
ABSTRACT

Title of dissertation: BASEBAND RADIO MODEM DESIGN
USING GRAPHICS PROCESSING UNITS

Scott C. Kim
Doctor of Philosophy, 2015

Dissertation directed by: Professor Shuvra S. Bhattacharyya
Dept. of Electrical & Computer Engineering,
and Institute for Advanced Computer Studies

A modern radio or wireless communications transceiver is programmed via

software and firmware to change its functionalities at the baseband. However, the

actual implementation of the radio circuits relies on dedicated hardware, and the

design and implementation of such devices are time consuming and challenging. Due

to the need for real-time operation, dedicated hardware is preferred in order to meet

stringent requirements on throughput and latency. With increasing need for higher

throughput and shorter latency, while supporting increasing bandwidth across a

fragmented spectrum, dedicated subsystems are developed in order to service in-

dividual frequency bands and specifications. Such a dedicated-hardware-intensive

approach leads to high resource costs, including costs due to multiple instantiations

of mixers, filters, and samplers. Such increases in hardware requirements in turn

increases device size, power consumption, weight, and financial cost.

If it can meet the required real-time constraints, a more flexible and recon-

figurable design approach, such as a software-based solution, is often more desir-



able over a dedicated hardware solution. However, significant challenges must be

overcome in order to meet constraints on throughput and latency while servicing

different frequency bands and bandwidths. Graphics processing unit (GPU) technol-

ogy provides a promising class of platforms for addressing these challenges. GPUs,

which were originally designed for rendering images and video sequences, have been

adapted as general purpose high-throughput computation engines for a wide variety

of application areas beyond their original target domains. Linear algebra and signal

processing acceleration are examples of such application areas.

In this thesis, we apply GPUs as software-based, baseband radios and demon-

strate novel, software-based implementations of key subsystems in modern wireless

transceivers. In our work, we develop novel implementation techniques that allow

communication system designers to use GPUs as accelerators for baseband pro-

cessing functions, including real-time filtering and signal transformations. More

specifically, we apply GPUs to accelerate several computationally-intensive, front-

end radio subsystems, including filtering, signal mixing, sample rate conversion,

and synchronization. These are critical subsystems that must operate in real-time

to reliably receive waveforms.

The contributions of this thesis can be broadly organized into 3 major areas:

(1) channelization, (2) arbitrary resampling, and (3) synchronization.

1. Channelization: a wideband signal is shared between different users and

channels, and a channelizer is used to separate the components of the shared sig-

nal in the different channels. A channelizer is often used as a pre-processing step in

selecting a specific channel-of-interest. A typical channelization process involves sig-



nal conversion, resampling, and filtering to reject adjacent channels. We investigate

GPU acceleration for a particularly efficient form of channelizer called a polyphase

filterbank channelizer, and demonstrate a real-time implementation of our novel

channelizer design.

2. Arbitrary resampling: following a channelization process, a signal is often

resampled to at least twice the data rate in order to further condition the signal.

Since different communication standards require different resampling ratios, it is

desirable for a resampling subsystem to support a variety of different ratios. We

investigate optimized, GPU-based methods for resampling using polyphase filter

structures that are mapped efficiently into GPU hardware. We investigate these

GPU implementation techniques in the context of interpolation (integer-factor in-

creases in sampling rate), decimation (integer-factor decreases in sampling rate),

and rational resampling. Finally, we demonstrate an efficient implementation of ar-

bitrary resampling using GPUs. This implementation exploits specialized hardware

units within the GPU to enable efficient and accurate resampling processes involving

arbitrary changes in sample rate.

3. Synchronization: incoming signals in a wireless communications transceiver

must be synchronized in order to recover the transmitted data properly from complex

channel effects such as thermal noise, fading, and multipath propagation. We in-

vestigate timing recovery in GPUs to accelerate the most computationally intensive

part of the synchronization process, and correctly align the incoming data symbols

in the receiver. Furthermore, we implement fully-parallel timing error detection to

accelerate maximum likelihood estimation.
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Chapter 1: Introduction

1.1 Overview

Radios or transceivers for wireless communication have evolved over the decades

from being based primarily on analog circuits to their extensive use of digital inte-

grated circuits. Dedicated hardware devices, such as application specific integrated

circuits (ASICs) and field programmable gate arrays (FPGAs), have become the

dominant platforms for implementing digital radios, which are programmed using

firmware and software. At the same time, general purpose processors (GPPs) have

become increasingly powerful in terms of computation performance and have became

easier to use in terms of programmability.

With such programmability, software has become the preferred method for

designing radios and implementing signal processing algorithms in many application

contexts, particularly at the baseband (i.e., for signals that have negligible frequency

content outside of a relatively narrow range [0, Fmax]). For such baseband processing,

the signal is mixed up or down to or from the desired center frequency by using a

radio frequency integrated circuit (RFIC). This isolation of baseband processing

from the radio frequency front-end (RFFE) has major implications on the design

and implementation of modern radio systems.
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For example, a baseband modem engineer can focus on signal processing (SP)

algorithm implementation, whereas an RFIC or RFFE designer can focus on the

analog and radio frequency (RF) aspects of the design. A common interface, such

as a software application programming interface (API), is then defined to facilitate

communication between the baseband and RF or “front end” subsystems. This

provides the framework for software radio (SWR), where the entire processing chain

from baseband to RF is controlled by software. We distinguish this from software-

defined radio (SDR), where software only controls the subsystems that encompass

baseband and intermediate frequency (IF) processing [1].

However, even with computational performance improvement in terms of speed,

number of processing cores, etc., GPPs, such as CPUs, are not geared towards the

intense computational demands of many SP applications. For such applications,

domain-specific or dedicated accelerators can be employed to improve signal pro-

cessing performance. For example, programmable digital signal processors (PDSPs)

provide single instruction multiple data (SIMD) operations and specialized com-

putation units that are geared towards critical SP functions. SIMD is a form of

parallelization where the same instructions or operations are applied simultaneously

on different data items.

Graphics processing units (GPUs) belong to another important class of special-

ized computational devices that are useful for accelerating complex signal processing

applications. While GPUs were originally designed to render graphics for images

and videos, they are now employed across a broad range of application areas that

involve intensive use of regularly structured computations. GPUs are capable of
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exploiting large amounts of SIMD parallelism, and can be applied for acceleration

of single- and multi-dimensional signal processing operations.

With the introduction of general purpose GPU (GPGPU) languages, such as

CUDA [2], GPUs have been gaining significant interest in the SP systems commu-

nity. GPUs are attractive for SP systems, for example, as an alternative to hardware

implementation. With this motivation, we explore GPGPUs as platforms for design

and implementation of real-time baseband radio modems, particularly as front-end

transceiver processors to accelerate filtering and transform algorithms commonly

found in SP applications.

A radio modem subsystem is a dedicated unit for servicing different radio spec-

ifications, such as standards for wireless cellular communication, navigation, and

wireless local area networking. Each of these standards is typically implemented

to operate across different ranges of communication and signal processing parame-

ters, including frequency bands, bandwidths, sampling rates, data rates, modulation

types, coding rates, etc.

In this thesis, we address the challenges of accelerating SP algorithms via

software, particularly using GPUs as parallel transceivers to help realize real-time

radio modems, while providing the flexibility and cost-efficiency of software solu-

tions. Our goal is to use the GPU as (1) a complete modem or (2) a coprocessor

that works in conjunction with an existing hardware modem to extend its func-

tionality at the physical layer. In this thesis, we focus on the receiver architecture,

and more specifically, on baseband operations within the receiver. We emphasize

methods for efficient implementation of wideband receivers — i.e., receivers that

3



process bandwidths greater than hundreds of MHz, and that include subsystems for

channelization, resampling, and synchronization.

1.2 Contributions

In this thesis, we develop a novel transceiver architecture using GPUs, par-

ticularly as a parallel front-end transceiver that performs most of the required re-

sampling, signal conversion, and transformation for the enclosing transceiver system.

Although, our methods apply to both transmitter and receiver design, we emphasize

in our work the receiver design aspect due to the challenges involved in recovering

the transmitted signal from channel impairments.

The contributions of this thesis are presented in four main parts. First, we

introduce the application of GPUs to front-end transceiver implementation, and

we examine the subsystems that comprise a wideband GPU front-end. We are

presented with baseband discrete-time signals immediately after the sampling circuit

in the RFFE. The transmitted original signal is corrupted and we must recover it

from the channel impairments. We perform a channelization or separation of the

users or channels from the wide composite signal that is made of multiple sub-

carriers. Following this channelization, the signal must be resampled properly to

multiples of its data rate for further signal processing, such as synchronization.

Synchronization is one of the most critical aspects of receiver design in that it must

estimate frequency, phase, and time offsets and correct them in order to align the

received signal to the transmitted signal. Following these front-end stages, further

4



signal processing, such as channel and source decoding, is performed in the back-end

receiver [3, 4].

1.2.1 GPU Front-end Transceiver

Our goal of designing a GPU-based radio can be broken into the design of

two major sub-systems: the front-end and back-end. A front-end receiver or “inner-

receiver” is responsible for filtering, mixing the signals, and resampling to multiples

of the desired data rate for back-end receiver processing [3, 4]. We generalize this

notion with the design of a wideband receiver using a channelizer to filter, down-

convert, and downsample the channel-of-interest (COI). Then, if the sampling rate

out of the channelizer does not meet the desired rate (typically 2–4 times the data

rate), we perform further resampling.

A major objective in our work is to employ GPU-based parallel processing

to accelerate the front-end radio computations, which are typically implemented

in dedicated hardware. We perform all acceleration using highly optimized GPU

software, and demonstrate that our resulting designs exceed the throughput and

latency requirements for real-time operation. By implementing a complete set of

front-end radio functions in a GPU, we demonstrate the concept of a GPU front-

end (GFE) receiver. This is a type of GPU-based radio (GBR) that consists of a

GFE and GPU back-end (GBE). The GBE is largely responsible for channel and

source decoding.

As part of our work on GPU-based transceiver design, we adapt efficient
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channelization methods using a polyphase filter bank (PFB) structure and a GPU-

optimized discrete Fourier transform (DFT) library kernel, called CUFFT. We apply

our resulting architecture to efficient channelization of 2G GSM signals. We also

demonstrate arbitrary resampling of all channels simultaneously to fractionally re-

sample the channelizer output so that it meets the fractional GSM data rate. With

our optimized GPU implementation, all of these operations execute within the radio

frame duration, and also, the throughput is increased significantly due to our ability

to process hundreds of channels simultaneously using a single GPU.

This work on the GFE as an efficient arbitrary resampling channelizer is pre-

sented in Chapter 3.

1.2.2 Wideband Channelization

In order to decrease the time required to process wireless communication radio

frames, GFE implementation needs to be optimized carefully to reduce latency.

One method for reducing latency is to spread the workload across the GPU more

effectively, which in turn increases occupancy since more threads are kept busy

during GPU kernel calls. In order to increase the occupancy, we assign a single

output sample to a single thread of a GPU kernel. This is in contrast to our GFE

design mentioned earlier, which parallelizes the filter operation, where a thread is

responsible for a single multiplication operation between the input sample and a

filter coefficient. The accumulation is performed across multiple threads, which

pauses the other threads.
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The initial GFE design contains serial loops to index through the input sam-

ples. In contrast, in our new channelizer design, we completely unroll the loops,

which eliminates serial loops in the kernel. Since there are more samples to process

than the filter length, a large number of threads are instantiated, where each thread

performs the same instruction across the entire kernel, utilizing the GPU’s SIMD

operations. The resulting architecture provides significant improvement in through-

put, and reduces the latency as well. We apply our methods to 3G WCDMA signals

and demonstrate their performance in this practical context.

This work on a new high-throughput, low-latency, fully parallel polyphase

channelizer design is presented in Chapter 4.

1.2.3 Multi-channel Arbitrary Resampling

From our motivation to significantly increase throughput and reduce latency,

we examine in depth the resampling architecture of our GFE. To optimize the design

of this architecture, we apply a distinctive hardware feature in GPUs called a texture

unit. A texture unit has its own memory, called texture memory (TM), and has

a built-in interpolation circuit to perform fast interpolation directly while fetching

the data from TM. A texture unit provides two alternative modes of operation for

interpolation — nearest neighborhood (NN) and linear (LN) interpolation.

We utilize the GPU texture unit to develop a novel design for a low-complexity

and low-latency arbitrary resampler. In order to increase the arbitrary resampling

resolution, we provide an integer interpolation prior to the TM kernel call. We per-
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form two different integer interpolations using time and frequency domain filtering.

CUDA provides a highly optimized and parallelized DFT called CUFFT. We adapt

CUFFT to perform integer interpolation via zero-padding in the frequency domain

and use its sinc waveform to provide filter-free interpolation in the time domain. We

then replace the CUFFT interpolation with a more traditional time domain integer

interpolation, which allows us to design our optimized filter in the time domain, and

without the constraints involving prime factor ratios that are imposed in CUFFT

interpolation.

We adapt a polyphase interpolator for arbitrary resampling and expand its

filtering capability beyond one-dimensional (1D) signal processing by expanding the

subsystem to process multiple channels and full radio frames using a 2D polyphase

structure. The idea is further expanded to 3D by adding different frequency bands

containing different channels. This multi-dimensional approach to process multiple

bands, channels, and full radio frames provides a novel application of the multi-

dimensional parallelism of GPUs to an important class of computationally-intensive,

wireless communications subsystems. This approach can be viewed as a type of

carrier aggregation (CA), which is an attractive option for processing wideband

channels in current- and future-generation systems.

We integrate our multi-channel interpolator with a TM to arbitrarily resample

the data at any desired rate. This allows the decomposition of input radio frames

into successive slots that are processed simultaneously. The parallelization across

slots within a frame helps to overcome thread dimension limitations in the GPU,

and thereby provides further improvement to the processing performance.
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Our approach to arbitrary resampling utilizes distinctive features of GPUs to

yield a highly flexible and efficient software-based implementation. The implemen-

tation does not require a filter design process. Nor does it require complex control

circuitry to calculate the fractional resampling points. The overall system is applied

to 3.5G UMTS HSPA to demonstrate its capabilities as a multi-dimensional, parallel

transceiver architecture for a relevant communication standard.

This work is presented in detail in Chapter 5.

1.2.4 Multirate Filtering for Multi-carrier Systems

Although arbitrary resampling is an attractive feature for various kinds of

signal processing systems, it can also be useful to derive specialized resampling

structures when simpler or more restricted forms of resampling are needed — e.g.,

to perform strictly-integer interpolation or decimation. These operations are simpler

and require less hardware resources, such as multipliers and registers. In this con-

tribution of the thesis, we explore more traditional resampling configurations, such

as rational resampling, particularly using polyphase multirate filtering to process

multiple channels of data.

In this work, we address the challenges of processing wide bandwidths (BWs)

of data, which may be fragmented across the frequency spectrum. Modern commu-

nication systems deploy various forms of aggregation through multiple carriers. The

aggregated carriers can be within the same operating frequency band (intra-band) or

spread across different bands (inter-band). These issues pose significant challenges

9



in modem design, since all of the carriers need to be present at the baseband for

further processing.

We propose an efficient, rational resampling architecture that is highly opti-

mized for real-time implementation on GPUs, and provides the foundation for effec-

tive sample rate conversion (SRC) in the context of multi-carrier transceiver system

design. We propose a new SRC design method that can be applied to multiple

channels and multiple carriers. This resulting architecture exhibits high through-

put, low latency, and low complexity while providing the flexibility of an all-software

realization. The architecture includes optimizations for significantly increasing data

coalescing and occupancy in the GPU.

This work is presented in detail in Chapter 6.

1.2.5 Synchronization

Once channelization and resampling are completed, a receiver must synchro-

nize to the incoming signals and estimate their parameters, particularly their fre-

quency, phase, and timing [3,4]. Such synchronization is a critical aspect of receiver

design. We focus on timing recovery since it is the most computationally demand-

ing part of synchronization. Both phase and frequency recovery are performed at

the symbol level, whereas timing recovery is performed at the sample level. Since

there are multiple samples per symbol, timing recovery requires more data to be

processed.

We present a novel GPU-based symbol timing recovery (STR) implementation
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that accelerates the timing error detection (TED) part of STR. TED is a critical

component of STR since it is responsible for accurately measuring the timing offset.

One option in TED implementation is to interpolate by a large factor to reconstruct

the signal accurately, which helps to optimize the sampling time in the circuit. We

adapt a feedback-based design that uses a combination of a CPU and a GPU, where

the CPU handles the serial computation of the feedback, and the GPU handles the

TED, which can be a fully-parallelized filtering operation. We implement a fully-

parallel polyphase interpolator to speed up the computation in the GPU. Then the

CPU uses the filtered results to make a decision on the optimal sampling instant.

We demonstrate the achieved speedups by comparing a sequential, CPU-only im-

plementation and our GPU-accelerated implementation.

This GPU-based STR acceleration work is presented in detail in Chapter 7.

1.3 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 pro-

vides background on various topics that are relevant for this research, including

channelization, arbitrary resampling, sample rate conversion, and timing recovery.

In Chapter 3, we present the notion of GPU-based front-end receiver design using

an efficient GPU implementation of an arbitrary resampling polyphase channelizer.

In Chapter 4, we present a high-throughput, low-latency polyphase channelizer on

GPUs. In Chapter 5, we present our implementation of multi-channel arbitrary re-

sampling on GPUs. In Chapter 6, we present an efficient GPU implementation of a
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multirate resampler for multi-carrier systems. In Chapter 7, we present GPU-based

acceleration of symbol timing recovery. Finally, we conclude in Chapter 8 with a

summary of the thesis and a discussion of directions for future work.
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Chapter 2: Background Information

In this chapter, we provide background information on core concepts that are

applied and built upon in the work presented in this thesis. First, we discuss the

notion of a wideband channelizer, which separates channels, and then applies resam-

pling methods, including rational and arbitrary sample rate conversion. Following

resampling, a wideband channelizer must synchronize the signal to the transmitted

signal. We focus in this chapter on timing synchronization in particular. Finally,

we provide background on the popular GPGPU language, CUDA.

2.1 Wideband Channelization

Multi-carrier modulation (MCM) is a technique to transmit data by splitting

data over multiple carriers or channels using separate carrier signals [5]. A common

MCM method is to combine narrow bandwidth (BW) signals into composite signals

with wider BW, and transmit these composite signals in parallel. Because of the

increased BW, MCM offers increased data rate and throughput [6]. There are several

forms of MCM available and a common choice is orthogonal frequency division

multiplexing (OFDM) and its variants [7–9].

The underlying modulation in MCM employs the discrete Fourier transform
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(DFT). In order to overcome some of the disadvantages of DFT-based modulation in

MCM, a filter-based DFT modulation technique known as filter bank multi-carrier

modulation (FBMC) is sometimes used [10,11]. In order to remove noise and shape

the spectrum, pulse shaping or filtering is performed prior to DFT computation.

An efficient way to perform this kind of filtering is to use a bank of sub-filters along

with a method known as polyphase filtering to decompose a prototype filter into

a multi-rate filter [12, 13]. Such a polyphase filter bank (PFB) followed by a DFT

block is an attractive option since it provides a “cleaner” MCM by reducing sidelobe

leaks in the spectrum compared to an OFDM approach [6].

Even though an MCM system contains many individual sub-carriers, overall

it is viewed as a single carrier system with a wider BW. Instead of servicing indi-

vidual carriers separately, a front-end receiver for MCM must be able to receive and

process multiple channels and carriers simultaneously. A channelizer is a commu-

nication subsystem that is used to separate multiple channels from a wide system

BW. A channelization process is responsible for signal conversion (i.e. mixing), sam-

ple rate change, and filtering. A straightforward approach to channelization is to

employ a bank of dedicated sub-receivers where each unit is dedicated to a single

channel or carrier. However, such an approach will accumulate excessive area, power

consumption, and design complexity as system requirements increase.

An attractive alternative is an all-in-one system to process multiple channels

simultaneously. A type of FBMC called a polyphase channelizer is a promising op-

tion in this context. A polyphase channelizer can down convert, downsample, and

filter images at the same time in a single stage [13–16]. A polyphase channelizer

14



can be used as a synthesizer, called a polyphase synthesis channelizer (PSC), to

transmit a composite of sub-channels on sub-carriers in the transmitter (TX). Con-

versely, a polyphase analysis channelizer (PAC) is used to separate the sub-channels

in the receiver (RX) using analysis FBs [17–19]. Since the channels do not over-

lap in our case, we can partition the shared spectrum evenly, reduce the sampling

rate, and reject adjacent channels to avoid aliasing using a PAC. Such a polyphase

channelizer can be implemented using a PFB and a DFT unit to provide a flexible

architecture that can be adapted to different system BWs, channel spacings, and

sampling rates [13, 14].

In this thesis, we focus on developing a novel GPU implementation of a PAC

for an RX system. The intensive computational requirements and stringent real-time

constraints of a PAC make such a software implementation problem very challenging.

However, this is an important challenge to confront given the cost and flexibility

advantages of software-based transceiver (TRX) solutions, as we have motivated

previously. Henceforth in this thesis, we use the terms “PAC” and “polyphase

channelizer” interchangeably since our work on polyphase channelizer implementa-

tion focuses on the analysis subsystem.

A polyphase channelizer combines multiple operations into an all-in-one de-

sign. A basic operation of down channelization is as follows. A downconversion

of a channel-of-interest is performed, followed by a lowpass filter to reject adjacent

channels. Finally, a downsampling is necessary to reduce the sampling rate to a

Nyquist rate so that unnecessary computation is avoided. A polyphase channelizer

has 2 major components: PFB and DFT. A PFB is a multirate filter that performs
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downsampling and low pass filtering at the same time. A DFT is used to downcon-

vert the output of PFB to baseband, and allow the user to select desired channel

indices.

A prototype filter is designed that has a filter order of N . This 1D filter is

reshaped, using polyphase decomposition [12, 13], into a 2D polyphase filter. A

polyphase filter has Q rows or filterbanks, where each row has M columns or sub-

filter coefficient taps. Therefore, the overall filter length N can be viewed as having

dimension of Q × M . In addition, the number of DFT points equals the number

of PFB rows, Q. In order to filter or perform convolution operations, a buffer is

created to match the dimension of the PFB. This is an inner-product (IP) operation

across each row of the PFB. A commutator is used to present the input sample in a

bottom-up fashion as shown in [13,14] since this is a downsampling operation. Once

all Q rows of samples have been inserted into the input buffer, the IP operation is

performed.

The output of the IP produces a Q × 1 vector. This vector is presented to

the DFT for a downconversion operation. It is important to note that each bank

or row is independent from the other rows, and as the input samples are presented

one at a time, the IP operation can be performed on a per-row basis. Therefore,

once the commutator reaches the top, the matrix multiplication between the input

buffer and the filter coefficient matrix is complete. Since the row operations are

independent of the others, they can be fully parallelized. In addition, if the input

samples can be presented Q at a time instead of one sample at a time, the need for

the commutator is eliminated. However, there is a trade-off in that more resources
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are required. For example, more multipliers are required in the commutator-free

version to support parallel operations, whereas when the commutator is employed,

a single multiplier can be shared across the entire matrix multiplication provided

that all of the required operations can be completed prior to arrival of the next

input sample.

Prior to applying the polyphase channelizer, we have an input sampling rate

F in

s , a given system BW, and a data rate Rd. After application of the polyphase

channelizer, the input sampling rate is divided by Q and similarly, the system BW

is divided by Q, yielding equally-spaced channels and a reduced sampling rate at

the output of the channelizer. This is called a standard or maximally decimated

polyphase channelizer [14]. In [14], an interpolation operation was combined with

a maximally decimated polyphase channelizer to perform a rational resampling at

the same time. This is a partially decimated polyphase channelizer. Since the

interpolation in a partially decimated channelizer is being performed at some rate

P while Q samples are being presented to the input, the output of the IP is presented

R = Q/P (R is referred to here as the rational resampling ratio) times faster than

in the standard polyphase channelizer configuration. This in turn causes the need

to shift the data at the input and output of the IP operation. A serpentine shift and

circular shift are needed to provide such translations, which prevent phase shifts at

the output of the DFT [14].

