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Part I

Preface





1 ‖ On Swarms and Multi-Objectivity

1.1 Artificial Intelligence for Artificial Swarms

Complexity in nature is typically organized by a multitude of decentralized,
distributed, and heterogeneous systems. Shaped by natural evolution they
can withstand most diverse selective pressures, and the huge plasticity, ex-
ceptional flexibility, and high adaptability have resulted in an extraordinary
global success. These robust and effective systems serve as inspiration not
just for the research of this study. Especially fascinating are the simple
mechanisms in swarms of social insects of hundreds sometimes up to mil-
lions of individuals, that provide food, maintain a hygienic environment,
and safety from predators or competitors. These properties are more rare
in human societies than we wish them to be. Yet, where the human brain
and decision apparatus is complex, insects neuronal systems are far more
simple. Often the higher complexity and potential of neuronal systems is
considered as beneficial, i.e. the smarter the better, however, simplicity is
cheaper, in nature as well as engineering. If swarms of simple individuals are
better in performing simple, but essential, tasks in comparison to centralized
systems, then developing strategies and mechanism for swarm behavior is a
key discipline.

Although, individuals in an insect swarm appear very similar, we must
remember that no two members of a colony are completely alike. In some
cases they might look identical on first sight, but they differ in age, phys-
iology, genotype, and hence the phenotype. Indeed, behavioral ecologists
identify individual personalities of different ants and bees. These differences
render different members of the swarm more or less suitable for specific
tasks. A prominent example is the cooperation of leaf cutting ants, where
the larger ants carry smaller ants that would otherwise be much slower due
to their shorter legs (Hölldobler, 1990). Another example is the task allo-
cation in honeybees. Older honeybees gather food while the younger ones
maintain the hive and take care of the brood (Seeley et al., 1985). All these
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tasks are essential for the colony, however, leaving the hive to forage is a
far more dangerous endeavor and chances are the forager does not return.
Leaving the more risky task to the older bees is obviously a better strategy
than the other way round, because then there would never be any old bees.

Artificial swarms are generally exposed to multiple tasks just like natural
swarms. These tasks require certain skills of the swarm members. Swarms
of homogeneous agents may therefore be less efficient than those comprised
of heterogeneous agents with individual skills. Some tasks, that are called
multi-robot or multi-agent tasks, require the agents to cooperate in order to
complete the task efficiently. The problem of assigning single agents to a set
of single-agent tasks is profoundly studied in the literature (for an overview
see Gerkey and Mataric (2004)). However, the problem of assigning teams
of agents to multi-agent tasks is less studied. A formalization of the problem
is available (Lau and Zhang, 2003) but only few distributed strategies have
been investigated (Shehory and Kraus, 1996).

The central problem of the multi-agent task allocation lies in the detec-
tion of a partition of a set of agents with different capabilities into teams
or coalitions. These teams are allocated to the available multi-agent tasks.
The optimal partition and allocation maximizes some given utility function
but it is NP-hard to infer an optimal partition, i.e. it is not possible to solve
this problem in polynomial time (if P 6= NP ).

Another interesting aspect of the coalition formation problem lies within
the required communication for cooperation and whether decisions to form
groups can be made decentralized or not (e.g. Li and Sycara (2004); Procac-
cia and Rosenschein (2006)). The benefit of the cooperation usually depends
on the cost of communication and the compromises that have to be made.
In general, essential information should be communicated if the communi-
cation cost is lower than the one for retrieving the information by other
means.

1.2 The Trouble with Multi-Objectivity

Most decisions that have to be made in daily life or industrial, engineering,
or scientific contexts need to consider multiple aspects. A very common
example is the nearly daily conflict we face between price and quality when
we make a purchase, or when we want to optimize comfort, time spent,
and our health in our choice of transportation. Obviously, we provide these
objectives with some personal weights and reduce it to a single objective
problem. However, when these weights are not known, such a simplification
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is impossible. Formally, a multi-objective optimization problem asks for so-
lutions from a solution space X (also called search space) that are optimal
with respect to k > 1 objectives. Typically, the objectives are conflicting
with each other and it is impossible to simultaneously optimize all of them.
This discrepancy is covered by the concept of the Pareto dominance relation.
One solution dominates another one if it is better in at least one objective
and not worse in all other objectives. Further, a solution is called Pareto
optimal if it is not dominated by any other solution from X. The set of
all Pareto optimal solutions is denoted as the Pareto set. The detection
of this set is the main goal in multi-objective optimization. Unfortunately,
many discrete multi-objective optimization problems are NP-hard. Contin-
uous multi-objective optimization problems, on the other hand, often have
optimization functions that are either a black box or algebraically too com-
plicated, i.e. it is impossible to solve them analytically. To avoid immense
computational effort, the goal is often reduced to find a set of non-dominated
solutions that are close to the Pareto optimal solutions. Another selective
feature of these sets is diversity in their solutions.

A problem of Pareto sets and sets of solutions that are close to the
Pareto set is their size, especially if there are many objectives. Typically,
the more objectives are to be considered, the more solutions are contained
by the Pareto set. This effect has been called the ‘curse of dimensionality’
(Kukkonen and Lampinen, 2007).

Metaheuristics, e.g. genetic algorithms (GA), particle swarm optimiza-
tion (PSO), or ant colony optimization (ACO), are typically applied, if the
optimal solution is computationally too intense. While these algorithms
were initially designed to solve single-objective problems they have been ex-
tended to solve multi-objective problems as well. Today, there are a multi-
tude of multi-objective variants of various population- based metaheuristics,
e.g. the Vector Evaluation Genetic Algorithm (VEGA) (Schaffer, 1984) or
the well known non-dominated sorting genetic algorithm (NSGAII) (Deb
et al., 2002) (for overviews refer to Coello Coello (2009); Coello Coello et al.
(2005); Fonseca and Fleming (1995)). Aside from these genetic algorithms,
there are also multi-objective extensions of the ACO, e.g. by Doerner et al.
(2001); Iredi et al. (2001) (for overviews see Angus and Woodward (2009);
Leguizamón and Coello Coello (2011)). For problems on continuous solution
spaces extensions of the PSO have been proposed, e.g. by Coello Coello and
Salazar Lechuga (2002) and Hu and Eberhart (2002) (for an overview see
Reyes-Sierra and Coello Coello (2006)).

In population-based metaheuristics new solutions are constructed from
a set of previously selected solutions. Often the Pareto dominance relation
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is used to select the solutions for the population. Unless the population is
allowed to contain an arbitrary number of solutions, the use of the Pareto
dominance relation will select more solutions than the population can hold.
Therefore, it is necessary to compare and rank elements of sets of (non-
dominated) solutions. Clearly, the choice of which solutions are to be kept
in the population is particularly important for small population sizes. Small
populations give some advantages with respect to memory and time require-
ments of an algorithm. This is of great importance in restrictive computa-
tional environments, e.g. when solutions need to be delivered in real time
or the algorithm runs on specific hardware, e.g. as part of an embedded
system.

1.3 Multi-Objective Tasks in Swarms

Multi-agent tasks can be multi-objective tasks, as well. When a team is
confronted with multi-objective multi-agent tasks and has to decide which
one should be performed first, all available tasks need to be ranked by the
team members. Either all members use the same ranking method or – more
interestingly – they use individual ranking methods. In the latter case the
swarm is heterogeneous in the decision apparatus. Hence, the assessment
of swarm performance under different distributions of ranking schemes are
a major topic of this thesis. While these distributions can be set manually,
the agents of the swarm can use evolutionary methods to propagate their
own ranking scheme if it is beneficial. To this end I introduce different
evolutionary methods that are inspired by natural phenomenons.

While most genetic and evolutionary algorithms presume haploidy in
their recombination mechanisms, i.e. both recombination partners provide
one copy of their genetic material, there are also a few approaches that
consider diploid systems, e.g. by Goldberg and Smith (1987). In diploid
systems all individuals have two, usually distinct, sets of chromosomes, i.e.
their genetic material. In diploid dominance systems one set is expressed
like a haploid set while the second set has no further influence and is solely
carried along. This enables the population to maintain a higher diversity
and allows for keeping genetic material over many generations until it might
become useful again.

While diploid systems are well studied, the concept of haplo-diploidy has
been disregarded altogether by researches in evolutionary algorithms and
other artificial mechanism, so far. Yet, haplo-diploidy is a phenomenon that
is common in many animal systems where males are haploid and females are
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diploid, including all Hymenoptera (bees, ants, wasps) and also some beetles
and mites (Crozier, 1977). This is due to the fact that females develop from
fertilized eggs while males develop from unfertilized eggs.

1.4 Structure of this Thesis

This study is split into three main parts. Part II introduces the required con-
cepts of multi-agent systems and multi-agent tasks (Moritz and Middendorf,
2013, 2014a,b). In Part III the different ranking relations are introduced
and theoretically and empirically analyzed (Moritz et al., 2014a,b, 2013).
In Part IV I analyze different strategies to solve multi-objective multi-agent
tasks in dynamic environments.
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Part II

Cooperation in
Heterogeneous Swarms





2 ‖ Introduction

Multi-agent tasks and reconfigurability

Swarms can consist of a number of identical individuals, however most
swarms – natural and artificial – are heterogeneous to some extent. Dif-
ferent members of the swarm show different demeanor and abilities. This
is usually the case, because the swarm members were initially designed to
perform specific individual tasks. They might be able to solve other tasks
as well, but these may be less suited and solved less efficiently. Yet in emer-
gency situations it can be imperative for some swarm members to engage
in tasks they have not been designed for, in order to maintain the systems
integrity. Further on, I refer to swarm members as agents.

Some tasks only require the attention of a single agent. However, the
swarm can also be confronted with multi-agent tasks that require a collab-
oration of multiple agents to be completed efficiently. Only teams of agents
can process these tasks creating the new task of forming such a team. A
formalization for the problem of assigning teams of agents to multi-agent
tasks is given in Lau and Zhang (2003).

Given is a set of agents that have different capabilities and have to be
partitioned into teams. These teams are then allocated to the available
tasks to some benefit defined by a given utility function. The problem to
maximize this benefit is an NP-hard problem and there are several heuristics
for this problem (for an overview see Vig and Adams (2006)).

2.1 State of the Art

In dynamic environments multi-agent societies that solve multi- agent tasks
can benefit from adaptability. Most approaches, as reviewed by Alberola
et al. (2014), consider systems where the adaptation process is structured
into the following phases: monitoring, design, selection, and evaluation.
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One relatively simple approach assumes a (static) social interaction network
between the agents where each agent has a single fixed skill from a set of
multiple skills. In order to execute a task agents have to form a team that
resembles an induced connected subgraph of the given network. Tasks enter
the system dynamically and each task is characterized by a vector that
describes for each skill how many agents with that skill are required in the
team.

Other strategies in decentralized team formation have been studied (Gas-
ton and DesJardins, 2008), however, most studies on this topic are based
on either very complex agents or complex cooperation scenarios, e.g. Li-
chocki et al. (2013); Recchia et al. (2014). The study of a simpler model by
Shehory and Kraus (1996) focused on distributed scenarios that are (i) not
necessarily super-additive, i.e. merging small groups into larger must not be
beneficial, (ii) where the agents behave group rational, i.e. they only form
a group if it is profitable for the whole group, and (iii) where the agents
differ in their capabilities. An agent is characterized by a vector (a1, . . . , ak)
where ar, r ∈ {1, . . . , k} gives its capability to perform a some action r.
The groups capability is the joint capability of its member agents, where
agents can be member of several groups. The groups capability has to sat-
isfy a threshold for each type of action. Shehory and Kraus (1996) set a
clear focus on the computational effort of the distributed group formation
algorithm in relation to the quality of the resulting groups. In subsequent
studies these algorithms were further improved (Rahwan, 2007).

Khalouzadeh et al. (2010) studied coalition formation in mobile agents
that execute tasks in different locations. Several agents with different capa-
bilities can be required to form a coalition in order to execute a task. These
coalitions can be formed by agents in close proximity to the task. However,
In the study of Khalouzadeh et al. (2010) all agents had access to global
information about the positions and capabilities of all other agents.

More research in the scope of self-organized coalition formation by mo-
bile agents located within an arena was published by Singh et al. (2010).
They proposed a system, where agents only connect to other agents if it is
beneficial with respect to some payoff function. Sets of connected agents are
considered to be a coalition that has to pay coordination costs. Singh et al.
(2010) focused on the influence of different payoff functions and coordination
costs in the coalition sizes.

In a system of Abramson (2008) the agents also move within an arena
and form clusters as a concept of cooperation. By a trial and error ap-
proach the agents decide on their cooperative partners. Their conflict lies in
achieving a social optimum in the long term and an individual optimum in
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the short term. A special application of coalition formation has been studied
by Bölöni et al. (2007) where agents need to traverse dangerous locations in
the aftermath of a disaster.

Another interesting aspect of the coalition formation problem lies within
the required communication for cooperation and whether decisions to form
groups can be made decentralized (e.g. Li and Sycara (2004); Procaccia and
Rosenschein (2006)). The amount and type of communication is a deter-
mining factor especially in groups containing different types of agents with
different capabilities and needs. Agents have to communicate to make com-
promises and decisions within a group. Hence, the benefit of the cooperation
depends on the cost of communication and the compromises that have to be
made. Kutanoglu and Wu (2007) studied a possible measure to make local
decisions within the coalition to schedule tasks in order to reduce or avoid
global communication between agents.

2.2 Adaptive Team Formation in Heterogeneous
Swarms

In this study I analyze agents performing a foraging task. A swarm of het-
erogeneous agents strives to collect a multitude of different resources, e.g.
food, construction material, or pollution. The collection of different re-
source types requires different skills, e.g. cutting, carrying, or digging. The
resources are located within a two-dimensional arena in which the agents
move and can form groups, i.e. coalitions, of agents that collect in unison.
Agents of the same group have access to each others skills. Since the re-
sources in the arena are heterogeneously distributed and dynamic over time,
the agents are forced to move and dynamically form groups for efficient for-
aging. Providing the agents with the ability of reconfiguration increases
their adaptability in dynamic scenarios. It also works as a game changer in
the coalition formation problem. The focus of the problem moves from the
agents capabilities, that can be reconfigured, to the size of the coalition. Of
course reconfiguration comes at a cost. It is essential that these costs do not
exceed the overall benefit of the group.

This study focuses on systems with limited communication, where agents
can only communicate with other agents if they are in close proximity. In
real life applications the members of artificial swarms could be designed to
perform a certain set of tasks. High-level communication or coordination
must not be included in this set of tasks. In general, this study focuses
in methods to perform certain tasks with very simple strategies to handle
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the swarms coordination. The task of swarm coordination is superimposed
and the capabilities of the agents for communication and coordination are
assumed to be minimal as it is not assumed that the main tasks of the swarm
requires communication or coordination.

While their communication is limited the swarm members are qualified
to perform a set of tasks using the tools or hardware they are equipped with.
Under the assumption that these tools can be exchanged or the hardware
reconfigured, new problems and solutions in the team formation problem
arise which are the central issue in this study. The existence of reconfigurable
hardware, e.g. field programmable gate arrays (FPGA), and current efforts
of producing devices that fit into an Universal Serial Bus (USB) slot and are
thus easily switched make this assumption less ambitious than it may seem
at first.

I will first introduce the basic model developed to simulate the hetero-
geneity, resource availability, and agent movement is introduced (Chapter 3).
Chapter 4 compromises comprehensive analysis of the group formation prob-
lem in a non-reconfigurable system, including experiments and results. An
extension of the model to allow reconfigurability and an extensive analysis
of different group formation approaches is given in Chapter 5.

Most methods and results presented in this part are published in Moritz
and Middendorf (2013, 2014a,b).



3 ‖ The Model

Modeling (reconfigurable) agents

The design of the model presented in the following is kept as simple as
possible, reducing the number of parameters to a minimum to enable a clear
and coherent analysis of the few parameters of interest. The abilities and
knowledge of the agents are very limited in order to investigate a general
scenario that does not depend on assumptions from specific applications.

The multi-agent systems consist of a set of n agents A = {a1, . . . , an} lo-
cated in a two-dimensional torus arena of d×d fields F = {f0,0, f0,1, . . . fd,d}
(i.e. the last field in every row and column is adjacent to the corresponding
first field in its row, respectively column). The agents are confronted with
a resource collection task, with k different types of resources. Each field
f ∈ F contains fj of resource type j ∈ {1, . . . , k}. However, these values
are not fixed and a field can have a high value for fj at some time t and a
low value at another time t′, where t and t′ are both part of the same sim-
ulation. Every agent has the task to collect as many resources as possible.
Simulations are turn based, i.e. time discrete.

3.1 Slot Model

Throughout this study the agents capabilities are described by a simple slot
model. These are commonly used to model FPGAs based on the notion that
they have several operational units that can perform simple tasks (exam-
ples are Ou and Prasanna (2010); Rullmann and Merker (2011)). In these
models, a slot (also called slice or frame) is the smallest relevant unit of the
configuration. If the architecture is reconfigurable one slot may be able to
perform different tasks at different times, but only one at any specific time.

Each agent a has s slots, and each slot is in one of k possible states, where
k is the number of different resources types. The set of resources types is
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given by R = {r1, . . . , rk}. The configuration of an agent assigns a state to
every slot. Each slot in state i ∈ {1, . . . , k} increases the agents capability
in the collection of resources of type ri. Figure 3.1 shows an exemplary
configuration for an agent with eight slots in a model with three different
types of resources.

r1 r1 r2 r2 r2 r2 r2 r3 → (ai1, ai2, ai3) = (2, 5, 1)

Figure 3.1: Configuration of an agent ai with s = 8 slots; the brightness indicates
the current state (1 = light, 2 = medium, 3 = dark); ri with i ∈ {1, 2, 3} in a slot
denotes the resource type whose collection this slot enhances; vector (ai1, ai2, ai3)
describes the skills of ai, i.e. aij denotes the number of slots in state j.

Let agent ai have aij of its s slots in state j in order to collect resource
type rj ∈ R. If agent ai is located on field f ∈ F then it can collect an
amount of (aijfj)/s of resource type rj per simulation turn. The perfor-
mance P (ai) of agent ai is defined as the total amount of resources the
agent can collect in one simulation turn.

P (ai) =
1

s

k∑
j=1

aijfj (3.1)

Note, that with fj ∈ [0, 1], j ∈ {1, . . . , k}, and
∑k

j=1 aij = s the value
of P (ai) is in [0, 1]. In general, P (ai) ∈ [min fj ,max fj ], where P (ai) is a
weighted mean of the fj , j ∈ {1, . . . , k}.

3.2 Capabilities in Groups

Figure 3.2: Example of a group G with
three agents and their capabilities with
k = 4 resource types and s = 4 slots per
agent.

r1 r1 r3 r3 a1 = (2, 0, 2, 0)

r1 r2 r2 r4 a2 = (1, 2, 0, 1)

r2 r3 r3 r3 a3 = (0, 1, 3, 0)

G = (2, 2, 3, 1)

In order to increase its performance an agent can join a group or recruit
other agents and start a group of its own. While it is said that a group is as
strong as its weakest member, here groups are as strong as their strongest
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member. This way a small group potentially benefits more from the re-
cruitment of a new agent than a larger group. Formally, the capability aij
of agent a in group G is increased to the maximal value maxa′∈G a

′
j of all

agents in the group (see Figure 3.2). Hence, if an agent is not better in the
collection of at least one resource type than all other agents of the group, the
group has no benefit from this agent. Unless, the agent is able to reconfigure
its slots to become a profitable member of the group, the group should not
recruit this agent. However, with reconfigurable capabilities a group with k
members has at some point, through reconfiguration, one agent specialized
on one specific resource type for all resource types. Any additional agent
does not provide any benefit for the group. Equation (3.2) gives the formal
definition of the performance P (G) of a group G.

P (G) =
1

s

k∑
j=1

max
ai∈G

aijfj P (G) ∈ [0, k] (3.2)

3.3 Reconfiguration

A reconfigurable agent is able to change the state of its slots by a reconfigu-
ration operation. Following the predicament of simplicity in agent design the
reconfiguration is based on a simple random process called mutation. This is
motivated by the similar mutation process occurring in nature within DNA.
Due to natural selection genes essential for survival are conserved in the
DNA, while other parts of the DNA with less or no impact on the indi-
viduals fitness tend to show higher diversity within a population as more
mutations accumulate here. A slot can either be of benefit to the group
or not. In the latter case I refer to the slot as idle. An idle slot is of no
benefit to the group and – like DNA – starts to change its state randomly.
Formally, a slot of an agent a ∈ G that is in state j is called idle if one of
the following conditions hold:

1. fj = 0,

2. there is another agent a′ ∈ G with aj < a′j , or

3. there exists another agent a′ ∈ G with aj = a′j and a′ joined G before
a.

In the first idle simulation turn a slot has a probability of µ ∈ [0, 1] to
mutate during that simulation turn, µ being called the mutation strength.
In each subsequent simulation turn that this slot remains idle its mutation
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probability increases by µ. After x idle simulation turns a slots mutation
probability is xµ. The mutation probability of a slot is reset to zero if the
slot (1) becomes active (i.e. it is not idle) or (2) mutates.

A mutation is the change of a slots state into a randomly chosen new state
from {1, . . . , k} with a uniform distribution. The process of the mutation
interferes with the productivity of the reconfiguring agent. This interfer-
ence is the reconfiguration cost cµ ∈ [0, 1]. The cost is payed by a reduced
performance such that for a simulation turn where a slot of an agent a ∈ G
mutated its performance is reduced to (1 − cµ)P (G). The reconfiguration
costs are independent of the number of the slots that mutate, i.e. the costs
for two mutating slots are identical to the costs of one mutating slot.

3.4 Movement

Agents have a position and an orientation within the arena (see Figure 3.3).
Their position is given by the coordinates of the field they reside on. Their
orientation points onto one of the eight fields in the Moore-neighborhood of
their current location. During one simulation turn they can either rotate
and change their orientation by 45° or move onto the adjacent field in their
current orientation. If the agent remains in its current position then (i) if
it was rotating in the previous simulation turn it keeps rotating 45° in the
same direction or (ii) if it was moving in the previous simulation turn it
rotates by 45° in a random direction. This way the agents avoid inefficient
back and forth rotations and can avoid ‘bad’ fields more effectively.

Figure 3.3: Orientation and
location of an agent within a
small part of the arena facing
the field on top of it.

1 2 3
4
567

8

All members of a group are located in the same field where they collect
resources collectively. There can not be two agents on the same field unless
they are in a group. Note, that the size of a field gives the size of the area an
agent or group can process during one simulation turn and not their physical
size. The physical size of an agent is considered here to be so small compared
to the size of a field that it is negligible. The assumption that at most one
group of agents is located on a field is motivated by the fact that several
groups on a field would hinder each other in their work or at least would
have to coordinate their work. To ensure their common location agents of
the same group move together and are oriented in the same direction. If a
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new agent has been recruited by the group the new agent adapts itself to
the orientation and location of the group.

In order to disrupt the system and especially the group formation process
the agents are equipped with a battery that has to be reloaded once its
empty. During this reloading time the agents are inactive. They dislodge
from their group and stop moving until the battery is fully reloaded. The
group continues to move and leaves the inactive agent behind but has to
make up for the loss of the agent and its capabilities. This keeps the whole
system in a constant struggle to keep effective groups despite regular loss of
group members. Inactive agents block their field for other groups, as it is
unclear to other agents, when it will reactivate again. Inactive agents can
not be member of any group.
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4 ‖ Non-Reconfigurable Swarms

The team formation problem

The different configurations of the agents and the synergetic effect of the
groups pose an optimization problem where we need to maximize the capa-
bilities of the groups in the absence of superfluous agents. Obviously, this
is a problem when agents cannot reconfigure.

Section 4.1 gives a proof of NP-completeness for the Optimal Partition
Problem which is somewhat related to the Coalition Formation Problem, but
based on different assumptions. Section 4.2 presents the methods developed
in this study to achieve the formation of balanced and reasonably sized
groups of non- reconfigured agents. In Section 4.3 the empiric study and its
results are presented.

4.1 The Optimal Partition Problem

The Optimal Partition Problem occurs in systems of non-reconfigurable
agents. Under the assumption that two groups in direct proximity can ex-
change member agents or even merge into one group and that a group is not
allowed to contain a superfluous agent, the optimal regrouping is NP-hard.
Optimality is defined by the average capabilities – with the synergetic ef-
fect – of the grouped agents. In the following formal proof the agents are
simplified to binary vectors, where their capabilities for any resource can be
at most 1 and is 0 otherwise. During this proof we reduce the well known
NP-complete 3-SAT problem to the Optimal Partition Problem.

4.1.1 Definitions and Notations

Given is a set A = {a1, . . . , a|A|} of binary k-dimensional vectors ai ∈ {0, 1}k,
i ∈ {1, . . . , |A|}, k ∈ N. Let P be a partition of A. Dimension j ∈ {1, . . . , k}
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is covered by a set S ∈ P if there exists a vector ai ∈ S such that aij = 1.
The cover of S is defined by the number of covered dimensions and is written
as ‖S‖.

cover(S) = ‖S‖ =
k∑
j=1

sj with sj =

{
1 if j is covered in S

0 otherwise.

The score of S is the size of S times the number of dimensions that are
covered by S:

score(S) = |S|‖S‖

The score of a partition of a set of vectors is the sum of the scores of the
sets in the partition. A set S ∈ P is valid, if for each vector a ∈ S there
is some j ∈ {1, . . . , k} such that aj = 1 and for all vectors a′ ∈ S, a 6= a′,
a′ = 0. In this case vector a is unique in j for S.

Hence, a vector can only be part of a valid set S, if its absence reduces
the number of dimensions covered by S. A vector a is invalid in a set S if
for each position j with aj = 1 there exists another vector a′ 6= a in S with
a′j = 1. A partition is valid, if all its sets are valid. The Optimal Partition
problem is to find a valid partition with a score ≥ K.

4.1.2 Proof of NP-Completeness

Theorem 1. The Optimal Partition problem is NP-complete.

Proof. Let I = (C, V ) be an instance of the 3-SAT problem with a set
C = {C1, . . . , Cm} of clauses of size three over a set V = {v1, . . . , vn} of
variables. For simplicity the clauses and their literals are indexed such that

χ(3(r − 1) + l), l ∈ {1, 2, 3}, r ∈ {1, . . . ,m}

is the l-th literal of the r-th clause Cr.

In the following we construct an instance A of the Optimal Partition
problem. The size of each vector a ∈ {0, 1}k is k = 3m+ n. For each clause
Cr ∈ C there is a vector aCr ∈ A. Vector aCr contains exactly three 1-values
at positions (3r − 2), (3r − 1), and 3r. Observe that no other clause-vector
has a 1 in these positions.

