33 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    BASEBAND RADIO MODEM DESIGN USING GRAPHICS PROCESSING UNITS

    Get PDF
    A modern radio or wireless communications transceiver is programmed via software and firmware to change its functionalities at the baseband. However, the actual implementation of the radio circuits relies on dedicated hardware, and the design and implementation of such devices are time consuming and challenging. Due to the need for real-time operation, dedicated hardware is preferred in order to meet stringent requirements on throughput and latency. With increasing need for higher throughput and shorter latency, while supporting increasing bandwidth across a fragmented spectrum, dedicated subsystems are developed in order to service individual frequency bands and specifications. Such a dedicated-hardware-intensive approach leads to high resource costs, including costs due to multiple instantiations of mixers, filters, and samplers. Such increases in hardware requirements in turn increases device size, power consumption, weight, and financial cost. If it can meet the required real-time constraints, a more flexible and reconfigurable design approach, such as a software-based solution, is often more desirable over a dedicated hardware solution. However, significant challenges must be overcome in order to meet constraints on throughput and latency while servicing different frequency bands and bandwidths. Graphics processing unit (GPU) technology provides a promising class of platforms for addressing these challenges. GPUs, which were originally designed for rendering images and video sequences, have been adapted as general purpose high-throughput computation engines for a wide variety of application areas beyond their original target domains. Linear algebra and signal processing acceleration are examples of such application areas. In this thesis, we apply GPUs as software-based, baseband radios and demonstrate novel, software-based implementations of key subsystems in modern wireless transceivers. In our work, we develop novel implementation techniques that allow communication system designers to use GPUs as accelerators for baseband processing functions, including real-time filtering and signal transformations. More specifically, we apply GPUs to accelerate several computationally-intensive, frontend radio subsystems, including filtering, signal mixing, sample rate conversion, and synchronization. These are critical subsystems that must operate in real-time to reliably receive waveforms. The contributions of this thesis can be broadly organized into 3 major areas: (1) channelization, (2) arbitrary resampling, and (3) synchronization. 1. Channelization: a wideband signal is shared between different users and channels, and a channelizer is used to separate the components of the shared signal in the different channels. A channelizer is often used as a pre-processing step in selecting a specific channel-of-interest. A typical channelization process involves signal conversion, resampling, and filtering to reject adjacent channels. We investigate GPU acceleration for a particularly efficient form of channelizer called a polyphase filterbank channelizer, and demonstrate a real-time implementation of our novel channelizer design. 2. Arbitrary resampling: following a channelization process, a signal is often resampled to at least twice the data rate in order to further condition the signal. Since different communication standards require different resampling ratios, it is desirable for a resampling subsystem to support a variety of different ratios. We investigate optimized, GPU-based methods for resampling using polyphase filter structures that are mapped efficiently into GPU hardware. We investigate these GPU implementation techniques in the context of interpolation (integer-factor increases in sampling rate), decimation (integer-factor decreases in sampling rate), and rational resampling. Finally, we demonstrate an efficient implementation of arbitrary resampling using GPUs. This implementation exploits specialized hardware units within the GPU to enable efficient and accurate resampling processes involving arbitrary changes in sample rate. 3. Synchronization: incoming signals in a wireless communications transceiver must be synchronized in order to recover the transmitted data properly from complex channel effects such as thermal noise, fading, and multipath propagation. We investigate timing recovery in GPUs to accelerate the most computationally intensive part of the synchronization process, and correctly align the incoming data symbols in the receiver. Furthermore, we implement fully-parallel timing error detection to accelerate maximum likelihood estimation

