
HAL Id: hal-02971480
https://hal.inria.fr/hal-02971480

Submitted on 19 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AutoParallel: Automatic parallelisation and distributed
execution of affine loop nests in Python

Cristian Ramon-Cortes, Ramon Amela, Jorge Ejarque, Philippe Clauss, Rosa
Badia

To cite this version:
Cristian Ramon-Cortes, Ramon Amela, Jorge Ejarque, Philippe Clauss, Rosa Badia. AutoParallel:
Automatic parallelisation and distributed execution of affine loop nests in Python. International
Journal of High Performance Computing Applications, SAGE Publications, 2020, 34 (6), pp.1 - 14.
�10.1177/1094342020937050�. �hal-02971480�

https://hal.inria.fr/hal-02971480
https://hal.archives-ouvertes.fr

AutoParallel: Automatic parallelisation
and distributed execution of affine loop
nests in Python

The International Journal of High Perfor-
mance Computing Applications
XX(X):1–14
©The Author(s) 2020
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Cristian Ramon-Cortes1, Ramon Amela1, Jorge Ejarque1, Philippe Clauss2, Rosa M. Badia1

Abstract
The last improvements in programming languages and models have focused on simplicity and abstraction; leading
Python to the top of the list of the programming languages. However, there is still room for improvement when
preventing users from dealing directly with distributed and parallel computing issues. This paper proposes and evaluates
AutoParallel, a Python module to automatically find an appropriate task-based parallelisation of affine loop nests and
execute them in parallel in a distributed computing infrastructure. It is based on sequential programming and contains
one single annotation (in the form of a Python decorator) so that anyone with intermediate-level programming skills can
scale up an application to hundreds of cores.
The evaluation demonstrates that AutoParallel goes one step further in easing the development of distributed
applications. On the one hand, the programmability evaluation highlights the benefits of using a single Python decorator
instead of manually annotating each task and its parameters or, even worse, having to develop the parallel code
explicitly (e.g., using OpenMP, MPI). On the other hand, the performance evaluation demonstrates that AutoParallel
is capable of automatically generating task-based workflows from sequential Python code while achieving the same
performances than manually taskified versions of established state-of-the-art algorithms (i.e., Cholesky, LU, and QR
decompositions). Finally, AutoParallel is also capable of automatically building data blocks to increase the tasks’
granularity; freeing the user from creating the data chunks, and re-designing the algorithm. For advanced users, we
believe that this feature can be useful as a baseline to design blocked algorithms.

Keywords
Automatic Parallelisation, Distributed Computing, Programming Models

1 Introduction

Computer simulations have become more and more crucial to
both theoretical and experimental studies in many different
fields, such as structural mechanics, chemistry, biology,
genetics, and even sociology. Several years ago, small
simulations (with up to several cores or even several
nodes within the same grid) were enough to fulfil the
scientific community requirements and thus, the experts
of each field were capable of programming and running
them. However, nowadays, simulations requiring hundreds
or thousands of cores are widely used and, to this point,
efficiently programming them becomes a challenge even
for computer scientists. On the one hand, interdisciplinary
teams have become popular, with field experts and computer
scientists joining their forces together to keep their research
at the forefront. On the other hand, programming languages
have made a considerable effort to ease programmability
while maintaining acceptable performance. In this sense,
Python van Rossum and Drake (2011) has risen to the
top language for nonexperts Cass (2019), being easy to
program while maintaining a good performance trade-
off and having a large number of third-party libraries
available. Similarly, Go Google (2019) has also gained some
momentum thanks to its portability, reliability, and ease
of concurrent programming, although it is still in its early
stages.

Even if some great efforts have been accomplished
for programming frameworks to ease the development
of distributed applications, we go one step further with
AutoParallel: a Python module to automatically parallelise
applications and execute them in distributed environments.
Our philosophy is to ease the development of parallel and
distributed applications so that anyone with intermediate-
level programming skills can scale up an application to
hundreds of cores. In this sense, AutoParallel is based on
sequential programming and only requires a single Python
decorator that frees the user from manually taskifying the
original code. Internally, it relies on Pluto Bondhugula and
et al. (2008b) to parallelise affine loop nests and taskifies the
obtained code so that PyCOMPSs can distributedly execute
it using any underlying infrastructure (clusters, clouds, and
containers). Moreover, to avoid single instruction tasks,
AutoParallel can also increase the tasks’ granularity by
automatically building data blocks (chunks).

1Barcelona Supercomputing Center (BSC), Spain
2ICube Lab. - Université de Strasbourg, Strasbourg, France

Corresponding author:
Cristian Ramon-Cortes, Barcelona Supercomputing Center (BSC),
Carrer Jordi Girona 29, 08034 Barcelona, Spain
Email: cristian.ramoncortes@bsc.es

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 The International Journal of High Performance Computing Applications XX(X)

The rest of the paper is organised as follows. Section 2
describes the state of the art. Section 3 presents PyCOMPSs
and Pluto, and Section 4 describes the AutoParallel’s
architecture. Next, Section 5 evaluates its programmability,
Section 6 presents its performance results, and Section 7
analyses the automatic building of data blocks. Finally,
Section 8 concludes the paper and gives some guidelines for
future work.

2 State of the Art

Nowadays, simulations are run in distributed environments
and, although Python has become a reference programming
language, there is still much work to do to ease parallel
and distributed computing issues. In this concern, Python
can provide parallelism at three levels. First, parallelism
can be achieved internally through many libraries such
as NumPy var der Walt et al. (2011) and SciPy Jones
et al. (2001–), which offer vectorised data structures and
numerical routines that automatically map operations on
vectors and matrices to the BLAS University of Tennesse.
Oak Ridge National Laboratory. Numerical Algorithms
Group Ltd. (2017) and LAPACK Anderson and et al. (1999)
functions; executing the multi-threaded BLAS version (using
OpenMP Dagum and Menon (1998) or TBB Intel (2019))
when present in the system. Notice that, although parallelism
is completely transparent for the application user, parallel
libraries only benefit from intra-node parallelism, while
our solution aims for distributed computing. Moreover,
NumPy offers vectorised data structures and operations in
a transparent way to prevent users from defining loops to
handle NumPy values directly. In contrast, our solution
requires a Python decorator on top of a method containing
affine loop nests. Thus, to parallelise a vector operation,
the users must explicitly define the loop nests to apply
an operation to all the vector elements. However, in our
previous work, Amela and et al. (2017) and Amela and et al.
(2018), we have demonstrated the benefits from combining
inter- and intra-node parallelism using PyCOMPSs Tejedor
and et al. (2017) and NumPy. Similarly, some NumPy
extensions can be integrated with PyCOMPSs to boost
the intra-node performance. For instance, NumExpr Cooke
et al. (2020) can be used to optimise the computation
of numerical expressions and, as detailed in Barcelona
Supercomputing Center (BSC) (2020), the Numba Lam
et al. (2015); Anaconda (2020) compiler annotations can be
combined with the PyCOMPSs programming model.

Secondly, many modules can explicitly provide paral-
lelism. The multiprocessing module Python Software Fun-
dation (2019) provides support for the spawning of processes
in SMP machines using an API similar to the threading mod-
ule, with explicit calls for creating processes. In addition,
the Parallel Python (PP) module Vitalii Vanovschi (2019)
provides mechanisms for parallel execution of Python codes,
with an API that includes specific functions for specifying
the number of workers to be used, submitting the jobs for
execution, getting the results from the workers, etc. Also,
the mpi4py Dalcı́n et al. (2005) library provides a binding
of MPI for Python which allows the programmer to handle
parallelism both inter-node and intra-node. However, in all

cases, the burden of parallelism specific issues is assigned to
the programmer.

Third, other libraries and frameworks enable Python
distributed and multi-threaded computations such as
PyCOMPSs Tejedor and et al. (2017), Dask Dask Devel-
opment Team (2016), PySpark Apache Software Fundation
(2019), and Pydron Müller and et al. (2014). PyCOMPSs
is a task-based programming model that targets sequential
programming and provides a set of decorators to enable
the programmer to identify methods as tasks and a small
synchronisation API. Its runtime exploits the inherent par-
allelism of the applications by building, at execution time,
a data dependency graph of the tasks and executing them
using a distributed parallel platform (clusters, clouds, and
containers). Further details are available on Section 3 since
our solution uses this framework. On the other hand, Dask
is a native Python library that allows the creation and
distributed execution of Directed Acyclic Graphs (DAG)
of a set of operations on NumPy and pandas McKinney
(2011) objects. Also, PySpark is a binding to the widely
extended framework Spark Zaharia and et al. (2010). Finally,
Pydron Müller and et al. (2014) is a semi-automatic par-
allelisation Python module that transparently translates the
application into a data-flow graph which can be distributed
across clusters or clouds. It offers a @schedule decorator
to automatically parallelise calls to methods that are anno-
tated with the @functional decorator. In comparison to
PyCOMPSs, Pydron’s @functional decorator is equiv-
alent to PyCOMPSs’ @task decorator. However, Pydron
analyses the abstract syntax tree of the function’s code to
build the data dependency graph while PyCOMPSs requires
extra parameter annotations inside the @task decorator.
Moreover, the @schedule decorator enables users to acti-
vate and deactivate the parallelisation of @functional
methods, while PyCOMPSs parallelises any call to a @task
method.