Additionally there are two vectors avi , avi ∈ A for every variable vi ∈ V .
Vector avi contains a 1 at every position of a positive occurrence of vi in C
and at position 3m + i. We define avi , avi and an additional vector aANTI
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with

avij =

{
1 if χ(j) = vi or j = 3m+ i

0 otherwise

avij =

{
1 if χ(j) = vi or j = 3m+ i

0 otherwise

aANTIj =

{
1 if j ∈ {1, . . . , 3m}
0 otherwise.

The score of the Optimal Partition is ≥ K = 3m2 + 7mn+ 3m+ 2n2 +
2n. This concludes the construction of A. Further, we make the following
observations.

1. For every position j = 3(r − 1) + l ≤ 3m, l ∈ {1, 2, 3}, r ∈ {1, . . . ,m}
there are exactly three vectors in A (namely aχ(j), aCr , aANTI) with
a 1-value in that position.

2. For every position 3m+ i, i ∈ {1, . . . ,m} there are exactly two vectors
in A (avi , avi) with a 1-value in that position.

3. A set S that contains any aCr and aANTI is not valid.

4. If all vectors aCr are in the same set all dimensions from 1 to 3m are
covered.

5. Apart from the vector aANTI the only way to make a clause-vector
aCr an invalid member of a set is to add the respective three variable-
vectors of the literals occurring in Cr.

Claim 1.1. For each set Si in a valid partition S1, . . . , Sh of P with score
≥ K it holds that all k dimension are covered by Si.

Proof of Claim 1.1. The claim follows from the facts that

� the number of vectors in A is |A| = m+ 2n+ 1,

� their length is given with k = 3m+ n, and

� the score K is given by K = 3m2 + 7mn+ 3m+ 2n2 + n = |A|k
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Claim 1.2. Any valid partition P with a score ≥ K consists of at most two
sets.

Proof of Claim 1.2. From Observation 1 and 2 follows that the total number
of ones in the vectors of A is 3 · 3m+ 2n. As Claim 1.1 holds there should
be ≥ k = 3m+ n 1-values per set. Clearly

3 · 3m+ 2n

k
=

3 · 3m+ 2n

3m+ n
< 3

and thus there are at most two sets in any solution with a score ≥ K.

Now we can show that there exists a valid partition of A with a score
≥ K, if and only if the given instance of 3-SAT is satisfiable.

⇐: We partition A such that all vectors aCr ∈ A, r ∈ {1, . . . ,m} are in S1
and aANTI is in S2. For every variable vi ∈ V we put avi into S1 and
avi into S2, if vi is assigned with false in the satisfiable solution of I.
If vi is assigned with true in the solution of I, avi is added to S2 and
avi is added to S1.

All vectors aCr are unique in at least one dimension in S1. Let the l-th
literal of Cr be true (as the instance of 3-SAT is satisfiable, there is at
least one) then aCr is unique in dimension (3(r − 1) + l) in S1. The
other two vectors with a 1-value in that position (namely aχ(3(r−1)+l),
aANTI) are both in S2.

The positive variable-vectors avi are separated from the respective
negative avi and thus both are unique in 3m+ i in their respective set
and thus valid. Vector aANTI is valid in S2 as it is unique in every
dimension j ∈ {1, . . . , 3m} that is covered by S1 with two vectors. As
all vectors are valid, so are the two sets S1 and S2 and the partition
P.

The resulting sets are completely covered by their vectors: Dimen-
sions 1 to 3m by aANTI in S2 and by the clause-vectors aCr in S1
(Observation 4). Hence the score of the partition {S1, S2} is ≥ K.

⇒: The truth-value assignment for the variables is given by the variable-
vectors contained in the set with the vector aANTI , if there are exactly
two sets in the optimal partition.

If it is possible to find the optimal partition in polynomial time for this
constructed instance, then the respective algorithm can solve any instance
of 3-SAT in polynomial time as well.
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4.1.3 A Restricted Version of the Optimal Partition Problem

In the following all vectors of A have the same number of 1-values. The
previous construction fails this restriction, as the vector aANTI has more
1-values than any other vector. Another problem is that the number of 1-
values contained in the vectors avi depends on the problem instance. This
problem can be addressed with a simplified version of 3-SAT where every
variable occurs exactly four times, 3,4-SAT. This version of the 3-SAT prob-
lem is NP-complete Tovey (1984).

Theorem 2. The Optimal Partition problem is NP-complete even when
each vector has the same number of 5 ones.

Proof. Let I = (C, V ) be an instance of the 3,4-SAT problem with clauses
C = {C1, . . . , Cm} over the variables V = {v1 . . . , vn}, where n = 3

4m. We
expand I to I8 = (C8, V8) where each literal vi and vi occurs exactly 4 times.
This is done by adding an extra variable v′i and four clauses Ci1, C

i
2, C

i
3, and

Ci4 for every variable vi ∈ V such that for l ∈ {1, 2, 3, 4}

Cil = (ṽi, v
′
i, v
′
i), with ṽi =

{
vi if the number of vi ∈ V is < l

vi otherwise.

The literals v′i and v′i occur exactly 4 times, once in each of the new
clauses. Note that n8 = 8

3m8. In the following we exclusively consider I8 =
(C8, V8) and omit the index 8 for simplicity. We construct an instance A of
the Optimal Partition problem, where every vector has exactly five 1-values.
The size of each vector a ∈ {0, 1}k is k = 9n+ 2 + 5p with p = 4n2 + 3. For
each clause Cr ∈ C there is a vector aCr ∈ A with

aCrj =


1 if 3(r − 1) < j ≤ 3r

or j = 8n+ 1

or j = 8n+ 2

0 otherwise

Additionally there are two vectors avi , avi ∈ A for every variable vi ∈ V .
Vector avi contains a 1 at every position of a positive occurrence of vi in C
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and in position 8n+ 2 + i. avi is analogously defined.

avij =


1 if χ(j) = vi

or j = 8n+ 2 + i

0 otherwise.

avij =


1 if χ(j) = vi

or j = 8n+ 2 + i

0 otherwise.

Finally there are p vectors axl , l ∈ {1, . . . , p} with:

axlj =

{
1 if j ∈ {9n+ 2 + 5l − 4, . . . ,≤ 9n+ 2 + 5l}
0 otherwise.

We conclude the construction of A by setting

K = (9n+ 2 + 5p)

(
11

3
n+ p

)
+ 5n2.

This construction leads to the following observations:
1. There are |A| = m+ 2n+ p vectors in A.
2. There are 5(m+ 2n+ p) 1-values in A.
3. In the 5p positions 9n + 2 to 9n + 2 + 5p a 1-value occurs only in a

single vector (namely vectors ax).
4. In the 9n positions 1 to 8n and 8n+ 2 to 9n+ 2 a 1-value occurs only

in two vectors (namely vectors aCr and avi).
5. In the 2 positions 8n + 1 and 8n + 2 a 1-values occurs in m vectors

(namely vectors aCr).
6. If all vectors are in one set, the vectors aCr and avi an avi are not

valid. Hence, there are at least two sets in P.
In the following we show how to improve the score of any valid partition

of A.

Claim 2.1. For any partition P>2 = {S>2
1 , . . . , S>2

h } with h > 2 there is a
partition P2 = {S2

1 , S
2
2} with score(P2) > score(P>2).

Proof of Claim 2.1. Without loss of generality, let S>2
1 and S>2

2 be the sets
with the highest score in P>2. Any vector v /∈ S>2

1 ∪ S>2
2 can be added

to either S>2
1 or S>2

2 without violating the validity of the partition. By
construction and Observation 3 to 5 it is clear that for every vector v ∈ A
there is at least one position j ∈ {1, . . . , k} with vj = 1 where at most one
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other vector v′ ∈ A, v′ 6= v with v′j = 1 exists. Vector v is placed in the
respective other set than vector v′. It is clear that the final partition into
two sets has an overall score that is higher than the starting partition, as
the scores of S1 and S2 increased and thus each vector is now in a set with
a higher (or even) score than they had before.

Claim 2.2. For any partition P = {S1, S2} with vectors ax in S1 and S2,
there is a partition Px = {Sx1 , Sx2 } where the p vectors ax are member of S1
with score(Px) > score(P).

Proof of Claim 2.2. We define

S′1 = {aCr ∈ S1, avi ∈ S1}
S′2 = {aCr ∈ S2, avi ∈ S2}.

Assume, in S1 are p−y vectors ax and y vectors ax are in S2, 1 ≤ y < k.
Without loss of generality

‖S′1‖+ 5|S′1| ≥ ‖S′2‖+ 5|S′2|.

The score of P is determined by

score(P) = (|S′1|+ (p− y))︸ ︷︷ ︸ (‖S′1‖+ 5(p− y))︸ ︷︷ ︸+ (|S′2|+ y)︸ ︷︷ ︸ (‖S′2‖+ 5y)︸ ︷︷ ︸
= |S1| ‖S1‖ + |S2| ‖S2‖

score(S1) = |S′1|‖S′1‖+ (5|S′1|+ ‖S′1‖)(p− y) + 5(p− y)2

score(S2) = |S′2|‖S′2‖+ (5|S′2|+ ‖S′2‖)y + 5y2

Let Px be the partition that is obtained from P by moving all vectors
ax that are in S2 into S1. Hence, Sx2 = S′2. The score of Px is determined
by:

score(Px) = (|S′1|+ p)︸ ︷︷ ︸ (‖S′1‖+ 5p)︸ ︷︷ ︸+|S′2|‖S′2‖

= |Sx1 | ‖Sx1 ‖ + |S′2|‖S′2‖
= |S′1|‖S′1‖+ (5|S′1|+ ‖S′1‖)p+ 5p2 + |S′2|‖S′2‖
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In the following we show that the score of Px is always higher than the
score of P. Since p > y and 5|S′2|+ ‖S′2‖ ≤ 5|S′1|+ ‖S′1‖

⇒ 5|S′2|+ ‖S′2‖ − 10(p− y) < 5|S′1|+ ‖S′1‖
⇔ −(5|S′1|+ ‖S′1‖)− 10(p− y) + 5|S′2|+ ‖S′2‖ < 0

⇔ (5|S′1|+ ‖S′1‖)(−y)− 10y(p− y) + (5|S′2|+ ‖S′2‖)y < 0

⇔ |S′1|‖S′1‖+ (5|S′1|+ ‖S′1‖)(p− y) + 5p2

−10y(p− y) + |S′2|‖S′2‖+ (5|S′2|+ ‖S′2‖)y <
|S′1|‖S′1‖+ (5|S′1|+ ‖S′1‖)p+ 5p2 + |S′2|‖S′2‖

⇔ score(P) < score(Px)

Claim 2.3. For any partition P = {S1, S2} with vectors avi and avi in S1,
there is a partition P ′ = {S′1, S′2} with

avi ∈ S′1 ⇒ avi ∈ S′2 and avi ∈ S′1 ⇒ avi ∈ S′2.

and score(P ′) > score(P).

Proof of Claim 2.3. By claim 2.2 assume w.l.o.g. that every vector ax is in
S1. We transfer every vector aCr ∈ S2 into S1 in a alternating sequence of
two steps, without reducing the overall score of P.

Step 1: We show that there is a partition P ′ = {S′1, S′2} with score(P) <
score(P ′) where S′1 is covered in positions j ∈ {1, . . . , 8n+ 2}. Assume that
S1 is not covered in positions j ∈ {1, . . . , 8n+ 2}. Iteratively we take every
vector aCr ∈ S2 that is valid in S1 until there is no such vector left in S2. Let
S′1, S

′
2 be the sets obtained by this from S1 and S2 respectively by moving

one vector aCr from S2 to S1. The set S′1 is covered from dimensions 1 to
8n+ 2, otherwise there would be a vector aCr ∈ S′2 that could be added to
S′1. This leaves us with

|S1| ≥ p, ‖S1‖ ≥ 5p, |S′1| = |S1|+ 1, ‖S′1‖ ≥ ‖S1‖+ 1,

|S2| ≤ m+ 2n, ‖S2‖ ≤ 9n+ 2, |S′2| = |S2| − 1, ‖S′2‖ ≥ ‖S2‖ − 5.

By the removal of a vector aCr from S2 its size decreases by one and it loses
coverage in 1 to 5 dimensions. The set S1 increases its size by one and covers
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at least one additional dimension with the transferred vector.

6n+ 1 < p

⇒ 5

(
19

8
n

)
+ 9n+ 2 < p+ 5p

⇒ 5|S2|+ ‖S2‖ < |S1|+ ‖S1‖
⇒ |S1|‖S1‖+ |S2|‖S2‖ < (|S1|+ 1)(‖S1‖+ 1) + (|S2| − 1)(‖S2‖ − 5)

⇒ |S1|‖S1‖+ |S2|‖S2‖ < |S′1|‖S′1‖+ |S′2|‖S′2‖
⇒ score(P) < score(P ′)

Step 2: Now we separate the vectors avi from their counterpart avi , if they
are both in S1. For each vector avi and avi there are at most four vectors
aCr that have a common 1-value position. When avi and avi are both in
S1 at least one of these corresponding four vectors is in S2 or P is invalid.
When there is a variable vi ∈ V with avi , avi ∈ S1 We move one of them
into S2. Step 1 can than be repeated without decreasing ‖S1‖ as afterwards
all dimensions j ∈ {1 . . . , 8n+ 2} are covered once more.

It remains to be shown that the score of the partition does not decrease
by an application of Step 2 with a subsequent Step 1. The vector transferred
to S2 is unique in five dimensions in S2, because all other vectors covering
these dimensions are in S1 to guarantee that it covers all dimensions j ∈
{1 . . . , 8n+ 2} along with avi ’s counterpart that is now unique in dimension
8n+ 2 + i in S1.

Let y ∈ {1, 2, 3, 4} be the number of vectors aCr in S2 that are added as
valid members to S1 after the transfer of avi or avi from S1 to S2 then

|S1| ≥ p, ‖S1‖ ≥ 8n+ 2 + 5p, |S′1| = |S1|+ y − 1, ‖S′1‖ ≥ ‖S1‖,
|S2| ≤ m+ 2n, ‖S2‖ ≤ 9n+ 2, |S′2| = |S2| − y + 1, ‖S′2‖ ≥ ‖S2‖ − 3(y − 1)

‖S2‖ is reduced by at most 3(y − 1) for the following two reasons.

1. By the removal of a vector aCr ‖S2‖ is reduced by at most three unless
it is the last clause-vector in S2. If it is the last clause-vector, S2 ceases
to cover dimension 8n+ 1 and 8n+ 2 and ‖S2‖ is reduced by five. As
at most one of the removed vectors aCr is the last to be removed ‖S2‖
is reduced by at most 5 + 3(y − 1).

2. Because all aCr that cover at least one dimension that is also covered
by the transferred avi are in S1, a

vi is unique in 5 dimensions in S2.
Hence adding avi to S2 increases ‖S2‖ by 5.
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The upper boundary of |S2| ≤ m + 2n is the number of vectors in A,
aside from vectors ax. The maximum number of dimensions covered by S2
is bounded by ‖S2‖ ≤ 9n + 2. This boundary supposes that every vector
apart from the vectors ax is in S2, although such a set is not valid.

The lower boundaries of S1 consider only the vectors ax as size of the set.
As the set is fully covered in dimensions {1, . . . , 8n+ 2} and {9n+ 3, . . . , k}
(this was assured in previous steps).

3n < p

⇒ 23n+ 2 < 8n+ 2 + 5p

⇒ 3|S2|+ ‖S2‖ < ‖S1‖
⇒ 0 < (y − 1)‖S1‖ − 3(y − 1)|S2| − (y − 1)‖S2‖
⇒ |S1|‖S1‖+ |S2|‖S2‖ < (|S1|+ y − 1)‖S1‖+ (|S2| − y + 1)(‖S2‖ − 3(y − 1))

⇒ |S1|‖S1‖+ |S2|‖S2‖ < |S′1|‖S′1‖+ |S′2|‖S′2‖
⇒ score(P) < score(P ′)

Claim 2.4. For any partition P = {S1, S2} of A that has been improved in
means of Claim 2.2 and Claim 2.3, it holds that

avi ∈ S1 ⇔ avi ∈ S2.

and each aCr ∈ S1 to have a score ≥ K.

Proof of Claim 2.4. The partition P = {S1, S2} has for i ∈ {1, . . . , n} at
most one of the vectors avi and avi in S1. Also every vector ax is in S1.

1 ≤ i
⇒ 4n2 + 2n < 5i · (4n2 + 3)

⇒ 4n2 + 2n < 5i · p
⇒ 4n2 + 2n < i(18n+ 4 + 5p)

⇒ −i(18n+ 4 + 5p) + 9n2 + 2n < 5n2

⇒
(
11

3
− i+ p

)
︸ ︷︷ ︸ (9n+ 2 + 5p)︸ ︷︷ ︸+ (n− i)︸ ︷︷ ︸ (9n+ 2)︸ ︷︷ ︸ <

(
11

3
+ p

)
(9n+ 2 + 5p) + 5n2

︸ ︷︷ ︸
⇒ |S1| ‖S1‖ + |S2| ‖S2‖ < K

⇒ score(P ) < K
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Now we can show that there exists a valid partition of A with a score
≥ K, if and only if the given instance of 3-SAT is satisfiable.

⇐: Consider a truth-assignment of the variables that satisfies the given
problem instance I. A is partitioned such that all vectors aCr ∈ A,
r ∈ {1, . . . ,m} and ax ∈ A are in S1. For every variable vi ∈ V we put
avi into S1 and avi into S2, if vi is assigned with false in the satisfiable
solution of I. If vi is assigned with true in the solution of I, avi is
added to S2 and avi is added to S1.

All vectors aCr are unique in at least one dimension in S1. Let the
l-th literal of Cr be true (as the instance of 3-SAT is satisfiable, there
is at least one) then aCr is unique in dimension j = 3(r− 1) + l in S1.
The single other vector with a 1-value in that position, avχ(i) , is in S2.

The positive variable-vectors avi are separated from the respective
negative avi and thus both are unique in 8n+ 2 + i in their respective
set and thus valid. As all vectors are valid, so are the two sets S1 and
S2 and the partition P.

The set S1 covers every dimension from 1 to k, while S2 covers 5 · 8n
dimension. Hence the score of P is ≥ K.

⇒: Let P be a partition with score(P) ≥ K. By claims 2.2 and 2.4 we can
assume that all vectors ax ∈ S1, all vectors aCr ∈ S1, and avi ∈ S1 ⇔
avi ∈ S2. A truth-assignment for the underlying 3-SAT problem can
be obtained by setting vi true when avi ∈ S2.

This concludes the proof.

For any number of ones > 5 one can simply add 1-values in the back of
the vectors.

4.2 Groups of Non-Reconfigurable Agents

The Optimal Partition Problem arises whenever two groups can regroup
by exchanging agents or merging into one group. Groups are allowed to
regroup whenever they are on two adjacent fields and at least one faces the
other. One agent of the group is randomly chosen as the groups moderator.
The moderator is responsible for the groups movement decisions and ensures
that all members of the group move in unison and are always oriented in the
same direction. The decisions of the moderator are based on information it
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gathers from all member agents of the group. The moderator channels all
communication between the group and non-group agents.

The agents perform a gradient walk, i.e. they move on a field f , if f
is more beneficial than their current field. Two aspects are considered by
the agents to evaluate how beneficial a field is. In the so called consensus
the increase or decrease of resources an individual agent of the group would
endure by the movement is collected. The other considered aspect is the
attraction from other groups or agents in close proximity. Depending on
the capabilities of these agents they can be more or less beneficial as new
members of the group and should be approached in order regroup. Agents
can read the capabilities of other agents if they are located within each
others sensing range (see Figure 4.1). A parameter α ∈ [0, 1] is finally used
to weight these two aspects.

Figure 4.1: Agent (black)
with its sensing range (blue).

Consensus Every agent a tries to collect as much resources as possible.
If it is located on field f and faces field f ′, it calculates the total amount
of resources P ′ it can collect by itself on f ′ and compares it to the total
amount P it can collect on f as defined earlier in Equation (3.1)

P (ai) =
1

s

k∑
j=1

aijfj ∈ [0, 1]. (3.1)

The agent follows the gradient ∆P = (P ′ − P )/(P ′ + P ) ∈ [−1, 1], with
∆P = 0 when P ′ = P . If ∆P > 0, the agent votes to move onto f ′ to
increase its personal gain, else it votes to stay on f and turn. The weight of
the vote is ∆P , such that agents with a higher gain or loss have a stronger
influence on the decision. The average of all votes gives the consensus of the
group.

consensus(G) =
∑
ai∈G

∑k
j=1 aij(f

′
j − fj)∑k

j=1 aij(f
′
j + fj)

Attraction Groups can communicate with other groups or agents that are
located within their sensing range. They use the gathered information to
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decide whether to approach or avoid another group. This decision is based
on the capabilities of both groups in their current state and after a possible
regrouping event. To quantify the benefit of a regrouping event between two
groups G1 and G2 we define

score(G1, G2) = |G1|
k∑
j=1

max
a∈G1

aj + |G2|
k∑
j=1

max
a∈G2

aj

r1 r3 r3 r3 a1 = (1, 0, 3, 0) r1 r1 r1 r3 a5 = (3, 0, 1, 0)

r2 r4 r4 r4 a2 = (0, 1, 0, 3) r2 r2 r2 r4 a6 = (0, 3, 0, 1)

r3 r3 r3 r3 a3 = (0, 0, 4, 0) r1 r1 r1 r1 a7 = (4, 0, 0, 0)

r4 r4 r4 r4 a4 = (0, 0, 0, 4) r2 r2 r2 r2 a8 = (0, 4, 0, 0)

G1 = (1, 1, 4, 4) G2 = (4, 4, 1, 1)

r1 r1 r1 r1 a7 = (4, 0, 0, 0) r1 r3 r3 r3 a1 = (1, 0, 3, 0)

r2 r2 r2 r2 a8 = (0, 4, 0, 0) r2 r4 r4 r4 a2 = (0, 1, 0, 3)

r3 r3 r3 r3 a3 = (0, 0, 4, 0) r3 r1 r1 r1 a5 = (3, 0, 1, 0)

r4 r4 r4 r4 a4 = (0, 0, 0, 4) r4 r2 r2 r2 a6 = (0, 3, 0, 1)

G′1 = (4, 4, 4, 4) G′2 = (3, 3, 3, 3)

optimal regrouping

Figure 4.2: Example for an optimal regrouping with the maximal ∆s with k = 4
resource types and s = 4 slots. Note, that each agent has to commit the maximal
capability for at least one resource type to be a member of a group. ∆s is 32 for
the above example. Mind, that the group sizes are multiplied with the summed
capabilities to infer the score of a group.

If the improvement of the score is above a specific threshold t the groups
approach each other, otherwise they avoid each other. Let ∆score be the
difference between the scores before and after an optimal regrouping event.

∆score(G1, G2) = score(G′1, G
′
2)− score(G1, G2)

where G′1 and G′2 are the potential groups after an optimal regrouping event.
The empirically tested upper bound for ∆score ism = k2(s−2) (see Figure 4.2
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for an example). Because the regrouping event can not lower the score (due
to the optimality) ∆score ∈ {0, . . . , k2(s− 2)}. We define

attraction(∆score) =
θ(∆score)− 1

θ(∆score) + 1
∈ [−1, 1] with θ(x) =

x(t−m)

t(x−m)

With ∆score ∈ {0, . . . ,m} we have attraction(∆score) ∈ [−1, 1] just like
the consensus values. If ∆score) > t the groups try to approach each other,
i.e. attraction(∆score) > 0. Otherwise they prefer to step onto fields further
away from the other group, i.e. attraction(∆score) < 0.

The Process of Regrouping The distributed feature of a swarm is es-
pecially important for foraging tasks to explore the environment effectively,
thus many small groups are preferable to few large groups. To this end
a group forbids members that do not increase the groups capabilities but
solely its size. Thus, every agent a in a group G has to be the only agent of
G with the highest capability for at least one resource type r in the group,
i.e. for all agents a′ ∈ G : a′r < ar. A set of agents failing this condition
is invalid. This requirement leads to the Optimal Partition Problem during
regrouping events. The limited number of resource types and slots allows
an agent to compute an optimal solution in a sufficiently fast manner. For
larger k a heuristic approach is advisable.

The Optimal Partition problem is solved with a branch and bound al-
gorithm that finds the optimal partition of G1 ∪ G2 into G′1 and G′2. The
root of the solution tree represents the unpartitioned set of agents A and
has two child nodes. The first child adds a1 to G′1, the second child adds a1
to G′2. In each further level i of the tree this procedure is repeated for every
agent ai. A branch is pruned if there is an agent aj , j > i that is invalid in
both groups. Every leaf containing a valid partition has a score where the
maximal score gives the best solution.

Once the groups G′1 and G′2 are determined the agents are set on their
respective groups positions that are the exact same positions that prior G1

and G2 had. As the agents are allowed to move only one step per simulation
turn regrouped agents are immobilized for the rest of the simulation turn.
Note, that a regrouping event does not occur if the scores of the groups are
already optimal. In that case the groups move on.

Algorithm 1 shows the structure of a simulation turn for an agent mod-
erating a group or only its own movement with the movement decision being
made in Line 5.
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Algorithm 1: Agent::move() Defines move-
ment of agents and their group.

1 if inactive then
2 reload batteries
3 else
4 determine next field fnext;
5 if α · attraction + (1− α)consensus > 0 and fnext is empty then
6 move group on fnext
7 else
8 if turned in previous step then
9 turn by 45° in direction of previous step

10 else
11 turn by 45° in random direction

4.3 Experimental Results

In order to infer the properties of this system especially the group formation
of the agents several experiments were conducted. In the following the
specifics of these experiments are described followed by an extensive analysis.

4.3.1 Distribution of Resources

There are many possibilities to design the distribution of resources in order
to simulate a resource collection task. Here, I settled on a design simulating
consumption and regeneration of resources.

Each field f ∈ F has load mf defining the total amount of resources
it contains that is initialized with mf = mmax = 100 units. The load is
harvested and reduced by the group of agents working on f by one unit per
agent per simulation turn unless mf = 0, i.e. there are no resources left on
f . The lower the load of a field is the harder it is for the agents to effectively
collect resources. In each simulation turn n fields are randomly chosen and,
if the resource capacity of a chosen field f allows for it (i.e. mf < mmax), the
load mf is increased by one unit. As each active agent reduces the load of
its respective field by 1 unit in each simulation turn the amount of available
resources stabilizes over time.

The availability of a specific resource depends on the load of the field
and the distance of the field to the resources center point. In the performed
experiments are k = 4 different resource types. Each resource type r ∈
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{r1, r2, r3, r4} has a center point (r.x, r.y) in normalized coordinates in the
arena. The center points of the different resource types are situated in the
respective four edges of a square with side length 0.5 that is centered within
the arena. The availability of the resources on the other fields is determined
by the minimal Euclidean distance ∆(f, r) of the fields center (f.x, f.y) to
the center point of that resource type and the load of the field. Note, that
the distance is at most 0.5 since the arena is a torus. The field f with
the maximal distance to the center point of resource type r has fr = 0
disregarding the fields load. In general

fr =
mf (1− 2∆(f, ri))

4mmax

with

∆(f, r) =

√(
1

2
−
∣∣∣∣|f.x− r.x| − 1

2

∣∣∣∣)2

+

(
1

2
−
∣∣∣∣|f.y − r.y| − 1

2

∣∣∣∣)2

(4.1)

When an agent a ∈ G on a field f collects resources it reduces the load
of the field by one unit but can only collect an amount of

∑
r fr maxa′∈G a

′
r.