    All optical signal processing for ultrafast imaging systems

    Get PDF
    This thesis is constructed around the theme of all-optical ultrafast signal processing techniques to tackle the bandwidth limitation of electronics in the context of serialised time encoded imaging. Two sets of approaches are taken to develop these processing methods. The first approach is the all-optical emulation of pattern identification functions such as multiplication (AND gate) and subtraction (XNOR gates) for ultrafast imaging systems. The second approach focuses on all-optical pattern extraction methods such as edge detection using the Hilbert transform (HT). To accomplish the objectives, a combination of linear and nonlinear optical platforms such as the dispersive Fourier Transform (FT) in single-mode fibres and the four-wave mixing (FWM) process in highly nonlinear fibres (HNLFs) are exploited. First, a novel technique for correlation of 1-D information encoded onto the intensity spectrum of ultra-short pulses is presented. The information is mapped to the time-domain using dispersion and then mixed with a spectrally engineered broadband pump using FWM to create a narrow bandwidth idler, which is then filtered and electronically integrated. The concept is then expanded to perform processing of 2-D opaque intensity and transparent phase images by simulating a physical ultrafast temporal imaging system, the STEAM camera. Similar to the proposed correlator, the intensity system exploits FWM to perform multiplication. However, the phase system utilises the ability of the FWM process to subtract phase information and exhibits a higher extinction ratio compared to the intensity system. Unlike previous methods, the solutions in this thesis provide all-optical functionality at every stage of processing. The performance of both systems in the presence of noise is investigated, where the phase system has shown to be highly robust. The demonstrated frame rate of the experimental implementation, 20 MHZ, and the simulated systems, 100 MHz, is only limited by the accumulated dispersion required to perform the frequency-to-time mapping. Through studying all optical processing using FWM mixing it became apparent that the spectrally encoded images would be most effective if carried by a comb of coherent laser lines rather than a continuous spectrum ultrashort pulse. Hence, the thesis next studies signal processing using integrated comb sources. First, a temporal microwave photonics Hilbert transformer based on transversal filtering technique is demonstrated. The optical source used is a CMOS-compatible integrated nonlinear microring resonator frequency comb. The comb source allowed the design of filters with up to 20 taps with high stability. To experimentally demonstrate the temporal transformer, it is applied to an RF Gaussian pulse with intensity FWHM of 0.12 ns with an excellent agreement between the measured and the simulated results. Having shown that photonic signal processing can be achieved using comb sources and in particular that a Hilbert transform can be implemented, the thesis then explores the use of comb sources and Hilbert transform techniques for edge detection. First, a 2 tap Hilbert transform, which is ideal for edge detection is conceived and numerically analysed. The 2-tap Hilbert transform was used to perform edge detection of temporal signals after detection by a fast photodiode. This is the first reported case of the all-optical temporal Hilbert transform for edge detection applications. Finally, inspired by the transversal 2-tap Hilbert transform, a proof of concept simulation is demonstrated that exploits the FWM process to implement an all-optical scheme for direct edge detection of spectral information without the need for frequency-to-time mapping

    Radiofrequency architectures and technologies for software defined radio

    Get PDF
    Six-port network is an interesting radiofrequency architecture with multiple possibilities. Since it was firstly introduced in the seventies as an alternative network analyzer, the six-port network has been used for many applications, such as homodyne receivers, radar systems, direction of arrival estimation, UWB (Ultra-Wide-Band), or MIMO (Multiple Input Multiple Output) systems. Currently, it is considered as a one of the best candidates to implement a Software Defined Radio (SDR). This thesis comprises an exhaustive study of this promising architecture, where its fundamentals and the state-of-the-art are also included. In addition, the design and development of a SDR 0.3-6 GHz six-port receiver prototype is presented in this thesis, which is implemented in conventional technology. The system is experimentally characterized and validated for RF signal demodulation with good performance. The analysis of the six-port architecture is complemented by a theoretical and experimental comparison with other radiofrequency architectures suitable for SDR. Some novel contributions are introduced in the present thesis. Such novelties are in the direction of the highly topical issues on six-port technique: development and optimization of real-time I-Q regeneration techniques for multiport networks; and search of new techniques and technologies to contribute to the miniaturization of the six-port architecture. In particular, the novel contributions of this thesis can be summarized as: - Introduction of a new real-time auto-calibration method for multiport receivers, particularly suitable for broadband designs and high data rate applications. - Introduction of a new direct baseband I-Q regeneration technique for five-port receivers. - Contribution to the miniaturization of six-port receivers by the use of the multilayer LTCC (Low Temperature Cofired Ceramic) technology. Implementation of a compact (30x30x1.25 mm) broadband (0.3-6 GHz) six-port receiver in LTTC technology. The results and conclusions derived from this thesis have been satisfactory, and quite fruitful in terms of publications. A total of fourteen works have been published, considering international journals and conferences, and national conferences. Aditionally, a paper has been submitted to an internationally recognized journal, which is currently under review

