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Abstract

In nature animal species often exist in groups. We talk of insect swarms, flocks

of birds, packs of lions, herds of wildebeest etc. These are characterised by

individuals interacting by following their own rules, privy only to local information.

Robotic swarms or simulations can be used explore such interactions. Mathematical

formulations can be constructed that encode similar ideas and allow us to explore the

emergent group behaviours. Some behaviours show characteristics reminiscent of the

phenomena of criticality. A bird flock may show near instantaneous collective shifts

in direction: velocity changes that appear to correlated over distances much larger

individual separations.

Here we examine swarm systems inspired by flocks of birds and the role played by

criticality. The first system, Particle Swarm Optimisation (PSO), is shown to behave

optimally when operating close to criticality. The presence of a critical point in the

algorithm’s operation is shown to derive from the swarm’s properties as a random

dynamical system. Empirical results demonstrate that the optimality lies on or near

this point.

A modified PSO algorithm is presented which uses measures of the swarm’s

diversity as a feedback signal to adjust the behaviour of the swarm. This achieves

a statistically balanced mixture of exploration and exploitation behaviours in the

resultant swarm. The problems of stagnation and parameter tuning often encountered

in PSO are automatically avoided.

The second system, Swarm Chemistry, consists of heterogeneous particles

combined with kinetic update rules. It is known that, depending upon the parametric

configuration, numerous structures visually reminiscent of biological forms are found

in this system. The parameter set discovered here results in a cell-division-like

behaviour (in the sense of prokaryotic fission). Extensions to the swarm system

produces a swarm that shows repeated cell division. As such, this model demonstrates

a behaviour of interest to theories regarding the origin of life.
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Chapter 1

Introduction

Swarms are common in nature. Wherever we look we see accumulations of individual

animals into larger groups. Honeybees, ants and termites form colonies tens of

thousands strong. In the air birds flock by the thousand. Underwater, but in similar

numbers, we find shoals of fish. On land great herds of wildebeest range across

plains. Such structures can remain robust over great spatial and time scales. They

frequently exhibit group behaviours that are hard to explain by examining the actions

of the individual. The response of a swarm to external stimuli can appear near

instantaneous. Analogous properties arise in other swarm systems such as the action

of the neural interconnections in the brain. Again, we can describe this as a system of

multiple individual elements, with many interactions. We can attempt to explore the

mechanisms employed within a brain, by studying the structure of the interconnections,

and the electrical and chemical activities. However, the properties and behaviours of

the brain as a whole remain hard to understand from this neuron to neuron activity.

Bird flocks can often appear ‘as of one mind’, showing near instantaneous

collective shifts in direction. Velocity changes appear to be correlated over much

larger distances than it seems possible that the individual birds can be communicating.

The loss of length and time scales, the ability to switch behaviours, are somewhat

reminiscent of the properties of systems that exhibit what has been called ‘criticality’.

We will discuss in more detail what criticality means in chapter 2. For the purpose

of this work we define a system at criticality as being poised on an edge between two

behaviours.

This thesis uses swarm systems inspired by flocking behaviours and suggest that

criticality is a property that enables swarms to operate in a beneficial manner. In terms

of solutions offered by the Particle Swarm Optimisation algorithm this is a question of

1



Chapter 1. Introduction 2

whether the swarm behaves in an optimal manner if it can be made to behave critically.

With the Swarm Chemistry flocking system we shall show that an important discovered

dynamic behaviour exists at a narrow range of parameter values that poises the system

between two somewhat more static behaviours.

In particular the research questions that we seek answers to are:

1. Under what conditions does the particle swarm optimisation (PSO) algorithm

exhibit criticality?

2. Does the PSO swarm acting critically allow it to act optimally?

3. Can this knowledge be utilised in a practical manner?

4. Can we show that other swarm systems also exhibit criticality?

1.1 Contributions

In answer to research question 1 chapter 3 shows that for PSO there exists a locus of

the algorithm’s parameter values that result in critical behaviour. On this locus the

PSO swarm is poised between divergent and convergent states. The derivation of this

is arrived at by rewriting the PSO update rules in matrix form. As the swarm evolves its

dynamics are determined by considering the infinite product of this stochastic matrix.

This predicted locus of stability differs from the previous approaches. Empirical

evidence is presented to support the correctness of the random dynamical system

approach.

Empirically we look to see where in parameter space optimal results occur for many

problem functions. We show, in answer to research question 2 that as the number of

iterations executed increases the location of optimal solutions approaches our predicted

critical parameter curve.

To answer research question 3 we observe that real world problems tend to present

as a black box function. The ability of the PSO swarm to locate solutions is dependent

upon the nature of the problem space, how long we will run the algorithm for and where

in the parameter space we choose the controlling parameter values. Given knowledge

of the first two items we can (at least in theory) intelligently choose how sub-critical

we need the swarm to be to obtain optimal results. In practice this can still be hard.

Thus a novel algorithm, CriPS, is proposed in chapter 4. This is shown to require no

specific setting of parameter values and avoids stagnation. This is achieved by using a
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measure of the swarm’s diversity within the problem space. Changes in this measure

are used as a feedback signal to modify the PSO parameters.

CriPS is shown to outperform other simple PSO variants. In comparison with other

metaheuristics this new algorithm performed more modestly. It is shown that for at

least one of the problem function sets CriPS outperforms all the comparator algorithms.

The general performance may reflect the limitations of PSO as an algorithm rather

than this new approach. The algorithm’s update rules are shown to result in controlling

PSO’s parameters such they are varied so as to take the system’s behaviour from sub-

to super- critical (i.e. cross the locus of stability).

Finally we answer research question 4. In chapter 5 we show that critical behaviour

in swarm systems is not restricted to PSO. A repeating cell-division-like behaviour

is demonstrated within the system called swarm chemistry. This emerges from the

repeated low level kinetic interactions between the particles in a heterogeneous swarm.

This division behaviour exists in a small but finite volume of the swarm chemistry

parameter space. It appears to sit on an edge of the parameter space between no

division behaviours and markedly less dynamic division behaviours. And yet the

behaviour was robust to population changes and even the addition of more species

of particle.



Chapter 2

Introduction to swarms

As background to these studies, we discuss a number of mechanisms seen in swarms

and swarm systems that lead to interesting behaviours. To avoid excessive repetition

we may use terms such as swarm, colony, community, collective etc. to describe

aggregations. In referring to the individuals we similarly employ many names

dependent upon the scope of the discussion. For biological swarms it is easiest to

use the name of the animal itself themselves: bees, ants, wildebeest, birds, fish etc.

For abstract swarms we will call them particles, individuals, or agents. It is hoped

that in this manner repetition may be avoided in the discussions without introducing

confusion.

Pertinent to the studies will be the mechanisms employed to generate complex

behaviours from the interactions among the members of a swarm. We start by looking

at some of the concepts relevant to this. We will then outline the structure that this

thesis will follow and the motivations that lie behind it. The final section of this

introduction will set out the nature of the swarm systems that we are studying.

This thesis looks at swarm systems and behaviours that emerge from their

dynamics. Algorithms derived from the flocking of birds have found use in fields such

as computer graphics and function optimisation. It is in these areas that we will discuss

new understandings and novel behaviours. Our interest is therefore in the remarkable

capabilities of swarms, and the potential applications that arise from determining the

role of individual interactions in the development of system-wide characteristics.

4
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2.1 Swarms: emergence

Emergence1 is the non-obvious high level characteristics of a system that arises from

low level interactions of the constituent parts.

Honeybees live in colonies with tens of thousands of individuals. They coordinate

dozens of activities that are required for the colony to successfully meet the challenges

of life. What is remarkable is this is achieved without any central control being

imposed. Instead a range of mechanisms are employed which mediate the interactions

between the individual bees. Among these we see the use of various chemical signals,

direct bee to bee communication, and quorum sensing. Similar approaches can be

seen in other insect swarms, flocks of birds, herds of mammals, and amongst the

coordination of slimemolds or bacterial colonies.

Emergence as a phenomenon is also apparent in other systems that consist of

many interacting units. The immune system in many organisms provides an adaptive

mechanism to protect against pathogens. Its ability to respond to a wide range of

(potentially evolving) infections in a flexible and robust manner can be studied as

a set of emergent behaviours. Similarly consciousness is suggested as an emergent

property that arises from the mass of interactions between neurons within a brain. The

phenotypes of species are themselves the emergent form of the genetic interactions

during embryo development.

2.2 Swarms: self-organisation

The emergent behaviours have no master controller, capable of oversight of all the

component parts at all times. Instead they arise through local interactions and local

knowledge. As such they are said to be self-organised arising from interactions

between individuals amplifying fluctuations in the behaviours of the colony. Such

feedback can be both robust and highly reactive to the group’s environment. The

amplification is a result of feedback between the driving signal and the individual

behaviour. Thus honeybees foraging for food may explore a multitude of sources (of

potentially variable quality). When good ones are found, they will advertise this to

their hive mates. New recruits will fly to exploit the sites advertised. This is a positive

feedback mechanism. On exhaustion of the food supply, no further recruitment to it

1There is a Scots phrase: ‘Mony a mickle maks a muckle’. It means that many small amounts
accumulate to make a large amount. This seems a succinct description of emergence.
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occurs, and foragers return to exploration (negative feedback).

2.3 Swarm systems

We can also explore beyond the biological swarm. Other scientific disciplines describe

aggregate systems which yield properties that provide insight into emergent behaviours

arising from individual interactions. These often touch on biological themes, but in a

more abstract manner.

@Ball (2011b) describes a range of well know systems that may be considered as

swarm systems including Cellular automata, Turing reaction-diffusion dynamics, and

Belousov Zhabotinsky patterns. They show interesting emergent behaviours. Cellular

automata (CA) are a set of models consisting of a regular grid of cells. Each cell

may exist in one of a finite number of states. In the simplest case, on and off states.

The model progresses by applying update rules for each element on the grid. These

tend to be of the form where a cell’s new state is in some way dependent upon state

of both itself and of cells within a certain local neighbourhood. The famous two

dimensional, two state system “Conway’s game of life” consists of 4 simple rules

but results in a vast array of emergent structures and behaviours. With different

numbers of states and rule sets, cellular automata can show both trivial and complex

behaviours. Continuous spatial automata can be specified, using differential equations

to describe state evolutions. Alan Turing’s reaction-diffusion textures are of this form

and may be used to model the appearance of animal spots and stripes. Similarly the

famous Belousov Zhabotinsky chemical reactions that give rise of oscillating patterns

of chemicals can be generated by cellular automata.

The systems we explore may be described as inspired by the motions of bird flocks.

However they are of an abstracted form, constructed from sets of discrete particles with

continuous position and velocity states. Updates consist of iterative rules, somewhat

akin to cellular automata.

2.4 Thesis structure

We have briefly covered some interesting features of swarms. In the next part of

this chapter we review a range of mechanisms employed in biological swarms and

how these confer benefits on the particular species employing them. In the process



Chapter 2. Introduction to swarms 7

of discussing these biological methods we detail how they have been abstracted and

re-purposed to solve problems, or used within embodied robots.

As the systems that studied in this thesis are based on flocking behaviours, we will

look at that particular behaviour in its own section, paying particular attention to issues

most pertinent to the subsequent chapters. We continue by discussing the properties

of more abstract swarm systems, inspired by, but perhaps not wholly derived from

nature. Here we are thinking of systems such as sand-pile models that yield insights

into areas as disparate as earthquakes and neural information processing. This provides

an introduction to the role of criticality in swarm systems which is returned to in later

chapters.

We look in Chapter 3 to derive a proper explanation of how the Particle Swarm

Optimization(PSO) algorithm functions. PSO is one of a range of metaheuristic

algorithms commonly used to find good solutions to optimisation type problems.

A theoretical treatment of the system as a random dynamical system is presented.

The swarm behaves critically for a locus of parameter values that define a curve

in parameter space. We then compare the predictions made from this approach

with empirical results, demonstrating that the optimal performance is achieved where

the swarm behaves critically (or where practical constraints apply, sub-critically).

However, if allowed to behave sub-critically, then stagnation will eventually occur.

Chapter 4 presents modifications to PSO so that the new algorithm is able to tune

itself to the problem being solved by means of online adjustment of its parameters

derived from a feedback signal taken from measurements of the swarm. The aim is

to maintain the critical/sub-critical performance of the previous chapter but with a

mechanism that ensures stagnation is avoided automatically and no parameters need to

be set. This Critical PSO’s (CriPS) performance is experimentally tested and compared

with a range of comparator metaheuristics.

In Chapter 5 a different flocking system is examined. Swarm Chemistry, a

heterogeneous extension of Craig Reynold’s Boids algorithm generates convincing

flocking motions from the iterated application of three simple rules (Reynolds, 1987).

Originally conceived as a homogeneous collection of particles, it has in recent years

been modified to allow its constituents to vary the strength of each rule. Complex

behaviours in this system are found. Here a novel behaviour that presents as a repeated

cell-division-like dynamic is examined. This exists in a finite but narrow area of the

system’s parameter space and shares the ‘on the edge’ feel of the earlier PSO critical

locus of parameter values.
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Finally we summarise our findings and discuss the potential for future work both

in the realms of metaheuristics and Swarm Chemistry.

2.5 Thesis motivations

In swarm systems, patterns and behaviours may arise that are not obvious from the

multiple simple interactions occurring between the individuals in the swarm. These

are said to be emergent properties of the system. We describe this decentralized,

self-organised emergence of useful behaviours as swarm intelligence. A continuing

problem with the exploitation of swarm intelligence is in designing the low level

interactions so that desirable high level behaviours emerge. One approach is to take

inspiration from nature. Biological swarms, for example, ants and honeybees exhibit

multiple behaviours that are necessary for the success of the colony. Each of these

have had tens of behaviours described and listed (Chittka and Niven, 2009; Wilson,

1984). Observation and experiment allows us to unpick the relationships between

low level interactions and the coordination of these colony-wide behaviours. These

understandings provide useful inspirations for algorithms or swarm robotic systems.

Ants and honeybees species are much studied and exhibit many complex

behaviours that are robustly performed, effectively without central control. This is by

no means unusual, the use of swarm intelligence to solve the challenges of existence is

widespread. Other examples include: the synchronisation of firefly flashing in order to

provide a large display for the purposes of attracting mates; bird flocking and herding

of wildebeest to avoid predation; quorum sensing in colonies of bacteria to allow a

group response to changes in the chemical environment.

Biology provides many inspirations. Physics and Maths may yield yet more. The

Scottish biologist and mathematician Sir D’Arcy Wentworth Thompson (1860-1948)

was a great exponent of the role that physical processes may play in the morphological

development of creatures and their artefacts. The processes at all scales of life appear

complex. Yet uncovering the rules that underpin these processes may shed light on

the forms that life can take. For example, Thompson saw that the forms that soap

bubbles took as their surface energies pulled on each other until equilibria were found

bore resemblances to biological forms. Thomson suggested a number of examples

from nature that may gain their structure from bubble like growth mechanisms. These

included the structure of honeycomb, the cone cells in a fly’s eye, and the defensive

inorganic structures employed by certain sponges (Thompson, 1917). Time has
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demonstrated that his beliefs were not always correct. The structure of honeycomb:

its hexagonal packing and shape of end caps, are not formed from bubble interactions

(bees just build them, perhaps using rule-based methods) (Ball, 2011b). However

the packing of the four cones per ommatidia of a fly’s compound eye may be due a

mechanism akin to the bubble-like squeezing together of the cells as they grow. Ball

also documents work that notes that the spicule structures of sponges appears to form

via a mechanism whereby a bubble array is created and then the inorganic compounds

are allowed to permeate the interstices of the bubble matrix. The creature is leveraging

the free structure from what Ball refers to as a fossilised foam.

Examples of this interaction between species and the physics of the environment

abound. Velella valella is a small pleuston2 Cnidarian species somewhat like a jellyfish.

They float as flat, blue, jelly-like plates on the ocean surface. Beneath the surface

small tentacles hang waiting to catch prey. Above water they have a small vertical

fixed sail-like structure, angled to catch the wind, yielding their common name,

“by-the-wind sailor”. This provides the animal with its motive force. The species exists

in two forms, with differing chirality: the sail curved left or right. The action of the

wind upon each subgroup pushes them in different directions. As a result playwright

Nick Darke described the species as “sorted by the wind” (Darke, 2004). The interplay

of the wind and the animal’s physical structure results in a simple behaviour that

(presumably) is beneficial for the species.

A further example of a species exploiting physics for its gain is seen in the

mechanism by which the spores of mushrooms may be released when ripe. The

Buller’s drop mechanism (Money, 1998), consists of a small drop of liquid which sits

near the portion of the mushroom where the ripening spore sits. As it ripens sugars in

the cell wall act as a point where water vapour can condense. As this occurs the newly

condensed drop and the extant “Buller’s drop” coalesce. The resultant sudden change

in center of mass provides the force that expels the spore. Here the species exploits the

both the condensation point of water and forces available from a sudden shift of mass.

The boon of self-organization is that the emergent forms are, in some sense,

available for free. Structure emerges from interactions without the need for it to be

explicitly coded. An understanding of these rules and their application allow us the

possibility of re-using this free structure in robotic systems. Allowing swarms of robots

to self-organise into useful structures, to self-repair or to reproduce structures without

the need for explicit command and control is beneficial. Explicit control is often hard

2A species living on the surface of water.
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to achieve, particularly if it is required to be robust to changing environments. This is

important as swarms built with central control suffer from problems as the number of

individuals grow. Group fitness tends to fall off once numbers increase over some

threshold. Jimenez (2005) cited by Kernbach et al. (2009) shows that “increasing

the number of robots that work on one problem in parallel, does not lead to linear

or sub-linear improvement in the collective performance.”. Avoiding the need for

central control would appear to offer a solution for this. Şahin (2005) describes

how these emergent behaviours are flexible, scalable, and robust. These characteristics

are appealing to swarm robotics. The problem becomes how to select which simple

individual actions are required to achieve a given high level behaviour. We can use the

biological examples as our inspiration. This can be approached in two ways. Either, we

abstract from nature to develop algorithms that are useful, or we can simulate nature

more closely and hope that our results are both useful and provide biological validation.

Modular robotics is an active area of research and systems have been looked at

that involve re-configurable lattices, chains or swarms. Sets of robots act together

to bridge gaps, or modify their arrangement to form useful structures. Lattices and

chains exist as connected robots that modify the angles between their component parts

to achieve this. Whereas modular swarms exist as a set of independent units able to

rearrange themselves. The Swarm Chemistry system we study later, whilst explored

in simulation form, is of this latter category. It is hoped that Swarm Chemistry

provides a model that allows us to look at the automatic creation of morphological

artifacts. One of its appeals is that it is a simple model that provides insights into the

mechanisms at play in the self-organization of structure. A recent striking example

of swarm morphogenesis is Harvard’s Kilobot project (Rubenstein et al., 2014). This

uses a swarm of 1024 simple robots to form two-dimensional shapes robustly in a

decentralised manner using only local information, a defined starting position origin,

and neighbour to neighbour communications.

Biological swarms solve the problems of life e.g. how to efficiently locate and

exploit food, avoid predation, find shelter etc. Swarms are thus abstracted and used to

create algorithms that are useful. Many have been developed across different domains.

A partial list includes solutions to : Travelling salesman problems; network routing,

search and optimisation algorithms; information sharing over networks; and job shop

scheduling (Karaboga and Akay, 2009; Wikipedia, 2015a,b).

Whether embodied or abstracted we can use swarm inspirations to bootstrap

solutions to problem domains that we are interested in.
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2.6 On swarms in nature and the nature of swarms

The simplest organisms perhaps have little or no choice in how they navigate

through their world. Simple Brownian motion and fortuitous happenstance guide

their existence. More complex organisms come replete with sensors to perceive

properties in their environment, and the means to interact with the world. Braitenberg

(1986) imagined a sequence of vehicles with ever more complex sensorimotor linkages

and argued that increasingly complex behaviours in his vehicles could manifest as

a result. A simple example would use two bi-lateral light sensors cross connected

to motor driven wheels. The resultant robot would turn towards the strongest light

source. Walter Grey had earlier built “tortoise” robots that demonstrated these sort

of autonomous behaviours in embodied robots. In nature many behaviours can be

explained by an organism’s response to a stimulus. The term taxis is used to describe

this. It may be the result of a signal in the environment or via communication with

other organisms. For example it is known that lobsters locate food sources by being

guided by turbulent odour plumes in their environment (Moore et al., 1991). Studying

such mechanisms allows inspiration to be drawn and used to re-target the mechanisms

in, say, a robot controller (Grasso et al., 2000). Our interest is in taxis type response in

colonial groups and how they contribute to the colony. Many stimuli may be exploited.

Organisms respond to an enormous range of stimuli including: oxygen levels, electric

fields, sound and light. Responses may result in a range of movements e.g. toward,

away from, maintain a constant angle to etc. We discuss a few examples below.

2.6.1 Chemotaxis

The lobster’s ability to locate food sources from the plumes of chemical signals it

perceives in its environment is an example of chemotaxis. Chemical signals are

also used by many species that exist in groups. Many ant species, for example, use

pheromone signalling to aid their swarm’s coordination. The ant’s chemotaxis is driven

by the ants altering their own environment (this is called stigmergy, see section 2.6.6.

Ant colony foraging is an emergent behaviour. Individual ants leave their nest and

radiate outwards looking for food. An individual ant that finds food, transports it back

to its nest. It marks the route back with a chemical signal (pheromone). This acts

to recruit more ants to follow the path to the food. Each returning ant reinforces the

signal. This ensures that a found food source is exploited by the colony. When the

food is exhausted, no more pheromone is laid, the signal decays and ants cease to
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visit that site. Pheromone led ant foraging has been used as inspiration for a range of

algorithms proposed by M. Dorigo such as Ant Colony Optimisation and Ant Colony

System (Bonabeau et al., 1999). Route finding type problems may be cast as graph

networks: The nodes are locations to be visited, the edges labelled with the transit

costs. As virtual ants travel through network, the quality of the travelled path is

evaluated. At each node an ant chooses its next edge based on the relative strength

of the pheromones laid along the edges (usually via a stochastic process that preserves

a modicum of exploration of apparently poor routes). Successful ants (those who find

good paths) get to deposit pheromone along the paths they travelled. Finally signals

evaporate after each update. Parameters controlling stochasticity of path selection,

evaporation rate etc. control this family of algorithms. The algorithm demonstrates

that the biological assumptions are sufficient for useful behaviour to emerge.

Reproductive drivers may also lead to collective behaviours. Cellular slimemolds

exist as single celled organisms. When food is short the individual cells (of some

species) release a chemical signal. This causes nearby cells to coalesce into a swarm,

forming a slug-like composite creature. In this form it rises through the soil to the

surface. Some cells form a stalk, others become spores that may be released into the

air to spread further afield.

2.6.2 Thermotaxis

Temperature regulation is important to the survival of a honeybee colony. A hive needs

to be able to maintain its temperature well above ambient winter temperatures in order

to survive through to spring. When too cold, the bees will cluster, exercise their flight

muscles raising their body temperature. If too warm, the bees gather together and

flap their wings to promote airflow, or in extreme cases spread water over surfaces

and utilise its evaporative cooling. Jones et al. (2004) describes an experiment where

the temperature inside a honeybee hive is measured. Individually, honeybees are

poikilothermic (unable to regulate their temperature). A honeybee colony, however,

is homeothermic. The thermo-regulation thus emerges from their collective actions.

Honeybee temperature controls are also known to be used to thwart disease (Starks

et al., 2005). Bonabeau et al. (1999) describes bees forming chains by their combs to

induce a local increase in temperature to soften the wax to allow easier shaping. Brood

development requires an optimal temperature of ≈ 35◦C (Jones et al., 2004) to ensure

full development of their young. If the temperature varies outside this range for any
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lengthy time the development of the pupa and larva may be disrupted. Grodzicki and

Caputa (2005) detail experimental results looking at temperature preferences among

honey bees. Temperature preference varies depending on whether solo bees or groups

were tested. Other variations in preference were observed in younger bees (Kengyel

et al., 2009; Stabentheiner et al., 2010). The authors conducted a series of experiments

exploring the response of groups of honeybees to environments featuring different

temperature profiles. It was shown that young bees prefer warm areas, and when placed

in a linear thermal gradient will move at random with slight bias toward their ideal

temperature. However, a group of bees move randomly but on colliding with other

bees will pause before moving on. The duration of the pause was found to increase

as a function of temperature. As the bees moved the multiple interactions caused the

bees to group in the area of preferred temperature. An algorithm (BEECLUST) based

on these experiments has been applied to small groups of robots resulted in similar

clustering behaviours in response to light preferences (light acting as a temperature

proxy) (Bodi et al., 2009; Kengyel et al., 2009; Kernbach et al., 2013; Schmickl and

Hamann, 2011).

2.6.3 Phototaxis

Response to light seems universal. As an energy source it drives plant growth through

the day. In animals the evolution of single light sensitive cells to functioning eyes

appears to have occurred so frequently that the benefits it gives an organism must

be immense. Phototaxis in cockroaches is used to drive them to hide in deeper

recesses. Cockroaches also like to remain in groups. This latter characteristic has

been exploited to steer cockroaches to more accessible locations. In this interesting

experiment (Halloy et al., 2007) robot cockroaches are introduced to groups of real

cockroaches. When presented with multiple hiding places with different levels of

illumination, the robots can guide the real cockroaches to brighter areas than they

would favour on their own.

There are species of South-East Asian fireflies that are able to synchronise their

flashing in order to attract mates from further afield. Models describe the process

somewhat like the charging and discharging of a capacitor. Thus a firefly charges up

ready to flash, but if near neighbours flash, then the original fly resets the timer on

its charging process. As a result the flashing becomes synchronised. The swarm may

be spread across the branches of whole trees. The fireflies at one side of the tree are
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too far from those on the other to perceive them directly, but the accumulation of the

responses to local information coordinates the whole swarm. The simple algorithm

self-organises this high level emergent behaviour. It is assumed that the species’

females are now able to see the display from farther afield. Firefly flashing has been

utilised as inspiration for the Firefly Algorithm (FA). This is a metaheuristic (akin

to PSO) whose candidate solutions (its fireflies) flash to indicate the quality of their

current solution. Brighter flashes for better solutions. The fireflies are then attracted to

each other by the perceived brightness of the flashes (this being a function of absolute

magnitude and distance between the fireflies) (Yang, 2009).

2.6.4 Trophallaxis

Trophallaxis is the word used to described the mouth to mouth exchange of liquid

foods. This is seen in many species from vampire bats and birds to bees, wasps and

ants. In honeybees it provides a mechanism both for the feeding of members of the

colony and as a means to communicate hive wide information to the individual colony

members. Crailsheim (1998) reviews the multitude of uses that food exchange plays

in a hive. Young bees (1 day or so old) are unable to digest pollen directly and rely

on nurse bees to process it for their consumption. Drones and the Queen rely on food

given to them for survival. Foragers, returning with nectar, pass their load to other bees

for storage in the hive. This division of labour allows the foragers to maximally exploit

good food sources before they are discovered by other bee colonies. This exchange of

food is widespread through the colony and is likely to act as a flow of information

as much as a flow of food. Pollen gathering by pollen foragers is regulated by the

feeding of pollen to the foragers (Camazine, 1993). If pollen is plentiful in the hive

then foragers will be likely to be fed pollen. This inhibits their desire to gather further

pollen and they are likely to switch to collecting nectar instead. This information

flow has been used (Schmickl and Crailsheim, 2008) as the basis of a swarm robotic

foraging algorithm. Their agents picked up virtual food items and consumed them as

they moved. When they collided with other agents they exchanged information about

their current food levels. This provided the agents with a food gradient which to move

up (toward food) or down (toward home). They found that they needed to include

agents that wandered and exchanged information but that did not follow the gradients

in order to ensure that enough agents were present between the food source and home

for effective information exchange to occur.
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2.6.5 Aggregation and task allocation in swarm robotics

Swarm robotics is an active area of research. Models of insect interactions (as

noted above) are often used to inspire agents of such swarms. This allows the

agents to act independently accessing only local information. Yet, if suitably

designed, group goals may be achieved. It is not necessary to design the

high level complex behaviours if one can build low level actions whose multiple

interactions give rise to the desired goals. The previously mentioned thermotaxis

of the honeybee has been implemented in embodied agents to show aggregation

behaviours in an algorithm called BEECLUST (Schmickl and Hamann, 2011). Well

known algorithms derived from biological inspirations utilise their agent-agent or

agent-environment local interactions e.g. ant colony optimisation ACO, artificial

bee colony algorithm (ABC) (Bonabeau et al., 1999). Several review documents

highlight the extensive range of behaviours that may be implemented from swarm

robotic interactions, including: pattern formation; aggregation; chain formation;

self-assembly; coordinated movement; hole avoidance; foraging; self-deployment;

grasping; pushing; caging (Bayindir and Sahin, 2007; Mohan and Ponnambalam,

2009). Swarm robotic morphogenesis is an interesting field. Historically different

approaches can be placed in one of three categories: lattices of interconnecting

units; agents organising in chains or tree structures; or arising from mobile swarm

interactions (Yim et al., 2007). The various flocking algorithms discussed below fall

into the mobile approach and could be used to construct dynamic complex structures

or patterns.

2.6.6 Stigmergy

Stigmergy is a mechanism of indirect coordination between agents or actions. The

principle is that the trace left in the environment by an action stimulates the

performance of a future action (or decision), by either the same or a different agent.

Thus collective actions can arise through the interactions between individuals mediated

via the exchange of information stored in the environment.

An example of stigmergy arises in the food storage within honeybee hives. Seeley

et al. (1995) describes how from the age of about 12 days a bee leaves the central

broodnest area where it has been caring for young, feeding others, and cleaning. Now

it takes up the role of a food storer. It takes food from returning foragers and stores it

in empty cells. It will also pack pollen into cells. It will, as necessary, also take part in
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other behaviours, contributing to hive cooling, feeding other bees, building comb and

protecting the hive. These tasks are carried out until the bee is about 20 days old and

once again changes role and becomes a forager.

The bees become food storers by receiving food from foragers. They then look

to store the food in empty cells. This deposition mechanism is essentially stigmergic:

they simply respond to the presence of a laden forager by taking the food; or to the

presence of an empty cell by depositing their load. However, even such simplistic

following of deterministic rules can yield interesting group behaviours. Holland and

Melhuish (1999) describe an experiment using a robot swarm to move pucks in an

arena. By following simply deterministic rules, the combined effect is to cluster the

pucks into larger and larger groups. The ant colony optimisation algorithm is itself

stigmergic (Bonabeau et al., 1999). Grassé (1959), (cited by Ajith et al. (2006)),

describes the stigmergic rules followed by termites to construct their grand mounds.

Often stigmergy and taxis combine. Thus the royal chamber in termite colonies are

driven by pheromone gradients. These define the radii at which to construct the wall

of the chamber: essentially a command that says “move away from the queen until the

signal is less than some threshold”. The termites will then follow this radii until a gap

in the current build is locate and fill it in. The presence of built wall stops the termite

from depositing its load. Simulation of these rules captures the essence of this (Hill

and Bullock, 2015). Similarly Camazine et al. (2001) discuss a rule based model that

results in the structures seen in honeybee combs: a central brood area; surrounded by

pollen and then nectar concentric zones.

2.6.7 Quorum sensing

Quorum sensing is another biological process that has yielded useful inspiration. It is

another mechanism that uses local information and is seen in a variety of biological

sources (Miller and Bassler, 2001). It may be described as a stimulus/response

mechanism based on population density or of some form of group “voting”. In

bacteria it refers to the fact that gene expression can be switched depending on local

cell population densities. Vibrio fischeri is perhaps the most studied of these. Its

quorum sensing system results in the presence or absence of bioluminescence. This

bacteria exists symbiotically in a number of different creatures and serves differing

purposes. In the squid Euprymna scolopes it is used as an anti-predation device. High

concentrations of the bacteria exist on the creatures underside, shining downward,
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effectively hiding its shadow. In the fish Monocentris japonicus it is utilized as a

light to attract attention from potential mates. Other biological examples include

slimemolds and honeybees. Slimemolds respond to local chemical concentrations to

switch between amoeboid behaviour and slimemold form. When honeybees swarm

the decision for which new hive site is selected is driven by the number of scouting

bees promoting a particular new hive site rising above a threshold level (Seeley and

Visscher, 2004; Seeley et al., 2006).

2.6.8 Micro-rules

Another well known local interaction mechanism are the stigmergic microrules various

insects employ e.g. nest building in some wasp species (Camazine et al., 2001).

Both bees and ants engage in behaviours to sort their growing broods and to clean

their colonies (for instance corpse removal). These, it appears, are each based to

simple stigmergic driven rules (Deneubourg et al., 1991). This is an iterated stochastic

mechanism that describes a model where agents move in an environment with items

that need to be sorted or clustered. An unladen agent will pick up an item with a

probability

pp =

(

k1

k1 + f

)2

(2.1)

where f is the perceived fraction of items in the neighbourhood of the agent and k1 is a

threshold constant. A loaded agent deposits its item with a probability

pd =

(

f

k2 + f

)2

(2.2)

where k2 is another threshold constant.

Imagine agents in an environment with scattered items. The agents are tasked

with collecting the items and placing them in groups. If the initial landscape is

largely homogeneous then the stochasticity of the approach will ensure that some

clustering occurs. Once there is some inhomogeneity there will be positive feedback

to accelerate the agglomeration of items into groups. With suitably chosen parameters

(in equations 2.1 and 2.2) a laden agent will tend to deposit its load in the vicinity

of pre-existing clusters, growing it. Unladen agents will tend to ignore high density

structures and only pick up solitary items.

Various clustering and sorting patterns are achieved with variants of this approach.

Simple rules can thus yield interesting spatial structures. The approximately concentric
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rings of pupa, pollen and nectar that are formed in honeycomb can be recreated with

approaches like this (Bonabeau et al., 1999). A different model inspired by the growth

of the E. coli bacteria represents the cells as simple tubes. These grow and divide

periodically. This model has been shown to demonstrate fractal structures that mimic

those of real colony development Rudge et al. (2013).

2.6.9 Foraging

A important activity for any colony is the location and exploitation of food sources.

Earlier we saw that the pheromone laying of ants lead to exploitation of food in

nature and the use of abstracted models to yield solutions to optimisation type

problems. Honeybees also exploit food sources often over many kilometres of

distance. These distances, and the impossibility of laying persistent chemical signals

along bee flight-paths, mean that honeybees use a more complex agent to agent

communications mechanism. Over a hundred years ago the writer and amateur

naturalist Maurice Maeterlinck detailed an experiment (Maeterlinck, 1901). He placed

pieces of honeycomb on a surface. When a bee found it, he marked the bee with

a dot of paint. He tracked these bees back to their hive and trapped them on their

subsequent exit from the hive. The intent was to show that the marked bees once

inside the hive could communicate in some fashion with other bees the location of the

food source. If the marked bees were trapped but other bees would fly directly to the

honeycomb then, he reasoned, it would be clear that they had in some way received

information describing the route to the food. Rather unsatisfyingly only a single bee

did so. Maeterlink does not claim this as proof of bee to bee communication as it may

have resulted from random finding of the food source. However, this indicates that

Maeterlink was clearly thinking along the lines of bee to bee communications.

When a bee finds a food source it is able to assess its profitability to the colony. This

is a combination of the distance and nutritiousness of the source. If the profitability

is great enough then the foraging bee on return to the hive will advertise the location

of the food source to the hive in an attempt to recruit more bees to the exploitation of

the site. This is achieved using the famous waggle dance (Frisch, 1954; Seeley et al.,

1995). The dance is carried out on a vertical area of the hive close to its entrance.

This is known as the dance floor. Each dance consists of a short straight portion during

which the bee waggles its body and flaps its wings making a buzzing noise. At the

end of this portion the bee makes either a right or left turn and circles back to its
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start position and repeats the waggle portion. The turns alternate between right and

left. The dance encodes much information. The length of the waggle portion of the

dance correlates with the distance from the hive to the food source. The angle that

this portion makes to the vertical indicates the direction of the forage site relative to

the sun’s direction. The profitability of the site shows as the number of repeats of the

dance carried out. Whilst the bee is dancing other bees crowd round it, they ’read’

this information via the physical contact and/or auditory perception of the buzzing.

The scent of the flowers at the forage site from the dancing bee is also sensed by the

watching bees. Whether a bee dances or not is actually more complex and relates to

the quality of food source found, and the current food level of the hive and the current

nectar flow into the hive. Thus a bee from a good site may not dance if the hive is

currently receiving a lot of nectar already. The threshold at which a dance occurs will

adjust to the current state of the hive and its food gathering. Additionally there are

always several foragers that will simply scout for new sources. This assures that the

colony will continue to explore for new sources of nutrients. Seeley et al. (1991) details

a colony wide model. This models the numbers foraging, dancing and being recruited

as a series of differential equations. The growth and decay of bee numbers recruited

to food sources with differing profitabilities is compared favourably to experimental

results. This is a colony-wide model, rather than an agent based one. Erskine (2011)

presents a simple stochastic agent based model that achieves a similar result. Virtual

bees move on a lattice dancefloor. Returning foragers can recruit agents on adjacent

squares to their advertised forage site. For sites with higher profitability the recruitment

time is increased. In a real hive, at any given time there will be many bees dancing and

advertising different forage sites. Potential recruits do not however survey the range of

dances on offer in order to assess which of the many sites is the most profitable. Instead

they will typically follow a dancer for a few of its dances before being recruited to that

site. As the number of repetitions of dances is proportionate to a site’s profitability

the good sites will statistically attract a larger number of recruits, each of which may

subsequently also advertise the site. Such mechanisms appear to provide effective

balancing between exploitation of food sources and exploration for new sources.