A polyphase channelizer block diagram is shown in Figure 2.1.
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Figure 2.1: Block diagram of polyphase channelizer.

2.2 Arbitrary Resampling

Although a channelizer is capable of changing sampling rates [15, 16], it is a

restricted operation, since it can only accommodate integer multiples of the output

sampling rate. An additional resampler is in general necessary to resample to a

desired sampling rate, ideally to any arbitrary rate. If a resampling filter is fixed

to a certain ratio, then it is difficult to adapt it for other purposes. One option is

to compute the associated filter coefficients on-demand based on dynamically vary-

ing filtering requirements. An asynchronous or arbitrary sample rate conversion
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(ASRC) technique is commonly deployed to interface asynchronous systems to dif-

ferent sampling rates [20, 21]. ASRC can be viewed as a generalized rational ratio

sample rate conversion approach that allows multiple kinds of conversions without

requiring separate filter design processes, and allows flexible and reconfigurable con-

version ratios. ASRCs can provide such reconfigurable conversion dynamically and

in a single stage.

However, ASRC is a relatively complex and costly process that requires high

interpolation rates or time-varying polynomial approximations. A general approach

to arbitrary resampling in the discrete-time (DT) domain is to oversample or in-

terpolate heavily to a maximum capability of the system clock so that the output

sample is brought as close as possible to the desired sample index. This can be

viewed as creating a dense virtual analog intermediate waveform in the DT do-

main [22]. This notion of creating a virtual analog waveform and resampling is

known as resample after reconstruction [21]. Sampling in the DT domain causes

images in the frequency domain at multiples of the sample rate; thus, filter design

to remove images is an important aspect of SRC. The anti-aliasing filter must be

carefully designed such that it rejects images appropriately, and does not distort the

channel-of-interest (COI). An alternative approach would be to create a continuous

time-varying signal, compute fractional resampling points on the fly, and filter out

any images to control aliasing [21].

A key to SRC is in interpolation, and creating such a virtual analog waveform

is equivalent to a virtual digital-to-analog conversion (DAC) process. A DAC has a

zero-order hold operation, which has a rectangular response in the DT domain and
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a sinc response in the frequency domain [13, 21]. This sample-and-hold operation

is essentially a nearest neighborhood (NN) interpolation. An even more accurate

approximation to an analog waveform would be to linearly interpolate between two

successive samples in place of NN interpolation. This first-order hold of a DAC cre-

ates a piecewise-linear approximation to the original signal in the DT domain. This

type of linear (LN) interpolation can be modeled as convolving samples with a trian-

gular pulse. This triangular pulse can be formed by convolution of two rectangular

pulses in the time domain, which is the same as multiplying two sinc pulses in the

frequency domain. This product, sinc2 provides additional suppression of spectral

replicas [22,23]. Higher-order interpolation, such as quadratic or cubic interpolation,

is also possible, but it further increases complexity and resource usage [20, 23–25].

One option for efficient ASRC implementation is to perform high-rate interpo-

lation initially followed by a simpler, second interpolation circuit. A second option

is to use a lower level of initial interpolation followed by a second interpolation

that approximates the curve between the two interpolants. The second interpola-

tor, which approximates the curves, can be performed via polynomial curve fitting

methods using linear, cubic, and spline interpolations [20,21,26]. A proposed archi-

tecture in [22] takes advantage of this situation by first interpolating via polyphase

filters and linearly interpolating between polyphase filter outputs using triangular

convolution in a single integrated stage. This architecture has performance (i.e.,

error resolution) that is similar to a polynomial-approximating Farrow structure

filter [24, 26].

An efficient approach to interpolation by a non-integer factor is to first inter-
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polate by an integer factor using a simple interpolator, such as a polyphase filter in

the time-domain or a DFT-based sinc interpolation in the frequency-domain [27,28],

and then apply a piecewise polynomial filter to further interpolate between samples.

The computational time and error compared between a classical time-domain fil-

ter approach and a DFT-based approach are shown in [27, 29, 30]. Therefore, this

combined initial interpolation with polynomial interpolation provides anti-aliasing

filtering along with arbitrary resampling [23]. This represents a linear time-varying

filter aspect of resampling, since each desired output sample time index would be

time dependent on the input sample index and the resampling point, ∆ would have

to be recalculated each time.

Regardless of the method, a key to ASRC is in interpolation. The goal is

not to implement a complete set of resamplers but only a fraction of them and

to calculate the fractional difference, which represents the linear time-varying filter

aspect of resampling [21,26]. Resampling via NN or LN interpolation alone may not

be enough. An integer interpolation circuit followed by a polynomial curve fitting

method will give more accurate fractional resampling points. Ideally, this ASRC

should be provided in a single integrated stage with reduced complexity. Therefore,

an alternate approach would be to integer interpolate first to some degree followed by

a second interpolator that approximates the curve between the two interpolants. The

advantage of this approach is shown in [13,22] by combining a polyphase interpolator

with a piecewise polynomial filter.
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2.3 Rational Resampling

A rational resampling is a combination of interpolation (reconstruction) and

decimation (resampling) to achieve a targeted fractional rate. An interpolation is a

combination of upsampling or insertion of zeros between samples followed by a low

pass filter (LPF) to reject the resulting images. Conversely, a decimation is a com-

bination of an LPF operation followed by discarding or downsampling of samples.

By combining the two operations, one can achieve a fractional or a rational resam-

pling ratio, R = P/Q, where P is the interpolation rate and Q is the decimation

rate [12, 13, 31].

For resampling, the interpolation stage is critical because the sampling rate

of the reconstructed signal affects the accuracy of the resampling process — higher

sampling rates in general lead to higher accuracy. However, during resampling, the

unwanted samples are simply discarded. In the design process, a trade-off is made

so that one does not discard so much (from a signal that is too heavily interpolated)

so that there is excessive computational waste, while providing a sufficient level

of resampling accuracy. For example, a rational resampling approach should not

be used with interpolation and decimation ratios in the hundreds. For that type

of fractional resampling, an arbitrary resampler is better suited to computing the

resampling points dynamically, but such an arbitrary resampling approach can add

significant complexity. An alternative approach is to perform resampling in multiple

stages to reduce resource usage, which in turn adds delay [12, 21, 28].

Finally, an efficient form of rational resampling exists in the form of a multirate
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filter using a polyphase structure [12,13]. The polyphase decomposition transforms

a 1D filter into a 2D matrix, where the number of rows equals P or Q, and each

column corresponds to a distinct sub-filter for the decomposition. A commutator

is employed in conjunction with the polyphase decomposition to insert or select

samples one at a time instead of computing zeros, which is wasteful [13].

In order to design a rational resampler, one can perform interpolation followed

by decimation, or simply combine the operation into one. A filter must be designed

for each interpolation and decimation. Therefore, using the same filter, one can

insert the input samples using a commutator to the filter, P times then once filtered,

the output can be read out every Q times, discarding Q − 1 samples. This way

only one filter is designed and simply using commutators to achieve the desired

decimation rate [13]. If Q is equal to 1 then the resampling operation becomes the

interpolation operation.

2.4 Symbol Timing Recovery

The timing error in maximum likelihood (ML)-based method is defined as:

terror (n) = ẏ(n)y(n), where y(n) is the output of the filter and ẏ(n) is the output of

the derivative filter. This equation is for low signal-to-noise ratio (SNR). However, in

practice, designers apply it for all SNR [13]. This approach can be implemented us-

ing 2 polyphase filters — a polyphase matched filter (MF) and a polyphase derivative

matched filter (dMF). Polyphase filter implementation is well discussed in [13, 32].

This form of timing error detection has higher SNR than Gardner and faster locking
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average time [33]. Gardner is an approximation of ẏ(n)y(n) using 2 samples per

symbol (spS) by scaling zero-crossing of the eye diagram, therefore, it only uses a

single MF.

This polyphase-filter-based ML offers an efficient option and is the most ap-

plicable to our purposes in this thesis of efficient parallelization and low complexity

implementation. The number of interpolation points corresponds to the number of

filterbanks. Therefore, with increasing numbers of filterbanks, we can achieve higher

interpolation rates. Separate interpolation filter and MF structures result in extra

processing delay. Hence, we combine the polyphase interpolator into an MF that

uses 1 filter [33, 34].

This approach to ML-based TED is compute intensive, often requiring many

multipliers for filtering, and filters that contain hundreds or thousands of coefficients

depending on the interpolation rates and filter orders. Therefore, parallelizing and

distributing the filtering tasks are attractive options and can be realized well in

GPUs given their lightweight operations and data parallel processing structures.

Our goal is thus to map the filtering operations across the GPU in such a way

that GPU utilization is maximized, thereby offering reduced computation (from the

polyphase structures employed) but faster locking and higher throughput.

If the current timing estimate is too early, then the slope of the MF output is

positive, so the timing phase should be advanced to an optimum sampling point. On

the other hand, if the current timing estimate is too late, the slope of MF output is

negative, and the timing phase should be retarded [35]. Harris and Rice presented

a modern symbol timing recovery (STR) by integrating the MF and polyphase
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interpolator into a single structure as a polyphase MF [32].

We employ BPSK for the simplicity and practicality of its implementation. For

BPSK implementation, we follow the overall structure presented by Gardner [36]

and Frerking [37]. The idea of interpolation of such digital modems is well cov-

ered in [38, 39]. We combine polyphase timing error detection (TED) [13] and ML

error detectionin [32], and then we exploit the resulting algorithm structure using

GPU technology to improve the performance of STR further. This method can

be extended to QPSK or M-QAM for complex signals as well, and pursuing such

extensions is a useful direction for future work.

Once a corrected sample point has been selected at the output of the MF,

we discard the remaining interpolated samples. For example, given an input data

stream at 2 samples per symbol and after 1:32 interpolation, we have 64 samples

to choose from. We sample once at the peak, and then discard the remaining 63

interpolated values or interpolants. With this sampled point, we calculate the error

discussed earlier. This timing error is then fed to an loop filter (LF) structure where

it is used to eliminate the phase and frequency error.

Because of its rapid variation, we cannot use the instantaneous error to correct

our timing. Therefore, we must average over some time, a fundamental method in

signal detection. However, using averaging methods such as moving average can

take too much time to lock. If the error does not change, then the system remains

locked, but unfortunately timing jitters due to noise may persist, and these errors

must be detected and corrected (filtered) each time. An LF is useful to provide

such correction. Following the LF, we need an NCO to correctly drive or adjust
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Figure 2.2: Block diagram of different synchronizers.

the timing sample and feed it back to TED for future correction or adjustment as

necessary. A feedback control circuit is used to accomplish this task by selecting a

corresponding filterbank index.

Figure 2.2 shows a block diagram of our targeted communication receiver

synchronization including frequency, phase, and timing recovery subsystems. We

assume that we have a single carrier narrow band system at the baseband.
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2.5 CUDA

NVIDIA introduced Compute Unified Device Architecture (CUDA) [2] as a

parallel programming language for programming GPUs for use in graphics, as well

as in other computationally intensive application areas. CUDA is based on a single

instruction multiple thread (SIMT) programming model, where multiple threads

execute the same instructions over different data sets. The SIMT model provides

an attractive model for implementation of SP algorithms.

A CUDA kernel is a grid set of blocks, and a block is a set of threads. A

processing core is referred to as a streaming multiprocessor (SMP). A group of

32 threads is called a warp and is executed as a group inside an SMP. The total

number of threads inside a block should be multiples of a warp. To achieve maximum

performance, it is important to keep the GPU as busy as possible, and utilize as

many threads and blocks as possible.

The GPU memory hierarchy also needs to be utilized carefully to maximize

performance. An external memory or global memory (GM) is the largest memory in

a GPU system, and is also the slowest memory. GM is commonly used to transfer

data back and forth between the GPU and a corresponding host CPU. Shared

memory (SM) is contained within an SMP and is visible only to a specific block of

threads. It is a fast read/write local memory that can be viewed as a fast, user-

enabled cache. A constant memory (CM) is a fast, read-only memory for storing

constants. In addition, there are registers for local variables. Any register spills or

arrays that are not in SM are stored in local memory (LM). It is important to utilize
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SM as much as possible since registers are limited, and GM and LM are relatively

slow.

There are several important features of CUDA that require careful attention

when programming GPUs. First, memory transfers between CPU and GPU must be

minimized due to the high latency of transferring data over the bus. Accesses to GM

should be coalesced whenever possible and SM should be used to avoid unnecessary

access to GM. Grouping threads in multiples of a warp facilitates coalescing of

data with GM and helps to enhance GPU utilization. Finally, computational work

should be spread throughout the GPU to utilize more cores and enforce lightweight

operations. The programmer typically profiles the application extensively to fine

tune performance and identify bottlenecks. To summarize, a GPU programmer

should design kernels to spread the workload as much as possible throughout the

GPU, read from GM in a coalesced manner to an SM, instantiate sufficient numbers

of threads per block (TPB), and write back results to GM in a coalesced manner.

For more details on CUDA programming, we refer the reader to [2, 40].

2.6 Summary

In this chapter, we have provided general background information and re-

viewed various concepts and methods that will be applied in the following chapters

of this thesis. We have presented an overview of the overall structure of our GPU-

based, front-end receiver architecture. This architecture includes capabilities for

channelization, different forms of resampling, and timing synchronization. Finally,
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we have presented an overview of CUDA, which we use as a tool map our proposed

front-end receiver structures into an efficient wideband GPU front-end receiver im-

plementation.
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Chapter 3: A GPU Implementation of a Front-end Receiver

In this chapter, we introduce the notion of a GPU front-end (GFE) receiver

architecture using channelization followed by a resampling method to down convert,

filter or reject unwanted channels, and properly resample to the desired sample

rate for all of the channels simultaneously. We implement an efficient polyphase

channelizer architecture using interpolating channelizer and time-varying resampling

methods. We develop optimized implementations of these methods that operate

entirely in a GPU to implement our parallel GFE transceiver. We demonstrate the

performance of our design by applying it to the popular 2G wireless standard, GSM.

The work presented in this chapter was published in [41].

3.1 Introduction and Related Work

A communication receiver can be divided into 2 major systems: a front-end and

a back-end system. A front-end system is responsible for channel estimation, down

conversion, and sampling rate change. A back-end system is responsible for channel

and source decoding. This notion is well established in [3] using an inner-receiver

and outer-receiver, respectively. Advancements have been made over the years to

implement a majority of these functionalities from intermediate frequency (IF) to
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baseband signal processing (SP) in software. The goal of the software-based receivers

is simple — to bring the SP functionalities closer to the antenna as much as possible,

reducing the burden on the RF front-end (RFFE), and exploiting the flexibility of

software and the processing power of modern hardware. Dedicated hardware devices,

such as ASIC/ASIP/FPGA devices, have made substantial advancements over the

decades and along with the focus on low-power multi-core microprocessors, we now

have additional platforms, such as GPUs available to use.

In order to effectively utilize GPUs, a general purpose GPU (GPGPU) pro-

gramming language such as CUDA [42] can take advantage of a GPU’s many

lightweight threads and many cores to perform complex SP functions in parallel by

exploiting and exposing data parallelism commonly found in SP problems. Our goal

in this chapter is simple: use a GPU as a front-end receiver and bring it as close to

the antenna as possible, thus accelerating and improving performance significantly

as a GPU front-end (GFE) receiver. Such a system can co-exist and cooperate with

existing hardware or ideally use a GFE as a stand- alone unit (replacing existing

hardware based modems). We aim to use a GFE at least in conjunction with exist-

ing hardware. To provide for flexibility, we seek to perform minimal processing on

hardware (e.g., only where dedicated acceleration is essential to meet performance

constraints), and have maximal functionality operating on software-based GPUs.

An analog front-end (AFE) is primarily responsible for down converting the

entire frequency bandwidth (BW) centered at some much higher RF frequency to

some IF that is usually running at a quarter of the sampling rate of the ADC.

Within the large AFE input BW lie multiple narrower BW channels, including the
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channel-of-interest (COI). The main task of the digital front-end (DFE) is to down

convert the COI to the baseband for further processing [3, 13, 43]. In addition to

this conversion, a filter must be used to reject adjacent channels to select the COI.

Following this filtering, the sampling rate needs to be reduced since it is usually

sampled at tens or hundreds of samples per second out of an ADC. However, all of

these tasks are strongly coupled, and there is a strong relationship between down

conversion and filtering, which are the main tasks of a channelizer along with sam-

pling rate conversion [21]. Therefore, a DFE is primarily responsible for two tasks:

channelization and sampling rate change, which are necessary for most air interfaces

of wireless communication systems.

Channelization is a process of separating multiple users or channels commonly

found in FDM schemes, i.e. each channel occupies its own BW given a much wider

system BW and many channels within it. This is a common way to share a radio

spectrum and is found in application domains that include radio astronomy, broad-

cast TV and radio, etc. There are 3 basic tasks for a channelizer: 1. down conversion,

2. downsampling, and 3. rejection of adjacent channels via filtering. These tasks can

be accomplished independently or jointly. A modern channelizer uses multirate SP

techniques to achieve different tasks at the same time, such as using polyphase filter

bank (PFB) techniques introduced in [14]. This method allows all-in-one solutions

using inner- product (IP) and discrete Fourier transform (DFT) operations. The

input to such a system is a frequency domain multiplexed (FDM) signal, and the

output is a time domain multiplexed (TDM) signal, where each channel corresponds

to an index of a DFT. This makes the polyphase channelizer a versatile system for
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a front-end receiver.

For baseband processing, manufacturers prefer fixed clock rates over tunable

clocks due to their advantages in terms of cost, accuracy, and stability. Sampling

rate conversion (SRC) is generally necessary between a fixed clock and some de-

sired sampling rate. Through such use of SRC, many different data rates can be

accommodated from a common fixed clock. Often, non-integer resampling, such as

fractional resampling, is needed [13, 21]. In the development of such resamplers,

polyphase filters are of particular interest due to their ability to reduce resources,

perform filtering, and convert sample rates simultaneously. In addition, PFB de-

composition provides matrix structures that can be used to perform efficient IP

operations. Using GPUs, we can implement the associated IP operations in parallel

using all of the available threads and resources [44].

We address the limitations of polyphase channelizer by eliminating additional

buffers and complex multi-dimensional buffer management using a simple indexing

scheme on a single-dimensional array. We introduce the notion of assigning a chan-

nel to a block of threads in the GPU, allowing multiple channels to be processed in

parallel across multiple blocks, thereby enabling scalable, high-throughput parallel

receiver. We demonstrate efficient GPU-based techniques to achieve arbitrary re-

sampling. Finally, we integrate our methods for performing polyphase channelizer,

SRC, and parallel, multi-channel processing to derive a powerful GFE receiver de-

sign, and we discuss performance results from our prototype implementation of this

receiver.
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3.2 Polyphase Channelizer

A typical base station (BS) contains N sets of sub-receivers to down convert

and demodulate multiple narrowband RF channels. Further, each sub-receiver has

its own RF mixer that will down convert from some carrier frequency to an IF,

followed by an additional task of down converting to a baseband. This task of having

one dedicated sub-receiver per channel and processing the channels independently

can be a daunting task, often requiring a “room full of receivers”, not to mention

excessive power consumption. This per-channel approach is used because of its

flexibilities, but it requires a large amount of resources. Instead of building N one-

channel or per-channel receivers in parallel, one can build a single receiver to process

all the channels at once [43].

Although the idea of channelization has been around for a long time, a mod-

ern channelizer was introduced in [14] using polyphase filters that perform multiple

tasks simultaneously. Using a PFB means having a parallel arrangement of filters

that is responsible for different outputs of the spectrum of the signal. The polyphase

filter as a multirate filter performs simultaneous sampling rate change and lowpass

filtering. In addition, using a DFT as modulation can provide a more cost effective

solution than N parallel independent filters and mixers [43]. A basic operation of

channelization is as follows: a down conversion is necessary to bring COI to base-

band, a lowpass filter is used to remove the adjacent channels to reject co-channel

interference, and finally, a downsampling is needed to reduce an unnecessarily high

sampling rate and the associated computational burden. Following this channeliza-
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tion, an SRC may be necessary to convert the sampling rate to desired multiples of

the data rate.

An alternate solution to performing channelization as a single merged process

using a PFB structure offers major advantages by reducing resources while pro-

cessing multiple channels at the same time. We will not discuss all the details of

transforming bandpass filters into a channelizer here [13], instead we will provide an

overview. We will refer to a channelizer as a polyphase channelizer from now on.

In a standard polyphase channelizer configuration, one can simply divide the

input sample rate by the number of filter banks, Q to derive the output sample rate

(i.e., downsampling by an integer factor). Similarly, the system BW is also divided

by Q into equal-sized channel BWs. The number of PFBs matches the number

of DFT points. This is called a maximally decimated polyphase channelizer [14],

where the downsampling rate equals the number of PFBs. A notable contribution

in [14] introduces an arbitrary bandwidth, channel spacing, and output sample rate

channelization by performing interpolation at the same time simply by partially

decimating and rearranging the data between the filter and DFT stages. This is

effectively a rational resampling channelizer. We distinguish these two types of

channelizers by referring to a standard channelizer as a maximally decimated chan-

nelizer, and the other (being the interpolating channelizer) as a partially decimated

channelizer [14]. A polyphase channelizer is shown in Figure 3.1 along with an

optional SRC stage at the end to represent a basic DFE block diagram.

Prior to channelization, a conventional filter must be decomposed into a 2D

polyphase filter matrix [12]. An input buffer must be prepared to perform an IP
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Figure 3.1: Block diagram of polyphase channelizer implementation.

between the input samples and the filter coefficients to perform a convolution op-

eration. An additional input buffer or a shift register is used to accomplish such

a task. A polyphase channelizer uses an input buffer, a filter coefficient matrix,

a transfer buffer, and a DFT to perform maximally decimated channelization, i.e.

F out

s = F in

s /Q, where Q is the number of PFBs, which is also the number of DFT

points. In this scheme, the input buffer and filter matrix have an identical dimen-

sion of Q × M , where Q is the downsampling rate or number of rows and M is

the length of the subfilter or number of columns. The output of the IP produces

a Q × 1 vector. Since a commutator is used to present the input one sample at a
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time to the input buffer, a transfer or an intermediate buffer is used to store all

the computed IP values prior to the DFT. Finally, as seen in Figure 3.1, an output

buffer can be installed optionally to store all the data following the DFT. Therefore,

it is necessary to use shift registers or buffers at every stage to compute the IP and

DFT in a polyphase channelizer.

For the partially decimated polyphase channelizer presented in [14], the com-

plexity increases significantly, especially with managing the buffers. Overall, the

IP computation and DFT stay the same but the buffers have to be manipulated

to absorb all of the phase shift in the time domain. Reference [14] presents a ser-

pentine shift to move around the input samples for the IP operation. Because it is

interpolating at some rate of P in addition to decimating at the rate of Q, the IP

is being produced P times faster than the standard polyphase channelizer. Since

the IP matrix dimension is the same as before, this creates overhead to manipulate

the buffer to prepare for the next set of Q/P or R input samples. For a hardware

device such as an FPGA, this is realized by using a system clock that is operating

much faster than the input sample rate. This is still a cumbersome task to perform

in the hardware. Given an input stream arriving serially, one would have to create

a 2D shift register to perform the serpentine shift. In the meantime, the remaining

rows of banks must continue to compute the IPs, and therefore, additional pointers

are needed to keep track of all the IPs to be computed in timely manner for a DFT

operation. In fact, one would need P pointers, which introduces additional overhead

in implementation.

Following the IP operation, an intermediate buffer is used to collect all the
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IPs one at a time. However, because only R samples out of Q samples are the new

IPs, a phase shift occurs at the output of the DFT. This is because the remaining

samples are the time delayed version of the previous set of IP values. Therefore,

the data must be circularly shifted at the input of the DFT in order to absorb the

phase shift at the output of the DFT [14]. Without this circular shift, the output

of the DFT will exhibit a sign reversal on every other DFT output.

Therefore, theoretically speaking, a rational resampling in this channelizer is

possible. However, in practice this does not appear to be practical using current

technology. The examples presented in [14] use interpolation rates that are integer

multiples (2 or 4) of the data rate, since discrete domain systems have a close

relationship between sampling rate and data rate that are multiples of each other.