3 Technical Background

This section provides a general overview of the satellite
frameworks that directly interact with the AutoParallel
module: PyCOMPSs and Pluto. It also highlights some of
their features that are crucial for their integration.

3.1 PyCOMPSs
COMPSs Badia and et al. (2015); Lordan and et al. (2014)
is a task-based programming model that aims to ease the
development of parallel applications, targeting distributed
computing platforms. It relies on its runtime to exploit the
inherent parallelism of the application at execution time by
detecting the task calls and the data dependencies between
them.

The COMPSs runtime natively supports Java applications
but also provides bindings for Python and C/C++. Precisely,
the Python binding is known as PyCOMPSs. All the bindings
are supported through a binding-commons layer which
focuses on enabling the functionalities of the runtime to other
languages. It is written in C and has been designed as an
API with a set of defined functions to communicate with the
runtime through the JNI Liang (1999).

Prepared using sagej.cls

Ramon-Cortes et al. 3

As shown in Figure 1, the COMPSs runtime allows appli-
cations to be executed on top of different infrastructures
(such as multi-core machines, grids, clouds or contain-
ers Ramon-Cortes and et al. (2018)) without modifying a
single line of the application code. Thanks to the differ-
ent connectors, the runtime is capable of handling all the
underlying infrastructure so that the user only defines the
tasks. It also provides fault-tolerant mechanisms for partial
failures (with job re-submission and reschedule when tasks
or resources fail), has a live monitoring tool through a
built-in web interface, supports instrumentation using the
Extrae Barcelona Supercomputing Center (BSC) (2019b)
tool to generate post-mortem traces that can be analysed with
Paraver Barcelona Supercomputing Center (BSC) (2019d),
has an Eclipse IDE, and has pluggable cloud connectors and
task schedulers.

Figure 1. COMPSs overview.

Additionally, the programming model is based on
sequential programming which means that users do not
need to deal with any parallelisation and distribution issue
such as thread creation, synchronisation, data distribution,
messaging or fault-tolerance. Instead, application developers
only select which methods must be considered as tasks,
and the runtime spawns them asynchronously on a set of
resources instead of executing them locally and sequentially.

3.1.1 PyCOMPSs Programming Model

Regarding programmability, tasks are identified by
inserting annotations in the form of Python decorators.
These annotations are inserted at method level and
indicate that invocations to a given method should become
tasks at execution time. The @task decorator also
contains information about the directionality of the method
parameters specifying if a given parameter is read (IN),
written (OUT) or both read and written in the method
(INOUT).

Listing 1 shows an example of a task annotation. The
parameter c has direction INOUT, and parameters a and b
are set to the default direction IN. The directionality tags
are used at execution time to derive the data dependencies
between tasks and are applied at an object level, taking into
account its references to identify when two tasks access the
same object.

1 @constraint(ComputingUnits="$CUS")
2 @task(c=INOUT)
3 def multiply(a, b, c):
4 c += a * b

Listing 1: Sample task annotation.

Additionally to the @task decorator, the @constraint
decorator can be optionally defined to indicate some task
hardware or software requirements. Continuing with the
previous example, the task constraint ComputingUnits
tells the runtime how many CPUs are consumed by each
task execution. The available resources are defined by the
system administrator in a separated XML configuration file.
Other constraints that can be defined refer to the processor
architecture, memory size, disk storage, operating system or
available libraries.

A tiny synchronisation API completes the PyCOMPSs
syntax. As shown in Listing 2, the API function
compss wait on waits for the completion of all the tasks
modifying the result’s value and brings the final value to
the node executing the main program. Then, the execution of
the main program is resumed. Given that PyCOMPSs is used
mostly in distributed environments, synchronisation implies
a data transfer from remote storage or memory space to the
node executing the main program.

1 for block in data:
2 partial_res = wordcount_task(block)
3 reduce_task(result, partial_res)
4 final_result = compss_wait_on(result)

Listing 2: Sample call to synchronisation API.

3.2 Pluto
Many compute-intensive scientific applications spend most
of their execution time running nested loops. The Polyhedral
Model Cohen and et al. (2005) provides a powerful
mathematical abstraction to analyse and transform loop nests
in which the data access functions and loop bounds are
affine combinations (linear combinations with a constant)
of the enclosing loop iterators and parameters. This model
represents the instances of the loop nests’ statements as
integer points inside a polyhedron, where inter and intra-
statement dependencies are characterised as a dependency
polyhedron. Combining this representation with Linear
Algebra and Integer Linear Programming, it is possible
to reason about the correctness of a sequence of complex
optimising and parallelising loop transformations.

Pluto Bondhugula (2017); Bondhugula and et al. (2008b)
is an automatic parallelisation tool based on the Polyhedral
model to optimise arbitrarily nested loop sequences with
affine dependencies. At compile time, it analyses C source
code to optimise and parallelise affine loop-nests and
automatically generate OpenMP C parallel code for multi-
cores. Although the tool is fully automatic, many options
are available to tune tile sizes, unroll factors, and outer loop
fusion structure.

As shown in Figure 2, Pluto internally translates the
source code to an intermediate OpenScop Bastoul (2011)
representation using Clan Bastoul and et al. (2003). Next, it
relies on the Polyhedral Model to find affine transformations
for coarse-grained parallelism, data locality, and efficient
tiling. Finally, Pluto generates the OpenMP C code from the
OpenScop representation using CLooG Bastoul (2004). We
must highlight that the generated code is also optimised for
data locality and made amenable to auto-vectorisation.

Prepared using sagej.cls

4 The International Journal of High Performance Computing Applications XX(X)

Figure 2. Pluto source-to-source transformation. Source:
Bondhugula and et al. (2008a).

3.2.1 Loop Tiling

Among many other options, Pluto can tile code by
specifying the --tile option. In general terms, as shown
in Listing 3, tiling a loop of given size N results in a division
of the loop in N/T repeatable parts of size T. For instance,
this is suitable when fitting loops into the L1 or L2 caches or,
in the context of this paper, when building the data blocks to
increase the tasks’ granularity.

1 # Original loop # Tiled loop
2 for i in range(N): for i in range(N/T):
3 print(i) for t in range(T):
4 print(i*T + t)

Listing 3: Example of loop tiling.

Along with this option, users can let Pluto set the tile sizes
automatically using a rough heuristic, or manually define
them in a tile.sizes file. This file must contain one tile
size on each line and as many tile sizes as the loop nest depth.

In the context of parallel applications, tile sizes must be
fine-tuned for each application so that they maximise locality
while making sure there are enough tiles to keep all cores
busy.

4 Architecture
The framework proposed in this paper eases the development
of distributed applications by letting users program their
application in a standard sequential fashion. It is developed
on top of PyCOMPSs and Pluto. When automatically
parallelising sequential applications, users must only insert
an annotation on top of the potentially parallel functions to
activate the AutoParallel module. Next, the application can
be launched using PyCOMPSs.

Following a similar approach than PyCOMPSs, we have
included a new decorator @parallel to specify which
methods should be automatically parallelised at runtime.
Notice that, since PLUTO and the Polyhedral Model can
only be applied to affine loops, the functions using this
decorator must contain loop nests in which the data access
functions and loop bounds are affine combinations (linear
combinations with a constant) of the enclosing loop iterators
and parameters. Otherwise, the source code will remain
intact.

As shown in Figure 3, the AutoParallel Module analyses
the user code searching for @parallel annotations.
Essentially, when found, the module calls Pluto to generate
its parallelisation and substitutes the user code by a newly

Figure 3. Overview of the AutoParallel Module.

generated code. Once all annotations have been processed,
the new tasks are registered into PyCOMPSs, and the
execution continues as a regular PyCOMPSs application (as
described in Section 3.1). Finally, when the application has
ended, the generated code is stored in a (autogen.py) file
and the user code is restored.

4.1 AutoParallel Module
The internals of the AutoParallel module are quite complex
(more than 5.000 lines of code) because it automatically
re-writes the python’s AST representation of the user code
at execution time, while interacting with C/C++ libraries
in an intermediate format (OpenScop). This section only
provides a first approach to AutoParallel by detailing its
five main components. Complete code and documentation
can be found in Ramon-Cortes (2019b). For the sake of
clarity, Figure 4 shows the relationship between them and
their expected inputs and outputs.

Figure 4. Internals of the AutoParallel Module.

• Decorator Implements the @parallel decorator to
detect functions that the user has marked as potentially
parallel.

