing platelets to be in contact. The

original AFM used Moving Least Squares (MLS) to handle the coupling between surface

125

chemistry and fluid chemistry, imposing another restriction on how close platelets could be

(due to the wide stencils required by MLS). We removed this restriction using a combination

of bilinear interpolation and parametric RBF-based least-squares, thereby also improving

the computational efficiency of the numerical method. We demonstrated that our overall

numerical method to handle this coupled problem exhibited second-order convergence in

space and time.

The numerical method from Chapter 4 contains three components: RBF-FD on surfaces,

symmetric Hermite interpolation for the AFM, and a combination of bilinear interpolation

and parametric RBF-based least squares for the coupling terms. Of these three components,

the second and third are easily extended to platelets in 3D domains: symmetric Hermite

interpolation, like standard RBF interpolation, is guaranteed to be well-posed in arbitrary

dimensions; also, bilinear interpolation can be trivially extended to trilinear interpolation,

and the parametric RBF least-squares model can be trivially extended as well. The untested

component for platelets with 2D surfaces (embedded in 3D domains) was the new RBF-FD

method. An attempt to extend the RBF-FD method from Chapter 4 to arbitrary 2D

surfaces resulted in approximations to elliptic operators that contained eigenvalues with

large, positive real parts. A different approach to RBF-FD was required to handle platelet

surface chemistry problems for platelets in three dimensions (and, in general, the problem

of solving PDEs on 2D surfaces). This motivated the work in Chapter 5.

In Chapter 5, we developed a new RBF-FD method for reaction-diffusion equations on

2D surfaces. This method is more stable than the method developed in Chapter 4 and

is more robust to irregular node layouts. The method has two key features. The first is

that the surface Laplacian is approximated on a per-stencil basis (instead of approximating

surface gradients on each stencil and combining them at the global level into a surface

Laplacian, as in Chapter 4). The second feature was a per-stencil optimization of the RBF

shape parameter so that the condition number of the interpolation matrix matched a global

target condition number. This had the effect of producing stable approximations to the

surface Laplacian on many surfaces, given reasonably uniformly distributed nodes on those

surfaces. We showed the convergence of our method on (forced) diffusion equations on the

sphere and torus for different stencil sizes, generated second-, fourth-, and fifth-order finite

difference methods, and achieving the same accuracy as popular narrow-band methods using

fewer points. We demonstrated two possible approaches to selecting shape parameters as

the total number of nodes on the surface increased, and established the advantages of using

small shape parameters (large target condition numbers) in the RBF-FD method. Finally,

126

we applied this RBF-FD method to the generation of Turing patterns on two types of

surfaces: implicit/parametric surfaces and more general surfaces represented only by point

clouds.

This work shows that the ability of RBF interpolation to interpolate function values

(and derivatives) at scattered node locations can indeed be leveraged to develop numerical

methods for biological problems. Much of the content developed in Chapters 2-5 can be

applied not only to platelet aggregation, but to many biological problems involving coupled

PDEs on irregular domains and surfaces. Further, much of this work offers potential

for future research. For example, the work in Chapter 3 could be extended by using

meshfree Petrov-Galerkin formulations within the IB method; the work in Chapter 5 could

be extended to handle advection on arbitrary surfaces. In the section that follows, we

will describe some possible lines of research, continuing the theme of developing numerical

methods based on RBF interpolation for the simulation of problems in biology.

6.2 Future Work

In this final section, we will discuss possible extensions of the work conducted in this

dissertation, motivated both by the platelet aggregation problem and other biology prob-

lems. We will discuss spectrally-accurate projection methods based on Divergence-free

RBFs, an extension of the geometric model presented in Chapter 2 to bounded surfaces and

for use in the Regularized Stokeslet method (a “cousin” of the IB method), an extension

of RBF-FD methods to the solution of variable-coefficient diffusion problems on surfaces

and the extension of RBF-FD methods on surfaces to include boundary conditions via the

incorporation of symmetric Hermite interpolation.