    Perceptually Optimized Visualization on Autostereoscopic 3D Displays

    Get PDF
    The family of displays, which aims to visualize a 3D scene with realistic depth, are known as "3D displays". Due to technical limitations and design decisions, such displays create visible distortions, which are interpreted by the human vision as artefacts. In absence of visual reference (e.g. the original scene is not available for comparison) one can improve the perceived quality of the representations by making the distortions less visible. This thesis proposes a number of signal processing techniques for decreasing the visibility of artefacts on 3D displays. The visual perception of depth is discussed, and the properties (depth cues) of a scene which the brain uses for assessing an image in 3D are identified. Following the physiology of vision, a taxonomy of 3D artefacts is proposed. The taxonomy classifies the artefacts based on their origin and on the way they are interpreted by the human visual system. The principles of operation of the most popular types of 3D displays are explained. Based on the display operation principles, 3D displays are modelled as a signal processing channel. The model is used to explain the process of introducing distortions. It also allows one to identify which optical properties of a display are most relevant to the creation of artefacts. A set of optical properties for dual-view and multiview 3D displays are identified, and a methodology for measuring them is introduced. The measurement methodology allows one to derive the angular visibility and crosstalk of each display element without the need for precision measurement equipment. Based on the measurements, a methodology for creating a quality profile of 3D displays is proposed. The quality profile can be either simulated using the angular brightness function or directly measured from a series of photographs. A comparative study introducing the measurement results on the visual quality and position of the sweet-spots of eleven 3D displays of different types is presented. Knowing the sweet-spot position and the quality profile allows for easy comparison between 3D displays. The shape and size of the passband allows depth and textures of a 3D content to be optimized for a given 3D display. Based on knowledge of 3D artefact visibility and an understanding of distortions introduced by 3D displays, a number of signal processing techniques for artefact mitigation are created. A methodology for creating anti-aliasing filters for 3D displays is proposed. For multiview displays, the methodology is extended towards so-called passband optimization which addresses Moiré, fixed-pattern-noise and ghosting artefacts, which are characteristic for such displays. Additionally, design of tuneable anti-aliasing filters is presented, along with a framework which allows the user to select the so-called 3d sharpness parameter according to his or her preferences. Finally, a set of real-time algorithms for view-point-based optimization are presented. These algorithms require active user-tracking, which is implemented as a combination of face and eye-tracking. Once the observer position is known, the image on a stereoscopic display is optimised for the derived observation angle and distance. For multiview displays, the combination of precise light re-direction and less-precise face-tracking is used for extending the head parallax. For some user-tracking algorithms, implementation details are given, regarding execution of the algorithm on a mobile device or on desktop computer with graphical accelerator

    A review of differentiable digital signal processing for music and speech synthesis

    Get PDF
    The term “differentiable digital signal processing” describes a family of techniques in which loss function gradients are backpropagated through digital signal processors, facilitating their integration into neural networks. This article surveys the literature on differentiable audio signal processing, focusing on its use in music and speech synthesis. We catalogue applications to tasks including music performance rendering, sound matching, and voice transformation, discussing the motivations for and implications of the use of this methodology. This is accompanied by an overview of digital signal processing operations that have been implemented differentiably, which is further supported by a web book containing practical advice on differentiable synthesiser programming (https://intro2ddsp.github.io/). Finally, we highlight open challenges, including optimisation pathologies, robustness to real-world conditions, and design trade-offs, and discuss directions for future research

