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Abstract – Reaction-diffusion equations represent many important and critical applications in engineering and science. 
Numerical techniques play an important role for solving such equations accurately and efficiently. This paper presents a brief 
review of meshless methods for solving general diffusion equations, including reaction-diffusion systems.    
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1. Introduction 

Modeling and analysis of thermodynamics and reaction-diffusion problems are frequently indispensable in many 
design and technological applications such as in heated cylinder and plate (Wang and Mai, 2005; Ootao and 
Tanigawa, 2005), pipe of vapor transport (Wu et al., 2007), quenching molten materials by rapid contact with a 
cold surface or material joining process (Bag et al., 2009). Modeling of transient heat conduction with non-
homogeneous and time dependent heat sources is of particular interest as the domain heat sources can produce a 
temperature rise which is not always uniform inside a material, while precise knowledge of temperature 
distribution and variation with respect to time is crucial in the analysis. Numerical analysis is preferred for such 
thermodynamics problems in particular due to complexity of geometries involved and the non-homogeneity of 
heat sources as well as material properties. In addition to well-known numerical methods such as finite 
difference (FD), finite element (FE), finite volume (FV) and boundary element (BE) methods which are 
commonly employed, in recent years the so-called meshless or meshfree methods have been introduced as 
versatile tool for numerical analysis of thermal problems. Different with the aforementioned mesh-based 
methods, meshless methods rely only on nodes instead of mesh.  As a result, rigid connectivity of mesh in a 
problem domain is simply replaced by distribution of nodes in which a group of nodes can be simply added or 
removed. It is hence obvious that meshless methods can offer several potential advantages and flexibilities than 
the mesh-based methods.  

2. Meshless Methods for Diffusion Problems 

Meshless methods may be traced back to the smoothed particle hydrodynamics (SPH) method by Lucy (1977) 
and Gingold and Monaghan (1977), and diffused element method (DEM) by Nayroles et al. (1992). Since then, a 
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number of meshless methods have been developed such as element-free Galerkin (EFG) method (Belytschko et 
al., 1994), reproducing kernel particle (RKP) method (Liu et al., 1995), meshless local Petrov-Galerkin (MLPG) 
method (Atluri and Zhu, 1998; Atluri and Shen, 2002) and point interpolation methods-PIM (Liu et al., 2004).  
 Following the introduction of meshless methods, advancement and implementations of meshless methods in 
various applications are growing tremendously in literature. For instances, the element-free method has been 
employed by Li et al. (2003) for free surface seepage analysis. Local RBF collocation methods have been 
developed by Shu et al. (2003), Tolstykh and Shirobokov (2003) and further discussed by Shan et al. (2009). 
RBF collocation method, pioneered by Kansa (1990), has been investigated for bending of FGM plates using a 
sinusoidal plate formulation by Neves et al. (2011). Moreover, Roque et al. (2011) employed the RBF-FD 
method for analyzing composite plates. In the field of heat transfer, Wang et al. (2006) presented a meshless 
model for transient heat conduction in FGM. Gao (2006) employed a meshless BEM for isotropic heat 
conduction problems with heat generation and spatially varying conductivity. MLPG method for 2D steady-state 
heat conduction problems of irregular domains was investigated by Wu et al. (2007). Meshless EFG method for 
nonlinear heat conduction problems was presented by Singh et al. (2007). Singh and Tanaka (2006), Sladek et al. 
(2008) and Li et al. (2013) presented heat transfer analyses in 3D applications. Li et al. (2011) employed the 
MLPG method for transient heat conduction analysis with modified precise time step integration method. In a 
separate study, Soleimani et al. (2011) employed the RBF-DQ method for 2D transient heat conduction in 
complex geometries.  
 Development of new classes of meshless method, including the search for more favourable basis functions 
for meshless method, has been also an active research area in recent years. Development of the meshless 
Hermite–Cloud method for structural mechanics applications has been presented by Lam et al. (2006). A 
meshfree differential reproducing kernel (DRK)-based collocation method has been introduced by Wu et al. 
(2008) for coupled analysis of functionally graded magneto-electro-elastic shells and plates. Le et al. (2010) has 
proposed a collocation method based on one-dimensional RBF interpolation scheme for solving PDEs. 
Khosravifard et al. (2011) presented improved meshless RPIM for the analysis of nonlinear transient heat 
conduction in FGM. Chen and Liew (2011) presented local Kriging interpolation for transient heat conduction 
problems. Numerical solution of transient heat conduction problems using improved MLPG was presented by 
Dai et al. (2013). Ren et al. (2012) introduced the complex variable interpolating MLS method. Zhang et al. 
(2013) presented an improved EFG method with almost interpolation property for isotropic heat conduction 
problems. 

