
Noname manuscript No.
(will be inserted by the editor)

Transparent Orchestration of Task-based Parallel
Applications in Containers Platforms

Cristian Ramon-Cortes · Albert Serven ·
Jorge Ejarque · Daniele Lezzi · Rosa M.

Badia

Received: date / Accepted: date

Abstract This paper presents a framework to easily build and execute paral-
lel applications in container-based distributed computing platforms in a user-
transparent way. The proposed framework is a combination of the COMP Su-
perscalar (COMPSs) programming model and runtime, which provides a straight-
forward way to develop task-based parallel applications from sequential codes,
and containers management platforms that ease the deployment of applications in
computing environments (as Docker, Mesos or Singularity). This framework pro-
vides scientists and developers with an easy way to implement parallel distributed
applications and deploy them in a one-click fashion. We have built a prototype
which integrates COMPSs with different containers engines in different scenarios:
i) a Docker cluster, ii) a Mesos cluster, and iii) Singularity in an HPC cluster.
We have evaluated the overhead in the building phase, deployment and execution
of two benchmark applications compared to a Cloud testbed based on KVM and
OpenStack and to the usage of bare metal nodes. We have observed an important
gain in comparison to cloud environments during the building and deployment
phases. This enables better adaptation of resources with respect to the compu-
tational load. In contrast, we detected an extra overhead during the execution,
which is mainly due to the multi-host Docker networking.

Keywords Cloud Computing, Containers Orchestration, Linux Containers,
Distributed Systems, Parallel Programming Models

Cristian Ramon-Cortes, Albert Serven, Jorge Ejarque, Daniele Lezzi
Barcelona Supercomputing Center (BSC), Barcelona, Spain
E-mail: { cristian.ramoncortes, albert.serven, jorge.ejarque, daniele.lezzi}@bsc.es

Rosa M. Badia
Barcelona Supercomputing Center (BSC) and Artificial Intelligence Research Institute - Span-
ish National Research Council (IIIA-CSIC), Barcelona, Spain
E-mail: rosa.m.badia@bsc.es

This is a post-peer-review, pre-copyedit version of an article published in Journal of Grid Computing. The final authenticated version
is available online at: https://link.springer.com/article/10.1007/s10723-017-9425-z]

2 Cristian Ramon-Cortes et al.

1 Introduction

Cloud Computing [24] has emerged as a paradigm where a large amount of capac-
ity is offered on demand and only paying for what is consumed. This paradigm
relies on virtualization technologies which offer isolated and portable computing
environments called Virtual Machines (VMs). These VMs are managed by hy-
pervisors, such as Xen [27], KVM [38] or VMWare [18], which are in charge of
managing and coordinating the execution of the computations performed in the
different VMs on top of the bare-metal.

Beyond the multiple advantages offered by these technologies and the over-
head introduced during operation, the main drawback of these technologies in
terms of usability is the management of the VM images. To build an image for
an application, users have to deploy a VM with a base image which includes the
operating system kernel and libraries, to install the application specific software
and to create an image snapshot, which will be used for further deployments. This
process, which can take from several minutes to hours, even for experienced devel-
opers, turns to be a complex and tedious work for scientist or developers without
a strong technological background.

To deal with these issues, a new trend in the Cloud Computing research has
recently appeared [44]. It proposes to substitute VMs managed by hypervisors
with containers managed by container engines, also called containerizers, such as
Docker [8]. They provide a more efficient layer-based image mechanism, such as
AUFS [1], that simplifies the image creation, reduce the disk usage and accelerates
the container deployment. The main difference between VM and containers relies
on the fact that VM images include the whole OS and software stack, and the hy-
pervisor has to load every time a VM is deployed. As opposed, containers running
on the same machine share the OS kernel and common layers, which reduces the
amount of work to be done by container engines.

In any case, either container and VM images are very convenient for packaging
applications which are going to run on a single node, because the user just needs
to deploy one VM or one container with the customized image. The complexity
mainly relies on the application developer when creating the customized image.
However, in the case of distributed applications, the process is more complicated
since the user has to deploy multiple containers and configure them to properly
coordinate the execution of the application. Therefore, to facilitate this process,
there is a need for an extra component which must coordinate the deployment,
configuration, and execution of the application in the different computing nodes.
Our proposal is that this tasks can be managed by the programming model run-
time.

The main contribution of this paper is a proposal of a methodology for smooth
integration of container engines with parallel programming models and runtimes,
facilitating the development, execution, and portability of parallel distributed ap-
plications. We have defined two software packages which are in charge of managing
the interaction of the programming model tools with the container platforms in
a static or dynamic way. Although the integration has been implemented in the
COMP Superscalar (COMPSs) [26] framework, other task-based programming
models and frameworks can benefit from these container management packages
to handle different container platforms. The combination of COMPSs with the
container management capabilities proposed in this paper provides an easy way to

Title Suppressed Due to Excessive Length 3

create parallel distributed applications and to transparently deploy and execute
them in container-based distributed platforms, such as Docker or Singularity.

The approach considered in this paper is based on the use of COMPSs to de-
velop applications. With COMPSs, developers can benefit from a straightforward
programming model to parallelize applications based on sequential codes and de-
coupling the applications from the underlying computing infrastructure. Once the
application is implemented, the COMPSs framework makes use of the specific fea-
tures proposed in this paper to automatically create the container image for the
COMPSs application, to deploy the required containers and to execute the ap-
plication in the deployed containers. Moreover, COMPSs monitors the computing
load generated during the execution detecting the need for additional resources or
the possibility to release unused ones. The proposed contributions of this paper
extend COMPSs to enable the runtime to adapt the number of containers in the
same way as for Cloud resources [40].

The paper is structured as follows: Section 2 describes previous work done in
the field. Section 3 presents an overview of COMPSs and the platforms targeted
in this work. Section 4 provides an overview of the proposed solution. Section 5
is focused on how COMPSs transparently creates the application images and or-
chestrates the deployment and execution of task-based parallel applications in
container engines. In Section 6, we present the details about how COMPSs is in-
tegrated with the different types of container platforms. Next, Section 7 presents
the experiments performed to validate the framework. Finally, Section 8 concludes
the paper and gives some guidelines for future work.

2 Related Work

Some previous work has been performed to facilitate the portability of applications
to different distributed platforms. For what relates to clouds, software stacks as
OpenNebula [47] or OpenStack [46] provide basic services for image management
and contextualization of VMs. Contextualization services typically include the
networking and security configuration. For the image management, these platforms
expose APIs that provide methods to import customized images as well as to
create snapshots once the user has manually modified the base image. However,
as introduced in the previous section, these manual image modifications can be a
tedious work for complex applications.

Some recent work has focused on automating this process by adding new tools
or services on top of the basic services offered by providers. CloudInit [19] is one of
the most used tools to automate the VM image creation. It consists of a package
installed in the base image which can be configured with a set of scripts that will
be executed during the VM boot time. Another extended way to configure and
customize VM images is based on DevOps tools development like Puppet [14] or
Chef [4] where a Puppet manifest or a Chef receipt is deployed, instead of executing
a set of configuration scripts. Some examples of these solutions can be found
in [25], [28] or [37]. However, these solutions have a drawback: customizing the
image at deployment time (installing a set of packages downloading files, etc.)
can take some minutes. It can be assumable in the first deployment but not for
adaptation where new VMs must be deployed in seconds. To solve this issue, some

4 Cristian Ramon-Cortes et al.

services like [31] have been proposed to perform offline image modifications, in
order to reduce the installation and configurations performed at deployment time.

In the case of containers, most of the container platforms already include sim-
ilar features to easily customize container images. In the case of Docker, we can
write a Dockerfile to describe an application container image. In this file, we have
to indicate a parent image and the necessary customization commands to install
and run the application. Due to the layered-based image system, parent and cus-
tomized images can be reused and extended by applications, achieving better de-
ployment times. This is one of the main reasons why several users are porting
their application frameworks to support Docker containers. Cloud Providers have
started to provide services for deploying containers such as the Google Container
Engine [39] and cloud management stacks have implemented drivers to support
Docker containers as another type of VM, such as the Nova-Docker-driver [20] for
OpenStack or OneDoc [21], a Docker driver for Open Nebula. Apart from Docker,
different container platforms have appeared recently. Section 3.2 provides more
details about the different available container engines.

