10 research outputs found

    Transparent Orchestration of Task-based Parallel Applications in Containers Platforms

    Get PDF
    This paper presents a framework to easily build and execute parallel applications in container-based distributed computing platforms in a user-transparent way. The proposed framework is a combination of the COMP Superscalar (COMPSs) programming model and runtime, which provides a straightforward way to develop task-based parallel applications from sequential codes, and containers management platforms that ease the deployment of applications in computing environments (as Docker, Mesos or Singularity). This framework provides scientists and developers with an easy way to implement parallel distributed applications and deploy them in a one-click fashion. We have built a prototype which integrates COMPSs with different containers engines in different scenarios: i) a Docker cluster, ii) a Mesos cluster, and iii) Singularity in an HPC cluster. We have evaluated the overhead in the building phase, deployment and execution of two benchmark applications compared to a Cloud testbed based on KVM and OpenStack and to the usage of bare metal nodes. We have observed an important gain in comparison to cloud environments during the building and deployment phases. This enables better adaptation of resources with respect to the computational load. In contrast, we detected an extra overhead during the execution, which is mainly due to the multi-host Docker networking.This work is partly supported by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316 project, by the Generalitat de Catalunya under contracts 2014-SGR-1051 and 2014-SGR-1272, and by the European Union through the Horizon 2020 research and innovation program under grant 690116 (EUBra-BIGSEA Project). Results presented in this paper were obtained using the Chameleon testbed supported by the National Science Foundation.Peer ReviewedPostprint (author's final draft

    Performance analysis of container-based networking solutions for high-performance computing cloud

    Get PDF
    Recently, cloud service providers have been gradually changing from virtual machine-based cloud infrastructures to container-based cloud-native infrastructures that consider performance and workload-management issues. Several data network performance issues for virtual instances have arisen, and various networking solutions have been newly developed or utilized. In this paper, we propose a solution suitable for a high-performance computing (HPC) cloud through a performance comparison analysis of container-based networking solutions. We constructed a supercomputer-based test-bed cluster to evaluate the serviceability by executing HPC jobs

    AutoParallel: A Python module for automatic parallelization and distributed execution of affine loop nests

    Get PDF
    The last improvements in programming languages, programming models, and frameworks have focused on abstracting the users from many programming issues. Among others, recent programming frameworks include simpler syntax, automatic memory management and garbage collection, which simplifies code re-usage through library packages, and easily configurable tools for deployment. For instance, Python has risen to the top of the list of the programming languages due to the simplicity of its syntax, while still achieving a good performance even being an interpreted language. Moreover, the community has helped to develop a large number of libraries and modules, tuning them to obtain great performance. However, there is still room for improvement when preventing users from dealing directly with distributed and parallel computing issues. This paper proposes and evaluates AutoParallel, a Python module to automatically find an appropriate task-based parallelization of affine loop nests to execute them in parallel in a distributed computing infrastructure. This parallelization can also include the building of data blocks to increase task granularity in order to achieve a good execution performance. Moreover, AutoParallel is based on sequential programming and only contains a small annotation in the form of a Python decorator so that anyone with little programming skills can scale up an application to hundreds of cores.Comment: Accepted to the 8th Workshop on Python for High-Performance and Scientific Computing (PyHPC 2018

    Executing linear algebra kernels in heterogeneous distributed infrastructures with PyCOMPSs

    Get PDF
    Python is a popular programming language due to the simplicity of its syntax, while still achieving a good performance even being an interpreted language. The adoption from multiple scientific communities has evolved in the emergence of a large number of libraries and modules, which has helped to put Python on the top of the list of the programming languages [1]. Task-based programming has been proposed in the recent years as an alternative parallel programming model. PyCOMPSs follows such approach for Python, and this paper presents its extensions to combine task-based parallelism and thread-level parallelism. Also, we present how PyCOMPSs has been adapted to support heterogeneous architectures, including Xeon Phi and GPUs. Results obtained with linear algebra benchmarks demonstrate that significant performance can be obtained with a few lines of Python.This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). Javier Conejero postdoctoral contract is co-financed by the Ministry of Economy and Competitiveness under Juan de la Cierva Formación postdoctoral fellowship number FJCI-2015-24651. Cristian Ramon-Cortes predoctoral contract is financed by the Ministry of Economy and Competitiveness under the contract BES-2016-076791. This work is supported by the Intel-BSC Exascale Lab. This work has been supported by the European Commission through the Horizon 2020 Research and Innovation program under contract 687584 (TANGO project).Peer ReviewedPostprint (published version