    COGNITIVE RADIO SOLUTION FOR IEEE 802.22

    Get PDF
    Current wireless systems suffer severe radio spectrum underutilization due to a number of problematic issues, including wasteful static spectrum allocations; fixed radio functionalities and architectures; and limited cooperation between network nodes. A significant number of research efforts aim to find alternative solutions to improve spectrum utilization. Cognitive radio based on software radio technology is one such novel approach, and the impending IEEE 802.22 air interface standard is the first based on such an approach. This standard aims to provide wireless services in wireless regional area network using TV spectrum white spaces. The cognitive radio devices employed feature two fundamental capabilities, namely supporting multiple modulations and data-rates based on wireless channel conditions and sensing a wireless spectrum. Spectrum sensing is a critical functionality with high computational complexity. Although the standard does not specify a spectrum sensing method, the sensing operation has inherent timing and accuracy constraints.This work proposes a framework for developing a cognitive radio system based on a small form factor software radio platform with limited memory resources and processing capabilities. The cognitive radio systems feature adaptive behavior based on wireless channel conditions and are compliant with the IEEE 802.22 sensing constraints. The resource limitations on implementation platforms post a variety of challenges to transceiver configurability and spectrum sensing. Overcoming these fundamental features on small form factors paves the way for portable cognitive radio devices and extends the range of cognitive radio applications.Several techniques are proposed to overcome resource limitation on a small form factor software radio platform based on a hybrid processing architecture comprised of a digital signal processor and a field programmable gate array. Hardware reuse and task partitioning over a number of processing devices are among the techniques used to realize a configurable radio transceiver that supports several communication modes, including modulations and data rates. In particular, these techniques are applied to build configurable modulation architecture and a configurable synchronization. A mode-switching architecture based on circular buffers is proposed to facilitate a reliable transitioning between different communication modes.The feasibility of efficient spectrum sensing based on a compressive sampling technique called "Fast Fourier Sampling" is examined. The configuration parameters are analyzed mathematically, and performance is evaluated using computer simulations for local spectrum sensing applications. The work proposed herein features a cooperative Fast Fourier sampling scheme to extend the narrowband and wideband sensing performance of this compressive sensing technique.The précis of this dissertation establishes the foundation of efficient cognitive radio implementation on small form factor software radio of hybrid processing architecture

    Software Defined Radio using MATLAB & Simulink and the RTL-SDR

    Get PDF
    The availability of the RTL-SDR for less than $20 brings SDR to the home and work desktops of EE students, professional engineers and the maker community. The RTL-SDR device can be used to acquire and sample RF (radio frequency) signals transmitted in the frequency range 25MHz to 1.75GHz, and using some official software add-ons, these samples can be brought into the MATLAB and Simulink environment for users to develop receivers using first principles DSP algorithms. Signals that the RTL-SDR hardware can receive include: FM radio, UHF band signals, ISM signals, GSM, 3G and LTE mobile radio, GPS and satellite signals, and any that the reader can (legally) transmit of course! In this free book we introduce readers to SDR methods by viewing and analysing downconverted RF signals in the time and frequency domains, and then provide extensive DSP enabled SDR design exercises which the reader can learn from. The hands-on examples begin with simple AM and FM receivers, and move on to the more challenging aspects of PHY layer DSP, where receive filter chains, real-time channelisers, and advanced concepts such as carrier synchronisers, digital PLL designs and QPSK timing and phase synchronisers are implemented. Towards the end of the book, we demonstrate how the RTL-SDR can be used with SDR transmitters to develop a more complete communications system, capable of transmitting text strings and images across the desktop

    Optimisation énergétique de processus de traitement du signal et ses applications au décodage vidéo