3. Meshless Methods for Reaction-Diffusion Problems 

Reaction-diffusion equations represent a wide range of important phenomena in many branches of science and 
engineering (Quintela et al., 2017). Turing (1952) showed that pattern formation is related to the occurrence of 
chemical instability called as diffusion-driven instability and the emergence process could be described by a 
simple system of coupled reaction-diffusion equations. Surprisingly, the equations are able to describe many 
dynamical processes in nature. They also represent a wide range of behaviors by interactions and mechanisms in 
chemical and biological systems. The extension covers chemical reactions and combustion (Lucchesi et al., 
2019), pollution and concentration spreads (Ivorra et al., 2017), bi-stable systems and material growth process 
(Liu et al., 2015; Sgura et al., 2012), heat and mass transfer, population dynamics (Wen and Fu, 2009; 
Rattanakul et al., 2019), predator-prey problems (Guin et al., 2012; Macías-Díaz and Vargas-Rodríguez, 2021), 
chemotaxis (Sarra, 2012; Ma et al., 2019), cell growth processes and other biological problems (Murray, 2003; 
Bellomo et al., 2007). The reaction-diffusion mechanisms are also a robust paradigm to represent many 
biological and physical phenomena over multiple spatial scales (Smith and Yates, 2021) and growing domains 
such as skin scales (Fofonjka and Milinkovitch, 2021). Other applications also cover multicomponent diffusion 
and phase transformation (Matychack et al., 1998), micro and nanotechnology (Grzybowski et al., 2005), 
microscale structures/devices/functional systems (Malchow et al., 2019) as well as synthesis of materials with 
periodic microstructure (Shevchenko et al., 2021).    
 Cross-diffusion and Turing systems are two important classes of reaction-diffusion systems. In cross-
diffusion systems, transport process is influenced by the gradient of concentration in which the concentration 
gradient of one chemical or biological species induces a flux of another species (Vanag and Epstein, 2009; Lou 
and Martínez, 2009; Madzvamuse et al., 2015). In the equations, positive cross-diffusion coefficient represents 
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the species movement in the direction of another species of lower concentration, and vice versa. In the absence 
of cross-diffusion, reaction-diffusion equations also represent many interesting systems such as Turing systems. 
Turing systems in fact belong to a wide class of reaction-diffusion systems. Turing systems can be regarded as 
models of complex pattern formation (Barrio, 2008; Shakeri and Dehghan, 2011). In phenomena of pattern 
formation, the presence of cross-diffusion in reaction-diffusion systems can induce greater effects on the 
emergence of patterns compared with the process of pattern formation by self-diffusion (Gui-Quan et al., 2008; 
Xie, 2012; Yang et al., 2013; Iqbal and Wu, 2019). Due to their significance and importance in describing so 
many important phenomena of process dynamics and behaviors, accurate solutions for the systems are of great 
interest and importance, in which computational mathematics and numerical simulations play an important role 
and indispensable (Ruiz-Baier and Tian, 2013; Sebestyén et al., 2016; Giunta et al., 2020).  
 Many numerical studies have been devoted in order to obtain their solutions stably and accurately. 
Unfortunately, obtaining their numerical solutions accurately is challenging for several reasons. Firstly, their 
solutions exhibit numerical oscillations/steep fronts and requiring stable approximation schemes. Secondly, 
pursuing for numerical stability can lead to severe restriction in time step size. Consequently, simulation will 
take longer time and costly. Thirdly, as a matter of fact, important chemistry and physics of the problems are 
lying within the featured steep fronts of solutions and they need to be captured accurately. The solutions have to 
