22 research outputs found

    Food Distribution in Ant Colonies: Trophallaxis and Self-Organization

    Get PDF
    Roughly one hundred million years ago, solitary insect species evolved social interactions that enabled the formation of colonies. A main reason for this advance was their ability to feed each other with previously ingested food. Among other things, this allowed them to develop the well-known division of labor: groups or castes of individuals specializing in certain tasks. This social organization reached its climax in the evolution of non-reproductive castes, sacrificing their own reproduction to the benefit of the colony. The mutual feeding technique that supported this social evolution is called ‘trophallaxis’. This thesis is based on the question how ant colonies use trophallaxis to supply their members with food. The main goal of this thesis is to understand the collective properties of the food distribution in ant colonies with the simplest possible computational and analytical models. To this end, we construct a series of biophysically motivated simulation models and analytical descriptions of trophallaxis that include all its essential features. Our models are the first complete theoretical description of the physical mechanisms behind the self-organized food distribution in ant colonies. Despite our reductionist approach, the models exhibit a number of interesting properties that reproduce some of the behaviors seen in real ant colonies. We are confident that our models can serve as benchmarks for the behavior of real ant colonies or more biologically detailed models. As statistical null models, they can be used to assess to what extent an observed behavior is due to non-random strategies or due to the collective properties of a stochastic system. We find and analytically predict the characteristic time scales of trophallaxis for both well-mixed colonies and colonies with small spatial fidelity zones. We even successfully cover the range between these two limits with semi-analytic predictions. These newly discovered relationships between individual behavior and global food distribution dynamics provide microscopic explanations of experimental observations and phenomenological theories that were unknown so far

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Swarm intelligence and its applications in swarm robotics

    Get PDF
    This work gives an overview of the broad field of computational swarm intelligence and its applications in swarm robotics. Computational swarm intelligence is modelled on the social behavior of animals and its principle application is as an optimization technique. Swarm robotics is a relatively new and rapidly developing field which draws inspiration from swarm intelligence. It is an interesting alternative to classical approaches to robotics because of some properties of problem solving present in social insects, which is flexible, robust, decentralized and self-organized. This work highlights the possibilities for further research

    Platform Development for the Implementation and Testing of New Swarming Strategies

    Get PDF
    Gemstone Team SWARM-AISwarm robotics--the use of multiple autonomous robots in coordination to accomplish a task--is useful for mapping, light package transport, and search and rescue operations, among other applications. Researchers and industry professionals have developed robotic swarm mechanisms to accomplish these tasks. Some of those mechanisms or “strategies” have been tested on hardware; however, the technical requirements involved in fielding a drone swarm can be prohibitive to physical testing. Team SWARM-AI has developed a platform that provides a starting point for testing new swarming strategies. This platform allows the user to select vehicles of their choosing- either air, land, or water based, or some combination thereof- as well as define their own swarming method. Using a novel decentralized approach to ground control software, this platform provides a user interface and a system of computational “units” to coordinate drone swarms with a centralized, decentralized, or combination architecture. Additionally, the platform propagates user input from the master unit to the rest of the swarm and allows each unit to request sensor data from other units. The user is free to edit the processes by which each drone interacts with the environment and the rest of the swarm, giving them freedom to test their swarming strategy. The software system is then tested with a swarm of quadcopters using Software in the Loop (SITL) testing

    Space-Time Continuous Models of Swarm Robotic Systems: Supporting Global-to-Local Programming

    Get PDF
    A generic model in as far as possible mathematical closed-form was developed that predicts the behavior of large self-organizing robot groups (robot swarms) based on their control algorithm. In addition, an extensive subsumption of the relatively young and distinctive interdisciplinary research field of swarm robotics is emphasized. The connection to many related fields is highlighted and the concepts and methods borrowed from these fields are described shortly