2.6.10 Flocking

Many species demonstrate flocking behaviours. These arise from simple interactions

between the individuals of the collective. One characteristic that appears is that the
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swarm as a whole is capable of swift response to local threat. For example, a predatory

dolphin approaching a shoal of sardines provokes a system wide avoidance behaviour

in the whole shoal. Clearly the fish nearest the dolphin can see it and can turn to try to

avoid it. Fish within the shoal may not see the predator, but respond to their neighbours

direction changes. As these responses are swift the whole swarm appears to change its

direction near instantaneously. This rapid system-wide response is reminiscent of the

loss of length scales seen in critical systems. In such systems a minor perturbation can

be result in a response whose scale can be of any size (limited only by the size as the

whole system). We can ask whether at least some swarm behaviours benefit from the

collective operating at some form of critical point. The swarm systems we explore in

the following chapters are inspired by such flocking behaviours. Here we outline what

sort of behaviours these are and provide background to other flocking-based work. We

will return in the later chapters to provide greater detail relevant to the work presented.

There are a number of swarm algorithms that give rise to what may be described

as flocking behaviours. Craig Reynolds developed “Boids” in 1986 (Reynolds, 1987).

This was an artificial life program that simulated bird flocking motions. He proposed

what could be described as a kinetic interaction system. A swarm of independent

agents, each with continuous position and velocity states, would iteratively update

their states based on perception of its neighbours. Each agent would calculate the mean

position and velocity of its neighbours (defined within a certain range). It would then

adjust its own position in the following iteration by moving towards the mean position

of its neighbours (termed cohesion). It would similarly adjust its velocity toward the

mean velocity of its neighbours (termed alignment). A third rule would push the agent

away from any agent too close to it (termed avoidance).

Reynolds’ flocking algorithm has been subject to numerous variations, adding in:

assumed fear, or leadership roles, or desire to stay close to roost sites etc. It has

been shown (Feder, 2007) that starlings consider the number of neighbours (not a

neighbourhood radius) as important, and that the influence of neighbours was spatially

anisotropic. Nearest neighbour interactions combined with an energy minimization

argument has been used to generate line and Vee formation flocks (Klotsman and

Tal, 2011). The Reynolds model assumes that the elements of a flock (birds say)

are in some way self monitoring the distances and velocities of their neighbours and

calculating their next step. Biologically it is not clear that this is plausible. However

these algorithms have been exploited providing Tim Burton’s Batman Returns film

realistic bat flocks and wildebeest stampedes in Disney’s Lion King (Wikipedia, 2014).
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Convincing flocking models have a commercial value.

These homogeneous swarm algorithms have been further extended by combining

multiple “species”. This heterogeneous variant was initially proposed in a 2D

environment (Sayama, 2009). Each species has separate parameter sets to control

the scale of the cohesion, alignment and avoidance forces. Particles are also allowed

to accelerate and decelerate within certain ranges, and will tend to return to their

species’ preferred speed. It has been further developed within 3D spaces (Sayama,

2012a), and has used evolutionary approaches to discover interesting heterogeneous

swarms (Sayama, 2010, 2012b). The approach allowed colliding particles the

possibility of exchanging one set of parameters for that of the other particle. The

function used to control this exchange acted to favour one behaviour over another

e.g. If the colliding particle’s recipe is favoured over the collidee’s, then predator

like behaviours tended to emerge. Sayama has observed many differing behaviours:

blobs, amoebas, oscillators, rotating swarms, jellyfish to name a few. Even though

the particle interactions are purely local and kinetic, one can’t help using biological

metaphors when observing the swarm chemistry in action. It is interesting to wonder

how far these superficialities can been extended to become models. It is, however,

not easy to determine the correct low level interactions that will provide the desired

emergent group behaviour. This difficulty in designing the desired emergent outcome

is a central problem to swarm interaction researches, so this system offers a useful

environment within which to explore these issues. Chapter 5 presents work in this area

and will present more background to swarm chemistry and flocking.

The Self-Propelled Particle model (SPP) pre-dates the Reynolds algorithm and can

be seen as a simpler version (Ball, 2011a; Vicsek et al., 1995). In the pure kinetic

SPP the particles have a constant speed and on each update the direction of travel

is updated under the influence of each particle’s neighbours. They attempt to align

themselves with mean velocity of their neighbours. As particle density rises group

motions emerge. This raises the question of whether there may be simpler formulations

of swarm chemistry that exclude attractive and repulsive components. Whilst self

driven particles are uncommon in physics, they are typical in biological systems. The

emergence of cooperative motion in this model has analogies with the appearance

of spatial order in equilibrium systems. Dynamic variants of SPP which are derived

from consideration of Newtonian forces via attractive and repulsive pairwise particle

forces, and indeed other components (Levine et al., 2000; Newman and Sayama, 2008).

SPP may provide biological insights. Newman and Sayama explore the effect of a
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sensory blind spot on the emergent milling behaviour of the SPP model they used.

As the size of the blind zone increases the behaviour disappears, perhaps suggesting

a link between collective emergent behaviours and development of sensory apparatus

in biology (Newman and Sayama, 2008). An SPP model has been shown to provide

a model for cell sorting (Belmonte et al., 2008). The model is parameterised and two

cell types are modelled using different parameters. Mixtures of the two cell types are

shown to separate into inner and outer areas.

Artificial chemistries have many similarities to Swarm Chemistry. Again they are

concerned with aggregations of individual elements interacting. Here the swarms

are less abstracted, tending to have mass, volume and chemical interaction rules.

Whilst many formulations may be expressed as sets of differential equations there

are formulations that explicitly model the chemistries by mixing different ‘swarms’

of particles. Typically the interactions may be expressed as reactions rather than

kinetic interactions, but interesting structures can occur in such formulations e.g. the

semi-permeable membranes in (McMullin, 1997). The flip-side of this approach may

be described as Chemical Robotics. Here, real cell-like chemicals are designed to

ensure that their interactions cause desirable behaviours. In (Stepanek, 2010) one

species of particle is designed to flow against the gradient of a second species, perhaps

useful as a drug delivery mechanism. Regular dynamic motions can be designed

e.g. the peristaltic polymer gel of (Maeda et al., 2009). The Los Alamos Bug is a

project to develop a minimal protocell (Fellermann et al., 2007; Holmes, 2005) which

exhibits metabolism, heredity and containment. These are the elements the authors

propose are necessary for minimal life. The dynamics of the kinetic and structural

interactions are noted as being an important problem to understand (Fellermann et al.,

2007). Here a dissipative particle dynamic (DPD) model is adopted to explore this.

Interactions are derived from the inter-particle forces which contain three components

Fi j = Fc
i j +Fd

i j +Fn. These represent cohesive, dissipative and noise force components

between particles i and j and thus bare comparison with swarm chemistry.

2.7 Particle swarm optimisation

PSO is another flocking inspired system and we examine this fully in chapters 3 and 4.

Here we provide a suitable overview of PSO and the concepts of criticality that will be

covered more fully in the forthcoming chapters. It is often used to solve optimisation

type problems.
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Solutions to optimization problems typically involve the selection of a best element

(with regard to some criteria) from some set of available alternatives.

We are able to evaluate a potential solution F(Xn) which evaluates the solution at

position Xn in the problem space. If we have evaluated the problem at locations X0,X1,

. . . ,Xn i.e. we have values F(X0),F(X1), . . . ,(Xn). We want to have a method by which

we should select Xn+1 so that F(Xn+1) is a better solution.

red A random search will afford a chance of locating optimal solutions in finite

solution spaces if one is prepared to wait for a long time. Searching the problem space

with some form of gradient descent method will ensure that we find a local optima,

but not necessarily a global optimum. We describe the former case as one which is

pure exploration, no knowledge of the problem space that we find from the sampling

is utilized to guide our search. Gradient descent, in contrast, is using knowledge

of the problem evaluated at each sample point. Indeed we could say that it is only

exploiting this information as once it locates a local optima it will stagnate, unable to

jump out and explore more widely. Metaheuristics attempt to balance these two modes

of operation Clerc and Kennedy (2002).

A well known example of the sort of problems we discuss is known as the travelling

salesman problem. This is a discrete form of this problem type: Given N towns, what

is the shortest route that ensures all towns are visited exactly once? As the number of

towns increases this problem quickly becomes infeasibly long to solve via brute force

methods. A family of approaches known as metaheuristic algorithms can provide good

solutions to such problems. PSO is one of these. As noted earlier the pheromone trail

feedback of ant foraging can be used to solve this sort of discrete problem. Where

problems are continuous the particle swarm optimisation algorithm is a metaheuristic

that has enjoyed widespread use as a means to obtain solutions. Problems of this

sort are often of a high dimensionality d. A cost function maps locations in the d

dimensional problem space to a value indicative of how good or bad that solution is:

F : Rd→R. Initially PSO was proposed as a simple particle based system with limited

intra-particle communication but in order to overcome limitations in this system greater

inspirations from insects (bee and ant), birds (cuckoo), fish, and others have been

used. They share a pattern where multiple agents explore a problem space. They

share information about solutions each agent has found. The shared information is the

used to modify future behaviour. Additional bio-mimetic parallels are often cited to

justify additional mechanisms.

For a d dimensional problem, with a cost function defined such that F : Rd → R,
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PSO considers that each particle in its swarm represents a solution to a given problem.

A PSO swarm consists of a N particles each with a position xi and velocity vi, where

i ∈ {1, 2, . . . , N}. The position state is its position within the d dimensional problem

space, and represents a potential solution. Its velocity determines where the particle

will move next and is changed on each iteration of the algorithm in order (hopefully) to

arrive at better solutions or to track a dynamic solution. As well as position and velocity

each particle retains limited knowledge of previous locations within the problem space.

Each particle remembers the best location it has visited, pi and has knowledge of the

best location experienced by the whole swarm, g.

Simple rules are used to update the particle states (Kennedy and Eberhart, 1995)

vi(t +1) = ωvi(t)+α1R1(pi−xi)+α2R2(g−xi) (2.3)

xi(t +1) = xi(t)+vi(t +1) (2.4)

The velocity update is a linear combination of three contributions: An inertial term

parameterised by ω, a pull towards the personal best location parameterised by α1,

and a pull towards the global best location parameterised by α2. This is visualised

in Figure 2.1. Four red particles are shown on a problem landscape. Higher areas

in the landscape represent higher cost function values. One red particle shows the

three components of its update rule with three arrows. The red arrow shows its current

velocity. A blue arrow shows the vector to its personal best location (shown as a blue

point). A black vector points toward the global best location (shown as a black point).

The update for this particle on the next iteration is the weighted sum of these vectors

as defined in Equation 2.3. The symbols R1 and R2 denote diagonal matrices whose

non-zero entries are uniformly distributed in the unit interval.

The history of PSO has explored many variants. Chapter 3 will cover the

background in detail. Here we provide a brief outline of the sort of variants that have

been explored.

Parameter selection is a major component in determining whether the algorithm

finds good solutions. However other factors contribute to success. If a new global best

location is found this is communicated to the rest of the swarm. Essentially the swarm

is fully connected. Other topologies have been shown to produce improved results (at

least for certain problems) (Bratton and Kennedy, 2007). Other improvements have

been shown to be possible if more use is made of the knowledge gathered during the
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Figure 2.1: Particle Swarm Optimisation visualisation. The cost function is visualised

here as a surface. The peaks represent poor solutions to the problem, the valleys are

good solutions. The swarm particles, shown in red, measure the height of the surface at

their current location. On each iteration the particles move to new locations. We show

graphically the update rule being applied to a single particle (the one with the arrow

vectors attached), but the process is applied to each particle. The red vector shows the

particle’s current velocity. The blue dot is this particle’s current personal best location,

so the blue line is the force attracting the particle back to this location. The black dot is

the best location seen by the whole swarm. The black vector is this particle’s attraction

toward that point. A new velocity will be calculated by the vector sum of these three

components. The components are scaled by the parameters and stochastic variables

in the update rules in equation 2.3

swarm’s sampling of the problem space. Although again improvements are often only

available to specific problem types and lack generality. The attractive components in

the update rules are driven by the idea that good solutions are likely to be located near

other good solutions. Thus other mechanisms to drive local search of problem spaces

have been employed.

Even with these studies and modifications PSO continues to suffer from the need to

skillfully select parameter values for a given problem. If the swarm dynamics result in

an exploding swarm then the particles leave the region of interest and require artificial

constraints. If the swarm contracts too fast then premature convergence (stagnation)

may result in poor solutions being found. Much activity is therefore given to detecting

these conditions and taking steps to mediate their effects. Numerous bio-mimetic

analogies are employed to allow swarms to jump out of stagnation or constrain their

wilder divergences.
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2.8 Criticality

Criticality is a term used in Physics to describe the properties of systems at a

phase transition point (Binney et al 1992 cited by (Jensen, 1998)). Such systems

demonstrate interesting behaviours when tuned to this critical point. These differ

from the behaviour of the system not so tuned. Away from the critical point an

external perturbation to the system causes local changes only. For example an

ferromagnetic material will respond to a micro-magnetic perturbation with realignment

of its magnetic dipoles nearest the location of the perturbation. Repeating the

application of the external magnetic force will result in similar effects on each

occasion. However, if the material’s temperature is raised to its critical temperature,

then a similar external drive to the system will cause macroscopic realignment of the

bulk material’s magnetised state. The probability of the size of this realignment follows

a power law distribution. In this state repeated external perturbations can therefore

result in responses at all scales.

It has been noted that many systems appear to behave in a similar manner

but without the need for tuning. These kind of heavy-tail distributions of event

sizes are characteristic of systems as disparate as Earthquake magnitudes, word

usage frequencies in languages, neuron spike avalanches and the changing water

level in the Nile. In some way these systems must self-organise to their critical

point. Self-organisation refers to non-equilibrium systems that develop structures and

patterns in the absence of control or manipulations by external agents (Nicolis 1989

cited by Jensen (1998)).

Self-organized criticality (SOC) can be thought of a a property of dynamical

systems that have a critical point as an attractor. At this critical point macroscopic

properties of the system display the spatial and/or temporal scale-invariance

characteristic of the critical point of a phase transition, but without the need to tune

control parameters to precise values. The sandpile model (described below) (Bak et al.,

1988), and other similar models, have been used to address the frequent appearance

of 1/f laws in natures. This model both self-organises and shows power laws in its

avalanche size and duration distributions.

2.8.1 Sandpile model

The sandpile model is a cellular automata that shows critical behaviour. It provides a

simple to describe system that may be used to discuss the features of criticality.
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The model consists of a rectangular lattice of cells. Onto this grains of sand are

dropped at random. Initially the system is empty, so a grain lands and sits at rest.

As more sand is added the pile rises, at some locations the local gradient increases to

the point that the pile becomes unstable and a slip occurs: Grains from this unstable

locale redistribute to the adjacent cells. If a grain moved off the edge of the lattice

it is removed from the system. Still later, we find that many locations are now full.

A new grain, not only slips, but in so doing may cause its neighbouring cells to slip.

We see an avalanche. The avalanche ends when all cells in the system are once again

just below the threshold for local collapse. As this is an absorbing state of the system,

the ensemble naturally falls into this state, thus its dynamics appear self-organising.

We can think of this as a metastable state: the system is static but the piled grains are

straining against each other at the point of collapse. The system is not at a minimal

energy state. The system maintains itself in this state and shows a distribution of

avalanche sizes that follow a power law.

2.8.2 Critical systems: characteristics and features

The sandpile model, and other critical systems, share a number of features.

They are built from many components that interact locally. The interactions consist

of force or information exchange. The interactions take place internally (thus we may

not see the detail of what is occurring). When externally driven in some manner the

macroscopic behaviour of certain system events will be power law distributed. System

events may occur at all size and time scales. Practical considerations mean that such

distributions may be limited. In a sandpile no avalanche may be smaller than a single

grain. System size will tend to impose an upper limit on event sizes.

Such systems exhibit a separation of timescales. A slow external driving

perturbation (e.g. magnetic in the ferromagnetic material example, the sand grain drip

in the sandpile model), contrasts with the fast relaxation of the system. Such systems

often operate in this manner as there are thresholds in the system. We can imagine

the build of stresses between tectonic plates rising until some threshold is breeched,

releasing an earthquake.

2.8.3 Criticality in animal swarms

We propose that criticality in swarm systems is a mechanism which drives the creation

of useful patterns and behaviours in a swarm. As much inspiration derives from nature
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we might expect that biological observations would support this hypothesis. Empirical

evidence seems scant, perhaps due to the difficulty in recording and analysing the

movements of large numbers of individuals in a swarm.

Swarms (in particular birds and fish) often appear to react to perturbations within

their environment as if of one mind. The approach of a predator causes a flock of

birds to wheel and swerve to avoid the attack. An empirical study estimated the 3D

position and velocity states of the individual birds in starling flocks (Cavagna et al.,

2010) from video footage. Fluctuations in the individual bird velocities are shown to

correlate over distances far greater than the birds’ range of perception. This correlation

length increases linearly with flock size. Thus the swarm appears to demonstrate a

scale-free characteristic, at least in its flocking behaviour. This differs from bacteria

swarms where correlation length appears to decay exponentially with distance. Similar

results have been shown from the analysis of the 3D trajectories of swarms of several

hundred midges (Attanasi et al., 2014). Whilst tracking only for ten seconds it was

apparent that velocity fluctuations in the swarm were correlated over lengths much

greater than the assumed communication distances between midges. Their findings

actually suggest the swarm behaves in a slightly sub-critical manner. A flock, acting

criticality, allows the swarm to balance responses to the world. Too ordered and it can

be hard to adapt or respond to environmental changes. However, if the swarm is too

disordered then defensive responses to predators may not be strong enough (Chaté and

Muñoz, 2014). There may be other behavioural pairs that benefit from some balanced

position to achieve optimality.

It is exciting to think that ideas from the the physics of phase transitions could be

applied to biological structures, perhaps providing an organizing principle to swarm

behaviours.

2.8.4 On the potential for criticality in our swarm systems

Abstract flocking systems are not real swarms. Boids respond to all neighbours within

a given radius. Real birds cannot see backwards, so will not be influenced by all

their neighbours. Nevertheless similar principles may be explored by examining such

simplified models.

It seems reasonable to believe that critical points may occur with artificial flocking

systems as they share many of the desired characteristics. We look at both PSO and

swarm chemistry. Each consist of swarms of between 25 and 1000 or so particles. The
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particles interact using local information. The systems are parameterised, so if they

do not self-organise to an absorbing state that is also critical we have the possibility of

tuning them. In PSO the rate of new discoveries of global best locations will depend

upon the problem landscape. Typically, at least for complex functions, this rate tends

to slow as the algorithm runs. Late on new discoveries occur rarely, and may act as a

slow time scale external perturbation. Internally this information is shared between all

particles. The particle dynamics rapidly adjust to this modified force.

As a result of the modest size of the swarms, the power law distribution of event

sizes are typically truncated both at small sizes (due to miminum response) and large

sizes (due to small system size). This may impact the ability to show power law event

distributions concomitant with criticality.

In nature it is reasonable to think the some swarm behaviours should be critical.

Being critical is a way for the system to be always ready to optimally respond to an

external perturbation, such as a predator attack as in the case of flocks. It allows

the collective to balance two requirements in a flexible manner. Criticality is often

suggested as means by which such a balance may be obtained optimally. It is the

properties of optimality and the balancing of a system at a point poised between two

behaviours that appeals to us in this thesis. In the following chapters we will further

discuss the range of PSO variants, comparator metaheuristics, criticality and criticality

as applied to PSO.
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Criticality in particle swarm

optimisation as a random dynamical

system

3.1 Introduction

Particle swarm optimization and its variants enjoy widespread application in locating

optimal or near optimal solutions to complex problems. However the quality of

solutions found depend upon our ability to overcome the algorithm’s drawbacks: the

selection of suitable parameter values and the avoidance of the swarm’s premature

convergence. For a given set of problem functions one can empirically determine the

correct parameter values or the best restart strategy, yet these solutions may fail to be

optimal if presented with a different arbitrary function to solve. Here, the quasi-linear

swarm dynamics that arise from consideration of the random components of the

algorithm’s dynamic matrix are considered. The relationship between the algorithm’s

parameters at the edge between convergent and divergent swarm behaviours is derived.

The algorithm can be seen experimentally to operate at its best towards this margin.

In nature one observes many swarms: herds of mammals, schools of fish, flocks

of birds etc. They often demonstrate near simultaneous movements across their

populations such as sudden coordinated direction changes in the response to an

approaching threat. Those individuals closest to an oncoming predator adjust their

heading to avoid the encounter. These changed directions are communicated through

the swarm nearly instantly. Such a loss of length scales is reminiscent of state

changes in physical systems. Ferromagnetic materials if held at a specific temperature

30
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may show large responses to small local magnetic perturbations. Such behaviour is

described as being critical or showing criticality in its response. The behaviour of the

Particle swarm optimisation (PSO) algorithm shows analogous behaviour.

Knowledge and control of the dynamics of a PSO swarm is shown to be essential

to the use of this metaheuristic in solving optimisation problems. Whilst desired

execution duration and the nature of the problem space introduce constraints into the

process of locating solutions, it is from consideration of the properties of the product

of the stochastic matrices of PSO’s update rules that the dynamic capabilities of the

algorithm may be determined.

First the necessary background to PSO and criticality is explored in particular those

instances where the two have been previously combined. Next some previous attempts

to explore the theoretical dynamics of PSO are discussed. Whilst these offer much

insight into the behaviours that may be expected from the algorithm they have typically

ignored the multiplicative role of the random element of the update rules. These have

often been replace by their expectation values or viewed as a drunken walk about the

predicted dynamics of the system, enhancing the local search capabilities. It is shown

that they contribute to the dynamics of the swarm’s capabilities in a manner that alters

its expected behaviour.

In section 3.2 the products of random matrices are considered, in particular those

that represent the PSO algorithm. The locus of α and ω values that give rise to swarms

that will neither diverge nor collapse over time is derived. This curve matches the

observed behaviour of an unconstrained PSO swarm i.e. one where neither positional

or velocity constraints are imposed on the dynamic of the swarm.

3.1.1 Particle swarm optimisation

PSO is a metaheuristic method for obtaining solutions to search or optimisation type

problems. The aim is to locate the best solution to problems that may have high

dimensionality or parameterisation. The best solution is at a global minimum (or

depending upon problem construction a global maximum). How best to find the

solution? If time is no object then a random search will continue to locate improving

solutions. This is usually not the case! For simple problem manifolds e.g. a sphere

function, gradient descent may be all that is required to find good solutions. However,

real world problems are rarely as conducive to simple methods: they may exhibit

discontinuities or other potentially deceptive features.
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PSO has enjoyed much attention and widespread usage. Around 700 PSO papers

are grouped into 26 discernible application areas in (Poli, 2008). Google Scholar

reveals over 150,000 results for "Particle Swarm Optimization" in total and 24,000

for the year 2014. It was inspired by the cooperative behaviours of flocks of birds

or schools of fish to locate a problem’s solution (Kennedy and Eberhart, 1995). The

swarm is constructed from a number of particles, each of which occupies a position

within the problem space being evaluated. The problem is evaluated at each particle

location: essentially sampling the problem space. Additionally particles have velocity

states. New locations are computed by applying the particle velocities as an update to

their positions. Their velocities are then updated based on a sum of an inertia term and

terms that represent the sharing of local and global knowledge that the particles have

gleaned about the the problem space derived from their sampling procedure. Their

future dynamics are thus modified, in part, by the knowledge of the problem surface

that they are uncovering.

The position and velocity of particles, after random initialisation, are iteratively

updated using the following linear dynamic of the following form.

vi,t+1 = ωvi,t +α1R1(pi−xi,t)+α2R2(g−xi,t)

xi,t+1 = xi,t +vi,t+1 (3.1)

Here xi,t and vi,t , i = 1, . . . ,N, t = 0,1,2, . . . , represent, respectively, the d-dimensional

position and velocity vectors of the i-th particle in the swarm at time t. The velocity

update contains an inertial term parameterised by ω and includes attractive forces

towards the personal best location pi and towards the global best location g, which are

parameterised by α1 and and α2, respectively. The symbols R1 and R2 denote diagonal

matrices whose non-zero entries are uniformly distributed in the unit interval1 . The

number of particles N is quite low in most applications, usually amounting to a few

dozens.

In order to function as an optimizer, problems are cast as a non-negative cost

function F : Rd → R. F(x) = 0 defines x as an optimal solution of the problem.

In many problems, where PSO is applied, states with near-zero costs can also

be considered as good solutions. Indeed for a given problem function one can

1This implements a component-wise multiplication of the difference vectors with a random vector
and is known to introduce a bias into the algorithm as particles prefer to stay near the axes of the problem
space (Janson and Middendorf, 2007; Spears et al., 2010). We have retained this form of stochasticity
in our algorithm for the purpose of comparability.
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compare the success of different algorithms by considering which obtains the smallest

value solution for a given criteria such as the number of function evaluations or

computational cost etc. The cost function is evaluated at the state of each particle

for each time step. If F(xi,t) is better than F(pi), then the personal best pi is replaced

by xi,t . Similarly, if one of the particles arrives at a state with a cost less than F(g),

the g term is replaced in all particles by the position of the particle that has discovered

the new solution. If its velocity is non-zero, a particle will depart from the current

best location, but it may still have a chance to return guided by the force terms in the

dynamics.

The history of PSO has explored many variants. Instead of this fully

connected swarm, different connectivities have been shown to yield improved

performances (Bratton and Kennedy, 2007; Kennedy, 1998). However in all cases

the success of the algorithm for a given problem will often require careful selection of

the parameters ω, α1, and α2. Poorly chosen parameters can result in the stagnation

of the algorithm in a suboptimal location. Here we are using a simple PSO with its

original fully connected topology.

3.1.1.1 PSO Parameter Selection and Resultant Behaviours

In order to perform optimally, the algorithm has to ensure an appropriate mix of

local search, i.e. the exploitation of existing knowledge of the problem space, and

exploration of areas not yet adequately sampled. The optimal balance of exploration

and exploitation will depend on the nature of the problem space and to some extent

how long the algorithm is allowed to run for. In PSO this mix is achieved via the

parameterisation of the algorithm. PSO is often applied to problems with little formal

specification and trial-and-error search remains the only general option for parameter

tuning. Small ω and large α1 and α2 values (within limits) will encourage the particles

to converge toward the currently known good locations. Overdone, the swarm may

prematurely converge to a local minima and achieve no further improvements. This is

termed stagnation and is often deemed a failing of the algorithm. However this is not

always the case. If the algorithm is given a time limit then collapse to a local minima at

the end of this time may be the best action it could take. For example, (Worasucheep,

2008) utilises both failure to locate better solutions and loss of mean particle velocity

to calculate a trigger signal. Once the signal crosses a threshold a diversity increasing

procedure is initiated for all except the best particle. This is successfully applied to a

typical PSO algorithm. Sometimes the detection of stagnation can be used to trigger
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a change in the algorithm either by simply restarting the particles in freshly initialised

locations or used in a hybrid algorithm to switch behaviour to one more attuned to

exploitation.

Typically, PSO variants are tested against a number of test functions which have

known optima. A number of criteria for success are measured (including average error,

average number of iterations of obtain an optimum solution and minimum error).

Other approaches have looked to use information from all particles in the update

mechanisms. A comprehensive learning PSO (Liang et al., 2006) stochastically selects

from a particle’s best location or another random particle’s best location on a dimension

by dimension basis. All particles can thus influence the evolution of the swarm. They

claim to be good on multimodal functions but poor on unimodal ones. This highlights

the difficulty in finding a single strategy that succeeds against all criteria.

The algorithm’s parameters play a major role in the dynamics of the swarm. One set

of parameters may lead to a collapse in swarm diversity, another set to an exploding

swarm expanding beyond the confines of the defined problem space. Often this can

be controlled for. Particle velocities may be simply truncated to limit the motion

of the particles and reduce the likelihood of divergence (Kennedy, 1998). Similarly

the particle position states outside the problem space may be repositioned on the

boundary. Velocity multipliers, derived from the algorithm’s parameters, provide

another means to constrict velocities (Clerc and Kennedy, 2002). The mathematical

derivation of this constriction factor essentially limits the parameter values so that

divergence is avoided. Other parameter controls may be applied for instance via linear

decreases in the ω value as the algorithm progresses (Shi and Eberhart, 1999). Larger

ω values tend to encourage greater exploration by the swarm of the problem space. By

reducing this parameter’s value the swarm is guided to spend more time exploiting the

locations that seem promising. Other approaches to varying PSO’s parameters have

been explored including, random, increasing, decreasing and chaotic (Bansal et al.,

2011). These mechanisms will generally restrict a diverging swarm. However this risks

encouraging premature convergence. Other mechanism have thus been used to avoid

stagnation: by using particle repulsion (Chowdhury et al., 2013; Riget and Vesterstrøm,

2002); or random velocities (García-Villoria and Pastor, 2009). Other means to affect

the balance between exploratory and exploitative behaviours have been derived from

other biological inspirations. For instance animals such as bat (Yang, 2010), cuckoo

(Yang and Deb, 2009) and fish (Wang et al., 2005) using respectively, echolocation,

brood parasitism or leaping motion as inspirations. The cuckoo search algorithm also
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co-opts an earlier idea of using Lévy flights to drive local searches. Lévy flights are

random walks where the step-lengths are drawn from a heavy tail distribution. This is

suggestive of potential benefits arising from adding power-law distributed movements

to PSO.

Rather than modifying the algorithm’s parameters, one can alter how the search

near known good locations is conducted. Indeed the standard PSO algorithm adds

stochastic noise to the linear sum of the various knowledge terms. This has the effect

of allowing the particles to have a somewhat randomised search that is drawn toward

the known good locations. However, this has the tendency to focus searches along the

axes of the search space. A chaotic search was explored (Liu et al., 2005). Here they

combined a parameter update strategy with a chaotic local search mechanism. Particles

with good results had their ω parameter linearly reduced whereas particles with poor

results had their ω values increased to a maximum value. On its own this assured a

mix of diverse behaviours. The logistic function, xn+1 = µxn(1− xn), was employed

to create a chaotic search pattern about the location of the best performing particle.

Results compare favourably with many PSO variants, but it is not clear whether both

of these components are needed to achieve the results reported.

3.1.1.2 Alternative Metaheuristics

PSO is not the only metaheuristic to provide solutions to optimisation problems.

Algorithms may use an adaptive probability model to choose from a number of

strategies in a success-dependent fashion. Self-adaptive algorithms have been

proposed for differential evolution (Qin and Suganthan, 2005) and also for PSO (Wang

et al., 2011; Zhan et al., 2009). These hyperheuristic methods measure the behaviour

of the swarm and use this to determine which algorithm is most appropriate to run

at that particular time. A stagnating swarm may be switched to follow a ruleset

that favours increasing diversity, or a divergent swarm may be changed to encourage

future convergence. The TRIBES mechanism removes the velocity update component

of PSO and the inherent need to set parameter values (Clerc, 2010). Multiple

sub-swarms grow and shrink (removing the need to set a swarm size) depending on

performance. The swarms exchange information on good locations and new positions

are created by weighted sums of the positions of particles representing good solutions.

Recent successful approaches have been derived from the Covariance Matrix Analysis

Evolutionary Strategy (CMA-ES) (Hansen and Ostermeier, 2001). This technique has

performed well in recent benchmark tests, capturing top spots (Liao and Stutzle, 2013;
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Loshchilov, 2013). This is a (µ, λ) evolutionary strategy. A multivariate normal

distribution derived from the µ best parents are used to generate the next generation

of solutions (λ in number). After each iteration the distribution’s covariance matrix is

adapted to direct the future selection toward new and better solutions. The technique

may still suffer from premature convergence. However, detection of such stagnation

may be used as a signal to trigger algorithmic restarts or other procedures to increase

the diversity of the swarm to obtain good results (Loshchilov, 2013).

3.1.1.3 The Problem of Making Comparisons Between Algorithms

PSO is therefore only one of many potential algorithms proposed to solve a given

problem. To differentiate between them one needs to find a means to make

comparisons: to determine which is better. Of course better can mean different

things: best solution; best solution after N iterations; least computationally intensive

etc. Competition formats have proved popular method to establish the capabilities of

multiple algorithms. These typically consist of a suite of test functions that provide a

broad range of challenges, be it high dimensional spaces, multi-modalities, deceptive

landscape features etc. Competitors are expected to locate the best locations within

each function given a given budget of function calls. Statistical comparisons can then

be computed to provide a ranking of solution finding capabilities or of computation

load. One weakness of the competition format maybe that the winning algorithms,

are by definition, good at the functions included, but that other function suites may

yield different results. It has been shown using genetic programming techniques that

objective functions may be evolved that favour different algorithms (Langdon and Poli,

2007). Here PSO, differential evolution, CMA-ES, and simple hill climbing algorithms

were used. In each pairing of algorithms the authors were able to find problems that

favoured either of the algorithms. This does not negate the value of the competition

format, but does mean that it is necessary to show that the functions used in the format

map to range of real world problems, although intellectually wider function types retain

an interest.

In this chapter much of our empirical results are obtained using the 28

functions defined for the 2013 International Conference on Evolutionary Computation

(CEC2013).

An interesting approach, certainly augmenting knowledge of the algorithm’s

dynamics, is to seek to use the sampling of the problem space to characterise the

nature of the function being explored. This can be used to modify the future operation
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of any algorithm. Geometries of problem surfaces have been examined in this

context (Mersmann et al., 2011). Whereas Malan and Engelbrecht (2014) utilises

information-like measures to capture problem space features that can similarly be used

to guide selection of appropriate algorithms.

3.1.2 On criticality

Criticality in equilibrium thermodynamics is used to refer to the properties of a system

at a transition point between phases. At this point small perturbations can propagate

throughout the whole system (Jensen, 1998). Ferromagnetic materials, for example,

gain their magnetism ultimately via the alignment of magnetic dipole moments arising

from electron spin states. The state of any individual dipole may be influenced by

the magnetic field it finds itself in. If this material is at a high temperature, then the

thermal noise will be greater than the influence of small perturbations and no effect

is seen. At low temperatures the dipole moments are effectively frozen in whichever

state they find themselves in. Small external magnetic perturbations will have little or

no effect in either case. When the system is tuned by heating it to point between these

two states, then any small external magnetic perturbations are able to flip the state of

nearby dipoles. Further, these changes can propagate throughout the material resulting

in a chain of dipole flips. A characteristic of the such systems is that changes in system

states can exhibit power law distributions. The small external magnetic perturbation

will frequently cause small localised shifts in magnetic states and domain structures in

the material, but can also result in occasional large shifts in the magnetic state of the

material. In order to show this type of behaviour, this system needs to be very finely

tuned to a critical temperature.

More widely the term criticality may refer to any dynamical system which behaves

in a manner like this (Bak et al., 1988). Bak notes that there are many systems in nature

that exhibit similar power law type distributions. We see such heavy tail distributions

in the earthquakes described by Gutenburg-Richter law. Similarly power laws crop

up in: Zipf’s law in ranked distributions of word usage in English; fractal geometries

in nature; and 1/f type noise in physical systems. The ferromagnetic example above

requires tuning but it seems infeasible for all the occurrences of power-laws to require

such fine tuning. It is proposed that systems consisting of many interacting units

may evolve automatically into a critical state: effectively self-organising to a point

poised between order and chaos (Bak, 1997). No outside agent is required to tune the
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system. If perturbed such a system will respond with events that follow a power law

distribution, but will result in the system returning to its critical state.

One means to explore the properties of such systems may be explored by looking at

simple models such as the proposed sandpile model (Bak et al., 1988). This numerical

model imagines a square lattice grid: at each locale sand grains may be deposited.

As the sand pile grows due to the slow deposition of grains, the gradient between

grid locations can grow: each grain added adds +1 to the local gradient. If the

gradient and any location increases beyond some specified threshold (say 3) then the

grains at that location collapse. Four grains are redistributed to the adjacent squares

and the location of collapse in reduced by the corresponding amount (-4). Early in

the sandpile’s evolution the collapses are minor, however as time passes and grains

continue to be added, more and more locations increase toward the point of collapse.

Now a single added grain may lead to a collapse and as the grains are reallocated to

neighbours, those adjacent cells are found to also lead to collapse. The avalanche

triggered by a single grain may be small or large. Avalanche sizes in this model

are shown to follow a power law distribution. Similar dynamics have been noted

earthquake magnitudes (Olami et al., 1992), punctuated evolution (Bak and Sneppen,

1993), neuronal avalanches (Beggs and Plenz, 2003; Eurich et al., 2002; Levina et al.,

2007), and even rainfall (Deluca et al., 2015). The presence of criticality in a system

can be shown to optimise the system in some way. Shew et al. (2011) showed the

criticality of cortical neuronal avalanches results in optimal information capacity and

transmission. The functional benefits of critical dynamics for information processing

in the brain have been discussed, see the overview by Shew and Plenz (2013). These

studies motivate the present study and whether criticality can also be beneficial for

PSO’s optimisation and search capabilities.

In such systems, the presence of power laws in system event sizes imply that events

of any size are possible. Practical limits arise from the finite size of systems. If we were

to engineer critical dynamics into the swarm size of a PSO algorithm then we would

be assured that the swarm would sooner or later extend throughout the whole problem

space and thus avoid stagnation. A random search strategy would likewise avoid

stagnation, but our approach assures that the algorithm can still favour exploitation

of the problem space over exploration.

Previously there have been approaches to adding criticality to PSO. A sandpile-like

approach was employed by adding an additional counter to each particle (Lovbjerg and

Krink, 2002). If a particle came close to another it incremented its counter. Once
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over a threshold the particle relocated within the problem space and redistributed

its accrued value to other particles allowing avalanches to occur. It is somehow

elegant that feedback from the swarm’s own behaviour is used to modify the future

behaviour of the swarm. There was limited evidence that the swarm behaved in a

critical manner and the problem of setting parameter values remained. Richer and

Blackwell (2006) implemented a PSO algorithm inspired by the Lévy flight random

walk behaviour of many foraging animals. They modified a Gaussian PSO algorithm,

which performs velocity updates by drawing from Gaussian distributions scaled by

distance of the particle from local and global best locations, to use Lévy distributions

instead. The nature of this power-law approach produced a greater number of outliers

in a given problem space, resulting in a more powerfully exploring swarm. Their

results showed that this Lévy swarm outperformed both standard PSO and Gaussian

PSO approaches. The Bak-Sneppen algorithm (Bak and Sneppen, 1993) provides a

Self-organized criticality (SOC) model of punctuated evolution seen historically in

the number of species in the fossil record. This has been used to create a criticality

augmented PSO variant (Fernandes et al., 2012). The generated power-law distributed

random numbers are used directly to modify the velocity update parameters in a

statistically balanced way. Additionally, local search about the particle’s position was

driven by random numbers from the same distribution. This power-law distribution

may be created off-line adding little or no overhead to the algorithm. Favourable results

are demonstrated in comparison to standard PSO.