The rest of the resource is lost or wasted. The total amount of resources
that are collected, wasted, and regenerated are important measures to infer
the performance of the system.

4.3.2 Parameter Settings

The threshold t gives the minimal required improvement ∆score by a re-
grouping event with a visible other group to approach that group. Different
thresholds are applied to differently sized groups as shown in Table 4.1 along
with all other applied parameter values. A small regrouping event affects at
most 4 agents. If there are more agents involved in the regrouping event it
is considered to be large. Observe, that large regrouping events affect too
many agents to simply merge both groups into one because the maximum
size of a single group is k = 4. In small regrouping events the score of the
affected agents can increase considerably by merging into one group. The
maximal improvement for two agents is upper bounded by 24. If t≤4 = 25,
two single agents can not attract each other whatever their configurations
are. Thus, single agents will constantly try to avoid each other. The thresh-
old is easier to overcome when a single agent meets a pair of already grouped
agents.

All results are averaged over the performed runs. In each simulation
turn the call sequence of the agents is shuffled.
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Table 4.1: Parameter values used in the experiments. Different attraction-
threshold values are used depending on the total number of agents in the two
groups that do the regrouping. For a total number of ≤ 4 agents a value t≤4 is used
and for ≥ 5 agents a value t≥5 is used.

Parameter Value

t≤4 t in regrouping events with ≤ 4 agents {5, 25}
t≥5 t in regrouping events with ≥ 5 agents {5, 25}

number of runs 100
length of one run 2500 simulation turns
size of the arena 50× 50

n number of agents 50
s number of slots 12

sensing range 4 fields
battery capacity 1000 simulation turns
reload time 100 simulation turns

α influence of attraction 0.5

4.3.3 Results

Figure 4.3 gives the average groups sizes for the different tested systems.
Lower thresholds increase the average group size to approximately 2.8 agents
per group. The initial group size is 1, because all agents are initialized on
separate fields. Regrouping events increase the average group size during ap-
proximately 500 simulation turns very fast. Mind, that with k = 4 resource
types the maximal group size is restricted to 4.

When t≤4 = 25 single agents have no intent on joining into groups of two.
However, half their movement is determined by the gradient of resources they
measure and meetings are inevitable on the long run. The two systems with
t≤4 = 25 take more time to build larger groups and reach a state where the
average group size stabilizes (at least 2000 simulation turns).

Note, that with t≤4 = 25 and t≥5 = 25 has a larger group size than
t≤4 = 25 and t≥5 = 5. The higher threshold increases the average group
size. One explanation for this phenomenon is the presence of groups with
less specialization in systems with t≥5 = 5. They tend to build groups of
size 3 that would often become invalid with a fourth agent. Systems with
t≥5 = 25 would have more specialized groups that can contain four agents.

The average amount of resources in the system stabilizes after 1000 sim-
ulation turns (see Figure 4.4). In each simulation turn n = 50 fields are
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Figure 4.3: Average size of groups per simulation turn.

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500

R
eg

en
er

at
ed

R
es

ou
rc

es

Simulation Turns

t≤4 = 5, t≥5 = 5
t≤4 = 5, t≥5 = 25
t≤4 = 25, t≥5 = 5
t≤4 = 25, t≥5 = 25

Figure 4.4: Average amount of regenerated load units per simulation turn.
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randomly chosen and if their load is below mmax = 100 their load is in-
creased by one unit. Figure 4.4 shows how many of the 50 random fields
have loads below 100 and how their number increases during the simulation
runs. This figure implies the distribution of the agents in the arena. The
more fields are regenerated the more fields have been visited by groups. A
large amount of regenerated fields implies that there are more small groups
and single agents that cover more fields of the arena. The systems with
t≤4 = 25 are more distributed and up to 80% of the randomly chosen fields
have been visited by agents beforehand.
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Figure 4.5: Average amount of wasted resources per simulation turn.

Figure 4.5 shows the amount of resources that are wasted by the dif-
ferent systems due to missing capabilities of the groups or low loads of the
harvested fields. The larger groups build in systems with t≤4 = 5 waste less
resources due to their higher capabilities, while working in general on fields
with lower loads than the agents in systems with t≤4 = 25. The system with
t≤4 = 5 and t≥5 = 5 produces the least waste.

Finally, Figure 4.6 gives the performance of the compared system. It
shows how much resources could be collected by the agents. Indeed the
systems with t≤4 = 25 have a higher final performance than the systems
with t≤4 = 25. This can be explained by the increased load reduction of the
larger groups. They reduce the load of their field to 0 but are unable to find
find a consensus and move on. While they can not waste any resources on
a field f with mf = 0, they are unable to collect resources as well.

The system with the highest final performance has t≤4 = 25 and t≥5 = 5
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Figure 4.6: Average collected resources per simulation turn.

4.4 Conclusion

In a system of agents that are unable to reconfigure their capabilities the
choice of cooperation partners is of crucial importance. Agents should avoid
cooperation with small groups, but seek cooperation with large groups. The
profit arising from cooperation between two agents does not pay for the loss
of efficiency endured by moving towards each other, the immobility during
regrouping, and the heightened decrease of mass on the host field.

However, agents should approach larger groups with high capabilities.
Being member of a group with specialized agents is worth the effort. In
general the system has a higher performance if the agents work in small
groups and thus process more fields simultaneously as a swarm on.
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Controlling group sizes

In a system such as introduced in Chapter 3 with reconfiguring agents the
optimal partition problem subsides but other problems arise. In the fol-
lowing I introduce an extension of the model presented in Chapter 3 where
the agents are able to adapt themselves to the need of their group by re-
configuration. An accurate description of the agents behavior is given in
Section 5.1. The performed experiments and their results are presented in
Section 5.2.

5.1 Group Formation of Reconfigurable Agents

The capabilities of the agents are reconfigurable, i.e. the state of a slot
can change during a reconfiguration operation. This can be of great benefit
to the group containing the reconfiguring agent. The problem in group
formation is no longer defined by the search of agents that increase the
groups capabilities but lies rather in the decision of how many agents should
be contained by a group as those will adapt their capabilities in time. Instead
of using regrouping events to get new agents, groups recruit single agents
that they meet in the arena.

In order to synchronize the system a simulation turn is structured into
three phases concatenated by synchronization points, i.e. all agents wait
for all other agents to complete the current phase before they start with
the next. Figure 5.1 gives an overview of one simulation turn. During
the recruitment phase recruit new members followed by the working phase,
where agents move, gather resources, and reconfigure. In the battery phase
agents change their state of activity depending on the state of their batteries.
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recruitment phase
(Algorithms 2 and 3)

move sources
working phase

(Algorithms 4 and 5)

battery phase
(Algorithm 6)

recruitment phase done

for all groups

for all agents

for all agents

working phase done

battery phase done

next simulation turn

Figure 5.1: Flow diagram of the three phases making up a simulation turn.

5.1.1 Recruitment Phase

A group G ⊂ A can only recruit an agent a ∈ A per simulation turn. G
has to be oriented towards the field that contains a. It is neither possible to
recruit groups of two or more agents, nor to recruit an agent that is member
of another group of size ≥ 2, nor to recruit a reloading agent. Note, that
these rules avoid conflicts between groups. In this chapter two strategies
for recruitment are analyzed: static recruitment and dynamic recruitment.
Assume in the following that a group G is oriented towards a field that
contains a single agent a ∈ A that is not reloading, i.e. a can be recruited
by G.

Algorithm 2: Recruitment Phase of the static recruitment version.

1 for each group G do
2 f ′ is the adjacent field in the current orientation
3 if there is a group of size one containing only agent a on f ′ then
4 draw a random number φ
5 if φ ≤recruitment rate then
6 recruit a to G

Static recruitment. The static recruitment strategy depends on the re-
cruitment rate∈ [0, 1], i.e. a static parameter. The group G choses a random
number φ ∈ [0, 1] and recruits a if φ < recruitment rate (see Algorithm 2).
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Thus, the group size depends on the frequency the group meets agents that
can be recruited and the recruitment rate.

Algorithm 3: Recruitment Phase of the dynamic recruitment version.

1 for each group G do
2 f ′ is the adjacent field in the current orientation
3 if there is a group of size one containing only agent ai on f ′ then
4 if there are no idle slots then
5 recruit ai to G

Dynamic recruitment. The dynamic recruitment strategy takes current
information about the group into account. If at least one of the agents of G
has at least one idle slot a is not recruited (see Algorithm 3). Recall from
Section 3.3 that a slot of a′ ∈ G in state j is idle on field f if

(i) fj = 0,
(ii) there is another agent a′′ ∈ G with a′j < a′′j , or
(iii) there is another agent a′′ ∈ G with a′j = a′′j and a′′ joined G before a′.

Only if all slots of all agents of G are increasing the performance of G, a is
recruited. Note, that this strategy is based solely on information the agents
of G already gathered for their reconfiguration processes. The agents neither
count the number of agents in their group nor the number of resource types
that are available on their current location or their past experience.

5.1.2 Working Phase

During the working phase all reloading agents refill their battery by adding
battery capacity/reload time units of energy to it. All active agents suffer
a loss of one energy unit from their batteries before they move, work, and
reconfigure, in this order. Two movement behaviors are considered in the
following where groups have to decide whether to move forward on the next
field or rotating on their current field.

Random walk. Groups performing a random walk base their movement
decision on a random value. The probability to move forward is defined by
the velocity parameter. A group G choses a random number φ ∈ [0, 1] and
moves forward if φ < velocity (see Algorithm 4).
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Algorithm 4: Working Phase for the random walk version.

1 for each agent a do
2 if a is reloading then
3 reload battery
4 else
5 remove one energy unit from battery
6 if group G with a ∈ G did not move yet then
7 determine next field f ′

8 draw a random number φ
9 if φ < velocity and f ′ is empty then

10 move G on f ′

11 else
12 if G turned in previous simulation turn then
13 turn G in previous direction
14 else
15 turn G in random direction

16 collect resources and reconfigure idle slots

Algorithm 5: Working Phase for the gradient walk version.

1 for each agent a do
2 if a is reloading then
3 reload battery
4 else
5 remove one energy unit from battery
6 if group G with a ∈ G did not move yet then
7 determine next field f ′

8 if P (G) on f ≤ P (G) on f ′ and f ′ is empty then
9 move G on f ′

10 else
11 if G turned in previous simulation turn then
12 turn G in previous direction
13 else
14 turn G in random direction

15 collect resources and reconfigure idle slots
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Figure 5.2: Exemplary situation of a collision between a single agent (white) and
group of more than one agent (gray);

Gradient walk. The gradient walk movement allows a group to intention-
ally leave undesirable locations and move towards more beneficial regions of
the arena. A group G measures its performance on its current field f and
compares it to the performance it would have on the target field f ′ that
lies in the orientation of G. If the performance on the neighbored field is
higher or equal the group moves onto f ′. Otherwise, the group rotates (see
Algorithm 5).

5.1.3 Battery Phase

In the battery phase each agent checks the state of its battery. If the battery
fully reloaded during the working phase, i.e. the battery contains capacity
many energy units, the agent turns active. If the agent is active but the
battery went empty during the working phase the agent switches into the
reloading state (see Algorithm 6).

Algorithm 6: Battery Phase: Agents set their state of activity.

1 for each agent a do
2 a.reload := (a.battery = 0) ∨ (a.reload ∧ a.battery < capacity)

Figure 5.2 depicts an exemplary set of simulation turns showing how a
group can recruit or lose agents.
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5.2 Experimental Results

In the first part of this section the experimental setup is described followed
by an analysis of the agent behavior regarding the different movement be-
haviors and recruitment strategies. An additional analysis shows the perfor-
mance of the compared systems considering different reconfiguration costs.
Finally, a the impact of different parameters and the robustness of the sys-
tem against changes in them is shown and a conclusion is given.

5.2.1 Distribution of Resources

It is assumed that each resource type has exactly one center point, i.e. the
place of highest concentration, that is located within the arena. The coor-
dinates of a center point are given in normalized form and are independent
of the positions of the fields and their margins. The distribution of the re-
sources are, thus, not bounded by the otherwise discrete properties of the
model. The location of the center point of resource type rj at simulation
turn t is denoted by (rj .x, rj .y)(t) = (rj .x(t), rj .y(t)) ∈ [0, 1]2. The initial
location (rj .x, rj .y)(0) of each resource type is chosen at random within the
arena. In simulation turn t + 1 the location of the center point of resource
type rj , j ∈ {1 . . . , k} is relocated to

(rj .x)(t+ 1) =


rj .x(t) + ρx, if rj .x(t) + ρx ∈ [0, 1]

rj .x(t) + ρx − 1, if rj .x(t) + ρx > 1

rj .x(t) + ρx + 1, if rj .x.(t) + ρx < 0

with ρx ∈ [−vmax, vmax], where vmax ∈ [0, 1] is the maximum velocity of
resources (coordinate rj .y is changed analogously with ρy ∈ [−vmax, vmax]).
Each resource type has an availability radius rresource that is identical for
all resource types. The farther away a field f ∈ F is from the center point
of a resource type rj the smaller is fj . Let (f.x, f.y) be the center point of
f then

fj = max

(
0, 1− ∆(f, rj)

rresource

)
where ∆(f, rj) is the minimal Euclidean distances between between the cen-
ter of f and the center point of rj as previously introduced with Equa-
tion (4.1). Note, that any field with ∆(f, rj) > rresource has fj = 0. With
rresource ≥ 0.5 there is no field f ∈ F with fj = 0.

In the tested dynamic scenarios not all resource types are available at
all times. A resource type can be inactive for several simulation turns. If
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resource type ri, i ∈ {1, . . . , k}, is inactive each field f ∈ F has fi = 0. The
simulation runs have a length of 5000 simulation turns. During the first
1500 simulation turns and the final 1000 simulation turns only two resource
types are active. From simulation turn 1501 until simulation turn 3000 ten
resource types are active.

5.2.2 Parameters and Measurements

Two kinds of experiments have been performed to infer the properties of this
model. The first experiments compared the different movement behaviors
and recruitment strategies in detail. The latter experiments tested the influ-
ence of the most important system parameters and the systems robustness
concerning changes in them.

Table 5.1: Model parameters applied in performance experiments.

Parameter Definition Value

velocity only for random movement 0.6
recruitment rate only for static recruitment 0.25
d size of arena 50× 50 fields
n number of agents 100
s number of slots 10
– number of simulation turns 4000
k number of resource types 10
– capacity of agent batteries 500 simulation turns
– reload time of empty battery 50 simulation turns
µ mutation strength 0.1
creconf reconfiguration cost 0.5
vmax maximal velocity of resources 0.25
rsource radius of resources 1
creconf reconfiguration cost 1, 0.5, 0

Table 5.1 gives the parameter values applied in the first experiments.
I compare four systems denoted by random-static (rs), random-dynamic
(rd), gradient-static (gs), and gradient-dynamic (gd) defined by their mode
of movement and recruitment strategy. The velocity for the random walk
behavior is chosen such that the average number of movements per simula-
tion turn is close to that of the gradient walk agents. Similarly, the relation
between positive and negative recruitment decisions in static recruitment
and dynamic recruitment systems are nearly identical due to the chosen re-
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Table 5.2: With µ = 0.1, let x be the number of idle simulation turns before a
slot mutates. P (x = t) gives the probability that the slot mutates after exactly t
simulation turns. P (x ≤ t) gives the probability that the slot has mutated after t
or less simulation turns. E(x) is the expected number of idle simulation turns.

t P (x = t) P (x ≤ t) E(x)

1 0.1 0.1 3,66021568
2 0.18 0.28
3 0.216 0.496
4 0.2016 0.6976
5 0.1512 0.8488
6 0.09072 0.93952
7 0.042336 0.981856
8 0.0145152 0.9963712
9 0.00326592 0.99963712

10 0.00036288 1.0

Table 5.3: Model parameters varied in robustness experiments.

Parameter Definition Value

velocity only for random walking agents 0.1, 0.6, 0.9
recruitment rate only for static recruiting agent 0.1, 0.25, 0.9
n number of agents 50, 100, 50
µ mutation strength 0, 0.1, 0.5
vmax maximal velocity of resources 0, 0.25, 1

cruitment rate. This is done in order to make the systems comparable. The
mutation strength of µ = 0.1 ensures that an idle slot mutates within ten
simulation turns. Reference Table 5.2 for more stochastic properties of the
mutation strength.

In additional experiments the influence of five different parameters is
analyzed (see Table 5.3). I define a standard system that shares all parame-
ters given in Table 5.1, applies the gradient walk behavior, and the dynamic
recruitment strategy. For each parameter two or three separate experiment
were run with a deviation from the standard system only in this parameter.

Each variant of the system was run 50 times to ensure the statistic value
of the results. To infer the special characteristics of different variants of the
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system I introduce relevant measurements in the following.

Movement Decisions Agents have four types of movement possibilities
in a simulation turn. They can (i) moving forward, (ii) rotating due to the
movement strategy (i.e. because of randomly deciding to rotate or because
the gradient is negative), (iii) rotating to avoid blocked field, (iv) or immobil-
ity due to reloading batteries The frequency of these movement possibilities
give insight into the mobility the of agents in the different systems.

Group Size In each simulation turn an agent is either member of a group
or reloading its batteries. The size of the group of each agent is measured
to infer the impact of different numbers of available resource types and
behaviors on the group formation.

Idle Slots The number of idle slots of each agent during a simulation turn
shows how beneficial the agents are for their group at some point during the
simulation.

Collected Resources The average total amount of collected resources
per run gives a qualitative measurement for the different systems.

5.2.3 Behavioral Analysis

Mobility I begin with the analysis of the influence of the movement be-
havior on the system. Figure 5.3 gives a time series on the mobility of
the groups in the gradient-static and random-static system. The values are
averaged over the performed runs. The respective results for the dynamic re-
cruitment systems are very similar and show no influence of the recruitment
strategy on the movement decisions.

Agents in the random-static system move in 53% of all simulation turns
onto their respective target field. This is lower than the set velocity of 0.6
as there are reloading times and blocked movements. The average velocity
of agents using the gradient movement strategy is 0.51 fields per simulation
turn and significantly slower (Mann-Whitney test with p-value < 0.01) than
with random movement. Recall, that the velocity parameter has been set for
a better comparison such that agents in both system variants have a similar
average speed. Due to the reload efficiency of 10 energy units per reloading
simulation turn an agent spends 1/11 ≈ 0.09 of its time in the reloading
state. This also means that about 9% of the agents are reloading during a
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Figure 5.3: Movement behavior of a system with static recruitment: random
movement (top) and gradient movement (bottom). Negative numbers indicate a
decision to stay and rotate, positive numbers indicate a movement of the group.
The lower plot gives margins of the measured gradients. Groups oriented towards
fields containing other agents are listed as blocked. Reloading agents are listed as
such.
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simulation turn. It rarely happens (less than 5%) that the agents movement
is blocked by the presence of other agents on the target field, hence, the 100
agents can move relatively freely inside the arena. This ensures that the
movement of the agents is barely affected by congestion effects.

The increase or decrease in the number of resource types barely influ-
ences the average movement speed in both systems. There are no significant
changes with random movement and a slight, but significant (Mann-Whitney
test with p-value < 0.01), difference with gradient movement (increase from
0.506 to 0.514 from simulation turn 1001 to 1500 and 2501 to 3000 respec-
tively).

Group Size The recruitment strategy applied by the agents has a great
impact on the group formation processes in the system as can be seen in
Figure 5.4 which shows a time series of the distribution of group sizes in
the random-static, gradient-static, and gradient-dynamic systems. Initially,
all agents are placed individually on random locations into the arena with
a random battery state. In the random-static system the group sizes sta-
bilize after about 500 simulation turns. About one tenth of the agents are
reloading, about one quarter of the agents stay alone (group of size one),
slightly more than one quarter of the agents stay in groups of size two, and
the remaining agents – approximately one third – are in groups that have at
least three members. The average group size for the random-static system
is 1.9 independently of the number of available resource types.

The gradient-static system shows a similar group formation behavior.
The average group size of 2.0 is slightly, but significantly (Mann-Whitney
test with p-value < 0.01), above the one of the random-static system. A
possible explanation for this phenomenon is the slightly lower movement
rate of agents in the gradient-static system. Slower movement results in a
higher chance of meeting other agents in the arena as slower groups rotate
more often and are thus more aware of their surroundings. This increases
the number of sights of other groups and single agents they can recruit.
A hint to this explanation is the higher number of blocked fields in the
gradient-static system as seen in Figure 5.3.

The gradient-dynamic system shows a clear adaptation of the group
sizes to the changing number of available resource types. After the number
of available resource types is increased to ten the average groups size rises
from 2.0 (simulation turns 1001 to 1500) to 2.6 (simulation turns 2001 to
2500), which is a significant increase (Mann-Whitney test with p-value <
0.01). The gradient-dynamic system has smaller groups on average than
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Figure 5.4: The total average number of agents in groups of different sizes: in the
random-static system (top), gradient-static system (middle), and gradient-dynamic
system (bottom). Reloading agents are listed as agents in a group of size zero.
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the gradient-static system during simulation turns with only two available
resource types. However, the average group size in the gradient-dynamic
system is higher than in the gradient-static system when ten resource types
are available. In the gradient-dynamic system most agents are in groups of
size two or three when there are two resources types to collect. Once the
average group size has adapted to the increase of available resource types –
after simulation turn 1500 – over half of the agents are in groups of at least
size 3. This adaptation takes approximately 250 simulation turns.

Beginning with simulation turn 3001 the number of active resources is
once more reduced to two. The agents of the gradient-dynamic system
stop their recruitment immediately, and the system shows a fast decrease in
group size. This reaction overshoots and reduces the group size to a point
below the systems steady state. The number of groups with less than three
agents decreases in favor of a slightly increasing average group size before
the system returns to a steady state.

Idle Slots The previous paragraph gave insight on the quantitative prop-
erties of the group formation processes. A measure to infer the qualitative
properties of a group is the number of idle slots the agents have. Figure 5.5
gives a time series over the number of idle slots in the gradient-static and
gradient-dynamic system. During the first 500 simulation turns the system
slowly adapts to the two available resources with the random reconfiguration
processes. About every eleventh agent reloads and has ten idle slots during
that time. Another 15% of the agents have more than seven idle slots, be-
cause they are in groups with two other agents that already specialized on
the available resource types. From simulation turn 1500 to 3000, with ten
available resource types, barely any agent has any idle slot (not counting
reloading agents).

Agents in the gradient-dynamic system have an average of 2.5 idle slots
when two resource types are available (measured from simulation turn 1001
to simulation turn 1500). In the gradient-static system this number is with
2.8 significantly higher (p-value < 0.01, Mann-Whitney test). With ten
available resource types, the average number of idle slots per agent is as low
as 0.99 in the gradient-dynamic and 0.97 in the gradient-static system (mea-
sured from simulation turn 2501 to 3000). Though the difference between
the averages is small, the number of idle slots is significantly higher (Mann-
Whitney test with p-value < 0.01) in the gradient- dynamic system than in
the gradient-static system. After the number of resource types is reset to
two in simulation turn 3000 the groups have a large average number of idle
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Figure 5.5: Average number of agents with the specified number of idle slots:
gradient-static system (top) and gradient-dynamic system (bottom). Reloading
agents are listed as agents with ten idle slots.
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slots immediately after the change. However, the group sizes of both com-
pared systems adapt to the number of available resource types and reduce
the number of idle slots once again. The gradient-dynamic system soon has
a lower average number of idle slots than the gradient- static system. The
gradient-static recruitment system is slightly faster decreasing the number of
idle slot, because the gradient- dynamic system has a higher average group
size at the time of the switch. The larger groups have a higher number of
idle slots. To adapt to the change, the agents in the gradient-static system
only mutate their configuration into a more fitting state, but the average
groups sizes do not change. The gradient-dynamic system simultaneously
reduces the size of the groups. As the groups can only decrease their size if
a member agent becomes inactive, this process takes up to 500 simulation
turns.

5.2.4 Performance Analysis

All performance results are significantly different from each other (Fried-
man test using a Nemenyi post-hoc test with p-value < 0.01), unless stated
otherwise.

The performance of a group G is determined by the capabilities of its
members and the resource availability at their current location. Recall Equa-
tion (3.2)

P (G) =
1

s

k∑
j=1

max
ai∈G

aijfj P (G) ∈ [0, k] (3.2)

The actual amount of collected resources can decrease if agents have to pay
for their reconfiguration with creconf , such that the amount of resources
collected by agent a in group G is defined by

P (a ∈ G) =

{
(1− creconf )P (G) if a slot of a mutated

P (G) otherwise.

Figure 5.6 shows the performance of the different systems in light of
three different reconfiguration costs. The dynamic recruitment systems and
the gradient movement systems perform better than their respective coun-
terparts with static recruitment and random movement. Irrespective of the
reconfiguration cost, the system with gradient movement paired with dy-
namic recruitment performs best. However, the improvement achieved by
gradient movement is small compared to the positive impact of dynamic
recruitment.
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Figure 5.6: Performance of the different systems, r = random movement, g =
gradient movement, s = static recruitment, d = dynamic recruitment; Average
over all simulation turns and agents in one run.

5.2.5 Robustness

The model has some parameters with considerate influence on the systems
performance. Five of them are analyzed in the following. Note, ahead that
all presented performance results are significantly different from each other
(Friedman test using a Nemenyi post-hoc test with p-value < 0.01), unless
stated otherwise to increase readability.
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Figure 5.7: Average performance of agents in the gradient-dynamic system with
50, 100, and 500 agents. Average over all simulation turns and agents in one run;
boxplot over 50 runs.

Number of Agents Varying the number of agents n in the gradient-
dynamic system is similar to changing the size of the arena, as it sets the
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density of agents per field. A higher density of agents leads to significantly
larger groups (pairwise Mann-Whitney tests with p-values < 0.01) because
collisions between agents are more frequent. Their average group sizes are
2.0, 2.2, 2.6 for n = 50, 100, 500, respectively. Note, however, that the group
sizes never exceed three whenever there are only two resource types available.
Figure 5.7 shows the influence of the number of agents on the gradient-
dynamic systems average performance. The different reconfiguration costs
reduce the average performance but do not change the fact that systems
with large n perform better than systems with smaller n.

Velocity of the Agents If the agents are unable to measure the gradient
between their current and next field, i.e. in the random-dynamic system,
they decide at random whether to move forward or rotate on their current
field. How many fields per simulation turn they visit on average is controlled
by the velocity parameter. Figure 5.8 shows the influence of different agent
velocities on the random-dynamic systems performance. While higher veloc-
ities seem to improve the system, the performance of the gradient-dynamic
system has a higher performance then any of the systems with random move-
ment. The performance of systems with a velocity of 0.6 and 0.9 are not
significantly different.
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Figure 5.8: Average performance of agents in the random-dynamic system with
different velocity values in comparison to the gradient-dynamic system (grad). Av-
erage over all simulation turns and agents in one run; boxplot over 50 runs.