6.2.1 A Spectrally-accurate Projection Method

Divergence-free RBFs are matrix-valued RBF kernels that were introduced by Narcowich

and Ward in the context of the RBF Hermite interpolation problem [62]. Error estimates

for interpolation and vector decomposition with divergence-free RBFs were presented by

Lowitzsch [59] for functions within the associated reproducing kernel Hilbert spaced of

the divergence-free RBF (also known as the native space of the RBF). This work was

extended by Fuselier, who provided Sobolev error estimates for target functions that were

not as smooth as those in the native space of the divergence-free RBF [34]. Fuselier et

al. then provided error estimates for divergence-free RBF interpolants on the sphere [32].

Fuselier and Wright provided estimates for vector field decomposition on the sphere with

divergence-free RBFs [33].

127

One possible line of research is to apply divergence-free RBFs to the Stokes and Navier-

Stokes equations, with the goal of projecting intermediate velocity fields onto the space of

divergence-free velocity fields at a discrete set of points on some irregular domain. If the

domain is fixed, the divergence-free RBF projection matrix can be precomputed just like any

other RBF-PS differentiation matrix, and reused over the course of the simulation. The

strength of this approach lies in its ability to project vector fields on irregular domains

through scattered node placement strategies. This approach would also do away with

the need to prescribe pressure boundary conditions for the Poisson problem that arises in

conjunction with finite-difference-based projection methods in the Navier-Stokes equations;

indeed, with this approach, one only needs boundary conditions on the velocity field. This

is an ongoing project with Professors Grady Wright and Edward Fuselier. One possible

extension of this project (if it is successfully completed) is to the projection of the Navier-

Stokes equations on surfaces using surface-based divergence-free RBFs.

6.2.2 RBFs in the Regularized Stokeslet Method

The Regularized Stokeslet method is a fluid-structure interaction method for the simu-

lation of elastic objects immersed in fluids in a Stokes flow regime. It was developed (and

extended) by Ricardo Cortez [11]. The Stokeslet method has since been used in various

biological applications.

An ongoing project with Professor Sarah Olson involves augmenting the Regularized

Stokeslet method with the RBF geometric model developed in Chapter 2 (and used in

the IB method in Chapter 3). Since the Regularized Stokeslet method directly solves for

velocities at the Lagrangian points (unlike in the IB method) at a significant computational

cost that depends on the number of points, the RBF representation would allow one to

get spectrally-accurate elastic forces and lower computational cost without even needing

the use of sample sites (unlike in the RBF-IB method), though sample sites could be used

if necessary. Beyond this straightforward extension of the Regularized Stokeslet method,

we also wish to extend the RBF geometric model to open (bounded) surfaces embedded

in 2D domains, both for use in the Regularized Stokeslet and the IB method. Finally, we

seek to incorporate recent results from Fuselier and Wright on superconvergent derivative

computations with RBFs [35] into our RBF geometric model for use in the Regularized

Stokeslet method (and consequently the IB method).

An important feature of the Regularized Stokeslet method is that it uses smoothing

functions to smooth forces and generate regularized Stokeslets. One interesting observation

is that this smoothing function can be regarded as an RBF. One direction for future research

128

would be to explore if one can simplify the computations in the Regularized Stokeslet

method by using the same RBF to express both the Lagrangian structure and the smoothing

function, possibly reducing some of the computational cost of this method.

6.2.3 RBF-FD for Variable-coefficient Diffusion
on Surfaces

For the next two future directions, let us consider a simple and illustrative model

problem. Consider what would happen if one of the platelets from Figure 4.1 were resting

on (or within one grid cell width of) the bottom of the domain in that figure. This is

certainly possible (and indeed likely) in a platelet aggregation simulation (see Figure 3.4).

