
Food Distribution in Ant Colonies:
Trophallaxis and Self-Organization

Dissertation

for the award of the degree
“Doctor rerum naturalium”

of the Georg-August-Universität Göttingen

within the doctoral program
Physics of Biological and Complex Systems

of the
Georg-August University School of Science (GAUSS)

submitted by

Johannes Gräwer

from Lüneburg

Göttingen 2017



Thesis Committee

Prof. Eleni Katifori, PhD
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia

Prof. Dr. Florentin Wörgötter
Department of Computational Neuroscience, Third Institute of Physics - Biophysics /
Bernstein Center for Computational Neuroscience, Georg-August-Universität Göttingen

Dr. Marco G. Mazza
Research Group Nonequilibrium Soft Matter, Department Dynamics of Complex Fluids,
Max Planck Institute for Dynamics and Self-Organization, Göttingen

Members of the Examination Board

First Referee: Prof. Eleni Katifori, PhD
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia

Second Referee: Prof. Dr. Florentin Wörgötter
Department of Computational Neuroscience, Third Institute of Physics - Biophysics /
Bernstein Center for Computational Neuroscience, Georg-August-Universität Göttingen

Further members of the Examination Board

Dr. Marco G. Mazza
Research Group Nonequilibrium Soft Matter, Department Dynamics of Complex Fluids,
Max Planck Institute for Dynamics and Self-Organization, Göttingen

Prof. Dr. Reiner Kree
Institute for Theoretical Physics, Georg-August-Universität Göttingen

apl. Prof. Dr. Ulrich Parlitz
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organi-
zation, Göttingen

Dr. Karen Alim
Research Group Biological Physics and Morphogenesis, Max Planck Institute for Dynamics
and Self-Organization, Göttingen

Date of oral examination: June 01, 2017



Contents

I Introduction 7

1 Preface 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Thesis aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Biology of Trophallaxis 17
2.1 Ant trophallaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Biological significance . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Review of selected experimental work . . . . . . . . . . . . . . . . . . 20

3 Physics of Trophallaxis 23
3.1 Ant colonies as complex systems . . . . . . . . . . . . . . . . . . . . 23
3.2 Trophallaxis as a universal self-organized distribution mechanism . . 24
3.3 Challenges of analytic trophallaxis models . . . . . . . . . . . . . . . 25
3.4 Review of related theoretical and computational work . . . . . . . . . 26

3.4.1 Macroscopic models . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Microscopic models . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Interaction network models . . . . . . . . . . . . . . . . . . . . 28
3.4.4 Epidemic models . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Agent-Based Trophallaxis Simulation 31
4.1 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Agent motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Food intake from the source . . . . . . . . . . . . . . . . . . . 33
4.1.3 Food exchange between agents . . . . . . . . . . . . . . . . . . 34

4.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Dimensional parameters . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Dimensionless parameters . . . . . . . . . . . . . . . . . . . . . 36

4.3 Simulated scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 1D without explicit motion . . . . . . . . . . . . . . . . . . . . 39
4.3.2 2D without explicit motion . . . . . . . . . . . . . . . . . . . . 40

3



Contents

4.3.3 2D with explicit motion . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Global measures . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2 Spatial measures . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.3 Individual measures . . . . . . . . . . . . . . . . . . . . . . . . 45

II Trophallaxis without Explicit Motion 47

5 Mean-field Limit 49
5.1 Mean-field model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Governing equation . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2 Average food concentration . . . . . . . . . . . . . . . . . . . . 51

5.2 Binary food concentration approximation . . . . . . . . . . . . . . . 51
5.2.1 Average food concentration . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Food concentration variance . . . . . . . . . . . . . . . . . . . 52

5.3 Comparison of simulations and analytic predictions . . . . . . . . . . 52
5.3.1 Results with system wide interaction range . . . . . . . . . . . 52
5.3.2 Results with intermediate interaction ranges . . . . . . . . . . 54

6 Diffusive Limit 57
6.1 Diffusion approximation derivation . . . . . . . . . . . . . . . . . . . 57

6.1.1 Comparison of 1D and 2D spatial simulation results . . . . . . 58
6.1.2 Continuum variables . . . . . . . . . . . . . . . . . . . . . . . 58
6.1.3 Governing equation . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Diffusion approximation solutions . . . . . . . . . . . . . . . . . . . . 64
6.2.1 Food source as a boundary condition . . . . . . . . . . . . . . 65
6.2.2 Food source as a source term . . . . . . . . . . . . . . . . . . . 67

6.3 Comparison of simulations and analytic predictions . . . . . . . . . . 71
6.3.1 Average food concentration . . . . . . . . . . . . . . . . . . . . 71
6.3.2 Mean squared food distance . . . . . . . . . . . . . . . . . . . 72
6.3.3 Food concentration variance . . . . . . . . . . . . . . . . . . . 73
6.3.4 Global food intake time scale . . . . . . . . . . . . . . . . . . . 75

7 Master Equation Description 77
7.1 Basic equation without carrying capacitiy and source term . . . . . . 77

7.1.1 Governing equation . . . . . . . . . . . . . . . . . . . . . . . . 78
7.1.2 Formal analytic solution . . . . . . . . . . . . . . . . . . . . . 80

7.2 Full equation with carrying capacitiy and source term . . . . . . . . 80
7.2.1 Carrying capacitiy . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.2 Source term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4



Contents

7.2.3 Governing equation . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 Comparison of simulations and analytic predictions . . . . . . . . . . 84

7.3.1 Total food . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.2 Mean squared food distance . . . . . . . . . . . . . . . . . . . 84

III Trophallaxis with Explicit Motion 87

8 Discrete Space Simulation Results 89
8.1 Comparison of simulations and experimental work . . . . . . . . . . . 89
8.2 Distribution of food among individual ants . . . . . . . . . . . . . . . 90

9 Continuous Space Simulation Results 93
9.1 Ant velocity and interaction range interplay . . . . . . . . . . . . . . 93

9.1.1 Transition between diffusive and mean-field dynamics . . . . . 94
9.1.2 Ant velocity scaling relation . . . . . . . . . . . . . . . . . . . 96
9.1.3 Interaction range scaling relation . . . . . . . . . . . . . . . . . 98
9.1.4 Slow motion limit case . . . . . . . . . . . . . . . . . . . . . . 100

9.2 Ant velocity and food exchange ratio interplay . . . . . . . . . . . . . 101
9.2.1 Transition between diffusive and mean-field dynamics . . . . . 102
9.2.2 Food exchange ratio scaling relation . . . . . . . . . . . . . . . 106
9.2.3 Inverted food exchange ratio dependency regime . . . . . . . . 106

9.3 Heterogeneous case study . . . . . . . . . . . . . . . . . . . . . . . . 109
9.3.1 Simulation model extensions . . . . . . . . . . . . . . . . . . . 109
9.3.2 Comparison of heterogeneous and standard simulations . . . . 111

IV Epilogue 113

10Summary and Discussion 115
10.1 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.2Mean-field model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.3Diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.4Master equation model . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11Outlook 119
11.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
11.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

12Concluding Remarks 123

5



Contents

Appendix 125

A Active Brownian Motion 127

B Mean Squared Interaction Distance 131

C Solving the Diffusion Approximation 135
C.1 Food source as a boundary condition . . . . . . . . . . . . . . . . . . 135
C.2 Food source as a source term . . . . . . . . . . . . . . . . . . . . . . 136

D Figures 139

6



Part I

Introduction

7





1 Preface

1.1 Motivation

Ants are fascinating. Their ecological success is overwhelming [1, 2]. For each
human on this planet there are around one million ants. If one lined up all the
ants, they would cover the distance light travels in one day.
Except for the polar regions, ants can be found all over the world. They exhibit

a tremendous biological diversity in thousands of species with completely different
ways of living (Fig. 1.1). In just one square meter of the Amazon rainforest one
can find more ant species than all the primate species of the world.
Probably the most fascinating thing about ants is their ability to form colonies

that act as one social entity, sometimes called superorganisms [3]. Depending on
species and habitat, a single ant colony can consist of as little as ten or as many
as hundreds of millions of ants, occupying an area of a few square centimeters or
several square kilometers [2]. But what has led to this impressive level of social
organization?
Roughly one hundred million years ago, some solitary insect species evolved

social interactions that enabled the formation of colonies. A main reason for this
advance was their ability to feed each other with previously ingested food (Fig. 1.2).
Among other things, this allowed them to develop the well-known division of labor:
groups or castes of individuals specializing in certain tasks. This social organization

Figure 1.1: Examples of ant nests. Left: Tree nest of weaver ants Oecophylla (by Robin Klein,
CC BY-SA 2.0). Right: Needle mound of red wood ants Formica rufa (by Thue,
public domain).
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1 Preface

Figure 1.2: Liquid food exchange (trophallaxis) among Argentine ants Linepithema humile (by
Dave Kirkeby, CC BY-SA 4.0).

reached its climax in the evolution of non-reproductive castes, sacrificing their own
reproduction to the benefit of the colony [2, 4]. The mutual feeding technique that
supported this social evolution is called ‘trophallaxis’.
This thesis is based on the question how ant colonies use trophallaxis to supply

their members with food. As it gave them significant evolutionary advantages,
trophallaxis became and still is the dominant food distribution mechanism in ant
colonies [5]. Given its biological importance, surprisingly little is known about how
this food distribution mechanism actually works.
One thing is certain though. An ant colony cannot be understood by looking at a

single ant. Not even the observation of a very special individual, such as the queen,
can explain the colony’s behavior. It is the ants’ interactions that run the colony
in a self-organized way [6, 7]. This also holds for the food distribution mechanism.
There is no central control which manages the distribution of food via trophallaxis.
This thesis investigates the physical aspects of trophallaxis self-organization.

This is imperative, as no satisfying fundamental description of the physics behind
trophallaxis exists. All the existing work lacks essential aspects of the problem.
Fundamental theoretical groundwork is needed, and this thesis makes the first steps
towards a complete description.
Along the way of trying to learn about ants, one can expect to also learn from

ants. Their ability to collectively solve problems that are insurmountable to a
single ant makes them an ideal source of inspiration for the design of artificial

10



1.1 Motivation

self-organizing systems, sometimes called ‘ant algorithms’ (Fig. 1.3) [8]. In this
sense, the mechanisms underlying the self-organization of food distribution in
ant colonies that mark the main subject of this thesis are an object of interest
itself. The knowledge obtained by their analysis will most certainly influence future
bio-inspired engineering work.

Figure 1.3: Social cooperation of weaver ants Oecophylla. Top: Load transportation of O. longin-
oda (by Axel Rouvin, CC BY-SA 3.0). Bottom: Nest construction of O. smaragdina
(by Sean Hoyland, public domain).
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1 Preface

1.2 Thesis aims

To the best of our knowledge, there exists no biophysically motivated simulation
model or analytic description of trophallaxis that includes all its essential features.
The main goal of this thesis is to fill this gap. In our view, the essential properties
of the physical mechanisms behind the food distribution in ant colonies are:

- the finite nature of the colony size (both in terms of ant numbers and geometry);

- the inherent time dependency of the food spreading that cannot be reduced
to the consideration of steady states;

- the continuous and finite nature of the individual food transfers (ants can
exchange variable amounts of food until they are full) that cannot be simplified
to a binary approach (fed or unfed ants);

- the locally conservative nature of the food spreading (no food is lost or
generated when it is transferred from one ant to another)1, which constitutes
an important difference to other spreading processes (like disease or information
transfer);

- the relevance of mesoscopic interaction ranges (ants do not stand still and
simply feed from or to their immediate neighbors, but they can also not
interact with every other colony member at any time).

We will explain the important points listed above in more detail in the remaining
chapters of the introduction (see Sections 2.1, 3.3 and 4.1).
Given these characteristics of trophallaxis, our aim is to understand the collective

properties of food dispersion with the simplest possible computational and analytic
models. Therefore we intentionally aim to design models that do not include a food
distribution strategy of the ants, information transfer between ants, or any specific
biological details like behavioral models, complex motion patterns, or division of
labor (e.g. foragers that venture outside the nest versus workers that stay inside).
This choice allows the use of our models as benchmarks to compare to the behavior
of real ant colonies or less reduced models, and to assess to what extent the observed
performance is due to complex strategies or information transfer among ants, and
how much they stem from the collective properties of a stochastic system.
After finding an appropriate theoretical description of trophallaxis, we want to

qualitatively study this model system, and ask: How does the most basic individual
behavior (i.e. how much food is exchanged and what distances ants travel between

1This is to be understood with respect to the time scale relevant to the food spreading. Eventually, the food will
of course serve its purpose to be digested. As we will explain further in Section 2.1, this consumption of food
by the ants however is negligible for its spreading, because it takes much more time [9, 10].

12



1.3 Thesis organization

food exchanges) influence the global dynamics (i.e. how fast and how well is food
distributed in the colony)? Can we predict the model macroscopic colony behavior
based on simple microscopic properties?
The discovered relationships between individual behavior and global food distribu-

tion dynamics can then hopefully provide microscopic explanations of experimental
observations and phenomenological theories that are still missing (see Section 3.4).
At last, a secondary objective of this thesis is to provide a so far hardly explored

connection between the physics of food transport in ant colonies and established
physical theories of transport.

1.3 Thesis organization

This thesis is subdivided into four parts:

I Introduction,

II Trophallaxis without Explicit Motion,

III Trophallaxis with Explicit Motion, and

IV Epilogue.

The rest of Part I contains a chapter on the biology of trophallaxis that further
explains what trophallaxis is and how it works. It also gives an overview of the
empirical knowledge about trophallaxis obtained from experiments (Chapter 2).
This is followed by a chapter on the physics of trophallaxis that explains the basic
ideas of why we chose to study ants with physics. It also discusses recent advances
in the theoretical and computational work on trophallaxis (Chapter 3). Finally,
we present a novel agent-based simulation model of trophallaxis in Chapter 4 that
will prove to achieve this thesis’ main goal: to provide a description of trophallaxis
that includes all its essential features.
Part II then derives three separate analytical models, each predicting trophallaxis

dynamics in different behavioral regimes, and compares them to the results of
our simulation. In order to keep the analytical modeling manageable, we do
not explicitly include the ants’ motion in all of the work presented in Part II
(cf. Section 4.3). Instead, we define an interaction region around every ant that
implicitly models its motion in the following way. Real ant colonies exhibit so called
spatial fidelity zones [11, 12]. Those are small overlapping areas, distributed over
the nest, one for each ant, in which the ants preferably move. They only interact
with another ant, if their spatial fidelity zones overlap. Our interaction regions can
therefore be used to describe real ant colonies with moving ants, if their spatial
fidelity zones match our interaction region.

13
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The three analytical approaches we present in Part II model:

- a well-mixed colony, where every ant has the chance to interact with every
other ant at all times, described with a mean-field theory (Chapter 5);

- a colony with small spatial fidelity zones, where ants only exchange food within
their local neighborhood, described with a diffusion equation (Chapter 6); and

- the intermediate case of a colony with large overlapping spatial fidelity zones,
described with a master equation like probabilistic model (Chapter 7).

In Part III, we proceed with the qualitative study of our trophallaxis simulation
results, including the explicitly simulated motion of every ant. First we present
some proof of concept results in Chapter 8, obtained from a simplified simulation
model where the ants perform a simple random walk on a two-dimensional grid.
Chapter 9 then contains the majority of our simulation findings, using an active
random motion in continuous space.
Part IV finally summarizes and discusses the main results of the thesis (Chap-

ter 10), gives an outlook (Chapter 11) and some last concluding remarks (Chap-
ter 12).

Collaborative contributions

The analytic work of the mean-field model (Chapter 5) and parts of the analytic work
of solving the diffusion model (Sections 6.2.1 and 6.2.2) was done in collaboration
with Eleni Katifori. The derivation of the diffusion model (Section 6.1.3) and the
analytic work of the master equation model (Chapter 7) was done in collaboration
with Henrik Ronellenfitsch.

Related publications

The agent-based simulation model (Chapter 4), the mean-field model (Chapter 5),
and the diffusion model (Chapter 6) are content of the following publication:

J. Gräwer, H. Ronellenfitsch, M. G. Mazza, and E. Katifori, Trophallaxis
inspired model for distributed transport between randomly interacting
agents, Physical Review E, under review (2017).
(preprint available at: https://arxiv.org/abs/1607.06055)

A second publication of the authors J. Gräwer, M. G. Mazza, and E. Katifori,
containing the simulation results with explicit motion (Chapter 9) is in preparation.
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2 Biology of Trophallaxis

About one hundred years ago, in 1918, the leading expert on social insects of
his time, North American entomologist William Morton Wheeler, proposed the
term ‘trophallaxis’ to describe the mutual exchange of liquid food between so-
cial insects (Figs. 1.2 and 2.1) [13, 14]. He derived it from the Greek words
τροφή (nourishment) and ὰλλάττειν (to exchange). It replaced the formerly used
‘oecotrophobiosis’ successfully up to the present.
Wheeler described two variants of trophallaxis: mouth-to-mouth (stomodeal)

and anus-to-mouth (proctodeal) food transfer [15]. Social hymenopterans (i.e. ants,
bees, and wasps) mainly show stomodeal trophallaxis [5], which is why we focus on
this variant in this chapter.
Since this work studies the food distribution in ant colonies, we first briefly

explain how trophallaxis works in ants in Section 2.1. Section 2.2 then gives a
broader view of why and how trophallaxis is relevant in general. Finally, Section 2.3
sketches the development of experimental work on trophallaxis from its origins to
the current state.

Figure 2.1: Liquid food exchange (trophallaxis) among carpenter ants Camponotus (by Rakesh
Kumar Dogra, CC BY-SA 3.0).
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2 Biology of Trophallaxis

2.1 Ant trophallaxis

The intestinal tract of ants consists of three compartments, connected in series: the
crop (also social or storage stomach), the midgut, and the rectum (see Fig. 2.2).
Ingested food enters the intestinal tract through the crop, where it can be tem-
porarily stored. Ants can store food with a weight comparable to their own body
weight inside their crop. [16].
At some point, the stored food from the crop is either further digested onto the

midgut and the rectum, or regurgitated to the mouth. The regurgitated food can
then be passed on to other ants. This exchange of food from one ant to another is
the phenomenon Wheeler called trophallaxis (Figs. 1.2 and 2.1). It is important
to note that the digestion of food typically takes much longer then the process of
regurgitating and feeding to nest mates [9, 10].
Trophallaxis among ants is initiated and accompanied by complex tactile inter-

actions between the participants’ antennas, forelegs and mouthparts [5, 2]. Bert
Hölldobler and Edward Osborne Wilson, leading ant experts of our time, have
compared the food release of the donating ant with a gag reflex [2], triggered by a
tactile stimulus of its labium. The labium is a central mouthpart of insects that

Figure 2.2: Schematic drawing of the food exchange between two ants (trophallaxis). Food is
transfered from the right ant to the left (as indicated by the arrows). The intestinal
tract compartments are shown: crop (K), midgut (M), and rectum (R). (by Turid
Hölldobler-Forsyth [5]. Supplied by courtesy of the German National Library of
Science and Technology, Hannover.)
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2.2 Biological significance

ants use for the actual transfer of liquid food from one ant’s mouth to another’s [5].
The ants’ reflexive donation of food can be triggered by many other arthropods,

imitating the tactile signals and thus causing ants to give away food [5]. Hölldobler
even successfully triggered the food donation manually using a hair [2].

2.2 Biological significance

Social ants heavily make use of their ability to store, distribute and share liquid food.
Foraging ants can collect food from sources outside their colony’s nest and deliver
it to non-foraging colony members inside the nest (Fig. 2.3). These then distribute
the food further inside the nest, until every member of the colony, including the
larvae and the queen, is fed [2, 13, 5]. This way, only a fraction of the colony has
to spend time on foraging, and the rest can focus on other tasks like brood care
or nest building. Entomologists consider the advantages of this food distribution
through trophallaxis to be one of the most central features of insect eusociality,
if not its origin [2, 17, 18, 7, 14].1 It is fundamental to division of labor and thus
forms the basis of social organization [19] and ultimately the worldwide ecological
success of ants [1, 2].

Figure 2.3: Meat ants Iridomyrmex purpureus feeding on honey (by Fir0002/Flagstaffotos, CC BY-
NC 3.0).

1Eusociality is the highest level of social organization in animals that includes cooperative brood care, the division
of labor into reproductive and non-reproductive castes, and overlapping generations within one colony. An
extensive introduction can be found in [1].
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2 Biology of Trophallaxis

Apart from some exceptional cases (e.g. in the subfamilies Myrmeciinae and
Ponerinae), trophallaxis is the main distribution mechanism of liquid food within
the colony for all ant species, despite their huge diversity [5].
Trophallaxis is not only of great significance for ants, but also for other eusocial

insects like bees [18], or even other animals, such as bats [20], spiders [21] and
birds [22].