This is limited if an all-discrete solution is applied to an analog or a non-integer

multiple discrete systems. In addition, serpentine shifts and circular shifts can

be performed easily if they are in multiples of even numbers. For an odd integer

multiple, such an operation is more complex and may require additional buffer

overhead. This is a trade-off of using an all-in-one channelizer, as in a polyphase

channelizer — while simple in architecture, its operation is complex and has no

flexibility.

Using extra buffers between successive stages simplifies the implementation

but increases overhead and resources. For a system such as a CPU or GPU, the

data is already stored in an array, whereas in hardware, the input data is streaming

in, and one needs to buffer the samples as they arrive. In the following sections,

we address these issues by essentially eliminating the serpentine shift operation
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and eliminating the commutator using grouped memory access. We simplify the

architecture considerably and make it more flexible by utilizing the GPU’s many

core architecture and memory hierarchy to process multiple channels simultaneously.

This makes our channelizer design readily adaptable across different applications.

3.3 Arbitrary Sample Rate Conversion

A sampling rate conversion (SRC) or resampling process is a technique to

convert from a fixed sampling rate to another fixed rate that is operating at a

different clock frequency, data rate, etc. A sampling rate can be increased, decreased,

or both at the same time using upsampling, downsampling, or rational resampling,

respectively. This rational resampling process is a two step process that can be

characterized as a ratio, R = P/Q, where P is the upsampling rate and Q is the

downsampling rate. An upsampler can be realized by inserting (P−1) zeros between

successive pairs of original samples. Conversely, a downsampler can be realized by

discarding (Q− 1) samples from each block of Q original samples. Along with this

sample rate change, an anti-aliasing filter is necessary to reject images. This anti-

aliasing filter is the most prominent constraint to be obeyed by any SRC system [21].

An integer-factor resampling can be achieved by setting P or Q to 1. A

straightforward approach is to use a cascade of these integer ratio filters to obtain

some fractional sampling rate of R. However, in practice, P needs to be large enough

to compute all possible interpolated points or interpolants, which are then discarded

at the rate of Q samples. This is computationally wasteful. One can use a single
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fractional resampler or a cascade of an upsampler, a filter, and a downsampler to

achieve fractional resampling. The former can make the filter very complex but

runs at a lower rate, whereas the latter simplifies the filter implementation but

runs at a higher clock rate [21]. More efficient realizations can be achieved using a

polyphase filter approach, which combines these groups of operations in an optimized

way [13]. However, polyphase realizations are limited in that they can only achieve

rational resampling through indexing of PFBs. Although this is relatively simple to

implement, it leads to redundancy. It is also inflexible since the sample rate change

is dependent on a precomputed filter that is designed for a certain fractional rate

only. In addition to rational resampling ratio, the ratio between the sample rate

and the bandwidth (of the COI) is very important [43].

An arbitrary SRC is an integer-ratio oversampling based technique that allows

multiple conversion ratios without requiring separate filter designs. It is based on the

idea of resample after reconstruction [21]. It can arbitrarily interface asynchronous

systems to different sampling clocks [20]. In many applications, an SRC is needed

to arbitrarily resample the fixed Fs coming out of an ADC or DAC, but in this

chapter, we resample after the channelizer to meet the data rate required for the

baseband processing. In polyphase filter based resampling, the filter coefficients are

precomputed and we design a P -path filter accessed by Q indexing to implement

a P/Q resampling operation. Interpolation is important for SRC to be effective.

Ideally, P should be large enough so that the output sample is as close as possible to

the desired sample position. This is called nearest neighbor interpolation. However,

often times, the desired sample point lies between the two available interpolants.
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One can derive such an intermediate point using linear interpolation [13].

In linear interpolation, we first interpolate to the maximum output sample

rate, essentially forming a “virtual analog signal” from the resulting samples, anal-

ogous to a DAC. Then we resample this virtual analog waveform at the desired

sample locations [13, 22]. We use a polyphase interpolator to obtain the available

interpolants, effectively achieving nearest neighbor interpolation. However, this be-

comes inefficient as we try to achieve a higher interpolation rate (finer granularity),

i.e., as P increases. This is because an increase in P leads to an increase in the

filter order, which in turn increases memory requirements. It is desirable to interpo-

late to a sufficient degree such that further interpolation can be performed linearly.

Linear interpolation is achieved by convolving the input samples with a triangular

pulse. In the frequency domain, a triangular pulse is the product of transforms of

two identical rectangular pulses [13, 22]. The linearly interpolated sample between

2 samples at k and (k + 1) can be expressed as:

x(k +∆) = x(k) + [x(k + 1)− x(k)]∆ = x(k) + ẋ(k)∆ (3.1)

where k is the PFB index, and ∆ is the time offset between the interpolant and

the desired sample point. We now have a pair of polyphase filters that compute the

interpolant and the derivative of the interpolant located at n+ k/P , where n is the

input sample index. We then interchange the interpolation operation between the

output samples and the filter coefficients. Finally, using the Taylor series expansion,

we obtain the following expression for the desired output:
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Figure 3.2: Plot of polyphase arbitrary resampler. The top figure shows a sinusoidal

wave at 270.833 kHz sampled at 1,625 kHz. The bottom figure shows the same

270.833 kHz signal resampled to 541.667 kHz.
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We are now ready to arbitrarily convert the sampling rate. The resampling

error needs to be kept less than the quantization error of the input signal [13, 22].

Since we are using floating-point values, this timing jitter error is kept very low.

This is achieved using a phase accumulator to track the time difference between

samples. The accumulator can be sped up or slowed down depending on how fast it

is incrementing, much like a time varying or continuous time resampler [20,22]. An

example plot of using a polyphase arbitrary resampler is shown in Figure 3.2.
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3.4 GPU-based Arbitrary Resampling Polyphase Channelizer

We map our targeted algorithms onto a GPU to strategically take advantage

of the compute resources given the parallelism in the application. We implement the

polyphase channelizer on the GPU using an IP kernel and a CUFFT kernel. CUFFT

is a highly optimized standard FFT library component that NVIDIA provides. We

process real I-Q values instead of complex values in the GPU.

Previously, we discussed the operation of maximally decimated polyphase

channelizer and partially decimated polyphase channelizer structures. We have

shown the benefits of computing IPs in GPUs [44]. We apply these techniques

to perform a fully parallel version of IP computation to optimize throughput. A

major difficulty of performing channelization is presenting the input data for IP

computation. In [14], an input buffer is used to arrange the data in a 2D format so

that IPs can be performed for all Q ×M values. However, in our implementation,

we eliminate such a buffer by indexing through the incoming input stream, which

is presented to the GPU as a single-dimensional array. For polyphase filtering, we

load values columnwise, but we compute across matrix rows. In addition, due to

downsampling, the input samples are loaded in a bottom-up manner using the com-

mutator approach. Using the GPU, we can utilize coalesced memory transfers by

reading in all Q input samples onto an SM once, and indexing through them using

the optimized indexing scheme illustrated in Figure 3.3. This eliminates the addi-

tional buffer required to perform 2D shift registering, and any additional overhead

to move the data around. These techniques allow for a fully parallel IP computation
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on the targeted GPU.

For the partially decimated polyphase channelizer, we perform a similar task

as the maximally decimated polyphase channelizer, except that the data is only read

R samples at a time, where R = Q/P , as discussed earlier. Ideally P should be a

multiple of 2 to facilitate efficient data swapping. For example, for P = 2, the buffer

is filled from the half way point to the end; for P = 4, it is filled from one quarter of

the distance into the buffer; and so on. In the meantime, P pointers are employed to

perform the IP operations on the remaining rows. If P is an odd number, the input

buffer management becomes more complicated with serpentine shifts and increased

buffer cost to handle all of the data swaps resulting from fractional resampling.

Now using the GPU, we access a block of R samples at once from the input

stream, and load the block into SM to perform IPs across all of the filter banks at the

same time. We do not need a commutator to read input samples one at a time any

more, instead we perform vector processing. Similarly, we do not need any additional

input buffers, nor an additional P data pointers to compute the IPs, and finally,

we do not need to perform the complex serpentine shift. The buffer management

is handled through an indexing scheme, as illustrated in Figure 3.3. This indexing

scheme can be adapted to hardware as well to use of a 1D array in memory without

forming a 2D serpentine shift register, and the scheme can support arbitrary values

of P . Using this approach, we effectively simplify all of the operations to be based

on a linear input array, and therefore, do not have to incur costs associated with

difficult multi-dimensional indexing and additional buffers. This helps significantly

to streamline the overall channelization process.

44



For the partially decimated polyphase channelizer, only R input values are

presented although a total of Q IP values are computed on each CUFFT invocation.

The remaining (Q − R) values are IP values between previous input samples with

different sets of filter coefficients. This causes a phase shift in the DFT and must

be absorbed at the input of the DFT. A simple solution is to employ a finite state

machine (FSM) that switches between states whenever R samples are read. There

is a total of P states [14]. This is a critical operation, and in a GPU, this process

is made simpler by using coalesced writes to GM. Such coalesced writes can be

employed when IPs are performed, and data can be swapped depending on the

state transitions. All of these improvements further simplify our implementation,

and allow for improved efficiency due to coalesced memory access, elimination of

buffers, and parallelism exposed using a GPU. We capture the overall process in the

pseudocode shown in Figure 3.3.

We have, through our developments up to this point in this section, presented

a complete GPU-based implementation of polyphase channelizer. We have also

incorporated an optional feature that allows integrated processing for outputs of

the Q-point DFT. In a serial implementation, such as in a CPU, we can perform

the DFT and SRC at the same time by “rolling in” the SRC functionality with the

DFT. If it is necessary to process all channels, then all of the DFT outputs can be

buffered, and then processed individually using an iterative process. In a hardware

implementation, this overhead can be mitigated by processing each channel very fast

using a faster clock source; however, this may lead to unwanted power consumption

and heat dissipation.
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for nn = 0 to INPUT LENGTH − 1 do

SM input[ix] = GM input[nn + (ix×Q + iy)]

SYNC

SM prod[ix] = h[ix×Q+ iy]× SM input[ix]

SYNC

IP+ = SM prod[ix]

if state = 0 then

write to GM

go to next state

else if state = 1 then

swap the data then write to GM

go to next state

...

else if state = P − 1 then

swap the data, then write to GM

return to state 0

end if

nn+ = R

end for

Figure 3.3: Pseudocode for channelizer operation. Here, ix is the thread index, and

iy is the block index.
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We use separate kernels to perform further processing after CUFFT. The final

output of CUFFT resides in the GM and we cannot simply roll the SRC into the

CUFFT since we do not have access to the CUFFT kernel. However, the chan-

nelization is now complete and CUFFT provides the system with all of the TDM

outputs at once. In contrast to a typical hardware implementation, outputs from

the DFT will arrive serially.

We can now perform SRC on all of the channels simultaneously. We perform

SRC using the polyphase arbitrary resampler we have presented earlier in this chap-

ter. Using the GPU, we perform nearest neighbor interpolation followed by linear

interpolation to reduce timing jitter errors. Similar to our channelizer implementa-

tion, we utilize SM to perform IP computations as well as computation of fractional

differences. We spread the workload across the threads in an effort to maximize

exploitation of parallelism. A corresponding pseudocode description is shown in

Figure 3.4.

Dedicated VLSI implementations of polyphase channelizers have been demon-

strated in prior work (e.g., see [34,45–47]). The novelty of our work in this chapter

is in our complete GPU-based polyphase channelizer and SRC implementations, and

our associated methods for parallel processing of the channels. Our efficient GPU-

based implementations of these important wireless communication subsystems help

to significantly reduce costs and development time and increase flexibility compared

to dedicated VLSI implementations. The result is a powerful, cost-effective GFE

receiver that performs all of our targeted tasks and achieves our goal of integrating

GPU processing “closer to the antenna.”
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for nn = 0 to INPUT LENGTH − 1 do

SM reg[ix] = GM input[(nn + ix)×Q + iy]

SYNC

while accum < P do

compute PFB index, k

compute fractional difference, ∆

SM prod[ix] = h[ix× P + k]× SM reg[ix]

SM dprod[ix] = dh[ix× P + k]× SM reg[ix]

SYNC

IP+ = SM prod[ix]

dIP+ = SM dprod[ix]

output = IP +∆× dIP

accum+ = ∆

end while

nn ++

end for

Figure 3.4: Pseudocode for polyphase arbitrary resampler.

We have demonstrated a novel form of inter-channel parallel processing, where

different channels are mapped to different blocks of GPU threads, and are processed

in parallel to provide linear (in the number of channels) increase in communication

system throughput. Our implementation demonstrates that a sufficient number of

threads is available within such a block to perform the necessary filtering operations
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and other relevant computations. In contrast to implementing N channels in parallel

using N separate hardware receivers, our solution demonstrates the processing of a

large number of channels independently within a single GPU, thereby facilitating

green computing with low power consumption and resource requirements. This

is attractive for both base stations, where resource usage is critical, and mobile

stations, where power consumption is critical.

In the remainder of this chapter, we focus on demonstrating and experimen-

tally evaluating the performance of our novel wireless communication subsystem

designs, and our proposed approach for GPU-driven, multi-channel processing.

3.5 Implementation and Experimental Setup

For our design and implementation, we consider GSM [48], a popular second

generation (2G) wireless communication standard, particularly as a base station

(BS) to process multiple uplink channels from mobile stations (MSs) all at once.

GSM has 124 channels in 25 MHz system BW with channel spacing of 200 kHz,

and data rate of 270.833 kHz using GMSK modulation. Many digital communica-

tion systems use data rates that are related to the sampling rate, but for nonlinear

modulation such as GMSK, they can be unrelated and at a fractional rate instead

of integer multiples of the data rate. This limits using a typical polyphase channel-

izer due to strong coupling between the data rate, channel spacing, and sampling

rate. Therefore, fractional SRC must be accompanied to get to the correct integer

multiples of the desired data rate afterward.
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Figure 3.5: Plot of GMSK modulation with overlapping polyphase channelizer filters

spaced apart at 200 kHz.

First, we design our filter to be used in the polyphase channelizer, using an

equiripple FIR filter with order of 4,096, and we design the channelizer as a high-

quality spectrum analyzer since there is no guard band between channels. However,

due to GMSK signaling [4], most of the energy is concentrated in the center of the

channel, therefore, we allow crossover BW between the channels. Thus, the filters

overlap in the transition region, as shown in Figure 3.5. We use our FIR filter as a

single GMSK spectral mask as long as we can mask out the COI.

Since there are 124 channels to process, we perform a 128-point DFT in the

channelizer using CUFFT. The number of DFT points is also the decimation rate.

Therefore, we have a Q ×M IP matrix, where Q = 128, which is also the number

of PFBs, and M = 32, which is the subfilter length, and is also the size of a warp
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in CUDA. In other words, for every Q input samples, we have Q IP values as input

to a Q-point DFT, which in turn outputs Q channels. This configuration gives us a

maximally decimated channelizer.

However, in case of GSM, where the channel spacing is 200 kHz and the data

rate is 270.833 kHz, it is challenging to reduce the BW and Fs to satisfy both criteria

after channelization. Since the data is complex, it must be sampled at least the

data rate to avoid aliasing. Therefore, a standard maximally decimated channelizer

cannot be used for an application such as this, where the data rate is greater than

the channel spacing or when Fs is not an integer multiple of the channel spacing or

data rate. The channelizer must be modified to increase Fs.

Previously in this chapter, we presented a partially decimated channelizer,

which increases the channelizer’s output sampling rate by interpolation. We gener-

ally cannot change other parameters without affecting the entire system. Therefore,

we partially decimate or interpolate by some value P that yields Fs that is greater

than the data rate. For simplicity, we use P = 2 to give Fs = 400 kHz. This clearly

satisfies the Nyquist criteria; however, typically, we need Fs to be 2–4 times the data

rate for proper baseband processing, and therefore, a higher degree of interpolation

may be needed.

In GSM, we cannot fractionally resample using the channelizer alone simply by

using the input and transition buffer we have discussed earlier. This can be a daunt-

ing task and is a prime reason why polyphase channelizer usage is limited. Even if

we are able to resample at multiples of the data rate, we would need, using conven-

tional techniques, a complicated filter design with high order filter coefficients, word
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lengths, extra buffers, overheads to manage complex shift register operations, and

possibly, a higher clock rate, which are all expensive using direct implementation.

Therefore, an additional SRC is necessary to accommodate such a fractional data

rate, and must be applied to all channels.

In Section 3.4, we presented a polyphase interpolator based arbitrary resampler

to dynamically compute the fractional difference of the output and desired sample

points. We design the associated filter to be an equiripple FIR filter with a 32 P -

paths filter. We also presented an approach to assigning a channel to a dedicated

block inside the GPU, enabling parallel processing across all channels using a single

GPU. This leads to a complete solution to achieving any desired sampling rate,

channel spacing, and down conversion in a fully parallel structure to achieve high

throughput. Furthermore, all of this is done in a (GPU-based) software framework

to enable great flexibility in terms of algorithm and application experimentation and

modifications. Using the algorithms we presented previously, we can now resample

from 400 kHz down to the desired data rate of 270.833 kHz on all channels.

In our implementation, there are 3 kernel calls in the GPU: 1. IP compute, 2.

CUFFT, and 3. SRC. For IP compute, we do not create any buffers, but rather use a

single dimensional input array as is, using the indexing scheme shown in Figure 3.3.

We assign each PFB to a block for computing the IP, which is performed using

registers and SM. The IP compute kernel is optimized further by placing the filter

coefficients in CM for fast read-only broadcast to multiple blocks. At the output of

the IP, we use a 2-state FSM to switch between swap and no-swap for presenting the

data to CUFFT. The output of the CUFFT is then used to compute SRC for every
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channel. Each channel is assigned to a block to change the sampling rate across

all TDM channels simultaneously. The separate kernel calls are used to reshape

the block and thread dimensions each time, which is achieved by exploiting the

flexibility of our software-based implementation.

Using our approach to design a GFE receiver for a BS, the overall operation of

channelization can be reversed to transmit multiple channels at the same time. This

is called a transmultiplexer [14]. A BS would apply a transmultiplexer in the down-

link when it broadcasts to multiple MSs. If our GFE scheme is to be implemented

in MS using a mobile GPU, instead of using banks of bandpass filters to select an

active channel, a simple selection of DFT index can be employed since all of the

channels are available for use at the same time. In addition, our implementation can

readily support the frequency hopping option of GSM by simply selecting different

DFT indices and avoiding additional overhead. These are some of the distinct ad-

vantages of our GFE-based implementation over conventional hardware designs, in

addition to the advantages gained by using a software-based approach.

Our implementation can be adapted to other modulation schemes, such as

linear modulation, and also to other applications, such as FM radio and TV broad-

cast. Exploring and optimizing this adaptation to other modulation schemes and

applications is a useful direction for future work.

53



3.6 Results and Analysis

GSM traffic can be broken into two type of channels: traffic and control chan-

nels. We focus our attention on the traffic channel (TCH) only. Within TCH, the

GSM frame structure uses slots, frames, and multiframes to communicate between

the BS and MS. There are 8 time slots per GSM frame. Each time slot covers a dura-

tion of 0.577 ms, and thus, each frame lasts for 4.615 ms. A GSM multiframe (MF)

is a basic unit of measure in this context. Each traffic MF consists of 26 frames,

with a duration of 120 ms. On the other hand, a control MF contains 51 frames.

We focus on traffic MFs for our analysis since most of the overall communication

traffic comes from traffic MFs.

Figure 3.6 shows a plot of over-the-air GSM signal containing a broadcast

channel in the center and a traffic channel (e.g. channel 6). Figure 3.7 and Figure 3.8

show the broadcast channel and traffic channel after channelization, respectively. We

observe that the broadcast channel is always on as it should, since it is broadcasting

the cell information all the time, and it also has more power. The traffic channel is

bursty since it is an FDM and a TDM signal, and only contains the necessary data

given its channel frequency and time slot.

We used NVIDIA’s GeForce GTX 680 as the target GPU platform to imple-

ment our design. The GTX 680 has 2 GB of GM, 1,536 CUDA cores, 8 MPs, 64

kB of CM, and 48 kB of SM. We used CUDA driver version 5.0, and a compute

capability of 3.0. Although our focus is on throughput, we have summarized our

results for both runtime (the latency for processing a single MF) and throughput in
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Figure 3.6: Plot of GSM signals prior to channelization showing a broadcast channel

in the center and a traffic channel next to it.
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Figure 3.7: Plot of GSM broadcast channel after channelization
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Figure 3.8: Plot of GSM traffic channel after channelization

Table 3.1: Results for one GSM multiframe

with transfer without transfer

polyphase channelizer 142.4 ms / 29.2 MSps 118.6 ms / 35.1 MSps

SRC 108.3 ms / 38.4 MSps 92.7 ms / 44.9 MSps

overall 227.8 ms / 18.3 MSps 211.8 ms / 19.6 MSps

Table 3.1. Here, MSps stands for mega samples per second.

We modeled and simulated the entire process in MATLAB from the captured

over-the-air data. Then we implemented our design in C and CUDA for the CPU

and GPU, respectively. We used floating-point precision throughout. We tested

our implementation on a single MF, which has 32,500 samples. In Table 3.1, we
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can see that we achieved high throughput on all of the kernel calls and on the

overall processing for the MF. Our polyphase channelizer kernel includes CUFFT,

as described in Section 3.4. Since it is highly optimized for the GPU, the execution

time for CUFFT is very small and the throughput is over 1 GSps.

In Table 3.1, we show the execution times for each kernel. The targeted la-

tency for our overall runtime measurement was the duration of a traffic MF, which

is 120 ms. Our implementation missed this targeted latency only on the polyphase

channelizer kernel call with the data transfer time included. Typically, one would

leave the data in GPU for further processing so this inclusion of the data transfer

time artificially inflates the runtime measurement in the context of practical im-

plementation scenarios. Thus, for practical purposes, our implementation can be

viewed as consistently achieving the required latency constraint.

Even though we removed the serpentine shift, we used an FSM to switch

between different states in the transfer buffer and this added overhead via nested

branch conditions. These branch conditions cause serialization in the GPU, which

carries clock cycle penalties. For the arbitrary SRC kernel, we were under the MF

duration. For the overall runtime, we were under 240 ms or 2 MF durations. Our

main goal is to demonstrate high-throughput using a GPU and our slowest kernel

call is over 100 times faster than the data rate while being close to the targeted

latency constraint. Overall, we can process all 124 channels and resample all of the

channels at the same time in less than 2 MF durations. This demonstrates concretely

a major advantage of our GPU-based implementation as a front-end receiver.

Our reference serial CPU implementation exhibited runtime and throughput
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levels of 1,010 ms and 4.12 MSps, respectively, for one channel. For the all-channel

version, it resulted in 1,580 ms and 2.63 MSps. Although the throughput is still high,

the long runtime leads to unacceptable latency for real-time application, whereas

our GPU implementation can be used in real-time scenarios.

We also performed an experiment that isolated the effect of our approach

to buffer indexing as an alternative to using serpentine shift and an input buffer.

From this experiment, we measured a factor of 22 (22x) speedup using our indexing

scheme compared to the serpentine shift operation. For our GPU implementation,

we used the same dimension as we have discussed in Section 3.5. Our implementation

resulted in no register spill loads or stores, and SM usage of less than 384 bytes.

Our GPU implementation not only exhibits high throughput, but also latency

that is close to the frame time for all channels, not just for a single channel. We

note that these measurements are for a desktop GPU, and we primarily focus on the

throughout since the latency of the system can be heavily architecture dependent.

For example, the latency can be reduced on a mobile GPU or an embedded GPU that

is integrated more tightly with the host CPU as compared to a desktop GPU. Also,

the memory transfer and access characteristics of an embedded implementation can

be significantly different from the desktop version, and can be tailored toward low

latency by using techniques such as pipelined or “ping-pong” buffers. Regardless

of the selected platform, we were able to demonstrate real-time performance using

actual GSM TCH data. In addition, we demonstrated our implementation using

floating-point precision in all software components, which is in contrast to the use of

fixed-point representations that is typical in hardware solutions. Our use of floating
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point provides significantly enhanced flexibility and testability, and facilitates rapid

prototyping.