In this scenario, binding sites on the part of the platelet resting against the wall would not

be free to diffuse outward on the platelet surface– they would be trapped between the bulk

of the platelet and the wall. This setting can be numerically modeled in two different ways:

the first would be to impose no-flux boundary conditions on an IB point or sample site close

to the wall but not under the platelet; this would model the constraints on binding sites

by modeling the effect that constraint would have on the chemical density on the platelet

surface. The other approach (which would be useful in other scenarios as well) would be

to model the coefficient of diffusion associated with those trapped binding sites to zero and

“turning off” the reactions at those sites, thus not allowing any chemicals to bind or unbind

from there.

The second approach would require an interesting extension of RBF-FD on surfaces

to the case of variable-coefficient diffusion. Since we know the approach from Chapter 5

is superior to the one from Chapter 4 in terms of stability, we will discuss the RBF-FD

method in that context, though the approach from Chapter 4 would also work in principle.

Consider a simple variable-coefficient surface diffusion equation for a scalar variable C:

∂C

∂t
= ∇M · (DM∇MC), (6.1)

where DM is the spatially-varying function on the surface representing the coefficients of

surface diffusion. For some RBF-FD stencil P , we may numerically compute this with the

RBF-FD approach as

∇M · (DM∇MC)|P ≈ (∇M · Iφ (DM∇MIφC))|P . (6.2)

Put simply, we could use the approach from Chapter 5 to compute the Laplacian, but

multiply the function DM in before the second interpolation and differentiation; again, as in

Chapter 5, this would be used in a Method of Lines. As a preliminary test of this approach,

129

we placed a circle of radius r = 0.0995 and an ellipse with radii a = 0.15 and b = 0.1 in

a [0, 1] × [0, 1] domain like the one seen in Figure 4.1. We initialized both surfaces with a

chemical concentration of C(λ) = cos(λ), 0 ≤ λ ≤ 2π. We represented each object with

Nd = 50 data sites and Ns = 400 sample sites and initialized the diffusion coefficients to

DM(λ) = 0.01|(cos(λ)|, 0 ≤ λ ≤ 2π, a choice that gives positive coefficients which dip to

zero at sample site indices 100 and 300. We use Model 1 from Chapter 4, adding linear

reaction terms to the diffusion equation in Equation (6.1). We use kon = 0.3 and koff = 0.6

for both platelets. We run the simulation from t = 0 to t = 3 and plot the results for both

D(λ) = 0.01 and the variable-coefficient diffusion case in Figure 6.1.

Figure 6.1: Constant and variable-coefficient diffusion on surfaces. The figure on the top
left shows the constant diffusion coefficient as a function of sample site index, while the
figure on the top right shows the concentrations at time t = 3 when using Model 1 and the
parameters in the text. The figure on the bottom left shows the spatially variable diffusion
coefficents as a function of sample site index, while the figure on the bottom right shows
the concentrations at time t = 3.

130

Clearly, using a spatially varying diffusion coefficient results in a very different profile.

For this test, we used the RBF-FD method from Chapter 5 and solve the reaction-diffusion

equations with an SBDF2 scheme at the sample sites. We set the target condition number

to κT = 1010 and the stencil size to n = 5. The stability of the RBF-FD method on this test

problem is reassuring, especially since D(λ) is not an analytic (or even smooth) function.

Future work would include testing the stability and convergence of the RBF-FD scheme

for different stencil sizes and point sets on different classes of functions D(λ) with varying

smoothness, and an extension of the problem to 2D surfaces like the ones studied in Chapter

5.

6.2.4 Boundary Conditions for RBF-FD on Surfaces

Consider the same problem as the one presented in Section 6.2.3, where a platelet is

placed on (or very near) the bottom wall of a domain. We proposed a modeling strategy

based on variable-coefficient diffusion to capture the physics of the problem, but a more

natural approach would be to impose boundary conditions at sample sites that are not quite

between the platelet and the wall, but close to the bottom of the platelet. This is illustrated

in Figure 6.2. Essentially, if x is the direction along one of the arrows in the figure, we will

require x · ∇MC = 0.