Prepared using sagej.cls

Ramon-Cortes et al. 5

• Python To OpenScop Translator For each affine loop
nest detected in the user function, builds a Python
Scop object representing it that can be bulked into an
OpenScop format file.

• Paralleliser Returns the Python code resulting from
parallelising an OpenScop file. Since Python does
not have any standard regarding parallel annotations,
the parallel loops are annotated using comments with
OpenMP syntax.

• Python to PyCOMPSs Translator Converts an
annotated Python code into a PyCOMPSs application
by inserting the necessary task annotations and data
synchronisations. This component can also build data
blocks from loop tiles and taskify them if enabled by
the user (see Section 4.2 for more details).

• Code Replacer Replaces each loop nest in the
initial user code by the auto-generated code so that
PyCOMPSs can execute the code in a distributed
computing platform. When the application has
finished, it restores the user code and saves the auto-
generated code in a separated file.

For instance, Listing 4 shows the relevant parts of an
Embarrassingly Parallel application with the main function
annotated with the @parallel decorator that contains two
nested loops.

1 # Main Function
2 from pycompss.api.parallel import parallel
3 @parallel()
4 def ep(mat, n_size, m_size, c1, c2):
5 for i in range(n_size):
6 for j in range(m_size):
7 mat[i][j] = compute(mat[i][j], c1, c2)

Listing 4: EP example: user code.

In addition, Listing 5 shows the parallelisation proposed
by the AutoParallel module. On the one hand, the
automatically generated source code contains the definition
of a new task (S1) that includes the task decorator,
annotations for its data dependencies (line 2), and the
function code (line 4). Notice that the function code is
automatically generated from the inner statement in the
original loop (line 7 in Listing 4).

1 # [COMPSs Autoparallel] Begin Autogenerated code
2 @task(var2=IN, c1=IN, c2=IN, returns=1)
3 def S1(var2, c1, c2):
4 return compute(var2, c1, c2)
5

6 def ep(mat, n_size, m_size, c1, c2):
7 if m_size >= 1 and n_size >= 1:
8 lbp = 0
9 ubp = m_size - 1

10 for t1 in range(lbp, ubp + 1):
11 lbv = 0
12 ubv = n_size - 1
13 for t2 in range(lbv, ubv + 1):
14 mat[t2][t1]=S1(mat[t2][t1],c1,c2)
15 compss_barrier()
16 # [COMPSs Autoparallel] End Autogenerated code

Listing 5: EP example: auto-generated code.

On the other hand, the generated source code contains
the ep function with some modifications. First, AutoParallel

introduces a new set of variables (e.g., lbp, ubp, lbv, ubv)
to control the bounds of each loop. Also, the loop nest is
modified following the Pluto output to call the automatically
generated tasks (line 14) and exploit the inherent parallelism
available in the original code. For instance, in the example,
the loop bounds have been interchanged (n size and m size).
Finally, AutoParallel includes a barrier (line 15) used as
synchronisation point at the end of the function code.

4.2 Taskification of loop tiles
Many compute-intensive scientific applications are not
designed as block computations, and thus, the tasks proposed
by the AutoParallel module are single statements. Although
this can be harmless in tiny parallel environments, it leads
to poor performance when executed using large distributed
environments since the tasks’ granularity is not large enough
to surpass the overhead of transferring the task definition,
and the input and output data. To face this issue, we
have extended the Python to PyCOMPSs Translator to
automatically build data blocks from loop tiles and taskify
them. As shown in Listing 6, the users can enable this
behaviour by providing the tile=True option to the
@parallel decorator.

1 from pycompss.api.parallel import parallel
2 @parallel(tile=True)
3 def ep(mat, n_size, m_size, c1, c2):
4 for i in range(n_size):
5 for j in range(m_size):
6 mat[i][j] = compute(mat[i][j], c1, c2)

Listing 6: EP example: user code with taskification of loop
tiles.

Essentially, the taskification of loop tiles means letting
Pluto process the parallel code by generating tiles, and
extract the loop tiles into tasks. As explained in Section 3.2.1,
the tiled loops generated by Pluto duplicate the depth of the
original loop nest while decreasing the number of iterations
per loop. Hence, extracting all the tiles and converting
them into tasks maintains the original loop depth, decreases
the number of iterations per loop, and increases the task
granularity.

Since tasks may use N-dimensional arrays, the taskifi-
cation of loop tiles also implies to create the necessary
data blocks (chunks) for each parameter before the task
callee. The automatically generated code builds the data
blocks on the main code and passes them to the tasks
using the PyCOMPSs Collection parameter annotation. This
annotation ensures that all the internal objects of the chunks
are registered so that all the parameter dependencies are
respected. Following with the previous example, Listing 7
shows the automatically generated code with taskification of
loop tiles.

Notice that the generated code with taskification of loop
tiles is significantly more complex. In the example, the
original loop nest has depth 2, the tile size for the t1 loop
is set to 2, and the tile size for the t2 loop is set to 32. Also,
readers may identify the t3 loop as the tile of t2 loop, and
the t4 loop as the tile of the t1 loop (indexes have been
swapped automatically due to data locality).

Prepared using sagej.cls

6 The International Journal of High Performance Computing Applications XX(X)

1 # [COMPSs Autoparallel] Begin Autogenerated code
2 @task(t2=IN, m_size=IN, t1=IN, n_size=IN, coef1=IN,
3 coef2=IN, mat={Type: COLLECTION_INOUT, Depth: 2})
4 def LT2(t2, m_size, t1, n_size, coef1, coef2, mat):
5 for t3 in range(32*t2, min(m_size, 32*t2 + 32)):
6 lbv = 2*t1
7 ubv = min(n_size - 1, 2*t1 + 1)
8 for t4 in range(lbv, ubv + 1):
9 mat[t4 - 2*t1][t3 - 32*t2] = S1_no_task(

10 mat[t4 - 2*t1][t3 - 32*t2], coef1, coef2)
11

12 def S1_no_task(var2, coef1, coef2):
13 return compute(var2, coef1, coef2)
14

15 def ep(mat, n_size, m_size, coef1, coef2):
16 if m_size >= 1 and n_size >= 1:
17 lbp = 0
18 ubp = int(math.floor(float(n_size - 1)/float(2)))
19 for t1 in range(lbp, ubp + 1):
20 lbp = 0
21 ubp = int(math.floor(float(m_size - 1)/float(32)))
22 for t2 in range(lbp, ubp + 1):
23 lbp = 32 * t2
24 ubp = min(m_size - 1, 32*t2 + 31)
25 # Chunk creation
26 LT2_aux_0 = [[mat[gv0][gv1] for gv1 in ...]
27 for gv0 in ...]
28 # Task call
29 LT2(t2, m_size, t1, n_size, coef1, coef2,
30 LT2_aux_0)
31 compss_barrier()
32 # [COMPSs Autoparallel] End Autogenerated code

Listing 7: EP example: auto-generated code with taskifica-
tion of loop tiles.

Regarding the tasks, LT2 contains a loop nest of depth
2 with 2 iterations for the t4 loop, and 32 iterations for
the t3 loop. Furthermore, each N-dimensional array used
as a parameter is annotated as a Collection with its direction
(IN or INOUT) and depth (number of dimensions). In the
example, mat is annotated as a COLLECTION_INOUT of
depth 2. Moreover, inside the task code, the array accesses
are modified accordingly to the received data chunks.

Regarding the main code, the original loops are modified
considering the tiles’ decoupling. In the example, the number
of iterations of the t1 loop is divided by 2, and the number of
iterations of the t2 loop is divided by 32. Furthermore, the
data chunks are built before the task callee by only copying
the original object references. In the example, we build
the LT2_aux_0 chunk from mat and update the callee
parameters accordingly. Finally, similarly to the previous
cases, the end of the main code also includes a barrier as
a synchronisation point.

4.3 Python Extension for CLooG
As described in Section 3.2, Pluto operates internally with
the OpenScop format. It relies on Clan to translate input
code from C/C++ or Fortran to OpenScop, and on CLooG to
translate output code from OpenScop to C/C++ or Fortran.

Since we are targeting Python code, a translation from
Python to OpenScop is required before calling Pluto, and
another translation from OpenScop to Python is required at
the end. Regarding the input, we have developed the Python
To OpenScop Translator component inside AutoParallel to
manually translate the code because Clan is not adapted for
supporting additional languages and Pluto accepts OpenScop
codes as input. Regarding the output, we have extended
CLooG so that the written code is directly in Python. Hence,

we have extended the language options and modified the
Pretty Printer in order to translate every OpenScop statement
into its equivalent Python format. Since Python does not
have any standard regarding parallel annotations, the parallel
loops are annotated with comments in OpenMP syntax.