Also, some work has been produced to integrate application frameworks, such
as workflow management systems, with container engines. Skyport [35] is an exten-
sion to an existing framework to support containers for the execution of scientific
workflows. This framework differs from our proposal in the definition of the appli-
cation which requires to explicitly write the workflows’ tasks in the form of JSON
documents where the input/output of each block has to be specified along with the
executable. In COMPSs applications, the programming model is pure sequential
with annotations that identify the parts of the code (tasks) to be executed by the
runtime. Skyport uses Docker as containers technology, but it lets the users the
responsibility to create the application images and to establish scalability proce-
dures using the available infrastructure tools, while in this work we propose a way
to transparently manage the image creation and resource scalability. Moreover, we
also provide extensions to COMPSs for Docker, Singularity, and Mesos clusters.
In [48], authors describe the integration of another workflow system, Makeflow,
with Docker. As in Skyport, the main difference with the COMPSs framework
is in the programming model, which in Makeflow is represented by chained calls
to executables in the form of Makefiles and is tailored to bioinformatics applica-
tions; it does not provide any tool to build container images from the workflow
code and the supported elasticity is done per task. For each task in the work-
flow, Makeflow creates a new container thus not reusing existing containers for
different tasks. Nextflow [30] is another option which proposes a DSL language
that extends the Unix pipes model for the composition of workflows. Both Docker
and Singularity engines are supported in Nextflow, but it has similar limitations
to other frameworks, such as the manual image creation, a limited programming
model that resembles command line executions of scripts and a limited elasticity
provided only for Amazon EC2.

Table 1 summarizes the comparison between our proposal and existing solu-
tions. We propose to integrate container engines with parallel programming model
runtimes, such as COMPSs, to provide a framework where users can easily port
a sequential application to distributed environment automatically parallelizing its
execution. The proposed extensions to COMPSs provide the features to automat-
ically create the application container images and to transparently deploy and
execute the application in container-based distributed platforms.

Title Suppressed Due to Excessive Length 5

Framework Supported
Container Engines

Image
Creation

Elasticity

Skyport Docker Manual Manual (Using provider API)

Makeflow Docker, Singularity,
Umbrella [42]

Manual Limited (Always container per
task)

Nextflow Docker, Singularity Manual Limited (Only in Amazon EC2, No
transparent scale-down)

extended
COMPSs

Docker, Singularity,
Mesos

Automatic Full support (Transparent resource
scale-up/down in containers and
VM platforms)

Table 1 Frameworks comparison

In a previous work [23], we tested the integration of Docker as a static resource
pool. In this paper, we generalize this integration to other container platforms
(Mesos and Singularity) and extend it to use containers as a dynamic pool of
resources. On the one hand, we consider necessary to generalize the support to
different container platforms because, although they behave similarly, each of them
provides different features covering different needs and targeting various types of
organizations. On the other hand, we believe that adaptation is a must have feature
for the runtimes to take full profit of container platforms, allowing to dynamically
create and destroy resources during the application’s execution.

3 Background

3.1 COMPSs Overview

COMP Superscalar (COMPSs) is a task-based programming model which aims
to ease the development of parallel applications for distributed infrastructures.
Its native language is Java but provides bindings for C/C++ and Python (Py-
COMPSs) [32]. The framework is based on the idea that, in order to create paral-
lel applications, the programmer does not need to be aware of all the underlying
computer infrastructure details and does not need to deal with the intricacies of
parallel paradigms. The programmer just needs to specify which are the meth-
ods and functions that may be considered tasks and to provide details on the
parameters of the tasks. Then, the sequential code is automatically instrumented
by the COMPSs runtime to detect the defined tasks and to build a task graph
which includes the data dependencies between them, thus producing a workflow of
the application at execution time. Besides, COMPSs is responsible for scheduling
and executing the application tasks in the available computing nodes as well as
handling data dependencies, data locality and transfers.

Finally, thanks to the abstraction layer that COMPSs provides, the same ap-
plication can be executed either in Clusters, Grids or Clouds. More details about
COMPSs and how to develop parallel applications with COMPSs can be found at
the COMPSs website [6].

Figure 1 depicts how the COMPSs runtime internally works. When running the
code, it detects the invocations of the methods previously defined as tasks. Instead
of executing the code of those methods, it creates a node in a task-dependency
graph and analyzes the data dependencies between previous tasks. Those tasks

6 Cristian Ramon-Cortes et al.

Fig. 1 COMP Superscalar application execution phases

that do not have dependencies are scheduled and executed in the available com-
puting resources (Worker nodes), and once a task is completed, the runtime re-
moves the dependencies produced by the task data results and synchronizes it if
a data access is requested.

COMPSs is used in production at MareNostrum supercomputer and has been
used to implement different real world applications, specially in the area of BioIn-
formatics and Computational Genomics [10] [13] [17], Big Data analytics [29] and
as building block for several scientific cyber-infrastructures [45] [22]. Other exam-
ples of applications developed with COMPSs can be found in [7].

3.2 Containers Platforms Overview

Different Containers platforms have been developed during last years. These plat-
forms can be organized into three categories. The first category includes full-stack
container platforms, which allow building PaaS and IaaS offering based on con-
tainer engines (i.e. the Docker framework or Kubernetes [11]) instead of virtual
machines. As mentioned before, one of the main advantages of containers is that
they provide a lightweight environment customization and isolation between users’
processes. However, platforms of the first category require to run the container
engines in privileged mode (root), and this is an important drawback applying
containers in shared computational resources like HPC. The second category in-
cludes container-based resource managers such as Apache Mesos [36]. Finally, the
third group includes containers platforms, such as Singularity [16] or Shifter [15],
designed for HPC environments; these platforms are focused on providing cus-
tomizable and portable environments which can be used with non-privileged users
but without support for I/O and networking virtualization .

The following sections provide more details about the technologies we have
selected in each group.

3.2.1 Docker Framework

Docker is an open platform for developing, shipping, and running applications. It
provides a way to run applications securely isolated in a container. The difference
between Docker and usual VMs is that Docker does not need the extra load of a

Title Suppressed Due to Excessive Length 7

hypervisor to run the containers and it uses an efficient read-only layered image
system achieving lighter deployments [43]. To improve Docker experience, several
services and tools have been created. The relevant ones for this paper are Docker-
Swarm, Docker-Compose, and DockerHub.

The first one, Docker-Swarm, is a cluster management tool for Docker. It
merges a pool of Docker hosts enabling the deployment of containers in the differ-
ent hosts with the same Docker API giving to the user the impression that it has a
single, virtual Docker host. Docker-Swarm is in charge of transparently managing
the inter-host networking and storage. It also allows defining scheduling policies
to manage where the containers must be placed in the cluster.

Docker-Compose is a tool to easily define complex applications which require
deploying multiple Docker containers. It provides a simple schema to allow users
to define the different containers required by their application. Once the user has
defined the application, Docker-Compose is in charge of automatically deploying
and configuring the different containers.

Finally, DockerHub is a public cloud-based image registry service which enables
users to store and share their application docker images. The Docker framework
also offers the Docker-Registry which is an open source service with the same
API as DockerHub which can be installed on the provider premises in order to
store and share users’ images in a local, private and controlled way. This Docker-
registry can be also used as a cache of DockerHub in order to minimize the effect
of performance degradations an downtimes of the DockerHub service.

3.2.2 Mesos

Mesos is a resource manager designed to provide efficient resource isolation and
sharing across distributed applications. It consists of a master daemon that man-
ages agent daemons (slaves) running on each cluster node, and frameworks that
run tasks on these agents. The slaves register with the master and offer resources
i.e. capacity to run tasks. Mesos uses the concept of frameworks to encapsulate
processing engines whose creation is triggered by the schedulers registered in the
system. Frameworks reserve resources for the execution of tasks while the master
can reallocate resources to frameworks dynamically.