2.3 Review of selected experimental work

The origins of experimental research on trophallaxis date back to the 19th century.
In 1879, the important Swiss myrmecologist Auguste-Henri Forel for the first time
experimentally proved that worker ants exchange food, using dyed liquid food [23].
Through dissecting or simply crushing the ants after the food exchange, dye traces
could be found to indicate the food transfer. A similar method was developed later,
through mixing starch into the food and detecting it with iodine [24]. Alternatively,
poison was fed to single ants, allowing for an investigation of the spread of food
among members of the colony, by observing how many of them died [24].
The next big methodical improvement was the use of radioactive isotopes to trace

the food. This was successfully applied for the first time with bees in 1952 [25],
and with ants in 1954 [26]. It allowed a more accurate measure of the amounts of
food exchanged and in vivo observation. For example, Pendleton and Grundmann
could trace a radioactive liquid they injected in a plant, passing through aphids
feeding on the plant into ants feeding on the aphids’ secretions (honeydew) [26].
Using radioactive tracers allowed biologists to answer many questions raised by
earlier researchers like Wheeler and Forel since the 1950s.
One of the major successes in the experimental work on trophallaxis was the

identification of a ‘chain of demand’ mechanism that drives the foraging of food
and its distribution in the colony via trophallaxis. In a nutshell, the larvae and
the queen demand food from the nest-workers, which then demand food from the
foragers, whose activities are thus controlled by the colony’s collective needs [27, 28].
The food distribution mechanism has also been found to be sensitive and directed

with respect to the food’s nutrient content. Food containing large amounts of
carbohydrates for example is more likely delivered to workers, whereas amino acids
are preferably delivered to larvae and queens. Oils are equally distributed [24, 29].
Overall, the speed and extent of food distribution varies with environmental factors
(e.g. temperature and humidity), colony size, individual ant physiology, and social
structure of the colony [5].
Experimental trophallaxis research has not only focused on the colony level,

but also on the individual level. It has been found that the majority (about 90

20



2.3 Review of selected experimental work

percent) of trophallactic food exchanges are initiated by the receiving ant [30, 5].
Nevertheless, foragers returning to the nest with a full crop are actively looking for
food exchange partners [5]. Also, the willingness (or probability) of an ant to give
away food increases with the amount of food stored inside its crop. Likewise, the
intensity of contacting other ants to beg for food has been observed to decrease
with the amount of food an ant carries [5]. The motivation to initiate trophallaxis
does however not only depend on the crop content, but also on the social status
and physiology of the individual ant [24, 5].
Furthermore, the duration of a trophallactic food exchange has been found to

correlate with the amount of food transferred. The more food is exchanged, the
longer the exchange takes [31], but with a non-linear dependency [10].
There is no doubt anymore that trophallaxis is not only about the mere exchange

of food. For example, it has been found that glandular secretions of the donating ant
are mixed with the exchanged food and passed on to the receiving ant [24], leaving
room for speculations about a chemical information transfer during trophallaxis.
In general, experiments showed that trophallaxis can mediate a uniform colony
odor, enabling members of a colony to identify each other [32]; and it confers social
immunity against pathogens [33].
In the 1980s, the ants’ antennal communication during trophallaxis was found

to transmit only very limited information [34]. Recent experimental evidence
published in 2016 suggests that the exchange of food itself can indeed serve as a
communication channel for ant colonies [35], which has already been shown for
bees in the 1990s [36].
Further improvement in the experimental accuracy of measuring the food distri-

bution in ant colonies has lately been achieved by Buffin et al. in 2009 [19] and
Greenwald et al. in 2015 [10]. Buffin et al. used scintigraphy, a medical imaging
method, to monitor the spatio-temporal distribution of food inside an artificial
nest for the first time, allowing for a resolution of 10 × 10 cm in space and 30
seconds in time. Since this resolution was still not good enough to monitor food
exchanges at the individual level, Greenwald et al. developed a new approach,
using fluorescently labeled food. In addition with a barcode-based identification
system, this allowed them to measure the full spatio-temporal dynamics of food
distribution at the individual level.
Although the experimental methods to study trophallaxis have improved tremen-

dously over the last century, the research on the biology of trophallaxis is far
from being completed. Some questions that remain open for example are: Do
individuals actively choose their food exchange partners? If so, on what grounds?
Similarly, what determines the amount of food exchanged? Is it purely based on
the local information of an individual; based on more global information, including

21



2 Biology of Trophallaxis

the needs of other individuals; or simply not actively decided at all? Do the food
trophallaxis partners exchange information about their crop contents at some point
before, during or after the food exchange? Answering these and alike questions
will shed further light on the intriguing mechanisms behind the self-organized food
distribution of social insects.
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This thesis explores the physical mechanisms and concepts of trophallaxis, not its
biology. In this chapter, we explain what that means, and make a case for why this
approach is useful. Furthermore, we integrate our work into the scientific context
of previous work.
Section 3.1 starts of with showing that many aspects of ant colonies are successfully

understood through the concepts of complex systems, and presents selected previous
scientific achievements in this field.
Section 3.2 then shows that the physical mechanisms underlying trophallaxis

are of a universal character which raises interesting questions about self-organized
distribution and nonequilibrium transport theory. This universal character also
makes the results of our work applicable to areas other than the food distribution
in ant colonies. Some examples are given in Section 3.2 as well.
Section 3.3 follows with a short description of the fundamental challenges this

and other works inevitably face when building analytic models of trophallaxis.
These challenges also constitute the physical essence of trophallaxis.
A review of related work using similar approaches to study trophallaxis or

closely related systems finally shows that there is still a great need for theoretical
groundwork on the matter, both analytically and computationally (Section 3.4).

3.1 Ant colonies as complex systems

In the context of physics, complex systems are often thought of as systems whose
complexity emerges from the direct or indirect interactions of its parts [37, 38].
Although these parts themselves (and possibly even their interactions) might be
simple and predictable, their collective behavior is not. This concept is purposely
very general and applies equally to animate as well as inanimate systems.
Among biological systems, ant colonies constitute an example of complex systems,

if not the prime example. The behavior of a single ant appears to be relatively
simple and rather limited [2]. With a brain as small as one tenth of a cubic
millimeter, a single ant can only make elementary decisions based on local stimuli
that confer very small amounts of information [39]. However, despite the apparent
simplicity of their individual members and the absence of central control, insect
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societies as a whole exhibit a surprising degree of complexity and can perform
complicated tasks such as foraging, brood care, nest building, and - of course - food
distribution that would be infeasible for a single individual [2, 6, 40].
The notion of complex systems is closely connected to the concept of self-

organization [37]: the emergence of order or organization in a (complex) system
without external or central control. A substantial amount of work has been per-
formed, using complex systems methodologies, to study the self-organization of
ecological systems [41], social behavior [42], social insects in general [43], and ant
colonies in particular [44].
Presumably the most prominent example of self-organization in social insect

colonies is not their food distribution system, but their division of labor [45]. The
adaptive and decentralized allocation of tasks to individuals leading to a failure
robust division of labor has successfully been studied theoretically with agent-
based simulations and analytic response threshold models [46], and experimentally
confirmed as well [47, 48].
Another example of social self-organization in insect societies is their ability to

make collective decisions like food source or nest site selection. The underlying
symmetry breaking has also successfully been studied computationally [49] and
experimentally [50, 51, 52] with a complex system framework.
Social insect colonies have been a fruitful source of inspiration for the design of

artificial multi-agent systems, optimization algorithms, and robots in their capacity
as self-organized problem solvers [53, 54, 55, 8]. They are evolutionary optimized,
balancing constraints and prove to be robust against individual failure [40]. For
example, the mechanisms of trophallaxis have inspired a novel algorithm for
swarm searching [56], and a division of labor model from eusocial wasps has been
applied to agent-based simulations of a well performing adaptive task allocation
algorithm [57, 58].

3.2 Trophallaxis as a universal self-organized distribution

mechanism

From a physical point of view, the self-organization exhibited by ants in the
distribution of food in the colony is independent from the specific biological features
of ants and that the quantity being distributed is liquid food. The same underlying
mechanism could be used to distribute any kind of exchangeable quantity (be it
matter, energy or information) among any kind of interacting units (e.g. humans,
animals, or artificial devices like computers or robots).
This universality has not been exploited extensively up to the present. The field of
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self-organized robot engineering is one example of using the generic mechanisms of
trophallaxis. Artificial swarms of robots (e.g. for search and rescue missions) have
been designed to self-organize using a trophallaxis strategy for the exchange of infor-
mation [59, 60] or electric energy [61, 62]. Also, multiple unmanned aerial vehicles
have successfully performed formation flights through trophallaxis mechanisms [63].
Interesting theoretical questions can arise from comparing the physics of trophal-

laxis with well-known transport phenomena studied in theoretical physics: Is
trophallaxis a regular diffusion process? What role does the active motion of the
quantity exchanging units play? How does trophallaxis relate to nonequilibrium
transport systems [64]? One aim of this thesis is to lay the groundwork for answer-
ing these questions, because a sufficient analytical investigation of trophallaxis has
not yet been performed.

3.3 Challenges of analytic trophallaxis models

There are some properties inherent to trophallaxis that render its analytic descrip-
tion challenging. First of all, any real system using trophallaxis as a resource
distribution system is finite in space and in the number of motile units, agents or
individuals. A description of finite trophallaxis systems of a biologically realistic
size is likely to show finite size effects. In other words, finite size effects have to be
realistically incorporated in any attempt of theoretical modeling.
Second, not only the space and the number of individual participants is finite,

but also the participants capacity to carry the exchanged quantity (food or other)
is limited. Ants can only store a finite amount of food in their crop, robots can
only carry a finite amount of batteries, interacting agents can only hold finite
information, and so forth. As can be seen in the analytical approach we present in
Chapter 7, this can introduce nonlinearities in the systems dynamics.
Third, trophallaxis systems are open, in a thermodynamic or systems theory

sense. In ant colonies, for example, food that is distributed in the colony first has to
enter the nest. Modeling fluxes of food into trophallactic systems is crucial, but not
necessarily straightforward, as they are typically time dependent and coupled to the
internal system state. Starving colonies could for example increase their foraging
efforts, and hence the flow of food into the nest. As a consequence, trophallaxis
systems are also inherently out of equilibrium, so that their analytic descriptions
cannot resort to steady-state analysis.
Finally, modeling the interaction between trophallactic exchange partners may

require intermediate range descriptions. Depending on the context, trophallaxis
could be performed over short distances (like the ants’ food exchange), large
distances (supposable for information exchange), or anything in between. Even
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in the biological context of real ant colonies, interaction ranges larger than the
ants’ immediate vicinity might be relevant, when ants are actively looking for food
exchange partners or communicate chemically. Different analytical approaches can
therefore be necessary to cover all relevant interaction ranges.

3.4 Review of related theoretical and computational work

The theoretical and computational work on trophallaxis (and closely related cases)
is surprisingly limited. As we show below, there exists no biophysically motivated
analytic description or simulation model of trophallaxis that includes all its essential
features. Particularly, none of the existing models includes a description of the
continuous amounts of food carried by each individual, and exchanged between
them.
We present the existing work in the following categories: macroscopic models,

describing the global food dynamics at the colony level (Section 3.4.1); microscopic
models that include the description of individual behavior (Section 3.4.2); interac-
tion network models, that use network theory to study the network of trophallactic
interactions (Section 3.4.3); and epidemic models, originally designed to describe
disease or excitation spreading (Section 3.4.4).

3.4.1 Macroscopic models

In a first, simple approach macroscopic models have been proposed to analytically
describe the dynamics of food transport into the whole colony. The advantage
of this approach is that these models can easily be compared to experiments,
because precise measurements of individual food exchanges are not necessary. This
allowed a comparison between analytic models and experiments with now outdated
experimental methods like scintigraphy [19] (cf. Section 2.3).
All macroscopic analytic models that have been proposed so far predict an

exponential saturation dynamics of the form f(t) ∼ 1− e−γt, either for the total
amount of food taken up by the colony [10, 19], or for the number of ants that
have been fed [65, 66]. Buffin et al. [19] and Sendova-Franks et al. [66] relate the
global saturation rate γ to a combination of the number of foragers bringing food
into the nest, the amount of food a single ant can carry, and the average rate at
which two ants encounter each other, but give no detailed microscopic description
of the food dissemination process. Our models will provide further insight into
this (cf. Chapters 5, 6 and 9). In particular, we will go beyond the mean-field
assumption that all previous macroscopic models used: that ants meet with the
same probability everywhere and anytime.
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Buffin et al. [19, 67] also described the spatial distribution of food observed in
their scintigraphy experiments analytically with a phenomenological differential
equation for the growth dynamics of the radioactive area; again no link to the
individual behavior was established.

3.4.2 Microscopic models

In order to fully understand the self-organized food distribution in ant colonies,
microscopic models are indispensable. Since organization on the collective level is
expected to emerge from the interaction of individuals, a good description at the
individual level is the key element.
Surprisingly, no microscopic analytical description of trophallaxis in ants has

been published so far. The work that came closest is a diffusion model by Blonder
and Dornhaus, constructed to capture the information flow in an ant colony,
not the food flow [68]. They use antenna-body interactions between ants as a
proxy for communication and study the distribution of information in the colony,
mediated through these physical interactions. This information spreading resembles
food distribution through trophallaxis to a large degree (cf. Section 3.2). Their
microscopic model can therefore also serve as an important starting point for
trophallaxis modeling.
Using a 2D ideal gas model for the ants motion and a SI epidemic model (see

[69] for a review) for their interaction dynamics, they derive a logistic growth
prediction as an upper bound for the number of informed individuals inside the
nest. Their experiments show that in real ant colonies information flows significantly
slower than predicted at large time scales and faster than predicted at short time
scales. The analytic model by Blonder and Dornhaus connects the macroscopic
flow of information to the number of individuals, the size of the nest, the average
interaction radius of individuals, and their average speed. We use a similar approach
in both our analytical and our computational work in this thesis, and extend this
description to also cover the exchange of continuous amounts of food instead of the
binary status informed or not informed.
Motivated by the already mentioned engineering of self-organized robots, Ngo

and Schiøler derived a probabilistic model for the expected individual battery
resources of energy exchanging robot swarms [61]. They use integro-differential
equations, an approach we also make use of in Chapter 7. In addition, they present
a computational model, simulating the technical aspects of energy exchanging
robots. It shares similarities with the more biophysically motivated simulation
model we present in Chapter 4.
Other examples of simulation models designed to describe robot swarms self-

organizing through trophallaxis mechanisms are the work of Kubo and Melhuish [62]
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or Shamsuddin et al. [70].
The last related microscopic model that should be mentioned here, is the worker-

larva feeding interaction simulation from Cassil et al. [27]. This simulation led to the
discovery of the ‘chain of demand’ mechanism which drives the food distribution in
ant colonies (see Section 2.3). The model of Cassil et al. pursues a different goal than
our work. It rather aims at a detailed biological description than at modeling the
physical distribution mechanisms, including as much as twelve different parameters
describing various attributes of worker ants and larvae. This approach makes it
more difficult to assess the self-organizing character of food distribution in ant
colonies, but in turn has the advantage of a transparent biological interpretation.

3.4.3 Interaction network models

When a foraging ant brings back food to its nest, it often feeds multiple nest
mates with one crop load [5]. Each of the ants that received food can then again
give food to multiple other ants, creating a network of trophallactic interactions.
These networks, made of individuals as nodes and food exchanges between pairs of
individuals as edges, have been the subject of extensive investigation in the last
decade, not only for ants [10], but also for other social insects [40, 71].
In general, tools from network theory have successfully advanced the field of

behavioral ecology and furthered our understanding of the dynamics, selection
pressures, development, and evolution of complex social systems [72, 73]. For ants
in particular, the work of Sendova-Franks et al. used the trophallactic interaction
network to show how an increased spatial mixing can cause an increased speed of
food distribution after starvation [66].
Not only the exchange of food, but also the exchange of information or other

substances (e.g. pathogens) can form an interaction network (cf. Section 3.2).
The work of Blonder and Dornhaus also studied the structure of the network
created by physical interactions [68]. Combing this network approach with their
analytic diffusion model allowed them to link the interaction network structure to
microscopic parameters, like the speed or interaction range of individual ants. The
structural properties of these physical interaction networks have been shown to
regulate the colony behavior in a self-organized fashion [6, 74, 75].
A characteristic quality of social insect interaction networks is the nature of their

time dependency. They are dynamic, because their edges only exist for short time
intervals. In fact, at any given instant of time, only a small number of isolated
edges will exist in the network, because not all individuals interact at the same
time. Additionally, the chronological order of these time framed edges matters,
since an individual can for example only pass something on to another after it has
received it and not vice versa. Excellent reviews of these so-called ‘temporal’ or
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‘time-ordered’ networks can be found in [76, 77].
While this network approach has yielded remarkable success, providing invaluable

insight into the food distribution process and the strategies ants employ to achieve
it, the quantitative study of very basic trophallactic properties is still in its infancy.
The time scales of food distribution and saturation and their relation to individual
behavior are unknown. Especially the connection between the motion patterns
of individuals and the resulting interaction network structure needs further inves-
tigation [78]. Again, this thesis, along with works like the study of Blonder and
Dornhaus [68], attempts to provide the first steps towards these goals.

3.4.4 Epidemic models

Theoretic descriptions of trophallaxis like the models we present also bear some
connection to epidemic models of the type found in [79, 80, 81]. In fact, an epidemic
might actually spread in the colony through the trophallaxis of poisonous food.
However, whereas disease spreading models are usually locally non-conservative

in the quantity spread (the disease can pass from one agent to the next without
the original donor agent getting cured of the disease), trophallaxis is a conservative
process. The agents only distribute the food they carry and cannot locally generate
more food. Also, they exchange continuous quantities instead of the binary status
of being infected or not infected (similar to the information spreading models, cf.
Section 3.4.2 and [68]). Finally, the boundary conditions of a trophallactic system
are typically different than the ones encountered in disease spreading models.

29





4 Agent-Based Trophallaxis Simulation

This chapter presents the core of this thesis: the agent-based simulation model
of self-organized food transport in ant colonies. It begins with a description of
the model itself (Section 4.1), followed by a discussion of the model’s parameters
(Section 4.2). An explanation of the different simulated scenarios, their initial
conditions and parameter values follows (Section 4.3), before a section defining all
observables used in this thesis closes the chapter (Section 4.4).

4.1 Simulation model

We consider a simple stochastic model of food exchanging, self-propelled agents,
confined to a finite nest chamber. A graphical representation of how we model
the trophallaxis process is shown in Fig. 4.1. The nest chamber is modeled as a
square area of size L× L with a food source located at the center of one boundary,
modeling the nest entrance (see Fig. 4.1 (a)). The N agents (that is, the ant
colony)1 iteratively try to perform three basic actions: moving, collecting food
from the source, and exchanging food with each other. We proceed to describe the
details of these actions in the rest of this section.

4.1.1 Agent motion

We model the agents’ random movement as active Brownian motion of point-like
particles (ABPs, see [82] for a review) moving with a constant speed v and a
random unit orientation vector êi, so that the discretized equations of motion for
agent i are:

~xi(t+ ∆t) = ~xi(t) + ∆tvêi(t) (4.1)

êi(t+ ∆t) = êi(t) +
√

2Dr∆tξ̂⊥i(t) + ∆tα(t)êi(t) , (4.2)

where ~xi(t) ∈ [0, L]2 ⊂ R2 is the agent’s position at time t; ∆t is the discretization
time step; Dr is the rotational diffusivity, controlling the average rate of change in

1We do not always use the word ‘agent’, to describe the abstract representation of an ant in our simulation model,
but also simply refer to the simulation agents as ‘ants’ or ‘simulated ants’ in other contexts.
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Figure 4.1: Illustration of the simulation model.
(a) Sketch of the entire system. The blue color represents the amount of food carried
by each agent (circles). An agent is solid blue when filled at capacity (ci(t) = cmax).
The red arrows stand for trophallactic interactions, and the direction of the arrow
represents the direction of food transfer. The black arrows signify the direction of
agent movement êi(t). The source is depicted as a square at the middle of the bottom
system wall.
(b) Trophallactic interaction between two agents. The donor agent, at the center of
the dotted circle, selects one partner at random from the agents inside the interaction
radius R (dotted circle) and transfers food. The potential receiver agents are indicated
with red dashed lines.
(c) One agent that is within distance R from the source and not yet completely full is
selected at random to pick up food from the source. The agent picks up a quantity
(cmax − ci) from the source to fill up completely.

orientation; ξ̂⊥i(t) is the component orthogonal to êi(t) of a uniformly distributed
random vector on the unit circle ξ̂i(t); and αi(t) is a Lagrangian multiplier, chosen
such that

∣∣êi(t)∣∣ = 1 for all times and agents. A more detailed description and
derivation of Eqs. (4.1) and (4.2) from time continuous equations can be found in
Appendix A, along with explanatory sketches (Figs. A.1 and A.2).
Note that there are no forces between the pointlike agents. Each agent’s motion

is independent of the other agents’ motion. In order to confine the agents inside
the nest chamber, we apply hard reflective boundary conditions at the system
boundaries.
This random movement obviously is a gross oversimplification of the complex and

occasionally directed motion of ants in real colonies. Also, real ants are more likely
to walk along walls than to back away from them, as studied in [78]. However,
for the purpose of this simulation model, active Brownian particles serve as a
sufficient starting point, because real ants show diffusive mixing behavior in a
confined environment like a nest chamber to some extent [83, 12].
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4.1.2 Food intake from the source

Each agent i can carry a concentration ci(t) ≤ cmax of food, up to the carrying (or
crop) capacity cmax, which is the same for all agents.2 At t = 0, no food is inside
the system

ci(0) = 0 ∀i , (4.3)

and enough food to fill every agent

fmax = Ncmax (4.4)

exists at the food source of the system. The source is located at the middle of one
boundary at

~xsource =

(
1

2
L, 0

)
(4.5)

(cf. Fig. 4.1 (a)). The agents have a finite interaction radius R that limits the spatial
interaction range, i.e. the distance to the partner with whom they can exchange
food. Whenever an agent randomly locates the food source, such that the position
of the source ~xsource is within the agent’s interaction range (

∣∣~xi(t)− ~xsource

∣∣ ≤ R),
it attempts to pick up food from the source (see Fig. 4.1 (c)). Food only enters the
system through these uptake events. Once food has entered the system, it cannot
leave the system, as no food sinks exist. Together, the total amount of food in all
the ants and the food remaining at the source is conserved.3

In order to temporally resolve the food flow into the system, we do not model
these food intake events as instantaneous, but consider them to last a time T ,
called interaction refractory period. Therefore, every T/∆t time steps, one of the
available agents that are within range of the source (

∣∣~xi(t)− ~xsource

∣∣ ≤ R) and not
at their carrying capacity (ci(t) < cmax) is chosen with equal probability, and its
food concentration is set to the maximum value ci(t) = cmax. Agents that are at
capacity do not attempt to pick up food at the source, so they are ignored even if
they are within range of the source. Both the source and the agent that picked
up food are then in a refractory state for the next T/∆t time steps. During this
period, the refractory agent is not allowed to partake in any food exchanges and no
other agent can pick up food from the refractory source. Agents thus pick up food
2With ci(t) we denote the concentration of food in agent i at time t, where concentration is to be understood
as amount of food per agent. Summing over the food concentrations of all agents thus gives F (t), the total
amount of food, not a per agent concentration.

3This neglects the digestion of food. As explained before (Section 2.1), for the purpose of simulating food
dissemination this is reasonable though, because food is distributed much faster in the colony than consumed
by individual ants [9, 10].
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from the source one at a time.4 The agent that just picked up food from the source
continues to move in its refractory period though, so that every agents always
moves. This is again chosen for simplicity, so as to decouple the food exchange
events (whether an agent is refractory or not) from the random motion.
The exact location of the food source is not important for this model. The model

can be modified by moving the source outside the nest, labeling the ants that reach
and subsequently exit the nest entrance as foragers, and adjusting the characteristic
time between source visits (in our model equal to the refractory period) to account
for the extra time needed to reach the source.

4.1.3 Food exchange between agents

The core of our model is the exchange of food between agents, the trophallactic
interaction. Little is known about the specific details of trophallaxis on the
individual level in real animal societies [2, 10]. Therefore, we propose a minimal
set of interaction rules that reproduce basic trophallaxis dynamics. Agents that
acquired food can randomly choose a food exchange partner within their finite
interaction radius R and try to exchange a fixed percentage σ of the food that they
are carrying (see Fig. 4.1 (b)). We will call this percentage σ ‘food exchange ratio’
from now on. The specific interaction rules are:

1. Every agent i that currently

- has food (ci(t) > 0),

- is not refractory (its last food exchange or intake from the source was
more than T/∆t time steps ago), and

- has at least one other agent j in its interaction range (
∣∣~xi(t)− ~xj(t)∣∣ ≤ R)

that is also not refractory

is selected in a random order.5

2. The selected agent i randomly chooses one of the non-refractory agents j in
its interaction range.

4It should be noted that real ants can and do feed in parallel from single food sources. This behavior is not
captured by our model, but for sufficiently small colonies such as those analyzed in [10], our description is
acceptable. Letting agents pick up food only one at a time simplifies the model and also leads to a more
controlled flow of food into the system at large interaction radii.

5For simplicity, our model assumes that the refractory period (or in other words, the duration) of food exchanges
between ants equals the refractory period after a food intake from the source. In general (and reality), this might
not be the case and two different time periods or average durations should be used instead. See Section 9.3 for
more on this and other possible extensions of the model.
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3. The food concentration

∆ci→j(t) = min
(
σci(t), cmax − cj(t)

)
(4.6)

=

σci(t) if cj(t) + σci(t) ≤ cmax

cmax − cj(t) otherwise
(4.7)

is transferred from agent i to agent j. In this way, the food receiving agent
j takes only as much of the share σci(t) from the donating agent i as it can
carry. If the receiving agent cannot carry all of the food it is offered, the
remainder σci(t)− (cmax − cj(t)) stays in the donating agent. In the special
case that the randomly selected receiver is already full (cj(t) = cmax), no food
is transferred (∆ci→j(t) = 0).