    AutoParallel: A Python module for automatic parallelization and distributed execution of affine loop nests

    Get PDF
    The last improvements in programming languages, programming models, and frameworks have focused on abstracting the users from many programming issues. Among others, recent programming frameworks include simpler syntax, automatic memory management and garbage collection, which simplifies code re-usage through library packages, and easily configurable tools for deployment. For instance, Python has risen to the top of the list of the programming languages due to the simplicity of its syntax, while still achieving a good performance even being an interpreted language. Moreover, the community has helped to develop a large number of libraries and modules, tuning them to obtain great performance. However, there is still room for improvement when preventing users from dealing directly with distributed and parallel computing issues. This paper proposes and evaluates AutoParallel, a Python module to automatically find an appropriate task-based parallelization of affine loop nests to execute them in parallel in a distributed computing infrastructure. This parallelization can also include the building of data blocks to increase task granularity in order to achieve a good execution performance. Moreover, AutoParallel is based on sequential programming and only contains a small annotation in the form of a Python decorator so that anyone with little programming skills can scale up an application to hundreds of cores

    AutoParallel: Automatic parallelisation and distributed execution of affine loop nests in Python

    Get PDF
    International audienceThe last improvements in programming languages and models have focused on simplicity and abstraction; leading Python to the top of the list of the programming languages. However, there is still room for improvement when preventing users from dealing directly with distributed and parallel computing issues. This paper proposes and evaluates AutoParallel, a Python module to automatically find an appropriate task-based parallelisation of affine loop nests and execute them in parallel in a distributed computing infrastructure. It is based on sequential programming and contains one single annotation (in the form of a Python decorator) so that anyone with intermediate-level programming skills can scale up an application to hundreds of cores. The evaluation demonstrates that AutoParallel goes one step further in easing the development of distributed applications. On the one hand, the programmability evaluation highlights the benefits of using a single Python decorator instead of manually annotating each task and its parameters or, even worse, having to develop the parallel code explicitly (e.g., using OpenMP, MPI). On the other hand, the performance evaluation demonstrates that AutoParallel is capable of automatically generating task-based workflows from sequential Python code while achieving the same performances than manually taskified versions of established state-of-the-art algorithms (i.e., Cholesky, LU, and QR decompositions). Finally, AutoParallel is also capable of automatically building data blocks to increase the tasks' granularity; freeing the user from creating the data chunks, and redesigning the algorithm. For advanced users, we believe that this feature can be useful as a baseline to design blocked algorithms

    Transparent Orchestration of Task-based Parallel Applications in Containers Platforms

    No full text
    This paper presents a framework to easily build and execute parallel applications in container-based distributed computing platforms in a user-transparent way. The proposed framework is a combination of the COMP Superscalar (COMPSs) programming model and runtime, which provides a straightforward way to develop task-based parallel applications from sequential codes, and containers management platforms that ease the deployment of applications in computing environments (as Docker, Mesos or Singularity). This framework provides scientists and developers with an easy way to implement parallel distributed applications and deploy them in a one-click fashion. We have built a prototype which integrates COMPSs with different containers engines in different scenarios: i) a Docker cluster, ii) a Mesos cluster, and iii) Singularity in an HPC cluster. We have evaluated the overhead in the building phase, deployment and execution of two benchmark applications compared to a Cloud testbed based on KVM and OpenStack and to the usage of bare metal nodes. We have observed an important gain in comparison to cloud environments during the building and deployment phases. This enables better adaptation of resources with respect to the computational load. In contrast, we detected an extra overhead during the execution, which is mainly due to the multi-host Docker networking.This work is partly supported by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316 project, by the Generalitat de Catalunya under contracts 2014-SGR-1051 and 2014-SGR-1272, and by the European Union through the Horizon 2020 research and innovation program under grant 690116 (EUBra-BIGSEA Project). Results presented in this paper were obtained using the Chameleon testbed supported by the National Science Foundation.Peer Reviewe