Mesos supports two types of containerizers, the Mesos native containerizer,
and the Docker containerizer. Mesos containerizer uses native OS features directly
to provide isolation between containers, while Docker containerizer delegates con-
tainer management to the Docker engine. Mesos native containerizer provides in-
teroperability with Docker images, thus making possible to reuse the same appli-
cation image transparently with regards to the specific Mesos deployment.

3.2.3 Singularity

Singularity is another container engine which focuses on providing users a cus-
tomizable, portable and reproducible environment for executing their applications.
As other container engines, Singularity is based on images where users have full
control to install the required software stack to run their applications (OS, library
versions, etc.). Then, it provides the capability to be executed on different host

8 Cristian Ramon-Cortes et al.

Operating Systems. The main difference with Docker is that it allows to run con-
tainers in a non-privileged user space and to access special host resources such as
GPUs, and high-speed networks like Infiniband.

Another important difference with frameworks like Docker or Kubernetes is
that Singularity does not tackle shared virtual networking and multi-container
orchestration, which has several benefits and drawbacks. On the one hand, it
does not introduce a big networking virtualization overhead. On the other hand,
services running in containers hosted on the same node share the network interface,
hostname, IP, etc. and they can not use the same port. Thus, due to this lack of
isolation and orchestration, container engines like Singularity are usually combined
with other resource managers or queue systems like SLURM which provide this
features at host level. Moreover, Singularity is also capable of working with Docker
images, which allows users to run their containerized applications in an HPC
environment.

4 Application-Containers integration overview

In the previous sections, we have introduced the different container frameworks
highlighting the benefits of using containers for packaging and porting applications
in several computing infrastructures. We have also identified some missing features
to support transparent and automatic packaging, deployment and execution of
distributed applications in container platforms, where the user has to manually
perform individual steps to have a distributed application running in a set of
containers. In this section, we discuss how to enable those missing features, how
we have implemented them for the COMPSs framework and we provide some
guidelines in order to reuse the same procedure for other task-based programming
models.

Fig. 2 Application container integration use cases

Figure 2 shows an overview of the proposed application-container integration
framework and how the different user’s roles interact with it. Due to the het-

Title Suppressed Due to Excessive Length 9

erogeneity of the capabilities of the different container platforms, we have split
the proposed application-container integration into two generic packages; (i) the
Static Container Management, which provides the automatic image creation fea-
tures and the application deployment and execution in a static container pool;
(ii) the Dynamic Container Management, which provides the adaptation features
to integrate the application with container platforms that are then considered as
dynamic pools of resource that can be added and removed at execution time.
Regarding how the different users interact with the package, once the Applica-
tion Developer has completed the application implementation, it interacts with
the system to create the application container image and to make it available
for the Application User. Then, depending on the infrastructure capabilities, the
Application User can execute it with a static or dynamic number of containers.

The next subsections provide more details about the proposed packages and
how they are used in combination with the COMPSs framework. Although the
packages have been implemented on top of COMPSs, the same interactions per-
formed by the COMPSs scripts and runtime can be carried out by other program-
ming model tools to achieve similar results.

4.1 Static Container Management Integration

The combination of COMPSs with container engines brings several benefits for
the developers. On the one side, the COMPSs programming model provides a
straightforward methodology to parallelize applications from sequential codes and
decoupling the application from the underlying computing infrastructure. On the
other side, containers provide an efficient image management and application de-
ployment tools which facilitate the packaging and distribution of applications.
The integration of both frameworks allows developers to easily port, distribute
and scale their applications into parallel distributed computing platforms. As a
use case, developers can start from a sequential code, identify the methods which
can be defined as tasks and annotate them. With the runcompss command, they
can debug the application on a single node. Once the application implementa-
tion has been tested in the local environment, developers can proceed with the
deployment in a container environment with the runcompss container command.
When invoking the command, the application is transparently prepared to run in
a container-based infrastructure using as many worker resources it may need.

Figure 3 provides an overview of the main actions carried out during the execu-
tion of the runcompss container command. This command starts an orchestration
process that encapsulates all the required steps to run the application in a container
infrastructure that include the creation of the container image of the application
and the application execution in the container engines. The first step is done only
once for each application, and the second step runs every time an application is
executed.

As commented before, the majority of container engines are capable of im-
porting, converting or directly running containers with a Docker image format.
However, every container uses its own API and deployment model to execute the
containers. For this reason, the first part of the process is common to all the
container platforms (see Section 5 for further details), and the deployment and
execution part depends on the type of container platform we are deploying and

10 Cristian Ramon-Cortes et al.

Fig. 3 Integration of COMPSs with containers platforms

running the application into (Sections 5 and 6 describe the details of the different
phases for each type of container platform). Notice that, although the steps may
vary among the different container platforms, the runcompss container orchestra-
tion process abstracts the final user from the underlying container platform.

Normal execu t ion
runcompss
−−c l a s s pa t h=/home/ john /matmul/matmul . j a r
matmul . o b j e c t s . Matmul 16 4

Docker execu t ion
runcompss conta iner
−−eng ine=docker
−−engine−manager = ’129 .114 .108 .8 : 4000 ’
−− i n i t i a l −worker−c o n t a i n e r s=5
−−conta iner image =’ john123 /matmul−example ’
−−c l a s s p a t h=/home/ john /matmul/matmul . j a r
matmul . o b j e c t s . Matmul 16 4

Fig. 4 Normal and Container Execution Comparison

From the users’ point of view, the only difference between running the ap-
plication on the local machine or in the Docker infrastructure is the submission
command. In a normal COMPSs application execution, users have to invoke the
runcompss command followed by the application main class and arguments (see
Figure 4). This command loads the COMPSs runtime and starts the application
execution.

In the case that users want to run the application in a container platform, they
have to invoke the runcompss container command as depicted in Figure 4, similarly
to the runcompss case, but adding some extra arguments to specify the application
container image, the container-engine, the engine manager IP address and port,
and the number of containers that have to initially deployed as computing re-
sources. This command creates the image with the original COMPSs application,

Title Suppressed Due to Excessive Length 11

deploys it in the containers infrastructure and executes the application. Note that
COMPSs assumes that the container platform is available to deploy the application
containers and that the developer’s computer has installed the container platform
client to execute the application as well as to create and share the application
images across the cluster.

4.2 Dynamic Container Management Integration

One of the main benefits of Cloud computing platforms is elasticity [34] [41]. Users
can request more or less resources according to their needs. COMPSs has a built-in
adaptation mechanism to dynamically increase or decrease the number of resources
during the application’s execution depending on the actual workload. COMPSs
estimates the workload by profiling the previous executions of each task, measures
the resource creation time, and compares both values to order the creation or the
destruction of a resource. Since many container platforms can request and dispose
containers, we have extended this mechanism to handle container platforms. To
this aim, we have designed a common Connector API in Java that starts and stops
the container engine, and requests the creation or the destruction of a container.

Fig. 5 Dynamic integration of COMPSs with container platforms for adaptation

12 Cristian Ramon-Cortes et al.

As depicted in Figure 5, the COMPSs runtime keeps the logic of deciding
whether to create or destroy a container, and the Connector API abstracts the
framework from the underlying container platform. At execution time, COMPSs
loads, by reflection, the Connector implementation (that is specific to each con-
tainer manager) from its configuration files. During the application’s execution,
the Connector may be asked to create or destroy containers depending on the
runtime policies and, finally, COMPSs terminates the connector before shutting
down the whole framework.

Notice that, although the integration is done with the COMPSs runtime logic,
the Connector API is general enough to fit any other framework with adaptation
mechanisms. In fact, the Connector implementation is used to translate the generic
requests to the container platform specificities and is not COMPSs dependent. As
stated in Section 6, our work provides Connector implementations for Docker and
Mesos that are extensible for other high-level abstraction frameworks.

From the users’ point of view, the COMPSs applications can run in a dis-
tributed way on top of a container platform without modifying a single line of
code. It is sufficient to modify the COMPSs configuration files by adding the
Connector path (provided in the COMPSs installation), the platform manager
endpoint, the container image, and the initial, the minimum and the maximum
number of containers.