4. Both food exchange partners i and j are immediately set to be refractory for
the next T/∆t time steps, irrespective of the actual amount ∆ci→j(t) ≥ 0
transferred, even if no food was transferred because the receiver was already
full. In consequence, both agents cannot give, receive, or pick up food again
in this iteration (and the next T/∆t time steps as well).

This set of rules introduces no bias in the random choice of available food exchange
partners and requires no active information exchange between agents. The single
agent always offers the percentage σ of its own food to a blindly chosen partner,
without knowing if the other one is already full or completely empty.6 An agent
can only infer that its partner is at the carrying capacity after the food exchange
when some of the offered food was returned (∆ci→j(t) < σci(t)). It is important to
note that consequently both the motion and the food exchange rules between the
agents are completely random.

4.2 Simulation parameters

In order to study our simulation model numerically, we derive a complete set of
dimensionless control parameters in this section. First, we give an overview of the
model’s parameters in dimensional terms (Section 4.2.1), and then group them
according to dimensional analysis (Section 4.2.2).

6The majority of trophallactic food exchanges between real ants have been found to be initialized by the food
receiving ant, not by the food donating ant as described in our model ([30, 5] and cf. Section 2.3). However, if
we assume no information exchange to be involved in the choice of food exchange partners, there is no difference
in who initiates the food exchange.
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4.2.1 Dimensional parameters

The agents’ motion is controlled by the fixed absolute value of their velocity vectors
v (translation speed) and the rotational diffusivity Dr (average rotation speed)
(cf. Section 4.1.1). The food dynamics is controlled by the agents’ carrying capacity
cmax(maximum concentration per agent), their interaction radius R (maximum
distance for food exchange or intake), and the refractory period T (effective duration
of food exchange or intake) (cf. Sections 4.1.2 and 4.1.3). In addition, the edge
length L of the square system controls the geometric size of the simulated system.
Finally, ∆t controls the time discretization of the equations of motion (Eqs. (4.1)
and (4.2)) and the trophallaxis algorithm (cf. Sections 4.1.2 and 4.1.3).
Two of the simulation model’s parameters (the food exchange ratio σ, and the

number of agents N) are already dimensionless and thus not included in the
dimensional analysis. We consider them in Section 4.2.2. All parameters are listed
in Table 4.1.

symbol parameter dimension

cmax carrying capacity food
Dr rotational diffusifity 1/time
L system length length
N number of agents -
R interaction radius length
σ food exchange ratio -
T refractory period time
∆t discretization time step time
v ant velocity length/time

Table 4.1: List of all simulation parameters and their dimensions.

4.2.2 Dimensionless parameters

The parameter space spanned by the dimensional simulation parameters listed in
Table 4.1 can be completely described by the dimensionless parameter set defined
in Table 4.2, after choosing a scale for nondimensionalization for each of the
parameters physical dimensions. We choose the refractory period T as the time
scale, the carrying capacity cmax as the food scale, and the system length L as the
length scale for nondimensionalization.
This dimensionless parameter set is of course not unique. The rest of this section

therefore explains the physical interpretations of the parameters we chose and their
relations to various time and length scales of the system.
Dimensional analysis of Table 4.1 yields five different time scales of the simulation
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4.2 Simulation parameters

symbol/definition parameter

ν := T

(R
v )

= vT
R ant velocity parameter

θ := T(
1

Dr

) = TDr ant rotation parameter

λ := R
L interaction range parameter

τ := T
∆t refractory period parameter

σ food exchange ratio

N number of agents

Table 4.2: List of all dimensionless simulation parameters and their definitions.

model:

1. the trophallactic interaction time scale T ,

2. the discretization time scale ∆t,

3. the rotational motion time scale 1/Dr,

4. the local translational motion time scale R/v, and

5. the global translational motion time scale L/v.

Each of the dimensionless parameters in Table 4.1 can be constructed by the ratio
of two from these five time scales, except for the food exchange ratio σ and the
number of agents N , which are defined dimensionless already.
The ant velocity parameter ν compares the trophallactic interaction time scale (1)

with the local translational motion time scale (4), or in other words: it relates the
duration of a food exchange to the maximum time an agent takes to travel one
interaction radius. In terms of length scales this corresponds to the ratio of the
maximum distance vT an agent travels during one interaction duration and the
trophallactic interaction length scale R. This is a meaningful nondimensionalization
of the ant agent velocity, because it uses the local time and length scales relevant
to a food exchange. A value of ν close to zero indicates that the ants motion is
negligible with regard to how far they can get within one refractory period.7 A
ν value close to one means the ants move at a speed that allows them to cover a
distance comparable to their interaction radius during one interaction. Values of ν
larger than one finally represent simulations where the ants move fast enough to
actually leave one interaction range during a refractory period.

7It is important to keep in mind here that all agents keep moving at the same speed at all times in our simulation
model; even during trophallaxis.
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4 Agent-Based Trophallaxis Simulation

The ant rotation parameter θ compares the trophallactic interaction time scale (1)
with the rotational motion time scale (3). This gives an information about how
fast the simulated ants randomly change their orientation of motion compared to
the food exchange duration. Low values (θ < 1) correspond to slow rotations, and
high values (θ > 1) to fast rotations.
The interaction range parameter λ compares the local translational motion time

scale (4) with the global translational motion time scale (5), which is the ratio
of the maximum times an agent takes to move through one interaction radius
and to move through the whole system. Maybe more informative, λ can also be
interpreted in terms of length scales, as it compares the trophallactic interaction
length scale R with the system length scale L. It defines the fraction of the system
an ant can interact with. The maximum λ value is λ =

√
2, when the interaction

disk covers the whole square system from any position.
The refractory period parameter τ compares the trophallactic interaction time

scale (1) with the discretization time scale (2). It equates to the number of iteration
steps the simulation algorithm performs during one refractory period, and thus
does not have a physically meaningful interpretation. In order to ensure that
non-refractory ants cannot pass each other’s interaction ranges without trying to
exchange food, the discrete time step ∆t has to fulfill v∆t� R, or in dimensionless
terms ν � τ .
The food exchange ratio σ and the number of agents N are not related to the

time scales discussed above, but they still control the simulation behavior. As
can be seen from Eq. (4.7), the food exchange ratio σ determines the maximum
amount of food agents can exchange relative to their own current amount of food.
The number of agents N becomes physically meaningful, when put in relation to
the system size. For example, N/L2 gives the agent number density of the system
that can be used to modify the dimensionless control parameter λ to become Nλ2,
which then combines the length scale relation discussed above with the number
density.

4.3 Simulated scenarios

As Section 4.2 showed, the dynamics of our simulation model is controlled by
seven dimensional parameters (cmax, Dr, L, R, T , ∆t, v) and two dimensionless
parameters (σ, N). The dimensional analysis reduced this to six dimensionless
parameters (ν, θ, λ, τ , σ, N), after fixing the time scale T , the length scale L and
the food scale cmax. We focus on studying the influence of the three parameters
that are most important to the food distribution in ant colonies: the ant velocity
parameter ν, the interaction range parameter λ, and the food exchange ratio σ.
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The remaining parameters θ, τ , and N are kept constant throughout all presented
simulations, besides a few specifically marked cases. Almost all simulation results
are calculated as averages over an ensemble of simulation runs. If not stated
otherwise, we calculate ensemble average based on 100 independent simulation runs.
Increasing the number of simulation runs further does not change the ensemble
averaged results.
As described in Section 1.3, the simulation results are presented in two parts: one

without explicit motion (Part II), and one with explicit motion (Part III). For all
the simulations in Part II, we set the ant velocity parameter equal to zero (ν = 0),
and vary only λ and σ. Only for the simulations in Part III, we vary ν, λ and σ.
Although we do not model the movement of the ants explicitly in Part II, it is

implicitly taken into account through the interaction radius. As mentioned before,
real ant colonies exhibit spatial fidelity zones (cf. Section 1.3 and [11, 12]). Our
simulations without explicit motion can therefore still be used to describe real ant
colonies with moving ants, if the radii of their spatial fidelity zones matches our
interaction radius.
In order to compare our simulations with analytical descriptions, we also simulate

a one-dimensional (1D) version of the model presented in Section 4.1, without
explicit motion. As we will demonstrate in Section 6.1.1, this 1D scenario behaves
qualitatively similar to the two-dimensional (2D) setup to a large degree, which
justifies this strong simplification. We proceed with describing the three simulation
scenarios (1D without explicit motion, 2D without explicit motion, and 2D with
explicit motion) in the rest of this section.

4.3.1 1D without explicit motion

The 1D simulation scenario supplies data to validate our analytic models. It is
constructed through limiting the agents’ positions to the one-dimensional interval
[0, L], so that L now describes the interval length instead of the edge length of
the 2D square system. The maximum interaction range parameter in 1D is λ = 1
(instead of λ =

√
2 in 2D), which is achieved when R = L. Boundary conditions

and equations of motion are not necessary in this scenario, because the agents do
not move explicitly (v = 0 and Dr is meaningless). The location of the source is at
the left system boundary xsource = 0 (instead of ~xsource = (L/2, 0) in 2D).
The agents initial positions are drawn from a random uniform distribution over

the interval [0, L], under the constraint that all of the agents’ interaction ranges
overlap in a way that food from the source can at least indirectly reach every agent.
This constraint becomes irrelevant for λ = 1 and leads to an equidistant position
distribution for λ→ 1/N . Interaction range values of λ < 1/N are thus not allowed.
Since v = 0, the agents keep their initial positions throughout the whole simulation.
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4 Agent-Based Trophallaxis Simulation

Every simulation run in one ensemble uses new randomized positions.
Table 4.3 lists the parameter values that we use throughout all 1D simulations

without explicit motion, if not stated otherwise.

parameter symbol value

ant velocity parameter ν 0
ant rotation parameter θ -
interaction range parameter λ varied
refractory period parameter τ 1
food exchange ratio σ varied
number of agents N 100

Table 4.3: Nondimensional simulation parameter values for the simulation scenarios without
explicit motion (1D and 2D).

4.3.2 2D without explicit motion

The 2D simulation scenario without explicit motion serves as a link between the 1D
scenario, for which we derive analytic descriptions in Part II and the full simulation
dynamics with explicit motion we investigate in Part III. In Sections 6.1.1 and 6.3 we
will show that the 2D scenario without explicit motion is still captured qualitatively
by our 1D analytic predictions to a large degree. This gives reason to believe that
our analytic models provide groundwork for more detailed descriptions that include
explicit motion.
Additionally, as explained for the 1D scenario without explicit motion above, also

the 2D scenario without explicit motion can be used to model real ant colonies, if
they show spatial fidelity zones.
Boundary conditions and equations of motion are thus also not necessary in this

scenario, because the agents do not move explicitly (v = 0 and Dr is meaningless).
The position initialization procedure in this scenario is also similar to the 1D

scenario without explicit motion: All agents are assigned a uniformly distributed
random position inside the [0, L]× [0, L] simulation box, under the same constraint
as in 1D (food from the source can at least indirectly reach every agent). In 2D,
this constraint is always fulfilled for λ =

√
2 and cannot be met for λ < 1/

√
N .

Again, for small λ values, the positions will be less random and more grid-like.
We use the same parameter values for this scenario as for the 1D scenario

(Table 4.3).
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4.3.3 2D with explicit motion

This simulation scenario includes the full dynamics as described in Section 4.1.
No constraint is applied to the agents uniform random initial positions this time,
because they change anyway in the course of the simulation.
Since ν > 0 in this scenario, the refractory period parameter τ has to be adjusted

with ν, so that ν � τ (cf. Section 4.2.2). We tested that a discretization precision
of 10−3 (so that ν ≤ 10−3τ through τ := 103ν) is sufficient to not produce any
artefacts.
The ant rotation parameter θ also has to be chosen in this scenario, to control

the strength of the rotational noise in the agents motion. A value of θ = 0.2 proved
to give reasonable smooth active Brownian motion trajectories and was thus used
for all simulations of this scenario.
All the parameter values for the 2D simulations with explicit motion are listed in

Table 4.4.

parameter symbol value

ant velocity parameter ν varied
ant rotation parameter θ 0.2
interaction range parameter λ varied
refractory period parameter τ 103ν
food exchange ratio σ varied
number of agents N 100

Table 4.4: Nondimensional simulation parameter values for the 2D simulation scenarios with
explicit motion.

4.4 Observables

As the last piece of introductory material, this section introduces and defines all of
the observables that will be used throughout this thesis.
The aim of this work is to investigate how food, localized at the source, spreads

through the initially empty system of agents (ci(0) = 0, ∀i), until every agent is at
its carrying capacity (ci(t) = cmax, ∀i). Quantifying this nonequilibrium transport
process is complex, and care needs to be taken in choosing appropriate observables.
The simplest, but surprisingly informative quantities of interest we will use as

observables are global measures that characterize the temporal dynamics of the
amount of food inside the whole nest (Section 4.4.1).
These observables only contain information about how much food is carried by

the ants, but not where it is located in space and how the food spreads from the
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source through the system. In order to quantify this, we also use spatial measures
(Section 4.4.2).
Finally, the individual amounts of food carried by the ants can be observed to

study how the food is distributed among the ants, independent of their location
(Section 4.4.3).

4.4.1 Global measures

In this section, we define the total amount of food inside the nest, the average food
concentration of all ants, the variance of the ants’ food concentrations, and the
time until the colony is half full (half-time) as observable at the macroscopic colony
level.

Total food

The total amount of food F (t) in the ant colony at time t is calculated as the
simple sum

F (t) :=
N∑
i=1

ci(t) (4.8)

over the N agents’ food concentrations ci(t). We use it in units of the maximum
amount of food the colony can carry fmax = Ncmax, so that F (t)/fmax = 1 when
the colony is full. Its time evolution measures the transport of food into the system.

Average food concentration

The average food concentration

〈c(t)〉 :=
1

N

N∑
i=1

ci(t) (4.9)

at time t is closely related to the total food F (t), because 〈c(t)〉 = F (t)/N .8

We use it in units of the carrying capacity of a single ant cmax, so that again
〈c(t)〉/cmax = 1, when the colony is full. In fact, F (t)/fmax = 〈c(t)〉/cmax, so that
both the normalized total food and the normalized average food concentration
measure the food transport into the system with the same numeric values.

8Throughout the whole thesis angle brackets 〈X〉 denote the average (1/N)
∑N
i=1Xi of Xi over all N agents, or

ants.
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Food concentration variance

The food concentrations variance

〈∆c2〉 :=
1

N

N∑
i=1

[
ci(t)− 〈c(t)〉

]2 (4.10)

=
1

N

N∑
i=1

ci(t)− 1

N

N∑
j=1

cj(t)

2

(4.11)

measures how uniform the food is distributed in the whole colony at time t.
Analogue to the food concentration average, we use it in units of c2

max. A variance
of 〈∆c2〉/c2

max = 0 means that every ant carries the same amount of food at time
t, and the larger 〈∆c2〉/c2

max > 0, the bigger the differences between the ants’
individual food concentrations are.

Half-time

Food can only enter and never leave the nest in our simulation model. The total
food F (t) thus increases monotonically in time. For that reason, there is a unique
time t1/2, for that

〈c(t1/2)〉 =
1

2
cmax (4.12)

for the first time: the time until the colony is half full, which we will call ‘half-time’.
It measures the global food intake time scale of the colony’s saturation dynamics.

4.4.2 Spatial measures

In this section, we define the spatial distribution of food in the nest and the mean
squared distance the food has spread from the source as spatial observables.

Spatial food distribution

In our simulation model, food can only exist at discrete positions in space, the ants’
positions. Nevertheless, when binned in space and ensemble averaged over multiple
simulation runs, the spatial food distribution can be visualized with the ensemble
average of the food concentration c(~x, t)〉 as a function of space and time.
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Mean squared food distance

In order to condense the two-dimensional spatial food distribution function into a
simpler one-dimensional function, we define the ‘mean squared food distance’

MSD(t) := 〈d(t)2c(t)〉 (4.13)

=
1

N

N∑
i=1

di(t)
2ci(t) , (4.14)

where

di(t) :=
∣∣~xi(t)− ~xsource

∣∣ (4.15)

is the distance between agent i and the food source at time t. This quantity
is a generalization of the mean squared displacement of a Brownian particle in
statistical mechanics. In our case, the distance of each agent from the reference
point is weighted by the amount of food it is carrying. With this observable, we
are able to monitor the spatio-temporal transport of food, as it spreads from the
source through the system.
Since limt→∞ ci(t) = cmax and the system is finite, we can easily calculate the

ensemble average steady state value of MSD(t) from the system geometry by
considering

lim
t→∞
N→∞

MSD(t) = lim
t→∞
N→∞

1

N

N∑
i=1

di(t)
2ci(t) (4.16)

= cmax lim
t→∞
N→∞

1

N

N∑
i=1

di(t)
2 (4.17)

= cmax
1

A

∫
A

(~x− ~xsource)
2 dA. (4.18)

Here, A is the total system area. For the 2D simulation scenario A = L2 and
~xsource = (L/2, 0), so that

lim
t→∞
N→∞

MSD2D(t) =
5

12
cmaxL2 . (4.19)
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For the 1D simulation scenarios A = L and ~xsource = xsource = 0, so that

lim
t→∞
N→∞

MSD1D(t) =
1

3
cmaxL2 (4.20)

instead.
We can then define a dimensionless version of MSD(t) which we designate by

MSD(t):

MSD(t) :=
MSD(t)

lim t→∞
N→∞

MSD(t)
.

Note that MSD(t) ∈ [0, 1], and when MSD(t) = 1 the steady state has been reached
(colony is full).

4.4.3 Individual measures

In this section, we define the distribution of food among individual ants as an
observable for the microscopic individual ant level.

Distribution of food among individual ants

Similarly to the spatial food distribution, the distribution of food among individual
ants can be achieved through binning and ensemble averaging. Only here, we bin
the food concentrations instead of the agents’ positions. As a function of time, this
measures how many ants P (c(t)) carry how much food at time t, independent of
their position.
In addition, P (c(t)) can also be calculated in spatial bins, instead of for the whole

colony, to obtain a combined microscopic measure P (c(t))(x) of how the food is
distributed in space and among individual ants.
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Part II

Trophallaxis without Explicit
Motion
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5 Mean-field Limit

To understand the limits of trophallactic behavior in our system, we will first
consider the simple well mixed case in this chapter that takes place when either
the interaction radius is large enough to cover the maximum distance between any
two points in the nest, or equivalently when the ants’ velocity is high enough to
ensure equiprobable encounters between any pair of ants. In this mean-field limit
case, every ant has the chance to interact with every other ant and the source at
all times.
It is important to note here that the system becomes independent of space and

hence dimension in this limit. Any analytic mean-field description of the system
therefore applies to both 1D and 2D simulation setups, and even to all setups with
or without explicit motion if the interaction radius is chosen to cover the whole
system (R = L or λ = 1 in 1D and R =

√
2L or λ =

√
2 in 2D).

Sections 5.1 and 5.2 will present an analytic description of the mean-field limit
and Section 5.3 will compare the predictions of these descriptions with simulation
results.

5.1 Mean-field model

In the mean-field limit every ant has the same probability to interact with another
ant or the source. These probabilities only depend on the number of ants and
the interaction time scale and can therefore be calculated easily. This allows to
derive a governing equation for the systems dynamics, which then leads to a simple
prediction of the average food concentration.

5.1.1 Governing equation

We can formulate an analytic mean-field model if we approximate the discrete
food exchanges as continuous processes. In this approximation, the expected food
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concentration ci(t) of every ant i follows

ci(t+ dt) = ci(t) +
N∑
j=1

j 6=i

pj→i∆cj→i(t)

︸ ︷︷ ︸
gain from other ants

−
N∑
j=1

j 6=i

pi→j∆ci→j(t)

︸ ︷︷ ︸
loss to other ants

+ psource(cmax − ci(t))︸ ︷︷ ︸
gain from source

,

(5.1)

where dt is an infinitesimal time interval, during which pj→i and pi→j are the
probabilities of a food exchange from ant j to ant i and from ant i to ant j, and
psource is the probability for an ant to pick up food from the source; ∆cj→i(t) and
∆cj→i(t) are the food concentrations exchanged from ant j to ant i and from ant j
to ant i (as defined in Eq. (4.7)); cmax is the maximum food concentration due to
the finite carrying capacity; and N is the number of ants.
The probabilities in Eq. (5.1) are

pj→i = pj→i =
dt

(N − 1)T
(5.2)

and

psource =
dt

NT
, (5.3)

where T is the refractory period introduced in Section 4.1, dt/T is the probability
of an individual ant not to be refractory, 1/(N − 1) is the probability of selecting
an individual ant for a food exchange; and 1/N is the probability of selecting an
individual ant to pick up food from the source.
Thus, the mean-field food dynamics is governed by the ordinary differential

equation

dci(t)

dt
=

1

(N − 1)T

N∑
j=1

(
∆cj→i(t)−∆ci→j(t)

)
+

1

NT
(cmax − ci). (5.4)

This directly allows us to derive a mean-field prediction of the average food. The
food variance, unfortunately, cannot be predicted by the mean-field model with
the same ease. We do however present an analytic prediction of the food variance
in Section 5.2 for another limit case.
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5.1.2 Average food concentration

Equation (5.4) can easily be solved analytically for the average food concentration
〈c(t)〉 in the mean-field limit:

d〈c(t)〉
dt

=
1

N

N∑
i=1

dci(t)

dt
(5.5)

=
1

N(N − 1)T

N∑
i=1

N∑
j=1

(
∆cj→i(t)−∆ci→j(t)

)
︸ ︷︷ ︸

=0

+
1

NT

(
cmax −

1

N

N∑
i=1

ci(t)︸ ︷︷ ︸
=〈c(t)〉

)

(5.6)

=
1

NT

(
cmax − 〈c(t)〉

)
(5.7)

When taking the average, the summations in Eq. (5.6) are symmetric with respect
to i and j and cancel. Interestingly, this makes the average food independent of
the food exchange ratio σ.
The solution of Eq. (5.7) is

〈c(t)〉 = cmax

(
1− e− t

NT

)
. (5.8)

This agrees with the exponential saturation laws for the food intake observed in
experiments and gives a microscopic interpretation to the proposed phenomeno-
logical models [10, 19]. A similar equation for the number of fed individuals as a
function of time was derived in [66, 65].

5.2 Binary food concentration approximation

Early in the food dissemination process, the majority of the ants have a completely
empty crop. For small times, we can initially neglect the food exchange between
ants as the food distribution in the nest is mostly dominated by food intake events
from the source. The population of ants is then roughly separated into two groups:
the ants that have a full crop, whose number n increases linearly with time as
n = t/T ; and the ants who are empty. This binary approximation becomes exact
when the food exchange ratio is σ = 1. In this case, the ants exchange the entirety
of their crop contents and the separation of the ant population in two groups, full
and empty, is always exact.
We can now derive simple analytic predictions of the average food and the food
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variance from this binary approximation.

5.2.1 Average food concentration

The total amount of food in the colony is simply given by the number n = t/T of
full ants times the carrying capacity cmax under these assumptions. Consequently,
for small times or large σ, the average food concentration increases linearly with
time as

〈c(t)〉 =
cmaxt

NT
. (5.9)

5.2.2 Food concentration variance

From Eq. (5.9) follows

〈∆c(t)2〉 =
c2

maxt

NT

(
1− t

NT

)
, (5.10)

which gives an analytic prediction of the food concentration variance for small
times or large σ.