    Programming models to support data science workflows

    Get PDF
    Data Science workflows have become a must to progress in many scientific areas such as life, health, and earth sciences. In contrast to traditional HPC workflows, they are more heterogeneous; combining binary executions, MPI simulations, multi-threaded applications, custom analysis (possibly written in Java, Python, C/C++ or R), and real-time processing. Furthermore, in the past, field experts were capable of programming and running small simulations. However, nowadays, simulations requiring hundreds or thousands of cores are widely used and, to this point, efficiently programming them becomes a challenge even for computer sciences. Thus, programming languages and models make a considerable effort to ease the programmability while maintaining acceptable performance. This thesis contributes to the adaptation of High-Performance frameworks to support the needs and challenges of Data Science workflows by extending COMPSs, a mature, general-purpose, task-based, distributed programming model. First, we enhance our prototype to orchestrate different frameworks inside a single programming model so that non-expert users can build complex workflows where some steps require highly optimised state of the art frameworks. This extension includes the @binary, @OmpSs, @MPI, @COMPSs, and @MultiNode annotations for both Java and Python workflows. Second, we integrate container technologies to enable developers to easily port, distribute, and scale their applications to distributed computing platforms. This combination provides a straightforward methodology to parallelise applications from sequential codes along with efficient image management and application deployment that ease the packaging and distribution of applications. We distinguish between static, HPC, and dynamic container management and provide representative use cases for each scenario using Docker, Singularity, and Mesos. Third, we design, implement and integrate AutoParallel, a Python module to automatically find an appropriate task-based parallelisation of affine loop nests and execute them in parallel in a distributed computing infrastructure. It is based on sequential programming and requires one single annotation (the @parallel Python decorator) so that anyone with intermediate-level programming skills can scale up an application to hundreds of cores. Finally, we propose a way to extend task-based management systems to support continuous input and output data to enable the combination of task-based workflows and dataflows (Hybrid Workflows) using one single programming model. Hence, developers can build complex Data Science workflows with different approaches depending on the requirements without the effort of combining several frameworks at the same time. Also, to illustrate the capabilities of Hybrid Workflows, we have built a Distributed Stream Library that can be easily integrated with existing task-based frameworks to provide support for dataflows. The library provides a homogeneous, generic, and simple representation of object and file streams in both Java and Python; enabling complex workflows to handle any data type without dealing directly with the streaming back-end.Els fluxos de treball de Data Science s’han convertit en una necessitat per progressar en moltes àrees científiques com les ciències de la vida, la salut i la terra. A diferència dels fluxos de treball tradicionals per a la CAP, els fluxos de Data Science són més heterogenis; combinant l’execució de binaris, simulacions MPI, aplicacions multiprocés, anàlisi personalitzats (possiblement escrits en Java, Python, C / C ++ o R) i computacions en temps real. Mentre que en el passat els experts de cada camp eren capaços de programar i executar petites simulacions, avui dia, aquestes simulacions representen un repte fins i tot per als experts ja que requereixen centenars o milers de nuclis. Per aquesta raó, els llenguatges i models de programació actuals s’esforcen considerablement en incrementar la programabilitat mantenint un rendiment acceptable. Aquesta tesi contribueix a l’adaptació de models de programació per a la CAP per afrontar les necessitats i reptes dels fluxos de Data Science estenent COMPSs, un model de programació distribuïda madur, de propòsit general, i basat en tasques. En primer lloc, millorem el nostre prototip per orquestrar diferent programari per a que els usuaris no experts puguin crear fluxos complexos usant un únic model on alguns passos requereixin tecnologies altament optimitzades. Aquesta extensió inclou les anotacions de @binary, @OmpSs, @MPI, @COMPSs, i @MultiNode per a fluxos en Java i Python. En segon lloc, integrem tecnologies de contenidors per permetre als desenvolupadors portar, distribuir i escalar fàcilment les seves aplicacions en plataformes distribuïdes. A més d’una metodologia senzilla per a