5 Application Container Image creation

As introduced in Section 4, the first step of the static orchestration process includes
the creation of the application image, being this a common process for all the
container platforms.

Figure 6 describes the overall workflow to generate a Docker image for a
COMPSs application transparently. Notice that this is a generic process that any
other framework could use to create an application container image transparently.
As an overview, COMPSs creates the application container image and uploads
it to DockerHub in order to make it available to whatever container platform.
To do so, we have included an utility in COMPSs that creates a DockerFile de-
scribing how to create the application Docker image. Specifically, it describes how
to install the application context directory (the directory where application files
are located) and the required dependencies on top of the COMPSs base image
as a separate layer. This COMPSs base image is a public Docker image located
at DockerHub which already contains a ready to use COMPSs runtime and its
required dependencies. The image creation is performed by executing the Dock-
erFile with the Docker client which automatically pulls the COMPSs base image,
installs the application on the base image as a new layer and uploads it to the
DockerHub.

In this way, different COMPSs applications deployed in Docker share the same
COMPSs base layer, and thus, the deployment of a new COMPSs application
only requires to download the new application layer. Moreover, the deployment of
several instances of the same application on new worker nodes does not require
any new installation. So, taking advantage of the Docker layer system, COMPSs
can increase the deployment speed and can perform better adaptations.

Title Suppressed Due to Excessive Length 13

Fig. 6 Step 1. Image Generation Phase

6 Application Deployment and Execution in container-based frameworks

As introduced in Section 4, the second step of the static orchestration process and
the dynamic integration depend on the type of container platform that the user
wants to use. In both steps, COMPSs has to create and configure the contain-
ers and to execute the application in the different environments. The following
paragraphs present how these phases are implemented for the different container
platforms.

6.1 COMPSs integration with Docker

Regarding the static process, Figure 7 depicts how COMPSs orchestrates the de-
ployment and execution of an application in the Docker container platform. In
this phase, COMPSs defines a Docker-Compose application by creating a docker-

compose.yml file which describes a Master container (where to execute the main
application) and a set of initial Worker containers (where to execute the tasks).
Despite the fact that the containers execute different parts of the application,
both type of containers boot the same application image the only difference be-
ing the command executed once the container is deployed. In the case of the
Master container, it executes the COMPSs runtime that orchestrates the tasks
of the application using the deployed Worker containers. On the other side, the
Worker containers start a daemon waiting for the messages of the master that
specify requests for task executions. Once the application is defined, COMPSs
uses Docker-Compose to deploy the containers in the Docker cluster managed by
Docker-Swarm. In this phase, an application network is also created across the

14 Cristian Ramon-Cortes et al.

Fig. 7 Step 2. Deployment Phase

containers on top of the overlay network which interconnects the Docker hosts, as
depicted in Figure 8.

Fig. 8 Integration of COMPSs with Docker at Runtime.

Regarding the dynamic integration, as explained in Section 3.1, the COMPSs
runtime detects the application tasks and analyzes data dependencies between
them creating a task-dependency graph. With this graph, the runtime knows which
tasks can be executed in parallel and manages the workers where to execute the

Title Suppressed Due to Excessive Length 15

application tasks. The COMPSs runtime includes a resource manager with adap-

tation mechanisms. This means that it continuously estimates if the application
requires more resources or if is better to reuse existing ones. This analysis is based
on the information of the execution time of the previous runs of the same types
of tasks, compared to the expected container deployment time. In the same way,
containers can be destroyed by the runtime if the computational load decreases or
if their existence does not improve the global performance of the application.

The integration with Docker includes a pluggable Connector implementation
which connects the COMPSs resource manager with Docker-Swarm and allows it
to deploy or destroy containers according to the decisions taken by the COMPSs
runtime. If the runtime decides that an additional container is needed, it contacts
the Docker-Swarm manager to request the creation of a container using the ap-
plication image and the application network. Then, the Docker-Swarm manager
deploys the extra Worker container, starting the worker daemons and connecting
the new container to the application network that exists across the containers. This
plug-in is included in the COMPSs base image and is automatically configured by
the runcompss container script.

When the application is finished, the results are copied back to the user’s
machine, and the running containers are shut down and removed.

The separation of image creation and application execution enables devel-
opers with an easy way to distribute their applications and makes other scien-
tists able to reproduce the results produced by a COMPSs application. The run-

compss container script is used both to create the application image and upload it
to the DockerHub repository and then to run the application providing the docker
image identifier, the arguments to run the application, the number of containers
used as workers and the endpoint of the Docker-swarm as arguments as indicated
in Figure 9.

Image genera t ion
runcompss conta iner \
−−gen−image \
−−c o n t e x t d i r=/home/ john /matmul/

Execution
runcompss conta iner \
−−eng ine=docker \
−−engine−manager = ’129 .114 .108 .8 : 4000 ’ \
−− i n i t i a l −worker−c o n t a i n e r s=5 \
−−conta iner image =’ john123 /matmul−example ’ \
−−c l a s s p a t h=/home/ john /matmul/matmul . j a r \
matmul . o b j e c t s . Matmul 16 4

Fig. 9 Sample Application Image Generation and Execution with runcompss container Script

16 Cristian Ramon-Cortes et al.

6.2 COMPSs integration with Apache Mesos

Figure 10 depicts the implementation of COMPSs on top of Mesos. A Framework
running on top of Mesos consists of two components: a scheduler and an executor.
The scheduler registers with the Mesos master and receives resource offerings from
the master. The scheduler decides what to do with resources offered by the master
within the framework. The executor is launched on slave nodes and runs framework
tasks.

Fig. 10 Integration of COMPSs with Mesos

In the case of COMPSs, the scheduler is integrated with the runtime, and
the negotiation of resources is performed through a specific Connector (Mesos
Framework in the Figure) that registers a new framework in Mesos. Once the
resources are offered to COMPSs, it deploys the workers on the nodes creating a
direct connection between the COMPSs master and the workers (blue arrows in
the Figure). In this implementation, COMPSs uses the default Mesos executor to
spawn the containers.

Then, each task is executed on an available node by the COMPSs runtime. In
this way, the behavior of the COMPSs runtime is not changed. As depicted in the
Figure, both the COMPSs runtime and the workers are executed in Mesos slaves
within Docker containers. The adoption of containers allows easy and transparent
deployments of applications, without the need of installing COMPSs and the de-
veloped applications in the cluster, and it also enables to configure each container
without the need of modifying the base instance. It is worth highlighting again
that the integration of Mesos is completely transparent to the application devel-
opers who are not requested to provide any information related to the resources
in the definition of the COMPSs tasks. To make direct connections, an overlay
network must be created on the Mesos cluster.

A COMPSs application can be submitted to a Mesos cluster using Chronos [5]
passing a JSON file with the description of the command to be executed once the
specified container is deployed. The next listing (Figure 11) contains the descrip-

Title Suppressed Due to Excessive Length 17

tion of a Simple COMPSs application with the definition of the Docker image to
be deployed and the URIs of the files to be copied in the sandbox of each worker.