This is an open research question, but one possible approach to tackling this problem

would be to use the symmetric Hermite interpolation problem presented in Chapter 1 and

used in Chapter 4, albeit on the surface of the platelet. Since the symmetric Hermite

interpolation problem has been tackled on the sphere (for a review, see [15]), this project will

involve generalizing the Hermite interpolation problem to arbitrary surfaces. The Hermite

Figure 6.2: Illustration of the imposition of boundary conditions on a platelet. The arrows
indicate the directions along which the chemical flux must not diffuse.

131

interpolation approach could also be applied to the imposition of boundary conditions on

open 1D curves or 2D sheets. In that scenario, however, the domain is bounded. If boundary

conditions are required on the edges of the domain, we will need to adapt the fictitious node

strategy for Hermite interpolation developed by Lohmeier (under the guidance of Grady

Wright) [58] to open surfaces.

REFERENCES

[1] Uri M. Ascher, Steven J. Ruuth, and Brian T. R. Wetton, Implicit-explicit methods for
time-dependent pdes, SIAM J. Numer. Anal 32 (1997), 797–823.

[2] John R. Baumgardner and Paul O. Frederickson, Icosahedral discretization of the Two-
Sphere, SIAM Journal on Numerical Analysis 22 (1985), no. 6, 1107–1115.

[3] V. Bayona, M. Moscoso, M. Carretero, and M. Kindelan, Rbf-fd formulas and conver-
gence properties, Journal of Computational Physics 229 (2010), no. 22, 8281–8295.

[4] R. Beatson and M. Langton, Integral interpolation, Algorithms for Approximation
(2007), 199–218.

[5] R. K. Beatson and H. Q. Bui, Mollification formulas and implicit smoothing, Advances
in Computational Mathematics 27 (2007), 125–149 (English).

[6] D. Calhoun and C. Helzel, A finite volume method for solving parabolic equations on
logically cartesian curved surface meshes, SIAM Journal on Scientific Computing 31
(2010), no. 6, 4066–4099.

[7] Donna Calhoun and Randall J. LeVeque, A cartesian grid finite-volume method for
the advection-diffusion equation in irregular geometries, J. Comput. Phys. 157 (2000),
no. 1, 143–180.

[8] T. Cecil, J. Qian, and S. Osher, Numerical methods for high dimensional Hamilton-
Jacobi equations using radial basis functions, J. Comput. Phys. 196 (2004), 327–347.

[9] G. Chandhini and Y. Sanyasiraju, Local RBF-FD solutions for steady convection–
diffusion problems, International Journal for Numerical Methods in Engineering 72
(2007), no. 3, 352–378.

[10] Paolo Cignoni, Massimiliano Corsini, and Guido Ranzuglia, Meshlab: an open-source
3d mesh processing system, ERCIM News (2008), no. 73, 45–46.

[11] R. Cortez, The method of regularized stokeslets, SIAM Journal on Scientific Computing
23 (2001), no. 4, 1204–1225.

[12] O. Davydov and D.T. Oanh, Adaptive meshless centres and rbf stencils for poisson
equation, Journal of Computational Physics 230 (2011), no. 2, 287–304.

[13] Dharshi Devendran and Charles S. Peskin, An immersed boundary energy-based method
for incompressible viscoelasticity, Journal of Computational Physics 231 (2012), no. 14,
4613–4642.

[14] E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, Combined immersed-
boundary finite-difference methods for three-dimensional complex flow simulations,
Journal of Computational Physics 161 (2000), 35–60.

133

[15] G. E. Fasshauer, Meshfree approximation methods with MATLAB, Interdisciplinary
Mathematical Sciences - Vol. 6, World Scientific Publishers, Singapore, 2007.