5.3 Comparison of simulations and analytic predictions

In this section, we compare the derived analytic predictions Eqs. (5.8) to (5.10) first
with simulation results of the true mean-field limit setup, where the interaction
radius spans the whole system (λ = 1); and then with simulation results, where
the interaction radius does not span the whole system anymore (λ < 1). The case
of λ < 1 introduces a dependency on the ants’ positions to the system, that does
not exist for λ = 1 and is thus not accounted for in the mean-field model. This
allows us to evaluate the predictions’ extent of validity. We use the 1D simulation
setup without explicit motion for this section (Section 4.3).

5.3.1 Results with system wide interaction range

Figure 5.1 directly compares the analytic mean-field prediction for the average
food concentration of Eq. (5.8) (red dashed line) and the binary food concentration
approximations for the average and the variance Eqs. (5.9) and (5.10) (orange
dot-dashed line) with the ensemble averaged simulation data for different food
exchange ratios σ.
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Figure 5.1: (a) Average food concentration 〈c〉 (measured in units of cmax) and (b) food variance
〈∆c2〉 (measured in units of c2max) versus time (in units of T ) when λ = 1. Blue solid
line σ = 0.005, purple solid line: σ = 0.5, green solid line: σ = 1, red dashed line:
mean-field prediction (Eq. (5.8)), orange dash-dotted line: σ = 1 prediction (Eq. (5.9)
for (a) and Eq. (5.10) for (b)). Even for σ as high as 0.5, the mean-field model offers
a very good approximation of the food intake dynamics. The width of the shaded
area around each line indicates the standard deviation.

For small values of σ, Eq. (5.8) gives an excellent prediction of the average food.
As σ increases the prediction becomes progressively worse. Especially when the
ants attempt to give each other more then half of the food they carry (σ & 0.5),
Eq. (5.8) does not provide a valid approximation for the whole dynamics anymore.
In fact, the mean-field model is valid for a certain initial time interval that decreases
with increasing food exchange ratio σ. For a low value (σ = 0.005), agreement is
achieved throughout the whole simulation.
In our simulations ants do not attempt to pick up food from the source when

their crop is full. This is in disagreement with the setup of the mean-field model
as the probability for an ant to pick up food from the source is calculated with
the total number of ants, and not with the number of empty ants (cf. Eq. (5.3)).
Modifying the feeding rules to allow ants to attempt to pick up food from the
source even when full only minimally affects the simulation results in the mean-field
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limit and the agreement with the mean-field model is still very good.
As explained in Section 5.2, Fig. 5.1 also shows that the binary food concentration

approximations provide an exact prediction in the σ = 1 case.

5.3.2 Results with intermediate interaction ranges

In Fig. 5.2 we explore to what extent the mean-field model finding Eq. (5.8) holds
when R < L (or λ < 1), i.e. leaving the mean-field limit with an interaction radius
smaller than the system size. In particular, we consider the linear function

f(t) = γt = ln

(
1− 〈c(t)〉

cmax

)
(5.11)

in the exponent of the exponentially saturating average food concentration for
different λ values, σ = 0.5 (Fig. 5.2(a)) and σ = 0.005 (Fig. 5.2(b)). The slope γ of
f(t) and therefore the slopes in Fig. 5.2 correspond to an inverse time scale that
we will call ‘(global) food intake rate’. For the mean-field model (Eq. (5.8)), the
expected food intake rate is simply

γλ=1 =
1

NT
(5.12)

(red dashed line in Fig. 5.2).
For small σ, we observe that the system switches from a fast food intake rate

that agrees very well with the mean-field model in the initial stages of the process
to a slower food intake rate that depends on the interaction radius. The time
when the transition occurs decreases with the interaction radius. There is a simple
interpretation for this behavior. Initially, all the ants near the nest entrance that
have access to the source are empty, and the trophallactic dynamics is dominated
by the ants at the entrance picking up food. The mean-field theory holds until the
moment when the ants within reach of the source are approximately at capacity.
After this transition, the behavior stops being well explained by mean-field theory
because the food is now diffusing out of the nest entrance vicinity via ant to ant
trophallactic interactions. The transition between the two regimes is abrupt for
small σ, and becomes less pronounced for large σ, due to higher fluctuations of the
food concentration in space and time.
Past the transition time, the average food can be approximated by

〈c(t)〉 = cmax −
(
cmax − 〈c(t∗)〉

)
e−γ(t−t∗) , (5.13)

where t∗ is the transition time and γ is the new food intake rate. The time t∗ of
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5.3 Comparison of simulations and analytic predictions

Figure 5.2: Exponential saturation exponent ln
(

1− 〈c(t)〉
cmax

)
of the average food concentration

〈c(t)〉 as a function of time (in units of T ) (cf. Eq. (5.11)). Blue solid line λ = 0.1,
purple solid line: λ = 0.5, green solid line: λ = 1, red dashed line: mean-field
prediction (Eq. (5.8)). At the beginning of the dynamics, the average food is described
well by the mean-field model (red dashed line). Later, different dynamics occur,
depending on the parameter values. (a) For a large σ (σ = 0.5), the amount of food
is well described by the mean-field model for values of λ between 1 and 0.5. (b) For a
small σ (σ = 0.005), the mean-field model is valid for a reasonable length of time only
for λ→ 1.0. The system switches from a fast food intake rate that agrees very well
with the mean-field model in the initial stages of the process to a slower dynamics
that depends on the interaction radius. The time when the transition occurs decreases
with the interaction radius. The width of the shaded area around each line indicates
the standard deviation.

the transition increases with λ, whereas γ decreases with λ.
Chapter 6 will be devoted to deriving an approximate value for γ. We will

construct a continuum model to approximate how the food diffuses away from the
nest entrance vicinity to the rest of the nest and use this to study the saturation
behavior of food in the colony.
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6 Diffusive Limit

In Chapter 5, we discussed a mean-field model that allowed spatially independent,
all-to-all interactions. In this chapter, we explore the opposite regime of small
interaction radii. As already mentioned, this can be interpreted as ants that occupy
spatial fidelity zones. The ants’ explicit velocity is still zero (v = 0, cf. Section 4.1.1),
but their effective spatial fidelity zone is a circular region of radius R centered
around their (preferred) location ~xi, for each ant i. In this limit, the behavior of
the system becomes strongly spatially dependent and the mean-field model fails.
The goal of this chapter is to derive a set of equations that describe the food
dissemination process in this case and to compare it with the simulation results.
Given the nature of the trophallactic process with small interaction ranges

(compared to the system size), it is tempting to describe the food flow as a simple
diffusion process with a fixed diffusion coefficient and a source term. This is
deceptive, as the finite crop capacities, the finite system size, and agents picking
up food to capacity at the source render this problem more complex. All of these
complications are essential to describe trophallaxis, but make the problem of finding
an exact solution to the appropriate dynamical equations analytically intractable.
In order to gain some intuition about the behavior of the system, we will first derive
a full diffusion equation in Section 6.1. In Section 6.2, we will then adopt a series
of simplifying assumptions that allow us to analytically solve the derived equation,
and arrive at a global food intake rate. Finally, Section 6.3 will demonstrate that
this analytically predicted time scale qualitatively agrees with the global system
behavior of the full trophallactic dynamics, obtained by simulations.

6.1 Diffusion approximation derivation

In order to keep the analytic description of trophallaxis in the diffusive limit simple,
we will first show in Section 6.1.1 that it is reasonable to work in 1D. Section 6.1.2
then introduces the continuum notation necessary to easily derive space dependent
equations, and Section 6.1.3 finally gives the derivation of the full diffusion equation.
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6 Diffusive Limit

6.1.1 Comparison of 1D and 2D spatial simulation results

While the mean-field model was spatially independent and its predictions should
hold for any number of dimensions, any spatially dependent model will in principle
depend on the dimensionality of the system. Since this thesis primarily seeks to
understand qualitative behaviors, the analytic trophallaxis models in this work are
written down and solved in 1D for simplicity.
In Fig. 6.1, we present a time series of the spatial food distribution in a 2D square

nest for various food exchange ratios σ and interaction range parameters λ. In
Fig. 6.2 we show a time series of the food distribution in space (solid red line) and
among the ants (blue background), again for various σ and λ values, but for a 1D
system.
Figures 6.1 and 6.2 indicate several qualitative similarities between the 2D and the

1D system. First, for small σ and λ (row (a)), the food initially quickly saturates
the area at the vicinity of the nest entrance (the area within interaction range
of the source), and then disperses to the whole nest via an initially narrow and
subsequently broadening moving front. Second, for small σ but larger λ (row (b)),
the area within interaction range of the source takes longer to saturate before
the food diffuses away. Third, for large σ and small λ (row (c)) there is no clear
separation between the time the area close to the nest entrance fills at capacity
and the time the diffusion of food out of that area becomes important. However,
like in the previous cases, there is still a gradient of food density from the source
at the nest entrance to the opposite border of the nest. Finally, for large σ and λ
(row (d)), the gradient disappears, and the nest acquires food roughly uniformly.
This qualitative similarity between 2D and 1D in the simulation gives reason to

assume that analytic predictions valid in 1D also hold for 2D.

6.1.2 Continuum variables

In order to write down space dependent models that are analytically solvable, we
will replace the discrete, agent-based variables with a description that is continuous
in space and food exchange.
In the agent-based simulation model, the maximal absolute amount of food

fmax := Ncmax (6.1)

in the system is determined by the number of ants N , and by how much food one
ant can carry: the food concentration capacity cmax (food per ant). Therefore, it is
a natural choice, to describe the amount of food an ant i at position x and time t
is carrying with c(xi, t), the food per ant concentration.
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6.1 Diffusion approximation derivation
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Figure 6.1: Time series of 2D spatial food distribution pattern for various parameter values
σ and λ. The food source of the nest is at the center of the bottom nest border
(x = L/2, y = 0), and indicated with a black semicircle. The distribution is the result
of an ensemble average over 10 independent realizations of the simulation for the
same (random) ant positions. The time indices t are given in units of the refractory
period T . One hundred ants are initially distributed at random in the nest, with a
uniform probability distribution. Since the uniform probability typically produces a
very inhomogeneous distribution of ants in the nest, a repulsive potential is applied
to ensure that the ants occupy the nest more homogeneously before their position
is fixed. For small values of σ and λ, the dynamics is approximately diffusive with
food being distributed locally amongst close agents. For larger values, food becomes
delocalized and spreads among many agents that are far from each other.
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6 Diffusive Limit

Figure 6.2: Time series of 1D food distribution in space and among ants for various parameter
values σ and λ. Red line: spatially binned average food concentration, blue background:
histogram of the food distribution among ants binned in food and space. The time
indices t are given in units of the refractory period T . The distribution is the result
of an ensemble average over 100 independent realizations of the simulation for the
same (uniform random) ant positions. The 1D behavior dependence on σ and λ
qualitatively follows that of the 2D system, displayed in Fig. 6.1.
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6.1 Diffusion approximation derivation

The diffusion approximation of this section is on the contrary technically derived
in the limit of N →∞, where measuring food in per agent concentrations becomes
meaningless. Instead, it is more informative to use a spatial food density ρ(x, t),
describing the average amount of food per volume at position x and time t. In the
1D case, this volume is simply the system length L. The maximal amount of food
in the system is then calculated through integrating over the maximal (final) food
densities ρmax := limt→∞ ρ(x, t):

fmax =

∫
L

dx lim
t→∞

ρ(x, t) =

∫
L

dxρmax = Lρmax . (6.2)

This value should should equal the maximal amount of food in the simulations.
Thus, combining Eq. (6.1) and Eq. (6.2) yields

fmax = Ncmax = Lρmax . (6.3)

Analogue, the relationship between the continuum and discrete food variables at
a given position x and time t is given through multiplying with the ant number
density N/L:

ρ(x, t) = c(x, t)
N

L
. (6.4)

6.1.3 Governing equation

Using the continuum variables of Section 6.1.2, we can now derive the analytic
diffusion approximation for small interaction ranges λ. For simplicity, we initially
assume that the ants (or rather points in space) only interact with their nearest
neighbors, i.e. we consider the limit of λ→ 0.
The balance equation describing the food exchange between any neighboring

points not within range of the source at positions x, x+ ∆x, and x−∆x in the
time interval ∆t is

ρ(x, t+ ∆t)− ρ(x, t)

∆t
=

1

∆t

(
∆ρx+∆x→x(t)−∆ρx→x+∆x(t)

−∆ρx→x−∆x(t) + ∆ρx−∆x→x(t)
)
, (6.5)
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6 Diffusive Limit

where

∆ρx′→x(t) :=

σρ(x′, t) if ρ(x, t) + σρ(x′, t) ≤ ρmax

ρmax − ρ(x, t) otherwise
(6.6)

= Θ
(
ρmax − σρ(x′, t)− ρ(x, t)

)
σρ(x′, t)

+ Θ
(
σρ(x′, t) + ρ(x, t)− ρmax

)
Θ
(
ρmax − ρ(x, t)

) (
ρmax − ρ(x, t)

)
(6.7)

gives the density of food transferred from position x′ to position x, as a function of
the respective local food densities and is nothing but a continuous version of the
food exchange rule Eq. (4.7) in the simulation model (Section 4.1). Θ(x) is the
Heaviside step function. Taking the limit of ∆t→ 0 gives

∂ρ(x, t)

∂t
=

1

∆t

(
∆ρx+∆x→x(t)−∆ρx→x+∆x(t)

−∆ρx→x−∆x(t) + ∆ρx−∆x→x(t)
)
. (6.8)

By replacing ρ(x, t) in Eq. (6.8) with

ρ(x±∆x, t) = ρ(x, t)±∆x
∂ρ(x, t)

∂x
+

1

2
∆x2∂

2ρ(x, t)

∂x2
, (6.9)

its Taylor expansion in ∆x up to the order O(∆x2), the balance equation (Eq. (6.8))
becomes a diffusion-like spatio-temporal partial differential equation for ρ(x, t).
Since the Heaviside functions are not smooth, we regularize them using the identity

Θ(x) = lim
k→∞

Θk(x) = lim
k→∞

(
1

2
+

1

π
arctan(kx)

)
. (6.10)

By first replacing all Θ(x) with Θk(x), then expanding ρ(x, t) in Eq. (6.8) with
Eq. (6.9), and finally taking the limit k →∞, we derive

∂ρ(x, t)

∂t
= D(ρ(x, t))

∂2ρ(x, t)

∂x2
, (6.11)

where

D :=

σ∆x2

∆t
if ρ(x,t)

ρmax
(1 + σ) < 1

∆x2

∆t
if ρ(x,t)

ρmax
(1 + σ) > 1

. (6.12)
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6.1 Diffusion approximation derivation

is a food density dependent diffusion constant.
If the ants are evenly spaced and each ant interacts only with its nearest neighbors,

then ∆x2 ≈ (L/N)2 and ∆t = T . If the ants have more trophallactic partners
than their nearest neighbors, ∆x2 would be replaced by r2, the ensemble averaged
squared distance between an ant and all its possible interaction partners. This is
an important geometric property of the system, because it captures the length scale
that is important to the diffusion of food between ants with finite interaction radii.
Assuming ants at uniformly distributed random positions on the one-dimensional

interval x ∈ [0, L], this average squared distance can be calculated analytically in
the continuous limit. The resulting expression is a function of the interaction radius
R, or λ = R/L in nondimensional terms.1 Its derivation is given in Appendix B.
The final result is

r2

L2
=

−1
9
λ3 + 1

3
λ2 if λ ∈ [0, 1

2
)

−5
9
λ3 + λ2 − 1

3
λ+ 1

18
if λ ∈ [1

2
, 1]

. (6.13)

Equation (6.11) is a diffusion equation with a density dependent diffusion constant
(Eq. (6.12)). Using ∆x2 = r2 and ∆t = T , the effective diffusion constant becomes

D =

σr2

T
if ρ(x,t)

ρmax
(1 + σ) < 1

r2

T
if ρ(x,t)

ρmax
(1 + σ) > 1

. (6.14)

This means that for densities smaller than the threshold ρmax/(1 + σ), the effective
diffusion constant is smaller than for densities larger than that threshold. As a
consequence of the finite crop capacity, food thus diffuses effectively faster very
close to the nest entrance and not slower, as one might naively expect, because the
food densities are higher close to the entrance.
When assuming that the crop capacity is not exactly the same for every ant,

such that ρmax,i = ρmax + ξi with ξi drawn from a Gaussian distribution with width
τ , the discontinuous step in Eq. (6.11) is smoothed out into a sigmoidal of width τ
after averaging over Eq. (6.8). Equation (6.11) then becomes

∂ρ(x, t)

∂t
=
〈
D(ρ(x, t))

〉 ∂2ρ(x, t)

∂2x
, (6.15)

1In 1D, the interaction radius R simply defines the maximum distance to the left or to the right of an ant’s
position, at which it can exchange food with other ants.
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with the averaged diffusivity

〈
D(ρ(x, t))

〉
=

1

2

(
σ + 1 + (σ − 1) erf

(
ρmax − ρ(x, t)(1 + σ)√

2τ

))
∆x2

∆t
, (6.16)

where erf(x) is the standard error function. As τ → 0, Eq. (6.11) is recovered.

6.2 Diffusion approximation solutions

In the previous section, we showed an estimate of the effective diffusion constant
in the nest, and saw that the diffusion constant depends on the food concentration
in the nest (cf. Eq. (6.14)). Solving the derived diffusion equation (Eq. (6.11))
analytically is not straightforward.
We therefore assume that in the initial stages of the trophallactic process the

majority of the ants far from the source are not full, (in particular that ρ(x, t) <
ρmax/(1 + σ)), so that the diffusion constant is

D =
σr2

T
. (6.17)

In reality, the diffusion constant should switch to its high food density value near
the source (see Eq. (6.11)), but for simplicity, we will just consider D to be constant
in space and time in the following derivations of this section.
In addition, it is a priori unclear how to handle the food source. At first

sight, the food supply of the nest fmax could be treated as an initial condition
of the diffusion equation, e.g. a delta distribution located at the nest entrance
(ρ(x = 0, t = 0) = δ(x)fmax). However, this would turn the nest entrance into yet
another food carrying point in space, indistinguishable from the ants. But that
is not the case, since the nest entrance cannot receive food and does not have a
carrying capacity. The food located at the nest entrance is not really part of the
system, which is why it should rather be treated either as a boundary condition or
as a source term of the diffusion equation. We explore these two possibilities in
this section.
In Section 6.2.1, we model the food source as a boundary condition, fixing the

amount of food at the nest entrance. And in Section 6.2.2, we model the source as
an explicit source term, continuously disbursing food into the nest. We derive a
predictions for the global food intake rate that defines a fundamental time scale in
both cases and show that they are in agreement.
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6.2 Diffusion approximation solutions

6.2.1 Food source as a boundary condition

At the source, ants should be at carrying capacity. This means that the source
can be implemented as a boundary condition. Namely, if the source is at x = 0,
we fix ρ(0, t) = ρmax. We therefore have to solve the standard diffusion equation
without a source term in a 1D finite system. The appropriate boundary and initial
conditions are

ρ(x, 0) = 0 for x ∈ (0, L] (6.18)

(initially, there is no food in the system), and

ρ(0, t) = ρmax ,
∂ρ(x, t)

∂x

∣∣∣∣
x=L

= 0 (6.19)

(at x = 0 the source fixes the food density to its maximum, and at x = L a reflective
wall allows no flux across the system boundary).
The solution can be found using standard methods (see Appendix C.1) and

expressed as a series:

ρ(x, t)

ρmax

= 1− 4

π

∞∑
n=1

sin
(

(2n−1)
2

π x
L

)
2n− 1

e
−
(

(2n−1)π
2L

)2
Dt
. (6.20)

Keeping only the dominant first term (n = 1), the solution reads:

ρ(x, t) ≈ ρmax

[
1− 4

π
sin

(
πx

2L

)
e−( π

2L)
2
Dt

]
. (6.21)

In Fig. 6.3, we compare Eq. (6.20) (solid lines) and Eq. (6.21) (dashed lines) for
times t = 0.001L2/D, t = 0.1L2/D and t = 0.5L2/D. We see that for large enough
times, Eq. (6.21) is an excellent approximation of Eq. (6.20).
Note also that the overall shape of the spatial food distribution and its time

dependence qualitatively match the small λ simulations displayed in Fig. 6.2.
However, this continuum approach cannot capture the very interesting dynamics of
the food distribution among individual ants (cf. histograms in Fig. 6.2). For example,
we see that in several regimes the spatially binned average food concentration is not
a good indicator of the actual food concentration of individual ants at that location
(eg. Fig. 6.2(a1)). Although 〈c(t = 10)〉x=0.1 ≈ 0.75, there are no individual ants
in the bin x ∈ [0.05, 0.1] with ci(t = 10) = 0.75. Instead, the food is distributed
bimodally among the ants at that location, with approximately 75% of the ants
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Figure 6.3: Analytic predictions of the spatial food distribution for times t = 0.001L2/D (blue line,
bottom), t = 0.1L2/D (brown line, middle), and t = 0.5L2/D (red line, top). Solid
lines show the full solution (Eq. (6.20)) and dashed lines the first order approximation
(Eq. (6.21)). The dashed line for t = 0.5L2/D overlaps with the solid line and is not
visible.

at capacity and 25% empty. The mean of this bimodal distribution is hence not
informative, but the continuum approach cannot predict these variations around
the mean.
From Eq. (6.20), we can calculate 〈c(t)〉 by integration, keeping only the slowest

decaying term. The approximate average food density in the system is then found
to be

〈ρ(t)〉 ≈ ρmax

(
1− 8

π2
e−( π

2L)
2
Dt

)
, (6.22)

and the mean squared food distance

MSD(t) ≈ 1− 96(π − 2)

π4
e−( π

2L)
2
Dt . (6.23)

Associating the resulting exponential decay constant
(
π

2L

)2
D with the food intake

rate γ of Eq. (5.13) yields

γ =

(
π

2L

)2

D . (6.24)

Substituting the initial assumption of a constant diffusivity D = σr2/T (cf.
Eq. (6.17)), we obtain an analytic prediction for the global food intake rate that
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6.2 Diffusion approximation solutions

will proof to be remarkably universal and thus marks an important achievement of
this thesis:

γ ∼ σr2

TL2
. (6.25)

For equidistant agents with nearest neighbor interactions, using r2 = (L/N)2, this
reduces to

γ ∼ σ

TN2
. (6.26)

6.2.2 Food source as a source term

In this section, we consider the alternative case of modeling the food source as an
explicit source term of the diffusion equation. We use this approach to estimate an
upper bound on the food intake rate γ.
For computational ease, we approximate the 1D system to be bounded on only

one side (x ≥ 0), with the source being located at that boundary (x = 0+). The
diffusion equation that governs the dynamics of the system then reads

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
+ q(x, t), (6.27)

where ρ(x, t) is the food density, D the diffusivity, and q(x, t) the source term.
We assume food to be taken up at the single point x = 0 at an exponential

rate with unknown exponent γ, similarly to what is observed in experiments [10].
Also, we again focus on the initial stages of the trophallactic process, assuming
a constant D = σr2/T as in Eq. (6.17). As we showed in Chapter 5, the average
food concentration inside the nest follows an exponential saturation dynamics
(cf. Eq. (5.8) and Figs. 5.1 and 5.2). The amount of food remaining at the nest
entrance thus decays approximately exponentially in time. If the total amount of
food available initially is fmax (as introduced in Section 6.1.2, cf. Eq. (6.2)), then
the total amount of food still available at the source at time t is fmaxe

−γt and the
source term reads

q(x, t) = − ∂

∂t
fmaxe

−γt2δ(x)