{
”name” : ”COMPSs” ,
”command” : ”/opt /COMPSs/Runtime/ s c r i p t s / user / runcompss

−−p r o j e c t=/mnt/mesos/sandbox/ project mesosFramework . xml
−−r e s o u r c e s=/mnt/mesos/sandbox/ resources mesosFramework . xml
−−c l a s s p a t h=/mnt/mesos/sandbox/ Simple . j a r
s imple . Simple 1 25 1 3 60” ,

” s h e l l ” : true ,
” e p s i l o n ” : ”PT30M” ,
” executor ” : ”” ,
” executorF lags ” : ”” ,
” r e t r i e s ” : 2 ,
”owner” : ” john@bsc . es ” ,
” async ” : false ,
” successCount ” : 190 ,
” errorCount ” : 3 ,
” cpus ” : 0 . 5 ,
” d i sk ” : 5120 ,
”mem” : 512 ,
” d i s ab l ed ” : false ,
” con ta ine r ” : {

” type ” : ”DOCKER” ,
” image” : ”compss/compss :2.0−mesos−0.28.2 ” ,
”network” : ”USER”

} ,
” u r i s ” : [

” http :// bscgr id05 . bsc . e s /˜ john /Matmul . ta r . gz” ,
” http :// bscgr id05 . bsc . e s /˜ john / conf . ta r . gz” ,
” http :// bscgr id05 . bsc . e s /˜ john /DockerKeys . ta r . gz”

] ,
” schedu le ” : ”R1//PT24H”

}

Fig. 11 Definition of COMPSs application execution with Chronos

This example shows an interesting feature of COMPSs to deploy the applica-
tion at execution time dynamically. The user has to provide the package of the
COMPSs application in a .tar.gz file and list it in the URIs section of the JSON
document; Chronos will copy it in the sandbox of the container of the COMPSs
runtime; the COMPSs configuration files also need to be provided as a separate
file. The application package will be then transferred to the worker containers
by the runtime. This mechanism is particularly useful for testing purposes, al-
lowing to use the COMPSs base Docker image without creating a new layer and
uploading it in the Hub; leaving this step only for the final version of the applica-
tion, as explained in the previous section. In this work, we used the same image
(COMPSs+Application) also for the Mesos evaluation.

18 Cristian Ramon-Cortes et al.

6.3 COMPSs integration with Singularity

The case of singularity is significantly different from the case of Docker or Mesos
because the Singularity framework does not provide networking virtualization.
Singularity is mainly aimed at HPC, so it is normally used in combination with
Queue and Resource managers. Due to this fact, Singularity can only be integrated
with COMPSs at the static container management level.

In addition to the runcompss command, COMPSs also provides an enqueue compss

command to interact with queue managers (such as SLURM, LSF, etc.) to trans-
parently submit and execute a COMPSs application in a set of nodes of an HPC
cluster.

To support the execution of COMPSs in HPC clusters with Singularity, the
container image flag is introduced to allow users to indicate that the system must
execute the application with Singularity and to specify the id of the image that
contains the application, which has been generated as explained in Section 5. The
differences between running the application with a normal cluster mode or with
Singularity are shown in Figure 12.

Normal c l u s t e r execu t ion
enqueue compss \
−−exec t ime=30 \
−−num nodes=5 \
−−c l a s s p a t h=/c l u s t e r /home/ john /matmul/matmul . j a r \
matmul . o b j e c t s . Matmul 16 4

Sin gu l a r i t y c l u s t e r execu t ion
enqueue compss \
−−exec t ime=30 \
−−num nodes=5 \
−−conta iner image =’ john123 /matmul−example ’ \
−−c l a s s p a t h=/home/ john /matmul/matmul . j a r \
matmul . o b j e c t s . Matmul 16 4

Fig. 12 Comparison of submission of COMPSs for a normal cluster and Singularity cluster

Figure 13 shows how COMPSs interacts with the HPC system with Singularity
to deploy and execute the containerized application.

The enqueue compss command generates a submission script which generates
the queue system directives to perform the reservation of the nodes, and the con-
figuration of the COMPSs runtime to use the assigned resources. Next, it spawns
the COMPSs Master and Worker processes in the different nodes.

When the –container image flag is activated it imports the image from Docker-
Hub and creates a Singularity image by invoking the singularity import <container-

image >. Then, the command generates the same queue system directives and
COMPSs runtime configuration files. However, instead of starting directly the
COMPSs Master and Worker processes, it starts a container in each node that
runs the COMPSs Master or Worker process according to the node configuration.

Title Suppressed Due to Excessive Length 19

Fig. 13 Application Deployment with Singularity

7 Experimentation

We have defined two sets of experiments to evaluate the integration of COMPSs
with the different container platforms. The first set evaluates the deploying time
and the adaptation capabilities. On the other hand, the second set evaluates the
performance of running two benchmark applications on top of the different con-
tainer platforms in comparison to normal executions in bare metal, in a Cloud
Infrastructure, or in an HPC cluster. This second set aims at evaluating if there
is any performance degradation caused by the use of containers.

7.1 Testbed set-up

Experiments have been done using different infrastructures depending on the type
of container platform to be evaluated. The evaluation with Singularity has been
done in the MareNostrum III supercomputer [12] because it focuses on the sup-
port to HPC environments. Each MareNostrum node is composed of 2x Intel
SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz with 8x16 GB DDR3-1600
DIMMS of RAM.

For the Docker and Mesos experiments, we have used the Chameleon Cloud
infrastructure [2]. Chameleon is an NSF funded project which provides a config-
urable experimental environment for large-scale cloud research. The Chameleon
Cloud provides two types of infrastructure services: a traditional cloud managed
by OpenStack over KVM and a bare-metal reconfiguration, where the user can
reserve a set of bare-metal nodes flavored with the image that the user selects.

20 Cristian Ramon-Cortes et al.

(a) Bare-metal Configuration

(b) Docker-Swarm Configuration

(c) KVM-Openstack Configuration

(d) Mesos Configuration

Fig. 14 Testbed Environment Configurations

Title Suppressed Due to Excessive Length 21

For the Docker evaluation, we have set up three different environments as
depicted in Figure 14: Bare-metal, Docker-Cluster, and KVM-OpenStack. The
first scenario consists of a set of bare-metal flavored nodes where we directly run
COMPSs applications. The second scenario consists of a Docker-Swarm cluster
built on top of a set of bare-metal instances. In this case, each bare-metal node
hosts a Docker Engine, which deploys the COMPSs applications’ containers. Fi-
nally, the third scenario consists of a Cloud where OpenStack manages a set of
nodes virtualized by KVM. Each scenario uses up to 9 bare-metal nodes provided
by Chameleon with exactly the same configuration (2 x Intel Xeon CPU E5-2670
v3 with 12 cores each and 128GB of RAM). When running a COMPSs applica-
tion one node, container or VM, runs as a master (which manages the application
execution) while other nodes act as workers (which execute the application tasks).
In all the environments, nodes, containers, and VMs are defined to use the whole
physical node (24 VCPUs and 128 GB of RAM) and deploy the same software
stack (Ubuntu-14.04 with COMPSs installed). However, depending on the envi-
ronment the image size varies. The qcow2 image size for cloud environment is
about 1GB and the compressed docker image size is about 800MB. Regarding
the OpenStack services to manage images and create instances, we have used the
installation provided by Chameleon described in [3].

For the Mesos evaluation, we have set-up an additional environment where we
have installed Mesos on top of a set of bare-metal nodes. In particular, we have
deployed a Mesos cluster using the DC/OS platform that includes a virtual network
feature that provides an IP-per-Container for Mesos and Docker containers. These
virtual networks allow containers launched through the Docker Containerizer to
co-exist on the same IP network, allocating each container its own unique IP
address. This is a requirement for COMPSs because each worker is deployed in a
container and the COMPSs runtime needs to connect to each worker directly. As
in the Docker evaluation, we have deployed the cluster on bare-metal instances.
Specifically, we have used one node as Mesos Master and eight Mesos Slaves, each
one using the whole compute node and deploying the same image than the Docker
tests.

7.2 Benchmark Applications

The experimentation includes the deployment and execution of two benchmark ap-
plications in the different environments. The first application consists of a blocks
multiplication of two big matrices (Matmul). This application presents a large
number of data dependencies between tasks. Specifically, each matrix of the ex-
periment contains 228 floating-point elements (214 x 214). In order to share the
workload, they have been divided into 256 square blocks (16 x 16), each of them
containing 220 elements. It is quite I/O intensive because the data dependencies
between tasks require transferring the matrix blocks through the network as well
as some disk utilization.

In contrast, the second experiment is an embarrassingly parallel application
without data dependencies. This benchmark simply performs a series of trigono-
metric computations in parallel without exchanging any data. In this case, the
I/O utilization is mainly used by the messages exchanged by COMPSs to run the
parallel computations.

22 Cristian Ramon-Cortes et al.

All the measured values shown in the following subsections have been obtained
by repeating the experiments 5 times and calculating the mean of the results.
We observed that the variance between repetitions was not significant for the
objective of this paper, which is aimed at evaluating how the COMPSs runtime
behaves in different deployments and how the overhead of the specific adopted
technology impacts the overall application execution, instead of obtaining very
precise measurements.

