
UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)
BARCELONATECH

COMPUTER ARCHITECTURE DEPARTMENT (DAC)

Programming models to support
Data Science workflows

PH.D. THESIS

2020 | SPRING SEMESTER

Author:

Cristián RAMÓN-CORTÉS
VILARRODONA
cristian.ramoncortes@bsc.es

Advisors:

Dra. Rosa M. BADIA SALA
rosa.m.badia@bsc.es

Dr. Jorge EJARQUE ARTIGAS
jorge.ejarque@bsc.es

HTTP://WWW.UPC.EDU/
HTTP://WWW.UPC.EDU/
HTTP://WWW.AC.UPC.EDU/

iii

”Apenas él le amalaba el noema, a ella se le agolpaba el clémiso
y caían en hidromurias, en salvajes ambonios, en sustalos exas-
perantes. Cada vez que él procuraba relamar las incopelusas,
se enredaba en un grimado quejumbroso y tenía que envul-
sionarse de cara al nóvalo, sintiendo cómo poco a poco las
arnillas se espejunaban, se iban apeltronando, reduplimiendo,
hasta quedar tendido como el trimalciato de ergomanina al que
se le han dejado caer unas fílulas de cariaconcia. Y sin em-
bargo era apenas el principio, porque en un momento dado
ella se tordulaba los hurgalios, consintiendo en que él aprox-
imara suavemente sus orfelunios. Apenas se entreplumaban,
algo como un ulucordio los encrestoriaba, los extrayuxtaba y
paramovía, de pronto era el clinón, la esterfurosa convulcante
de las mátricas, la jadehollante embocapluvia del orgumio,
los esproemios del merpasmo en una sobrehumítica agopausa.
¡Evohé! ¡Evohé! Volposados en la cresta del murelio, se sen-
tían balpamar, perlinos y márulos. Temblaba el troc, se vencían
las marioplumas, y todo se resolviraba en un profundo pínice,
en niolamas de argutendidas gasas, en carinias casi crueles que
los ordopenaban hasta el límite de las gunfias.”

Julio Cortázar,
Rayuela

v

Dedication

This work would not have been possible without the effort and
patience of the people around me. Thank you for encouraging
me to get to this point and sharing so many great moments on
the way.

To Laura, for her kindness and devotion, and for supporting
me through thick and thin despite my difficult character.

Special thanks to my loving mother and father, who have al-
ways guided and encouraged me to never stop learning; and
who bought me my first computer.

Last but not least, to my sweet little sister, Marta, who always
stands on my side and whose affection and support keeps me
always up.

Wholeheartedly,
Cristián Ramón-Cortés Vilarrodona

vii

Declaration of authorship

I hereby declare that, except where specific reference is made to the work of others, this
thesis dissertation has been composed by me and it is based on my own work. None of the
contents of this dissertation has been previously published nor submitted, in whole or in
part, to any other examination in this or any other university.

Signed:

Date:

ix

Acknowledgements

I gratefully thank my supervisors Rosa M. Badia Sala and Jorge Ejarque Artigas for all
their assistance during my career at the Barcelona Supercomputing Center (BSC-CNS) and for
giving me the opportunity to collaborate on this project.

I also thank all my colleagues, current and former members of the Workflows and Dis-
tributed Computing team from the Barcelona Supercomputing Center (BSC), for their useful
comments, remarks, and engagement through the learning process of this thesis: Francesc
Lordan, Javier Alvarez, Francisco Javier Conejero, Daniele Lezzi, Ramon Amela, Pol Al-
varez, Sergio Rodríguez, Carlos Segarra, Marc Dominguez, Salvi Solà, Hatem Elshazly, and
Nihad Mammadli.

On the other hand, this thesis has been financed by the Ministry of Economy and Com-
petitiveness with a predoctoral grant under contract BES-2016-076791. This work has also
been partially supported by the Spanish Government (SEV2015-0493); the Spanish Ministry
of Science and Innovation (contract TIN2015-65316-P); the Generalitat de Catalunya (con-
tract 2014-SGR-1051); the Joint Laboratory for Extreme Scale Computing (JLESC); the Intel-
BSC Exascale Lab; and the European Commission through the Horizon 2020 Research and
Innovation program under contracts 687584 (TANGO project), 676556 (MuG project), 690116
(EUBra-BIGSEA project), 671591 (NEXTGenIO project), and 800898 (ExaQUte project).

xi

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) BARCELONATECH
Computer Architecture Department (DAC)

Abstract
Programming models to support Data Science workflows

by Cristián RAMÓN-CORTÉS VILARRODONA

Data Science workflows have become a must to progress in many scientific areas such
as life, health, and earth sciences. In contrast to traditional HPC workflows, they are more
heterogeneous; combining binary executions, MPI simulations, multi-threaded applications,
custom analysis (possibly written in Java, Python, C/C++ or R), and real-time processing.
Furthermore, in the past, field experts were capable of programming and running small
simulations. However, nowadays, simulations requiring hundreds or thousands of cores
are widely used and, to this point, efficiently programming them becomes a challenge even
for computer sciences. Thus, programming languages and models make a considerable
effort to ease the programmability while maintaining acceptable performance.

This thesis contributes to the adaptation of High-Performance frameworks to support
the needs and challenges of Data Science workflows by extending COMPSs, a mature, gene-
ral-purpose, task-based, distributed programming model. First, we enhance our prototype
to orchestrate different frameworks inside a single programming model so that non-expert
users can build complex workflows where some steps require highly optimised state of
the art frameworks. This extension includes the @binary, @OmpSs, @MPI, @COMPSs, and
@MultiNode annotations for both Java and Python workflows.

Second, we integrate container technologies to enable developers to easily port, dis-
tribute, and scale their applications to distributed computing platforms. This combination
provides a straightforward methodology to parallelise applications from sequential codes
along with efficient image management and application deployment that ease the pack-
aging and distribution of applications. We distinguish between static, HPC, and dynamic
container management and provide representative use cases for each scenario using Docker,
Singularity, and Mesos.

Third, we design, implement and integrate AutoParallel, a Python module to automati-
cally find an appropriate task-based parallelisation of affine loop nests and execute them in
parallel in a distributed computing infrastructure. It is based on sequential programming
and requires one single annotation (the @parallel Python decorator) so that anyone with
intermediate-level programming skills can scale up an application to hundreds of cores.

Finally, we propose a way to extend task-based management systems to support continu-
ous input and output data to enable the combination of task-based workflows and dataflows
(Hybrid Workflows) using one single programming model. Hence, developers can build
complex Data Science workflows with different approaches depending on the requirements
without the effort of combining several frameworks at the same time. Also, to illustrate
the capabilities of Hybrid Workflows, we have built a Distributed Stream Library that can
be easily integrated with existing task-based frameworks to provide support for dataflows.
The library provides a homogeneous, generic, and simple representation of object and file
streams in both Java and Python; enabling complex workflows to handle any data type
without dealing directly with the streaming back-end.

Keywords: Distributed Computing, High-Performance Computing, Data Science pipe-
lines, Task-based Workflows, Dataflows, Containers, COMPSs, PyCOMPSs, AutoParallel,
Docker, Pluto, Kafka

HTTP://WWW.UPC.EDU/
http://www.ac.upc.edu/

xiii

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) BARCELONATECH
Computer Architecture Department (DAC)

Resumen
Programming models to support Data Science workflows

por Cristián RAMÓN-CORTÉS VILARRODONA

Los flujos de trabajo de Data Science se han convertido en una necesidad para progresar
en muchas áreas científicas como las ciencias de la vida, la salud y la tierra. A diferencia de
los flujos de trabajo tradicionales para la CAP, los flujos de Data Science son más heterogé-
neos; combinando la ejecución de binarios, simulaciones MPI, aplicaciones multiproceso,
análisis personalizados (posiblemente escritos en Java, Python, C/C++ o R) y computa-
ciones en tiempo real. Mientras que en el pasado los expertos de cada campo eran capaces
de programar y ejecutar pequeñas simulaciones, hoy en día, estas simulaciones representan
un desafío incluso para los expertos ya que requieren cientos o miles de núcleos. Por esta
razón, los lenguajes y modelos de programación actuales se esfuerzan considerablemente
en incrementar la programabilidad manteniendo un rendimiento aceptable.

Esta tesis contribuye a la adaptación de modelos de programación para la CAP para
afrontar las necesidades y desafíos de los flujos de Data Science extendiendo COMPSs, un
modelo de programación distribuida maduro, de propósito general, y basado en tareas. En
primer lugar, mejoramos nuestro prototipo para orquestar diferentes software para que los
usuarios no expertos puedan crear flujos complejos usando un único modelo donde algunos
pasos requieran tecnologías altamente optimizadas. Esta extensión incluye las anotaciones
de @binary, @OmpSs, @MPI, @COMPSs, y @MultiNode para flujos en Java y Python.

En segundo lugar, integramos tecnologías de contenedores para permitir a los desarrol-
ladores portar, distribuir y escalar fácilmente sus aplicaciones en plataformas distribuidas.
Además de una metodología sencilla para paralelizar aplicaciones a partir de códigos se-
cuenciales, esta combinación proporciona una gestión de imágenes y una implementación
de aplicaciones eficientes que facilitan el empaquetado y la distribución de aplicaciones.
Distinguimos entre gestión de contenedores estática, CAP y dinámica y proporcionamos
casos de uso representativos para cada escenario con Docker, Singularity y Mesos.

En tercer lugar, diseñamos, implementamos e integramos AutoParallel, un módulo de
Python para determinar automáticamente la paralelización basada en tareas de nidos de
bucles afines y ejecutarlos en paralelo en una infraestructura distribuida. AutoParallel está
basado en programación secuencial, requiere una sola anotación (el decorador @parallel)
y permite a un usuario intermedio escalar una aplicación a cientos de núcleos.

Finalmente, proponemos una forma de extender los sistemas basados en tareas para ad-
mitir datos de entrada y salida continuos; permitiendo así la combinación de flujos de tra-
bajo y datos (Flujos Híbridos) en un único modelo. Consecuentemente, los desarrolladores
pueden crear flujos complejos siguiendo diferentes patrones sin el esfuerzo de combinar
varios modelos al mismo tiempo. Además, para ilustrar las capacidades de los Flujos Híbri-
dos, hemos creado una biblioteca (DistroStreamLib) que se integra fácilmente a los mode-
los basados en tareas para soportar flujos de datos. La bilblioteca proporciona una repre-
sentación homogénea, genérica y simple de secuencias continuas de objetos y archivos en
Java y Python; permitiendo manejar cualquier tipo de datos sin tratar directamente con el
back-end de streaming.

Palabras clave: Computación Distribuida, Computación de Altas Prestaciones, Flujos de
Data Science, Flujos de Tareas, Flujos de Datos, Containers, COMPSs, PyCOMPSs, AutoPar-
allel, Docker, Pluto, Kafka

HTTP://WWW.UPC.EDU/
http://www.ac.upc.edu/

xiv

xv

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) BARCELONATECH
Computer Architecture Department (DAC)

Resum
Programming models to support Data Science workflows

per Cristián RAMÓN-CORTÉS VILARRODONA

Els fluxos de treball de Data Science s’han convertit en una necessitat per progressar en
moltes àrees científiques com les ciències de la vida, la salut i la terra. A diferència dels fluxos
de treball tradicionals per a la CAP, els fluxos de Data Science són més heterogenis; combi-
nant l’execució de binaris, simulacions MPI, aplicacions multiprocés, anàlisi personalitzats
(possiblement escrits en Java, Python, C / C ++ o R) i computacions en temps real. Mentre
que en el passat els experts de cada camp eren capaços de programar i executar petites sim-
ulacions, avui dia, aquestes simulacions representen un repte fins i tot per als experts ja que
requereixen centenars o milers de nuclis. Per aquesta raó, els llenguatges i models de pro-
gramació actuals s’esforcen considerablement en incrementar la programabilitat mantenint
un rendiment acceptable.

Aquesta tesi contribueix a l’adaptació de models de programació per a la CAP per afron-
tar les necessitats i reptes dels fluxos de Data Science estenent COMPSs, un model de progra-
mació distribuïda madur, de propòsit general, i basat en tasques. En primer lloc, millorem el
nostre prototip per orquestrar diferent programari per a que els usuaris no experts puguin
crear fluxos complexos usant un únic model on alguns passos requereixin tecnologies al-
tament optimitzades. Aquesta extensió inclou les anotacions de @binary, @OmpSs, @MPI,
@COMPSs, i @MultiNode per a fluxos en Java i Python.

En segon lloc, integrem tecnologies de contenidors per permetre als desenvolupadors
portar, distribuir i escalar fàcilment les seves aplicacions en plataformes distribuïdes. A
més d’una metodologia senzilla per a paral·lelitzar aplicacions a partir de codis seqüencials,
aquesta combinació proporciona una gestió d’imatges i una implementació d’aplicacions
eficients que faciliten l’empaquetat i la distribució d’aplicacions. Distingim entre la gestió
de contenidors estàtica, CAP i dinàmica i proporcionem casos d’ús representatius per a cada
escenari amb Docker, Singularity i Mesos.

En tercer lloc, dissenyem, implementem i integrem AutoParallel, un mòdul de Python
per determinar automàticament la paral·lelització basada en tasques de nius de bucles afins
i executar-los en paral·lel en una infraestructura distribuïda. AutoParallel està basat en pro-
gramació seqüencial, requereix una sola anotació (el decorador @parallel) i permet a un
usuari intermig escalar una aplicació a centenars de nuclis.

Finalment, proposem una forma d’estendre els sistemes basats en tasques per adme-
tre dades d’entrada i sortida continus; permetent així la combinació de fluxos de treball i
dades (Fluxos Híbrids) en un únic model. Conseqüentment, els desenvolupadors poden
crear fluxos complexos seguint diferents patrons sense l’esforç de combinar diversos mod-
els al mateix temps. A més, per a il·lustrar les capacitats dels Fluxos Híbrids, hem creat una
biblioteca (DistroStreamLib) que s’integra fàcilment amb els models basats en tasques per
suportar fluxos de dades. La biblioteca proporciona una representació homogènia, genèrica
i simple de seqüències contínues d’objectes i arxius en Java i Python; permetent gestionar
qualsevol tipus de dades sense tractar directament amb el back-end de streaming.

Paraules clau: Computació Distribuïda, Computació d’Altes Prestacions, Fluxos de Data
Science, Fluxos de Tasques, Fluxos de Dades, Containers, COMPSs, PyCOMPSs, AutoParal-
lel, Docker, Pluto, Kafka

HTTP://WWW.UPC.EDU/
http://www.ac.upc.edu/

xvii

Contents

Dedication v

Declaration of authorship vii

Acknowledgements ix

Abstract xi

Resumen xiii

Resum xv

Contents xxi

List of Figures xxiv

List of Listings xxv

List of Tables xxvii

List of Abbreviations xxx

Glossary xxxiv

I Introduction 1

1 Introduction 3
1.1 Context . 3

1.1.1 The Distributed Computing era . 3
1.1.2 The joint venture towards the Exascale Computing 3
1.1.3 Task-based Workflows and Dataflows 4
1.1.4 Batch Processing and Continous Processing 4

1.2 Objectives and contributions . 5
1.2.1 Research Questions . 6
1.2.2 Detailed objectives . 7
1.2.3 Contributions to the field . 7
1.2.4 Publications . 8

1.3 Tools and methodology . 9
1.3.1 Tools . 9
1.3.2 Methodology . 9

1.3.2.1 Scientific method design . 9
1.3.2.2 Development strategy . 10
1.3.2.3 Validation strategy . 10

1.4 Dissertation structure . 10

xviii

2 State of the art 13
2.1 Distributed Computing . 13
2.2 Task-based Workflows . 14

2.2.1 Software discussion and examples . 14
2.2.2 Taxonomy . 14
2.2.3 Analysis . 16

2.3 Dataflows . 16
2.3.1 Software discussion and examples . 17
2.3.2 Taxonomy . 17
2.3.3 Analysis . 18

3 Background 21
3.1 COMPSs . 21

3.1.1 Programming model . 22
3.1.1.1 Java . 22
3.1.1.2 Python . 25
3.1.1.3 Annotations’ summary . 26

3.1.2 Runtime system . 28
3.1.3 Task life-cycle . 29

3.2 MPI . 30

II Contributions 33

4 Orchestration of complex workflows 35
4.1 General overview . 36
4.2 Related Work . 36
4.3 Programming model annotations . 37

4.3.1 Method annotations . 37
4.3.1.1 Java . 38
4.3.1.2 Python . 40

4.3.2 Parameter annotations . 41
4.3.2.1 Prefix parameter annotation 43

4.4 Runtime master . 46
4.4.1 Task detection . 46
4.4.2 Task scheduler . 46

4.5 Worker executors . 49
4.5.1 Invokers . 50

4.6 Use Case: NMMB-MONARCH . 50
4.6.1 Application overview . 51
4.6.2 Parallelisation design . 52
4.6.3 Evaluation . 54

4.6.3.1 Parallelisation analysis . 54
4.6.3.2 Computing infrastructure . 54
4.6.3.3 Simulation dataset . 55
4.6.3.4 Global performance . 56
4.6.3.5 Performance per step . 56
4.6.3.6 Behaviour analysis . 57
4.6.3.7 Scientific analysis . 58

xix

5 Computational resources using container techonologies 61
5.1 General overview . 62
5.2 Related Work . 63
5.3 Resource Orchestration Platforms . 64

5.3.1 Batch ROP . 65
5.3.1.1 Software discussion and examples 65
5.3.1.2 Taxonomy . 65
5.3.1.3 Analysis . 66

5.3.2 Interactive ROP . 66
5.3.2.1 Software discussion and examples 67
5.3.2.2 Taxonomy . 67
5.3.2.3 Analysis . 67

5.4 Description of reference ROP . 68
5.4.1 OpenStack . 68
5.4.2 OpenNebula . 69
5.4.3 Docker framework . 69
5.4.4 Kubernetes . 69
5.4.5 Singularity . 70
5.4.6 Mesos . 70

5.5 Architecture . 71
5.5.1 Static computational resources . 71

5.5.1.1 COMPSs static resources management 71
5.5.1.2 New static container management 72

5.5.1.2.1 Submission command 72
5.5.1.2.2 Container image creation 73
5.5.1.2.3 Container execution 74

5.5.1.3 Use Case 1: Docker . 74
5.5.2 HPC computational resources . 76

5.5.2.1 COMPSs HPC resources management 76
5.5.2.2 New HPC container management 77
5.5.2.3 Use Case 2: Singularity . 77

5.5.3 Dynamic computational resources . 78
5.5.3.1 COMPSs dynamic resources management 78
5.5.3.2 New dynamic container management 80
5.5.3.3 Use Case 3: Docker . 80
5.5.3.4 Use Case 4: Mesos . 80

5.6 Evaluation . 82
5.6.1 Computing infrastructure . 82
5.6.2 Benchmark applications . 83
5.6.3 Docker . 84

5.6.3.1 Deployment evaluation . 84
5.6.3.2 Performance evaluation . 85
5.6.3.3 Adaptation evaluation . 87

5.6.4 Singularity . 88
5.6.4.1 Deployment evaluation . 88
5.6.4.2 Performance evaluation . 88
5.6.4.3 Porting of a real-world application: GUIDANCE 89

5.6.5 Mesos . 90
5.6.5.1 Deployment evaluation . 90
5.6.5.2 Performance evaluation . 90

5.7 Discussion . 91

xx

6 Automatic parallelisation 93
6.1 General overview . 94
6.2 Related work . 94
6.3 PLUTO . 95

6.3.1 Loop tiling . 96
6.4 Architecture . 97

6.4.1 AutoParallel module . 98
6.4.2 Taskification of loop tiles . 100
6.4.3 Python extension for CLooG . 101

6.5 Programmability evaluation . 102
6.5.1 Centre of Mass . 102

6.6 Performance evaluation . 106
6.6.1 Computing infrastructure . 106
6.6.2 General description of the applications 106
6.6.3 Cholesky . 107
6.6.4 LU . 108
6.6.5 QR . 110

6.7 Evaluation of the automatic data blocking . 111
6.7.1 GEMM . 111

6.8 Discussion . 114

7 Transparent execution of Hybrid Workflows 115
7.1 General overview . 116
7.2 Related work . 117

7.2.1 Task-based frameworks . 117
7.2.2 Dataflow frameworks . 118
7.2.3 Hybrid frameworks . 119

7.3 Kafka . 119
7.4 Architecture . 121

7.4.1 Distributed Stream interface . 121
7.4.2 Distributed Stream implementations . 122

7.4.2.1 Object streams . 122
7.4.2.2 File streams . 124

7.4.3 Distributed Stream Library . 125
7.4.4 Programming model extensions . 126
7.4.5 Runtime extensions . 126

7.5 Use cases . 128
7.5.1 Use case 1: Continuous data generation 128
7.5.2 Use case 2: Asynchronous data exchange 131
7.5.3 Use case 3: External streams . 132
7.5.4 Use case 4: Dataflows with nested task-based workflows 133

7.6 Evaluation . 134
7.6.1 Experimental setup . 134
7.6.2 Gain of processing data continuously 134
7.6.3 Gain of removing synchronisations . 136
7.6.4 Stream writers and readers scalability and load balance 138
7.6.5 Runtime overhead . 140

7.7 Discussion . 144

xxi

III Conclusions and future work 147

8 Conclusions and future work 149
8.1 Conclusions . 149
8.2 Future work . 150

IV Bibliography 153

Bibliography 155

xxiii

List of Figures

1.1 Lines of work to support Data Science workflows. 5

2.1 Classification of high abstraction frameworks for Application Development. . . 13

3.1 COMPSs overview. 21
3.2 COMPSs Java example: COMPSs execution of Increment. 25
3.3 COMPSs structure. 28
3.4 COMPSs Runtime overview. 28
3.5 COMPSs task execution workflow. 29
3.6 Hello MPI: Diagram of execution. 32

4.1 Example of a single node task flow. 47
4.2 Example of a multi-node task flow. 48
4.3 NMMB-MONARCH: Structure diagram. 51
4.4 NMMB-MONARCH: Structure diagram with tasks definition. 53
4.5 NMMB-MONARCH: Dependency graph of three days simulation. 55
4.6 NMMB-MONARCH: Execution time and speed-up. 56
4.7 NMMB-MONARCH: Paraver trace of the Python version. 58
4.8 NMMB-MONARCH: Visual outputs. 59

5.1 Classification of Resource Orchestration Platforms (ROP) 65
5.2 COMPSs static resources management . 71
5.3 Integration with containers platforms. 72
5.4 Image generation phase. 73
5.5 Deployment phase. 74
5.6 Dynamic integration with Docker. 75
5.7 COMPSs HPC resources management . 76
5.8 Containers HPC resources management . 77
5.9 Application deployment with Singularity. 78
5.10 COMPSs dynamic resources management . 79
5.11 Dynamic integration with Mesos. 81
5.12 Chameleon Cloud testbed environment configurations. 82
5.13 MareNostrum 3 testbed environment configurations. 83
5.14 Scalability evaluation of the Matrix Multiplication. 85
5.15 Overhead evaluation of the Matrix Multiplication. 85
5.16 Scalability evaluation of the Embarrassingly Parallel application. 86
5.17 Overhead evaluation of the Embarrassingly Parallel application. 87
5.18 Deployment time effect in the Matrix Multiplication resource adaptation. . . . 87
5.19 Matrix Multiplication application execution with Singularity. 89
5.20 Mesos scalability evaluation of the Matrix Multiplication 90
5.21 Mesos overhead evaluation of the Matrix Multiplication. 90

6.1 PLUTO overview. 95
6.2 PLUTO source-to-source transformation. 96

xxiv

6.3 Overview of the AutoParallel Module. 98
6.4 AutoParallel Module Internals. 99
6.5 Cholesky: Execution times and speed-up. 108
6.6 LU: Execution times and speed-up. 109
6.7 LU: Paraver trace. 110
6.8 QR: Execution times and speed-up. 111
6.9 GEMM: Execution time and slow-down. 112
6.10 GEMM with object annotations: Execution time and speed-up. 113

7.1 Equivalent Task-based Worflow and Dataflow. 116
7.2 Description of Kafka’s basic concepts. 120
7.3 General architecture. 121
7.4 DistroStream class relationship. 122
7.5 Sequence diagram of the Distributed Stream Library components. 125
7.6 Structure of the internal COMPSs components. 127
7.7 COMPSs and Distributed Stream Library deployment. 127
7.8 Task graph of the simulation application without streaming. 129
7.9 Task graph of the simulation application with streaming. 131
7.10 Task graph of the multi-simulations application. 131
7.11 Task graph of the sensor application. 132
7.12 Task graph of the hybrid nested application. 133
7.13 Paraver traces to illustrate the gain of processing data continuously. 134
7.14 Average execution time and gain of a simulation with increasing generation

time. 135
7.15 Average execution time and gain of a simulation with increasing process time. 136
7.16 Comparison of parallel iterative computations using pure Task-based Work-

flows and Hybrid Workflows. 137
7.17 Average execution time and gain of a simulation with an increasing number

of iterations. 137
7.18 Average execution time with increasing number of readers and different num-

ber of writers. 138
7.19 Efficiency with increasing number of readers and different number of writers. 139
7.20 Number of stream elements processed per reader. 139
7.21 Task analysis average time for one single parameter with increasing sizes and

number of parameters. 141
7.22 Task scheduling average time for one single parameter with increasing sizes

and number of parameters. 142
7.23 Task execution average time for one single parameter with increasing sizes

and number of parameters. 143
7.24 Total execution time with increasing number of parameters. 144

xxv

List of Listings

3.1 COMPSs Java example: Increment main class. 23
3.2 COMPSs Java example: Increment helper methods class. 23
3.3 COMPSs Java example: Increment Interface. 24
3.4 COMPSs Java example: Sequential execution of Increment. 24
3.5 COMPSs Python example: Task annotation. 25
3.6 COMPSs Python example: Call to synchronisation API. 26
3.7 Hello MPI example in C. 31
3.8 Hello MPI: Execution example. 31
4.1 Binary task definition example in Java. 39
4.2 Binary remote method definition example in Java. 40
4.3 Binary task invocation example in Java. 40
4.4 Binary task definition, remote method and invocation example in Python. . . 41
4.5 Example of the different return types of the non-native tasks. 41
4.6 Example of the different standard I/O stream annotations. 42
4.7 Example of the different stream annotations for non-native tasks in Python. . 43
4.8 Binary tasks example in Java for joint prefixes. 44
4.9 Main code example in Java for joint prefixes. 44
4.10 Example of the main code calls to tasks with prefixes. 45
4.11 Example of the command executed inside each task using prefixes. 45
4.12 Interface example of an application with prefixes. 45
4.13 NMMB-MONARCH: Annotation of the deeptemperature binary in Java. . 52
4.14 NMMB-MONARCH: Annotation of the deeptemperature binary in Python. 52
4.15 NMMB-MONARCH: Annotation of the nems MPI binary in Java. 53
4.16 NMMB-MONARCH: Annotation of the nems MPI binary in Python. 53
5.1 Comparison between normal and container execution. 72
5.2 Usage of the runcompss_container command with Docker. 75
5.3 Submission comparison between a normal and a Singularity cluster. 78
5.4 Definition of an application execution with Chronos. 81
6.1 Tiling example. 97
6.2 EP example: user code. 99
6.3 EP example: auto-generated code. 100
6.4 EP example: user code with taskification of loop tiles. 100
6.5 EP example: auto-generated code with taskification of loop tiles. 101
6.6 Centre of mass: sequential code. 103
6.7 Centre of mass: AutoParallel annotations. 103
6.8 Centre of mass: Automatically generated tasks. 104
6.9 Centre of mass: Automatically generated loop nest. 105
7.1 Distributed Stream Interface in Java. 122
7.2 Object Streams (ODS) example in Java. 123
7.3 File Streams (FDS) example in Java. 124
7.4 Stream parameter annotation example in Java. 126
7.5 Example combining stream and file parameters in Java. 126
7.6 Simulations’ application in Python without streams. 128
7.7 Simulations’ application in Python with streams. 130

xxvii

List of Tables

1.1 Relation between research questions, objectives, and contributions. 7

2.1 Comparison of the different software targeting Task-based Workflows. 15
2.2 Comparison of the different software targeting Dataflows. 17

3.1 List of PyCOMPSs API functions. 26
3.2 Method and Parameter Annotations for Python. 26
3.3 Method and Parameter Annotations for Java. 27

4.1 Java package and class for non-native tasks’ remote methods. 38
4.2 Definition of external tasks for Java workflows. 39
4.3 Definition of external tasks for Python workflows. 40
4.4 Available stream types with their valid directions and execution behaviour. . 43
4.5 Environment variables defined by the worker. 50
4.6 NMMB-MONARCH: Original number of lines of code. 54
4.7 NMMB-MONARCH: Final number of lines of code. 54
4.8 NMMB-MONARCH: Performance per step with 4 workers (64 cores). 57

5.1 Comparison of container support in state of the art frameworks 64
5.2 Classification of Batch ROP. 66
5.3 Classification of Interactive ROP. 68
5.4 Docker deployment evaluation. 84
5.5 Docker networking evaluation. 86
5.6 Singularity deployment evaluation. 88

6.1 List of flags for the @parallel decorator. 97
6.2 Centre of mass: code and loop analysis. 104
6.3 Cholesky: code and loop analysis. 107
6.4 LU: code and loop analysis. 108
6.5 QR: code and loop analysis. 110
6.6 GEMM: code and loop analysis. 112

xxix

List of Abbreviations

API Application Programming Interface
BDA Big Data Analytics
COMPSs COMP Superscalar
CPU Central Processing Unit
DAG Directed Acyclic Graph
GUI Graphical User Interface
HPC High Performance Computing
I/O Input / Output
MPI Message Passing Interface
NEMS NOAA Environmental Modeling System
NMMB Nonhydrostatic Multiscale Model on the B-grid
NOAA National Oceanic and Atmospheric Administration
OmpSs OpenMP StarSs
OS Operating System
PyCOMPSs Python binding for COMP Superscalar
RAM Random Access Memory
SSH Secure SHell
VM Virtual Machine
WSDL Web Services Description Language

xxxi

Glossary

API
An Application Programming Interface (API) is a set of methods and functions that are

used by other software to produce an abstraction layer.

Binary
A file containing a list of machine code instructions to perform a list of tasks.

Big Data Analytics
The process of analysing Big Data (large data sets) to find patterns or correlations.

Container
A lightweight, standalone, executable package of software. Their purpose is to contain

applications with all the parts they need but keeping them isolated from the host system
that they run on. They are designed to provide a consistent and replicable environment.

Core
An individual processor that actually executes program instructions. Current single chip

CPUs contain many cores and are referred to as multi-processor or multi-cores.

CPU
The Central Processing Unit (CPU) is the part of the computer that contains all the ele-

ments required to execute the instructions of software programs. Its main components are
the main memory, the Processing Unit (PU) and the Control Unit (CU). Modern computers
use multi-core processors, which are a single chip containing one or more cores.

Distributed Computing
Field of computer science that studies Distributed Systems.

Distributed System
Set of components located on different networked computers that must communicate

and coordinate to execute a common set of actions (e.g., application).

Environment Variable
In Linux systems, each process has an execution environment. This environment can

be inherited from the user session environment and can be extended with specific process
variables. An Environment Variable is a value stored in the process environment that can
affect its execution.

Framework
A set of standardized concepts, practices or criterias used to face a given problem. Specif-

ically, it defines a set of programs, libraries, languages, and programming models used
jointly in a project.

Graphical User Interface
The Graphical User Interface (GUI) is the software that graphically interacts with the

user of a computer to ease the data manipulation.

xxxii

High Performance Computing
Refers to the practice of aggregating the power of several nodes achieving much higher

performance in order to solve large problems in science, engineering, or business. The ag-
gregated power is in terms of computation, memory, storage, etc.

Library
Collection of resources with a well-defined interface that can be used simultaneously

by multiple independent computer programs and still exhibit the same behaviour. Usually,
libraries contain a set of calls that higher level programs can use without implementing them
repeatedly.

Master/Worker
Communication model where one process (master) controls and orchestrates one or

more other processes (workers or slaves).

Node
A compute node refers to a single system within a cluster of many systems.

Operating System
System software that manages the hardware and provides services for computer soft-

ware.

Parallel Computing
Computation where a set of processes inside the same machine carry out calculations

simultaneously.

Programming Language
Set of instructions to execute specific tasks in a computing device. Usually, it refers to

high-level languages (such as C, C++, Java, Python, and FORTRAN) that contain two main
components: syntax (form) and semantics (meaning).

Programming Model
Programming style composed by a set of API calls where the execution model differs

from the one of the base programming language in which the code is written. Often, the
programming model exposes features of the hardware and is invoked as library calls.

Scratch Space
Supercomputers generally have what is called scratch space: disk space available for

temporary use and only accessible from the compute nodes.

Script
A program stored in a plain file to automate the execution of tasks. Scripts are usually

simple; combining elementary tasks and API calls to define more complex programs.

Software Stack
Set of software needed to create a complete solution (known as a platform) so that any

additional software is required to execute the user applications.

SSH
A protocol to securely connect to a remote computer. This connection is generally for a

command-line interface, but it is possible to use GUI programs through SSH.

xxxiii

Workflow
A composition of tasks and dependencies between tasks. Workflows are commonly rep-

resented as graphs, with the nodes being tasks and the arrows representing the dependen-
cies. Somehow, tasks must represent an action that must be done (i.e. the execution of a
binary), and the dependencies must represent the requirements that must be satisfied to be
able to execute the task (i.e. the machine availability or the required data).

WSDL
Web Services Description Language (WSDL) is an Extensible Markup Language (XML)

used to describe web services.

1

Part I

Introduction

3

Chapter 1

Introduction

1.1 Context

1.1.1 The Distributed Computing era

Several years ago, the IT community shifted from sequential programming to parallel
programming [30] to fully exploit the computing resources of multi-core processors. The
current generation of software applications requires more resources than those offered by a
single computing node [88]. Thus, the community has been forced to evolve again towards
distributed computing, that is, to obtain a larger amount of computing power by using
several interconnected machines [129].

However, one of the major issues that arise from both parallel and distributed program-
ming is that writing in parallel is not as easy as writing sequential programs [137] and, more
often than expected, people that can develop useful and complete end-user applications are
not capable of writing efficient parallel codes (and the other way around). We can some-
how consider that scientists interpreting results do not care about the computational load
or distribution (how results are computed), but do care of the results quality, the time spent
to retrieve the results and the robustness of the system. In this line of “writing programs
that scale with increasing number of cores should be as easy as writing programs for se-
quential computers” [29], several libraries, tools, frameworks, programming models, and
programming languages have emerged to help the programmer to handle the underlying
infrastructure.

1.1.2 The joint venture towards the Exascale Computing

Currently, the IT community requires parallelisation and distributed systems to handle
large amounts of data [124, 205]. Towards this, Big-Data Analytics (BDA) [204] appeared
some years ago; allowing the community to store, check, retrieve and transform enormous
amounts of data in acceptable response times. In addition, several programming models
have also arisen that are utterly different to the ones used by the High Performance Computing
(HPC) community.

In the race towards Exascale Computing [74], the IT community has realised that unifying
HPC platforms and Big-Data (BD) Ecosystems is a must. Currently, these two ecosystems
differ significantly at hardware and software level, but “programming models and tools
are perhaps the biggest points of divergence between the scientific-computing and Big-Data
Ecosystems” [200]. In this respect, “there is a clear desire on the part of a number of domain
and computer scientists to see a convergence between the two high-level types of comput-
ing systems, software, and applications: Big Data Analytics and High Performance Comput-
ing” [65].

A large number of libraries, tools, frameworks, programming models, and program-
ming languages have appeared to fulfil the BDA and HPC needs. In fact, the contributions

4 Chapter 1. Introduction

have gone one step further by building complex software stacks to provide a high-level ab-
straction for the development of distributed applications. From the point of view of the
developers of distributed applications, this fact has lead to the possibility of choosing the
most suitable software stack for the final application; promoting an (in)sane competition
between them that has finally exploited in an uncontrollable and uncountable number of
possibilities.

1.1.3 Task-based Workflows and Dataflows

In a general fashion, the distributed software can be classified into two different para-
digms: Task-based Workflows and Dataflows. On the one hand, Task-based Workflows [67] or-
chestrate the execution of several pieces of code (tasks) that process and generate data val-
ues. These tasks have no state and, during its execution, they are isolated from other tasks.
Hence, Task-based Workflows consist of defining the data dependencies among tasks. The
users can explicitly or implicitly define these dependencies by means of a Graphical User
Interface (GUI), a Command Line Interface, a receipt file, a programming model or even a
programming language. However, all the software that belongs to this paradigm shares that
the Data Dependency Graph is based on the task definition and does not vary depending
on the input data. Notice that this does not mean that only static graphs can be managed;
many software supports conditional flows, loop structures, and even dynamic graphs, but
the Data Dependency Graph construction is based on the code that defines the tasks rather
than in the input data. In one sentence, Task-based Workflows define a workflow of tasks to
be executed in a certain order.

On the other hand, Dataflows [142] assume that tasks are persistent executions with state
that continuously receive/produce data values (streams). Through dataflows, developers
describe how the composing tasks communicate to each other. This means that tasks are
treated as stages or transformations that data must go through to achieve the destination.
Notice that, in contrast to the previous paradigm, the Data Dependency Graph varies de-
pending on the input data, even if the code that defines the tasks is not modified. For in-
stance, Task-based Workflows always execute one task per input data, while Dataflows exe-
cute a single task instance for several input data. Finally, in one sentence, Dataflows define a
flow of data that is transformed from source to destination.

1.1.4 Batch Processing and Continous Processing

Some new concepts have become popular among the recent literature to emphasise the
data continuity difference between the distributed software. Kindly stolen from the ma-
terials processing industry, many authors refer to Batch Processing and Continous Process-
ing [208].

On the one hand, Batch Processing (Batching) refers to software that acts similarly to a
traditional factory. First, a bulk of data is packed (batch) and then, it advances through each
step (task) of the workflow until it is fully processed. Notice that all batches are treated
separately and that a task can only process one batch at a time.

On the other hand, to keep the industry metaphor, Continous Processing refers to software
that acts similarly to novel factories which involves moving one data at a time through each
step (task) of the workflow without breaks in time. Notice that this implies adapting the
number of workers (tasks) on-demand to fulfil the requirements. We must highlight that
Continous Processing is a general term that is also known as Real Time Processing when the
system reacts to the input data or as Streaming when the system acts (transforms) on the
input data.

1.2. Objectives and contributions 5

Finally, although it is easy to imagine Dataflows performing either Batch Processing or
Continous Processing, it is hard it is hard to imagine Task-based Workflows performing Con-
tinous Processing since they do not depend on the input data and its definition is strongly
related to the Batch Processing behaviour. For this purpose, many Task-based Workflow
Managers have lowered down they batch size requirements to be as near as possible to Con-
tinous Processing, raising what is known as Micro-Batching.

1.2 Objectives and contributions

In the aforementioned context, an extense variety of software has appeared to fulfil dif-
ferent final end-user application requirements. However, application developers find hard
to master many of this software, and little effort has been made to homogenise or inte-
grate them. Hence, many developers spend valuable time translating applications from one
model to another because of compatibility issues. Moreover, we consider that there is a need
of such a framework because scientific simulations and complex applications often require
combining different models because of the nature of its calculations; either because its most
efficient implementation requires specific software, or either because of legacy compatibili-
ties.

In this sense, this thesis benefits from the joint venture between HPC and BDA to in-
vestigate high-level abstraction frameworks capable of executing hybrid Data Science and
HPC workflows. Figure 1.1 describes the four approaches used in this thesis to address
the problem: (1) orchestrate the execution of multiple binaries, tools, and frameworks in-
side the same workflow, (2) ease the application packaging and deployment, (3) ease the
development and execution of distributed applications, and (4) execute hybrid Task-based
Workflows and Dataflows.

FIGURE 1.1: Lines of work to support Data Science workflows.

6 Chapter 1. Introduction

First, in contrast to HPC Workflows, Data Science Workflows are more likely to require
hybrid executions, and their workload varies faster at execution time. We consider that
a programming model capable of acting both as a Workflow Executor and Orchestrator
eases the development of distributed applications significantly. Hence, using this model,
the users must be capable of designing complex workflows that include native tasks, bina-
ries, MPI [159] simulations, multi-threading applications (i.e. OpenMP [48] or OmpSs [75,
220]), nested COMPSs [32] workflows, and many others.

Second, containers provide an easy way to pack and distribute applications. Hence,
by combining container technologies, our prototype enables developers to easily port, dis-
tribute, and scale their applications using distributed infrastructures. Moreover, due to the
containers’ light deployment times, our prototype will be able to adapt faster the resources
to the application’s remaining workload; reducing the execution cost significantly and al-
lowing other jobs to consume the freed resources.

Third, although programming models have done a huge effort to overcome the distribu-
ted computing issues, we believe that there is still room for improvement. Considering that
many parallel frameworks are capable of automatically parallelising some sequential code
structures, it is easy to imagine that distributed frameworks should act similarly.

Fourth, we believe that Task-based Workflows and Dataflows can cohabit in a single
model, allowing the users to change from one to another inside the same workflow depend-
ing on their needs. Furthermore, as far as we are concerned, no one has been working on
such interaction. Notice that this extension expands from the traditional HPC requirements
to the BDA needs; bringing our prototype closer to the Continuous Processing requirements.

Furthermore, our prototype is based on extending the COMPSs Programming Model.
Considering that this thesis focuses on non-expert users, COMPSs provides a unique pro-
grammability and adaptability that no other state of the art framework can offer. On the one
hand, it is based on sequential programming so the users do not need to deal directly with
any parallelisation and distribution issue. Instead, COMPSs programmers select methods to
be considered as tasks, and the COMPSs Runtime orchestrates its execution asynchronously.
On the other hand, the COMPSs model abstracts the application from the underlying in-
frastructure so that they do not include any platform related detail. Hence, COMPSs ap-
plications are portable between any infrastructure and can be executed either locally or in
clusters, clouds or containers. For a more extense overview of COMPSs, please refer to
Chapter 3.

Finally, next subsections detail the specific objectives, the main contributions, and the
associated publications of this thesis.

1.2.1 Research Questions

The following points summarise the research questions that this thesis tries to solve:

• Q1: How to orchestrate the execution of multiple binaries, tools, and frameworks in-
side the same Data Science workflow?

• Q2: How to use container technologies to ease the installation of software dependen-
cies and better adapt the computing resources to the workload of the application?

• Q3: Can we automatically parallelise and distributedly execute sequential code with-
out any user interaction?

• Q4: Can Task-based Workflows and Dataflows cohabit in a single programming model?

1.2. Objectives and contributions 7

1.2.2 Detailed objectives

Related to the aforementioned research questions, the following points summarise the
main goals of this project:

• O1: Create a high-level abstraction framework capable orchestrating complex work-
flows that include the execution of binaries, MPI simulations, multi-threading appli-
cations (i.e. OpenMP or OmpSs), nested COMPSs workflows, Big Data Frameworks,
Machine Learning tools, and other frameworks.

• O2: Create a high-level abstraction framework capable orchestrating containerised ap-
plications and better adapt the computational resources to the pending workload.

• O3: Create a high-level abstraction framework to parallelise some sequential code s-
tructures automatically and execute them distributedly.

• O4: Create a high-level abstraction framework capable of executing hybrid Task-based
Workflows and Dataflows.

• O5: Validate the proposal by porting real-world Life science and Earth science appli-
cations.

On the other hand, we want the end users to focus on the applications’ development
without dealing explicitly with the distributed challenges. In this sense, the proposal must
support a sequential fashion (either in Java, Python, C or C++) to develop applications and
trust in an underlying runtime to exploit the application’s inherent parallelism and manage
the available computing resources.

1.2.3 Contributions to the field

The main contributions of this thesis are:

• C1: A methodology and an implementation to transparently execute complex work-
flows by orchestrating different binaries, tools, and frameworks.

• C2: A methodology and an implementation to integrate container technologies as Re-
source Orchestration Providers (ROP).

• C3: A methodology and an implementation to distributedly execute automatically
parallelised sequential code.

• C4: A methodology and an implementation to distributedly execute a combination of
Task-based Workflows and Dataflows.

Contribution Objectives Research Questions

C1 O1, O5 Q1
C2 O2, O5 Q2
C3 O3, O5 Q3
C4 O4, O5 Q4

TABLE 1.1: Relation between research questions, objectives, and contribu-
tions.

8 Chapter 1. Introduction

Table 1.1 summarizes the relation between the research questions and detailed objec-
tives listed in the previous sections and the contributions. Notice that the validation of our
proposal by porting real-world Life science and Earth science applications (O5) is achieved
transversely across the contributions of this thesis.

1.2.4 Publications

Next, we provide the list of publications that support each contribution of this thesis:

• State of the art

– A Survey on the Distributed Computing stack.
Cristian Ramon-Cortes, Pol Alvarez, Francesc Lordan, Javier Alvarez, Jorge Ejar-
que, Rosa M. Badia.
Computer Science Review (COSREV).
Submitted May 2020.
Impact Factors - SJR: 1.431, CiteScore: 10.05.

• C1: Orchestration of complex workflows

– Boosting Atmospheric Dust Forecast with PyCOMPSs.
Javier Conejero, Cristian Ramon-Cortes, Kim Serradell, Rosa M. Badia.
IEEE eScience.
September 2018.
Core Rank: A.

• C2: Dynamic computational resources using container techonologies

– Transparent Orchestration of Task-based Parallel Applications in Containers Platforms.
Cristian Ramon-Cortes, Albert Serven, Jorge Ejarque, Daniele Lezzi, Rosa M.
Badia.
Journal of Grid Computing (JoGC).
December 2017.
Impact Factor (JCR): 3.288 (Q1).