3.1.3 Our approach

As it is known that parameter selection can make a large difference to the performance

of the PSO algorithm a great deal of effort has been expended on locating the best

values for a given problem. As we have discussed speed of solution convergence or

the need to deal with different problems often requires that we search anew for values

to use for new challenges. Previous studies have examined the dynamics that arise

from consideration of the update rules.

An early exploration of the PSO dynamics (Kennedy, 1998) considered a single

particle in a one-dimension space where the personal and global best locations were

taken to be the same. The random vectors in equation 3.1 were replaced by their

averages such that apart from random initialization the algorithm was deterministic. As

each dimension is updated separately the system is cast as essentially one dimensional.
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Also as particle interactions only arise from the communication of updated global best

values one can consider the case where the global best is genuinely the optimum result.

No updates occur and the dynamics of a single particle can be studied alone. Varying

the parameters was shown to result in a range of periodic motions and divergent

behaviour for the case of α1+α2 ≥ 4. The addition of the random vectors was seen as

beneficial as it adds noise to the deterministic search.

Control of velocity, not requiring the enforcement of an arbitrary maximum value

as in (Kennedy, 1998), is derived in an analytical manner by (Clerc and Kennedy,

2002). Here eigenvalues derived from the dynamic matrix of a simplified version of the

PSO algorithm are used to imply various search behaviours. Thus, again the α1+α2 ≥
4 case is expected to diverge. For α1+α2 < 4 various cyclic and quasi-cyclic motions

are shown to exist for a non-random version of the algorithm.

In (Trelea, 2003) the analysis again considered the dynamics of a single particle in a

one dimensional problem space (unless a new global best location is found the particles

essentially act independently). A deterministic version of PSO, setting R1 = R2 = 0.5

was used for this analysis. The eigenvalues of the system were determined as functions

of ω and a combined α = α1 +α2 (and α1 = α2). This led to the derivation of three

conditions: When ω < 1, α > 0 and 2ω−α + 2 > 0 the particle would converge.

Harmonic oscillations occur for parameter conditions ω2+α2−2ωα−2ω−2α+1 <

0. Zigzag dynamics are expected when ω< 0 and ω−α+1< 0. The regions that these

conditions define in the ω : α parameter space overlap. Where parameter values lie in

more than one region we will see behaviours that combine these differing dynamics.

For example oscillatory motions whose amplitudes decrease as the particle converges

to a solution etc. As with the preceding papers the discussion of the random numbers

in the algorithm views them purely as enhancing the search capabilities by adding a

drunken walk to the particle motions. Their replacement by expectation values was

thus believed to simplify the analysis with no loss of generality.

Empirical evidence for the role of parameter selection in the capability of the PSO

algorithm to location solutions can be carried out. Whilst the algorithm is shaped by

three parameters it is often the case that α1 and α2 are assigned the same values. Thus

we can explore the parameter space by considering different pairs of ω and α. Clearly

if the ω value is greater than unity each particle’s velocity will tend to increase on

each update. The twin attractions of personal and global best locations will tend to

be overcome by the inertial term. The swarm will expand outwards. We can also

consider negative ω values. Again values less than negative one will also result in
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diverging swarms. Typical implementations of PSO usually set α values between 0 and

4. Larger or negative values are found to yield divergent swarms. For values within

these broad regions it is not apparent which values yield the best results. Locating good

parameter pairs for specific problems often involves a degree of trial and error. We can

explore PSO capabilities by repeatedly executing a simple variant of the algorithm for

each pairing of parameters in the α : ω space. With many repetitions and a suitably

large iterations budget for each run, results can be averaged to even out variations in

performance seen in individual executions. Fig 3.1 shows the cost function landscape

for a typical problem function. The xy-plane represents the position in parameter

space and the vertical position shows the average value solution for the algorithm. For

positive ω values between zero and one there appears to be a broadly banana-curve

shaped portion of the parameter space that results in the best performances. For

negative ω values the best pairings appear to have a linear relationship. Parameter

pairings that perform well occupy the regions in the valley of this surface plot. This

pattern consistently emerges over all functions. With different objective functions the

speed with which this picture emerges is variable. Not all locations in the valley are

equally good, nor is the variation between the foot of the valley and locations up its

slopes equivalent across all functions.

All responses are shown in Appendix A.

The analyses above do not appear to suggest that this curved relationship (for

positive ω) should exist between parameters.

Rather than make deterministic simplifications as discussed above, Jiang et al.

(2007) considering the expectation values and variances of PSO’s stochastic update

matrix. Rewriting the update rules in a recursive form, they calculated the eigenvalues

of the system for different parameter pairings, arguing that swarm stability exists where

the largest eigenvalue of the system is less than or equal to one. However this last

assumption is wrong. It is possible for sequences of updates whose eigenvalues are

greater than one to result in a stable system. We have to consider not just the size

of the eigenvalue, but the direction of the eigenvector at each update. The curve they

predict marks the locus of ω : α pairs they believed guaranteed swarm convergence i.e.

parameter values between this curve and the origin will result in convergence. Similar

approaches yielded matching curves (Poli, 2009) and utilising a weaker stagnation

assumption (Liu, 2014). We will refer to this parameter locus as the Jiang curve. This

curve is displayed for comparison in Figure 3.5.

Experimentally one can run PSO against a variety of functions and explore the
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convergence or otherwise of the swarms. This can then be compared with these

theoretical approaches. In Poli (2009) the comparison is made with very short runs

(30 iterations). Their intention being to perform a huge number of repeats in order to

confirm the statistics of the expectation and variance beliefs underlying their approach.

The algorithm was initialised already in a state of stagnation in order to confirm

that convergence occurs as predicted. In Liu (2014) iteration budgets were also

limited: their protocol uses 3100 function evaluations per run (about 155 iterations).

They studied a range of parameter pairings both inside and outside the Jiang curve.

Whilst those within the curve do converge, even those outside occasionally achieved

good results. It is shown in this thesis that this is due to the region of convergence

extending beyond the Jiang curve. As one approaches the locus of parameter values

proposed in this thesis one needs many more iterations to ensure convergence. Low

numbers of function evaluations will likely result in poor results. In Cleghorn and

Engelbrecht (2014b) PSO is run with experimental budgets of 2000 iterations (and 64

particles). Good agreement with the Jiang curve is shown. Their problem spaces are 50

dimensional making improved solutions even harder to find. They constrict diverging

swarms which will impact the dynamics. With much greater iteration budgets initially

diverging swarms may eventually return to a converging state. This thesis shows that

with iteration budgets well beyond 2000 the best performing parameter pairs often lie

beyond the Jiang curve.

The Jiang curve does not mark the division between convergent and divergent

swarms. The iterated use of the random factors R1 and R2 adds a further level of

complexity to the dynamics of the swarm which affects the behaviour of the algorithm

in a non-trivial way. Empirical results are shown later that demonstrate the existence of

best parameter values outside the Jiang curve. For this purpose we will formulate the

PSO algorithm as a random dynamical system and present an analytical solution for

the swarm dynamics in a simplified but representative case (Sect. 3.2) and compare the

theoretical predictions to results of simulation for a number of benchmark functions

(Sect. 3.3). Finally, in Sect. 3.4, we discuss the relation of our model to the original

PSO algorithm.

We present an analysis of the quasi-linear swarm dynamics that arise from

consideration of the iterated contributions of the random components of the algorithm’s

dynamic matrix. Our study shows that a region of the ω:α parameter plane results

in a curve dividing convergent and divergent behaviours i.e. the location where a

PSO swarm is poised between infinite exploration and collapse to stagnation. The
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form of the relationship between the parameters that generate this curve differs from

those suggested in previous analyses. Using an unconstrained swarm we show that

empirically the algorithm performs best when approaching this margin.

Deviations from stability represent the ability of the swarm to sample the problem

space. Such deviations are possible when poised on the curve, yet on average the

swarm will return from such deviations. Thus the swarm avoids the two extremes of

behaviour: convergence (and its stagnation) and divergence (and the inability to locate

good solutions). Near this curve the best performance of PSO is empirically confirmed

(for positive ω) to follow a curved relationship between ω and α =α1+α2, with ω≈ 1

at small α, and α ' 4 at small ω. Large values of both α and ω are found to cause the

particles to diverge leading to results far from optimality, while at small values for both

parameters the particles converge to a nearby solution which sometimes is acceptable.

Figure 3.1: Typical PSO performance as a function of its ω and α parameters. Here a

25 particle swarm was run for pairs of ω and α values (α1 = α2). Cost function here

was the d = 10 non-continuous rotated Rastrigin function (CEC2013). Each pairing

was repeated 100 times and the minimal costs after 2000 iterations were averaged.
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3.1.4 Matrix formulation

In order to analyse the behaviour of the algorithm it is convenient to use a matrix

formulation by inserting the velocity explicitly in the second equation (3.1). If we

consider particle states z = (v,x)T we can rearrange the update rules. In Eq. 3.2 we

stack the updates for a single particle.

(

vt+1

xt+1

)

=

(

ωvt +α1R1 (p−xt)+α2R2 (g−xt)

xt +ωvt +α1R1 (p−xt)+α2R2 (g−xt)

)

(3.2)

In Eq. 3.3 we separate the state dependent parts from those elements that are

independent of velocity or position.

(

vt+1

xt+1

)

=

(

ωId −α1R1−α2R2

ωId Id−α1R1−α2R2

)(

vt

xt

)

+α1R1

(

p

p

)

+α2R2

(

g

g

)

(3.3)

In terms of our state variable z = (v,x)T this is more generally as shown in Eq 3.4

zt+1 = Mzt +α1R1(p,p)
⊤+α2R2(g,g)

⊤ (3.4)

with

M =

(

ωId −α1R1−α2R2

ωId Id−α1R1−α2R2

)

, (3.5)

where Id is the unit matrix in d dimensions. Since the second and third term on the

right in Eq. 3.4 only change on discovery of better solutions it is often the case that

they will remain constant for many iterations. The analysis of the algorithm can focus

on the properties of the matrix M. In spite of its wide applicability, PSO has not been

subject to deeper theoretical study, which may be due to the multiplicative noise in the

simple quasi-linear, quasi-decoupled dynamics. In previous studies the effect of the

noise has largely been ignored.

3.2 Critical swarm conditions for a single particle

3.2.1 Outline of methodology

The following pages discuss the methods by which we can characterise the dynamics

of our PSO swarm. As this covers a number of stages it is worth providing an outline
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of the steps required.

1. We can consider the dynamics of a single particle as each particle is independent

unless a new global best position is found. To do this we consider the system as

a random dynamical system.

2. Initially we consider the dynamics of the particle whose personal best location

is equal to the swarm’s global best. Iterated updates may result in a converging

or diverging swarm. We determine the conditions which lead to a swarm being

stable i.e. marking the boundary between these two states.

3. State updates are linear. The dynamics are thus determined by the infinite

product of stochastic update matrices. Furstenberg and Kesten (1960);

Khas’minskii (1967) provide a solution for this. The system is characterised

by considering its Lyapunov exponent. To do this the probability distribution of

the particle or particles in the system’s state space is required (termed invariant

measure (Khas’minskii, 1967)). Additionally the distribution of stochastic

matrices is required. The form of both of these distributions is dependent upon

the parameters α1, α2, and ω. To calculate the Lyapunov exponent we utilise

the linear nature of the system update rules. Particles can be consider to sit on

a unit circle in the system’s state space. A single update may result in a move

inward or outward. Summing these movements over all updates weighted by

where particles are likely to be in the state space yields our Lyapunov exponent.

4. This can be estimated numerically using a method proposed by (Vanneste, 2010).

5. We discuss the impact of personal best not equal to global best may have on the

dynamics.

3.2.2 PSO as a random dynamical system

We study the dynamics of the particle swarm by looking at the behaviour of a single

particle as done previously in earlier analyses (Kennedy, 1998; Trelea, 2003). This can

be justified because the particles interact only via the shared knowledge of the global

best position such that, while g is unchanged, single particles exhibit qualitatively the

same dynamics as in the swarm. For the one-particle case we have necessarily p = g,

such that shift invariance allows us to set both to zero in Eq. 3.4. This gives us the
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following stochastic-map formulation of the PSO dynamics.

zt+1 = Mzt (3.6)

Extending earlier approaches we will explicitly consider the randomness of the

dynamics, i.e. instead of averages over R1 and R2 we consider a random dynamical

system. Each iteration of the algorithm generates a new matrix (Eq.3.5) with freshly

drawn random values for R1 and R2. The evolution of the swarm is thus determined

by the multiplicative effects of these matrices. To explore this we can replace the α1

and α2 with a new parameter α = α1 +α2, with α1,α2 ≥ 0 and α > 0. We rewrite the

update matrix (Eq. 3.5) as a new dynamic matrix M given by

Mα,ω =

{(

ωId −αR

ωId Id−αR

)

, Ri j = 0 for i 6= j and Rii ∈ [0,1] ,

}

. (3.7)

Here R in both rows is the same realization of a random diagonal matrix that combines

the effects of R1 and R2. The diagonal elements of R1 and R2 are uniformly distributed

in [0,1]. Thus the diagonal elements of α1R1 are uniformly distributed in [0,α1], and

the diagonal elements of α2R2 are uniformly distributed in [0,α2]. To understand the

distribution of matrices that can be drawn from Mα,ω we consider the sum of two

uniform random distributions of unequal range. This is is given by a convolution of

the two probability distributions. The solution is given as follows (Lytle, 2001; Ma,

2011)

PαR(s) =



















s
α1

α2−α1
α1α2

if 0 < s≤ α1

α2−α1
α1α2

if α1 < s≤ α−α1

((α2+α1)−s)
α1

α2−α1
α1α2

if α−α1 < s≤ α

(3.8)

if the variable s ∈ [0,α] and PαR(s) = 0 otherwise. Equation 3.8 expresses the solution

for the case where α1 ≤ α2. If α2 < α1 then the solution has the same form but with

α1 and α2 swapped. PαR(s) has a triangular shape for α1 = α2, a box shape in the

limits α1→ 0 or α2→ 0, and is trapezoidal for other pairings of α1 and α2. Thus the

selection of particular α1 and α2 parameters will determine the distribution matrices

drawn from M . We will call this distribution Pα,ω(M ). The shape of this distribution

is therefore dependent upon the choice of parameters. For α1 ≈ α2 deviations from the

theory may occur because in the multi-particle case p and g will be different for most
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particles. We will discuss this as well as the effects of the switching of the dynamics

at discovery of better solutions in Sect. 3.4.3.

3.2.3 Stability

We may describe the behaviour of the PSO swarm by considering whether it is

convergent, divergent or stable. This can be modelled by Lyapunov exponents. This

provides a means to describe the dynamics of a system. If one considers two particles

initially positioned arbitrarily close together and subject to the dynamics of the PSO

update rules then we may observe whether the particles move apart or move together

as the algorithm runs. Eq. 3.9 provides a model of our particles’ motions (Wikipedia,

2016). The λ value captures the nature of the dynamics. For two points at time t = 0 a

distance δZ0 apart we can relate the future separation of these points δZt . For swarms

where particles are converging the calculated λ is less than zero. For divergent swarms

λ is greater than zero.

δZt = eλtδZ0 (3.9)

To estimate the Lyapunov exponent for PSO we can use the methods of

Furstenberg and Kesten (1960); Khas’minskii (1967). As the system state is updated

in a linear manner we can consider the effect of these updates on particles on a

unit circle in the system’s state space. Each update moves the particles inwards or

outwards depending upon both where the particles are within the system’s state space

and the particular stochastic matrix drawn for the update. Clearly, with each iteration

of the PSO algorithm, we will generate a different set of random numbers. These

update particle states, given by Eq.3.6. The iterated behaviour of our swarm is thus

determined by the product of stochastic matrices drawn from set Mα,ω. We need to

consider how such products behave on average. Such products have been studied

for several decades (Furstenberg and Kesten, 1960) and have found applications in

physics, biology and economics. In terms of stability of the swarm we wish to

determine the α and ω pairs that result in swarms that are neither convergent nor

divergent i.e. those that give rise to a Lyapunov exponent λ = 0. The analysis below

derives this, alternatively one may use a numerical approach such as the resampled

Monte Carlo method (Vanneste, 2010).

Whilst a stable swarm does not discover any new solutions, its dynamical properties

are determined by an infinite product of matrices from the set Mα,ω given by Eq.3.7.
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This provides a convenient way to explicitly model the stochasticity of the swarm

dynamics such that we can claim that the performance of PSO is determined by the

stability properties of the random dynamical system described by Eq.3.6.

Since the equation (3.6) is linear, the analysis can be restricted to vectors on the

unit sphere in the (v,x) space, i.e. to unit vectors

a = (x,v)⊤/‖(x,v)⊤‖, (3.10)

where ‖ · ‖ denotes the Euclidean norm. In order to determine whether the swarm

is on average expanding, contracting or stable we assess on each iteration whether

particles move from the unit circle: outward for divergence; inward for convergence.

Unless the set of matrices shares the same eigenvectors (which is not the case here)

standard stability analysis in terms of eigenvalues is not applicable. Instead we will

use means from the theory of random matrix products in order to decide whether the

set of matrices is stochastically contractile i.e. does the swarm converge in the infinite

limit given the distribution of matrices generated for given parameter values. Figure 3.2

visualises the process. A particle in the PSO swarm may be shown on a unit circle in

the system’s velocity:position state space. On each iteration the algorithm’s update

rules move the particle elsewhere in this space. If the particle moves outward from the

unit circle then it is contributing to expansion of the swarm (as shown in the figure). If

moving within the circle then it is contracting. To assess the behaviour of the whole

swarm we will wish to sum these individual moves. At the end of the iteration we

project the particle back to the unit circle. As the system update is linear, the scale of

the system is not relevant. A matrix update that moves a particle 10% out from the

circle or 50% in from the circle does so whatever the size of the circle. All updates are

thus made relative to the unit circle for convenience. The process is repeated.

The resultant effect of the update shown in Fig 3.2 was to shift the position of the

particle on the unit circle. We need to consider also the location of the particle in the

system’s state space when an update is applied. One way is to think of having multiple

particles spread through the state space i.e. positioned around the unit circle. These

other particles, that started elsewhere, may have finished in other locations. However,

the dynamics of this system essentially treat the particles individually. Only when a

new personal best improves upon the swarm’s global best does one particle influence

the others. In general such improvements are rare and as the algorithm runs they tend

to occur less and less often. The stability of the system may thus be explored by only
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considering a single particle. Any given update of particles in a swarm’s state space

will result in some particles moving outward, or inward from the unit circle. The

likelihood of these moves is dependent upon where on the unit sphere a particle lies

prior to the update being applied. In order to assess the whole effect we therefore

need to determine the distribution of particles on the unit circle under the dynamics

of the update rules and the specific parameter values. Whilst updates are stochastic

some portions of the state space act somewhat like attractor states i.e. particles in these

portions of the unit circle are likely to remain there perhaps only rare matrix updates

will appreciably shift them elsewhere. Figure 3.3 visualises this for a single iteration

of a small swarm. The particles in the top right are moved outward during the shown

update. Their re-project will return them to a similar location. The remaining particles

move inward, by a larger amount. On this iteration the sum of these moves may suggest

the swarm is perhaps contracting a little. However, the particle in the bottom right will

re-projected to join the main group of particles. If this upper left location has an overall

tendency to be expansive then on subsequent iterations more and more particles may

be contributing more divergent behaviour to the overall swarm.

Figure 3.2: PSO update and projection onto unit circle process. Here we visualise the

process of a single particle in one dimension. (Left) shows a single particle sitting on the

unit circle in this state space. (Center) Applying PSO update rules results in the particle

moving to a new state which is not on the unit circle. If the particle moves out from the

circle it is expanding, if inward then contracting. (Right) the particle (whether outward

or inward moving) is re-projected back to the unit circle ready for the next update. The

process thus results in the particle remaining a single unit away from the state space

origin, but its position on the unit circle may change on each update.

We can estimate the stationary distribution of particles on the unit circle, να,ω (a),

by the following process. A number of particles, Np, are placed around our unit circle.

For each particle we create a set of new particle locations by applying the update

Eq 3.6 Nu times. Each update is re-projected onto the unit circle (as per Eq 3.10).

This gives us Nnew = NpNu new particles. We can then randomly sample Np of these
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Figure 3.3: PSO update and projection onto unit circle process. Here we visualise a

number of particles on the unit circle. To assess whether the whole swarm is expanding

or contracting we need to consider the effects of both the location on the unit circle that

each particles lies, and the dynamics of the PSO algorithm as applied to a particle at

that location. Here the PSO update rules are moving the lower particles closer to the

origin, so are contractile for those particles. However, the upper particles are moving

outward representing a divergent move. Summing the sizes and directions of these

moves gives an indication of the effect on the swarm for this iteration. However we can

see that when the moved particles are re-projected onto the unit circle there will now be

5 particles in the top right area.

and repeat the process. Different PSO parameter values result in different stochastic

update matrices (Mα,ω). These yield different stationary distributions of the particles.

Figure 3.4 shows a number of these. Equation 3.11 expresses this process for state

space of dimension d.

να,ω (a) =

∫
dνα,ω (b)

∫
dPα,ω (M)δ(a,Mb/‖Mb‖) , a,b ∈ S2d−1. (3.11)

where να,ω is the stationary distribution (called invariant measure by Khas’minskii

(1967)) of the system i.e. the probability distribution of the particles in the system

state space. For particles on the unit circle we derive this by considering their moves

expressed by the δ function on a given update. This in integrated over the distribution

of stochastic matrices dPα,ω (M).

The existence of the invariant measure requires the dynamics to be ergodic which is

ensured if at least some of elements of M have complex eigenvalues, such as being the

case for ω2 +α2/4−ωα−2ω−α+1 < 0 (see above, (Trelea, 2003)). This condition

excludes a small region in the parameters space at small values of ω, such that there

we have to take all ergodic components into account. There are not more than two

components which due to symmetry have the same stability properties. It depends

on the parameters α and ω and differs strongly from a homogeneous distribution, see
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Fig. 3.4 for a few examples in the case d = 1.

Figure 3.4: Stationary distribution να,ω(a) on the unit circle (a ∈ [0,2π)) in the (x,v)
plane for a one-particle system (3.6) for ω = 0.7 and α = α2 = 0.5 (black), 1.5 (green),

2.5 (blue), 3.5 (magenta), 4.5 (red). The distribution with peak near π is for α = 0.5,

otherwise main peaks are highest for largest α). The distribution να,ω(a) is plotted

vertically, against a horizontally.

The properties of the asymptotic dynamics of the PSO swarm can be described

based on a double Lebesgue integral over the unit sphere S2d−1 and the set

M (Khas’minskii, 1967; Tutubalin, 1965). As with Lyapunov exponents, the effect

of the dynamics is measured in logarithmic units in order to account for multiplicative

action.

λ(α,ω) =
∫

dνα,ω (a)
∫

dPα,ω (M) log‖Ma‖ (3.12)

If λ(α,ω) is negative the algorithm will converge with probability 1, while for positive

λ arbitrarily large fluctuations are possible. While the measure for the inner integral

in Eq.3.12 is the distribution of the random multiplier as given earlier in Eq. 3.8. The

stationary distribution ν on the unit sphere for the outer integral was given in Eq 3.11.

Critical parameters are obtained from Eq. 3.12 by the relation

λ(α,ω) = 0. (3.13)

Solving Eq. 3.13 is difficult in higher dimensions, so we rely on the linearity of the

system when considering the (d = 1)-case as representative. Figure 3.5 represents
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solutions of Eq. 3.13. Alternatively one may use a numerical approach such as the

resampled Monte Carlo method (Vanneste, 2010). This approach is described in

Appendix E. The figure shows three curves, representing three potential solutions to

this problem. Parameter pairs that lie inside a given curve give rise to swarms whose

largest Lyapunov exponent is less than zero. These swarms are therefore stable in

the sense that they will converge or become static. For parameter pairings outside

each curve, the swarm generated will have a largest Lyapunov exponent greater than

zero and will tend to explode. Parameter pairs that yield swarms with Lyapunov

exponents equal to zero are therefore stable in the infinite limit. However they can

make deviations into either divergent or convergent behaviours for extended periods of

time. We should note that this arises from the infinite product of our stochastic matrices

and is true whether we have one or many particles. PSO experiments use finite iteration

counts, so any individual trial may yield a set of random matrices whose product may

generate a behaviour that for the limited nature of a single experiment differs from this

theoretical approach. Averaged, though, we would expect this picture to emerge. The

set of parameter pairs on the curve result in a critical swarm, whose deviations are not

described by either convergence or divergence.

The solid black curve in Fig. 3.5 represents the solution for d = 1, α = α1+α2 and

α1 = α2. The black dashed curve is the solution for d = 1, α = α2 and α1 = 0. This

results in a larger variance rendering the dynamics less stable. This results in the locus

of stability moving inwards, towards the origin somewhat. The green dotted curve

shows the curve of stability predicted by (Jiang et al., 2007), and given as a polynomial

in (Cleghorn and Engelbrecht, 2014a). Our approach generated the black curves shown

depending on the relative values of α1 and α2. Experimentally it is shown below that

the outer curve, rather than the Jiang curve, represent the limit parameter pairs that

lead to convergent swarms.

Inside the contour λ(α,ω) is negative, meaning that the state will converge with

probability 1. Along the contour and in the outside region large state fluctuations

are possible. Interesting parameter values are expected near the curve where due

to a coexistence of stable and unstable dynamics (induced by different sequences of

random matrices) a theoretically optimal combination of exploration and exploitation

is possible. For specific problems, however, deviations from the critical curve can be

expected to be beneficial. In order to solve a practical problem there is usually a finite

iteration budget for the algorithm. In that case it is beneficial to allow the swarm to

converge at some point. Thus the swarm being somewhat sub-critical, to allow such a
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convergence is desirable. The degree to which this we should allow this is a function

of the iteration budget and is also related to the nature of the problem space being

explored.

Figure 3.5: Solution of Eq. 3.13 representing a single particle in one dimension with

a fixed best value at g = p = 0. The curve that has higher α-values on the right

(black solid curve) is for α1 = α2, the other curve (black dashed curve) is for α = α2,

α1 = 0. Except for the regions near ω = ±1, where numerical instabilities can occur,

a simulation produces an indistinguishable curve. In the simulation we tracked the

probability of a particle to either reach a small region (10−6) near the origin or to escape

beyond a radius of 106 after starting from a random location on the unit circle. Along the

curve both probabilities are equal. The green dotted curve is that predicted by (Jiang

et al., 2007) as given in (Cleghorn and Engelbrecht, 2014a) for comparison.

3.2.4 Personal best vs. global best

Due to linearity, the particle swarm update rule (3.1) is subject to a scaling invariance

which was already used in Eq. 3.10. We now consider the consequences of linearity

for the case where personal best and global best differ, i.e. p 6= g. For an interval

where pi and g remain unchanged, the particle i with personal best pi will behave like

a particle in a swarm where together with x and v, pi is also scaled by a factor κ > 0.
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The finite-time approximation of the Lyapunov exponent (see Eq. 3.12)

λ(t) =
1
t

log〈‖(xt ,vt)‖〉 (3.14)

will be changed by an amount of 1
t

logκ by the scaling. Although this has no effect

on the asymptotic behaviour, we will have to expect an effect on the stability of the

swarm for finite times which may be relevant for practical applications. For the same

parameters, the swarm will be more stable if κ→ 0 and less stable for increasing κ,

provided that the initial conditions are scaled in the same way. Likewise, if ‖p‖ is

increased, then the critical contour will move inwards, see Fig. 3.7. Note that in this

figure, the low number of iterations lead to a few erroneous trials at parameter pairs

outside the outer contour which have been omitted here. We also do not consider the

behaviour near α = 0 which is complex but irrelevant for PSO. The contour (Eq. 3.13)

can be seen as the limit κ → 0 such that only an increase of ‖p‖ is relevant for

comparison with the theoretical stability result. When comparing the stability results

with numerical simulations for real optimisation problems, we will need to take into

account the effects caused by differences between p and g in a multi-particle swarm

with finite runtimes.

3.3 Simulations

Metaheuristic algorithms are often tested in competition against benchmark functions

designed to present different problem space characteristics. To confirm the stability

results above testing against the 28 functions defined for the 2013 International

Conference on Evolutionary Computation (CEC2013) was performed. This contains

a mix of unimodal, basic multimodal and composite functions designed to provide

a range of challenges to various metaheuristic algorithms. In the competition the

domain of the functions in this test set are all defined to be [−100,100]d where d

is the dimensionality of the problem. We retain this only as the spatial region within

which the particles are initialised. We use 10-dimensional problems throughout. Our

implementation of PSO performed no spatial or velocity clamping. Particles are free to

travel where they wish so long as they are not clearly diverging. We define this as the

case where absolute particle positions or velocities are greater than 1012. In this way

we ensure minimal interference with the dynamics of the particles in motion. In all

trials a swarm of 25 particles was used. We repeated the algorithm 100 times, on each



Chapter 3. Criticality in PSO as a random dynamical system 55

Figure 3.6: The 5% best parameter regions for 20 (green), 200 (blue), and 2000 (red)

iterations. As we increase the number of iterations performed the best performing

parameter pairs shifts toward the critical curve. Functions costs were averaged over

100 runs and all 28 CEC benchmark functions. The curve of zero Lyapunov exponent

for N = 1, d = 1, α = α1 +α2, and α1 = α2 is shown in black.

occasion allowing 20, 200, 2000 iterations to pass before recording the best solution

found by the swarm. For the competition 50000 fitness evaluation were allowed which

corresponds to 2000 iterations with 25 particles. Other iteration numbers were included

for comparison. This protocol was carried out for pairs of ω∈ [−1.1,1.1] and α∈ [0,6]
This was repeated for all 28 functions. The averaged solution costs as a function of

the two parameters showed curved valleys similar to that in Fig. 3.1 for all problems.

For each function we obtain different best values along (or near) the theoretical curve

defined by the stability condition Eq. 3.13. There appears to be no preferable location

within the valley. Some individual functions yield best performance near ω = 1. The

global average performance over all test functions is better in the valley somewhere

between the extremes of ω = 0 and ω = 1, see Fig 3.6.

3.3.1 Combining the results from multiple cost functions

Whilst the stochastic map, Eq 3.6 defined the essential dynamics of the system, a real

swarm with many particles and many shifts in their pi and g values will cause small
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Figure 3.7: For p 6= g we define neutral stability as the equilibrium between divergence

and convergence. Convergence means here that the particle approaches the curve

connecting p and g. Curves are for a one-dimensional problem with p = 0.1 and g = 0
scaled (see Sect. 3.2.4) by κ= 1 (outer curve) κ= 10 and κ= 25 (inner curve). Results

are for 200 iterations and averaged over 100000 repetitions.

deviations that may make interpretation of results less clear. These effects will differ

for different problems. Exploration of a Sphere function will result in many early shifts

in the particle knowledge terms leading to quick agreement of a solution. It is less easy

to envisage the effects on more complex function surfaces. Therefore it is useful to

average these effects by combining the 28 functions used. The potential range of cost

values returned by each function varies widely. The Sphere function may return values

whose magnitudes may vary over many decades. Other functions have differences

between minimum and maximum values of only one or two decades. Simply averaging

the results from these will result in the values from poorly performing swarms acting

on a Sphere problem swamping the result.

To more fairly combine the results an estimate of the average value of each function

is used to normalise the results obtained for each problem function. The following

procedure was used: Each function was randomly sampled within the [−100,100]d

spatial domain. These data were used to estimate an average value of each function.

These average values, Vave are then used to scale the results. This is not quite

normalizing into the range [0,1] as poorly performing swarms may in fact do worse

than the average of random sampling. In practise results are broadly scaled to similar

ranges, see Figure 3.8.

V ′α,ω = (Vα,ω−Vmin)/(Vave−Vmin) (3.15)



Chapter 3. Criticality in PSO as a random dynamical system 57

At each α,ω pair PSO was executed 100 times for a given objective function. The

average cost function value at each pairing forms a set of results Vα,ω, the smallest of

which is Vmin. V ′α,ω is the approximately normalised set of results. We can use this to

sum and average across all objective functions as they are all now roughly in the range

[0,1], so no function dominates the results of the others.

Figure 3.8: Cost function values rescaled using estimate of average values. Left hand

image is for a Sphere Function. This cost function returns values that range over many

decades of scale. Right hand image is of non-continuous rotated Rastrigan’s Function.

This cost function returns a much more restricted range of values. Here, each function’s

average has been estimated and used to scale the results. Both now show results in

approximately in the range [0,1]. For each function our PSO algorithm is run 100 times

at each ω : α pairing. Each run lasted 2000 iterations. Both retain the characteristic

shape showing the best performing parameter pairings.

3.4 Discussion

3.4.1 Relevance of criticality

Our analytical approach predicts a locus of α and ω pairings that maintain the critical

behaviour of the PSO swarm. The precise shape depends upon these parameters and

the relative values of α1 and α2. Outside this curve the swarm will diverge unless

steps are taken to constrain it. Inside, the swarm will eventually converge to a single

solution. On the curve the swarm is poised between divergence and convergence. In

order to locate a solution within a problem space the swarm needs to converge at some

point, so the curve represents an upper bound on the exploration:exploitation mix that

a swarm manifests. For parameters on the critical curve, fluctuations are still arbitrary
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large. Therefore, sub-critical parameter values can be preferable if the settling time is

of the same order as the scheduled runtime of the algorithm. Additionally, if a typical

length scale of the problem is known, then the finite standard deviation of the particles

in the stable parameter region can be used to decide about the distance of the parameter

values from the critical curve. These dynamical quantities can be approximately set,

based on the theory presented here, such that a precise control of the behaviour of the

algorithm is in principle possible.

The observation of the distribution of empirically optimal parameter values along

the critical curve confirms the expectation that critical or near-critical behaviour is the

main reason for success of the algorithm. Critical fluctuations are a plausible means to

perform well in a search problem if little is known about the cost landscape apart from

perhaps certain smoothness assumptions. The majority of excursions will exploit the

smoothness of the cost function by local search, whereas the fat tails of the distribution

allow the particles to escape from local minima.

3.4.2 Comparison with earlier explanations

In figure 3.5 critical loci of parameter values are plotted. These, as discussed, are

derived from the treatment of PSO as a random dynamical system. Two curves are

plotted in black: one (inner) represents particles that have α = α2, α1 = 0; the other

(outer) represents particles with α = α1 + α2 and α1 = α2. We also plot a curve

(in dark green) showing an oft cited earlier analysis of swarm stability (Jiang et al.,

2007). Empirically we can show that this latter solution must be wrong. We note that

inspection of the curves in figure 3.5 suggest that there may exist a simple relationship

between our solution and that of Jiang et al. (2007). Visual inspection suggesting

that our outer curve’s vertical position may be 1.25 times that of the earlier solution.

Figure 3.9 replots Jiang’s curve with this multiplier applied. We can see that this

relationship is not true and indeed that the rescaled curve’s shape now appears different

enough that such a comparison is unlikely.

3.4.2.1 Curves of stability when viewed against average cost function results

Following the procedure in section 3.3.1 allows us to average the solutions achieved for

the 28 functions used. Figure 3.10 shows where in parameter space the best results can

be obtained (on average) across all functions. With lower iteration budgets available to

the algorithm better results occur where the swarm is able to converge early and exploit
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Figure 3.9: Our stability compared with 1.25 * Jiang’s curve. Our stability curves as

previously shown in figure 3.5 are compared to the green dotted curve showing the

curve predicted by (Jiang et al., 2007) multiplied in the α direction by 1.25.

whatever knowledge is gained early. As we allow greater iterations the algorithm,

as expected, benefits from slower convergence. This figure also shows the stability

curves predicted in this thesis and that previously presented by Jiang et al. (2007). For

the lower iteration counts all the good locations occur within both curves. With 2000

iterations some of the best locations sit outside the Jiang curve. These curves represent

the point beyond which we would expect divergence in the PSO swarm. We would

expect that good solutions should not occur beyond these curves. Of course as the

algorithm is stochastic it is feasible that some runs with parameters taken from outside

the curve may result in good solutions. However, this result is suggestive that the Jiang

curve may not be a good solution for stability prediction.

3.4.2.2 Curves of stability when viewed against individual cost function results

Average results for PSO run against 28 cost functions for 2000 iteration suggest that

the Jiang stability curve doesn’t contain all the best parameter pairings. Looking at the

best locations for individual functions (see Appendix A for examples) demonstrates
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Figure 3.10: Average cost function value as function of iteration budget. Iteration

budgets of 20 (green), 200 (blue) and 2000 (red) are shown. The points in the left

hand figure and the contours in the right hand image represent the 5% best parameter

pairings. The locus of stable parameter pairs as predicted by this thesis (black) and

Jiang (dark green) are shown.

that variability exists between cost functions. Certain problems yield good solutions

for parameter pairs further within the stable region than others. The effect of averaging

over all cost functions will thus tend to move the best locations further within the stable

region. The Jiang curve will tend to look like a better solution when viewed on average

rather than against more extreme results.

Yet the upper limit of stability should be the same for all functions. We can look

at specific functions to highlight this. Figure 3.11 shows that for some functions the

location of best results in the parameter space is outside the Jiang curve.

3.4.2.3 Curves of stability when viewed against detailed cost function results

Jiang‘s result appears at odds with the empirical results. Instead the critical locus

predicted by treating PSO as a random dynamical system appears to be consistent

with the results so far seen. All best results lie on parameter pairs within the locus of

stability predicted. We would expect that as iteration budget is increased we would

continue to move away from the Jiang curve, but remain constrained by the curve our

treatment predicts.