paral·lelitzar aplicacions a partir de codis seqüencials, aquesta combinació proporciona una gestió d’imatges i una implementació d’aplicacions eficients que faciliten l’empaquetat i la distribució d’aplicacions. Distingim entre la gestió de contenidors estàtica, CAP i dinàmica i proporcionem casos d’ús representatius per a cada escenari amb Docker, Singularity i Mesos. En tercer lloc, dissenyem, implementem i integrem AutoParallel, un mòdul de Python per determinar automàticament la paral·lelització basada en tasques de nius de bucles afins i executar-los en paral·lel en una infraestructura distribuïda. AutoParallel està basat en programació seqüencial, requereix una sola anotació (el decorador @parallel) i permet a un usuari intermig escalar una aplicació a centenars de nuclis. Finalment, proposem una forma d’estendre els sistemes basats en tasques per admetre dades d’entrada i sortida continus; permetent així la combinació de fluxos de treball i dades (Fluxos Híbrids) en un únic model. Conseqüentment, els desenvolupadors poden crear fluxos complexos seguint diferents patrons sense l’esforç de combinar diversos models al mateix temps. A més, per a il·lustrar les capacitats dels Fluxos Híbrids, hem creat una biblioteca (DistroStreamLib) que s’integra fàcilment amb els models basats en tasques per suportar fluxos de dades. La biblioteca proporciona una representació homogènia, genèrica i simple de seqüències contínues d’objectes i arxius en Java i Python; permetent gestionar qualsevol tipus de dades sense tractar directament amb el back-end de streaming.Los flujos de trabajo de Data Science se han convertido en una necesidad para progresar en muchas áreas científicas como las ciencias de la vida, la salud y la tierra. A diferencia de los flujos de trabajo tradicionales para la CAP, los flujos de Data Science son más heterogéneos; combinando la ejecución de binarios, simulaciones MPI, aplicaciones multiproceso, análisis personalizados (posiblemente escritos en Java, Python, C/C++ o R) y computaciones en tiempo real. Mientras que en el pasado los expertos de cada campo eran capaces de programar y ejecutar pequeñas simulaciones, hoy en día, estas simulaciones representan un desafío incluso para los expertos ya que requieren cientos o miles de núcleos. Por esta razón, los lenguajes y modelos de programación actuales se esfuerzan considerablemente en incrementar la programabilidad manteniendo un rendimiento aceptable. Esta tesis contribuye a la adaptación de modelos de programación para la CAP para afrontar las necesidades y desafíos de los flujos de Data Science extendiendo COMPSs, un modelo de programación distribuida maduro, de propósito general, y basado en tareas. En primer lugar, mejoramos nuestro prototipo para orquestar diferentes software para que los usuarios no expertos puedan crear flujos complejos usando un único modelo donde algunos pasos requieran tecnologías altamente optimizadas. Esta extensión incluye las anotaciones de @binary, @OmpSs, @MPI, @COMPSs, y @MultiNode para flujos en Java y Python. En segundo lugar, integramos tecnologías de contenedores para permitir a los desarrolladores portar, distribuir y escalar fácilmente sus aplicaciones en plataformas distribuidas. Además de una metodología sencilla para paralelizar aplicaciones a partir de códigos secuenciales, esta combinación proporciona una gestión de imágenes y una implementación de aplicaciones eficientes que facilitan el empaquetado y la distribución de aplicaciones. Distinguimos entre gestión de contenedores estática, CAP y dinámica y proporcionamos casos de uso representativos para cada escenario con Docker, Singularity y Mesos. En tercer lugar, diseñamos, implementamos e integramos AutoParallel, un módulo de Python para determinar automáticamente la paralelización basada en tareas de nidos de bucles afines y ejecutarlos en paralelo en una infraestructura distribuida. AutoParallel está basado en programación secuencial, requiere una sola anotación (el decorador @parallel) y permite a un usuario intermedio escalar una aplicación a cientos de núcleos. Finalmente, proponemos una forma de extender los sistemas basados en tareas para admitir datos de entrada y salida continuos; permitiendo así la combinación de flujos de trabajo y datos (Flujos Híbridos) en un único modelo. Consecuentemente, los desarrolladores pueden crear flujos complejos siguiendo diferentes patrones sin el esfuerzo de combinar varios modelos al mismo tiempo. Además, para ilustrar las capacidades de los Flujos Híbridos, hemos creado una biblioteca (DistroStreamLib) que se integra fácilmente a los modelos basados en tareas para soportar flujos de datos. La biblioteca proporciona una representación homogénea, genérica y simple de secuencias continuas de objetos y archivos en Java y Python; permitiendo manejar cualquier tipo de datos sin tratar directamente con el back-end de streaming