= 2γfmaxe
−γtδ(x) . (6.28)

where δ(x) the Dirac delta distribution, as the nest entrance is located at x = 0+.
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For normalization purposes we include a factor of 2 in Eq. (6.28), because∫ ∞
0

δ(x) dx =
1

2
. (6.29)

Equation (6.27) can be nondimensionalized by choosing the time scale st, length
scale sx and food density scale sρ to be

st =
1

γ
, sx =

√
D

γ
and sρ = 2fmax/sx . (6.30)

Denoting a nondimensional variable as X̃ := X
sX

, Eq. (6.27) becomes

∂ρ̃(x̃, t̃)

∂t̃
=
∂2ρ̃(x̃, t̃)

∂x̃2
+ e−t̃δ(x̃) . (6.31)

With a reflective boundary condition

∂ρ(x̃, t̃)

∂x̃

∣∣∣∣∣
x̃=0

= 0 (6.32)

at the only system boundary x̃ = 0, and no initial food

ρ(x̃, 0) = 0 for x̃ ≥ 0 , (6.33)

the general solution of the semi-infinite system x̃ ∈ [0,∞) in nondimensional terms
is

ρ̃(x̃, t̃) =

∫ ∞
0

dx̃′
∫ t̃

0

dt̃′K̃(x̃, x̃′, t̃− t̃′)e−t̃′δ(x̃′) , (6.34)

where

K̃(x̃, x̃′, t̃) :=
1√
4πt̃

e−
(x̃−x̃′)2

4t̃ (6.35)

is the heat kernel of Eq. (6.31). Equation (6.34) integrates to the final nondimen-
sional solution

ρ̃(x̃, t̃) = e−t̃

−1

2
Im

(
eix̃ erfc

(
x̃

2
√
t̃

+ i
√
t̃

)) , (6.36)
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where

erfc(z) := 1− erf(z) (6.37)

is the complementary error function, and Im(z) denotes the imaginary part of z.
The full derivation is given in Appendix C.2.
Some simpler analytic approximations can be derived from Eq. (6.36) by consid-

ering the limits of the complementary error function. For large times and far from
the source,

ρ(x̃, t̃) ≈ 1

2

√
t̃

π

1(
x̃2

4t̃
+ t̃
)e− x̃24t̃ (6.38)

approximates Eq. (6.36) well, whereas for short times and close to the source

ρ(x̃, t̃) ≈ 2

√
t̃

π
e−

x̃2

4t̃ − |x̃| e−t̃ (6.39)

is a good approximation.
We now explore the relationship between the food intake rate γ and the food

diffusivity D under consideration of the finite food density capacity. The higher γ
is, the faster the nest absorbs food from the source. However, a very large γ would
lead to a very large food density ρ(x, t) in the vicinity of the nest entrance, which
contradicts the finite carrying capacity. This interplay gives an upper limit for γ
that is consistent with the finite food density capacity ρmax. In the remainder of
this section, we derive this upper limit.
Going back to dimensional notation, Eq. (6.36) evaluated near the source (x→ 0)

reads

ρ(0, t) = −fmax

√
γ

D
e−γt Im

(
erfc

(
i
√
γt
))

. (6.40)

Since γt ≥ 0,

Im
(

erfc
(
i
√
γt
))

= − 2√
π

∫ √γt
0

ez
2

dz , (6.41)

and Eq. (6.40) becomes

ρ(0, t) =
2fmax√

π

√
γ

D
e−γt

∫ √γt
0

ez
2

dz . (6.42)
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The finite crop capacity is reached at a time tf , such that

ρ(0, tf ) = ρmax. (6.43)

The time tf when this equality is fulfilled depends on γ and σ. A large γ or a small
σ will lead to fast food saturation near the source and vice versa.
In fact, for every time t, the food density near the source has to be less than or

equal to ρmax, so that

ρ(0, t) ≤ ρmax (6.44)

⇔ ρ̃(0, t̃) ≤ ρmax

sρ
=

ρmax

2fmax

√
D

γ
=

1

2L

√
D

γ
(6.45)

⇔ γ ≤ D(
2Lρ̃(0, t̃)

)2 , (6.46)

where the tildes denote dimensionless quantities again, sρ is taken from Eq. (6.30),
and the relation fmax = Lρmax (cf. Eq. (6.2)) was used.
By numerically evaluating Eq. (6.42), we find that the dimensionless food density

at the origin ρ̃(0, t̃) initially increases, reaches the maximum value of ρ̃(0, t̃) ≈ 0.31
and then decreases as the finite amount of food at the source diffuses to infinity.
Due to Eq. (6.46), every value of ρ̃(0, t̃) results in a different upper limit for γ.
Hence, if γ is constant throughout the process, the upper bound for γ is given
through the minimum value of 1/(ρ̃(0, t̃)2 in time, because D and L are constant
as well:

γ ≤ D(
2Lρ̃(0, t̃)

)2 . 10.4
D

(2L)2
∀t̃ . (6.47)

This is consistent with the food intake rate derived for the finite system with the food
source modeled as a boundary condition (Eq. (6.24)), because π2 ≈ 9.87 < 10.4.
The D/L2 dependency of γ is not surprising, as it could have been easily predicted

by considering the dimensionless groups that can be constructed with the equation
parameters γ, D and L. However, note that L is not an explicit length scale of the
semi-infinite system presented in this section, but enters Eq. (6.46) only through
the equation relating the total amount of food fmax and the food density capacity
ρmax (Eq. (6.2)). If Eq. (6.2) is not used, Eq. (6.46) can be re-expressed as

γ . 10.4
Dρ2

max

(2fmax)2
. (6.48)
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6.3 Comparison of simulations and analytic predictions

Thus, we have shown how the diffusion coefficient and the implicit system length
scale provide an upper bound for the global food intake rate.

6.3 Comparison of simulations and analytic predictions

The analytic prediction of the global food intake rate γ in the diffusive limit
(Eq. (6.25)) gives a characteristic time scale 1/γ of the system that can be used to
rescale the simulation results in a systematic way.
In this section, we show that this rescaling leads to an at least partial collapse on

a master curve of the simulation data for various parameters. The collapse is not
only observed for the 1D system, but for the 2D simulations as well, and consistently
shows in the average food concentration (Section 6.3.1), the mean squared food
distance (Section 6.3.2), and the food concentration variance (Section 6.3.3). Finally,
Section 6.3.4 shows how the simulated food intake time scale relates to the analytic
prediction of γ in the diffusive limit derived in this chapter and the γ prediction in
the mean-field limit (Eq. (5.12) in Section 5.3).

6.3.1 Average food concentration

In Fig. 6.4 we plot the simulated average food concentration 〈c(t)〉 for a range of
parameters in a 1D (panels (a) and (b)) and a 2D system (panels (c) and (d)). In
panel (a) and (c) we plot 〈c(t)〉 as a function of t/T (time nondimensionalized with
the refractory period), whereas in panel (b) and (d), we rescale the time to the
nondimensional rescaled time γt using

γ ∼ σr2

TL2
(6.49)

from Eq. (6.25).
We find a relatively good collapse of the data after an initial period where the

dynamics is dominated by direct source food intakes from agents in range of the
source. This indicates that despite the oversimplifications of the continuous analytic
diffusion approximation, the time scale

1

γ
=
TL2

σr2
(6.50)

captures the dynamics of the discrete agent-based simulation model.
Note that the 2D rescaled data curves collapse in terms of the food exchange

ratio σ, but separate in terms of the interaction range parameter λ. This indicates
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6 Diffusive Limit

Figure 6.4: Normalized average food concentration 〈c〉/cmax in a 1D (left column) and a 2D
system (right column): (a)/(c) as a function of time t/T and (b)/(d) as a function of
rescaled time γt, for various food exchange ratios σ and interaction range parameters
λ. After rescaling the time with Eq. (6.25), the curves collapse to a good degree. The
width of the shaded area around each line indicates the standard deviation.

a good predictive power of the linear σ dependency of the 1D scaling Eq. (6.25)
even in 2D systems, but less predictive power of the λ dependent r2/L2 part. Since
the latter was derived from the 1D geometry, a loss of predictive power going from
1D to 2D is to be expected and could possibly be improved through including the
more complicated geometric constraints of the 2D system.

6.3.2 Mean squared food distance

Analogue to Fig. 6.4, we plot the normalized mean squared food distance MSD(t) in
Fig. 6.5 for a range of parameters in a 1D (panels (a) and (b)) and a 2D (panels (c)
and (d)) system. Again, in panel (a) and (c) we plot the observable as a function of
t/T (time nondimensionalized with the refractory period), whereas in panel (b) and
(d), we rescale the time to the nondimensional rescaled time γt using Eq. (6.25).
The same collapse as described in Section 6.3.1 can be observed.
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6.3 Comparison of simulations and analytic predictions

Figure 6.5: Normalized mean squared food distance MSD in a 1D (left column) and a 2D system
(right column): (a)/(c) as a function of time t/T and (b)/(d) as a function of rescaled
time γt, for various food exchange ratios σ and interaction range parameters λ. After
rescaling the time with Eq. (6.25), the curves collapse on the same master curve. The
width of the shaded area around each line indicates the standard deviation.

6.3.3 Food concentration variance

Analogue to Figs. 6.4 and 6.5, we plot the simulated food concentration variance
〈c(t)2〉 in Fig. 6.6 for a range of parameters in a 1D (panels (a) and (b)) and a 2D
(panels (c) and (d)) system. Again, in panel (a) and (c) we plot the observable as
a function of t/T (time nondimensionalized with the refractory period), whereas
in panel (b) and (d), we rescale the time to the nondimensional rescaled time γt
using Eq. (6.25).
In contrast to the average food, we only find a good collapse of the data at the

later stages of the dynamics, starting just before 〈c(t)2〉 reaches its maximum. We
therefore shortly discuss the simulated variance dynamics in the rest of this section.
The food variance 〈∆c(t)2〉 is a proxy of how well the available food is distributed

among the ants in the colony, independent of their spatial position. After an
initial increase, the variance plateaus for some time, until it reaches a maximum
approximately at a time γt ≈ 0.2 (for 1D) or γt ≈ 1 (for 2D). This roughly matches
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6 Diffusive Limit

Figure 6.6: Normalized food variance 〈∆c(t)2〉/c2max in a 1D (left column) and a 2D system (right
column): (a)/(c) as a function of time t/T and (b)/(d) as a function of rescaled time
γt, for various food exchange ratios σ and interaction range parameters λ. After
rescaling the time with Eq. (6.25), the curves collapse on the same master curve at
the later stages of the dynamics. The variable shapes and plateau sizes of the initial
stages of the dynamics reflect the complicated spatial food distributions presented
in Figs. 6.1 and 6.2. The width of the shaded area around each line indicates the
standard deviation.

γt1/2, the rescaled time when the colony is half full. After that time, the variance
is monotonically decreasing, as the food is distributed better, due to the emerging
saturation of the colony.
At the beginning of the food dissemination process, the behavior of the variance

showcased in Fig. 6.6 reflects the food intake dynamics when there is no saturation
near the source. During the initial sharp increase of the small σ curves, the ants
inside the interaction radius of the source, initially all empty, quickly take up food
at a rate similar to the mean-field model prediction γλ=1 = 1/(NT ) (cf. Eq. (5.12)).
As σ is small, the rate at which the food diffuses away from that zone is slower than
the fast intake of food at the entrance. Consequently, 〈∆c(t)2〉 increases quickly,
and a growing proportion of the ants near the entrance reaches saturation. The
food intake rate of the area near the source then becomes approximately equal
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6.3 Comparison of simulations and analytic predictions

to the rate at which the food diffuses out of that zone, and the slope of 〈∆c(t)2〉
decreases. Eventually, when that area is close to saturation, it acts as an effective
boundary condition ρ(R, t) = ρmax, and the food diffuses to the rest of the nest as
a propagating front (as can be seen in Fig. 6.2 (a1)-(a3)). This clear separation of
the two time scales happens only for small σ. For large σ, the plateau disappears.
Since for relatively small σ the front between the ants that are at capacity (to

the left of the propagating front of Fig. 6.2) is relatively sharp, we can approximate
the normalized variance as 〈∆c(t)2〉/cmax2 ≈ n/N − (n/N)2, where n is the number
of ants at capacity (similarly to the approach of Section 5.2). This is maximized
when n = N/2, i.e. when the colony is half full, in agreement with the simulation
results of Figs. 6.4 and 6.6.

6.3.4 Global food intake time scale

The time t1/2 it takes the colony to acquire half of the available food provides a
reasonable time scale of the global food intake. We therefore plot this half-time in
Fig. 6.7 for a range of parameters in a 1D (panels (a) and (b)) and a 2D (panels
(c) and (d)) simulation system. Similarly to the previous sections, but now on the
y-axis, we plot the observable nondimensionalized with the refractory period in
panel (a) and (c), and rescaled with Eq. (6.25) in panel (b) and (d).
In panel (a) and (c), we see that the half-time decreases with increasing food

exchange ratio σ and interaction range parameter λ. Latter is a proxy of how well
mixed the colony is (or alternatively how broad the spatial fidelity zones of the ants
are), so less spatial separation leads to a faster global food intake. Additionally,
we see that the half-time t1/2 dependence on σ declines with increasing λ, as food
exchanges between ants become less important than feeding from the source. For
large interaction ranges, the half-time tends to t1/2/T = ln(2)/(γλ=1T ) ≈ 70, as
can be deduced from (5.8).
In panel (b) and (d), we can observe a collapse of the simulation data for small

interaction ranges. The half-time is approximately γt1/2 ≈ 0.2 for 1D and γt1/2 ≈ 1
for 2D.
The two analytically predicted food intake rates γ = (σr2)/(TL2) (Eq. (6.25))

and γλ=1 = 1/(NT ) have therefore proven to capture the global food intake time
scale in the respective limits of small (diffusive) and large (mean-field) interaction
ranges, independent of σ.
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Figure 6.7: (a)/(c) Nondimensional time t1/2/T and (b)/(d) rescaled nondimensional time γt1/2

until the average food in the colony reaches 0.5cmax as a function of the interaction
range parameter λ for different food exchange ratios σ in a 1D (left column) and a 2D
system (right column). The half-time decreases with increasing λ and σ. The σ and λ
dependence of t1/2 is at least roughly predicted by the scaling of Eq. (6.25) for a large
parameter range. For high λ, the σ dependence gradually disappears, and Eq. (6.25)
fails to explain the behavior. In that limit, the relevant time scale is predicted by
Eq. (5.12).
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7 Master Equation Description

This last chapter of Part II contains yet another analytic approach to describe
trophallaxis dynamics: a probabilistic master equation description. The strength
this approach will show is a time resolved prediction of the observables, even
for parameter sets beyond the scope of the mean-field and diffusive limit cases.
This is particularly useful for intermediate interaction ranges that are too small
for a mean-field approximation and too large for a diffusion approximation. The
downside of the master equation description is its analytic complexity that only
allows numeric solutions of the full dynamics description, even without explicit
motion.
All the equations presented in this chapter make use of the continuum variables

introduced in Section 6.1.2 and approximate the system to a one-dimensional
interval of length L, similar to the diffusion approximation (cf. Section 6.1). The
agent-based food concentrations at discrete positions in space used in the simulation
model are therefore replaced by spatial food densities, to enable a description that
is continuous in food, space and time. We start with the derivation of a basic
differential equation that describes the time evolution of the food density as a
function of space and time in the absence of carrying capacities and food sources
in Section 7.1 In Section 7.2, we then proceed with extending the basic equation to
also include capacity limits on the food density and a source term that correctly
describes the flow of food into the colony. Numerical solutions of this complete
analytic description are then compared to our simulation results in Section 7.3.

7.1 Basic equation without carrying capacitiy and source

term

In this section, we present the first step towards a master equation description of
our agent-based trophallaxis simulation. It is a first step, because the food carrying
capacities are not included, and the food flow into the nest is not yet modeled as a
source term. A simple food inflow could be incorporated as a boundary condition
of this basic master equation, although we do not show this here. The purpose of
the equation derived in this section is to lay ground for the full equation that we
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develop in Section 7.2. Due to its simplifications, the basic equation of this section
is however still solvable analytically, in contrast to the full equation. We give a
formal solution, after introducing the basic master equation description.

7.1.1 Governing equation

In the continuum limit, the spatial food density dynamics ρ(x, t) can be approx-
imated by the following phenomenological partial integro-differential equation
(without taking carrying capacities into account):

∂ρ(x, t)

∂t
= − σ

T
ρ(x, t)︸ ︷︷ ︸

food outflow

+
σ

T

∫ L

0

dx′Kx′→xρ(x′, t)︸ ︷︷ ︸
food inflow

, (7.1)

where σρ(x, t) is the expected food density fraction flowing away from the position x
per time interval T ; L is the length of the 1D system; and Kx′→x is a kernel function,
describing the food density fraction measured in units of σρ(x′, t)/T flowing from
the position x′ to the position x per interaction range and time interval T . The unit
of Kx′→x is inverse length. Equation (7.1) is derived by taking the limits T → 0
and σ → 0, while keeping σρ(x, t)/T fixed.
Although we omit a formal derivation, Eq. (7.1) can be interpreted as a master

equation when normalized with the maximum food density. The spatial positions
x ∈ [0, L] then represent a continuum of system states and the normalized food
densities ρ(x, t)/ρmax become probabilities describing the occupation of these states.
The transition rates between the states are then defined by the kernel Kx′→x.
Whenever we name our equations for the food density time evolution ‘master
equation’, we implicitly refer to this interpretation.
In contrast to the mean-field model, we can now define the spatial kernel function

Kx′→x to limit the interaction range of the food exchanges (or food density flows,
in continuous terms). We will therefore refer to it as the ‘interaction kernel’.
In order to derive Kx′→x, we start of by imagining the system to be the infinite

real line. The interaction kernel would then be

K
[−∞,∞]
x′→x =

 1
2R

if |x− x′| < R

0 otherwise
(7.2)

=
Θ(x− x′ +R)Θ(x′ +R− x)

2R
, (7.3)

where R is the interaction range and Θ(x) is the Heaviside step function. Similarly,
if the system would be a half-infinite line with a boundary at x = 0, the kernel
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would be

K
[0,∞]
x′→x =


1

x′+R
if 0 < x′ < R and |x− x′| < R

1
2R

if R < x′ and |x− x′| < R

0 otherwise

(7.4)

= Θ(R− x′)Θ(x′)
Θ(x)Θ(x′ +R− x)

x′ +R︸ ︷︷ ︸
within left boundary range

+ Θ(x′ −R)K
[−∞,∞]
x′→x︸ ︷︷ ︸

out of boundary range

. (7.5)

The left boundary term comes from the fact that ants close to the boundary have
fewer other ants to choose from, when they want to transfer food. For the real model
system, a two-sided bounded interval of length L is needed. That adds another
term for the right boundary, analogue to the left boundary term in Eq. (7.5):

Kx′→x =



1
x′+R

if 0 < x′ < R and |x− x′| < R

1
2R

if R < x′ < (L−R) and |x− x′| < R

1
L+R−x′ if (L−R) < x′ < L and |x− x′| < R

0 otherwise

(7.6)

= Θ(R− x′)Θ(x′)
Θ(x)Θ(x′ +R− x)

x′ +R︸ ︷︷ ︸
within left boundary range

(7.7)

+ Θ(x′ −R)Θ(L−R− x′)K [−∞,∞]
x′→x︸ ︷︷ ︸

out of boundary range

(7.8)

+ Θ(x′ − L+R)Θ(L− x′)Θ(x− x′ +R)Θ(L− x)

L+R− x′︸ ︷︷ ︸
within right boundary range

(7.9)

=
Θ(R− x′)Θ(x′)Θ(x)Θ(x′ +R− x)

x′ +R
(7.10)

+
Θ(x′ −R)Θ(L−R− x′)Θ(x− x′ +R)Θ(x′ +R− x)

2R
(7.11)

+
Θ(x′ − L+R)Θ(L− x′)Θ(x− x′ +R)Θ(L− x)

L+R− x′ . (7.12)

This Kernel is only valid for R ≤ L/2. In the following, only Kx′→x will be used.
It effectively splits the food inflow integral of Eq. (7.1) into three consecutive

integrals over the intervals [0, R], [R, (L−R)], and [(L−R), L], weighted with the
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respective interaction ranges x′ +R, 2R and L+R− x′.

7.1.2 Formal analytic solution

The presented basic master equation (Eq. (7.1)) is a partial integro-differential
equation. In order to solve the equation, it can be simplified by transforming it
into a system of coupled ordinary differential equations. This is achieved through
discretizing it in space, so that

ρ(x, t) → ρ(xi, t) =: ρi(t) and (7.13)

Kx′→x → Kxj→xi =: Kij , (7.14)

with xi = i∆x ∀i ∈ [0, n− 1], where ∆x is chosen, such that L = n∆x.
Equation (7.1) then becomes

dρi(t)

dt
= −σ

T
ρi(t) +

σ

T

n−1∑
j=0

Kijρj(t)∆x (7.15)

=
σ

T

n−1∑
j=0

[
−δij +Kij∆x

]︸ ︷︷ ︸
=:mij

ρj(t) , (7.16)

which can be rewritten in vector notation, abbreviating the operator matrix of
elements mij with M := (mij)i=0,...,n−1; j=0,...,n−1:

d~ρ(t)

dt
=
σ

T
M~ρ(t) . (7.17)

This system of coupled ordinary differential equations is linear and can be solved
by an exponential ansatz. The solution reads

~ρ(t) = exp

(
σ

T
M

)
~ρ(0) . (7.18)

7.2 Full equation with carrying capacitiy and source term

The basic master equation description presented in Section 7.1 does not include
finite carrying capacities and has no expression for the food source. In this section,
we present an enhanced version of Eq. (7.1) that provides a full description of the
system modeled in our simulations. We derive this full master equation in two
steps: first, adding the carrying capacity; and second, adding the source term.
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7.2.1 Carrying capacitiy

The finite carrying capacity of the ants can be described through limiting the local
food density ρ(x, t) ≤ ρmax in the continuum description of the master equation.
We achieve this through replacing the expected food density fraction σρ(x, t) that
is transferred during trophallaxis with a second integration kernel

∆ρx′→x(t) :=

σρ(x′, t) if ρ(x, t) + σρ(x′, t) ≤ ρmax

ρmax − ρ(x, t) otherwise
(7.19)

= Θ
(
ρmax − σρ(x′, t)− ρ(x, t)

)
σρ(x′, t) (7.20)

+ Θ
(
σρ(x′, t) + ρ(x, t)− ρmax

)
Θ
(
ρmax − ρ(x, t)

) (
ρmax − ρ(x, t)

)
,

(7.21)

that will be called ’food exchange kernel’. It gives the density of food transferred
from position x′ to position x, as a function of the respective local food densities
and is nothing but the continuous version of the food exchange rule Eq. (4.7) in
the simulation model (Section 4.1) that has already been used for the diffusion
approximation in Section 6.1 (Eq. (6.6)). Note that, in contrast to the interaction
kernel, ∆ρx′→x(t) is not only space but also time dependent, because the local food
density ρ(x, t) changes over time. Its unit is amount of food per length.
Consequently, integrating x′ over both kernels (the interaction kernel Kx′→x and

the food exchange kernel ∆ρx′→x(t)) averages the food density exchanges at a given
time t over the interaction range from a given point x in space. Depending on the
order of arguments, ∫ L

0

dx′Kx′→x∆ρx′→x(t) (7.22)

gives the average food density change due to food received at position x and time
t, and ∫ L

0

dx′Kx→x′∆ρx→x′(t) (7.23)

gives the average food density change due to food given away from position x at
time t.
Combining the two integrals, the basic master equation (Eq. (7.1)) can be
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rewritten to include the food capacity as:

∂ρ(x, t)

∂t
=

1

T

∫ L

0

dx′Kx′→x∆ρx′→x(t)︸ ︷︷ ︸
food inflow

− 1

T

∫ L

0

dx′Kx→x′∆ρx→x′(t)︸ ︷︷ ︸
food outflow

(7.24)

=
1

T

∫ L

0

dx′
[
Kx′→x∆ρx′→x(t)−Kx→x′∆ρx→x′(t)

]
. (7.25)

7.2.2 Source term

The finite range food source in the simulation model (cf. Section 4.1.2) cannot be
incorporated into the master equation as a simple boundary condition. Therefore,
the following source term describes the rate of change of the food density within
range R of the source at xsource = 0 (that is |x− xsource| ≤ R ⇔ x ≤ R) only due
to picking up food from the entrance:

p
(
ρ(x, t), x

) 1

T

(
ρmax − ρ(x, t)

)
, (7.26)

where p(ρ(x, t), x) is the probability of receiving food from the source at position x
and time t, as a function of the local food density ρ(x, t); and (ρmax − ρ(x, t))/T is
the amount of food per time and length, picked up from the source.
The probability p(ρ(x, t), x) reflects the way food is brought into the system by

the source in the simulation model: Every time interval T only one of the ants
that are within range of the source, and neither full nor refractory, is selected to
receive (cmax − c(xi, t)). The spatially limited scope of the source can once again
be described with Heaviside step functions, as

Θ(R− x)Θ(x) , (7.27)

and the space continuous version of the selection rate of ants below carrying capacity
can effectively be described with the term

1

N R
L

(ρmax − ρ(x, t))

ρmax

, (7.28)

where N is the total number of ants and L the 1D system length. It is composed of
the probability 1/(NR/L) to select one of the NR/L ants on average within range
of the source; and the correction term (ρmax − ρ(x, t))/ρmax, which continuously
approximates the probability of selecting an ant below carrying capacity at position
x and time t to be proportional to the free local capacity (ρmax − ρ(x, t)).
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Combining Eqs. (7.27) and (7.28), the probability p(ρ(x, t), x) of receiving food
from the source at position x and time t (cf. Eq. (7.26)) reads

p
(
ρ(x, t), x

)
:=

Θ(R− x)Θ(x)
(
ρmax − ρ(x, t)

)
N R

L
ρmax

(7.29)

and the source term (Eq. (7.26)) becomes

Θ(R− x)Θ(x)
(
ρmax − ρ(x, t)

)2

N R
L
ρmaxT

. (7.30)

Note that since both p(ρ(x, t), x) and the amount of food (ρmax− ρ(x, t))/T picked
up from the source per time and length are linear in ρ(x, t), the source term is
nonlinear in ρ(x, t).