3.7 Summary

In this chapter, we presented a GPU-based polyphase channelizer that per-

forms the major tasks of down conversion, filtering, and resampling of a communi-

cation channel of interest. In addition, we developed an implementation of sampling

rate conversion using a polyphase filter based arbitrary resampler that resamples to

any arbitrary rate. We presented a GPU-based front-end receiver architecture that

utilizes the parallelism found within these subsystems, and achieves high through-

put and low latency. We improved and simplified the channelizer architecture by

replacing complex buffer operations with a simple, efficient indexing scheme.

We demonstrated the capability of assigning a channel to a dedicated block

of GPU threads, and applying multiple blocks in parallel to simultaneously process

large numbers of channels, thereby realizing a novel form of high data rate par-

allel receiver. Our approach enables design of a system that has the flexibility of

a single-channel receiver, and the performance and throughput of an all-channel-

in-one receiver. Our solution is a software-based, floating-point, general purpose

implementation rather than a fixed-point dedicated hardware accelerator. These

capabilities together realize the objective of using a GPU as a flexible and highly

parallel device for bringing signal processing capabilities closer to the antenna.
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Chapter 4: Implementation of a High Throughput Polyphase Chan-

nelizer on GPUs

In this chapter, we propose a novel GPU-based polyphase channelizer archi-

tecture that delivers high-throughput and low latency. This architecture has ad-

vantages of having reduced complexity, and being optimized for parallel processing

of many channels simultaneously, while also being configurable via software. This

architecture builds on the design presented in Chapter 3, and improves this design

in various ways to simultaneously provide major gains in both throughput and la-

tency. We demonstrate the performance of this new architecture by applying it to

channelization of signals based on the 3G wireless standard, UMTS/WCDMA. The

work of this chapter was presented in [49].

4.1 Introduction

A modern communication transceiver contains two major components: a radio

frequency integrated circuit (RFIC) and a baseband processor. An RFIC is respon-

sible for conversion between analog and digital domain signals, and mixing signals

up and down from baseband to some RF. A baseband processor or a radio modem

is responsible for handling all of the signal processing tasks and communication pro-
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tocols. The notion of software radio (SWR) is defined in [1]. This notion of SWR is

different from software defined radio (SDR). An SWR is responsible for the entire

processing chain between RF and baseband via software, whereas SDR is respon-

sible for the chain between intermediate frequency (IF) and baseband. A modern

RFIC can also be fully programmed and reconfigured via software from baseband

modem microprocessors.

In SWR systems, signal processing (SP) tasks, such as signal conversion, mix-

ing, resampling, and filtering, are all done in baseband using software in the discrete-

time sample domain. An RFIC is then responsible for direct conversion to and from

RF. The SWR design process reduces the complexity of the RF front-end, but im-

poses an increased burden on the baseband processing subsystem. The process

enables reconfiguration of communication system features via software, which is

much more efficient compared to redesigning banks of dedicated sub-receivers in

hardware. This software-intensive design process is also attractive for designers and

engineers who can focus more on their particular form of expertise — e.g., RF en-

gineers can focus on RF circuit design, while SP engineers can focus on developing

SP algorithms and their associated software implementations.

A majority of the transceiver functionality is contained in the software mo-

dem. The goal of the software-based transceiver is to bring the SP functionality

closer to the antenna as much as possible, reducing the burden on the RF front-end,

and utilizing the full flexibility of software. A software-based modem is particularly

attractive over dedicated hardware solutions, such as ASIC- and FPGA-based so-

lutions, due to significantly reduced design time from modeling to implementation
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to production. One of the major advantages of dedicated hardware is low-power

design, but with the advancements made in system-on-chip (SoC) architectures

over the years with particular emphasis on low-power design, solutions based on

programmable SoC architectures can deliver levels of energy efficiency that are suf-

ficient for many applications (e.g., see [50]). An SoC can be delivered as a complete

solution that integrates not only the radio unit but other key units, such as CPU,

GPU, and peripheral controller subsystems, as well.

A modern communication system requires multiple users and data streams to

be processed simultaneously. A front-end transceiver must be able to transmit and

receive multiple channels simultaneously, and a technique known as channelization is

used to separate multiple users or channels from a single communication stream. A

channelization process is responsible for 3 basic tasks: (1) signal up/down conversion

(mixing), (2) sample rate change, and (3) filtering. In this chapter, we refer to

channelization in the receiver architecture only, which means that the channelization

process is responsible for down conversion, reducing sample rates, and filtering to

reject images at the receiver.

A straightforward approach to designing a channelizer is to design a bank of

dedicated sub-receivers. Each sub-receiver is allocated to a single channel. Such an

approach involves large costs in terms of area, power, and complexity. At the same

time, the channels are in general not all used simultaneously, and many of the sub-

receivers may be idle at any given time during operation. Such idle sub-receivers

are wasteful in terms of power consumption and area.

A more integrated approach is needed to replace such a “room full of re-
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ceivers” to reduce redundancies, and improve resource utilization. For this purpose,

a polyphase channelizer was introduced in [13, 14]. This architecture employed

polyphase filter banks (PFBs) and DFT operations to accomplish multiple chan-

nelization tasks at the same time. In particular, the PFB was used to perform

inner-product (IP) computation for filtering and resampling at the same time, and

DFTs were used for mixing signals up or down. We refer to a polyphase channelizer

in the receiver chain as a polyphase down channelizer and in the transmitter as a

polyphase up channelizer. In this chapter, we focus on polyphase down channelizer

implementation, which we will simply refer to it as a polyphase channelizer. The

input to a polyphase channelizer is a frequency domain multiplexed (FDM) signal,

and the output is a time domain multiplexed (TDM) signal. The input FDM signal

can represent, for example, a dedicated channel for one user or a channel that is

shared across multiple users using spreading codes within the channel. The output

corresponding to each DFT index corresponds to a specific user in the TDM signal.

In this chapter, we demonstrate an important application of GPU technology

to SWR systems. In particular, we develop a novel GPU-based polyphase chan-

nelizer architecture that delivers high-throughput, and provides reduced complexity

and optimized parallel processing of many channels, while being configurable via

software. Since baseband modems require SP accelerators that are performing the

same SP tasks on incoming streams of data, there is significant data and task par-

allelism available, which we exploit in our proposed architecture using the intensive

parallel processing capability of a GPU. In our proposed design, the GPU can be

used as a stand-alone unit or in conjunction with an existing hardware modem. Our
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goal is to use the GPU as a radio, and bring it as close to the antenna as possi-

ble. Such a GPU-based system can reduce the burden on a power hungry baseband

modem, and ideally replace the existing modem altogether. Thus, our proposed

channelizer architecture simplifies the design, and enhances flexibility, while provid-

ing significantly accelerated performances.

The remainder of this chapter is organized as follows. First, we discuss the

theory and operation of polyphase channelizer. We then introduce a novel GPU-

based approach for high-throughput polyphase channelizer implementation. We

develop the optimized mapping of polyphase channelizer functionality onto GPUs

for parallel processing of PFB and DFT subsystems. We also introduce a method

for assigning a communication channel to a block of threads in a GPU so that

simultaneous processing of many channels can be performed in parallel. This method

for exploiting parallelism across channels enables implementation of scalable, high-

throughput, and real-time parallel transceivers. Finally, we integrate all of the novel

methods developed in this chapter and demonstrate their utility using an important

wireless communication standard.

4.2 Related Work

We introduced the notion of using the GPU as a radio, particularly as a front-

end transceiver, in [41], and in this chapter, we continue to explore the concept of

a GPU front-end (GFE) receiver. GPU back-end receivers, which are responsible

for channel decoding (e.g., using Turbo and LDPC decoders), are captured in [51,
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52]. A modern GPU-powered communication system that uses multiple antenna

configurations and a MIMO detector is been presented in [53].

Other related work on application of GPUs to communication system design

includes GPU acceleration of FFT computation for channelization [54], integrating

GPU technology into a software radio framework [55], accelerating polyphase filters

using GPUs [56], and channelization via mobile GPUs [57]. In [54, 57], optimizing

FFT and PFB for wideband channelization was introduced using OpenCL. This

work investigated implementations that were targeted to different classes of AMD

GPUs. It targeted GNU Radio’s polyphase filter channelizer and compared the

speedups and computation time between CPUs and different GPUs. In this work,

we design and optimize our polyphase channelizer on NVIDIA GPUs using CUDA.

Our primary goal is to target our implementation toward wireless communication

systems, and toward meeting critical performance constraints of such systems — in

particular, constraints on throughput and latency.

Additionally, there are various FPGA/VLSI implementations of polyphase

channelizers in the literature (e.g., see [47, 58–61]). These works largely focus on

optimizing resource usage, such as use of multipliers, and memory.

A preliminary version of this work was presented in [41]. This new chapter

goes beyond the developments of the preliminary version by incorporating significant

new enhancements to our proposed polyphase channelizer architecture for high-

throughput and real-time communication systems. Specifically, we further enforced

coalesced loads and stores from GM to SM; spread the work across the GPU more

efficiently by enabling increased workloads and scheduling more blocks of threads
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for the GPU to process; and eliminated some sequential aspects of the underlying

algorithms that were present in our preliminary version. Due to these enhancements,

the execution time of our new architecture is significantly reduced, well below the

target latency. Furthermore, the throughput has been increased significantly, while

providing for simultaneous processing of multiple channels.

4.3 GPU-based High-Throughput Polyphase Channelizer

We map our polyphase channelizer algorithm onto a GPU and exploit par-

allelism found in polyphase channelizer operations. First, we implement a fully

parallel PFB on a GPU, with the GPU used here to accelerate IP operations. We

then integrate into our GPU implementation a CUFFT kernel. CUFFT, a part of

NVIDIA’s library of signal processing blocks, is a parallel version of the DFT that

is highly optimized for use in CUDA. We process real I-Q values instead of complex

values in our GPU implementation.

We demonstrated an approach to high-throughput IP computation using GPUs

in [41, 44]. In this approach, we are given an input array from the host CPU that

is stored initially in GM. Instead of using an input buffer with dimensions Q ×M

to match the PFB, we simply index the necessary input samples. In order to mini-

mize the usage of GM, we first load the data from GM into SM. Each SM contains

M groups of samples so that the IP for multiple samples can be computed simul-

taneously. Since we can access Q samples at the same time, we no longer need

a commutator. However, one must be careful to access the input samples in a
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bottom-up manner to ensure that processing is carried out in the correct order.

The algorithm presented in [41] uses a sequential for-loop to index through

the input data. This is a simple approach to access Q samples at a time, but this

serialization inside the GPU causes increased latency. If there is a large number of

input samples to process, then this loop will dominate over the fast parallel process-

ing inside the loop. We propose a new algorithm that eliminates this for-loop based

processing. Specifically, instead of using a for-loop to step through the input, we

unroll the loop completely and map each sample to a separate thread. This enforces

the notion of SIMT processing in the GPU since we are performing the same opera-

tion over and over across the input data stream — i.e., polyphase filtering over the

input data. This design optimization eliminates sequential operation. Furthermore,

because only one output sample is generated by each thread, the optimization en-

ables the spawning of larger numbers of blocks and threads across the GPU, which

helps to improve overall device utilization. Figure 4.1 shows how the data is split

and loaded onto the targeted GPU.

Our objectives in further optimizing the design beyond the developments

in [41] include exploiting the SM as much as possible rather than reading and writing

excessively from and to GM. The optimized kernel design provides a larger workload

that is spread across the threads, with each thread encapsulating a lightweight oper-

ation. Since the volume of input data exceeds the filter dimension, GPU utilization

is increased. Each block or SM is loaded with TPB + M − 1 input samples, and

each thread is now responsible for filtering M samples. Therefore, in the optimized

design, a thread encompasses a multiply-and-accumulate (MAC) operation, which
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Figure 4.1: An example of how data is split and loaded onto the GPU.

also takes advantage of GPU’s fused multiply-add (FMA) operation. This is com-

pared to our previous design, where each thread performed multiplication only. The

results of these multiplications were then summed separately using a single thread,

which paused the other threads, leading to less efficient GPU utilization and loading

of the GPU.

For polyphase filtering, we load the values column-wise, but we operate row-

wise. Thus, when loading the data from GM to SM, the data is not coalesced

properly, and an additional step is necessary to enforce further coalescing in the

IP operation. A kernel is applied to shuffle the data to pre-position the data prior

to polyphase filtering. A pseudocode specification of this data shuffling process is
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idx = blockIdx .x × blockDim.x + threadIdx .x

if idx < INPUT LENGTH then

out [col + row × SAMPLES PER ROW ] = in[idx ]

end if

Figure 4.2: Pseudocode for data shuffling

shown in Figure 4.2. It is important to note that we read the data in a linear

fashion initially, to enforce caching on the read operation, then we write back to

GM in polyphase decomposed fashion. This reduces the latency slightly compared

to reading the data in polyphase decomposition manner first, and then writing it

back linearly. Following this operation, the polyphase filter kernel is called. This

kernel now reads the data linearly in coalesced manner to SM. Since we instantiate

threads that are multiples of a warp, the access pattern is byte-aligned and linearly

read, which further enhances the efficiency of the GPU implementation.

To demonstrate the overall operation of our proposed fully parallel polyphase

channelizer design, we provide the pseudocode specification shown in Figure 4.4.

Even with an extra kernel for data shuffling, the entire operation is now simplified

and further streamlined by eliminating a dominant sequential loop from our previous

design. We reshuffle the data back to its original format prior to applying CUFFT

for the DFT. After application of CUFFT, the channelization process is complete.

Each of the CUFFT output index corresponds to a TDM output stream. All of the

the channel outputs are produced simultaneously due to the parallel structure of

our proposed architecture. Figure 4.3 shows the overall block diagram of our new,
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Figure 4.3: Block diagram of GPU optimized polyphase channelizer

optimized polyphase channelizer implementation.

In summary, in this section we have built on our recent developments on

polyphase channelizer implementation [41], and incorporated additional design op-

timizations to further improve performance. The new design optimizations discussed

here include minimizing the rate of data transfers, enhancing coalesced access of GM,

optimized utilization of SM, and enhanced GPU utilization by reducing thread gran-

ularity (operation complexity). The result is a simpler architecture with reduced

bottlenecks and elimination of a dominant sequential loop. Collectively, these opti-

mizations result in significant further improvement in throughput and latency.

In the remainder of this chapter, we demonstrate and experiment with our

proposed design methods using a wireless communication standard. The results

provide concrete insight into the the performance of our GPU-based, multi-channel,

parallel transceiver in the context of a practical wireless communication system.
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ix = threadIdx .x

iy = blockIdx .y

pdx = blockIdx .x × blockDim.x + threadIdx .x

idx = iy × SAMPLES PER ROW + pdx

odx = pdx ×Q + iy

if pdx < SAMPLES PER ROW then

SM REG [ix +M − 1] = in[idx ]

if ix < M − 1 then

SM REG [ix ] = in[idx −M + 1]

end if

SYNC THREADS

for ii = 0 to M − 1 do

SM MAC [ix ]+ = CM COEF [(M−1−ii)×Q+iy]×SM REG [ix+M−1−ii ]

end for

SYNC THREADS

out [odx ] = SM MAC [ix ]

end if

Figure 4.4: Pseudocode for polyphase channelizer

4.4 Implementation and Experimental Setup

To experiment with our proposed new polyphase channelizer design, we target

an important 3G wireless standard, the UMTS air interface, WCDMA [62]. The
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radio frame duration of WCDMA is 10 ms, which is further divided into 15 time

slots per frame. In our experiments, we consider the front-end of a receiver at the

base station or at the associated user equipment to evaluate our optimized polyphase

channelizer design.

WCDMA/UMTS has a set of allocated frequency bands or operating band

numbers. Each operating band has a center frequency and a bandwidth (BW)

associated with it. Each band can occupy several tens of MHz, as much as 80 MHz.

WCDMA is a spread spectrum system that has a data (chip) rate of 3.84 MHz and

occupies approximately 5 MHz of BW. One of the common BW levels of UMTS

is 60 MHz. Given that a modern RFIC can handle an instantaneous BW of more

than 60 MHz, we assume that at the input to our GFE, a 60 MHz wide BW is

presented. Within this wide BW, there can exist multiple WCDMA signals with 5

MHz channel spacing. Therefore, we have at most 12 WCDMA channels present,

as shown in Figure 4.5. We process all of the available WCDMA channels (up to

12) simultaneously using our polyphase channelizer implementation.

Our approach to using polyphase channelizer here works well given a wide

input BW, equal channel spacing, downconversion, and the ability to reduce the

sampling rate at the output of the polyphase channelizer simultaneously using a

prototype filter and DFT. In addition, this particular type of channelizer converts

FDM channels into TDM channels. The GPU-based polyphase channelizer provides

a highly parallelized and efficient channelization option, which we demonstrate in

this chapter for a realistic system scenario. More details on this demonstration are

discussed in the following section, which covers experimental results and analysis.
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Figure 4.5: 12 WCDMA channels are present in 60 MHz wide bandwidth.

We design our prototype filter using an equiripple FIR filter with order, N =

192. We design the filter such that the passband covers the WCDMA band up to

3.84 MHz, and the stopband is near 5 MHz. The passband ripples and stopband

attenuation are 0.05 dB and 70 dB respectively. This gives us non-overlapping

polyphase filters, unlike the overlapping polyphase channelizer filter design that we

presented in [41] for GSM. Since WCDMA uses QPSK modulation, it is important

that we preserve the passband and that we do not overlap in the filter transition

region, unlike GSM’s GMSK modulation in [41]. A sample plot of our filter design

is shown in Figure 4.6. Across our 60 MHz system BW, there is a total of 12

polyphase filters and channels side-by-side. This can be viewed as an example
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Figure 4.6: A zoomed-in plot of 3 WCDMA channels with non-overlapping

polyphase channelizer filters spaced apart at 5 MHz.

where a maximum number of channels is present in a band to maximize the network

capacity.

Since there are 12 channels to process, we decompose our polyphase channelizer

into 12 rows or PFBs, resulting in 16 subfilter coefficients per row for our prototype

filter length of 192. Therefore, we have a Q × M IP matrix, where Q = 12 and

M = 16. The decimation rate or number of rows, Q is also the number of DFT

points. Here, M = 16, which is a half of the GPU warp size. After application of the

polyphase channelizer, the output sampling rate should be 60/Q or 5 MHz, which

matches the desired channel spacing of WCDMA. Since we have Q input samples

74



being presented and Q IP values for a Q-point DFT, which produces Q channel

outputs, we have a maximally decimated PFB channelizer. In addition, we process

each channel independently, thereby realizing a fully parallel transceiver.

Now that we have all of the parameters in place, we map our WCDMA-targeted

polyphase channelizer using the algorithm presented in the previous section. First,

we prepare the input data for coalesced access with polyphase filtering. Given 60

MHz of BW and a 10 ms radio frame duration, we pre-process 600,000 samples into

the desired 2D matrix for polyphase filter operation in the polyphase channelizer.

We shuffle or reshape the 1D input array into a 2D matrix, as discussed earlier.

This can be viewed as a row-major order that is transposed or simply a matrix that

is loaded column first, but operated on across the rows, as given by the polyphase

decomposition. This operation takes advantage of cached read accesses each time,

and block processing of input data. In addition, it enhances coalesced reads from

GM to SM in the polyphase filtering process. This is implemented as a separate

CUDA kernel prior to a filter kernel.

Earlier, we described our previous algorithm as being for-loop-dominant and

indexing through the input array sequentially. Performance can be improved signif-

icantly when it is possible to parallelize this sequential process. For this purpose,

we unrolled the loop completely and divided up the workload across more threads

and blocks to utilize large numbers of blocks and cores in the targeted GPU.

While our original method had worked in the context of standards such as

GSM that have longer radio frame durations of 120 ms, such a method is not well-

suited to 3GPP radio frames, which have durations that are 12 times shorter at
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10 ms. Operation within 3GPP poses further challenges since faster processing is

required. The new design presented in this chapter maps the polyphase channelizer

operation more efficiently for practical operation within the context of 3GPP. The

workload is spread across the GPU more evenly such that the GPU has a large

number of lightweight threads operating, which helps to improve GPU utilization,

as discussed earlier.

Next, we discuss the integration of the different components discussed above to

construct our overall polyphase channelizer design. We exploit SIMT in our kernel

dimension designs. We can reshape our kernel dimension each time, dividing up the

workload evenly across different kernels. Multiple kernel calls are used to split the

data for different purposes. First, our reshape or data shuffling kernel divides up

one frame worth of data, composed of 600,000 input samples, by 512 TPB, yielding

1,172 blocks. This is a 1D split that assigns one thread per output sample. For

the PFB kernel, this same data set is divided into 12 channels, with 50,000 samples

per channel. Each channel is then further divided by 512 TPB, which yields 98

blocks. Since there are 12 channels, we use a 2D data split, where the x-direction

corresponds individual samples within a channel, and the y-direction corresponds to

specific channels. Thus, the total lengths of the x- and y-directions are Nx and Ny,

respectively, where Nx is the number of samples per channel, and Ny is the number

of channels.

This decomposition maps 600,000 input samples into one sample per thread

across the 2D grid dimension. Here, each thread is responsible for 1 sub-filter opera-

tion, therefore, it will compute M = 16 multiply-and-accumulate (MAC) operations
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per thread. Each input sample is read into SM along with (M − 1) previous sample

points to perform filter operation. The independent MAC operations are performed

by each thread (i.e., 512 threads perform 512 MAC operations with each thread

accessing 16 samples). This further improves the performance by increasing the

utilization of SM instead of using registers or LM. The filter coefficients are stored

in CM so that they are cached and broadcast throughout the entire kernel for fast,

read-only operation. The output of the IP is then reshuffled when written back to

GM for the subsequent CUFFT operation. The last kernel call in the sequence is

the CUFFT, which outputs the TDM data for each of 12 individual channels at the

same time.

Thus, to handle the more demanding processing required when applying our

GPU-based polyphase channelizer design in 3GPP, we see that our new design em-

ploys much larger numbers of blocks and threads per block. In particular, under

these design constraints, our previous design instantiates 12 blocks and 16 threads

per block, which are sufficient for the GSM context in which the design was origi-

nally applied, but leaves large numbers of unused blocks and threads in the GPU.

This low utilization of GPU resources is problematic under the more severe per-

formance constraints of the 3GPP communication system targeted in this chapter.

Additionally, using multiple kernel calls provide significant flexibility to reshape the

kernel dimension each time, which is a form of flexibility not found in dedicated

hardware solutions.
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Table 4.1: Experimental results (run-time / throughput)

with transfer without transfer

shuffle 2.085 ms / 575.5 MSps 0.116 ms / 10,357.5 MSps

channelizer 2.868 ms / 418.5 MSps 0.734 ms / 1,633.6 MSps

overall 2.901 ms / 413.5 MSps 0.856 ms / 1,402.0 MSps

4.5 Results and Analysis

For our experiments, we employed NVIDIA’s GeForce GTX 680 as the target

GPU to implement our design. This GPU is based on the Kepler architecture,

which has 1,536 CUDA cores (8 SMXs with 192 CUDA cores per SMX), 2 GB of

GDDR5 memory, 64 kB of CM, and 48 kB of SM. It has 256-bit memory bus width,

192 GB/s bandwidth, and over 3,000 GFLOPS speed. We used the latest CUDA

driver version 6.0, and a compute capability of 3.0. We summarize our results in

Table 4.1 for both throughput and run-time. We also present our results with and

without memory transfer between the CPU and GPU. Our target latency for real-

time operation is 3GPP’s radio frame length of 10 ms, and our calculated speedups

are based on a sampling rate of 5 MSps (mega samples per second).