– Transparent Execution of Task-Based Parallel Applications in Docker with COMP Super-
scalar.
Victor Anton, Cristian Ramon-Cortes, Jorge Ejarque, Rosa M. Badia.
25th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP).
March 2017.
Core Rank: C.

• C3: Automatic parallelisation

– AutoParallel: Automatic parallelisation and distributed execution of affine loop nests in
Python.
Cristian Ramon-Cortes, Ramon Amela, Jorge Ejarque, Philippe Clauss, Rosa M
Badia.
The International Journal of High Performance Computing Applications (IJH-
PCA).
Accepted, May 2020.
Impact Factor (JCR): 1.956 (Q2).

1.3. Tools and methodology 9

– AutoParallel: A Python module for automatic parallelization and distributed execution
of affine loop nests.
Cristian Ramon-Cortes, Ramon Amela, Jorge Ejarque, Philippe Clauss, Rosa M
Badia.
Proceedings of the 8th Workshop on Python for High-Performance and Scientific
Computing (PyHPC - SC).
November 2018.

• C4: Transparent execution of Hybrid Workflows

– A Programming Model for Hybrid Workflows: combining Task-based Workflows and
Dataflows all-in-one.
Cristian Ramon-Cortes, Francesc Lordan, Jorge Ejarque, Rosa M Badia.
Future Generation Computer Systems (FGCS), The International Journal of e-
Science.
Accepted July 2020.
Impact Factor (JCR): 5.768 (Q1).

1.3 Tools and methodology

1.3.1 Tools

The principal tool used during this thesis has been COMPSs [32]. Since the COMPSs
Runtime was developed in Java [121], the biggest part of the development has been per-
formed in the Java language using the Eclipse [77] IDE and the Apache Maven [22] Soft-
ware Project Management. The implementation has also required of C [126], C++ [212],
and Python [196] implementations to extend the new features to the COMPSs bindings.
Moreover, some BASH [95] scripts have been required for the COMPSs user commands, the
deployment tools, and the experimentation testbed. Finally, for the results and the evalu-
ation, we have used Extrae [83] and Paraver [183] to validate the parallel executions and
GnuPlot [99] to illustrate simulation results.

1.3.2 Methodology

The methodology of this thesis has been based on the Design Research Method combined
with a Test Driven Development strategy, always bearing in mind that the main goal of this
thesis was to provide a generic approach to support Data Science workflows with high-level
abstraction programming models. Next subsections provide in-depth information about the
scientific method design (Subsection 1.3.2.1), the development strategy (Subsection 1.3.2.2)
and the validation strategy (Subsection 1.3.2.3).

1.3.2.1 Scientific method design

In the first step, during the Relevance Cycle, we have analysed in-depth the Data Science
workflows and the state of the art programming languages, programming models, frame-
works, tools, and libraries (see Chapter 2 for more details). During this analysis, we have
determined the main contributions of this thesis (see Section 1.2).

The second step, the Design Cycle, has fulfiled the needs of the Data Science workflows
by proposing a generalizable extension of the COMPSs Programming Model to orchestrate
the execution of complex workflows and to support the execution of hybrid Task-based
Workflows and Dataflows. Notice that this step has required several iterations since every

10 Chapter 1. Introduction

proposal must be implemented, documented, evaluated, and validated. Our plan was based
on the Test Driven Strategy, where we validate our proposals against incremental use cases,
from the simplest use cases up to the real world Data Science workflows.

Finally, during the Rigor Cycle, we have deployed the project in a production environ-
ment and largely documented the new artifacts to share the knowledge with the community.

1.3.2.2 Development strategy

The development has been based on the Test Driven Development Strategy, building
applications from the simplest use cases up to the real world Data Science workflows. Form
our experience, this is a robust and flexible methodology that keeps the project’s goal in
mind during the whole development of the project.

More in-depth, we have first defined all the Data Science workflows’ requirements and
created an easy-to-run test for each of them. Next, we have incrementally implemented
the required features to fulfil every requirement. At this point, since the application re-
quirements are more strong at the programming model’s API level, we have followed a
top-bottom implementation. Finally, once all the requirements are separately fulfiled, we
have evaluated the proposal against more complex use cases and real-world Data Science
workflows.

We would like to highlight that we have found the Test Driven Development signifi-
cantly useful in making this process iterative, since all the use cases have been easily tested
and have incrementally guided the development towards the end goal.

1.3.2.3 Validation strategy

Even if all the features have been tested locally, an extense validation has been performed
against real-world Data Science workflows. This validation process has included porting the
proposal and all the use cases to the MareNostrum 4 supercomputer [149] and performing
an in-depth analysis of the application.

1.4 Dissertation structure

The rest of the document is structured as follows. First, regarding the rest of chapters of
Part I, Chapter 2 describes the work that has been done in the field and, Chapter 3 introduces
the starting point of our research.

Next, Part II details the contributions of this thesis; including a separated chapter for
each contribution and a brief summary at the beginning of each chapter. This part contains
the following chapters:

• Chapter 4 reports the integration with other frameworks to build complex Data Sci-
ence workflows where some steps require highly optimised state of the art frame-
works. Our solution provides several annotations (i.e., @binary, @OmpSs, @MPI,
@COMPSs, and @MultiNode) for both Java and Python workflows so that non-expert
users can orchestrate different frameworks within the same programming model.

• Chapter 5 describes the integration of container technologies as Resource Orchestra-
tion Providers (ROP). This combination provides a straightforward methodology to
parallelise applications from sequential codes along with efficient image management
and application deployment that ease the packaging and distribution of applications.
We distinguish between static, HPC, and dynamic container management and provide
representative use cases for each scenario using Docker, Singularity, and Mesos.

1.4. Dissertation structure 11

• Chapter 6 introduces the automatic parallelisation techniques included in our proto-
type. This extension provides a single Python annotation (the @parallel Python dec-
orator) to automatically parallelise affine loop nests and execute them in distributed
infrastructures so that anyone with intermediate-level programming skills can scale
up an application to hundreds of cores.

• Chapter 7 presents the main characteristics of our solution to execute Hybrid Work-
flows: a combination of Task-based Workflows and Dataflows. This extension enables
developers to build complex Data Science workflows with different approaches de-
pending on the requirements without the effort of combining several frameworks at
the same time. Moreover, this chapter describes the Distributed Stream Library that
provides a homogeneous, generic and simple representation of object and file streams
for both Java and Python.

Finally, in Part III, Chapter 8 concludes and gives some guidelines for future work.

13

Chapter 2

State of the art

This chapter provides an overview of the general state of the art and context of this
thesis. The specific related work of each contribution is discussed in-depth at the begining
of each chapter (see Sections 4.2, 5.2, 6.2, and 7.2).

2.1 Distributed Computing

The distributed computing premise is simple: solving a large problem with an enormous
amount of computations as fast as possible by dividing it into smaller problems, dealing
with them parallelly and distributedly, and gathering the results back. However, its imple-
mentation is not that simple because it can either lead to significant speed-ups or overheads
due to the distributed computing challenges. These challenges range from the Resource Man-
agement to the Data Distribution, going through the Coordination and the Monitoring of the
different distributed components.

In this sense, the community increasingly prefers to rely on high-abstraction frameworks
to focus only on the application development by using any programming language, pro-
gramming model or framework that fully abstracts the user from the distributed computing
challenges; either by relying on other state of the art software, or by handling them explic-
itly. Moreover, these frameworks are expected to be easy to install, configure, and use so
that they can be rapidly adapted to any application.

Representing the highest layer of the software stack and providing an almost ready-to-
use option to implement distributed applications are the crucial points of the success of the
Application Development software. However, at the technical level, they are also the worst
black spots since high abstraction can only be achieved by building huge software stacks or
extensive frameworks that are, in both cases, hard to maintain. Furthermore, ready-to-use

FIGURE 2.1: Classification of high abstraction frameworks for Application De-
velopment.

14 Chapter 2. State of the art

tools require automatic configurations that must support several heterogeneous underlying
platforms that are continuously upgraded.

As shown in Figure 2.1, we have divided the high abstraction frameworks into two cat-
egories depending on the software purpose. Next subsections provide further information
about each category and its latest software.

2.2 Task-based Workflows

The software targeting Task-based Workflows allows the users to define pieces of code to be
remotely executed as tasks and dependencies between tasks to combine them together into
workflows. The main common feature in this family of software is that the principal working
unit is the task.

2.2.1 Software discussion and examples

Regarding the execution model, some frameworks, like Aneka [227] or Jolie [157], require
application users to create tasks and add them to a bag explicitly. The tasks inside the bag
are then selected to be executed by the model with equal probability. In this sense, the main
drawback of using a Bag of Tasks is that users need to handle data dependencies between
tasks before introducing a new task to the bag.

Other frameworks restrict the workflow to a predefined parallelism pattern (Skeleton
programming), such as MapReduce [63]. In this kind of models, programmers only need
to specify a set of methods that compose the predefined workflow. In contrast to the previ-
ous approach, skeleton models do handle data dependencies between tasks, but the users’
application is pigeonholed into the predefined parallelism pattern.

Finally, other models go one step further by generalising the Skeleton model and allow-
ing users to define Directed Acyclic Graph (DAG) of tasks. In this approach, applications
are represented as DAGs, where tasks are represented by vertices, and data dependencies
are represented by edges. In contrast with Skeleton models, DAG models allow application
developers to describe any kind of workflow with any custom operation. Although all the
frameworks within this group hide the data dependencies and the communication between
the distributed processes, they can be classified by its workflow definition. On the one hand,
some models require to explicitly define the workflow by means of a Graphical User Inter-
face (such as Taverna [113], Kepler [219, 146] or Galaxy [5]), a Command Line Interface (such
as Copernicus [190]), a receipt file (such as Askalon [84], AUTOSUBMIT [31], Fireworks [10]
or Netflix Conductor [168]) or a language API (such as Pegasus [66], Apache Airflow [11]
or ecFlow [76]). This methodology allows users to specifically control the dependencies be-
tween the different stages and have a clear overview of how the framework executes their
application but makes tedious to design complex, large workflows. On the other hand, there
are programming models and languages that opt to automatically infer the workflow from
the user code, e.g., Spark [237], COMPSs [32, 144], Dask [202, 61], Apache Crunch [15], Cel-
ery [45], and Swift [232]. This workflow definition allows users to develop applications in an
almost sequential manner, without explicitly handling the tasks spawned, and reducing the
programming complexity to almost zero. However, the main disadvantage is that the users
do not know beforehand how the framework will execute their application (for example,
how many tasks will be created in a specific call).

2.2.2 Taxonomy

Table 2.1 presents our taxonomy of the surveyed task-based frameworks. Regarding
the programming, we have categorised the different interfaces into Graphical User Interface

2.2. Task-based Workflows 15

Software Features
Prog. Workflow Definition Workflow Exec. Res. Management F. Tolerance Security

In
te

rf
ac

e

La
ng

ua
ge

Ex
ec

ut
io

n
M

od
el

Ta
sk

D
ep

en
de

nc
y

D
efi

ni
ti

on

Ta
sk

Ty
pe

D
yn

am
ic

N
es

te
d

St
re

am
Su

pp
or

t

Pa
ra

lle
lE

xe
cu

ti
on

Lo
ad

Ba
la

nc
in

g

Ex
ec

ut
io

n
A

na
ly

si
s

N
at

iv
e

Sc
he

du
lin

g
Po

lic
y

C
on

fig
ur

ab
le

Sc
he

d.
Po

lic
ie

s

N
um

.S
ur

ro
ga

te
s

H
et

er
og

en
eo

us
Su

rr
og

at
es

C
lu

st
er

C
lo

ud

C
on

ta
in

er

El
as

ti
ci

ty

C
he

ck
po

in
ti

ng

Li
ne

ag
e

R
ep

lic
at

io
n

R
es

ub
m

is
si

on

Fa
ilo

ve
r

Se
cu

re
C

om
m

un
ic

at
io

n

D
at

a
En

cr
yp

ti
on

U
se

r
au

th
en

ti
ca

ti
on

Li
ce

ns
e

Airflow [11] GA P D E A ? - - ? - O R - U ? ? - A - - - ? - ? - ? 1
Aneka [227] G V B / A - - - ? ? O - U ? ? ? - A - - - ? ? ? ? - 8
Askalon [84] GR / D I A - - ? ? O ? U ? ? - - A A - ? ? - - - - 8
AUTOSUBMIT [31] R B D E U - - - ? - OP U ? ? - - - 3
Celery [45] PA P D I A ? ? - ? O U ? ? - - A - - - - - ? - - 5
CIEL [163] LA JO D I A ? ? ? ? ? - O - U ? ? - - - - ? - ? ? - - - 5
COMPSs [54] PA JPC D I A ? - - ? ? OP O ? U ? ? ? ? A - - - ? - - - - 1
Copernicus [190] R PX D E P - - - ? O U ? ? - - - AM - - ? ? ? - ? 2
Crunch [15] CA J D I A ? - ? ? 1
Dask [202, 61] GA P D I A ? ? ? ? ? OP L ? U ? - - - - - - ? M ? ? ? 5
EcFlow [76] CAG PB D I A - - - ? - U ? ? ? ? - - - - ? ? - - ? 1
FireWorks [10] R PNY D E A ? ? - ? - OP F - U ? ? - - - - - - ? - - - - 5
Galaxy [5] G / D E S - - - ? - F U / / / / / - - - ? 7
Google MapReduce [63] A C S I U - - - ? ? - O - U ? ? - - - - - ? ? ? - - - 8
Jolie [157] L / B / S - - - ? - - / / / ? ? ? ? - - - - - - - - - 4
Kepler [146] G / D E A - ? - - - - / / / / / / / / - - - - - - - - 5
Netflix Conductor [168] R N D I S ? ? - ? OP R - U ? / / / / 1
Pegasus [66] RA JPL D E A ? ? - ? ? OP F ? U ? ? ? ? A ? - ? - - - - 1
Spark [237] CA JSPR D I A ? ? ? ? ? O F ? U ? ? ? ? A - ? ? ? ? - ? ? 1
Swift [232] L / D I A - ? OP U ? ? - - - A - - ? - - - - 1

Ta
sk

-b
as

ed
W

or
kfl

ow
s

Taverna [113] G / D E S - ? ? ? - OP F / / / / / / / - - - ? ? ? - ? 4
Legend: ? Available - Not available / Not Applicable

TABLE 2.1: Comparison of the different software targeting Task-based Work-
flows.

(G in the table), Command Line Interface (C), receipt file (R), annotations or pragmas (P),
programming API (A), or programming language (L). Also, we have distinguished the lan-
guage supported by each framework: Java (J), Scala (S), Python (P), C++ (C), Visual C (V), R
(R), Pearl (L), Bash (B), XML (X), JSON (N), YAML (Y), and OCaml (O).

Regarding the workflow definition, a distinction is made between the different execu-
tion model’s types: bag of tasks (B in the table), skeleton (S), or DAG (D). We have also
considered whether the users must explicitly (E) or implicitly (I) define the task dependen-
cies and classified the supported task types into only pre-defined methods (P), only services
(S), only user defined methods (U), or any (A). Also, we have distinguished the support
for workflows that can vary during the application’s execution (dynamic workflows), for
nested executions, and for data streams.

When focusing on the application execution, the main difference is the framework’s ca-
pability of executing in parallel or not. However, we have also distinguished more advanced
features such as load balancing techniques, built-in tools for the application’s execution anal-
ysis - online (O) or post-mortem (P) -, the native scheduling policy - ready (R), FIFO (F), LIFO
(L) or optimised (O) -, and the support for customisable scheduling policies.

Regarding the resource management, we have distinguished between frameworks capa-
ble of handling a bounded or an unbounded number of surrogates. In this sense, we have
also considered the capability of managing heterogeneous infrastructures, clusters, clouds,
and containers. We have also evaluated the framework’s capability to provide resource elas-
ticity during the application’s execution time, categorising this feature into automatic (A) or
manual (M).

For advanced users, fault tolerance mechanisms and security might be an issue. For this
purpose, we have also distinguished those frameworks that provide any kind of checkpoint-
ing - automatic (A) or manual (M) -, lineage (i.e., the ability to re-generate a lost or corrupt
data by executing again the chain of operations that was used to generate it), replication,
re-submission or fail-over, and those that provide secure communication, data encryption
or user authentication.

16 Chapter 2. State of the art

Finally, we consider that the framework’s availability is a high-priority issue for appli-
cation developers. For this purpose, we also consider the license of each framework follow-
ing the next nomenclature: (1 in the table) Apache 2.0 [21], (2) GNU GPL2 [96], (3) GNU
GPL3 [97], (4) GNU LGPL2 [98], (5) BSD [42], (6) MIT License [156], (7) other public open-
source software licenses (e.g., Academic Free License v3 [3], Mozilla Public License 2 [158],
Eclipse Public License v1.0 [78]), and (8) custom private license or patent.

2.2.3 Analysis

First, the programming model’s interface differs significantly between frameworks being
the most common ones the programming API (A in the table) and the receipt file (R). How-
ever, many of them provide (or have planned to provide in the near future) an attractive
easy-to-use Graphical User Interface (G) that includes advanced online and post-mortem
execution analysis tools.

Second, although some frameworks include support for several languages (e.g., CIEL,
COMPSs, Copernicus, EcFlow, FireWorks, Pegasus, and Spark), the rest of them only sup-
ports a single language. Hence, application developers should consider the application’s
language before selecting the appropriate framework. Also, it is worth mentioning that
CIEL uses a custom language (Skywriting) but also provides APIs for Java and OCaml.

Third, most of the frameworks support user-defined (U) or any type (A) of tasks (except
Copernicus which is developed for pre-defined methods and Galaxy, Jolie, Netflix Conduc-
tor, and Taverna which are developed for services) and are using the DAG execution model
(except Aneka, Google MapReduce, and Jolie) to support complex workflows. Neverthe-
less, there are significant differences on the task dependency definition approach. From our
point of view, the frameworks using explicit task dependency definition are more suitable
for small applications while frameworks using implicit task dependency definition are bet-
ter for large and complex application workflows.

Fourth, we are surprised by the lack of support for advanced workflow features (i.e.,
dynamic and nested workflows, and support for streams) and new infrastructures (mainly
the cloud and containers). Although the software might still be evolving, modern applica-
tions require complex workflow features and elasticity mechanisms to automatically handle
the application’s resource usage (i.e., by managing the available computing resources). In
this same line, we also believe that many frameworks have been designed for cluster infras-
tructures; which explains the lack of security mechanisms (i.e., secure communication, data
encryption or user authentication).

In terms of fault tolerance, while re-submission and fail-over are common techniques
among all the different software, only a few of them include checkpointing (Askalon, Coper-
nicus, Pegasus, and Swift) or lineage (CIEL, Pegasus, and Spark). We know that fault toler-
ance comes up with a non-negligible performance degradation but, since application runs
are lasting longer and longer, we believe that this is a key feature when selecting the appro-
priate framework.

Finally, most of the frameworks (except Aneka, Askalon, and Google MapReduce) are
available through different public open licenses and are supported by large user communi-
ties, which allows developers to try different possibilities easily and without any cost before
selecting the right framework for their application requirements.

2.3 Dataflows

Similarly to Task-based Workflows, Dataflows allow the application developers to define
pieces of code to be remotely executed as tasks. However, Dataflows assume that tasks are

2.3. Dataflows 17

persistent executions with state that continuously receive/produce data values (streams)
and, therefore, tasks are treated as stages or transformations that data must go through to
achieve the destination. Also, Dataflows are based on Data Flow Graphs (DFG) rather than
Task Dependency Graphs (TDG). This difference mainly affects the way the task graph is
constructed. On the one hand, TDGs define a task completion relation between tasks so that
the only information travelling among the graph nodes is the task completion status and,
thus, tasks need to share the data in a graph-independent way. On the other hand, DFGs
define the data path so that the nodes of the graph represent stateful tasks waiting for the
data travelling through the graph edges.

Closely following this definition, there are platforms that are specifically built for Data-
flows such as TensorFlow [1]. However, this approach is also used for stream processing,
real-time processing and reactive programming which, for the case, are basically subsets of each
other. Thus, in stream processing words, a Dataflow is a sequence of data values (stream)
where we apply a series of operations (kernel functions) to each element of the stream in a
pipelined fashion.

2.3.1 Software discussion and examples

Although Task-based Workflows can target any type of computation, stream process-
ing has become increasingly prevalent for processing social media and sensor devices data.
On the one hand, many solutions such as Apache Samza [24], Apache Storm [225], Twit-
ter Heron [135], IBM Streams [115, 110], Netflix Mantis [167], Cascading [43], or Apache
Beam [13] have arose explicitly to solve this problem. On the other hand, other models have
included stream processing while maintaining the functionalities of the rest of their frame-
work through the micro-batching technique (e.g., Spark Streaming [235]) or by evolving
from the databases environment to the in-memory computation (e.g., Hazelcast jet [104]).

2.3.2 Taxonomy

Software Features
Prog. Stream Model Workflow Exec. Res. Management F. Tolerance Security

In
te

rf
ac

e

La
ng

ua
ge

Pr
im

it
iv

e

M
ul

ti
-s

ub
sc

ri
be

r

O
rd

er
ed

W
in

do
w

Bu
ff

er
in

g

D
ro

p
M

es
sa

ge
s

Ba
ck

Pr
es

su
re

Pr
oc

es
s

M
od

el

D
el

iv
er

y
Pa

tt
er

n

St
at

ef
ul

O
pe

ra
ti

on
s

Lo
ad

Ba
la

nc
in

g

Ex
ec

ut
io

n
A

na
ly

si
s

N
um

.S
ur

ro
ga

te
s

H
et

er
og

en
eo

us
Su

rr
og

at
es

C
lu

st
er

C
lo

ud

C
on

ta
in

er

El
as

ti
ci

ty

C
he

ck
po

in
ti

ng

R
ep

lic
at

io
n

R
es

ub
m

is
si

on

Fa
ilo

ve
r

Se
cu

re
C

om
m

un
ic

at
io

n

D
at

a
En

cr
yp

ti
on

U
se

r
au

th
en

ti
ca

ti
on

Li
ce

ns
e

Apex [12] CA J T ? ? S ? - - M LME ? ? OP U ? ? - - - A - ? ? ? - ? 1
Beam [13] CA JPG B ? - TS ? ? - MO LME ? - U ? ? - - - - - ? ? 1
Cascading [43] CA J T - - O U ? ? - - - M - - - 1
Gearpump [17] GCA J K ? ? T - - - O LE OP U ? ? - - - A - ? ? 1
Hazelcast jet [104] CA J T ? ? TS ? ? ? O L ? - U ? ? ? - ? - - ? ? - - - 1
Heron [135] GCA JSP T ? ? TS ? ? O LME ? - OP U ? ? - - - - - ? ? 1
IBM Streams [110] GA T ? O LE - OP U ? - ? - - A - ? 8
Netflix Mantis [167] GCA J S ? ? ? ? MO ? OP U ? ? ? - ? - - ? ? 8
Samza [24] CA J M ? ? TS ? ? ? O LE ? - - U ? ? - - - A - ? ? - - - 1
Spark Streaming [235] CA JSP D ? - TS ? - M LME ? ? OP U ? ? - - - A - ? ? ? - ? 1
Storm [225] CA JSLR T ? - TS ? ? - O LM ? M OP U ? ? - ? ? A - ? ? ? - - 1

D
at

afl
ow

s

TensorFlow [1] GCA JPC R ? M E ? ? OP U ? ? - - - M - ? ? - - 1
Legend: ? Available - Not available / Not Applicable

TABLE 2.2: Comparison of the different software targeting Dataflows.

Table 2.2 presents our taxonomy of the surveyed Dataflow frameworks. Regarding the
programming, we have categorised the different interfaces into Graphical User Interface
(G in the table), Command Line Interface (C), receipt file (R), programming API (A), or
programming language (L). Also, we have distinguished the language supported by each
framework: Java (J), Scala (S), Python (P), C++ (C), Go (G), Clojure (L), and JRuby (R).

18 Chapter 2. State of the art

For the application developers, we consider the main distinction between frameworks
relies on the stream model. To this purpose, we distinguish the stream primitive between
message (M in the table), tuple (T), bolt (B), DStream (D), source (S), task (K), and tensor (R).
We also distinguish between single-subscriber and multi-subscriber models, and between
ordered and unordered streams. We have also categorised the windowing support between
time window (T) and size window (S) for those frameworks that allow to process a group of
stream entries that fall within a window based on timers or data sizes. Moreover, we have
evaluated other features such as buffering, message dropping, and back pressure.

Regarding the workflow execution, we distinguish the process model between one-
record-at-a-time (O) or micro-batch (M). Furthermore, we have categorised the delivery pat-
tern into at-least-once (L), at-most-once (M), and exactly-once (E) for those frameworks that
ensure that messages are never lost, never replicated or both. We have also distinguished
more advanced features such as support for stateful operations, load balancing techniques,
and built-in tools for the application’s execution analysis - online (O) or post-mortem (P) -.

We have considered the same features than in the previous case (see Section 2.2.2 for fur-
ther details) when focusing on resource management, fault tolerance mechanisms, security,
and licensing.

2.3.3 Analysis

First, all alternatives use a programming API (A in the table) combined with a support-
ing easy-to-use Graphical User Interface (G) or Command Line Interface (C) that includes
advanced online and post-mortem execution analysis tools. Generally, we must highlight
that the interfaces offered are more modern, attractive, and accessible than the ones offered
by frameworks targeting Task-based Workflows, probably because the Dataflow software is
newer.

Second, a narrow minority of frameworks offer support for several languages (e.g.,
Beam, Heron, Spark Streaming, Storm, and TensorFlow). As we stated for software tar-
geting Task-based Workflows, we consider that the application developers should consider
the application’s language before selecting the appropriate framework.

Third, we observe that almost every framework has its own primitive, being the tuple
(T in the table) the most commonly used. Although this may not be a problem when devel-
oping applications, it hardens the portability of applications between frameworks. Regard-
ing the stream model, all the frameworks are multi-subscriber (except Cascading), allow
the users to configure time and size windows (except Apex and Gearpump), and include
buffering techniques (except Gearpump). However, only a few of them support advanced
techniques such as ordered streams (Apex, Gearpump, Hazelcast jet, Heron, and Samza),
message dropping (Beam, Hazelcast jet, Netflix Mantis, Samza, and Storm) or back pressure
(Hazelcast jet, Heron, Netflix Mantis, and Samza).

Fourth, a large majority of the software has been explicitly developed for stream process-
ing, what is reflected in a one-record-at-a-time (O in the table) process model. Only Apex,
Spark Streaming, and TensorFlow rely exclusively on the micro-batching (M) technique.
Also regarding the workflow execution, most frameworks include stateful operations (ex-
cept IBM Streams) and load balancing techniques. Although all frameworks support the
at-least-once delivery pattern (except TensorFlow), there is a significant variety when sup-
porting the at-most-once, and exactly-once delivery patterns. We believe that this is a key
feature to classify frameworks that application developers should consider to select the ap-
propriate one.

Fifth, in terms of resource management, we are surprised by the lack of support for new
infrastructures since all the software supports heterogeneous clusters, but almost none in-
cludes elasticity mechanisms for the cloud and containers. Similarly, the frameworks also

2.3. Dataflows 19

lack security mechanisms (such as secure communication, data encryption or user authen-
tication) because they are designed for clusters. Although software targeting Task-based
Workflows presented the same issue, this should not be acceptable for novel frameworks as
the ones covered in this section.

On the other hand, regarding fault tolerance, we are gratefully surprised to notice that
the Dataflow frameworks are largely better. Generally speaking, the Dataflow software is
not only including re-submission and fail-over (as the task-based frameworks do), but also
checkpointing. As we previously stated, we consider that fault tolerance is a key feature for
long-lasting applications.

Finally, as with task-based frameworks, we observe that most of the frameworks (except
IBM Streams, and Netflix Mantis) are available through different public open licenses and
are supported by large user communities.

21

Chapter 3

Background

This chapter provides an overview of the current state of the primary tools and frame-
works on which this thesis relies. First, we introduce COMP Superscalar since, as we have
already mentioned, this project extends its model. Next, we give a quick look at MPI because
it is widely used in Data Science workflows and it highlights the benefits of the COMPSs
programming model.

Some parts of this thesis use specific software that is not relevant for the rest of the
thesis. Hence, the specific background is described at the begining of each contribution. For
instance, Section 5.3 describes Resource Orchestration Platforms (ROP), Section 6.3 describes
PLUTO, and Section 7.3 introduces Kafka.

3.1 COMPSs

COMP Superscalar (COMPSs) [32] is a task-based programming model that belongs to
the family of Frameworks with implicit workflows. COMPSs applications consist of three
parts: the application’s code developed in a totally sequential manner, an application inter-
face where the programmers specify which functions can be remotely executed (tasks) and

FIGURE 3.1: COMPSs overview.

22 Chapter 3. Background

a configuration file that describes the underlying infrastructure. With these three compo-
nents, the COMPSs Runtime system exploits the inherent parallelism of the application at
execution time by detecting the task calls and the data dependencies between them.

COMPSs natively supports Java applications but also provides bindings for Python (Py-
COMPSs [215]) and C/C++. Furthermore, COMPSs allows applications to be executed on
top of different infrastructures (such as multi-core machines, grids, clouds or containers)
without modifying a single line of the application’s code (see Figure 3.1). It also has fault-
tolerant mechanisms for partial failures (with job resubmission and reschedule when task
or resources fail), has a live monitoring tool through a built-in web interface, supports in-
strumentation using the Extrae [83] tool to generate post-mortem traces that can be analysed
with Paraver [183], has an Eclipse IDE, and has pluggable cloud connectors and task sched-
ulers.

Additionally, the COMPSs model has three key characteristics:

• Sequential Programming: The users do not need to deal with any parallelisation and
distribution ascpect such as thread creation, synchronisation, data distribution, mes-
saging or fault-tolerance. COMPSs programmers only select which methods must be
considered tasks, and the COMPSs Runtime spawns them asynchronously on a set of
resources instead of executing them locally and sequentially.

• Infrastructure Agnostic: COMPSs model abstracts the application from the underly-
ing infrastructure. Hence, COMPSs applications do not include any platform related
detail such as deployment or resource management. This feature makes applications
portable between infrastructures with different characteristics.

• No APIs: When using COMPSs native language, Java, the model does not require
any special API, pragma or construct in the program. Since COMPSs instruments the
application’s code at execution time to detect the tasks, everything can be developed
in the standard Java syntax and libraries.

3.1.1 Programming model

The COMPSs programming model is based on sequential programming and mainly in-
volves choosing the right methods as tasks. The users only need to annotate class and object
methods so that they are asynchronosly spawned in the available resources at execution
time. These annotations can be splited into two groups:

• Method Annotations: Annotations added to the sequential code methods to detect
them as tasks and potentially execute them in parallel.

• Parameter Annotations: Annotations added to the parameters of an annotated me-
thod to handle data dependencies and transfers.

Since the annotation depends on the programming language, next sections provide in-
depth details of the COMPSs programming model for Java and Python.

3.1.1.1 Java

A COMPSs application in Java is composed of three parts:

• Main application: Sequential code that defines the workflow of the application. It
must contain calls to class or object methods annotated as tasks so that, at execution
time, they can be asynchronously executed in the available resources.

3.1. COMPSs 23

• Remote Methods: Code containing the implementation of the tasks

• Annotated Interface: List of annotated methods to be run as remote tasks. This in-
terface also contains the parameter annotations required by the COMPSs runtime to
schedule the tasks properly.

Next, we illustrate how COMPSs applications are developed using the Increment: a
didactic application that takes N counters, initialises them to a random value and increments
them by U units. Listing 3.1 provides the main code, and Listing 3.2 provides the remote
methods. Notice that these files contain all the code of the application and can be executed
without COMPSs since they are written in purely sequential Java.

1 public class Increment {
2

3 public static void main(String[] args) {
4 // Retrieve arguments
5 if (args.length != 2) {
6 System.err.println("[ERROR] Invalid number of arguments");
7 System.err.println(" Usage: increment.Increment <N> <U>");
8 System.exit(1);
9 }

10 int N = Integer.parseInt(args[0]);
11 int U = Integer.parseInt(args[1]);
12 // Initialize counters
13 Integer[] counters = new Integer[N];
14 for (int i = 0; i < N; ++i) {
15 counters[i] = new java.util.Random().nextInt(
16 Integer.MAX_VALUE);
17 System.out.println("[LOG] Initial Counter " + i
18 + " value is " + counters[i]);
19 }
20 // Increment U units each counter
21 for (int i = 0; i < U; ++i) {
22 for (int j = 0; j < N; ++j) {
23 counters[j] = IncrementImpl.increment(counters[j]);
24 }
25 }
26 // Show final counter values
27 for (int i = 0; i < N; ++i) {
28 System.out.println("[LOG] Final Counter " + i
29 + " value is " + counters[i]);
30 }
31 }
32 }

LISTING 3.1: COMPSs Java example: Increment main class.

1 public class IncrementImpl {
2

3 public static Integer increment(Integer counter) {
4 // Return the increased counter
5 return counter + 1;
6 }
7

8 }

LISTING 3.2: COMPSs Java example: Increment helper methods class.

To enable COMPSs, the users must define the Annotated Interface and specify which
methods must be considered tasks. The Annotated Interface must be defined inside a file
with the same name than the main class of the users’ application but with the “Itf” suffix

24 Chapter 3. Background

(for instance, in the previous example, the Interface must be stored in the IncrementItf.java
file). Regarding its content, the Annotated Interface must contain one entry per task. Each
task must contain a Method annotation, the object or class method name, and one Parameter
Annotation per method parameter. Section 3.1.1.3 lists more complex Method Annotations.

Listing 3.3 shows the Interface for the previous Increment application example. No-
tice that it only contains one task declaration of type @Method called increment. Inside the
@Method annotation the users must also provide the declaring class which is the class con-
taining the implementation of the task (IncrementImpl in the example). This value is required
to link the task to the method implementation. The task definition also contains two Param-
eter Annotations that are required to build the task dependency graph since COMPSs uses
data-flow graphs. The mandatory contents of the Parameter annotation are the Type (that
must refer to any Java basic type, a string, an object or a file) and the Direction (where the
only valid values are IN, OUT and INOUT). In the example, the first parameter is the return
value of the function which has type Integer and, by default, has direction OUT. The sec-
ond parameter is the counter argument which has type Integer and direction IN because the
function requires the input value of the parameter to increase it but does not modify it.

1 import es.bsc.compss.types.annotations.Parameter;
2 import es.bsc.compss.types.annotations.parameter.Direction;
3 import es.bsc.compss.types.annotations.parameter.Type;
4 import es.bsc.compss.types.annotations.task.Method;
5

6 public interface IncrementItf {
7

8 @Method(declaringClass = "increment.IncrementImpl")
9 Integer increment(

10 @Parameter(type = Type.OBJECT, direction = Direction.IN)
11 Integer counter
12);
13 }

LISTING 3.3: COMPSs Java example: Increment Interface.

As previously stated, the COMPSs annotations do not interfere with the applications’
code. Thus, all COMPSs applications can be sequentially executed. To do so, Listing 3.4
compiles the previous code and executes the application with N = 2 counters that must be
increased by U = 3.

1 $ javac increment/*
2 $ jar cf increment.jar increment/
3 $ java -cp increment.jar increment.Increment 2 3
4 [LOG] Initial Counter 0 value is 7
5 [LOG] Initial Counter 1 value is 1
6 [LOG] Final Counter 0 value is 10
7 [LOG] Final Counter 1 value is 4

LISTING 3.4: COMPSs Java example: Sequential execution of Increment.

On the other hand, the code can also be executed with COMPSs without recompiling
the application’s code. To do so, the users must invoke the runcompss command instead
of the traditional java command. When done, the COMPSs Runtime will be setup and the
application will be distributedly executed. Figure 3.2 provides the execution output of the
Increment application and the task graph generated by its execution. Notice that the run-
compss command has several command-line arguments that are fully detailed when execut-
ing runcompss -h.

3.1. COMPSs 25

FIGURE 3.2: COMPSs Java example: COMPSs execution of Increment.

3.1.1.2 Python

The Python syntax in COMPSs is supported through a binding, PyCOMPSs. This Python
binding is supported by a Binding-commons layer which focuses on enabling the functional-
ities of the Runtime to other languages (currently, Python and C/C++). It has been designed
as an API with a set of defined functions. It is written in C and performs the communication
with the Runtime through the JNI [141].

In contrast with the Java programming model, all the PyCOMPSs annotations are done
inline. The Method Annotations are in the form of Python decorators. Hence, the users can
add the @task decorator on top of a class or object method to indicate that its invocations
will become tasks at execution time. Furthermore, the Parameter Annotations are contained
inside the Method Annotation. For instance, the users can specify if a given parameter is
read (IN), written (OUT) or both read and written in the method (INOUT).

Listing 3.5 shows an example of a task annotation. The parameter c is of type INOUT,
and parameters a, and b are set to the default type IN. The directionality tags are used at
execution time to derive the data dependencies between tasks and are applied at an object
level, taking into account its references to identify when two tasks access the same object.

1 @task(c=INOUT)
2 def multiply(a, b, c):
3 c += a * b

LISTING 3.5: COMPSs Python example: Task annotation.

A tiny synchronisation API completes the PyCOMPSs syntax. As shown in Listing 3.6,
the API function compss_wait_on waits until all the tasks modifying the result’s value
are finished and brings the value to the node executing the main program. Once the value
is retrieved, the execution of the main program code is resumed. Given that PyCOMPSs
is used mostly in distributed environments, synchronising may imply a data transfer from
remote storage or memory space to the node executing the main program.

26 Chapter 3. Background

1 for block in data:
2 presult = word_count(block)
3 reduce_count(result, presult)
4 final_result = compss_wait_on(result)

LISTING 3.6: COMPSs Python example: Call to synchronisation API.

Finally, Table 3.1 summarises the available API functions.

API Function Use

compss_wait_on(obj, to_write=True) Synchronises for the last version of an object
(or list of objects) and returns it.

compss_open(file_name, mode='r') Synchronises for the last version of a file and
returns it file descriptor.

compss_delete_file(file_name) Notifies the Runtime to remove the given file.

compss_delete_object(object) Notifies the runtime to delete the associated
file to the given object.

compss_barrier(no_more_tasks=False) Waits for the completion of all the previous
tasks. If no_more_tasks is set to True, it
blocks the generation of new tasks.

TABLE 3.1: List of PyCOMPSs API functions.

3.1.1.3 Annotations’ summary

Apart from the task annotation, COMPSs provides a larger set of annotations for both
Java and Python programming languages that include constraints to optionally define some
hardware or software requirements, and scheduler hints to help the Scheduler component to
schedule tasks in a certain predefined way. Next, Table 3.2 summarises the available Method
and Parameter annotations for Python.

Method Annotation
Parameters

Name Value Type Mandatory? Default Value

parameter name parameter_key Yes

returns type|int No 0

isModifier Boolean No True

priority Boolean No False

isDistributed Boolean No False

@task(...)

isReplicated Boolean No False

Type TYPE No None
parameter_key

Direction DIRECTION No IN

@constraint(...) Same than Java

source_class String Yes
@implement(...)

method String Yes

TABLE 3.2: Method and Parameter Annotations for Python.

3.1. COMPSs 27

Similarly, Table 3.3 summarises the available Method and Parameter annotations for
Java.

Method Annotation
Parameters

Name Value Type Mandatory? Default Value
declaringClass String Yes
name String Yes
isModifier String No “true”

priority String No “false”

@Method(...)

constraints @Constraints No NULL

namespace String Yes
name String Yes
port String Yes
operation String No “[unassigned]”

@Service(...)

priority String No “false”

processors @Processor No NULL

computingUnits String No “[unassigned]”

processorName String No “[unassigned]”

processorSpeed String No “[unassigned]”

processorArchitecture String No “[unassigned]”

processorInternalMemorySize String No “[unassigned]”

processorType String No “CPU”

processorPropertyName String No “[unassigned]”

processorPropertyValue String No “[unassigned]”

memorySize String No “[unassigned]”

memoryType String No “[unassigned]”

storageSize String No “[unassigned]”

storageType String No “[unassigned]”

operatingSystemType String No “[unassigned]”

operatingSystemDistribution String No “[unassigned]”

operatingSystemVersion String No “[unassigned]”

appSoftware String No “[unassigned]”

hostQueues String No “[unassigned]”

@Constraint(...)

wallClockLimit String No “[unassigned]”

computingUnits String No “[unassigned]”

name String No “[unassigned]”

speed String No “[unassigned]”

architecture String No “[unassigned]”

type String No “[unassigned]”

internalMemorySize String No “[unassigned]”

propertyName String No “[unassigned]”

@Processor(...)

propertyValue String No “[unassigned]”

isReplicated Boolean No “false”
@SchedulerHints(...)

isDistributed Boolean No “false”

type Type No Type.UNSPECIFIED

direction Direction No Direction.IN@Parameter(...)

prefix String No “null”

TABLE 3.3: Method and Parameter Annotations for Java.

For more in-depth information about them readers can also check the COMPSs User
Guide: Application Development [54].

28 Chapter 3. Background

3.1.2 Runtime system

To abstract applications from the underlying infrastructure, COMPSs relies on its Run-
time System to spawn a master process on the machine where the application is running and
a worker process per available resource (see Figure 3.3). These processes are communicated
through the network (using different communication adaptors) and can send messages to
each other to orchestrate the distributed execution of the application.

FIGURE 3.3: COMPSs structure.

Once a Java application starts, the COMPSs Runtime [144] triggers a custom Java Class-
Loader that uses Javassist [50] to instrument the application’s main class. The instrumenta-
tion modifies the original code by inserting the necessary calls to the COMPSs API to gen-
erate tasks, handle data dependencies and add data synchronisations. To achieve the same

FIGURE 3.4: COMPSs Runtime overview.

3.1. COMPSs 29

purpose on Python applications, the Python Binding (PyCOMPSs) parses the decorators of
the main code and adds the necessary calls to the COMPSs API. In the case of C/C++ appli-
cations, COMPSs also requires an Interface file that is used when compiling the application
to generate stubs for the main code, add the required COMPSs API calls, and generate the
code for the tasks execution at the workers. In any case, as shown on the top of the Fig-
ure 3.4, the interaction between the application and the COMPSs Runtime is always made
through the COMPSs API.

More in-depth, the COMPSs Runtime has five main components:

• Commons Contains the common structures used by all the Runtime components

• ConfigLoader Loads the project and the resources configuration files, the command-
line arguments, and the JVM configuration parameters.

• Engine Contains the submodules to handle the task detection, the data dependencies,
and the task scheduling. More specifically, the Access Processor watches for the data
accesses so that the Runtime can build the data dependencies between tasks, the Task
Dispatcher controls the task life-cycle and the Monitor Executor controls the monitor
structures for real-time and post-mortem monitoring.

• Resources Handles all the available resources in the underlying infrastructure. This
component creates, destroys and monitors the state of all the available resources. Since
COMPSs supports elasticity through cloud and SLURM [234, 211] connectors, this
component contains a Resource Optimiser subcomponent that takes care of creating and
destroying resources.

• Adaptors Contains the different communication adaptors implementations. This layer
is used to communicate the COMPSs Master and the COMPSs Workers and abstracts
the rest of the Runtime from the different network adaptors.

3.1.3 Task life-cycle

FIGURE 3.5: COMPSs task execution workflow.

To clarify how COMPSs works when executing an application Figure 3.5 describes the
task life-cycle. From the application’s main code the COMPSs API registers the different

30 Chapter 3. Background

tasks. Considering the registered tasks, COMPSs builds a task graph based on the data
dependencies. This graph is then submitted to the Task Dispatcher that schedules the data-
free tasks when possible. This means that a task is only scheduled when it is data-free, and
there are enough free resources to execute it (each task can have different constraints, and
thus, it is not scheduled if there is not a resource that satisfies the requirements).

Eventually, a task can be scheduled and, then, it is submitted to execution. This step in-
cludes the job creation, the transfer of the input data, the job transfer to the selected resource,
the real task execution on the worker and the output retrieval from the worker back to the
master. If any of these steps fail, COMPSs provides fault-tolerant mechanisms for partial
failures.

Once the task has finished, COMPSs stores the monitoring data of the task, synchronises
any data required by the application, releases the data-dependent tasks so that they can be
scheduled, and deletes the task.

3.2 MPI

The Message-Passing Interface (MPI) standard “includes point-to-point message-passing,
collective communications, group and communicator concepts, process topologies, envi-
ronmental management, process creation and management, one-sided communications, ex-
tended collective operations, external interfaces, I/O, some miscellaneous topics, and a pro-
filing interface” [159]. The MPI standard includes bindings for C and Fortran, and its goal
is “to develop a widely used standard for writing message-passing programs” [159]. It has
several implementations but the best known are OpenMPI [176], IMPI [116], MPICH [160],
and MVAPICH [164].

For the end user, using MPI requires handling explicitly the spawn of the processes, the
code executed by each process and the communication between them. All this management
is done by using API calls, and thus, the application code must be compiled and executed
with the MPI compiler of the specific MPI implementation. The main advantage is that the
users have full control of all the processes and the communication between them which, for
experienced users, leads to high efficient codes. However, for inexperienced users, an effi-
cient code can become unreadable and handle many processes can become tedious work.
Moreover, when porting a sequential application to an MPI application, the users must ex-
plicitly distribute the data between the processes and retrieve back the results (which can
lead to load imbalance or inefficient communications). Additionally, another inconvenience
of MPI is that, once the application’s execution has started, the number of processes cannot
be changed dynamically, limiting the malleability of the applications.