    Programming models to support data science workflows

    Get PDF
    Data Science workflows have become a must to progress in many scientific areas such as life, health, and earth sciences. In contrast to traditional HPC workflows, they are more heterogeneous; combining binary executions, MPI simulations, multi-threaded applications, custom analysis (possibly written in Java, Python, C/C++ or R), and real-time processing. Furthermore, in the past, field experts were capable of programming and running small simulations. However, nowadays, simulations requiring hundreds or thousands of cores are widely used and, to this point, efficiently programming them becomes a challenge even for computer sciences. Thus, programming languages and models make a considerable effort to ease the programmability while maintaining acceptable performance. This thesis contributes to the adaptation of High-Performance frameworks to support the needs and challenges of Data Science workflows by extending COMPSs, a mature, general-purpose, task-based, distributed programming model. First, we enhance our prototype to orchestrate different frameworks inside a single programming model so that non-expert users can build complex workflows where some steps require highly optimised state of the art frameworks. This extension includes the @binary, @OmpSs, @MPI, @COMPSs, and @MultiNode annotations for both Java and Python workflows. Second, we integrate container technologies to enable developers to easily port, distribute, and scale their applications to distributed computing platforms. This combination provides a straightforward methodology to parallelise applications from sequential codes along with efficient image management and application deployment that ease the packaging and distribution of applications. We distinguish between static, HPC, and dynamic container management and provide representative use cases for each scenario using Docker, Singularity, and Mesos. Third, we design, implement and integrate AutoParallel, a Python module to automatically find an appropriate task-based parallelisation of affine loop nests and execute them in parallel in a distributed computing infrastructure. It is based on sequential programming and requires one single annotation (the @parallel Python decorator) so that anyone with intermediate-level programming skills can scale up an application to hundreds of cores. Finally, we propose a way to extend task-based management systems to support continuous input and output data to enable the combination of task-based workflows and dataflows (Hybrid Workflows) using one single programming model. Hence, developers can build complex Data Science workflows with different approaches depending on the requirements without the effort of combining several frameworks at the same time. Also, to illustrate the capabilities of Hybrid Workflows, we have built a Distributed Stream Library that can be easily integrated with existing task-based frameworks to provide support for dataflows. The library provides a homogeneous, generic, and simple representation of object and file streams in both Java and Python; enabling complex workflows to handle any data type without dealing directly with the streaming back-end.Els fluxos de treball de Data Science s’han convertit en una necessitat per progressar en moltes àrees científiques com les ciències de la vida, la salut i la terra. A diferència dels fluxos de treball tradicionals per a la CAP, els fluxos de Data Science són més heterogenis; combinant l’execució de binaris, simulacions MPI, aplicacions multiprocés, anàlisi personalitzats (possiblement escrits en Java, Python, C / C ++ o R) i computacions en temps real. Mentre que en el passat els experts de cada camp eren capaços de programar i executar petites simulacions, avui dia, aquestes simulacions representen un repte fins i tot per als experts ja que requereixen centenars o milers de nuclis. Per aquesta raó, els llenguatges i models de programació actuals s’esforcen considerablement en incrementar la programabilitat mantenint un rendiment acceptable. Aquesta tesi contribueix a l’adaptació de models de programació per a la CAP per afrontar les necessitats i reptes dels fluxos de Data Science estenent COMPSs, un model de programació distribuïda madur, de propòsit general, i basat en tasques. En primer lloc, millorem el nostre prototip per orquestrar diferent programari per a que els usuaris no experts puguin crear fluxos complexos usant un únic model on alguns passos requereixin tecnologies altament optimitzades. Aquesta extensió inclou les anotacions de @binary, @OmpSs, @MPI, @COMPSs, i @MultiNode per a fluxos en Java i Python. En segon lloc, integrem tecnologies de contenidors per permetre als desenvolupadors portar, distribuir i escalar fàcilment les seves aplicacions en plataformes distribuïdes. A més d’una metodologia senzilla per a paral·lelitzar