Our emphasis here is on high throughput and low latency polyphase chan-

nelizer implementation. We use 32-bit floating-point precision throughout the ex-

periments. We test our implementation on a collected WCDMA band of 60 MHz
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for 10 ms, where each WCDMA channel occupies 5 MHz of BW. Thus, the overall

60 MHz bandwidth is channelized into 12 channels. We achieve a high throughput

on all of the kernel calls. The polyphase channelizer kernel call includes CUFFT

since CUFFT is highly optimized and available as a part of the CUDA software

development kit (SDK). As one can see from the results, when memory transfer is

involved, it dominates the overall run-time. Therefore, unnecessary transfer of data

between the CPU and GPU is highly undesirable.

Our implementation results in no register spills, SM usage of 8,312 bytes, and

CM usage of 360 bytes. As one can see from Table 4.1, all of our kernel calls are

executed with performance that falls within our target latency of 10 ms, even with

the overhead of data transfers taken into account. Without data transfers, the

kernels ran under 1 ms. The overall kernel call (which is the slowest of all) achieves

over 280x speedup compared to the 5 MSps sampling rate. Since this is a front-end

and first stage of baseband processing, one would typically leave the data in the

GPU for further processing, and only transfer data back to the CPU when needed

after such further processing is complete.

We note that the data shuffle kernel achieves an overall occupancy of 84.5%;

a global memory load efficiency of 100%, which is as expected due to our use of

linear coalesced reads; and a global memory store efficiency of 33%, which is due to

shuffling of data for polyphase decomposition, as we discussed earlier. Nearly all of

the kernel execution time is spent on load and store operations since there are no

arithmetic operations involved.

The polyphase channelizer kernel, which encapsulates the PFB operation,
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achieves an overall occupancy of 95.6%, and GM load efficiency of 99.8%. Due

to our use of the data shuffle kernel, we are able to enforce coalescing for nearly

100% of the global read operations. Without our use of the data shuffle kernel

here, we expect that the GM load efficiency would be much lower due to irregular

read patterns for polyphase filtering. For the polyphase channelizer kernel, SM ef-

ficiency is 99.8%, but GM store efficiency is nearly 0%. This low level of GM store

efficiency is expected; it is due to non-coalesced writes from re-shuffling data after

MAC operations across different blocks and threads.

The PFB operation utilizes full fused multiply-add (FMA) floating point op-

erations in the kernel. The GPU excels in such computations [63]. Because our

kernels under-utilize available computational resources to some extent, the kernels

are memory bounded (at the L1 cache). However, this is not a major bottleneck in

our implementation since our main goal is to process data channels in real-time, and

the implementation meets these objectives in terms of throughput and latency. We

note here that our experiments apply to a single instance of a data set rather than

a continuous stream of data. Applying a continuous stream of data could lead to

higher levels of utilization for the available computational resources. A useful direc-

tion for future work is the further exploration of the potential of our implementation

in the context of continuously streaming data.

We compare the performance of our previous polyphase channelizer design [41]

with the new design that we propose in this chapter. We emphasize that although

our previous design (from [41]) exhibits lower performance compared to our new

design, the previous design successfully met the performance constraints of GSM,
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Table 4.2: Comparison of polyphase channelizer designs (run-time / throughput)

with transfer without transfer

old channelizer 52.591 ms / 22.8 MSps 50.808 ms / 23.6 MSps

new channelizer 2.868 ms / 418.5 MSps 0.734 ms / 1,633.6 MSps

speedup 18.3x 69.2x

which is the primary standard to which it was targeted. The new design introduced

in this chapter has been developed by building on the experience and insights gained

from the previous design and targeting the more stringent constraints of 3GPP

communication.

Table 4.2 demonstrates that the previous design cannot achieve the 3GPP

real-time latency constraint of 10 ms, and in fact, its performance is at least 5 times

slower than what is required for the communication system performance targeted in

this work. In contrast, our new method achieves the real-time latency constraint,

even with memory transfer, as discussed above. Furthermore, without memory

transfer, the new design runs under 1 ms, which is near the slot time of 0.667 ms.

In other words, the time to process a complete frame is less than 2 times the time

required by a single slot in the frame. Overall, our new polyphase channelizer design

achieves significantly improved throughput, and a speedup of 326x compared to the

sampling rate of 5 MSps. The new design is also nearly 70x faster than the previous

design, as shown in Table 4.2.
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As expected, the data shuffling kernel exhibits high performance, since it is a

simple data swap; however, the new design allows us to combine this data swapping

functionality with the benefits of caching and coalescing. Overall, the new polyphase

channelizer design provides improvement over the previous one by eliminating serial

processing of the for-loop and providing more thorough enforcement of memory

coalescing. Additionally, the workload in the new design is spread much more evenly

throughout the GPU, and each thread encompasses a fine-grained operation (MAC)

utilizing GPU’s FMA floating-point operations.

A limitation of our proposed new design is the output data rate, which must

be increased with some amount of resampling to achieve the WCDMA data rate.

Given the 5 MHz sampling rate at the output of the polyphase channelizer, we

would need to resample to at least twice the sample rate of the WCDMA data rate,

which is 3.84 MSps. Therefore, a resampler is needed to dynamically achieve such

a fractional rate. We presented a GPU-based arbitrary resampling method using

polyphase filters in [41]. However, due to serialization within the underlying re-

sampling approach, this approach does not allow us to achieve the target latency

when it is integrated with our new polyphase channelizer design. Integrating a suit-

able resampling subsystem at the output of our proposed new polyphase channelizer

design is a useful direction for further investigation.
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4.6 Summary

In this chapter, we presented a novel GPU-based polyphase channelizer that

achieves high-throughput and low latency. The new architecture eliminates sequen-

tial processing, and spreads the processing workload evenly across large numbers

of blocks and threads in the targeted GPU. Furthermore, the design incorporates

preprocessing of the input data to thoroughly enforce caching and coalescing prior

to polyphase filter operation. We demonstrated our application of GPU technology

as the basis for front-end transceiver implementation by processing multiple chan-

nels simultaneously, and exploiting data parallelism across different channels, which

provides large increases in throughput.

Our proposed new GPU-based polyphase channelizer design provides the high

performance of a dedicated single receiver using a fully-integrated receiver struc-

ture, and without sacrificing flexibility. We demonstrated our design on an impor-

tant wireless communication standard and demonstrated large speedups in both

throughput and latency. We also compared the performance to that of a previ-

ous polyphase channelizer design, and demonstrated nearly 70x improvement, while

providing detailed analysis of how such speedup improvements have been obtained.

Collectively, the advances presented in this chapter make use of off-the-shelf

GPU devices as floating-point software radios that can compete in many design

scenarios with fixed-point dedicated hardware radios, and help to bring GPUs one

step closer to the antenna.
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Chapter 5: Implementation of a Multi-channel Arbitrary Resampler

on GPUs

In this chapter, we continue to build on our notion of high performance GFE.

We propose a new multi-channel arbitrary resampling approach that is designed

for GPU implementation and delivers high throughput, low latency, and high ac-

curacy. This architecture uses the distinctive architectural features of GPUs to

compute arbitrary resampling points on-demand without explicitly calculating the

resampling index. Such explicit calculation can be computationally expensive and

its elimination is a useful feature of our resampling approach.

In the development of our new resampling architecture, we extend tradi-

tional implementation techniques for one-dimensional signal processing to multiple-

dimensions by processing multiple channels across different frequencies simultane-

ously. This yields an implementation structure that is well-suited to optimized

mapping on GPUs. We demonstrate the performance of our resampling architec-

ture by targeting the 3.5G wireless standard UMTS/HSPA, and resampling multiple

UMTS signals simultaneously. Part of the work in this chapter has been presented

in [64]. The developments of [64] are included and extended in this chapter.

84



5.1 Introduction

In wireless communication systems, a spectrum band consists of multiple chan-

nels and signals that employ different standards and specifications. A transceiver

(TRX) is designed to transmit and receive a channel-of-interest (COI) but in the

presence of other channels and users. Therefore, multiple TRXs are needed to ser-

vice different channels and requirements. Ideally, a single TRX should service all

of the COIs, however, it is difficult to implement such a single TRX due to cost,

complexity, and different system requirements such as sampling rates, different band-

widths, modulations types, access schemes, etc. Regardless, a front-end TRX must

be able to process multiple channels simultaneously. A single, unified approach is

preferable to replace such a large number of sub-systems. A channelizer can be

used to separate multiple users or channels of a wide-band spectrum. A simple yet

efficient channelizer is needed to separate a COI from the rest of the channels. Fol-

lowing a channelization, a resampling is necessary to accommodate different data

rates, and ideally resample to 2-4 times the data rate for further processing, such

as synchronization, equalization, and channel decoding.

In this chapter, we introduce a flexible front-end TRX, particularly as a re-

ceiver (RX) that is highly parallelized for processing multiple COIs at the same

time. We simultaneously channelize multiple channels in a band, followed by an

arbitrary resampling of all the channels. We employ a fully-software-based solution

using GPUs without needing to design dedicated hardware or application specific

processors. The resulting architecture is a highly efficient, multi-channel GPU front-
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end (GFE) transceiver that delivers high throughput while achieving low run-time

latency.

The remainder of this chapter is organized as follows. First, we review the

theory and operation of channelizers, and arbitrary resampling. We then introduce

our novel GFE system that simultaneously channelizes and resamples all of the input

channels at the same time. We demonstrate an implementation of our proposed new

architecture by targeting a relevant wireless communication standard and profile

our system under the associated latency constraint while massively increasing the

throughput.

5.2 Related Work

The notion of using the GPU as a radio, particularly as a GFE transceiver,

was introduced in [41], which presented channelization and resampling of multiple

channels. However, the speedups from this approach came from highly optimized

and parallelized filter operations that contained serial loops. This form of parallel

implementation was effective for processing GSM radio frames. However, the serial-

ization in the loops presented a bottleneck that precluded application to standards

with significantly higher data rates and lower latencies.

In [49], a high-performance channelizer was introduced by unrolling loops com-

pletely and spreading the computational load throughout the GPU more evenly

compared to the design presented in [41]. This improved design resulted in a low-

latency channelizer that processed multiple UMTS/WCDMA channels at the same
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time. Other related work on GPU front-end design includes GPU acceleration of

FFT computation for channelization [54, 57], GPU acceleration of PFBs [56], and

GPU acceleration of a polyphase interpolator for timing recovery [44]. Prior research

on GPU back-end receiver implementation includes designs for a channel decoder

used in HSPA+ and LTE [65], and for MIMO detection [66].

A GPU-based arbitrary sampling rate conversion (ASRC) was presented using

a combined polyphase interpolator and polynomial approximation using linear inter-

polation in [41]. A GPU-based arbitrary resampling using DFT and texture memory

was introduced in [64]. In this chapter, we extend the work of [64] by investigating

an alternate GPU-based approach to resampling using time-domain interpolation

and arbitrary resampling. In [64], a DFT-based interpolation was used to provide

frequency-domain interpolation. Although this provides a filter-free design and sim-

ple approach for integer interpolation, its performance is affected by prime number

factors when performing FFT operations. Conversely, a time-domain interpolation

provides significantly improved performance and flexibility through custom filters

for interpolation and through the removal of restrictions on the interpolation ra-

tios that can be supported. In addition, we process the full radio frame, including

multiple slots, and multiple users, compared to the real-time resampling of a single

slot for a single user presented in [64]. Furthermore, this chapter introduces a novel

method to provide optimized processing for multidimensional, multirate filtering.

This optimized filtering approach performs aggregation of channels to provide much

higher BW, which in turn provides higher throughput while keeping the overall

latency low.
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Much of the related work for channelizer design is targeted to dedicated hard-

ware or FPGA implementation (e.g., see [14, 47, 59]). Similarly, for ASRC, FPGA

implementation and optimization for trade-offs between speed and memory require-

ments are discussed in [22, 25, 26, 67–69].

In hardware implementation targeted to wireless communication systems, per-

formance criteria such as throughput and latency may be met by increasing clock

speed, and assigning more resources, such as memory and multipliers. In this chap-

ter, we aim to provide a high performance front-end TRX that meets strict real-

time constraints in a purely software-based implementation on commercially avail-

able GPU devices. We realize these objectives through efficient algorithm mapping

onto the targeted GPU architecture by exploiting parallelism to spread the TRX

processing workload more evenly across the GPU. The resulting GPU-based TRX

architecture is a flexible software implementation, and an adaptive system that can

channelize and arbitrarily resample all input channels simultaneously with massive

throughput increase and reduced latency for real-time communication.

5.3 GPU-based Multi-channel Arbitrary Resampling

5.3.1 Channelizer Subsystem

A high-throughput GPU-based polyphase filterbank (PFB) channelizer was

presented in [49]. In this chapter, we adapt this channelizer as a part of our new

multi-channel arbitrary resampling GFE design. The adapted channelizer design

provides an efficient subsystem for channelizing multiple channels. We first imple-
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ment the PFB by decomposing a 1D FIR filter into a 2D structure of dimensions

Q × L, where Q is the number of channels or PFB rows and L is the sub-filter

length for each row. An inner product (IP) matrix is formed as shown in [49], and

the data is split across SM evenly to promote SIMT processing. Each thread is now

responsible for one multiply-and-accumulate (MAC) operation. This architecture

maps each output sample to a thread, promoting a lightweight operation across the

GPU grid which increases occupancy. A high order of parallelism is achieved at the

thread level and across each row of blocks, where each channel is processed inde-

pendently. We make improvements to the algorithm shown in [49] by eliminating

SM-based MAC operations and replacing them with faster register-based operations.

Upon completion of this IP operation, the result is written back to GM in a more

coalesced manner by using complex floating point values instead of separate, real

I-Q values shown in [49]. We provide a pseudocode description of this optimized

filtering method in Figure 5.1.

Following this efficient channelization, an arbitrary resampling is necessary

to dynamically adapt to different data rates of the desired system specification.

Although a PFB channelizer is capable of performing arbitrary resampling, it is a

limited operation that is efficient primarily when the resampling rate is a power of

2. Our objective is to avoid being constrained by such a ratio, and instead to be

able to resample at any rational ratio, including fractional ratios. Our approach

to ASRC in this chapter is to perform an integer interpolation using a polyphase

interpolator, and then use the GPU’s texture memory (TM) unit to automatically

compute the fractional resampling points on all the channels.
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tix = threadIdx .x

biy = blockIdx .y

rdx = row index

idx = global (row) input index

odx = global (row) output index

if rdx < SAMPLES PER ROW then

SM REG [tix + L− 1] = in[idx ]

if tix < L− 1 then

SM REG [tix ] = in[idx −M + 1]

end if

SYNC THREADS

for ii = 0 to L− 1 do

cplx sum + = CM COEF [(L−1− ii )×Q+biy ]×SM REG [tix +L−1− ii ]

end for

out [odx ] = cplx sum

end if

Figure 5.1: Pseudocode for improved filter operation in polyphase channelizer.

The first stage of integer interpolation is necessary to provide adequate inter-

mediate points for the second stage of interpolation [64]. The second stage in turn

employs a polynomial filter to compute the fractional resampling points dynamically.

Without some sort of an integer interpolation first, the polynomial approximation is

inadequate. On the other hand, without polynomial approximation, we would have
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to interpolate at a very high rate, which is computationally wasteful since most of

the samples would be discarded. Our objective is to interpolate enough initially, and

then dynamically determine resampling points-of-interest, thereby reducing compu-

tational waste.

Instead of providing resampling on a single channel and one subset (i.e., a

slot) of the radio frame, as shown in [64], we extend this method to process the full

radio frame. Furthermore, the design introduced in this chapter further resamples

all channels simultaneously for all user outputs of the channelizer. This results in

a multi-dimensional and multi-channel arbitrary resampler. Additionally, since the

channels are independent, we can parallelize the PFB rows, which distributes the

workload across the GPU, which increases occupancy and provides a large increase

in throughput.

5.3.2 Integer Interpolation Subsystem

In this section, we present details on an optimized GPU-based polyphase in-

terpolator. First, we decompose a 1D FIR filter into a 2D PFB with dimensions

P × M , where P is the interpolation rate and M is the sub-filter length for each

interpolant. Therefore, if Q denotes the number of channels, then there are (Q×P )

outputs for all of the channels after interpolation.

In order to efficiently perform interpolation on the GPU, we load M input

samples into an SM buffer. These samples are broadcast within a block since the

same input buffer is used to generate P interpolants for each filter operation. Here,
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we use SM as a user-enabled cache to enhance multiple read operations. We fetch

(M − 1) previous samples for each thread such that each thread computes a MAC

operation across M samples. Using this approach, each thread exploits the GPU’s

fused multiply-add (FMA) operation. Similar to our improvements in channelizer

MAC operation described above, we only use registers to accumulate the IP results.

This way, each thread is responsible for only one accumulated output.

Instead of using a commutator to provide input samples one at a time, we

employ vector processing to process the entire block of input samples and simulta-

neously produce all of the corresponding interpolated outputs. This way, no serial

input indexing nor serial-to-parallel conversion is required, and the entire operation

is fully parallelized for higher throughput. Once the IP operation is complete, the

data is written back to the GM using complex data format for better interleaving

of data and coalescing of write operations.

We provide additional decomposition to process multiple channels using the

multi-dimensional parallel processing capabilities available on the GPU. A GPU

kernel is broken up into a grid of blocks and a block is made up of a group of

threads. First, we employ a 2D decomposition of a channel and (data) sample index

such that channels are mapped to the y-direction of blocks in a grid, and the rest

of the input samples are mapped to the x-direction of blocks. This way, the entire

output of the channelizer is evenly mapped to the 2D grid of blocks.

With the grid of blocks determined in this way, an interpolation by a factor

of P is performed for each row and on each sample. To achieve this interpolation

efficiently, we apply additional decomposition within a block of threads. Because
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we produce P times more samples than the input samples, we decompose our block

dimension such that in the y-direction, it contains the interpolants, whereas in the

x-direction it accesses the input samples of the block. This way, we contain all of the

interpolants generated by the associated channel in one block. This in turn allows

us to simplify indexing of samples; keeps the blocks in the y-direction independent

from other rows or channels for completely isolated processing; and enables caching

of any shared data within the block using SM.

The resulting operation is a multi-dimensional, multi-channel polyphase in-

terpolation operation. All of the channels are now interpolated at the rate of P ,

and are ready to be resampled at any arbitrary fractional points. Providing these

intermediate interpolants further enhances the accuracy of polynomial filtering via

TM. In addition, the commutator operations are eliminated, and the entire set of

interpolants is calculated at once. In Figure 5.2, we provide a pseudocode of our

approach to multi-channel polyphase interpolation.

5.3.3 Arbitrary Resampling Subsystem

Following the polyphase interpolation stage, we perform a time-varying, poly-

nomial approximation to compute the fractional resampling point, ∆. The GPU

texture unit is capable of performing nearest neighbourhood (NN) or linear (LN)

interpolation directly and automatically, without the need for additional filters, com-

plex control algorithms, nor manual computation of ∆. We adapt this capability

in our ASRC architecture instead of designing our own time-varying filters. Using
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tix = threadIdx .x

tiy = threadIdx .y

rdx = row index

idx = global (row) input index

odx = global (row) output index

if rdx < SAMPLES PER ROW then

SM REG [tix +M − 1] = in [idx ]

if tix < M − 1 then

SM REG [tix ] = in[idx −M + 1]

end if

SYNC THREADS

for jj = 0 to M − 1 do

cplx sum + = CM COEF [jj × P + tiy ]× SM REG [tix +M − 1− jj ]

end for

out [odx ] = cplx sum

end if

Figure 5.2: Pseudocode for multi-channel polyphase interpolator.

the GPU texture unit, we perform arbitrary resampling across the entire input ar-

ray to the desired output rate. We only assign a single output sample to a given

thread, which spawns more threads in the GPU and we can compute the output

immediately from the TM’s hardware unit.

To handle the multiple channels and multi-dimensional structure in our re-
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idx = global (row) input index

idy = global (column) input index

odx = global (row) output index

∆ = P × F in

s
/F out

s

if idx < OUTPUT LENGTH then

out [odx ] = tex2D(texRef , 0 .5f +∆× idx , 0 .5f + idy)

end if

Figure 5.3: Pseudocode for 2D texture memory-based, arbitrary resampling.

sampling subsystem design, we extend the 1D TM-based ASRC approach in [64] by

performing 2D filtering in TM. However, instead of performing a 2D bilinear interpo-

lation, we perform 1D linear interpolation — i.e., across samples in the x-direction

only, and not across multiple channels in the y-direction. This interpolation ap-

proach represents an additional novel aspect of our design, where we exploit the

GPU’s multi- dimensional processing capability and indexing schemes to selectively

process samples of interest. Figure 5.3 provides a pseudocode summary of our de-

sign for multi-channel arbitrary resampling using TM. Here, the texture reference,

denoted texRef , contains the intermediate interpolants. We provide a block diagram

of our complete GFE design in Figure 5.4.

5.4 Implementation and Experimental Setup

We demonstrate our proposed GFE implementation by targeting WCDMA

and HSPA for UMTS [62,70], which is an important 3/3.5G wireless communication
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Figure 5.4: Block diagram of complete GFE design including channelizer and multi-

channel arbitrary resampler.

standard. The radio frame duration of UMTS is 10 ms, which is further divided into

15 slots per frame, giving a slot duration of 0.667 ms. A shorter frame length of 2

ms is introduced for HSPA. A single UMTS frame occupies 3.84 MHz of bandwidth.

Our objective is to maximize the number of carriers or channels that can be

processed in the GFE. The current frequency bands defined by UMTS can occupy

as much as 80 MHz of BW. With a typical channel spacing of 5 MHz in UMTS,

we can process up to 16 channels in this wide BW. The channels do not overlap in
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order to avoid interference. Therefore, a PFB channelizer is a suitable choice, since

it exhibits equal channel spacing with non-overlapping channels.

We first design a prototype filter to be used in the channelizer. The decom-

posed polyphase filter has Q channels and sub-filter length L = 16. Therefore, the

filter length can vary depending on the number of channels it processes. Here, since

we are processing 16 channels, the total length of the filter is 256 taps. We employ

an equiripple FIR filter with 70 dB attenuation and 0.04 dB passband ripple. The

output of the channelizer presents all 16 channels simultaneously. However, due to

the equal spacing of the output channels, the output sampling rate is fixed at 5

MHz, while we desire at least 7.68 MHz — i.e. twice the bandwidth of UMTS —

for further baseband processing. Therefore, a resampler is a needed to convert the

derived 5 MHz rate to the desired 7.68 MHz rate.

Instead of using a rational resampler or a sequential, combined PFB-based

ASRC as shown in [22,41], we apply a 2-stage approach where an integer polyphase

interpolation serves as an initial interpolation. This interpolation stage enhances

the polynomial approximation in the following stage using the GPU’s texture mem-

ory (TM) filtering option. The prototype filter for the interpolator has 512 taps,

which are decomposed into a P ×M polyphase matrix, where P = 16 and M = 32.

We employ an equiripple FIR filter with 110 dB attenuation and 0.002 dB passband

ripple. Following this integer interpolation, we bind the interpolants to a CUDA

Array and perform either NN or LN interpolation in a TM kernel. This TM ker-

nel automatically fetches and computes fractional resampling points directly, which

eliminates the need for manual computation of the resampling points.
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Because we are able to process multi-carrier (MC) channels simultaneously, our

architecture supports MC-WCDMA and/or MC-HSPA options, and realizes carrier

aggregation (CA) for increased throughput using a single GFE as a baseband mo-

dem. This type of CA is an important feature in current and next generation systems

since it enables baseband processing of tens or hundreds of MHz of bandwidth for

high throughput. We are able to perform CA without any other devices and with

all the carriers presented at once.

For our experiments, we used NVIDIA’s GeForce GTX 680 and 970 GPUs

to implement our GFE. The GTX 680 GPU is based on the Kepler architecture,

whereas the GTX 970 is based on the newer Maxwell architecture. We have high-

lighted some of the key specifications and differences in Table 5.1. We used the latest

CUDA version 6.5. Our target latency for real-time operation is the 3GPP radio

frame length of 10 ms. We used 32-bit complex floating-point precision throughout

the experiments. We profiled our kernels on each GPU independently to evaluate

the differences in performance.