Listing 3.7 shows an example of an MPI application written in C. The code spawns a
given number of processes, sets up one process as coordinator and the rest as slaves that
send back a message to the coordinator saying that they are ready to work. As seen in the
figure, each process has a unique identifier, and the communication between them is done
by using the MPI_Send or MPI_Receive API calls (obviously, more complex programs will
require more complex API calls).

3.2. MPI 31

1 #include <assert.h>
2 #include <stdio.h>
3 #include <string.h>
4 #include <mpi.h>
5 int main(int argc, char **argv) {
6 char buf[256];
7 int my_rank, num_procs;
8 /* Initialize the infrastructure necessary for communication */
9 MPI_Init(&argc, &argv);

10 /* Identify this process */
11 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
12 /* Find out how many total processes are active */
13 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
14 /* Until this point, all programs have been doing exactly the same.
15 Here, we check the rank to distinguish the roles of the programs */
16 if (my_rank == 0) {
17 int other_rank;
18 printf("We have %i processes.\n", num_procs);
19 /* Send messages to all other processes */
20 for (other_rank = 1; other_rank < num_procs; other_rank++) {
21 sprintf(buf, "Hello %i!", other_rank);
22 MPI_Send(buf, sizeof(buf), MPI_CHAR, other_rank,
23 0, MPI_COMM_WORLD);
24 }
25 /* Receive messages from all other process */
26 for (other_rank = 1; other_rank < num_procs; other_rank++) {
27 MPI_Recv(buf, sizeof(buf), MPI_CHAR, other_rank,
28 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
29 printf("%s\n", buf);
30 }
31 } else {
32 /* Receive message from process #0 */
33 MPI_Recv(buf, sizeof(buf), MPI_CHAR, 0,
34 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
35 assert(memcmp(buf, "Hello ", 6) == 0),
36

37 /* Send message to process #0 */
38 sprintf(buf, "Process %i reporting for duty.", my_rank);
39 MPI_Send(buf, sizeof(buf), MPI_CHAR, 0,
40 0, MPI_COMM_WORLD);
41 }
42 /* Tear down the communication infrastructure */
43 MPI_Finalize();
44 return 0;
45 }

LISTING 3.7: Hello MPI example in C.
Source: Wikipedia, Message Passing Interface.

Listing 3.8 shows the command-line used to spawn this proces and its result, and Fig-
ure 3.6 shows a diagram of executing the aforementioned code with 4 processes. Notice that
the spawn time of the processes and the communication between them is not always done
at the same time and thus, the diagram is only one of the possible execution diagrams of
the same code. For instance, Process 0 will always send messages to Processes 1, 2 and 3

1 $ mpicc example.c
2 $ mpirun -n 4 ./a.out
3 We have 4 processes.
4 Process 1 reporting for duty.
5 Process 2 reporting for duty.
6 Process 3 reporting for duty.

LISTING 3.8: Hello MPI: Execution example.

32 Chapter 3. Background

in the same order and will receive the messages back in the same order, but Processes 1,
2 and 3 can receive the message in different orders and send the reply in different orders.
This issue is one of the hardest things to overcome when developing applications with MPI
because blocking processes in a receive call can lead to significant overheads. For instance,
in our diagram, Processes 2 and 3 have sent all their data, but Process 0 does not receive the
message until the data from Process 1 is received.

FIGURE 3.6: Hello MPI: Diagram of execution.

33

Part II

Contributions

35

Chapter 4

Orchestration of complex workflows

SUMMARY

In contrast to traditional HPC workflows, Data Science applications are more hetero-
geneous; combining binary executions, MPI simulations, multi-threaded applications, and
custom analysis (possibly written in Java, Python, C/C++ or R). This chapter focuses on
solving the research question Q1; proposing a methodology and an implementation to trans-
parently execute complex workflows by orchestrating different binaries, tools, and frame-
works. Our proposal integrates different programming models into a single complex work-
flow where some steps require highly optimised state of the art frameworks. Hence, this
part of the thesis introduces the @binary, @OmpSs, @MPI, @COMPSs, and @MultiNode an-
notations to easily orchestrate different programming models inside a single Java or Python
workflow. These annotations come along with some scheduling and execution improve-
ments inside the Runtime that make our design easily extensible to include new frameworks
in the future. Moreover, the NMMB-MONARCH application demonstrates how to port a
real-world use case to our prototype; defining the workflow in both Java and Python lan-
guages. During the evaluation, both versions demonstrate a huge increase in programma-
bility while maintaining the same performance.

36 Chapter 4. Orchestration of complex workflows

4.1 General overview

This chapter focuses on solving the research question Q1; proposing a methodology and
an implementation to transparently execute complex workflows by orchestrating different
binaries, tools, and frameworks. Our proposal integrates the heterogeneity of Data Science
workflows into a single programming model capable of orchestrating the execution of the
different frameworks in a transparent way and without modifying nor its behaviour, nor
its syntax. Moreover, it is designed to allow non-expert users to build complex workflows
where some steps require a highly optimised state of the art frameworks.

For that purpose, we extend the COMPSs framework to act as an orchestrator rather
than a regular application executor. Next subsections provide in-depth details about the
modifications of the programming model annotations, the Runtime master, and worker ex-
ecutors. Furthermore, we demonstrate the capabilities of our proposal porting the NMMB-
MONARCH application.

4.2 Related Work

Previous research has been conducted regarding the interoperability of programming
models. Within the context of the European project Programming Model INTERoperability
ToWards Exascale (INTERTWinE) [117], researchers have focused on the interoperability be-
tween seven key programming APIs (i.e., MPI, GASPI, OpenMP, OmpSs, StarPU, QUARK
and PaRSEC). For instance, C. Simmendinger et al. [209] develop a strategy to significantly
improve the performance and the interoperability between the GASPI and MPI APIs by
leveraging GASPI shared windows and shared notifications. Also, K. Sala et al. [206] im-
prove the interoperability between MPI and Task-based Programming Models by proposing
an API to pause and resume tasks depending on external events (e.g., when an MPI opera-
tion blocks, the task running is paused so that the runtime system can schedule a new task
on the core that became idle).

Regarding Task-based frameworks for distributed computing, there are two major trends.
On the one hand, the frameworks that explicitly define tasks and their dependencies are usu-
ally designed to define and orchestrate the workflow and do not contain any code related
to the actions performed by the application. Hence, all these frameworks support the exe-
cution of external binaries, tools, and libraries since it is the only way to define a task. For
instance, Kepler [146], Taverna [113], and FireWorks [10] define custom runners (ExternalEx-
ecution actor, ExternalTool, or ScriptTask, respectively) that allow users to run external binary
commands and handle their command output, error, and exit code. Kepler and FireWorks
cannot build dependencies from the external binary input and output data, but users can
define explicit transfer tasks to do so. Conversely, Taverna users can define input and out-
put data and, additionally, they can pack and unpack it before and after the external binary
execution. Galaxy [5] requires users to define custom job runners; which can be tedious but
provides a larger set of features. Moreover, the custom job runner can be made available
for any project. Finally, Pegasus [66] was originally designed to execute binaries. In this
case, the users can link the standard output and error of the external binary and mark the
required data transfers when defining the job.

On the other hand, the frameworks that implicitly define tasks and their dependencies
do not separate the workflow description from the application’s functionality and, therefore,
the tasks executed by these frameworks are usually defined in the workflow language (i.e.,
Java, Python, Scala). Although the programming languages them-selves provide multiple
ways to execute external binaries, the complexity of executing them (i.e., serialising the data,
invoking the external binary, handling the output and error, retrieving the exit code) lies on

4.3. Programming model annotations 37

the users. For instance, Apache Spark [237] does not provide any official way to execute
external binaries on RDDs.

4.3 Programming model annotations

As shown in Section 3.1, the COMPSs Programming model defines annotations that
must be added to the sequential code in order to run the applications in parallel. These an-
notations can be split into Method Annotations and Parameter Annotations. Our prototype
extends the programming model by providing a new set of Method Annotations and Param-
eter annotations to support the execution of binaries, multi-threaded applications (OmpSs),
MPI simulations, nested COMPSs applications, and multi-node tasks inside a workflow.
From now on, tasks that must execute external frameworks are called Non-Native Tasks.

4.3.1 Method annotations

A new Method Annotation is defined for each supported non-native task. Notice that the
Method Annotation must contain framework related parameters and, thus, its content varies
depending on the target framework. Next, we list the currently supported frameworks and
their specific parameters.

• Binaries: Execution of regular binaries (e.g., BASH, SH, C, C++, FORTRAN)

– Binary: Binary name or path to a executable file

– Working Directory: Working directory for the final binary execution

• OmpSs: Execution of OmpSs binaries

– Binary: Path to the execution binary

– Working Directory: Working directory for the final binary execution

• MPI: Execution of MPI binaries

– Binary: Path to the execution binary

– MPI Runner: Path to the MPI command to run

– Computing Nodes: Number of required computing nodes

– Working Directory: Working directory for the final binary execution

• COMPSs: Execution of nested COMPSs workflows

– Application Name

– Runcompss: Path to the runcompss command

– Flags: Extra flags for the nested runcompss command

– Computing Nodes: Number of required computing nodes

– Working Directory: Working directory for the nested COMPSs application

• Multi-node: Execution of native Java/Python tasks that require more than one node

– Computing Nodes: Number of required computing nodes

Next, we describe how to define and use each new Method annotation inside Java and
Python workflows.

38 Chapter 4. Orchestration of complex workflows

4.3.1.1 Java

Java applications need to be instrumented in such a way that method invocations inside
the main code are intercepted by the COMPSs Runtime and substituted by remote task calls
when required. In fact, the COMPSs Loader cross-validates the signatures of each method
invocation with the tasks defined in the Interface. Notice that, when using regular methods,
the annotation contains a mandatory methodClass field so that the signature (method class,
method name, and parameters) can be built.

Except for multi-node tasks, the rest of the non-native tasks do not contain the method
class. Thus, we force the users to define the remote methods inside specific packages and
classes. This design decision is motivated by the fact that we consider that the annotation
of non-native tasks must only refer to the real execution and, thus, we want to avoid a
declaringClass field in the new annotation. Hence, non-native tasks methods must be defined
inside the packages and classes defined in Table 4.1.

External Framework Remote Methods’ package and class

Binaries binary.BINARY
OmpSs ompss.OMPSS

MPI mpi.MPI
COMPSs compss.NESTED

MultiNode -

TABLE 4.1: Java package and class for non-native tasks’ remote methods.

On the other hand, Table 4.2 shows the syntax to define the different non-native tasks
inside the Interface file. Notice that the task parameters must be annotated as with regular
tasks.

4.3. Programming model annotations 39

External Framework Method Annotation
Parameters

Name Value Type Mandatory?
binary String Yes

workingDir String No
priority Boolean No

Binaries @Binary(...)

constraints @Constraints No
binary String Yes

workingDir String No
priority Boolean No

OmpSs @OmpSs(...)

constraints @Constraints No
binary String Yes

mpiRunner String Yes
computingNodes String Yes

workingDir String No
priority Boolean No

MPI @MPI(...)

constraints @Constraints No
appName String Yes
runcompss String Yes

computingNodes String Yes
flags String No

workingDir String No
priority Boolean No

COMPSs @COMPSs(...)

constraints @Constraints No
declaringClass String Yes

computingNodes String No
isModifier Boolean No

priority Boolean No
MultiNode @MultiNode(...)

constraints @Constraints No

TABLE 4.2: Definition of external tasks (Method Annotations and their pa-
rameters) for Java workflows.

Finally, the calls to non-native tasks in the main workflow code are similar to regular
method calls. For instance, Listings 4.1, 4.2, and 4.3 show, respectively, the annotation of
one binary task, its remote method definition, and the main method calling it.

1 package app;
2

3 import es.bsc.compss.types.annotations.task.Binary;
4

5 public interface MainItf {
6

7 @Binary(binary = "path_to_bin")
8 void myBinaryTask(
9);

10 }

LISTING 4.1: Binary task definition example in Java.

40 Chapter 4. Orchestration of complex workflows

1 package binary;
2

3 public class BINARY {
4

5 public static void myBinaryTask() {
6 }
7 }

LISTING 4.2: Binary remote method definition example in Java.

1 package app;
2

3 import binary.BINARY;
4

5 public class Main {
6

7 public static void main(String[] args) {
8 BINARY.myBinaryTask();
9 }

10 }

LISTING 4.3: Binary task invocation example in Java.

4.3.1.2 Python

Table 4.3 shows the syntax to define non-native tasks inside a Python workflow. No-
tice that the Method Annotations must be placed on top of the task decorator (@task) that
annotates the object or class method that they refer.

External Framework Method Annotation
Parameters

Name Value Type Mandatory?
binary String Yes

workingDir String NoBinaries @binary(...)

priority Boolean No
binary String Yes

workingDir String NoOmpSs @ompss(...)

priority Boolean No
binary String Yes

mpiRunner String Yes
computingNodes String Yes

workingDir String No
MPI @mpi(...)

priority Boolean No
appName String Yes
runcompss String Yes

computingNodes String Yes
flags String No

workingDir String No

COMPSs @compss(...)

priority Boolean No
computingNodes String Yes

MultiNode @multinode(...)
priority Boolean No

TABLE 4.3: Definition of external tasks (Method Annotations and their pa-
rameters) for Python workflows.

4.3. Programming model annotations 41

On the other hand, the calls to non-native tasks in the main workflow code are similar
to regular method calls. Moreover, in contrast to Java workflows, non-native tasks can have
any signature when defining Python workflows since they are defined in-place using a dec-
orator. For instance, Listing 4.4 shows the definition of one binary remote method (without
any parameter) and its invocation from the main code.

1 @binary(binary = "path_to_bin")
2 @task()
3 def myBinaryTask():
4 pass
5

6 def main():
7 myBinaryTask()
8

9 if __name__ == '__main__':
10 main()

LISTING 4.4: Binary task definition, remote method and invocation example
in Python.

4.3.2 Parameter annotations

In order to input and output data from the execution of non-native tasks the Parameter
Annotation also needs to be enhanced. When using multi-node tasks the parameters and
the return value of the task are the same than when using a regular method task. However,
when executing standalone binaries, OmpSs processes, MPI processes, or COMPSs appli-
cations the exit value of the processes is used as the return value. Thus, we have decided
that the COMPSs non-native tasks must use the exit value of their internal binary as the
return value of the task. In this sense, our prototype allows the users to capture this value
by defining the return type of the non-native task as an int (for implicit synchronisation),
as an Integer (for post-access synchronisation) or to forget it (declaring the function as void).
Listing 4.5 shows an Interface example of the three return types.

1 public interface MainItf {
2

3 @Binary(binary = "${BINARY}")
4 int binaryTask1();
5

6 @Binary(binary = "${BINARY}")
7 Integer binaryTask2();
8

9 @Binary(binary = "${BINARY}")
10 void binaryTask3();
11 }

LISTING 4.5: Example of the different return types of the non-native tasks.

However, the users not only need the process exit value to work with this kind of appli-
cations but need to set the Standard Input (stdIn) and capture the Standard Output (stdOut)
and Error (stdErr). For this purpose, our prototype includes a new parameter annotation,
StdIOStream, that allows the users to set some parameters as standard I/O streams for
the non-native tasks. Standard I/O Stream parameters are not passed directly to the binary
command but rather they are set as stdIn, stdOut, or stdErr of the binary process. Since this
kind of redirection is restricted to files in LINUX Operating Systems, we have decided to
keep the same restrictions to the annotation. Consequently, all StdIOStream parameters
must be files.

42 Chapter 4. Orchestration of complex workflows

Listing 4.6 shows the Interface of a Java application with two tasks that have a normal
parameter (the first one, that will be sent directly to the binary execution), a file parameter to
be used as stdIn of the process, a file parameter to be used as stdOut and a last file parameter
to be used as stdErr. The difference between task1 and task2 in this example is that the
first task will overwrite the fileOut and fileErr content (since the files are opened in write
mode), and the second task will append the fileOut and fileErr content at the end of the file
(since the files are opened in append mode).

1 public interface StreamItf {
2

3 @Binary(binary = "${BINARY}")
4 Integer task1(
5 @Parameter(type = Type.STRING, direction = Direction.IN)
6 String normalParameter,
7 @Parameter(type = Type.FILE, direction = Direction.IN,
8 stream = StdIOStream.STDIN)
9 String fileIn,

10 @Parameter(type = Type.FILE, direction = Direction.OUT,
11 stream = StdIOStream.STDOUT)
12 String fileOut,
13 @Parameter(type = Type.FILE, direction = Direction.OUT,
14 stream = StdIOStream.STDERR)
15 String fileErr
16);
17

18 @Binary(binary = "${BINARY}")
19 Integer task2(
20 @Parameter(type = Type.STRING, direction = Direction.IN)
21 String normalParameter,
22 @Parameter(type = Type.FILE, direction = Direction.IN,
23 stream = StdIOStream.STDIN)
24 String fileIn,
25 @Parameter(type = Type.FILE, direction = Direction.INOUT,
26 stream = StdIOStream.STDOUT)
27 String fileOut,
28 @Parameter(type = Type.FILE, direction = Direction.INOUT,
29 stream = StdIOStream.STDERR)
30 String fileErr
31);
32 }

LISTING 4.6: Example of the different standard I/O stream annotations for
non-native tasks in Java.

Listing 4.7 shows the exact same application but in Python. For the sake of clarity, we
have added the verbose annotations (tasks task1 and task2) and its compact form (tasks
task1_bis and task2_bis).

4.3. Programming model annotations 43

1 @binary(binary = "${BINARY}")
2 @task(file_in={Type:FILE_IN, Stream:STDIN},
3 file_out={Type:FILE_OUT, Stream:STDOUT},
4 file_err={Type:FILE_OUT, Stream:STDERR})
5 def task1(normal_parameter, file_in, file_out, file_err):
6 pass
7

8 @binary(binary = "${BINARY}")
9 @task(file_in={Type:FILE_IN, Stream:STDIN},

10 file_out={Type:FILE_INOUT, Stream:STDOUT},
11 file_err={Type:FILE_INOUT, Stream:STDERR})
12 def task2(normal_parameter, file_in, file_out, file_err):
13 pass
14

15 # Compact form
16 @binary(binary = "${BINARY}")
17 @task(file_in={Type: FILE_IN_STDIN},
18 file_out={Type: FILE_OUT_STDOUT},
19 file_err={Type: FILE_OUT_STDERR})
20 def task1_bis(normal_parameter, file_in, file_out, file_err):
21 pass
22

23 @binary(binary = "${BINARY}")
24 @task(file_in={Type: FILE_IN_STDIN},
25 file_out={Type: FILE_INOUT_STDOUT},
26 file_err={Type: FILE_INOUT_STDERR})
27 def task2_bis(normal_parameter, file_in, file_out, file_err):
28 pass

LISTING 4.7: Example of the different stream annotations for non-native tasks
in Python.

Finally, to summarise the last information retrieved from this example, Table 4.4 show
the available modes for each stream type.

Type Stream Direction Description

FILE StdIOStream.STDIN Direction.IN Sets the process stdIn. The file is opened in read mode
FILE StdIOStream.STDOUT Direction.OUT Sets the process stdOut. The file is opened in write mode
FILE StdIOStream.STDOUT Direction.INOUT Sets the process stdOut. The file is opened in append mode
FILE StdIOStream.STDERR Direction.OUT Sets the process stdErr. The file is opened in write mode
FILE StdIOStream.STDERR Direction.INOUT Sets the process stdErr. The file is opened in append mode

TABLE 4.4: Available stream types with their valid directions and execution
behaviour.

4.3.2.1 Prefix parameter annotation

COMPSs builds the data dependence graph taking into account the parameters anno-
tated in the application Interface. Analysing several binaries, we have found out that a
non-negligible part of them use prefixes for each parameter. The prefixes used by binaries
can be divided into two types:

• Separated Prefix A prefix that is written separately before the parameter value. This
type of prefixes are of the form:

$./binary -param1 value --param2 value -k value

In fact, there is not a strong need that the parameter prefix starts with a dash but its
the common behaviour for Linux binaries.

44 Chapter 4. Orchestration of complex workflows

• Joint Prefix A prefix that is written with the parameter value without being separated
or with a separation character that it is not an empty space. This types of prefix vary a
lot but are of the form:

$./binary -pValue -q=value --r=value s=value

The separated prefixes do not represent a problem for the COMPSs programming model
since they can be defined as a standalone string parameter that is finally passed to the bi-
nary. However, the joint prefixes do represent a problem for COMPSs since the users must
prepend the prefix to the parameter, breaking the data dependencies between the tasks. For
the sake of clarity, consider the two tasks shown in Listing 4.8 and the code shown in List-
ing 4.9. Since the second task requires a joint prefix, when calling it from the main code
the users must modify its value and prepend the prefix to the fileName variable. This string
modification causes a synchronisation in the application’s main code instead of creating a
data dependency between the two tasks.

1 // Must execute: ./tmp/bin1 fileName
2 @Binary(binary = "/tmp/bin1")
3 Integer task1(
4 @Parameter(type = Type.FILE, direction = Direction.INOUT)
5 String fileName
6);
7 // Must execute: ./tmp/bin2 --file=fileName
8 @Binary(binary = "/tmp/bin2")
9 Integer task2(

10 @Parameter(type = Type.FILE, direction = Direction.INOUT)
11 String fileName
12);

LISTING 4.8: Binary tasks example in Java for joint prefixes.

1 String fileName = "/tmp/file";
2 BINARY.task1(fileName);
3 BINARY.task2("--file=" + fileName);

LISTING 4.9: Main code example in Java for joint prefixes.

Consequently, for this second type of prefixes, our prototype implements a new param-
eter annotation prefix that allows the users to define the prefix separately to the parameter
value and its prepended to the parameter value just before the binary execution. This mod-
ification allows COMPSs to handle the data dependencies between parameters (since pre-
fixes are immutable strings that do not define data dependencies) and allows the binaries to
receive the parameter prefixes and its value together as a single parameter.

Listing 4.10 shows the main code of an application containing three binary tasks. List-
ing 4.11 shows the final binary command, and Listing 4.12 the definition of the binary tasks
in the Interface file. Notice that the first task (task1) only uses separated prefixes; the second
task (task2) uses only joint prefixes and the third task (task3) is a hybrid example of both
separated and joint prefixes.

4.3. Programming model annotations 45

1 public static void main(String[] args)
2 String file1 = "file1.in"
3 String file2 = "file2.inout"
4 int kValue = 10;
5 // Launch task 1
6 task1("-p", file1, "--q", file2, "k", kValue);
7 // Launch task 2
8 task2(file1, file2, kValue);
9 // Launch task 3

10 task3("-p", file1, file2, kValue);
11 }

LISTING 4.10: Example of the main code calls to tasks with prefixes.

1 # TASK 1
2 ./binaryExample -p file1.in --q file2.inout k 10
3 # TASK 2
4 ./binaryExample -p=file1.in --q=file2.inout k10
5 # TASK 3
6 ./binaryExample -p file1.in --q=file2.inout k10

LISTING 4.11: Example of the command executed inside each task using pre-
fixes.

1 @Binary(binary = "binaryExample")
2 void task1(
3 @Parameter(type = Type.STRING, direction = Direction.IN)
4 String pPrefix,
5 @Parameter(type = Type.FILE, direction = Direction.IN)
6 String fileIn,
7 @Parameter(type = Type.STRING, direction = Direction.IN)
8 String qPrefix,
9 @Parameter(type = Type.FILE, direction = Direction.INOUT)

10 String fileInOut,
11 @Parameter(type = Type.STRING, direction = Direction.IN)
12 String kPrefix,
13 @Parameter(type = Type.INT, direction = Direction.IN)
14 int k
15);
16

17 @Binary(binary = "binaryExample")
18 void task2(
19 @Parameter(type = Type.FILE, direction = Direction.IN,
20 prefix = "-p=") String fileIn,
21 @Parameter(type = Type.FILE, direction = Direction.INOUT,
22 prefix = "--q=") String fileInOut,
23 @Parameter(type = Type.INT, direction = Direction.IN,
24 prefix = "k") int k
25);
26

27 @Binary(binary = "binaryExample")
28 void task3(
29 @Parameter(type = Type.STRING, direction = Direction.IN)
30 String pPrefix,
31 @Parameter(type = Type.FILE, direction = Direction.IN)
32 String fileIn,
33 @Parameter(type = Type.FILE, direction = Direction.INOUT,
34 prefix = "--q=") String fileInOut,
35 @Parameter(type = Type.INT, direction = Direction.IN,
36 prefix = "k") int k
37);

LISTING 4.12: Interface example of an application with prefixes.

46 Chapter 4. Orchestration of complex workflows

4.4 Runtime master

At the master side, the Runtime works with an abstract entity known as Task that al-
lows the Task Dispatcher and the Task Scheduler to be independent of the final execution
framework while the Task object still contains information about the final execution frame-
work. However, our proposal enhances the task detection to support new programming
model annotations introduced by the non-native tasks and the Task Scheduler to support
multi-node tasks.

4.4.1 Task detection

On the one hand, as previously explained, Java applications need to be instrumented in
order to detect the potential tasks. Since non-native tasks do not define a method class to
build the method signature, the COMPSs Loader looks for a pre-defined set of signatures
to detect the execution of non-native tasks. Thus, the Loader of our prototype has been
extended to consider as potential task any method defined inside the binary.BINARY,
ompss.OMPSS, mpi.MPI, and compss.COMPSS classes.

On the other hand, the Python binding registers the annotated tasks into the Runtime
with no further handling. The tasks are detected by means of Python decorators on top
of the object or class method. Hence, our prototype only extends the previous COMPSs
version by adding new decorators for the non-native tasks (i.e., @binary, @ompss, @mpi,
@compss, and @multinode).

4.4.2 Task scheduler

As previously explained in Section 3.1, the COMPSs Runtime instruments the applica-
tion’s main code looking for invocations to the methods defined as tasks in the application
interface. When these methods are detected, COMPSs creates a task that is submitted to the
Task Analyser component and substitutes the method call by an executeTask() call. When the
Task Analyser receives a new task, it computes its data dependencies and submits it to the
Task Scheduler. Next, the Task Scheduler creates an Execution Action associated with the
task and adds it to the execution queue. Eventually, the Execution Action will be scheduled
and launched (this mechanism requires the task to be data-free and to have enough free
resources to fulfil the task constraints). When the Execution Action is launched, a Job is cre-
ated to monitor the task execution. This job includes the transfer of the job definition and all
the input data to the target COMPSs Worker, the real task execution in the worker and the
transfer of the output data back to the COMPSs Master. Once the job is completed, its data
dependent Execution Actions are released (if any), and the job is destroyed (or, depending
on the debug level, stored for post-mortem analysis).

Since non-native tasks only represent a new way of executing tasks in the COMPSs
Worker, the Scheduler component does not require any modification to handle binary, and
OmpSs tasks. However, our prototype includes support for tasks using more than one com-
putational node (i.e., MPI, COMPSs, and multi-node) which requires to support Multi-node
execution actions inside the Scheduler. To do so, we have associated several execution ac-
tions to the same task so that the Scheduler can map the data-dependencies and the resource
consumption as it was done before. However, the execution actions associated with the
same task must have different behaviours during the execution phase because only one of
the actions must really launch the job.

4.4. Runtime master 47

Consequently, we have extended the ExecutionAction in a MultiNodeExecutionAction class
that is only used when a task requires more than one computing node (otherwise the previ-
ous ExecutionAction implementation is used). When the task scheduler receives a new multi-
node task (ExecuteTaskRequest) it creates a new MultiNodeGroup instance and N MultiNode-
ExecutionAction instances (being N the number of nodes requested by the task). The Multi-
NodeGroup instance is shared among all the actions assigned to the same task execution, and
it handles the actions’ id within the group. More in-depth, when the MultiNodeExecution-
Actions are created the MultiNodeGroup assigns a nullable identifier to all of them. Once
the actions are scheduled and launched, the MultiNodeGroup assigns a unique valid identi-
fier between 1 and N. This action identifier is used during the action execution to act as an
execution slave node (when the assigned identifier is different to 1) or to act as an execu-
tion master node (when the assigned identifier is 1). When the MultiNodeExecutionAction is
identified as a slave, it no longer triggers a job execution, but rather reserves the requested
resources and waits for its master action to complete. When the MultiNodeExecutionAction
is identified as a master, it retrieves all the hostnames of its slave actions (for the MPI com-
mand) and behaves as a normal ExecutionAction (launches a job to monitor the input data
transfers, the real task execution on the node and the output data transfers).

On the one hand, Figure 4.1 shows an example of the normal process. A task T1 re-
quiring 1 node (normal task) is submitted to the scheduler through the ExecuteTaskRequest
request. The request is then processed and an ExecutionAction is created as it was done be-
fore. Eventually, the action is scheduled, launched and finally executed, creating a new job
that will monitor the task execution in the target node.

FIGURE 4.1: Example of a single node task flow.

48 Chapter 4. Orchestration of complex workflows

On the other hand, Figure 4.2 shows an example of the Multi-Node process. A task T2
requiring 3 nodes (multi-node task) is submited to the scheduler through the same Execu-
tionTaskRequest request. The request is then processed: a new action group (lets say g1) is
created (a new instance of the MultiNodeGroup) and 3 MultiNodeAction instances (lets say a1,
a2 and a3) are created. The action group g1 is shared among all the three actions and assigns
a nullable action identifier to all of them.

FIGURE 4.2: Example of a multi-node task flow.

Eventually, a2 is scheduled, launched and finally executed. On the execution phase, the
action asks for an action identifier and the action group g1 assigns it an actionId = 3 (because
the group size is 3 and no action has previously requested an identifier). Since the action
identifier classifies a2 as a slave action, the execute phase only reserves the task constraints
and waits for the master action completion.

Eventually, a1 is also scheduled, launched and finally executed. Following the same pro-
cess than the previous action, a1 is granted with actionId = 2 (because the group size is 3 and

4.5. Worker executors 49

only one action has previously requested an identifier). Since the action a1 is also classified
as a slave, it reserves the task constraints and waits for the master action completion.

Finally, a3 will also be scheduled, launched and finally executed. In this case, the action
group assigns it an actionId = 1. Since it is the last action, it is now identified as master
and during its execution phase it retrieves the hostnames of the resources assigned to all
the actions inside the g1 group (lets say, h1 for a1 and h2 for a2) and launches the execution
job. The job will be then executed (lets say that the host assigned to this action a3 is h3)
monitoring the input data transfers, performing the real task execution (for example, calling
the MPI command inside the host h3 with 3 nodes h1, h2 and h3) and retrieving back the
output data from h3.

Once the job is completed, the action a3 is marked as completed (freeing all the reserved
resources) and, then, it triggers its completion to all the slave actions registered in the group
g1. Consequently, a1 and a2 are also marked as completed (and its resources are also freed).
When all the actions within the group are marked as completed, the task is registered as
DONE and follows the usual process: frees its data dependent tasks and it is stored for
post-mortem analysis.

Finally, notice that this process could lead to deadlocks or unused resources when mul-
tiple multi-node tasks are being scheduled at the same time. To avoid so, the Task Scheduler
component keeps track of the action groups that have tasks that have already been sched-
uled and priorises the tasks belonging to those groups in front of the rest.

4.5 Worker executors

The Communication layer abstracts the Master node from the specific Communication
Adaptors and thus, from the underlying infrastructure. However, the worker processes
spawned by this layer are dependent on each Adaptor implementation. Currently, COMPSs
supports the NIO and the GAT Communication Adaptors.

On the one hand, the GAT Adaptor is built on top of the Java Grid Application Toolkit
(JavaGAT) [189] which relies on the SSH connection between nodes. During the application
execution, the Runtime spawns a new worker process per task execution. More specifically,
when a task must be executed, the GAT Communication Adaptor creates a GAT Job, sends
the job and the required data through SSH to the worker’s resource, starts the worker pro-
cess, executes the task itself, closes the worker process, and retrieves the job status, the job’s
log files, and the required output data. The worker.sh script orchestrates all the processes
and launches a language dependent script for the real task execution (GATWorker.java for
Java, worker.py for Python and Worker for C/C++). Although the implementation suffers
from some performance overheads (because the overhead of spawning a new process on
each task execution becomes non-negligible for small duration tasks), it provides a high
connectivity interface since it only requires the SSH port to be opened.

On the other hand, the NIO Adaptor is a more sophisticated implementation based on
Java New I/O (NIO) library [179]. This adaptor spawns a persistent Java Worker Process
per resource, rather than one per task execution, and the communication between Master
and Workers is then made through Sockets. Hence, this Adaptor provides better perfor-
mance than the GAT Adaptor but requires extra open ports between the available resources.
Furthermore, the Worker processes persist during the full execution of the application, what
also lets us have an object cache per worker, data communications between workers (rather
than handling all the data in the Master resource) and thread binding mechanisms to map
threads to specific cores of the machine. Finally, for the task execution, each worker has
several Executor threads that can execute natively Java applications, or Python and C/C++
applications using a ProcessBuilder.

50 Chapter 4. Orchestration of complex workflows

4.5.1 Invokers

Before executing any non-native task, the worker sets up some environment variables so
that the users can retrieve, if necessary, information about the assigned resources inside the
task code. Table 4.5 shows the defined variables.

Environment Variable Description

COMPSS_NUM_NODES Number of computing nodes
COMPSS_HOSTNAMES List of computing node names or IPs
COMPSS_NUM_THREADS Number of threads per process
OMP_NUM_THREADS Number of threads per process

TABLE 4.5: Environment variables defined by the worker.

Furthermore, to enable the execution of non-native tasks for all the communication adap-
tors, we have implemented a GenericInvoker class that provides an API for executing stan-
dard, MPI, COMPSs, and OmpSs binaries. This API is built on top of a BinaryRunner class
that spawns, runs and monitors the execution of any binary command. MultiNode tasks
are executed as regular method tasks, with the difference that the scheduler has previously
reserved other slave nodes.

More specifically, the BinaryRunner class has two methods. Firstly, createCMDParam-
etersFromValues serializes the received parameters to construct the binary arguments. This
method is also in charge of processing the StdIOStream annotations and redirecting the StdIn,
StdOut, and StdErr when required. Secondly, executeCMD executes the received binary com-
mand (with all its parameters), monitors its execution and, finally, returns the exit value of
the process.

On the other hand, the GenericInvoker class provides four functions: invokeBinaryMethod,
invokeMPIMethod, invokeCOMPSsMethod, and invokeOmpSsMethod to invoke respectively stan-
dard, MPI, COMPSs, and OmpSs binaries. The four methods receive the binary path and the
argument values, construct and execute the command by calling the BinaryRunner functions,
and return the exit value of the binary execution.

Finally, our prototype also adapts each of the Communication Adaptor (GAT and NIO)
to call this GenericInvoker when needed. In both cases, we have substituted the normal task
execution by a switch-case that selects the required invoker considering the task’s implemen-
tation type.

4.6 Use Case: NMMB-MONARCH

The NMMB-MONARCH application is an example of any application containing (i)
multiple calls to any kind of binaries and scripts (e.g., R, BASH, PERL), (ii) multi-core or
multi-node simulations (e.g., using OpenMP or MPI), and (iii) custom analysis written in
Java or Python. Hence, the outcomes described in this section can be applied to any other
application with similar requirements. However, we have chosen NMMB-MONARCH be-
cause of its availability and impact since it is used in production by another BSC department.

4.6. Use Case: NMMB-MONARCH 51

4.6.1 Application overview

The NMMB-MONARCH is a fully online multiscale chemical weather prediction system
for regional and global-scale applications. The system is based on the meteorological Non-
hydrostatic Multiscale Model on the B-grid [119], developed and widely verified at the Na-
tional Centers for Environmental Prediction (NCEP). The model couples online the NMMB
with the gas-phase and aerosol continuity equations to solve the atmospheric chemistry
processes in detail. It is also designed to account for the feedbacks among gases, aerosol
particles, and meteorology.

As shown in Figure 4.3, the NMMB-MONARCH workflow is composed by five main
steps, namely Initialisation, Fixed, Variable, UMO Model, and Postprocess.

FIGURE 4.3: NMMB-MONARCH: Structure diagram.

The first two steps are performed only once per execution since their objective is to set
up the configuration. The Initialisation step prepares the environment, and the Fixed step
performs the global actions that will be necessary for the whole simulation. More in detail,
this phase compiles the main binaries for the simulation and generates the initial data. This
includes reading global datasets with different parameters such as landuse, topography,
vegetation, soil, etc. to build the initial files for the model execution and the definition of the
simulation (horizontal resolution, vertical levels, and region if it is not a global run).

The Variable, UMO Model and Postprocess are performed iteratively per initial simula-
tion day. During the Variable step, some particular binaries are compiled to generate the
conditions of the day to simulate, such as the meteorological input conditions or boundary
conditions.

During the UMO Model step, the simulation main binary (NEMS) is invoked. In contrast
to the previous binaries used in the process, the NEMS is a Fortran 90 application paral-
lelised with MPI. Therefore, NEMS can be executed in multiple cores and multiple nodes,
relying on the MPI paradigm. The model uses the Earth System Modelling Framework li-
brary as the main framework [108]. Finally, after performing the UMO Model step, the Post-
process step converts the binary simulation results from the NEMS output to a more friendly
and usable format such as NetCDF, and stores them in a particular folder.

52 Chapter 4. Orchestration of complex workflows

In a nutshell, the NMMB-MONARCH application is structured in five main steps and
composed by a set of binaries that perform individual actions in a coordinated way for
achieving the dust simulation results. Among these binaries, the one that stands out from
the rest is the NEMS binary, which is implemented in MPI.

4.6.2 Parallelisation design

The original NMMB-MONARCH application consists in a BASH script defining the
main workflow and a set of Fortran binaries. Since our prototype supports Java and Python
workflows, we have ported two different versions of the NMMB-MONARCH. Both of them
parallelise the main workflow while keeping the Fortran binaries.

Regarding the parallelisation, all the binaries have been considered as tasks. For in-
stance, Listings 4.13 and 4.14 show the annotation of the deeptemperature binary in Java
and Python respectively.

1 @Binary(binary = "/path/to/deeptemperature.x")
2 Integer deeptemperature(
3 @Parameter(type = Type.FILE, direction = Direction.IN)
4 String seamask,
5 @Parameter(type = Type.STRING, direction = Direction.IN)
6 String soiltempPath,
7 @Parameter(type = Type.FILE, direction = Direction.OUT)
8 String deeptemperature
9);

LISTING 4.13: NMMB-MONARCH: Annotation of the deeptemperature
binary in Java.

1 @binary(binary='/path/to/deeptemperature.x')
2 @task(returns=int,
3 seamask=FILE_IN,
4 deep_temperature=FILE_OUT)
5 def deeptemperature():
6 pass

LISTING 4.14: NMMB-MONARCH: Annotation of the deeptemperature
binary in Python.

As previously explained, the NEMS simulator invoked within the UMO Model step is
implemented using MPI. Thus, in contrast to the rest of binaries, we have annotated it as
an MPI task. Listings 4.15 and 4.16 show the annotation of the NEMS binary in Java and
Python respectively. Notice that, considering that the NEMS execution can be performed
with a different number of nodes, the constraint decorator attached to the MPI task may
vary between executions. Hence, to ease this management to users, the constraint has been
defined using an environment variable.

Since the NMMB-MONARCH produces a vast amount of outputs (41 different vari-
ables), we have included a final step to ease the results interpretation. Hence, the last step
retrieves the outputs from the entire simulation and produces a set of animated plots for
each of the analysed variables. More in detail, this last step (known as Figures and animations
creation) is composed by two different tasks: the first one aimed at producing the images of
a particular variable per day, and a second one to gather all images that belong to the same
variable and build the corresponding animation.

4.6. Use Case: NMMB-MONARCH 53

1 @MPI(mpiRunner = "mpirun",
2 binary = "/path/to/NEMS.x",
3 workingDir = "/path/to/nems/out",
4 computingNodes = "${NEMS_NODES}")
5 @Constraints(computingUnits = "${NEMS_CUS_PER_NODE}")
6 Integer nems(
7 @Parameter(type = Type.FILE, direction = Direction.OUT,
8 stream = StdIOStream.STDOUT) String stdOutFile,
9 @Parameter(type = Type.FILE, direction = Direction.OUT,

10 stream = StdIOStream.STDERR) String stdErrFile
11);

LISTING 4.15: NMMB-MONARCH: Annotation of the nems MPI binary in
Java.

1 @constraint(computingUnits='$NEMS_CUS_PER_NODE')
2 @mpi(runner='mpirun',
3 binary='/path/to/NEMS.x',
4 workingDir='/path/to/nems/out',
5 computingNodes='$NEMS_NODES')
6 @task(returns=int,
7 stdOutFile=FILE_OUT_STDOUT,
8 stdErrFile=FILE_OUT_STDERR)
9 def nems():

10 pass

LISTING 4.16: NMMB-MONARCH: Annotation of the nems MPI binary in
Python.

To conclude, the final workflow structure for both the Java and the Python versions is
depicted in Figure 4.4. At the end of the execution, the scientists can check the simulation
results from the images and animations. Additionally, they can also check the raw results
from the simulation or use them as input for other specific analysis.

FIGURE 4.4: NMMB-MONARCH: Structure diagram with tasks definition.

54 Chapter 4. Orchestration of complex workflows

4.6.3 Evaluation

4.6.3.1 Parallelisation analysis

Regarding the code, as shown in Table 4.6, the NMMB-MONARCH application was
originally composed by a set of BASH scripts to orchestrate the workflow and Fortran 77/90
binaries.

Language Files Blank Comment Code

Fortran 90 23 394 2806 7581
Fortran 77 8 182 3568 6518

Bash 16 185 134 776

TABLE 4.6: NMMB-MONARCH: Original number of lines of code.

In contrast, Table 4.7 shows the result of porting the NMMB-MONARCH application
into our prototype defining the workflow either in Java or Python. On the one hand, the
Fortran binaries are kept the same because the binary and mpi decorators maintain its com-
patibility in both Java and Python languages.

Language Files Blank Comment Code

Fortran 90 23 394 2806 7581
Fortran 77 8 182 3568 6518

Java 18 560 890 2721
Python 18 515 710 2399

TABLE 4.7: NMMB-MONARCH: Final number of lines of code.

On the other hand, the lines of code of the main workflow significantly increase in both
languages, raising from 776 up to 2721 in Java and 2399 in Python. The main reason for
the larger amount of code lines is that the new implementations have better configuration
management and object-oriented structure, which adds lines of code but improves the de-
bugging, maintenance and extension of the code. Moreover, thanks to Java and Python’s
wide adoption, scientists can also use Integrated Development Environments (IDEs) and
benefit from existing third-party libraries.

Regarding the task-level parallelism, Figure 4.5 shows the data dependency graph of the
execution of three simulation days for the Python version. The DAG for the Java version
is similar so the same conclusions can be applied. Readers can identify the Fixed, Variable,
UMO Model, Postprocess and Figures and animations creation steps, where the Variable, UMO
Model and Postprocess are executed thrice.

4.6.3.2 Computing infrastructure

The infrastructure used in this comparison is the Nord 3 cluster (a subset of the MareNos-
trum 3 supercomputer [148]), located at the Barcelona Supercomputing Center (BSC). This
supercomputer is composed of 84 nodes, each with two Intel SandyBridge-EP E5-2670 (8
cores at 2.6 GHz with 20 MB cache each), a main memory of 128 GB, FDR-10 Infiniband and
Gigabit Ethernet network interconnections, and 1.9 PB of disk storage. It provides a service
for researchers from a wide range of different areas, such as life sciences, earth sciences, and
engineering.

4.6. Use Case: NMMB-MONARCH 55

FIGURE 4.5: NMMB-MONARCH: Dependency graph of three days simula-
tion.

The Java version used is 1.8.0_u112 64 bits. Regarding Python, the version used is 2.7.13.
Since the NEMS binary uses MPI, and there is no other task that can be performed in par-

allel with it, the task responsible of it will have a constraint defining that all workers will be
dedicated to it. Consequently, the NEMS execution can benefit from all available resources
during its operation. The MPI used is OpenMPI 1.8.1. All the other tasks are sequential and
use a single core for their computation and have no further resource constraints.

4.6.3.3 Simulation dataset

In this experiment, we have performed three simulations, each one running for 24 hours
and producing a 3-hourly output, which represents eight partial results per day. This is a
reduced version of a production experiment as a proof-of-concept. Production simulations
in NMMB-MONARCH require many years of simulation to cover a significant period and
produce relevant results.

Since there are not yet satisfactory three-dimensional dust concentration observations,
the initial state of dust concentration in the model is defined by the 24-hour forecast from the
previous-day model run. The model at the starting day is run using “cold start” conditions,
i.e., the zero-concentration initial state.

For the domain configuration, we replicated a usual operational configuration for a
global simulation at BSC (1.4◦ × 1◦ horizontal resolution and 40 vertical sigman-hybrid
layers), producing a combination of meteorological and chemistry output variables. The
meteorological initial conditions are generated from NCEP global analysis (0.5◦ × 0.5◦).

In addition, the results shown in this article consider the generation of visualisation re-
sults for 41 different variables (e.g., dust deposition, wet dust deposition, dust concentra-
tion, etc.).

56 Chapter 4. Orchestration of complex workflows

4.6.3.4 Global performance

Figure 4.6 shows the performance from a global perspective for the original, Java, and
Python implementations of the NMMB-MONARCH application. For both plots shown in
the figure, the horizontal axis shows the number of workers (with 16 cores each) used for
each execution, the orange colour is the original implementation of the workflow (BASH),
the green colour is the Java version, and the blue colour is the Python version. Notice that
the Java and Python versions of the workflow are internally parallelised by our prototype.
Moreover, the top plot represents the mean execution time over 10 runs, and the bottom plot
represents the speed-up of each version with respect to the original workflow running with
a single worker.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

Ex
ec

ut
io

n
T

im
e

(s
) BASH Java Python

 1

 2

 4

 8

1(16) 2(32) 4(64) 8(128)

S
pe

ed
-u

p
(u

)

FIGURE 4.6: NMMB-MONARCH: Execution time and speed-up.