Recruitment Rate In the gradient-static system higher recruitment rates
increase the average size of the groups. In a large group, with at least one
specialized agent for each type of resource, every agent can collect the max-
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Figure 5.9: Average performance of agents in the gradient-static system with dif-
ferent recruitment rates in comparison with the gradient-dynamic system. Average
over all simulation turns and agents in one run; boxplot over 50 runs.

imum amount of resources. Agents that are not better than all other agents
for at least one resource type, constantly reconfigure their slots. This can
be a problem in the presence of high reconfiguration costs. Therefore, the
gradient-static system only outperforms the gradient-dynamic system with
high recruitment rates and when there are no reconfiguration costs (see Fig-
ure 5.9). With high reconfiguration costs the dynamic recruitment system
is better than any static recruitment system. The dynamic recruitment sys-
tem benefits from the agents ability to adapt their group size. They form
large groups when many different resources types are available and smaller
groups, otherwise. With medium reconfiguration cost of 0.5 the perfor-
mance of the best gradient-static system is not significantly different from
the gradient-dynamic system.

Mutation Strength The mutation strength µ regulates how fast an agent
can adapt its slots into a beneficial state. A high mutation strength reduces
the time an agent needs to be proficient in the collection of one specific
resource type and can increase the performance of the group. On the other
hand it also increases the number of reconfiguration events for agents, that
can be considered superfluous in their groups, as all other group members
already cover the available resource types with their capabilities.

Figure 5.10 shows the influence of the mutation strength on the standard
system. Note, with µ = 0 the system is indeed not reconfigurable. The bene-
fit of the fast adaption of the agents is, even with the highest reconfiguration
costs, is higher than the loss of performance by the superfluous agents in
the groups. Increasing reconfiguration costs, such that a reconfiguring slot
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Figure 5.10: Average performance of agents in the gradient-dynamic system with
different values for the mutation strength. Average over all simulation turns and
agents in one run; boxplot over 50 runs.

disables the agent for multiple simulation turn, will at some point change
this phenomenon.

Maximal Velocity of the Resources The velocity of the center points
of the resource types influences the performance of the gradient-dynamic
system. A slow movement, or even lack thereof, makes it easier for the
agents to detect profitable fields and follow the center points. The higher
the fluctuation in the environment by faster moving center points, the lower
is the performance of the system (see Figure 5.11).
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Figure 5.11: Average performance of agents in the standard model with different
values for the resources maximal velocity. Average over all simulation turns and
agents in one run; boxplot over 50 runs.
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5.3 Conclusion

If the benefit of cooperation is bound by some environmental and dynamic
influence, a dynamic decision tactic to join into a cooperation can be very
profitable. The varying and reconfigurable set of capabilities of the agents
provides a very heterogeneous and adaptive swarm of agents. By cooper-
ation through group formation agents can use each others capabilities. It
is every agents goal to become member of a group that ideally consists of
one specialist for each capability that is currently asked for by the dynamic
environment.

The results showed that, when agents base their decisions on their cur-
rent workload, the group formation of the agents is adaptive and increases
the overall performance of the system. In a considerably small amount of
time the swarm of agents adapts to larger changes in their environment. The
impact of a different movement behavior, i.e. random or gradient movement,
had less impact on the performance in such dynamic systems. However,
the gradient movement is more beneficial for the agents than the random
movement. The system with dynamic recruitment and gradient movement
performs best, especially in the presence of reconfiguration costs. The sys-
tem prove to be robust and behave expectedly to variations in the values of
the most crucial parameters.



Part III

Multi-Objective Ranking
Relations





6 ‖ Introduction

Ranking multi-objective solutions

In daily life, but also in industrial, engineering, and scientific contexts prob-
lems with several optimization criteria, e.g. time, price, quality, or ecological
concerns, are common. While optimization problems with one objective can
be hard to solve optimally at least the simple < relation tells which solu-
tion is better than another one. In multi-objective optimization problems
this is not possible. While the problem asks for solutions from a solution
space X that are optimal with respect to k > 1 objectives, the objectives
are typically conflicting and it is only possible to optimize a (small) subset
of the objectives simultaneously. This is where the concept of the Pareto
dominance relation takes effect. One solution dominates another one if it is
better in at least one objective and not worse in all other objectives. Based
on this relation a solution is called Pareto optimal if it is not dominated by
any other solution from X. The set of all Pareto optimal solutions is re-
ferred to as Pareto set (solution space) that build the Pareto front (objective
space). In multi-objective optimization the goal is to find the Pareto set or
at least a subset of it. However, in light of NP-hard problems, determining
the Pareto set is rarely an option. A widely accepted alternative to avoid
this problem is to settle with a set of solutions that are close to the Pareto
optimal solutions, do not dominate each other, and feature a high diversity
(see Figure 6.1 for a visualization of the concept).

For the exploration of the solution space the use of metaheuristics main-
taining a population of solutions seems beneficial. Therefore, multi-objective
variants of various population-based metaheuristics have been developed in
recent years. A population is a set of solutions that is used to construct
new solutions and to lead the algorithm into more beneficial regions of
the solution space. Very popular population-based metaheuristics are ge-
netic algorithms (GAs). Multi-objective variants are being developed since
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Figure 6.1: Solutions x1, . . . x8
in their two-dimensional objective
space and the actual (usually un-
known) Pareto front (red line). So-
lutions x1 through x4 are non-
dominated with respect to the
Pareto dominance relation. The
gray area gives the hypervolume
of the non-dominated front (red
points) with respect to a reference
point (blue). f1(x)
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the eighties of the last century, e.g. the Vector Evaluation Genetic Al-
gorithm (VEGA) (Schaffer, 1984). For overviews on multi-objective GAs
see Coello Coello (2009); Coello Coello et al. (2005); Fonseca and Fleming
(1995). Another metaheuristic adapted to solve multi-objective problems
is the Ant Colony Optimization metaheuristic (ACO) (Dorigo et al., 1999),
e.g. by Doerner et al. (2001); Iredi et al. (2001) (for overviews see An-
gus and Woodward (2009); Leguizamón and Coello Coello (2011)). The
population-based ACO (P-ACO) (Guntsch and Middendorf, 2002) has also
been extended to handle multi-objective problems (Guntsch and Midden-
dorf, 2003).

All these metaheuristics generate a great number of solutions during
their runtime, where the population typically represents the best of all those
solutions. It can be beneficial for the algorithms performance to restrict the
size of the population and only allow a few choice solutions in it. To chose
these solutions from the large set of available solutions constructed in one
iteration a ranking relation is required.

6.1 Ranking Relations

The Pareto dominance is the most intuitive relation when it comes to rank-
ing solutions of multi-objective problems. A solution a ∈ X is only ranked
higher than another solution b ∈ X if a is better or equal than b concerning
all objectives, without being equal in all objectives. However, the Pareto
dominance relation is not total and many solutions, e.g. all solutions of the
non-dominated front, can not be ranked. This is why the Pareto dominance
is insufficient to guide heuristics into favorable regions of the solution space,
especially when the number of objectives is large. To salvage this situa-



6.1 Ranking Relations 65

tion several methods to compare, rank, and prune sets of (non-dominated)
solutions have been proposed in the past.

An approach proposed by Kukkonen and Deb (2006) is based on clus-
tering the set of solutions and taking one representative solution from each
cluster to obtain a large diversity in the set of selected solutions. Another
option is the introduction of a ranking relation that provides ranks for solu-
tions within non-dominated sets. The easiest approach are ranking schemes
based on aggregation methods such as the use of weighted sums of the objec-
tives (Jakob et al., 1992) or the distance to a target vector of objective values
(Wienke et al., 1992). Other ranking methods are more objective based. For
example, there are rankings using given priorities for a lexicographic sorting
of the objectives or performing a separate optimization of the single ob-
jectives in an order that is compliant with these priorities (Cvetkovic and
Parmee, 2002). Weights, target vectors, and priorities should be given by
the user. These approaches can, however, be difficult or impossible for many
applications, e.g. when no reasonable weights are known. We then require
methods that do not depend on any predefined weights but are, for example,
based on the notion of Pareto dominance. The dominance rank counts for
each solution a ∈ X the number of solutions b ∈ X that are dominated by a,
while the dominance count gives the number of solutions c ∈ X dominating
a (Fonseca and Fleming, 1993; Zitzler and Thiele, 1999). The dominance
depth gives the number of times the current set of non-dominated solutions
has to be removed from the remaining set of solutions until a becomes non-
dominated (Srinivas and Deb, 1994). Note, that in a set of non-dominated
solutions these values fail to provide a ranking.

The Global Detriment method (Garza-Fabre et al., 2009) uses the sum
of the differences of one solution a ∈ X to all other solutions b ∈ X over
all those objectives where a is inferior to b. The two methods Profit and
Distance to the Best Known Solution (Garza-Fabre et al., 2009) are similar
to the Global Detriment method where the first includes a normalization
over the different objectives and the second is based on a comparison with
the best known objective values. However, methods based on the difference
in objectives bear the potential disadvantage that they typically need some
normalization between the different objectives (i.e. the objective functions
and their derivatives should be in the same range, respectively).

It is possible to avoid any normalization when the differences between
the objectives values are mostly ignored and only their sign is taken as
information for the ranking. Thus, the magnitude of the differences of the
objective values are disregarded. Relation favor (Drechsler et al., 2001)
counts the number of objectives for which one solution is better or worse
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than the other. A solution is preferred over another if it wins, i.e. is better,
in more objectives than the other. Several extensions or similar relations
have been proposed since then. They give alternatives for the decision of
when an objective is counted as won or lost (Laumanns et al., 2002; Sülflow
et al., 2007) or require a specific number of won objectives for preference
(Farina and Amato, 2004; Zou et al., 2008).

Approaches based on the number of won objectives can also be used to
rate a solution with respect to a set of solutions, e.g. (Bentley and Wakefield,
1998; Maneeratana et al., 2006; Mostaghim and Schmeck, 2008). A detailed
description of such methods is given in Section 7.2.

Other approaches do not rank single solutions but sets of them. This is
commonly done in the indicator function framework, which assigns a real
value to a set of solutions. The binary hypervolume indicator by Zitzler and
Thiele (1998), for example, is defined as the hypervolume of the objective
space dominated by one set of solutions but not by a respective other (see
Figure 6.1 for a simple example with only two dimensions and one point in
the reference set). A good overview and experimental comparison over some
ranking methods can be found in Garza-Fabre et al. (2010, 2009).

6.2 Correlation of Objectives

Another aspect of multi-objective optimization that is overlooked far too
often is the correlation between different objectives. Objectives are often
enough not independent from each other but correlated (Xu et al., 2013).
Especially, when the performance of metaheuristics is tested on randomly
created problem instances or on instances from benchmark libraries, the ob-
jectives of these instances are often independent (in particular when random
instances are used) or the correlation is not investigated. The correlation be-
tween objectives can influence the correlation between the optima of a multi-
objective problem (Knowles and Corne, 2002). The optima are in general
very different if their objectives are not positively correlated (Jaszkiewicz,
2002).

In fact, considering that the performance of local search operators for
multi-objective problems is strongly influenced by the strength of the cor-
relation between the objectives (Paquete and Stützle, 2006), correlations
should also be investigated in the application of metaheuristics. The ACO,
for example, performs better with ‘less aggressive’ strategies (e.g. iteration-
best instead of best-so-far pheromone update) when the objectives are highly
positively correlated (López-Ibánez et al., 2004). On instances with weakly
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or negatively correlated objectives this does not hold. Positively correlated
objectives decrease – in contrast to negatively correlated objectivese – the
number of solutions in the Pareto front for NK-landscapes (Verel et al.,
2011a). This might enable metaheuristics to find a large fraction of them.
Past studies showed the influence of the correlation of objectives on hybrid
metaheuristics (Garrett et al., 2007) and the co-influence of the correlation
of objectives, the objective space dimensions, and the degree of non-linearity
on the size of the Pareto set (Verel et al., 2011b).

Ishibuchi et al. (2013a, 2011, 2013b) investigated the influence of cor-
related objectives on evolutionary multi-objective algorithms for the multi-
objective 0/1 Knapsack problem. The performance of MOEA/D is – un-
like the performance of the NSGA-II and SPEA2 – severely degraded by
an increase in the number of objectives when they were highly correlated
(Ishibuchi et al., 2011). The NSGA-II and SPEA2 perform well on multi-
objective problems with highly correlated objectives (Ishibuchi et al., 2013a).
Also, the search of the hypervolume-based SMS-EMOA is biased toward
the region of the Pareto front with good values for duplicated objectives
(Ishibuchi et al., 2013b). If objectives are highly positively correlated a di-
mensionality reduction can help metaheuristics (Brockhoff et al., 2008; Goel
et al., 2007). To this end, positively correlated objectives can be aggregated
in groups (Murata and Taki, 2010).

6.3 Ranking Relations on Correlated Objectives

Part III of this study focuses on the impact of different ranking methods
for metaheuristics by applying them in each iteration to select only a few
solutions from the set of already found solutions. These few solutions are
then used as population in to generate new solutions in the following iter-
ation. There are some advantages in maintaining only a few solutions in
the population, such as memory and runtime requirements of the algorithm.
This is of great importance in restrictive computational environments, e.g.
when solutions need to be delivered in real time or the algorithm runs on
specific hardware. The smaller the population the higher is the influence
of a single solution in the population. This increases the influence of the
ranking method dramatically.

With the theoretic and empiric analysis of two ranking relations this
study shows benefits and pitfalls of different strategies on multi-objective
optimization with metaheuristic. Both of these ranking relations refine
the Pareto dominance relation and are total preorders. In a comparison



68 Introduction

with other state-of-the-art ranking relations they are applied in a P-ACO
and a GA solving a multi-objective Flow-Shop-Scheduling and Traveling-
Salesperson problem.

Further, the influence of different correlations between the objectives on
the performance of the algorithms using the compared ranking relations is
studied. To this end, I develop a simple method for the instance generation
of problems with multiple differently correlated objectives.

Most methods and results have been published in Moritz et al. (2014a,b,
2013).



7 ‖ Ranking Relations

Refinements of the Pareto dominance

7.1 Definitions

In the following I consider a multi-objective optimization problem with a
set of solutions X and a vector of objective functions

~f(a) = (f1(a), . . . , fk(a)),

where a ∈ X and fi : X 7→ R. A solution of the problem can be a vector
of real values in case of continuous optimization problems or a vector of
elements from a finite set in case of combinatorial optimization problems to
name two common variants. The task at hand is to find solutions from X
that minimize the objectives, i.e.

min
a∈X

~f(a) = min
a∈X

(f1(a), . . . , fk(a)). (7.1)

Note, that by using −fi(a) maximization is also possible. With d > 1 there
can be multiple minimal solutions that are inferred by the use of the Pareto
dominance relation (≺). Let a, b ∈ X, then

a ≺ b ⇐⇒ ∀i ∈ {1, . . . , k} : fi(a) ≤ fi(b) ∧ ~f(a) 6= ~f(b).

Solution a dominates b if a ≺ b. Note that, if a ≺ b then there is at least
one i ∈ {1, . . . , k} with fi(a) < fi(b). Two solutions a, b ∈ X are called
incomparable if a ⊀ b ∧ b ⊀ a or indifferent in case of ~f(a) = ~f(b). A
solution a ∈ X is called Pareto optimal if @b ∈ X : b ≺ a. A solution
a ∈ X is called non-dominated solution with respect to a subset X ′ ⊆ X if
@b ∈ X ′ : b ≺ a. The set of all Pareto optimal solutions from X is called the
Pareto set and the corresponding set of objective vectors in Rk is called the
Pareto front of X.
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Table 7.1: Properties of a relation R on a set X.

Property Definition

reflexive ∀a ∈ X: (a, a) ∈ R
irreflexive ∀a ∈ X: (a, a) 6∈ R
transitive ∀a, b, c ∈ X: (a, b), (b, c) ∈ R⇒ (a, c) ∈ R
symmetric ∀a, b ∈ X: (a, b) ∈ R⇒ (b, a) ∈ R
asymmetric ∀a, b ∈ X: (a, b) ∈ R⇒ (b, a) 6∈ R
antisymmetric ∀a, b ∈ X: (a, b), (b, a) ∈ R⇒ a = b
total ∀a, b ∈ X: (a, b) ∈ R ∨ (b, a) ∈ R
preorder on X R reflexive and transitive
total preorder on X R is a preorder on X and total
partial order on X R is reflexive, transitive, and antisymmetric
total order on X R is a partial order on X and total

Table 7.1 gives an overview over the different properties of relations that
are needed in the following.

Let R and S be two relations on a set X. Then S is a refinement of R if

∀a, b ∈ X : (a, b) ∈ R ∧ (b, a) 6∈ R⇒ (a, b) ∈ S ∧ (b, a) 6∈ S.

A refinement of the Pareto dominance relation keeps the order given by
the Pareto dominance while it could make solutions comparable that are
incomparable with the Pareto dominance. Given an irreflexive and asym-
metric relation R over a set W , we define for two vectors ~u,~v ∈W k

BR(~u,~v) = |{i : (ui, vi) ∈ R, i ∈ {1, . . . , k}}|
ER(~u,~v) = |{i : (ui, vi) 6∈ R, (vi, ui) 6∈ R, i ∈ {1, . . . , k}}|
WR(~u,~v) = |{i : (vi, ui) ∈ R, i ∈ {1, . . . , k}|

Due to the asymmetry and irreflexivity each element i ∈ {1, . . . , k} is
included in exactly one of the three sets used to compute BR(~u,~v), ER(~u,~v),
and WR(~u,~v), i.e.

BR(~u,~v) + ER(~u,~v) +WR(~u,~v) = k.

When we use this notion with the < relation to compare solutions a, b ∈
X with respect to their values in the objective space ~f(a), ~f(b) ∈ Rd, we



7.2 State of the Art Ranking Relations 71

have

B<
(
~f(a), ~f(b)

)
= | {i : fi(a) < fi(b), i ∈ {1, . . . , k}} |

E<
(
~f(a), ~f(b)

)
= | {i : fi(a) = fi(b), i ∈ {1, . . . , k}} |

W<
(
~f(a), ~f(b)

)
= | {i : fi(b) < fi(a), i ∈ {1, . . . , k}} |

For better readability we write BR(a, b) instead of BR
(
~f(a), ~f(b)

)
when

we compare two solutions a, b ∈ X. We handle ER(a, b) andWR(a, b) analo-
gously. The values B<(a, b), E<(a, b), andW<(a, b), respectively, counts the
number of objectives where a solution a is better (respectively equal, worse)
than a solution b (Drechsler et al., 2001; Farina and Amato, 2004; Sülflow
et al., 2007; Zou et al., 2008).

For a solution a ∈ X, a set X ′ ⊆ X of solutions and an irreflexive and
asymmetric relation R ⊆ X ×X a similar notion is introduced:

BR
(
a,X ′

)
= |{x : (a, x) ∈ R, x ∈ X ′}|

ER
(
a,X ′

)
= |{x : (a, x) 6∈ R, (x, a) 6∈ R, x ∈ X ′}|

WR
(
a,X ′

)
= |{x : (x, a) ∈ R, x ∈ X ′}|

Note, that

BR
(
a,X ′

)
+ ER

(
a,X ′

)
+WR

(
a,X ′

)
= |X ′| (7.2)

where |X| is the number of elements in X ′. Mind, that BR(a, v) and
BR(a, {v}) have a different meaning. For X ′′, X ′ ⊆ X define BR(X ′′, X ′) =∑

a∈X′′ BR(a,X ′). Analogously ER(X ′′, X ′) and WR(X ′′, X ′) are defined.

7.2 State of the Art Ranking Relations

In the past two decades several approaches to compare non-dominated so-
lutions based on certain relations between their objective values have been
proposed. Those most relevant for this study are reviewed in the following.

7.2.1 The Favor Relation

The favor relation by Drechsler et al. (2001) is a basic yet effective relation
to compare multi-objective solutions with each other. It simply counts the
number of objectives that a solution a ∈ X is better than a solution b ∈ X
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and vice versa. The solution with the higher count is preferred. Using the
previously defined notation, we have

a ≺f b ⇐⇒ B<(a, b) > B<(b, a)

Obviously, ≺f is an irreflexive and asymmetric relation. It is not transi-

tive (Drechsler et al., 2001) as can be seen in a small example with ~f(a) =
{2, 2, 2, 3}, ~f(b) = {3, 2, 3, 1}, and ~f(c) = {4, 2, 1, 2} where a ≺f b, b ≺f c but
a ⊀f c. The relation is not total, since ties in the number of respectively
better objectives lead to incomparability. Note, that with k ≤ 2, i.e. for two
or one objective, the favor relation and the Pareto dominance relation are
equivalent (Drechsler et al., 2001). Indeed, the favor relation is a refinement
of the Pareto dominance relation, as shown in the following.

Theorem 3. The favor relation is a refinement of the Pareto dominance
relation on X, i.e. for a, b ∈ X: a ≺ b ∧ b ⊀ a⇒ a ≺f b ∧ b ⊀f a.

Proof. It suffices to show that a ≺ b implies a ≺f b as the second part of
premise and conclusion are a direct consequence of the asymmetry of ≺ and
≺f . By definition of the Pareto dominance relation

@i ∈ {1, . . . , d} : fi(b) < fi(a), i.e. B<(b, a) = 0,

and ∃i ∈ {1, . . . , d} : fi(a) < fi(b), i.e. B<(a, b) > 0

This implies a ≺f b.

Proposition 7.2.1 introduces some properties on the combination of the
Pareto dominance relation and the favor relation relevant for the following
section.

Proposition 7.2.1. Let a, b, c ∈ X with a ≺ b. Then:
(i) b ≺f c⇒ a ≺f c,

(ii) c ⊀f b⇒ c ⊀f a,
(iii) c ≺f a⇒ c ≺f b
(iv) a ⊀f c⇒ b ⊀f c.

Proof. Because a ≺ b, with a, b ∈ X, for any c ∈ X it holds that
(1) B<(b, c) ≤ B<(a, c), because ∀k ∈ {i : fi(b) < fi(c)} : fk(a) ≤ fk(b),

and
(2) B<(c, b) ≥ B<(c, a), because ∀k ∈ {i : fi(c) < fi(a)} : fk(a) ≤ fk(b).

These inequalities together with the corresponding premise of the impli-
cation gives the result.
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(i) (b ≺f c⇒ a ≺f c) Due to b ≺f c we have B<(b, c) > B<(c, b) yielding:

B<(a, c) ≥ B<(b, c) > B<(c, b) ≥ B<(c, a) .

By definition this is equivalent to a ≺f c.
(ii) (c ⊀f b⇒ c ⊀f a) From c ⊀f b we know B<(c, b) ≤ B<(b, c) and thus

B<(c, a) ≤ B<(c, b) ≤ B<(b, c) ≤ B<(a, c) ,

i.e. c ⊀f a.
(iii) (c ≺f a⇒ c ≺f b) Similarly c ≺f a gives

B<(c, b) ≥ B<(c, a) > B<(a, c) ≥ B<(b, c) ,

i.e. c ≺f b.
(iv) (a ⊀f c⇒ b ⊀f c) Finally a ⊀f c gives

B<(b, c) ≤ B<(a, c) ≤ B<(c, a) ≤ B<(c, b) ,

i.e. b ⊀f c.

A relation R on X can be represented by a graph GR = (V,E) where the
nodes represent the elements of X, i.e. V = X and the edges are defined by
R, i.e. E = R. A graph G representing the favor relation is a directed graph

because the relation is asymmetric with (b, a) ∈ E iff a ≺f b. G≺f
(
X, ~f

)
is

then called the favor graph of X with the vector ~f of objective functions.
The following lemma shows that every directed graph can be the favor graph
of V and some ~f .

Lemma 7.2.1. For every directed graph G = (V,E) that is loop-free (i.e.
∀a ∈ V : (a, a) 6∈ E) and has at most one edge between two nodes there
exists a vector of objective functions ~f on the set X = V such that the favor
graph G≺f (X, ~f of V and ~f is isomorphic to G.

Proof. Let G = (V,E) be given with V = {v1, . . . , vn} and E = {e1, . . . , em}.
For the construction let ~f = {f1, . . . , f3m} be a 3m-dimensional vector

of objective functions. For each vr ∈ V let v
(h)
r , with h ∈ {1, . . . ,m},

be the three dimensional subvector of ~f(vr) which defines the positions
{3h− 2, 3h− 1, 3h} in ~f(v). We define the objective functions such that
for each edge eh = (vi, vj) ∈ E we have

v(h)r =


(1, 1, 2) if k = i

(2, 2, 1) if k = j

(1, 3, 1) otherwise

, r ∈ {1, . . . ,m}
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By the construction, it follows that if there exist an edge eh = (vi, vj) ∈ E
then v

(h)
j ≺f v

(h)
i and v

(l)
j ⊀f v

(l)
i ∧ v

(l)
i ⊀f v

(l)
j for r ∈ {1, . . . ,m}, l 6= h. If

two nodes vi, vj ∈ V are not connected by an edge in G then v
(h)
j ⊀f v

(h)
i ∧

v
(h)
i ⊀f v

(h)
j for all h ∈ {1, . . . ,m}. For vectors vi, vj ∈ V it follows that the

favor relation vi ≺f vj holds iff (vj , vi) ∈ E. Hence, the favor graph of V

and ~f is isomorphic to G.

There are several variations of the favor relation. The ε-preference rates
an objective fi, i ∈ {1, . . . , k}, of a solution as won only if its value is
larger by a constant value εi than the corresponding value of the competitor
solution (Sülflow et al., 2007). The L-dominance relation (Zou et al., 2008)
applies a constant additive tolerance for the number of won objectives by
demanding

B<(a, b)− L =W<(a, b)

Zou et al. (2008) demanded in addition that a is better than b with respect
to some norm, e.g. the sum of the objective values. The (1− k)-dominance
relation Farina and Amato (2004) applies a multiplicative tolerance such
that a ≺1−k b) iff

k · B<(a, b) ≥ W<(a, b) , with k ∈ [0, 1]

7.2.2 Winning Score

While the favor relation compares solutions directly it is also possible to
compare solutions by some score they make in comparison with sets of solu-
tions, e.g. in the domination rank, domination count, and domination depth
based ranking methods. The winning score (Maneeratana et al., 2006) also
compares solutions in respect to a set of solutions X ′ ⊂ X. For a solution
a ∈ X ′ the winning score is defined by

S(a) =
∑
b∈X′

(B<(a, b)−W<(a, b)).