To explore this we chose two functions (7 and 21 in the CEC2013 set) and ran

the PSO algorithm for parameters pairs along a slice of the parameter space lying on

ω = 0.55. This ω value was selected as there was a large vertical separation between

the two proposed stability solutions. The α values were varied with a much finer
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Figure 3.11: Specific cost function value as function of iteration budget. PSO is run for

2000 iterations against CEC2013 functions 7 (left) and 21 (right). 5% best parameter

pairs are shown (blue dots), best parameter pair (red dot). As elsewhere this thesis’

stability curve is shown in black and Jiang’s in dark green.

granularity from 2 to 6. Again 100 repetitions were performed and iteration budgets of

20, 200, 2000 and 20000 were used.

Figure 3.12 shows the result. The stability solutions are shown as vertical lines. The

α stability position of our solution was estimated to be at α = 5. For the Jiang curve

the polynomial fitting the curve was used to calculate its position as α = 3.94. With

increasing iteration budget we appear to get closer to the stability limit and achieve

better results. It is also clear that results are better outside Jiang‘s predicted curve.
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Figure 3.12: Detailed cost function value as function of iteration budget. PSO is run

for 20 (red), 200 (yellow), 2000 (green) and 20000 (cyan) iterations against CEC2013

functions 7 (left) and 21 (right). The parameter ω = 0.55 throughout, α varies from 2 to

6. As elsewhere this thesis’ stability curve is shown in black and Jiang’s in dark green.

Note logarithmic scale used.
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3.4.3 Switching dynamics at discovery of better solutions

Eq. 3.4 shows that the discovery of a better solution affects only the constant terms of

the linear dynamics of a particle, whereas its dynamical properties are governed by the

linear coefficient matrices. However, in the time step after a particle has found a new

solution the corresponding force term in the dynamics is zero (see Eq. 3.1) such that

the particle dynamics slows down compared to the theoretical solution which assumes

a finite distance from the best position at all (finite) times. As this affects usually only

one particle at a time and because new discoveries tend to become rarer over time, this

effect will be small in the asymptotic dynamics, although it could justify the empirical

optimality of parameters in the unstable region for some test cases.

We can consider what happens when new discoveries are made. A weakly

converging swarm can still produce good results if it often discovers better solutions

by means of the fluctuations it performs before settling into the current best position.

For cost functions that are not ‘deceptive’, i.e. where local optima tend to be near better

optima, parameter values far inside the critical contour (see Fig. 3.5) may give good

results, while in other cases more exploration is needed. The iteration budget available

for solving a given problem may give some guidance on how subcritical we wish the

swarm to be. Small budgets should favour highly subcritical behaviour.

3.4.4 The role of personal best, present best and best ever

A numerical scan of the (α1,α2) plane shows a valley of low fitness values. For

negative ω values there is a linear relationship with α. For small positive ω values,

a roughly linear and relation with α1+α2 = const is seen, i.e. only the joint parameter

α = α1 +α2 matters. For large ω, and accordingly small predicted optimal α values,

the valley is less straight. This may be because the effect of the known solutions is

relatively weak, so the interaction of the two components becomes more important. In

other words if the movement of the particles is mainly due to inertia, then the relation

between the global and local best is non-trivial, while at low inertia the particles

can adjust their p vectors quickly towards the g vector such that both terms become

interchangeable.

At medium values of ω the difference between the solutions for α1 = α2 and for

α1 = 0 is strongest, see Fig. 3.7. In simulations this shows to a lesser extent revealing

a shortcoming of the one-particle approximation. Because in the multi-particle case,

p and g are often different, the resulting vector will have a smaller norm than in the
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one-particle case, where p = g. The case p 6= g violates the assumption of that the

dynamics can be described based unit vectors. While a particle far away from both

p and g will behave as predicted from the one-particle case, at length scales smaller

than ‖p−g‖ the contractile forces will tend to be reduced such that the inertia becomes

more effective and the particle is locally less stable which shows numerically in optimal

parameters that are smaller than predicted.

Finally, we should mention that more particles, longer runtime (as shown earlier)

as well as lower search space dimension increase the potential for exploration. They

all lead to the empirically determined optimal parameters being closer to the critical

curve than in the opposite cases where search in a relatively larger space benefits from

a local search such that smaller parameters are favoured. The effect of lower spatial

dimension can be seen in figure 3.13. The best parameter pairings moves closer to

critical curve as the problem space is reduced.

Figure 3.13: (left) The 5% best parameter regions for 2D (green), 5D (blue), and 10D

(red) problem spaces: For lower dimensional problem spaces the region shifts towards

the critical curve. Cost averaged over 100 runs and 28 CEC benchmark functions Zero

Lyapunov exponent for N = 1, d = 1, α1 = α2 (black).
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3.5 Conclusion

PSO is a widely used optimization scheme which is theoretically not well understood.

Existing theory concentrates on a deterministic version of the algorithm which does

not possess useful exploration capabilities. We have studied the algorithm by means

of a product of random matrices. This predicts parameter pairs that give rise to stable

swarms. Empirically optimal solutions occur as one approaches this curve of stability

from the subcritical side. A weakness of the current approach is that it focuses on the

standard PSO (Kennedy and Eberhart, 1995) which is known to include biases (Clerc,

2006; Spears et al., 2010), that are not necessarily justifiable, and is outperformed on

benchmark sets and in practical applications by many of the existing PSO variants.

Similar analyses are certainly possible and are expected to be carried out for some of

the PSO variants or other metaheuristics.



Chapter 4

CriPS: A near critical swarm

4.1 Introduction

The previous chapter showed that for the standard Particle Swarm Optimisation (PSO)

algorithm there exists a locus of parameter pairings that result in the swarm behaving in

a critical manner. The set of ω and α pairings defining this curve represent the division

between divergent and convergent behaviours. Empirically PSO performs best on the

sub-critical side. The proximity of parameters to this curve is dependent in part upon

the number of iterations that the algorithm is run for. Too close and there is a risk that

due to the algorithm’s stochastic nature a sequence of updates leads, by chance, to a

divergent swarm. Even if convergent the swarm may spend too little time exploiting

its knowledge of good locations. Too far from the curve and the swarm will stagnate

early.

However we also saw that the curve of stability is influenced by the distance

between a particle’s personal best and the swarm’s best values. The likely distances

between these points will be dependent, at least to some extent, upon the nature of the

problem space being solved. For a sphere function, for example, improvements are

only ever found for particles moving closer to the true global optima. As problem

surface complexity increases (in the sense of many hard to locate and spatially

dispersed optima) this is no longer true. A particle exploring further out may happen

upon a new best solution that will then be shared with the swarm.

For an unknown problem we lack knowledge regarding the likely distribution of

distances between personal and global bests that a PSO swarm will experience as it

attempts to locate good solutions. We know that we want to select parameters that

lead to a slightly sub-critical swarm for the number of iterations we wish to run for.

65
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Whilst we can select ω and α values for the standard PSO algorithm that ensure that

it is operating just below the critical region it fails to adapt to particular problem

spaces except by its reaction to updates to the best solutions found. Ideally we would

wish to gain the benefits of a convergent swarm, whilst avoiding stagnation. In this

chapter we modify the PSO algorithm online by using the swarms’ interaction with the

problem space on each iteration to adjust the parameters dynamically. We will nudge a

diverging swarm toward exploitation and a converging swarm to be more adventurous.

Having seen the benefits of criticality (or at least sub-criticality to PSO) we would like

our swarm to still manifest as critical (or sub critical).

The novel algorithm presented is called Critical Particle Swarm Optimisation

(CriPS). An earlier investigation suggested that one might potentially balance the

swarm behaviours by utilising a feedback signal (Cordero, 2012). However in that

approach the swarm used was spatially constrained and required careful tuning to

avoid stagnation. These limitations are removed here. A version of this work was

presented at the 2015 European Conference on Artificial Life (Erskine and Herrmann,

2015a). Here it is extended to fully describe the approach. The mechanism is shown

to to avoid the need to set any parameter to specific values. Additionally stagnation is

avoided. The behaviour of the swarm is not believed to be critical (or only rarely so)

but does exhibit a statistically balanced mix of exploitative and exploratory behaviours

in a somewhat sub-critical manner. There is some evidence that some degree of

criticality tuning could be performed automatically. However in chapter 3 we saw that

sub-criticality may be the preferred state for the swarm from a practical perspective.

Performance comparisons with simple PSO variants show good results. Performance

comparisons with more adept metaheuristic algorithms (such as those competing in

CEC2013) yield modest results. This is to be expected as CriPS’s performance may be

upper bounded by the best results achievable by standard PSO given its best parameter

settings for a given problem. The advantage of CriPS is that this setting need not be

known.

4.2 Approach

Particle Swarm Optimisation (PSO) makes use of a dynamical system for solving a

search task. Instead of adding search biases in order to improve performance in certain

problems, we aim to remove algorithm-induced scales by controlling the swarm with

a mechanism that is scale-free except possibly for a suppression of scales beyond the
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system size. In this way a very promising performance is achieved due to the balance

of large-scale exploration and local search. The dynamics of the swarm are derived

in part from the original PSO update rules, but also from modifications made to the

algorithm’s parameters via a feedback signal derived from the swarms interaction with

the objective function. The Critical Particle Swarm (CriPS) can be easily combined

with many existing extensions such as chaotic exploration, additional force terms or

non-trivial topologies.

The CriPS approach adjusts the algorithm’s parameters online. A range of

PSO variations were mentioned earlier in terms of velocity truncation (Kennedy,

1998), or velocity constriction (Clerc and Kennedy, 2002). There are many other

parameter modifications methods that have been explored, such as online decreasing

of ω to encourage exploitation of problem space knowledge (Shi and Eberhart,

1999). It has also been proposed to explicitly increase the diversity, e.g. by

using repulsion (Chowdhury et al., 2013; Riget and Vesterstrøm, 2002) or random

velocities (García-Villoria and Pastor, 2009). These approaches show potential

improvements over a standard PSO approach. Thus we may be motivated to suspect

that variation and/or control of the swarm during the algorithm’s execution may be a

useful strategy.

Our aim is to modify the swarm dynamics of the PSO algorithm such

that exploration and exploitation of the problem space are statistically balanced

automatically. We know that this can be achieved by the algorithm if its parameters

are appropriately set. For a black box problem we may not yet know the appropriate

settings. However, we can attempt to modify the algorithm’s parameters online such

that the swarm spends at least some time correctly set. Intuitively, we induce a more

stable behaviour should the swarm tend to diverge, but change the parameters of the

algorithm towards the unstable regime if the swarm is likely to collapse. In this way

we hope to achieve an optimal compromise between local fine-grained search near

candidate optima and large scale exploration. The swarm will stay near a critical

regime between stability and instability which sometimes is compared to the edge of

chaos (Langton, 1990), although the term criticality seems more suitable here.

Another motivation of our approach can be drawn from Bayesian theory. An

algorithm that traverses the search space in a step-wise fashion, specifies implicitly

or explicitly a prior for this step size, i.e. an assumption that steps should have a

certain length distribution in order to optimally approach the goal of the search. If

it is known that the goal is within a certain box, the optimal distribution will assign
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zero probability to lengths larger than the size of the box. If the objective function

is smooth, then often a minimal step size can be fixed which may help to speed up

the search. If, however, no information on the problem scale is available, then the

best choice to use a non-informative prior that allows for step sizes on all scales. The

shape of such a prior is given by a power-law with an exponent of unity, but also for

other exponents the step lengths can still be scale-free. The exponent may then be

determined by additional information on the dimensionality of the problem or from

the general structure of the objective function: If the objective has a number of smooth

local optima, then relatively more of the larger jumps are needed than for a function

that is shaped like a fractal. In the previous chapter determination of criticality arose

from consideration of the stability of the dynamics of the system. Here, we will adjust

the parameters of the algorithm as it runs, thus the equivalent approach is not possible.

Instead we can look for the presence of power-laws in the distribution of the sizes of

system events. We will study this in the results section.

While criticality in piles of granular matter happens around specific angles,

criticality of a swarm of particles can be described in a much easier way: the swarm

can only be critical if it neither collapses nor diverges. First the CriPS algorithm is

presented in section 4.3.1. The algorithm is compared to variants of the standard PSO

approaches (section 4.4.4) and with a set of more modern metaheuristic algorithms

(Sections 4.4.5 and 4.4.6). Whilst performance is clearly of interest, we are keen to

establish that our aims (the avoidance of stagnation, and a feedback driven mixing of

exploration and exploitation) are met. These are shown in sections 4.4.1 and 4.4.3.

Finally we will discuss our findings and address the relation to the theory of criticality

and to other optimisation algorithms that are based on criticality in section 4.5.

4.3 Methods

4.3.1 The CriPS algorithm

Our aim is to utilise the critical dynamics of the PSO algorithm. Rather than adding

additional parameters, or simply picking numbers from a power law distribution,

our algorithm uses the dynamic of the swarm itself as a signal to modify its future

behaviour. In order to maintain the responsiveness of the swarm to the objective

function, we will control the parameters based on a measure of the swarm’s diversity:

this being any measure that is indicative of the spatial extent to which the swarm’s
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particles are distributed through the domain of the problem space.

Multiple metrics can be chosen to efficiently analyse the dynamics of the swarm.

Simple measures such as the average distance between every particle of the swarm,

or the average distance between every particle and the centroid of the swarm are

both clearly concerned with the size of the swarm. The difference between two

successive such measurements will indicate whether the swarm is growing (diverging)

or collapsing (converging). A third possibility is to measure the average velocity norm

of all particles. This measures the dynamics of the swarm in a slightly different way.

The velocity of the particles is the core of the PSO algorithm. By measuring the norm

of the velocity, in essence, the ability of the particles to move around is being assessed.

The difference between two such measures quantifies the exploratory and exploitive

behaviour of the swarm. If the difference is positive, the swarm has a tendency to

explore, if the difference is negative, the swarm tends to exploit. For the results

presented here we use the average velocity norm as our measure of swarm diversity.

The change in the metric value between iterations provides a feedback signal to

update the parameter values. The feedback signal is given by:

∆S = S(t +1)−S(t). (4.1)

where S(t) is the mean velocity norm of the swarm’s particles at iteration t. Following

each iteration we update the parameters of the PSO algorithm using

ω(t +1) = ω(t)− ε f (∆S). (4.2)

α1(t +1) = α1(t)− ε f (∆S). (4.3)

α2(t +1) = α2(t)− ε f (∆S). (4.4)

Equations 4.2 through 4.4 ensure that each parameter is increased or decreased

in the same manner, and by the same amount. The swarm’s parameters are moved

along a gradient either out from the origin of ω : α parameter space or in toward

it. Moving outward, results in the swarm becoming more likely to diverge. Whilst

inward movement in parameter space makes the swarm more likely to converge. The

locus of critical parameter values is a continuous curve in this space, we can move

inward/outward in this somewhat arbitrary direction and be assured to cross the critical

curve at some point. As each parameter is being treated the same we introduce θ to
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refer to each and all the parameters (ω, α1, α2). Thus our update is

θ(t +1) = θ(t)− ε f (∆S), (4.5)

The function f (∆S) is used to scale ∆S broadly to the scale of the parameters. Here

we use a sigmoid function scaled by the problem space (though linear functions and

step functions have also been successfully used). This ensures that small changes in

swarm size have less impact on than large changes. The parameter ε ≤ 1 controls the

size of parameter updates. The rescaled sigmoid, we use here, is given by

f (∆S) = tanh

(

∆S

2σ

)

, (4.6)

where σ is a scaling factor that is related to the extension of the search space in units of

∆S. For our experiments we used the mean velocity norm of the particles as our metric

S, our σ is chosen to be less than or equal to the maximum extent of the problem space

so that the sigmoid (Eq. 4.6) returns either -1 or 1 for swarms where the mean velocity

norm exceeds the extent of the problem space per iteration.

Having selected the initial parameters (ω, α1 and α2) values, the update rule,

Eq 4.5, will apply the same magnitude change to each parameter on each update.

Recalling the PSO stability curves plotted on the parameter plane (Figure 3.5), we

can see that this will cause the parameters to move along a line approximately outward

from, or inward toward, the origin. So long as the parameters spend some time outside

the line we should be assured that the swarm spends some time being divergent, and

thus will avoid stagnation. Similarly, as long as it spends time within the line, it

will potentially be performing exploitation near known good locations. Empirically

we saw earlier that best performance was to be found inside the line, but that there

was no clear best parameter pair, so we have no reason to believe that we need to

make more complex deviations around the parameter plane to cross the stability line in

more than one location. The behaviour of the parameters under this regime is show in

section 4.4.2.
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CriPS is shown in Algorithm 1.

Algorithm 1: CriPS algorithm.
Input: Objective function F(), Maximum iterations I, Target Fitness value V

Output: Returns location of best evaluation of F() achieved in I iterations

Initialise:

minSize← lower limit of F()’s dimension in each dimension;

maxSize← upper limit of F()’s dimension in each dimension;

particle positions X← uniform random [minSize, maxSize];

particle velocities V← uniform random [minSize, maxSize] per iteration;

PSO parameter ω← 0.815;

PSO parameter α1← 1;

PSO parameter α2← 1;

CriPS parameter ε← 1;

CriPS parameter σ← maxSize - minSize;

calculate initial mean velocity norm S;

while Termination conditions are not met do

Standard PSO:

do standard PSO velocity update;

do standard PSO position update;

calculate new fitness values F(X);

update personal and global bests

CriPS additions:

calculate new mean velocity norm S’;

∆S← S’ - S;

foreach PSO parameter Θ do

∆Θ← ε × tanh
(

∆S
2σ

)

;

Θ←Θ−∆(Θ);

end

S← S’;

end

4.3.2 Discussion of the CriPS algorithm in action

We can consider the effect of our metric feedback on the behaviour of our swarm.
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4.3.2.1 Simplified velocity update

Consider a simplification of the PSO velocity update rule where the particles in the

swarm share the same personal and global best fitness values. This is shown in

equation 4.7, where α is twice the normal α1 or α2 values.

vi(t +1) = ωvi(t)+αR(g−xi) (4.7)

For a well evolved swarm this simplification may be true, however even if this

is not the case the particles are each being drawn to some compromise position

between personal and global best fitness locations. These compromise positions are

all within the problem space of interest, whereas the CriPS swarm, not being spatially

constrained, can be outwith this space. The simplification should not materially change

the following discussion. The new particle velocity is therefore the sum of an inertial

term (ωvi(t)), which is a vector in the direction of the current particle velocity, and a

vector that always points towards the location that is the currently best (or compromise)

location found.

4.3.2.2 The Mean Velocity Norm Metric

The algorithm uses a metric to inform us whether our swarm in increasing or

decreasing spatially. An increase in this metric indicates that on average the particles

in our swarm are accelerating. The rate of expansion or contraction will be increasing

or decreasing depending on the change in metric signal. If the swarm is shrinking,

but the particles are accelerating, then our positive signal will tend to indicate that in

the next few iterations the particles will zoom past the swarm centroid and resume a

swarm expansion. If the metric is decreasing then the velocity term will tend toward

zero. The remaining term, the pull toward the global best will remain non-zero, so the

tendency is for this to represent a shrinking swarm.

We note that only in the case of a zero size swarm with all particles at rest would

the metric also be zero and the swarm would be static.

4.3.2.3 The Application of Metric and its Resultant Contribution to the Swarms’

Dynamics

The feedback signal is mapped to the range [-1, 1] via a squashing function. A sigmoid

function is used, although the precise function does not seem important. The scaling
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to the interval [-1, 1] is used only to make the changes to parameter values occur at or

below the size scale of the parameters.

Excluding the state where the swarm is of zero size and at rest there are (broadly)

four categories of behaviour that can be considered arising from the combinations of

whether the swarm is expanding or contracting and whether the swarms’ mean velocity

norm is increasing or decreasing (equivalent to its particles, on average, accelerating

or decelerating).

1. Swarm expanding, particles accelerating. Particle acceleration means that we

have a positive feedback signal (ε f (∆S)). This is subtracted from the parameters,

ω and α. Reducing ω will result in the inertial terms of the update tend towards

zero. However, whilst the α value is also reduced, the fact that in an expanding

swarm the distance from the global best location and particle locations will tend

to be increasing means that the next velocity update will increasingly favour the

pull toward the global best. Thus the swarm will tend to start shrinking again.

2. Swarm expanding, particles decelerating. Particle deceleration means that

we have a negative feedback signal (ε f (∆S)). This is subtracted from the

parameters, ω and α. Increasing ω will tend to try to increase the velocity.

Increasing α and the fact that in an expanding swarm the distance from the global

best location and particle locations will tend to be increasing means pull toward

the global best should increase faster. As the direction of the velocity is pulled

toward the location of the global best, the increasing ω value will then act to

further this.

3. Swarm shrinking, particles accelerating. Here all terms will be reducing: both

parameters and the distance between the global best location and the particle

locations. What pull there is will tend toward the global best location.

4. Swarm shrinking, particles decelerating. The g−xi part is decreasing due to the

swarm shrinkage, but both parameters will be increasing. The contribution to

the velocity update will increasingly be from the inertial component.

4.3.3 Evaluation

To evaluate the behaviour of the CriPS controlled swarm, a comparison between this

algorithm and others across a range of typical problems is required. It is also of

interest to examine the CriPS swarm’s ability to avoid stagnation and to what extent
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it mixes exploratory and exploitative behaviours. CriPS is compared with our own

implementation of a standard PSO over a range of objective functions. It is also

important that the algorithm can be shown to perform reasonably across a range of

scenarios to encourage the idea that it may be useful to further develop the algorithm.

Further comparisons are made with other PSO variants’ published results (Bratton

and Kennedy, 2007; CEC2013; Fernandes et al., 2012). The functions used in these

comparisons are defined over finite spatial domains. CriPS is does not constrain the

positions or velocities of its particles so test objective functions are modified to return

poor cost function values outside the spatial ranges they are normally defined for. For

example an N dimensional Schwefel function returns a fitness value given by

f (x) =











418.9829N−
N

∑
i=1

xi sin(
√

|xi|), xi ∈ [−500,500],∀i.

1.7977×10308, otherwise.

(4.8)

This ensures that the PSO algorithm is free to explore anywhere within the N

dimensional space, but should only find prospective optima within the region of interest

(NB the value 1.7977× 10308, in Eq 4.8, is the maximum real number in Matlab)

The intent of our algorithm is that particles will spend part of their time looking for

solutions near to known good locations and part of their time searching farther afield,

perhaps in areas as yet under-explored. These modes can be thought of as exploitation

and exploration of the problem. In reality there in a continuum of possibilities from

one extreme to the other. It is likely that the ‘best’ mix of behaviours could be some

function of the topology of the problem space. We are looking to engineer a dynamic

that naturally achieves a mix of behaviours through the swarm’s interaction with the

problem space. Testing is performed with objective functions with known minima.

Real world functions have unknown best solutions so no assumption that our swarm

has found the optima can be made. The swarm should therefore to continue to explore

all of the problem space (at least sometimes). To characterise the swarm’s exploration

the spatial diversity of its particles can be used. We calculate the mean swarm distance

(MSD) from the swarm centroid as a measure of this. The larger the MSD the more

spread out in the problem space our particles are.

Algorithm comparisons were performed setting initial PSO parameter values of

ω = 0.815, α1 = 1.0, α2 = 1.0. These are deliberately poor choices when used with

standard PSO for the problem functions we are using. The intent was that CriPS should

gain no benefit from starting with good parameter values. As stated above we use the
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mean velocity norm metric. CriPS introduces two new parameters (ε and σ).

To demonstrate the behaviour of the CriPS swarm we will vary these new

parameters and explore their effect on the dynamics of the algorithm. In Section 4.4.1

the algorithm is shown to exhibit a bursting dynamic. The swarm remains small for

extended periods of time, before showing dramatic increases of size before shrinking

again. The scale of of these changes in size is greater than the problem domains.

Section 4.4.3 examines whether the swarm size changes follow power-law distributions

that would indicate critical behaviour.

For the comparison studies (Sections 4.4.4 onwards) we do not wish to introduce

an additional selection burden, so we set ε = 1 and σ to equal the maximum distance in

any one dimension of the problem space. For the domain of definition of the Schwefel

function ([−500,500]N), for example, this is 1000. Sections 4.4.4 through 4.4.6 present

the results of these comparisons.

4.4 Results

Below we show that the CriPS modified dynamics of the PSO swarm leads to a

bursting behaviour that ensures continued exploration of the problem space. The

dynamics are such that there is a mixture of swarm size changes (see Sec 4.4.1, the

frequency of which is somewhat power-law distributed (see Sec 4.4.3): with many

small exploitative changes, and fewer large exploratory moves. This shows that the

quasi-random changes of the size of the swarm follow a somewhat critical distribution

which implies a search across all length scales. In comparison with a basic standard

PSO approach our algorithm performs better across a range of objective functions both

in terms of obtaining better fitness values and in finding improvements more frequently.

Finally comparisons are made with results reported in the literature.

4.4.1 Coverage of search space

The CriPS algorithm introduces two new parameters. Although we would wish not

to be burdened by setting these, we start by exploring the impact they have on the

behaviour of our swarm. Different values of ε and σ will modify the behaviour of

the swarm. They both affect the size of feedback signal generated on each iteration.

Therefore we fixed σ to 200 (1/5 of the size of the Schwefel function’s problem space)

and ε to various values to tune the mix of exploration and exploitation. The swarm has
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25 particles.

We calculate the mean swarm distance (MSD) of the particles in the swarm from

the centroid of the swarm at each iteration. For the Schwefel objective function used

here our problem space is of size 1000 in each of 20 dimensions, the maximum distance

across our problem space is
√

20×1000≈ 4472. Figure 4.1 shows the time evolution

of the mean swarm distance from the swarm centroid. It is obvious that the swarm

can become larger than the problem size, allowing all locations to be reached. We

also see that the swarm spends larger periods of time in a compact form than in

an expanded form. This is equivalent to saying that the swarm spends more time

looking for better solutions near the known good locations than it spends exploring

the rest of the problem space. The dynamics of the swarm is nevertheless complex as

different particles explore or exploit the space in different ways, similarly the balance

of these behaviours is also different in different dimensions. The dimension- and

particle-specific dynamics are not synchronised as shown in the plots in Fig. 4.2.

Figure 4.1: Mean distance of particles from the swarm’s centroid for Schwefel objective

function. The swarm had 25 particles. The swarm shows a bursting type behaviour.

Maximum swarm size can be seen to be larger than the size of the problem’s region of

interest. Here our algorithm used ε = 0.15 and σ set to 1
5 of the problem space’s size.



Chapter 4. CriPS: A near critical swarm 77

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

500

1000

1500

2000

2500

3000

Iteration

D
is

ta
n

c
e
 fr

o
m

 c
e
n

tr
o

id

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

D
is

ta
n

c
e
 fr

o
m

 c
e
n

tr
o

id

Iteration

(a) particle 1 (b) particle 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

50

100

150

200

250

300

350

400

450

Iteration

D
is

ta
n

c
e
 fr

o
m

 c
e
n

tr
o

id

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

50

100

150

200

250

300

350

400

450

Iteration

D
is

ta
n

c
e
 fr

o
m

 c
e
n

tr
o

id

(c) dimension 1 (d) dimension 2

Figure 4.2: Swarm dynamic in detail. The top row shows two different particles in our

swarm. The distance of each particle from the swarm’s centroid is shown. Particle

behaviours are similar but not synchronised. The lower plots show the dynamics of the

mean swarm distance in two of the twenty dimensions. Again the behaviour in each

dimension is similar but unsynchronised. Here our algorithm used ε = 0.15 and σ set to
1
5 of the problem space’s size.

4.4.2 CriPS’s effect on parameter distributions

The CriPS algorithm modifies the PSO parameters on each iteration. For a converging

swarm it increases the parameters, for a diverging swarm it decreases the parameters.

On each iteration a change to the parameters is calculated and applied equally to all

of the PSO parameters (ω, α1 and α2). The algorithm’s parameters thus move along a

straight line in the system’s parameter space. Chapter 3 showed that there is a locus of

parameter pairings (ω and α = α1+α2) that result in optimal behaviour. CriPS should

ensure that parameter values spend some time allowing PSO to behave optimally to

have any chance of performing well. Figure 4.3 shows the set of parameter values used

by CriPS when solving a Schwefel function under the same conditions as section 4.4.3.

We plot this against the stability curves presented in chapter 3, so we can see that the
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parameter values cross these lines. Figure 4.4 shows the distributions of the ω and α

values. The peaks of these distributions lie near the curve of stability so is consistent

with optimal behaviour.

ω

-1 -0.5 0 0.5 1 1.5

α
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Figure 4.3: Example of CriPS parameter values. CriPS was run using the swarm

conditions used to assess system criticality (Section 4.4.3). The blue line shows the

locus of parameter values in the system’s parameter used by CriPS throughout the run.

The stability curves of chapter 3 are also displayed.
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Figure 4.4: Distributions of CriPS parameter values. CriPS was run using the swarm

conditions used to assess system criticality (Section 4.4.3). The distribution ω (left) and

α (right) parameter values are shown as histograms.

4.4.3 Assessment of criticality

One feature in critical systems is the presence of heavy tail distributions in certain

measures of those systems. True power-laws may only be apparent in infinite systems.
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Where systems are finite the distribution of events will be truncated at scales near the

system size. Thus to investigate the presence of power-laws in our swarm requires the

study of larger PSO systems. We increased the number of particles in the swarm to

250 and studied the dynamics for 50000 iterations. All executions located the target

minima to within a small error (< 0.001). In the previous section we saw that swarm

diversity showed variations between occasional large extensions and more frequent

periods of small extent. We can explore this by viewing the distribution of changes

in swarm size between iterations. Our diversity is measured by the mean swarm

distance from the swarm centroid (MSD), so we can plot the frequency of changes

in this (∆MSD). Figure 4.5 (top left) shows this on a log-log plot. Smaller ∆MSDs

occur more frequently than larger ∆MSDs. This figure gives limited evidence for a

power-law of the form

y≈ 83000x−2.3. (4.9)

The plot shows deviations from a potential power law at both small and large event

sizes. This is not necessarily unusual. The process of building the histogram for this

plot places data into bins. At the upper end of the distribution these bins containing

low incidence, rare events, tend to make the data appear noisy. One means of cleaning

this view is to plot the data a cumulative distribution plot (Newman, 2005). This can

make it easier to fit a straight line. We choose not to do this as our distribution is

unlikely to be a true power law. One reason to say this is that it is often required

that the distribution behaves linearly in the log-log plot for at least two decades

which is not reached here. Chapter 3 showed that if α and ω sat on the curve

of stability then the system behaved critically. As CriPS, on each iteration, makes

additive changes to these parameters the system is continually moved from super- to

sub- critical regions (and back). The system is not therefore truly critical and won’t

show a true power law. The apparent straight line in figure4.5 (top left) is likely

to only represent a pseudo-criticality, in the sense that it averages to a critical-like

behaviour (de Andrade Costa et al., 2015). However, we are interested here in the

practical effect of this mix of explorative and exploitative moves and whether they are

benefiting our algorithm.

If the straight line represents a true power-law relationship then we should suspect

that it is possible to tune the system via a parameter variation from subcritical, through

critical, to supercritical behaviours. The starting values of the parameters ω, α1, and

α2 appear to make little difference to the behaviour of the algorithm. This is to
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be expected as the algorithm is itself modifying these parameters. Instead we look

at the ε parameter. Large values (ε = 0.5) appear to result in a subcritical swarm

with a shortage of large swarm movements, whilst a small value (ε = 0.075) results

in an excess of large moves making the swarm appear supercritical. Finally the

equivalent plot for the standard PSO algorithm , shows that with the parameters used

the PSO swarm makes many large moves, favouring exploration over exploitation.

Different values for the parameters selected for the standard PSO may have improved

its performance. Fig. 4.5 shows these variants.

4.4.4 Comparison with PSO

The previous sections explored the nature of the CriPS algorithm. We showed that

stagnation is avoided and a mixture of swarm behaviours is achieved. In this section we

compare the performance of this algorithm with, first, our own PSO implementation,

and second, with the results of a number of PSO variants in Bratton and Kennedy

(2007)

In section 4.4.5 we will compare with other criticality inspired PSO variants.

Finally in section 4.4.6 we compare performance with a basket of metaheuristic

algorithms competing in a recent competition.

In each case we will endeavour to adopt the testing protocol used in the comparator

study.

4.4.4.1 CriPS versus PSO implementation

Our first comparison is made with our own implementation of a standard PSO

algorithm we use a range of problem functions : Sphere, Generalized Schwefel,

Generalized Rastrigan, Ackley and Generalized Griewank. We take these object

functions and their definitions from Bratton and Kennedy (2007)

Some algorithms can show a bias toward minima that occur at the problem space’s

origin or can be influenced by the initialisation positions of the particles (Monson and

Seppi, 2005). We therefore adopt the initialisation scheme from the same paper and

problem definitions i.e. 30 dimensional problems, 30 particles, algorithm run 30 times

for 10000 iterations.

For parameter selection for the PSO algorithm we choose two sets: ω = 0.7, α1 =

α2 = 2 and ω = 0.815, α1 = α2 = 1. The former set places a stronger weighting on

the attraction toward the learnt good locations, the latter set uses a larger inertial term
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weighting. The latter selection also matches the initial setting of parameters for our

CriPS algorithm.

Table 4.1 lists the mean fitness values and standard deviations obtained. Table 4.2

shows the results of statistical testing of these results. Our approach performs better in

all cases, except for a single test against the Sphere function, when it behaves as well

as the relevant PSO algorithm.

Function PSO PSO CriPS

(ω = 0.7, α1 = α2 = 2) (ω = 0.815, α1 = α2 = 1)

Sphere 7111 0.00031 0.00044
(12444) (0.00016) (0.0011)

Schwefel 5061 4072 2884
(1411) (253) (522.1)

Rastrigan 204.31 185.33 34.07
(67.53) (37.168) (23.1707)

Ackley 20.23 19.794 19.6452
(0.6614) (0.0585) (0.2503)

Griewank 94.08 1.262 0.02486
(181.1) (5.6732) (0.0288)

Table 4.1: Comparison of CriPS algorithm with our implementation of PSO. The mean

fitness and standard deviations (in parentheses) from 30 runs against each of the

objective figures for each algorithm is shown. In all cases the problems are defined

as 30 dimensional, there are 30 particles in the swarm, and each run is executed for

10000 iterations. The particles are initialised in the same volume as defined in the

Bratton and Kennedy (2007) paper. Here our algorithm used ε = 1 and σ set to the

size of the problem space. All objective functions return a value of zero at their global

optima.

The PSO algorithm, with ω = 0.815, α1 = α2 = 1 has the better results of the two

PSO settings. We use this to perform extended tests. These executed the algorithms

against the Schwefel function using an iteration budget of 50000. This was repeated

30 times. The CriPS algorithm achieved a mean of 2470.5 and standard deviation of

506.8. PSO achieved a mean of 4071.4 and standard deviation of 252.5. However, we

can look at how often improvements were located by each algorithm within each 10000

iteration segment of the run. The results, shown in tables 4.3 and 4.4 show that whilst

the frequency of locating improvements falls with increasing iterations our algorithm

continues to locate better solution more frequently.
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PSO 0 + + 0 +
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Table 4.2: Statistical comparison of CriPS algorithm’s results with PSO. The PSO

algorithm was run with two sets of parameters, as indicated. Better, or similar

performance is indicated by +, or 0 respectively. We use pairwise one sided Welch’s

t-test to make the comparison using a 5% significance level.

4.4.4.2 CriPS versus other PSO variants

Here we compare the performance of CriPS with the PSO variants used in Bratton and

Kennedy (2007). This compares three variants of the PSO over 14 objective functions.

For this initial exploration we select a subset of five functions, matching those studied

in the previous section, namely: Sphere, Generalized Schwefel, Generalized Rastrigan,

Ackley and Generalized Griewank. Experimental setup is as before: functions are 30

dimensional, each is executed 30 times, swarm size is 30 particles, execution duration

is 10000 iterations. Our algorithm utilises the same particle initialisation as before:

ω = 0.815, α1=α2=1, ε=1, and σ = one dimensional size of the problem space.

Table 4.5 shows the results obtained by the CriPS algorithm in comparison to those

reported by (Bratton and Kennedy, 2007). We perform one-sided pairwise Welch’s

T tests on the data to test for significant differences. The results of this statistical

comparison is presented in table 4.6. The CriPS algorithm outperforms the original

PSO algorithm for all functions. It outperforms the Gbest PSO against 3 of the 5

functions, and outperforms the LBest PSO in 2 of the 5 functions.

4.4.5 CriPS compared to other criticality inspired PSO variants

We also compare with the approach given by Fernandes et al. (2012). In their

paper they present a Bak-Sneppen criticality augmented PSO (BS-PSO) algorithm,

which they compare with several earlier algorithms. The BS-PSO algorithm uses the

Bak-Sneppen algorithm to generate power-law distributed numbers. These are used

to vary either the ω parameter on its own or together with the α1 and α2 parameters.

The latter approach generally gave rise to their best results. Additionally they used the
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Iteration range PSO CriPS

(ω = 0.815, α1 = α2 = 1)

0-10000 2255.1 2499.6
(342.1) (366.5)

10001-20000 4.1 1864.3
(9.5) (921.4)

20001-30000 1.1 217.7
(0.55) (449.7)

30001-40000 10.1 140.4
(45.8) (540.2)

40001-50000 0 20.3
(0) (82.4)

Table 4.3: Number of improvements located by CriPS versus simple PSO

implementation. Each algorithm is run 30 times, for 50000 iterations. The mean

and standard deviation (in parentheses) of the number of times an improved fitness

is located was counted within each 10000 iteration period. In all cases the problems

are defined as 30 dimensional, there are 30 particles in the swarm. The particles are

initialised in the same volume as defined in the Bratton and Kennedy (2007) paper.

Here our algorithm used ε = 1 and σ set to the size of the problem space.

same distribution to drive additional local search. We compare our CriPS algorithm

to their non-local search variant of BS-PSO. Their test conditions were to use 30

dimensional objective functions (Sphere, Rosenbrock, Rastrigan and Griewank) and

a two dimensional function (Schaffer). Following this comparator paper’s protocol 20

particles were used for 3000 iterations (1000 iterations for the Schaffer function). Each

objective function was tested 50 times. Particle initialisation and volumes over which

the problems are defined are as specified in Fernandes et al. (2012). Table 4.7 shows

the results of these trials. Table 4.8 shows the statistical comparison between the two

algorithms. Our algorithm outperforms the BS-PSO algorithm in 2 of the 5 functions.