5 Programmability Evaluation
Considering an idealistic environment, the developer’s
productivity can be expressed as the relation between
the effort to write the code of the application and the
performance obtained by such code. We are aware that many
other factors such as the physical working environment,
adequate development frameworks and tools, meeting times,
code reviews, burndowns, etc. can affect the developer’s
productivity, but we only consider elements directly related
with the code. Furthermore, these terms can be considered
constants or eventualities when comparing the productivity
difference for the same developer when using (or not) the
AutoParallel module.

In this section, we demonstrate that our approach improves
the developer’s productivity significantly by easing the
coding of the application. On the other hand, next sections
(Section 6 and 7) focus on evaluating and comparing
the performance of the automatically generated codes.
Hence, the application presented in this section highlights
the benefits at the programming model level of using
AutoParallel without focusing on performance.

5.1 Centre of Mass
The following application calculates the centre of mass of a
given system. The system itself is composed of objects that
are composed of parts in a certain position of the space. Also,
each part has a predefined mass. Equation 1 describes how
to compute the centre of mass of the system (CM) by first
calculating the centre of mass and the aggregated mass of
each object and, next, computing the centre of mass of the
whole system.

cmobj =

∑num parts
j=0 massobj,j · positionj∑num parts

j=0 massj

massobj =

num parts∑
j=0

massj

CM =

∑num objs
i=0 massi · cmi∑num objs

i=0 massi

(1)

Listing 8 provides the sequential code to calculate the
centre of mass following Equation 1. The first loop nest
(lines 11 to 26 in the figure) calculates the numerator and
the denominator of cmobj so that the second loop nest (lines
32 to 39) can compute the centre of mass of each object in the
system. Then, the third loop nest (lines 42 to 45) computes
the centre of mass of the whole system.

Given the sequential code, the users can add the
@parallel decorator to automatically taskify and run the
application in a distributed environment. Listing 9 shows that
the AutoParallel module can be enabled by just adding 2
lines (the import and the decorator) on top of the method
declaration.

Prepared using sagej.cls

Ramon-Cortes et al. 7

1 def calculate_cm(num_objs, num_parts, num_dims,
2 objs, masses):
3 import numpy as np
4

5 # Initialize object results
6 objs_cms = [[np.float(0) for _ in range(num_dims)]
7 for _ in range(num_objs)]
8 objs_mass = [np.float(0) for _ in range(num_objs)]
9

10 # Calculate CM and mass of every object
11 for obj_i in range(num_objs):
12 # Calculate object mass and cm position
13 for part_i in range(num_parts):
14 # Update total object mass
15 objs_mass[obj_i]
16 += masses[objs[obj_i][part_i][0]]
17 # Update total object mass position
18 for dim in range(num_dims):
19 objs_cms[obj_i][dim]
20 += masses[objs[obj_i][part_i][0]]
21 * objs[obj_i][part_i][1][dim]
22 # Store final object CM and mass
23 for dim in range(num_dims):
24 objs_cms[obj_i][dim] /= objs_mass[obj_i]
25 if objs_mass[obj_i] != np.float(0)
26 else np.float(0)
27

28 # Initialize system results
29 system_mass = np.float(0)
30 system_cm = [np.float(0) for _ in range(num_dims)]
31

32 # Calculate system CM for every object
33 for obj_i in range(num_objs):
34 # Update total mass
35 system_mass += objs_mass[obj_i]
36 # Update system mass position
37 for dim in range(num_dims):
38 system_cm[dim] += objs_mass[obj_i]
39 * objs_cms[obj_i][dim]
40

41 # Calculate system CM
42 for dim in range(num_dims):
43 system_cm[dim] /= system_mass
44 if system_mass != np.float(0)
45 else np.float(0)
46

47 return system_cm

Listing 8: Centre of mass: sequential code.

1 from pycompss.api.parallel import parallel
2

3 @parallel()
4 def calculate_cm(num_objs, num_parts, num_dims,
5 objs, masses):
6 # Exactly the same code than the original
7 ...
8

9 return system_cm

Listing 9: Centre of mass: AutoParallel annotations.

As we stated in Section 2, other programming models such
as NumPy offer vectorised data structures and operators in
a transparent way to prevent the users from defining loops
to handle NumPy values directly. Although the AutoParallel
module can automatically parallelise and distributedly
execute loops containing NumPy vectorised operations
(taskifying them as any other single statement), the purpose
of this section is to compare the AutoParallel module against
pure sequential Python code without considering additional
libraries that can benefit from intra-node parallelism.

Next, Table 1 compares the user code and the
automatically generated code in terms of annotations and
loop configuration.

Version
Code Analysis Loops Analysis

Annotations API

Calls
Main Total

Max

DepthMethod Param.

autoparallel
(user code)

1 0 0 3 7 3

autoparallel
(generated)

6 15 3 14 29 3

Table 1. Centre of mass: code and loop analysis.

On the one hand, although PyCOMPSs’ annotations
are quite simple compared to other programming models
(such as MPI), the automatically generated code contains
6 different task definitions with 15 parameter annotations.
More in-depth, Listing 10 details each task definition where
S1 corresponds to the statement in line 15 of the sequential
code (Listing 8), S2 to line 19, S3 to line 24, S4 to line 35,
S5 to line 38, and S6 to line 43. Furthermore, notice that
AutoParallel creates a new task per statement in the original
loop nest, even if the internal operation is the same at the
end. Hence, a user manually parallelising and taskifying the
previous sequential code will obtain a similar solution but
using 3 tasks instead of 6 since S1 and S4, S2 and S5, and S3
and S6 can be merged.

1 from pycompss.api.task import task
2 from pycompss.api.parameter import *
3

4 @task(var2=IN, var1=INOUT)
5 def S1(var2, var1):
6 var1 += var2
7

8 @task(var2=IN, var3=IN, var1=INOUT)
9 def S2(var2, var3, var1):

10 var1 += var2 * var3
11

12 @task(var2=IN, var3=IN, var1=INOUT)
13 def S3(var2, var3, var1):
14 var1 /= var3 if var2 != np.float(0)
15 else np.float(0)
16

17 @task(var1=IN, system_mass=INOUT)
18 def S4(var1, system_mass):
19 system_mass += var1
20

21 @task(var2=IN, var3=IN, var1=INOUT)
22 def S5(var2, var3, var1):
23 var1 += var2 * var3
24

25 @task(system_mass=IN, var1=INOUT)
26 def S6(system_mass, var1):
27 var1 /= system_mass if system_mass != np.float(0)
28 else np.float(0)

Listing 10: Centre of mass: Automatically generated tasks.

On the other hand, AutoParallel re-writes the loop nests in
order to exploit data locality and perform some optimisations
depending on the input values. Hence, the 3 original loop
nests have been split into 14 loop nests containing a total of
29 for loops. However, notice that the maximum depth (3)
is preserved to ensure that the complexity remains the same.
More in-depth, Listing 11 shows the automatically generated
loop nest, including the task and data synchronisation calls.
Due to space constraints, we only include the generated code
for the second and third loop nests (lines 32 to 39 and 42 to
45 in the sequential code on Listing 8) since the first one is
more complex and has been divided into 10 loop nests.

Regarding the second loop nest, S5 computes the
nominator of the system’s centre of mass and S4 the

Prepared using sagej.cls

8 The International Journal of High Performance Computing Applications XX(X)

denominator (total mass of the system). Also, AutoParallel
has split the main loop into 3 loops (lines 23, 36, and 40 in
Listing 11) considering different input values and iterating in
a different way over the loop space to exploit data locality.

Regarding the third loop nest, although AutoParallel has
automatically added the lbp and ubp variables to control
the loop bounds, the loop structure is kept the same.
Furthermore, the original statement is substituted by a task
call to S6.

After the code corresponding to each original loop nest,
AutoParallel automatically adds a compss_barrier() to
avoid possible data collisions (lines 46 and 54 in Listing 11).
Also, there is a synchronisation of the system_cm variable
(line 56) before the return of the function so that PyCOMPSs
synchronises and transfers its final value.