[16] G. E. Fasshauer and L. L. Schumaker, Scattered data fitting on the sphere, Mathemat-
ical Methods for Curves and Surface, Vol.2 of the Proceedings of the 4th Int. Conf. on
Mathematical Methods for Curves and Surfaces, Lillehammer, Norway (M. Daehlen,
T. Lyche, and L. L. Schumaker, eds.), Vanderbilt University Press, Nashville Tennessee,
1998.

[17] L. J. Fauci and A. L. Fogelson, Truncated newton methods and the modeling of complex
immersed elastic structures, Communications on Pure and Applied Mathematics 66
(1993), 787–818.

[18] N Flyer, E Lehto, S Blaise, G.B. Wright, and A St-Cyr, A guide to RBF-generated
finite differences for nonlinear transport: shallow water simulations on a sphere, J.
Comput. Phys. 231 (2012), 4078–4095.

[19] N. Flyer and G. B. Wright, Transport schemes on a sphere using radial basis functions,
Journal of Computational Physics 226 (2007), 1059–1084.

[20] N. Flyer and G. B. Wright, A radial basis function method for the shallow water
equations on a sphere, Proc. Roy. Soc. A 465 (2009), 1949–1976.

[21] A. L. Fogelson, A mathematical model and numerical method for studying platelet
adhesion and aggregation during blood clotting, Journal of Computational Physics 1
(1984), 111–134.

[22] A. L. Fogelson and R. D. Guy, Immersed-boundary-type models of intravascular platelet
aggregation, Comput. Meth. Appld. Mech. Eng. 197 (2008), 2087–2104.

[23] Aaron Fogelson, Andrew Kuharsky, and Haoyu Yu, Computational modeling of blood
clotting: Coagulation and three-dimensional platelet aggregation, Polymer and Cell
Dynamics: Multicsale Modeling and Numerical Simulations (W. Alt, M. Chaplain,
M. Griebel, and J. Lenz, eds.), Birkhaeuser-Verlag, Basel, 2003, pp. 145–154.

[24] Aaron L. Fogelson and Robert D. Guy, Immersed-boundary-type models of intravascular
platelet aggregation, Computer Methods in Applied Mechanics and Engineering 197
(2008), 2087 – 2104.

[25] B. Fornberg, A practical guide to pseudospectral methods, Cambridge University Press,
Cambridge, 1996.

[26] B. Fornberg and E. Lehto, Stabilization of RBF-generated finite difference methods for
convective PDEs, J. Comput. Phys. 230 (2011), 2270–2285.

[27] B. Fornberg and C. Piret, A stable algorithm for flat radial basis functions on a sphere,
SIAM Journal on Scientific Computing 30 (2007), 60–80.

[28] B. Fornberg and G. Wright, Stable computation of multiquadric interpolants for all
values of the shape parameter, Comput. Math. Appl. 48 (2004), 853–867.

[29] B. Fornberg and J. Zuev, The Runge phenomenon and spatially variable shape param-
eters in RBF interpolation, Comput. Math. Appl. 54 (2007), 379–398.

134

[30] Bengt Fornberg, Calculation of weights in finite difference formulas, SIAM Rev 40
(1998), 685–691.

[31] E. Fuselier and G.B. Wright, Scattered data interpolation on embedded submanifolds
with restricted positive definite kernels: Sobolev error estimates, SIAM Journal on
Numerical Analysis 50 (2012), no. 3, 1753–1776.

[32] E J Fuselier, F J Narcowich, J D Ward, and G B Wright, Error and Stability Estimates
for Divergence-Free {RBF} Interpolants on the Sphere, Math. Comp. 78 (2009), 2157–
2186.

[33] E. J. Fuselier and G. B. Wright, Stability and error estimates for vector field interpola-
tion and decomposition on the sphere with {RBF}s, {SIAM} J. Num. Anal. 47 (2009),
3213–3239.

[34] Edward J. Fuselier, Sobolev-type approximation rates for divergence-free and curl-free
rbf interpolants., Math. Comput. 77 (2008), no. 263, 1407–1423.