Another such method is the average rank (Bentley and Wakefield, 1998).
The average rank is given by

rank(a) =

k∑
i=1

ri(a)
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where ri(a) is the rank of a with respect to objective i. The winning score
and average rank are equivalent, i.e. they induce the same order on the
elements of X ′ (Corne and Knowles, 2007).

Note, that because a ≺ b implies that the average rank of a is smaller
than the average rank of b, the winning score is a refinement of the Pareto
dominance relation. It is due to the use of set scores in combination with ≤
a total preorder. The winning score relation is abbreviated as Win when it
is applied in the experiments as a means of comparison.

7.2.3 Weighted Sum

Similar to the Global Detriment method (Garza-Fabre et al., 2009) the
weighted sum relation – called W relation – computes a weighted sum,
however only pairwise and with weights for normalization.

a ≺W b iff

k∑
i=1

wifi(a) ≤
k∑
i=1

wifi(b).

The weighted sum relation is a refinement of the Pareto dominance rela-
tion as a ≺ b implies that the weighted sum of a is smaller than the weighted
sum of b. Furthermore, it is a total preorder, since ≤ is used as comparison
operator.

When this ranking method is applied we use random weights from a
uniform distribution that gradually change from one iteration to the next,
by averaging them with a random new weight. It is enforced that wi ≥ 0
for i ∈ {1, . . . , k} and

∑k
i=1wi = 1.

7.3 Two new Ranking Relations

In the following I introduce two ranking relations first mentioned by Schwarz
(2011). The WL relation and the Points relation are both based on the
favor relation. More precisely, they are based on B≺f (a,A), E≺f (a,A), or
W≺f (a,A) which give for a solution a ∈ X the number of solutions in A ⊂ X
compared to which a wins, is incomparable, or loses according to the favor
relation, respectively. The following theorem relates Pareto dominance to
these values.

Theorem 4. Let A ⊆ X and a, b ∈ X. It holds that

a ≺ b⇒ B≺f (a,A) ≥ B≺f (b, A) ∧W≺f (a,A) ≤ W≺f (b, A)

If a, b ∈ A both inequalities are strict.
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Proof. Assume a ≺ b. By Proposition 7.2.1 for every x it holds that (i) if
b ≺f x then a ≺f x and (ii) if x ≺f a then x ≺f b. Hence, the first sentence
of the theorem holds. Furthermore, by Theorem 3 we have a ≺f b. Thus, it
follows tha B≺f (a,A) ≥ B≺f (b, A) + 1 and W≺f (a,A)− 1 ≤ W≺f (b, A) when
a, b ∈ A.

7.3.1 The Win-Lose Relation

The Win-Lose (WL) relation is similar to score systems in tournaments
where all participants, i.e. the solutions, compete against each other. A
ranking is established by comparing the number of won competitions and
in case of equality the number of lost competitions. Formally, we have for a
set A ⊆ X and solutions a, b ∈ X, a relation ≺WL

A defined on X such that

a ≺WL
A b⇔ B≺f (a,A) > B≺f (b, A)∨(

B≺f (a,A) = B≺f (b, A) ∧W≺f (a,A) ≤ W≺f (b, A)
)

If the context is clear we may omit A in ≺WL
A in the notation for better

readability. Note, that the WL relation induces a mixed lexicographic order
on X where it first maximizes over B≺f (a,A) and secondly minimizes over
≤ W≺f (a,A). It is – unlike common lexicographic orders – not a partial
order because antisymmetry does not hold, i.e. a ≺WL b and b ≺WL a does
not imply a = b (see Example 7.3.1), but it is a partial preorder.

Example 7.3.1. Let X = {a, b, c} with

~f(a) = (1, 2, 3) a ≺f c
~f(b) = (3, 1, 2) i.e. b ≺f a
~f(c) = (2, 3, 1), c ≺f b,

then B≺f (a,X) = B≺f (b,X) = B≺f (c,X) = 1

W≺f (a,X) =W≺f (b,X) =W≺f (a,X) = 1

Hence, a ≺WL b ≺WL c ≺WL a. Since, a, b, c are pairwise unequal the ≺WL

relation is not antisymmetric.

Theorem 5. For A ⊆ X the WL relation ≺WL
A is a total preorder on X.

Proof. A total preorder is reflexive, transitive, and total. In the following it
is shown the WL relation ≺WL

A is (i) transitive and (ii) total (which implies
it is reflexive).
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(i) Let a, b, c ∈ X with a ≺WL
A b and b ≺WL

A c then a ≺WL
A c follows

from the transitivity of >, =, and ≤.
(ii) Under the assumption of a ⊀WL

A b, with a, b ∈ X, there are two
possible cases:

(a) B≺f (a,A) < B≺f (b, A) and

(b) B≺f (a,A) = B≺f (b, A) ∧W≺f (a,A) >W≺f (b, A) .

In each case the definition of the WL relation implies b ≺WL
A a.

These properties ensure the possibility of sorting a set of solutions ac-
cording to the WL relation with sorting algorithms based on pairwise com-
parisons, e.g. merge sort. The following proposition is needed to show that
the WL relation is a refinement of the Pareto dominance.

Proposition 7.3.1. Let A ⊆ X and a, b ∈ A. Then a ≺ b⇒ b ⊀WL
A a.

Proof. Due to Theorem 4 a ≺ b implies B≺f (a,A) > B≺f (b, A). Thus, by
definition b ⊀WL

A a holds.

Theorem 6. The WL relation ≺WL
A is a refinement of the Pareto domi-

nance relation on A ⊆ X, i.e. for a, b ∈ A:

a ≺ b ∧ b 6≺ a⇒ a ≺WL
A b ∧ b ⊀WL

A a.

Proof. By Proposition 7.3.1 a ≺ b implies b ⊀WL
A a. Because the ≺WL

A

relation is total (Theorem 5) a ≺WL
A b holds.

The WL relation is not a refinement of the favor as a ≺WL b does not
implies a ≺f b or vice versa. We extend the WL relation in the following for
sets A,B,C,D ⊆ X

A ≺WL
C,D B ⇔ B≺f (A,C) > B≺f (B,D)∨(

B≺f (A,C) = B≺f (B,D) ∧W≺f (A,C) ≤ W≺f (B,D)
)

If C = D we simply write A ≺WL
C B. On this basis we define property (∗).

Definition 7.3.1. A relation R with operator ≺R on X suffices property
(∗), iff for all subsets B,C ⊆ A ⊂ X with |B| = |C|:

B ≺AR C ⇒ B ≺A−B,A−CR C.



78 Ranking Relations

Note, that property (∗) enforces that a set of solutions B ⊆ A would
get the same rank among equally sized sets when comparisons inside the
set are ignored. Thus, it should be impossible for a set to increase its rank
among other equally sized sets by generating a high score from comparisons
between its own solutions.

a1

a2

a3

A
b1

b2

b3

B

c

C

B≺f (ai, X) = 1 B≺f (ai, X −A) = 0 W≺f (ai, X −A) = 1 for i ∈ {1, 2, 3}
B≺f (bi, X) = 0 B≺f (bi, X −B) = 0 W≺f (bi, X −B) = 0 for i ∈ {1, 2, 3}
B≺f (c,X) = 3 B≺f (c,X − C) = 3 W≺f (c,X − C) = 0

Figure 7.1: Example graph G and the values it produces.

The following example shows that property (∗) does not hold in gen-
eral for the WL relation. Consider a directed graph G = (V,E) with V =
{a1, a2, a3, b1, b2, b3, c}. Let A = {a1, a2, a3}, B = {b1, b2, b3}, and C = {c}.
There are edges E = {(a1, a2), (a2, a3), (a3, a1), (c, a1), (c, a2), (c, a3)} (de-
tails see Figure 7.1). As shown in Lemma 7.2.1 there exists an objective func-
tion ~f such that G is the favor graph of X = V . Then B≺f (b,X) = 0 for each
node b ∈ B, B≺f (a,X) = 1 for each node a ∈ A, and B≺f (c,X) = 3. Thus, c
is the highest ranked node followed by the nodes of set A while the nodes in B
are of lowest rank with respect to the WL relation. Therefore, A ≺WL

X B.
But B ≺WL

X−B,X−A A since B≺f (b,X −B) = B≺f (a,X −A) = 0 and
W≺f (b,X −B) = 0 but W≺f (a,X −A) = 1, for respectively every b ∈ B
and a ∈ A.

7.3.2 The Points Relation

The Points relation does fulfill property (∗) under certain conditions by ac-
counting for ties between solutions. Such ranking relations are actually used
in many tournament rules where draws are common. The Points relation
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defines a point score of a solution a ∈ X with respect to a set of solutions
A ⊆ X. or sets A,B ⊆ X

S(a,A) = wB≺f (a,A) + E≺f (a,A)

S(B,A) =
∑
a∈B

S(a,A),

where w ≥ 1 is the amount of points rewarded for a won comparison. The
Points relation for a, b ∈ X and A ⊆ X and subsets A,B,C ⊆ X is then
defined by

a ≺PtA b ⇐⇒ S(a,A) ≥ S(b, A)

B ≺PtA C ⇐⇒ S(B,A) ≥ S(C,A),

where b ≺PtA c ⇔ {b} ≺PtA {c}. The reference set A is omitted in the
notation if its usage is clear from the context.

Theorem 7. For A ⊆ X the Points relation ≺PtA is a total preorder on X.

Proof. Transitivity and totality are a consequence from ≥ being transitive
and total. Reflexivity is a consequence of totality.

The theorem ensures that it is possible to use the Points relation to
sort a set of solutions with a generic sorting algorithm, e.g. merge sort.
Note, that the Points relation is not a partial order since antisymmetry
does not hold, i.e. a ≺Pt b and b ≺Pt a does not imply a = b. This is
the case because unequal solutions can get the same score. The setting of
Example 7.3.1 also gives a counter-example for antisymmetry of the Points
relation. Further, using Proposition 7.3.2 it can be shown that the Points
relation is a refinement of the Pareto dominance.

Proposition 7.3.2. Let A ⊆ X and a, b ∈ A then a ≺ b⇒ b ⊀PtA a.

Proof. Assume a ≺ b. By Theorem 4 we have B≺f (a,A) > B≺f (b, A). Any
x ∈ A which contributes to E≺f (b, A) contributes one point to S(b, A) and
it holds that b ⊀f x ∧ x ⊀f b. Since x ⊀f b we have by Proposition 7.2.1
that x ⊀f a. Hence, x ≺f a does not hold. Thus, x contributes at least one
point to S(a,A) (one point in case of a ⊀f x and w points in case of a ≺f x).
Altogether, it follows that S(a,A) > S(b, A) and the theorem holds.

Theorem 8. The Points relation ≺PtA is a refinement of ≺ on A, i.e.

∀a, b ∈ A : a ≺ b ∧ b ⊀ a⇒ a ≺PtA b ∧ b ⊀PtA a.
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Proof. The premise a ≺ b implies by Proposition 7.3.2 b ⊀PtA a. Since the
Points relation is total (Theorem 7) a ≺PtA b follows.

Mind, that with w > 1 there are scenarios where the Points relation
gives a higher rank to a solution a ∈ A that is dominated by some solution
c ∈ A than it gives to a solution b ∈ A that is in the non-dominated set of
A. As an example consider a set A = {a, b, c} ∪ D, with |D| ≥ 2, c ≺ a
and ∀d ∈ D : c ≺ d ∧ a ≺ d (and all other pairs are incomparable). Hence,
S(a,X) = 2 + w(|D|), S(b,X) = |X| = 3 + |D|, S(c,X) = 2 + w(|D| + 1).
Thus, a is ranked better than b if w > 1.

In tournaments w = 2 is often used when draws are rare. However, when
draws are a more common event a higher w-value is used, e.g. w = 3, to
encourage the participants even more in securing victories.

Theorem 9. With w = 2, property (∗) holds for the Points relation, i.e.

∀A,B,C ⊂ X with |B| = |C| : B ≺PtA C −→ B ≺PtA−B,A−C C.

Proof. Note, that for the Points relation with w = 2 every comparison rules
exactly two points and for any subset A ⊂ X we have S(A,A) = |A|2. With
|B| = |C| = p and S(B,A) ≥ S(C,A) we have

S(B,A−B) = S(B,A)− S(B,B) = S(B,A)− p2

≥S(C,A)− p2 = S(C,A)− S(C,C) = S(C,A− C).

For w 6= 2 property (∗) does not hold for the Points relation. Consider
the following two examples as proof.

Example 7.3.2. With w = 4 the scenario of Figure 7.1 shows that property
(∗) does not hold. We have G = (V,E) with V = {a1, a2, a3, b1, b2, b3, c} and
E = {(a1, a2), (a2, a3), (a3, a1), c, a1), (c, a2), (c, a3)}. Let A = {a1, a2, a3},
B = {b1, b2, b3}, and C = {c}. As shown in Lemma 7.2.1 there exists
an objective function ~f such that G is the favor graph of X = V . Then
S(b,X) = 7 for each node b ∈ B, S(a,X) = 8 for each node a ∈ A, and
S(c,X) = 16. Thus, regarding the Points relation, c is the highest ranked
node followed by the nodes of set A while the nodes in B are of lowest rank.
Therefore, A ≺PtX B. However, B ≺WL

X−B,X−A A since S(b,X − B) = 4
and S(a,X −A) = 3, for respectively every b ∈ B and a ∈ A.
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a1

a2

a3

A
b1

b2

b3

B

c

C for a ∈ A and b ∈ B:

B≺f (a,X) = 2 E≺f (a,X) = 3 B≺f (a,X−A) = 1 E≺f (a,X−A) = 3

B≺f (b,X) = 0 E≺f (b,X) = 6 B≺f (b,X−B) = 0 E≺f (b,X−B) = 3

Figure 7.2: Example graph G and the values it produces.

Example 7.3.3. With w = 1 the scenario of Figure 7.2 shows that property
(∗) does not hold. We have G′ = (V,E) with V = {a1, a2, a3, b1, b2, b3, c} and
E = {(a1, a2), (a2, a3), (a3, a1), (c, b1), (c, b2), (c, b3), (a1, c), (a2, c), (a3, c)}.
Let A = {a1, a2, a3}, B = {b1, b2, b3}, and C = {c}. Due to Lemma 7.2.1
there exists an objective function ~f such that G′ is the favor graph of X = V .
Then S(b,X) = 6 for each node b ∈ B, S(a,X) = 5 for each node a ∈ A,
and S(c,X) = 4. Thus, regarding the Points relation, the nodes of B are
the highest ranked nodes followed by the nodes of set A while c has the
lowest rank. Therefore, B ≺PtX A. However, A ≺WL

X−A,X−B B since
S(b,X − B) = 3 and S(a,X − A) = 4, for respectively every b ∈ B and
a ∈ A.

Table 7.2 gives an overview over the discussed ranking relations.

Table 7.2: Summary of the characteristics of the relations.

Relation Refinement of ≺ Characteristics

Favour yes (Theorem 3) irreflexive, asymmetric, not transitive,
not total (Drechsler et al., 2001)

WL yes (Theorem 6) total preorder (Theorem 5)
Points yes (Theorem 8) total preorder (Theorem 7)
W yes (Section 7.2.3) total preorder (Section 7.2.3)
Win yes (Section 7.2.2) total preorder (Section 7.2.2)
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8 ‖ Problems and Metaheuristics

Objectives and algorithms

Before we embark in the empiric analysis of the different ranking relations
let me introduce two multi-objective problems which will be used later. The
Flow-Shop Scheduling problem (FSP) and the Traveling Salesperson prob-
lem (TSP) are both well known NP-hard problems. This chapter describes
these two problems in detail. This includes an analysis of their objectives
and correlations and a method for the generation of multi-objective TSP
instances. Finally, the applied metaheuristics are introduced.

8.1 Flow Shop Scheduling Problem

The Flow Shop Scheduling problem denotes the problem of scheduling a set
of n jobs that have to be processed by m machines. All machines are in
a fixed order and pass a job they successfully processed to their respective
predecessor. Every job has to be processed by all machines, starting with
the first machine, then from the i-th machine to the i + 1-st machine, i ∈
{1, . . .m}, until it is finished by the m-th machine. A machine can only
process one job at a time and a job can only be processed by one machine at
a time. We assume that all jobs are available at time 0.A matrix P ∈ Nm×n
defines the processing times of the jobs, such that pij is the time machine
j required to process job i successfully. A test instance, such as the 15
instances applied in this study (see Table 8.1) provides such a matrix P .
The Flow Shop Scheduling problem is NP-hard (Garey et al., 1976). The
considered multi-objective version of the Flow Shop Scheduling Problem has
four objectives that are to be minimized.

1. The Total Time, Ttotal, is defined by the completion time of the last job
on the last machine.

2. The Flow Time, Tflow, is defined by the sum of the processing and idle
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Table 8.1: Used data sets and their properties.

Instance from n m Pareto set available

car1 Carlier (1978) 11 5 X
hel1 Heller (1960) 100 10 ×
reC37,39,41 Reeves (1995) 75 20 ×
ta101-ta105

Taillard (1993)
200 20 ×

ta111-ta115 500 20 ×

Table 8.2: Pearson correlation (all p-values < 0.01) for the Pareto set and a
random set of solutions (502 solutions each) for the car1 instance. Total Time
(Ttotal), Flow Time (Tflow), Total Idle Time Jobs (Ti.j.), and Total Idle Time
Machines (Ti.m.)

Tflow Ti.m. Ti.j.
Pareto random Pareto random Pareto random

Ttotal 0.512 0.675 -0.404 0.382 0.179 0.289
Tflow -0.813 -0.128 0.676 0.771
Ti.m. -0.846 -0.325

times of the jobs.
3. The Total Idle Time of the Jobs, Ti.j., is defined by the sum of all waiting

times of all jobs after the job was finished on a machine and before it is
processed on the next machine.

4. The Total Idle Time of the Machines, Ti.m., is defined by the sum of all
idle times of all machines where a machine has an idle time when it is
unoccupied between the processing of two jobs.

These four objectives are correlated (see Table 8.2). When we compare
the correlations of the objective of the solutions in the Pareto set (for prob-
lem instance car1 ) the correlations are all closer to −1 than the respective
correlations in sets of random solutions. This effect changes the sign of the
respective correlation of objectives Ttotal and Ti.m. from a positive correlation
in the random set to a negative correlation in the Pareto set. In the Pareto
set the strongest absolute correlation is the (negative) correlation between
the total idle times of the machines Ti.m. and of the jobs Ti.j.. The second
strongest absolute correlation is the also negative correlation between the
flow time Tflow and Ti.m.. The two strongest positive correlations are be-
tween Tflow and Ti.m. and between Ttotal and Tflow. In the random set the
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strongest correlations are the two positive correlations between Tflow and
Ti.j. and between the objectives Ttotal and Tflow.

The correlations between the objectives is a typical phenomenon in many
application problems. They are the results of the problems special character-
istics and show that solutions of the Pareto set have different characteristics
than random solutions. The mixture of strong and weak as well as posi-
tive and negative correlations highlights the difficulty of the provided multi
objective optimization problem.

8.2 Traveling Salesperson Problem

The Traveling Salesperson problem is characterized by the search for a round
trip among a set of n cities defined by a permutation of {1, . . . , n}. A matrix
C ∈ Rn×n provides the distances between the cities. Here, we only consider
symmetric problems, i.e. cij = cji. The objective value of a permutation π
where π(i) is the position of the i-th city in π is then defined by

f(π) =
n∑
i=1

n∑
j=1

cijφ(i, j), with φ(i, j) =


1 if π(j)− 1 = π(i) mod n,

i.e. j follows on i in π

0 otherwise.

Note, that the first element in the permutation is the successor of the last
element in the permutation. The TSP is NP-hard (Michael and David,
1979). A multi-objective TSP instance with k objectives has a set of these
matrices {C1, . . . , Ck}, where clij is the cost of objective l when city j follows
directly after city i. These objectives can be time, fuel, distance, or safety,
for example.

The benchmark instances are typically single-objective problems. Thus,
the generation of multi-objective instances is a prerequisite to analyze the
performance of multi-objective metaheuristics on the TSP. The central task
in the instance generation for a multi-objective TSP is the generation of
multiple matrices that should consider correlations between the objectives.

A good starting point in instance generation can be a given matrix, e.g.
from a real world instance. Knowles and Corne (2003, 2002) applied such
an approach for the multi-objective Quadratic Assignment problem (QAP)
which is based on k flow matrices. The first matrix is the given matrix.
The j-th matrix, j ∈ {2, . . . , k} is filled with random values that correlate
with the respective values of the first matrix. This correlation is regulated
with some parameter αj ∈ [−1, 1]. Furthermore, the ratio of random and
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correlated entries in the generated matrix can be set. This QAP instance
generator has been applied to study the influence of correlation mostly in
bi-objective problems on the optimization behavior of metaheuristics and
local search operators (Garrett et al., 2007; Liefooghe et al., 2011; López-
Ibánez et al., 2004, 2006; Paquete and Stützle, 2006). Note, that each of
the objectives 2 to k has a defined correlation with objective 1. But the
correlation between two of the objectives from 2 to k might be different.

Alternatively the generation of an instance can be based on a random
instance. Corne and Knowles (2007) proposed a method for the multi-
objective TSP where for each pair of cities (i, j) k distance values dh(i, j),
h ∈ {2, . . . , k} were created with

dh(i, j) = c · dh−1(i, j) + (1− c)rand (8.1)

where the values d1(i, j) are chosen uniformly at random from [0, 1], c ∈
[−1, 1] regulates the correlation, and rand is a uniform random number from
[0, 1]. Observe, that Equation (8.1) can be somewhat problematic: (i) with
c < 0 the distance values can become > 1 even for original distance values
from [0, 1]. This might lead to an uneven influence of different objectives,
(ii) the distance values are randomized to a different extent for c and −c.
(iii) Objective h ∈ {2, . . . , k} has a defined correlation with objective h− 1.
The correlations between pairs of objectives with |i − j| ≥ 2 is less well
defined.

A third approach, as proposed by Verel et al. (2011a), is the use of a
correlation matrix to define the correlation between the objectives. In par-
ticular, NK-landscapes have been investigated, where the same correlation
strength was set to each pair of objectives. The method could be applied to
other problems as well.

For their study of evolutionary multi-objective algorithms Ishibuchi et al.
(2013a, 2011, 2013b) proposed a method to generate instances for the multi-
objective n-item 0/1 Knapsack problem. The n-item 0/1 Knapsack problem
is the task to allocate n items with k knapsacks with capacities c1, . . . , ck.
For each item knapsack pair (i, j) a weight wij and profit pij with i ∈
{1, . . . , n}, j ∈ {1, . . . , k}, is defined. A bi-objective problem with the ob-
jectives functions is extended with objectives gi(x) of a solution x such that

g1 = f1, g2 = f2,

g2h+1 = αf2h+1 + (1− α)f1, g2h+2 = αf2h+2 + (1− α)f2,
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Table 8.3: Used data sets and their properties.

Instance from n Optimal tour available

att48 48 X
eil51 Padberg and Rinaldi (1991) 51 X
berlin52 52 X

for h ∈ {1, . . . , k/2− 1} and α ∈ [0, 1]. or

g1 = f1, g2 = f2,

g3 = f1 + αf2, g4 = f2 + αf1,

g5 = f1 − αf2, g6 = f2 − αf1,
g7 = f1 + βf2, g8 = f2 + βf1,

g9 = f1 − βf2, g10 = f2 − βf1

for α, β ∈ [0, 1]. This approach induces pairwise different correlations be-
tween the objectives.

Of all above approaches, the only one inducing a homogeneous correla-
tion structure, i.e. where all pairwise correlations between different objec-
tives are equal, are the NK-landscape instances from Verel et al. (2011a).
Yet, to the best of my knowledge, there are no such approaches for applica-
tion oriented multi-objective problems, e.g. the TSP. However, considering
the analysis of the influence of correlated objectives on the performance of
metaheuristics, homogeneous correlations appear to be the most basic case.
In empiric studies the most basic case is of great importance as compar-
ison for other, more complicated, scenarios. In the following, I introduce
a simple, yet effective, method to induce homogeneous correlations on a
multi-objective TSP.

Similar to the approach from Knowles and Corne (2003, 2002), it is
based on a single initial matrix. These are taken from a standard benchmark
library, specifically the TSPLIB (Reinelt, 1991). Table 8.3 gives an overview
over the the used instances. Note, that once we transform an instance into a
multi-objective problem we do not have a Pareto set for any of the problems.

Initially, all distance values of the given matrix are normalized with the
maximal distance such that they are in [0, 1] and are denoted by d. Then, k
distance functions d1, . . . , dk are defined with a correlation factor c ∈ [−1, 1]
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for h ∈ {1, . . . , k} with

dh(i, j) =

{
c d(i, j) + (1− c )rand for 0 ≤ c ≤ 1

|c|(1− d(i, j)) + (1− |c|)rand for − 1 ≤ c < 0

Observe, that this addresses the concerns we formulated for the method of
Equation (8.1), i.e. (i) the distance values remain in [0, 1] for all objectives,
(ii) the random influence for c is equal to that of −c, (iii) and the correlations
between all pairs of objectives are clearly defined.

Expected Correlation The parameter c induces a correlation but is dif-
ferent from the actual Pearson correlation. In the following we derive a
formula for the expected Pearson correlation between the objectives. Let
the initial distances be given by a matrix M = [mij ] ∈ [0, 1]n×n. The ran-
dom values are provided by a random matrix R = [randij ] ∈ [0, 1]n×n where
randij is chosen uniformly at random from [0, 1], for i 6= j and randii = 0.
For a symmetric TSP additionally dij = dji and randij = randji. As
R ∈ [0, 1]n×n is uniformly distributed we have the expectation E(R) = 1

2
and variance V ar(R) = 1

12 . The distribution of M ∈ [0, 1]n×n is unknown
with the expected value E(M) and variance V ar(M). We define

M+ = cM + (1− c)R ∈ [0, 1]n×n for c ∈ [0, 1]

M− = |c|(1−M) + (1− |c|)R ∈ [0, 1]n×n for c ∈ [−1, 0]

where M+ is positively and M− is negatively correlated with M . To derive
the expected correlation between two matrices the Pearson correlation co-
efficient r is applied. Note, that for the symmetric TSP only the relevant
entries, e.g. over indices i, j ∈ {1, . . . , n} with i < j. It can be shown that
for M ′ ∈ {M+,M−}

r(M,M ′) =

∑
(mij −m)(m′ij −m′)√∑

(mij −m)2
∑

(m′ij −m′)2
=
E(MM ′)− E(M)E(M ′)√

V ar(M)V ar(M ′)

r(M,M ′) =
cV ar(M)√

c2V ar(M)2 + (1−|c|)2V ar(M)
12

(8.2)
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Figure 8.1: Pearson correlation coefficient r(M,M ′) − c (left); for two specific
variances of M (right)

The last equation can be obtained after deriving the following equations

E(M ′) = E(cM + (1− c)R) = cE(M) + (1− c)E(R) (8.3)

= cE(M) +
(1− c)

2
V ar(M ′) = V ar(cM + (1− c)R) (8.4)

= c2V ar(M) + (1− c)2V ar(R) + cov(M,R)

= c2V ar(M) +
(1− c)2

12
E(MM ′) = E(M(cM + (1− c)R)) = E(cM2 + (1− c)MR)

= cE(M2) + (1− c)E(MR)

= c(V ar(M) + E(M)2) + (1− c)(E(M)E(R) + cov(M,R))

= c(V ar(M) + E(M)2) +
(1− c)E(M)

2

Note, cov(M,R) = 0 because M and R are independent random variables.
Figure 8.1 visualizes the difference of the expected Pearson correlation

coefficient and the correlation parameter c, i.e. r(M,M ′) − c, for different
values of V ar(M) and c ∈ [0, 1]. Note, that if M is uniformly distributed in
[0, 1], we have E(M) = 1/2 and V ar(M) = 1/12. This gives

r(M,M ′) =
c√

c2 + (1− c)2

The variance measured in the test instances was V ar(M) ≈ 0.0043. In
order to obtain a specific Pearson correlation coefficient r(M,M ′) = r the
correlation factor c has to be chosen as

c =
1

1 + 2
√

3
√

(1r − 1)V ar(M)
.
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The above analysis referred to the correlation of the initial matrix M
and one of the generated matrices M ′. However, the final problem instance
does not contain M as an objective matrix. In the following we infer the
correlation between two matrices M1 and M2, that are (i) both derived with
the same correlation parameter c, or (ii) derived with c and −c respectively
from the initial matrix M . We have

(i) r(M1,M2) =
c2V ar(M)

c2V ar(M) + (1−|c|)2
12

(ii) r(M1,M2) = − c2V ar(M)

c2V ar(M) + (1−|c|)2
12

.