1 from pycompss.api.api import compss_wait_on
2

3 def calculate_cm(num_objs, num_parts, num_dims,
4 objs, masses):
5 import numpy as np
6

7 # Initialize object results
8 objs_cms = [[np.float(0) for _ in range(num_dims)]
9 for _ in range(num_objs)]

10 objs_mass = [np.float(0) for _ in range(num_objs)]
11

12 # Calculate CM and mass of every object
13 ...
14

15 # Calculate system CM for every object
16 system_mass = np.float(0)
17 system_cm = [np.float(0) for _ in range(num_dims)]
18

19 if num_objects >= 1:
20 if num_objects >= 2:
21 lbp = 0
22 ubp = min(num_dims - 1, num_objects - 1)
23 for t1 in range(lbp, ubp + 1):
24 S4(objs_mass[t1], system_mass)
25 S5(objs_mass[0], objs_cms[0][t1], system_cm[t1])
26 lbp = 1
27 ubp = num_objects - 1
28 for t2 in range(1, num_objects - 1 + 1):
29 S5(objs_mass[t2], objs_cms[t2][t1],
30 system_cm[t1])
31 if num_dims >= 1 and num_objects == 1:
32 S4(objs_mass[0], system_mass)
33 S5(objs_mass[0], objs_cms[0][0], system_cm[0])
34 lbp = max(0, num_dims)
35 ubp = num_objects - 1
36 for t1 in range(lbp, ubp + 1):
37 S4(objs_mass[t1], system_mass)
38 lbp = num_objects
39 ubp = num_dims - 1
40 for t1 in range(lbp, ubp + 1):
41 lbp = 0
42 ubp = num_objects - 1
43 for t2 in range(0, num_objects - 1 + 1):
44 S5(objs_mass[t2], objs_cms[t2][t1],
45 system_cm[t1])
46 compss_barrier()
47

48 # Calculate system CM
49 if num_dims >= 1:
50 lbp = 0
51 ubp = num_dims - 1
52 for t1 in range(lbp, ubp + 1):
53 S6(system_mass, system_cm[t1])
54 compss_barrier()
55

56 system_cm = compss_wait_on(system_cm)
57

58 return system_cm

Listing 11: Centre of mass: Automatically generated loop
nest.

To conclude, AutoParallel is capable of automatically
taskifying a sequential code and re-order the loop nests to
exploit data locality by just adding one single annotation.
For the centre of mass application, AutoParallel frees the
users from defining 6 tasks, annotating 15 parameters,
building each task call and re-ordering the objects, parts,
and dimensions loops to exploit data locality. Also, notice
that PyCOMPSs already provides a simple programming
model compared to many other frameworks such as MPI.
In those cases, AutoParallel frees the users from explicitly
defining the code for each process, handling data transfers,
and synchronising the different processes.

6 Performance Evaluation
This section demonstrates that our approach eases the coding
of the application using one single Python decorator on top
of sequential code, while obtaining similar performances
than manually parallelised codes. Next subsections evaluate
the code complexity and the performance for established
algorithms when using AutoParallel or PyCOMPSs. We
evaluate the Cholesky, LU, and QR decompositions in order
to demonstrate that AutoParallel is capable of automatically
generating code as efficient as solutions that have been a
reference in state of the art for more than ten years, but
requiring much less effort to write them.

It is worth highlighting that AutoParallel is an additional
module to generate PyCOMPSs annotated applications auto-
matically but, at execution time, the generated code acts as
a regular PyCOMPSs application. Hence, the execution per-
formance is strongly related to the PyCOMPSs performance.
This section reports the performance evaluation of several
applications in comparison with their implementations using
only PyCOMPSs to evaluate only the overhead introduced
by AutoParallel. Therefore, the performance evaluation of
PyCOMPSs and its Runtime is beyond the scope of this
paper. For further details, in our previous work Amela and
et al. (2017) and Amela and et al. (2018), we analysed in-
depth the performance obtained when executing linear alge-
bra applications when combining PyCOMPSs for inter-node
parallelism and NumPy for intra-node parallelism. Also,
in Conejero and et al. (2018), we compared the PyCOMPSs
Runtime against Apache Spark.

6.1 Computing Infrastructure
Results presented in this section have been obtained using the
MareNostrum IV Supercomputer located at the Barcelona
Supercomputing Center (BSC).

We have used PyCOMPSs version 2.6 (available
at Barcelona Supercomputing Center (BSC) (2019a)), Pluto
version 0.11.4, CLooG version 0.19.0, and AutoParallel
version 1.0 (available at Ramon-Cortes (2019b)). We have
also used Intel®Python 2.7.13, Intel®MKL 2017, Java
OpenJDK 8 131, GCC 7.2.0, and Boost 1.64.0.

All the benchmark codes used for this experimentation are
also available at Ramon-Cortes (2019a).

MareNostrum IV The MareNostrum IV begun operating
at the end of June 2017. Its current peak performance is
11.15 Petaflops, ten times more than its previous version,
MareNostrum III. The supercomputer is composed by 3456

Prepared using sagej.cls

Ramon-Cortes et al. 9

nodes, each of them with two Intel® Xeon Platinum 8160 (24
cores at 2.1 GHz each). It has 384.75 TB of main memory,
100Gb Intel®Omni-Path Full-Fat Tree Interconnection, and
14 PB of disk storage Barcelona Supercomputing Center
(BSC) (2019c).

6.2 General description of the applications
In general terms, the matrices are chunked in smaller square
matrices (known as blocks) to distribute the data easily
among the available resources so that the square blocks are
the minimum entity to work with Gunnels and et al. (2001).
Furthermore, the initialisation is performed in a distributed
way, defining tasks to initialise the matrix blocks. These
tasks do not take into account the nature of the algorithm,
and they are scheduled in a round robin manner. For all
the evaluation applications, the execution time measures the
application’s computations and the data transfers required
during the execution by the framework, but does not include
the initial transfers of the input data.

Given a fixed matrix size, increasing the number of
blocks increases the maximum parallelism of the application
since blocks are the tasks’ minimum work entities. On the
other hand, increasing the block size increases the tasks’
computational load, which, at some point, will surpass the
serialisation and transfer overheads. Hence, the number of
blocks and the block size for each application are a trade-
off to fill all the available cores while maintaining acceptable
performance.

For all the evaluated applications, we compare the code
written by a PyCOMPSs expert user (userparallel version)
against the sequential code with the @parallel annotation
(autoparallel user code) and the automatically generated
code by the AutoParallel module (autoparallel generated).
Furthermore, we provide a figure showing the execution
results for each application. The figure contains two plots
where the horizontal axis shows the number of worker nodes
(with 48 cores each) used for each execution, the blue colour
is the userparallel version, and the green colour is the
autoparallel. The top plot represents the mean, maximum,
and minimum execution times over 10 runs and the bottom
plot represents the speed-up of each version with respect to
the userparallel version running with a single worker (48
cores).

6.3 Cholesky
The Cholesky factorisation can be applied to Hermitian
positive-defined matrices. This decomposition is a particular
case of the LU factorisation, obtaining two matrices of the
form U = Lt. Our version of this application applies the
right-looking algorithm Bientinesi et al. (2008) because it
is more aggressive, meaning that in an early stage of the
computation there are blocks of the solution that are already
computed and all the potential parallelism is released as soon
as possible.

Table 2 analyses the userparallel, the autoparallel’s
original user code, and the autoparallel’s automatically
generated code in terms of code and loop configuration.
While the userparallel version requires the definition of
three tasks (potrf, solve_triangular, and gemm)
using 14 parameter annotations, the autoparallel’s original

Version
Code Analysis Loops Analysis

Annotations API

Calls
Main Total

Max

DepthMethod Param.

userparallel 3 14 0 1 4 3

autoparallel
(user code)

1 0 0 1 4 3

autoparallel
(generated)

4 11 1 3 9 3

Table 2. Cholesky: code and loop analysis.

code only requires a single @parallel decorator. On the
other hand, the autoparallel’s automatically generated code
includes four tasks; 3 equivalent to the userparallel tasks and
an additional one to generate blocks initialised to zero.

Regarding the loop configuration, the userparallel and
the autoparallel’s original code have the same structure.
However, the autoparallel’s automatically generated code
has divided the original loop into three main loops
maintaining the maximum loop depth (three).

Figure 5. Cholesky: Execution times and speed-up with respect
to the userparallel version using a single worker (48 cores).

Figure 5 shows the execution results of the Cholesky
decomposition over a dense matrix of 65, 536× 65, 536
elements decomposed in 32× 32 blocks with 2, 048×
2, 048 elements each. As stated in the general description
of this section, the top plot represents the execution time
while the bottom plot represents the speed-up with respect
to the userparallel version running with a single worker
(48 cores). Also, we have chosen 32 blocks because it is
the minimum amount providing enough parallelism for 192
cores, and bigger block sizes (e.g., 4, 096× 4, 096) were
impossible due to memory constraints. The speed-up of both
versions is limited by the block-size due to the small task
granularity, reaching 2 when using 4 workers. Although the
userparallel version spawns 6,512 tasks and the autoparallel
version spawns 7,008 tasks, the execution times and the
overall performance of both versions are almost the same
(the difference is less than 5%). This is due to the fact that
the autoparallel version spawns an extra task per iteration to
initialise blocks to zero on the matrix’s lower triangle that
has no impact on the overall computation time.

6.4 LU
For the LU decomposition, an approach without pivot-
ing Golub and Van Loan (1996) has been the starting

Prepared using sagej.cls

10 The International Journal of High Performance Computing Applications XX(X)

point. However, since this approach might be unstable in
general Demmel and Higham (1992), some modifications
have been included to increase the stability of the algorithm
while keeping the block division and avoiding bringing an
entire column into a single node.