The results show that the original implementation of the workflow using BASH was
already scaling pretty well, achieving a 3.5 speed-up when using 8 workers. However,
both new implementations outscale the original one, achieving 5.59 speed-up (java) and 4.43
speed-up (python) when using 8 workers. This is due to the fact that our new implemen-
tations are able to parallelize the fixed, variable, and post-process steps while the original
workflow cannot.

4.6.3.5 Performance per step

Considering the execution with 4 worker processes (64 cores), we can focus on the per-
formance results for each step. Table 4.8 compares the previous version (BASH) against the
Java and Python ones.

The first conclusion that can be obtained is that the parallelisation with both Java and
Python improves the performance in the Fixed and Variable steps due to the possibility of
performing multiple tasks at the same time during these steps. In opposition, the Model
Simulation and Post Process do not improve because they are composed, respectively, by a
single task, and two tasks with a sequential dependency. However, the performance of
these steps does not degrade either.

Notice that the best speed-up is achieved on the Fixed step for both the Java (2.48) and
Python (2.43) versions. However, since this step is only executed once per execution and the
rest of the phases are executed iteratively per simulation day, the overall speed-up will vary

4.6. Use Case: NMMB-MONARCH 57

Step
Execution Time (s) Speed-up (u)

BASH Java Python Java Python
Fixed 290 117 119 2.48 2.43

Variable 26 19 22 1.37 1.18
Model Simulation 244 242 233 1.01 1.04

Post process 38 34 33 1.12 1.15
Total 601 413 415 1.45 1.45

TABLE 4.8: NMMB-MONARCH: Performance per step with 4 workers (64
cores).

depending on the number of simulated days. Hence, considering the speed-up of each step,
Equations 4.1 and 4.2 compute the expected speed-up in terms of the number of simulated
days (N) for Java and Python respectively.

Java : Expected SpeedUp(N) =
117 · 2.48 + 295 · 1.04 ·N

117 + 295 ·N
(4.1)

Python : Expected SpeedUp(N) =
119 · 2.43 + 288 · 1.06 ·N

119 + 288 ·N
(4.2)

For large simulations, the previous equations tend to 1. When N is large enough, the
computational load of the application is basically the Model Simulation step because the
Fixed step is only executed once and the rest are significantly smaller. Hence, the equa-
tions basically measure the speed-up of the Model Simulation when using the Java or Python
implementations against the previous implementation. Since all the implementations are
executing this step using MPI, there is no performance difference between them. We must
highlight that this result does not mean that the application cannot scale when running large
simulations. This result means that all the versions behave similarly for large simulations,
that is, that all the versions will provide the same speed-up with respect to the sequential
execution when scaling to larger simulations and number of cores.

4.6.3.6 Behaviour analysis

For a more in-depth analysis of the workflow, we have generated a Paraver [183] trace
of a three-day simulation with 4 workers (64 cores) of the Python workflow. As previously
demonstrated, the Java and Python implementations behave similarly and thus, the conclu-
sions derived from this analysis can also be applied to the Java version.

Figure 4.7 shows three timelines where each row corresponds to a thread in the worker.
The top view shows a task view, where different coloured segments represent tasks, and
each colour identifies a different task type. The middle and bottom views are the internals of
the MPI NEMS task, where the yellow lines represent communications between MPI ranks.

In the top view, on the left, it is possible to identify the first step (namely Fixed), which is
performed only once when the application starts. The maximum parallelism in this step is
16, so the first worker is being used completely while the other workers stay idle.

In the same way, it is possible to identify the last step at the right (Image and Animation
Creation). As previously explained, this step contains two types of tasks (creation of the
images and creation of the animation) that have a dependency between them. Hence, the
step executes first all the tasks to create the images in parallel and, next, the tasks to create
the animation. Consequently, all four workers are being used.

58 Chapter 4. Orchestration of complex workflows

FIGURE 4.7: NMMB-MONARCH: Paraver trace of the Python version using
4 workers (64 cores).

In between, the iterative process of the Variable, Model Simulation and Post Process steps
happens three times (one per simulation day). The Variable and Post Process are not capable
of filling completely the four workers because the dependencies between tasks limit the
maximum parallelism of both steps. However, the step that requires most of the time is the
Model simulation which, although it is performing a single task, it is exploiting all four nodes
underneath thanks to MPI.

The trace detail in the middle and bottom views show, respectively, the MPI events and
the MPI communications of the Model simulation task. Notice that, during this phase, both
frameworks, PyCOMPSs and MPI, are working together and sharing the computing nodes.
Although in this case MPI is using the four nodes, other applications may reserve some
nodes for MPI and use the others to compute remaining sequential PyCOMPSs tasks.

4.6.3.7 Scientific analysis

A scientific production run will consist of a simulation of a few years while in the results
presented here we only simulated a three-days period. However, we have followed the
usual production workflow to generate valid scientific results. Hence, our prototype has
proven to be a useful tool to perform these complex simulations both in Java and Python.

This same situation applies to the tasks that produce the animated plots. In a real appli-
cation, this task would be replaced by an analysis task, gathering all the outputs and com-
puting diagnostics or usual statistics operations (e.g., mean, average, deviation). However,

4.6. Use Case: NMMB-MONARCH 59

we considered more illustrative to generate visual outputs as shown in Figure 4.8.

(a)

(b)

(c)

(d)

FIGURE 4.8: NMMB-MONARCH: Visual outputs. (a) Dust dry deposition, (b)
Dust wet deposition, (c) Dust concentration at 10m, and (d) Dust load.

61

Chapter 5

Computational resources using
container techonologies

SUMMARY

Data Science workflows are particularly sensitive to load imbalance; varying the compu-
tational load significantly and quickly. This chapter focuses on solving the research question
Q2. Our proposal contributes by supporting container technologies to adapt the computa-
tional resources much faster. Furthermore, container technologies increase our prototype’s
programmability since users can implement parallel distributed applications inside a con-
trolled environment (container) and pack, deploy, and execute them in a one-click fashion.

Internally, our prototype distinguishes between (i) static, (ii) HPC, and (iii) dynamic re-
source management. We integrate container platforms at the three levels, providing repre-
sentative use cases of all the scenarios using Docker, Singularity, and Mesos. The evaluation
demonstrates that all the container technologies keep the application’s execution scalabil-
ity while significantly reducing the deployment overhead; thus enabling our prototype to
adapt better the resources to the computational load. More in detail, Docker performs simi-
larly than bare-metal and KVM with applications with small data dependencies and shows
a significant overhead when using intensive multi-host networking. Mesos shows a bigger
overhead than Docker but makes completely transparent the deployment phase, saving the
user to deal with the intricacies of interacting directly with Docker. Finally, the execution
with Singularity in queue-managed clusters shows an extremely low execution overhead.

62 Chapter 5. Computational resources using container techonologies

5.1 General overview

Cloud Computing [27] has emerged as a paradigm where a large amount of capacity is
offered on-demand and only paying for what is consumed. This paradigm relies on virtual-
isation technologies which offer isolated and portable computing environments called Vir-
tual Machines (VMs). These VMs are managed by hypervisors, such as Xen [33], KVM [127]
or VMWare [229], which are in charge of managing and coordinating the execution of the
computations performed in the different VMs on top of the bare-metal.

Beyond the multiple advantages offered by these technologies and the overhead intro-
duced during operation, the main drawback of these technologies in terms of usability is the
management of the VM images. To build an image for an application, users have to deploy
a VM with a base image that includes the operating system kernel and libraries, to install
the application-specific software, and to create an image snapshot which will be used for
further deployments. This process can take from several minutes to hours even for experi-
enced developers and turns to be a complicated and tedious work for scientist or developers
without a strong technological background.

To deal with these issues, a new trend in Cloud Computing research has recently ap-
peared [186]. It proposes to substitute VMs managed by hypervisors with containers man-
aged by container engines, also called containerisers, such as Docker [154, 72]. They provide
a more efficient layer-based image mechanism, such as AUFS [4], that simplifies the image
creation, reduces the disk usage, and accelerates the container deployment. The main dif-
ference between VM and containers relies on the fact that VM images include the whole OS
and software stack, and the hypervisor has to be loaded every time a VM is deployed. As
opposed, containers running on the same machine share the OS kernel and common layers,
which reduces the amount of work to be done by container engines.

In any case, either container and VM images are very convenient for packaging appli-
cations because the user only needs to deploy a VM or container with the customised im-
age. The complexity mainly falls back onto the application developer when creating the
customised image. In the case of distributed applications, the process is more complicated
since the user has to deploy multiple containers and configure them to coordinate the ex-
ecution of the application properly. Therefore, to facilitate this process, there is a need for
an extra component that must coordinate the deployment, configuration, and execution of
the application in the different computing nodes. We propose that the programming model
runtime can manage these tasks.

This chapter focuses on solving the research question Q2; proposing a methodology and
an implementation to integrate container technologies to ease the installation of software
dependencies and better adapt the computing resources to the workload of the application.
At its starting point, COMPSs was already capable of dynamically adapting the computa-
tional resources to the remaining workload of the application by creating and destroying
VMs. However, since data science workflows vary quicker than traditional HPC ones, we
have extended our prototype with container technologies to benefit from its light-weight de-
ployment to adapt the computational resources rapidly. Furthermore, our design smooths
the integration of container engines with parallel programming models and runtimes by
proposing a methodology to facilitate the development, execution, and portability of paral-
lel distributed applications.

The combination of container engines with our prototype brings several benefits for de-
velopers. On the one hand, the programming model provides a straightforward methodol-
ogy to parallelise applications from sequential codes and decoupling the application from
the underlying computing infrastructure. On the other hand, containers provide efficient
image management and application deployment tools which facilitate the packaging and

5.2. Related Work 63

distribution of applications. Hence, the integration of both frameworks enables develop-
ers to easily port, distribute, and scale their applications to parallel distributed computing
platforms.

5.2 Related Work

Some previous work has been performed to facilitate the portability of applications to
different distributed platforms. For what relates to clouds, software stacks as OpenNeb-
ula [223, 177] or OpenStack [207, 178] provide basic services for image management and
contextualisation of VMs. Contextualisation services typically include the networking and
security configuration. Concerning image management, these platforms expose APIs that
provide methods to import customised images as well as to create snapshots once the user
has manually modified the base image. However, these manual image modifications can be
tedious work for complex applications.

Some recent work has focused on automating this process by adding new tools or ser-
vices on top of the basic services offered by providers. CloudInit [52] is one of the most used
tools to automate the VM image creation. It consists of a package installed in the base image
which can be configured with a set of scripts that will be executed during the VM boot time.
Another extended way to configure and customise VM images is based on DevOps tools
development like Puppet [191] or Chef [49] where a Puppet manifest or a Chef receipt is de-
ployed, instead of executing a set of configuration scripts. Some examples of these solutions
can be found in [28], [41] or [125]. However, these solutions have a drawback: customising
the image at deployment time (installing a set of packages downloading files, etc.) can take
some minutes. It can be assumable in the first deployment but not for adaptation where
new VMs must be deployed in seconds. To solve this issue, some services like [79] have
been proposed to perform offline image modifications, in order to reduce the installation
and configurations performed at deployment time.

In the case of containers, most of the container platforms already include similar fea-
tures to customise container images easily. In the case of Docker [154, 72], we can write
a Dockerfile to describe an application container image. In this file, we have to indicate a
parent image and the necessary customisation commands to install and run the application.
Due to the layered-based image system, parent and customised images can be reused and
extended by applications, achieving better deployment times. This is one of the main rea-
sons why several users are porting their application frameworks to support Docker contain-
ers. Cloud Providers have started to provide services for deploying containers such as the
Google Container Engine [131] and cloud management stacks have implemented drivers to
support Docker containers as another type of VM, such as the Nova-Docker-driver [171] for
OpenStack or OneDoc [175], a Docker driver for Open Nebula. Apart from Docker, differ-
ent container platforms have appeared recently. Sections 5.3.2 and 5.4 provide more details
about the different available container engines.

Also, some work has been produced to integrate application frameworks, such as work-
flow management systems, with container engines. Skyport [92] is an extension to an exist-
ing framework to support containers for the execution of scientific workflows. This frame-
work differs from our proposal in the definition of the application which requires to ex-
plicitly write the workflows’ tasks in the form of JSON documents where the input/output
of each block has to be specified along with the executable. In COMPSs applications, the
programming model is pure sequential with annotations that identify the parts of the code
(tasks) to be executed by the runtime. Skyport uses Docker but delegates to the users the
responsibility to create the application images and to establish scalability procedures using
the available infrastructure tools, while in our work we propose a way to manage the image

64 Chapter 5. Computational resources using container techonologies

creation and resource scalability transparently. Moreover, we also provide extensions for
Docker, Singularity, and Mesos clusters. In [238], authors describe the integration of another
workflow system, Makeflow, with Docker. As in Skyport, the main difference with our pro-
posal is in the programming model, which in Makeflow is represented by chained calls to
executables in the form of Makefiles and is tailored to bioinformatics applications; it does
not provide any tool to build container images from the workflow code, and the supported
elasticity is done per task. For each task in the workflow, Makeflow creates a container;
thus not being capable to reuse the containers for different tasks. Finally, Nextflow [70] is
another option which proposes a DSL language that extends the Unix pipes model for the
composition of workflows. Both Docker and Singularity engines are supported in Nextflow,
but it has similar limitations than other frameworks, such as the manual image creation and
a limited elasticity supported only for Amazon EC2.

Framework Supported Container Engines Image Creation Elasticity

Skyport Docker Manual Manual (provider API)
Makeflow Docker, Singularity, Umbrella [153] Manual Limited ?
Nextflow Docker, Singularity Manual Limited ??
Our prototype Docker, Singularity, Mesos Automatic Full support ? ? ?

? Always container per task.
?? Only in Amazon EC2, no transparent scale-down.
? ? ? Transparent resource scale-up/down in containers and VM platforms.

TABLE 5.1: Comparison of container support in state of the art frameworks

Table 5.1 summarises the comparison between our proposal with previously proposed
container integration. We propose to integrate container engines with parallel programming
model runtimes, such as COMPSs, to provide a framework where users can easily migrate
from a sequential application to a parallel distributed application. The proposed extensions
to COMPSs provide the features to create the application container images automatically
and to deploy and execute the application in container-based distributed platforms trans-
parently.

Our prototype distinguishes between static, HPC, and dynamic resource management.
We integrate container platforms at the three scenarios, providing representative use cases
using Docker, Singularity, and Mesos. Notice that generalising the support to different con-
tainer platforms is important because, although they provide similar behaviours, each so-
lution has different features and needs, and targets different types of organisations. Also,
we believe that dynamic container management is a must to take full profit of the container
platforms and thus, container platforms must be integrated in such a way that frameworks
can dynamically create and destroy containers during the application’s execution.

5.3 Resource Orchestration Platforms

Resource Orchestration Platforms (ROP) are capable of managing clusters, clouds, vir-
tual machines or containers. As shown in Figure 5.1, there is a clear division between soft-
ware developed to administrate and manage batch ROP (such as supercomputers), and soft-
ware developed for interactive ROP (such as clouds or containers). Next subsections pro-
vide further information about both approaches by defining, comparing, and categorising
the latest software.

5.3. Resource Orchestration Platforms 65

FIGURE 5.1: Classification of Resource Orchestration Platforms (ROP)

5.3.1 Batch ROP

Batch ROP are in charge of scheduling jobs that can run without user interaction, require
a fixed amount of resources, and have a hard timeout among the resources they manage.
Since these systems are typically for HPC facilities (i.e., supercomputers), they are designed
to administrate a fixed number of computational resources with homogeneous capabilities.
To support modern HPC facilities with heterogeneous resources, batch ROP can include con-
straints or queue configurations. Also, in an attempt to make the HPC infrastructure more
flexible, some alternatives include job elasticity to vary the number of resources assigned to
a job at execution time.

5.3.1.1 Software discussion and examples

Although every system has its own set of user commands, they all provide more or
less the same functionalities to the end-user; the only exception being some advanced fea-
tures such as environment copy, project allocations, or generic resources. However, system
administrators will find significant differences between systems. Thus, in general terms,
choosing long-term well-supported software and finding the appropriate system adminis-
trator are the key points when looking for a batch system.

For instance, SLURM [234, 211] is a free and open-source job scheduler used on about the
60% of the TOP500 supercomputers. IBM Spectrum LSF [114], Torque [224], and PBS [106,
185] are also widely used options with constant updates and support. There is also more
specialised alternatives, like HT Condor [217, 112] or Hadoop Yarn [226, 18], with less use
but with active user communities, that are often chosen because of their specialised features
(e.g., scavenging resources from unused nodes or managing Hadoop clusters).

5.3.1.2 Taxonomy

Table 5.2 presents our taxonomy for the batch ROP. First, we describe their architecture,
detailing whether the implementation language is Java (J in the table), Python (P), C++, or
C. We also differentiate between the supported underlying operating systems - Windows
(W), Linux (L), or Unix-Like (U) - and file systems - NFS (N), Posix (P), HDFS (H), or Any
(A) -.

Next, we point out configurable features that system administrators might require; such
as support for heterogeneous resources, job priority, and group priority. Also, we provide
information about the system limits; stating the maximum number of nodes and jobs that
each system has proven to work with.

Regarding fault tolerance, we indicate the support for job checkpointing. Also, regarding
security, we categorise the user authentication between operating system (OS) and many
(M), and the stored data encryption between many (M), Yes (?) or None (-).

66 Chapter 5. Computational resources using container techonologies

Finally, we have included the maintainer since batch ROP are critical for the software
stack. Thus, reliability and support from the maintainer might be critical when choosing be-
tween the different options. Moreover, the framework’s availability is also a high-priority is-
sue. For this purpose, we consider the license of each framework following the next nomen-
clature: (1 in the table) Apache 2.0 [21], (2) GNU GPL2 [96], (3) GNU GPL3 [97], (4) GNU
LGPL2 [98], (5) BSD [42], (6) MIT License [156], (7) other public open-source software li-
censes (e.g., Academic Free License v3 [3], Mozilla Public License 2 [158], Eclipse Public
License v1.0 [78]), and (8) custom private license or patent.

Software Features
Architecture Configuration Limits F.T. Security

La
ng

ua
ge

O
S

Fi
le

Sy
st

em

H
et

er
.R

es
ou

rc
es

Jo
b

pr
io

ri
ty

G
ro

up
pr

io
ri

ty

M
ax

.n
od

es

M
ax

.j
ob

s

Jo
b

C
he

ck
po

in
ti

ng

A
ut

he
nt

ic
at

io
n

En
cr

yp
ti

on

M
ai

nt
ai

ne
r

Li
ce

ns
e

Enduro/X [80] C,C++ U P ? - - ? OS M Maximax Ltd 2
GridEngine [91] C W,U A ? ? ? 10k 300k ? M ? Univa 8
Hadoop Yarn [226, 18] J W,U H ? ? - 10k 500k M ? Apache SF 1
HT Condor [217, 112] C++ W,U N ? ? ? 10k 100k ? M M UW-Madison 1
IBM Spectrum LSF [114] C,C++ W,U A ? ? ? 9k 4M ? M ? IBM 8
OpenLava [123] C,C++ L N ? ? ? ? OS - Teraproc 2
PBS Pro [106, 185] C,P W,L P ? ? ? 50k 1M ? OS - Altair 2
SLURM [234, 211] C U A ? ? ? 120k 100k ? M - SchedMD 2

Ba
tc

h
R

O
P

Torque [224] C U A ? ? ? ? OS - Adaptive Computing 8
Legend: ? Available - Not available / Not Applicable

TABLE 5.2: Classification of Batch ROP.

5.3.1.3 Analysis

First, all the alternatives are available for Unix-Like systems; GirdEngine, Hadoop Yarn,
HT Condor, IBM Spectrum LSF, and PBS Pro can also work with Windows nodes. As ex-
pected, notice that the only system working with HDFS is Hadoop Yarn; while the rest work
with NFS or POSIX file systems.

Second, regarding the configuration options, all the systems support heterogeneous re-
sources, job priority (except Enduro/X), and group priority (except Enduro/X and Hadoop
Yarn). Also, job checkpointing is available in all the alternatives except for Hadoop Yarn.

Third, regarding the tested limits, SLURM is the only system that has been proven to
work with more than 100k nodes. PBS Pro has been tested with 50k nodes, and GridEngine,
Hadoop Yarn, HT Condor and IBM Spectrum LSF are far behind with around 10k nodes. On
the other hand, IBM Spectrum LSF and PBS Pro are the only systems that have been proven
to handle more than 1 million jobs. Next, Hadoop Yarn has been tested with 500k jobs, Grid
Engine with 300k jobs, and HT Condor and SLURM with 100k jobs. Unluckily, we have not
been able to find reliable information regarding the limit of nodes nor the limit of jobs for
Enduro/X, OpenLava, or Torque.

Fourth, all the systems support user authentication through different methods. How-
ever, only Enduro/X, GridEngine, Hadoop Yarn, HT Condor, and IBM Spectrum LSF pro-
vide data encryption. This fact might not be an issue since batch ROP are usually installed
in secure clusters.

Finally, all the alternatives except GridEngine and Torque are available through different
public open licenses. However, the maintainers offer paid plans for installation and support
that are highly recommended for large clusters.

5.3.2 Interactive ROP

In contrast to batch ROP, interactive ROP are designed for on-demand availability of
computing and storage resources; freeing the user from directly managing them. Since these

5.3. Resource Orchestration Platforms 67

systems are designed for clouds and containers, they are required to (1) integrate and free
resources from the system, and (2) dynamically adapt the resources assigned to a running
job to fulfil its requirements. Typically, these systems handle heterogeneous resources in one
or many data centres from one or many organisations.

5.3.2.1 Software discussion and examples

OpenStack [207, 178] and OpenNebula [223, 177] are the reference software for managing
cloud computing infrastructures based on virtual machines. Both solutions are deployed as
Infrastructure as a Service (IaaS), supporting multiple, heterogeneous, and distributed data
centres and offering private, public, and hybrid clouds. Also, both are free and open-source.

On the other hand, containerisation has become increasingly popular thanks to its light-
weight deployment. Docker [154] has become the most popular container technology by
offering Platform as a Service (PaaS) products that rely on the OS-level virtualisation to
deliver software in packages (also known as containers). Each container is isolated from the
rest and contains its own software, libraries, and configuration files. Docker Swarm [165,
214] is the native mode to manage clusters of Docker Engines. Similarly, Kubernetes [107,
134] is an open-source container-orchestration system to provide automatic deployment and
scaling of applications running with containers in a cluster.

Previous work has been published around interactive ROP that already analyses many
of the features of our taxonomy and discusses some of the alternatives. For instance, [231]
provides an in-depth comparison about OpenStack and OpenNebula. Also, the principal
investigator and the chief architect discuss the OpenNebula project in [155]. Furthermore,
there are online comparisons about Kubernetes and Docker Swarm [132], or Kubernetes and
Mesos [133] that were useful when retrieving information for our taxonomy.

5.3.2.2 Taxonomy

Table 5.3 presents our taxonomy of the surveyed interactive ROP. The first two columns
classify whether the different technologies work with virtual-machines or containers. Next
column defines the supported virtualisation formats; distinguishing between raw (R in the
table), compressed (C), Docker (D) or Appc (A). Also, we indicate the number of available
hypervisors (e.g., KVM, Xen, Qemu, vSphere, Hyper-V, bare-metal) and the implementation
language, differentiating between Java (J), Go (G), Python (P), C (C), and C++ (C++).

Regarding the user interaction, we define the different interfaces for each system: web
(W), client (C), REST (R), EC2 (E), and HTTP (H). Moreover, we also include the language
of the available libraries distinguishing between Java (J), Python (P), Ruby (R), Go (G), and
C++.

Regarding the elasticity, we indicate whether the systems support automatic scaling and
bursting. Also, we indicate the maximum number of nodes or cores that the system has
proven to manage. Furthermore, we indicate whether the systems provide accounting and
user quotas since these might be interesting features for system administrators. Similarly, we
indicate whether the systems support load balancing, object storage, live migration, rolling
updates, self-healing techniques, and rollbacks. Finally, we detail the license considering
the same options than in the Batch ROP classification(see Section 5.3.1.2 for further details).

5.3.2.3 Analysis

First, only OpenStack can handle virtual machines and containers simultaneously. Also,
Eucalyptus is the only system using virtual machines that has not support for compressed

68 Chapter 5. Computational resources using container techonologies

Software Features
Virtualisation Code Interaction Elasticity Mgmt. Application

V
M

C
on

ta
in

er

Fo
rm

at

H
yp

er
vi

so
r

La
ng

ua
ge

In
te

rf
ac

e

Li
br

ar
ie

s

A
ut

om
at

ic
Sc

al
in

g

Bu
rs

ti
ng

Sc
al

ab
ili

ty

A
cc

ou
nt

in
g

U
se

r
qu

ot
as

Lo
ad

Ba
la

nc
in

g

O
bj

ec
tS

to
ra

ge

Li
ve

M
ig

ra
ti

on

R
ol

lin
g

U
pd

at
e

Se
lf

-h
ea

lin
g

R
ol

lb
ac

ks

Li
ce

ns
e

CloudStack [136, 14] ? - R,C 7 J W,R,E - ? - ? ? ? - ? - - - 1
Docker Swarm [165, 214] - ? D - G C,H G,P - - 1kn - - ? - - ? ? - 1
Eucalyptus [174, 81] ? - R 1 J,C W,C,E - ? - - ? ? ? ? - - - 3
Kubernetes [107, 134] - ? D - G W,C,R G,P ? - 5kn - ? ? - ? ? ? ?- 1
Mesos [109, 23] - ? D,A - C++ W,H J,C++ ? - 50kn - ? - - - ? ? - 1
OpenNebula [223, 177] ? - R,C 3 C++ W,C,R R,J ? ? ? ? - - ? - - - 1
OpenStack [207, 178] ? ? R,C 6 P W,C,R P ? - 120kc ? ? ? ? ? - - - 1

In
te

ra
ct

iv
e

sy
st

em
s

RedHat OpenShift [199] - ? D - G R,C,W - ? ? 1kn - ? ? - ? ? ? ? 1
Legend: ? Available - Not available / Not Applicable

TABLE 5.3: Classification of Interactive ROP.

formats. The rest (i.e., Apache CloudStack, OpenNebula, and OpenStack) can handle raw
and compressed formats through different hypervisors.

Second, regardless of the virtualisation, the systems offer many interfaces; the most com-
mon ones being client, REST, or web interfaces. Also, regarding elasticity, all the alternatives
except Docker Swarm provide automatic scaling. However, only OpenNebula and RedHat
OpenShift provide cloud bursting.

Regarding user management, all the surveyed systems (except Docker Swarm) provide
user quotas, but only Apache CloudStack, OpenNebula, and OpenStack provide user ac-
counting. Also, regarding application features, most of the systems provide load balancing
and live migration. On the other hand, rolling updates, self-healing, and rollbacks are more
common in container platforms than virtual machine platforms. Also, Kubernetes and Red-
Hat OpenShift are the richest options; providing all the application management features
except Object storage.

Finally, we must highlight that all the alternatives are available through different public
open licenses. However, for large clusters and continuous support, it is recommended to
check the paid plans offered by the maintainers.

5.4 Description of reference ROP

5.4.1 OpenStack

OpenStack [207, 178] was born in July 2010 as a collaboration between Rackspace and
NASA to manage massive amounts of computing, storage, and networking resources. Nowa-
days, OpenStack is a widely-used open-source software for deploying and managing pri-
vate and public clouds. It provides a dashboard and an API that give administrators the
control of large pools of computing, storage and networking resources while empowering
the users to provision resources through web and command-line interfaces.

Furthermore, OpenStack is built as a combination of different modules; providing a flex-
ible adaptation to different administration requirements. Three modules define the core
software project: (i) Nova, the compute infrastructure, (ii) Swift, the storage infrastructure,
and (iii) Glance, the image service. On the one hand, Nova hosts the cloud computing sys-
tem and manages all the activities required to support the life cycle of the instances. On the
other hand, Swift offers a large and consistent object store distributed across nodes. Finally,
Glance is a lookup and retrieval system to monitor virtual machine images.

5.4. Description of reference ROP 69

5.4.2 OpenNebula

OpenNebula [223, 177] was born as a research project in 2005 and first released in March
2008 as an open-source project. Its primary focus is private clouds, providing a simple so-
lution to orchestrate and configure virtualised data centres or clusters. However, it also
supports Hybrid and Public clouds by providing cloud interfaces to expose its function-
alities for virtual machines, storages, and network management. Moreover, OpenNebula
provides users with an elastic platform for fast delivery and scalability of services. These
services are hosted as Virtual Machines (VMs) and submitted, managed, and monitored in
the cloud using virtual interfaces.

In contrast to OpenStack, OpenNebula has a classical cluster-like architecture with a
front end and a set of cluster nodes running the VMs; requiring at least one physical network
to connect all the cluster nodes with the front end.

5.4.3 Docker framework

Docker [154] is an open platform for developing, shipping, and running applications. It
provides a way to run applications securely isolated in a container. The difference between
Docker and usual VMs is that Docker does not need the extra load of a hypervisor to run the
containers, and it uses an efficient read-only layered image system achieving lighter deploy-
ments. To improve the Docker experience, several services and tools have been created. For
our case study, the relevant ones are Docker-Swarm, Docker-Compose, and DockerHub.

First, Docker Swarm [165, 214] is a cluster management tool for Docker. It merges a pool
of Docker hosts enabling the deployment of containers in the different hosts with the same
Docker API and giving to the user the impression that it has a single, virtual Docker host.
Also, Docker Swarm is in charge of transparently managing the inter-host networking and
storage. Moreover, it allows defining scheduling policies to manage where the containers
must be placed in the cluster.

Next, Docker Compose is a tool to define complex applications easily which require de-
ploying multiple Docker containers. It provides a simple schema to allow users to define
the different containers required by their application. Once the user has defined the applica-
tion, Docker Compose is in charge of automatically deploying and configuring the different
containers.

Finally, DockerHub is a public cloud-based image registry service which enables the
users to store and share their applications’ docker images. The Docker framework also
offers the Docker Registry which is an open-source service with the same API as DockerHub
that can be installed on the provider premises in order to store and share users’ images
in a local, private and controlled way. This Docker Registry can also be used as a cache
for DockerHub to minimise the effect of performance degradations and downtimes of the
DockerHub service.

5.4.4 Kubernetes

Kubernetes [107, 134] is a portable, extensible, open-source orchestration software for
managing containerised workloads and services that was open-sourced by Google in 2014.
It provides a framework to run distributed systems resiliently; allowing to orchestrate a clus-
ter of virtual machines and schedule containers to run on those virtual machines based on
their available compute resources and the resource requirements of each container. Among
its large ecosystem, we highlight that Kubernetes provides service discovery, load balanc-
ing, failover, dynamic adaptation (i.e., creates, removes or adapts containers to achieve a

70 Chapter 5. Computational resources using container techonologies

desired state in terms of CPU and memory resources), constrained scheduling (i.e. sched-
ules containers across the cluster nodes considering CPU and memory boundaries), storage
orchestration, and self-healing (i.e. restarts or replaces failed containers).

Kubernetes has been widely adopted by both the community and the industry; becom-
ing the most popular Container Orchestration Engine (COE). However, there are many al-
ternatives for the coordination of containers across clusters of nodes. For instance, Docker
Swarm is tightly integrated into the Docker ecosystem; using the Docker CLI to manage all
container services. In contrast to Kubernetes, Docker Swarm is easy to set up for any op-
erating system and requires little effort to learn since it only needs a few commands to get
started. However, Docker Swarm is bounded to the limitations of the Docker API. Another
option is the Marathon framework on Apache Mesos that provides an unmatchable fault-
tolerance and scalability. However, its complexity to set up and manage clusters makes it
impractical for many teams.

5.4.5 Singularity

Singularity [138, 210] in a container engine that focuses on providing users with a cus-
tomisable, portable, and reproducible environment to execute their applications. As other
container engines, Singularity is based on images where the users have full control to install
the required software stack to run their applications (OS, library versions, etc.). Although
Singularity defines its own container description and format, for compatibility purposes, it
is capable of importing Docker images.

Concerning the version used in this study (Singularity 2.4.2), there are two main differ-
ences in comparison with other container engines such as Docker or Kubernetes. First, Sin-
gularity is capable of running containers in non-privileged user space and accessing special
host resources such as GPUs, and high-speed networks like Infiniband. Second, Singular-
ity does not provide shared virtual networking and multi-container orchestration since it
focuses on HPC environments. Although this lack of isolation and orchestration avoids net-
work virtualisation overheads, it forces services running in containers hosted on the same
node to share the network interface, hostname, IP, etc. Hence, Singularity is often combined
with queue managers (such as SLURM or LSF) to provide these features at host level. Also,
we highlight that more recent versions of Singularity (3.0 and later) include network virtu-
alisation and full integration with Container Network Virtualisation (CNI) [57].

5.4.6 Mesos

Mesos [109, 23] is a resource manager designed to provide efficient resource isolation and
sharing across distributed applications. It consists of a master daemon that manages agent
daemons (slaves) running on each cluster node, and frameworks that run tasks on these
agents. The slaves register with the master and offer resources, i.e., capacity to run tasks.
Mesos uses the concept of frameworks to encapsulate processing engines whose creation is
triggered by the schedulers registered in the system. Frameworks reserve resources for the
execution of tasks while the master can reallocate resources to frameworks dynamically.

Mesos supports two types of containerisers, the Mesos native containeriser, and the
Docker containeriser. Mesos containeriser uses native OS features directly to provide iso-
lation between containers, while Docker containeriser delegates container management to
the Docker engine. Mesos native containeriser provides interoperability with Docker im-
ages, thus making possible to reuse the same application image transparently with regards
to the specific Mesos deployment.

5.5. Architecture 71

5.5 Architecture

COMPSs is capable of abstracting the applications from the underlying infrastructure
by deploying a worker process in each computational resource. This methodology guar-
antees that the communication between the master and the worker processes during the
application’s execution is the same regardless of the underlying infrastructure. However,
the configuration and remote deployment of the worker process varies depending on the
target computational resource.

Internally, COMPSs differentiates three scenarios to configure and deploy the worker
processes: (i) static, (ii) HPC, and (iii) dynamic computational resources. Next subsections
describe each scenario, detail the adaptations performed in our prototype to handle contain-
ers, and provide use case examples using some of the available container platforms.

5.5.1 Static computational resources

We consider static computational resources those computing resources that are available
during the whole execution of the application without further requests (e.g., grids). This sce-
nario is also useful for debugging when configuring the developer’s laptop as a computing
resource.

5.5.1.1 COMPSs static resources management

COMPSs applications are executed running the runcompss command. As shown in
Figure 5.2, this command starts the COMPSs master process that, among many other things,
loads the remote machines’ information from the project.xml and resources.xml files to deploy
and configure the worker processes. The worker processes are deployed using SSH at the
beginning of the application’s execution. However, the SSH connection is terminated once
the worker process has started so that the master and the worker can communicate through

FIGURE 5.2: COMPSs static resources management

72 Chapter 5. Computational resources using container techonologies

Java NIO during the application’s execution. Finally, at the end of the application’s execu-
tion, a stop message is sent from the master to the worker to stop the worker process and
clean the remote machine.

5.5.1.2 New static container management

Similarly to regular applications, our prototype provides a runcompss_container
submission command to encapsulate all the required steps to run a containerised applica-
tion. As shown in Figure 5.3, the first step is the creation of the container image containing
the application, its dependencies, and our prototype. The second step is the execution of the
application using the container engines. We must highlight that the first step is done only
once per application, while the second step runs every time an application is executed. Also,
although the operations in each step may vary when using different container engines, the
runcompss_container abstracts the final user from the underlying container engine.

FIGURE 5.3: Integration with containers platforms.

5.5.1.2.1 Submission command

From the users’ point of view, the only difference when running containerised appli-
cations is the submission command. Listing 5.1 compares the submission command for
regular and containerised applications.

1 # Normal execution
2 runcompss
3 --classpath=/home/john/matmul/matmul.jar
4 matmul.objects.Matmul 16 4
5

6 # Docker execution
7 runcompss_container
8 --engine=docker
9 --engine-manager='129.114.108.8:4000'

10 --initial-worker-containers=5
11 --container_image='john123/matmul-example'
12 --classpath=/home/john/matmul/matmul.jar
13 matmul.objects.Matmul 16 4

LISTING 5.1: Comparison between normal and container execution.

5.5. Architecture 73

On the one hand, regular applications are executed by invoking the runcompss com-
mand followed by the application main class and arguments. This command transparently
loads the Runtime and starts the application execution.

On the other hand, containerised applications are executed by invoking the runcompss_
container command. This command supports the same options than the runcompss
command but requires some extra arguments to specify the application container image,
the container engine, the engine manager IP address and port, and how many containers
must be initially deployed as computing resources. Notice that we assume that the con-
tainer platform is available to deploy the application containers and that the developer’s
computer has installed the container platform client to execute the application as well as to
create and share the application images across the cluster.

5.5.1.2.2 Container image creation

The majority of container engines are capable of importing, converting or directly run-
ning containers with Docker image format. However, every container uses its own API and
deployment model to execute the containers. For this reason, the container image creation
is a common process regardless of the container engine, while the application’s deployment
and execution depend on the container engine.

FIGURE 5.4: Image generation phase.

Figure 5.4 describes the overall workflow to generate a Docker image for an application.
Notice that this is a generic process that any other framework could use to create an appli-
cation container image transparently. As an overview, our prototype creates the application
container image needed by the Docker containers and uploads it to DockerHub in order to
make it available to any container platform. To do so, we have included a utility that cre-
ates a DockerFile describing how to create the application Docker image. More in detail, it
describes how to install the application context directory (the directory where application

74 Chapter 5. Computational resources using container techonologies

files are located) and the required dependencies on top of our prototype’s base image as a
separate layer. This base image is a public Docker image located at DockerHub which al-
ready contains a ready to use Runtime and its required dependencies. The image creation
is performed by executing the DockerFile with the Docker client which automatically pulls
the base image, installs the application on the base image as a new layer, and uploads it to
the DockerHub.

In this way, different applications deployed in Docker share the same base layer, and
thus, the deployment of a new application only requires to download the new application
layer. Moreover, the deployment of several instances of the same application or new worker
nodes does not need any new installation. Hence, taking advantage of the Docker layer sys-
tem, our prototype can increase the deployment speed and can perform better adaptations.

5.5.1.2.3 Container execution

Before starting the COMPSs master process, the runcompss_container starts the re-
quired containers and assigns them a valid IP address. This step is done by interacting with
the ROP and is completely dependent on the underlying container engine. However, from
this step on, containers are treated like any other resource. Hence, the runcompss_contai-
ner can build the project.xml and resources.xml files accordingly and start the COMPSs mas-
ter normally.

5.5.1.3 Use Case 1: Docker

Figure 5.5 depicts how our prototype orchestrates the deployment and execution of an
application using the Docker container engine. In this phase, we define a Docker-Compose
application by creating a docker-compose.yml file which describes a master container (where
to execute the main application) and a set of worker containers (where to execute the tasks).

FIGURE 5.5: Deployment phase.

5.5. Architecture 75

Even though the containers execute different parts of the application, both types of contain-
ers boot the same application image; the only difference being the command executed once
the container is deployed. On the one hand, the master container executes the master pro-
cess and the application. On the other hand, the worker containers start the worker daemon
and wait for the master messages to execute tasks. Furthermore, as in any regular applica-
tion, the results are copied back to the user’s machine at the end of the execution and the
running containers are shut down and removed.

Once the application is defined, we use Docker-Compose to deploy the containers in
the Docker cluster managed by Docker-Swarm. In this phase, as depicted in Figure 5.6,
an application network is also created across the containers on top of the overlay network
which interconnects the Docker hosts.

FIGURE 5.6: Dynamic integration with Docker.

We highlight that the separation of the image creation and application execution en-
ables developers with an easy way to distribute their applications. Moreover, it allows other
scientists to reproduce the results produced by an application. Our prototype provides a
unique runcompss_container command to do both, the image creation and application
execution. As shown in Listing 5.2, when providing the --gen_image flag, the command
creates the application image and uploads it to the DockerHub repository. On the other
hand, to simply execute the application the users can provide the engine, the Docker-Swarm
endpoint, the Docker image identifier, the number of containers used as workers, and the
application arguments.

1 # Image generation
2 runcompss_container \
3 --gen-image \
4 --context_dir=/home/john/matmul/
5

6 # Execution
7 runcompss_container \
8 --engine=docker \
9 --engine-manager='129.114.108.8:4000' \

10 --initial-worker-containers=5 \
11 --container_image='john123/matmul-example' \
12 --classpath=/home/john/matmul/matmul.jar \
13 matmul.objects.Matmul 16 4

LISTING 5.2: Image generation and execution of a sample application in
Docker using the runcompss_container command.

76 Chapter 5. Computational resources using container techonologies

Finally, we have demonstrated the static container management using Docker, but our
design can be extended to other container engines. For instance, the same functionality can
be achieved using Kubernetes as Docker-Swarm and Kompose [128] as Docker-Compose.
Since the application’s deployment is already defined using a docker-compose.xml file,
Kompose will be used to translate this description to the Kubernetes’ format, and the dif-
ferent services will be deployed using the Kubernetes API. Hence, Kubernetes can be inte-
grated with our prototype using the same design shown in Figure 5.5 but changing Docker-
Swarm and Docker-Compose per Kubernetes and Kompose, respectively.

5.5.2 HPC computational resources

We consider HPC computational resources those resources that are requested to ROP
and reserved for the whole execution of the application. This is often used in supercomput-
ers where queue managers grant a fixed set of resources for a certain period of time.

5.5.2.1 COMPSs HPC resources management

As shown in Figure 5.7, COMPSs is integrated with the ROP by providing a high-level
submission command (enqueue_compss) that requests the reservation to the ROP, config-
ures and deploys the master and worker processes in each node, and launches the applica-
tion. At its current state, COMPSs supports SLURM, LSF, PBS, and SGE; although system
administrators must fill a configuration template with the specificities of each supercom-
puter.

FIGURE 5.7: COMPSs HPC resources management

5.5. Architecture 77

5.5.2.2 New HPC container management

The process to run containerised applications in HPC infrastructures is very similar
to the one used to run regular HPC applications with COMPSs. From the users’ point
of view, the only required modification is to provide the container_image flag to the
enqueue_compss command to specify the id of the image that contains the application.
The image must be previously generated following the steps explained in Section 5.5.1.2.2.

Internally, as shown in Figure 5.8, our prototype retrieves the container image from
DockerHub and converts it to the required format during the submission phase. Moreover,
our prototype starts a container in each of the available resources during the deployment
phase so that, later, the application can be run normally as any regular application.

FIGURE 5.8: Containers HPC resources management

5.5.2.3 Use Case 2: Singularity

This use case shows the execution of containerised applications in HPC using Singular-
ity. First, Listing 5.3 shows the submission command for regular and containerised applica-
tions. As previously stated, we highlight that the only difference between both commands
is the addition of the container_image flag.

Second, Figure 5.9 shows how our prototype interacts with the HPC system with Singu-
larity to deploy and execute containerised applications. When the --container_image
flag is activated, the enqueue_compss command imports the image from DockerHub and
creates a Singularity image by invoking the singularity import <container-image>.
Then, as with regular applications, the command generates a submission script which gen-
erates the queue system directives to perform the reservation of the nodes. However, instead
of starting the master and worker processes directly, it starts a container in each node that
runs the master or worker process according to the node configuration.

78 Chapter 5. Computational resources using container techonologies

1 # Normal cluster execution
2 enqueue_compss \
3 --exec_time=30 \
4 --num_nodes=5 \
5 --classpath=/cluster/home/john/matmul/matmul.jar \
6 matmul.objects.Matmul 16 4
7

8 # Singularity cluster execution
9 enqueue_compss \

10 --exec_time=30 \
11 --num_nodes=5 \
12 --container_image='john123/matmul-example' \
13 --classpath=/home/john/matmul/matmul.jar \
14 matmul.objects.Matmul 16 4

LISTING 5.3: Submission comparison between a normal and a Singularity
cluster.

FIGURE 5.9: Application deployment with Singularity.

5.5.3 Dynamic computational resources

We consider dynamic computational resources those resources that can be requested and
freed during the application’s execution. Although this scenario was originally designed
for clouds, nowadays, queue managers and container platforms can also provide elasticity
mechanisms for on-demand resource reservation.

5.5.3.1 COMPSs dynamic resources management

One of the main benefits of Cloud computing platforms is elasticity [89, 145]. Users
can request more or fewer resources according to their needs. At its starting point, COMPSs
already has built-in adaptation mechanisms to dynamically increase or decrease the number

5.5. Architecture 79

of cloud VMs during the application’s execution depending on the remaining workload. To
do so, it estimates the workload by profiling the previous executions of each task, measures
the resource creation time, and compares both values to order the creation or the destruction
of a resource. In its current state, COMPSs has connectors for ROCCI [180, 201], jClouds [19],
SLURM, and VMM [87, 228].

COMPSs defines a Connector interface to interact with the ROP. This interface provides
two methods to create and destroy COMPSs workers; abstracting the logic of requesting and
freeing computational resources from the ROP specificities to actually request or free com-
putational resources. On the one hand, the create_resource method expects the con-
nector implementation to request the allocation of a new resource to the ROP, configure the
granted resource, and start the worker process. On the other hand, the destroy_resource
method expects the connector implementation to simply de-allocate the resource since the
worker process is already stopped and all the required data is already transferred else-
where.