[35] Edward J. Fuselier and Grady B. Wright, Order-preserving approximations of deriva-
tives with periodic radial basis functions, Submitted.

[36] Edward J Fuselier and Grady B Wright, A high-order kernel method for diffusion and
reaction-diffusion equations on surfaces, Journal of Scientific Computing 56 (2013),
no. 3, 535–565.

[37] Alan George and Joseph W. Liu, Computer solution of large sparse positive definite,
Prentice Hall Professional Technical Reference, 1981.

[38] Q. T. Lê Gia, Approximation of parabolic pdes on spheres using spherical basis func-
tions, Adv. Comput. Math. 22 (2005), 377–397.

[39] D. Goldstein, R. Handler, and L. Sirovich, Modeling a no-slip flow boundary with an
external force field, Journal of Computational Physics 105 (1993), 354–366.

[40] G. H. Golub and C. F. van Loan, Matrix computations, third ed., Johns Hopkins
University Press, Baltimore, 1996.

[41] A. Gray, Modern differential geometry of curves and surfaces with mathematica, CRC
Press, Boca Raton, FL, 1997.

[42] B.E. Griffith, Simulating the fluid dynamics of natural and prosthetic heart valves using
the immersed boundary method., Int J Appl Mech. 1 (2009), 137–177.

[43] B.E. Griffith and X. Luo., Immersed boundary method with finite element elasticity.,
Submitted.

[44] R. D. Guy and A. L. Fogelson, Stability of approximate projection methods on cell-
centered grids, Journal of Computational Physics 203 (2005), 517–538.

[45] D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices
Amer. Math. Soc. 51 (2004), 1186–1194.

[46] S. Hubbert and S. Müller, Interpolation with circular basis functions, Numerical
Algorithms 42 (2006), 75–90.

135

[47] Simon Hubbert and Tanya M. Morton, lp-error estimates for radial basis function
interpolation on the sphere, J. Approx. Theory 129 (2004), 58–77.

[48] A. Iske et al., Reconstruction of functions from generalized hermite-birkhoff data, Series
in Approximations and Decompositions 6 (1995), 257–264.

[49] S.P. Jackson, W.S. Nesbitt, and S. Kulkarni, Signaling events underlying thrombus
formation, J Thromb Haemost 1 (2003), 1602–1612.

[50] Kurt Jetter, Joachim Stöckler, and Joseph D. Ward, Error estimates for scattered data
interpolation on spheres, Math. Comput. 68 (1999), no. 226, 733–747.

[51] Hans Svend Johansen and Phillip Colella, A cartesian grid embedded boundary method
for poisson’s equation on irregular domains, Journal of Computational Physics 147
(1998), 60–85.

[52] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe, Poisson surface reconstruc-
tion, Proceedings of the Fourth Eurographics Symposium on Geometry Processing
(Aire-la-Ville, Switzerland, Switzerland), SGP ’06, Eurographics Association, 2006,
pp. 61–70.

[53] Jungwoo Kim, Dongjoo Kim, and Haecheon Choi, An immersed-boundary finite-volume
method for simulations of flow in complex geometries, Journal of Computational
Physics 171 (2001), 132–150.

[54] A. L. Kuharsky and A. L. Fogelson, Surface-mediated control of blood coagulation: The
role of binding site densities and platelet deposition, Biophysical Journal 80 (2001),
1050–1074.

[55] E. Larsson and B. Fornberg, Theoretical and computational aspects of multivariate
interpolation with increasingly flat radial basis functions, Comput. Math. Appl. 49
(2005), 103–130.

[56] E. Larsson, E. Lehto, A. Heryudono, and B. Fornberg, Stable computation of differ-
entiation matrices and scattered node stencils based on gaussian radial basis functions,
SIAM Journal on Scientific Computing 35 (2013), no. 4, A2096–A2119.