7.3 Docker Experiments’ Results

7.3.1 Deployment evaluation

In the case of the deployment evaluation, we have measured the time to perform
the deployment of the applications into the considered environments in differ-
ent scenarios (when the image is already in the infrastructure, or not, etc.). The
measurements for the KVM-OpenStack and Docker scenarios are summarized in
Table 2. Since both benchmark applications have the same size and the deploy-
ment times of the Embarrassingly Parallel benchmark are very similar, we only
present the Matrix Multiplication times. Moreover, for this experiment, we have
not considered the bare metal scenario since the computing nodes are already con-
figured and the deployment of the COMPSs framework and the applications must
be performed manually copying and installing the required files on all the nodes.

Cloud (KVM/OpenStack) Docker

Phase Action
Time

Action
Time

w/o Image Image Cached w/o Images w Ubuntu w COMPSs w App.

Build
Base VM deployment 33.58 s. N/A Image Creation 73.87 s. 68.88 s. 15.48 s. N/A

App. Installation 15.45 s. N/A
Image upload 8.66 s. N/A

Image Snapshot 60.36 s. N/A

Total Construction 109.39 s. N/A 82.53 s. 77.54 s. 24.14 s. N/A

Deployment
VM deployment 83.68 s. 18.18 s. Image Download 12.39 s. N/A

VM boot 15.09 s. Container deployment 4.75 s.

Total Deployment 98.77 s. 33.27 s. 17.28 s. 4.75 s.

Total Construction & Deployment 208.16 s. 33.27 s. 99.67 s. 94.68 s. 41.28 s. 4.75 s.

Table 2 Application Deployment

In the construction phase, the creation of a customized image includes the
deployment of a VM with the COMPSs base image, the time to install the appli-
cation and to create the snapshot which is the most expensive phase and whose
duration depends on the image size. In this case, the creation time takes 109 sec-
onds. In contrast, the creation of the application in Docker depends on which layer
we already have in the Docker infrastructure because the new image is a layer on
top of previous ones. In this case, the Docker image creation takes from 24 seconds,
when the COMPSs base image is in the Docker engines, up to 82 seconds when
no images are available.

Then, at deployment phase, both cases (Cloud and Docker) are quite similar if
the node has the image locally cached or must be downloaded from a central image
store. In the best case for the cloud environment, the deployment and boot are

Title Suppressed Due to Excessive Length 23

completed in around 30 seconds. However, if the image must be downloaded the
deployment can take up to around 98 seconds. So the total creation and deployment
time in the case of a Cloud can take from 33 seconds up to 208 seconds. In contrast,
the container deployment in the best case takes around 5 seconds, when all the
layers are in the Docker engines, while in the worst case it takes 17 seconds. So,
the total creation and deployment time in Docker can take from 5 seconds up to
99 seconds, significantly improving the deployment. This is very relevant when we
want to adapt the number of resources to the computational load, as described in
Section 4. The faster the resource deployment is, the finer the adjustment of the
resources can be done, which implies a faster application execution and reducing
the underutilization of computational resources.

7.3.2 Performance evaluation

To evaluate the performance, we have measured the execution time of both ap-
plications using a different number of nodes in the different environments. The
values of the measurements for the Embarrassingly Parallel benchmark are de-
picted in Figures 15 and 16, and the values of the measurements for the Matrix
Multiplication are depicted in Figures 17 and 18.

Fig. 15 Scalability evaluation of the Embarrassingly Parallel application (without data de-
pendencies)

In the case of the Embarrassingly Parallel benchmark, all are performing very
similarly (overheads are between 1 and 10%). This is because the overhead intro-
duced by Docker and KVM in terms of CPU and memory management is relatively
small. The difference is basically due to the multi-host networking used by the run-
time to send the messages to execute tasks in the workers remotely. The default
overlay network of Docker is performing worse than the bridge network of KVM.
The relative overhead increases with the number of nodes used, mainly because
the computation time is reduced due to the increased parallelism available, but
the number of transfers required to run the tasks is still the same because the
number of tasks is the same.

24 Cristian Ramon-Cortes et al.

Fig. 16 Overhead evaluation of the Embarrassingly Parallel application (without data depen-
dencies) with respect to the bare-metal

Fig. 17 Scalability evaluation of the Matrix Multiplication (with data dependencies)

Different results can be observed in the Matrix Multiplication case. This appli-
cation makes use of disk and network I/O in order to transfer and load the matrix
blocks required to compute the partial multiplications. In this case, we can see
that Docker and bare-metal are performing similarly in this case of a single node,
and KVM is performing a bit slower than Bare-metal (around 14%). This is be-
cause KVM has more overhead when managing disk I/O than Docker, as observed
in previous comparisons [33]. However, when we increase the distribution of the
computation (2, 4, and 8 nodes), the computation and the disk I/O overhead is
also distributed across the nodes, and the networking usage is increased because
the more resources we have, the more matrix blocks transfers are required. So, the
multi-host networking overhead increases and becomes the most important source
of overhead. For two nodes, the overhead is almost the same in KVM and Docker
cases and for four and eight nodes, KVM performing better than Docker.

Title Suppressed Due to Excessive Length 25

Fig. 18 Overhead evaluation of the Matrix Multiplication (with data dependencies) with
respect to the bare-metal

To verify this assumption, we have performed a small network performance
experiment. In the same infrastructure than previous tests, we have transferred
a file of 1.2GB. First, between two bare-metal nodes, then between two VMs
deployed with OpenStack/KVM and finally, between two Docker containers using
the overlay network. Results of this experiment are summarized in Table 3, where
we can see the networking overhead in the Docker overlay network is significantly
bigger than other approaches.

Scenario Tranfer Time (s)

Baremetal 6.54

KVM/OpenStack 6.97

Docker Overlay 8.50

Table 3 Networking experiment

7.3.3 Adaptation evaluation

To validate how the deployment time influences the adaptation of the application
execution, we have executed the same Matrix Multiplication without any initial
worker container in order to see how the runtime adapts the number of resources
to the application load with different deployment times.

Figure 19 shows the execution time, and the number of VM/Containers created
during the application execution in the Docker cluster and the OpenStack/KVM
cloud environments. In both environments, we have run the same application twice.
In the first run, the images were not stored in the computing nodes so, in both envi-
ronments, the images had to be downloaded from the DockerHub or the OpenStack
image repository. In the second run, images were already cached in the computing
nodes, so the total deployment time only considers the deployment and boot times

26 Cristian Ramon-Cortes et al.

Fig. 19 Deployment time effect in the Matrix Multiplication resource adaptation

of VMs or containers. In both cases, the Docker scenario exhibits faster adapta-
tion because the runtime detects earlier that having extra resources speeds up the
execution since the resources are available earlier for execution.

7.4 Mesos Experiments’ Results

7.4.1 Deployment evaluation

Since we are using the same image as in the Docker experiments, we have not
evaluated the image construction phase. Moreover, for the deployment phase, we
used the Mesos default Docker executor to spawn the containers in the slave nodes
obtaining the same times, with no significant overhead compared to the Docker
experiments listed in Table 2.

7.4.2 Performance evaluation

To evaluate the performance of the COMPSs extensions to support Mesos, we
have measured the execution time of the Matrix Multiplication application using
a different number of nodes.

Figure 20 depicts the average values of the Mesos experiments compared to the
average values of Docker that were presented in the previous subsection. Notice
that the computation times are higher than in all the previous experiments still
providing a good scalability. Looking at the overhead figure, it can be argued
that the overhead is caused by the heavy usage of the overlay network and of the
disk I/O to transfer the blocks of the matrix. In particular, we had to deploy a
DC/OS virtual network for Mesosphere that adds network agents in each node to

Title Suppressed Due to Excessive Length 27

(a) Scalability

(b) Overhead with respect of bare-metal

Fig. 20 Matrix Multiplication application evaluation in Mesos

enable the connections across the containers. Anyway, the results demonstrate that
the COMPSs runtime properly adapts the tasks distribution to the availability of
resources and benefits from the resources abstraction provided by Mesos.