To infer these correlations we use Equation (8.3) and 8.4. For E(M1,M2)
the following can be determined when R1 and R2 are the random values used
in the generation.

E(M1M2) = E((cM + (1− c)R1)(cM + (1− c)R2))

= E(c2M2 + c(1− c)M(R1 +R2) + (1− c)2R1R2)

= c2E(M2) + c(1− c)(E(MR1) + E(MR2)) + (1− c)2E(R1R2)

= c2(V ar(M) + E(M)2) + c(1− c)(E(M)E(R1) + cov(M,R1)

+ E(M)E(R2) + cov(M,R2)) + (1− c)2(E(R1)E(R2) + cov(R1, R2)

= c2
(
V ar(M) + E(M)2

)
+ c(1− c)E(M) +

(1− c)2

4
The expected correlation between M1 and M2 is then

r(M1,M2) =
E(M1M2)− E(M1)E(M2)√

V ar(M1)V ar(M2)
=
E(M1M2)− E(M1)

2√
V ar(M1)2

=
E(M1M2)− E(M1)

2

V ar(M1)

=
c2(V ar(M) + E(M)2) + c(1− c)E(M) + (1−c)2

4 −
(
cE(M) + (1−c)

2

)2
c2V ar(M) + (1−c)2

12

=
c2V ar(M)

c2V ar(M) + (1−c)2
12

Figure 8.2 shows r(M1,M2)−c for the first case and two choice values of
V ar(M) and c. In order to obtain a specific Pearson correlation coefficient
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Figure 8.2: Expected Pearson correlation coefficient r(M1,M2)−c (right) for two
specific variances of M (right)

r = r(M1,M2) the correlation parameter we set c such that

c = ±

(
1 +

√
12V ar(M)

1− r(M1,M2)

r(M1,M2)

)−1
.

8.3 Population-Based Ant Colony Optimization

Solving NP-hard problems optimally is usually not an option due to time
constraints. Instead metaheuristics can be applied. One of these meta-
heuristics that specifically searches for solutions of combinatorial problems
is the Ant Colony Optimization (ACO) algorithm (Dorigo et al., 1999). It
is based on a pheromone matrix τ = [τij ], i, j ∈ {1, . . . , n} where τij is the
pheromone value for placing item j as follower of item i in the permutation.
The algorithm iterates over the matrix and constructs a set L of l solutions,
i.e. permutations, by performing roulette wheel decisions in each row of the
matrix. Good solutions are allowed to imprint themselves on the matrix
by increasing the pheromone values in the matrix cells that have been cho-
sen during their construction. After each iteration pheromone evaporates.
The interested reader is referred to an overview on the ACO algorithms by
Dorigo and Stützle (2004).

The Population-based ACO (P-ACO) (Guntsch and Middendorf, 2002)
stores a set of p solutions in its population P that are solely responsible for
the values of τ . In the version of the P-ACO applied here (see Algorithm 7)
the solutions can remain in the population over several iterations and are
only replaced if a new and better solutions has been found, i.e. the popu-
lation is the set of the best solutions found to date. The original P-ACO
algorithm chose the best solution from the set of new solutions L and added
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Algorithm 7: Multi objective P-ACO with ranking

1 P ← {};
2 Initialize pheromone matrix [τij ]← τinit
3 repeat
4 L← {}
5 foreach of the l ants do
6 Construct a solution S using pheromone matrix [τij ]
7 L← L ∪ {S}
8 Sort the solutions in P ∪ L with a ranking method
9 Let P be the set of p best solutions from L ∪ P

10 Compute a pheromone matrix [τij ] from P

11 until t iterations done;
12 return non-dominated solutions in P ∪ L

it to P while removing the oldest solution from P in every iteration. But
other strategies for the removal of solutions from P have also been proposed
(Guntsch and Middendorf, 2002), e.g. to remove the worst solution. Mind,
that this version of the P-ACO only requires a multi-objective ranking rela-
tion to be applied to multi-objective optimization problems, no additional
matrices, populations,or type of ants are required. The population is em-
ployed to compute the pheromone information, where each pheromone value
τij is defined by

τij = τinit +
τmax − τinit

p

p∑
r=1

φ(r, i, j), with

φ(r, i, j) =

{
1 if j follows on i in solution r

0 otherwise.

The values τinit and τmax are parameters of the algorithm giving the minimal
and maximal pheromone values. The solutions are constructed as they are
in the traditional ACO algorithm. Iteratively, item j is selected after item
i in a permutation with probability pij = τij/

∑
a∈S τia, where S is the set

of items that are still selectable, i.e. the set of items that have not already
been placed in the permutation. Using the pheromone information like this
is particularly suitable for scheduling problems (Merkle and Middendorf,
2014).

In this study six variants of the P-ACO are compared, where each variant
uses a different ranking method as listed in Table 8.4.
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Table 8.4: The six variants of the P-ACO that are applied and compared in this
work.

Algorithm Ranking Scheme Definition

Pt-P-ACO Points relation Section 7.3.2
WL-P-ACO WL relation Section 7.3.1
Win-P-ACO Wining Score Section 7.2.2
W-P-ACO W relation Section 7.2.3
Std-P-ACO Standard Scheme Section 8.3
Cr-P-ACO Crowding Scheme Section 8.3

Std-P-ACO The Standard P-ACO is motivated by Guntsch and Midden-
dorf (2003). It computes the non dominated set S from the solutions in P∪L
in each iteration. The new population for the next iteration is determined
by selecting a solution s ∈ S at random and then choosing the p−1 solutions
closest to s in the objective space as the new population. Note, that this
version of the P-ACO is solely based on the Pareto dominance relation.

Cr-P-ACO The Crowding P-ACO was introduced by Angus (2007). The
pheromone update of a solution in the Crowding P-ACO is inversely pro-
portional to the dominance depth of the corresponding solution (Deb et al.,
2000), unlike the pheromone update in all other compared P-ACOs of this
study. The selection of the solutions for the population is based on a crowd-
ing scheme. In each iteration for each newly generated solution a ∈ L a
random subset P ′ ⊂ P is chosen. Let b ∈ P ′ be the solution of P ′ with the
highest similarity to a, where similarity is measured as the number of com-
mon adjacent jobs, i.e. in the solution space. If a dominates b, i.e. a ≺ b,
b is replaced by a. Otherwise, a is discarded. Note, that this is different
from the crowding measure used by Deb et al. (2000), where similarity was
defined with respect to the objective space.

The Crowding P-ACO applies a slightly different pheromone update.
Each solution a ∈ P increases the pheromone value of its respective cells in
the pheromone matrix by 1/(r(a) + 1), where r(a) is the inverse rank of a,
i.e. the best solution a′ ∈ P has r(a′) = 0 and the worst solution a′′ ∈ P
has r(a′′) = p.
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Algorithm 8: Multi objective GA with ranking

1 P ← {p random solutions}
2 repeat
3 L← {};
4 foreach solution a ∈ P do
5 foreach solution b ∈ P, b 6= a do
6 Construct a solution b by performing a crossover with a

and b
7 L← L ∪ {c}
8 construct a solution c by performing a mutation on a
9 L← L ∪ {c}

10 Sort the solutions in P ∪ L with a ranking method
11 Let P be the set of p best solutions from L ∪ P
12 until t iterations done;
13 return non dominated solutions in P ∪ L

8.4 Genetic Algorithm

Genetic algorithms (GA) are based on the notion of crossover and point
mutation processes in DNA . They also keep a population P of p solutions
that they use to produce so-called ‘offspring’, i.e. a set L of l new solu-
tions (for an introduction see Mitchell (1996)). The version applied in this
study (Algorithm 8) defines the two types of mutations as described in the
following.

A crossover mutation between two solutions a, b ∈ P generates a new
solution c by picking a random interval with start and end point ts, te ∈
{1, . . . , n}, ts ≤ te, where ci = ai for i ∈ {ts, . . . , te} and ci respectively ai
denote the item in ith position of the respective solution. Positions ci, i ∈
{0, . . . , ts − 1, te + 1, . . . , n} are filled with the remaining items in the order
they appear in solution b. All pairs of solutions in P are used to generate
p(p− 1) new solutions by crossover.

A point mutation denotes a random exchange of two neighbored items
in the permutation. For each pair of neighbors a random number is drawn
and a mutation occurs if that number is below the mutation probability µ.
Each solution from P is used to create a new solution by mutation, such
that there are p new solutions generated with this method.

Overall, in each iteration l = p(p− 1) + p = p2 new solutions are gener-
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Table 8.5: The four variants of the GA that are applied and compared in this
work.

Algorithm Ranking Scheme Definition

Pt-GA Points relation Section 7.3.2
WL-GA WL relation Section 7.3.1
Win-GA Wining Score Section 7.2.2
W-GA W relation Section 7.2.3

ated. These new solutions are then ranked with the solutions of the popula-
tion to infer the population for the next iteration. In this process a solution
a ∈ P can only be replaced by a solution b ∈ L, if b is better than a regarding
the applied ranking method. Equality in quality does not suffice.

Four variants of the GA are compared in this study (see Table 8.5).
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9 ‖ Experimental Results

Solution set quality and convergence

This chapter includes a description of the performed experiments and anal-
ysis of their results. The first section gives a comparison of the ranking
methods when applied on the FSP. In Section 9.2 the influence of different
correlations on the behavior of the ranking relations is analyzed applying
the TSP instance generation method introduced in Section 8.2.

9.1 Influence of the Ranking Relations

In this section the six P-ACOs and four GAs are compared in their perfor-
mance regarding the different FSP instances presented in Section 8.1. The
specific parameters of the algorithms are summarized in Table 9.1. Two
types of experiments were performed to measure different aspect of the al-
gorithms. The first experiments consisted of 25 runs with 50 000 iterations
each for all algorithms. The results were used to analyze the properties of
the final non-dominated sets of solutions of the different algorithms. The
second type of experiments were run 10 times for 100 000 iterations each
and only on the four instances car1, hel1, reC37, and ta111. The results
were used to analyze the convergence of the different P-ACO algorithms
regarding the different ranking schemes.

The population size of 5 is small as such small populations have been
shown to perform well (Guntsch and Middendorf, 2002, 2003; Oliveira et al.,
2011). Only the crowding scheme of the Cr-P-ACO and Cr-GA require a
larger population. The size of the chosen subset that is used in the crowding
scheme is 5 to increase comparability (i.e. each new solution is compared
with 5 solutions of the population in order to decide whether the solution is
discarded or submitted to the new population). All algorithms generate 25
new solutions in each iteration. The parameter of the pheromone update of
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Table 9.1: Parameters used in experiments. (*) For the Cr-P-ACO and Cr-GA
p = l = 25, otherwise p = 5.

Symbol Definition Values for experiments to infer
Performance and Convergence

t iterations 50 000 100 000
runs 25 10

p population size 5 (25*) 5 (25*)
l number of ants 25 25
τinit minimal pheromone 1/n 1/n
τmax maximal pheromone τinit + 24 τinit + 24
µ mutation probability 1/(n− 1) 1/(n− 1)

solution evaluations 1 250 000 2 500 000
instances all car1, hel1,reC37, ta111

the P-ACO were set to τinit = 1/n and τmax = τinit + 24 as suggested by
the results of Guntsch and Middendorf (2003) but without any influence of
the instance dependent parameter n on the decision probabilities. For the
GA the mutation operator had a mutation probability of 1/(n− 1) for each
position.

In the experimental analysis we compare the quality of the final p + l
solutions of all ten algorithms and adjoin an analysis of the convergence
behavior of the P-ACO algorithms. To evaluate the quality of the solutions
competitively we analyze how many solutions of one algorithm dominates
the solutions of another algorithm. Additionally we infer which algorithm
scored best regarding each of the four objectives separately. As the Pareto
set is only available for one instance (namely car1 ) we are unable to check
how many Pareto optimal solutions were found by the respective algorithms
and how close they generally were.

9.1.1 Analysis of the Non-Dominated Sets

The first type of experiments consisted of 25 runs with 50 000 iterations. In
the final iteration of each of these runs there are p solutions in the population
of the algorithm and additional l solutions that were generated anew with the
exception of the Crowding algorithms that have l solutions in the population.

Table 9.2 presents the average number of non-dominated solutions in
these final sets of solutions. The GAs have generally smaller final non-
dominated sets than the P-ACOs especially on the larger ta instances. GAs
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Table 9.2: Average size of the non-dominated sets.

P-ACO GA
{ Pt WL W Win Cr Std } { Pt WL W Win }

car1 4.8 4.7 4.2 4.4 9.4 8.2 4.6 4.3 4.4 4.1
car8 2.8 3.0 1.5 2.3 6.0 6.5 3.4 3.6 1.6 2.2
hel1 4.9 4.6 5.0 4.7 5.9 5.6 1.8 1.9 1.8 2.0

reC37 4.8 4.6 5.0 4.9 5.6 6.2 2.4 2.3 2.8 2.2
reC39 4.9 4.9 5.5 4.9 6.3 7.4 2.0 2.4 2.1 2.4
reC41 4.4 4.4 4.5 4.7 7.0 6.2 2.3 2.0 1.7 2.0
ta101 5.1 5.0 5.4 4.9 6.7 6.2 2.0 2.0 2.1 2.0
ta102 4.7 4.6 5.8 4.9 6.1 6.2 1.8 2.0 2.1 2.0
ta103 5.0 4.5 5.1 5.0 6.7 6.0 1.9 1.8 2.0 1.9
ta104 4.8 4.6 5.0 4.9 6.1 5.3 1.8 2.0 1.8 1.7
ta105 5.0 4.7 5.5 5.0 6.0 7.0 1.8 2.5 2.4 1.8
ta111 4.8 4.5 6.0 4.8 6.5 6.2 1.7 1.8 2.0 2.2
ta112 5.0 4.9 6.2 4.9 7.5 6.4 1.8 1.8 2.3 1.9
ta113 4.8 4.5 4.8 4.8 5.8 5.6 1.6 2.2 1.7 1.8
ta114 4.8 4.6 4.6 5.1 5.6 5.7 1.7 1.7 2.2 1.7
ta115 4.9 4.6 6.0 5.1 5.4 6.7 1.7 1.9 1.8 1.7

∅ 4.7 4.5 5.0 4.7 6.4 6.3 2.1 2.3 2.2 2.1
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Table 9.3: Fractions of solutions in the combined non-dominated set: with Pt
(upper part) or with WL (lower part); absolute average size of the set with standard
deviation; values are averages over all problem instances.

Parts in combined set of Average absolute size
{ Pt W Win Cr Std } ± standard deviation

P-ACO 0.396 0.261 0.335 0.013 0.050 72.1± 17.0
GA 0.353 0.342 0.411 31.3± 14.4

{ WL W Win Cr Std }

P-ACO 0.376 0.269 0.342 0.013 0.048 65.6± 15.9
GA 0.362 0.360 0.415 31.4± 15.5

require heterogeneous populations to construct new solutions by crossover.
Performing a crossover on two similar solutions yields yet one more similar
solution. The small populations of only five solutions, however, seem to
miss this heterogeneity. Cr- and Std-P-ACO have larger non-dominated
sets. Note, that if less than p solutions are in the non-dominated set most
– if not all – solutions generated in the final iteration are dominated by
the solutions of the population. This is often the case for the Pt-P-ACO,
WL-P-ACO, and Win-P-ACO algorithms indicating a high quality of the
solutions in the population.

In the following we separately analyze the results of the Points and WL
relation. To evaluate the quality of the final solution sets of the different
algorithms all final sets of all respective algorithms are merged. The non-
dominated solutions from this merged set is denoted by the combined non-
dominated set. A good set of solutions should dominate a lot of the solutions
of other sets and provide a big part of the combined non-dominated set.
In Table 9.3 the fractions of the non-dominated sets are given with the
average absolute size of the combined non-dominated sets. Note, that some
solutions in the combined non-dominated set were detected by several of the
algorithms, i.e. the sum of the fractions within each class can be > 1.

In case of the P-ACO the Points and WL relation could secure the largest
part the non-dominated set for their respective algorithms. The Crowding
scheme and Standard P-ACO have barely any solutions in the combined non-
dominated sets. The combined sets of the GAs indicate a qualitative lead
of the Win-GA before the WL-, respectively, Pt-GA that are represented by
approximately the same amount of solutions as the W-GA.
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Table 9.4: Fraction of solutions that rank in the top 10% of all final solutions
from the respective type of algorithms (P-ACO respectively GA) concerning one
of the objectives with standard deviation; Total Time(Ttotal), Flow Time (Tflow),
Total Idle Time Jobs (Ti.j.),Total Idle Time Machines (Ti.m.); values are averages
over all problem instances; best values are shown in grey.

Combined front of { Pt W Win Cr Std } { WL W Win Cr Std }

P-ACO Ttotal 58.4 6.1 34.5 1.0 0.0 53.1 6.5 39.5 0.9 0.0
Tflow 42.5 25.1 26.2 0.0 6.2 43.4 28.9 23.0 0.0 4.7
Ti.m. 53.3 3.7 34.4 2.8 5.9 55.0 3.6 32.8 2.8 5.9
Ti.j. 5.0 87.3 2.7 2.5 2.5 3.8 88.4 1.5 3.1 3.1

GA Ttotal 40.6 5.3 50.9 51.30 5.1 40.0
Tflow 30.1 39.8 28.0 27.3 30.1 41.0
Ti.m. 35.1 1.0 61.9 44.5 1.2 53.0
Ti.j. 2.1 92.9 2.1 7.0 89.80 1.6

9.1.2 Objective Oriented Analysis

While the above analysis showed which algorithms final solution set is close
to the (unknown) Pareto set another quality aspect is the heterogeneity of
the solutions. An algorithm producing a homogeneous set of solutions is
typically prone to optimize towards one specific objective. A set with solu-
tions that show good values in all objectives has a higher quality concerning
this aspect of diversity.

In order to analyze this property all final non-dominated solution sets
are merged and sorted by the respective objective value the single solutions
obtained. A good algorithm should be represented in the top tenth of such
a sorting with many solutions and regarding all objectives (see Table 9.4).
It is quite obvious that the algorithms using a weighted ranking scheme
optimize mostly for Ti.j. and its positively correlated objective Tflow. With
0.676 (Pareto set) and 0.771 (random set) these two objectives have the
highest positive correlation of all pairs of objectives (see Table 8.2). The
Pt- and WL-P-ACO respectively have the largest fraction of solutions in
the top tenth of all objectives but Ti.j. where they rank second. The Pt-GA
is outperformed by the Win-GA in Ttotal and Ti.m. and by W-GA in Tflow.
WL-GA is outperformed by both, Win-GA and W-GA, in Tflow and Win-
GA in Ti.j.. Cr- and Std-P-ACO are barely represented by their solutions.

Aside from being good in one objective heterogeneous sets of solutions
also contain solutions that are good, though not best, in two or more ob-
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jectives. This is best described with the previously defined value B<(a, b)
that counts the objectives in which solution a is better than solution b. To
infer how solutions a of one algorithm compete against solutions b of the
other algorithms in the non-dominated set, we refer to the B<(a, b) values
of all these comparisons. Figure 9.1 depicts the fraction of comparisons of
each algorithm that ended with a specific B<(a, b) value. These values can
only be from {0, 1, 2, 3} as B<(a, b) = 4 would imply a ≺ b and violate the
properties of the non-dominated set. B<(a, b) = 0 implies ~f(a) = ~f(b).
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Figure 9.1: Histogram of the number of B<(a, b) values of all solutions a in the
combined non-dominated sets of one algorithm compared with all the solutions b of
all respective other algorithms; for the group of algorithms with Pt-P-ACO (left)
and the group of algorithms with WL-P-ACO (right).

The solutions of Pt-P-ACO and WL-P-ACO have the largest fractions
of solution comparison with B<(a, b) ≥ 2 closely followed by Win-P-ACO.
The W-P-ACO still has over half its comparison with B<(a, b) ≥ 2, while
the comparisons with Cr-P-ACO and Std-P-ACO mostly have B<(a, b) = 1.

The respective results with the genetic algorithms are based on only
three sets of solutions each. Here, the Wining Score relation induces slightly
higher B<(a, b) values than the Points relation. The WL relation induces
more B<(a, b) ≥ 2 than both compared ranking schemes.
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9.1.3 Convergence Behavior

Besides the quality of the final set of solutions an algorithm acquires with a
specific ranking scheme it is also interesting to see how the ranking schemes
influence the general behavior of the algorithm during the runtime. Most im-
portantly, this analysis focuses on the convergence behavior of the algorithm.
The convergence of an algorithm is described by the increase of quality of
the solutions in the population and the ones just generated throughout all
iterations. Typically, there is a strong initial increase in quality that slows
down when the algorithm is unable to generate solutions better than those
already in its population.

Figure 9.2 shows how the different P-ACO algorithms converge during
100 000 iterations on four exemplary instances. These are car1, hel1, reC37,
and ta111. The hypervolume indicator is applied to measure the quality of
the sets of solutions with a reference point defined by the maximal values
of all objective values occurring throughout all experiments. It is measured
every ten iterations.

The Cr- and Std-P-ACO algorithms fail to improve the quality of their
solutions to the extend the other compared algorithms do within the first
50 000 iterations. The Std-P-ACO, however, performs better than the Cr-
P-ACO. In all four compared instances the Pt-P-ACO achieves the lowest
hypervolume indicator, closely followed by WL-P-ACO and Win-P-ACO
that are both twice second and third. W-P-ACO is clearly better than Cr-
and Std-P-ACO but is also clearly worse than Pt-, WL-, and Win-P-ACO.

Note, as the Pareto set for the car1 instance is computable in justifi-
able time we can compare the hypervolume indicator of random subsets of
the Pareto set with the solution sets of the compared algorithm. Mind,
the Pareto set contains 502 solutions and its hypervolume indicator is ob-
viously far smaller than a set of only 30 solutions can obtain. From these
30 solutions a small number is actually non-dominated and accounted for
in the computation of the hypervolume indicator. For means of a better
understanding of the presented values we give the average hypervolume in-
dicator of 1000 random subsets of the Pareto set with 30 (red) and 5 (green)
solutions, respectively.

The bad performance of Cr- and Std-P-ACO and apparently random be-
havior with respect to the dominated hypervolume can be explained by the
small population and missing archive of the P-ACO that was used in the orig-
inal algorithm by Guntsch and Middendorf (2002). The sparse pheromone
matrix, built solely by the few solutions in the population, appears to be
insufficient for algorithms that rank solutions solely by Pareto dominance.
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Figure 9.2: Average hypervolume indicator during 10 test runs with 100000 it-
erations measured every 10 iterations on four different instances: car1 (top, left),
hel1 (top, right), reC37 (bottom, left), ta111 (bottom, right); reference point is the
combination of all maximal values for each objective measured in the experimen-
tal runs; green (upper) and red (lower) horizontal lines for car1 give the average
hypervolume indicator for 1000 samples with 5 respectively 30 randomly chosen
solutions from the true Pareto front.
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Table 9.5: Parameters used in experiments. (*)For the Cr-P-ACO and Cr-GA
p = l = 25, otherwise p = 5.

Symbol Definition Values for experiments to infer
Performance and Convergence

t iterations 25 000 50 000
runs 50 10

p population size 5 (25*) 5 (25*)
l number of ants 25 25
τinit minimal pheromone 1/n 1/n
τmax maximal pheromone τinit + 24 τinit + 24
µ mutation probability 1/(n− 1) 1/(n− 1)

solution evaluations 625 000 1 250 000
instances all att48

c correlation parameter {0.1, 0.5, 0.9} {0.1, 0.9}

9.2 Influence of Correlations

The experiments on the correlated TSP instances were run with the same
parameters that were used on the FSP instances (see Table 9.5). Since there
is no standard heuristic for multi-objective TSP no heuristic was applied in
order to avoid dependencies induced by the use of specific heuristics.

The TSP test instances were generated with k = 4 objectives each, where
we distinguish between homogeneous and heterogeneous instances. Homo-
geneous instances are generated such that for each objective h ∈ {1, 2, 3, 4}
we construct a distance matrix dh using the initial matrix d such that

dh(i, j) = c · d(i, j) + (1− c)rand. (9.1)

A heterogeneous instance applies Equation (9.1) for the first three objectives
h ∈ {1, 2, 3} and defines

d4(i, j) = c(1− d(i, j)) + (1− c)rand.

The parameter c is set to 0.1 to induce a low correlation between the objec-
tives, to 0.5 to induce a medium correlation, and to 0.9 to induce a strong
correlation between the objectives. With three instances (att48, berlin52,
eil51 ), two instance generation types (homogeneous and heterogeneous),
and three values for c (0.1, 0.5, 0.9) we have 3 · 2 · 3 = 18 problem instances.
These instances are identical over all simulation runs in order to compare
the different algorithms.
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Figure 9.3: Convergence behavior of the P-ACO variants on two homogeneous
instances derived from the att48 instance; hypervolume indicators of the solutions
generated every hundredth iteration and the solutions of respective population;
averaged values over 10 runs

Convergence behavior The influence of the correlation on the conver-
gence behavior of the P-ACO variants is shown at the example of two in-
stances derived from the att48 problem instance in Figure 9.3. Both in-
stances are heterogeneous with c = 0.1 and c = 0.9. Note, that the P-ACO
with the weighted ranking scheme is better suited for these TSP instances
where all objective values are in the same range and have the same order of
magnitude in improvement, unlike the previously studied FSP problem. The
Pt- and WL-P-ACO perform similar and are slightly worse than the Win-P-
ACO. The convergence behavior of the Cr- and Std-P-ACO fail to improve
their solutions throughout the run where the Cr-P-ACO has a slightly lower
hypervolume indicator due to their larger population.