5.5 Results and Analysis

In our experiments, we measure the performance of 3 kernels: (1) the PFB

channelizer kernel, which includes data shuffling, polyphase filtering, and CUFFT

operations; (2) the polyphase interpolation kernel; and (3) the TM kernel with NN or

LN filtering options. CUFFT, a component in NVIDIA’s library of signal processing

blocks, is a parallel version of the DFT that is highly optimized for CUDA.
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Table 5.1: Summary of relevant GPU specifications.

GTX 680 GTX 970

compute capability (CC) 3.0 5.2

CUDA cores 1,536 1,664

multi-processors (MP) 8 13

CUDA cores per MP 192 128

GPU clock rate 1.06 GHz 1.25 GHz

memory clock rate 3 GHz 3.5 GHz

memory bus width 256-bit

maximum texture size (x, y, z) 1D=(65,536), 2D=(65,536, 65,536)

total amount of global memory 2 GB 4 GB

total constant memory 64 kB

total shared memory per block 48 kB

total registers per block 64 kB

In Table 5.2, we report the resource usage of the different kernels using the

GTX 680 as a reference GPU. Here, we show the number of registers used per thread

and the amount of SM usage per block in each kernel. Global load and store efficiency

measures efficiency in grouping of data in memory — i.e., byte alignment and warp

multiples of data to maximize bandwidth. Misaligned accesses of contiguous data or

striding causes reduced efficiency and bandwidth. The shared efficiency shows the

ratio of SM usage to maximum SM capacity, and similarly, the achieved occupancy
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Table 5.2: Resource usage of different kernels in the GFE design.

for GTX 680 shuffle channelizer interpolator TM

registers / thread 8 16 39 8

SM utilization per block 0 4,117 B 504 B 0

global load efficiency 100% 99.8% 82.9% n/a

global store efficiency 50% 25% 25% 91.4%

shared efficiency n/a 51.5% 50% n/a

achieved occupancy 79.5% 90.2% 68% 79.2%

shows the ratio of active warps to the maximum available warps. For more details

about these metrics related to GPU implementation, we refer the reader to [2].

As Table 5.2 shows, the load efficiency is near 100% for all of the kernels. Our

enforcement of linear read operations helps to achieve this high utilization level.

However, due to irregular data access patterns in the polyphase filter structure, the

data storage efficiency for the kernels is lower. The kernels containing polyphase

filters have relatively low data storage efficiency (approximately 25%). This is im-

proved in our implementation from a level close to 0% in our earlier design [49].

We achieved this improvement by minimizing bank conflicts and using interleaved,

complex data write operations, as we have described earlier. Improving global store

operations for polyphase filter structure is a good future research direction. Finally,

we see that the achieved occupancy is relatively high for all of the kernels. Also,

there are no register spills and both polyphase kernels fully utilize FMA opera-
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tions. Overall, our kernels are highly optimized and achieve high performance, as

demonstrated by our profiling.

In terms of resampling accuracy, we compare our ASRC to a rational resam-

pling ratio of R = 768

500
, which resamples a 5 MHz signal to 7.68 MHz — i.e., to twice

the desired data rate in our application. Such a rational resampling requires over

3,800 filter taps. We arbitrarily resample UMTS’s QPSK waveform from 5 MHz to

7.68 MHz and compute the mean square error (MSE) relative to the rational re-

sampler as a reference. The combined polyphase interpolator and TM-based ASRC

had an MSE of 4.11e-4 relative to traditional rational resampling. The difference

between NN- or LN-based TM filtering was approximately 1e-5, and LN provided

a slightly smaller MSE value than NN, similar to findings in [64]. Therefore, both

methods exhibit low error resolution compared to a higher quality rational resam-

pling. We enforced an initial integer interpolation rate of P = 16. Even lower error

resolution can be achieved if we increase P . However, due to the CUDA Array

dimension limit of 65,536 (or 64k) elements for 1D or 2D TM filtering, we limited

P to 16.

A novel aspect of this chapter is the ability to process multiple slots or a

complete radio frame using 2D TM. This is due to the fact that one UMTS slot

contains 3,333.3 samples, however, after interpolation by P = 16, we have 53,333

samples. We need to stay under the 64k sample limit of CUDA Array in order to

take advantage of the TM filtering option, since samples must be bound to CUDA

Array prior to calling the TM kernel. However, since there are 15 slots in a full

radio frame of UMTS, we cannot use the 1D TM (CUDA Array) option since it will
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be limited to a single slot only. We need to process all 15 slots in order to process

the full radio frame, which will not fit in a single 1D TM kernel call.

To address this problem, we assign slot numbers along the y-dimension such

that in the x-dimension, we still have slot samples. By introducing such a 2D

decomposition approach, we can use 2D TM for filtering, while processing the entire

radio frame at once. This is possible, since we have another 64k texture elements

in the y-dimension, as can be seen in Table 5.1. In this chapter, we aim to process

the maximum UMTS bandwidth of 80 MHz or 16 5-MHz wide channels. Therefore,

we have used only 240 texture elements in the y-dimension, and we can process as

many as 4,369 channels in this architecture.

Also, we note that unlike a typical 2D TM operation, we do not perform a

bilinear interpolation. Instead, we perform 1D linear interpolation across the x-

direction only — that is, only on the samples within one radio frame of a channel,

not across the channels in the y-direction. To summarize, a slot contains 3,333

samples, whereas a frame contains 50,000 samples. Upon interpolation, each slot

contains 53,333 samples, whereas a frame contains 800,000 samples for one channel.

This highly-interpolated radio frame is then decomposed into a 2D structure, as

shown in Figure 5.5. This structure in turn is decimated or resampled at the desired

fractional resampling points, ∆ automatically using the 2D CUDA Array and TM

unit of the GPU.

We now measure the kernel performance of our channelizer, interpolator, and

TM ASRC for a single channel as a baseline measurement. The results are summa-

rized in Table 5.3. Here, the channelizer includes shuffle, PFB filtering, and CUFFT
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Figure 5.5: Block diagram of multiple slots mapped to a 2D CUDA Array for 2D

texture memory.

operations, and we choose to use the LN option in TM. From Table 5.3, we see that

all of the kernels exhibit low latency, and in fact, the overall run-time for a single

channel is under the UMTS slot time of 0.667 ms. We do not include the effect of

memory transfers in these measurements since the data will be processed further in

the signal processing chain, and the data is brought back to the CPU for debugging

purposes only.

As an additional comparison: at 12 channels, the PFB channelizer presented

in [49] ran for 0.734 ms. In contrast, the 12-channel channelizer presented in this
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Table 5.3: Single-channel GPU kernel run-time measurement.

channelizer interpolator ASRC total

GTX 680 time (ms) 0.032 0.373 0.048 0.453

GTX 970 time (ms) 0.041 0.231 0.053 0.325

chapter runs for 0.434 ms and 0.518 ms on the GTX 680 and 970, respectively. This

level of performance for our new channelizer is not only less than the slot time, but

it is also at least 30–40% faster than the implementation presented in [49] from the

optimization we have mentioned earlier.

Next, we increase the number of channels one at a time, and measure the

corresponding impact on kernel performance. The results are shown in Figure 5.6,

Figure 5.7, Figure 5.8, and Figure 5.9. Although, our goal is to process 16 channels

or 80 MHz of BW, we extend our experiments to 20 channels since the modern 4G

standard requires as much as 100 MHz of BW. Overall, our GFE runs well under

the target latency of a 10 ms even though we are processing multiple channels.

Therefore, we expect throughput gain as well. It is interesting also to note the

linear relationship between the run-time and the number of channels. Although

both GPUs have similar numbers of cores, the GTX 970 provided faster execution

times, and more consistent levels of improvement compared to the to the GTX 680,

as seen in the figures.

On each of the targeted GPU devices, our improved version of the PFB chan-

nelizer completed the channelization process up to 20 channels in approximately 1
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Figure 5.6: Plot of GPU channelizer run-time for an increasing number of channels.

ms. The interpolator kernel was the most compute intensive kernel. Since it pro-

duces more outputs than the input data, it requires longer execution time compared

to the other kernels. The TM ASRC kernel ran much faster even with the maxi-

mum number of channels. This is because of its use of a dedicated hardware unit

for computing the resampling points directly, and because the kernel produces a

smaller amount of output compared to an interpolator. Without such an optimized

implementation, this kernel would be the most compute intensive kernel since it

would require brute force computation of fractional resampling points and polyno-

mial approximation. These computations are performed in our TM kernel at no

added cost. This represents a distinct advantage over other platforms of using a

GPU as a radio.

In Table 5.4, we summarize the run-time and throughput results for our im-
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Figure 5.7: Plot of GPU interpolator run-time for an increasing number of channels.
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Figure 5.8: Plot of GPU texture memory run-time for an increasing number of

channels.
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Figure 5.9: Plot of GPU overall run-time for an increasing number of channels.

plementation for processing all 16 UMTS channels. As shown in this table, we can

process the entire 16-channel radio frame in less than 7 ms using the GTX 680,

and in less than 5 ms using the GTX 970. Thus, for each of the targeted GPU

types, our implementation allows for the processing to be completed in less time

than a single UMTS radio frame duration. Even when taking memory transfer time

into account, the system provides a throughput increase, although there is a longer

run-time. Additionally, we note that if HSPA’s 2 ms subframe time is the desired

latency, then we can process up to 4 and 6 channels simultaneously using the GTX

680 and 970, respectively.

Not only does our developed GFE satisfy the real-time latency constraint, it

also achieves massive speedups in throughput on both of the targeted GPU devices.

The speedups are calculated based on the 3.84 MHz chip rate of UMTS. This sam-
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pling rate is a common sampling rate of 3GPP’s UMTS and LTE. Therefore, our

architecture design can be extended to other standards as well. In addition, because

we are channelizing and processing each channel independently, we can adapt this

architecture for spectrum sensing [71–73]. This type of FBMC-based wideband par-

allel transceiver is an attractive option for spectrum sensing since we can detect the

energy of different carriers in parallel in a single instance, instead of sequentially

cycling through each carrier.

Finally, because we can process multiple 3GPP channels within a band, we can

perform intra-band carrier aggregation (CA), which will increase the throughput

further since a composite, wideband channel will be presented at the baseband.

With our low-latency GFE, this system is capable of even higher throughput and

speedup over the required data rates in UMTS’s WCDMA and HSPA. This is also a

multi-carrier system that can service simultaneous CA options, which is one of the

requirements of the current and next generation communication standards requiring

hundreds of MHz of BW [18].

Although our main emphasis here is with UMTS, a band is shared with other

standards as well, such as GSM and LTE. Since, multiples of 5 MHz channel spacing

are commonly deployed, we can apply our PFB channelization approach up front

with mixed standards. In the case where only UMTS channels are desired, other non-

COIs can simply be discarded since the information is in the phase of the channelizer,

there is no cost or penalty for discarding non-COIs. In addition, our GPU-based

ASRC method can readily be adapted to different sampling rates, such as resampling

of GSM and LTE channels. Therefore, our GFE is a flexible, low latency, multi-
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Table 5.4: 16-channel GFE results (run-time / throughput).

GTX 680 without memory transfer speedup with memory transfer speedup

channelizer 0.571 ms / 2,802.53 MSps 729.71x 3.054 ms / 523.84 MSps 136.43x

interpolator 5.896 ms / 271.42 MSps 70.67x 36.44 ms / 43.92 MSps 11.43x

TM 0.519 ms / 3,081.33 MSps 802.82x 3.851 ms / 415.37 MSps 108.22x

overall 6.986 ms / 229.03 MSps 59.64x 43.34 ms / 36.92 MSps 9.61x

GTX 970 without memory transfer speedup with memory transfer speedup

channelizer 0.718 ms / 2,228.41 MSps 580.31x 2.925 ms / 547.03 MSps 142.45x

interpolator 3.551 ms / 450.25 MSps 117.34x 33.74 ms / 47.43 MSps 12.35x

TM 0.459 ms / 3,480.65 MSps 907.77x 3.721 ms / 430.17 MSps 111.98x

overall 4.727 ms / 338.48 MSps 88.15x 40.38 ms / 39.62 MSps 10.32x

channel, and high throughput system that is capable of processing many channels

simultaneously. Overall, we have demonstrated significant performance increase over

the traditional, dedicated, fixed-point, hardware approach.

5.6 Summary

In this chapter, we have developed a novel GPU-based multi-channel arbitrary

resampler for GPU front-end (GFE) transceiver, particularly as a multi-carrier re-

ceiver that is capable of channelizing multiple channels simultaneously and arbi-

trarily resampling them to any desired rate. Our proposed receiver design reduces

run-time latency by eliminating serial control loops and spreading more work across
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the GPU. Our efficient polyphase filter-based channelizer and interpolator do not

require commutators, and the system produces output for all of the channels in

parallel.

We exploit unique features of GPUs in new ways to provide dynamic arbitrary

sample rate conversion capability via GPU’s texture memory. This unconventional

approach can be used to accommodate various sampling rates without designing

any time-varying filters or calculating fractional resampling points each time. This

flexible GFE is capable of delivering high throughput, low latency, and low error

resolution using an all-software implementation with floating point precision. Addi-

tionally, the developed system supports multi-channel, multi- carrier, and multi-slot

or full radio frame operation. Overall, our presented GFE design provides a flexible

and cost-effective real-time solution using existing commercial off-the-shelf devices

over custom devices.
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Chapter 6: A GPU Implementation of a Multi-carrier Multirate Re-

sampler

In this chapter, we propose a novel GPU-based multirate resampler that re-

samples across multiple channels and carriers. This architecture uses an optimized

rational resampler that can fractionally resample input samples to the desired out-

put sample rate. We utilize the multidimensional parallel processing architecture of

GPUs to extend the fully-parallel resampling method to resample across different

channels and bands. Our approach implements carrier aggregation without a need

for additional hardware or specialized architectural support and is able to resample

wide bandwidth signals in real time. The resulting design provides high throughput,

low latency, and low complexity along with the flexibility of an all-software imple-

mentation. We demonstrate the performance of our novel multirate resampler by

applying it to resample multiple 4G LTE signals up to 100 MHz. The work of this

chapter was presented in [74].

6.1 Introduction

In modern communication systems, a sample rate conversion (SRC) is neces-

sary to accommodate different standards’ requirements such as different data rates,
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system clock rates, etc [21]. A single, fixed reference clock is typically used to gener-

ate a common clock speed rather than using multiple clock sources or a tunable clock

due to advantages in terms of accuracy, stability, and cost. Therefore, in wireless

communications transceiver, some form of SRC is needed to convert a fixed clock

to the desired sampling rates. One useful SRC technique is to perform a rational

resampling. This method is attractive since it can be realized using a fractional

ratio using integer multiples and divisions of the input sampling rate [31].

In addition, modern communication systems require wide bandwidth (BW) to

provide high data rates. However, BW is a scarce resource, and is fragmented across

the frequency spectrum. Usable segments of BW can be hundreds of MHz apart. In

order to meet wide BW requirements in the presence of such scattered segments of

available spectrum, modern communication systems deploy various forms of aggre-

gation through multiple carriers. The aggregated carriers can be within the same

operating frequency band (intra-band) or different bands (inter-band). Also, the

carriers do not have to be contiguous; they can be fragmented within a band. These

issues pose significant challenges in modem designs since all of the carriers need to

arrive at the baseband.

In this chapter, we propose an efficient rational resampling architecture that

is highly optimized for real-time implementation on GPUs, and provides the foun-

dation for effective SRC in the context of multi-carrier transceiver system design.

In particular, proposed new SRC design method can readily be applied to multiple

channels and carriers, thereby enabling real-time resampling of wide BW signals at

the baseband. The resulting architecture exhibits high throughput, low latency, and
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low complexity while providing the flexibility of an all-software realization.

The remainder of this chapter is organized as follows. First, we discuss the

theory and operation of rational resampling. We then introduce a novel GPU-based

resampling algorithm, and demonstrate an implementation of this algorithm by

targeting an important wireless communication standard.

6.2 Related Work

In this chapter, our objective is GPU-based, real-time processing of multi-

channel rational resampling, particularly in the context of software radio applica-

tions. Preliminary work on multicore acceleration of polyphase filtering was pre-

sented in [44, 56]. A comparison of polyphase filtering throughput among different

multicore platforms was presented in [75]. A GPU-based arbitrary SRC (ASRC) was

presented in [41]. Another GPU-based ASRC implementation, which incorporated

GPU’s texture memory, was presented in [64]. Much of the related work for resam-

pling polyphase filters is targeted to FPGA and dedicated VLSI implementations

for a single channel or stream of data (e.g., see [22, 67, 68]. However, we emphasize

on multi-channel design objective in this chapter.

In hardware implementation targeted to wireless communication systems, per-

formance criteria such as throughput and latency can be met by increasing clock

speed, and assigning more resources, such as memories and multipliers. In this

chapter, we aim to provide performance that meets relevant real-time constraints by

purely using software and efficient algorithmmapping onto non-custom, commercially-
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available devices. We place particular emphasis on multirate, rational resampler

design and apply our resampler design to multiple-channels, which allows simulta-

neous processing of different carriers. Our proposed architecture is unique in that

it realizes carrier aggregation (CA) using a single baseband processor using a GPU

and effectively resamples the input channels to the desired rate. This is an attrac-

tive option for modern communication systems, which require processing of multiple

signals located in different bands.

6.3 GPU-based Multi-carrier Multirate Resampler

Using a polyphase filter structure, we design our GPU-based, fully parallel

multirate filter. We combine integer interpolation and integer decimation to achieve

a fractional resampling, as we have mentioned earlier. Therefore, we develop a

single-filter implementation, and modify the indexing at the filter input and output

to achieve the desired sample rate ratio.

First, we design the polyphase filterbank (PFB) structure for our design by

decomposing the 1D FIR filter of length N into a 2D structure of P ×M , where M

is the length of sub-filters. The filter coefficients are then stored in constant memory

(CM) in the GPU for fast, read-only broadcasting. Next, we perform interpolation

by computing the inner product (IP) between the input samples and the PFB. We

read M input samples from GM and store them into SM as a user-enabled cache.

Here, SM is beneficial since we access the same M input samples P times to present

them to rows of the PFB.
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We design our GPU kernel such that each thread is responsible for a single

multiply-and-accumulate (MAC) operation. To perform these MAC operations, we

instantiate fused-multiply-add (FMA) operations in the GPU for speed and accu-

racy. Using this approach, the entire interpolation and decimation process is con-

tained within a block of threads. This organization provides isolation with respect

to other MAC operations and increases occupancy in the GPU kernel, which in turn

increases throughput. This approach to GPU mapping of coupled interpolation and

decimation operations is an important aspect of the contribution in this chapter.

Following the interpolation, we select every Q samples and discard the rest

in a single stage using a single filter design. A potential disadvantage of using

a polyphase filter is that it results in irregular data access patterns (i.e., data is

loaded column-wise and subsequently operated row-wise), which is detrimental in

a GPU since it conflicts with the objective of coalescing or grouping data when

accessing GM. To improve the efficiency of these data accesses related to polyphase

filter operation, we introduce a swap buffer prior to writing to GM. This buffer

serves to linearize the output samples so that there are no bank conflicts, and hence

no serialization when writing results to GM. The resulting samples are byte-aligned

in memory, and written in parallel in a single cycle.

To process multiple channels in parallel, we exploit the capabilities of GPUs to

perform efficient multidimensional signal processing. In particular, we apply a 3D

approach where, the x-direction is used to perform all of the resampling for a given

channel, and in the y-direction, we assign different channels. Using our organization

along the y dimension, each channel performs resampling independently (from the
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Figure 6.1: Block diagram of multidimensional resampler.

other channels) and simultaneously, utilizing SIMT operations. Finally, in the z-

direction, we assign different frequency bands that are outside of the bands that

the x- and y-directions are operating in. This organization of processing along

the z-direction allows us to efficiently perform simultaneous inter- and intra- band

processing for CA in our targeted multichannel implementation framework. Our

multidimensional, rational resampling system block diagram is shown in Figure 6.1.

A pseudocode description of our proposed multi-channel, multirate resampling

approach is shown in Figure 6.2. This approach efficiently combines multiple wave-

forms so that they can be resampled to a common sample rate, and combined to a

116



form a larger, contiguous BW at the baseband. Furthermore, in place of mapping

different frequency bands in the z-direction, different antenna ports can be mapped

as well. With such a modification, our implementation can be adapted to process

multiple streams in a MIMO antenna system.

In summary, we have developed a novel GPU-based polyphase resampler that

is capable of resampling many channels simultaneously across different frequency

bands. Since a single thread is assigned to each output sample, hundreds of thou-

sands of threads are instantiated, which increases workload in the GPU and reduces

run-time. Through careful prioritization of data access patterns, our design also

ensures high global load and store efficiency, and high GPU occupancy, leading

to optimized throughput. In the following section, we demonstrate the significant

performance improvements achieved by our new GPU-based polyphase resampler

implementation.

6.4 Implementation and Experimental Setup

We demonstrate our proposed GPU-based, multi-channel resampling imple-

mentation by targeting the 4G wireless standard, LTE. The radio frame duration of

3GPP’s LTE is 10 ms, which is further divided into 10 subframes with each subframe

consisting of 2 slots. Therefore, each subframe and each slot has a duration of 1 ms

and 0.5 ms, respectively. LTE has a variable BW from 1.4 MHz to 20 MHz, and

a sampling rate that is based on a subcarrier spacing of 15 kHz multiplied by the

number of DFTs required for modulation. LTE uses CA to form a large composite
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BW at the baseband using intra- and inter-frequency bands [76]. Additionally, LTE

uses QPSK or QAM for modulation.

We process a single channel containing 10 MHz of LTE BW. This channel is

sampled at 25.6 MHz, and needs to be resampled to 15.36 MHz, which is 4 times the

common 3GPP sampling rate of 3.84 MHz. Therefore, the resampling ratio R = 3

5

is required. We design the rational resampling filter using an equiripple FIR filter

with 96 taps, which is decomposed into a P × M polyphase matrix, where P = 3

and M = 32. This filter has 70 dB of attenuation and 0.3 dB passband ripple.

For our experiments, we use NVIDIA’s GeForce GTX 680, 780 Ti, and 970

desktop GPUs to implement our designs. The GTX 680 and 780 Ti GPUs are

based on the Kepler architecture, whereas the GTX 970 is based on the newer

Maxwell architecture. Our reference GPU in this experiment is the GTX 970; we

will compare the results of the other two GPUs to this reference device. We use

the latest CUDA driver version 6.5. Our target latency for real-time operation is

the 3GPP radio frame duration of 10 ms. We use 32-bit, complex, floating-point

precision throughout our experiments.

We are given a 25.6 MHz BW signal that is at a frame duration of 10 ms, and

is resampled by 3

5
. Thus, windows of 256,000 successive samples are interpolated

by P = 3 to 768,000 samples, and then decimated by Q = 5 to 153,600 samples

to achieve a 15.36 MHz BW. A block in our GPU mapping spans 256 threads in

the x-direction and 3 threads in the y-direction, resulting in a total of 768 threads

per block (TPB). The resulting kernel provides 1,000 blocks in the x-direction and

NC channels in the y-direction, where NC represents the number of channels to be
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Table 6.1: Single-channel performance comparison of interpolation for different

GPUs (run-time / throughput).

GPU with data transfer without data transfer

GTX 680 1.967 ms / 260.32 MSps 0.294 ms / 1,742.16 MSps

GTX 780 Ti 2.331 ms / 219.64 MSps 0.177 ms / 2,889.13 MSps

GTX 970 2.356 ms / 217.29 MSps 0.207 ms / 2,474.86 MSps

Tegra K1 16.82 ms / 30.437 MSps 6.532 ms / 78.38 MSps

processed.

6.5 Results and Analysis

We first measure the run-time of our interpolation method for a single channel

on different GPUs. The results are shown in Table 6.1. Here, Sps refers to samples

per second. We also include NVIDIA’s embedded GPU, the Tegra K1 (TK1) as

a comparison. TK1 runs slower than the discrete GPUs. TK1 is simply included

here for comparison purposes; this device is not suitable for a real-time realization

of our multi-carrier resampler design, and therefore, it is not included in the rest of

our experiments. An embedded GPU such as TK1 provides a significant decrease

in power consumption over discrete desktop GPUs, and optimizing our parallel

resampler design for embedded GPU is an interesting direction for future work.