[57] R. J. LeVeque and Z. Li, The immersed interface method for elliptic equations with
discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994), 1001–
1025.

[58] Joseph Lohmeier, A fictitious point method for handling boundary conditions in the
rbf-fd method, Master’s thesis, Boise State University, 2011.

[59] Svenja Lowitzsch, Error estimates for matrix-valued radial basis function interpolation,
Journal of Approximation Theory 137 (2005), no. 2, 238 – 249.

[60] C. Macdonald and S. Ruuth, The implicit closest point method for the numerical solu-
tion of partial differential equations on surfaces, SIAM Journal on Scientific Computing
31 (2010), no. 6, 4330–4350.

[61] J. Mohd-Yusof, Combined immersed-boundary/B-spline methods for simulations of flow
in complex geometries, Annu. Res.Briefs, Cent. Turbul. Res. (1997), 317–328.

136

[62] F.J. Narcowich and J.D. Ward, Generalized hermite interpolation via matrix-valued
conditionally positive definite functions, Mathematics of Computation 63 (1994),
no. 208, 661–688.

[63] Francis J. Narcowich, Xingping Sun, Joseph D. Ward, and Holger Wendland, Direct
and inverse Sobolev error estimates for scattered data interpolation via spherical basis
functions, Found. Comput. Math. 7 (2007), no. 3, 369–390. MR MR2335250

[64] Elijah P. Newren, Aaron L. Fogelson, Robert D. Guy, and Robert M. Kirby, Un-
conditionally stable discretizations of the immersed boundary equations, Journal of
Computational Physics 222 (2007), 702–719.

[65] C. S. Peskin, Flow pattern around heart valves: a numerical method, Journal of
Computational Physics 10 (1972), 252–271.

[66] C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational
Physics 25 (1977), 220–252.

[67] Charles. S. Peskin, The immersed boundary method, Acta Numerica 11 (2002), 479–
517.

[68] C. Piret, The orthogonal gradients method: A radial basis functions method for solving
partial differential equations on arbitrary surfaces, Journal of Computational Physics
231 (2012), no. 20, 4662–4675.

[69] S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis
function interpolation, Adv. Comput. Math. 11 (1999), 193–210.

[70] Ali Safdari-Vaighani, Alfa Heryudono, and Elisabeth Larsson, A radial basis function
partition of unity collocation method for convection-diffusion equations, Tech. Report
2013-023, Department of Information Technology, Uppsala University, November 2013.

[71] Brian Savage, Enrique Saldivar, and Zaverio M. Ruggeri, Initiation of platelet adhesion
by arrest onto fibrinogen or translocation on von Willebrand factor, Cell 84 (1996),
289–297.

[72] Varun Shankar, Grady B. Wright, Aaron L. Fogelson, and Robert M. Kirby, A study
of different modeling choices for simulating platelets within the immersed boundary
method, Appl. Numer. Math. 63 (2013), 58–77.

[73] , A radial basis function (rbf) finite difference method for the simulation of
reactiondiffusion equations on stationary platelets within the augmented forcing method,
International Journal for Numerical Methods in Fluids 75 (2014), no. 1, 1–22.

[74] Varun Shankar, Grady B. Wright, Robert M. Kirby, and Aaron L. Fogelson, Augment-
ing the immersed boundary method with radial basis functions (rbfs) for the modeling
of platelets in hemodynamic flows, Submitted.

[75] , A radial basis function (rbf)-finite difference (fd) method for diffusion and
reaction-diffusion equations on surfaces, Submitted.

[76] L. Shen, H. Farid, and M. A. McPeek, Modeling three-dimensional morphological
structures using spherical harmonics, Evolution 4 (2009), no. 63, 1003–1016.

137

[77] C. Shu, H. Ding, and KS Yeo, Local radial basis function-based differential quadrature
method and its application to solve two-dimensional incompressible navier–stokes equa-
tions, Computer Methods in Applied Mechanics and Engineering 192 (2003), no. 7,
941–954.