Figure 9.3 shows that the algorithms converge in the first 25 000 itera-
tions while the strongest quality increase occurs in the initial 5000 iterations.
The higher correlation in the instance with c = 0.9 shows a slightly steeper
decrease of the hypervolume indicator and hints on a faster convergence.

The convergence behavior of the GA on the same instance is shown in
Figure 9.4. While the W-GA clearly achieves the lowest hypervolume indi-
cator with a low correlation, the results for the higher correlation does not
favor any particular ranking scheme over another. The initial strong de-
crease of the hypervolume indicator subsides furing the first 5000 iterations,
followed by a slower decrease.

Final solution sets Table 9.6 shows that the final non-dominated solution
sets are larger when the algorithms solve these TSPs then when solving the
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Figure 9.4: Convergence behavior of the GA variants on two homogeneous in-
stances derived from the att48 instance; hypervolume indicators of the solutions
generated every hundredth iteration and the solutions of respective population;
averaged values over 10 runs

Table 9.6: Average size of the non-dominated sets.

P-ACO GA
c4 { Pt WL W Win Cr Std } { Pt WL W Win }

0.1 16.8 16.8 16.7 16.6 24.9 30.0 15.9 16.5 16.1 16.1
0.5 16.9 16.9 16.3 16.5 24.9 29.9 16.2 15.9 16.4 16.0
0.9 16.6 16.8 16.7 16.5 24.9 29.9 16.7 16.2 16.5 16.2

−0.1 16.7 17.1 16.7 17.3 24.9 29.9 16.6 16.0 16.0 16.4
−0.5 16.7 16.6 16.8 17.1 24.9 30.0 15.7 16.4 16.0 16.5
−0.9 17.2 16.9 16.7 16.9 24.9 29.9 15.7 16.1 16.2 15.9

FSPs. The different correlations strengths have no further influence on the
number of final solutions. Note, that the five solutions in the population
should have a higher quality than the 25 solutions generated in the final
iteration, unless the algorithms fails to optimize the problem like the Std-P-
ACO. The algorithms need larger populations or even archives of solutions
in order for the different correlations to have an effect on the size of the
final solution set. This behavior of the algorithms is visible in both types
of algorithms. The influence of the correlations becomes more apparent in
the data shown in Tables 9.7 and 9.8. In this comparison we select for
each objective the 10% best of all final solutions of all compared algorithms
(shown in the second line of the tables). We then analyze the distribution
of this solution set regarding to their algorithm of origin.
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Table 9.7: Fractions of solutions in the top tenth of all final solutions regarding
single objectives with Pt; values are averages over all problem instances.

P-ACO GA
c4 { Pt W Win Cr Std} { Pt W Win }

0.1 f1 0.226 0.415 0.337 0 0 0.218 0.365 0.417
f2 0.226 0.462 0.298 0 0 0.413 0.334 0.253
f3 0.164 0.485 0.333 0 0 0.307 0.436 0.258
f4 0.152 0.533 0.302 0 0 0.302 0.452 0.246

0.5 f1 0.269 0.445 0.277 0 0 0.437 0.265 0.297
f2 0.247 0.388 0.356 0 0 0.272 0.374 0.354
f3 0.241 0.436 0.314 0 0 0.438 0.331 0.231
f4 0.171 0.467 0.357 0 0 0.213 0.583 0.204

0.9 f1 0.304 0.336 0.346 0 0 0.306 0.384 0.311
f2 0.262 0.445 0.278 0 0 0.265 0.451 0.284
f3 0.288 0.418 0.284 0 0 0.383 0.370 0.247
f4 0.275 0.484 0.230 0 0 0.462 0.270 0.268

−0.1 f1 0.255 0.424 0.300 0 0 0.294 0.433 0.272
f2 0.257 0.366 0.357 0 0 0.142 0.528 0.330
f3 0.176 0.430 0.376 0 0 0.330 0.452 0.218
f4 0.186 0.507 0.288 0 0 0.461 0.234 0.306

−0.5 f1 0.295 0.387 0.299 0 0 0.268 0.418 0.315
f2 0.255 0.420 0.305 0 0 0.270 0.268 0.462
f3 0.231 0.401 0.354 0 0 0.368 0.342 0.290
f4 0.130 0.556 0.302 0 0 0.365 0.383 0.252

−0.9 f1 0.346 0.382 0.251 0 0 0.347 0.301 0.352
f2 0.357 0.314 0.304 0 0 0.414 0.255 0.331
f3 0.380 0.333 0.262 0 0 0.307 0.417 0.277
f4 0.049 0.643 0.299 0 0 0.214 0.543 0.243
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In Table 9.7 we compare the Pt-P-ACO and Pt-GA with the state-of-
the-art algorithms. Apparently the Cr-P-ACO and Std-P-ACO have no
solutions whose objective values range in the best tenth of all solutions.
The W-P-ACO and W-GA provide most of the solutions for almost all ob-
jectives and correlation variations but are closely followed the respective Pt-
and Win algorithms. Note, that with negative correlations the W-P-ACO
has most of the best solutions in the negatively correlated objective, i.e. f4.
The Pt-P-ACO appears to focus its optimization effort onto the three pos-
itively correlated objectives. The data received from the respective genetic
algorithms does not show this behavior.

The respective results for the WL ranking scheme is shown in Table 9.7.
The data is similar to that of the Pt ranking scheme. The correlation clearly
influences the behavior of the different algorithms. Mind, that the values of
f4 in Win-P-ACO with c4 = −0.9 somewhat imply that f4 is favored over
the other objectives by W-P-ACO. Otherwise, Win-P-ACO should have a
higher value as it also benefits from Pt- and WL-P-ACO mostly ignoring f4.
This benefit however subsides, because W-P-ACO is more prominent.

9.3 Conclusion

The different types of results showed that the Points and WL ranking rela-
tions are of benefit to the P-ACO and induce a competitive performance in
GAs when solving problems with very heterogeneous objectives, i.e. the ob-
jective values are different in their ranges and their power of improvement.
However, they are still competitive when applied on homogeneous problems
where weighted schemes perform very well. Ranking schemes based solely
on the Pareto dominance are insufficient with small populations.

The correlation of objectives influences the time of convergence of all
applied algorithms and had a notable impact on their behavior. The Points
and WL ranking relations clearly prioritized positively correlated objectives
unlike the weighted ranking scheme that optimized towards single objectives
with negative correlations. The Winning Score remained a strong competi-
tor for both proposed methods. While the Points and WL ranking relations
showed better results for the FSP, the Winning Score was better when ap-
plied to solve the TSPs.
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Table 9.8: Fractions of solutions in the top tenth of all final solutions regarding
single objectives with WL; values are averages over all problem instances.

P-ACO GA
c { WL W Win Cr Std } { WL W Win }

0.1 f1 0.236 0.429 0.332 0 0 0.343 0.372 0.431
f2 0.258 0.444 0.310 0 0 0.291 0.397 0.316
f3 0.207 0.486 0.330 0 0 0.346 0.418 0.250
f4 0.153 0.567 0.320 0 0 0.333 0.409 0.217

0.5 f1 0.249 0.455 0.287 0 0 0.553 0.201 0.247
f2 0.252 0.381 0.359 0 0 0.269 0.388 0.344
f3 0.161 0.479 0.354 0 0 0.321 0.403 0.275
f4 0.246 0.436 0.312 0 0 0.228 0.566 0.206

0.9 f1 0.231 0.368 0.394 0 0 0.367 0.354 0.279
f2 0.328 0.412 0.254 0 0 0.252 0.457 0.291
f3 0.276 0.425 0.292 0 0 0.318 0.415 0.267
f4 0.278 0.482 0.234 0 0 0.415 0.303 0.282

−0.1 f1 0.205 0.468 0.319 0 0 0.345 0.404 0.251
f2 0.186 0.410 0.396 0 0 0.220 0.490 0.290
f3 0.148 0.449 0.392 0 0 0.429 0.397 0.175
f4 0.175 0.515 0.297 0 0 0.353 0.262 0.384

−0.5 f1 0.220 0.437 0.337 0 0 0.412 0.325 0.263
f2 0.242 0.429 0.319 0 0 0.278 0.280 0.442
f3 0.190 0.423 0.377 0 0 0.372 0.331 0.297
f4 0.092 0.581 0.319 0 0 0.322 0.418 0.259

−0.9 f1 0.301 0.412 0.270 0 0 0.328 0.325 0.347
f2 0.332 0.326 0.322 0 0 0.447 0.230 0.324
f3 0.334 0.363 0.286 0 0 0.318 0.379 0.303
f4 0.077 0.629 0.288 0 0 0.260 0.514 0.226
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Cooperative Swarms Solving
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10 ‖ Introduction

Evolutionary multi-agent systems

Heterogeneous swarms of agents that solve multi-agent tasks as introduced
in Part II might need to take multi-objective decisions as well. When con-
fronted with multi-objective multi-agent tasks, for example, agents require
ranking schemes, like those introduced in Part III, to decide efficiently which
task is preferable at the time of decision. Though, different ranking schemes
might lead to a better mid term strategy depending on environmental fac-
tors. Those environmental factors can change over time, e.g. the priority of
the objectives or their correlations. In such dynamic situations it could be
beneficial for the agents to base their decision on different ranking schemes
and react to changes in their environment. In order to enable such adap-
tivity in the swarm of agents, multiple ranking schemes need to be known
by the agents. One approach to maintain multiple ranking schemes in the
swarm is the use of its distributed and heterogeneous properties. When each
agent uses its individual ranking scheme the system can indeed contain as
many types of ranking schemes as there are agents. Inspired by evolution-
ary processes that lead to adaptivity in species we introduce an evolutionary
mechanism to achieve adaptivity in the swarm of agents.

Evolutionary adaptive mechanisms have been studied in the field of
Multi-Agent learning (Panait and Luke, 2005). Evolutionary processes like
recombination, crossover, and mutation have been used in evolutionary al-
gorithms such as genetic algorithms for a long time and are also part of
evolutionary multi-agent systems, e.g. in studies from Pieter and de Jong
(2004); Shibata and Fukuda (1993); Whitacre et al. (2010). In evolution-
ary robotics the shape, movement, or interaction between robots is designed
using evolutionary processes. For a recent review on the topic the reader
is referred to Bongard (2013). However, most of these studies either focus
on homogeneous swarms or systems where each agent or robot evolves by
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itself using neural networks or genetic algorithms. In this study I am more
interested in transfer of genetic material from one agent to another one such
that agents can learn from the experiences of other agents.

Evolutionary processes are often based on haploid mechanisms where
all individuals contain one copy of their genetic material, i.e. chromosomal
sets in biology or solutions in genetic algorithms. Haploidy is very straight
forward in the elimination of lethal genes or bad solutions, as they are im-
mediately removed from the population by the death of the individual and,
therefore, its failure to reproduce.

In contrast, diploid individuals carry two different copies of genetic ma-
terial. In case of a dominance recessive relation between two parts, or rather
alleles, of these copies the dominant allele defines the phenotype of the in-
dividual while the recessive allele remains dormant. The individuals fitness
is defined by the benefits of the dominant alleles but when it reproduces,
the recessive alleles will be multiplied as well. This mechanism allows ‘bad’
genetic material to remain in the population but also increase the diversity
of the population. In dynamic systems this enhanced diversity can make the
significant difference towards higher adaptability.

The concept of diploidy is not new in genetic algorithms (Goldberg and
Smith, 1987; Yukiko and Nobue, 1994). It has been shown that the higher
diversity in the population can improve results by avoiding a premature
convergence of the algorithm (Herrera and Lozano, 1996; Leung et al., 2001;
Mauldin, 1984; Potts et al., 1994). A study of diploidy in neural networks
showed that diploids had lower average fitness but a higher peak fitness in
fixed environments and were able to keep a genetic ‘memory’ that they could
fall back on in changing environments with repetitive conditions (Calabretta
et al., 1996). The benefit of diploidy in dynamic multi-agent system has been
studied by (Bowers and Sevinç, 2006).

A third reproduction mechanism that occurs in nature is haplo-diploidy.
In haplo-diploid species the males that hatch from unfertilized eggs are hap-
loid while the females that origin from fertilized eggs and are diploid. In
nature we can find this phenomenon for example in Hymenoptera (e.g. bees,
ants, wasps). While the diploid females provide a high diversity in the pop-
ulation the haploid males eliminate lethal alleles from the population – by
dying. So far and to the best of my knowledge, the concept of haplo-diploidy
has been altogether disregarded for evolutionary algorithms and evolution-
ary multi-agent systems. However, it is interesting to see how the above
three concepts compete against each other in an evolutionary system.

In Chapter 11 an evolutionary model of agents solving multi-objective
multi-agent tasks is described followed by its analysis in Chapter 12.
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Solving multi-objective multi-agent tasks

This model is designed to be as minimalistic as possible with a small number
of variable parameters to enable a clear and coherent analysis of certain
aspects of the system. The agents have limited abilities and knowledge in
order to investigate a general scenario that does not depend on assumptions
from specific applications. The model is designed to analyze the general
problem that is described in the following.

The model provides a dynamic environment for a swarm of individual
agents that are tasked with collection of distributed and rare resources. The
collection of the resources requires a specific number of agents for a specific
amount of time in a specific location. The number of required agents and the
required time to collect the resources deviates locally. Each agent has only
very limited information about the environment. However, an agent can
asses information about its current location and has the ability to memo-
rize information for a limited number of other locations which it has visited
before. Additionally, an agent can communicate with other agents in its
vicinity and can build a team with them to cooperatively collect resources.
The agents try to collect as many resources as possible. For this, a decentral-
ized strategy is needed due to the limited sensory ranges and the restricted
communication skills of the agents.

This approach provides each agent with two possible behavioral states:
the single agent state or exploration state and the team state or exploitation
state. In the exploration state an agent walks randomly around in order to
find locations with good properties concerning the collection of resources.
It will memorize the best locations it has found. In the exploitation phase
a team targets the best locations its members have found and memorized
during their respective former exploration phase. Once a team has collected
all resources at a location that was found by a member of the team, that team
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member leaves the team, erases its memory, and returns into the exploration
state.

We investigate here whether the decentralized strategy enables the agents
to gather information effectively by swarming the environment and to sub-
sequently use this information to successfully collect resources in teams.
Obviously, the general strategy raises a couple of specific design problems
in the agents behavior. We found the following to be most interesting:

1. Which locations should be memorized during the exploration phase?

2. How long should an agent explore?

3. Gathering more agents can be essential for the success of a team.
When two teams meet and they both require more agents, which team
is able to take agents from the other team?

4. Each team has several potential target locations to chose from, i.e.
the locations which are memorized by its members. By which means
should the team decide which location to target next?

Since we investigate dynamic scenarios where there might not be one best
strategy the system should adapt or evolve the strategies that the agents use.
Each simulation turn consists of three phases: the team formation phase,
the working phase, and the reproduction phase (for a graphical overview see
Figure 11.1). The details of the agent model are introduced in the following.

11.1 Environment

The environment consists of a two-dimensional arena F that is a torus with
d× d fields. Thus, the last field in every row and column is adjacent to the
corresponding first field in its row respectively column. A = {a1, . . . , an} is
the set of agents that are located in the arena. The size of a field defines the
sensory range of an agent with respect to the resources. Hence, an agent on
a field f ∈ F can sense the amount of resources on f but it cannot sense
the amount of resources on other fields. For collecting resources a team of
at least two or more agents has to be formed, i.e. a single agent cannot
collect resources. All agents of a team are located on the same field. On
each field at most one team of agents can collect resources at a time. Each
team of agents can communicate with a team or agent that is located on
the same field or one of the eight adjacent fields (Moore neighborhood) but
not to teams/agents on other fields, i.e. the communication range includes
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reproduction phase
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(see Algorithm 11)
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(see Algorithm 9)
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(see Algorithm 12)
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single agent team

next sim. turn

Figure 11.1: Flow diagram of the three phases making up a simulation turn.
Black dots are points of synchronization.

only the current field and its adjacent fields. Each agent and each team has
an orientation which points to one of the eight fields that are adjacent to its
current field (see Figure 11.2).

a
b

1
2
3
4

1 2 3 4 5
Figure 11.2: Two agents a and b in
each others sensing range in a small
part of the arena.

Each simulation is a sequence of simulation turns. During each simula-
tion turn an agent or a team of agents can move from its current field to an
adjacent field (see Figure 11.2). Additional to its coordinates (x(f), y(f))
each field f ∈ F has the following attributes

1. r(f) denotes the amount of resources on f ,
2. a(f) is the required minimum size of a team to collect the resources on
f ,

3. t(f) is the number simulation turns that a team has to remain on f in
order to collect the resources on f .

The attribute values of each field are chosen randomly. When all re-
sources of a field have been collected, the field is initialized anew.
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11.2 Working Phase

During the working phase single agents move to explore their environment
in search for good fields while teams move either towards their target field
or, if they are on their target field, collect resources.

11.2.1 Exploration State

A single agent in the exploration phase gathers up-to-date information from
the environment. The best fields that an agent visits can be saved in its
field memory. For each memorized field, the memory contains the location,
the attribute values, and the time of visit. Whenever an agent moves onto
a field f it can add information about f to its memory, but might need to
discard information about another field due to the limited capacity of the
memory. There are four quality measures to be considered by an agent.
Hence, the agent is confronted with a multi-objective optimization problem.
It should consider

1. the amount of resources r(f),
2. the number of required agents a(f),
3. the resource collection time t(f), and
4. the age of the gathered information, i.e. the time of the visit.

Objective 1 is to be maximized while all other objectives are to be minimized.
The agents can use different ranking methods to infer which information on
which field is to be kept and which is to be discarded. The specific ranking
methods are described in Section 11.5. Algorithm 9 gives an overview over
the working phase for agents in the exploration state.

After an agent changes into the exploration state it will refuse to become
member of a team in order to gather and filter enough information on fields.
However, after its exploration time, defined by a specific number of simula-
tion turns, has passed the agent tries to become member of a team to put
its gathered knowledge to use. Before an agents has finished its exploration
time it is called blocked agent and otherwise it is called a free agent because
it is free to join a team.

11.2.2 Exploitation State

All members of a team share their location such that the team takes just
as much space in the arena as a single agent. To ensure their common
location agents of the same team move together. Teams of agents no longer
explore their environment but decide on a target field and move there on
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Algorithm 9: Working phase: exploration state

1 chose random number ρ ∈ [0, 1]
2 if ρ < rotation probability then
3 change orientation by 45°

4 move forward in the current orientation onto the adjacent field f ′

5 if field memory M is full then
6 rank all fields from M ∪ {f ′}
7 discard the field with lowest rank and place all other in M

8 else
9 add f ′ to M

the shortest path disregarding their orientation. Once they arrived at their
target field they either engage in the resource collection task or fail to do
so because the team is too small or another team is currently working on
the field. If the team can work on the field it remains there for the required
time to collect the available resources and then leave, otherwise they leave
immediately. Leaving a target field f consists of three steps: (1) part from
the agent that provided the information of f , (2) decide on a new target
field f ′, (3) and move one field into the direction of f ′. See Algorithm 10
for details.

Algorithm 10: Working phase: exploitation state

1 if team T is located on its target field fT then
2 if no other team works on fT and |T | ≥ a(fT ) and

counter < t(fT ) then
3 work on target
4 counter := counter + 1
5 if counter = t(fT ) then
6 increase personal and global collected resources by r(fT )
7 counter := 0

8 else
9 owner of fT in T leaves the team

10 chose next target field
11 counter := 0

12 else
13 move toward target field
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11.3 Team Formation Phase

Whenever two teams (or free agents) T and T ′ are in each others sensing
range, i.e. their location fields are in each others Moore neighborhood, they
can engage in a team formation event. Team T will try to get agents from
T ′ if T misses some agents to process its target field successfully. However,
no team wants to give away any of its agents, as they provide possibly
relevant field information. If both teams have enough agents they rather
avoid a conflict, but in any other case they engage in a competition over
their member agents (see Algorithm 11).

Algorithm 11: Team formation during conflicts

1 if T ’s exploration time has ended and |T | < a(fT ) and T has not
been part of a conflict in this simulation turn then

2 chose a team or agent T ′ randomly from all those teams and
agents with the following properties:

3 1. T ′ is in the Moore-neighborhood of T
4 2. T ′ is not working on a field
5 3. T ′ ’s exploration time has ended
6 4. T ′ was in no conflict during the current simulation turn
7 chose a random number ρ ∈ [0, 1]
8 if ρ ≤ power(T )/(power(T ) + power(T ′)) then
9 T takes min(|T ′|, a(fT )− |T |) agents from T ′

10 else
11 T ′ takes min(|T |, a(fT )− |T ′|) agents from T

Of the many possible strategies to decide this conflict the agents use
a very archaic approach. Each agent a has a power pow(a). The power
pow(T ) of a team T is the sum of the power of its members, i.e. pow(T ) =∑

a∈T pow(a). In a conflict between team T and T ′ team T wins if

ρ ≤ pow(T )

pow(T ) + pow(T ′)

where ρ ∈ [0, 1] is a random number from a uniform distribution. The
additive power favors large teams over small teams. This enables larger
teams that are unable to work on their target field with their current size
to grow more easily.

Let x = min (a(fT )− |T |, |T ′|), where fT is the target field of T and |T |,
|T ′| are the sizes of the teams T and T ′ respectively. Then x agents from
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T ′ are transfered to T if T wins. If a(fT ) − |T | ≤ |T ′|, T ′ is completely
absorbed by T . A worst case scenario for T ′ is the loss of the agent that
provided T ′ with the information of fT ′ . Then T ′ is forced to chose another
target field after it already invested time to move towards fT ′ .

11.4 Choosing a Target Field

A target field has to be chosen in the following situations:
(A) Agent a just finished its exploration phase and is in a conflict with team

T . If a wins it gets agents from T and builds its own team. In this
case a choses one of the fields in its own field memory as target field.
It ignores the information of the newly acquired agents, as any other
team would when it got new agents after a victory. Note that a leaves
the team after the resources from its proposed field are collected, thus,
returning into the exploration phase as soon as possible.

(B) Team T reached its target field. Independent of T ’s success in collecting
resources on that field, it evicts the agent that provided the information
and has to chose a new target field.

(C) Team T lost a conflict and the agent providing the information on the
previous target field left the team.

In the latter two cases, team T choses its new target field among all fields
memorized by all member agents. There are four objectives to consider in
this decision.
1. The amount of resources r(f) on the field f .
2. The probability P (|T | ≥ a(fT )) to have the required team size by the

time the field is reached by the agents. This value is estimated by the
team with a simple learning mechanism for the expected change of the
size of the team per simulation turn Pgrowth. In each simulation turn
Pgrowth is computed anew as follows

Pgrowth = 0.8Pgrowth + 0.2∆

where ∆ is the change of the size of the team during the last simulation
turn. For example, if a team has lost two agents in the last simulation
turn, then Pgrowth = 0.8Pgrowth− 0.2 · 2. Further, Pgrowth is used to infer
the probability to reach the needed team size a(f) during the time of
travel. The required time of travel is inferred by the use of Equation (11.1)
where fc is current location and fT the target field of team T then

∆(fc, fT ) =

∥∥∥∥( d
2 −

∣∣|x(fc)− x(fT )| − d
2

∣∣
d
2 −

∣∣|y(fc)− y(fT )| − d
2

∣∣ )∥∥∥∥ (11.1)
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where ‖x‖ is the Euclidean norm of x. Note, that the torus arena gives
four Euclidean distances between two fields and that Equation (11.1)
determines the minimum Euclidean distance between fc and fT . The
agents derive an approximated probability for team T to have at least
size a(fT ) with

P (|T | ≥ a(fT )) = max

(
0,min

(
1, 1−

a(fT )− Pgrowth∆(fc, fT )

2|T |

))
Note that |T | + Pgrowth∆(fc, fT ) is the expected size of |T | at the time
is reaches ft. Mind, that if the expected team size equals the number of
required agents a(f), then P (|T | ≥ a(fT )) = 0.5. If the expected number
of agents added to the team during the transfer (Pgrowth∆(fc, fT )) equals
a(f), then P (|T | ≥ a(fT )) = 1.0

3. The required time for a target field fT is ∆(fc, fT ) + t(fT ), i.e. the
time to reach it and collects it resources afterwards.

4. Once the resources of a field have been collected it is regenerated. How-
ever, agents are not informed whether any of their memorized fields re-
generated since their time of visit. The more time has passed since they
memorized the information the higher is the possibility that the informa-
tion is deprecated because the field regenerated in the mean time.

The objectives should be considered by the team when it choses a new target
field, as they all influence the general uptake of resources. In a team each
agent ranks all fields in the field memory of all member agents. These ranks
are average to infer the highest ranking field and chose it as new target field.

11.5 Ranking Methods

Each agent applies exactly one the following ranking methods at a time.
Note that the field with the highest rank is considered the ‘best’ field.

Dominance Depth Ranking The dominance depth ranking is based on
the Pareto dominance relation. One field f is Pareto dominant over another
field f ′ if f is not worse than f ′ in any objective and in at least one objective
better then f ′. The Pareto dominance relation is not total thus it is possible
to have two fields and neither dominates the other. A dominance depth
ranking sorts the set of fields such that no field is dominated by any field
of lower rank where all ranks are minimized. In case of incomparability the
order is set randomly.
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Weighted Ranking The weighted ranking uses a weight vector w ∈
[0, 1]k, with

∑
i∈{1,...,k}wi = 1, that is individual for each agent. It is used

to compute a weighted sum over all objectives. The field with the lowest
weighted sum has the highest rank. Note, that the negative value of the
first objective is applied, as it is the only objective that needs to be maxi-
mized. For a set of fields M where f (j) is the objective value of objective
j ∈ {1, . . . , k} that needs to be minimized we have for a field f ∈M with a
weight vector w

s(f) =

k∑
j=1

wi
(
f (j) −minf ′∈M f ′(j)

)
maxf ′∈M f ′(j) −minf ′∈M f ′(j)

, f ∈M.

The lower s(f) the higher is the rank of f .

WL Ranking This ranking method conducts pairwise comparisons of all
fields in the set. Each comparison can have a winner, a loser, or a tie.
The field that has better values in more objectives than its competitor wins
the comparison and the competitor loses the comparison. If the number of
objectives in which they are better is equal to the number of objectives in
which they are worse, both fields are in a tie. A field is prioritized before
another field if it either wins in more comparisons or, in case of equal number
of won comparisons, loses less comparisons.

Points Ranking Similar to the WL ranking, all fields are compared to
each other. The Points ranking gives a field two points for a victory and
one point for a tie. The number of points is used to rank the fields. If two
or more fields have an equal amount of points, their order is set randomly.