Additionally the Rosenbrock function shows no statistical difference in performance

between the algorithms.

4.4.6 CEC2013 comparisons

The IEEE Congress on Evolutionary Computation conference regularly holds

competitions for metaheuristic algorithms used to solve optimisation problems. A

recent competition (CEC 2013) required algorithms to run against 28 different

benchmark functions designed to provide a wide ranging test of the capabilities of

the algorithms. Competitors were required to execute 51 runs against each function
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Table 4.4: Statistical comparison of CriPS algorithm’s results with PSO. The number

of fitness improvements located by each algorithm is compared. Better, or similar

performance is indicated by +, or 0 respectively. We use pairwise one sided Welch’s

t-test to make the comparison with a 5% significance level. NB This test is likely

inappropriate for the final two results as it assumes distributions are largely normal

which is not true for these.

in each of 10, 30 and 50 dimensions. Each run was limited to a maximum number of

evaluations of the objective function being solved (the limit being 10000 multiplied by

the number of dimensions). The full competition looked at computational efficiency

and the speed with which improving fitnesses were obtained. Here we make a

comparison of CriPS with the algorithms in the competition purely on the basis of

final fitness values achieved. As before we set parameters to ω= 0.815, α1=α2=1, ε=1,

and σ = one dimensional size of the problem space. CEC 2013 performed a ranking

exercise using the individual results for every function and algorithm. This allowed the

21 algorithms to be ordered from best to worst. The published results for the individual

algorithms only present the summary statistics (mean and standard deviations) for

each algorithm. Thus we base our comparisons only on the reported mean values.

We took the algorithms that finished in positions 1, 5, 10, 15, 17 and 21. For each

function:dimension pair the mean fitness achieved of these six algorithms and the

CriPS algorithm are ranked, best to worst. We then take the average ranking over the 84

results (28 functions run in each of the three dimensionalities). The aim is to provide

an approximation of where the CriPS algorithm may have placed in the CEC2013

competitions. Table 4.9 summarises the ranking result. The individual results are

presented in appendix C. Our estimate of the capability of the CriPS algorithm is that

it would be placed roughly between those algorithms that finished 15th and 17th in

the CEC2013 competition. Functions 1 through 7 of this competition’s challenges are

relatively simple functions where simple gradient descent may be a useful approach.

As our algorithm makes no use of such approaches it does poorly by comparison with

these functions. Individual runs may result in a good solution being found: CriPS
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Function PSO Gbest PSO Lbest PSO CriPS

Sphere 2.7562 0.0 0.0 0.00045
(0.0448)1 (0.0)1 (0.0)1 (0.00114)2

Schwefel 4211 3508 3360 2884
(44)1 (33)1 (34)1 (522.1)2

Rastrigan 400.7194 140.4876 144.8155 34.0739
(4.2981)1 (4.8538)1 (4.4066)1 (23.1707)2

Ackley 20.2769 17.6628 17.5891 19.6452
(0.0082)1 (1.0232)1 (1.0264)1 (0.25027)2

Griewank 1.0111 0.0308 0.0009 0.02386
(0.0031)1 (0.0063)1 (0.0005)1 (0.02879)2

Table 4.5: Comparison of CriPS algorithm with those reported in (Bratton and Kennedy,

2007). Each algorithm reports the mean fitness from 30 runs against each of the

objective figures. Additionally the 1standard errors or 2standard deviations are reported

in parentheses. In all cases the problems are defined as 30 dimensional, there are 30

particles in the swarm, and each run is executed for 10000 iterations. The particles

are initialised in the same volume as defined in the Bratton and Kennedy (2007) paper.

Here our algorithm used ε = 1 and σ set to the size of the problem space.

CriPS vs Algorithm Sphere Schwefel Rastrigan Ackley Griewank

PSO + + + + +
Gbest PSO - + + - +
Lbest PSO - + + - -

Table 4.6: Statistical comparison of CriPS algorithm’s results with those reported in

(Bratton and Kennedy, 2007). Better, or worse performance is indicated by +, or −
respectively. We use pairwise one sided Welch’s t-test to make the comparison with a

5% significance level.

frequently solving the Sphere function with solutions decades below the considered

zero of 10−8. An occasional failure results in a much larger mean solution. This derives

from the algorithm exploding out to explore the problem space when logic would

suggest that simply exploiting gradient descent would be the best course. We could

tune the parameters to reduce the bursting of the swarm and improve its performance,

but the aim was to be parameter free. Removing the simpler functions these from the

test set elevates CriPS into the 3rd quartile of results. We also note that for function 8

CriPS appears to win.
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Function best non-local search BS-PSO CriPS

Sphere 0.0 0.0030
(0.0) (0.0052)

Rosenbrock 85.6 73.7832
(79.8) (118.864)

Rastrigan 202 173.5997
(41.6) (39.4008)

Griewank 0.0165 0.03978
(0.0224) (0.0485)

Schaffer 0.00555 0.0
(0.0048) (0.0)

Table 4.7: Comparison of CriPS algorithm with those reported in (Fernandes et al.,

2012). Each algorithm reports the mean fitness from 50 runs against each of the

objective figures. Additionally standard deviations are reported in parentheses. In

all cases the problems are defined as 30 dimensional (except the two dimensional

Schaffer function), there are 20 particles in the swarm, and each run is executed for

3000 iterations. The particles are initialised in the same volume as defined in the

Fernandes et al. (2012) paper. Here our algorithm used ε = 1 and σ set to the size

of the problem space.

4.5 Discussion

The CriPS algorithm employs feedback from the swarm’s exploration of a problem

space to modify the standard PSO’s parameters. Interesting swarm dynamics were

explored. Comparisons with standard PSO and leading metaheuristics have been

conducted. We discuss this below and speculate on future directions.
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best non-local search BS-PSO - 0 + - +

Table 4.8: Statistical comparison of CriPS algorithm’s results with those reported in

(Fernandes et al., 2012). Better, worse or similar performance is indicated by +, − or

0 respectively. We use the pairwise one sided Welch’s t-test to make the comparison

with a 5% significance level.
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Algorithm CEC 2013 Average

position ranking

NBIPOP-aCMA-ES (Loshchilov, 2013) 1 1.95
NIPOP-aCMA-ES (Loshchilov, 2013) 5 2.35
CDE:b6e6rl (Tvrdík and Polakova, 2013) 10 2.88
JANDE (Elsayed et al., 2013b) 15 4.86
CriPS n/a 4.96
TPC-GA (Elsayed et al., 2013a) 17 5.51
PLES (Papa and Silc, 2013) 21 5.50

Table 4.9: Summary of the comparison of CriPS algorithm with CEC 2013 competition

algorithms. Algorithms placed 1, 5, 10, 15, 17, 21 in the competition form the basis of

this comparison. The mean results of each of these algorithms are ranked with CriPS’s

results across all 84 function:dimensionality pairings. The rankings are averaged above.

4.5.1 On CriPS’s observed dynamics

The CriPS algorithm can be tuned via its ε parameter to operate in a somewhat

critical manner. Given that we know critical behaviour naturally arises in PSO via

its iterated stochastic updates, this implies that the parameter update mechanism need

not undermine this behaviour. With the correct setting, the swarm is able to explore

the full region of interest of a test function. The extension of the swarm can vary

with a power-law distribution. As the standard PSO element of the algorithm draws

the swarm toward the current best locations these size changes assure that areas of

the problem space near known good values are well exploited. The long tail of the

power-law distribution will ensure that exploration of the full problem space occurs.

These two competing mechanisms stop the algorithm from stagnating.

Our studies of our algorithm applied to the various test functions suggest that it

is insensitive to the initial settings of the ω, α1, and α2. This is expected since the

algorithm is continually modifying the parameter values throughout its execution. The

range over which this insensitivity extends shall be explored in future work. The

important parameter to set is ε. Varying this parameter tunes the behaviour of the

swarm from subcritical to supercritical behaviours. For problems where the optimum

values are unknown we believe that detection of critical behaviour should be easier

to achieve than correctly setting the ω, α1, and α2 parameters. Such a meta-process

should self adjust the ε value to obtain a good swarm response to the function rather

than trying to detect good results. Changes to the PSO parameters are derived from

the size of the changes in the swarm metric being employed and the size of ε. Large
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ε values will therefore tend to amplify any changes in the swarm metric and therefore

larger changes to the PSO’s parameters will occur at each iteration. Thus if the swarm

is expanding, a large ε will tend to quickly reduce parameters (notably ω seems most

important) and the swarm’s expansion will be quickly reversed. A shrinking swarm

will likewise have its dynamic swiftly reversed. Thus a large ε leads to a swarm where

many small changes occur, but few large changes. Such a swarm fails to show the

large diversity needed to avoid stagnation. The counter case of a small ε leads to a

swarm with a great many large excursions, often much larger than the problem space

of interest. Whilst stagnation will be avoided, fewer small movements are made, so

there is less opportunity to improve on solutions already located. Any meta-process

thus needs to monitor the frequency of large swarm metric changes that correspond to

movements larger than the defined problem space. If many are big, then ε should be

increased. If too low (i.e. there is little chance of exploring the problem space) then

the parameter should be reduced.

We have reviewed the capabilities of the algorithm largely in the terms of the total

number of particle iterations. The algorithm, because of its use of a calculated swarm

metric and its use of a squashing function, has an additional computational overhead

than standard PSO. It is not clear if the squashing function is needed. Both linear

functions and step functions were briefly investigated and appear to produce similar

results. The standard PSO’s use of random stochastic variables in the velocity update

was included in our algorithm. In chapter 3 we saw that the product of these stochastic

matrices led to potential critical behaviour of the PSO swarm for specific parameter

values. CriPS’s behavioural mix is further modified by online parameter changes

driven from a feedback signal derived from the swarm’s interaction with the problem

space. Future work should look at whether including both these processes is counter

productive.

The CriPS algorithm, with its ε parameter set to ensure critical behaviour showed

an automatic balancing of swarm size changes over all scales of the problem

space. Larger, exploratory moves are less frequent than smaller, exploitative moves.

Stagnation is avoided resulting in improving results the longer the algorithm is run.

The mechanism that gives rise to this links the interaction of the swarm with its

problem environment to modify of the algorithm’s own parameters. The swarm shows

occasional bursts in size that provide the potential to escape from any local minimum

that the swarm may have become becalmed in. In this way the algorithm is tuning itself

to the problem space. This ability to self-tune the parameters of our algorithm should
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then be demonstrated across a much wider range of test and real world functions in the

future.

4.5.2 On our comparative studies

We performed comparative studies with other PSO algorithms. CriPS performed

well against simple PSO variants, but more modestly against leading metaheuristic

algorithms. Whilst CriPS overcomes the problems of stagnation there is nothing in

the algorithm shaping the evolution of the swarm towards better solutions beyond the

original PSO algorithm dynamic. The best algorithms in the CEC2013 combination

used a combination of evolutionary strategies (ES) and covariance matrix analysis

(CMA) to guide their swarms towards improved solutions. CMA creates distributions

of future particle candidate solutions based on known good solutions. New particle

locations are selected from these distributions. The evolutionary part narrows these

distributions over time. Whilst CMA-ES still suffers stagnations, restart and swarm

growth strategies have proved successful strategies.

4.5.3 On benchmarking and testing

The CEC2013 competition consists of 28 functions designed to test the capabilities

of the competing algorithms. The protocol assessed the algorithms by ranking each

set of results for function:dimension:run. For each algorithm the ranks were summed

and averaged. If the problem functions are well chosen then the relative capabilities

of each algorithm is in some way summarised for these functions and possibly for

other problem functions of a similar nature. One weakness of a rank sum approach

in comparing the algorithms is that no weighting is given to how much better one

algorithm is than another. Two algorithms, A and B, could each win on half of the

functions. The rank sum would suggest that they were of equal merit. However

algorithm A may always win by orders of magnitude when it wins, but only lose by

a fraction when it loses. We should note that as the CEC2013 competition treats each

individual run of an algorithm as a separate data point the spread of results is implicitly

included in the comparative assessment. However my comparison between CriPS and

a selection of the competition algorithms only uses the mean values of 51 runs against

each problem function.

However, in lieu of an alternative, still tractable, approach this seems a reasonable

means to assess the relative merits of the algorithms. However, given the infinite
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number of potential problem functions that could be constructed, we should be

somewhat circumspect that any finite benchmark set provides an comprehensive

recommendation for a given PSO derived metaheuristic. It is not our intent here

to reject the benchmark function approach, only to highlight the fact that there are

limitations to this approach.

There are alternatives to using benchmarking to assess the capabilities of an

algorithm. Recent approaches that use the results obtained as an algorithm progresses

and tune the future performance may provide future directions for development.

Adaptive PSO’s switch algorithms as the swarm behaviour changes (say from

exploring to exploiting) Zhan et al. (2009), Wang et al. (2011). Similarly properties

of the problem space’s manifold may be detected and used to infer the nature of

the problem space for example in exploratory landscape analysis (ELA) Mersmann

et al. (2011). Benchmark functions are designed to exhibit different high level

characteristics. ELA measures low level properties of the space. These are deduced

from the fitness values are calculated by the running algorithm. The authors then map

these low level properties to the high level features. Problem spaces with similar

characteristics, it is posited, would then be detectable, and metaheuristic algorithms

known to exploit such spaces could be deployed. An alternative approach may be to

look at the statistics of different algorithms as they explore different problem spaces.

With a suitable database of such responses it may be possible to test an unknown

problem with an algorithm or set of algorithms and compare their performances with

known problem spaces to identify one the unknown problem is most like. One could

then select the algorithm known to perform well.

4.5.4 On future directions

Future work should examine whether different ε values would improve the results of

the instances where CriPS performs less well. This would allow a meta-process to be

designed to make this algorithm yet more general.

It would be interesting to explore something analogous to CriPS’ online feedback

mediated parameter modifications as an alternative to the empirically determined

restart and swarm growth strategies employed by the winning CMA-ES algorithm.

Improved performance may arise from control of CriPS’s additional parameters.

Whilst this may seem to simply shift the problem of setting PSO’s parameters to a

new set, it is envisaged that this may be handled by a meta-process. With an unknown
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problem we cannot tell if the solutions we are finding are good, so we cannot decide

how to change the ω and αs. However we can monitor the dynamic of the swarm

and decide if the distribution of shifts in swarm size are conforming to our target

distribution. If not we can adjust the ε value.

4.6 Conclusions

We have presented an algorithm for metaheuristic optimisation that aimed to both

employ criticality in a particle swarm and avoid stagnation. The CriPS algorithm

modifies the PSO parameters using feedback from the swarm dynamics. Correctly set,

swarm movements at all size scales of the problem space can occur: larger exploratory

moves being less frequent than smaller exploitative moves. The algorithm does not use

any other information about the objective function than the standard version of PSO.

Instead our algorithm self-adapts its parameters based on holistic information about

the swarm. We have used the average velocity norm, but other properties of the swarm

such as local density, swarm extension or gradient of the objective function within

the swarm can be used as well. The PSO parameters are obtained from the swarm

properties by a simple control algorithm. It would clearly be interesting to study more

advanced control schemes.

Both Lovbjerg and Krink (2002) and Fernandes et al. (2012) have employed

mechanisms to incorporate criticality into the PSO algorithm. Their results are

suggestive that it may be of some benefit. The former paper introduces an additional

parameter that requires tuning to a problem. We also introduce an additional parameter

(ε): in theory this can be set by examining the swarm’s behaviour rather than judging

the quality of the result. Looking for the ‘bursting’ dynamic of the swarm size

appears to be enough to guide the setting of this parameter. The latter paper uses

numbers drawn from a power-law distribution to both modify the PSO’s velocity

update parameters and to perform a local search. This addition of the power-law

distributed numbers is blind to the problem space being explored. Our approach

takes a different tack, using feedback from our swarm’s interaction with the particular

objective function to shape the response of the swarm itself.

We have used the information homogeneously across the swarm, i.e. although the

parameters are temporally variable, they are identical for all particles at any given

moment of time. Heterogeneous swarms (Sayama, 2009) are known to produce a much

richer variety of behaviours which appears to be promising not only for modelling of
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biophysical systems (Erskine and Herrmann, 2013) but potentially also for application

in optimisation, see (Engelbrecht, 2010).

CriPS outperforms other simple PSO variants. It achieves results that are better

than or equivalent to standard PSO in the tests conducted. By modifying the parameters

of PSO online using feedback from the algorithm’s interaction with the problem space

it is able to avoid stagnation whilst keeping the parameter values near (on average) the

critical locus of parameter values.

In comparison with other metaheuristics this new algorithm performed more

modestly. When compared with the CEC2013 competition functions CriPS was able

to always win against function 8 (Rotated Ackley’s function). It also performed

well against function 9 and 16 (Rotated Weierstrass Function and Rotated Katsuura

Function). These functions all shared some common properties (Multi-modal,

Non-separable, Asymmetrical) that may be beneficial for CriPS’s success. However,

the modest showing may reflect the limitations of PSO as an algorithm rather than

this new approach. As such it might be useful to explore the use of this feedback

mechanism to modify other metaheuristics that suffer stagnation and parameter

selection issues. PSO variants like Cuckoo Search avoid stagnation by explicitly never

converging. Its Lévy flights derived searches made about the current good solutions

ensure continuing exploration. However, this distribution of steps is fixed, and fails

to take into account the nature of the problem space that the swarm’s sampling is

uncovering. Recent metaheuristics such as CMA-ES adjust their search based on

statistics gathered about the problem space. They are able to obtain good solutions.

However, these can still be deceived into converging on a local minima and require

restart strategies to be employed. Geometry and information based measures have

previously been examined as the means to use the sampling of the problem space

to drive future swarm evolution. The CriPS algorithm’s swarm diversity feedback

is another fruitful method. Not only is stagnation avoided, but it becomes possible to

guide the swarm toward critical or sub-critical behaviour which (for PSO at least) is

shown to be optimal.
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(a) ε = 0.15 (b) ε = 0.5
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(c) ε = 0.075 (b) Standard PSO

Figure 4.5: CriPS swarm size changes showing critical behaviour. The objective

function was a 20 dimensional Schwefel function. The swarm size was 250 particles.

Modifying the ε parameter changes the behaviour of the algorithm. (top left) Swarm

dynamic shows approximate critical behaviour. Plotting the frequency of swarm size

changes shows a straight line on a log-log plot. This suggests that there may be a

power-law present. Here our algorithm used ε = 0.15 and σ set to 1
5 of the problem

space’s size. (top right) Tuning ε=0.5 shows that the swarm makes fewer large changes

in size such that exploration of the problem space is limited. (lower left) Tuning ε=0.075

shows a swarm that makes many large changes in size i.e. more extensive exploration

is being performed (including many size changes greater than the problem space being

explored). Parameter σ remains unchanged throughout. (lower right) for comparison,

the bottom plot shows the equivalent plot for the standard PSO algorithm (with ω=0.7,

α1=2, and α2= 2. Note that thelast bin of the histogram shows all swarm sizes above

the upper bound. For the top plot this number is zero.



Chapter 5

Cell division like behaviour in a

heterogeneous swarm environment

The previous chapters explored criticality in particle swarm optimisation (PSO). This

arose from the properties of the infinite product of its stochastic update matrices.

The exchange of information between the particles in PSO modified the stability

of the system but did not cause its critical behaviour. In this chapter we examine

a different system where critical behaviour arises from an interplay between the

particle’s parameters and the local information each particle has access to.

This chapter presents work that explored a novel emergent behaviour found within

the swarm system known as Swarm Chemistry. The history of this system may be

traced to Craig Reynolds Boids algorithm (Reynolds, 1987). In this, a set of particles

with position and velocity states were iteratively updated via a simple set of rules.

These specified kinetic interactions amongst near neighbours only but the swarm,

as a whole, developed motions akin to bird flocking movements. The strengths of

the interactions were the same for all particles. Hiroki Sayama extended this model

introducing particle heterogeneity and additional velocity controls (Sayama, 2009).

This ‘Swarm Chemistry’ system shows a multitude of emergent shapes and motions

that may be thought of as different behaviours. We begin by describing this system in

detail before presenting what we describe as a behaviour visually redolent of certain

cell-division-like motions. We extend this model and show a repeating cell division

mechanism akin to prokaryotic binary fission. The presence of such a behaviour

arising from a collection of particles that interact solely through locally applied kinetic

interaction rules may be of interest to origin of life theories. The reasoning behind

such a claim are discussed. Such theories need to be able to demonstrate the feasibility

94



Chapter 5. Cell division like behaviour in a heterogeneous swarm environment 95

of mechanisms that allow replication of chemical sets without the existing cellular

replication mechanisms. The fact that simple division can occur in systems with

only kinetic interactions is therefore suggestive that forces arising from say, ionic

attraction or repulsions, or simply from the interplay of surface tensions, could give

rise to division/replication processes. We show the robustness of our behaviour across

a finite range of parameter variations and the inclusion of additional particle types to

our swarm.

Much of this chapter was originally presented first in a paper presented at

The European Conference on Artificial Life (ECAL) 2013 entitled "Cell Division

Behaviour in a Heterogeneous Swarm Environment". Following the conference I was

invited to extend the paper for inclusion in a special edition of the journal Artificial

Life, where it appeared under the same title (Erskine and Herrmann, 2015b). It is

rewritten and further expanded upon here.

5.1 Reynold’s Boids algorithm

In 1987 an algorithm was presented that generated convincingly realistic bird flocking

motions in a swarm of interacting particles (Reynolds, 1987). Each particle interacted

only with its near neighbours. The swarms were shown to generate behaviours that

visually exhibited similar motions to flocking birds or the schooling of fish. Craig

Reynolds named the individual particles of the swarm Boids. Each Boid had a position

and a velocity state (although velocity magnitude was fixed). Additionally they had

a notional range of perception. Only within this range they could detect the position

and velocity of their neighbours. As such each agent of the swarm only had access to

local information relating to the swarm. With each timestep the algorithm computes

an update to every Boid’s state by following a set of three rules:

1. Cohesion. Each Boid calculates the mean position of its neighbours. On the next

iteration the Boid adjusts its position so as to move toward this mean position.

2. Alignment. Each Boid calculates the mean velocity of its neighbours. On the

next iteration the Boid adjusts its velocity so as to move toward this mean

velocity.

3. Avoidance. Each Boid experiences a repulsive force from any near neighbour.

The force is inversely proportional to the square of the intra-particle separation.

This force acts as a vector pushing the Boid away from that neighbour.
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Figure 5.1: The interactions between particles in a swarm following Craig Reynolds’

Boids algorithm. Each particle is shown as a small circle. The red circle is the particle

currently being considered. Its neighbourhood radius is shown as the large black circle.

The light blue circles are the rest of the swarm. Only those blue particles within the

neighbourhood radius of the red particle will be influence it. The red arrows indicate

the resultant target vector for each of the three rules. Black arrows indicate the current

velocity vectors of the particles. The three update rules are shown, from left to right:

Cohesion; Alignment; Avoidance.

Thus each boid will experience a pull toward the mean position of its neighbours,

some rotation in its velocity vector and individual directed repulsive forces on each

iteration. These rules may be visualised as shown in Figure 5.1.

5.2 Hiroki Sayama’s swarm chemistry

The Boids algorithm treated the swarm as a set of homogeneous agents. This was

extended by allowing multiple swarms to interact (Sayama, 2009). Each swarm may

have different sets of parameters: varying the cohesive pull, the intra-particle repulsion

or the velocity realignment strength felt. Additionally the magnitude of the velocity

each particle has is allowed to change as the rules are applied. Each particle has a

preferred, or a natural speed. Thus, if the pulling and pushing of the interactions speeds

up (or slows) a particle it will in time naturally return to its preferred speed. The full

algorithm also includes the element of noise in the system: there is a probability of

random steering. Sayama calls this whim.

5.2.1 Swarm chemistry algorithm

Each particle is defined by a total of eight parameters. These consist of the three kinetic

interaction parameters (cohesion, alignment and avoidance), the neighbourhood radius,

the preferred and maximum speeds, the rate by which a particle returns to its preferred

speed, and the chance of random steering. Changing the set of parameters for a particle

will change the strengths of the various interaction forces that it will experience.
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Particles with the same set of parameter values may be thought of as belonging to

a species. Similarly we can talk of a heterogeneously mixed swarm as containing

multiple species of particles.

We use the following to denote the various parameters that constitute a single

species of particle:

• c1: The cohesion parameter defining the strength of attraction to the mean

position of a particles neighbours. c1 is real valued in the range [0,1].

• c2: The alignment parameter defining the strength of pull toward the mean

velocity of a particles neighbours. c1 is real valued in the range [0,1].

• c3: The avoidance parameter defining the strength of repulsion from

neighbouring particles. c1 is real valued in the range [0,100].

• c4: The whim parameter defining the chance that a particle ignores its neighbours

influence on any given iteration. This essentially adds noise into the system. c1

is real valued in the range [0,1].

• c5: The speed control parameter defining the rate that a particle will return to its

preferred speed. c1 is real valued in the range [0,1].

• rad: The neighbourhood radius, the distance over which neighbouring particles

are perceived.

• spd: The preferred speed of a particle

• msp: The maximum speed of a particle

For each particle i in the swarm we consider the set of particles, N that are within

its neighbourhood radius. Particle i has a position and velocity state {xi,vi}. To update

these states each particle considers the states of those particles in N .

The average position of these is

〈x〉= 1
∣

∣N
∣

∣

∑
j∈N

x j (5.1)

The average velocity of the particles within the neighbourhood radius of particle i is

〈v〉= 1
∣

∣N
∣

∣

∑
j∈N

v j (5.2)
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The kinetic interactions between a particle i and its j neighbours can thus be considered

as an update to vi. There are three components to this update due to the three update

rules:

The cohesive force

Fc =−c1 (xi−〈x〉) (5.3)

The alignment force

Fa =−c2 (vi−〈v〉) (5.4)

The inverse square repulsive force

Fp = c3

(

∑
j∈N

(xi−x j)/|(xi−x j)|2
)

(5.5)

The velocity adjustment due to these kinetic interactions is the sum of these

components which may be considered an acceleration on the particle.

ai = −c1 (xi−〈x〉)− c2 (vi−〈v〉)

+c3

(

∑
j∈N

(xi−x j)/|(xi−x j)|2
)

(5.6)

The dynamics are further modified by the c4 parameter which is the probability

of ignoring the neighbours’ effects in the current iteration. The particle’s velocity is

updated using the acceleration ai.

v′i← vi +ai (5.7)

The magnitude of a particle’s velocity has an upper bound. This is one of the

swarm’s parameters. Similarly each swarm has a parameter that is the preferred

magnitude of the particles’ velocity. If a particle is not travelling at this preferred

velocity, vn, then parameter c5 is used to nudge the velocity back toward its preferred

velocity using

vi← c5
vn

|v′i|
v′i +(1− c5)v′i (5.8)
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Finally each particle’s position is updated using

xi← xi +vi (5.9)

5.2.2 Behaviours in swarm chemistry

For the purposes of visualising the swarms we use a 3-tuple of the cohesion, alignment,

and avoidance parameters in order to create the colour used to display the particles of

a particular species. Whilst this means that, in theory, the colour used is not unique, it

has not in practise caused confusion.

Reynold’s Boids were homogeneous swarms and generated flocking motions.

Here, we can mix two or more species of particles and observe their behaviours

resulting from their iterated interactions. Unusual structures and dynamic behaviours

have been seen (Sayama, 2010, 2012a,b). Many swarms could be identified that have

a distinct biological look to them: cells, amoebas, diatoms abound. Fig 5.3 shows

a number of stills of a two species swarm that shows emergent persistent oscillation

behaviour. It is tempting to see the dynamics of the so-called swarm chemistry as a

simple model for the real life counterparts of these forms.

The simplest swarms in swarm chemistry are homogeneous swarms. As swarm

chemistry treats velocities differently to the Reynold’s Boids algorithm the range of

behaviours also differs. A limited palette of behaviours manifest. Particles tend to

aggregate into one or more long lived structures. These are roughly spherical and may

be hollow i.e. presenting as a spherical shell. Alternatively the particles may simple

disassociate and become a cloud of non interacting particles. Fig 5.2 shows examples

of these homogeneous swarms. It should be noted that these visualisations are not

necessarily to the same scale.

5.3 Cell division like behaviour in swarm chemistry

Hiroki Sayama’s Swarm Chemistry website (Sayama, 2015), lists many sets of species

that result in interesting behaviours. Discovery of these behaviours has been chiefly

driven by manual and evolutionary methods. Software to explore Swarm Chemistry

is also available. Many of the listed behaviours have been located by third parties

manually exploring the parameter space.

The author located a set of particle species that result in a novel behaviour that may
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Figure 5.2: Some homogeneous swarms. Single species in Swarm Chemistry manifest

a limited set of behaviours: a spherical cluster, multiple clusters, disassociated clouds

of particles. NB Scale differs between images.

Figure 5.3: Heterogeneous Swarm Chemistry behaviours. Complex behaviours exist

within the Swarm Chemistry system. Here a two species swarm shows an oscillator

behaviour. (From top left) an initial mix of two species, shown yellow and red, spatially

separate, and then create a persistent oscillatory motion.
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be described as cell-division-like, shown in figure 5.5. The swarm is constructed from

particles of two species. In our visualisations these are displayed as red and yellow

particles. The swarms we examine typically have many more yellow particles than red.

The position and velocity states of all the particles are randomly initialised, but with the

positions lying closely together to assure that interactions will occur according to the

rules presented above. Whilst initially mixed the two particle species quickly separate,

with the red particles forming a ring about the (approximate) middle of a spherical

cluster made of the yellow species. Depending on the specifics of the parameter values

chosen and the size of the two populations this arrangement can exist for a considerable

time (many hundreds of iterations). At some point the red ring appears to contract,

causing the yellow cluster to split in two. The two clusters of yellow particles tend to

move apart and the red particles rejoin one of those clusters.

The remainder of this chapter covers the investigations exploring the nature and

robustness of this behaviour. Specifically:

• We develop some tools that allow us to quantify and track the behaviour.

• We examine and characterise the cell-division-like behaviour.

• We explore to what extent the behaviour is affected by the total size of the swarm

and the populations of each subspecies.

• We examine differences and similarities in the behaviour when exhibited in two

and three dimensional environments.

• We vary the parameter values of the two species to see the effect of such changes

have on the emergence of our target behaviour.

• We show that the behaviour can survives the addition of a third species.

• Finally we make extensions to the Swarm Chemistry model that enable us to

extend the behaviour to show repetitions in the cell division.

5.3.1 Quantification

We have said that a particle species is defined by eight parameters (c1 through c5,

neighbourhood radius, speed and maximum speed). A swarm may be made of particles

of many species and in varying numbers. Any specific swarm is thus defined as a point

in a large parameter space. Even if we had tools to assist in the automatic detection of
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novel behaviours in any given heterogeneous swarm in this system it would remain a

highly onerous task to explore all portions of the parameter space. A simple method

of exploration is to perform random searches and hope to locate islands of interest.

Swarm Chemistry’s originator, Hiroki Sayama, had his students and third parties do

just this. He provides software to generate swarms, watch their behaviours and mix

interesting species together. I have also followed this approach. When one locates a

behaviour of interest, we can examine it by making small changes to the parameter

values to assess the robustness of the behaviour to such parametric changes. When

dealing with a smaller portion of the parameter space in this manner it becomes more

tractable to use quantifications and tools to track the onset and cessation of a specific

behaviour. The tools we have used include measuring the swarm density. Changes in

density in a swarm as it evolves indicates a sudden shift in its spatial distribution that

may be indicative of a change of state. We also use measures based on entropy as a

measure of structure in our swarms, and clustering analysis to support more detailed

investigations.

5.3.1.1 Density and entropy

Structure in an evolving swarm can be most usually be seen in how particles tend

to agglomerate. Often groups or clusters form, on other occasions the particles will

disassociate. In our swarms we can calculate the average density of particles. This

density measure differentiates single clusters from both dispersed swarms and multiple

groups: single clusters show a higher density. We note that this may not always be

true: a large hollow single cluster may be less dense than multiple groups that are

close together. A second measure, a spatial entropy, allowed differentiation between

multiple groups and dispersed swarms. It has been suggested (Bonabeau et al., 1999)

that a spatial entropy can be defined as

H =−∑
k

P(k) logP(k) (5.10)

where P(k) is the fraction of particles found in patch k. H decreases as clusters form.

We used patches that are always cubes of side 0.1 times the maximum extent of the

swarm i.e. the minimal cube containing the swarm is split into 1000 patches. Two

similar treatments are made in (Batty, 1974) and (Wolfram, 1984).

We also make use of the Kullback-Leibler divergence to provide a measure of

our swarm’s distance from a swarm with the same number of particles that is evenly
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distributed through the same minimal cube as the target swarm. The Kullback-Leibler

divergence is defined:

DKL = ∑
k

P(k) log
P(k)

Q(k)
(5.11)

where P is the distribution of the particle positions and Q is the distribution of an

evenly dispersed swarm. Note that since Q is evenly distributed, we have simply DKL =

log 1
Q(k) −H. For the cell division like behaviour DKL thus increases when the swarm

has divided into separate clusters.

5.3.1.2 Clustering

The cell-division-like behaviour swarms start as a single cluster. As divisions occur

there are increasing numbers of sub-swarms. All particles in the model are individually

identifiable but the swarm has no knowledge of sub-swarm structure. We can track

individual trajectories but have no means to locate sub-structure in the swarm that

seems obvious to the observer. We have made use of the k-means clustering algorithm

in order to identify which particles are in which sub-swarm. K-means clustering takes

as an input a specific number (k) clusters that the algorithm is to find. It results in the

data partitioned into these k clusters. Given a set of n particle positions {x1,x2, ...,xn},
the algorithm attempts to partition the particles into k sets S = {S1,S2, ...,Sk}, such that

we minimise the within cluster sum of the squares:

argmin
S

k

∑
i=1

∑
x∈Si

‖x−µi‖2 (5.12)

where µi is average position of the points in Si.

Critically this method needs to know the number of clusters to find. For small

numbers of clumps the author found that this may be estimated by counting the minima

in a histogram of the inter-particle distances.

5.4 Results

5.4.1 Single species characterization

A homogeneous swarm appears to exhibit behaviours drawn from a fairly limited

palette of possible behaviours. We note four behaviours: full dispersal, cluster or
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Figure 5.4: Density and entropy measurements for a homogeneous swarm as a function

of its cohesion (c1) and avoidance (c3) parameters. The logarithm of each measure is

plotted in order to squash the vertical extent of the surface plots as the range of values

extends over several decades.

sphere, multiple groups, and one we call a point swarm. A point swarm is one where

all particles collapse toward a single point, i.e. the cohesion force appears to dominate

all other interactions. We mention it here for completeness only. Examples of the

remaining three behaviours are shown in Fig 5.2. In full dispersal the particles separate

and move apart. There is little or no tendency to aggregate. In a cluster the particles

form a sphere (or approximate sphere) or shell of a sphere. Multiple groups are simply

a multiple version of the last form. Point swarms are seen for swarm parameters where

the avoidance value is at or near zero. This results in all particles collapsing to a single

point. This state tends to not show as a sphere or a point. Instead the particles, which

all exist in a tiny spatial volume, show as an irregular cluster of particles that jump

about. Particles have discretised speeds so at each update a particle tends towards the

average position of the cluster, but the step size is larger than the size of the cluster,

thus the particles are unable to actually occupy a single point.

We find that the four single species states can be classified by the density and spatial

entropy (or Kullback-Leibler divergence). By sweeping through the parameter space

of the cohesion and avoidance parameters it was possible to find regions of each of

the four swarm types. The spatial entropy and densities were measured for each. A

visual check of the final state of the swarm was also made. The measures were plotted

against the parameters to generate the surface plots shown in Fig. 5.4. The types of

behaviour seen in these homogeneous swarms can be summarised by their location in

density-entropy space as seen in Tab. 5.1.
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Entropy Low Entropy High
Density low Dispersed Multiple groups
Density High Single cluster Point swarm

Table 5.1: Summary of behaviours in homogeneous swarms as a function of density

and entropy

spc rad spd msp c1 c2 c3 c4 c5

1 (yellow) 20.5 1.94 20.7 1 1 18.6 0.05 1
2 (red) 300 15.58 37.08 1 0.05 9.11 0.47 0.61

Table 5.2: Parameter values for the cell division like behaviour swarms. Headings

are: spc = swarm species, rad = neighbourhood radius, spd = normal speed, msp =

maximum speed, c1 = cohesion, c2 = alignment, c3 = avoidance, c4 = whim, c5 = speed

control.

5.4.2 Cell division behaviour species

We present two species of swarms that individually formed single clusters (multiple

groups if their populations were large enough), but in combination result in a cell

division like behaviour. Typical stages of this are shown in Fig. 5.5. The values for the

parameters used in these swarms are shown in Tab. 5.2.

When displaying the particles we colour code them using their parameters c1,

c2 and c3 as red, green and blue components. Here, species 1 displays as a yellow

colour and species 2 as a red colour (n.b. if viewed in black and white copy the red

particles appear slightly darker). Clearly, the displayed colours change if we alter these

parameter values. For descriptive convenience we choose to describe the two swarms

as the yellow and the red swarms respectively. Typically the swarm population was

constructed with many more yellow particles than red particles (ratios varying from

about 5:1 to 10:1 are variously used). This heterogeneous swarm is initialised such

that the particles are close enough together for interactions to occur. The two species

are well mixed throughout this initialisation volume. The early evolution of the swarm

is for the two species to separate. The yellow ones form a central core, the red ones

form an outer shell. The yellow core tends to elongate and the red ones form a toroid

roughly positioned centrally along the yellow core. The toroid squeezes and separates

the yellow core into two parts. These move apart, with the red particles forming a

cluster in between. At some point the reds are drawn into one of the yellow clusters

and the process repeats. In the basic configuration the repetition only occurs within the
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Figure 5.5: Typical evolution of cell division in our swarm. Top left shows red particles

as a toroid about the yellows. Top right shows the yellow swarm divided in two with a

separate red swarm. Bottom left has the reds rejoining the larger yellow cluster. Finally

bottom right, the process repeats and is shown at a larger scale.
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Figure 5.6: Left image shows the smoothed histogram of pairwise particle separations

in a single cluster. No minima are detected implying a single cluster. K-means clustering

locates particles in this (trivial) instance and assigns them a single colour.

cluster comprised of both yellows and red particles.