The discrete GPUs ran well under 10 ms; in fact, they ran under the slot

time duration of 0.5 ms. This is not surprising due to the high parallelism and
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Table 6.2: Single-channel performance comparison of resampling for different GPUs

(run-time / throughput)

GPU with data transfer without data transfer speed-up

GTX 680 0.881 ms / 580.93 MSps 0.306 ms / 1,671.72 MSps 108.84x

GTX 780 Ti 0.944 ms / 541.89 MSps 0.189 ms / 2,712.78 MSps 176.61x

GTX 970 0.959 ms / 533.51 MSps 0.224 ms / 2,284.73 MSps 148.74x

Tegra K1 8.889 ms / 57.59 MSps 6.319 ms / 81.02 MSps 5.27x

balanced workload distribution across the many GPU cores. Even with the time

for data transfer taken into account, the execution time for our implementation was

well under the latency constraint. The throughput also increased significantly. In

Table 6.2, we compare the execution time results for the resampling operation, and

the speed-ups over the resampled rate of 15.36 MSps are shown in the table as well.

Overall, our resampling method achieves significant improvement in throughput

while achieving very low run-time, and speed-ups over 100 times,

In terms of resource usage, we examine our reference GPU, the GTX 970

in detail. For interpolation, the GM load efficiency is near 100%, meaning the

read operation is fully coalesced, since the read operation is linear. However, af-

ter polyphase filtering, the output samples are transposed. We address this issue

by restructuring the output dimension by using SM and transposing our index to

completely avoid bank conflicts in the GM store operation as shown in Figure 6.2.

These transformations result in 100% GM store efficiency from 0%.
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Coalescing of memory accesses is generally a high priority consideration when

optimizing CUDA kernels [40]. However, for resampling, our store efficiency is

reduced because of occasional bank conflicts that can arise during decimation —

i.e., multiple writes to the same bank can serialize GM store operations and causes

delays. Hence, we achieved 73% GM store efficiency during resampling, which is far

better than the near 0% efficiency that would result from a conventional polyphase

operation. Further improving store efficiency during resampling is a useful direction

for future work.

The occupancy calculator based on factors such as block size, register usage,

and SM usage, indicates a peak theoretical occupancy of 75%. In comparison, the

occupancy achieved by our optimized design is reported as 72%. This result in-

dicates that our kernel is highly optimized with a high level of GPU utilization.

Furthermore, there are no register spills and both kernels fully utilize FMA opera-

tions.

Finally, we emphasize that a novel aspect of this chapter is to process multiple

carriers at the same time. For LTE, CA is used to form a baseband BW up to 100

MHz. Since our design processes a 10 MHz BW, it can process up to 10 channels

simultaneously. In Figure 6.3 and 6.4, we show the run-time of 3 GTX GPUs as we

increase the number of channels. It is interesting to note the linear relationship of

the run-time as the number of channels increase linearly. Here, we do not include

memory transfer time (between the CPU and GPU) since the data is left in the

GPU for further signal processing. As we can see from these plots, both kernels run

under 3 ms, which is well below the target frame time.
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6.6 Summary

In this chapter, we presented a novel GPU-based rational resampler that per-

forms resampling on multiple channels and carriers. The resulting architecture is a

real-time, GPU implementation that provides high throughput, while achieving low

latency. Our polyphase-filter-based resampler requires only a single filter design, and

provides integrated interpolation and decimation. Our optimized design addresses

some of the disadvantages found in existing approaches to GPU-based polyphase

filter implementations by increasing data coalescing and occupancy, and providing

improved device utilization. Our design provides the flexibility of a software imple-

mentation, and therefore avoids the expense and rigidity of custom hardware, while

satisfying the relevant real-time constraints.
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tix = threadIdx .x ; tiy = threadIdx .y

bix = blockIdx .x ; biy = blockIdx .y

pdx = bix × blockDim.x + tix ; qdx = biy × SAMPLES PER ROW + pdx

idx = tiy × blockDim.x + tix ; odx = bix × SAMPLES PER BLOCK × P + idx

rdx = biy × SAMPLES PER FRAME + odx

if pdx < SAMPLES PER ROW then

SM REG [tix +M − 1] = in [qdx ]

if tix < M − 1 then

SM REG [tix ] = in[qdx −M + 1]

end if

SYNC THREADS

for ii = 0 to M − 1 do

cplx sum + = CM COEF [ii × P + tiy ]× SM REG [tix +M − 1− ii ]

end for

SM OUT [tix ][tiy ] = cplx sum

new tiy = idx/P

new tix = idx%P

new cplx sum = SM OUT [new tiy ][new tix ]

if rdx%Q = 0 then

out [rdx/Q ] = new cplx sum

end if

end if

Figure 6.2: Pseudocode for GPU-based multi-channel, polyphase resampler
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Figure 6.3: Plot of GPU interpolator run-time for increasing number of channels.
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Figure 6.4: Plot of GPU resampler run-time for increasing number of channels.
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Chapter 7: GPU Acceleration of Symbol Timing Recovery

In this chapter, we present a novel approach to GPU acceleration of symbol

timing recovery. Our approach is targeted to heterogeneous CPU/GPU platforms,

and centers on use of polyphase interpolators to detect symbol timing error. Symbol

timing recovery is a compute intensive procedure that detects and corrects the timing

error in a coherent receiver. We provide optimal sample-time timing recovery using

a maximum likelihood (ML) estimator to minimize the timing error. This is an

iterative and adaptive system that relies on feedback. Therefore, we present an

accelerated implementation using a GPU for timing error detection (TED), thereby

enabling fast error detection.

We demonstrate this heterogeneous CPU/GPU implementation by computing

a low complexity and low noise matched filter (MF) while simultaneously performing

TED. We then compare the performance of the CPU- vs. GPU-based timing recovery

for different interpolation rates to minimize the error and improve the detection

speed by up to a factor of 35. We further improve the throughput by utilizing GPU

optimization and performing block processing, all while maintaining a low sampling

rate. The work of this chapter was presented in [44].
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7.1 Introduction and Related Work

When data is transmitted over a wireless communication channel, it is cor-

rupted due to various types of noise, such as fading, oscillator drift, frequency and

phase offset, receiver thermal noise, etc. At the receiver, it is also immune to noise

and symbol jitter in time domain because the transmitter and receiver clocks are

not the same. Therefore, a timing recovery subsystem must be able to sample the

data at a correct instant and detect its peak for correct symbol timing recovery

(STR). Sampling just once at the receiver is ineffective due to noise — i.e., additive

white Gaussian noise (AWGN). However, a matched filter (MF) can limit the noise

at the receiver and provide a high signal to noise ratio (SNR) sampling point (due

to correlation gain). The goal is to obtain best SNR while avoiding inter-symbol

interference (ISI). The MF is a time-reversed and delayed version of the transmitted

waveform. To maximize SNR for the detection, the demodulator must form inner

products between the incoming signal and the reference signal. That means it must

time-align the locally generated reference signal with the received signal. Since the

inner product is formed in a convolving filter, the demodulator must determine the

precise time position to sample the input and output of the filter.

Over the decades, engineers have tried to design and implement clever receivers

that not only detect but correct the incoming signal. This was first introduced in

the analog domain, however, with the availability of digital integrated circuits, the

process was converted over to the digital domain using transformation methods,

yet the overall concept and the process remains the same. This process employs

126



a phase-locked loop (PLL), which has 3 major components: 1. a timing error

detection (TED) circuit; 2. loop filter (LF) for phase and frequency offset detection;

and 3. a controlled oscillator, such as a numerically controlled oscillator (NCO), to

advance or retard the timing so that the peak of the incoming signal is matched with

the reference signal. There are several widely used methods in TED: the Gardner

method [36], Mueller and Muller (M&M) algorithm [77], early-late gate algorithm

(ELGA) [4, 32, 78], and maximum likelihood (ML)-based TED [13, 32].

The goal is a TED that yields high SNR, and is resource efficient while main-

taining the lowest possible sampling rate (ideally, 1 sample per symbol (spS)), and

possibly exploits data independence by using parallelism to speed up the PLL.

Therefore, we focus our design using ML-based TED using MF and derivative

MF [32]. ML seeks the peak of correlation output using derivative MF (dMF).

ELGA is the predecessor in that it essentially finds the derivative by approximation

using early, current, and late samples. This provides a relatively low complexity

structure for a high performance system, which is critical in terms of designing a

resource efficient transceiver such as in FPGA. However, it is compute-intensive: it

requires 3 spS and often it also requires high order filters. M&M requires 1 spS

but its carrier recovery must be performed before STR. Interpolation techniques for

STR have been well discussed in the past (e.g., see [79]). Polyphase interpolator

based ML TED was introduced in [32, 35]. This idea was taken further by moving

MF into the interpolator, and the resulting structure onto FPGAs in [33]. Then the

lowest error resolution was achieved by using an arbitrary resampler instead of a

polyphase interpolator in [34] for FPGAs as well. The polyphase filterbank is a 2D
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matrix structure and its lattice decomposition of multirate filters has been intro-

duced in [12]. While these implementations have made progress towards improved

TED, the computational bottlenecks of the algorithm prohibit maximum SNR for

low sample rates.

Graphics processing units (GPUs) represent an attractive class of computa-

tional resources for applications that can map to it. We recognize the independence

among the filterbanks and multiplication between filter coefficients and input sam-

ples. We can exploit them using multiple forms of parallelism inside the GPU to

speed up the overall filtering operation, which then speeds up the overall error detec-

tion because its output is directly responsible for the output and timing error [32].

We propose GPU-based TED for STR. Finally, by driving the LF and NCO (run-

ning at 1 spS as derived in [32]), it essentially aligns the reference symbol (matched

filtered data) to the received data (same principles as other digital methods and

as well as analog methods), and this method works well for this type of data-aided

coherence receiver (i.e., phase modulated). It keeps the resampling and realigns the

sample to the received sample. With decreased detection time, we can increase the

throughput of the system by performing faster locking.

To accommodate the iterative and adaptive nature of PLLs, we present in this

work a specific decomposition and mapping of the application onto GPUs. With

our careful implementation and the availability of many threads and cores in the

GPU, we also perform simultaneous STR over multiple input samples. Instead of

the sample-by-sample processing in traditional digital receivers, we enable block pro-

cessing of multiple symbols simultaneously to improve the throughput even further,
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Figure 7.1: Block diagram of ML-based symbol timing recovery.

an attractive option for modern wireless communication systems. The rest of the

chapter is organized as follows: we discuss the details of ML- based TED; present

our mapping of TED onto GPUs; and present design and implementation details,

followed by results analysis and summary comments.

Figure 7.1 shows a block diagram of our targeted communication system

throughout the developments of this chapter. We assume that we have a single

carrier narrow band system, and that this system has been properly demodulated

and downconverted to baseband for STR.
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7.2 GPU-based Timing Error Detection

Our design process began with the timing recovery system shown in Figure 7.1,

and we first identified the computational bottleneck in this system — i.e., the part

that is most arithmetically demanding. The NCO is a sequential system that simply

counts up at a certain rate and wraps around after it reaches its peak. We embedded

a control circuit in the NCO to scale the output of the LF so that the NCO speeds

up or down depending on the error value relative to the peak. The LF is also a

sequential system that multiplies the detected timing error by LF gains to track the

error over the time. Calculation of gains for TED and LF (Ki and Kp) are well

covered in [3, 80], and BPSK timing recovery s-curve calculation is covered in [4].

Our contribution in this work includes mapping such calculations efficiently into

GPU implementation, and structuring parallelism within and across the different

calculations to maximize performance.

The PLL operates in several modes. During its initial phase or the acquisition

phase, it acquires the signal using a wide bandwidth, which in turn allows more

noise to enter the loop, but reduces locking time. Once it locks onto a signal it stays

in the tracking phase where the bandwidth can be narrowed as much as possible

and the loop stays locked as long as the noise level remains stable.

It is important to note that in our system, we fixed our bandwidth to be as

narrow as possible going into the loop. Normally, this would cause the loop to take a

long time to lock onto the signal, however, with our GPU-based TED, we are able to

lock quickly while maintaining this narrowest possible bandwidth in tracking mode,
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and indeed this is an important novel feature of our GPU-based implementation.

This feature provides rapid locking without leaving the system susceptible to larger

noise levels across a larger bandwidth.

Switching or changing the bandwidth on the fly is a difficult task but we are

able to apply a narrow bandwidth, as described above, and to acquire and lock onto

the signal all at the same time. This not only simplifies the design but gives us a

smooth tracking curve that is fine tuned over the symbol time. However, the design

and implementation of LF and NCO are beyond the scope of this chapter. Therefore,

the polyphase MF and dMF, which are based on matrix operations, are the obvious

choices to implement on the GPU, and thereby reduce the overall processing time.

In a heterogeneous processing fashion, we offload our filter calculations to the GPU

and work with sequential subsystems (the LF and NCO) on the CPU.

The MF and dMF are the heart of our targeted design and critical to error

detection. The smaller the error or closer to the peak it is the better. Therefore,

ideally we want to upsample as much as possible. For serial processors, upsampling

heavily (e.g., 1:32 interpolation) is not desirable due to the required resource usage,

and such interpolation can require long computation times, and even longer times

required to lock onto the peak. An alternative to high interpolation TED is to

use an arbitrary resampler, as presented in [13, 34]. However, such a method is

complicated to implement. The arbitrary resampler takes interpolation filtering one

step further by linearly interpolating between the available output samples of the

P -path polyphase interpolator. It yields highly accurate TED without the need for

a high P -path interpolator (in such an interpolator the filter is large and indexing
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for jj = 0 to P − 1 do

for ii = 0 to M − 1 do

prod = h[ii× P + jj]× r[ii]

accum = accum+prod;

end for

end for

Figure 7.2: Iterative MAC operation.

through the filterbanks is slow, resulting in high overhead).

Therefore, a key trade-off is the complexity of the design vs. the resolution of

the error or the peak detection. Our objective is to reduce the design complexity

while achieving a high interpolation rate. By using a polyphase interpolator to

interpolate at a very high rate to achieve arbitrary resampler like performance, and

by carefully mapping the filter operations into efficient parallel realizations on the

GPU, we achieve this objective through our new approach.

To map the TED onto the targeted GPU architecture, we use warps, shared

memories (SMs), and groups (blocks) of multiprocessors (MPs) to optimize uti-

lization of the NVIDIA GTX device. The filter equation has two parts, one for

multiply-and-accumulate (MAC) operations to perform the inner product between

two vectors — the input array and filter coefficients, and the other for indexing

through the filterbanks. A typical polyphase interpolator implementation can be

described as shown in Figure 7.2.

Here, h is the filter array, r is an array of input samples, P is the interpolation
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for ii = 0 to M − 1 do

prod = h[ii× P + iy]× r[ii]

accum[iy] = accum[iy] + prod

end for

Figure 7.3: Parallel MAC operation.

rate, andM is the length of a subfilter. Thus, the original filter length is N = P×M .

We simply rearrange or reshape this 1×N filter vector into a P×M polyphase filter

matrix. Instead of performing O(N) operations, the polyphase structure improves

this operation to O(M) operations. Due to its 2-dimensional structure, we use

double for-loops to accomplish this filtering task, which serially indexes through

the filter taps and input samples. We utilize multiple forms of parallelism in this

structure. Specifically, we parallelize: (1) across the filterbanks (outer loop, jj

index); (2) across the filter (inner loop, ii index); and (3) at a higher level, across

the filter and the filterbanks.

When we parallelize across the filterbanks, we exploit the independence of

accumulation across the filterbanks. The modified computation structure can be

described as shown in Figure 7.3.

Here, we replace jj with iy, the polyphase filterbank index, and place one

filterbank per block in the GPU. Thus, each bank produces one interpolated value

or an interpolant. In this version, we improve the performance of the filtering by

O(P ) operations. Similarly, when we parallelize across the filter (ii index) itself,

we simply assign one multiply operation to one thread in a block. So we simply
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prod = h[ix× P + iy]× r[ix]

SY NC

for kk = 0 to M − 1 do

accum = accum+ prod[kk]

end for

Figure 7.4: Fully parallel MAC operation.

replace ii with ix, the thread index of the block. In this case, we improve the filter

operation by O(M). The value of M is chosen to match the warp size or 32 threads.

We eliminate for-loops in the GPU implementation as long as there are no data

dependencies, and we can calculate the iterations independently.

Based on this approach, we combine multiple levels of parallelism to parallelize

across the entire polyphase filter matrix. The resulting computational structure is

shown in Figure 7.4.

In this version, the filter is accessed via thread index ix and bank index, iy.

We use the “sync thread” function in CUDA to synchronize our threads, and ensure

that all of the products are available before they are summed. Since we are summing

across a relatively small number of threads, it is not necessary to perform further

reduction of the accumulator part. Therefore, we sum the products over the threads

using a simple for-loop, as shown in Figure 7.4.

Using this approach, the performance of the complete GPU-based filtering

improves by O(M × P ) operations compared to the original version (Figure 7.2),

which is a considerable speed up. Furthermore, our accelerated implementation
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achieves instant error and output calculation without reducing this high degree of

speedup.

In order to optimize the GPU implementation for our experiments, we choose

the number of threads per block (TPB) to be a multiple of the warp size to avoid

wasting bandwidth and facilitate coalescing. Each thread is assigned a lightweight

operation such as multiplication for both filters. The interpolation rate is chosen so

that all MPs are uniformly loaded — i.e., the same number of blocks is launched on

each MP, and also the amount of work of interest per block is the same and provides

more consistent results from run to run, which allows a high interpolation rate

and higher utilization of blocks on the GPU. The speedup in our implementation

is achieved from invoking more GPU blocks, since there are many GPU blocks

compared to threads, assuming the threads are kept busy enough (at least 64 TPB).

The output of the STR comes from the MF directly. Therefore, the higher the

value of P (the number of polyphase paths), the more accurate the output will be.

Furthermore, since the results are based on the actual value rather than the sign,

as in [36], it is critical that we align the sample to the peak as close as possible to

yield a high SNR. However, increasing P does not always yield a better result, as

there is a limit on how far we can interpolate and at some point it does not return

lower error and potentially it can slow down the locking time because of the large

number of interpolants that must be processed.

In the following section, we experiment with different values of M and P to

find where the GPU performs best. We strive for 50% occupancy, which amounts

to 256 TPB in the targeted GPU. Our design is structured to utilize SM as much as
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possible and use constant memory (CM) for read only data, such as filter coefficients,

for faster cached access. We minimize register spills to local memory by minimizing

local variable declarations and keeping the local array (e.g., product vectors) in the

SM as much as possible, and avoiding bank conflicts within SM.

7.3 Implementation and Experimental Setup

We model and simulate our entire design using MATLAB, and then develop

optimized implementations in C and CUDA targeted to the CPU and GPU, respec-

tively. For our experiments, a BPSK signal is generated and pulse shaped at 2 spS

using a root-raised-cosine (RRC) filter (with a roll-off factor of 0.5). To emulate

a burst transmission or a data packet, we choose our data to be 2,000 symbols or

4,000 samples after pulse shaping. Typically, the system requires 500-700 symbols to

lock, so it is reasonable to validate the STR operation with 2,000 symbols. AWGN

is then added to the transmitted data to emulate the timing jitter in the receiver.

It is assumed that the data has been properly modulated then demodulated to the

baseband and downsampled to 2 spS immediately going into the timing recovery

loop. The matched filter is also an RRC filter (with a roll-off factor of 0.5), and

chosen to be of 864 taps, which reshapes it to give a P ×M matrix with size 27×32.

Therefore, the number of filterbanks or interpolation rate is 27 and each filterbank

has 32 taps. The interpolation rate is varied in order to profile the performance of

our system, and help tune the system for maximum performance. The CPU used

in our experiments is a dual core Intel Xeon 3.0 GHz CPU, and the GPU is an
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NVIDIA GTX 260.

In our design of the STR, we have improved the NCO such that the zone test

shown in [32] is not required. The zone test is used in [32] because given 2 spS,

even and odd samples are continuously arriving, and the system needs to determine

where the peak is. Therefore, tests are performed to determine the decision sample

for each input sample. In our modified approach, we streamlined the NCO to simply

count up to the total number of samples per symbol. For example, given P = 27 and

input data at 2 spS, we simply count up to 54 samples per symbol every time. This

method eliminates the need for the zone test and significantly reduces the design

complexity.

From these 54 samples, only one sample is selected to be used as an error

and output of the system. Therefore, running at the lowest possible sample rate is

important. The scale factor is given by

Kv =
2π

S × P
, (7.1)

where S is the pulse shape rate, and (as defined earlier), P is the interpolation rate.

When the LF error is scaled with this value, the control loop will update the

corresponding filterbank index, and the updated index will be used to select the

peak on the next symbol. A sample plot of the timing error and the corresponding

polyphase bank index is shown in Figure 7.5.
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Figure 7.5: An example plot of timing error and corresponding polyphase filterbank

index for SNR of 10 dB.

7.3.1 Sequential Symbol Timing Recovery

In Section 7.2, we discuss how we exploit multiple forms of parallelism found in

our TED. We first parallelize across filterbanks, followed by parallelization within

individual filters. For the initial implementation, we use P = 27 and M = 32.

Each filterbank is assigned to a block in the GPU, where each block has 32 threads

assigned to a 32-tap filtering operation. The interpolated values of the input sample

are obtained as the matrix-vector product
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p = H × r, (7.2)

where H is the polyphase filter matrix (dimensions of P ×M), r is the input array

(dimensions of M × 1), and p (dimensions of P × 1) gives the interpolated values of

the input sample. This process is then repeated for both the MF and dMF to give

us filtered results in real time.

Polyphase filtering already gives us reduced multiplications due to its use of

filterbanks — given our filter size of 27 × 32 = 864 filter taps, we only have to

perform 32 multiplications, giving us a workload savings of 96.3%. In addition, we

parallelize across the polyphase filtering operations, providing significant savings in

terms of computation time.

We vary the interpolation rate P to be multiples of MPs (i.e., multiples of the

number of multiprocessors per core). In particular, we employ P = 27, 54, 81, 108.

We find experimentally that rates that are not multiples of MPs cause a reduction

in performance. This type of high interpolation is not desirable in typical FPGA

or CPU devices, due to the large number of multipliers, and the large amount of

time and memory required. However, it maps efficiently into GPU implementation,

and therefore demonstrates an important kind of processing in which GPUs are

especially well suited to communication system development.

We transfer data back to the CPU from the GPU every time the TED block

is called. Due to the sequential and recursive nature of the PLL and NCO, they are

not well suited for GPU acceleration, and thus we incur the data transfer overhead
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required to perform the PLL and NCO computations on the CPU.

7.3.2 Simultaneous Multi-Symbol Timing Recovery

So far in the chapter, we have presented a one-to-one mapping of a sequential

filter indexing into matrix operations by unrolling the loops across the polyphase

filter matrix. However, this is still a sequential and iterative system that needs to be

updated on a sample-by-sample basis. To utilize more banks and threads per kernel

launch on the targeted GPU, we recognize that the input samples do not have to be

processed sequentially to produce interpolated outputs. Instead, input samples can

be interpolated independently on the GPU using the same kernel, while the PLL is

updated sequentially as usual on the CPU. Additionally, we apply block processing

on the input samples, which significantly improves throughput and minimizes data

transfer overhead.

With this new grouping of input data samples, based on a block processing

configuration, we introduce the notion of sub-blocks and sub-thread indexing within

a single block. Each sub-block is responsible for a single set of M = 32 input words.

Therefore, a total of (M +K − 1) samples are stored in SM. Here, K is the number

of input samples we wish to process and (M−1) gives the number of previous words

to process. In our case, K = 8, so there are 8 independent processing subsystems

spanning 32 input samples each, which results in 256 active threads per block, an

optimum occupancy level for the targeted GPU.