7.2.3 Governing equation

Having derived the food exchange kernel to model the effect of the carrying capacity
(Eq. (7.25)) and the source term correctly describing the simulated dynamics
(Eq. (7.30)), we can now combine everything to arrive at a full master equation
description:

∂ρ(x, t)

∂t
=

1

T

∫ L

0

dx′
[
Kx′→x∆ρx′→x(t)−Kx→x′∆ρx→x′(t)

]
(7.31)

+
Θ(R− x)Θ(x)

(
ρmax − ρ(x, t)

)2

N R
L
ρmaxT

, (7.32)

with the interaction kernel

Kx′→x :=
Θ(R− x′)Θ(x′)Θ(x)Θ(x′ +R− x)

x′ +R
(7.33)

+
Θ(x′ −R)Θ(L−R− x′)Θ(x− x′ +R)Θ(x′ +R− x)

2R
(7.34)

+
Θ(x′ − L+R)Θ(L− x′)Θ(x− x′ +R)Θ(L− x)

L+R− x′ (7.35)
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and the food exchange kernel

∆ρx′→x(t) := Θ
(
ρmax − σρ(x′, t)− ρ(x, t)

)
σρ(x′, t) (7.36)

+ Θ
(
σρ(x′, t) + ρ(x, t)− ρmax

)
Θ
(
ρmax − ρ(x, t)

) (
ρmax − ρ(x, t)

)
.

(7.37)

Unfortunately, Eq. (7.31) cannot be solved analytically. It can however be solved
numerically after discretizing it in time and space.

7.3 Comparison of simulations and analytic predictions

Neither the mean-field model (Chapter 5), nor the diffusion approximation (Chap-
ter 6) provided analytical predictions that were able to give a time resolved
description of the simulation dynamics for intermediate interaction ranges. This
section shows that a numerical solution of the presented master equation can do
this at least to some extent.

7.3.1 Total food

Figure 7.1 compares the total amount of food inside the system from the numerical
solution of the full master equation (Eq. (7.31)) with that from the simulation
result in a 1D setup with a food exchange ratio of σ = 0.05 and an interaction range
parameter of λ = 0.2. Apart from slight deviations at early times, the agreement is
very good. It is important to note here that the chosen parameters are well outside
the mean-field limit and the mean-field model could hence not predict this data.
Figure 7.1 can therefore serve as an example of the predictive power of Eq. (7.31)
for any interaction radius up to half the system length (λ ≤ 0.5).

7.3.2 Mean squared food distance

The dimensionless mean squared food distance MSD(t) measures the spatial spread-
ing of food from the source through the system. It is shown in Fig. 7.2, again
comparing the numerical solution of the full master equation (Eq. (7.31)) with the
simulation result in a 1D setup with a food exchange ratio of σ = 0.05 and an
interaction range parameter of λ = 0.2. The agreement is not as good as for the
total food (Fig. 7.1), but at least qualitative agreement is achieved. The remaining
deviations between simulation and the master equation prediction cannot be related
to the source term, because the total amount of food in the system (and hence the
flow into the system) is predicted well by the master equation (cf. Fig. 7.1). Instead,
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7.3 Comparison of simulations and analytic predictions

the mismatch has to stem from the approximations in the kernels Eqs. (7.33)
and (7.36).

Figure 7.1: Total amount of food F (t) (measured in units of fmax)) versus time (in units of T ) for
σ = 0.05 and λ = 0.2 (cf. Section 6.1.2). Blue line: numerical solution of Eq. (7.31),
red errorbars: mean and standard deviation of 10 simulations.

Figure 7.2: Mean squared food distance MSD(t) versus time (in units of T ) for σ = 0.05 and
λ = 0.2. Blue line: numerical solution of Eq. (7.31), red errorbars: mean and standard
deviation of 10 simulations.
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8 Discrete Space Simulation Results

Before we present our main simulation results of trophallaxis with explicit motion,
we show some preliminary insights in this chapter, that are obtained from a
simplified simulation model.
As a simple primary stage of our full trophallaxis simulation model (cf. Chapter 4),

this simplified version uses a discrete finite 2D grid to represent the agents’ positions
in the tradition of cellular automata. The agents’ motion is further simplified to a
random walk on this finite 2D grid. At every iteration step, every agent moves to
one of the adjacent two to four grid sites with equal probability. Arbitrarily many
agents can occupy the same grid site. Trophallactic interactions are only allowed
for ants that meet on the same grid site last T steps, in which the food exchanging
agents stay at their shared grid site. The same holds for food intakes from the
source, which is just one of the grid sites at the middle of one grid boundary.
Everything else remains as described in Chapter 4. Apart from the benefit of being
simple, the main advantage of the discrete space simulation model is its reduced
computational cost, that allows to obtain proof of concept results fast.
Using this toy model, we give a proof of concept comparison between the model

and experimental data (Section 8.1), and demonstrate a simple effect of the food
exchange ratio σ on the distribution of food among individual ants (Section 8.2).

8.1 Comparison of simulations and experimental work

In this section, we present a qualitative sanity check of our trophallaxis simula-
tion model foundations. We compare our discrete space simulation results with
experimental data from [84], using the following three simple observables:

• spatial diffusivity of ants, measured from the mean squared displacements of
wall collision free paths

• average interaction rate, measured as the mean number of food exchanges in
the whole colony per time interval

• average interaction duration, measured as the mean over all food exchanges

89



8 Discrete Space Simulation Results

In order to scale the dimensionless simulation results to match the experimental
setup, we chose the distance between two grid points to equal ∆x = 0.7 cm
(the average length of one ant [84]), the time between two iteration steps to equal
∆t = 0.4 sec, and the number of refractory iteration steps during a food exchange to
equal T/∆t = 100. In combination with choosing N = 100 ants and (L/∆x)2 = 121
grid sites, we achieved at least an order of magnitude agreement between simulation
and experiment across all three observables (Table 8.1).

observable experiment simulation

spatial diffusivity of ants [cm2/sec] 0.25± 0.10 0.21± 0.04
average interaction rate [1/min] 3± 2 10± 10
average interaction duration [sec] 35± 25 40

Table 8.1: Comparison of discrete simulation and experiments.

This shows, that the basic microscopic spatio-temporal dynamics of our trophal-
laxis model approach qualitatively agrees with real ant colonies, even under these
gross simplifications. The food dynamics however were not compared here (see
Section 5.1 for more on this).

8.2 Distribution of food among individual ants

In the results presented so far, we mainly focused on global and spatial food
distribution observables. In this section, we instead look at the distribution P (c(t))
of food among individual ants.
When the simulated ant colony is presented with only fmax/2 food at the source

(half of the usual fmax = Ncmax amount of food, enough to fill everyone of the N ants
up to the carrying capacity cmax), the question arises how our simple trophallaxis
model distributes this limited food among the ants. Figure 8.1 shows, that the
answer to this question depend on the microscopic amounts of food exchanged, the
food exchange ratio σ.
We find, that when the ants try to exchange larger amounts of food (σ = 0.9 as

compared to σ = 0.1), the food is distributed less equally among the ants. This
can be explained through the finite crop capacities. When σ is large, ants are
more likely to be either almost full or almost empty, because once they gathered
food for the first time, they always either just received an amount of food close
to cmax or just gave away an amount of food close to cmax. For small σ values
however, ants can accumulate food over a series of food receptions or progress
towards intermediate food concentrations through a series of food donations.
As this result only depends on the food exchange rules, identical to our space

90



8.2 Distribution of food among individual ants

(a)

(b)

Figure 8.1: Distribution of food among individual ants for (a) a food exchange ratio σ = 0.1 and
(b) a food exchange ratio σ = 0.9. The left panels show the regular histogram of
how many ants carry how much food and the right panels show the corresponding
cumulative histograms. Mean, standard deviation, and median are given for the final
distribution (brown color). The time evolutions are color coded and time indices given
in dimensionless iteration step counts.
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8 Discrete Space Simulation Results

continuous simulation model (cf. Section 4.1.3), it can be expected to hold for the
continuous model as well. In fact, Fig. D.7 (obtained with the continuous space
simulation) shows similar distribution shapes at intermediate times.
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9 Continuous Space Simulation Results

This chapter constitutes the core of Part III and contains the main findings of our
full trophallaxis simulations with explicit, space continuous ant motion.
We aim to qualitatively answer some question on how fundamental properties of

an ant colony influence their self-organized food distribution in this chapter. This
influence is mainly monitored by the global food intake time scale, measured with
the already introduced half-time (cf. Section 4.4). The fundamental properties we
consider specifically are the ants’ velocity, their trophallaxis interaction radius, the
amounts of food exchanged, the duration of food exchanges, and the nest size. As
we will show, these properties influence the global dynamics through an interplay
that is at least in parts surprisingly complex.
We group our results in two sections, describing the interplay between the

dimensionless simulation parameter groups introduced in Section 4.2. Section 9.1
contains the interplay between the ant velocity parameter and the interaction range
parameter and Section 9.2 the interplay between the ant velocity parameter and
the food exchange ratio.
Afterwards, we present an extended version of the simulation model introduced

in Section 4.1 and compare it to the original version (Section 9.3). The aim of
these extensions is to provide a less artificial model, including various random
heterogeneities, like agents with different carrying capacities and randomized
amounts of exchanged food.

9.1 Ant velocity and interaction range interplay

A question of interest is whether slow ants with large interaction ranges exhibit
the same food distribution dynamics as fast ants with small interaction ranges. In
this section, we try to answer questions of this kind that arise from the interplay of
the ants’ velocity, their interaction radius, the duration of food exchanges, and the
system size.
We first show the existence of a smooth transition from diffusive to mean-field

dynamics going either from slow to fast ant motion or from local to system-wide
interaction ranges (Section 9.1.1). We then proceed with presenting qualitative em-
pirical scaling relations for some regimes of this transition (Sections 9.1.2 and 9.1.3).
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9 Continuous Space Simulation Results

Finally, Section 9.1.4 shows a peculiarity in the dynamics’ dependency on the ant
velocity parameter that arises only for very small velocities.

9.1.1 Transition between diffusive and mean-field dynamics

In Chapters 5 and 6, we have already explored the influence of the interaction range
parameter on the global food intake time scale for ants without explicit motion
(cf. Sections 5.3.2 and 6.3.4 in particular). In this section, we investigate what the
explicit motion of ants adds to this.
Figures 9.1 and 9.2 show that the global food intake time scale (again measured

with the half-time) not only decreases with the interaction range parameter λ
(cf. Fig. 6.7), but also with the ant velocity parameter ν.1

Figure 9.1: Mean (left panel) and standard deviation (right panel) of the half-time t1/2/T (time
until the colony is half full) as a function of the ant velocity parameter ν and the
interaction range parameter λ, in units of the refractory period T . The food exchange
ratio is fixed to σ = 0.05. Mean and standard deviation are calculated as an ensemble
average over 100 independent simulation runs. The gray areas in the bottom left
corner of both panels represent parameter values, for which no data was simulated. A
closeup of this figure can be found in the appendix (Fig. D.1). See Fig. 9.2 for a line
scan version of this figure.

There is in fact a smooth transition along both nondimensional parameter axes
going from the slow, diffusive limit where both λ → 0 and ν → 0 to the fast,
mean-field limit where either λ → 1 or ν → 1. Note that λ = R/L → 0 is
achieved through a small interaction radius R compared to the system size L,
and λ = R/L→ 1 is fulfilled when the interaction radius reaches the system size
1The data shown in Figs. 9.1 and 9.2 was obtained for a relatively small food exchange ratio of σ = 0.05. This
choice allows for broad range of relevant λ and ν values, as larger σ values further decrease the half-time
(cf. Fig. 6.7). The influence of σ on the half-time will be studied in detail in Section 9.2.
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9.1 Ant velocity and interaction range interplay

(a)

(b)

Figure 9.2: Half-time t1/2 in units of the refractory period T (a) as a function of the ant velocity
parameter ν, varying the interaction range parameter λ; and (b) as a function of
the interaction range parameter λ, varying the ant velocity parameter ν. The food
exchange ratio is fixed to σ = 0.05 in both panels. See Fig. 9.1 for a heat map version
of this figure.
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(R ≈ L). Likewise, ν = (vT )/R → 0 is achieved through a small distance vT
traveled with velocity v during the refractory period T compared to the interaction
radius R.
If an ant colony were to distribute the food from a source as fast as possible, the

optimal intake time scale would be reached at t1/2/T = ln(2)/(γλ=1T ) ≈ 70 in our
simulation, as predicted by the mean-field model (cf. Chapter 5 and Eq. (5.8)).
This fastest time scale arises from the limited food flow rate into the nest, due to
ants picking up food from the source one at a time. Once the colony distributes
the food fast enough within the nest to match this inflow rate, it cannot improve
further. Figure 9.1 shows that this optimal global time scale can similarly be
reached through the ants moving faster or finding their food exchange partners
at longer distances, which answers the question posed above. It also shows that
even very small increments of ν away from the diffusive limit allow for reaching
fast food intake dynamics when increasing λ much faster, and vice versa.
We proceed with exploring the presented transition between diffusive and mean-

field dynamics quantitatively through giving empirical scaling laws of how the
half-time decreases with ν (Section 9.1.2) and λ (Section 9.1.3).

9.1.2 Ant velocity scaling relation

Figure 9.2 showed the half-time t1/2 decays with the ant velocity parameter ν. In
fact, the linear regimes in the double logarithmic plot indicate that t1/2 follows a
power law scaling of the form

t1/2
T
∼ νa (9.1)

for a large regime of ν values. The scaling exponent a can in principle depend on
the food exchange ratio σ and the interaction range parameter λ. Figure 9.3 shows
linear regressions of ln(t1/2/T ) as a function of ln ν for a range of σ values and a
fixed demonstrative value λ = 0.13 of the interaction range parameter. We chose
λ = 0.13 as an example to allow for a wide range of ν values before reaching the
mean-field limit. At the same time, λ = 0.13 is large enough to prevent single ants
from getting isolated easily at very small (or even zero) velocities for the standard
number of N = 100 ants.2 Similar qualitative scalings can be derived for other λ
values, not shown here.
Except for σ = 1, all fits gave similar values for the scaling exponent of Eq. (9.1).

2This potential isolation is related to a percolation phenomenon that will be discussed more in Section 9.1.4.
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Figure 9.3: (a) Logarithmic half-time ln(t1/2/T ) in units of the refractory period T as a function
of the logarithmic ant velocity parameter ln(ν), varying the food exchange ratio σ.
Lines represent linear regressions ln(t1/2/T ) = a ln(ν) + b for each σ value. Their
slopes a are given in panel (b). (b) Fitted scaling exponents a as a function of the
food exchange ratio σ. The interaction range parameter is fixed to λ = 0.13.
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An average over all σ < 1 fits gives the scaling

t1/2
T
∼ ν−0.69±0.02 (9.2)

in the selected regime σ ∈ [0.2, 0.9] and λ = 0.13.
When the food exchange ratio is maximal (σ = 1), the simulation model effectively

describes a behavior that differs from the regular behavior when σ < 1. The reason
behind this is that all food exchanges are modeled to always take the same time
T , irrespective of the amount of food exchanged (cf. Section 4.1.3). Therefore, if
σ < 1, a large portion of the colony can be refractory although only small amounts
of food are transferred. If σ = 1, the ant agents always exchange all of their crop
content and are thus always either completely full or empty (cf. Section 5.2). As a
consequence, food can be distributed faster, because all refractory agents contribute
with transferring large amounts. This explains, why Eq. (9.2) does not hold for
σ = 1. Instead, Fig. 9.3 suggests

t1/2
T
∼ ν−0.45±0.07 (9.3)

for σ = 1 and λ = 0.13.

9.1.3 Interaction range scaling relation

The same approach for obtaining an empirical scaling relation of the transition
between diffusive and mean-field dynamics we used for the ant velocity parameter in
the previous section can be applied to the interaction range parameter. Figures 9.2
and 9.4 show similar, although shorter, linear regimes in the double logarithmic
plot of the half-time t1/2/T as a function of the interaction range parameter λ.
Since the functional dependency of t1/2 depends on the ant velocity parameter ν
this time, we chose an exemplary value of ν = 0.1 here. This value is again small
enough to allow for a range of λ values before reaching the mean-field limit, and is
also large enough to show no strong dependency of the food exchange ratio σ (as
will be explored further in Section 9.2). Also here, similar scaling relations can be
obtained for other ν values.
For λ ∈ [0.05, 0.25] and ν = 0.1,

t1/2
T
∼ λ−2.41±0.03 (9.4)

gives the average scaling for all σ values (including σ = 1). As Fig. 9.4 shows, there
is a trend to smaller λ scaling exponents with increasing σ. Here, we are however
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Figure 9.4: (a) Logarithmic half-time ln(t1/2/T ) in units of the refractory period T as a function
of the logarithmic interaction range parameter ln(λ), varying the food exchange ratio
σ. Lines represent linear regressions ln(t1/2/T ) = a ln(λ) + b for each σ value in the
linear regime λ ∈ [0.05, 0.25]. Their slopes a are given in panel (b). (b) Fitted scaling
exponents a as a function of the food exchange ratio σ. The ant velocity parameter is
fixed to ν = 0.1.
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only concerned with qualitative relations and refer to Fig. 9.4 for a more detailed
view. For interaction ranges λ > 0.25, the global food intake is already limited by
the maximum intake rate of the mean-field limit and the half-time does thus not
decrease further (cf. Section 9.1.1).

9.1.4 Slow motion limit case

At very low velocities and small interaction ranges, the global food intake time
scale t1/2 showed a rapid growth both in its ensemble mean and standard deviation
(Fig. 9.1). In addition, the scaling relations Eqs. (9.2) and (9.4) extrapolate to

lim
ν→0

t1/2
T
→∞ (9.5)

for finite λ. This contradicts the finite half-time observed in Fig. 6.7. We therefore
take a brief look at the dynamics of the system for ν < 0.1 in this section.
Figure 9.5 shows the half-time in this slow motion limit for a system of N = 500

ants with an interaction range parameter λ = 0.13. Clearly, t1/2 does not diverge
for ν → 0. It does however show a maximum at a finite ant velocity parameter
value 0 < ν∗ < 0.1 for both small and large food exchange ratios, and not as
intuitively expected at ν = 0.
Figure D.3 in the appendix shows that the standard system of N = 100 ants

qualitatively behaves similar, only the systematic fluctuations are too high to
observe a statistically significant maximum. The reason behind this is that due the
way the food source is modeled by our simulation model, decreasing the number
of ants effectively increases the food flow rate into the system compared to the
distribution rate within the nest (cf. Section 4.1). This is simply, because only one
ant feeds of the source per refractory period, whereas every food carrying ant can
potentially feed another ant in this time.3

A maximum of t1/2 at ν∗ > 0 inevitably also leaves a region where moving ants
take up food slower then stationary ants (t1/2(ν) > t1/2(ν = 0.0)). A possible
explanation for this counter-intuitive effect can be found in percolation effects. All
the simulations presented in Figs. 9.5 and D.3 were simulated with λ = 0.13, the
interaction range value that merely ensures that food can percolate from the source
to every ant for N = 100 almost all the time, even when they are not moving.
Only the simulations with stationary ants (ν = 0) are initialized in a way that
guarantees connectedness for the ants’ random initial positions. For ν > 0, the
random initial positions are not checked for this percolation condition, because
3Note that this is also reflected in the two analytic predictions for the food intake rates γλ=1 = 1/(NT ) (Eq. (5.12))
and γ = (σr2)/(TL2) (Eq. (6.25)). The source dominated γλ=1 scales with the number of ants N , whereas γ
derived in the not source dominated diffusive limit does not.
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(a)

(b)

Figure 9.5: Half-time t1/2 in units of the refractory period T as a function of the ant velocity
parameter ν with a food exchange ratio of (a) σ = 0.1 and (b) σ = 0.9. The interaction
range parameter is fixed to λ = 0.13 and the number of ants changed to N = 500.

their positions changes in the course of the simulation. As a consequence, there can
be random initial position setups with isolated clusters of ants, i.e. ants without a
connection to the source through other ants. For high velocities (ν & 0.1), the ants
are moving - and thus mixing - fast enough to effectively ensure food percolation
from the source to every ant. For low velocities (ν . 0.1) however, an initially
unconnected position setup could take a significantly long time to connect every
ant with the source or another food carrying ant. Subgroups of ants not connected
to other ants and unable to receive food for a long time can arise and thus explain
the delay in the half-time.