To explore how the swarm splits we employed k-means clustering to allow us

to locate the particles within each sub-swarm. This algorithm requires as an input

the number of clusters to locate. Our swarms typically consist of several hundreds

of particles. It is not too onerous to calculate all the pairwise particle separations.

If we consider the histogram of these values we can use the number of minima to

estimate the number of clusters. A single swarm consisting of a single cluster shows a

distribution of pairwise separations that is roughly Gaussian, thus having no minima.

We estimate the number of clusters as one more than the number of minima. It

is necessary to smooth the histogram (say by convolving the raw histogram with a

Gaussian distribution). Fig 5.6 shows a visualisation of a single cluster: with its

smoothed histogram of particle separations and the cluster coloured to show particles

assigned to the clustered sub-swarms. Fig 5.7 shows the same data for the swarm now

in three parts.

As a process this is not error free, but for the avoidance of mistakes the process

may be guided by a user. Fig 5.8 shows such an error, but for the purpose of analysing

what is occurring in these divisions the mechanism proves to be robust.

This technique is applied to the cell-division-like behaviours seen in swarms with

a range of populations of yellow and red particles. Visually the clustering can be

corroborated to assure no errors in clustering were made. In each case the division of

the yellows is asymmetric (see Tab. 5.3) i.e. the divided parts were of unequal size. In

all cases the red particles were always seen to rejoin the larger group.
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Figure 5.7: Left image shows the smoothed histogram of pairwise particle separations

in a recently divided swarm. Two minima are detected implying three clusters. K-means

clustering locates particles in each of these three clusters and assigns them to

differently coloured groups.

Figure 5.8: Cluster detection procedure fails here. The division is still in process, so the

histogram of pairwise separations does not clearly show two minima. Having incorrectly

predicted only 2 clusters, the k-means algorithm makes a poor job of identifying the

clusters.
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Yellow Red Larger yellow Smaller yellow Ratio
population population cluster’s population cluster’s population

300 50 174 126 1.38
300 70 177 123 1.44
300 90 157 143 1.10
350 50 211 139 1.52
350 70 219 131 1.67
350 90 214 136 1.57
400 50 327 73 4.48
400 70 277 123 2.25
400 90 243 157 1.55

Table 5.3: Pre and post division populations. The populations of initial species were

varied (yellows = 300, 350, 400, reds = 50, 70, 90). Following the division the number of

particles in each cluster were determined via the k-means clustering algorithm. Yellow

division was always asymmetric. Subsequently the red population was always observed

to rejoin the larger of the two yellow groups.

5.4.2.1 CDL species on their own - Yellow

What is the nature of each of the two species in our swarm? The division process

we see when they are combined may derive in part from some aspect of their

solo behaviours. Homogeneous swarms were examined above and found to exhibit

a limited range of behaviours. To confirm that our species conformed to this

pattern we took each species and generated homogeneous swarms of different sizes.

Each swarm was run for 1000 iterations (long enough for apparent evolution of

behaviours). Each investigation was repeated ten times to assure no special position

initialisation dependence had been observed. First yellow swarms constructed of

particle populations of 35, 350, 1000 and 3500. The three smaller swarms showed

single stable (approximately) spherical clusters. During a single execution the 1000

particle swarm was seen to eject a single yellow particle. With a population of 3500

the swarm frequently (about 50% of the runs) broke away from a spherical symmetry:

contorting, extending, and splitting. Examples of final particle positions are shown in

Fig 5.9. Figure 5.10 shows some typical stages in the division of the larger such a

swarms.

5.4.2.2 CDL species on their own - Red

We repeated the previous study with homogeneous swarms constructed from our red

particles. Again populations of 35, 350, 1000, 3500 were used. On this occasion
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Figure 5.9: Homogeneous yellow particle swarms of population sizes (top left) 35, (top

right) 350, (bottom left) 1000, (bottom right) 3500 show that larger swarms diverge from

the approximately spherical cluster shape. The largest swarms tending to divide.

all swarms showed stable single clusters. Resultant swarms are shown in Fig 5.11.

This different behaviour may follow from consideration of neighbourhood radii of

the different particles. The red particles interact over larger distances: having a

neighbourhood radius parameter of around 300 units compared to the yellow particleâs

radius of around 20 units. Many more particles are thus contributing to the cohesion

of the swarm. Additional single executions of swarms with populations of 10000 and

35000 showed that the swarm remained a coherent single cluster.

Of the two constituent species of our cell division swarm it is only the yellow ones

that show inclination to divide on their own. This is only seen in considerably larger

swarms and the stretching and twisting that the yellow homogeneous swarm undergoes

as division occurs is markedly different from the cell-division-like behaviour described

earlier.

5.4.3 Comparison with 2D swarm chemistry

Hiroki Sayama’s initial explorations were conducted in a two dimensional space.

Structures in such a world are necessarily circles and rings rather than the toroids
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Figure 5.10: Example of population 3500 yellow swarm showing spontaneous division.

Sequence begins top left.
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Figure 5.11: Homogeneous red particle swarms of population sizes (top left) 35, (top

right) 350, (bottom left) 1000, (bottom right) 3500 show that all swarm sizes result in

spherical cluster shapes.

and spheres our swarm manifests. As one increases the dimensionality of the space

of this swarm system it becomes possible for more particles to exist within a given

neighbourhood radius. This simply follows from the amount of the space within a

radius r of a point changing from the area of a circle to the volume of a sphere. The

kinetic forces acting on a given particle will therefore also be different. We thus expect

our swarm to behave differently depending upon the dimensionality of the space our

swarm inhabits.

We explored the differences in 2D and 3D behaviour of our swarms. In the first

instance we kept the parameters identical and observed the behaviour of the swarm

in two dimensions. A form of cell division behaviour still occurred. As previously

described the three dimensional division has the red particles forming a ring or toroid

about the yellow particle swarm. These appear to squeeze this core until division

occurs. The separated parts then travel apart. In the two dimensional case the red

particles travel to the inside of a yellow circle of particles and from the inside out

cause division to occur. The post division dynamics are different. It is notable that the

separate parts do not travel apart, nor do the red particles get drawn back into one of

the yellow clusters. See Fig. 5.12 for example images.
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An outside in division, somewhat similar to what we have described in 3D, was

achieved via modification of both species’ parameters. As parameters have been

changed, the particles no longer appear as red and yellow but as magenta and cyan

respectively (shown in Fig. 5.12). We will continue to use ‘red’ and ‘yellow’ and names

to refer to the minority ring forming species and the majority central core forming

species respectively. The red particles form a ring around the yellow circle and squeeze

it until division occurs. Again the separate parts do not travel apart. It is possible that

reintegration of the red particles with one of the yellow clusters would occur if the

swarm was left to run. It is also possible that with further parameter modification a

recipe may be found that results in the split parts separating. The converse is true:

we shall see later that there exist swarms in 3D that show dynamics akin to the cell

divisions seen in 2D (see Section 5.4.5.2).

5.4.4 Robustness under population dynamics

5.4.4.1 Yellow versus red populations

The cell division like behaviour swarms are made of two types of particle. These can

be varied independently to explore the robustness of the observed behaviour on the

size of their constituent sub-swarm sizes. The observed behaviour is suggestive that

the red particle ring squeezes the yellow core at least encouraging separation. It seems

reasonable that too few red particles or too many yellows may interfere with this. Using

variations of the sub-swarm populations allow the determination the limits on the cell

division like behaviour. Each run lasted for 2000 time ticks. The density and entropy

measures were captured at the end of each run. For confirmation the final state of the

swarm was captured as an image. Yellow populations were varied over a range from

100 to 550 in steps of 50, and red population over the range 10 to 90 in steps of 10.

Fig. 5.13 shows the density and entropy measures as a surface plot for all combinations

of these populations. Cell division occurs in regions of low density (blue on left hand

plot) and high entropy (red on right hand plot). We see that the cell division behaviour

extends over a wide range of populations. Very low red or high yellow populations

tend to never show cell division. The line between division and no division is noisy.

We assume this is due to variability in starting position of particles and/or the arbitrary

duration of each run. Both assumptions may be examined.
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(a) Initial evolution of inside out division

(b) Final stages of inside out division

(c) Initial evolution of outside in division

(d) Final stages of outside in division

Figure 5.12: 2D cell division. Upper two rows show an ‘inside out’ division in eight

frames. Initial mixture separates to an inner core of red particles, and an outer ring

of the more numerous yellow particles. Gradually the red particles eat their way out,

whilst the yellow population develops a narrowing. Finally the two halves of the yellow

population pull apart. In the lower two rows we show an ‘outside in’ division in eight

frames. A pair of species with modified parameters recapture something of the original

cell division behaviour. As the parameters have changed, the displayed colours have

been altered accordingly. The ‘yellows’ appear as cyan and the ‘reds’ as magenta. The

reds circle the yellows. Gradually they constrict the larger sub-swarm, pinching it and

eventually causing division.
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Figure 5.13: Density and entropy measurements for a heterogeneous swarm as a

function of its yellow and red populations (p1 and p2). The logarithm of each measure is

plotted in order to squash the vertical extent of the surface plots as the range of values

extends over several decades.

5.4.4.2 Effect of initial particle position

The effect of the initialisation positions of a swarm’s particles upon the onset of

cell-division-like behaviour can be explored by executing multiple runs of similarly

constituted swarms. Here, the red population is fixed at 50 particles, and we vary the

yellow population. This represents a slice through the population space of potential

swarms of the kind we are examining. Yellow populations are varied from 300

to 600 with a step size of 25 particles. For each swarm we allow five executions

where the initial positions of the particles are different for each run. With the yellow

population below 375 division always occurred. With yellow populations above 450

divisions never occurred. Thus the extreme ends of population appear to result in a

definite outcome within the time of each run. However, in the range between (yellow

populations between 375 through 450) the presence or absence of division is not

certain. The KL divergence and the density (averaged over the 5 runs) are summarized

in Fig. 5.14. The density measure is low in divided swarms, high in undivided swarms.

The Kullback-Leibler measure inverts this logic. The region where division or its lack

is uncertain shows intermediate values for both measures. Either measure can thus

provide a clear signal for the onset of our target behaviour. Table 5.4 shows the final

positions of each population mix (up to yellow population equal to 500) at the end of

each run.



Chapter 5. Cell division like behaviour in a heterogeneous swarm environment 116

Yellow Run 1 Run 2 Run 3 Run 4 Run 5
population

300

325

350

375

400

425

450

475

500

Table 5.4: Population dependence on cell division behaviour. Red and yellow

populations are varied. The spatial state of the final frame of each run of each

population mix is shown (after 2000 time ticks). Red population is set to 50 particles,

yellow population is varied from from 300 to 500 particles in steps of 25). There were

five repetitions.
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Figure 5.14: Density and Kullback-Leibler divergence measures as function of yellow

population after 2000 time ticks. For a fixed population of red particles (50), we vary the

population of the the yellow swarm (from 300 to 600).

5.4.4.3 Effect of lengthening run time

Certain population mixes have been shown to apparently never divide, others have

shown that propensity to divide is dependent, at least to some extent, on the initial

positions of the particles in the swarm. Clearly a claim that a swarm would never

divide is not experimentally provable but we may extend the number of iterations that

the swarm runs for in order to test whether an undivided swarm may of some occasions

simply require more time. We repeated the previous investigation but allowed the

model to run five times longer: now 10000 steps. There remains a range where division

is uncertain. This region occurs for larger yellow populations. Yellow populations less

than 425 always result in division. Those greater than 475 never divide. Populations

between these limits may divide. Fig. 5.15 confirms this observation in that the step up

in density occurs at higher yellow populations. Figure 5.5 shows the final positions of

each population mix (up to yellow population equal to 500) at the end of each run.

Swarms that feature too few red particles may never divide. Similarly if the

population of the yellow sub-swarm is increased then the resultant swarm appears to

become increasingly stable. A small number of ad-hoc tests were done using much

larger yellow sub-swarms and longer duration executions. These suggested that with

relatively small red swarms the whole swarm may be unable to divide. However when
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Figure 5.15: Density and Kullback-Leibler divergence measures as function of yellow

population after 10000 time ticks. For a fixed population of red particles (50), we vary

the population of the yellow swarm (from 300 to 600).

the red population was increased (to 180) the swarm which largely appeared to be

stable would occasionally eject a small cluster of yellow particles. This suggests that

such a swarm may slowly lose yellow particles until the remaining yellow cluster is

small enough to show the normal division behaviour.

5.4.5 Robustness under parameter variation

As a full search of the parameter space is currently too onerous, a different approach

was chosen. Single parameters were varied whilst keeping the remaining parameters

unchanged. This approach allows us to explore a slice through parameter space.

The onset and cessation of the target cell division behaviour is established for each

parameter slice that is looked at.

5.4.5.1 Variation of neighbourhood radius

The cohesion, alignment and avoidance interactions use the concept of neighbourhood

radii. For a given particle, only those other particles that are within its neighbourhood

radius are used to impact the state update. The impact of varying this neighbour

radius is considered here. A swarm (with a yellow:red population mix of 300:50)

known to show cell-division-like behaviour is used throughout. The neighbour radius
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Yellow Run 1 Run 2 Run 3 Run 4 Run 5
population

300

325

350

375

400

425

450

475

500

Table 5.5: Population dependence on cell division behaviour. Red and yellow

populations are varied. The spatial state of the final frame of each run of each

population mix is shown (after 10000 time ticks). Red population is set to 50 particles,

yellow population is varied from from 300 to 500 particles in steps of 25). There were

five repetitions.
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of each sub-swarm is varied independently. The red radius is swept from 50 to 300

in steps of 25, and the yellow radius is varied over the range 10 to 40 (step 10).

Each swarm is run for 2000 time ticks. When the yellow particles’ neighbourhood

radius is greater or equal to 30 the red particles travel inside the yellow swarm rather

than forming an external ring and do not cause the yellow swarm to split. When the

neighbourhood radius is 10 the yellow swarm simply disintegrates rather than showing

the more ordered division process. It thus appears that a yellow neighbourhood radius

of 20 is a sweet spot for the cell division behaviour. A red radius of 125 and above

appears to be necessary for division to occur. Additional tests with a finer gradation

of yellow neighbourhood radii suggest that at a distance of around 10 there is a quick

and catastrophic division of the yellows into many small clusters. The red particles

form a single cluster apparently disinterested in joining the others. From about 13 to

25 cell division occurs with the behaviours already documented. The lower the yellow

neighbourhood radius value the easier, or faster, the divisions appear to occur. Yellow

radii of 28 and above lead to swarms where the red particles and yellows exist either as

a single cloud or with the red particles held within the yellows. Fig. 5.6 shows example

swarm states at the end of each run for a range of the radii combinations studied.

5.4.5.2 Variation of avoidance (c3) and cohesion (c1) parameters

The aim here, as with the previous sections, is to sweep across a slice of parameter

space and examine how the emergent behaviour of our swarm changes. Here we look

at two of the kinetic interaction parameters: avoidance and cohesion. First we test the

behaviour variation due to changes in each sub-swarm’s avoidance parameters. Red

avoidance values are changed over the range 5 to 40, and yellow between 10 and 60.

The ranges are chosen following earlier ad-hoc tests that suggest these ranges will

contain the cell-division-like behaviour we are interested in following.

Subsequently we test the behaviour variation due to changes in cohesion values.

Both the red and yellow cohesion values are varied over the range from 0.2 to 1.0. A

number of different behaviours were noted. A swarm with a 300:50 yellow to red mix

was used as before. A number of behaviours were apparent:

• Cell-division-like: Our target behaviour is characterised by the red ring

squeezing the yellow until division occurs. The divided parts move apart, swiftly,

with the red particles rejoining the larger group.

• No division: The swarm remains a coherent entity.
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Yellow Yellow Yellow Yellow
radius=10 radius=20 radius=30 radius=40

Red radius = 50

Red radius = 75

Red radius = 100

Red radius = 125

Red radius = 150

Red radius = 200

Red radius = 250

Red radius = 300

Table 5.6: Effect of red and yellow neighbourhood radii on division dynamics. Final

spatial states of a number of sample runs are shown. Each run was of 2000 time

ticks duration). The population of each species is held constant (300 yellow: 50 red),

all parameters are kept constant except the neighbourhood radius of each species. A

minimum radius of around 125 for the red species appears to be needed for cell division

behaviour to manifest. The behaviour shows for a small but finite range of yellow radius

values, centred around 20. Larger yellow radii do not yield division behaviours, smaller

values lead to disorderly swarm disintegration.
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• Yellow particles disintegrate: Swarm falls apart with no apparent encouragement

from the red particles

• 2D-like division: Division may occur with reds squeezing from the outside or

eating out from inside the yellow sub-swarm. Following division there is little

or no separation of the split clusters and the red particles may not rejoin a yellow

cluster.

Several of these behaviours, notably yellow particle disintegration and our

cell-division-like behaviour, might not be clearly distinguishable via the use of

measurements alone, so each run’s categorization was confirmed by visual inspection.

A single run of each permutation was made. All runs lasted 2000 time ticks. Table 5.7

shows the results for avoidance variation and Table 5.8 shows the results for cohesion

variation.

Cell division behaviours exist over narrow ranges of both these parameters. Cell

division behaviour of the sort we have been looking at is thus very sensitive to the

values of both avoidance or cohesion parameters. It appears that for small yellow

avoidance values (c3 ≤ 40) the red avoidance value needs to be around half that of

the yellow value for any division to occur. Given the parameter set of the swarms,

it appears that larger yellow cohesion values are needed to stop the yellow swarm

from disintegrating. Perhaps above this level (around 0.6) the yellow swarm requires a

greater ‘pull’ from the reds to begin to divide.

The cell-division-like behaviour exists on an edge between regions that show either

no division or the more static 2D-like division behaviour. Within the avoidance

parameter slice of this swarm system’s parameter space it was possible to utilise

our measures to distinguish cell-division-behaviour from the other behaviours. Thus

the onset and cessation of our target behaviour could be explored in an automated

manner. Sweeping through pairs of avoidance parameters with a finer granularity than

was achieved with the manual checking was done. Here we are not interested in the

subtleties of the type of division processes. Instead we simply detect any division,

manifested by an increase in the KL divergence value for our swarm. We set a threshold

of 2.5 for this, based on manual observations. We made increments in the avoidance

parameter value for red particles from 5 to 40. For each red value the lower limit of the

yellow avoidance parameter was estimated from the the earlier observations (Tab. 5.7).

The swarm was run and if no division occurred in 2000 iterations, then the yellow

avoidance parameter was incremented and the swarm rerun. This was repeated 10
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Avoidance Yellow Yellow Yellow Yellow Yellow Yellow
value = 10 = 20 = 30 = 40 = 50 = 60
Red=5 3D 2D+ 2D+ 2D+ 2D+ Y
Red=10 0 3D 2D+ 2D+ 2D+ 2D+
Red=15 0 0 0 3D 3D 2D+
Red=20 0 0 0 0 3D 2D
Red=25 0 0 0 0 0 Y
Red=30 0 0 0 0 3D Y
Red=35 0 0 0 0 0 Y
Red=40 0 0 0 0 3D Y

Table 5.7: Division types as function of avoidance parameter, c3, for a selection of the

parameter variations tried. Categories are: ‘0’ — No division seen, reds may form toroid

around yellows. ‘3D’ — Division seen, behaviour was characteristic of the standard 3D

cell division. ‘2D’ — Considered the same as 2D case: inside out split but clusters are

largely static after split. ’2D+’ — as the 2D case but separate groups are more dynamic

after split. Reds may be drawn in. ‘Y’ — Yellows disintegrate into small groups, reds

form their own cluster.

Cohesion Yellow Yellow Yellow Yellow Yellow
values = 0.2 = 0.4 = 0.6 = 0.8 = 1.0
Red=0.2 Y Y Y 0 0
Red=0.4 Y Y 3D 0 0
Red=0.6 Y Y 0 0 0
Red=0.8 Y Y 3D 0 0
Red=1.0 Y 2D 2D 3D 3D

Table 5.8: Division types as function of cohesion parameter, c1, for a selection of the

parameter variations tried. Categories are: ‘0’ — No division seen, reds may form toroid

around yellows. ‘3D’ — Division seen, behaviour was characteristic of the standard 3D

cell division. ‘2D’ — Considered the same as 2D case: inside out split but clusters are

largely static after split. ‘Y’ — Yellows disintegrate into small groups, reds form their

own cluster.
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times in order to gain some feel for the variability arising from particle initialisation.

We plot this data in Fig. 5.16 as a box-plot as this nicely visualises the width of this

division behaviour edge. This plot shows the same pattern: with low values of red

avoidance the yellow avoidance needs to increase approximately linearly for division

to occur. With higher red avoidance values the required yellow value appears broadly

to be a constant. It is interesting to note that where these phases come together there

appears to be a need to have a higher value for the yellow avoidance parameter value

than either of the two zones would suggest. This is perhaps suggestive that there is

more than one mechanism at play here: responsible for the upper and lower zones

respectively. In the middle these mechanisms may be interfering and yielding the need

for higher yellow avoidance values.

5.4.6 Robustness to adding other particle species

Throughout this chapter the swarm chemistry behaviour studied has been referred to

by the phrase cell-division-like. This requires some explanation. In Hiroki Sayama’s

original swarm chemistry explorations structures and behaviours emerged that invited

metaphorical descriptions. Concentric circles suggested to the viewer cell membrane

and nucleus structures. It is easy to ascribe terms diatom, jellyfish etc. to other

examples. These names are a useful shortcut in describing the emergent properties

of different swarms. In what sense then do we apply the description cell-division-like?

The swarm is a very simple one and and does not capture the complexity of what is

seen in even a single biological cell, but that is the nature of a model: a simplification

that captures an essence of the entity being modelled.

Lutkenhaus (2008) outlines the sort of division process we draw comparisons

with here. Prokaryotes are (usually) single celled organisms. They are somewhat

simpler than eukaryotes in that their nucleus is not encased in a membrane, and they

lack other components seen in eukaryotic cells e.g. mitochondria. Prokaryotic cells

divide via several mechanisms: binary fission, fragmentation or budding. The binary

fission process is the mechanism to which we draw an analogy. Like many cellular

mechanisms, this fission division process is mediated by a range of proteins. Processes

in cells are frequently mediated by proteins. During the fission process a protein called

FtsZ plays an important role. The FtsZ protein molecules migrate to the equator of

the cell where they form a polymer chain referred to as the Z-ring. As the ring

forms about the cell it constricts the cell initiating the division stage. Normally this
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Figure 5.16: Detail of edge of division as function of avoidance parameter, c3. Table 5.7

suggests that the edge between division and no division behaviours as one sweeps

through combinations of avoidance parameters is where the 3D division behaviour

occurs. Here we explore this edge. For each value of the red avoidance we scanned

through the yellow avoidance parameters using the KL divergence measure (threshold

set to 2.5 by observation) to capture when a combination led to a division behaviour.

This was repeated 10 times for each red avoidance value to allow us to capture a feel

for the variation in onset of division behaviours. We visualise this as a box-plot. Swarms

that show no division exist below the plotted points.



Chapter 5. Cell division like behaviour in a heterogeneous swarm environment 126

spc rad spd msp c1 c2 c3 c4 c5

3 (pink) 124.4 13.63 40 1 0.8 98.5 0.32 0.84

Table 5.9: Parameter values for the third species. When added to our normal pair of

swarms cell division continued to occur. Headings are: spc = swarm species, rad =

neighbourhood radius, spd = normal speed, msp = maximum speed, c1 = cohesion, c2

= alignment, c3 = avoidance, c4 = whim, c5 = speed control.

Z-ring provides a scaffold that many other proteins can connect to and contribute to the

process. However in some simple bacteria (those lacking a cell wall) those additional

components are missing whilst the FtsZ proteins remain present. This suggests that

the FtsZ protein on its own is sufficient to initiate binary fission. As the proteins

polymerise they form filaments. These are usually are too short to construct a complete

ring. It is thought that constriction on the cell arises via the lateral interactions

between the filaments. In our model the ring of red particles forms spontaneously

simply via the kinetic interactions between all particles in the swarm. Whilst cellular

mechanisms are much more complex than our kinetic model, it is interesting to note

filamentary interactions are suggested as a possible part of the process. In real cellular

fission one suggested cellular division mechanism (Hale et al., 2001) describes how

the oscillations of one protein (MinE) essentially defines the midpoint of the cell. This

drives a second protein (MinD) to vacate that location. The MinD protein couples with

a third protein (MinC) which acts to suppress the FtsZ protein from polymerising. Thus

the cellular midpoint encourages the accumulation of the FtsZ protein and thus defines

the location of division. Oscillatory motions have been shown (Sayama, 2012b). We

show below that the cell division process is maintained even with the addition of an

other species of particle. It may be possible to combine these in the future.

We succeeded in adding a third species to the cell-division swarm. The third

species manifests as a shell of pink particles outside the other two swarms. Throughout

the test the population was fixed at 92. The red and yellow populations were varied as

before. The recipe for the third species is given in Tab. 5.9.

Figure 5.17 is an example frame from a three species swarm. The state at time tick

2000 is shown. The yellow sub-swarm population was 550. Previously two-species

swarms with a yellow population of 550 resulted in a stable swarm showed no division

behaviours. So whilst division is possible with the addition of other species the

dynamics of the swarm is modified. It would appear that the inclusion of the third

species results in a greater likelihood of cell division. In this swarm the pink particles
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Figure 5.17: A swarm with three species still showing division behaviour.

are essentially acting as a catalyst on the cell-division-like process. We can repeat

the population sweep through red and yellow sub-swarm sizes and measuring density

and entropy as earlier. Figure 5.18 plots this. Divided swarms, again, show as lower

density (higher entropy). Division occurs for larger yellow populations than without

the pink particles throughout.

5.4.7 On origin of life models and the extensions allowing repeated

division

Various structures and behaviours seen within Swarm Chemistry are reminiscent of

biological forms. Obviously these similarities are in the eye of the beholder, the

biological counterparts being much more complex in nature. Similarly the cell division

process examined here is simpler than real division processes. However, it may serve

as an analogy. Early cells would be subject to the push and pull of surface energies

and ionic attractions and repulsions. Kinetic forces would play a role in their world.

Simple mechanisms are thus interesting to explore to gain insight into early process

possibilities.

Origin of life (OoL) models are attempts to explore mechanisms likely to been

available to a pre-biotic Earth. They attempt to answer how an early Earth (around 3.5

billion years ago) replete with an array of simple minerals and compounds was able to
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Figure 5.18: Density and entropy measurements for three species swarms. Red

and Yellow populations are varied. The third, pink, species has a fixed population

throughout. Cell division occurs for larger yellow populations than would have been

the case without the addition of the pink species.

transition to one with complex lifeforms. How did chemistry become biology?

An initial problem is always one of definition: just what constitutes life? Proposed

definitions seldom hold up to close scrutiny. A common approach is to suggest features

that seem to be minimal requirements such as: metabolism, containment and heredity.

A metabolism allows life to consume some form of fuel in order to maintain an

ordered state against the universe’s drive to disorder. Sooner or later this battle is

lost and a living entity dies, it thus needs a means to procreate. In modern lifeforms

an information store (frequently DNA) encodes a definition of the life-form and the

processes required to make it. Earlier proto-lifeforms are likely to have involved less

complex means of recreating themselves. Membranes containing chemical soups may

have acted as early cells. The membranes preferentially retained their constituent

molecules, admitting copies of the same molecules from the environment until the unit

burst into two approximate copies. This scenario highlights the need for containment:

chemical sets maintained in close proximity to promote activity and division processes

to support some form of heredity.

Numerous suggestions and models have been proposed. Famously, the experiments

of Miller and Urey in the 1950s showed that complex organic components could

arise by sparking electricity through a mixture of simple gases: ammonia, methane,

hydrogen and water vapour (Segré et al., 2001). This was suggested to mimic
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the action of lightning in an assumed early Earth atmosphere. The problem

remained that any complex organic molecules would be in very low concentrations

and have a vanishingly low probability of further interactions unless a means to

provide local concentrations i.e. some form of containment. Earlier, in the 1930s

Oparin had suggested RNA-like molecules as the progenitors of modern life and

proposed coacervates (small spherical droplets) as a suitable container (Lancet, 2003).

Coacervates form spontaneously in certain dilute organic solutions. Hydrophobic

interactions hold these small spherical droplets together. They possess osmotic

processes allowing preferential transport of chemicals into the droplets.

It was this idea that Miller and Urey were exploring in their experiment. Other

containers, for example, lipid bi-layers (appealing due to similarities with modern

cell membranes) have been proposed over the years (Segré et al., 2001). Division

of contained mixtures would then provide a means by which evolutionary selection

could begin to take place. Such proto-replication would occur without the complex

cellular mechanisms we currently see. Recent thoughts have studied life as sets of

auto-catalytic equilibrium reactions within a container of some sort (Kauffman, 1996;

Segré et al., 1998): autopoiesis arising purely from the self emergent properties of the

system. All OoL theories tend to suffer from difficulties as a suitably high level of

complexity is required before evolutionary mechanisms ‘kick in’ and drive the system

to a level self-replicating complexity concomitant with life. Hypercycles, proposed

by Eigen and Schuster (1978) suggests that interconnected sets of auto-catalytic sets

can themselves be auto-catalytic. This provides, potentially, a mechanism whereby

simple auto-catalytic sets of chemicals can lead to more complex systems. Further,

hypercycles are invoked in the so called ‘operator hierarchy’ that see hierarchies in

these interconnections leading to emergence on all levels of organisation (Jagers op

Akkerhuis, 2008). There is a cross over between these OoL studies and some of the

‘grand challenges’ of artificial life (Bedau et al., 2000). This highlights a range of

goals (both in vitro and in silico). A range of approaches are required: wet models;

bottom up and top down approaches; and computational experiments. The aims are to

explore (a) how something living arises from non-living components or systems, (b)

what the limits of a living systems are, and (c) how life is related to mind machines

and systems. An example of this crossover is the recent Los Alamos Bug project

(Rasmussen et al., 2009) that aims to create a minimal protocell capable of replication.

The model uses dissipative particle dynamics (DPD), essentially interactions between

particles are considered as forces and particle acceleration derived from such force
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interactions are the basis for the particle updates. These dynamics contains similar

elements to those of swarm chemistry.

In our model, we saw that division is usually asymmetric. This would be potentially

harmful for cell division, but may be of some use for early proto-replicators i.e.

a simple mechanism that results in nearly even division of containers of chemical

mixtures could be useful.

The cell division behaviour in the previous sections splits a cluster of yellow

particles in two. Only one of those groups will subsequently divide again. This

occurs as the red particles were shown to only associate with the larger cluster of

yellow particles. In order for this division behaviour to be seen as a possible model

for real world division we needed a mechanism that would allow any yellow cluster to

potentially divide. Sayama (2012b) models each particle as expressing one parameter

set drawn from a group of parameter sets. This group being termed a recipe. This

formulation allowed a natural extension to evolutionary techniques to be applied. The

expression of one parameter set in the recipe being driven by some fitness function.

We choose a similar approach. Each particle possesses a recipe that contain both the

red and the yellow parameter sets. Each particle may expresses one parameter set

chosen from this recipe. We allow a small probability that any particle may change the

parameter set it expresses. This is modelled as a biased equilibrium processes. Each

yellow, on being chosen to pick a behaviour, will select changing to red with a 10%

probability. Conversely each red if selected to consider which parameter set to express

will change to the yellow parameter set with a 90% probability. This ensures a rough

9:1 mix in the population, but allows any cluster of yellow only particles to develop a

red population.

This mechanism alone provides for each cluster to continue to divide over time.

However, as groups do not tend to recombine the ultimate future for this approach is

a dispersed swarm. We added a growth mechanism to allow clusters to increase in

size. New particles would be created close to randomly chosen existing particles. This

can be viewed as new particles being recruited from the environment. Fig. 5.19 shows

some examples from a swarm that implements both the biased equilibrium and growth

mechanisms. The swarm still tends to appear somewhat dispersed, however, there are

still many groups that continue to divide.
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Figure 5.19: Repeated division. Top left shows first division. Top right shows the second

division. Bottom Left shows multiple groups with red particles from the bias equilibrium

process. Bottom right shows multiple divisions occurring.
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5.4.7.1 KL divergence time evolution through repeated divisions

Earlier investigations had used Kullback-Leibler divergence as a measure to help us

detect divisions in the swarm. With a repeating division this mechanism ceases to be

so useful. We ran a growing swarm with the biased equilibrium process using the

particle parameter sets as detailed in the previous sections. Figure 5.20 shows the

Kullback-Leibler divergence measure (DKL) as the repeated division swarm evolves.

The swarm was run for around 6500 iterations. The numbers shown refer to the image

frames captured, which in order to make them all five digits long start from 10000,

so we run from 10000 to 16500. It also shows the swarm state at key moments

in the experiment (typically frames occurring during sudden changes in the DKL

divergence measure). Initial divisions result in increasing DKL, the later divisions

tending to reduce the value. As we get more and more divisions the resultant swarm

begins to look more like a dispersed swarm. Intuitively this suggests that the distance

between the spatial distribution of the particles in the swarm and the evenly distributed

comparator swarm used for our DKL measure is reducing. The lowering of the value

is therefore not a surprise. Separately calculating the measure for the yellow and red

sub-swarms shows them to have similar values. This, again, is expected since the

biased equilibrium process will cause the spatial distributions of the two sub-swarms

to mimic each other. Following a division, a group of red particles will join the

larger yellow group briefly making the red’s distribution somewhat different from the

yellow’s. Subsequent stochastically driven changes in the expressed parameters sets

will tend to even out these differences.

5.5 Discussion

We have demonstrated a repeating cell-division-like behaviour found within the system

called swarm chemistry. This emerges from the repeated low level kinetic interactions

between the particles in a heterogeneous swarm. Two particle types are required:

individually these particles do not show the same behaviour. Prior to dividing, the

red particles form a ring or toroid around the yellow sub-swarm. Without the yellow

sub-swarm no such structure would occur. There are configurations where this appears

a long lived phenomenon. Division occurs for a wide range of swarm sizes, but there

appears to be a size above which the yellow swarm tends to stability. Some evidence

was found that these large swarms may gradually lose yellow particles suggesting that
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Figure 5.20: KL divergence time evolution of a repeating division swarm with key

frames. Frame numbers are all five digits long, obtained by adding 10000 to the iteration

number. So iterations 0 to 6500 correspond to frames 10000 to 16500. (top) The time

evolution of the KL divergence measure for the combined swarms (black) and the two

subspecies (red and yellow). (middle row, left to right) iterations 10000, 11046, 11404.

(bottom row, left to right) iterations 13358, 13959, 16364
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cell division may reappear if the swarm were to run for a greatly extended period.

Following a division of the yellow cluster, the red particles were drawn to rejoin the

larger of the two clusters and would lead to further divisions. The yellow cluster with

no red particles would not divide. To achieve a swarm where all clusters would be

capable of dividing it was necessary to add a biased equilibrium process to control

the population split of the different particle types. This allowed all clusters to develop

a suitable mix of the two particle types, but as there was no means for clusters to

recombine the ultimate fate would be for the swarm is become increasingly dispersed.

A growth mechanism was introduced, allowing small clusters to grow. Balancing the

swarm growth and biased equilibrium process can be hard and the tendency for a

swarm to fragment into smaller clusters remains. It would be appealing to improve

the linkage between these mechanisms so that division would become more regularly

periodic.

This division behaviour exists in a small but finite volume of the swarm chemistry

parameter space. It was sensitive to the swarms’ parameter recipes. The yellow

neighbourhood radius needs to be in a narrow band. The red neighbourhood radius

appears to have a lower limit, requiring larger values to show the division behaviour.

The behaviour is present only across a narrow band of both avoidance and cohesion

parameters. On one side of the band no division is observed. On the other side

either an inside out division similar to that seen in 2D, or a spontaneous yellow

disintegration that requires no interaction with the red particles, is observed. Locating

other interesting behaviours that may exist in equally small volumes of this parameter

space will require improved diagnostic tools. Density and Kullback-Leibler divergence

were useful in guiding our manual observations for this specific behaviour, and were

only able to assist rather than automate detection.

Additionally we have seen that the behaviours differ depending on whether the

swarm is moving in two or three dimensional space. If the parameter values used

in a 3D environment were used, unchanged, in a 2D environment then we observed

an inside out division. This resulted in a relatively static set of divided groups. By

modifying the parameter values used we were able to recapture the outside in division

seen in 3D. This still failed to show the full dynamics seen in 3D. However, the fact

that there are parameter mixes that show behaviour in 3D that matches that seen in 2D

suggest the opposite may also be true.

The emergent behaviour has some similarities to prokaryotic Z-ring initiated binary

fission. It was shown that additional particle species may be added to the swarm, which
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do not inhibit the division process from occurring. Indeed the third species was shown

to catalyse the swarm division. The system shown can be claimed to show containment

(the particles exist in long lived groupings), heredity (via the combination of the use

of parameter set recipes, the biased equilibrium process, and the fact that division

represents replication), and an assumed metabolism (the energy needed for particles to

speed up and slow down is assumed to be provided from the environment. As such this

can be viewed as a simple model for Origin of Life theories.