As future work, we aim to continue improving the Mesos implementation for
COMPSs also looking at solutions to reduce the overhead.

7.5 Singularity Experiments’ Results

Similar experiments have been performed to evaluate the integration of COMPSs
with Singularity. In this case, we have not evaluated the adaptation since Sin-
gularity is usually combined with other resource managers or queue systems like
SLURM.

7.5.1 Deployment evaluation

In the case of container deployment, Table 4 shows the time to deploy a Singularity
container in different scenarios, and it is compared with the Docker case.

The application image construction phase is the same than the Docker scenarios
because Singularity can import Docker images. However, to run the application

28 Cristian Ramon-Cortes et al.

Singularity Docker

Phase Action
Time

Action
Time

w/o Image Image Cached w/o Images w Ubuntu w COMPSs w App.

Deployment
Image import 79.80 s. N/A Image Download 75.68 s. 63.47 s. 17.35 s. N/A

Container deployment 0.45 s. Container deployment 4.75 s.

Total Deployment 80.25 s. 0.45 s. 80.43 s. 68.22 s. 22.10 s. 4.75 s.

Table 4 Application Deployment with Singularity

in Singularity containers, the Docker image of the application must be imported
and converted to Singularity as explained in Section 6.3. This process includes
the download of the application image and bootstraps the Docker image in a
Singularity image. The main drawback of this conversion is that Singularity does
not cache the previously downloaded layers. So, it can not take advantage of the
layered-based feature of the Docker images to reuse the already cached layers and,
every time we need to convert an application image because it is not in the compute
cluster, Singularity has to download all the application image layers. In contrast,
the deployment of a container once the image has been converted is considerably
faster than Docker.

7.5.2 Performance evaluation

In this case, we have executed the Matrix Multiplication benchmark in the MareNos-
trum supercomputer with Singularity and without it. Figure 21 shows the com-
parison of the average execution time in both configurations. We can see that both
runs perform similarly and the overhead at runtime is very low.

Fig. 21 Matrix Multiplication application execution with Singularity

Title Suppressed Due to Excessive Length 29

8 Conclusion and Future Work

In this paper, we have presented a methodology to integrate the different capa-
bilities of the container platforms, such as Docker, with task-based parallel pro-
gramming models, such as COMP Superscalar (COMPSs). The combination of
programming models with container platforms brings several benefits for devel-
opers. For instance the COMPSs programming model provides a straightforward
methodology to parallelize applications from sequential codes and decoupling the
application from the underlying computing infrastructure. On the other side, con-
tainers provide an efficient image management and application deployment tools
which facilitate the packaging and distribution of applications. So the integration
of both frameworks enables developers to easily, port, distribute and scale their
applications to parallel distributed computing platforms.

The proposed Application-Containers integration is mainly done in two steps.
The first step focuses on the creation of a Docker image which includes the applica-
tion software and the programming model runtime. After the creation, the applica-
tion image is uploaded to the DockerHub repository to make it available to other
users. The second step implements a mechanism to orchestrate the deployment
and execution of the application in the container platforms. This orchestration is
mainly achieved by two packages: i) Static Container Management which uses con-
tainer platforms to deploy and execute applications in a static resource pool and
ii) Dynamic Container Management which implements the resource adaptation
mechanisms to execute applications in a dynamic pool of resources.

A prototype of the proposed application-container integration frameworks has
been implemented on top of COMPSs and three different container platforms
(Docker, Singularity and Mesos) which are representatives of the different scenarios
where containers can be applied. For each implementation, we have evaluated how
the system behaves in the application building and deployment phases as well as
the overhead introduced at execution in comparison to other alternatives such as
bare-metal and KVM/OpenStack cloud.

As result of this evaluation, we have seen that for the integration of COMPSs
with the Docker framework, the application execution performs similarly to bare-
metal and KVM for applications with small data dependencies. However, the draw-
back of the Docker framework implementation appears with the intensive usage of
multi-host networking. In this situation, Docker has a bigger overhead than KVM.
Regarding the deployment, we have seen that the time to deploy containers is
reduced significantly compared with VM deployment, thus enabling the COMPSs
runtime to better adapt the resources to the computational load, creating more
containers when a large parallel region is reached and destroying containers when
a sequential or small parallel region is reached.

In the Mesos integration case, the experiments show that COMPSs keeps the
scalability in the execution of the applications but exhibiting a bigger overhead
than in the Docker-Swarm implementation. Nevertheless, the adoption of Mesos
is very convenient because it makes completely transparent the deployment phase
saving the user to deal with intricacies of interacting directly with Docker.

Finally, in the case of a container platform for HPC (e.g. Singularity or Shifter),
we have extended the integration of COMPSs with Cluster’s Resource and Queue
Managers to support the deployment and execution of containerized application.
The experimentation shows that the execution overhead is extremely low, and we

30 Cristian Ramon-Cortes et al.

have not detected the same scalability issues in the container networking. This
is mainly because Singularity does not virtualize I/O and uses the host resources
directly. As a consequence, it always requires working in coordination with a re-
source manager which is in charge to manage the way the cluster users use the
shared resources.

8.1 Future Work

As future work, we plan to evaluate experimental alternatives for Docker multi-
host networking [9] to evaluate if the COMPSs with Docker implementation can
perform better than KVM in all situations. For what relates to the Mesos support,
we plan to perform bigger tests to evaluate the scalability, to test the adaptation
capabilities with dynamically added slave nodes, and to analyze the networking
issues to understand the source of overhead.

Acknowledgment

This work is partly supported by the Spanish Government through Programa
Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Tech-
nology through TIN2015-65316 project, by the Generalitat de Catalunya un-
der contracts 2014-SGR-1051 and 2014-SGR-1272, and by the European Union
through the Horizon 2020 research and innovation programme under grant 690116
(EUBra-BIGSEA Project). Results presented in this paper were obtained using
the Chameleon testbed supported by the National Science Foundation.

References

1. Advanced Multi-layered unification filesystem. Web page at https://aufs.sourceforge.net/
((Date of last access: 11th April, 2017))

2. Chameleon Cloud Project. Web page at https://www.chameleoncloud.org ((Date of last
access: 11th April, 2017))

3. Chameleon Cloud Project. Web page at https://www.chameleoncloud.org/about/hardware-
description/ ((Date of last access: 11th April, 2017))

4. Chef. Web page at https://www.chef.io/ ((Date of last access: 11th April, 2017))
5. Chronos Scheduler for Mesos. Web page at https://mesos.github.io/chronos/ ((Date of

last access: 11th April, 2017))
6. COMP Superscalar . Web page at http://compss.bsc.es/ ((Date of last access: 11th April,

2017))
7. COMPSs Application Repository. Web page at http://compss.bsc.es/projects/bar ((Date

of last access: 11th April, 2017))
8. Docker. Web page at https://www.docker.com/ ((Date of last access: 11th April, 2017))
9. Docker Plug-ins. Web page at https://docs.docker.com/engine/extend/legacy plugins/

((Date of last access: 11th April, 2017))
10. GUIDANCE: An Integrated Framework for Large-scale Genome and Phenome-Wide Asso-

ciation Studies on Parallel Computing Platforms. Web page at http://cg.bsc.es/guidance/
((Date of last access: 11th April, 2017))

11. Kubernetes. Web page at https://kubernetes.io/ ((Date of last access: 11th April, 2017))
12. MareNostrum supercomputer. Web page at https://www.bsc.es/innovation-and-

services/supercomputers-and-facilities/marenostrum ((Date of last access: 11th April,
2017))

Title Suppressed Due to Excessive Length 31

13. Multiscale Genomics Project. Web page at https://www.multiscalegenomics.eu/ ((Date
of last access: 11th April, 2017))

14. Puppet. Web page at https://puppet.com/ ((Date of last access: 11th April, 2017))

15. Shifter. Web page at http://www.nersc.gov/research-and-development/user-defined-
images/ ((Date of last access: 11th April, 2017))