    Get PDF
    Consumer electronics offer today more and more features (video, audio, GPS, Internet) and connectivity means (multi-radio systems with WiFi, Bluetooth, UMTS, HSPA, LTE-advanced ... ). The power demand of these devices is growing for the digital part especially for the processing chip. To support this ever increasing computing demand, processor architectures have evolved with multicore processors, graphics processors (GPU) and ether dedicated hardware accelerators. However, the evolution of battery technology is itself slower. Therefore, the autonomy of embedded systems is now under a great pressure. Among the new functionalities supported by mobile devices, video services take a prominent place. lndeed, recent analyzes show that they will represent 70% of mobile Internet traffic by 2016. Accompanying this growth, new technologies are emerging for new services and applications. Among them HEVC (High Efficiency Video Coding) can double the data compression while maintaining a subjective quality equivalent to its predecessor, the H.264 standard. ln a digital circuit, the total power consumption is made of static power and dynamic power. Most of modern hardware architectures implement means to control the power consumption of the system. Dynamic Voltage and Frequency Scaling (DVFS) mainly reduces the dynamic power of the circuit. This technique aims to adapt the power of the processor (and therefore its consumption) to the actual load needed by the application. To control the static power, Dynamic Power Management (DPM or sleep modes) aims to stop the voltage supplies associated with specific areas of the chip. ln this thesis, we first present a model of the energy consumed by the circuit integrating DPM and DVFS modes. This model is generalized to multi-core integrated circuits and to a rapid prototyping tool. Thus, the optimal operating point of a circuit, i.e. the operating frequency and the number of active cores, is identified. Secondly, the HEVC application is integrated to a multicore architecture coupled with a sophisticated DVFS mechanism. We show that this application can be implemented efficiently on general purpose processors (GPP) while minimizing the power consumption. Finally, and to get further energy gain, we propose a modified HEVC decoder that is capable to tune its energy gains together with a decoding quality trade-off.Aujourd'hui, les appareils électroniques offrent de plus en plus de fonctionnalités (vidéo, audio, GPS, internet) et des connectivités variées (multi-systèmes de radio avec WiFi, Bluetooth, UMTS, HSPA, LTE-advanced ... ). La demande en puissance de ces appareils est donc grandissante pour la partie numérique et notamment le processeur de calcul. Pour répondre à ce besoin sans cesse croissant de nouvelles fonctionnalités et donc de puissance de calcul, les architectures des processeurs ont beaucoup évolué : processeurs multi-coeurs, processeurs graphiques (GPU) et autres accélérateurs matériels dédiés. Cependant, alors que de nouvelles architectures matérielles peinent à répondre aux exigences de performance, l'évolution de la technologie des batteries est quant à elle encore plus lente. En conséquence, l'autonomie des systèmes embarqués est aujourd'hui sous pression. Parmi les nouveaux services supportés par les terminaux mobiles, la vidéo prend une place prépondérante. En effet, des analyses récentes de tendance montrent qu'elle représentera 70 % du trafic internet mobile dès 2016. Accompagnant cette croissance, de nouvelles technologies émergent permettant de nouveaux services et applications. Parmi elles, HEVC (High Efficiency Video Coding) permet de doubler la compression de données tout en garantissant une qualité subjective équivalente à son prédécesseur, la norme H.264. Dans un circuit numérique, la consommation provient de deux éléments: la puissance statique et la puissance dynamique. La plupart des architectures matérielles récentes mettent en oeuvre des procédés permettant de contrôler la puissance du système. Le changement dynamique du couple tension/fréquence appelé Dynamic Voltage and Frequency Scaling (DVFS) agit principalement sur la puissance dynamique du circuit. Cette technique permet d'adapter la puissance du processeur (et donc sa consommation) à la charge réelle nécessaire pour une application. Pour contrôler la puissance statique, le Dynamic Power Management (DPM, ou modes de veille) consistant à arrêter les alimentations associées à des zones spécifiques de la puce. Dans cette thèse, nous présentons d'abord une modélisation de l'énergie consommée par le circuit intégrant les modes DVFS et DPM. Cette modélisation est généralisée au circuit multi-coeurs et intégrée à un outil de prototypage rapide. Ainsi le point de fonctionnement optimal d'un circuit, la fréquence de fonctionnement et le nombre de coeurs actifs, est identifié. Dans un second temps, l'application HEVC est intégrée à une architecture multi-coeurs avec une adaptation dynamique de la fréquence de développement. Nous montrons que cette application peut être implémentée efficacement sur des processeurs généralistes (GPP) tout en minimisant la puissance consommée. Enfin, et pour aller plus loin dans les gains en énergie, nous proposons une modification du décodeur HEVC qui permet à un décodeur de baisser encore plus sa consommation en fonction du budget énergétique disponible localement

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    corecore