As shown in Figure 5.10, at the beginning of the application’s execution, the COMPSs
master loads by reflection the Connector implementation to interact with the ROP. During the

FIGURE 5.10: COMPSs dynamic resources management

80 Chapter 5. Computational resources using container techonologies

application’s execution, the COMPSs master evaluates its policies and, eventually, asks the
Connector to allocate or de-allocate resources. This logic is performed in a separated thread
(ResourceOptimizer) and, as previously stated, is independent of the ROP. Finally, at the end
of the application’s execution, the COMPSs master instructs the Connector implementation
to de-allocate any remaining resource and perform any shutdown operation.

5.5.3.2 New dynamic container management

Since many container engines can request and free containers, we have extended the
Connector interface to support containers. Furthermore, we have implemented two new
connectors to support Docker and Mesos. Notice that the Connector interface abstracts the
logic of creating and destroying resources from the ROP. Thus, we have not modified the
Runtime logic to extend the adaptation mechanisms to support container engines. How-
ever, the Connector interface is general enough to fit any other framework with adaptation
mechanisms, which makes our Docker and Mesos connector implementations portable and
extensible for other high-level abstraction frameworks.

From the users’ point of view, the applications can run distributedly on top of a container
platform without modifying a single line of code. It is sufficient to modify our prototype’s
configuration files by adding the Connector path (provided in the installation), the platform
manager endpoint, the container image, and the initial, the minimum and the maximum
number of containers.

5.5.3.3 Use Case 3: Docker

The integration with Docker includes a pluggable Connector implementation which con-
nects the resource manager with Docker-Swarm and allows it to deploy or destroy con-
tainers according to the decisions taken by the Runtime. If the Runtime decides that an
additional container is needed, it contacts the Docker-Swarm manager to request the cre-
ation of a container using the application image and the application network. Then, the
Docker-Swarm manager deploys the extra worker container, starting the worker daemons
and connecting the new container to the application network that exists across the con-
tainers. This plug-in is included in the base image and is automatically configured by the
runcompss_container script.

5.5.3.4 Use Case 4: Mesos

A Framework running on top of Mesos consists of two components: a scheduler and an
executor. On the one hand, the scheduler registers with the Mesos master, receives resource
offerings from it, and decides what to do with the offered resources. On the other hand, the
executor is launched on the slave nodes to run framework tasks.

Figure 5.11 depicts the integration with Mesos. In our case, the scheduler is integrated
with the Runtime, and the negotiation of resources is performed through a specific Connector
(Mesos Framework in the Figure) that registers a new framework in Mesos. Notice that both
the Runtime and the workers are executed as Mesos slaves within Docker containers and
that we create an overlay network on the Mesos cluster to make direct connections.

Once the resources are offered to our prototype, it deploys the workers on the nodes
creating a direct connection between the master and the workers (blue arrows in the Figure).
Our implementation uses the default Mesos executor to spawn the containers.

It is worth highlighting again that the integration of Mesos is completely transparent to
the application developers who are not requested to provide any information related to the
resources in the definition of the tasks. Moreover, the adoption of containers allows easy

5.5. Architecture 81

FIGURE 5.11: Dynamic integration with Mesos.

and transparent deployments of applications, without the need of installing our prototype
and the developed applications in the cluster.

To execute an application into the Mesos cluster, our prototype uses Chronos [51] to pass
a JSON file with the description of the container to deploy and the command to be executed.
Listing 5.4 contains the description of a Simple application with the definition of the Docker
image to be deployed and the URIs of the files to be copied in the sandbox of each worker.

1 {
2 "name": "COMPSs",
3 "command": "/opt/COMPSs/Runtime/scripts/user/runcompss
4 --project=/mnt/mesos/sandbox/project_mesosFramework.xml
5 --resources=/mnt/mesos/sandbox/resources_mesosFramework.xml
6 --classpath=/mnt/mesos/sandbox/Simple.jar
7 simple.Simple 1 25 1 3 60",
8 "shell": true,
9 "epsilon": "PT30M",

10 "executor": "",
11 "executorFlags": "",
12 "retries": 2,
13 "owner": "john@bsc.es",
14 "async": false,
15 "successCount": 190,
16 "errorCount": 3,
17 "cpus": 0.5,
18 "disk": 5120,
19 "mem": 512,
20 "disabled": false,
21 "container": {
22 "type": "DOCKER",
23 "image": "compss/compss:2.0-mesos-0.28.2",
24 "network": "USER"
25 },
26 "uris": [
27 "http://bscgrid05.bsc.es/~john/Matmul.tar.gz",
28 "http://bscgrid05.bsc.es/~john/conf.tar.gz",
29 "http://bscgrid05.bsc.es/~john/DockerKeys.tar.gz"
30],
31 "schedule": "R1//PT24H"
32 }

LISTING 5.4: Definition of an application execution with Chronos.

82 Chapter 5. Computational resources using container techonologies

The previous example shows an interesting feature of our prototype to deploy the appli-
cation at execution time dynamically. The user provides the package of the application in a
compressed file and lists it in the URIs section of the JSON document so that Chronos will
copy it in the sandbox of the master container. Then, the Runtime transfers it to the worker
containers at execution time. This mechanism is particularly useful for testing purposes,
allowing to use the base Docker image without creating a new layer and uploading it to the
DockerHub; leaving this step only for the final version of the application.

5.6 Evaluation

We have defined two sets of experiments to evaluate the integration of our prototype
with the different container platforms. On the one hand, the first set evaluates the deploy-
ing time and adaptation capabilities. On the other hand, the second set evaluates the perfor-
mance of running two benchmark applications on top of the different container platforms in
comparison to normal executions in bare-metal, Cloud Infrastructure, or HPC cluster. This
second set evaluates if there is any performance degradation caused by the use of containers.

5.6.1 Computing infrastructure

The experiments have been done using two different infrastructures. On the one hand,
static and dynamic container management has been tested using the Chameleon Cloud [46].
Chameleon Cloud is an NSF funded project which provides a configurable experimental
environment for large-scale cloud research. The Chameleon Cloud provides two types of
infrastructure services: a traditional cloud managed by OpenStack over KVM and a bare-
metal reconfiguration, where the user can reserve a set of bare-metal nodes flavoured with
the image that the user selects. On the other hand, HPC container management has been
tested using the MareNostrum 3 supercomputer [148].

FIGURE 5.12: Chameleon Cloud testbed environment configurations.

5.6. Evaluation 83

Figure 5.12 describes the different Chameleon Cloud scenarios that we have evaluated.
We have set up four different environments: Bare-metal, KVM-OpenStack, Docker, and
Mesos. The first scenario consists of a set of bare-metal flavoured nodes where we directly
run the applications. The second scenario consists of a Cloud where OpenStack manages
a set of nodes virtualised by KVM. The third scenario consists of a Docker-Swarm cluster
built on top of a set of bare-metal instances. In this case, each bare-metal node hosts a Docker
Engine, which deploys the applications’ containers. Finally, the fourth scenario consists of
a Mesos cluster on top of a set of bare-metal instances. The Mesos cluster uses the DC/OS
platform that includes a virtual network feature that provides an IP-per-Container for Mesos
and Docker containers. These virtual networks allow containers launched through the
Docker Containeriser to co-exist on the same IP network, allocating each container its own
unique IP address. This is a requirement for our prototype because each worker is deployed
in a container and the Runtime needs to connect to each worker directly.

Each scenario uses up to 9 bare-metal nodes provided by Chameleon with exactly the
same configuration (2 x Intel Xeon CPU E5-2670 v3 with 12 cores each and 128GB of RAM).
When running an application, one node, container or VM runs as master (which manages
the application execution), and the rest run as workers (which execute the application tasks).
In all the environments, nodes, containers, and VMs are defined to use the whole compute
node (24 VCPUs and 128 GB of RAM) and deploy the same software stack (Ubuntu-14.04
with our prototype installed). However, depending on the environment, the image size
varies. The qcow2 image size for the cloud environment is about 1GB, and the compressed
docker image size is about 800MB. Regrading the OpenStack services to manage images and
create instances, we have used the installation provided by Chameleon described in [47].

FIGURE 5.13: MareNostrum 3 testbed environment configurations.

Figure 5.13 describes the different MareNostrum 3 scenarios that we have evaluated.
We compare the execution in a set of bare-metal nodes against a second scenario using Sin-
gularity containers. Each scenario uses up to 9 bare-metal nodes with exactly the same
configuration (2x Intel SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz with 8x16 GB
DDR3-1600 DIMMs of RAM). When running an application, one node, or container runs
as master (which manages the application execution), and the rest run as workers (which
execute the application tasks).

5.6.2 Benchmark applications

The experimentation performed consists of the deployment and execution of two bench-
mark applications in the different environments. The first application consists of a blocked
multiplication of two big matrices (Matmul). This application presents a large number of
data dependencies between tasks. Specifically, each matrix of the experiment contains 228

84 Chapter 5. Computational resources using container techonologies

floating-point elements (214 x 214). In order to share the workload, they have been divided
into 256 square blocks (16 x 16), each of them containing 220 elements. It is quite I/O in-
tensive because the data dependencies between tasks require transferring the matrix blocks
through the network as well as some disk utilisation.

In contrast, the second experiment is an embarrassingly parallel application without data
dependencies. This benchmark simply performs a series of trigonometric computations in
parallel without exchanging any data. In this case, the I/O utilisation is mainly used by the
messages exchanged by our prototype to run the parallel computations.

5.6.3 Docker

5.6.3.1 Deployment evaluation

In the case of the deployment evaluation, we have measured the time to perform the de-
ployment of the applications into the considered environments in different scenarios (when
the image is already in the infrastructure, or not, etc.). The measurements for the KVM-
OpenStack and Docker scenarios are summarised in Table 5.4. Since both benchmark appli-
cations have the same size and the deployment times of the Embarrassingly Parallel bench-
mark are very similar, we only present the Matrix Multiplication times. Moreover, for this
experiment, we have not considered the bare-metal scenario since the computing nodes are
already set-up and the deployment of our framework and the applications must be per-
formed manually copying and installing the required files on all the nodes.

Cloud (KVM/OpenStack) Docker

Phase Action
Time (s)

Action
Time (s)

w/o Image Image Cached w/o Images w Ubuntu w COMPSs w App.

Build
Base VM deployment 33.58 N/A Image Creation 73.87 68.88 15.48 N/A

App. Installation 15.45 N/A
Image upload 8.66 8.66 8.66 N/A

Image Snapshot 60.36 N/A

Total Construction 109.39 N/A 82.53 77.54 24.14 N/A

Deployment
VM deployment 83.68 18.18 Image download 12.39 12.39 12.39 N/A

VM boot 15.09 15.09 Container deployment 4.75 4.75 4.75 4.75

Total Deployment 98.77 33.27 17.28 17.28 17.28 4.75

Total Construction & Deployment 208.16 33.27 99.67 94.68 41.28 4.75

TABLE 5.4: Docker deployment evaluation.

In the construction phase, the creation of a customised image includes the deployment
of a VM with the base image, the time to install the application and to create the snapshot
which is the most expensive phase and whose duration depends on the image size. In this
case, the creation time takes 109 seconds. In contrast, the creation of application’s Docker
container depends on which layer we already have in the Docker infrastructure because the
new image is a layer on top of previous ones. In this case, the Docker image creation takes
from 24 seconds, when the base image is cached in the Docker engines, up to 82 seconds
when no images are available.

At deployment phase, both cases (Cloud and Docker) are quite similar if the node has
the image locally cached or must be downloaded from a central image store. In the best case
for the cloud environment, the deployment and boot are completed in around 30 seconds.
However, if the image must be downloaded, the deployment can take up to around 98 sec-
onds. Hence, the total creation and deployment time in the case of a Cloud can take from
33 seconds up to 208 seconds. In contrast, the container deployment in the best case takes
around 5 seconds, when all the layers are cached in the Docker engines, while in the worst

5.6. Evaluation 85

case it takes 17 seconds. Thus, the total creation and deployment time in Docker can take
from 5 seconds up to 99 seconds, significantly improving the deployment.

Notice that the faster deployment time of Docker is significantly relevant when adapting
the computational resources to the workload of data science applications. The faster the
resource deployment is, the finer the adjustment of the resources can be, which implies a
faster application execution and reducing the underutilisation of computational resources.

5.6.3.2 Performance evaluation

To evaluate the performance, we have measured the execution time of 5 runs of both
applications using a different number of nodes in the different environments. Regarding the
Matrix Multiplication, Figure 5.14 shows the average execution time, and Figure 5.15 depicts
the overhead with respect to the bare-metal execution. Similarly, Figures 5.16 and 5.17 show
the average execution time and the overhead with respect to the bare-metal execution for
the Embarrassingly Parallel benchmark.

FIGURE 5.14: Scalability evaluation of the Matrix Multiplication (with data
dependencies).

FIGURE 5.15: Overhead evaluation of the Matrix Multiplication (with data
dependencies) with respect to the bare-metal.

86 Chapter 5. Computational resources using container techonologies

The Matrix Multiplication case uses disk and network I/O in order to transfer and load
the matrix blocks required to compute the partial multiplications. Figures 5.14 and 5.15
show that Docker and bare-metal are performing similarly when using a single node, and
KVM is performing a bit slower than bare-metal (around 14%). This is because KVM has
more overhead when managing disk I/O than Docker, as observed in previous compar-
isons [85].

However, when increasing the distribution of the computation (2, 4, and 8 nodes), the
computation and the disk I/O overhead are also distributed across the nodes, and the net-
working usage is increased because the more resources we have, the more matrix blocks
transfers are required. Hence, the multi-host networking overhead increases and becomes
the most important source of overhead. When using two nodes, the overhead is almost the
same in KVM and Docker cases, while when four and eight nodes KVM performing better
than Docker.

To verify this assumption, we have performed a small network performance experiment.
In the same infrastructure than the previous tests, we have transferred a file of 1.2GB. First,
between two bare-metal nodes, then between two VMs deployed with OpenStack/KVM,
and, finally, between two Docker containers using the overlay network. The results of this
experiment are summarised in Table 5.5, where we can see that the networking overhead in
the Docker overlay network is significantly bigger than other approaches.

Scenario Tranfer Time (s)

Baremetal 6.54
KVM/OpenStack 6.97
Docker Overlay 8.50

TABLE 5.5: Docker networking evaluation.

In the case of the Embarrassingly Parallel benchmark, as shown in Figures 5.16 and 5.17,
all the cases are performing very similarly (overheads are between 1 and 10%). This is be-
cause the overhead introduced by Docker and KVM in terms of CPU and memory manage-
ment is relatively small. The difference is basically due to the multi-host networking used
by the Runtime to send the messages to execute tasks in the workers remotely. The default
overlay network of Docker is performing worse than the bridge network of KVM. The relative

FIGURE 5.16: Scalability evaluation of the Embarrassingly Parallel application
(without data dependencies).

5.6. Evaluation 87

FIGURE 5.17: Overhead evaluation of the Embarrassingly Parallel application
(without data dependencies) with respect to the bare-metal.

overhead increases with the number of nodes used, mainly because the computation time is
reduced due to the increased parallelism available, but the number of transfers required to
run the tasks is still the same because the number of tasks is the same.

5.6.3.3 Adaptation evaluation

To validate how the deployment time influences the adaptation of the application execu-
tion, we have executed the same Matrix Multiplication without any initial worker container

FIGURE 5.18: Deployment time effect in the Matrix Multiplication resource
adaptation.

88 Chapter 5. Computational resources using container techonologies

in order to see how the Runtime adapts the number of resources to the application load with
different deployment times.

Figure 5.18 shows the execution time and the number of VM/Containers created during
the application execution in the Docker cluster and the OpenStack/KVM cloud environ-
ments. In both environments, we have run the same application twice. In the first run, the
images were not stored in the computing nodes so, in both environments, the images had to
be downloaded from the DockerHub or the OpenStack image repository respectively. In the
second run, images were already cached in the computing nodes, so the total deployment
time only considers the deployment and boot times of VMs or containers. In both cases, the
Docker scenario exhibits faster adaptation because the Runtime detects earlier that having
extra resources speeds up the execution since the resources are available earlier for execu-
tion.

5.6.4 Singularity

Similar experiments have been performed to evaluate the integration with Singularity.
In this case, we have not evaluated the adaptation since Singularity is usually combined
with other resource managers or queue systems like SLURM.

5.6.4.1 Deployment evaluation

In the case of container deployment, Table 5.6 shows the time to deploy a Singularity
container in different scenarios, compared with the Docker case.

Singularity Docker

Phase Action
Time (s)

Action
Time (s)

w/o Image Image Cached w/o Images w Ubuntu w COMPSs w App.

Deployment
Image import 79.80 N/A Image import 75.68 63.47 17.35 N/A

Container deployment 0.45 Container deployment 4.75 4.75 4.75 4.75

Total Deployment 80.25 0.45 80.43 68.22 22.10 4.75

TABLE 5.6: Singularity deployment evaluation.

The application image construction phase is the same than the Docker scenarios because
Singularity can import Docker images. However, to run the application in Singularity con-
tainers, the Docker image of the application must be imported and converted to Singularity
as explained in Section 5.5.2.3. This process includes the download of the application im-
age and bootstraps the Docker image in a Singularity image. The main drawback of this
conversion is that Singularity does not cache the previously downloaded layers. Hence, it
can not take advantage of the layered-based feature of the Docker images to reuse the al-
ready cached layers and, every time we need to convert an application image because it is
not in the compute cluster, Singularity has to download all the application image layers. In
contrast, the deployment of a container once the image has been converted is considerably
faster than Docker.

5.6.4.2 Performance evaluation

In this case, we have executed 5 runs of the Matrix Multiplication benchmark in the
MareNostrum 3 supercomputer with Singularity and without it. Figure 5.19 shows the com-
parison of the average execution time in both configurations. Notice that both runs perform
similarly and the overhead at execution time is very low.

5.6. Evaluation 89

FIGURE 5.19: Matrix Multiplication application execution with Singularity.

5.6.4.3 Porting of a real-world application: GUIDANCE

We have ported GUIDANCE [102, 101] to use our prototype in combination with Singu-
larity. GUIDANCE implements a Genome-Wide Association Studies (GWAS) workflow in
Java. In genetics, a Genome-Wide Association Study tries to unveil the correlation between
genomic variants and phenotypes (observable characteristics such as diseases). The com-
plete workflow defines five steps that require 10 state of the art binaries (i.e., SHAPEIT [68],
Eagle [143], Impute [111], Minimac3 [60], snptest [147], PLINK [192], QCTool [147], BCF-
Tools [166], SAMTools [140], and R [198]).

Until now, scientists usually execute this type of workflows step by step. For each step,
they submit a set of jobs which execute the binary that performs an independent partial
analysis of a given data set. Once a step is finished, they execute another step which per-
forms another analysis based on previous results. Moreover, depending on the input data
(e.g., phenotypes, subjects, reference panels, and chromosomes), the workflow performs dif-
ferent computations that have different computational and memory requirements. For in-
stance, the requirements can vary more than one order of magnitude depending on the case;
adding a high degree of heterogeneity to the execution. Also, the of the association phase
differs significantly depending on the number of variants present in each of the chunks;
causing a severe load imbalance when using static scheduling.

The porting of GUIDANCE to our prototype has several benefits. First, the whole ex-
ecution can be orchestrated in a single run; preventing the users from manually defining
several jobs. Second, the resource manager and the scheduler are capable of defining dif-
ferent computational and memory requirements per task while exploiting all the available
resources and mitigating the load imbalance. Third, the use of containers provides a homo-
geneous environment for all the required state of the art tools regardless of the underlying
infrastructure.

Although we cannot provide in-depth details due to confidentiality, the experimenta-
tion has been performed using the MareNostrum 4 supercomputer [149], and following
the same steps than the concept applications described in the previous sections. First, we
have built a Docker image containing GUIDANCE, its dependencies, and our prototype.
Next, we have executed the application using the enqueue_compss command with the
--container_image flag. Our experimentation uses up to 4800 cores (100 nodes), spawn-
ing 93,858 tasks, generating 120,018 files (217.68 Gb), and analyzing 2,860 subjects.

90 Chapter 5. Computational resources using container techonologies

5.6.5 Mesos

5.6.5.1 Deployment evaluation

Since we are using the same image as in the Docker experiments, we have not evaluated
the image construction phase. Moreover, for the deployment phase, we have used the Mesos
default Docker executor to spawn the containers in the slave nodes obtaining the same times,
with no significant overhead compared to the Docker experiments listed in Table 5.4.

5.6.5.2 Performance evaluation

To evaluate the performance of the extensions to support Mesos, we have measured the
execution time of 5 runs of the Matrix Multiplication application using different number of
nodes.

FIGURE 5.20: Mesos scalability evaluation of the Matrix Multiplication (with
data dependencies).

FIGURE 5.21: Mesos overhead evaluation of the Matrix Multiplication (with
data dependencies) with respect to the bare-metal.

Figures 5.20 and 5.21 depict the average execution times and the overhead compared to
the average values of Docker that were presented in the previous section. Notice that the
computation times are higher than in all the previous experiments still providing a good
scalability. Looking at the overhead figure, it can be argued that the overhead is caused by
the heavy usage of the overlay network and of the disk I/O to transfer the blocks of the

5.7. Discussion 91

matrix. In particular, we had to deploy a DC/OS virtual network for Mesosphere that adds
network agents in each node to enable the connections across the containers. Anyway, the
results demonstrate that the Runtime properly adapts the tasks distribution to the availabil-
ity of resources and benefits from the resources abstraction provided by Mesos.

5.7 Discussion

Our methodology integrates the different capabilities of the container platforms with
task-based parallel programming models. The combination of programming models with
container platforms brings several benefits for developers. On the one hand, the COMPSs
programming model provides a straightforward methodology to parallelise applications
from sequential codes and decoupling the application from the underlying computing in-
frastructure. On the other hand, containers provide an efficient image management and
application deployment tools that facilitate the packaging and distribution of applications.
Hence, the integration of both frameworks enables developers to easily port, distribute, and
scale their applications to parallel distributed computing platforms.

The proposed application-containers integration is done considering three scenarios.
First, the static container management focuses on (i) the creation of a Docker image that
includes the application software and the programming model runtime, and (ii) the orches-
tration of the deployment and execution of the application using container resources. Also,
after the creation, the application image is uploaded to the Docker-Hub repository to make
it available to other users. Second, the HPC container management extends the use of con-
tainers to supercomputers with minor modifications from the users’ point of view. Third,
the dynamic container management fully exploits container engines by enabling adaptation
mechanisms. These mechanisms adapt the available container resources during the appli-
cation’s execution to the remaining workload.

We have implemented a prototype of the proposed application-container integration on
top of COMPSs and validated it with four use cases using Docker, Singularity, and Mesos.
Furthermore, for each implementation, we have evaluated how the system behaves in the
application building and deployment phases, as well as the overhead introduced at exe-
cution time in comparison to other alternatives such as bare-metal and KVM/OpenStack
cloud.

The evaluation demonstrates that the application execution with Docker performs sim-
ilarly to bare-metal and KVM for applications with small data dependencies. However,
when using intensive multi-host networking, Docker has a bigger overhead than KVM. On
the other hand, regarding the deployment, we have seen that the time to deploy contain-
ers is reduced significantly compared with VM deployment, thus enabling our prototype to
adapt better the resources to the computational load, creating more containers when a large
parallel region is reached, and destroying containers when a sequential or small parallel
region is reached.

In the Mesos integration case, the experiments show that our prototype keeps the scal-
ability in the execution of the applications but exhibits a bigger overhead than the Docker-
Swarm implementation. Nevertheless, the adoption of Mesos is very convenient because
it makes completely transparent the deployment phase; saving the user to deal with the
intricacies of interacting directly with Docker.

In the case of container platforms for HPC (e.g. Singularity or Shifter), we have extended
the integration of COMPSs with Cluster’s Resource and Queue Managers to support the de-
ployment and execution of containerised applications. The experimentation shows that the
execution overhead is extremely low. Moreover, there are no scability issues in the container
networking because Singularity does not virtualise I/O and uses the host resources directly.

92 Chapter 5. Computational resources using container techonologies

Finally, it is worth pointing that our prototype brings several benefits for application de-
velopers. On the one hand, the COMPSs programming model provides a straightforward
methodology to parallelise applications from sequential codes and decoupling the applica-
tion from the underlying computing infrastructure. On the other hand, containers provide
efficient image management and application deployment tools which facilitate the pack-
aging and distribution of applications. Thus, the integration of both frameworks enables
developers to easily, port, distribute and scale their applications to parallel distributed com-
puting platforms. Furthermore, the application can be shared with other users by facilitating
the identifier of the created application image and the application execution parameters.

As future work, we are going to evaluate experimental alternatives for Docker multi-
host networking [73] to test if our prototype with Docker can perform better than KVM
in all situations. For what relates to the Mesos support, we plan to perform bigger tests
to evaluate the scalability, to test the adaptation capabilities with dynamically added slave
nodes, and to analyse the networking issues to understand the source of overhead.

Furthermore, we plan to support Kubernetes and to enable the orchestration of appli-
cations where each task requires a separated container. This feature will allow the users to
prepare before-hand a different image with only the required software and dependencies
for each task; potentially achieving better deployment times.

93

Chapter 6

Automatic parallelisation

SUMMARY

This chapter of the thesis focuses on solving the research question Q3; enhancing our
prototype to automatically parallelise some sequential code structures and execute them in
distributed environments. Our approach has been designed for non-expert users; mean-
ing that it provides a simple annotation so that users do not need to define tasks nor data
dependencies while still achieving acceptable performances.

Hence, this part of the thesis introduces and evaluates AutoParallel, a Python module
to automatically find an appropriate task-based parallelisation of affine loop nests and ex-
ecute them in parallel in a distributed computing infrastructure. It is based on sequential
programming and contains one single annotation (in the form of a Python decorator) so that
anyone with intermediate-level programming skills can scale up an application to hundreds
of cores.

The evaluation demonstrates that AutoParallel goes one step further in easing the de-
velopment of distributed applications. On the one hand, the programmability evaluation
highlights the benefits of using a single Python decorator instead of manually annotating
each task and its parameters or, even worse, having to develop the parallel code explicitly
(e.g., using OpenMP, MPI). On the other hand, the performance evaluation demonstrates
that AutoParallel is capable of automatically generating task-based workflows from sequen-
tial Python code while achieving the same performances than manually taskified versions
of established state-of-the-art algorithms (i.e., Cholesky, LU, and QR decompositions). Fi-
nally, AutoParallel is also capable of automatically building data blocks to increase the tasks’
granularity; freeing the user from creating the data chunks, and re-designing the algorithm.
For advanced users, we believe that this feature can be useful as a baseline to design blocked
algorithms.

94 Chapter 6. Automatic parallelisation

6.1 General overview

The last improvements in programming languages and models have focused on simplic-
ity and abstraction; leading Python [203] to the top of the list of the programming languages
for non-experts [44]. However, there is still room for improvement when preventing users
from dealing directly with distributed and parallel computing issues. This chapter of the
thesis focuses on solving the research question Q3; describing a methodology and an im-
plementation to distributedly execute automatically parallelised sequential code. Even if
the COMPSs programming model already provides an automatic taskification of the user
code (via an interface or a method annotation), we go one step further with AutoParallel:
a Python module to automatically parallelise applications and execute them in distributed
environments. Our philosophy is to ease the development of parallel and distributed appli-
cations so that anyone with intermediate-level programming skills can scale up an applica-
tion to hundreds of cores. In this sense, AutoParallel is based on sequential programming
and only requires a single Python decorator that frees the user from manually taskifying
the original code. Internally, it relies on PLUTO (see Section 6.3) to parallelise affine loop
nests and to taskify the obtained code so that PyCOMPSs can distributedly execute it using
any underlying infrastructure (clusters, clouds, and containers). Moreover, to avoid sin-
gle instruction tasks, AutoParallel can also increase the tasks’ granularity by automatically
building data blocks (chunks).

Notice that the automatic parallelisation focuses intermediate-level users and thus, it has
been designed to achieve a best-effort parallelisation. Readers must consider that, although
experts could achieve higher performances, we are looking for a general purpose manner to
parallelise the user code automatically.

6.2 Related work

Nowadays, simulations are run in distributed environments and, although Python has
become a reference programming language, there is still much work to do to ease paral-
lel and distributed computing issues. In this concern, Python can provide parallelism at
three levels. First, parallelism can be achieved internally through many libraries such as
NumPy [230] and SciPy [122], which offer vectorised data structures and numerical rou-
tines that automatically map operations on vectors and matrices to the BLAS [38] and LA-
PACK [9] functions; executing the multi-threaded BLAS version (using OpenMP [58] or
TBB [222]) when present in the system. Notice that, although parallelism is completely
transparent for the application user, parallel libraries only benefit from intra-node paral-
lelism, while our solution aims for distributed computing. Moreover, NumPy offers vec-
torised data structures and operations in a transparent way to prevent users from defining
loops to handle NumPy values directly. In contrast, our solution requires a Python decorator
on top of a method containing affine loop nests. Thus, to parallelise a vector operation, the
users must explicitly define the loop nests to apply an operation to all the vector elements.
However, we demonstrate the benefits of combining inter- and intra-node parallelism using
PyCOMPSs [215] and NumPy in [7] and [8]. Similarly, some NumPy extensions can be inte-
grated with PyCOMPSs to boost the intra-node performance. For instance, NumExpr [173]
can be used to optimise the computation of numerical expressions and, as detailed in [194],
the Numba [139, 172] compiler annotations can be combined with the PyCOMPSs program-
ming model.

Secondly, many modules can explicitly provide parallelism. The multiprocessing mod-
ule [181] provides support for the spawning of processes in SMP machines using an API
similar to the threading module, with explicit calls for creating processes. In addition, the

6.3. PLUTO 95

Parallel Python (PP) module [182] provides mechanisms for parallel execution of Python
codes, with an API that includes specific functions for specifying the number of workers to
be used, submitting the jobs for execution, getting the results from the workers, etc. Also,
the mpi4py [59] library provides a binding of MPI for Python which allows the programmer
to handle parallelism both inter-node and intra-node. However, in all cases, the burden of
parallelism specific issues is assigned to the programmer.

Third, other libraries and frameworks enable Python distributed and multi-threaded
computations such as PyCOMPSs [215], Dask [202], PySpark [195], and Pydron [161]. Py-
COMPSs is a task-based programming model that targets sequential programming and pro-
vides a set of decorators to enable the programmer to identify methods as tasks and a small
synchronisation API. Its runtime exploits the inherent parallelism of the applications by
building, at execution time, a data dependency graph of the tasks and executing them using
a distributed parallel platform (clusters, clouds, and containers). On the other hand, Dask
is a native Python library that allows the creation and distributed execution of Directed
Acyclic Graphs (DAG) of a set of operations on NumPy and pandas [152] objects. Also,
PySpark is a binding to the widely extended framework Spark [237]. Finally, Pydron [161]
is a semi-automatic parallelisation Python module that transparently translates the applica-
tion into a data-flow graph which can be distributed across clusters or clouds. It offers a
@schedule decorator to automatically parallelise calls to methods that are annotated with
the @functional decorator. In comparison to PyCOMPSs, Pydron’s @functional deco-
rator is equivalent to PyCOMPSs’ @task decorator. However, Pydron analyses the abstract
syntax tree of the function’s code to build the data dependency graph while PyCOMPSs re-
quires extra parameter annotations inside the @task decorator. Moreover, the @schedule
decorator enables users to activate and deactivate the parallelisation of @functionalmeth-
ods, while PyCOMPSs parallelises any call to a @task method.

6.3 PLUTO

This section introduces PLUTO [187, 39] since it is the key software to extend our proto-
type with automatic parallelisation. We have chosen PLUTO because (i) it provides an ab-
stract representation of loop nests available from any language (which allows our prototype
to handle loop nests from Java, Python and C/C++), and (ii) because it is capable of propos-
ing a parallelisation without actually executing the generated code. Moreover, we had the
opportunity to collaborate with the PLUTO designers and developers for a few months dur-
ing the development of this thesis. However, as stated in the future work, AutoParallel is
designed so that PLUTO can be easily substituted by other tools (such as Apollo [213, 151]).

FIGURE 6.1: PLUTO overview.
Source: PLUTO’s official website [187].

96 Chapter 6. Automatic parallelisation

Many compute-intensive scientific applications spend most of their execution time run-
ning nested loops. The Polyhedral Model [53] provides a powerful mathematical abstraction
to analyse and transform loop nests in which the data access functions and loop bounds are
affine combinations (linear combinations with a constant) of the enclosing loop iterators and
parameters. As shown in Figure 6.1, this model represents the instances of the loop nests’
statements as integer points inside a polyhedron, where inter and intra-statement depen-
dencies are characterised as a dependency polyhedron. Combining this representation with
Linear Algebra and Integer Linear Programming, it is possible to reason about the correct-
ness of a sequence of complex optimising and parallelising loop transformations.

PLUTO [187, 39] is an automatic parallelisation tool based on the Polyhedral Model to
optimise arbitrarily nested loop sequences with affine dependencies. At compile time, it
analyses C source code to optimise and parallelise affine loop-nests and automatically gen-
erate OpenMP C parallel code for multi-cores. Although the tool is fully automatic, many
options are available to tune tile sizes, unroll factors, and outer loop fusion structure.

As shown in Figure 6.2, PLUTO internally translates the source code to an intermediate
OpenScop [35] representation using CLAN [36]. Next, it relies on the Polyhedral Model to
find affine transformations for coarse-grained parallelism, data locality, and efficient tiling.
Finally, PLUTO generates the OpenMP C code from the OpenScop representation using
CLooG [34]. We must highlight that the generated code is also optimised for data locality
and made amenable to auto-vectorisation.

FIGURE 6.2: PLUTO source-to-source transformation.
Source: [40].

6.3.1 Loop tiling

Among many other options, PLUTO can tile code by specifying the --tile option. In
general terms, as shown in Listing 6.1, tiling a loop of given size N results in a division of the
loop in N/T repeatable parts of size T. For instance, this is suitable when fitting loops into
the L1 or L2 caches or, in the context of this thesis, when building the data blocks to increase
the tasks’ granularity.

Along with this option, users can let PLUTO set the tile sizes automatically using a rough
heuristic, or manually define them in a tile.sizes file. This file must contain one tile size
on each line and as many tile sizes as the loop nest depth.

In the context of parallel applications, tile sizes must be fine-tuned for each application
so that they maximise locality while making sure there are enough tiles to keep all cores
busy.

6.4. Architecture 97

1 # Original loop # Tiled loop
2 for i in range(N): for i in range(N/T):
3 print(i) for t in range(T):
4 print(i*T + t)

LISTING 6.1: Tiling example.

6.4 Architecture

Our proposal eases eases the development of distributed applications by letting users
program their application in a standard sequential fashion. It is developed on top of Py-
COMPSs and PLUTO. When automatically parallelising sequential applications, users must
only insert an annotation on top of the potentially parallel functions to activate the AutoPar-
allel module. Next, the application can be launched using PyCOMPSs.

Following a similar approach than PyCOMPSs, we have included a new annotation (the
Python decorator @parallel) to specify which methods should be automatically paral-
lelised at runtime. Notice that, since PLUTO and the Polyhedral Model can only be applied
to affine loops, the functions using this decorator must contain loop nests in which the data
access functions and loop bounds are affine combinations (linear combinations with a con-
stant) of the enclosing loop iterators and parameters. Otherwise, the source code will remain
intact. Table 6.1 shows the valid flags for the decorator.

Flag Default Value Description

pluto_extra_flags None List of flags for the internal PLUTO
command

taskify_loop_level 0 Taskification loop depth (see Sec-
tion 6.4.2)

force_autogen True When set to False, loads a previously
generated code

generate_only False When set to True, only generates the
parallel version of the code

TABLE 6.1: List of flags for the @parallel decorator.

As shown in Figure 6.3, the AutoParallel Module analyses the user code searching for
@parallel annotations. Essentially, when found, the module calls PLUTO to generate its
parallelisation and substitutes the user code by a newly generated code. Once all annota-
tions have been processed, the new tasks are registered into PyCOMPSs, and the execution
continues as a regular PyCOMPSs application (as described in Section 3.1). Finally, when
the application has ended, the generated code is stored in a (_autogen.py) file and the
user code is restored.

98 Chapter 6. Automatic parallelisation

FIGURE 6.3: Overview of the AutoParallel Module.

6.4.1 AutoParallel module

The internals of the AutoParallel module are quite complex (more than 5.000 lines of
code) because it automatically re-writes the python’s AST representation of the user code
at execution time, while interacting with C/C++ libraries in an intermediate format (Open-
Scop). This section only provides a first approach to AutoParallel by detailing its five main
components. Complete code and documentation can be found in [193].

• Decorator Implements the @parallel decorator to detect functions that the user has
marked as potentially parallel.

• Python To OpenScop Translator For each affine loop nest detected in the user func-
tion, builds a Python Scop object representing it that can be bulked into an OpenScop
format file.

• Paralleliser Returns the Python code resulting from parallelising an OpenScop file.
Since Python does not have any standard regarding parallel annotations, the parallel
loops are annotated using comments with OpenMP syntax.

• Python to PyCOMPSs Translator Converts an annotated Python code into an applica-
tion using PyCOMPSs by inserting the necessary task annotations and data synchro-
nisations. This component can also build data blocks from loop tiles and taskify them
if enabled by the user (see Section 6.4.2 for more details).

• Code Replacer Replaces each loop nest in the initial user code by the auto-gene-
rated code so that PyCOMPSs can execute the code in a distributed computing plat-
form. When the application has finished, it restores the user code and saves the auto-
generated code in a separated file.

Also, for the sake of clarity, Figure 6.4 shows the relationship between the different com-
ponents and their expected inputs and outputs.

6.4. Architecture 99

FIGURE 6.4: AutoParallel Module Internals.

For instance, Listing 6.2 shows the relevant parts of an Embarrassingly Parallel appli-
cation with the main function annotated with the @parallel decorator that contains two
nested loops.

1 # Main Function
2 from pycompss.api.parallel import parallel
3 @parallel()
4 def ep(mat, n_size, m_size, c1, c2):
5 for i in range(n_size):
6 for j in range(m_size):
7 mat[i][j] = compute(mat[i][j], c1, c2)

LISTING 6.2: EP example: user code.

In addition, Listing 6.3 shows the parallelisation proposed by the AutoParallel module.
On the one hand, the automatically generated source code contains the definition of a new
task (S1) that includes the task decorator, annotations for its data dependencies (line 2), and
the function code (line 4). Notice that the function code is automatically generated from the
inner statement in the original loop (line 7 in Listing 6.2).

On the other hand, the generated source code contains the ep function with some modifi-
cations. First, AutoParallel introduces a new set of variables (e.g., lbp, ubp, lbv, ubv) to control
the bounds of each loop. Also, the loop nest is modified following the PLUTO output to call
the automatically generated tasks (line 14) and exploit the inherent parallelism available in

100 Chapter 6. Automatic parallelisation

the original code. For instance, in the example, the loop bounds have been interchanged
(n_size and m_size). Finally, AutoParallel includes a barrier (line 15) used as synchronisation
point at the end of the function code.

1 # [COMPSs Autoparallel] Begin Autogenerated code
2 @task(var2=IN, c1=IN, c2=IN, returns=1)
3 def S1(var2, c1, c2):
4 return compute(var2, c1, c2)
5

6 def ep(mat, n_size, m_size, c1, c2):
7 if m_size >= 1 and n_size >= 1:
8 lbp = 0
9 ubp = m_size - 1

10 for t1 in range(lbp, ubp + 1):
11 lbv = 0
12 ubv = n_size - 1
13 for t2 in range(lbv, ubv + 1):
14 mat[t2][t1]=S1(mat[t2][t1],c1,c2)
15 compss_barrier()
16 # [COMPSs Autoparallel] End Autogenerated code

LISTING 6.3: EP example: auto-generated code.

6.4.2 Taskification of loop tiles

Many compute-intensive scientific applications are not designed as block computations,
and thus, the tasks proposed by the AutoParallel module are single statements. Although
this can be harmless in tiny parallel environments, it leads to poor performance when exe-
cuted using large distributed environments since the tasks’ granularity is not large enough
to surpass the overhead of transferring the task definition, and the input and output data. To
face this issue, we have extended the Python to PyCOMPSs Translator to automatically build
data blocks from loop tiles and taskify them. As shown in Listing 6.4, the users can enable
this behaviour by providing the tile=True option to the @parallel decorator. The tile
sizes are computed automatically by PLUTO but the users can provide an extra file named
tile.sizes in the application’s root directory to fine-tune them.

1 from pycompss.api.parallel import parallel
2 @parallel(tile=True)
3 def ep(mat, n_size, m_size, c1, c2):
4 for i in range(n_size):
5 for j in range(m_size):
6 mat[i][j] = compute(mat[i][j], c1, c2)

LISTING 6.4: EP example: user code with taskification of loop tiles.

Essentially, the taskification of loop tiles means letting PLUTO process the parallel code
by generating tiles, and extract the loop tiles into tasks. As explained in Section 6.4.2, the
tiled loops generated by PLUTO duplicate the depth of the original loop nest while decreas-
ing the number of iterations per loop. Hence, extracting all the tiles and converting them
into tasks maintains the original loop depth, decreases the number of iterations per loop,
and increases the task granularity.

Since tasks may use N-dimensional arrays, the taskification of loop tiles also implies
to create the necessary data blocks (chunks) for each parameter before the task callee. The
automatically generated code builds the data blocks on the main code and passes them to the
tasks using the PyCOMPSs Collection parameter annotation. This annotation ensures that
all the internal objects of the chunks are registered so that all the parameter dependencies

6.4. Architecture 101

are respected. Following with the previous example, Listing 6.5 shows the automatically
generated code with taskification of loop tiles.

1 # [COMPSs Autoparallel] Begin Autogenerated code
2 @task(t2=IN, m_size=IN, t1=IN, n_size=IN, coef1=IN, coef2=IN,
3 mat={Type: COLLECTION_INOUT, Depth: 2})
4 def LT2(t2, m_size, t1, n_size, coef1, coef2, mat):
5 for t3 in range(32*t2, min(m_size, 32*t2 + 32)):
6 lbv = 2*t1
7 ubv = min(n_size - 1, 2*t1 + 1)
8 for t4 in range(lbv, ubv + 1):
9 mat[t4 - 2*t1][t3 - 32*t2] = S1_no_task(mat[t4 - 2*t1][t3 - 32*t2], coef1, coef2)

10

11 def S1_no_task(var2, coef1, coef2):
12 return compute(var2, coef1, coef2)
13

14 def ep(mat, n_size, m_size, coef1, coef2):
15 if m_size >= 1 and n_size >= 1:
16 lbp = 0
17 ubp = int(math.floor(float(n_size - 1)/float(2)))
18 for t1 in range(lbp, ubp + 1):
19 lbp = 0
20 ubp = int(math.floor(float(m_size - 1)/float(32)))
21 for t2 in range(lbp, ubp + 1):
22 lbp = 32 * t2
23 ubp = min(m_size - 1, 32*t2 + 31)
24 # Chunk creation
25 LT2_aux_0 = [[mat[gv0][gv1] for gv1 in ...] for gv0 in ...]
26 # Task call
27 LT2(t2, m_size, t1, n_size, coef1, coef2, LT2_aux_0)
28 compss_barrier()
29 # [COMPSs Autoparallel] End Autogenerated code

LISTING 6.5: EP example: auto-generated code with taskification of loop tiles.

Notice that the generated code with taskification of loop tiles is significantly more com-
plex. In the example, the original loop nest has depth 2, the tile size for the t1 loop is set
to 2, and the tile size for the t2 loop is set to 32. Also, readers may identify the t3 loop as
the tile of t2 loop, and the t4 loop as the tile of the t1 loop (indexes have been swapped
automatically due to data locality).

Regarding the tasks, LT2 contains a loop nest of depth 2 with 2 iterations for the t4
loop, and 32 iterations for the t3 loop. Furthermore, each N-dimensional array used as a
parameter is annotated as a Collection with its direction (IN or INOUT) and depth (number
of dimensions). In the example, mat is annotated as a COLLECTION_INOUT of depth 2.
Moreover, inside the task code, the array accesses are modified accordingly to the received
data chunks.

Regarding the main code, the original loops are modified considering the tiles’ decou-
pling. In the example, the number of iterations of the t1 loop is divided by 2, and the
number of iterations of the t2 loop is divided by 32. Furthermore, the data chunks are built
before the task callee by only copying the original object references. In the example, we
build the LT2_aux_0 chunk from mat and update the callee parameters accordingly. Fi-
nally, similarly to the previous cases, the end of the main code also includes a barrier as a
synchronisation point.

6.4.3 Python extension for CLooG

As described in Section 6.3, PLUTO operates internally with the OpenScop format. It
relies on Clan to translate input code from C/C++ or Fortran to OpenScop, and on CLooG
to translate output code from OpenScop to C/C++ or Fortran.

102 Chapter 6. Automatic parallelisation

Since we are targeting Python code, a translation from Python to OpenScop is required
before calling PLUTO, and another translation from OpenScop to Python is required at the
end. Regarding the input, we have developed the Python To OpenScop Translator component
inside AutoParallel to manually translate the code because Clan is not adapted for sup-
porting additional languages and PLUTO accepts OpenScop codes as input. Regarding the
output, we have extended CLooG so that the written code is directly in Python. Hence, we
have extended the language options and modified the Pretty Printer in order to translate ev-
ery OpenScop statement into its equivalent Python format. Since Python does not have any
standard regarding parallel annotations, the parallel loops are annotated with comments in
OpenMP syntax.