Since we are processing 8 input samples or 4 symbols per kernel launch, our
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Figure 7.6: Organization of 256 threads to handle eight 32-input words at a time

for filtering inside the GPU. (M +K − 1 samples are loaded onto the shared mem-

ory, where M = 32 (a warp) and K = 8 (the number of input samples for block

processing).

throughput also increases by a factor of 4. Furthermore, we also achieve a reduction

in memory transfer bandwidth by a factor of 8. This is achieved because we do

not have to transfer the interpolated data back to the CPU for every sample, and

our rate for initiating such transfers is reduced by a factor of 8. In addition, the

filter coefficients are stored in CM for fast read-only access, and product vectors

and accumulation registers are stored in SM for fast read-and-write operations. Our

approach to sub-grouping (sub-block organization) is shown in Figure 7.6.
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In this adaptive communication system design, it is not obvious how to process

multiple input samples simultaneously and still perform iterative updates. However,

with our TED operating in the GPU, we can interpolate many input samples all at

once, while the CPU updates the loop as usual using the LF and NCO. Given an

error value, the LF will be updated and the NCO will continue to add the detected

error to its count and traverse along the interpolated samples of the symbol. As

the NCO traverses from symbol to symbol, new errors are detected and updated

accordingly in the CPU. Regardless of whether input samples are processed one at

a time or in groups, the architecture developed in this section provides a significant

advantage in that it allows for highly optimized block processing of the data. This

results in enhanced real time communication system performance, as we demonstrate

experimentally in the next section.

7.4 Results and Analysis

In this chapter, we have presented 5 different TED implementations using

CPU and GPU devices. In the CPU, we used double for-loops to sequentially

index through the filter matrices, whereas in the GPU, we exploited multiple lev-

els of parallelism. These levels of parallelism and their associated implementations

are denoted as: (P1) across the filterbank (y-direction); (P2) across the filter (x-

direction); (P3) across the entire filterbank matrix (both x and y-directions); and

(P4) simultaneous filtering using block processing of the input. Figure 7.7 compares

the performance of these different TED designs for different values of the interpola-
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Figure 7.7: Comparison of different TED designs.

tion rate P . Different trade-offs between the interpolation rate and execution time

are shown for the CPU-only implementation (“CPU”), and implementations P1-P4,

as defined above.

The speedup times (GPU vs. CPU) are summarized in Table 7.1 and 7.2.

In this experiment, we used a single GPU version of TED, which was executed

in the block processing mode, and with the following additional implementation

characteristics: 256 TPB, register ratio of 50% (8, 192/16, 384 or 7 registers per

thread), SM ratio of 62.5% (10, 240/16, 384 or 2,300 bytes per block), active blocks

per SM of 4:8, and active threads per SM of 1024:1024. Furthermore, none of the

143



Table 7.1: Achieved speedup for GPU-based implementation of TED.

P = 27 P = 54 P = 81

Achieved occupancy (%) 25% 50% 75%

overall throughput (GB/s) 2.86 3.35 3.42

CPU TED time (msec) 1,160 1,400 1,690

GPU TED time (msec) 40 40 50

TED speedup 29x 35x 33.8x

interpolation rates (P values) that we experimented with exhibited occupancy as a

limiting factor. Only the grid sizes (i.e., the numbers of blocks) or P values were

changed in these experiments on overall achieved acceleration.

When we increased P , we observed increasing levels of performance until we

reached P = 108. At this point, performance began to degrade even though an oc-

cupancy level of 100% was reached. At P = 108, the overall throughput of the global

memory decreased to 3.34 GB/s, most likely due to saturation effects related to the

amount of interpolated data that needed to be transferred. As expected, higher oc-

cupancy does not necessarily mean higher performance, and our experiments helped

to quantify at what point this kind of saturation occurs for our GPU-based TED

implementation. Our largest performance gain was achieved with P = 54, and an

occupancy level of 50%.

Finally, we compared the overall speedup of the STR loop between CPU-based

and GPU-based implementations. In this experiment, we used the block processing
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Table 7.2: Comparison of the overall speedup for the STR loop between CPU- and

GPU-based implementations.

P = 27 P = 54 P = 81

CPU only (sec) 1.63 2.22 2.85

GPU only (sec) 0.52 0.85 1.19

Overall speedup 3.13x 2.61x 2.39x

version of the GPU TED to maximize the speedup. The results are summarized in

Table 7.2.

7.5 Summary

In this chapter, we use a coherent synchronization technique to explore ways to

improve the performance of data-aided symbol timing recovery (STR) for a digital

receiver. Our targeted STR system is a sequential, adaptive system that must

accurately time incoming digital communication symbols under stringent real time

constraints. Our goal is to approach the optimal sampling peak as closely as possible

while minimizing the error without using filtering that is excessively complex. We

use maximum likelihood (ML) based timing error detection (TED) to interpolate

the data at a high resolution, and minimize the timing error or detect the symbol

peak.

Although we use already streamlined polyphase filterbanks to perform interpo-

lation, the filterbanks create large computational loads due to the high orders of the
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filters involved. Therefore, we use a graphics processing unit (GPU) to accelerate

the operation of TED. Our GPU-based TED enables instant error detection, narrow

loop filter (LF) bandwidth (i.e., low input noise) with faster lock, low complexity,

and high signal to noise ratio (SNR) with increased throughput. We further improve

the throughput by introducing block processing across the input stream. In addi-

tion, we simplify our numerically controlled oscillator (NCO) design by performing

one update per symbol instead of testing for multiple zones within a symbol.

Our experimental results demonstrate that our new design methods for real-

time STR map efficiently into GPU-based implementation, and we provide analy-

sis to quantify some of the key trade-offs involved in this kind of implementation.

Building on our proposed STR implementation techniques to develop and optimize

complete GPU-based transceiver systems is a useful area for future work.
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Chapter 8: Conclusion and Future Work

In this thesis, we have generalized a wideband transceiver implementation us-

ing graphics processing units (GPUs), particularly as a parallel front-end transceiver.

We presented parallel processing techniques for important signal processing algo-

rithms in real-time software-defined radio applications. Our proposed front-end

transceiver architecture can be generalized into four main parts: 1. GPU front-

end transceiver implementation, 2. wideband channelization, 3. resampling, and 4.

synchronization.

We are presented with discrete-time signals immediately after the sampling

circuit in the radio frequency (RF) front-end. The transmitted original signal is cor-

rupted and we must recover it from the channel impairments. A baseband front-end

receiver must be able to separate the channel-of-interest (COI) from the incoming

signals, i.e., from other users, interferences, and noise. The front-end receiver has

a critical task of channelization or separation of the COI, followed by a resampling

to match the sampling rate to the desired data rate, and synchronization to match

the received signal to the transmitted signal. Following the front-end receiver, the

signal goes through further signal processing, such as channel and source decoding.

Wideband channelization is the first stage of our generalized front-end (GFE)
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processing approach, where we are given a wideband signal (i.e., tens or hundreds of

MHz wide) and we demultiplex the channels and select the COI. For this purpose,

we have developed a high throughput, low latency, fully parallel channelizer using a

polyphase filter bank structure to separate multiple channels simultaneously using an

efficient architecture. We have derived several options for channelization using GPUs

and demonstrated their performance in real-time applications of wireless cellular

standards.

Following channelization, we need to resample to some desired sample rate,

since the system clock can be different from the desired sampling rate. We have

demonstrated a series of progressively more efficient options for resampling using a

sequence of novel implementation techniques. We first demonstrated an arbitrary

sample rate conversion (ASRC) system using a fully parallel polyphase filter struc-

ture. We then improved the performance of this system by utilizing GPU texture

memory (TM) to automatically produce the output signal at the desired arbitrary

fractional sampling rate. We improved the design further by enhancing the reso-

lution by interpolating prior to TM resampling. We implemented a fully parallel

polyphase interpolator and discrete Fourier transform (DFT) interpolation subsys-

tem to achieve this task. We then took the concept further by resampling across

multiple dimensions. We achieved this by exploiting support for multidimensional

signal processing structures in GPUs. The resulting system is able to resample

within and across relevant frequency bands simultaneously. We demonstrated the

performance of our implementations by applying them to wireless cellular standards,

and assessing their real-time performance in terms of throughput and latency.
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Finally, following resampling, the desired COI must be synchronized in terms

of time, frequency, and phase in order to recover the transmitted signal successfully.

We investigated one of the most demanding synchronization techniques, symbol tim-

ing recovery. We implemented a maximum likelihood estimator using a polyphase

filter structure for timing error detection (TED). The estimated timing error was

then filtered using a feedback loop structure. The GPU was used to accelerate

this TED process by utilizing fully parallel filter operation to calculate the error

efficiently. The resulting architecture accelerated overall system performance signif-

icantly, and demonstrated large performance improvement compared to a reference

serial system.

In the remainder of this chapter, we summarize our contributions to different

areas of wideband transceiver implementation, and we outline useful directions for

future work.

8.1 GPU Front-end Transceiver

In Chapter 3, we introduced the notion of a GPU-based radio. Specifically,

we focused on applying GPU technology to front-end radio design. We designed a

wideband receiver using a channelizer to filter, downconvert, and downsample the

COI. We included functionality to perform further resampling if the sampling rate

at the channelizer output does not meet the desired rate (typically 2–4 times the

data rate).

A major contribution in this chapter is utilizing GPU technology to accelerate
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front-end radio computations, such as filtering and transforms, through software so-

lutions. The resulting architecture exceeds the throughput requirement and reduces

the latency cost for real-time operation. A novel aspect of this chapter is our imple-

mentation of an interpolating polyphase channelizer to further resample as needed

at the output of the channelizer. Following the channelizer, two stages of multirate

filtering were employed to perform arbitrary resampling. This subsystem resam-

pled the output of the channelizer to the proper sampling rate, which is fractionally

related to the original rate. Even with inclusion of the “post-channelization” resam-

pling subsystem, the GFE architecture presented in this chapter provides increased

throughput and reduced latency, and satisfies the relevant real-time constraints.

8.2 Wideband Channelization

In Chapter 4, we presented an improved channelizer design. In this design,

we further parallelized the channelization process by unrolling loop iterations across

the input samples rather than across the filter coefficients, as was done in Chap-

ter 3. This resulted in significantly larger GPU occupancy, which lead to an increase

in throughput and further reduced the latency. We also applied an approach of

performing multiply-and-accumulate (MAC) operations using a single thread per

operation, which isolated the work of the threads, and made the processing simpler

and faster.

Additionally, we developed methods for implementing polyphase filter struc-

tures in GPUs by transposing the input data to enforce global load coalescing and
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caching. This resulted in 100% load efficiency compared to 50% or less from non-

optimized structures. This simple transformation further enhanced the development

of our channelizer.

Using the approaches presented in this chapter, the output of the GPU chan-

nelizer provides all of the desired channels simultaneously. Furthermore, no perfor-

mance penalty or additional computation is incurred to provide such simultaneous

production of the parallel output streams.

We demonstrated the implementation techniques developed in this chapter on

a relevant wireless communication standard, and showed that the requirements of

this standard can be exceeded using these techniques.

8.3 Multi-channel Arbitrary Resampling

In Chapter 5, we developed GPU-based methods for efficient, arbitrary re-

sampling across multiple wireless communications channels. Arbitrary resampling

enables the system to adapt to various sampling rates without changing the system

clock rate. However, the process is computationally intensive and can consume a

large amount of resources. In this chapter, we introduced a simple yet effective

resampling method for GPU-based transceiver implementation.

We revisited our fully parallel arbitrary resampler introduced in Chapter 3 and

improved its performance significantly by utilizing a special hardware unit in GPUs

called texture memory (TM). TM has a dedicated filtering circuit to perform nearest

neighborhood and linear interpolation without computing the fractional resampling
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points manually. This feature allowed us to take further advantage of GPU capabili-

ties for optimized, software-based ASRC implementation. The resulting architecture

provides a low complexity and low latency arbitrary resampler.

To further increase the resampling accuracy, we proposed an integer inter-

polation prior to applying the TM filtering operation. To achieve this objective,

we implemented two different integer interpolations — using time and frequency

domain filtering. We introduced an efficient polyphase interpolator and DFT in-

terpolator using a GPU. Our optimized polyphase interpolator is a multi-channel

interpolator capable of interpolating across multiple channels, e.g., at the output

of a channelizer. We optimized our GPU implementation to improve the efficiency

of global load and store operations. In the frequency domain, we utilized a highly

optimized, GPU-targeted, DFT library routine called CUFFT to perform integer

interpolation.

Collectively, the DFT-based approache presented in this chapter provide a

novel ASRC implementation that does not require a filter design process. Fur-

thermore, the implementation is fully software-based through efficient use of GPU

technology. We discussed advantages and disadvantages of each of the filtering al-

ternatives considered in this chapter. We again validated the utility of our proposed

implementation techniques in the context of practical wireless communication stan-

dards.
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8.4 Multirate Filtering for Multi-carrier Systems

In Chapter 6, we demonstrated an alternate resampling technique to the ASRC

approaches presented in earlier parts of the thesis. More specifically, we presented

a common multirate filtering method for rational resampling. This method im-

plements a fixed ratio resampler made up of an interpolation (upsampling) and a

decimation (downsampling) to produce a fractional ratio. We combined the two

operations into a single stage using a single filter design and an indexing scheme at

the input and output to control the resampling rate. This efficient filtering approach

is useful in many applications where dynamically-variable, arbitrary resampling is

not required — for example, when we know the conversion ratio in advance. We

take this concept further by applying the filtering across multiple channels in the

same frequency band and then to multiple frequency bands that may be hundreds

of MHz apart. This enables carrier aggregation (CA) and resampling of composite

wideband signals at the baseband. CA is one of the required features in modern

communications systems in order to increase communications throughput.

In our experiments in this chapter, we showed that our GPU-based multirate,

multi-dimensional resampling architecture exhibits high throughput, low latency,

and low complexity.
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8.5 Synchronization

In Chapter 7, we focused on efficient design and implementation of synchro-

nization in the receiver. Synchronization is a critical component of the receiver,

where channel impairments are detected, estimated, and corrected in order to suc-

cessfully recover the transmitted signal. Without synchronization, the other receiver

processes would not work properly, leading to high error rates.

In this chapter, we examined the most computationally intensive component

of synchronization, symbol timing error detection (TED) and recovery. TED is a

critical component of symbol timing recovery since it is responsible for accurately

measuring the timing offset. We accelerated this algorithm by using the GPU to per-

form fully parallel filtering. We incorporated GPU-accelerated TED into a feedback-

based design and in conjunction with serial processing in a CPU. We were able to

speed up the overall system significantly, as shown by the experiments presented in

Chapter 7.

8.6 Future Work

This thesis has examined wideband transceiver design by generalizing major

front-end components — the channelizer, resampler, and synchronizer. Future wire-

less communication systems demand high bandwidth and agile spectrum sharing

and deployment. Our application of commercially-available, programmable, GPU

devices for real-time signal processing is attractive for helping to satisfy these fu-
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ture needs. GPUs can potentially consume lower power through extensive parallel

execution of operations while operating at lower clock speeds. GPUs also have

thousands of cores and even more threads available for lightweight signal processing

operations. By carefully utilizing the memory hierarchy of GPUs and distributing

work across the devices to increase occupancy, which leads to high throughput and

reduced latency, communication system designers can employ GPUs as attractive

platforms to be used as baseband modems. GPUs can work with dedicated hard-

ware modem subsystems or potentially provide the entire signal processing suite for

modem operation.

GPUs are attractive for multidimensional image processing as well as one-

dimensional signal processing due to the high levels of data parallelism found in

both classes of applications. In addition, GPU implementations are software-based,

which is a distinct advantage — in terms of flexibility, design, and verification costs

— over hardware that is configured via firmware. Additionally, GPUs are cost-

effective due to their large production volumes and their relevance across diverse

application domains.

In relation to our overall theme of designing and implementing baseband

modems using GPUs, useful directions for potential future work using GPU-based

radios includes spectrum sensing using filterbanks, and a complete wideband chan-

nelizer radio including synchronization, and multidimensional radio for CA. Before

we can demodulate and synchronize the signal, we must detect the presence of a

signal-of-interest (SOI). An SOI can be anywhere in the frequency spectrum, and

we can apply our fully parallel filter bank approach to analyze the spectrum and
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sense the active SOI. A GPU approach is promising for this kind of functionality by

use of a polyphase channelizer to decompose the incoming (wideband) signal into

smaller channels and examine the derived channels in parallel. This approach can

provide fast identification of SOIs within such a wide band. Such a topic is an ac-

tive research topic in cognitive radio and spectrum sensing. Applying fast detection

using GPU-based spectrum sensing can enable more effective detection. Combining

such a method with machine learning techniques, such as deep neural networks, is

another interesting future research direction. Such an approach help to more fully

realize efficient spectrum sharing and secure communication systems.

Currently, orthogonal frequency division multiplexing (OFDM) is a popular

option to implement wideband transceivers using DFTs. However, OFDM has large

spectral leakage at the band edges. This problem can be addressed by applying

a polyphase filter prior to the DFT operation to filter the sidelobes. We have

discussed such an approach throughout the thesis and have demonstrated a fully

parallel polyphase channelizer transceiver. We have also demonstrated its efficient

mapping onto GPUs. Once the polyphase channelizer is used as a transceiver, we

need to detect, estimate, and correct channel impairments such as frequency, phase,

and timing offset. We examined timing recovery schemes for a narrowband signal.

A useful direction for future work is extension of these schemes to wideband signals

using channelizers to correctly synchronize the SOIs. We expect that this work

would require a new architecture and could potentially introduce a new domain for

future receiver design compared to the feedback-dominant architectures that are

currently used in hardware modems.
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An consistent observation from the developments of this thesis is that the

concept of GPU-based parallel transceiver architectures has significant potential as

a framework for future modem design. This thesis represents various contributions

in the evolution of this framework.
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Appendix A: Sample CUDA Codes

In this appendix, we provide selected CUDA kernel codes that we developed,

and that were employed in the experiments reported on in this thesis.

A.1 Polyphase Channelizer

Here, we provide CUDA code from the polyphase channelizer implementation

used in Chapter 4. This code computes a polyphase filter bank operation prior to

calling the CUFFT kernel.

__global__ void gpu_PFB (float *d_x_real, float *d_x_imag,

cufftComplex *d_fft_input}

{

// LOCAL INDEX

int ii = 0;

int tix = threadIdx.x;

int bix = blockIdx.x;

int biy = blockIdx.y;

int pdx = blockIdx.x*blockDim.x+threadIdx.x;

int idx = biy*NUM_SAMPLES + pdx;
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int odx = pdx*PFB_Q + biy;

int rdx = pdx*PFB_Q + (PFB_Q-1-biy);

// LOCAL BUFFERS

__shared__ float sm_input_buff_real[TPB+PFB_M-1];

__shared__ float sm_input_buff_imag[TPB+PFB_M-1];

__shared__ float sm_mac_real[TPB];

__shared__ float sm_mac_imag[TPB];

// INITIALIZE

sm_mac_real[tix] = 0;

sm_mac_imag[tix] = 0;

__syncthreads();

if (pdx < NUM_SAMPLES)

{

// STEP 1: global coalesced load from GM (shuffled data) to SM

sm_input_buff_real[tix+PFB_M-1] = d_x_real[idx];

sm_input_buff_imag[tix+PFB_M-1] = d_x_imag[idx];

__syncthreads();

// STEP 1.5: grab previous M-1 samples

if (tix < PFB_M-1)

{

if (bix == 0)

{

sm_input_buff_real[tix] = 0;
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sm_input_buff_imag[tix] = 0;

}

else

{

sm_input_buff_real[tix] = d_x_real[idx-PFB_M+1];

sm_input_buff_imag[tix] = d_x_imag[idx-PFB_M+1];

}

}

__syncthreads();

// STEP 2: MAC operation

for (ii = 0; ii < PFB_M; ++ii)

{

sm_mac_real[tix] += cm_h[(PFB_M-1-ii)*PFB_Q+biy]*

sm_input_buff_real[tix+PFB_M-1-ii];

sm_mac_imag[tix] += cm_h[(PFB_M-1-ii)*PFB_Q+biy]*

sm_input_buff_imag[tix+PFB_M-1-ii];

}

__syncthreads();

// STEP 3: write back to GM

d_fft_input[rdx].x = sm_mac_real[tix];

d_fft_input[rdx].y = sm_mac_imag[tix];

}

else
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return;

}

A.2 TM Resampling

In this section, we provide CUDA code for a 1D texture memory (TM) kernel

call used to perform the resampling option used in [64], and reported on in Chapter 5

of this thesis.

__global__ void gpu_TM (float *d_tm_fft_result)

{

int idx = blockIdx.x*blockDim.x+threadIdx.x;

float DEL_F = ((float)ARB_P)*((float)NUM_INPUTS)/((float)NUM_OUTPUTS);

float2 out[NUM_OUTPUTS];

if (idx < NUM_OUTPUTS)

{

out[idx] = tex1D(texRef, 0.5f + DEL_F*((float)idx));

d_tm_fft_result[idx] = out[idx].x;

}

}

A.3 Polyphase Interpolator

In this section, we provide sample CUDA code for the polyphase interpolator

used in Chapter 5.
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__global__ void gpu_poly_interp (float *d_x_real, float *d_x_imag,

float2 *d_poly_interp_cplx_result)

{

// LOCAL INDEX

int ii = 0;

int tix = threadIdx.x;

int tiy = threadIdx.y;

int bix = blockIdx.x;

int biy = blockIdx.y;

int pdx = blockIdx.x*blockDim.x+threadIdx.x;

int qdx = pdx+biy*ONE_FRAME;

int odx = (blockIdx.x*INT_P*NEW_SAMPS_PER_BLOCK) + (tix*INT_P+tiy);

int rdx = odx+biy*(ONE_FRAME*INT_P);

// LOCAL BUFFERS

__shared__ float sm_buff_real[NEW_SAMPS_PER_BLOCK+INT_M-1];

__shared__ float sm_buff_imag[NEW_SAMPS_PER_BLOCK+INT_M-1];

// LOAD DATA

if (tiy == 0)

{

sm_buff_real[tix+INT_M-1] = d_x_real[qdx];

sm_buff_imag[tix+INT_M-1] = d_x_imag[qdx];

}

if (tiy == 0 && tix < INT_M-1)
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{

if (bix == 0)

{

sm_buff_real[tix] = 0;

sm_buff_imag[tix] = 0;

}

else

{

sm_buff_real[tix] = d_x_real[qdx-INT_M+1];

sm_buff_imag[tix] = d_x_imag[qdx-INT_M+1];

}

}

__syncthreads();

float2 sum;

sum.x = 0;

sum.y = 0;

// COMPUTE IP

for (ii = 0; ii < INT_M; ++ii)

{

sum.x += cm_int_h[ii*INT_P+tiy]*sm_buff_real[tix+INT_M-1-ii];

sum.y += cm_int_h[ii*INT_P+tiy]*sm_buff_imag[tix+INT_M-1-ii];

}

// STORE DATA
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d_poly_interp_cplx_result[rdx] = sum;

}

A.4 Data Shuffling

In this section, we provide sample CUDA code for data shuffling prior to

polyphase filtering to improve global memory load efficiency. This is related to the

developments of Chapter 4 in this thesis.

__global__ void gpu_shuffle (float *d_x_real, float *d_x_imag,

float *d_s_real, float *d_s_imag)

{

int idx = blockIdx.x*blockDim.x+threadIdx.x;

int row = idx % PFB_Q;

int col = idx / PFB_Q;

if (idx < NUM_INPUTS)

{

d_s_real[col+row*NUM_SAMPLES] = d_x_real[idx];

d_s_imag[col+row*NUM_SAMPLES] = d_x_imag[idx];

}

else

return;

}
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A.5 Data Reshuffling

In this section, we provide sample CUDA code for reshuffling the data at the

output of polyphase filtering for improved global memory store efficiency. This is

related to the developments of Chapter 5.

__global__ void gpu_reshuffle (float2 *d_in, float2 *d_out)

{

int idx = threadIdx.y*blockDim.x + threadIdx.x;

int new_tiy = idx / INT_P;

int new_tix = idx % INT_P;

if (idx < NUM_INPUTS)

{

d_out[odx].x = d_in[new_tiy][new_tix];

d_out[odx].y = d_in[new_tiy][new_tix];

}

}
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