9.2 Ant velocity and food exchange ratio interplay

In this section, we first show how the transition between diffusive and mean-field
dynamics caused by changing the ant velocity parameter influences the dependency
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9 Continuous Space Simulation Results

of the global food intake times scale on the food exchange ratio (Section 9.2.1). In
particular, we find a strong dependency on the food exchange ratio in the diffusive
limit that gradually disappears, when going from slow to fast ant motion. We then
proceed with presenting a qualitative scaling relation for the food exchange ratio
dependency in the diffusive limit (Section 9.2.2). Finally, Section 9.2.3 shows a
small parameter regime with an inverted dependency on the food exchange ratio.

9.2.1 Transition between diffusive and mean-field dynamics

In the diffusive limit, that is small interaction range parameter λ and low ant
velocity parameter ν, the global food intake time scale depends on the food exchange
ratio σ. Section 6.3 showed that for static ants (ν = 0) with small λ, the half-time
t1/2 decreases with σ. This is intuitively clear, because exchanging more food per
refractory period allows the colony to distribute the food faster. In fact, for small λ,
exchanging more food is the only way to decrease t1/2, if the ants are not moving.
When the ants are moving, this changes. Food now also spreads better, the faster

the ants move (cf. Section 9.1). In fact, Fig. 9.6 shows there is a smooth transition
from σ dependent diffusive dynamics to σ independent mean-field dynamics, going
from ν = 0 to ν = 1, again for λ = 0.13 (cf. Section 9.1.2).

Figure 9.6: Mean (left panel) and standard deviation (right panel) of the half-time t1/2/T (time
until the colony is half full) as a function of the ant velocity parameter ν and the
food exchange ratio σ, in units of the refractory period T . The interaction range
parameter is fixed to λ = 0.13. Mean and standard deviation are calculated as an
ensemble average over 100 independent simulation runs.

That indicates that the increasing spatial mixing of ants renders the exchange of
large food amounts unnecessary, when the ants are moving. Figures 9.7 and 9.8
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9.2 Ant velocity and food exchange ratio interplay

show exemplary line scans of Fig. 9.6 for ν = 0; 0.1; 0.3; and 1, not only for λ = 0.13,
but for larger interaction ranges as well.

(a)

(b)

Figure 9.7: Half-time t1/2 in units of the refractory period T as a function of the food exchange
ratio σ, varying the interaction range parameter λ, with an ant velocity parameter of
(a) ν = 0 (no motion) and (b) ν = 0.1 (slow motion).
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(a)

(b)

Figure 9.8: Half-time t1/2 in units of the refractory period T as a function of the food exchange
ratio σ, varying the interaction range parameter λ, with an ant velocity parameter of
(a) ν = 0.3 (medium fast motion) and (b) ν = 0.1 (fast motion).
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When the ants are not moving (ν = 0), we can observe smaller t1/2 values and
thus faster food uptake with increasing σ for almost the whole range of meaningful λ
values. Only for very large λ values, close to the mean-field limit, no σ dependency
can be observed anymore, because the food saturation dynamics of the colony is
dominated by the fast uptake of food from the source. Note that t1/2 decreases up
to two orders of magnitude from small to large σ.
This decay of t1/2 with σ vanishes slowly, when the ants start moving. For ν = 0.1

there is still some dependency on σ for intermediate interaction ranges. For faster
ants (ν & 0.3), t1/2 does not depend on σ anymore. In fact, there is even a weak
tendency towards longer half-times with increasing σ, at least for small λ values.
We will examine this regime further in Section 9.2.3.
Concluding the insights of this section, Fig. 9.9 presents a combined plot of

Figs. 9.6 to 9.8.

Figure 9.9: Relative half-time change ∆t1/2(σ1, σ2)/t1/2(σ1) between low (σ1 = 0.01) and high
(σ2 = 0.9) food exchange ratio σ as a function of the ant velocity parameter ν, varying
the interaction range parameter λ.

It shows

∆t1/2(σ1, σ2)

t1/2(σ1)
=
t1/2(σ2)− t1/2(σ1)

t1/2(σ1)
, (9.6)

the relative change of the half-time between two food exchange ratios σ1 and σ2,
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varying both ν and λ. Using σ1 = 0.01 and σ2 = 0.9, this allows for a concise
overview of the discussed interplay between the ant velocity parameter and the
food exchange ratio. A negative value of ∆t1/2(σ1, σ2)/t1/2(σ1) (as can be observed
for static and slow ants) indicates a decrease of t1/2 with σ, whereas a positive value
(as observed for ν = 0.3 with small λ) indicates an increase of t1/2 with σ. A value
close to zero (as observed for fast ants) finally proves no significant σ dependency.

9.2.2 Food exchange ratio scaling relation

Similarly to Sections 9.1.2 and 9.1.3, we can also empirically obtain a power law
scaling of the half-time t1/2 with the food exchange ratio σ in a small parameter
region.
Since Section 9.2.1 showed that t1/2 depends strongest on σ for static ants, we

chose to extract the scaling for ν = 0, but once again, similar relations can be
obtained for other small nonzero ν values.
Figure 9.10 shows food exchange ratio power law dependencies for λ ∈ [0.13, 0.25]

and σ ∈ [0.01, 0.95].4 The average over the linear regressions in this regime yields

t1/2
T
∼ σ−0.8±0.05 . (9.7)

It is to be expected that this forms an upper limit for the scalings with ν > 0, since
t1/2 only decreases less with σ for ν > 0, compared to ν = 0 (see Fig. 9.9).
For interaction ranges λ > 0.25, consistent with the observations of Section 9.1.3,

the global food intake and hence the half-time is already limited by the maximum
intake rate of the mean-field limit (cf. Section 9.1.1). The diffusive regime, for which
Eq. (9.7) holds, is then also limited to small food exchange ratios σ (cf. Fig. 9.10).

9.2.3 Inverted food exchange ratio dependency regime

Figures 9.8 and 9.9 indicated a small parameter regime for which the intuitive
dependency of the half-time t1/2 on the food exchange ratio σ is inverted. In this
regime, exchanging more food leads to a slowdown of the global food intake. This
section examines this effect.
Figure 9.11 and Fig. D.3 in the appendix show the relevant parameter range

of ant velocity parameter values ν ≈ 0.3 − 0.7 out of the whole range shown in
Fig. 9.6, but with a higher half-time resolution.

4Note that values of λ < 0.13 are not meaningful for ν = 0, because some ants could be isolated and thus not
able to receive food (cf. Section 9.1.4). Also σ ∈ [0.01, 0.95] sufficiently covers the whole range of σ values
except for the special case σ = 1 (cf. Section 9.1.2).
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Figure 9.10: (a) Logarithmic half-time ln(t1/2/T ) in units of the refractory period T as a function
of the logarithmic food exchange ratio ln(σ), varying the interaction range parameter
λ. Lines represent linear regressions ln(t1/2/T ) = a ln(σ)+b for λ ≤ 0.25 in the linear
regime σ . 1. Their slopes a are given in panel (b). (b) Fitted scaling exponents a
as a function of the interaction range parameter λ. The ant velocity parameter is
fixed to ν = 0.
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9 Continuous Space Simulation Results

Figure 9.11: Mean (left panel) and standard deviation (right panel) of half-time t1/2 as a function
of the ant velocity parameter ν and the food exchange ratio σ, in units of the
refractory period T . The interaction range parameter is fixed to λ = 0.13. Mean
and standard deviation are calculated as an ensemble average over 100 independent
simulation runs. This is a closeup of Fig. 9.6. See Fig. D.3 for a line scan version of
this figure.

Not only the half-time, but the whole time evolution of food in the colony and
its spatial spreading slows down with σ in this parameter regime (see Figs. D.4
and D.6 in the appendix).
Unfortunately, there does not seem to be an easy explanation for this inversion,

as we will illustrate through an example. The inversion effect cannot simply be
explained through irregularities in the distribution of food among the ants, as this
does not show qualitatively different behavior between in and outside the inverted
σ dependency regime (see Fig. D.7 in the appendix).
It is important to also take the standard deviation of t1/2 and not only its mean

into consideration. Especially Fig. D.3 shows that the random noise in the system
barely make the inversion effect statistically significant. This is mainly because
of the large random fluctuations in the simulated food dissemination dynamics.
These random fluctuations result from two independent random processes: the
first being the rotational diffusion in the active Brownian motion of the simulated
ant agents; and the second being the randomness in the food transfer, e.g. agents
or the source choosing random food exchange partners. In order to estimate how
much of the fluctuation seen in the half-time is produced by each of these two
sources of randomness, it is useful to run alternated simulations, where one source
of randomness is switched off and only the other one is active. This can be achieved
by implementing two independently seeded pseudo-random number generators,
of which one is used with a new seed for every simulation run of the ensemble
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for one source of randomness; and the other one is used with the same seed for
every simulation run of the ensemble for the other source of randomness. Fig. D.5
shows the food concentration mean and variance for the alternated simulation
ensemble, where the randomness of the rotational diffusion and thus the motion of
the simulated ants is exactly the same (random) motion for every one of the 100
runs in the ensemble average. Comparing the result with the regular simulations,
where motion and food exchange are seeded new every run (Fig. D.4) clearly shows
that there is an insignificantly small influence of the motion randomness on the
variance in the ensemble averaged half-time. Ergo, the large variance is mainly
caused by the random food exchange partner choices.

9.3 Heterogeneous case study

This last section of Chapter 9 first presents an extended version of our agent-based
trophallaxis simulation model (Section 9.3.1) and then compares its results to
the original version (Section 9.3.2). The simulation extensions provide a more
heterogeneous, and hence more detailed model of trophallaxis. It aims to mimic
real ant colonies better then the simpler original model. Within the scope of this
case study, interestingly, we do not find qualitatively different behavior, compared
to the original model.

9.3.1 Simulation model extensions

A series of simplifying assumptions might make the agent-based simulation model
we proposed in this work look too unrealistic, to adequately describe the food
distribution of real ant colonies. We therefore introduce the following extensions
for the standard model (Section 4.1) in this section, to achieve a more detailed
description:

- individual carrying capacities cmax,i

- randomly distributed food exchange ratios P (σ)

- separate refractory periods for ant-ant (Tants) and ant-source (Tsource) interac-
tions

- randomly distributed refractory periods P (Tants) and P (Tsource)

In the following we describe these extensions in more detail.
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9 Continuous Space Simulation Results

Individual carrying capacities

Real ants do not all have exactly the same crop sizes within one colony and can
therefore all carry different amounts of food. Even if two ants of the same colony
have the same crop size, they might not be able or want to carry the same amounts
of food for other unknown reasons. This heterogeneity could influence the food
distribution dynamics.
We incorporate them in our simulation model through initially assigning all

ant agents individual random carrying capacities cmax,i, drawn from the uniform
distribution u([c̄max − δcmax , c̄max + δcmax ]), where δcmax < c̄max parameterizes the
range of possible cmax,i values, so that

〈cmax,i〉 =
1

N

N∑
i=1

cmax,i = c̄max (9.8)

is the expected mean. The agents then keep their individual capacity throughout
the whole simulation run, but are assigned a new cmax,i for every run in an ensemble.

Random food exchange ratios

Little is know about how real ants determine the amounts of food exchanged during
trophallaxis. In our simulations so far, we modeled the ratio between offered and
not offered food to always be the same fixed value σ. It is reasonable to assume
that the food exchange ratio for real ants performing trophallaxis is subject to
natural fluctuations however.
We therefore extend our model through drawing σ randomly from a beta distri-

bution for every food exchange between ants. The beta distribution

P (σ) :=
σα−1(1− σ)β−1

B(α, β)
(9.9)

is characterized through two shape parameters α and β, where

B(α, β) :=

∫ 1

0

xα−1(1− x)β−1 dx (9.10)

is the beta function. For α, β > 1, it distributes σ unimodal in the interval [0, 1]
with mean

〈σ〉 =
α

α + β
(9.11)
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and standard deviation

〈∆σ2〉 =
1

α + β

√
αβ

α + β + 1
, (9.12)

and serves as a suitable random distribution for the food exchange ratio.

Separate and random refractory periods

As mentioned already in Section 4.1.3, real ants do not necessarily take the same
time for exchanging food with nestmates as for bringing new food into the nest
(even if they just receive new food from foraging ants that bring it into the nest).
On top of that, all food exchanges may vary in duration.
To cope with this, we can first separate the two refractory periods Tants and

Tsource, and second, also randomize them. We again use a uniform distribution,
similar to the random carrying capacities, but this time draw new random refractory
periods for every food exchange or intake at the source. The distributions can be
characterized as

P (Tants) := u([T̄ants − δTants , T̄ants + δTants ]) , (9.13)

where δTants < T̄ants parameterizes the range of possible values, with T̄ants as the
mean; and

P (Tsource) := u([T̄source − δTsource , T̄source + δTsource ]) , (9.14)

where δTsource < T̄source parameterizes the range of possible values, with T̄source as
the mean.

9.3.2 Comparison of heterogeneous and standard simulations

Despite all the new heterogeneities, the extended simulation model qualitatively
shows the same behavior as the standard model. Figure 9.12 gives an exemplary
view of the food concentration average and variance evolution. In the appendix
(Fig. D.8), we also show the spatial food spreading.
Apart from marginally larger fluctuations of the food concentration variance and

the mean squared food distance, no qualitative difference to Figs. D.4 and D.6 can
be observed. We therefore conclude that our simple simulation model suffices to
describe slightly more complex, and especially more heterogeneous systems. This
gives reasons to believe that it can successfully serve as a starting point to model
real ant colonies.
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Figure 9.12: Mean 〈c(t)〉 and variance 〈∆c(t)2〉 of the food concentration (in units of the average
carrying capacity c̄max) as a function of time (measured in units of the average
ant refractory period T̄ants) for various ant velocity parameters ν and interaction
range parameter λ values. The food exchange ratio is beta distributed with mean
〈σ〉 ≈ 0.14 and standard deviation 〈∆σ2〉 ≈ 0.1. The source refractory period is
uniformly distributed with T̄source = 2T̄ants, δTsource = 1.4, and δTsource = 0.7. The
carrying capacities are initialized using a uniform distribution with c̄max = fmax/N
and δcmax

= 0.2.
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10 Summary and Discussion

In this chapter, we summarize the main findings of our four approaches to under-
stand the self-organized food distribution in ant colonies: the novel simulation
model and its results (Section 10.1), the microscopic mean-field model (Section 10.2),
the diffusion equation approach (Section 10.3), and the master equation description
(Section 10.4). The findings’ implications are discussed in the respective sections.

10.1 Simulation model

As the literature review in Section 3.4 has shown, a fundamental simulation model
of trophallaxis, the mouth-to-mouth distribution of food in ant colonies, was missing
so far. We presented a simple agent-based model to fill this gap (Chapter 4). For
the first time, we developed a biophysical trophallaxis model that captures all the
essential features (cf. Sections 1.3 and 3.3).
The agents (ants) in our model have finite carrying capacities and can move

in a finite nest. Their interaction is confined to a finite zone (the spatial fidelity
zone) which, depending on the parameter selection, can extend to the whole nest.
The agents pick an interaction partner at random to whom they donate a fixed
percentage of their crop content, limited by the recipient’s crop capacity. Agents
that can reach the entrance of the nest are picked at random to fill their crop to
capacity with food from the source which represents returning foragers bringing
food to the nest. Our model describes the trophallactic food distribution process
in the simplest possible terms, assuming stochastic effects over central control,
intentional individual behavior or strategy wherever possible.
We confirmed that the trophallaxis dynamics produced from our model qualita-

tively agrees with previous experimental and theoretical work (Sections 5.3 and 8.1).
The colony saturates with food exponentially, so that the global food intake rate is
the characteristic time scale of the food distribution via trophallaxis (Sections 5.3.2
and 6.3.4). In Sections 5.3, 6.1.1 and 6.3, and especially in Chapter 9, we showed
how the speed of this global food intake depends on the individual ant behavior in
our model.
In particular, as intuitively expected, we found that the colony saturates faster

when the ants are either moving faster, exchanging food faster, or exchange food
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with other ants in larger interaction regions (Sections 5.3, 6.3 and 9.1).
An upper limit of food dissemination speed is given by the flow of food into the

nest which only depends on the number of ants and the average duration of food
intakes at the nest entrance (Sections 5.3.1, 6.3.4, 9.1.1 and 9.2.1). This maximum
dissemination speed is reached in the well-mixed limit, where the probability of
any two ants to engage in trophallaxis is always the same. Our simulations showed
that this well-mixed colony can either be described explicitly through a fast ant
motion or implicitly through large interaction areas (Section 9.1.1). This builds
an insightful connection to the experimental finding of Sendova-Franks et al. that
an increased spatial mixing can cause an increased speed of food distribution in
real ant colonies after experiencing a period of starvation [66] (cf. Section 3.4.3).
Furthermore, we gave examples of how our model provides empirical scaling laws
to describe the transition towards the well-mixed limit (Sections 9.1.2 and 9.1.3).
Possibly less intuitively expected, we found that the global food intake of the

colony only depends on the individual food amounts transferred if the ants move
slowly and interact locally (Sections 6.3.4 and 9.2). If the ants are moving faster or
interact in larger spatial fidelity zones, the exchanged crop content percentages play
a progressively smaller role in determining the characteristic time scale, due to an
increased mixing of individuals. This represents an important relationship between
individual behavior (i.e. motion and interaction) and the global food distribution
dynamics.
Finally, we presented both simplifications (Section 4.3) and extensions (Sec-

tion 9.3) of the basic simulation model that qualitatively show the same global
dynamics (Sections 6.1.1 and 9.3.2). Since the numerical results found in 1D and
without explicit motion can satisfactorily be predicted by analytic models (Part II),
this robustness of the global dynamics upon employing a more detailed simulation
model (e.g. by adding heterogeneity) gives our analytic models also predictive
power over real ant colonies or related trophallaxis systems (cf. Section 3.2).

10.2 Mean-field model

In order to understand the food distribution behavior for a well-mixed colony
(i.e. quickly moving ants or large interaction ranges), we derived an analytic mean-
field model of trophallaxis (Chapter 5). Similarly to our simulation model, it is the
first description of the physical mechanisms behind self-organized food distribution
in ant colonies that includes all the essential features, at least in the well-mixed
limit (cf. Section 3.3).
The mean-field analytic predictions for the global food dynamics qualitatively

agree with previous experimental and theoretical work [10, 19]). Moreover, they
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provide a so far missing microscopic explanation for the experimentally observed
and macroscopically predicted exponential food saturation (cf. Section 3.4.1).
We also showed that our mean-field model is quantitatively consistent with

our simulation results in the appropriate regime (Section 5.3). With Eq. (5.12),
we derived the characteristic time scale for the food intake of the colony in the
well-mixed limit.
It is important to note here that this well-mixed limit described by the mean-field

model is not solely academic. As pointed out before, there is experimental evidence
that real ant colonies can become well-mixed at least to some extent, for example
depending on the colony hunger level [66].
Another important link between our mean-field model and past and future

research is its binary limit that describes ants as simply either full or empty
(Section 5.2). It connects our work to epidemic models and information spreading
research (Sections 3.4.3 and 3.4.4).

10.3 Diffusion model

The majority of this thesis’ analytic work was dedicated to a diffusion model,
intended to complement the mean-field model (Chapter 6). It describes the food
distribution process of an ant colony that is not well-mixed, i.e. ants only interact
within a given region (their spatial fidelity zone, or interaction range) around their
preferred fixed position (Section 4.3). Our approach to derive a macroscopic food
diffusion equation from a microscopic balance equation describing trophallaxis
dynamics in ants is novel. A formally similar approach has been used in the context
of self-organizing robot swarms [59] (cf. Section 3.2).
We found a diffusion equation with a diffusion constant that depends non-linearly

on the local food density (and therefore depends on space and time) (Section 6.1.3).
This equation led to a remarkably universal prediction of the characteristic time
scale of the colony’s food intake in the diffusive (not well-mixed) limit (Eq. (6.25),
Section 6.2.1). According to this prediction, the global food intake rate increases
as the percentage of food exchanged or the spatial fidelity zones become larger.
This acceleration of food intake is also reflected in the time scales of the spatial
food spreading in the nest and the distribution of food among individual ants. Our
simulation results were consistent with the analytically predicted time scales in a
surprisingly large parameter range (spatial fidelity zones covering up to around
40 percent of the system and food exchanges of up to around 10 percent of the
individual carrying capacity) (Section 6.3).
More generally, we showed that, due to the ants’ finite crop size, this time scale

is an upper limit of how fast a colony with spatial fidelity zones can absorb food
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(Section 6.2.2). This leads us to conclude that in the case of spatial fidelity zones, a
drastically different individual behavior would be needed to significantly accelerate
food uptake, e.g. by having dedicated foragers that enter the nest and freely deliver
food to all locations, instead of staying close to the entrance and relying on diffusion
for food dissemination.
Once more, we thus discovered connections between the individual ant behavior

and the collective food dynamics of the colony that were unknown so far.

10.4 Master equation model

Both our mean-field and our diffusion model cannot describe the food distribution
for ant colonies with spatial fidelity zones of intermediate size. If the ranges over
which ants can reach each other are too small for a mean-field approximation and
too large for a diffusion approximation, both models fail (cf. Section 6.3.4). To cover
this analytically challenging intermediate range, we proposed an integro-differential
equation for the time evolution of the spatial food density (Chapter 7).
Similarly to the approach in [61], it led to a master equation probabilistically

describing the food distribution through trophallaxis. The main result of this model
is a successful numerical prediction of the time resolved, simulated food distribution
dynamics, even for spatial fidelity zones beyond the scope of the mean-field and
diffusive limit cases (Section 7.3). The downside of this master equation model is
its analytic complexity that only allows numerical solutions. In return, it provides
predictions in the interesting range between the mean-field and the diffusive limit
that we could not achieve otherwise.
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11 Outlook

This thesis lays the theoretical foundations for a quantitative description of trophal-
laxis in eusocial insects in terms of simple quantities of individual behavior. But
what is there to build upon this groundwork?
In this chapter, we point out some ideas about further research directions,

including experimental (Section 11.1), computational (Section 11.2), and analytical
work (Section 11.3).

11.1 Experiments

All of the free parameters that we consider (number of ants, system size, extent of
spatial fidelity zones, ant velocity, proportion of food exchanged, and interaction
duration time) are measurable experimentally. The most important next step
in order to further our understanding of the self-organization in ant colonies is
therefore a direct comparison of high resolution experiments as in [10] with our
simulation model and its analytic predictions. Our reductionist simulation model
is designed to only contain the essential features of trophallaxis, purely based on
non-biased random behavior. It can therefore serve as a null model for statistical
hypothesis testing of experimental data. This will hopefully allow to disentangle to
what level the observed collective food dynamics emerge from random individual
ant behavior or from intentional, strategic behavior.
We found that the amount of food ants exchange during a trophallactic interaction

can influence the global distribution of food in space and time. This influence
disappears with an increased spatial mixing of ants in the nest. It would therefore
be interesting to ascertain the parameter regime of our models in which real ant
colonies operate. Is their spatial mixing high enough to overcome the dependency
on the food exchange ratios? In general, further measurements of the distribution
of exchanged food amounts and food exchange durations would allow for more
precise theoretical descriptions.
As observed in [66], ant colonies also adjust their behavior to changes of external

conditions, like food availability. Determining how different adaptive responses
correspond to different regimes of our models could lead to new insights. Particularly
important in that context seems to be the extent of the spatial fidelity zones, or
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more precisely, the underlying distribution of distances over which ants exchange
food. Is food primarily displaced due to single ants carrying it around the nest or
due to being passed on from one ant to the next in a bucket brigade manner? This
question is tightly connected to the context of active versus passive transport and
experimental evidence in the matter could lead to new connections with existing
work in theoretical biophysics.
It would also be interesting to further investigate how ants choose their food

exchange partners. Do they base their decision on external stimuli like visual
impressions or chemical signals from the trophallaxis partner? If so, over what
range? Linking this information to the interaction radius of the simulation agents
in our model could once more yield new insights.
Finally, our work showed the importance of the rate at which food enters the

nest as an upper bound for the food dissemination speed. We thus propose to also
shift the focus of experimental work towards how food enters the nest. Care needs
to be exercised in the design of trophallaxis experiments, to ensure a proper control
and understanding of the flow of food into the nest.