be therefore tracked precisely in order to avoid loss of information due to the presence of numerical oscillations. 
Traditional numerical methods such as finite difference (FD), finite element (FE) and finite volume (FV) 
methods are often used to solve the reaction-diffusion systems. However, devising more efficient and robust 
numerical scheme is still of great interest and importance in numerical studies of the reaction-diffusion systems 
(Settanni and Sgura, 2016). For examples, a proper orthogonal decomposition (POD) method was employed to 
establish a POD-based reduced-order FD extrapolating model with few degrees of freedom for solving 2D 
shallow water equations with sediment concentration (Luo et al., 2015). Reduced order modelling with principal 
decomposition framework in time-windowed form was presented for analysis of nonlinear cross-diffusion 
systems in (Karasözen et al., 2021). An AFC-stabilized implicit FE method has been presented for partial 
differential equations on evolving-in-time surfaces (Sokolov et al., 2015). The proposed FE method can avoid 
nonphysical oscillations in the numerical solution of the problem. In other works, extended procedures (Boffi et 
al., 2013) have been developed to increase numerical simulation effectiveness allowing robust implementation of 
numerical method for challenging problems, even for multiscale problems (Efendiev et al., 2021). In (Rossinelli 
et al., 2008; Lo and Mao, 2019), accelerated stochastic and hybrid methods were presented for simulation of 
reaction-diffusion systems, while mathematical modeling of time fractional reaction–diffusion systems has been 
discussed in (Gafiychuk et al., 2008; Garrappa and Popolizio, 2021).    
 Evidently, complexities in the simulation problems have urged rising demands for reliable and efficient 
computational methods in order to obtain accurate solutions in a faster computational time. Recently, meshless 
methods have appeared as emerging numerical techniques besides the mentioned numerical methods. The 
attractiveness of the methods comes from their less dependence and even no dependence at all on grid or mesh. 
Bottlenecks due to the presence of grid or mesh can be eliminated seamlessly. The meshless methods have 
gained increasing popularity in recent years. The methods are shown to be robust and attractive solvers for many 
challenging problems in engineering and science, including reaction-diffusion problems (Cheng et al., 2014; 
Shivanian and Jafarabadi, 2020; Ahmad et al., 2017).   
 Advantage in using meshless methods is obvious that there is a greater flexibility in choosing basis function 
or shape function to be used for a numerical analysis. As pointed out in (Batra and Zhang, 2008; Divo et al., 
2014; Gerace et al., 2016), such a flexibility opens up a large variety of classes of meshless methods based upon 
different constructions of basis/shape functions, such as moving least square (MLS) approximation (Shirzadi et 
al., 2013a; Shirzadi et al., 2013b), polynomial basis functions (Abd-Elhameed and Youssri, 2018; Heydari et al., 
2021; Pandey and Gómez-Aguilar, 2021), radial basis functions (Mesmoudi et al., 2020; Mohebbi and Evans, 
2020; Watson et al., 2020; Chen et al., 2021) and B-spline basis functions (Arora et al., 2020), among others. It 
is also no doubt that selection of appropriate basis function or shape function will determine accuracy and 
efficiency of a meshless method.      
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4. Conclusions 

In the present paper, a brief review of meshless methods for solving general diffusion equations, including 
reaction-diffusion systems has been presented. It is highlighted that selection of appropriate basis function or 
shape function will determine accuracy and efficiency of a meshless method. Investigation of new classes of 
meshless method, including the search for more favourable basis functions, would have been an active research 
area in forthcoming meshless method developments and applications.      
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