    Self-sufficiency of an autonomous self-reconfigurable modular robotic organism

    Get PDF
    In recent years, getting inspiration from simple but complex biological organisms, several advances have been seen in autonomous systems to mimic different behaviors that emerge from the interactions of a large group of simple individuals with each other and with the environment. Among several open issues a significantly important issue, not addressed so far, is the self-sufficiency, or in other words, the energetic autonomy of a modular robotic organism. This feature plays a pivotal role in maintaining a robotic organism\u27s autonomy for a longer period of time. To address the challenges of self-sufficiency, a novel dynamic power management system (PMS) with fault tolerant energy sharing is proposed, realized in the form of hardware and software, and tested. The innate fault tolerant feature of the proposed PMS ensures power sharing in an organism despite docked faulty robotic modules. Due to the unavailability of sufficient number of real robotic modules a simulation framework called Replicator Power Flow Simulator is devised for the implementation of application software layer power management components. The simulation framework was especially devised because at the time of writing this work no simulation tool was available that could be used to perform power sharing and fault tolerance experiments at an organism level. The simulation experiments showed that the proposed application software layer dynamic power sharing policies in combination with the distributed fault tolerance feature in addition to self-sufficiency are expected to enhance the robustness and stability of a real modular robotic organism under varying conditions.Inspiriert von einfachen aber komplexen biologischen Organismen wurden in den letzten Jahren verschiedenste autonome Systeme entwickelt, welche die Verhaltensweisen einer großen Gruppe einfacher Individuen nachahmen. Das zentrale und bis heute ungelöste Problem dieser Organismen ist deren autonome Energieversorgung. Zur Sicherstellung der Energieversorgung eines aus mehreren Robotern zusammengesetzten Organismus wurde in dieser Arbeit ein neuartiges Power-Management-System (PMS) konzipiert, aufgebaut und an einzelnen Robotermodulen und einem Roboterorganismus getestet. Die Hardware eines bestehenden Roboters wurde um ein neues Konzept erweitert, das auch bei fehlerhaften Robotermodulen einen Energieaustausch sicherstellt und so zu einer erhöhten Robustheit des PMS fĂŒhren soll. Das entwickelte PMS wurde in modulare Roboter integriert und beispielhaft anhand eines Roboterorganismus getestet. In Ermangelung einer ausreichenden Anzahl von Robotermodulen wurde eine Simulationsumgebung entwickelt und die Software des PMS im Simulationsprogramm, anstatt im Roboter, implementiert. Dieses Simulationswerkzeug ist momentan das Einzige, das unter BerĂŒcksichtigung des Bewegungsmodells des Organismus den Energietransport im Roboterorganismus visuell darstellt und das Verhalten in verschiedenen FehlerfĂ€llen simulieren kann. Die Simulationen und Messungen zeigen, dass das entwickelte PMS geeignet ist, die Energieversorgung von Roboterorganismen auch in FehlerfĂ€llen sicherzustellen und so die StabilitĂ€t und Robustheit zu erhöhen

    Analysis of behaviours in swarm systems

    Get PDF
    In nature animal species often exist in groups. We talk of insect swarms, flocks of birds, packs of lions, herds of wildebeest etc. These are characterised by individuals interacting by following their own rules, privy only to local information. Robotic swarms or simulations can be used explore such interactions. Mathematical formulations can be constructed that encode similar ideas and allow us to explore the emergent group behaviours. Some behaviours show characteristics reminiscent of the phenomena of criticality. A bird flock may show near instantaneous collective shifts in direction: velocity changes that appear to correlated over distances much larger individual separations. Here we examine swarm systems inspired by flocks of birds and the role played by criticality. The first system, Particle Swarm Optimisation (PSO), is shown to behave optimally when operating close to criticality. The presence of a critical point in the algorithm’s operation is shown to derive from the swarm’s properties as a random dynamical system. Empirical results demonstrate that the optimality lies on or near this point. A modified PSO algorithm is presented which uses measures of the swarm’s diversity as a feedback signal to adjust the behaviour of the swarm. This achieves a statistically balanced mixture of exploration and exploitation behaviours in the resultant swarm. The problems of stagnation and parameter tuning often encountered in PSO are automatically avoided. The second system, Swarm Chemistry, consists of heterogeneous particles combined with kinetic update rules. It is known that, depending upon the parametric configuration, numerous structures visually reminiscent of biological forms are found in this system. The parameter set discovered here results in a cell-division-like behaviour (in the sense of prokaryotic fission). Extensions to the swarm system produces a swarm that shows repeated cell division. As such, this model demonstrates a behaviour of interest to theories regarding the origin of life

    Cooperation in self-organized heterogeneous swarms

    Get PDF
    Cooperation in self-organized heterogeneous swarms is a phenomenon from nature with many applications in autonomous robots. I specifically analyzed the problem of auto-regulated team formation in multi-agent systems and several strategies to learn socially how to make multi-objective decisions. To this end I proposed new multi-objective ranking relations and analyzed their properties theoretically and within multi-objective metaheuristics. The results showed that simple decision mechanism suffice to build effective teams of heterogeneous agents and that diversity in groups is not a problem but can increase the efficiency of multi-agent systems
    corecore