11.2 Simulation

Similarly to the proposed experimental work, future computational work can build
non-random extensions of our simulation model and compare them to the random
null model. We saw that adding heterogeneity to our model did not change its
qualitative behavior, but adding new hypotheses of food exchange rules (e.g. based
on a local information exchange) or biased motion patterns (e.g. to produce more
realistic spatial structures like clustering around brood or queens) might.
For example, one could test whether food spreads faster than in our random

model, if it is preferably transferred from ants with more food to ants with less food.
Once enough experimental data for the distribution of exchanged food amounts
has been gathered, especially the dependence on the donating and receiving ants’
crop content, the simulation model can be extended to include a randomized food
exchange ratio based on the empirical distributions, similarly to the approach we
used in Section 9.3.1.
Experiments have observed a spatial aggregation of food inside the nest ([67, 19]).

This effect was not reproduced by our simulations. Further modeling work should
therefore be performed to address the spatial organization of food inside the nest as
it is distributed within the colony. That also includes finding appropriate modeling
of the way food enters the nest. As proposed in Section 11.1 for experimental work,
we also need computational studies of how differences in the flow of food into the
nest effect the food distribution dynamics.
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More generally, changing the simulations’ boundary conditions to include not
only a different food source, but also food sinks would allow to investigate tasks
other than the simple saturation of the colony with food. For example, introducing
special agents that can consume food (on a time scale comparable to the food
distribution), one could model an ant colony with brood. Linking this to the chain
of demand simulation work ([27], also cf. Section 3.4.2) could discover novel effects.
For instance, if the rates at which food is introduced into the system and taken
out again match, steady state flows of food from the source(s) to the sink(s) are to
be expected.
An important quantity of interest when studying the food distribution in ant

colonies that has not been extensively explored in this thesis, is the distribution
of food among individual ants. It becomes particularly interesting when the total
amount of food available to the colony is less than enough to fill up the capacity of
every ant. The question then is, how uniformly the colony manages to distribute
the food among its members. Future work could focus on this inter-individual food
distribution and, for example, study how its shape at a given time (e.g. the time
when the colony is half full) depends on the model parameters (like ant velocities,
amounts of food exchanged, and the extent of interaction ranges).
Another direction that has not been touched at all in this work is the application

of network analysis on the trophallaxis simulation data (cf. Section 3.4.3). As this
approach led to significant findings when applied to experimental data, valuable
insights are to be expected when it is applied to data from our simulation model.
After all, analyzing simulations instead of real ant experiments adds flexibility and
makes the procedures to gather sufficient amounts of data faster.
The last investigation we propose to follow our work is a computational analysis

of the effect of the colony size. Experiments have shown that the colony size of real
social insect colonies can influence the food flow and interaction patterns [71, 85].
Again, simulations can ascertain this much easier, assuming the relevant degrees of
freedom have been captured.

11.3 Theory

A missing piece in our analytic work is the proper integration of the ants’ explicit
velocity into the global food intake rate predictions. We successfully predicted the
characteristic time scales for variable spatial fidelity zones, implicitly modeling
different underlying motion patterns. That also allows us to effectively predict the
food dissemination speed for different ant velocities, but a direct prediction would
be preferable.
The global food intake time scale predicted by our diffusion model was derived
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under several simplifying assumptions. A significant assumption was to use a 1D
instead of a 2D description. Although our 1D prediction also held in 2D to a good
degree, a full derivation in 2D could be more accurate. This should especially hold
for the calculation of the mean squared interaction distance (cf. Appendix B).
Another useful analytic achievement would be the prediction of the distribution

among ants, and its time evolution. At least in some limits, like the well-mixed
mean-field case or only nearest neighbor interactions, this should be accomplishable.
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12 Concluding Remarks

The main goal of this thesis was to understand the collective properties of the food
distribution in ant colonies with the simplest possible computational and analytical
models. To this end, we constructed a series biophysically motivated simulation
models and analytical descriptions of trophallaxis that include all its essential
features. Our models are the first complete theoretical description of the physical
mechanisms behind the self-organized food distribution in ant colonies. Despite
our reductionist approach, the models exhibit a number of interesting properties
that reproduce some of the behaviors seen in real ant colonies.
We are confident that our models can serve as benchmarks for the behavior of real

ant colonies or more biologically detailed models. As statistical null models, they
can be used to assess to what extent an observed behavior is due to non-random
strategies or due to the collective properties of a stochastic system.
At the beginning, we asked how individual behavior influences the macroscopic,

global food distribution dynamics of the colony; and whether the collective colony
behavior is predictable from its microscopic properties. The main results we
obtained by the study of our novel models contribute to answering these questions.
We found and analytically predicted the characteristic time scales of trophallaxis
for both well-mixed colonies and colonies with small spatial fidelity zones. We
even successfully covered the range between these two limits with semi-analytic
predictions.
These newly discovered relationships between individual behavior and global

food distribution dynamics provide microscopic explanations of experimental ob-
servations and phenomenological theories that were unknown so far.
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A Active Brownian Motion

The simulation model presented in Section 4.1 describes the ants as active Brownian
particles moving in two dimensions. In this chapter, we present and discretize the
equations of motion for these 2D active Brownian particles, obtaining Eqs. (4.1)
and (4.2).
All particles move at the same constant speed vi(t) = v. Only their direction of

motion, represented by a unit orientation vector êi(t), changes with time. It follows
rotationally diffusive behavior. Thus, the continuous equations of motion read

d~xi(t)

dt
= vêi(t) (A.1)

dêi(t)

dt
= ~τi(t)× êi(t) , (A.2)

where ~xi(t) is the position of particle i at time t and

~τi(t) = êi(t)× ~ξ(t) (A.3)

is a torque acting on it, generated from a Gaussian distributed white-noise random
force ~ξ(t) within the simulation box plane [0, L]2 ⊂ R2. This noise vector is
characterized through its mean

〈~ξ(t)〉 = ~0 (A.4)

and its delta correlated covariance

〈~ξ(t)~ξ(t′)〉 = 2Drδ(t− t′) (A.5)

in time, where Dr is the rotational diffusivity and δ(t− t′) the Dirac delta function.
Figure A.1 illustrates how this random force ~ξ(t) and the corresponding torque

~τi(t) act on the particle’s orientation êi(t). Note that although ~xi(t), êi(t) and ~ξ(t)
are vectors in R3, they are effectively two dimensional, laying inside the simulation
box plane, with zero components orthogonal to this plane. The torque ~τi(t) instead
is effectively one dimensional, being always orthogonal to the simulation box plane.
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Figure A.1: 3D sketch of an exemplary arrangement of an orientation vector ê(t), a torque ~τ(t),
the unit vector ξ̂(t) = ~ξ(t)/|~ξ| of a random force ~ξ(t), and its projection ξ̂⊥i

(t)
orthogonal to ê(t) (cp. Eqs. (A.3) and (A.7)). The shaded area indicates a section of
the unit disk around the particle’s position, in the simulation box plane.

In order to solve the equations of motion (Eqs. (A.1) and (A.2)) numerically,
they have to be discretized in timesteps of ∆t, yielding

~xi(t+ ∆t) = ~xi(t) + ∆tvêi(t) (A.6)

êi(t+ ∆t) = êi(t) + ∆t

((
êi(t)× ~ξ(t)

)
× êi(t)

)
(A.7)

after inserting Eq. (A.3). We can simplify the double cross product(
êi(t)× ~ξ(t)

)
× êi(t) = |~ξ|

(
êi(t)× ξ̂(t)

)
× êi(t)︸ ︷︷ ︸

=:ξ̂⊥i (t)

(A.8)

through replacing the random force ~ξ(t) = |~ξ|ξ̂(t) with its absolute value |~ξ| and
its unit vector ξ̂(t). The double cross product ξ̂⊥i(t) left over is nothing but ~ξ(t)
projected orthogonal to êi(t) then. The normalized random force ξ̂(t) however is a
uniformly distributed random vector on the unit circle, and its absolute value |~ξ|
represents the strength of the random force.
Now only |~ξ| is left to be discretized in time. Therefore, discretizing the Dirac

delta with

δ(t− t′) ≈

 1
∆t

if |t− t′| ≤ ∆t

0 otherwise
, (A.9)
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so that
∫∞
−∞ δ(t− t′) dt′ = 1 still holds, Eq. (A.5) becomes

〈~ξ(t)~ξ(t′)〉 =

2Dr
∆t

if |t− t′| ≤ ∆t

0 otherwise
(A.10)

⇒ 〈~ξ(t)~ξ(t+ ∆t)〉 =
2Dr

∆t
(A.11)

⇔ |~ξ|2 〈ξ̂(t)ξ̂(t+ ∆t)〉︸ ︷︷ ︸
=1

=
2Dr

∆t
(A.12)

⇒ |~ξ| =
√

2Dr

∆t
. (A.13)

Using this together with Eq. (A.8), Eq. (A.7) becomes

êi(t+ ∆t) = êi(t) +
√

2Dr∆tξ̂⊥i(t) . (A.14)

Unfortunately, Eq. (A.14) does not ensure |êi(t)| = 1 for all times (see Fig. A.2).
To compensate this, a Langrangian correction term ∆tα(t)ê(t) can be introduced,
so that the set of discretized equations of motion finally reads:

~xi(t+ ∆t) = ~xi(t) + ∆tvêi(t) (A.15)

êi(t+ ∆t) = êi(t) +
√

2Dr∆tξ̂⊥i(t) + ∆tα(t)êi(t) , (A.16)

where α(t) is the Lagrangian multiplier, which has to be choosen such that |êi(t)| = 1
is satisfied at every iteration step.

Figure A.2: Top down view of Fig. A.1. In addition to Fig. A.1, the terms of Eq. (A.16) are
illustrated, showing how one time iteration step of length ∆t rotates the particle’s
orientation from ê(t) to ê(t+ ∆t). Again, the shaded area indicates a section of the
unit disk around the particle’s position, in the simulation box plane.
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B Mean Squared Interaction Distance

Equation (6.11) in Section 6.1 showed the need for a length scale describing the
diffusion of food due to an exchange between ants with a given interaction radius
R. In this chapter, we derive the ensemble averaged squared distance between pairs
of interacting ants r2(R) in a 1D finite system of length L. This quantity can serve
as the squared length scale ∆x2 for Eq. (6.11).
The derivation can be split into two parts, depending on the size of R:

1. The ant’s interaction range overlaps only with one system boundary or does
not overlap with the boundaries: R ∈ [0, L/2).

2. The ant’s interaction range either overlaps with one or with both system
boundaries: R ∈ [L/2, L].

1. Case R ∈ [0, L/2):

The average squared distance r2
f of a point r in the interaction range [−R,R] ⊂ R

(e.g. one ant) to the center of the interval r = 0 (e.g. the other ant) free of
boundaries can be calculated as the mean of the uniform distribution u(I) of points
in the interval I = [−R,R]. The uniform distribution is

u(I) :=
1∫
I

dr
=

1

|I| =
1

2R
, (B.1)

where |I| = 2R denotes the length of the interval.
Using this, the boundary free average squared distance can be calculated as

r2
f =

∫
I

r2u(I) dr =

∫ R
−R r

2 dr∫ R
−R dr

=
1

2R

∫ R

−R
r2 dr =

R2

3
. (B.2)

The same approach can be used to calculate the average squared distance r2
b (s) of

a point r in the truncated interaction range [−s, R] ⊂ [−R,R] (e.g. one ant) to the
original center of the interval at 0 (e.g. the other ant), when the interaction range
overlaps with one system boundary. Without loss of generality, this boundary is
put to the left in the calculation. Due to symmetry, the result remains the same
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for an overlap with the right system boundary.

r2
b (s) =

1

s+R

∫ R

−s
r2 dr =

R3 + s3

3(s+R)
. (B.3)

In order to calculate the system wide average over these average squared distances,
the system interval [0, L] needs to be split up into the following three regions:

1. The average squared distances resulting from interaction ranges overlapping
with the left system boundary: 1

R

∫ R
0
r2
b (x) dx .

2. The average squared distances resulting from non overlapping interaction
ranges in the central region: 1

L−2R

∫ L−R
R

r2
f dx .

3. The average squared distances resulting from interaction ranges overlapping
with the right system boundary: 1

R

∫ L
L−R r

2
b (L− x) dx .

These three regions can then be averaged using their lengths as weights to obtain
the system wide average:

r2 =
1

L

(∫ R

0

r2
b (x) dx+

∫ L−R

R

r2
f dx+

∫ L

L−R
r2
b (L− x) dx

)
. (B.4)

Due to the above mentioned symmetry of the system boundaries, the third integral
can be rewritten to match the first one, so that

r2 =
1

L

(
2

∫ R

0

r2
b (x) dx+

∫ L−R

R

r2
f dx

)
. (B.5)

And with Eq. (B.2) and Eq. (B.3), the final expression for R ∈ [0, L/2) becomes

r2 =
1

L

(
2

∫ R

0

R3 + x3

3(x+R)
dx+

∫ L−R

R

R2

3
dx

)
(B.6)

=
1

L

(
5

9
R3 +

1

3
(L− 2R)R2

)
(B.7)

= −1

9

R3

L
+

1

3
R2 (B.8)

.
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2. Case R ∈ [L/2, L]:

This case needs an extra calculation for the average squared distance r2
db(s) of a

point r in the double truncated interaction range [−s, L− s] ⊂ [−R,R] (e.g. one
ant) to the original intervals center at 0 (e.g. the other ant), when the interaction
range overlaps with both system boundaries.
The calculation of r2

db(s), similar to those of r2
f and r2

b (s), is

r2
db(s) =

1

L

∫ L−s

−s
r2 dr =

(L− s)3 + s3

3L
. (B.9)

In order to also calculate the system wide average over these average squared
distances for the case of R ∈ [L/2, L], the system interval [0, L] again needs to
be split up into three regions (left, middle and right). The only differences are
that the average squared distances calculated in the middle region now result from
interaction ranges overlapping with both system boundaries, and a change in the
region boundaries. To clarify, the three parts are:

1. The average squared distances resulting from interaction ranges overlapping
with the left system boundary: 1

L−R

∫ L−R
0

r2
b (x) dx .

2. The average squared distances resulting from interaction ranges overlapping
with both system boundaries: 1

2R−L

∫ R
L−R r

2
db(x) dx .

3. The average squared distances resulting from interaction ranges overlapping
with the right system boundary: 1

L−R

∫ L
R
r2
b (L− x) dx .

Again, using a weighted average, the analogous system wide average is

r2 =
1

L

(∫ L−R

0

r2
b (x) dx+

∫ R

L−R
r2
db(x) dx+

∫ L

R

r2
b (L− x) dx

)
(B.10)

=
1

L

(
2

∫ L−R

0

r2
b (x) dx+

∫ R

L−R
r2
db(x) dx

)
. (B.11)

With Eq. (B.3) and Eq. (B.9), the final expression for R ∈ [L/2, L] becomes

r2 =
1

L

(
2

∫ L−R

0

R2 + x2

2(x+R)
dx +

∫ R

L−R

(L− x)2 + x2

2L
dx

)
(B.12)

=
1

18
L2 − 1

3
LR +R2 − 5

9

R3

L
. (B.13)
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Combined result

Putting both cases (Eqs. (B.8) and (B.13)) together in nondimensional terms
(λ = R/L) finally gives the expression

r2

L2
=

−1
9
λ3 + 1

3
λ2 if λ ∈ [0, 1

2
)

−5
9
λ3 + λ2 − 1

3
λ+ 1

18
if λ ∈ [1

2
, 1].

(B.14)
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C Solving the Diffusion Approximation

C.1 Food source as a boundary condition

The system solved in Section 6.2.1 is equivalent to

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂2x
, (C.1)

with boundary and initial conditions

ρ(0, t) = ρmax, ρ(2L, t) = ρmax, (C.2)

and

ρ(x, 0) = 0 for x ∈ (0, 2L) . (C.3)

Transforming ρ(x, t)→ ρ′(x, t) = ρmax − ρ(x, t) turns the boundary and initial
conditions into

ρ′(0, t) = 0 , ρ′(2L, t) = 0 and ρ′(x, 0) = ρmax . (C.4)

Solving the diffusion equation (Eq. (C.1)) with these boundary conditions is known
as the problem of cooling of a rod and can be done through separation of variables.
The solution reads

ρ′(x, t) =
4ρmax

π

∞∑
n=1

sin
(

(2n−1)
2

π x
L

)
2n− 1

e
−
(

(2n−1)π
2L

)2
Dt
. (C.5)

Transforming back to ρ(x, t) = ρmax−ρ′(x, t) gives the solution used in Section 6.2.1:

ρ(x, t)

ρmax

= 1− 4

π

∞∑
n=1

sin
(

(2n−1)
2

π x
L

)
2n− 1

e
−
(

(2n−1)π
2L

)2
Dt
. (C.6)

135



C Solving the Diffusion Approximation

Furthermore, a simple integration gives the average food density

〈ρ(t)〉 = ρmax

(
1− 8

π2

∞∑
n=1

1

(2n− 1)2
e−(2n−1)2 π2

4L2Dt

)
(C.7)

and the mean squared food distance:

MSD(t) = 1 +
96

π4

∞∑
n=1

2 + π(−1)n(2n− 1)

(2n− 1)4
e−(2n−1)2 π2

4L2Dt. (C.8)

C.2 Food source as a source term

In this section, we outline the derivation of Eq. (6.36) in Section 6.2.2. In this
derivation, we assume that the system is infinite (as opposed to semi-infinite, as in
Section 6.2.2), and that the source is at x = 0. The solution for the semi-infinite
case can easily be obtained from the full system by considering only x > 0 and
adjusting the normalization.
Dropping the tildes, the solution of the proposed diffusion equation (Eq. (6.31))

for x ∈ (−∞,∞) reads:

ρ(x, t) =
1√
4π

∫ ∞
−∞

dx′
∫ t

0

dt′
e
− (x−x′)2

4(t−t′) −t
′

√
t− t′ δ(x′) (C.9)

=
1√
4π

∫ t

0

e
− x2

4(t−t′)−t
′

√
t− t′ dt′ (C.10)

=
1√
4π

−√π
2i
e−t

e−ix(1 + erf

(
− x

2
√
t− t′ + i

√
t− t′

))

+ eix

(
−1 + erf

(
x

2
√
t− t′ + i

√
t− t′

))

t

0

. (C.11)

The upper boundary (t′ = t) of the time integral evaluates to zero for x ≥ 0. For
x < 0, it evaluates to

√
4πe−t sin(x) . (C.12)
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The lower boundary (t′ = 0) evaluates to

−
√
π

2i
e−t

e−ix(1 + erf

(
− x

2
√
t

+ i
√
t

))
+ eix

(
−1 + erf

(
x

2
√
t

+ i
√
t

)) .

(C.13)

Through making use of erfc(z) := 1− erf(z) and denoting the complex conjugate
of z with z̄, the evaluated solution (Eq. (C.11)) can be concisely written as:

ρ(x, t) = e−t
[
sin(x)Θ(−x) +

1

4i

(
u erfc(w)− u erfc(w)

)]
, (C.14)

where

u := eix (C.15)

and

w :=
x

2
√
t

+ i
√
t . (C.16)

Since

u erfc(w)− u erfc(w) = −2i Im(u erfc(w)) , (C.17)

the solution finally becomes

ρ(x, t) = e−t

sin(x)Θ(−x)− 1

2
Im

(
eix erfc

(
x

2
√
t

+ i
√
t

)) . (C.18)

The solution in the main text (Eq. (6.36)) can be obtained from this solution by
dropping the e−t sin(x)Θ(−x) term, since x ≥ 0. Note that Eq. (C.18), integrated
over x ∈ (−∞,∞) at t→∞ gives

lim
t→∞

∫ ∞
−∞

ρ(x, t) = 2fmax (C.19)

in dimensional terms, which explains the factor 2 in Eqs. (6.28) and (6.30).
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D Figures

Figure D.1: Mean (left panel) and standard deviation (right panel) of the half-time t1/2/T (time
until the colony is half full) as a function of the ant velocity parameter ν and the
interaction range parameter λ, in units of the refractory period T . The food exchange
ratio is fixed to σ = 0.05. Mean and standard deviation are calculated as an ensemble
average over 100 independent simulation runs. The gray areas in the bottem left
corner of both panels represent parameter values, for which no data was simulated.
This is a closeup of Fig. 9.1.
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D Figures

(a)

(b)

Figure D.2: Half-time t1/2 in units of the refractory period T as a function of the ant velocity
parameter ν with a food exchange ratio of (a) σ = 0.1 and (b) σ = 0.9. The
interaction range parameter is fixed to λ = 0.13 and the number of ants is the usual
N = 100.
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Figure D.3: Half-time t1/2 in units of the refractory period T as a function of the food exchange
ratio σ, varying the ant velocity parameter ν. The interaction range parameter is
fixed to λ = 0.13. This shows the same data as Fig. 9.11.
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D Figures

Figure D.4: Mean 〈c(t)〉 and variance 〈∆c(t)2〉 of the food concentration (in units of the carrying
capacity cmax) as a function of time (measured in units of the refractory period T )
for various ant velocity parameters ν and food exchange ratios σ. The interaction
range parameter is fixed to λ = 0.13.
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Figure D.5: Mean 〈c(t)〉 and variance 〈∆c(t)2〉 of the food concentration (in units of the carrying
capacity cmax) as a function of time (measured in units of the refractory period T )
for various ant velocity parameters ν and food exchange ratios σ. The interaction
range parameter is fixed to λ = 0.13. The data ensemble shown in this figure was
obtained from 100 simulation runs with new food exchange random seeds for every
run, but fixed motion random seed (cf. Section 9.2.3 for an explanation). See Fig. D.4
for comparison.
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D Figures

Figure D.6: Dimensionless mean squared food distance MSD(t) as a function of time (measured
in units of the refractory period T ) for various ant velocity parameters ν and food
exchange ratios σ. The interaction range parameter is fixed to λ = 0.13.
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Figure D.7: Distribution of food c(t) among ants (measured in units of the carrying capacity
cmax) as a function of time (measured in units of the refractory period T ) varying
the ant velocity parameter ν and the food exchange ratio σ. The interaction range
parameter is fixed to λ = 0.13. The colored background shows a two-dimensional food
concentration histogram, binned both in food and time dimension. The step-function
lines show the mean (cyan) and median (white) of this histogram along the food axis
for every time bin.
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D Figures

Figure D.8: Dimensionless mean squared food distance MSD(t) as a function of time (measured
in units of the average ant refractory period T̄ants) for various ant velocity parame-
ters ν and interaction range parameter λ values. The food exchange ratio is beta
distributed with mean 〈σ〉 ≈ 0.14 and standard deviation 〈∆σ2〉 ≈ 0.1. The source
refractory period is uniformly distributed with T̄source = 2T̄ants, δTsource

= 1.4, and
δTsource

= 0.7. The carrying capacities are initialized using a uniform distribution
with c̄max = fmax/N and δcmax

= 0.2.
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