Version
Code Analysis Loops Analysis

Annotations API

Calls
Main Total

Max

DepthMethod Param.

userparallel 4 13 0 2 6 3

autoparallel
(user code)

1 0 0 2 6 3

autoparallel
(generated)

12 33 3 4 9 3

Table 3. LU: code and loop analysis.

Table 3 analyses the userparallel, the autoparallel’s origi-
nal user code, and the autoparallel’s automatically generated
code in terms of code and loop configuration. Regarding
the code, the userparallel version requires the definition
of 4 tasks (namely multiply, invert_triangular,
dgemm, and custom_lu) along with 13 annotated parame-
ters. In contrast, the autoparallel’s original user code only
requires the @parallel annotation. Also, the autopar-
allel’s automatically generated code generates 12 different
task types (along with 33 annotated parameters) because
it generates one task type per statement in the original
loop, even if the statement contains the same task call.
For instance, the original LU contains four calls to the
invert_triangular function that are detected as dif-
ferent statements and converted to different task types.

Regarding the loop configuration, both the userparallel
and theautoparallel’s original user code have the same struc-
ture: 2 loop nests of depth 3. However, the autoparallel’s
automatically generated code splits them into 4 main loops
of the same depth because it has different optimisation codes
for different variable values.

Figure 7 shows the execution results of the LU
decomposition with a 49, 152× 49, 152 dense matrix of
24× 24 blocks with 2, 048× 2, 048 elements each. As
stated in the general description of this section, the top
plot represents the execution time while the bottom plot
represents the speed-up with respect to the userparallel
version running with a single worker (48 cores). As in
the previous example, the overall performance is limited
by the block size. This time the userparallel version
slightly outperforms the autoparallel version; achieving,
respectively, a 2.45 and 2.13 speed-up with 4 workers (192
cores).

Regarding the number of tasks, the userparallel version
spawns 14,676 tasks while the autoparallel version spawns

Figure 7. LU: Execution times and speed-up with respect to the
userparallel version using a single worker (48 cores).

15,227 tasks. This difference is due to the fact that the
autoparallel version initialises distributedly an intermediate
zero matrix, while the userparallel initialises it in the master
memory.

Figure 6 shows a detailed Paraver trace of both versions
running with 4 workers (192 cores). The autoparallel version
(right) is more coloured because it has more tasks, although,
as previously explained, they execute the same function in
the end. Notice that the performance degradation of the
autoparallel version is due to the fact that the maximum
parallelism is lost before the end of the execution. On the
contrary, the userparallel version maintains the maximum
parallelism until the end of the execution.

6.5 QR
Unlike traditional QR algorithms that use the Householder
transformation, our implementation uses a method based on
Givens rotations Quintana-Orti and et al. (2008). This way,
data can be accessed by blocks instead of columns.

Version
Code Analysis Loops Analysis

Annotations API

Calls
Main Total

Max

DepthMethod Param.

userparallel 4 19 0 1 6 3

autoparallel
(user code)

1 0 0 1 6 3

autoparallel
(generated)

20 60 1 2 7 3

Table 4. QR: code and loop analysis.

Table 4 analyses the userparallel, the autoparallel’s
original user code, and the autoparallel’s automatically
generated code in terms of code and loop configuration. The
QR decomposition represents one of the most complex use

Figure 6. LU: Paraver trace. At left, userparallel and, at right, the autoparallel version.

Prepared using sagej.cls

Ramon-Cortes et al. 11

cases in terms of data dependencies; thus, having more tasks
and parameter annotations than the previous applications.
While the userparallel requires 4 tasks (namely qr, dot,
little_qr, and multiply_single_block) along
with 19 parameter annotations, the autoparallel’s original
user code only requires, as always, one single @parallel
annotation. In contrast, the autoparallel’s automatically
generated code defines 20 tasks along with 60 parameter
annotations. As in the LU decomposition, many of these
tasks are generated from different statements that perform
the same task call at the end.

Regarding the loop configuration, both the userparallel
and theautoparallel’s original user code have the same
structure: 1 main loop nest with a total of 6 loops
and a maximum depth of 3. However, the autoparallel’s
automatically generated code splits the main loop in two in
order to increase the data locality. Notice that no additional
complexity is added to the algorithm since the maximum
depth remains 3.

Figure 8. QR: Execution times and speed-up with respect to
the userparallel version using a single worker (48 cores).

Figure 8 shows the execution results of the QR
decomposition with a 32, 768× 32, 768 matrix of 16× 16
blocks with 2, 048× 2, 048 elements each. As stated in the
general description of this section, the top plot represents the
execution time while the bottom plot represents the speed-up
with respect to the userparallel version running with a single
worker (48 cores). The autoparallel version spawns 26,304
tasks, and the userparallel version spawns 19,984 tasks.
As in the previous examples, the overall performance is
limited by the block size. However, the userparallel version
slightly outperforms the autoparallel version; achieving a
2.37 speed-up with 4 workers instead of 2.10. The difference
is mainly because the autoparallel version spawns four
copy tasks per iteration (copy_reference), while the
userparallel version executes this code in the master side
copying only the reference of a future object.

7 Evaluation of the automatic data blocking

This section evaluates the capability of automatically
generating data blocks (chunks) from pure sequential code
and executing them in a distributed infrastructure. As
discussed next, this approach provides several advantages in
terms of code re-organisation and data blocking; increasing

the tasks’ granularity and, thus, the performance of fine-grain
applications.

7.1 GEMM
We have implemented a Python version of the General
Matrix-Matrix product (GEMM) from the Polyhedral Bench-
mark suite The Ohio State University, Department of Com-
puter Science and Engineering (2015). The implementation
considers general rectangular matrices with float complex
elements and performs C = α ·A ·B + β · C. In general
terms, the arrays and matrices are implemented as plain
NumPy arrays or matrices. This means that there are no
blocks, and thus, the minimum work entity is a single
element (a float). As in the previous set of experiments,
the initialisation is performed in a distributed way; defining
tasks to initialise the matrix elements. Also, the execution
time measures the application’s computations and the data
transfers required during the execution by the framework, but
does not include the initial transfers of the input data.

Version
Code Analysis Loops Analysis

Annotations API

Calls
Main Total

Max

DepthMethod Param.

userparallel 2 8 0 1 4 3

autoparallel
(user code)

1 0 0 1 4 3

autoparallel
FG (generated)

2 8 1 2 5 3

autoparallel LT
(generated)

4 21 1 2 5 3

Table 5. GEMM: code and loop analysis.

Table 5 analyses the userparallel, the autoparallel’s orig-
inal user code, the autoparallel’s automatically generated
code using fine-grain (autoparallel FG), and the autopar-
allel’s automatically generated code with taskification of
loop tiles (autoparallel LT) in terms of code and loop
configuration. As expected, the autoparallel’s original user
code only requires the @parallel annotation. Although
the autoparallel FG works with single elements and user-
parallel with blocks, both versions include 2 tasks (namely
scale, and multiply) with 8 parameter annotations. On
the contrary, the autoparallel LT version defines 4 tasks (the
two original ones and their two loop-tasked versions) with 21
parameter annotations. The original tasks are kept because,
in configurations that do not use Pluto’s tiles, it is possible to
find function calls that cannot be loop-taskified. However, in
this case, only the loop-tasked versions are called during the
execution.

Regarding the loop structure, both the userparallel and
the autoparallel’s original user code have 1 main loop of
maximum depth 3. Also, the two automatically generated
codes are capable of splitting the main loop into two loops
for better parallelism: one for the scaling operations and
the other for the multiplications. However, the autoparallel
LT code is significantly more complex (in terms of lines of
code, cyclomatic complexity, and n-path) due to the tiling
and chunk creation.

Figure 9 shows the execution results of the GEMM
application with one single worker (48 cores) and with
matrices of 8, 16, 32, and 64 elements. To have equivalent

Prepared using sagej.cls

12 The International Journal of High Performance Computing Applications XX(X)

Figure 9. GEMM: Execution time and slow-down with respect
to the blocked userparallel version using a single worker (48
cores) and the same matrix size.

executions, the tile sizes are set to 8 for the autoparallel LT,
and the block size is set to 8 for the userparallel. The top
plot shows the execution time of the autoparallel FG (blue)
and the autoparallel LT (green). The bottom plot shows
the slow-down of both versions with respect to the blocked
userparallel version using a single worker (48 cores) and the
same matrix size.

The automatic parallelisation without taskification of loop
tiles (autoparallel FG) behaves 17.30 and 179.94 times
slower than the blocked version (userparallel B) using 8
and 32 elements, respectively. In contrast, the autoparallel
LT behaves 10.15 times slower than the userparallel B
when using 32 elements; which improves by 17.73 the
performance of the fine-grain version. This experiment
highlights the importance of blocking fine-grain applications
since defining single elements as the minimum task entity
leads to tasks with too little computation that cause a massive
overhead of task management, object serialisation and, data
transfer inside PyCOMPSs.