aplicacions a partir de codis seqüencials, aquesta combinació proporciona una gestió d’imatges i una implementació d’aplicacions eficients que faciliten l’empaquetat i la distribució d’aplicacions. Distingim entre la gestió de contenidors estàtica, CAP i dinàmica i proporcionem casos d’ús representatius per a cada escenari amb Docker, Singularity i Mesos. En tercer lloc, dissenyem, implementem i integrem AutoParallel, un mòdul de Python per determinar automàticament la paral·lelització basada en tasques de nius de bucles afins i executar-los en paral·lel en una infraestructura distribuïda. AutoParallel està basat en programació seqüencial, requereix una sola anotació (el decorador @parallel) i permet a un usuari intermig escalar una aplicació a centenars de nuclis. Finalment, proposem una forma d’estendre els sistemes basats en tasques per admetre dades d’entrada i sortida continus; permetent així la combinació de fluxos de treball i dades (Fluxos Híbrids) en un únic model. Conseqüentment, els desenvolupadors poden crear fluxos complexos seguint diferents patrons sense l’esforç de combinar diversos models al mateix temps. A més, per a il·lustrar les capacitats dels Fluxos Híbrids, hem creat una biblioteca (DistroStreamLib) que s’integra fàcilment amb els models basats en tasques per suportar fluxos de dades. La biblioteca proporciona una representació homogènia, genèrica i simple de seqüències contínues d’objectes i arxius en Java i Python; permetent gestionar qualsevol tipus de dades sense tractar directament amb el back-end de streaming.Los flujos de trabajo de Data Science se han convertido en una necesidad para progresar en muchas áreas científicas como las ciencias de la vida, la salud y la tierra. A diferencia de los flujos de trabajo tradicionales para la CAP, los flujos de Data Science son más heterogéneos; combinando la ejecución de binarios, simulaciones MPI, aplicaciones multiproceso, análisis personalizados (posiblemente escritos en Java, Python, C/C++ o R) y computaciones en tiempo real. Mientras que en el pasado los expertos de cada campo eran capaces de programar y ejecutar pequeñas simulaciones, hoy en día, estas simulaciones representan un desafío incluso para los expertos ya que requieren cientos o miles de núcleos. Por esta razón, los lenguajes y modelos de programación actuales se esfuerzan considerablemente en incrementar la programabilidad manteniendo un rendimiento aceptable. Esta tesis contribuye a la adaptación de modelos de programación para la CAP para afrontar las necesidades y desafíos de los flujos de Data Science extendiendo COMPSs, un modelo de programación distribuida maduro, de propósito general, y basado en tareas. En primer lugar, mejoramos nuestro prototipo para orquestar diferentes software para que los usuarios no expertos puedan crear flujos complejos usando un único modelo donde algunos pasos requieran tecnologías altamente optimizadas. Esta extensión incluye las anotaciones de @binary, @OmpSs, @MPI, @COMPSs, y @MultiNode para flujos en Java y Python. En segundo lugar, integramos tecnologías de contenedores para permitir a los desarrolladores portar, distribuir y escalar fácilmente sus aplicaciones en plataformas distribuidas. Además de una metodología sencilla para paralelizar aplicaciones a partir de códigos secuenciales, esta combinación proporciona una gestión de imágenes y una implementación de aplicaciones eficientes que facilitan el empaquetado y la distribución de aplicaciones. Distinguimos entre gestión de contenedores estática, CAP y dinámica y proporcionamos casos de uso representativos para cada escenario con Docker, Singularity y Mesos. En tercer lugar, diseñamos, implementamos e integramos AutoParallel, un módulo de Python para determinar automáticamente la paralelización basada en tareas de nidos de bucles afines y ejecutarlos en paralelo en una infraestructura distribuida. AutoParallel está basado en programación secuencial, requiere una sola anotación (el decorador @parallel) y permite a un usuario intermedio escalar una aplicación a cientos de núcleos. Finalmente, proponemos una forma de extender los sistemas basados en tareas para admitir datos de entrada y salida continuos; permitiendo así la combinación de flujos de trabajo y datos (Flujos Híbridos) en un único modelo. Consecuentemente, los desarrolladores pueden crear flujos complejos siguiendo diferentes patrones sin el esfuerzo de combinar varios modelos al mismo tiempo. Además, para ilustrar las capacidades de los Flujos Híbridos, hemos creado una biblioteca (DistroStreamLib) que se integra fácilmente a los modelos basados en tareas para soportar flujos de datos. La biblioteca proporciona una representación homogénea, genérica y simple de secuencias continuas de objetos y archivos en Java y Python; permitiendo manejar cualquier tipo de datos sin tratar directamente con el back-end de streaming.Postprint (published version
    corecore