Swarm Chemistry, as a system, has an elegant simplicity: from a few rules and

the basic swarm heterogeneity emerge unexpected behaviours and structures. Natural

extensions to the original rule set include the ability for particles to express one

of a number of parameter sets. Sayama uses this approach to allow evolutionary

mechanisms to be built into the system. I used this approach to support the biased

equilibrium process used to allow repeated division. It would be interesting to extend

the heterogeneity still further so that particles of one type were cognisant not just of

the positions and velocities of their near neighbours but of the particular parameter

sets that their neighbours were currently expressing. The desire for this stems from

observing that the relationships between the various proteins that mediate prokaryotic

binary fission contain complex interactions of a sort absent in swarm chemistry. It

could be interesting to allow each particle species to have differing affinities with other

species. For instance Species A would enforce the swarm chemistry rules fully when

particles of type B are in its neighbourhood radius, but ignore those of type C if found

at the same distance. Indeed having extended the species concept to include the idea

of a recipe: one could envisage multiple parameter sets being used depending which

species types were near. For example, species X might use parameter set 1 for all

interactions with species Y particles, but would use parameter set 2 for particles of

species type Z. It is not clear how these species to species affinities could be included

in a similarly simple and elegant manner.

Structural analysis was driven by the position states of the particles. Position

vectors fed the k-means clustering in order to track initial divisions of the swarm.

Similarly the positions within the minimal cube containing the whole swarm was

used to calculate the spatial entropy measure used to calculate the Kullback-Leibler

divergence. Some investigations suggested that consideration of structure in the

velocity state of the particles would be a useful direction to investigate. When a swarm

chemistry swarm (either ours or many of those identified by third parties) develops

over time what attracts the eye are the sudden shifts in behaviour: the to-ing and



Chapter 5. Cell division like behaviour in a heterogeneous swarm environment 136

fro-ing of an oscillator; the splitting of a cell; or the lurch of a chasing blob as it

senses prey. We might expect that these points of interest would show changes or

structure in the system’s velocity space that might prove useful for automating the

detection of such events. Some investigations have been begun. Figure 5.21 shows

four different swarm types with plots of their Kullback-Leibler divergence, density, and

mean speed measures. A homogeneous swarm’s initial randomly initialised particles

resolve themselves (in this case) to a spherical cluster. Initially this swarm has large

variation in mean speed from one iteration to the next. Centered about the preferred

speed of the red particles the kinetic interaction results in large swings in speed. As

the spherical cluster forms the preferred speed remains the average, but the spread

greatly reduced. It is as if the particles have found their place in the swarm where

there is now minimal pushing and pulling on their neighbours. Something similar is

seen in the jellyfish swarm, though the effect is less marked. The jellyfish swarm has

three particle species which separate into four conjoined structures that move slowly,

a hemispherical skirt oscillating slowly like the pulsing of a real jellyfish. There is still

oscillation in the mean speed perhaps reflecting the slow oscillations of the jellyfish

swarm. In the linear oscillator swarm we see an initial separation of its two particle

species into concentric spheres, a linear to-ing and fro-ing starts up and after a brief

period transitions into a rotary motion. Note: in two dimensions there is no third

rotary phase. The mean speed plot shows these three phases. Changes in the spread

of the mean speed again seem to suggest the onset of a new behaviour. Finally our

cell-division-like behaviour swarm demonstrates similarly that a point of interest (the

division) is marked by a change in the spread of the mean velocity. Here it appears as

a spike, as the behaviour of interest is transitory. These results perhaps suggest that

changes in the spread of a swarm’s mean speed may indicate an event of interest in

the evolution of the swarm. In the first three cases there appears to be an evolution

from higher to lower spreads, indicating the onset of more stable behavioural regimes

in the swarm. Our cell-division-like behaviour shows that increases in the mean speed

spread can occur but perhaps only as a transient event in the system. Speed increases

represent increases in energy of the swarm. It would be interesting to explore whether

the tendency to decrease mean speed spread is a law of swarm chemistry.
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Figure 5.21: Changes in particle speeds may be of use to alert the user to changes

in the behaviour of the swarm. Here we compare the DKL, density and mean speed

measures for various swarms. From top to bottom: a homogeneous swarm of our

red particles, a jellyfish swarm, a linear oscillator, and our cell-division-like behaviour

swarm showing its first division. The jellyfish and linear oscillator recipes were taken

from Hiroki Sayama’s website (Sayama, 2015)

.



Chapter 6

Contributions, future work and

conclusions

Each of the preceding three chapters presented their own discussion and conclusions.

In this chapter we summarise what we have presented and the novel findings that we

have made.

6.1 Contributions and future work

6.2 Contributions

We have been concerned with exploring to what extent criticality can be shown to

contribute to the emergence of behaviours in swarm systems. A chief motivation stems

from the observation that in nature swarms can often appear ‘as of one mind’. A bird

flock avoids a predator with a near instant change in direction of motion. Velocity

changes appear to be correlated over distances much longer than local communication

distances would suggest possible. This behaviour is reminiscent of the loss of length

and time scales seen in critical systems. A few studies suggest real swarms may

indeed be operating critically. This thesis studies swarm systems inspired by flocking

behaviours and confirms the presence of that criticality. It is shown that criticality in

swarm systems is beneficial.

At the start of this thesis we present four research questions which we can now

answer.

138
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6.2.1 Under what conditions does the particle swarm optimisation

(PSO) algorithm exhibit criticality?

In answer to research question 1 chapter 3 shows that for PSO there exists a locus

of the algorithm’s parameter values that result in critical behaviour. On this locus

the PSO swarm is poised between divergent and convergent states. PSO may be cast

as a random dynamical system by rewriting the PSO update rules matrix form. As

the swarm evolves its dynamics are determined by considering the infinite product

of this stochastic matrix. The long term average behaviour of the swarm can be

characterised by computing the Lyapunov exponent for the system. Exponents less

than zero correspond to convergent swarms. Exponents greater than zero correspond

to divergent swarms. We locate the locus of parameter values than correspond to stable

swarms i.e. those with Lyapunov exponents equal to zero. This is shown in figure 3.5.

Parameter pairs on this locus tune the system to the point of criticality.

This predicted locus of stability differs from the previous approaches. Empirical

evidence is presented to support the correctness of the random dynamical system

approach.

The location of the curve of criticality is shown to also vary depending upon the

balance of α1 and α2 parameters, and with the distance between personal and global

best locations for the particles.

6.2.2 Does the PSO swarm acting critically allow it to act

optimally?

Empirically we look to see where in parameter space optimal results occur for many

problem functions. A common pattern was observed over many problem functions.

For negative values of ω there was a linear relationship between ω and α. For positive

ω the relationship followed a curve. This shape matched the critical locus we predicted.

We show, in answer to research question 2 that as the number of iterations executed

increases the location of optimal solutions approaches our predicted critical parameter

curve.

6.2.3 Can this knowledge be utilised in a practical manner?

We observe that real world problems tend to present as a black box function. The

ability of the PSO swarm to locate solutions is dependent upon the nature of the
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problem space, how long we will run the algorithm for and where in the parameter

space we choose the controlling parameter values. Given knowledge of the first two

items we can (at least in theory) intelligently choose how sub-critical we need the

swarm to be to obtain optimal results. In practice this can still be hard. Thus a novel

algorithm, CriPS, is proposed in chapter 4. This is shown to require no specific setting

of parameter values and avoids stagnation. This is achieved by using a measure of the

swarm’s diversity within the problem space. Changes in this measure are used as a

feedback signal to modify the PSO parameters. This results in the parameter values

travelling across a line in PSO’s parameter space that traverses the curve of stability.

If the swarm is converging the parameters are adjusted to make the swarm behave

super-criticality i.e. more like to diverge. If the swarm is diverging the parameters

are adjusted to make the swarm behave sub-criticality i.e. more like to converge. The

swarm is shown not to stagnate as a result.

CriPS is shown to outperform other simple PSO variants. In comparison with other

metaheuristics this new algorithm performed more modestly. When trialled using the

functions from the CEC2013 competition CriPS was shown to outperform all other

algorithms for a single function. The overall performance may reflect the limitations

of PSO as an algorithm rather than this new approach.

6.2.4 Can we show that other swarm systems also exhibit

criticality?

In chapter 5 we show that critical behaviour in swarm systems is not restricted to

PSO. A repeating cell-division-like behaviour is demonstrated within the system called

swarm chemistry. This emerges from the repeated low level kinetic interactions

between the particles in a heterogeneous swarm. This division behaviour exists in

a small but finite volume of the swarm chemistry parameter space. It appears to sit

on an edge of the parameter space between no division behaviours and markedly less

dynamic division behaviours. And yet the behaviour was robust to population changes

and even the addition of more species of particle.

This behaviour emerges from the repeated low level kinetic interactions between

the particles in a heterogeneous swarm. There are configurations where this appears

a long lived phenomenon. The process has analogies with the prokaryotic Z-ring

initiated fission process and origin of life theories.
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6.3 Future work

6.3.1 Future: PSO as dynamical system

Likely possibilities for future additional work include:

• As PSO runs it samples cost function values from the problem space. These can

be used to determine the nature of the problem space, such that the parameter

values of the algorithm can be automatically set to the values that will be

optimum for (a) the problem being solved and (b) the remaining iteration budget?

Recent work on geometry (Mersmann et al., 2011) and information (Malan and

Engelbrecht, 2014) based measures of problem spaces may be a useful starting

point for this. Alternatively the statistics of shifts in personal and global bests

or indeed the diversity measurement feedback explored in the CriPS algorithm

may be informative. Correctly performed this should allow PSO to tune itself to

problem functions automatically so as to perform optimally.

• Other metaheuristics that employ stochasticity can be analysed as random

dynamical systems. Does such analysis predict similar critical regions in their

parameter space? If so, do empirical results in such regions show optimal

behaviour?

6.3.2 Future: CriPS a near critical swarm

Likely possibilities for future additional work include:

• Practical investigation into the best value for the ε parameter in CriPS. A specific

value would be nice, but it is more likely that a meta-process should determine

the swarm diversity bursting behaviour and automatically adjust the ε value in

order to tune the bursting to ensure near criticality.

• CriPS performs less well than the CMA-ES approach that won the CEC2013

competition. This may be due to PSO being inherently less good than CMA-ES

to solve the type of problems in that competition. The winning algorithm still

required a restart strategy to handle the problem of premature convergence.

Application of swarm diversity feedback to this and other metaheuristics may

be a useful and automatic means to avoid stagnation.



Chapter 6. Contributions, future work and conclusions 142

• The swarm diversity measure may be a useful diagnostic that could be employed

to select critical PSO parameters directly. Indeed given the understanding of

PSO criticality it may be that CriPS is potentially acting counter productively,

i.e. that it is moving the parameter values away from the optimal critical region.

Where it is performing well it is perhaps due to the average swarm behaviour

being critical (in a pseudo- or quasi-critical) manner (de Andrade Costa et al.,

2015). Future work should look at whether including both these processes is

counter productive.

6.3.3 Future: Cell-division-like behaviour in Swarm Chemistry

Likely possibilities for future additional work include:

• Extensions of this model to naturally allow a better balance to the repeated

division process. This requires that the growth and biased equilibrium processes

are tuned. It would be more in keeping with the nature of these swarm studies

that these processes should be driven by local information only.

• Nature studies have shown long correlation lengths in velocity changes within

swarms. This appears to be the case in the behaviour examined here, but it would

be useful to measure this explicitly for a range of swarm recipes that exhibit

interesting behaviour.

6.4 Conclusions

As discussed in Section 2.8.3 there exist studies that suggest that motions in swarms

are critical. Additionally it has been theorised that Lévy flights can provide efficient

foraging strategies for certain animals. This thesis shows that criticality also plays a

beneficial role in model swarm systems. The supporting evidence is constructed from

(a) arguments around whether such systems feature characteristics that are known to be

needed for systems to show criticality and (b) evidence in the form of system analysis

or evidence of critical behaviours.

The systems examined feature characteristics that make it feasible for them to

manifest critical behaviours. Each swarm is made of many units that act on local

information. This is explicit in the Swarm Chemistry model. Each particle in the

swarm is only aware of particles within a certain radius of it, and the swarm’s full
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extent may be much larger than this distance. In the PSO case, this is also true. On

each iteration a particle experiences the cost function values sampled at own location.

Whilst it retains a memory of its best location and receives swarm wide knowledge of

the location of new global best solutions, these updates occur infrequently.

In critical systems a separation of time-scales is required for self organised

criticality to exist. This may be connected with the existence of thresholds. The

sandpile model explicitly encodes a threshold, such that the slow addition of grains

releases fast flowing avalanches. In swarm chemistry there exists an interplay of push

and pull forces, of velocity alignments, accelerations, decelerations and even a ability

to randomly ignore the rules (occasionally). The effect on one particle accumulates

over several iterations. Given these effects and the feedback in the system as each

particle (within range) influences and is influence by its neighbours, it is hard to predict

the accrued effects over a number of iterations. It is reasonable expect that thresholds

may be breached. A particle pushed away remains within a radius of influence for

a number of iterations. Once beyond that radius its influences vanishes. What we

observe are discrete events: points in the swarm’s evolution where the behaviour

abruptly changes. A group divides, or changes direction, or expands suddenly. The

appearance of these points suggests that a threshold has been passed.

In PSO there is a separation of time-scales due to shifts of personal and global

best positions. Typically PSO makes these new discoveries rarely. When a new best

location (personal or global) is found, the particle experiences a different force. This

can be thought of as an external perturbation. The resultant evolving dynamic of the

particle’s future motion is the system’s relaxation. However it is from the stochastic

update mechanism that this swarm’s criticality is derived. This is explicitly shown in

Chapter 2. Analysis of the properties of the infinite product of the update matrices of

PSO cast as a random dynamical system allows us to determine the locus of parameter

values that result in a stable swarm. Within the locus the swarm will converge,

outside it will diverge. Optimality is achieved when the swarm behaves critically. As

such this flocking inspired swarm system confirms that swarms may utilise critical

points to their benefit. In nature a few studies show that swarms can exhibit the

characteristic loss of length scales in their velocity distributions. The cuckoo search

(PSO derived) algorithm has employed the Lévy flight heavy tail distribution search

strategy suggested to exist in forage strategies of many animals. In Cavagna et al.

(2010) they discuss the role of noise in achieving criticality. In the case of starlings

the noise is derived from their errant estimation of neighbour velocities and is tuned to
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a point that results in a critical group response. Assuming the group response confers

a survival benefit on the genes that give rise to this level of perceptual error, then

evolutionary pressures will select for it. In our systems we lack this evolutionary

pressure. The sources of noise may thus require us to tune the system. In PSO the

stochastic update rules provide the noise and the ω : α parameters the tuning. The

Swarm Chemistry system is clearly tuned via its particles’ parameters. Noise is less

explicit. The Swarm Chemistry model includes a whim parameter, which provides for

a small stochastically driven chance of particles to ignore their update rules. However,

a greater source of noise may derive from the random initialisation of particle states.

In ferromagnetic material this is well known: a critical temperature results in the

system being tuned to criticality. In model systems such as Per Bak’s sandpile model

there is no explicit tuning. Instead self organised criticality is invoked as a mechanism.

The system falls into an absorbing state which is also its critical state. In swarms we

don’t require it to be self organised criticality so long as there is a benefit to the group.

The CriPS algorithm performs better than or equal to standard PSO. This is most

likely due to its ability to avoid stagnation. Some configurations show approximate

power-law distributed changes in swarm diversity suggesting that it can operate in a

critical or sub-critical manner. As a mechanism it may be better employed with other

metaheuristics.

Swarm Chemistry was shown to contain a cell division like behaviour. It is noted

that this may be of interest to origin of life theories as the model is a very simple

kinetic interaction system. The parameter set that results in this behaviour is a narrow

but finite region of the system’s parameter space, suggestive of a critical edge. The

role of criticality in such mechanisms may have more to do with the nature of the

dynamics. Other division behaviours seen see swarms divide sluggishly at best, often

with no continued separation. Here, the two parts tend to continue to move apart

after division. This suggests that the direction of movement in each half is rapidly

transmitted and agreed by the particles in each sub-swarm. This is analogous to the

loss of length-scale seen in dipole moment propagation in the Ising model.



Appendix A

Empirical PSO results: Performance of

unconstrained PSO over CEC 2013

function set

In 2013 The IEEE Congress of Evolutionary Computation provided a set a problem

functions to test metaheuristic algorithms. This CEC2013 set of function provided a

range of challenges. The original intent was to provide a wide range of challenges to

competing algorithms in order to judge which performed best. Here, we use the same

set of functions in order to explore the true behaviour of particle swarm optimization

(PSO). As discussed earlier we use a simple unconstrained implementation of PSO.

The problems, here, are all defined in 10 dimensions, we use a 25 particle swarm and

execute 2000 iterations: equivalent to 50000 function calls. We execute 100 repetitions

of this set up for each ω:α pairing. We vary ω in the range -1.25 to 1.25 with increments

of 0.1. We vary α in the range 0.125 to 6.0 with increments of 0.25. For each function

we show two views of the results: the ω:α that result in the 5% best results; and a

contour display of the best fitnesses obtained. We overlay the predicted critical curve.

In all cases best results lie within this.
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F1

F2

F3

F4

Table A.1: PSO performance against CECE2013 functions 1 through 4. Left hand

figures show where the 5% best performing ω:α parameter pairs are located. Right

hand figures provide a contour representation of performance over the whole ω:α
parameter plane. The theoretical critical curve is overlaid. In all cases a 25 particle

unconstrained PSO algorithm is used with 100 repeated executions.
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F5

F6

F7

F8

Table A.2: PSO performance against CECE2013 functions 5 through 8. Left hand

figures show where the 5% best performing ω:α parameter pairs are located. Right

hand figures provide a contour representation of performance over the whole ω:α
parameter plane. The theoretical critical curve is overlaid. In all cases a 25 particle

unconstrained PSO algorithm is used with 100 repeated executions.
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F9

F10

F11

F12

Table A.3: PSO performance against CECE2013 functions 9 through 12. Left hand

figures show where the 5% best performing ω:α parameter pairs are located. Right

hand figures provide a contour representation of performance over the whole ω:α
parameter plane. The theoretical critical curve is overlaid. In all cases a 25 particle

unconstrained PSO algorithm is used with 100 repeated executions.
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F13

F14

F15

F16

Table A.4: PSO performance against CECE2013 functions 13 through 16. Left hand

figures show where the 5% best performing ω:α parameter pairs are located. Right

hand figures provide a contour representation of performance over the whole ω:α
parameter plane. The theoretical critical curve is overlaid. In all cases a 25 particle

unconstrained PSO algorithm is used with 100 repeated executions.
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F17

F18

F19

F20

Table A.5: PSO performance against CECE2013 functions 17 through 20. Left hand

figures show where the 5% best performing ω:α parameter pairs are located. Right

hand figures provide a contour representation of performance over the whole ω:α
parameter plane. The theoretical critical curve is overlaid. In all cases a 25 particle

unconstrained PSO algorithm is used with 100 repeated executions.
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F21

F22

F23

F24

Table A.6: PSO performance against CECE2013 functions 21 through 24. Left hand

figures show where the 5% best performing ω:α parameter pairs are located. Right

hand figures provide a contour representation of performance over the whole ω:α
parameter plane. The theoretical critical curve is overlaid. In all cases a 25 particle

unconstrained PSO algorithm is used with 100 repeated executions.
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F25

F26

F27

F28

Table A.7: PSO performance against CECE2013 functions 25 through 28. Left hand

figures show where the 5% best performing ω:α parameter pairs are located. Right

hand figures provide a contour representation of performance over the whole ω:α
parameter plane. The theoretical critical curve is overlaid. In all cases a 25 particle

unconstrained PSO algorithm is used with 100 repeated executions.



Appendix B

Empirical PSO results: Performance

over CEC 2013 function set as a

function of | p-g | distance

When running the PSO algorithm against the CEC2013 function set we measured the

distance between the position of the global best location g and the centroid of the set

of personal best positions pi. This value at each parameter pair, was averaged over

the length of the run. Subsequently we average over all 100 runs. Here, we plot the

average | p-g | distance at each parameter pair.

We plot (a) the theoretical loci of criticality as derived earlier both for swarms

where g = pi (dotted curve) and g 6= pi (solid curve), (b) The best 5% parameter

pairs (small circles), and (c) a contour plot of the average | p-g | distances. We

note that outside the theoretical locus there are pairs of parameters that will have led

to expanding swarms. These are likely to have resulted in early termination of the

algorithm (due to the swarm size or velocity exceeding our threshold).

For each function and parameter pair the PSO algorithm was executed 100 times.

Each execution was allowed to continue for 2000 iterations. The swarm used was 25

particles in size. The particles were initialised in a [−100,100]D volume.

The 5% of parameter pairs that gave rise to the lowest average cost values are

plotted with small circles. These are filled blue, except for the single best location

which is filled red. In general the set of these best locations lies on or just below the

critical curve for the g = pi case (shown with a dotted curve).
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F1 F2

F3 F4

F5 F6

F7 F8

Table B.1: Average | p-g | distance against CEC2013 functions 1 to 8. The average

distance between global best location, g, and the centroid of the particles’ personal

best locations, pi, is average over all iterations and runs at each α : ω pair for each

function.
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F9 F10

F11 F12

F13 F14

F15 F16

Table B.2: Average | p-g | distance against CEC2013 functions 9 to 16. The average

distance between global best location, g, and the centroid of the particles’ personal best

locations, pi, is average over all iterations and runs at each α : ω pair for each function.
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F17 F18

F19 F20

F21 F22

F23 F24

Table B.3: Average | p-g | distance against CEC2013 functions 17 to 24. The average

distance between global best location, g, and the centroid of the particles’ personal best

locations, pi, is average over all iterations and runs at each α : ω pair for each function.
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F25 F26

F27 F28

Table B.4: Average | p-g | distance against CEC2013 functions 25 to 28. The average

distance between global best location, g, and the centroid of the particles’ personal best

locations, pi, is average over all iterations and runs at each α : ω pair for each function.



Appendix C

CriPS comparison results with

selected CEC2013 metaheuristic

competitors

The full comparative results been the CriPS algorithm and those competitor algorithms

from the CEC2013 competition are presented in the tables below. The CEC2013

protocol was followed and the mean values for each dimensionality:function pair was

ranked across all algorithms. The ordering was then determined by consideration the

of mean ranking over all problems.
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Function CriPS NBIPOP-aCMA-ES NIPOP-aCMA-ES CDE:b6e6rl DE-APC GA Papa
F1 1.62e-07 (7.0) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5)
F2 9.38e+04 (6.0) 1.00e-08 (2.5) 1.00e-08 (2.5) 1.82e-04 (5.0) 1.00e-08 (2.5) 1.00e-08 (2.5) 2.42e+06 (7.0)
F3 5.18e+07 (6.0) 1.00e-08 (2.5) 1.00e-08 (2.5) 3.94e-01 (5.0) 1.00e-08 (2.5) 1.00e-08 (2.5) 2.21e+08 (7.0)
F4 2.24e+03 (6.0) 1.00e-08 (3.0) 1.00e-08 (3.0) 1.00e-08 (3.0) 1.00e-08 (3.0) 1.00e-08 (3.0) 1.34e+04 (7.0)
F5 2.68e-06 (7.0) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5)
F6 1.01e+01 (6.0) 1.00e-08 (2.5) 1.00e-08 (2.5) 4.23e+00 (5.0) 1.00e-08 (2.5) 1.00e-08 (2.5) 1.64e+01 (7.0)
F7 2.23e+01 (6.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 2.96e-03 (3.0) 2.05e-02 (4.0) 1.49e+00 (5.0) 4.70e+01 (7.0)
F8 2.03e+01 (1.0) 2.03e+01 (2.0) 2.04e+01 (3.0) 2.04e+01 (5.0) 2.05e+01 (6.0) 2.06e+01 (7.0) 2.04e+01 (4.0)
F9 5.33e+00 (4.0) 2.32e-01 (1.0) 2.54e-01 (2.0) 1.78e+00 (3.0) 9.96e+00 (6.0) 1.05e+01 (7.0) 6.81e+00 (5.0)
F10 9.04e-01 (6.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 3.51e-02 (3.0) 1.06e-01 (4.0) 1.55e-01 (5.0) 1.06e+01 (7.0)
F11 1.74e+00 (5.0) 3.64e-01 (4.0) 2.67e-01 (3.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 1.99e+00 (6.0) 1.71e+01 (7.0)
F12 1.99e+01 (6.0) 2.38e-01 (2.0) 7.80e-02 (1.0) 8.07e+00 (3.0) 1.49e+01 (5.0) 1.19e+01 (4.0) 2.34e+01 (7.0)
F13 2.97e+01 (5.0) 4.84e-01 (2.0) 2.54e-01 (1.0) 9.57e+00 (3.0) 2.74e+01 (4.0) 3.40e+01 (6.0) 4.32e+01 (7.0)
F14 1.46e+02 (6.0) 1.15e+02 (2.0) 1.40e+02 (5.0) 7.10e-02 (1.0) 1.15e+02 (3.0) 1.39e+02 (4.0) 5.24e+02 (7.0)
F15 8.23e+02 (4.0) 1.58e+02 (2.0) 1.29e+02 (1.0) 6.99e+02 (3.0) 1.64e+03 (7.0) 1.46e+03 (6.0) 1.06e+03 (5.0)
F16 7.03e-01 (2.0) 1.20e-01 (1.0) 1.05e+00 (5.0) 9.48e-01 (4.0) 1.35e+00 (6.0) 1.88e+00 (7.0) 7.29e-01 (3.0)
F17 1.49e+01 (6.0) 1.13e+01 (4.0) 1.10e+01 (3.0) 1.01e+01 (1.0) 1.03e+01 (2.0) 1.35e+01 (5.0) 2.77e+01 (7.0)
F18 2.79e+01 (4.0) 1.13e+01 (2.0) 1.08e+01 (1.0) 2.49e+01 (3.0) 4.05e+01 (6.0) 4.81e+01 (7.0) 3.43e+01 (5.0)
F19 6.45e-01 (3.0) 5.25e-01 (2.0) 6.58e-01 (4.0) 3.38e-01 (1.0) 1.23e+00 (6.0) 9.16e-01 (5.0) 1.59e+00 (7.0)
F20 3.10e+00 (4.0) 2.73e+00 (3.0) 2.42e+00 (2.0) 2.31e+00 (1.0) 3.59e+00 (6.0) 4.13e+00 (7.0) 3.59e+00 (5.0)
F21 3.79e+02 (5.0) 1.53e+02 (1.0) 3.51e+02 (4.0) 3.83e+02 (6.0) 3.00e+02 (2.5) 3.00e+02 (2.5) 3.92e+02 (7.0)
F22 2.70e+02 (4.0) 1.75e+02 (3.0) 1.47e+02 (2.0) 1.98e+01 (1.0) 7.70e+02 (7.0) 3.25e+02 (5.0) 6.50e+02 (6.0)
F23 1.08e+03 (4.0) 1.74e+02 (1.0) 1.97e+02 (2.0) 7.05e+02 (3.0) 1.87e+03 (7.0) 1.83e+03 (6.0) 1.27e+03 (5.0)
F24 2.16e+02 (4.0) 1.20e+02 (1.0) 1.49e+02 (2.0) 2.04e+02 (3.0) 2.25e+02 (6.5) 2.25e+02 (6.5) 2.18e+02 (5.0)
F25 2.13e+02 (4.0) 1.77e+02 (1.0) 1.97e+02 (2.0) 2.00e+02 (3.0) 2.25e+02 (6.0) 2.26e+02 (7.0) 2.15e+02 (5.0)
F26 1.98e+02 (5.0) 1.11e+02 (1.0) 1.24e+02 (2.0) 1.55e+02 (3.0) 2.00e+02 (6.5) 2.00e+02 (6.5) 1.71e+02 (4.0)
F27 4.32e+02 (4.0) 3.17e+02 (1.0) 3.51e+02 (3.0) 3.25e+02 (2.0) 5.52e+02 (6.0) 5.60e+02 (7.0) 4.65e+02 (5.0)
F28 3.61e+02 (6.0) 2.49e+02 (1.0) 2.93e+02 (3.0) 2.92e+02 (2.0) 3.00e+02 (4.5) 3.00e+02 (4.5) 4.96e+02 (7.0)

Table C.1: Comparative results between the CriPS algorithm and selection of algorithms in the CEC2013 competition. Objective functions

evaluated in 10 dimensions. Values shown are mean fitness over 51 runs and ranking score in parentheses.
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Function CriPS NBIPOP-aCMA-ES NIPOP-aCMA-ES CDE:b6e6rl DE-APC GA Papa
F1 6.52e-06 (7.0) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5)
F2 9.26e+05 (6.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 7.00e+04 (3.0) 6.29e+05 (4.0) 7.12e+05 (5.0) 1.34e+07 (7.0)
F3 5.67e+08 (6.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 4.36e+03 (3.0) 8.09e+07 (4.0) 4.24e+08 (5.0) 1.94e+09 (7.0)
F4 7.69e+03 (6.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 1.81e-02 (3.0) 4.13e+00 (4.0) 5.90e+00 (5.0) 4.47e+04 (7.0)
F5 3.66e-05 (7.0) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5)
F6 3.31e+01 (5.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 5.25e+00 (3.0) 1.71e+01 (4.0) 6.97e+01 (6.0) 7.77e+01 (7.0)
F7 1.24e+02 (6.0) 2.31e+00 (1.0) 4.05e+00 (2.0) 2.44e+01 (3.0) 8.56e+01 (4.0) 1.32e+02 (7.0) 1.18e+02 (5.0)
F8 2.09e+01 (1.5) 2.09e+01 (5.0) 2.09e+01 (3.0) 2.09e+01 (4.0) 2.11e+01 (6.5) 2.11e+01 (6.5) 2.09e+01 (1.5)
F9 3.07e+01 (4.0) 3.30e+00 (2.0) 2.82e+00 (1.0) 2.86e+01 (3.0) 4.18e+01 (6.0) 4.24e+01 (7.0) 3.31e+01 (5.0)
F10 2.02e-01 (5.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 1.91e-02 (3.0) 1.99e-01 (4.0) 2.12e-01 (6.0) 1.18e+01 (7.0)
F11 2.33e+01 (5.0) 3.04e+00 (3.0) 1.03e+00 (2.0) 1.00e-08 (1.0) 1.89e+01 (4.0) 5.37e+01 (6.0) 1.65e+02 (7.0)
F12 1.74e+02 (6.0) 2.91e+00 (2.0) 6.56e-01 (1.0) 8.36e+01 (5.0) 5.17e+01 (3.0) 6.27e+01 (4.0) 2.15e+02 (7.0)
F13 2.59e+02 (6.0) 2.78e+00 (2.0) 9.31e-01 (1.0) 1.14e+02 (3.0) 1.39e+02 (5.0) 1.29e+02 (4.0) 3.29e+02 (7.0)
F14 1.19e+03 (4.0) 8.10e+02 (3.0) 7.17e+02 (2.0) 2.37e-02 (1.0) 4.51e+03 (7.0) 2.28e+03 (5.0) 2.61e+03 (6.0)
F15 4.57e+03 (4.0) 7.65e+02 (2.0) 6.70e+02 (1.0) 4.66e+03 (5.0) 7.79e+03 (7.0) 5.93e+03 (6.0) 4.39e+03 (3.0)
F16 1.65e+00 (3.0) 4.40e-01 (1.0) 2.48e+00 (5.0) 1.98e+00 (4.0) 3.11e+00 (6.0) 3.64e+00 (7.0) 1.32e+00 (2.0)
F17 7.80e+01 (5.0) 3.44e+01 (3.0) 3.42e+01 (2.0) 3.04e+01 (1.0) 7.12e+01 (4.0) 8.83e+01 (6.0) 2.43e+02 (7.0)
F18 1.79e+02 (6.0) 6.23e+01 (2.0) 5.40e+01 (1.0) 1.72e+02 (5.0) 9.04e+01 (3.0) 1.56e+02 (4.0) 2.57e+02 (7.0)
F19 5.23e+00 (5.0) 2.23e+00 (2.0) 2.41e+00 (3.0) 1.84e+00 (1.0) 3.96e+00 (4.0) 1.10e+01 (6.0) 2.41e+01 (7.0)
F20 1.43e+01 (5.5) 1.29e+01 (2.0) 1.34e+01 (3.0) 1.18e+01 (1.0) 1.41e+01 (4.0) 1.45e+01 (7.0) 1.43e+01 (5.5)
F21 3.16e+02 (4.0) 1.92e+02 (1.0) 2.41e+02 (2.0) 2.97e+02 (3.0) 4.43e+02 (6.5) 4.43e+02 (6.5) 3.30e+02 (5.0)
F22 9.77e+02 (4.0) 8.38e+02 (3.0) 5.73e+02 (2.0) 1.23e+02 (1.0) 5.46e+03 (7.0) 2.10e+03 (5.0) 3.25e+03 (6.0)
F23 5.62e+03 (6.0) 6.67e+02 (1.0) 6.67e+02 (2.0) 5.01e+03 (4.0) 8.00e+03 (7.0) 5.59e+03 (5.0) 5.00e+03 (3.0)
F24 2.96e+02 (4.0) 1.62e+02 (1.0) 2.91e+02 (3.0) 2.52e+02 (2.0) 3.08e+02 (7.0) 3.04e+02 (6.0) 2.97e+02 (5.0)
F25 3.20e+02 (6.0) 2.20e+02 (1.0) 2.79e+02 (3.0) 2.75e+02 (2.0) 3.04e+02 (4.0) 3.08e+02 (5.0) 3.27e+02 (7.0)
F26 3.48e+02 (5.0) 1.58e+02 (1.0) 2.51e+02 (4.0) 2.10e+02 (2.0) 4.04e+02 (7.0) 3.81e+02 (6.0) 2.46e+02 (3.0)
F27 1.15e+03 (4.5) 4.69e+02 (1.0) 8.70e+02 (2.0) 1.01e+03 (3.0) 1.34e+03 (6.0) 1.36e+03 (7.0) 1.15e+03 (4.5)
F28 1.00e+03 (6.0) 2.69e+02 (1.0) 3.00e+02 (3.5) 3.00e+02 (3.5) 3.00e+02 (3.5) 3.00e+02 (3.5) 2.08e+03 (7.0)

Table C.2: Comparative results between the CriPS algorithm and selection of algorithms in the CEC2013 competition. Objective functions

evaluated in 30 dimensions. Values shown are mean fitness over 51 runs and ranking score in parentheses.
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Function CriPS NBIPOP-aCMA-ES NIPOP-aCMA-ES CDE:b6e6rl DE-APC GA Papa
F1 3.25e-05 (7.0) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5) 1.00e-08 (3.5)
F2 2.08e+06 (6.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 3.23e+05 (3.0) 8.27e+05 (4.0) 1.05e+06 (5.0) 1.59e+07 (7.0)
F3 3.40e+09 (6.0) 1.82e+01 (1.0) 1.88e+01 (2.0) 8.61e+06 (3.0) 6.39e+07 (4.0) 8.44e+08 (5.0) 5.06e+09 (7.0)
F4 1.24e+04 (6.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 2.32e-01 (3.0) 5.97e+00 (4.0) 3.45e+01 (5.0) 5.43e+04 (7.0)
F5 1.19e-04 (5.0) 1.00e-08 (2.5) 1.00e-08 (2.5) 1.00e-08 (2.5) 7.67e+05 (6.0) 8.15e+05 (7.0) 1.00e-08 (2.5)
F6 7.01e+01 (5.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 4.34e+01 (3.0) 4.38e+01 (4.0) 9.71e+01 (7.0) 9.70e+01 (6.0)
F7 6.87e+01 (3.0) 4.97e+00 (1.0) 1.17e+01 (2.0) 8.26e+01 (5.0) 7.21e+01 (4.0) 1.04e+02 (6.0) 1.28e+02 (7.0)
F8 2.11e+01 (1.5) 2.11e+01 (4.0) 2.11e+01 (3.0) 2.11e+01 (5.0) 2.12e+01 (6.5) 2.12e+01 (6.5) 2.11e+01 (1.5)
F9 3.03e+01 (3.0) 7.22e+00 (2.0) 6.88e+00 (1.0) 5.67e+01 (4.0) 7.50e+01 (6.0) 7.77e+01 (7.0) 6.15e+01 (5.0)
F10 1.29e+00 (6.0) 1.00e-08 (1.5) 1.00e-08 (1.5) 3.54e-02 (3.0) 2.22e-01 (4.0) 4.39e-01 (5.0) 2.99e+01 (7.0)
F11 6.86e+01 (4.0) 5.50e+00 (3.0) 1.99e+00 (2.0) 1.00e-08 (1.0) 7.32e+01 (5.0) 1.05e+02 (6.0) 3.53e+02 (7.0)
F12 4.38e+02 (6.0) 5.37e+00 (2.0) 1.37e+00 (1.0) 1.89e+02 (5.0) 9.95e+01 (3.0) 1.59e+02 (4.0) 4.41e+02 (7.0)
F13 5.80e+02 (6.0) 7.59e+00 (2.0) 1.48e+00 (1.0) 2.53e+02 (4.0) 2.35e+02 (3.0) 3.63e+02 (5.0) 6.38e+02 (7.0)
F14 2.09e+03 (4.0) 1.38e+03 (3.0) 1.26e+03 (2.0) 3.65e-02 (1.0) 1.08e+04 (7.0) 6.98e+03 (6.0) 5.06e+03 (5.0)
F15 8.93e+03 (4.0) 1.55e+03 (2.0) 1.35e+03 (1.0) 9.27e+03 (5.0) 1.52e+04 (6.0) 1.64e+04 (7.0) 8.51e+03 (3.0)
F16 2.35e+00 (4.0) 8.78e-01 (1.0) 3.37e+00 (5.0) 2.30e+00 (3.0) 3.85e+00 (6.0) 4.34e+00 (7.0) 2.07e+00 (2.0)
F17 1.73e+02 (5.0) 5.74e+01 (2.0) 5.77e+01 (3.0) 5.08e+01 (1.0) 2.03e+02 (6.0) 1.67e+02 (4.0) 6.01e+02 (7.0)
F18 4.70e+02 (6.0) 1.34e+02 (1.0) 1.94e+02 (3.0) 3.28e+02 (4.0) 1.41e+02 (2.0) 4.35e+02 (5.0) 6.33e+02 (7.0)
F19 1.39e+01 (5.0) 4.46e+00 (2.0) 4.47e+00 (3.0) 3.43e+00 (1.0) 1.19e+01 (4.0) 1.49e+01 (6.0) 1.28e+02 (7.0)
F20 2.40e+01 (6.0) 2.25e+01 (2.0) 2.30e+01 (3.0) 2.15e+01 (1.0) 2.39e+01 (5.0) 2.43e+01 (7.0) 2.37e+01 (4.0)
F21 8.45e+02 (5.0) 1.98e+02 (1.0) 3.65e+02 (2.0) 4.60e+02 (3.0) 1.13e+03 (6.5) 1.13e+03 (6.5) 7.58e+02 (4.0)
F22 2.50e+03 (4.0) 1.45e+03 (3.0) 1.02e+03 (2.0) 3.60e+01 (1.0) 1.17e+04 (7.0) 9.47e+03 (6.0) 6.50e+03 (5.0)
F23 1.16e+04 (5.0) 1.71e+03 (2.0) 1.19e+03 (1.0) 9.78e+03 (3.0) 1.54e+04 (6.0) 1.63e+04 (7.0) 1.02e+04 (4.0)
F24 3.91e+02 (5.0) 2.40e+02 (1.0) 3.70e+02 (3.0) 3.33e+02 (2.0) 3.94e+02 (6.0) 3.96e+02 (7.0) 3.83e+02 (4.0)
F25 4.61e+02 (7.0) 2.48e+02 (1.0) 3.65e+02 (3.0) 3.64e+02 (2.0) 3.91e+02 (4.0) 3.96e+02 (5.0) 4.44e+02 (6.0)
F26 4.28e+02 (5.0) 1.96e+02 (1.0) 2.88e+02 (2.0) 3.28e+02 (3.0) 4.91e+02 (6.0) 4.96e+02 (7.0) 4.26e+02 (4.0)
F27 2.05e+03 (5.0) 7.28e+02 (1.0) 1.90e+03 (3.0) 1.73e+03 (2.0) 2.22e+03 (6.0) 2.27e+03 (7.0) 2.03e+03 (4.0)
F28 2.03e+03 (4.0) 4.00e+02 (1.5) 5.72e+02 (3.0) 4.00e+02 (1.5) 3.40e+03 (5.0) 3.42e+03 (6.0) 4.02e+03 (7.0)

Table C.3: Comparative results between the CriPS algorithm and selection of algorithms in the CEC2013 competition. Objective functions

evaluated in 50 dimensions. Values shown are mean fitness over 51 runs and ranking score in parentheses.
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Condition CriPS NBIPOP-aCMA-ES NIPOP-aCMA-ES CDE:b6e6rl DE-APC GA Papa
All data 4.96 1.95 (1) 2.35 (5) 2.88 (10) 4.86 (15) 5.51 (17) 5.50 (21)
10D data 4.86 2.05 (1) 2.55 (5) 2.98 (10) 4.64 (15) 5.13 (17) 5.79 (21)
30D data 5.09 1.95 (1) 2.25 (5) 2.84 (10) 4.95 (15) 5.48 (17) 5.45 (21)
50D data 4.95 1.84 (1) 2.25 (5) 2.80 (10) 4.98 (15) 5.91 (17) 5.27 (21)

F8-F28 only 4.63 1.87 (1) 2.37 (5) 2.67 (10) 5.24 (15) 5.82 (17) 5.40 (21)

Table C.4: Average ranking results for the CriPS algorithm and a selection of algorithms in the CEC2013 competition. Across all

function:dimension pairings the mean results for each algorithm are ranked (1 through 7). These are averaged and the results shown in

this table. The figures in parentheses are the positions occupied by the algorithms in the CEC2013 competition. The first line shows the results

for all data. The ranking of the CriPS algorithm can be seen to be between the 15th and 17th best algorithms in the competition by this criteria.