[78] D. Stevens, H. Power, M. Lees, and H. Morvan, The use of PDE centers in the local
RBF Hermitean method for 3D convective-diffusion problems, Journal of Computa-
tional Physics 228 (2009), 4606–4624.

[79] Kazuyasu Sugiyama, Satoshi II, Shintaro Takeuchi, Shu Takagi, and Yoichiro Mat-
sumoto, A full eulerian finite difference approach for solving fluid-structure coupling
problems, Journal of Computational Physics 230 (2010), no. 3, 38.

[80] X. Sun, Scattered hermite interpolation using radial basis functions, Linear algebra and
its applications 207 (1994), 135–146.

[81] Grit Thrmer and Charles A. Wthrich, Computing vertex normals from polygonal facets,
journal of graphics, gpu, and game tools 3 (1998), no. 1, 43–46.

[82] AI Tolstykh and DA Shirobokov, On using radial basis functions in a finite difference
mode with applications to elasticity problems, Computational Mechanics 33 (2003),
no. 1, 68–79.

[83] Lloyd N. Trefethen, Spectral methods in MATLAB, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[84] V. T. Turitto and H. L. Goldsmith, Rheology, transport and thrombosis in the circu-
lation, Textbook of Vascular Medicine (J. Loscalzo, M. Creager, and V. Dzau, eds.),
Little, Brown & Co., New York, 2nd ed., 1996, pp. 141–184.

[85] H. S. Udaykumar, R. Mittal, and Wei Shyy, Computation of solid-liquid phase fronts in
the sharp interface limit on fixed grids, Journal of Computational Physics 153 (1999),
535–574.

[86] Marcos Vanella and Elias Balaras, Short note: A moving-least-squares reconstruction
for embedded-boundary formulations, J. Comput. Phys. 228 (2009), 6617–6628.

[87] C. Varea, J. Aragon, and R. Barrio, Turing patterns on a sphere, Phys. Rev. E 60
(1999), 4588–4592.

[88] Holger Wendland, Scattered data approximation, Cambridge Monographs on Applied
and Computational Mathematics, vol. 17, Cambridge University Press, Cambridge,
2005. MR MR2131724 (2006i:41002)

[89] R. S. Womersley and I. H. Sloan, How good can polynomial interpolation on the sphere
be?, Adv. Comput. Math. 23 (2001), 195–226.

[90] R. S. Womersley and I. H. Sloan, Interpolation and cubature on the sphere, Website,
2007, http://web.maths.unsw.edu.au/ rsw/Sphere/.

[91] Grady B. Wright and Bengt Fornberg, Scattered node compact finite difference-type
formulas generated from radial basis functions, Journal of Computational Physics 212
(2006), no. 1, 99 – 123.

138

[92] Jianming Yang, An embedded-boundary formulation for large-eddy simulation of tur-
bulent flows interacting with moving boundaries, Ph.D. thesis, University of Maryland,
College Park, College Park, Maryland, 2005.

[93] Lingxing Yao and Aaron L. Fogelson, Simulations of chemical transport and reaction
in a suspension of cells i: an augmented forcing point method for the stationary case,
International Journal for Numerical Methods in Fluids 69 (2012), no. 11, 1736–1752.

[94] T. Ye, R. Mittal, H. S. Udaykumar, and W. Shyy, An accurate cartesian grid method
for viscous incompressible flows with complex immersed boundaries, Journal of Com-
putational Physics 156 (1999), 209–240.

[95] Haoyu Yu, Three dimensional computational modeling and simulation of platelet ag-
gregation on parallel computers, Ph.D. thesis, University of Utah, 2000.

[96] Lucy Zhang, Axel Gerstenberger, Xiaodong Wang, and Wing Kam Liu, Immersed
finite element method, Computer Methods in Applied Mechanics and Engineering 193
(2004), no. 21-22, 2051 – 2067, Flow Simulation and Modeling.