16. Singularity. Web page at http://singularity.lbl.gov/ ((Date of last access: 11th April,
2017))

17. transPLANT Project. Web page at http://www.transplantdb.eu/ ((Date of last access:
11th April, 2017))

18. VM Ware . Web page at http://www.vmware.com/ ((Date of last access: 11th April,
2017))

19. Cloud-init . Web page at https://launchpad.net/cloud-init ((Date of last access: 15th
November, 2016))

20. Nova-Docker driver for OpenStack . Web page at https://github.com/openstack/nova-
docker ((Date of last access: 15th November, 2016))

21. OneDock: Docker driver for Open Nebula . Web page at https://github.com/indigo-
dc/onedock/ ((Date of last access: 15th November, 2016))

22. Amaral, R., Badia, R.M., Blanquer, I., Braga-Neto, R., Candela, L., Castelli, D., Flann,
C., De Giovanni, R., Gray, W.A., Jones, A., Lezzi, D., Pagano, P., Perez-Canhos, V.,
Quevedo, F., Rafanell, R., Rebello, V., Sousa-Baena, M.S., Torres, E.: Supporting bio-
diversity studies with the eubrazilopenbio hybrid data infrastructure. Concurrency and
Computation: Practice and Experience 27(2), 376–394 (2015). DOI 10.1002/cpe.3238.
URL http://dx.doi.org/10.1002/cpe.3238

23. Anton, V., Ramon-Cortes, C., Ejarque, J., Badia, R.M.: Transparent execution of task-
based parallel applications in docker with comp superscalar. pp. 463–467. IEEE (2017).
URL https://doi.org/10.1109/PDP.2017.26

24. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view of cloud computing.
EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28
(2009)

25. Armstrong, D., Espling, D., Tordsson, J., Djemame, K., Elmroth, E.: Contextualization:
dynamic configuration of virtual machines. Journal of Cloud Computing 4(1), 1 (2015)

26. Badia, R.M., Conejero, J., Diaz, C., Ejarque, J., Lezzi, D., Lordan, F., Ramon-Cortes, C.,
Sirvent, R.: Comp superscalar, an interoperable programming framework. SoftwareX 3,
32–36 (2015). URL http://dx.doi.org/10.1016/j.softx.2015.10.004

27. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., Warfield, A.: Xen and the art of virtualization. In: ACM SIGOPS Operating Systems
Review, vol. 37, pp. 164–177. ACM (2003)

28. Bruneo, D., Fritz, T., Keidar-Barner, S., Leitner, P., Longo, F., Marquezan, C., Metzger,
A., Pohl, K., Puliafito, A., Raz, D., et al.: Cloudwave: Where adaptive cloud management
meets devops. In: 2014 IEEE Symposium on Computers and Communications (ISCC),
pp. 1–6. IEEE (2014)

29. Conejero, J., Corella, S., Badia, R.M., Labarta, J.: Task-based programming in compss
to converge from hpc to big data. The International Journal of High Performance Com-
puting Applications 0(0), 1094342017701,278 (0). DOI 10.1177/1094342017701278. URL
http://dx.doi.org/10.1177/1094342017701278

30. Di Tommaso, P., Palumbo, E., Chatzou, M., Prieto, P., Heuer, M.L.,
Notredame, C.: The impact of Docker containers on the performance of ge-
nomic pipelines. PeerJ 3, e1273 (2015). DOI 10.7717/peerj.1273. URL
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586803/

31. Ejarque, J., Sulistio, A., Lordan, F., Gilet, P., Sirvent, R., Badia, R.M.: Service construc-
tion tools for easy cloud deployment. In: 7th IBERIAN Grid Infrastructure Conference
Proceedings, p. 119

32. Enric Tejedor Rosa M. Badia, J.L.e.a.: Pycompss: Parallel computational workflows in
python. The International Journal of High Performance Computing Applications (IJH-
PCA) 31, 66–82 (2017). URL http://dx.doi.org/10.1177/1094342015594678

33. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of
virtual machines and linux containers. In: Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium On, pp. 171–172. IEEE (2015)

32 Cristian Ramon-Cortes et al.

34. Galante, G., Erpen De Bona, L.C., Mury, A.R., Schulze, B., da Rosa Righi, R.: An Analysis
of Public Clouds Elasticity in the Execution of Scientific Applications: a Survey. Jour-
nal of Grid Computing 14(2), 193–216 (2016). DOI 10.1007/s10723-016-9361-3. URL
http://dx.doi.org/10.1007/s10723-016-9361-3

35. Gerlach, W., Tang, W., Keegan, K., Harrison, T., Wilke, A., Bischof, J., D’Souza, M.,
Devoid, S., Murphy-Olson, D., Desai, N., et al.: Skyport: container-based execution en-
vironment management for multi-cloud scientific workflows. In: Proceedings of the 5th
International Workshop on Data-Intensive Computing in the Clouds, pp. 25–32. IEEE
Press (2014)

36. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R., Shenker,
S., Stoica, I.: Mesos: A platform for fine-grained resource sharing in the data center. In:
Proceedings of the 8th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’11, pp. 295–308. USENIX Association, Berkeley, CA, USA (2011). URL
http://dl.acm.org/citation.cfm?id=1972457.1972488

37. Katsaros, G., Menzel, M., Lenk, A., Revelant, J.R., Skipp, R., Eberhardt, J.: Cloud ap-
plication portability with tosca, chef and openstack. In: Cloud Engineering (IC2E), 2014
IEEE International Conference on, pp. 295–302. IEEE (2014)

38. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the linux virtual machine
monitor. In: Proceedings of the Linux symposium, vol. 1, pp. 225–230 (2007)

39. Krishnan, S., Gonzalez, J.L.U.: Google compute engine. In: Building Your Next Big Thing
with Google Cloud Platform, pp. 53–81. Springer (2015)

40. Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Alvarez, J., Marozzo, F., Lezzi,
D., Sirvent, R., Talia, D., Badia, R.M.: Servicess: an interoperable programming
framework for the cloud. Journal of Grid Computing 12(1), 67–91 (2014). URL
https://digital.csic.es/handle/10261/132141

41. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques
for elastic applications in cloud environments. Journal of Grid Computing 12(4), 559–592
(2014)

42. Meng, H., Thain, D.: Umbrella: A portable environment creator for reproducible
computing on clusters, clouds, and grids. In: Proceedings of the 8th International
Workshop on Virtualization Technologies in Distributed Computing, VTDC ’15, pp.
23–30. ACM, New York, NY, USA (2015). DOI 10.1145/2755979.2755982. URL
http://doi.acm.org/10.1145/2755979.2755982

43. Merkel, D.: Docker: lightweight linux containers for consistent development and deploy-
ment. Linux Journal 2014(239), 2 (2014)

44. Peinl, R., Holzschuher, F., Pfitzer, F.: Docker cluster management for the cloud - survey
results and own solution. Journal of Grid Computing 14(2), 265–282 (2016). DOI
10.1007/s10723-016-9366-y. URL http://dx.doi.org/10.1007/s10723-016-9366-y

45. Sánchez-Expósito, S., Mart́ın, P., Ruiz, J.E., Verdes-Montenegro, L., Garrido, J., Sirvent,
R., Falcó, A.R., Badia, R.M., Lezzi, D.: Web services as building blocks for science gateways
in astrophysics. Journal of Grid Computing 14(4), 673–685 (2016). DOI 10.1007/s10723-
016-9382-y. URL https://doi.org/10.1007/s10723-016-9382-y

46. Sefraoui, O., Aissaoui, M., Eleuldj, M.: Openstack: toward an open-source solution for
cloud computing. International Journal of Computer Applications 55(3) (2012)

47. Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.: Virtual infrastructure manage-
ment in private and hybrid clouds. IEEE Internet computing 13(5), 14–22 (2009)

48. Zheng, C., Thain, D.: Integrating containers into workflows: A case study using makeflow,
work queue, and docker. In: Proceedings of the 8th International Workshop on Virtual-
ization Technologies in Distributed Computing, pp. 31–38. ACM (2015)