Lines two, three and four show the results when we consider the problem functions only in specific dimensionalities: CriPS performance

appears similar in each case. Last line shows the same exercise but only considering a subset of functions. It should not be surprising that

excluding functions that an algorithm does poorly on improves its apparent performance, but by excluding the ’simpler’ functions we perhaps

show that the CriPS strategy may be worth more in more complex problem spaces.



Appendix D

Detailed results from CriPS variations

D.1 CriPS algorithm variations and suitable statistical

testing

Here we present some details relating to the performance of variations of the CriPS

algorithm.

The algorithm is explored whilst varying the swarm population and with differing

values for the ε parameter. In each case we generate a number of different sets of

results. Each time we make a new comparison we run the algorithm 51 times, for each

of the 28 functions. We execute only for the 10 dimensional problem space to limit (to

some extent) the number of cases to be explored. As we are comparing multiple results

sets, paired t-tests (or variants such as Welch’s t-test) are not appropriate. ANOVA

tests allow us to compare multiple results, but have certain assumptions that seem

unlikely to be met e.g. normally distributed results. To explore this we can plot,

for a single function, the fitness values achieved at the end of each run. As these

values are often spread over several orders of magnitude we can also display them

with the log of the fitness used. We can also plot the fitnesses in histogram form.

Figure D.1 displays this data for the CEC2013 function 1 (sphere function). Fitness

values achieved by the algorithm over the 51 repeat executions achieve results that

vary over many orders of magnitude. The algorithm is capable on occasion of beating

the competition’s ‘zero’ target (fitness results less that 10−8 are considered to be zero).

However, there are a few poor results that result in the linear results histogram to appear

highly skewed. The logarithmic histogram arguably appears to have a more ‘normal’

appearance, so it may be that we could transform the data prior to applying an ANOVA

163
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test. This picture, however, is not the same for all functions explored. Figure D.2 shows

the equivalent data for CEC2013’s composite function 8. With this function neither

histogram appears normal. For this reason comparisons between multiple variants of

our algorithm will use a non-parametric statistical test, the Kruskal-Wallis test.

D.1.1 The Kruskal-Wallis test

This can be thought of as a non parametric version of the classical one-way ANOVA

test. It is a rank sum test for more than two groups comparing the medians of the

groups to determine if the samples may be considered as having been drawn from the

same population. Instead of ANOVA’s assumption of normal distributions in the group

populations the Kruskal-Wallace test assumes that the distributions are the same (but

not necessarily normal). For our testing of CriPS variants where either population or

ε are being varied the distributions appear to be similar but, as noted in section D.1,

not always normal.

D.1.2 Results of CriPS with varying swarm population size

Using the CEC2013 protocol we reran the CriPS algorithm for 10 dimensional

problems with different swarm populations. Populations of 10, 25, 50, 75, 100, 125,

and 250 were used. The performances are shown in Figure D.3. Details of the mean

and standard deviation values for all the functions and all the swarm sizes are in

Table D.4. There are performance differences between the swarm size variants. We can

use the Kruskal-Wallis test (see section D.1.1) to determine if there is any significance

to these differences.

Figure D.4 shows some selected results of applying the Kruskal-Wallis test to

the results for several functions. For consistency we always select the first group

(swarm population = 10, shown in blue). Groups that are significantly different are

highlighted in red. Groups that are not significantly different are displayed in black.

One can visually assess other comparisons: significant differences result in the lines

not overlapping. The best results are always the lines with the leftmost midpoints.

Function 1 does better with swarms of 25 or 50, whereas for function 10 the largest

swarm of 250 wins, but there seem to be no other functions that favour the largest

swarm sizes (although several where it doesn’t seem detrimental). Function 12 shows

larger swarms performing best. A smaller swarm has necessarily less information

about good locations to share, but it would appear broadly that there is no benefit of



Appendix D. Detailed results from CriPS variations 165

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7
x 10

-6

Run number

F
it

n
e

s
s

Fitness result for function number 1

0 10 20 30 40 50 60
10

-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

Run number

F
it

n
e

s
s

Fitness result for function number 1

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fitness

N
u

m
b

e
r o

f o
c

c
u

re
n

c
e

s

Fitness result distribution for function number 1

0 1 2 3 4 5 6 7

x 10
-6

0

5

10

15

20

25

30

35

40

45

50

Fitness

N
u

m
b

e
r o

f o
c

c
u

re
n

c
e

s

Fitness result distribution for function number 1

Figure D.1: Examples of final fitness distribution data achieved by the CriPS algorithm

against CEC2013 function 1 (Sphere). From top left, clockwise: Individual final fitness

values on linear scale; Individual final fitness values on log scale; histogram of final

fitness values on linear scale; histogram of final fitness values on log scale.

increasing the swarm size above a modest 25 particles or so. We note that all these

results are for 10 dimensional search spaces. Higher dimensionalities may present a

differing picture.

D.1.3 Results of CriPS with varying ε value

We have seen that ε can be used to tune the statistical balance of exploratory and

exploitative moves in the swarm. Initially we were concerned to use this to determine

whether criticality in the swarm size changes could be engineered. If, instead, we wish

solely to explore whether we can improve the results obtained we can use ε to modify

the swarm dynamic. We run the CEC2013 tests on the ten dimensional objective

functions, setting ε ∈ {0.025,0.075,0.125,0.5,0.75,1.0,1.5,5.0}. Figure D.5 shows

the performance of the algorithm for these epsilon values for 10 dimensional problems

in the CE2013 challenge. The full mean and standard deviations are shown in
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Figure D.2: Examples of final fitness distribution data achieved by the CriPS algorithm

against CEC2013 function 28 (Composite function 8). From top left, clockwise:

Individual final fitness values on linear scale; Individual final fitness values on log scale;

histogram of final fitness values on linear scale; histogram of final fitness values on log

scale.

Table D.5.

We can explore whether any of these differences are significant. Once again we use

the Kruskal-Wallis test to make these comparisons. Figure D.6 shows exemplar plots

of the results of Kruskal-Wallis tests run on the results for several of the functions.

Looking at functions 1, 7 and 28 we see different ε values lead to better results. All the

tests use p=0.05 as the significance level. These plots visualise the results of the KW

tests. Each group mean is represented by a symbol, and the interval is represented by

a line extending out from the symbol. Two group means are significantly different if

their intervals are disjoint; they are not significantly different if their intervals overlap.

No overriding picture emerges from the 28 functions. Smaller ε values often result

in better results, but equally often all values generate similar results and occasionally

(function 7) the larger ε appears to be best.
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Function Best Worst Median Mean Std
1 2.18e-11 6.72e-06 6.97e-09 1.62e-07 9.39e-07
2 1.14e+04 2.95e+05 8.02e+04 9.38e+04 7.47e+04
3 2.54e+01 1.27e+09 2.67e+06 5.18e+07 2.01e+08
4 1.31e+02 1.87e+04 1.21e+03 2.24e+03 3.41e+03
5 7.82e-09 2.57e-05 6.17e-07 2.68e-06 4.75e-06
6 2.18e-02 8.15e+01 9.81e+00 1.01e+01 1.68e+01
7 9.79e-01 8.32e+01 1.61e+01 2.23e+01 2.10e+01
8 2.02e+01 2.05e+01 2.03e+01 2.03e+01 8.12e-02
9 1.67e+00 9.08e+00 5.67e+00 5.33e+00 1.75e+00
10 8.87e-02 2.52e+00 7.67e-01 9.04e-01 5.77e-01
11 0.00e+00 9.95e+00 9.95e-01 1.74e+00 2.16e+00
12 5.97e+00 4.88e+01 1.79e+01 1.99e+01 1.10e+01
13 1.04e+01 5.38e+01 2.95e+01 2.97e+01 9.84e+00
14 3.42e+00 5.22e+02 1.33e+02 1.46e+02 1.20e+02
15 1.95e+02 1.63e+03 8.15e+02 8.23e+02 3.22e+02
16 1.59e-01 1.34e+00 6.48e-01 7.03e-01 2.86e-01
17 3.36e+00 2.76e+01 1.44e+01 1.49e+01 3.87e+00
18 1.38e+01 4.63e+01 2.70e+01 2.79e+01 8.56e+00
19 3.96e-02 1.47e+00 5.85e-01 6.45e-01 2.90e-01
20 2.19e+00 3.93e+00 3.13e+00 3.10e+00 3.91e-01
21 1.00e+02 4.00e+02 4.00e+02 3.79e+02 7.02e+01
22 3.26e+01 6.03e+02 2.54e+02 2.70e+02 1.44e+02
23 6.12e+01 1.70e+03 1.13e+03 1.08e+03 3.38e+02
24 2.01e+02 2.26e+02 2.16e+02 2.16e+02 5.89e+00
25 1.14e+02 2.25e+02 2.16e+02 2.13e+02 1.55e+01
26 1.07e+02 3.28e+02 2.00e+02 1.99e+02 7.30e+01
27 3.04e+02 6.27e+02 4.38e+02 4.32e+02 1.04e+02
28 1.00e+02 7.93e+02 3.00e+02 3.61e+02 1.48e+02

Table D.1: CriPS results under the CEC2013 test protocol. Problem space is 10

dimensional.

The value of CriPS is in avoiding stagnation, the algorithm still uses the standard

PSO mechanisms to guide the particles towards a solution. It would therefore appear

that so long as the mechanism of using changes in the swarm metric to update the PSO

parameters is employed broadly comparable solutions are available to the algorithm.
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Function Best Worst Median Mean Std
1 1.88e-07 8.71e-05 1.85e-06 6.52e-06 1.40e-05
2 3.41e+05 2.19e+06 8.48e+05 9.26e+05 4.57e+05
3 9.24e+06 3.14e+09 3.17e+08 5.67e+08 6.48e+08
4 6.28e+02 3.13e+04 7.21e+03 7.69e+03 5.44e+03
5 1.15e-06 3.30e-04 1.73e-05 3.66e-05 5.71e-05
6 7.30e-01 8.03e+01 1.61e+01 3.31e+01 2.78e+01
7 1.85e+02 1.85e+02 1.85e+02 1.85e+02 0.00e+00
8 2.08e+01 2.10e+01 2.09e+01 2.09e+01 6.73e-02
9 3.43e+01 3.43e+01 3.43e+01 3.43e+01 0.00e+00
10 3.62e-02 1.18e+00 1.50e-01 2.03e-01 2.14e-01
11 1.99e+00 7.88e+01 1.60e+01 2.33e+01 1.84e+01
12 8.76e+01 2.80e+02 1.60e+02 1.74e+02 5.25e+01
13 1.63e+02 3.75e+02 2.57e+02 2.59e+02 4.91e+01
14 2.01e+02 3.94e+03 1.01e+03 1.19e+03 6.60e+02
15 3.08e+03 6.32e+03 4.54e+03 4.57e+03 6.31e+02
16 7.91e-01 2.67e+00 1.66e+00 1.65e+00 4.54e-01
17 4.62e+01 1.68e+02 7.38e+01 7.80e+01 2.32e+01
18 1.15e+02 3.17e+02 1.67e+02 1.79e+02 5.12e+01
19 2.42e+00 1.46e+01 4.64e+00 5.23e+00 2.26e+00
20 1.14e+01 1.50e+01 1.45e+01 1.43e+01 7.03e-01
21 1.00e+02 4.44e+02 3.00e+02 3.17e+02 1.04e+02
22 3.89e+02 2.07e+03 8.79e+02 9.77e+02 4.31e+02
23 3.27e+03 7.61e+03 5.61e+03 5.62e+03 1.01e+03
24 2.57e+02 3.22e+02 2.97e+02 2.96e+02 1.39e+01
25 2.81e+02 3.45e+02 3.20e+02 3.20e+02 1.42e+01
26 2.00e+02 3.97e+02 3.73e+02 3.48e+02 6.51e+01
27 8.88e+02 1.36e+03 1.15e+03 1.15e+03 1.03e+02
28 1.00e+02 3.59e+03 3.00e+02 1.00e+03 1.05e+03

Table D.2: CriPS results under the CEC2013 test protocol. Problem space is 30

dimensional.
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Figure D.3: CriPS performance with varying swarm populations. The CEC2013

competition protocol was used. Objective functions are 10 dimensional only. The figure

shows the mean fitness achieved for each swarm size against each objective function.
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Function Best Worst Median Mean Std
1 1.66e-06 4.12e-04 1.59e-05 3.25e-05 6.05e-05
2 1.01e+06 4.21e+06 2.05e+06 2.08e+06 6.00e+05
3 1.48e+08 1.23e+10 2.34e+09 3.40e+09 2.88e+09
4 2.16e+03 2.79e+04 1.21e+04 1.24e+04 6.43e+03
5 4.23e-06 5.65e-04 7.64e-05 1.19e-04 1.10e-04
6 2.12e+01 2.26e+02 4.87e+01 7.01e+01 3.92e+01
7 2.12e-09 2.36e+02 2.88e-05 6.87e+01 8.26e+01
8 2.10e+01 2.18e+01 2.11e+01 2.11e+01 4.43e-02
9 5.27e-10 7.20e+01 9.96e-09 3.03e+01 3.26e+01
10 2.06e-01 4.50e+00 1.21e+00 1.29e+00 6.55e-01
11 8.01e+00 1.88e+02 5.22e+01 6.86e+01 4.62e+01
12 2.09e+02 7.14e+02 4.34e+02 4.38e+02 9.84e+01
13 3.78e+02 8.69e+02 5.77e+02 5.81e+02 1.14e+02
14 7.55e+02 5.64e+03 1.93e+03 2.10e+03 1.02e+03
15 6.86e+03 1.16e+04 8.97e+03 8.93e+03 1.12e+03
16 9.97e-01 3.70e+00 2.31e+00 2.35e+00 7.08e-01
17 1.05e+02 3.52e+02 1.53e+02 1.73e+02 5.68e+01
18 2.34e+02 9.25e+02 4.24e+02 4.70e+02 1.62e+02
19 4.71e+00 3.19e+01 1.31e+01 1.39e+01 5.66e+00
20 2.16e+01 2.45e+01 2.45e+01 2.40e+01 7.53e-01
21 2.00e+02 1.12e+03 1.12e+03 8.45e+02 3.63e+02
22 4.84e+02 5.14e+03 2.38e+03 2.50e+03 1.09e+03
23 7.93e+03 1.45e+04 1.20e+04 1.16e+04 1.55e+03
24 3.43e+02 4.40e+02 3.93e+02 3.91e+02 1.94e+01
25 4.29e+02 5.08e+02 4.59e+02 4.61e+02 1.93e+01
26 2.00e+02 4.90e+02 4.61e+02 4.28e+02 9.26e+01
27 1.66e+03 2.48e+03 2.04e+03 2.05e+03 1.70e+02
28 4.00e+02 6.77e+03 4.00e+02 2.03e+03 2.18e+03

Table D.3: CriPS results under the CEC2013 test protocol. Problem space is 50

dimensional.
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Function size=10 size=25 size=50 size=75 size=100 size=125 size=250

1 4.91e-07 (2.40e-06) 1.62e-07 (9.39e-07) 3.00e-07 (1.57e-06) 1.00e-07 (2.73e-07) 2.84e-07 (6.21e-07) 1.32e-06 (4.25e-06) 1.79e-05 (3.71e-05)

2 9.60e+04 (7.97e+04) 9.38e+04 (7.47e+04) 9.51e+04 (7.53e+04) 8.76e+04 (7.21e+04) 9.79e+04 (9.04e+04) 9.04e+04 (8.40e+04) 8.07e+04 (5.55e+04)

3 1.20e+08 (4.15e+08) 5.18e+07 (2.01e+08) 4.93e+07 (1.52e+08) 1.31e+07 (3.40e+07) 3.59e+07 (1.05e+08) 3.05e+07 (6.56e+07) 3.57e+07 (8.38e+07)

4 2.58e+03 (2.97e+03) 2.24e+03 (3.41e+03) 2.25e+03 (2.02e+03) 2.02e+03 (2.34e+03) 2.63e+03 (2.51e+03) 2.20e+03 (2.08e+03) 3.14e+03 (2.17e+03)

5 5.81e-06 (1.35e-05) 2.68e-06 (4.75e-06) 4.17e-06 (1.28e-05) 1.16e-05 (3.26e-05) 3.13e-05 (1.29e-04) 3.20e-05 (5.33e-05) 3.92e-04 (6.57e-04)

6 7.55e+00 (1.15e+01) 1.01e+01 (1.68e+01) 7.42e+00 (1.11e+01) 6.02e+00 (4.78e+00) 9.32e+00 (1.43e+01) 7.50e+00 (8.23e+00) 6.88e+00 (1.18e+01)

7 5.06e+01 (3.50e+01) 2.25e+01 (2.10e+01) 2.71e+01 (2.89e+01) 2.70e+01 (2.23e+01) 2.56e+01 (1.62e+01) 3.48e+01 (2.44e+01) 3.03e+01 (1.93e+01)

8 2.03e+01 (7.16e-02) 2.03e+01 (8.12e-02) 2.03e+01 (7.54e-02) 2.03e+01 (8.14e-02) 2.03e+01 (6.24e-02) 2.03e+01 (6.74e-02) 2.03e+01 (8.61e-02)

9 5.53e+00 (1.61e+00) 5.33e+00 (1.75e+00) 5.03e+00 (1.49e+00) 5.26e+00 (1.63e+00) 4.83e+00 (1.70e+00) 4.85e+00 (1.46e+00) 5.02e+00 (1.53e+00)

10 1.55e+00 (1.22e+00) 9.05e-01 (5.77e-01) 5.70e-01 (4.08e-01) 4.59e-01 (3.47e-01) 5.40e-01 (3.88e-01) 3.80e-01 (2.35e-01) 2.73e-01 (1.86e-01)

11 1.38e+00 (3.70e+00) 1.74e+00 (2.16e+00) 1.89e+00 (1.37e+00) 2.61e+00 (2.38e+00) 2.69e+00 (2.17e+00) 2.80e+00 (2.54e+00) 5.23e+00 (3.73e+00)

12 2.98e+01 (1.17e+01) 1.99e+01 (1.10e+01) 2.25e+01 (1.04e+01) 2.17e+01 (1.01e+01) 2.14e+01 (9.97e+00) 2.31e+01 (1.13e+01) 2.40e+01 (1.12e+01)

13 3.79e+01 (1.38e+01) 2.97e+01 (9.84e+00) 2.75e+01 (9.95e+00) 2.79e+01 (1.07e+01) 2.63e+01 (1.18e+01) 2.85e+01 (1.21e+01) 3.20e+01 (1.25e+01)

14 1.26e+02 (1.23e+02) 1.46e+02 (1.20e+02) 1.83e+02 (1.59e+02) 2.11e+02 (1.19e+02) 2.23e+02 (1.20e+02) 1.99e+02 (1.65e+02) 2.55e+02 (1.41e+02)

15 9.73e+02 (2.82e+02) 8.23e+02 (3.22e+02) 8.63e+02 (2.89e+02) 8.70e+02 (2.96e+02) 8.28e+02 (2.85e+02) 9.21e+02 (3.08e+02) 8.16e+02 (2.40e+02)

16 8.34e-01 (3.16e-01) 7.03e-01 (2.86e-01) 5.73e-01 (2.56e-01) 5.56e-01 (2.68e-01) 5.12e-01 (2.05e-01) 5.04e-01 (1.90e-01) 5.75e-01 (2.33e-01)

17 1.63e+01 (6.03e+00) 1.49e+01 (3.87e+00) 1.59e+01 (3.69e+00) 1.60e+01 (4.44e+00) 1.47e+01 (3.36e+00) 1.55e+01 (3.65e+00) 1.83e+01 (5.06e+00)

18 3.34e+01 (9.89e+00) 2.79e+01 (8.56e+00) 2.87e+01 (7.89e+00) 2.46e+01 (7.33e+00) 2.54e+01 (8.34e+00) 2.74e+01 (7.82e+00) 2.64e+01 (7.09e+00)

19 7.21e-01 (5.74e-01) 6.45e-01 (2.90e-01) 6.19e-01 (2.06e-01) 5.78e-01 (1.84e-01) 6.70e-01 (2.42e-01) 6.18e-01 (1.76e-01) 7.99e-01 (4.00e-01)

20 3.47e+00 (4.94e-01) 3.10e+00 (3.91e-01) 3.15e+00 (4.62e-01) 3.22e+00 (4.53e-01) 3.05e+00 (4.90e-01) 3.07e+00 (6.19e-01) 3.12e+00 (4.58e-01)

21 3.83e+02 (5.56e+01) 3.79e+02 (7.02e+01) 3.59e+02 (8.77e+01) 3.88e+02 (4.32e+01) 3.73e+02 (6.96e+01) 3.81e+02 (6.01e+01) 3.71e+02 (6.73e+01)

22 2.42e+02 (1.93e+02) 2.70e+02 (1.44e+02) 2.34e+02 (1.66e+02) 2.16e+02 (1.73e+02) 2.91e+02 (1.63e+02) 3.11e+02 (1.99e+02) 2.97e+02 (1.88e+02)

23 1.33e+03 (4.05e+02) 1.08e+03 (3.38e+02) 1.14e+03 (3.42e+02) 1.11e+03 (3.11e+02) 1.13e+03 (3.25e+02) 1.17e+03 (3.54e+02) 1.13e+03 (4.44e+02)

24 2.11e+02 (2.78e+01) 2.16e+02 (5.89e+00) 2.15e+02 (1.33e+01) 2.14e+02 (1.50e+01) 2.13e+02 (1.10e+01) 2.15e+02 (5.40e+00) 2.18e+02 (5.44e+00)

25 2.19e+02 (6.96e+00) 2.13e+02 (1.55e+01) 2.13e+02 (1.35e+01) 2.12e+02 (1.42e+01) 2.12e+02 (1.23e+01) 2.14e+02 (6.13e+00) 2.13e+02 (1.31e+01)

26 1.93e+02 (7.46e+01) 1.99e+02 (7.30e+01) 2.02e+02 (7.16e+01) 1.85e+02 (7.19e+01) 1.86e+02 (6.19e+01) 1.78e+02 (4.57e+01) 1.74e+02 (3.79e+01)

27 4.62e+02 (1.02e+02) 4.32e+02 (1.04e+02) 4.23e+02 (1.08e+02) 3.99e+02 (1.07e+02) 4.14e+02 (1.00e+02) 4.21e+02 (9.87e+01) 4.48e+02 (9.81e+01)

28 4.54e+02 (2.28e+02) 3.61e+02 (1.48e+02) 3.78e+02 (1.70e+02) 3.93e+02 (2.06e+02) 3.78e+02 (1.66e+02) 3.73e+02 (1.67e+02) 4.29e+02 (2.14e+02)

Table D.4: Mean and standard deviation (in parentheses) of CriPS running with a range of swarm sizes against the CEC2013 competition

functions. Objective functions evaluated in 10 dimensions.
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(a) Function 1

(c) Function 12

(c) Function 17

Figure D.4: CriPS performance with varying swarm population. The CEC2013

competition protocol was used. Objective functions are 10 dimensional only. The

best population values are those whose data lines lie leftmost of each graph. All

comparisons are made with the smallest population case (shown in blue). Black lines

indicate results that overlap with this and are not significant. Red lines show results that

appear to be significant. Mean fitness value achieved is shown on the horizontal axis.
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Figure D.5: CriPS performance with varying ε values. The CEC2013 competition

protocol was used. Objective functions are 10 dimensional only. The figure shows

the mean fitness achieved for each ε against each objective function.
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Function ε =0.025 ε =0.125 ε =0.5 ε =0.75 ε =1.0 ε =1.5 ε =5.0

1 3.15e-10 (1.38e-09) 5.77e-10 (1.14e-09) 2.33e-07 (1.57e-06) 1.47e-07 (4.13e-07) 1.62e-07 (9.39e-07) 8.20e-08 (1.52e-07) 9.01e-10 (4.53e-09)

2 2.97e+04 (3.54e+04) 5.96e+04 (5.63e+04) 8.29e+04 (9.76e+04) 6.60e+04 (4.53e+04) 9.38e+04 (7.48e+04) 8.46e+04 (8.35e+04) 5.40e+05 (3.23e+05)

3 2.35e+07 (7.78e+07) 2.05e+07 (4.50e+07) 3.35e+07 (7.37e+07) 2.24e+07 (8.83e+07) 5.18e+07 (2.00e+08) 4.88e+07 (1.58e+08) 8.39e+07 (2.14e+08)

4 2.38e+03 (2.44e+03) 1.90e+03 (1.92e+03) 1.77e+03 (1.77e+03) 1.84e+03 (2.35e+03) 2.24e+03 (3.41e+03) 2.15e+03 (2.43e+03) 2.06e+03 (1.58e+03)

5 2.76e-09 (8.40e-09) 2.75e-07 (1.15e-06) 2.06e-05 (1.08e-04) 7.47e-06 (2.80e-05) 2.68e-06 (4.75e-06) 3.16e-06 (5.76e-06) 3.55e-07 (8.88e-07)

6 1.08e+01 (1.65e+01) 9.15e+00 (1.49e+01) 1.15e+01 (1.89e+01) 7.45e+00 (1.16e+01) 1.01e+01 (1.68e+01) 1.07e+01 (1.72e+01) 1.70e+01 (2.47e+01)

7 3.97e+01 (2.83e+01) 2.29e+01 (1.66e+01) 3.01e+01 (2.82e+01) 2.63e+01 (2.31e+01) 2.23e+01 (2.10e+01) 4.16e+01 (2.81e+01) 4.16e+01 (3.31e+01)

8 2.03e+01 (8.72e-02) 2.03e+01 (8.51e-02) 2.03e+01 (6.45e-02) 2.03e+01 (7.15e-02) 2.03e+01 (8.12e-02) 2.03e+01 (6.75e-02) 2.03e+01 (8.40e-02)

9 5.22e+00 (1.61e+00) 5.31e+00 (1.52e+00) 5.03e+00 (1.51e+00) 4.96e+00 (1.58e+00) 5.33e+00 (1.75e+00) 5.67e+00 (1.60e+00) 6.20e+00 (1.44e+00)

10 6.10e-01 (4.14e-01) 6.86e-01 (4.73e-01) 7.70e-01 (4.56e-01) 8.38e-01 (5.61e-01) 9.05e-01 (5.77e-01) 8.51e-01 (6.77e-01) 2.42e+00 (1.59e+00)

11 1.18e+00 (2.05e+00) 1.49e+00 (1.94e+00) 1.41e+00 (1.54e+00) 1.71e+00 (2.05e+00) 1.74e+00 (2.16e+00) 2.15e+00 (3.07e+00) 1.27e+00 (1.67e+00)

12 2.38e+01 (1.09e+01) 2.14e+01 (9.43e+00) 2.02e+01 (8.94e+00) 2.01e+01 (7.46e+00) 1.99e+01 (1.10e+01) 2.38e+01 (1.22e+01) 3.57e+01 (1.63e+01)

13 3.58e+01 (1.34e+01) 2.86e+01 (1.18e+01) 2.95e+01 (1.01e+01) 3.09e+01 (1.04e+01) 2.97e+01 (9.84e+00) 3.27e+01 (1.17e+01) 3.56e+01 (1.07e+01)

14 2.26e+02 (1.41e+02) 1.87e+02 (1.49e+02) 1.65e+02 (1.35e+02) 1.64e+02 (1.28e+02) 1.46e+02 (1.20e+02) 2.11e+02 (1.63e+02) 1.16e+02 (1.19e+02)

15 8.62e+02 (2.78e+02) 8.92e+02 (2.62e+02) 9.20e+02 (2.93e+02) 7.76e+02 (2.51e+02) 8.23e+02 (3.22e+02) 8.84e+02 (2.75e+02) 9.35e+02 (3.21e+02)

16 5.44e-01 (2.21e-01) 6.84e-01 (2.93e-01) 7.49e-01 (2.88e-01) 8.01e-01 (2.20e-01) 7.03e-01 (2.86e-01) 6.14e-01 (2.65e-01) 1.06e+00 (2.25e-01)

17 1.57e+01 (4.07e+00) 1.49e+01 (3.46e+00) 1.69e+01 (4.08e+00) 1.61e+01 (4.28e+00) 1.49e+01 (3.87e+00) 1.71e+01 (4.42e+00) 1.52e+01 (4.79e+00)

18 2.50e+01 (8.05e+00) 2.63e+01 (8.63e+00) 2.63e+01 (8.29e+00) 2.73e+01 (7.82e+00) 2.79e+01 (8.56e+00) 2.72e+01 (8.23e+00) 3.98e+01 (9.18e+00)

19 7.60e-01 (3.11e-01) 6.61e-01 (2.83e-01) 6.13e-01 (2.27e-01) 6.26e-01 (2.51e-01) 6.45e-01 (2.90e-01) 6.34e-01 (3.56e-01) 8.89e-01 (5.56e-01)

20 3.27e+00 (4.90e-01) 3.13e+00 (5.50e-01) 3.02e+00 (6.49e-01) 3.11e+00 (6.16e-01) 3.10e+00 (3.91e-01) 3.21e+00 (5.23e-01) 3.20e+00 (4.69e-01)

21 3.75e+02 (7.45e+01) 3.71e+02 (7.83e+01) 3.75e+02 (7.17e+01) 3.83e+02 (6.55e+01) 3.79e+02 (7.02e+01) 3.81e+02 (6.94e+01) 3.65e+02 (7.96e+01)

22 2.88e+02 (2.69e+02) 2.31e+02 (1.62e+02) 2.07e+02 (1.48e+02) 2.39e+02 (1.71e+02) 2.70e+02 (1.44e+02) 2.33e+02 (1.57e+02) 2.25e+02 (1.47e+02)

23 1.21e+03 (3.42e+02) 1.16e+03 (3.48e+02) 1.14e+03 (3.55e+02) 1.08e+03 (3.12e+02) 1.08e+03 (3.38e+02) 1.29e+03 (3.12e+02) 1.18e+03 (3.66e+02)

24 2.17e+02 (5.42e+00) 2.15e+02 (5.58e+00) 2.15e+02 (5.67e+00) 2.16e+02 (5.69e+00) 2.16e+02 (5.89e+00) 2.19e+02 (4.14e+00) 2.20e+02 (4.57e+00)

25 2.15e+02 (1.54e+01) 2.14e+02 (1.48e+01) 2.12e+02 (1.55e+01) 2.13e+02 (1.29e+01) 2.13e+02 (1.55e+01) 2.14e+02 (1.91e+01) 2.17e+02 (1.50e+01)

26 2.08e+02 (7.83e+01) 2.02e+02 (7.86e+01) 1.94e+02 (7.09e+01) 2.03e+02 (8.15e+01) 1.99e+02 (7.30e+01) 2.07e+02 (7.99e+01) 2.10e+02 (7.96e+01)

27 4.34e+02 (9.03e+01) 4.36e+02 (1.01e+02) 4.19e+02 (9.93e+01) 4.03e+02 (8.97e+01) 4.32e+02 (1.04e+02) 4.62e+02 (9.85e+01) 5.12e+02 (8.79e+01)

28 3.76e+02 (1.62e+02) 3.55e+02 (1.45e+02) 3.84e+02 (1.66e+02) 3.89e+02 (1.67e+02) 3.61e+02 (1.48e+02) 4.09e+02 (1.94e+02) 4.29e+02 (2.15e+02)

Table D.5: Mean and standard deviation (in parentheses) of CriPS running with a range of values of ε against the CEC2013 competition

functions. Objective functions evaluated in 10 dimensions.
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(a) Function 1

(b) Function 7

(c) Function 28

Figure D.6: CriPS performance with varying ε values. The CEC2013 competition

protocol was used. Objective functions are 10 dimensional only. The best ε values

are those whose data lines lie leftmost of each graph. All comparisons are made with

the smallest ε case (shown in blue). Black lines indicate results that overlap with this

and are not significant. Red lines show results that appear to be significant. Mean

fitness value achieved is shown on the horizontal axis.



Appendix E

Lyapunov exponent estimation

method

E.1 Method

Vanneste (2010) presents a method for estimating generalised Lyapunov exponents for

products of random matrices. It is a Monte Carlo algorithm that performs importance

sampling using a simple random resampling step. The method outlined was proposed

as brute force Monte Carlo methods are inefficient at calculating large Lyapunov

exponents. As we are looking for Lyapunov exponent λ = 0 this is not the case here.

We opt to use this approach though as we may have wished to explore regions of fast

convergence or divergence and we could do easily without changing algorithm.

Algorithm 2 reproduces the algorithm from Vanneste’s paper. The variable λt is the

Lyapunov exponent we would like to find. It is used to tune the algorithm to that value.

PSO parameters to be used are also supplied as input paramters. Additionally we

provide the number of iterations (N) and matrix realisations (K) to use. We used 1000

realisations and 2500 iterations to generate the data. For each iteration K unit vectors

are updated by drawing and applying different dynamic PSO matrices. The application

of these matrices rotates the unit vectors and moves them outward or inward. The

size of this expansion or contraction is recorded in our distances array, D(K). These

distances are further scaled by raising them to a power equal to our target Lyapunov

exponents. For the next iteration we select from the new set of unit vectors at random

but weighed to favour larger size changes.

We ran the algorithm over the range of PSO paramter values shown in the earlier

stability plots with steps in ω of of 0.05 and steps in α of 0.1. For each parameter pair

175
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the algorithm was run and generated an estimated Lyapunov exponent. This generated

a grid of estimated λ values against α and ω. In general these will not be exactly zero

so we need to estimate a contour through the grid data that marks the likely location of

zero values. Matlab’s contour method was used to draw the zero contour .

Algorithm 2: Vanneste’s Lyapunov exponent estimation algorithm based
on (Vanneste, 2010).

Input: Target Lyapunov exponent λt , Maximum iterations N, Maximum
realisations K, PSO parameters ω, α1 and α2

Output: Returns calculated Lyapunov exponent λ.
for k = 1 to K do

E(k) = (1,0) ; // Unit vectors in R 2

end

for n = 1 to N do

for k = 1 to K do

Draw random matrix M(k) ; // PSO update matrix

E ′(k) = M(k)E(k)
‖M(k)E(k)‖ ; // Move and re-project

D(k) = ‖M(k)E(k)‖λt ; // store weighted moves

end

for k = 1 to K do

γ(k) = ∑k
l=1 D(l) ; // partial sums of weighted moves

end

β(n) = γ(K) ; // sum of all weighted moves

for k = 1 to K do

Draw ε uniformly in [0, β(n)] ; // Resampling loop

j = min
l∈(1,...,K)

(γ(l)− ε≥ 0) ; // first bigger partial sum

E(k) = E ′( j) ; // Select this new unit vector

end

end

λ = ∑N
n=1 logβn

N−logK
; // Calculate estimated value
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