11.6 Evolutionary Processes

Instead of tuning the critical parameters in an exhaustive analysis and to
avoid over fitting in dynamic environments some of the critical parameters
are instead learned by evolutionary mechanisms. These mechanisms are in-
spired by evolutionary processes that prove over millions of years to provide
adaptability and efficiency of systems.

Each agent has at least one set of genetic material in shape of a chro-
mosome set. These chromosomes contain the agents behavioral properties
(see Table 11.1). Haploid agents contain one chromosome set, while diploid
agents contain two chromosome sets where only one is expressed and one is
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Table 11.1: Chromosomes that are contained by one chromosome set of an agent.

Chromosome Definition

Exploration Time minimum number of simulation turns an agent
spends exploring the environment

Power increases the chance of an agent to win a conflict
Ranking Scheme ranking scheme the agent applies to chose one

field over another in a multi-objective decision
problem

Weights weights vector of agents using the weighted
ranking scheme.

repressed. Further polyploidy, i.e. more than two chromosome sets is not
analyzed in this study.

11.6.1 Reproduction and Death

Reproduction and death are the central motives in this evolutionary multi-
agent system. Agents reproduce once they collected a certain amount of
resources, defined by the reproduction threshold (see Algorithm 12). Death
is realized such that the number of agents remains constant and each repro-
duction goes along with the death of a random other agent. Three different
reproductive mechanisms are considered in the following.

Haploid Reproduction A haploid agent a has one chromosome set. If
a reaches the reproduction threshold it randomly choses agent a′ and over-
writes the chromosome set of a′. During the copy process the chromosome
set can mutate, such that a′ chromosome set is not identical to that of a.
The chromosome set of a does not mutate. In this case a′ is considered to
have fallen prey to some environmental influence and died (see Figure 11.3).
It is, however, immediately replaced by a’s offspring. Mind, that a and a′

can be the same agent.

Figure 11.3: Haploid reproduction
were C1 replaces C ′1

a

C1

a′

C ′1
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Algorithm 12: Reproduction of agent a with chromosome sets Ca1
(haploid) and Ca2 (diploid, haplo-diploid).

1 if collected resources overstep threshold then
2 if haploid reproduction then
3 chose a random agent a′

4 a′ replaces its chromosome set with Ca1
5 a′ mutates

6 if diploid reproduction then
7 chose two random agents a′ and a′′

8 chose two random numbers ρ, σ ∈ {1, 2}
9 replace chromosome sets of a′′ with Caρ and Ca′σ

10 replace Ca′σ of a′ with Ca(ρ mod 2)+1

11 a′ and a′′ recombine their chromosomes into two new sets
12 a′ and a′′ mutate

13 if haplo-diploid reproduction then
14 foreach chromosome set Cai do
15 chose a random agent a′

16 chose a random number ρ ∈ {1, 2}
17 a′ replaces Ca′ρ with Cai
18 a′ recombines its chromosomes into two new sets
19 a′ mutates

20 reset collected resources to 0

Diploid Reproduction Diploid agents have two chromosome sets and use
one of them actively. An agent a that reaches the reproduction threshold
choses a reproductive partner a′ and a second agent a′′ at random. The
chromosome sets of a and a′ replace those of a′ and a′′, such that a′ and a′′

have one chromosome set of a and a′, respectively (see Figure 11.4). The new
chromosome sets of a′ and a′′ are shuffled, i.e. the genes are reallocated to
the chromosome sets at random to simulate recombination. Afterwards the
chromosome sets mutate and both a′ and a′′ chose their active chromosome
set. This is, w. l. o. g. due to the recombination process, the first
chromosome set. The genotype of a remains unchanged throughout the
whole procedure. In this scenario a and a′ both reproduce and a′ and a′′

die. The genetic information of a′′ is lost.
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Figure 11.4: Exemplary diploid
reproduction were a and a′ repro-
duce. Their offspring replaces a′

and a′′.

a

C1 C2

a′

C ′1 C ′2
a′′

C ′′1 C ′′2

Haplo-Diploid Reproduction Haplo-diploid agents have two two chro-
mosome sets and represent the diploid female individuals. If an agent a
reaches the reproduction threshold it choses two other agents a′ and a′′ at
random. Of these two agents, each overwrites one of their chromosome sets
(see Figure 11.5), shuffles the new and old chromosome sets, and mutates
them. In this case a sends drones to a′ and a′′ who reproduce and are
replaced by their own offspring.

Figure 11.5: Exemplary haplo-
diploid reproduction were a repro-
duces with a′ and a′′. Their off-
spring replaces a′ and a′′.

a

C1 C2

a′

C ′1 C ′2
a′′

C ′′1 C ′′2

In all three variants of reproduction death is a random event. Instead of
eliminating the weakest member of the swarm, a random agent is chosen and
some of its genetic material leaves the gene pool. However, the best agents
collect more resources and can reproduce more frequently. This is similar to
actual natural selection where those with sufficient resources reproduce but
death typically strikes at random.
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11.6.2 Mutation

The values for the traits power, exploration time, and the weights for the
weighted ranking scheme can mutate. The mechanism behind these muta-
tions is inspired from the mutation of microsatellites in DNA (for an overview
see Ellegren (2004)). Microsatellites are repeats of short sequences (1-4 bp).
Their length are very specific on an individual basis and are generally used
to infer close relatives and identify individuals in research and forensics.
Copying such a repetitive structure is an error prone work for the DNA-
polymerases. Since, microsatellites are non-coding regions the copy errors
are not as critical as copy errors in other parts of the DNA can be. Pieces
of the repeated segment are thus added or lost in copying process. Quite
like microsatellites, the length of the values for the traits power, exploration
time, and the weights for the weighted ranking scheme fluctuate from one
generation to the next. This fluctuation is achieved by choosing a random
number ρ from a normal (Gaussian) distribution N(0, σ), where 0 is the
mean value and σ the variance. The current value of the trait is then in-
creased by rho. Note, that by varying σ the strength of the mutations is
set. The only additional rule for this mutation scheme is that values can
only decrease as low as zero. Formally, we write

x′ = max(0, x+ ρ), with ρ ∈ N(0, σ)

where x is the old value of a parameter and x′ the new value.
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12 ‖ Empiric Analysis

Diversity and efficiency

This chapter gives a description of the performed experiments and their
results. Multiple scenarios are tested to analyze the agents behavior and
the evolutionary processes under different environmental conditions.

12.1 Experimental Setting

The initial field properties r(f), a(f), and t(f) are randomly. The respective
random values origin either from an exponential distribution with λ = 1 or
from an even distribution depending on the applied scenario (see Table 12.1).
The values are chosen such that r(f) ∈ [0, 1], a(f) ∈ {2, . . . , 10}, t(f) ∈
{1, . . . , 10}. When a field is regenerated its values are not reset with new
random values but swapped with the values of another field. This procedure
maintains the respective distributions of the parameters in the environment.
Otherwise, the distributions of a parameter could change. In Scenario 1, for
example, the resource values r(f) are exponentially distributed. The agents
have a preference to work on the few fields with high a high abundance of
resources. Fields with high r(f), thus have a higher chance of regeneration

Table 12.1: Different applied scenarios with the distributions that are used to set
the field values and the regeneration rate.

r(f) a(f) t(f) regeneration rate

1 exponential even even 0
2 even exponential even 0
3 even even exponential 0
4 even even even 100
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Table 12.2: Fixed parameters chosen for all experiments.

Parameter Definition Values

number of performed runs 50
arena size 50× 50
number of simulation turns 50 000

k objectives 4
n agents 100

rotation probability 0.25
reproduction threshold 1
memory size 5
initial exploration time 10 sim. turns

pow initial power 10
w initial weights random in [0, 500]
σ mutation strength 1

than fields with low r(f). If the values of these fields would be replaced by
random values from an exponential distribution, the frequency of fields with
low resources increases, while fields with more resources would get rarer and
rarer.

This phenomenon is avoided by swapping the values of a regenerating
field with those of an existing other field. Thus, distributions are maintained
while the swarm is confronted with an environment of constant change and
deprecating information. An additional regeneration rate gives the number
of fields that are picked at random in each simulation turn to be regenerated.

At first we analyze the four scenarios in Section 12.2. In Section 12.3 we
inspect the adaptability of the swarm in dynamic environments. Table 12.2
gives an overview of the fixed parameter values applied in all experiments.
Note, that the weights for the objectives are in [0, 500] instead of [0, 1]. The
weights are normalized for the ranking process but otherwise have these
rather large values for their mutation process. Initially, the weights have a
very large variance and it is interesting to see how the different reproduction
schemes handle this situation.

The initial power and exploration time, though prone to the same mu-
tation strength, have much smaller initial values. Here it is more interesting
to see how fast the values for the power increase or decrease. All agents
start with the same initial power and exploration time in each experiment.

In the second type of experiments we analyze dynamic environments. A
dynamic environment is defined by a periodic rotation of Scenarios 1 to 4.
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Three dynamic scenarios are defined by the time period between a change
of scenario, i.e. 100, 1000, or 10 000 simulation turns.

All results are based on measurements performed every 100 simulation
turns. These values include means and variances of the parameters prone
to evolutionary mechanisms and the amount of collected resources collected
in the previous 100 simulation turns. Further, the objective values of all
fields in all agents field memory at the time of measurement are used to
infer correlations between the objectives.

12.2 Analysis of the Scenarios

Objective Correlations The four scenarios provide different environ-
ments for the agents. The distributions of the values for the parameters
r(f), t(f), and a(f) induce different strengths in the objective correlations
(see Table 12.3). While the correlation between the required time and the
available resources is low or not significant, there are stronger correlations
between the required time and the age of information. This phenomenon
can be explained by the circumstance that new information is derived from
fields that were recently visited by members of the team and that are still in
close proximity. The older the information is the larger can be the distance
between the team and the respective field.

Table 12.3: Correlations between objectives in different scenarios denoted by
numbers in black rectangles; the objectives are (1) required time, (2) available
resources, (3) required agents, and (4) the age of information as measured in the
haploid system. All presented values are statistically significant Pearson correlations
with p-values < 0.01.

1 2 3 4

1 – -0.15 0.37
2 0.11 0.17
3 0.12

2 2 3 4

1 0.09 -0.11 0.35
2 0.09 0.18
3 0.12

3 2 3 4

1 0.13 0.01 0.38
2 0.10 0.20
3 0.13

4 2 3 4

1 0.02 -0.07 0.30
2 0.02 -0.01
3 0.12

In most scenarios the correlation between the required time and the
probability to have a sufficient team size is negative. This is due to the fact
that a longer distance to the target field gives a team more possibilities to
recruit more agents on their way there. This negative correlation subsides if
the actual processing time t(f) of a field has a larger impact on the required
time than the distance the team has to travel because the values of t(f) are
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exponentially distributed, i.e. in Scenario 3.
The higher regeneration rate in Scenario 4 turns the otherwise positive

correlation between required time and required agents into a slightly nega-
tive correlation. In Scenarios 1 to 3 the active choosing process of the agents
inflicts a positive correlation – they prefer fields where both values are good
over those where only one value is good. In Scenario 4, however, the agents
have different priorities as will become apparent in the further analysis.

Scenario 3 Scenario 4
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Figure 12.1: Exploration time in different scenarios with average values and
standard deviations.

Exploration Time The exploration time gives the minimal time an agent
spends to explore its environment and detect beneficial fields in its surround-
ings. This parameter is prone to evolutionary processes and its average val-
ues and standard deviations can be seen for two scenarios in Figure 12.1.
Initially, all agents have an exploration time of 10 simulation turns. The
following development is similar in all four scenarios. The average explo-
ration time decreases during the first 10 000 simulation turns then remains
on this lower level. Note, that the haploid reproduction mechanism results
in a lower diversity, i.e. lower standard deviation, implying a more straight
forward approach where the swarm rapidly decides on an exploration time
that is lower (below 5 simulation turns) than the exploration times favored
by the haplo-diploid and diploid approach. Scenario 4 appears to require
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slightly longer exploration times than the other three scenarios that show
very similar developments and are represented by Scenario 3 in Figure 12.1.
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Figure 12.2: Power in different scenarios with average values and standard devi-
ations.

Power Another parameter whose values are prone to evolutionary pro-
cesses is the power. The power of the agents is used to decide which team of
agents wins in case of a conflict and can assimilate agents of the other team
into itself. Figure 12.2 shows how the average values of the power parameter
develop in the different scenarios with the three reproduction mechanisms.

Initially, all agents have a power of ten. In course of the simulation run
the values for the power increase, as could be suspected from this parameters
properties. More powerful agents can force other agents to join their team
and have a higher chance of having a sufficiently sized team when they reach
their target field. This is obviously beneficial.

The diploid and haplo-diploid reproduction mechanisms have a higher
standard deviation than the haploid reproduction mechanism. All three
mechanism increase the values of the power with similar speed. Scenario 1
appears to give a higher selective pressure on the agents power, that rises
to average values of up to 40, while the values grow slower in the other
scenarios (from 20 to 30) as represented by Scenario 3 in Figure 12.2.
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Ranking schemes In Scenarios 1, 2, and 3 and the Dominance Depth
ranking scheme dominates all systems regardless of their reproduction mech-
anisms by making up more than half of all ranking scheme chromosomes.
The Weighted ranking is often a second followed by the WL ranking scheme.
The Points ranking scheme goes always extinct in systems with haplo-diploid
and haploid reproduction in the first three scenarios. In diploid reproduc-
tion systems they have a marginally higher survival rate but are, on average
over all runs, never more frequent then the Dominance Depth or Weighted
ranking scheme. After 25 000 simulation turns the frequencies of the ranking
schemes barely fluctuate and remain on their respective levels. An exem-
plary time series can be seen in Figure 12.3 which shows the abundances
of the four different ranking schemes during the simulations with diploid
reproduction in Scenario 2.
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Figure 12.3: Distribution of the different ranking schemes in the haplo-diploid
system for Scenario 2; Dominance Depth is abbreviated by ‘dom’.

Scenario 4 induces a very different development (see Figure 12.4). None
of the ranking schemes goes always extinct and no ranking scheme is clearly
the most dominant in this scenario. However, in the following analysis it
will become more apparent that these systems are rarely mixed but typically
dominated by one the ranking schemes.

12.3 Diversity and Adaptability Analysis

A special focus in this analysis lies within the maintained diversity and
efficiency of the different evolutionary approaches. As measure of diversity
we applied the Shannon-Weaver index (Shannon, 2001), which is commonly
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Figure 12.4: Distribution of the different ranking schemes in the different systems
for Scenario 4; Dominance Depth is abbreviated by ‘dom’.
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applied in population studies, on the frequencies of the ranking schemes.

H ′ =
R∑
i=1

pi ln pi,

where pi is the proportional abundance of class i ∈ {1, . . . , R} with a total
of R classes. The initial Shannon-Weaver index of the different ranking
schemes is

H ′ =

R∑
i=1

1

4
ln

1

4
≈ 1.386,

Figure 12.5 shows the development of the Shannon-Weaver index during the
simulations of the scenarios. Once the index is zero the system only contains
one ranking scheme. For all scenarios the index decreases very fast during
the first 10 000 simulation turns. Scenario 1 shows the steepest decrease in
diversity compared to the other scenarios, while Scenario 4 shows the slowest
decrease in diversity. Only in scenarios 3 and 4 there are simulation runs
that maintain multiple ranking schemes up to the end of the simulation runs.
The haploid systems have the lowest diversity and the fastest decrease. The
diploid and haplo-diploid systems show no considerable difference.

Figure 12.6 shows the development of the diversity in the dynamic set-
tings. A change of scenario every 1000 or 10 000 simulation turns results
in a decrease of diversity and promotes systems based on only one ranking
scheme. With more frequent changes of scenarios the process of complete
loss of diversity is prolonged. However, besides the haplo-diploid system in
the dynamic setting with a change of scenario every 1000 simulation turns,
none of the different reproduction mechanism maintain more the one rank-
ing scheme in the system till the end of the simulation. The haploid system
is the fastest to converge and settle on a single ranking scheme, while the
diploid and haplo-diploid system are slower.

Figure 12.7 gives the efficiency of the different reproduction mechanisms
in the different dynamic systems. A Friedman-Nemenyi post-hoc analy-
sis implies that the only significant differences in the performance of the
compared dynamic systems (p-value < 0.01) lies in the system where the
scenarios changes every 10 000 simulation turns and the diploid system is
significantly better than the haploid system. A comparison of the efficiencies
of the systems in the different scenarios shows that in Scenario 1 the diploid
system has a significantly higher efficiency than the haploid system and in
Scenario 3 both the diploid and haplo-diploid system are significantly better
than the haploid system.
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Figure 12.5: Diversity in different scenarios with average values and standard
deviations.
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Change of Scenario every 100 simulation turns,
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Figure 12.6: Diversity in different dynamic systems with average values and
standard deviations.
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Figure 12.7: Efficiency in different dynamic systems with average values and
standard deviations.

12.4 Conclusion

In this part we compared three different reproduction approaches: haploid,
diploid, and haplo-diploid reproduction. We applied them on a multi-agent
system with agents solving multi-objective multi- agent tasks and evolved
some of the most crucial parameters of the system. The quality of the
evolutionary mechanisms was inferred with a focus on the ranking schemes
the agents applied to chose which task to prioritize at which time.

While, the diploid and haplo-diploid approaches could maintain a higher
genetic diversity in the system they also showed tendencies to perform better
than the haploid system. However, in the final state of the systems in
nearly all experimental runs only one ranking scheme ‘survived’. The fact
that these final dominant ranking schemes are incoherently different ones
in the different simulation runs implies that a mixed system might be more
beneficial, nevertheless.
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Part V

Synthesis





13 ‖ Summary and Outlook

Swarms occur in nature as well as in artificial scenarios and pose interesting
challenges for science in both fields. The similarities between natural and
artificial swarms incite researchers to seek inspiration in the natural phenom-
ena of swarm organization and behavior for the development of respective
traits in artificial swarms. However, the differences between both kinds of
swarms lead most engineers to rather apply centralized concepts for the or-
ganization of swarms instead of decentralized and distributed concepts as
those observed by biologists in nature. And thus, in robotics, telecommuni-
cation, or traffic, to name a few examples, distributed systems are typically
controlled by centralized mechanisms. In order to further promote decen-
tralized strategies and show their beneficial qualities, I studied the means of
cooperation, team formation, synergistic effects in heterogeneous, reconfig-
urable multi-agent systems with a special focus on the difficulty of solving
multi-objective problems.

Further, I developed methods that show how simple distributed strate-
gies can induce adaptability in dynamic environments and how specific rank-
ing schemes can increase the performance of metaheuristics and multi-agent
systems.

13.1 Team Formation

In heterogeneous multi-agent systems where agents are generally different
from each other concerning their capabilities or behavior, cooperation can
be essential. Especially, in light of multi-agent tasks, multiple agents are
required to cooperate by forming teams and processing tasks together. While
it is shown in this study that the team formation process can be NP-hard,
in some cases it is more important to solely focus on the size of the teams.
Considering scenarios with reconfigurable agents this is especially important.
If there are costs in the organization of teams, that rise with the team size,
the agents need to form teams of sufficient size but remaining as small as
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possible. If the optimal team size is unknown and the agents are forced
to infer it by trial-and-error, it suffices to provide them with a very simple
decision mechanism to control the team size. The system performance is
significantly increased if agents are able to dynamically infer the optimal
team size by checking whether a team member is partly idle at the moment.

When the teams are confronted with multi-objective multi-agent tasks
they need to infer which of the available tasks should be processed first.
In order to rank these tasks the agents need to apply ranking relations for
multi-objective problems.

13.2 Ranking Schemes

Multi-objective ranking schemes are better studied in the field of multi-
objective optimization than in multi-agent systems. In the mechanisms of
population-based metaheuristics the problem of ranking multi-objective so-
lutions to determine a few ‘best’ solutions among them, is very similar to the
problem of the agents solving multi-objective multi-agent tasks. In a thor-
ough analysis I compared several ranking schemes and their performance
considering the population-based Ant Colony Optimization algorithm and
a genetic algorithm solving two different combinatorial problems. Ranking
schemes counting objectives where one solution is better, equal, or worse
than another solution, outperform ranking schemes solely based on the con-
cept of Pareto dominance. It also became quite apparent that the correlation
between the objectives had a significant influence on the algorithms and the
obtained solutions. Different types of problems favored different ranking
schemes, a notion that implies hybrid algorithms applying multiple ranking
schemes could be more beneficial.

13.3 Evolutionary Mechanisms

While the metaheuristics apply one ranking scheme at a time it is more in-
teresting to see how heterogeneous multi-agent system perform if they can
use multiple ranking schemes simultaneously. Instead of forcing a specific
distribution of the ranking schemes onto the system, I applied and com-
pared three different evolutionary mechanisms to let the agents evolve their
most crucial parameter values and the type of ranking scheme they apply.
This dynamic system showed that different scenarios favored different rank-
ing schemes. Although, a diploid and haplo-diploid approach maintained a
higher diversity in the system than a compared haploid approach, typically
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the systems evolved into a homogeneous system where all agents applied
the same ranking scheme. The diploid and haplo-diploid systems showed a
tendency to have a higher efficiency than the haploid system.

In the course of this study, I was able to show that simple mechanisms
often suffice in multi-agent systems to acquire a specific adaptive behavior
and that swarm members should not only work together but also learn from
each other.

13.4 Outlook

The problem of cooperatively solving multi-objective tasks in multi-agent
systems has many interesting aspects. This study gave more insight into
some of them. However, to convince the community of engineers confronted
with this kind of problems to rather apply distributed and decentralized in-
stead of centralized methods, far more research needs to be conducted. This
includes the study of specific applied scenarios that can profoundly benefit
from decentralized mechanisms. Current advances in the fields of robotics
show tendencies towards autonomy by providing machines with sensors and
the means to base their actions on information gathered from their environ-
ment in real time, e.g. autonomous cars. However, most research conducted
in the field of autonomy develops and studies mechanisms for single units
and their mobility. While (crash free) mobility is typically a prerequisite
for mobile autonomous units of any kind, communication and cooperation
between multiple of such units will be necessary for many problems arising
after robots learned to walk, fly, swim, drive, or crawl. Some of these prob-
lems can be solved by sharing the right bit of information, at other times,
it might be beneficial if a robot updated software or even changed some
of its hardware according to the settings of another robot. Whether these
autonomous units are transport drones, cars, mars rovers, satellites, or just
smart phones – there are heterogeneous swarms that can benefit in many
scenarios from decentralized mechanisms and cooperative strategies.

Several animal societies apply such strategies successfully but the precise
mechanisms are often not fully understood. We need to further interdisci-
plinary investigations to grasp the complex nature of biological swarms and
infer how these natural mechanisms can be beneficial in robot societies.

A possible scenario is the autonomous distribution of tasks among het-
erogeneous agents. For example, satellites of different missions and built
could cooperatively distribute tasks among them that might arise after nat-
ural disasters and require immediate response. As satellites are typically
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not geostationary, their positions relative to earth surface are constantly
changing but can be adapted by using their limited amount of fuel. The
three-dimensional flight maneuvers that are required to perform a forma-
tion flight are similar to the flocking behavior of birds.

Another scenario, that could benefit from distributed self-organized con-
trol is the routing of autonomous cars to avoid traffic jams during rush hour,
where we can draw inspiration from the behavior of ants that maintain a
fluent transport network inside their colonies despite their great numbers
and limited space. Such a decentralized control requires no central node
and could be more secure from third parties or other unforeseeable events
that require a fast and adaptive reaction.

Any task based on the exploration of unmapped territory can benefit of
the mechanisms social insects use for foraging or nest site location. Among
such scenarios are the exploration of caves, deep see or deep space, but also
collapsed buildings. Swarms of robots can explore faster but need to com-
municate with each other to perform an efficient search. Further, artificial
swarms can benefit from mechanisms inspired by the food transfer in so-
cial insects, i.e. trophallaxis, to share common resources, e.g. their battery
power, to increase their performance.

These are just three examples of scenarios that could benefit from self-
organized decentralized mechanisms like those found in nature. The poten-
tial of nature inspired swarm mechanisms needs to be further investigated
to keep in pace with the current engineering process towards autonomous
systems.
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López-Ibánez, M., Paquete, L., and Stützle, T. (2006). Hybrid population-
based algorithms for the bi-objective quadratic assignment problem. Jour-
nal of Mathematical Modelling and Algorithms, 5(1):111–137.

Maneeratana, K., Boonlong, K., and Chaiyaratana, N. (2006). Compressed-
objective genetic algorithm. In Parallel Problem Solving from Nature,
volume 4193 of LNCS, pages 473–482. Springer.

Mauldin, M. L. (1984). Maintaining diversity in genetic search. In AAAI,
pages 247–250.

Merkle, D. and Middendorf, M. (2014). Swarm intelligence. In Burke, E. K.
and Kendall, G., editors, Search Methodologies, pages 213–242. Springer
US.

Michael, R. G. and David, S. J. (1979). Computers and intractability: a
guide to the theory of NP-completeness. WH Freeman & Co., San Fran-
cisco.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press,
Cambridge.

Moritz, R. L. and Middendorf, M. (2013). Self-organized cooperation be-
tween agents that have to solve resource collection tasks. In Proc. IEEE
Swarm Intelligence Symposium, page pp. 12.

Moritz, R. L. and Middendorf, M. (2014a). Decentralized and dynamic group
formation of reconfigurable agents. Memetic Computing, pages 1–15.

Moritz, R. L. and Middendorf, M. (2014b). Self-adaptable group formation
of reconfigurable agents in dynamic environments. In Nature Inspired
Cooperative Strategies for Optimization (NICSO 2013), pages 287–301.
Springer.



154 BIBLIOGRAPHY

Moritz, R. L., Reich, E., Bernt, M., and Middendorf, M. (2014a). The influ-
ence of correlated objectives on different types of P-ACO algorithms. In
Blum, C. and Ochoa, G., editors, Evolutionary Computation in Combina-
torial Optimisation, volume 8600 of Lecture Notes in Computer Science,
pages 230–241. Springer Berlin Heidelberg.

Moritz, R. L., Reich, E., Schwarz, M., Bernt, M., and Middendorf, M.
(2014b). Refined ranking relations for selection of solutions in multi ob-
jective metaheuristics. European Journal of Operational Research.

Moritz, R. L. V., Reich, E., Schwarz, M., Bernt, M., and Middendorf, M.
(2013). Refined ranking relations for multi objective optimization and
application to P-ACO. In Proceedings of the 15th Annual Conference on
Genetic and Evolutionary Computation, pages 65–72.

Mostaghim, S. and Schmeck, H. (2008). Distance based ranking in many-
objective particle swarm optimization. In Parallel Problem Solving from
Nature, volume 5199 of LNCS, pages 753–762. Springer.

Murata, T. and Taki, A. (2010). Examination of the performance of objec-
tive reduction using correlation-based weighted-sum for many objective
knapsack problems. In Hybrid Intelligent Systems (HIS), 10th Interna-
tional Conference on, pages 175–180. IEEE.
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