Due to this same reason and as shown in the previous
Section 6, the appropriate block sizes to obtain reasonable
performances should be between 2, 048× 2, 048 and
8, 192× 8, 192 elements per block. Although AutoParallel
can generate codes using bigger tile sizes, PyCOMPSs
suffers from serialisation issues since each element inside the
collection is treated as a separated task parameter. In contrast,
the hand-made blocked version (userparallel) serialises all
the elements of the block into a single object parameter
and thus, can run with bigger block sizes. We are confident
that PyCOMPSs could lower the serialisation overhead by
serialising each element of the collection in parallel or
serialising the whole collection into a single object.

Nonetheless, we believe that the automatic taskification of
loop tiles is a good baseline to obtain blocked algorithms

since the only difference between the automatically
generated code with taskification of loop tiles and the hand-
made blocked version is the treatment of data chunks. More
specifically, the userparallel version uses single objects
per chunk instead of collections of objects. Notice that
AutoParallel cannot systematically annotate data chunks as
objects since this is only possible when the data chunks
are disjoint because, otherwise, the dependencies of each
element inside the blocks need to be treated separately.
However, advanced users can analyse the automatically
generated data chunks, determine if they are disjoint, and
use the automatically generated code as a baseline to change
the annotations of the data chunks from COLLECTION to
OBJECT. In this last scenario, advanced users only require
to modify annotation of the data chunks; keeping the main
code of the algorithm and the code of the tasks.

Figure 10. GEMM with object annotations: Execution time and
speed-up with respect to the blocked userparallel version using
a single worker (48 cores).

For instance, Figure 10 compares the execution results
of the userparallel blocked version and the autoparallel
LT version changing the collection annotations per object
annotations when running the GEMM application over a
dense matrix of 65, 536× 65, 536 elements decomposed in
32× 32 blocks with 2, 048× 2, 048 elements each. The top
plot represents the execution time while the bottom plot
represents the speed-up with respect to the userparallel
blocked version running with a single worker (48 cores).
Also, we have chosen 32 blocks because it is the minimum
amount providing enough parallelism for 192 cores, and
bigger block sizes (e.g., 4, 096× 4, 096) were impossible
due to memory constraints.

We must highlight that the modified autoparallel LT
version outperforms the userparallel version because it
is capable of better exploiting the parallelisation of the
scaling operation. With little modifications regarding the
parameter annotations, advanced users can obtain better
blocked algorithms than manually parallelised codes. Hence,
we believe that the automatic taskification of loop tiles is a
good baseline to design complex blocked algorithms.

8 Conclusions and Future Work
This paper has presented and evaluated AutoParallel, a
Python module to automatically parallelise affine loop nests
and execute them on distributed infrastructures. Built on

Prepared using sagej.cls

Ramon-Cortes et al. 13

top of PyCOMPSs and Pluto, it is based on sequential
programming so that anyone can scale up an application
to hundreds of cores. Instead of manually taskifying a
sequential python code, the users only need to add a
@parallel annotation to the methods containing affine
loop nests.

The evaluation shows that the codes automatically
generated by the AutoParallel module for the Cholesky, LU,
and QR applications can achieve similar performance than
manually parallelised versions without requiring any effort
from the programmer. Thus, AutoParallel goes one step
further in easing the development of distributed applications.

Furthermore, the taskification of loop tiles can be enabled
by providing a single decorator argument (tile=True) to
automatically build data blocks from loop tiles and increase
the tasks’ granularity. Although the overhead with respect to
the hand-made blocked version is still far from acceptable,
the taskification of loop tiles provides an automatic way
to build data blocks from any application; freeing the
users from dealing directly with the complexity of block
algorithms and allowing them to stick to basic sequential
programming. Also, for advanced users, the generated code
can be used as a baseline to modify the annotations of the
data chunks and obtain the same performance than the hand-
made blocked version when the data chunks are disjoint.

As future work, we believe that the taskification of
loop tiles is a good approach for fine-grain applications
provided that the serialisation performance is improved. For
instance, PyCOMPSs could lower the serialisation overhead
by serialising each element of the collection in parallel or by
serialising the whole collection into a single object.

Finally, AutoParallel could be integrated with different
tools similar to Pluto to support a broader scope of loop nests.
For instance, Apollo Sukumaran-Rajam and Clauss (2015);
Martinez Caamaño and et al. (2017) provides automatic,
dynamic and speculative parallelisation and optimisation of
programs’ loop nests of any kind (for, while or do-while
loops). However, its integration would require PyCOMPSs
to be extended with some speculative mechanisms.

Acknowledgements

Thanks to Cédric Bastoul for his support with CLooG.

Funding

This work has been supported by the Spanish Government through
contracts SEV2015-0493 and TIN2015-65316-P, and by Generalitat
de Catalunya through contract 2014-SGR-1051. Cristian Ramon-
Cortes predoctoral contract is financed by the Ministry of Economy
and Competitiveness under the contract BES-2016-076791.

References

Amela R and et al (2017) Enabling Python to Execute Efficiently
in Heterogeneous Distributed Infrastructures with PyCOMPSs.
In: Proceedings of the 7th Workshop on Python for High-
Performance and Scientific Computing. ACM, pp. 1:1–1:10.
DOI:10.1145/3149869.3149870.

Amela R and et al (2018) Executing linear algebra kernels in
heterogeneous distributed infrastructures with PyCOMPSs. Oil
—& Gas Science and Technology - Revue d’IFP Energies
Nouvelles (OGST) DOI:10.2516/ogst/2018047.

Anaconda (2020) Numba: A High Performance Python Compiler.
http://numba.pydata.org. Cited 8 April 2020.

Anderson E and et al (1999) LAPACK Users’ guide. SIAM.
Apache Software Fundation (2019) PySpark. https:

//spark.apache.org/docs/latest/api/

python/index.html. Cited 8 October 2019.
Badia RM and et al (2015) COMP superscalar, an interoperable

programming framework. SoftwareX 3: 32–36. URL https:

//doi.org/10.1016/j.softx.2015.10.004.
Barcelona Supercomputing Center (BSC) (2019a) COMPSs

GitHub. https://github.com/bsc-wdc/compss.
Cited 8 October 2019.

Barcelona Supercomputing Center (BSC) (2019b) Extrae Tool.
https://tools.bsc.es/extrae. Cited 9 October
2019.

Barcelona Supercomputing Center (BSC) (2019c)
MareNostrum IV Technical Information. https:

//www.bsc.es/marenostrum/marenostrum/

technical-information. Cited 8 October 2019.
Barcelona Supercomputing Center (BSC) (2019d) Paraver Tool.

https://tools.bsc.es/paraver. Cited 8 October
2019.

Barcelona Supercomputing Center (BSC) (2020) PyCOMPSs
User Manual. https://compss-doc.readthedocs.

io/en/2.6/Sections/02_User_Manual_App_

Development.html#python-binding. Cited 8 April
2020.

Bastoul C (2004) Code Generation in the Polyhedral Model Is
Easier Than You Think. In: PACT’13 IEEE International Con-
ference on Parallel Architecture and Compilation Techniques.
IEEE Computer Society, pp. 7–16. URL https://doi.

org/10.1109/PACT.2004.11.
Bastoul C (2011) OpenScop: A Specification and a Library for

Data Exchange in Polyhedral Compilation Tools. Technical
report, Paris-Sud University, France. URL http://icps.

u-strasbg.fr/people/bastoul/public_html/

development/openscop/docs/openscop.html.
Bastoul C and et al (2003) Putting Polyhedral Loop Transforma-

tions to Work. In: International Workshop on Languages and
Compilers for Parallel Computing. Springer, Springer Berlin
Heidelberg, pp. 209–225. URL https://doi.org/10.

1007/978-3-540-24644-2_14.
Bientinesi P, Gunter B and van de Geijn RA (2008) Families of

Algorithms Related to the Inversion of a Symmetric Positive
Definite Matrix. ACM Trans. Math. Softw. 35(1): 3:1–3:22.
DOI:10.1145/1377603.1377606.

Bondhugula U (2017) Pluto. http://pluto-compiler.

sourceforge.net. Cited 8 October 2019.
Bondhugula U and et al (2008a) A Practical Automatic Polyhedral

Parallelizer and Locality Optimizer. SIGPLAN Not. 43(6):
101–113. URL http://doi.org/10.1145/1379022.

1375595.
Bondhugula U and et al (2008b) Automatic Transformations

for Communication-Minimized Parallelization and Locality
Optimization in the Polyhedral Model. In: International
Conference on Compiler Construction. Springer Berlin
Heidelberg, pp. 132–146. DOI:10.1007/978-3-540-78791-4 9.