6.5 Programmability evaluation

Considering an idealistic environment, the developer’s productivity can be expressed
as the relation between the effort to write the code of the application and the performance
obtained by such code. We are aware that many other factors such as the physical working
environment, adequate development frameworks and tools, meeting times, code reviews,
burndowns, etc. can affect the developer’s productivity, but we only consider elements di-
rectly related with the code. Furthermore, these terms can be considered constants or even-
tualities when comparing the productivity difference for the same developer when using (or
not) the AutoParallel module.

In this section, we demonstrate that our approach improves the developer’s productivity
significantly by easing the coding of the application. On the other hand, next sections (Sec-
tion 6.6 and 6.7) focus on evaluating and comparing the performance of the automatically
generated codes. Hence, the application presented in this section highlights the benefits
at the programming model level of using AutoParallel without focusing on performance.
Also, we consider an application that calculates the centre of mass of a given system but the
outcomes can be applied to any application containing affine loop nests.

6.5.1 Centre of Mass

The following application calculates the centre of mass of a given system. The system
itself is composed of objects that are composed of parts in a certain position of the space. Also,
each part has a predefined mass. Equations 6.1 describe how to compute the centre of mass
of the system (CM) by first calculating the centre of mass and the aggregated mass of each
object and, next, computing the centre of mass of the whole system.

massobj =

num_parts∑
j=0

massj , cmobj =

∑num_parts
j=0 massobj,j · positionj∑num_parts

j=0 massj

CM =

∑num_objs
i=0 massi · cmi∑num_objs

i=0 massi

(6.1)

Listing 6.6 provides the sequential code to calculate the centre of mass following Equa-
tion 6.1. The first loop nest (lines 9 to 21 in the figure) calculates the numerator and the
denominator of cmobj so that the second loop nest (lines 28 to 33) can compute the centre
of mass of each object in the system. Then, the third loop nest (lines 36 to 37) computes the
centre of mass of the whole system.

Given the sequential code, the users can add the @parallel decorator to automatically
taskify and run the application in a distributed environment. Listing 6.7 shows that the

6.5. Programmability evaluation 103

1 def calculate_cm(num_objs, num_parts, num_dims, objs, masses):
2 import numpy as np
3

4 # Initialize object results
5 objs_cms = [[np.float(0) for _ in range(num_dims)] for _ in range(num_objs)]
6 objs_mass = [np.float(0) for _ in range(num_objs)]
7

8 # Calculate CM and mass of every object
9 for obj_i in range(num_objs):

10 # Calculate object mass and cm position
11 for part_i in range(num_parts):
12 # Update total object mass
13 objs_mass[obj_i] += masses[objs[obj_i][part_i][0]]
14 # Update total object mass position
15 for dim in range(num_dims):
16 objs_cms[obj_i][dim] += masses[objs[obj_i][part_i][0]]
17 * objs[obj_i][part_i][1][dim]
18 # Store final object CM and mass
19 for dim in range(num_dims):
20 objs_cms[obj_i][dim] /= objs_mass[obj_i] if objs_mass[obj_i] != np.float(0)
21 else np.float(0)
22

23 # Initialize system results
24 system_mass = np.float(0)
25 system_cm = [np.float(0) for _ in range(num_dims)]
26

27 # Calculate system CM for every object
28 for obj_i in range(num_objs):
29 # Update total mass
30 system_mass += objs_mass[obj_i]
31 # Update system mass position
32 for dim in range(num_dims):
33 system_cm[dim] += objs_mass[obj_i] * objs_cms[obj_i][dim]
34

35 # Calculate system CM
36 for dim in range(num_dims):
37 system_cm[dim] /= system_mass if system_mass != np.float(0) else np.float(0)
38

39 return system_cm

LISTING 6.6: Centre of mass: sequential code.

1 from pycompss.api.parallel import parallel
2

3 @parallel()
4 def calculate_cm(num_objs, num_parts, num_dims, objs, masses):
5 # Exactly the same code than the original
6 ...
7

8 return system_cm

LISTING 6.7: Centre of mass: AutoParallel annotations.

AutoParallel module can be enabled by just adding 2 lines (the import and the decorator)
on top of the method declaration.

Next, Table 6.2 compares the user code and the automatically generated code in terms of
annotations and loop configuration.

On the one hand, although PyCOMPSs’ annotations are quite simple compared to other
programming models (such as MPI), the automatically generated code contains 6 different
task definitions with 15 parameter annotations. More in-depth, Listing 6.8 details each task
definition, where S1 corresponds to the statement in line 13 of the sequential code (List-
ing 6.6), S2 to line 16, S3 to line 20, S4 to line 30, S5 to line 33, and S6 to line 37. Furthermore,
notice that AutoParallel creates a new task per statement in the original loop nest, even if

104 Chapter 6. Automatic parallelisation

Version
Code Analysis Loops Analysis

Annotations API
Calls

Main Total
Max

DepthMethod Param.
autoparallel (user code) 1 0 0 3 7 3
autoparallel (generated) 6 15 3 14 29 3

TABLE 6.2: Centre of mass: code and loop analysis.

1 from pycompss.api.task import task
2 from pycompss.api.parameter import *
3

4 @task(var2=IN, var1=INOUT)
5 def S1(var2, var1):
6 var1 += var2
7

8 @task(var2=IN, var3=IN, var1=INOUT)
9 def S2(var2, var3, var1):

10 var1 += var2 * var3
11

12 @task(var2=IN, var3=IN, var1=INOUT)
13 def S3(var2, var3, var1):
14 var1 /= var3 if var2 != np.float(0) else np.float(0)
15

16 @task(var1=IN, system_mass=INOUT)
17 def S4(var1, system_mass):
18 system_mass += var1
19

20 @task(var2=IN, var3=IN, var1=INOUT)
21 def S5(var2, var3, var1):
22 var1 += var2 * var3
23

24 @task(system_mass=IN, var1=INOUT)
25 def S6(system_mass, var1):
26 var1 /= system_mass if system_mass != np.float(0) else np.float(0)

LISTING 6.8: Centre of mass: Automatically generated tasks.

the internal operation is the same at the end. Hence, a user manually parallelising and task-
ifying the previous sequential code will obtain a similar solution but using 3 tasks instead
of 6 since S1 and S4, S2 and S5, and S3 and S6 can be unified.

On the other hand, AutoParallel re-writes the loop nests in order to exploit data locality
and perform some optimisations depending on the input values. Hence, the 3 original loop
nests have been split into 14 loop nests containing a total of 29 for loops. However, notice
that the maximum depth (3) is preserved to ensure that the complexity remains the same.
More in-depth, Listing 6.9 shows the automatically generated code, including the task and
data synchronisation calls. Due to space constraints, we only include the generated code
for the second and third loop nests (lines 28 to 33 and 36 to 37 in the sequential code on
Listing 6.6) since the first one is more complex and has been divided into 10 loop nests.

Regarding the second loop nest, S5 computes the nominator of the system’s centre of
mass and S4 the denominator (total mass of the system). Also, AutoParallel has split the
main loop into 3 loops (lines 21, 33, and 37 in Listing 6.9) considering different input values
and iterating in a different way over the loop space to exploit data locality.

Regarding the third loop nest, although AutoParallel has automatically added the lbp
and ubp variables to control the loop bounds, the loop structure is kept the same. Further-
more, the original statement is substituted by a task call to S6.

AutoParallel automatically adds a compss_barrier() to avoid possible data collisions
(lines 42 and 50 in Listing 6.9) after the code corresponding to each original loop nest. Also,

6.5. Programmability evaluation 105

1 from pycompss.api.api import compss_wait_on
2

3 def calculate_cm(num_objs, num_parts, num_dims, objs, masses):
4 import numpy as np
5

6 # Initialize object results
7 objs_cms = [[np.float(0) for _ in range(num_dims)] for _ in range(num_objs)]
8 objs_mass = [np.float(0) for _ in range(num_objs)]
9

10 # Calculate CM and mass of every object
11 ...
12

13 # Calculate system CM for every object
14 system_mass = np.float(0)
15 system_cm = [np.float(0) for _ in range(num_dims)]
16

17 if num_objects >= 1:
18 if num_objects >= 2:
19 lbp = 0
20 ubp = min(num_dims - 1, num_objects - 1)
21 for t1 in range(lbp, ubp + 1):
22 S4(objs_mass[t1], system_mass)
23 S5(objs_mass[0], objs_cms[0][t1], system_cm[t1])
24 lbp = 1
25 ubp = num_objects - 1
26 for t2 in range(1, num_objects - 1 + 1):
27 S5(objs_mass[t2], objs_cms[t2][t1], system_cm[t1])
28 if num_dims >= 1 and num_objects == 1:
29 S4(objs_mass[0], system_mass)
30 S5(objs_mass[0], objs_cms[0][0], system_cm[0])
31 lbp = max(0, num_dims)
32 ubp = num_objects - 1
33 for t1 in range(lbp, ubp + 1):
34 S4(objs_mass[t1], system_mass)
35 lbp = num_objects
36 ubp = num_dims - 1
37 for t1 in range(lbp, ubp + 1):
38 lbp = 0
39 ubp = num_objects - 1
40 for t2 in range(0, num_objects - 1 + 1):
41 S5(objs_mass[t2], objs_cms[t2][t1],system_cm[t1])
42 compss_barrier()
43

44 # Calculate system CM
45 if num_dims >= 1:
46 lbp = 0
47 ubp = num_dims - 1
48 for t1 in range(lbp, ubp + 1):
49 S6(system_mass, system_cm[t1])
50 compss_barrier()
51

52 system_cm = compss_wait_on(system_cm)
53

54 return system_cm

LISTING 6.9: Centre of mass: Automatically generated loop nest.

there is a synchronisation of the system_cm variable (line 52) before the return of the func-
tion so that PyCOMPSs synchronises and transfers its final value.

To conclude, AutoParallel is capable of automatically taskifying a sequential code and
re-order the loop nests to exploit data locality by just adding one single annotation. For the
centre of mass application, AutoParallel frees the users from defining 6 tasks, annotating 15
parameters, building each task call and re-ordering the objects, parts, and dimensions loops to
exploit data locality. Also, notice that PyCOMPSs already provides a simple programming
model compared to many other frameworks such as MPI. In those cases, AutoParallel frees
the users from explicitly defining the code for each process, handling data transfers, and

106 Chapter 6. Automatic parallelisation

synchronising the different processes. Finally, we must highlight that the centre of mass
application is just an example and that the results shown in this section can be extrapolated
to any other application containing affine loop nests.

6.6 Performance evaluation

This section demonstrates that our approach eases the coding of the application using
one single Python decorator on top of sequential code, while obtaining similar performances
than manually parallelised codes. Next subsections evaluate the code complexity and the
performance for established algorithms when using AutoParallel or PyCOMPSs. We evalu-
ate the Cholesky, LU, and QR decompositions in order to demonstrate that AutoParallel is
capable of automatically generating code as efficient as solutions that have been a reference
in state of the art for more than ten years, but requiring much less effort to write them.

It is worth highlighting that AutoParallel is an additional module to generate PyCOMPSs
annotated applications automatically but, at execution time, the generated code acts as a
regular PyCOMPSs application. Hence, the execution performance is strongly related to
the PyCOMPSs performance. This section reports the performance evaluation of several
applications in comparison with their implementations using only PyCOMPSs to evaluate
only the overhead introduced by AutoParallel. Therefore, the performance evaluation of
PyCOMPSs and its Runtime is beyond the scope of this section. For further details, in our
previous work [7] and [8], we analysed in-depth the performance obtained when execut-
ing linear algebra applications when combining PyCOMPSs for inter-node parallelism and
NumPy for intra-node parallelism. Also, in [56], we compared the PyCOMPSs Runtime
against Apache Spark.

6.6.1 Computing infrastructure

The results presented in this section have been obtained using the MareNostrum 4 super-
computer [149] located at the Barcelona Supercomputing Center (BSC). This supercomputer
begun operating at the end of June 2017. Its current peak performance is 11.15 Petaflops, ten
times more than its previous version, MareNostrum 3. The supercomputer is composed by
3456 nodes, each of them with two Intel® Xeon Platinum 8160 (24 cores at 2,1 GHz each). It
has 384.75 TB of main memory, 100Gb Intel®Omni-Path Full-Fat Tree Interconnection, and
14 PB of disk storage.

We have used PyCOMPSs version 2.3.rc1807 (available at [55]), PLUTO version 0.11.4,
CLooG version 0.19.0, and AutoParallel version 0.2 (available at [193]). We have also used
Intel®Python 2.7.13, Intel®MKL 2017, Java OpenJDK 8 131, GCC 7.2.0, and Boost 1.64.0.

All the benchmark codes used for this experimentation are also available at [82].

6.6.2 General description of the applications

In general terms, the matrices are chunked in smaller square matrices (known as blocks)
to distribute the data easily among the available resources so that the square blocks are
the minimum entity to work with [103]. Furthermore, the initialisation is performed in a
distributed way, defining tasks to initialise the matrix blocks. These tasks do not take into
account the nature of the algorithm, and they are scheduled in a round robin manner. For
all the evaluation applications, the execution time measures the application’s computations
and the data transfers required during the execution by the framework, but does not include
the initial transfers of the input data.

Given a fixed matrix size, increasing the number of blocks increases the maximum par-
allelism of the application since blocks are the tasks’ minimum work entities. On the other

6.6. Performance evaluation 107

hand, increasing the block size increases the tasks’ computational load, which, at some
point, will surpass the serialisation and transfer overheads. Hence, the number of blocks
and the block size for each application are a trade-off to fill all the available cores while
maintaining acceptable performance.

For all the evaluated applications, we compare the code written by a PyCOMPSs ex-
pert user (userparallel version) against the sequential code with the @parallel annotation
(autoparallel user code) and the automatically generated code by the AutoParallel module
(autoparallel generated). Furthermore, we provide a figure showing the execution results
for each application. The figure contains two plots where the horizontal axis shows the
number of worker nodes (with 48 cores each) used for each execution, the blue colour is
the userparallel version, and the green colour is the autoparallel. The top plot represents the
mean, maximum, and minimum execution times over 10 runs and the bottom plot repre-
sents the speed-up of each version with respect to the userparallel version running with a
single worker (48 cores).

6.6.3 Cholesky

The Cholesky factorisation can be applied to Hermitian positive-defined matrices. This
decomposition is a particular case of the LU factorisation, obtaining two matrices of the form
U = Lt. Our version of this application applies the right-looking algorithm [37] because it
is more aggressive, meaning that in an early stage of the computation there are blocks of the
solution that are already computed and all the potential parallelism is released as soon as
possible.

Version
Code Analysis Loops Analysis

Annotations API
Calls

Main Total
Max

DepthMethod Param.
userparallel 3 14 0 1 4 3
autoparallel (user code) 1 0 0 1 4 3
autoparallel (generated) 4 11 1 3 9 3

TABLE 6.3: Cholesky: code and loop analysis.

Table 6.3 analyses the userparallel, the autoparallel’s original user code, and the autopar-
allel’s automatically generated code in terms of code and loop configuration. While the
userparallel version requires the definition of three tasks (potrf, solve_triangular, and
gemm) using 14 parameter annotations, the autoparallel’s original code only requires a single
@parallel decorator. On the other hand, the autoparallel’s automatically generated code
includes four tasks; 3 equivalent to the userparallel tasks and an additional one to generate
blocks initialised to zero.

Regarding the loop configuration, the userparallel and the autoparallel’s original code have
the same structure. However, the autoparallel’s automatically generated code has divided the
original loop into three main loops maintaining the maximum loop depth (three).

Figure 6.5 shows the execution results of the Cholesky decomposition over a dense ma-
trix of 65, 536× 65, 536 elements decomposed in 32× 32 blocks with 2, 048× 2, 048 elements
each. As stated in the general description of this section, the top plot represents the exe-
cution time while the bottom plot represents the speed-up with respect to the userparallel
version running with a single worker (48 cores). Also, we have chosen 32 blocks because it
is the minimum amount providing enough parallelism for 192 cores, and bigger block sizes
(e.g., 4, 096× 4, 096) were impossible due to memory constraints. The speed-up of both ver-
sions is limited by the block-size due to the small task granularity, reaching 2 when using
4 workers. Although the userparallel version spawns 6,512 tasks and the autoparallel version
spawns 7,008 tasks, the execution times and the overall performance of both versions are

108 Chapter 6. Automatic parallelisation

 0
 100
 200
 300
 400
 500

Ex
ec

ut
io

n
T

im
e

(s
) UserParallel AutoParallel

 1

 2

 4

1(48) 2(96) 4(192)

S
pe

ed
-u

p
(u

)

FIGURE 6.5: Cholesky: Execution times and speed-up with respect to the user-
parallel version using a single worker (48 cores).

almost the same (the difference is less than 5%). This is due to the fact that the autoparallel
version spawns an extra task per iteration to initialise blocks to zero on the matrix’s lower
triangle that has no impact on the overall computation time.

6.6.4 LU

For the LU decomposition, an approach without pivoting [100] has been the starting
point. However, since this approach might be unstable in general [69], some modifications
have been included to increase the stability of the algorithm while keeping the block division
and avoiding bringing an entire column into a single node.

Version
Code Analysis Loops Analysis

Annotations API
Calls

Main Total
Max

DepthMethod Param.
userparallel 4 13 0 2 6 3
autoparallel (user code) 1 0 0 2 6 3
autoparallel (generated) 12 33 3 4 9 3

TABLE 6.4: LU: code and loop analysis.

Table 6.4 analyses the userparallel, the autoparallel’s original user code, and the autoparal-
lel’s automatically generated code in terms of code and loop configuration. Regarding the
code, the userparallel version requires the definition of 4 tasks (namely multiply, invert_
triangular, dgemm, and custom_lu) along with 13 annotated parameters. In contrast,
the autoparallel’s original user code only requires the @parallel annotation. Also, the au-
toparallel’s automatically generated code generates 12 different task types (along with 33
annotated parameters) because it generates one task type per statement in the original loop,
even if the statement contains the same task call. For instance, the original LU contains four
calls to the invert_triangular function that are detected as different statements and
converted to different task types.

6.6. Performance evaluation 109

Regarding the loop configuration, both the userparallel and the autoparallel’s original user
code have the same structure: 2 loop nests of depth 3. However, the autoparallel’s automati-
cally generated code splits them into 4 main loops of the same depth because it has different
optimisation codes for different variable values.

 0

 200

 400

 600

 800

Ex
ec

ut
io

n
T

im
e

(s
) UserParallel AutoParallel

 1

 2

 4

1(48) 2(96) 4(192)

S
pe

ed
-u

p
(u

)

FIGURE 6.6: LU: Execution times and speed-up with respect to the userparallel
version using a single worker (48 cores).

Figure 6.6 shows the execution results of the LU decomposition with a 49, 152 × 49, 152
dense matrix of 24 × 24 blocks with 2, 048 × 2, 048 elements each. As stated in the general
description of this section, the top plot represents the execution time while the bottom plot
represents the speed-up with respect to the userparallel version running with a single worker
(48 cores). As in the previous example, the overall performance is limited by the block size.
This time the userparallel version slightly outperforms the autoparallel version; achieving,
respectively, a 2.45 and 2.13 speed-up with 4 workers (192 cores).

Regarding the number of tasks, the userparallel version spawns 14,676 tasks while the
autoparallel version spawns 15,227 tasks. This difference is due to the fact that the autoparallel
version initialises distributedly an intermediate zero matrix, while the userparallel initialises
it in the master memory.

Figure 6.7 shows a detailed Paraver trace of both versions running with 4 workers (192
cores) using the same time scale. The userparallel version is shown on top while the au-
toparallel version is shown at the bottom. The autoparallel version (bottom) is more coloured
because it has more tasks, although, as previously explained, they execute the same function
in the end. Notice that the performance degradation of the autoparallel version is due to the
fact that the maximum parallelism is lost before the end of the execution. On the contrary,
the userparallel version maintains the maximum parallelism until the end of the execution.

110 Chapter 6. Automatic parallelisation

FIGURE 6.7: LU: Paraver trace. At the top, the userparallel and, at the bottom,
the autoparallel version.

6.6.5 QR

Unlike traditional QR algorithms that use the Householder transformation, our imple-
mentation uses a method based on Givens rotations [197]. This way, data can be accessed
by blocks instead of columns.

Table 6.5 analyses the userparallel, the autoparallel’s original user code, and the autoparal-
lel’s automatically generated code in terms of code and loop configuration. The QR decom-
position represents one of the most complex use cases in terms of data dependencies; thus,
having more tasks and parameter annotations than the previous applications. While the
userparallel requires 4 tasks (namely qr, dot, little_qr, and multiply_single_block)
along with 19 parameter annotations, the autoparallel’s original user code only requires, as
always, one single @parallel annotation. In contrast, the autoparallel’s automatically gen-
erated code defines 20 tasks along with 60 parameter annotations. As in the LU decompo-
sition, many of these tasks are generated from different statements that perform the same
task call at the end.

Regarding the loop configuration, both the userparallel and theautoparallel’s original user

Version
Code Analysis Loops Analysis

Annotations API
Calls

Main Total
Max

DepthMethod Param.
userparallel 4 19 0 1 6 3
autoparallel (user code) 1 0 0 1 6 3
autoparallel (generated) 20 60 1 2 7 3

TABLE 6.5: QR: code and loop analysis.

6.7. Evaluation of the automatic data blocking 111

code have the same structure: 1 main loop nest with a total of 6 loops and a maximum depth
of 3. However, the autoparallel’s automatically generated code splits the main loop in two
in order to increase the data locality. Notice that no additional complexity is added to the
algorithm since the maximum depth remains 3.

 0

 500

 1000

 1500

Ex
ec

ut
io

n
T

im
e

(s
) UserParallel AutoParallel

 1

 2

 4

1(48) 2(96) 4(192)

S
pe

ed
-u

p
(u

)

FIGURE 6.8: QR: Execution times and speed-up with respect to the userparallel
version using a single worker (48 cores).

Figure 6.8 shows the execution results of the QR decomposition with a 32, 768 × 32, 768
matrix of 16×16 blocks with 2, 048×2, 048 elements each. As stated in the general description
of this section, the top plot represents the execution time while the bottom plot represents the
speed-up with respect to the userparallel version running with a single worker (48 cores). The
autoparallel version spawns 26,304 tasks, and the userparallel version spawns 19,984 tasks. As
in the previous examples, the overall performance is limited by the block size. However,
the userparallel version slightly outperforms the autoparallel version; achieving a 2.37 speed-
up with 4 workers instead of 2.10. The difference is mainly because the autoparallel version
spawns four copy tasks per iteration (copy_reference), while the userparallel version ex-
ecutes this code in the master side copying only the reference of a future object.

6.7 Evaluation of the automatic data blocking

This section evaluates the capability of automatically generating data blocks (chunks)
from pure sequential code and executing them in a distributed infrastructure. As discussed
next, this approach provides several advantages in terms of code re-organisation and data
blocking; increasing the tasks’ granularity and, thus, the performance of fine-grain applica-
tions.

6.7.1 GEMM

We have implemented a Python version of the General Matrix-Matrix product (GEMM)
from the Polyhedral Benchmark suite [188]. The implementation considers general rectan-
gular matrices with float complex elements and performs C = α · A · B + β · C. In general
terms, the arrays and matrices are implemented as plain NumPy arrays or matrices. This
means that there are no blocks, and thus, the minimum work entity is a single element (a

112 Chapter 6. Automatic parallelisation

float). As in the previous set of experiments, the initialisation is performed in a distributed
way; defining tasks to initialise the matrix elements. Also, the execution time measures
the application’s computations and the data transfers required during the execution by the
framework, but does not include the initial transfers of the input data.

Version
Code Analysis Loops Analysis

Annotations API
Calls

Main Total
Max

DepthMethod Param.
userparallel 2 8 0 1 4 3
autoparallel (user code) 1 0 0 1 4 3
autoparallel FG (generated) 2 8 1 2 5 3
autoparallel LT (generated) 4 21 1 2 5 3

TABLE 6.6: GEMM: code and loop analysis.

Table 6.6 analyses the userparallel, the autoparallel’s original user code, the autoparallel’s
automatically generated code using fine-grain (autoparallel FG), and the autoparallel’s auto-
matically generated code with taskification of loop tiles (autoparallel LT) in terms of code
and loop configuration. As expected, the autoparallel’s original user code only requires the
@parallel annotation. Although the autoparallel FG works with single elements and user-
parallel with blocks, both versions include 2 tasks (namely scale, and multiply) with 8
parameter annotations. On the contrary, the autoparallel LT version defines 4 tasks (the two
original ones and their two loop-tasked versions) with 21 parameter annotations. The orig-
inal tasks are kept because, in configurations that do not use PLUTO’s tiles, it is possible to
find function calls that cannot be loop-taskified. However, in this case, only the loop-tasked
versions are called during the execution.

Regarding the loop structure, both the userparallel and the autoparallel’s original user code
have 1 main loop of maximum depth 3. Also, the two automatically generated codes are ca-
pable of splitting the main loop into two loops for better parallelism: one for the scaling
operations and the other for the multiplications. However, the autoparallel LT code is signif-
icantly more complex (in terms of lines of code, cyclomatic complexity, and n-path) due to
the tiling and chunk creation.

FIGURE 6.9: GEMM: Execution time and slow-down with respect to the
blocked userparallel version using 1 worker (48 cores) and same matrix size.

Figure 6.9 shows the execution results of the GEMM application with one single worker
(48 cores) and with matrices of 8, 16, 32, and 64 elements. To have equivalent executions, the
tile sizes are set to 8 for the autoparallel LT, and the block size is set to 8 for the userparallel.
The left plot shows the execution time of the autoparallel FG (blue) and the autoparallel LT

6.7. Evaluation of the automatic data blocking 113

(green). The right plot shows the slow-down of both versions with respect to the blocked
userparallel version using a single worker (48 cores) and the same matrix size.

The automatic parallelisation without taskification of loop tiles (autoparallel FG) behaves
17.30 and 179.94 times slower than the blocked version (userparallel B) using 8 and 32 el-
ements, respectively. In contrast, the autoparallel LT behaves 10.15 times slower than the
userparallel B when using 32 elements; which improves by 17.73 the performance of the fine-
grain version. This experiment highlights the importance of blocking fine-grain applications
since defining single elements as the minimum task entity leads to tasks with too little com-
putation that cause a massive overhead of task management, object serialisation and, data
transfer inside PyCOMPSs.

Due to this same reason and as shown in the previous Section 6.6, the appropriate block
sizes to obtain reasonable performances should be between 2, 048×2, 048 and 8, 192×8, 192
elements per block. Although AutoParallel can generate codes using bigger tile sizes, Py-
COMPSs suffers from serialisation issues since each element inside the collection is treated
as a separated task parameter. In contrast, the hand-made blocked version (userparallel) se-
rialises all the elements of the block into a single object parameter and thus, can run with
bigger block sizes. We are confident that PyCOMPSs could lower the serialisation overhead
by serialising each element of the collection in parallel or serialising the whole collection
into a single object.

Nonetheless, we believe that the automatic taskification of loop tiles is a good baseline
to obtain blocked algorithms since the only difference between the automatically generated
code with taskification of loop tiles and the hand-made blocked version is the treatment
of data chunks. More specifically, the userparallel version uses single objects per chunk in-
stead of collections of objects. Notice that AutoParallel cannot systematically annotate data
chunks as objects since this is only possible when the data chunks are disjoint because, oth-
erwise, the dependencies of each element inside the blocks need to be treated separately.
However, advanced users can analyse the automatically generated data chunks, determine
if they are disjoint, and use the automatically generated code as a baseline to change the an-
notations of the data chunks from COLLECTION to OBJECT. In this last scenario, advanced
users only require to modify annotation of the data chunks; keeping the main code of the
algorithm and the code of the tasks.

FIGURE 6.10: GEMM with object annotations: Execution time and speed-up
with respect to the blocked userparallel version using 1 worker (48 cores).

114 Chapter 6. Automatic parallelisation

For instance, Figure 6.10 compares the execution results of the userparallel blocked ver-
sion and the autoparallel LT version changing the collection annotations per object annota-
tions when running the GEMM application over a dense matrix of 65, 536×65, 536 elements
decomposed in 32× 32 blocks with 2, 048× 2, 048 elements each. The top plot represents the
execution time while the bottom plot represents the speed-up with respect to the userparallel
blocked version running with a single worker (48 cores). Also, we have chosen 32 blocks
because it is the minimum amount providing enough parallelism for 192 cores, and bigger
block sizes (e.g., 4, 096× 4, 096) were impossible due to memory constraints.

We must highlight that the modified autoparallel LT version outperforms the userparallel
version because it is capable of better exploiting the parallelisation of the scaling operation.
With little modifications regarding the parameter annotations, advanced users can obtain
better blocked algorithms than manually parallelised codes. Hence, we believe that the
automatic taskification of loop tiles is a good baseline to design complex blocked algorithms.

6.8 Discussion

AutoParallel is developed as a core part inside our final prototype. This part of the the-
sis has presented and evaluated AutoParallel, a Python module to automatically parallelise
affine loop nests and execute them on distributed infrastructures. Built on top of PyCOMPSs
and PLUTO, it is based on sequential programming so that anyone can scale up an applica-
tion to hundreds of cores. Instead of manually taskifying a sequential python code, the users
only need to add a @parallel annotation to the methods containing affine loop nests.

The evaluation shows that the codes automatically generated by the AutoParallel mod-
ule for the Cholesky, LU, and QR applications can achieve similar performance than man-
ually parallelised versions without requiring any effort from the programmer. Thus, Au-
toParallel goes one step further in easing the development of distributed applications.

Furthermore, the taskification of loop tiles can be enabled by providing a single decora-
tor argument (tile=True) to automatically build data blocks from loop tiles and increase
the tasks’ granularity. Although the overhead with respect to the hand-made blocked ver-
sion is still far from acceptable, the taskification of loop tiles provides an automatic way
to build data blocks from any application; freeing the users from dealing directly with the
complexity of block algorithms and allowing them to stick to basic sequential programming.
Also, for advanced users, the generated code can be used as a baseline to modify the anno-
tations of the data chunks and obtain the same performance than the hand-made blocked
version when the data chunks are disjoint.

As future work, we believe that the taskification of loop tiles is a good approach for fine-
grain applications provided that the serialisation performance is improved. For instance,
PyCOMPSs could lower the serialisation overhead by serialising each element of the collec-
tion in parallel or by serialising the whole collection into a single object.

Finally, AutoParallel could be integrated with different tools similar to PLUTO to sup-
port a broader scope of loop nests. For instance, Apollo [213, 151] provides automatic, dy-
namic and speculative parallelisation and optimisation of programs’ loop nests of any kind
(for, while or do-while loops). However, its integration would require PyCOMPSs to be
extended with some speculative mechanisms.

115

Chapter 7

Transparent execution of Hybrid
Workflows

SUMMARY

In the past years, e-Science applications have evolved from large-scale simulations exe-
cuted in a single cluster to more complex workflows where these simulations are combined
with High-Performance Data Analytics (HPDA). To implement these workflows, develop-
ers are currently using different patterns; mainly task-based and dataflow (see Chapter 2
for further details). However, since these patterns are usually managed by separated frame-
works, the implementation of these applications requires to combine them; considerably
increasing the effort for learning, deploying, and integrating applications in the different
frameworks.

This chapter of the thesis focuses solving the research question Q4 by proposing a way
to extend task-based management systems to support continuous input and output data to
enable the combination of task-based workflows and dataflows (Hybrid Workflows from
now on) using a single programming model. Hence, developers can build complex Data
Science workflows with different approaches depending on the requirements. To illustrate
the capabilities of Hybrid Workflows, we have built a Distributed Stream Library and a
fully functional prototype extending COMPSs. The library can be easily integrated with
existing task-based frameworks to provide support for dataflows. Also, it provides a ho-
mogeneous, generic, and simple representation of object and file streams in both Java and
Python; enabling complex workflows to handle any data type without dealing directly with
the streaming back-end.

During the evaluation, we introduce four use cases to illustrate the new capabilities of
Hybrid Workflows; measuring the performance benefits when processing data continuously
as it is generated, when removing synchronisation points, when processing external real-
time data, and when combining task-based workflows and dataflows at different levels.
The users identifying these patterns in their workflows may use the presented uses cases
(and their performance improvements) as a reference to update their code and benefit of
the capabilities of Hybrid Workflows. Furthermore, we analyse the scalability in terms of
the number of writers and readers and measure the task analysis, task scheduling, and task
execution times when using objects or streams.

116 Chapter 7. Transparent execution of Hybrid Workflows

7.1 General overview

For many years, large-scale simulations, High-Performance Data Analytics (HPDA), and
simulation workflows have become a must to progress in many scientific areas such as life,
health, and earth sciences. In such a context, there is a need to adapt the High-Performance
infrastructure and frameworks to support the needs and challenges of workflows combining
these technologies [218].

Traditionally, developers have tackled the parallelisation and distributed execution of
these applications following two different strategies. On the one hand, task-based work-
flows orchestrate the execution of several pieces of code (tasks) that process and generate
data values. These tasks have no state and, during its execution, they are isolated from
other tasks; thus, task-based workflows consist of defining the data dependencies among
tasks. On the other hand, dataflows assume that tasks are persistent executions with a state
that continuously receive/produce data values (streams). Through dataflows, developers
describe how the tasks communicate to each other.

Regardless of the workflow type, directed graphs are a useful visualisation and man-
agement tool. Figure 7.1 shows the graph representation of a task-based workflow (left)
and its equivalent dataflow (right). The task dependency graph consists of a producer task
(coloured in pink) and five consumer tasks (coloured in blue) that can run in parallel after
the producer completes. The dataflow graph also has a producer task (coloured in pink),
but one single stateful consumer task (coloured in blue) which processes all the input data
sequentially (unless the developer internally parallelises it). Rather than waiting for the
completion of the producer task to process all its outputs, the consumer task can process the
data as it is generated.

FIGURE 7.1: Equivalent Task-based Worflow and Dataflow.

This chapter of the thesis focuses solving the research question Q4; describing a method-
ology and an implementation to distributedly execute a combination of Task-based Work-
flows and Dataflows. Next sections detail and evaluate the extensions of our prototype
required to support Hybrid Workflows. On the one hand, we extend task-based frame-
works to support continuous input and output data using the same programming model.
This extension enables developers to build complex Data Science pipelines with different
approaches depending on the requirements. The evaluation demonstrates that the use of
Hybrid Workflows has significant performance benefits when identifying some patterns in
task-based workflows; e.g., when processing data continuously as it is generated, when
removing synchronisation points, when processing external real-time data, and when com-
bining task-based workflows and dataflows at different levels. Also, notice that using a
single programming model frees the developers from the burden of deploying, using, and
communicating different frameworks inside the same workflow.

7.2. Related work 117

On the other hand, we present the Distributed Streaming Library that can be easily inte-
grated with existing task-based frameworks to provide support for dataflows. The library
provides a homogeneous, generic, and simple representation of a stream for enabling com-
plex workflows to handle any kind of data without dealing directly with the streaming back-
end. At its current state, the library supports file streams through a custom implementation,
and object streams through Kafka [130].

7.2 Related work

Nowadays, state-of-the-art frameworks typically focus on the execution of either task-
based workflows or dataflows. Thus, next subsections provide a general overview of the
most relevant frameworks for both task-based workflows and dataflows. Furthermore, since
our prototype combines both approaches into a single programming model and allows de-
velopers to build Hybrid Workflows without deploying and managing two different frame-
works, the last subsection details other solutions and compares them with our proposal.

7.2.1 Task-based frameworks

Although all the frameworks handle the tasks and data transfers transparently, there
are two main approaches to define task-based workflows. On the one hand, many frame-
works force developers to explicitly define the application workflow through a recipe file
or a graphical interface. FireWorks [10, 118] defines complex workflows using recipe files
in Python, JSON, or YAML. It focuses on high-throughput applications, such as computa-
tional chemistry and materials science calculations, and provides support arbitrary com-
puting resources (including queue systems), monitoring through a built-in web interface,
failure detection, and dynamic workflow management. Taverna [113, 25] is a suite of tools
to design, monitor, and execute scientific workflows. It provides a graphical user interface
for the composition of workflows that are written in a Simple Conceptual Unified Flow Lan-
guage (Scufl) and executed remotely by the Taverna Server to any underlying infrastructure
(such as supercomputers, Grids or cloud environments). Similarly, Kepler [146, 219] also
provides a graphical user interface to compose workflows by selecting and connecting ana-
lytical components and data sources. Furthermore, workflows can be easily stored, reused,
and shared across the community. Internally, Kepler’s architecture is actor-oriented to al-
low different execution models into the same workflow. Also, Galaxy [5, 90] is a web-based
platform for data analysis focused on accessibility and reproducibility of workflows across
the scientific community. The users define workflows through the web portal and submit
their executions to a Galaxy server containing a full repertoire of tools and reference data.
In an attempt to increase the interoperability between the different systems and to avoid the
duplication of development efforts, Tavaxy [2] integrates Taverna and Galaxy workflows in
a single environment; defining an extensible set of re-usable workflow patterns and sup-
porting cloud capabilities. Although Tavaxy allows the composition of workflows using
Taverna and Galaxy sub-workflows, the resulting workflow does not support streams nor
any dataflow pattern.

On the other hand, other frameworks implicitly build the task dependency graph from
the user code. Some opt for defining a new scripting language to manage the workflow.
These solutions force the users to learn a new language but make a clear differentiation
between the workflow’s management (the script) and the processes or programs to be ex-
ecuted. Nextflow [71, 169] enables scalable and reproducible workflows using software
containers. It provides a fluent DSL to implement and deploy workflows but allows the
adaptation of pipelines written in the most common scripting languages. Swift [232, 221]

118 Chapter 7. Transparent execution of Hybrid Workflows

is a parallel scripting language developed in Java and designed to express and coordinate
parallel invocations of application programs on distributed and parallel computing plat-
forms. Users only define the main application and the input and output parameters of each
program, so that Swift can execute the application in any distributed infrastructure by auto-
matically building the data dependencies.

Other frameworks opt for defining some annotations on top of an already existing lan-
guage. These solutions avoid the users from learning a new language but merge the work-
flow annotations and its execution in the same files. Parsl [184] evolves from Swift and pro-
vides an intuitive way to build implicit workflows by annotating "apps" in Python codes.
In Parsl, the developers annotate Python functions (apps) and Parsl constructs a dynamic,
parallel execution graph derived from the implicit linkage between apps based on shared
input/output data objects. Parsl then executes apps when dependencies are met. Parsl is
resource-independent, that is, the same Parsl script can be executed on a laptop, cluster,
cloud, or supercomputer. Dask [202] is a library for parallel computing in Python. Dask
follows a task-based approach being able to take into account the data-dependencies be-
tween the tasks and exploiting the inherent concurrency. Dask has been designed for com-
putation and interactive data science and integration with Jupyter notebooks. It is built on
the dataframe data-structure that offers interfaces to NumPy, Pandas, and Python iterators.
Dask supports implicit, simple, task-graphs previously defined by the system (Dask Array
or Dask Bag) and, for more complex graphs, the programmer can rely in the delayed an-
notation that supports the asynchronous executions of tasks by building the corresponding
task-graph. COMPSs [32, 144, 54] is a task-based programming model for the development
of workflows/applications to be executed in distributed programming platforms. The task-
dependency graph (or workflow) is generated at execution time and depends on the input
data and the dynamic execution of the application. Thus, compared with other workflow
systems that are based on the static drawing of the workflow, COMPSs offers a tool for
building dynamic workflows, with all the flexibility and expressivity of the programming
language.

7.2.2 Dataflow frameworks

Stream processing has become an increasingly prevalent solution to process social me-
dia and sensor devices data. On the one hand, many frameworks have been created explic-
itly to face this problem. Apache Flink [16] is streaming dataflow engine to perform state-
ful computations over data streams (i.e., event-driven applications, streaming pipelines or
stream analytics). It provides exactly-once processing, high throughput, automated memory
management, and advanced streaming capabilities (such as windowing). Flink users build
dataflows that start with one or more input streams (sources), perform arbitrary transfor-
mations, and end in one or more outputs (sinks). Apache Samza [24] allows building state-
ful applications for event processing or real-time analytics. Its differential point is to offer
built-in support to process and transform data from many sources, including Apache Kafka,
AWS Kinesis, Azure EventHubs, ElasticSearch, and HDFS. Samza users define a stream ap-
plication that processes messages from a set of input streams, transforms them by chaining
multiple operators, and emits the results to output streams or stores. Also, Samza sup-
ports at-least-once processing, guaranteeing no data-loss even in case of failures. Apache
Storm [225] a is distributed real-time computation system based on the master-worker ar-
chitecture and used in real-time analytics, online machine learning, continuous computa-
tion, and distributed RPC, between others. Storm users define topologies that consume
streams of data (spouts) and process those streams in arbitrarily complex ways (bolts), re-
partitioning the streams between each stage of the computation however needed. Although
Storm natively provides at-least-once processing, it also supports exactly-once processing

7.3. Kafka 119

via its high-level API called Trident. Twitter Heron [135] is a real-time, fault-tolerant stream
processing engine. Heron was built as the Storm’s successor, meaning that the topology con-
cepts (spouts and bolts) are the same and has a compatible API with Storm. However, Heron
provides better resource isolation, new scheduler features (such as on-demand resources),
better throughput, and lower latency.

7.2.3 Hybrid frameworks

Apache Spark [237] is a general framework for big data processing that was originally
designed to overcome the limitations of MapReduce [64]. Among the many built-in mod-
ules, Spark Streaming [236] is an extension of the Spark core to evolve from batch processing
to continuous processing by emulating streaming via micro-batching. It ingests input data
streams from many sources (e.g., Kafka, Flume, Kinesis, ZeroMQ) and divides them into
batches that are then processed by the Spark engine; allowing to combine streaming with
batch queries. Internally, the continuous stream of data is represented as a sequence of RDDs
in a high-level abstraction called Discretized Stream (DStream).

Notice that Spark is based on high-level operators (operators on RDDs) that are inter-
nally represented as a DAG; limiting the patterns of the applications. In contrast, our ap-
proach is based on sequential programming, which allows the developer to build any kind
of application. Furthermore, micro-batching requires a predefined threshold or frequency
before any processing occurs; which can be "real-time" enough for many applications, but
may lead to failures when micro-batching is simply not fast enough. In contrast, our solution
uses a dedicated streaming engine to handle dataflows; relying on streaming technologies
rather than micro-batching and ensuring that the data is processed as soon as it is available.

On the other hand, other solutions combine existing frameworks to support Hybrid
Workflows. Asterism [86] is a hybrid framework combining dispel4py and Pegasus at
different levels to run data-intensive stream-based applications across platforms on hetero-
geneous systems. The main idea is to represent the different parts of a complex application
as dispel4py workflows which are, then, orchestrated by Pegasus as tasks. While the
stream-based execution is managed by dispel4py, the data movement between the dif-
ferent execution platforms and the workflow engine (submit host) is managed by Pegasus.
Notice that Asterism can only handle dataflows inside task-based workflows (dispel4py
workflows represented as Pegasus’ tasks), while our proposal is capable of orchestrating
nested task-flows, nested dataflows, dataflows inside task-based workflows, and task-based
workflows inside dataflows.

7.3 Kafka

This section reviews the essential Kafka [130][20] features because it illustrates the strea-
ming models, and it is the starting point of our implementation for object streams. However,
as explained in the next sections, we highlight that our interface is designed for any backend
and that Kafka is only used as a streaming model example for the experimentation.

Kafka [130][20] is a streaming platform that runs as a cluster to store streams of records in
topics. Built on top of ZooKeeper [26], it is used to publish and subscribe streams of records
(similarly to message queueing), store streams of records in a fault-tolerant manner, and
process streams of records as they occur. Furthermore, its main focus is real-time streaming
applications and data pipelines.

Figure 7.2 illustrates the basic concepts in Kafka and how they relate to each other.
Records – each blue box in the figure – are key-value pairs containing application-level infor-
mation registered along with its publication time.

120 Chapter 7. Transparent execution of Hybrid Workflows

FIGURE 7.2: Description of Kafka’s basic concepts.

Kafka users define several categories or topics to which records belong. Kafka stores
each topic as a partitioned log with an arbitrary number of partitions and maintains a
configurable number of partition replicas across the cluster to provide fault tolerance and
record-access parallelism. Each partition contains an immutable, publication-time-ordered
sequence of records each uniquely identified by a sequential id number known as the offset
of the record. The example in the figure defines two topics (Topic A and Topic B) with 2 and
3 partitions, respectively.

Finally, Producers and Consumers are third-party application components that interact
with Kafka to publish and retrieve data. The former add new records to the topics of their
choice, while the latter subscribe to one or more topics for receiving records related to them.
Consumers can join in Consumer groups. Kafka ensures that each record published to a topic
is delivered to at least one consumer instance within each subscribing group; thus, mul-
tiple processes on remote machines can share the processing of the records of that topic.
Although most often delivered exactly once, records might duplicate when one consumer
crashes without a clean shutdown and another consumer within the same group takes over
its partitions.

Back to the example in the figure, Producer A publishes one record to Topic A, and Producer
B publishes two records, one to Topic A and one to Topic B. Consumer A, with a group of its
own, processes all the records in Topic A and Topic B. Since Consumer B and Consumer C
belong to the same consumer group, they share the processing of all the records from Topic
B.

Besides the Consumer and Producer API, Kafka also provides the Stream Processor and
Connector APIs. The former, usually used in the intermediate steps of the fluent stream
processing, allows application components to consume an input stream from one or more
topics and produce an output stream to one or more topics. The latter is used for connecting

7.4. Architecture 121

producers and consumers to already existing applications or data systems. For instance, a
connector to a database might capture every change to a table.

7.4 Architecture

Figure 7.3 depicts a general overview of the proposed solution. When executing regular
task-based workflows, the application written following the programming model interacts
with the runtime to spawn the remote execution of tasks and retrieve the desired results.
Our proposal includes a representation of a stream (DistroStream Interface) that provides ap-
plications with homogeneous stream accesses regardless of the stream backend supporting
them. Moreover, we extend the programming model and runtime to provide task annota-
tions and scheduling capabilities for streams.

FIGURE 7.3: General architecture.

The following subsections discuss the architecture of the proposed solution in a bottom-
up approach, starting from the representation of a stream (DistroStream API) and its imple-
mentations. Next, we describe the Distributed Stream Library and its internal components.
Finally, we detail the integration of this library with the programming model (COMPSs)
and the necessary extensions of its runtime system.

7.4.1 Distributed Stream interface

The Distributed Stream is a representation of a stream used by applications to publish
and receive data values. Its interface provides a common API to guarantee homogeneity on
all interactions with streams.

As shown in Listing 7.1, the DistroStream interface provides a publish method for
submitting a single message or a list of messages (lines 5 and 6) and a poll method to
retrieve all the currently available unread messages (lines 9 and 10). Notice that the latter has
an optional timeout parameter (in milliseconds) to wait until an element becomes available
or the specified time expires. Moreover, the streams can be created with an optional alias
parameter (line 2) to allow different applications to communicate through them. Also, the
interface provides other methods to query stream metadata; such as the stream type (line
13), id (line 14), or alias (line 15). Finally, the interface includes methods to check the status
of a stream (line 18), and to close it (line 21).

122 Chapter 7. Transparent execution of Hybrid Workflows

1 // INSTANTIATION
2 public DistroStream(String alias) throws RegistrationException;
3

4 // PUBLISH METHODS
5 public abstract void publish(T message) throws BackendException;
6 public abstract void publish(List<T> messages) throws BackendException;
7

8 // POLL METHODS
9 public abstract List<T> poll() throws BackendException;

10 public abstract List<T> poll(long timeout) throws BackendException;
11

12 // METADATA METHODS
13 public StreamType getStreamType();
14 public String getAlias();
15 public String getId();
16

17 // STREAM STATUS
18 public boolean isClosed();
19

20 // CLOSE STREAM
21 public final void close();

LISTING 7.1: Distributed Stream Interface in Java.

Due to space constraints, the figure only shows the Java interface, but our prototype also
provides the equivalent interface in Python.

7.4.2 Distributed Stream implementations

As shown in Figure 7.4, two different implementations of the DistroStream API pro-
vide the specific logic to support object and file streams. Object streams are suitable when
sharing data within the same language or framework. On the other hand, file streams allow
different frameworks and languages to share data. For instance, the files generated by an
MPI simulation in C or Fortran can be received through an stream and processed in a Python
or Java application.

FIGURE 7.4: DistroStream class relationship.

7.4.2.1 Object streams

ObjectDistroStream (ODS) implements the generic DistroStream interface to sup-
port object streams. Each ODS has an associated ODSPublisher and ODSConsumer that
interact appropriately with the software handling the message transmission (streaming back-
end). The ODS instantiates them upon the first invocation of a publish or a poll method

7.4. Architecture 123

respectively. This behaviour guarantees that the same object stream has different publisher
and consumer instances when accessed from different processes, and that the producer and
consumer instances are only registered when required, avoiding unneeded registrations on
the streaming backend.

At its current state, the available implementation is backed by Kafka, but the design is
ready to support many backends. Notice that the ODS, ODSPublisher, and ODSConsumer
are just abstractions to hide the interaction with the underlying backend. Hence, any other
backend (such as an MQTT broker) can be supported without any modification at the work-
flow level by implementing the functionalities defined in these abstractions.

Considering the Kafka concepts introduced in Section 7.3, each ODS becomes a Kafka
topic named after the stream id. When created, the ODSPublisher instantiates a Kafka-
Producer whose publish method builds a new ProducerRecord and submits it to the
corresponding topic via the KafkaProducer.send method. If the publish invocation
sends several messages, the ODSPublisher iteratively performs the publishing process for
each message so that Kafka registers it as separated records.

Likewise, a new KafkaConsumer is instantiated along with an ODSConsumer. Then,
the KafkaConsumer is registered to a consumer group shared by all the consumers of the
same application to avoid replicated messages, and subscribed to the topic named after
the id of the stream. Hence, the poll method retrieves a list of ConsumerRecords and
deserialises their values. To ensure that records are processed exactly-once, consumers also
interact with Kafka’s AdminClient to delete all the processed records from the database.

1 // PRODUCER
2 void produce(List<T> objs) {
3 // Create stream (alias is not mandatory)
4 String alias = "myStream";
5 ObjectDistroStream<T> ods = new ObjectDistroStream<>(alias);
6 // Metadata getters
7 System.out.println("Stream Id: " + ods.getId());
8 System.out.println("Stream Alias: " + ods.getAlias());
9 System.out.println("Stream Type: " + ods.getStreamType());

10 // Publish (single element or list)
11 for (T obj : objs) {
12 ods.publish(obj);
13 }
14 ods.publish(objs);
15 // Close stream
16 ods.close()
17 }
18

19 // CONSUMER
20 void consume(ObjectDistroStream<T> ods) {
21 // Poll current elements (without timeout)
22 if (!ods.isClosed()) {
23 List<T> newElems = ods.poll();
24 }
25 // Poll until stream is closed (with timeout)
26 while (!ods.isClosed()) {
27 List<T> newElems = ods.poll(5)
28 }
29 }

LISTING 7.2: Object Streams (ODS) example in Java.

Listing 7.2 shows an example using object streams in Java. Notice that the stream cre-
ation (line 5) forces all the stream objects to be of the same type T. Internally, the stream
serialises and deserialises the objects so that the application can publish and poll elements
of type T directly to/from the stream. As previously explained, the example also shows the
usage of the publish method for a single element (line 12) or a list of elements (line 14),

124 Chapter 7. Transparent execution of Hybrid Workflows

the poll method with the optional timeout parameter (lines 23 and 27, respectively), and
the common API calls to close the stream (line 16), check its status (line 22), and retrieve
metadata information (lines 7 to 9).

Due to space constraints, the example only shows the ODS usage in Java, but our proto-
type provides an equivalent implementation in Python.

7.4.2.2 File streams

The FileDistroStream implementation (FDS) backs the DistroStream up to sup-
port the streaming of files. Like ODS, its design allows using different backends; however,
at its current state, it uses a custom implementation that monitors the creation of files inside
a given directory. The Directory Monitor backend sends the file locations through the stream
and relies on a distributed file system to share the file content. Thus, the monitored directory
must be available to every client on the same path.

1 // PRODUCER
2 void produce(String baseDir, List<String> fileNames) throws IOException {
3 // Create stream (alias is not mandatory)
4 String alias = "myStream";
5 FileDistroStream<T> fds = new FileDistroStream<>(alias, baseDir);
6 // Publish files (no need to explicitly call the publish
7 // method, the baseDir directory is automatically monitored)
8 for (String fileName : fileNames) {
9 String filePath = baseDir + fileName;

10 try (BufferedWriter writer = new BufferedWriter(new FileWriter(filePath))) {
11 writer.write(...);
12 }
13 }
14 // Close stream
15 fds.close()
16 }
17

18 // CONSUMER
19 void consume(FileDistroStream<T> fds) {
20 // Poll current elements (without timeout)
21 if (!fds.isClosed()) {
22 List<String> newFiles = fds.poll();
23 }
24 // Poll until stream is closed (with timeout)
25 while (!fds.isClosed()) {
26 List<String> newFiles = fds.poll(5)
27 }
28 }

LISTING 7.3: File Streams (FDS) example in Java.

Listing 7.3 shows an example using file streams in Java. Notice that the FDS instantiation
(line 5 in the listing) requires a base directory to monitor the creation of files and that it
optionally accepts an alias argument to retrieve the content of an already existing stream.
Also, files are not explicitly published on the stream since the base directory is automatically
monitored (lines 8 to 13). Instead, regular methods to write files are used. However, the
consumer must explicitly call the poll method to retrieve a list of the newly available file
paths in the stream (lines 22 and 26). As with ODS, applications can also use the common
API calls to close the stream (line 15), check its status (lines 21 and 25), and retrieve metadata
information.

Due to space constraints, the example only shows the FDS usage in Java, but our proto-
type provides an equivalent implementation in Python.

7.4. Architecture 125

7.4.3 Distributed Stream Library

The Distributed Stream Library (DistroStreamLib) handles the stream objects and
provides three major components. First, the DistroStream API and implementations de-
scribed in the previous sections.

Second, the library provides the DistroStream Client that must be available for each ap-
plication process. The client is used to forward any stream metadata request to the Dis-
troStream Server or any stream data access to the suitable stream backend (i.e., Directory
Monitor, or Kafka). To avoid repeated queries to the server, the client stores the retrieved
metadata in a cache-like fashion. Either the Server or the backend can invalidate the cached
values.

Third, the library provides the DistroStream Server process that is unique for all the ap-
plications sharing the stream set. The server maintains a registry of active streams, con-
sumers, and producers with the purpose of coordinating any stream data or metadata ac-
cess. Among other responsibilities, it is in charge of assigning unique ids to new streams,
checking the access permissions of producers and consumers when requesting publish
and poll operations, and notifying all registered consumers when the stream has been
completely closed and there are no producers remaining.

FIGURE 7.5: Sequence diagram of the Distributed Stream Library compo-
nents.

Figure 7.5 contains a sequence diagram that illustrates the interaction of the different Dis-
tributed Stream Library components when serving a user petition. The DistroStream imple-
mentation used by the applications always forwards the requests to the DistroStream Client
available on the process. The client communicates with the DistroStream Server for control
purposes, and retrieves from the backend the real data.

126 Chapter 7. Transparent execution of Hybrid Workflows

7.4.4 Programming model extensions

As already mentioned in Section 3.1, the prototype to evaluate Hybrid Workflows is
based on the COMPSs workflow manager. At programming-model level, we have extended
the COMPSs Parameter Annotation to include a new STREAM type.

As shown in Listing 7.4, on the one hand, the users declare producer tasks (methods that
write data into a stream) by adding a parameter of type STREAM and direction OUT (lines
3 to 7 in the listing). On the other hand, the users declare consumer tasks (methods that read
data from a stream) by adding a parameter of type STREAM and direction IN (lines 9 to 13
in the listing). In the current design, we have not considered INOUT streams because we do
not imagine a use case where the same method writes data into its own stream. However, it
can be easily extended to support such behaviour when required.

1 public interface Itf {
2

3 @Method(declaringClass = "Producer")
4 Integer sendMessages(
5 @Parameter(type = Type.STREAM, direction = Direction.OUT)
6 DistroStream stream
7);
8

9 @Method(declaringClass = "Consumer")
10 Result receiveMessages(
11 @Parameter(type = Type.STREAM, direction = Direction.IN)
12 DistroStream stream
13);
14 }

LISTING 7.4: Stream parameter annotation example in Java.

Furthermore, we want to highlight that this new annotation allows integrating streams
smoothly with any other previous annotation. For instance, Listing 7.5 shows a single pro-
ducer task that uses two parameters: a stream parameter typical of dataflows (lines 5 and 6)
and a file parameter typical of task-based workflows (lines 7 and 8).

1 public interface Itf {
2

3 @Method(declaringClass = "Producer")
4 Integer sendMessages(
5 @Parameter(type = Type.STREAM, direction = Direction.OUT)
6 DistroStream stream,
7 @Parameter(type = Type.FILE, direction = Direction.IN)
8 String file
9);

10 }

LISTING 7.5: Example combining stream and file parameters in Java.

7.4.5 Runtime extensions

As depicted in Figure 7.6, COMPSs registers the different tasks from the application’s
main code through the Task Analyser component. Then, it builds a task graph based on the
data dependencies and submits it to the Task Dispatcher. The Task Dispatcher interacts with
the Task Scheduler to schedule the data-free tasks when possible and, eventually, submit
them to execution. The execution step includes the job creation, the transfer of the input
data, the job transfer to the selected resource, the real task execution on the worker, and
the output retrieval from the worker back to the master. If any of these steps fail, COMPSs

7.4. Architecture 127

FIGURE 7.6: Structure of the internal COMPSs components.

provides fault-tolerant mechanisms for partial failures. Also, once the task has finished,
COMPSs stores the monitoring data of the task, synchronises any data required by the ap-
plication, releases the data-dependent tasks so that they can be scheduled, and deletes the
task.

Therefore, the new Stream annotation has forced modifications in the Task Analyser and
Task Scheduler components. More specifically, notice that a stream parameter does not de-
fine a traditional data dependency between a producer and a consumer task since both tasks
can run at the same time. However, there is some information that must be stored so that
the Task Scheduler can correctly handle the available resources and the data locality. In this
sense, when using the same stream object, our prototype prioritises producer tasks over
consumer tasks to avoid wasting resources when a consumer task is waiting for data to be
produced by a non-running producer task. Moreover, the Task Scheduler assumes that the
resources that are running (or have run) producer tasks are the data locations for the stream.
This information is used to schedule the consumer tasks accordingly and minimise as much
as possible the data transfers between nodes.

FIGURE 7.7: COMPSs and Distributed Stream Library deployment.

Regarding the components’ deployment, as shown in Figure 7.7, the COMPSs master

128 Chapter 7. Transparent execution of Hybrid Workflows

spawns the DistroStream Server and the required backend. Furthermore, it includes a Dis-
troStream Client to handle the stream accesses and requests performed on the application’s
main code. On the other hand, the COMPSs workers only spawn a DistroStream Client to
handle the stream accesses and requests performed on the tasks. Notice that the COMPSs
master-worker communication is done through NIO [120], while the DistroStream Server-
Client communication is done through Sockets.

7.5 Use cases

Enabling Hybrid task-based workflows and dataflows into a single programming model
allows users to define new types of complex workflows. We introduce four patterns that
appear in real-world applications so that the users identifying these patterns in their work-
flows can benefit from the new capabilities and performance improvements of Hybrid Work-
flows. Next subsections provide in-depth analysis of each use case.

7.5.1 Use case 1: Continuous data generation

One of the main drawbacks of task-based workflows is waiting for task completion to
process its results. Often, the output data is generated continuously during the task execu-
tion rather than at the end. Hence, enabling data streams allows users to process the data
as it is generated. The following use case is a simplification of a collaboration with the Ar-
gonne National Laboratory for the development of the Decaf application [233]. Decaf is a
hierarchical heterogeneous workflow composed of subworkflows where each level of the
hierarchy uses different programming, execution, and data models.

1 @constraint(computing_units=CORES_SIMULATION)
2 @task(varargs_type=FILE_OUT)
3 def simulation(num_files, *args):
4 ...
5

6 @constraint(computing_units=CORES_PROCESS)
7 @task(input_file=FILE_IN, output_image=FILE_OUT)
8 def process_sim_file(input_file, output_image):
9 ...

10

11 @constraint(computing_units=CORES_MERGE)
12 @task(output_gif=FILE_OUT, varargs_type=FILE_IN)
13 def merge_reduce(output_gif, *args):
14 ...
15

16 def main():
17 # Parse arguments
18 num_sims, num_files, sim_files, output_files, output_gifs = ...
19 # Launch simulations
20 for i in range(num_sims):
21 simulation(num_files, *sim_files[i])
22 # Process generated files
23 for i in range(num_sims):
24 for j in range(num_files):
25 process_sim_file(sim_files[i][j], output_images[i][j])
26 # Launch merge phase
27 for i in range(num_sims):
28 merge_reduce(output_gifs[i], *output_images[i])
29 # Synchronise files
30 for i in range(num_sims):
31 output_gifs[i] = compss_wait_on_file(output_gifs[i])

LISTING 7.6: Simulations’ application in Python without streams.

7.5. Use cases 129

For instance, Listing 7.6 shows the code of a pure task-based application that launches
num_sims simulations (line 21). Each simulation produces output files at different time
steps of the simulation (i.e., an output file every iteration of the simulation). The results of
these simulations are processed separately by the process_sim_file task (line 25) and
merged to a single GIF per simulation (line 28). The example code also includes the task
definitions (lines 1 to 13) and the synchronisation API calls to retrieve the results (line 31).

Figure 7.8 shows the task graph generated by the previous code when running with 2
simulations (num_sims) and 5 files per simulation (num_files). The simulation tasks
are shown in blue, the process_sim_file in white and red, and the merge_reduce in
pink. Notice that the simulations and the processing of the files cannot run in parallel since
the task-based workflow forces the completion of the simulation tasks to begin any of the
processing tasks.

FIGURE 7.8: Task graph of the simulation application without streaming.

On the other hand, Listing 7.7 shows the code of the same application using streams to
retrieve the data from the simulations as it is generated and forwarding it to its processing
tasks. The application initialises the streams (lines 20 to 22), launches num_sims simulations
(line 25), spawns a process task for each received element in each stream (line 34), merges all
the output files into a single GIF per simulation (line 37), and synchronises the final results.
The process_sim_file and merge_reduce task definitions are identical to the previous
example. Conversely, the simulation task definition uses the STREAM_OUT annotation to
indicate that one of the parameters is a stream where the task is going to publish data. Also,
although the simulation, merge, and synchronisation phases are very similar to the pure
task-based workflow, the processing phase is completely different (lines 27 to 34). When us-
ing streams, the main code needs to check the stream status, retrieve its published elements,
and spawn a process_sim_task per element. However, the complexity of the code does
not increase significantly when adding streams to an existing application.

130 Chapter 7. Transparent execution of Hybrid Workflows

1 @constraint(computing_units=CORES_SIMULATION)
2 @task(fds=STREAM_OUT)
3 def simulation(fds, num_files):
4 ...
5

6 @constraint(computing_units=CORES_PROCESS)
7 @task(input_file=FILE_IN, output_image=FILE_OUT)
8 def process_sim_file(input_file, output_image):
9 ...

10

11 @constraint(computing_units=CORES_MERGE)
12 @task(output_gif=FILE_OUT, varargs_type=FILE_IN)
13 def merge_reduce(output_gif, *args):
14 ...
15

16 def main():
17 # Parse arguments
18 num_sims, num_files, output_images, output_gifs = ...
19 # Initialise streams
20 input_streams = [None for _ in range(num_sims)]
21 for i in range(num_sims):
22 input_streams[i] = FileDistroStream(base_dir=stream_dir)
23 # Launch simulations
24 for i in range(num_sims):
25 simulation(input_streams[i], num_files)
26 # Process generated files
27 for i in range(app_args.num_simulations):
28 while not input_streams[i].is_closed():
29 # Process new files
30 new_files = input_streams[i].poll()
31 for input_file in new_files:
32 output_image = input_file + ".out"
33 output_images[i].append(output_image)
34 process_sim_file(input_file, output_image)
35 # Launch merge phase
36 for i in range(app_args.num_simulations):
37 merge_reduce(output_gifs[i], *output_images[i])
38 # Synchronise files
39 for i in range(app_args.num_simulations):
40 output_gifs[i] = compss_wait_on_file(output_gifs[i])

LISTING 7.7: Simulations’ application in Python with streams.

Figure 7.9 shows the task graph generated by the previous code when running with the
same parameters than the pure task-based example (2 simulations and 5 files per simula-
tion). The colour code is also the same than the previous example: the simulation tasks
are shown in blue, the process_sim_file in white and red, and the merge_reduce in
pink. Notice that streams enable the execution of the processing tasks while the simulations
are still running; potentially reducing the total execution time and increasing the resources
utilisation (see Section 7.6.2 for further details).

7.5. Use cases 131

FIGURE 7.9: Task graph of the simulation application with streaming.

7.5.2 Use case 2: Asynchronous data exchange

Streams can also be used to communicate data between tasks without waiting for the
tasks’ completion. This technique can be useful when performing parameter sweep, cross-
validation, or running the same algorithm with different initial points.

FIGURE 7.10: Task graph of the multi-simulations application.

For instance, Figure 7.10 shows three algorithms running simultaneously that exchange
control data at the end of every iteration. Notice that the data exchange at the end of each

132 Chapter 7. Transparent execution of Hybrid Workflows

iteration can be done synchronously by stopping all the simulations, or asynchronously
by sending the updated results and processing the pending messages in the stream (even
though some messages of the actual iteration might be received in the next iteration). Fur-
thermore, each algorithm can run a complete task-based workflow to perform the iteration
calculus obtaining a nested task-based workflow inside a pure dataflow.

7.5.3 Use case 3: External streams

Many applications receive its data continuously from external streams (i.e., IoT sensors)
that are not part of the application itself. Moreover, depending on the workload, the stream
data can be produced by a single task and consumed by many tasks (one to many), produced
by many tasks and consumed by a single task (many to one), or produced by many tasks
and consumed by many tasks (many to many). The Distributed Stream Library supports all
three scenarios transparently, and allows to configure the consumer mode to process the
data at least once, at most once, or exactly once when using many consumers.

FIGURE 7.11: Task graph of the sensor application.

Figure 7.11 shows an external sensor (Stream 1 in the figure) producing data that is fil-
tered simultaneously by 4 tasks (coloured in white). The relevant data is then extracted from
an internal stream (Stream 2) by an intermediate task (task 6, coloured in red), and used to
run a task-based algorithm. The result is a hybrid task-based workflow and dataflow. Also,
the sensor uses a one-to-many stream configured to process the data exactly once, and the

7.5. Use cases 133

filter (coloured in white) tasks use a many-to-one stream to publish data to the extract task
(coloured in red).

7.5.4 Use case 4: Dataflows with nested task-based workflows

Our proposal also allows to combine task-based workflows and dataflows at different
levels; having nested task-based workflows inside a dataflow task or vice-versa. This fea-
ture enables the internal parallelisation of tasks, allowing workflows to scale up and down
resources depending on the workload.

For instance, Figure 7.12 shows a dataflow with two nested task-based workflows. The
application is similar to the previous use case: the task 1 (coloured in pink) produces the
data, task 2 (in white) filters it, task 3 (in blue) extracts and collects the data, and task 4 (in
red) runs a big computation.

Notice that, in the previous use case, the application always has 4 filter tasks. However,
in this scenario, the filter task has a nested task-based workflow that accumulates the re-
ceived data into batches and spawns a new filter task per batch. This technique dynamically
adapts the resource usage to the amount of data received by the input stream. Likewise, the
big computation task also contains a nested task-based workflow. This shows that users can
parallelise some computations internally without modifying the original dataflow.

FIGURE 7.12: Task graph of the hybrid nested application.

134 Chapter 7. Transparent execution of Hybrid Workflows

7.6 Evaluation

This section evaluates the performance of the new features enabled by our prototype
when using data streams against their equivalent implementations using task-based work-
flows. Furthermore, we analyse the stream writer and reader processes’ scalability and load
balancing. Finally, we provide an in-depth analysis of the COMPSs runtime performance
by comparing the task analysis, task scheduling, and task execution times when using pure
task-based workflows or streams.

7.6.1 Experimental setup

The results presented in this section have been obtained using the MareNostrum 4 su-
percomputer [149] located at the Barcelona Supercomputing Center (BSC). Its current peak
performance is 11.15 Petaflops. The supercomputer is composed by 3456 nodes, each of
them with two Intel®Xeon Platinum 8160 (24 cores at 2,1 GHz each). It has 384.75 TB of
main memory, 100Gb Intel®Omni-Path Full-Fat Tree Interconnection, and 14 PB of shared
disk storage managed by the Global Parallel File System.

Regarding the software, we have used DistroStream Library (available at [94]), COMPSs
version 2.5.rc1909 (available at [55]), and Kafka version 2.3.0 (available at [93]). We have also
used Java OpenJDK 8 131, Python 2.7.13, GCC 7.2.0, and Boost 1.64.0.

7.6.2 Gain of processing data continuously

As explained in the first use case in Section 7.5.1, one of the significant advantages when
using data streams is to process data continuously as it is generated. For that purpose,
Figure 7.13 compares the Paraver [183] traces of the original COMPSs execution (pure task-
based workflow) and the execution with streams. Each trace shows the available threads
in the vertical axis and the execution time in the horizontal axis - 36s in both traces. Also,
each colour represents the execution of a task type; corresponding to the colours shown in
the task graphs of the first use case (see Section 7.5.1). The green flags indicate when a sim-
ulation has generated all its output files and has closed its associated writing stream. Both
implementations are written in Python, and the Directory Monitor is set as stream backend.

(a)

(b)

FIGURE 7.13: Paraver traces to illustrate the gain of processing data continu-
ously: (a) Original COMPSs execution, (b) Execution with streams.

In contrast to the original COMPSs execution (a), the one with streams (b) executes the
processing tasks (white and red) while the simulations (blue) are still running; significantly

7.6. Evaluation 135

reducing the total execution time and increasing the resources utilisation. Moreover, the
merge_reduce tasks (pink) are able to begin its execution even before the simulation tasks
are finished, since all the streams have been closed and the process_sim_file tasks have
already finished.

In general terms, the gain of the implementation with streams with respect to the orig-
inal COMPSs implementation is proportional to the number of tasks that can be executed
in parallel while the simulation is active. Therefore, we perform an in-depth analysis of the
trade-off between the generation and process times. It is worth mentioning that we define
the generation time as the time elapsed between the generation of two elements of the sim-
ulation. Hence, the total duration of the simulation is the generation time multiplied by
the number of generated elements. Also, the process time is defined as the time to process a
single element (that is, the duration of the process_sim_file task).

The experiment uses 2 nodes of 48 cores each. Since the COMPSs master reserves 12
cores, there are two available workers with 36 and 48 cores respectively. The simulation is
configured to use 48 cores, leaving for the other tasks 36 cores while it is active and 84 cores
when it is over. Also, the process tasks are configured to use one single core.

FIGURE 7.14: Average execution time and gain of a simulation with increasing
generation time.

Figure 7.14 depicts the average execution time of 5 runs where each simulation gener-
ates 500 elements. The process time is fixed to 60,000 ms, while the generation time between
stream elements varies from 100 ms to 2,000 ms. For short generation times, almost all the
processing tasks are executed when the generation task has already finished, obtaining no
gain with respect to the implementation with objects. For instance, when generating ele-
ments every 100 ms, the simulation takes 50,000 ms in total (500elements · 100ms/element).
Since the process tasks last 60,000 ms, none of them will have finished before the simulation
ends; leading to almost no gain.

When increasing the generation time, more and more tasks can be executed while the
generation is still active; achieving a 23% gain when generating stream elements every
500 ms. However, the gain is limited because the last generated elements are always pro-
cessed when the simulation is over. Therefore, increasing the generation time from 500 ms
to 2,000 ms only raises the gain from 23% to 29%.

On the other hand, Figure 7.15 illustrates the average execution time of 5 runs that gen-
erate 500 process tasks with a fixed generation time of 100 ms and a process time varying
from 5,000 ms up to 60,000 ms. Notice that the total simulation time is 50,000 ms. When

136 Chapter 7. Transparent execution of Hybrid Workflows

FIGURE 7.15: Average execution time and gain of a simulation with increasing
process time.

the processing time is short, many tasks can be executed while the generation is still active;
achieving a maximum 30% gain when the processing time is 5,000ms.

As with the previous case, when the processing time is increased, the number of tasks
that can be executed while the generation is active also decreases and, thus, the gain. Also,
the gain is almost zero when the processing time is big enough (60,000ms) so that none of
the process tasks will have finished before the generation ends.

7.6.3 Gain of removing synchronisations

Many workflows are composed of several iterative computations running simultane-
ously until a certain convergence criterion is met. As described in Section 7.5.2, this tech-
nique is useful when performing parameter sweep, cross-validation, or running the same
algorithm with different initial points.

To this end, each computation requires a phase at the end of each iteration to exchange
information with the rest. When using pure task-based workflows, this phase requires to
stop all the computations at the end of each iteration, retrieve all the states, create a task
to exchange and update all the states, transfer back all the new states, and resume all the
computations to the next iteration. The left task graph of Figure 7.16 shows an example of
such workflows with two iterations of two parallel computations. The first two red tasks
initialise the state of each computation, the pink tasks perform the computation of each
iteration, and the blue tasks retrieve and update the state of each computation.

Conversely, when using Hybrid Workflows, each computation can exchange the infor-
mation at the end of each iteration asynchronously by writing and reading the states to/from
streams. This technique avoids splitting each computation into tasks, stopping and resum-
ing each computation at every iteration, and synchronising all the computations to exchange
data. The right task graph of Figure 7.16 depicts the equivalent Hybrid Workflow of the pre-
vious example. Each computation is run in a single task (white) that performs the state
initialisation, all the iterations, and all the update phases at the end of each iteration.

Using the previous examples, Figure 7.17 evaluates the performance gain of avoiding the
synchronisation and exchange process at the end of each iteration. Hence, the benchmark
executes the pure task-based workflow (blue) and the Hybrid Workflow (green) versions
of the same workflow written in Java and using Kafka as streaming backend. Also, it is

7.6. Evaluation 137

FIGURE 7.16: Parallel iterative computations. Pure task-based workflow and
Hybrid Workflow shown at left and right, respectively.

FIGURE 7.17: Average execution time and gain of a simulation with an in-
creasing number of iterations.

138 Chapter 7. Transparent execution of Hybrid Workflows

composed of two independent computations with a fixed computation per iteration (2,000
ms) and an increasing number of iterations. The results shown are the mean execution times
of 5 runs of each configuration.

Notice that the total gain is influenced by three factors: the removal of the synchronisa-
tion task at the end of each iteration, the cost of transferring the state between the process
and the synchronisation tasks, and, the division of the state’s initialisation and process. Al-
though we have reduced the state of each computation to 24 bytes and used a single worker
machine to minimise the impact of the transfer overhead, the second and third factors be-
come important when running a small number of iterations (below 32), reaching a maximum
gain of 71% when running a single iteration. For a larger number of iterations (over 32), the
removal of the synchronisation becomes the main factor, and the total gain reaches a steady
state with a gain around 50%.

7.6.4 Stream writers and readers scalability and load balance

Our prototype supports N-M streams, meaning that any stream can have an arbitrary
amount of writers and readers. To evaluate the performance and load balance, we have
implemented a Java application that uses a single stream and creates N writer tasks and
M reader tasks. Although our writer and reader tasks use a single core, we spawn each
of them in separated nodes so that the data must be transferred. In more sophisticated use
cases, each task could benefit from an intra-node technology (such as OpenMP) to parallelise
the processing of the stream data.

Figures 7.18 and 7.19 depict the average execution time and the efficiency of 5 runs with
an increasing number of readers, respectively. Each series uses a different number of writ-
ers, also going from 1 to 8. Also, the writers publish 100 elements in total, the size of the
published objects is 24 bytes, and the time to process an element is set to 1,000ms. The effi-
ciency is calculated using the ideal execution time as reference; i.e. the number of elements
multiplied by the time to process an element and divided by the number of readers.

FIGURE 7.18: Average execution time with increasing number of readers and
different number of writers.

7.6. Evaluation 139

FIGURE 7.19: Efficiency with increasing number of readers and different num-
ber of writers.

Since the execution time is mainly due to the processing of the elements in the reader
tasks, when increasing the number of writers, there are no significant differences. However,
for all the cases, increasing the number of readers significantly impacts the execution time,
achieving a 4.84 speed-up with 8 readers. Furthermore, the efficiencies using 1 reader are
close to the ideal (87% on average) because the only overheads are the creation of the ele-
ments, the task spawning, and the data transfers. However, when increasing the number of
readers, the load imbalance significantly affects efficiency; achieving around 50% efficiency
with 8 readers.

FIGURE 7.20: Number of stream elements processed per reader.

It is worth mentioning that the achieved speed-up is lower than the ideal (8) due to load
imbalance. Thus, the elements processed by each reader task are not balanced since elements
are assigned to the first process that requests them. Figure 7.20 illustrates an in-depth study
of the load imbalance when running 1, 2, 4, or 8 readers. Notice that when running with 2
readers, the first reader gets almost 75% of the elements while the second one only processes
25% of the total load. The same pattern is shown when increasing the number of readers;
where half of the tasks perform 70% of the total load. For instance, when running with 4
readers, 2 tasks perform 69% of the work (34.5% each), while the rest only performs 31% of

140 Chapter 7. Transparent execution of Hybrid Workflows

the total load (15.5% each). Similarly, when running with 8 readers, 4 tasks perform 70% of
the total load (17.5% each), while the other four only process 30% (7.5% each).

At its current state, the Distributed Stream Library does not implement any load balance
technique, nor limit the number of elements retrieved by each poll call. As future work,
since the library already stores the processes registered to each stream, it could implement
some policy and send only a subset of the available elements to the requesting process rather
than all of them.

7.6.5 Runtime overhead

To provide a more in-depth analysis of the performance of our prototype, we have com-
pared each step of the task life-cycle when using ObjectParameters (OP from now on) or
ObjectDistroStreams (streams from now on). The following figures evaluate the task
analysis, task scheduling, and task execution average times of 100 tasks using (a) a single
object of increasing size (from 1 MB to 128 MB) or (b) an increasing number of objects (from
1 to 16 objects) of fixed size (8 MB). Both implementations are written in Java and Kafka
is used as the stream backend. Regarding the task definition, notice that the OP imple-
mentation requires an ObjectParameter for each object sent to the task. In contrast, the
streams implementation only requires a single StreamParameter since all the objects are
sent through the stream itself.

7.6. Evaluation 141

Figure 7.21 compares the task analysis results. The task analysis is the time spent by the
runtime to register the task and its parameters into the system. It is worth mentioning that
increasing the object’s size does not affect the analysis time in either the OP nor the streams
implementations. There is, however, a difference around 0.05 ms due to the creation of
internal structures to represent object parameters or stream parameters.

On the other hand, increasing the number of objects directly affects the task analysis
time because the runtime needs to register each task parameter individually. For the OP im-
plementation, each object maps to an extra task parameter, and thus, the task analysis time
slightly increases when increasing the number of objects. Conversely, for the streams imple-
mentation, the stream parameter itself is not modified since we only increase the number
of published objects. Hence, the task analysis time remains constant when increasing the
number of objects.

(a)

(b)

FIGURE 7.21: Task analysis average time for one single parameter with in-
creasing sizes (a) or increasing number of parameters (b).

142 Chapter 7. Transparent execution of Hybrid Workflows

Figure 7.22 compares the task scheduling results. On the one hand, the scheduling time
for both implementations varies from 2.05 ms to 2.20 ms but does not show any clear ten-
dency to increase when increasing the object’s size. On the other hand, when increasing the
number of objects, the scheduling time increases for the OP implementation and remains
constant for the streams implementation. This behaviour is due to the fact that the default
COMPSs scheduler implements data locality and, thus, the scheduling time is proportional
to the number of parameters. Similarly to the previous case, increasing the number of objects
increases the number of task parameters for the OP implementation (increasing its schedul-
ing time), but keeps a single parameter for the streams implementation (maintaining its
scheduling time).

(a)

(b)

FIGURE 7.22: Task scheduling average time for one single parameter with
increasing sizes (a) or increasing number of parameters (b).

7.6. Evaluation 143

Figure 7.23 compares the task execution results. The task execution time covers the trans-
fer of all the task parameters and the task execution itself. Regarding the streams imple-
mentation, the time remains constant around 208 ms regardless of the object’s size and the
number of objects because the measurement only considers the transfer of the stream object
itself and the execution time of the poll method. It is worth mentioning that the actual
transfers of the objects are done by Kafka when invoking the publish method on the main
code, and thus, they are executed in parallel while COMPSs spawns the task in the worker
machine.

(a)

(b)

FIGURE 7.23: Task execution average time for one single parameter with in-
creasing sizes (a) or increasing number of parameters (b).

Conversely, the execution time for the OP implementation increases with both the ob-
ject’s size and the number of objects, since the serialisation and transfer times also increase.
However, the task execution does not need to fetch the objects (the poll method) since all
of them have already been transferred. This trade-off can be observed in the figure, where
the OP implementation performs better than the streams implementation when using task
parameters smaller than 48 MB and performs worse for bigger cases. Notice that only the

144 Chapter 7. Transparent execution of Hybrid Workflows

total objects’ size is relevant since the same behaviour is shown when using a single 48 MB
object or 6 objects of 8 MB each.

Since the real object transfers when using streams are executed during the publish
method and cannot be observed measuring the task execution time, we have also measured
the total execution time of the benchmark for both implementations. Figure 7.24 shows
the total execution time with an increasing number of objects of 8 MB. In contrast to the
previous plot, both implementations have an increasing execution time proportional to the
objects’ size. Also, the streams implementation only outperforms the OP implementation
when using more than 12 objects.

FIGURE 7.24: Total execution time with increasing number of parameters.

To conclude, since there are no major differences regarding the task analysis time nor
the task scheduling time, we can safely assume that the use of streams instead of regular
objects is recommended when the total size of the task parameters exceeds 48 MB and there
are more than 12 objects published to the stream.

7.7 Discussion

This part of the thesis demonstrates that task-based workflows and dataflows can be
integrated into a single programming model to better-cover the needs of the new Data Sci-
ence workflows. Using Hybrid Workflows, developers can build complex pipelines with
different approaches at many levels using a single framework.

The proposed solution relies on the DistroStream concept: a generic API used by applica-
tions to handle stream accesses homogeneously regardless of the software backing it. Two
implementations provide the specific logic to support object and file streams. The first one,
ObjectDistroStream, is built on top of Kafka to enable object streams. The second one, FileDis-
troStream, monitors the creation of files inside a directory, sends the file locations through
the stream, and relies on a distributed file system to share the file content.

The DistroStream API and both implementations are part of the DistroStreamLib, which
also provides the DistroStream Client and the DistroStream Server. While the client acts as a
broker on behalf of the application and interacts with the corresponding backend, the server
manages the streams’ metadata and coordinates the accesses.

By integrating the DistroStreamLib into a task-based Workflow Manager, its program-
ming model can easily support Hybrid Workflows. Our described prototype extends the

7.7. Discussion 145

COMPSs programming model to enable tasks with continuous input and output data by
providing a new annotation for stream parameters. Implementing the handling of such
stream-type values lead to some modifications on the Task Analyser and Task Scheduler
components of the runtime. Using the DistroStreamLib also implied changes at deployment
time since its components need to be spawned along with COMPSs. On the one hand,
the COMPSs master hosts the DistroStream Server, the required stream backend, and a Dis-
troStream Client to handle stream accesses on the application’s main code. On the other
hand, each COMPSs worker contains a DistroStream Client that performs the stream accesses
on tasks. Although the described prototype only builds on COMPSs, it can be used as an
implementation reference for any other existing task-based framework.

This part of the thesis also presents four use cases illustrating the new capabilities that
the users may identify in their workflows to benefit from the use of Hybrid Workflows. On
the one hand, streams can be internal or external to the application and can be used to com-
municate continuous data or control data. On the other hand, streams can be accessed inside
the main code, native tasks (i.e., Java or Python), or non-native tasks (i.e., MPI, binaries, and
nested COMPSs workflows). Furthermore, the Distributed Stream Library supports the one to
many, many to one, and many to many scenarios transparently, and allows to configure the
consumer mode to process the data at least once, at most once, or exactly once when using
many consumers.

The evaluation demonstrates the benefit of processing data continuously as it is gener-
ated; achieving a 30% gain with the right generation and process times and resources. Also,
using streams as control mechanism enabled the removal of synchronisation points when
running several parallel algorithms, leading to a 50% gain when running more than 32 iter-
ations. Finally, an in-depth analysis of the runtime’s performance shows that there are no
major differences regarding the task analysis time nor the task scheduling time when using
streams or object tasks, and that the use of streams is recommended when the total size of
the task parameters exceeds 48 MB using more than 12 objects.

Although the solution is fully functional, some improvements can be made. Regarding
the DistroStream implementations, we plan to extend the FileDistroStream to support shared
disks with different mount-points. On the other hand, we will add new ObjectDistroStream’s
backend implementations (apart from Kafka), so that users can choose between them with-
out changing the application’s code. Similarly, we plan to extend our implementation to
use Persistent Self-Contained Object Storages (such as dataClay [150, 62] or Hecuba [6, 216,
105]). Envisaging that a single DistroStream Server could become a bottleneck when man-
aging several applications involving a large number of cores, we consider replacing the
client-server architecture by a peer-to-peer approach. Finally, by highlighting the benefits
from hybrid flows, we expect to attract real-world applications to elevate our evaluation to
more complex use cases.

147

Part III

Conclusions and future work

149

Chapter 8

Conclusions and future work

8.1 Conclusions

In general terms, this thesis contributes to the adaptation of High-Performance frame-
works to support Data Science workflows. Our prototype is capable of (i) orchestrating dif-
ferent frameworks inside a single programming model, (ii) integrating container platforms
at static and dynamic level, (iii) enabling the automatic task-based parallelisation of affine
loop nests, and (iv) executing Hybrid Workflows (a combination of task-based workflows
and dataflows). Moreover, this thesis eases the development of distributed applications for
intermediate-level users by providing simple annotations and interfaces that abstract the
developers from the parallel and distributed challenges.

Next, we provide a general overview of the conclusions discussed at the end of each
part of the thesis. First, regarding Chapter 4, the @binary, @OmpSs, @MPI, @COMPSs, and
@MultiNode annotations allow to easily orchestrate different frameworks inside a single
programming model. Hence, the users can build complex workflows where some steps
require highly optimised state of the art frameworks. Moreover, these annotations are de-
signed to be easily extended to include new frameworks in the future. This contribution
makes advances in the state of the art since it is the first Task-based workflows with implicit
task definition to support the transparent execution of external binaries, tools, and libraries.
Also, during the evaluation, we have ported the NMMB-MONARCH application in both
Java and Python; demonstrating (in both cases) a huge increase in programmability while
maintaining the same performance.

Second, regarding Chapter 5, we integrate container engines considering three differ-
ent scenarios. On the one hand, the static container management focuses on the creation
of a Docker image (that includes the application software and the programming model
runtime), and the orchestration of the deployment and execution of the application using
container resources. On the other hand, the HPC container management extends the use
of containers to supercomputers with minor modifications from the users’ point of view.
Finally, the dynamic container management fully exploits container engines by enabling
adaptation mechanisms to quickly adapt the available resources to the remaining work-
load during the application’s execution. For each scenario, we have implemented a use
case using Docker, Singularity, or Mesos. Overall, the evaluation demonstrates that all the
container engines keep the application’s execution scalability while significantly reducing
the deployment overhead; thus enabling our prototype to adapt better the resources to the
computational load.

Third, regarding Chapter 6, we have developed AutoParallel as a core part of our pro-
totype to automatically parallelise affine loop nests and execute them in distributed infras-
tructures. Since it is based on sequential programming and only requires a single annotation
(the @parallel Python decorator), anyone with intermediate-level programming skills can
scale up an application to hundreds of cores. More specifically, the evaluation shows that
the codes automatically generated by the AutoParallel module for the Cholesky, LU, and QR

150 Chapter 8. Conclusions and future work

applications can achieve similar performance than manually parallelised versions without
requiring any effort from the programmer. Moreover, the loop taskification automatically
builds data blocks from loop tiles and increase the tasks’ granularity. This is of particular
interest when applied to fine-grain applications (e.g., where the tasks’ granularity is a single
float operation) since it frees the users from dealing directly with the complexity of block
algorithms and allows them to stick to basic sequential programming. Also, for advanced
users, the generated code can be used as a baseline to design complex blocked algorithms.

Finally, regarding Chapter 7, we extend our prototype to support the combination of
task-based workflows and dataflows (Hybrid Workflows) using a single programming mo-
del so that developers can build complex pipelines with different approaches at many lev-
els. This contribution makes advances in the state of the art since Hybrid Workflows are
not supported in similar environments. To this end, we have built the Distributed Stream
Library (DistroStreamLib) that includes: (i) a generic DistroStream API to handle stream ac-
cesses homogeneously regardless of the software backing it, (ii) two implementations to
provide the specific logic to support object and file streams (in both Java and Python), (iii)
the DistroStream Client that acts as a broker on behalf of the application and interacts with the
corresponding backend, and (iv) the DistroStream Server that manages the streams’ metadata
and coordinates the accesses. During the evaluation, we present four use cases illustrating
the new capabilities that the users may identify in their workflows to benefit from the use
of Hybrid Workflows. More specifically, we demonstrate the benefit of processing data con-
tinuously as it is generated, the benefit of using streams as a control mechanism to remove
synchronisation points when running several parallel algorithms, and analyse the runtime’s
performance to recommend the use of streams in terms of the number and size of the task
parameters.

8.2 Future work

Even if this thesis provides a set of mechanisms to adapt High-Performance frameworks
to support Data Science workflows, there is still room for improvement when preventing
users from dealing directly with distributed and parallel computing issues. In this chapter,
we provide a general overview of the future work discussed at the end of each part of the
thesis.

First, regarding Chapter 4, we plan to extend the annotations to support other state-
of-the-art frameworks. For instance, we consider integrating other task-based frameworks
(such as Apache Spark [237]), and frameworks targeting GPUs (such as CUDA [170] and
OpenCL [162]). Also, while working with real-world use cases, we have noticed that many
binaries require specific names for input and output parameters, and to pack or unpack in-
put and output files. Thus, we plan to provide more tools and options for binary parameters.

Second, regarding Chapter 5, although containers provide efficient image management
and application deployment tools that facilitate the packaging and distribution of applica-
tions, the performance on some scenarios can be improved. Thus, we plan to evaluate ex-
perimental alternatives for Docker multi-host networking [73] to test if our prototype with
Docker can perform better than KVM in all situations. Also, regarding Mesos, we plan to
perform bigger tests to evaluate the scalability, the adaptation capabilities with dynamically
added slave nodes, and the networking issues to understand the source of overhead. On
the other hand, we plan to support Kubernetes [134] and to enable the orchestration of ap-
plications where each task requires a separated container. This feature will allow the users
to prepare before-hand a different image with only the required software and dependencies
for each task; potentially achieving better deployment times.