Cass S (2019) The Top Programming Languages 2019:
Python remains the big kahuna, but specialist
languages hold their own. URL https://

Prepared using sagej.cls

http://numba.pydata.org
https://spark.apache.org/docs/latest/api/python/index.html
https://spark.apache.org/docs/latest/api/python/index.html
https://spark.apache.org/docs/latest/api/python/index.html
https://doi.org/10.1016/j.softx.2015.10.004
https://doi.org/10.1016/j.softx.2015.10.004
https://github.com/bsc-wdc/compss
https://tools.bsc.es/extrae
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://tools.bsc.es/paraver
https://compss-doc.readthedocs.io/en/2.6/Sections/02_User_Manual_App_Development.html#python-binding
https://compss-doc.readthedocs.io/en/2.6/Sections/02_User_Manual_App_Development.html#python-binding
https://compss-doc.readthedocs.io/en/2.6/Sections/02_User_Manual_App_Development.html#python-binding
https://doi.org/10.1109/PACT.2004.11
https://doi.org/10.1109/PACT.2004.11
http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/docs/openscop.html
http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/docs/openscop.html
http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/docs/openscop.html
https://doi.org/10.1007/978-3-540-24644-2_14
https://doi.org/10.1007/978-3-540-24644-2_14
http://pluto-compiler.sourceforge.net
http://pluto-compiler.sourceforge.net
http://doi.org/10.1145/1379022.1375595
http://doi.org/10.1145/1379022.1375595
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019

14 The International Journal of High Performance Computing Applications XX(X)

spectrum.ieee.org/computing/software/

the-top-programming-languages-2019. Cited 19
December 2019.

Cohen A and et al (2005) Facilitating the Search for Compositions
of Program Transformations. In: Proceedings of the
19th Annual International Conference on Supercomputing.
ACM, pp. 151–160. URL https://doi.org/10.1145/

1088149.1088169.
Conejero J and et al (2018) Task-based programming in COMPSs

to converge from HPC to big data. The International Journal
of High Performance Computing Applications 32(1): 45–60.
DOI:10.1177/1094342017701278.

Cooke DM, Alted F and et al (2020) NumExpr: Fast numerical
expression evaluator for NumPy. https://github.com/
pydata/numexpr. Cited 8 April 2020.

Dagum L and Menon R (1998) OpenMP: An Industry-Standard API
for Shared-Memory Programming. IEEE Comput. Sci. Eng.
5(1): 46–55. DOI:10.1109/99.660313.

Dalcı́n L, Paz R and Storti M (2005) MPI for Python. Journal
of Parallel and Distributed Computing DOI:https://doi.org/10.
1016/j.jpdc.2005.03.010.

Dask Development Team (2016) Dask: Library for dynamic task
scheduling. URL http://dask.pydata.org.

Demmel JW and Higham NJ (1992) Stability of Block Algorithms
with Fast Level-3 BLAS. ACM Trans. Math. Softw. 18(3): 274–
291. DOI:10.1145/131766.131769.

Golub GH and Van Loan CF (1996) Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press. ISBN
0-8018-5414-8.

Google (2019) The Go Programming Language. https://

golang.org/. Cited 8 October 2019.
Gunnels JA and et al (2001) FLAME: Formal Linear Algebra

Methods Environment. ACM Trans. Math. Softw. 27(4): 422–
455. DOI:10.1145/504210.504213.

Intel (2019) Threading Building Blocks (Intel®TBB). https:

//software.intel.com/en-us/tbb. Cited 8 October
2019.

Jones E, Oliphant T and Peterson P (2001–) SciPy: Open source
scientific tools for Python. URL http://www.scipy.

org/.
Lam SK, Pitrou A and Seibert S (2015) Numba: A llvm-based

python jit compiler. In: Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC. pp. 1–6.

Liang S (1999) Java Native Interface: Programmer’s Guide and
Reference. 1st edition. Addison-Wesley Longman Publishing
Co., Inc. ISBN 0201325772.

Lordan F and et al (2014) ServiceSs: an interoperable programming
framework for the Cloud. Journal of Grid Computing 12(1):
67–91. URL https://digital.csic.es/handle/

10261/132141.
Martinez Caamaño JM and et al (2017) Full runtime polyhedral

optimizing loop transformations with the generation, instan-
tiation, and scheduling of code-bones. Concurrency and
Computation: Practice and Experience 29(15): e4192. DOI:
10.1002/cpe.4192.

McKinney W (2011) Pandas: a Foundational Python Library for
Data Analysis and Statistics. Python for High Performance
and Scientific Computing : 1–9.

Müller SC and et al (2014) Pydron: Semi-automatic parallelization
for multi-core and the cloud. In: 11th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI}
14). pp. 645–659.

Python Software Fundation (2019) Parallel Processing and Mul-
tiprocessing in Python. https://wiki.python.org/

moin/ParallelProcessing. Cited 8 October 2019.
Quintana-Orti G and et al (2008) Scheduling of QR Factorization

Algorithms on SMP and Multi-Core Architectures. In:
Proceedings of the 16th Euromicro Conference on Parallel,
Distributed and Network-Based Processing (PDP 2008), PDP
’08. IEEE Computer Society, pp. 301–310. DOI:10.1109/PDP.
2008.37.

Ramon-Cortes C (2019a) Experimentation GitHub.
https://github.com/cristianrcv/

pycompss-autoparallel/tree/master/

examples. Cited 8 October 2019.
Ramon-Cortes C (2019b) PyCOMPSs AutoParallel Module

GitHub. https://github.com/cristianrcv/

pycompss-autoparallel. Cited 8 October 2019.
Ramon-Cortes C and et al (2018) Transparent Orchestration of

Task-based Parallel Applications in Containers Platforms.
Journal of Grid Computing 16(1): 137–160.

Sukumaran-Rajam A and Clauss P (2015) The Polyhedral Model
of Nonlinear Loops. ACM Trans. Archit. Code Optim. 12(4):
48:1–48:27. DOI:10.1145/2838734.

Tejedor E and et al (2017) PyCOMPSs: Parallel computational
workflows in Python. The International Journal of High
Performance Computing Applications (IJHPCA) 31: 66–82.
DOI:10.1177/1094342015594678.

The Ohio State University, Department of Computer Science
and Engineering (2015) PolyBench/C: The Polyhedral Bench-
mark suite. http://web.cse.ohio-state.edu/

˜pouchet.2/software/polybench. Cited 8 October
2019.

University of Tennesse Oak Ridge National Laboratory Numerical
Algorithms Group Ltd (2017) BLAS (Basic Linear Algebra
Subprograms). http://www.netlib.org/blas/. Cited
8 October 2019.

van Rossum G and Drake FL (2011) The Python Language
Reference Manual. Network Theory Ltd. ISBN 1906966141,
9781906966140.

var der Walt S, Colbert SC and Varoquaux G (2011) The NumPy
Array: A Structure for Efficient Numerical Computation.
Computing in Science and Engg. 13(2): 22–30. DOI:10.1109/
MCSE.2011.37.

Vitalii Vanovschi (2019) Parallel Python Software. http://www.
parallelpython.com. Cited 8 October 2019.

Zaharia M and et al (2010) Spark: Cluster Computing with Working
Sets. In: Proceedings of the 2Nd USENIX Conference on Hot
Topics in Cloud Computing. pp. 95–102.

Prepared using sagej.cls

https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://doi.org/10.1145/1088149.1088169
https://doi.org/10.1145/1088149.1088169
https://github.com/pydata/numexpr
https://github.com/pydata/numexpr
http://dask.pydata.org
https://golang.org/
https://golang.org/
https://software.intel.com/en-us/tbb
https://software.intel.com/en-us/tbb
http://www.scipy.org/
http://www.scipy.org/
https://digital.csic.es/handle/10261/132141
https://digital.csic.es/handle/10261/132141
https://wiki.python.org/moin/ParallelProcessing
https://wiki.python.org/moin/ParallelProcessing
https://github.com/cristianrcv/pycompss-autoparallel/tree/master/examples
https://github.com/cristianrcv/pycompss-autoparallel/tree/master/examples
https://github.com/cristianrcv/pycompss-autoparallel/tree/master/examples
https://github.com/cristianrcv/pycompss-autoparallel
https://github.com/cristianrcv/pycompss-autoparallel
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench
http://www.netlib.org/blas/
http://www.parallelpython.com
http://www.parallelpython.com

	1 Introduction
	2 State of the Art
	3 Technical Background
	3.1 PyCOMPSs
	3.1.1 PyCOMPSs Programming Model

	3.2 Pluto
	3.2.1 Loop Tiling

	4 Architecture
	4.1 AutoParallel Module
	4.2 Taskification of loop tiles
	4.3 Python Extension for CLooG

	5 Programmability Evaluation
	5.1 Centre of Mass

	6 Performance Evaluation
	6.1 Computing Infrastructure
	6.2 General description of the applications
	6.3 Cholesky
	6.4 LU
	6.5 QR

	7 Evaluation of the automatic data blocking
	7.1 GEMM

	8 Conclusions and Future Work