8.2. Future work 151

Third, regarding Chapter 6, although the Loop Taskification provides an automatic way
to create blocks from sequential applications, its performance can be improved. For instance,
PyCOMPSs could lower the serialisation overhead by serialising each element of the collec-
tion in parallel or by serialising the whole collection into a single object. Also, AutoParallel
could be integrated with different tools similar to Pluto to support a broader scope of loop
nests (such as APOLLO [213, 151]).

Finally, regarding Chapter 7, we plan to extend the FileDistroStream to support shared
disks with different mount-points. Also, we will add new ObjectDistroStream’s backend im-
plementations (apart from Kafka), so that users can choose between them without changing
the application’s code. Similarly, we plan to extend our implementation to use Persistent
Self-Contained Object Storages (such as dataClay [150, 62] or Hecuba [6, 216, 105]). On the
other hand, envisaging that a single DistroStream Server could become a bottleneck when
managing several applications involving a large number of cores, we consider replacing the
client-server architecture by a peer-to-peer approach.

153

Part IV

Bibliography

155

Bibliography

[1] M. Abadi and et al. “Tensorflow: Large-scale machine learning on heterogeneous
distributed systems”. In: arXiv preprint arXiv:1603.04467 (2016).

[2] Mohamed Abouelhoda, Shadi Alaa Issa, and Moustafa Ghanem. “Tavaxy: Integrat-
ing Taverna and Galaxy workflows with cloud computing support”. In: BMC bioin-
formatics 13.1 (2012), p. 77.

[3] Academic Free License version 3.0 (Opensource.org, 2005). Retrieved from https://
opensource.org/licenses/AFL-3.0. Accessed 2 October, 2019.

[4] Advanced Multi-layered unification filesystem. Retrieved from https://aufs.sour-
ceforge.net. Accessed 11 April, 2017.

[5] E. Afgan and et al. “The Galaxy platform for accessible, reproducible and collabora-
tive biomedical analyses: 2016 update”. In: Nucleic acids research (2016), gkw343. DOI:
10.1093/nar/gkw343.

[6] G. Alomar, Y. Becerra, and J. Torres. “Hecuba: Nosql made easy”. In: BSC Doctoral
Symposium (2nd: 2015: Barcelona). Barcelona Supercomputing Center, 2015, pp. 136–
137.

[7] R. Amela and et al. “Enabling Python to Execute Efficiently in Heterogeneous Dis-
tributed Infrastructures with PyCOMPSs”. In: Proceedings of the 7th Workshop on Python
for High-Performance and Scientific Computing. Denver, CO, USA: ACM, 2017, 1:1–1:10.
ISBN: 978-1-4503-5124-9. DOI: 10.1145/3149869.3149870.

[8] R. Amela and et al. “Executing linear algebra kernels in heterogeneous distributed
infrastructures with PyCOMPSs”. In: Oil |& Gas Science and Technology - Revue d’IFP
Energies Nouvelles (OGST) (2018). DOI: 10.2516/ogst/2018047.

[9] E. Anderson and et al. LAPACK Users’ guide. SIAM, 1999.

[10] J. Anubhav and et al. “FireWorks: a dynamic workflow system designed for high-
through-put applications”. In: Concurrency and computation: practice and experience 27
(May 2015). DOI: 10.1002/cpe.3505.

[11] Apache Airflow (The Apache Software Foundation, 2017). Retrieved from http : / /
airflow.apache.org. Accessed 15 December, 2017.

[12] Apache Apex (The Apache Software Foundation, 2017). Retrieved from https://apex.
apache.org. Accessed 15 December, 2017.

[13] Apache Beam (The Apache Software Foundation, 2017). Retrieved from https://beam.
apache.org. Accessed 18 September, 2017.

[14] Apache CloudStack - Open Source Cloud Computing (The Apache Software Foundation,
2017). Retrieved from https://cloudstack.apache.org. Accessed 3 December,
2019.

[15] Apache Crunch (The Apache Software Foundation, 2017). Retrieved from https://
crunch.apache.org. Accessed 15 December, 2017.

[16] Apache Flink (Apache Flink Contributors, 2019). Retrieved from https://flink.
apache.org. Accessed 9 August, 2019.

https://opensource.org/licenses/AFL-3.0
https://opensource.org/licenses/AFL-3.0
https://aufs.sour-ceforge.net
https://aufs.sour-ceforge.net
https://doi.org/10.1093/nar/gkw343
https://doi.org/10.1145/3149869.3149870
https://doi.org/10.2516/ogst/2018047
https://doi.org/10.1002/cpe.3505
http://airflow.apache.org
http://airflow.apache.org
https://apex.apache.org
https://apex.apache.org
https://beam.apache.org
https://beam.apache.org
https://cloudstack.apache.org
https://crunch.apache.org
https://crunch.apache.org
https://flink.apache.org
https://flink.apache.org

156 BIBLIOGRAPHY

[17] Apache Gearpump (The Apache Software Foundation, 2017). Retrieved from https://
gearpump.apache.org. Accessed 15 December, 2017.

[18] Apache Hadoop YARN (The Apache Software Foundation, 2019). Retrieved from https:
//hadoop.apache.org/docs/current/hadoop- yarn/hadoop- yarn-
site/YARN.html. Accessed 3 December, 2019.

[19] Apache jClouds (The Apache Software Foundation, 2014). Retrieved from https://
jclouds.apache.org/. Accessed 4 May, 2020.

[20] Apache Kafka: A distributed streaming platform (The Apache Software Foundation, 2017).
Retrieved from https://kafka.apache.org. Accessed 30 November, 2017.

[21] Apache License, version 2.0 (The Apache Software Foundation, 2019). Retrieved from
https://www.apache.org/licenses/LICENSE-2.0. Accessed 2 October,
2019.

[22] Apache Maven (The Apache Software Foundation, 2017). Retrieved from https://
maven.apache.org. Accessed 20 July, 2017.

[23] Apache Mesos (The Apache Software Foundation, 2018). Retrieved from http://mesos.
apache.org. Accessed 3 December, 2019.

[24] Apache Samza (The Apache Software Foundation, 2017). Retrieved from http://samza.
apache.org. Accessed 9 August, 2019.

[25] Apache Taverna (Taverna Committers, 2019). Retrieved from https://taverna.
incubator.apache.org. Accessed 1 April, 2019.

[26] Apache ZooKeeper (The Apache Software Foundation, 2017). Retrieved from https://
zookeeper.apache.org. Accessed 1 December, 2017.

[27] M. Armbrust and et al. “Above the clouds: A berkeley view of cloud computing”.
In: EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28
(2009).

[28] D. Armstrong and et al. “Contextualization: dynamic configuration of virtual ma-
chines”. In: Journal of Cloud Computing 4.1 (2015), p. 1.

[29] K. Asanovic and et al. “A view of the Parallel Computing Landscape”. In: Communi-
cations of the ACM 52.10 (Oct. 2009), pp. 56–67. DOI: 10.1145/1562764.1562783.

[30] K. Asanovic and et al. “The landscape of parallel computing research: A view from
berkeley”. In: Technical Report UCB/EECS-2006-183 2 (2006).

[31] Autosubmit (Barcelona Supercomputing Center, 2020). Retrieved from https://www.
bsc.es/research-and-development/software-and-apps/software-
list/autosubmit. Accessed 19 February, 2020.

[32] R. M. Badia and et al. “COMP superscalar, an interoperable programming frame-
work”. In: SoftwareX 3 (Dec. 2015), pp. 32–36. DOI: 10.1016/j.softx.2015.10.
004.

[33] P. Barham and et al. “Xen and the art of virtualization”. In: ACM SIGOPS Operat-
ing Systems Review. Vol. 37. 5. ACM. 2003, pp. 164–177. DOI: 10.1145/1165389.
945462.

[34] C. Bastoul. “Code Generation in the Polyhedral Model Is Easier Than You Think”. In:
IEEE Computer Society, Sept. 2004, pp. 7–16. DOI: 10.1109/PACT.2004.1342537.

[35] C. Bastoul. OpenScop: A Specification and a Library for Data Exchange in Polyhedral
Compilation Tools. Tech. rep. Paris-Sud University, France, Sept. 2011. URL: http:
//icps.u-strasbg.fr/people/bastoul/public_html/development/
openscop/docs/openscop.html.

https://gearpump.apache.org
https://gearpump.apache.org
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://jclouds.apache.org/
https://jclouds.apache.org/
https://kafka.apache.org
https://www.apache.org/licenses/LICENSE-2.0
https://maven.apache.org
https://maven.apache.org
http://mesos.apache.org
http://mesos.apache.org
http://samza.apache.org
http://samza.apache.org
https://taverna.incubator.apache.org
https://taverna.incubator.apache.org
https://zookeeper.apache.org
https://zookeeper.apache.org
https://doi.org/10.1145/1562764.1562783
https://www.bsc.es/research-and-development/software-and-apps/software-list/autosubmit
https://www.bsc.es/research-and-development/software-and-apps/software-list/autosubmit
https://www.bsc.es/research-and-development/software-and-apps/software-list/autosubmit
https://doi.org/10.1016/j.softx.2015.10.004
https://doi.org/10.1016/j.softx.2015.10.004
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1109/PACT.2004.1342537
http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/docs/openscop.html
http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/docs/openscop.html
http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/docs/openscop.html

BIBLIOGRAPHY 157

[36] C. Bastoul and et al. “Putting Polyhedral Loop Transformations to Work”. In: Springer,
2004, pp. 209–225. DOI: 10.1007/978-3-540-24644-2_14.

[37] P. Bientinesi, B. Gunter, and R. A. van de Geijn. “Families of Algorithms Related to
the Inversion of a Symmetric Positive Definite Matrix”. In: ACM Trans. Math. Softw.
35.1 (July 2008), 3:1–3:22. DOI: 10.1145/1377603.1377606.

[38] BLAS, Basic Linear Algebra Subprograms (University of Tennesse. Oak Ridge National
Laboratory. Numerical Algorithms Group Ltd., 2017). Retrieved from http://www.
netlib.org/blas. Accessed 8 October, 2019.

[39] U. Bondhugula and et al. “Automatic Transformations for Communication-Minimized
Parallelization and Locality Optimization in the Polyhedral Model”. In: Springer,
Apr. 2008, pp. 132–146. DOI: 10.1007/978-3-540-78791-4_9.

[40] U. Bondhugula et al. “A Practical Automatic Polyhedral Parallelizer and Locality Op-
timizer”. In: SIGPLAN Not. 43.6 (June 2008), pp. 101–113. DOI: 10.1145/1375581.
1375595.

[41] D. Bruneo and et al. “CloudWave: Where adaptive cloud management meets De-
vOps”. In: 2014 IEEE Symposium on Computers and Communications (ISCC). IEEE. 2014,
pp. 1–6.

[42] BSD License (The Linux Information Project, 2005). Retrieved from http://www.
linfo.org/bsdlicense. Accessed 2 October, 2019.

[43] Cascading (Cascading Maintainers, 2017). Retrieved from http://www.cascading.
org. Accessed 15 December, 2017.

[44] S. Cass. The Top Programming Languages 2019: Python remains the big kahuna, but special-
ist languages hold their own. Cited 19 December 2019. 2019. URL: https://spectrum.
ieee.org/computing/software/the- top- programming- languages-
2019.

[45] Celery (Ask Solem, 2017). Retrieved from http://www.celeryproject.org. Ac-
cessed 15 December, 2017.

[46] Chameleon Cloud Project (TACC, 2017). Retrieved fromhttps://www.chameleon
cloud.org. Accessed 11 April, 2017.

[47] Chameleon Cloud Project (TACC, 2017). Retrieved from https://www.chameleon
cloud.org/about/hardware-description. Accessed 11 April, 2017.

[48] R. Chandra and et al. Parallel programming in OpenMP. Morgan kaufmann, 2001.

[49] Chef (Chef Software Inc., 2020). Retrieved from https://www.chef.io. Accessed 5
May, 2020.

[50] S. Chiba. “Load-time Structural Reflection in Java”. In: ECOOP 2000 - Object-Oriented
Programming 1850 (May 2000), pp. 313–336. DOI: 10.1007/3-540-45102-1_16.

[51] Chronos Scheduler for Mesos (Mesos Contributors, 2017). Retrieved from https://
mesos.github.io/chronos. Accessed 11 April, 2017.

[52] Cloud-init (Canonical Ltd., 2020). Retrieved from https://launchpad.net/cloud-
init. Accessed 5 May, 2020.

[53] A. Cohen and et al. “Facilitating the Search for Compositions of Program Transfor-
mations”. In: ACM, 2005, pp. 151–160. DOI: 10.1145/1088149.1088169.

[54] COMP Superscalar, COMPSs (Barcelona Supercomputing Center, 2017). Retrieved from
https://compss.bsc.es. Accessed 15 December, 2017.

https://doi.org/10.1007/978-3-540-24644-2_14
https://doi.org/10.1145/1377603.1377606
http://www.netlib.org/blas
http://www.netlib.org/blas
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595
http://www.linfo.org/bsdlicense
http://www.linfo.org/bsdlicense
http://www.cascading.org
http://www.cascading.org
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
http://www.celeryproject.org
https://www.chameleon
cloud.org
https://www.chameleon
cloud.org/about/hardware-description
https://www.chef.io
https://doi.org/10.1007/3-540-45102-1_16
https://mesos.github.io/chronos
https://mesos.github.io/chronos
https://launchpad.net/cloud-init
https://launchpad.net/cloud-init
https://doi.org/10.1145/1088149.1088169
https://compss.bsc.es

158 BIBLIOGRAPHY

[55] COMPSs GitHub (Barcelona Supercomputing Center, 2018). Retrieved from https://
github.com/bsc-wdc/compss. Accessed 4 June, 2018.

[56] J. Conejero et al. “Task-based programming in COMPSs to converge from HPC to
big data”. In: The International Journal of High Performance Computing Applications 32.1
(2018), pp. 45–60. DOI: 10.1177/1094342017701278.

[57] Container Network Interface - Networking for Linux containers (Cloud Native Computing
Foundation, 2020). Retrieved from https://github.com/containernetwork
ing/cni. Accessed 4 May, 2020.

[58] L. Dagum and R. Menon. “OpenMP: An Industry-Standard API for Shared-Memory
Programming”. In: IEEE Comput. Sci. Eng. 5.1 (Jan. 1998), pp. 46–55. DOI: 10.1109/
99.660313.

[59] L. Dalcín, R. Paz, and M. Storti. “MPI for Python”. In: Journal of Parallel and Distributed
Computing (2005). DOI: https://doi.org/10.1016/j.jpdc.2005.03.010.

[60] S. Das and et al. “Next-generation genotype imputation service and methods”. In:
Nature genetics 48.10 (2016), p. 1284.

[61] Dask Development Team. Dask: Library for dynamic task scheduling. 2016. URL: http:
//dask.pydata.org.

[62] dataClay (Barcelona Supercomputing Center, 2019). Retrieved from https://www.
bsc.es/research-and-development/software-and-apps/software-
list/dataclay. Accessed 4 December, 2019.

[63] J. Dean and S. Ghemawat. “Mapreduce: Simplified data processing on large clusters”.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design and
Implementation 6 (2004), pp. 10–10. DOI: 10.1145/1327452.1327492.

[64] J. Dean and S. Ghemawat. “Mapreduce: Simplified data processing on large clusters”.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design and
Implementation 6 (2004), pp. 10–10. URL: http://dl.acm.org/citation.cfm?
id=1251254.1251264.

[65] E. Deelman. “Big Data Analytics and High Performance Computing Convergence
Through Workflows and Virtualization”. In: Big Data and Extreme-Scale Computing
(2016).

[66] E. Deelman and et al. “Pegasus, a workflow management system for science automa-
tion”. In: Future Generation Computer Systems 46 (2015), pp. 17–35. DOI: 10.1016/j.
future.2014.10.008.

[67] E. Deelman et al. “Workflows and e-Science: An over-view of workflow system fea-
tures and capabilities”. In: Future Generation Computer Systems 25.5 (2009), pp. 528 –
540. DOI: 10.1016/j.future.2008.06.012.

[68] O. Delaneau, J. Marchini, and J. Zagury. “A linear complexity phasing method for
thousands of genomes”. In: Nature methods 9.2 (2012), p. 179.

[69] J. W. Demmel and N. J. Higham. “Stability of Block Algorithms with Fast Level-3
BLAS”. In: ACM Trans. Math. Softw. 18.3 (Sept. 1992), pp. 274–291. DOI: 10.1145/
131766.131769.

[70] P. Di Tommaso and et al. “The impact of Docker containers on the performance of
genomic pipelines”. In: PeerJ 3 (July 2015). Ed. by Fabien Campagne, e1273. DOI:
10.7717/peerj.1273.

[71] Paolo Di Tommaso et al. “Nextflow enables reproducible computational workflows”.
In: Nature biotechnology 35.4 (2017), p. 316.

https://github.com/bsc-wdc/compss
https://github.com/bsc-wdc/compss
https://doi.org/10.1177/1094342017701278
https://github.com/containernetwork
ing/cni
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/https://doi.org/10.1016/j.jpdc.2005.03.010
http://dask.pydata.org
http://dask.pydata.org
https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay
https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay
https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay
https://doi.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2008.06.012
https://doi.org/10.1145/131766.131769
https://doi.org/10.1145/131766.131769
https://doi.org/10.7717/peerj.1273

BIBLIOGRAPHY 159

[72] Docker (Docker Inc., 2017). Retrieved from https://www.docker.com. Accessed
11 April, 2017.

[73] Docker Plugins (Docker Inc., 2017). Retrieved from https://docs.docker.com/
engine/extend/legacy_plugins. Accessed 11 April, 2017.

[74] J. Dongarra and et al. “The international Exascale Software Project roadmap”. In:
International Journal of High Performance Computing Applications 25.1 (Feb. 2011), pp. 3–
60. DOI: 10.1177/1094342010391989.

[75] A. Duran and et al. “Ompss: a proposal for programming heterogeneous multi-core
architectures”. In: Parallel processing letters 21.02 (2011), pp. 173–193. DOI: 10.1142/
S0129626411000151.

[76] EcFlow (Atlassian, 2017). Retrieved from https://software.ecmwf.int/wiki/
display/ECFLOW/ecflow+home. Accessed 2 August, 2017.

[77] Eclipse IDE (Eclipse Foundation Inc., 2017). Retrieved from https://eclipse.org.
Accessed 20 July, 2017.

[78] Eclipse Public License v1.0 (Eclipse Foundation Inc., 2019). Retrieved from https://
www.eclipse.org/legal/epl-v10.html. Accessed 2 October, 2019.

[79] Jorge Ejarque and et al. “Service Construction Tools for Easy Cloud Deployment”. In:
7th IBERIAN Grid Infrastructure Conference Proceedings, p. 119.

[80] Enduro/X (Mavimax, 2015). Retrieved from https://www.endurox.org. Accessed
3 December, 2019.

[81] Eucalyptus (Appscale Systems, 2018). Retrieved from https://www.eucalyptus.
cloud. Accessed 3 December, 2019.

[82] Experimentation GitHub (Barcelona Supercomputing Center, 2018). Retrieved from
https://github.com/cristianrcv/pycompss- autoparallel/tree/
master/examples. Accessed 4 June, 2018.

[83] Extrae Tool (Barcelona Supercomputing Center, 2017). Retrieved from https://tools.
bsc.es/extrae. Accessed 20 July, 2017.

[84] T. Fahringer and et al. “Askalon: A grid application development and computing en-
vironment”. In: Proceedings of the 6th IEEE/ACM International Workshop on Grid Com-
puting (2005), pp. 122–131. DOI: 10.1109/GRID.2005.1542733.

[85] W. Felter et al. “An updated performance comparison of virtual machines and linux
containers”. In: Performance Analysis of Systems and Software (ISPASS), 2015 IEEE In-
ternational Symposium On. IEEE. 2015, pp. 171–172. DOI: 10.1109/ISPASS.2015.
7095802.

[86] R. Filgueira et al. “Asterism: Pegasus and Dispel4py Hybrid Workflows for Data-
Intensive Science”. In: 2016 Seventh International Workshop on Data-Intensive Comput-
ing in the Clouds (DataCloud). Nov. 2016, pp. 1–8. DOI: 10.1109/DataCloud.2016.
004.

[87] A. Finn et al. Microsoft private cloud computing. John Wiley & Sons, 2012.

[88] I. Foster and C. Kesselman. The Grid 2: Blueprint for a new computing infrastructure.
Elsevier, 2003.

[89] G. Galante and et al. “An Analysis of Public Clouds Elasticity in the Execution of
Scientific Applications: a Survey”. In: Journal of Grid Computing 14.2 (2016), pp. 193–
216. ISSN: 1572-9184. DOI: 10.1007/s10723-016-9361-3.

[90] Galaxy (Galaxy Team, 2019). Retrieved from https://usegalaxy.org. Accessed
26 March, 2019.

https://www.docker.com
https://docs.docker.com/engine/extend/legacy_plugins
https://docs.docker.com/engine/extend/legacy_plugins
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1142/S0129626411000151
https://software.ecmwf.int/wiki/display/ECFLOW/ecflow+home
https://software.ecmwf.int/wiki/display/ECFLOW/ecflow+home
https://eclipse.org
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html
https://www.endurox.org
https://www.eucalyptus.cloud
https://www.eucalyptus.cloud
https://github.com/cristianrcv/pycompss-autoparallel/tree/master/examples
https://github.com/cristianrcv/pycompss-autoparallel/tree/master/examples
https://tools.bsc.es/extrae
https://tools.bsc.es/extrae
https://doi.org/10.1109/GRID.2005.1542733
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/DataCloud.2016.004
https://doi.org/10.1109/DataCloud.2016.004
https://doi.org/10.1007/s10723-016-9361-3
https://usegalaxy.org

160 BIBLIOGRAPHY

[91] W. Gentzsch. “Sun grid engine: Towards creating a compute power grid”. In: Cluster
Computing and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium on.
IEEE, 2001, pp. 35–36.

[92] W. Gerlach and et al. “Skyport: container-based execution environment management
for multi-cloud scientific workflows”. In: Proceedings of the 5th International Workshop
on Data-Intensive Computing in the Clouds. IEEE Press. 2014, pp. 25–32.

[93] GitHub: Apache Kafka (The Apache Software Foundation, 2019). Retrieved from https:
//github.com/apache/kafka. Accessed 12 July, 2019.

[94] GitHub: DistroStream Library (Barcelona Supercomputing Center, 2019). Retrieved from
https://github.com/bsc-wdc/distro-stream-lib. Accessed 3 September,
2019.

[95] GNU Bash (Free Software Foundation, 2017). Retrieved from https://www.gnu.
org/software/bash. Accessed 20 July, 2017.

[96] GNU General Public License, version 2 (Free Software Foundation, 2017). Retrieved from
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html. Accessed
2 October, 2019.

[97] GNU General Public License, version 3 (Free Software Foundation, 2016). Retrieved from
https://www.gnu.org/licenses/gpl-3.0.en.html. Accessed 2 October,
2019.

[98] GNU Lesser General Public License, version 2.1 (Free Software Foundation, 2018). Re-
trieved from https://www.gnu.org/licenses/old- licenses/lgpl-
2.1.html. Accessed 2 October, 2019.

[99] GNU Plot. Retrieved from http://www.gnuplot.info. Accessed 20 July, 2017.

[100] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.) Baltimore, MD, USA:
Johns Hopkins University Press, 1996. ISBN: 0-8018-5414-8.

[101] GUIDANCE: An easy-to-use platform for comprehensive GWAS and PheWAS (Computa-
tional Genomics Group at the Barcelona Supercomputing Center, 2019). Retrieved from
http://cg.bsc.es/guidance. Accessed 13 May 2020.

[102] M. Guindo-Martínez, R. Amela, and et al. “The impact of non-additive genetic asso-
ciations on age-related complex diseases”. In: bioRxiv (2020). DOI: 10.1101/2020.
05.12.084608.

[103] J. A. Gunnels et al. “FLAME: Formal Linear Algebra Methods Environment”. In:
ACM Trans. Math. Softw. 27.4 (Dec. 2001), pp. 422–455. DOI: 10.1145/504210.
504213.

[104] Hazelcast Jet (Hazelcast Inc., 2017). Retrieved from https://jet.hazelcast.org.
Accessed 15 December, 2017.

[105] Hecuba (Barcelona Supercomputing Center, 2019). Retrieved from https://github.
com/bsc-dd/hecuba. Accessed 2 October, 2019.

[106] R. L. Henderson. “Job scheduling under the portable batch system”. In: Workshop on
Job Scheduling Strategies for Parallel Processing. Springer, 1995, pp. 279–294.

[107] K. Hightower, B. Burns, and J. Beda. Kubernetes: up and running: dive into the future of
infrastructure. O’Reilly Media Inc., 2017.

[108] C. Hill et al. “The architecture of the Earth System Modeling Framework”. In: Com-
puting in Science Engineering 6.1 (Jan. 2004), pp. 18–28. ISSN: 1521-9615. DOI: 10.
1109/MCISE.2004.1255817.

https://github.com/apache/kafka
https://github.com/apache/kafka
https://github.com/bsc-wdc/distro-stream-lib
https://www.gnu.org/software/bash
https://www.gnu.org/software/bash
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnuplot.info
http://cg.bsc.es/guidance
https://doi.org/10.1101/2020.05.12.084608
https://doi.org/10.1101/2020.05.12.084608
https://doi.org/10.1145/504210.504213
https://doi.org/10.1145/504210.504213
https://jet.hazelcast.org
https://github.com/bsc-dd/hecuba
https://github.com/bsc-dd/hecuba
https://doi.org/10.1109/MCISE.2004.1255817
https://doi.org/10.1109/MCISE.2004.1255817

BIBLIOGRAPHY 161

[109] B. Hindman and et al. “Mesos: A platform for fine-grained resource sharing in the
data center”. In: NSDI. Vol. 11. 2011, pp. 22–22.

[110] M. Hirzel and et al. “IBM streams processing language: Analyzing big data in mo-
tion”. In: IBM Journal of Research and Development 57.3/4 (2013), pp. 7–11. DOI: 10.
1147/JRD.2013.2243535.

[111] B. N. Howie, P. Donnelly, and J. Marchini. “A flexible and accurate genotype impu-
tation method for the next generation of genome-wide association studies”. In: PLoS
genetics 5.6 (2009), e1000529.

[112] HTCondor - High Troughput Computing (University of Wisconsin-Madison - Computer
Sciences Department, 2019). Retrieved from https://research.cs.wisc.edu/
htcondor. Accessed 3 December, 2019.

[113] D. Hull and et al. “Taverna: a tool for building and running workflows of services”.
In: Nucleic Acids Research 34(Web Server issue) (2006), W729–W732. DOI: 10.1093/
nar/gkl320.

[114] IBM LSF (IBM, 2016). Retrieved from https://www.ibm.com/support/know
ledgecenter/en/SSETD4/product_welcome_platform_lsf.html. Ac-
cessed 3 December, 2019.

[115] IBM Streams (IBM, 2017). Retrieved from https : / / www . ibm . com / cloud /
streaming-analytics. Accessed 15 December, 2017.

[116] Intel MPI implementation (Intel Corporation, 2017). Retrieved from https://soft
ware.intel.com/en-us/intel-mpi-library. Accessed 30 November, 2017.

[117] INTERTWinE addresses the problem of programming-model design and implementation for
the Exascale (European Union’s Horizon 2020 Research and Innovation programme under
Grant Agreement no. 671602, 2020). Retrieved from http://www.intertwine-
project.eu/. Accessed 2 July, 2020.

[118] Introduction to FireWorks (workflow software) - FireWorks 1.8.7 documentation (A. Jain,
2019). Retrieved from https://materialsproject.github.io/fireworks.
Accessed 26 March, 2019.

[119] Z. Janjic and R. Gall. Scientific Documentation of the NCEP Nonhydrostatic Multiscale
Model on the B Grid (NMMB). Part 1 Dynamics, Technical Report. Tech. rep. 80307-3000.
BOULDER, COLORADO: NCEP, Apr. 2012.

[120] Java NIO (Oracle, 2010). Retrieved from https://docs.oracle.com/javase/1.
5.0/docs/guide/nio/index.html. Accessed 20 January, 2020.

[121] Java Programming Language (Oracle, 2017). Retrieved from https://www.oracle.
com/es/java/index.html. Accessed 20 July, 2017.

[122] E. Jones, T. Oliphant, and P. Peterson. SciPy: Open source scientific tools for Python.
2001–. URL: http://www.scipy.org/.

[123] P. Joshi and M. R. Babu. “Openlava: An open source scheduler for high performance
computing”. In: 2016 International Conference on Research Advances in Integrated Navi-
gation Systems (RAINS). 2016, pp. 1–3.

[124] S. Kaisler et al. “Big Data: Issues and Challenges Moving Forward”. In: 46th Hawaii
International Conference on System Sciences (Jan. 2013), pp. 995–1004. ISSN: 1530-1605.
DOI: 10.1109/HICSS.2013.645.

[125] G. Katsaros and et al. “Cloud application portability with tosca, chef and open-
stack”. In: Cloud Engineering (IC2E), 2014 IEEE International Conference on. IEEE. 2014,
pp. 295–302.

https://doi.org/10.1147/JRD.2013.2243535
https://doi.org/10.1147/JRD.2013.2243535
https://research.cs.wisc.edu/htcondor
https://research.cs.wisc.edu/htcondor
https://doi.org/10.1093/nar/gkl320
https://doi.org/10.1093/nar/gkl320
https://www.ibm.com/support/know
ledgecenter/en/SSETD4/product_welcome_platform_lsf.html
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://soft
ware.intel.com/en-us/intel-mpi-library
http://www.intertwine-project.eu/
http://www.intertwine-project.eu/
https://materialsproject.github.io/fireworks
https://docs.oracle.com/javase/1.5.0/docs/guide/nio/index.html
https://docs.oracle.com/javase/1.5.0/docs/guide/nio/index.html
https://www.oracle.com/es/java/index.html
https://www.oracle.com/es/java/index.html
http://www.scipy.org/
https://doi.org/10.1109/HICSS.2013.645

162 BIBLIOGRAPHY

[126] B. W. Kernighan and D. M. Ritchie. The C programming language. 2006.

[127] A. Kivity and et al. “KVM: the Linux virtual machine monitor”. In: Proceedings of the
Linux symposium. Vol. 1. 2007, pp. 225–230.

[128] Kompose (The Kubernetes Authors, 2019). Retrieved from https://kompose.io.
Accessed 13 May, 2020.

[129] K. Krauter, R. Buyya, and M. Maheswaran. “A taxonomy and survey of grid resource
management systems for distributed computing”. In: Software: Practice and Experience
32.2 (2002), pp. 135–164. DOI: 10.1002/spe.432.

[130] J. Kreps, N. Narkhede, J. Rao, et al. “Kafka: A distributed messaging system for log
processing”. In: 2011, pp. 1–7.

[131] SPT Krishnan and J. L. U. Gonzalez. “Google compute engine”. In: Building Your Next
Big Thing with Google Cloud Platform. Springer, 2015, pp. 53–81.

[132] Kubernetes and Docker Swarm Compared (Platform 9, 2017). Retrieved from https:
//platform9.com/blog/kubernetes-docker-swarm-compared. Accessed
3 December, 2019.

[133] Kubernetes and Mesos Compared (Platform 9, 2016). Retrieved from https://plat
form9.com/blog/compare-kubernetes-vs-mesos. Accessed 3 December,
2019.

[134] Kubernetes (The Linux Foundation, 2019). Retrieved from https://kubernetes.io.
Accessed 3 December, 2019.

[135] S. Kulkarni and et al. “Twitter heron: Stream processing at scale”. In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data. ACM. 2015,
pp. 239–250. DOI: 10.1145/2723372.2742788.

[136] R. Kumar and et al. Apache cloudstack: Open source infrastructure as a service cloud com-
puting platform. Tech. rep. 2014, pp. 111–116.

[137] V. Kumar et al. Introduction to parallel computing: design and analysis of algorithms.
Vol. 400. Benjamin/Cummings Redwood City, 1994. DOI: 10.1109/MCC.1994.
10011.

[138] V. Kurtzer G. M.and Sochat and M. W. Bauer. “Singularity: Scientific containers for
mobility of compute”. In: PloS one 12.5 (2017).

[139] S. K. Lam, A. Pitrou, and S. Seibert. “Numba: A llvm-based python jit compiler”. In:
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. 2015,
pp. 1–6.

[140] H. Li and et al. “The sequence alignment/map format and SAMtools”. In: Bioinfor-
matics 25.16 (2009), pp. 2078–2079.

[141] S. Liang. Java Native Interface: Programmer’s Guide and Reference. 1st. Boston, MA, USA:
Addison-Wesley Longman Publishing Co. Inc., 1999. ISBN: 0201325772.

[142] X. Liu, N. Iftikhar, and X. Xie. “Survey of Real-time Processing Systems for Big Data”.
In: Proceedings of the 18th International Database Engineering & Applications Sympo-
sium (IDEAS) 25 (2014), pp. 356 –361. DOI: 10.1145/2628194.2628251.

[143] R. Loh and et al. “Reference-based phasing using the Haplotype Reference Consor-
tium panel”. In: Nature genetics 48.11 (2016), p. 1443.

[144] F. Lordan and et al. “ServiceSs: an interoperable programming framework for the
Cloud”. In: Journal of Grid Computing 12.1 (Mar. 2014), pp. 67–91. DOI: 10.1007/
s10723-013-9272-5.

https://kompose.io
https://doi.org/10.1002/spe.432
https://platform9.com/blog/kubernetes-docker-swarm-compared
https://platform9.com/blog/kubernetes-docker-swarm-compared
https://plat
form9.com/blog/compare-kubernetes-vs-mesos
https://kubernetes.io
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1109/MCC.1994.10011
https://doi.org/10.1109/MCC.1994.10011
https://doi.org/10.1145/2628194.2628251
https://doi.org/10.1007/s10723-013-9272-5
https://doi.org/10.1007/s10723-013-9272-5

BIBLIOGRAPHY 163

[145] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. “A review of auto-scaling tech-
niques for elastic applications in cloud environments”. In: Journal of Grid Computing
12.4 (2014), pp. 559–592. DOI: 10.1007/s10723-014-9314-7.

[146] B. Ludäscher and et al. “Scientific workflow management and the Kepler system”.
In: Concurrency and Computation: Practice and Experience 18.10 (2006), pp. 1039–1065.

[147] J. Marchini and B. Howie. “Genotype imputation for genome-wide association stud-
ies”. In: Nature Reviews Genetics 11.7 (2010), p. 499.

[148] MareNostrum 3 (Barcelona Supercomputing Center, 2018). Retrieved from https://
www.bsc.es/marenostrum/marenostrum/mn3. Accessed 20 May, 2018.

[149] MareNostrum 4 (Barcelona Supercomputing Center, 2017). Retrieved from https://
www.bsc.es/innovation-and-services/supercomputers-and-facili
ties/marenostrum. Accessed 20 July, 2017.

[150] J. Martí and et al. “Dataclay: A distributed data store for effective inter-player data
sharing”. In: Journal of Systems and Software 131 (2017), pp. 129–145.

[151] J. M. Martinez Caamaño and et al. “Full runtime polyhedral optimizing loop trans-
formations with the generation, instantiation, and scheduling of code-bones”. In:
Concurrency and Computation: Practice and Experience 29.15 (2017), e4192. DOI: 10.
1002/cpe.4192.

[152] W. McKinney. “Pandas: a Foundational Python Library for Data Analysis and Statis-
tics”. In: Python for High Performance and Scientific Computing (2011), pp. 1–9.

[153] H. Meng and D. Thain. “Umbrella: A Portable Environment Creator for Reproducible
Computing on Clusters, Clouds, and Grids”. In: Proceedings of the 8th International
Workshop on Virtualization Technologies in Distributed Computing. VTDC ’15. ACM,
2015, pp. 23–30. DOI: 10.1145/2755979.2755982.

[154] D. Merkel. “Docker: lightweight linux containers for consistent development and
deployment”. In: Linux Journal 2014.239 (2014), p. 2.

[155] D. Milojičić, I. M. Llorente, and R. S. Montero. “Opennebula: A cloud management
tool”. In: IEEE Internet Computing 15.2 (2011), pp. 11–14.

[156] MIT License (Opensource.org, 2019). Retrieved from https://opensource.org/
licenses/MIT. Accessed 2 October, 2019.

[157] F. Montesi et al. “Jolie: a Java orchestration language interpreter engine”. In: Electronic
Notes in Theoretical Computer Science 181 (2007), 19–33. DOI: 10.1016/j.entcs.
2007.01.051.

[158] Mozilla Public License Version 2.0 (Mozilla Foundation, 2019). Retrieved from https:
//www.mozilla.org/en-US/MPL/2.0. Accessed 2 October, 2019.

[159] MPI: A Message-Passing Interface Standard. Tech. rep. 3.1. June 2015. URL: http://
mpi-forum.org/docs/.

[160] MPICH: High-Performance Portable MPI (MPICH Collaborators, 2017). Retrieved from
https://www.mpich.org. Accessed 30 November, 2017.

[161] S. C. Müller et al. “Pydron: Semi-automatic parallelization for multi-core and the
cloud”. In: 11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14). 2014, pp. 645–659.

[162] A. Munshi et al. OpenCL programming guide. Pearson Education, 2011. DOI: 10.5555/
2049883.

https://doi.org/10.1007/s10723-014-9314-7
https://www.bsc.es/marenostrum/marenostrum/mn3
https://www.bsc.es/marenostrum/marenostrum/mn3
https://www.bsc.es/innovation-and-services/supercomputers-and-facili
https://www.bsc.es/innovation-and-services/supercomputers-and-facili
ties/marenostrum
https://doi.org/10.1002/cpe.4192
https://doi.org/10.1002/cpe.4192
https://doi.org/10.1145/2755979.2755982
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://doi.org/10.1016/j.entcs.2007.01.051
https://doi.org/10.1016/j.entcs.2007.01.051
https://www.mozilla.org/en-US/MPL/2.0
https://www.mozilla.org/en-US/MPL/2.0
http://mpi-forum.org/docs/
http://mpi-forum.org/docs/
https://www.mpich.org
https://doi.org/10.5555/2049883
https://doi.org/10.5555/2049883

164 BIBLIOGRAPHY

[163] D. G. Murray and et al. “CIEL: a universal execution engine for distributed data-flow
computing”. In: Proceedings of the 8th ACM/USENIX Symposium on Networked Sys-
tems Design and Implementation. ACM, 2011, pp. 113–126. DOI: 10.5555/1972457.
1972470.

[164] MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE (NBCL, 2017).
Retrieved from http://mvapich.cse.ohio-state.edu. Accessed 30 Novem-
ber, 2017.

[165] N. Naik. “Building a virtual system of systems using docker swarm in multiple
clouds”. In: 2016 IEEE International Symposium on Systems Engineering (ISSE). 2016,
pp. 1–3.

[166] V. Narasimhan and et al. “BCFtools/RoH: a hidden Markov model approach for de-
tecting autozygosity from next-generation sequencing data”. In: Bioinformatics 32.11
(2016), pp. 1749–1751.

[167] Netflix Blog: Stream processing with Mantis (B. Schmaus, et al., 2016). Retrieved from
https://medium.com/netflix-techblog/stream-processing-with-
mantis-78af913f51a6. Accessed 15 December, 2017.

[168] Netflix Conductor (2017). Retrieved from https://netflix.github.io/conduc
tor. Accessed 15 December, 2017.

[169] Nextflow: A DSL for parallel and scalable computational pipelines (Barcelona Centre for
Genomic Regulation, 2019). Retrieved from https://www.nextflow.io. Accessed
26 March, 2019.

[170] J. Nickolls et al. “Scalable parallel programming with CUDA”. In: Queue 6.2 (2008),
pp. 40–53. DOI: 10.1145/1365490.1365500.

[171] Nova-Docker driver for OpenStack (OpenStack, 2017). Retrieved from https://git
hub.com/openstack/nova-docker. Accessed 15 November, 2016.

[172] Numba: A High Performance Python Compiler (Anaconda, 2020). Retrieved from http:
//numba.pydata.org. Accessed 8 April, 2020.

[173] NumExpr: Fast numerical expression evaluator for NumPy (D. M. Cooke, F. Alted, et al.,
2020). Retrieved from https://github.com/pydata/numexpr. Accessed 8
April, 2020.

[174] D. Nurmi and et al. “The eucalyptus open-source cloud-computing system”. In: Pro-
ceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and
the Grid. IEEE Computer Society. 2009, pp. 124–131.

[175] OneDock: Docker driver for OpenNebula (Indigo-dc, 2017). Retrieved from https://
github.com/indigo-dc/onedock. Accessed 5 May, 2020.

[176] Open MPI: Open Source High Performance Computing (The Open MPI Project, 2017). Re-
trieved from https://www.open-mpi.org. Accessed 30 November, 2017.

[177] OpenNebula (OpenNebula Project - OpenNebula.org, 2019). Retrieved from https://
opennebula.org. Accessed 3 December, 2019.

[178] OpenStack (OpenStack Foundation, 2019). Retrieved from https://www.openstack.
org. Accessed 3 December, 2019.

[179] Oracle. JavaNIO. URL: http://www.oracle.com/technetwork/articles/
javase/nio-139333.html.

[180] B. Parák and et al. “The rOCCI project: providing cloud interoperability with OCCI
1.1”. In: International Symposium on Grids and Clouds (ISGC) 2014. Vol. 210. SISSA Me-
dialab. 2014, p. 014.

https://doi.org/10.5555/1972457.1972470
https://doi.org/10.5555/1972457.1972470
http://mvapich.cse.ohio-state.edu
https://medium.com/netflix-techblog/stream-processing-with-mantis-78af913f51a6
https://medium.com/netflix-techblog/stream-processing-with-mantis-78af913f51a6
https://netflix.github.io/conduc
tor
https://www.nextflow.io
https://doi.org/10.1145/1365490.1365500
https://git
hub.com/openstack/nova-docker
http://numba.pydata.org
http://numba.pydata.org
https://github.com/pydata/numexpr
https://github.com/indigo-dc/onedock
https://github.com/indigo-dc/onedock
https://www.open-mpi.org
https://opennebula.org
https://opennebula.org
https://www.openstack.org
https://www.openstack.org
http://www.oracle.com/technetwork/articles/javase/nio-139333.html
http://www.oracle.com/technetwork/articles/javase/nio-139333.html

BIBLIOGRAPHY 165

[181] Parallel Processing and Multiprocessing in Python (Python Software Fundation, 2019). Re-
trieved from https://wiki.python.org/moin/ParallelProcessing. Ac-
cessed 8 October, 2019.

[182] Parallel Python Software (V. Vanovschi, 2019). Retrieved from http://www.parallel
python.com. Accessed 8 October, 2019.

[183] Paraver Tool (Barcelona Supercomputing Center, 2017). Retrieved from https://tools.
bsc.es/paraver. Accessed 20 July, 2017.

[184] Parsl: Parallel Scripting in Python (University of Chicago, 2019). Retrieved from http:
//parsl-project.org. Accessed 26 March, 2019.

[185] PBS Professional - Open Source Project (Altair Engineering Inc., 2019). Retrieved from
https://www.pbspro.org. Accessed 3 December, 2019.

[186] R. Peinl, F. Holzschuher, and F. Pfitzer. “Docker Cluster Management for the Cloud
- Survey Results and Own Solution”. In: Journal of Grid Computing 14.2 (June 2016),
pp. 265–282. ISSN: 1572-9184. DOI: 10.1007/s10723-016-9366-y.

[187] Pluto (Pluto Contributors, 2017). Retrieved from http://pluto-compiler.source
forge.net. Accessed 28 November, 2017.

[188] PolyBench/C: The Polyhedral Benchmark suite (Ohio State University, 2018). Retrieved
from http://web.cse.ohio-state.edu/~pouchet.2/software/poly
bench. Accessed 18 June, 2018.

[189] IBIS Project. JavaGAT. URL: http://www.cs.vu.nl/ibis/javagat.html.

[190] S. Pronk and et al. “Copernicus: A new paradigm for parallel adaptive molecular
dynamics”. In: Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis (2011), 60:1–60:10. DOI: 10.1145/2063384.
2063465.

[191] Puppet (Puppet Inc., 2020). Retrieved from https://puppet.com. Accessed 5 May,
2020.

[192] S. Purcell and et al. “PLINK: a tool set for whole-genome association and population-
based linkage analyses”. In: The American Journal of Human Genetics 81.3 (2007), pp. 559–
575.

[193] PyCOMPSs AutoParallel Module GitHub (Barcelona Supercomputing Center, 2018). Re-
trieved from https://github.com/cristianrcv/pycompss-autoparallel.
Accessed 4 June, 2018.

[194] PyCOMPSs User Manual (Barcelona Supercomputing Center, 2020). Retrieved from
https://compss-doc.readthedocs.io/en/2.6/Sections/02_User_
Manual_App_Development.html. Accessed 8 April, 2020.

[195] PySpark (Apache Software Fundation, 2019). Retrieved from https://spark.apache.
org/docs/latest/api/python/index.html. Accessed 8 October, 2019.

[196] Python Org (Python Software Foundation, 2017). Retrieved from https://www.py
thon.org. Accessed 20 July, 2017.

[197] G. Quintana-Orti and et al. “Scheduling of QR Factorization Algorithms on SMP and
Multi-Core Architectures”. In: Proceedings of the 16th Euromicro Conference on Parallel,
Distributed and Network-Based Processing (PDP 2008). PDP ’08. IEEE Computer Society,
2008, pp. 301–310. DOI: 10.1109/PDP.2008.37.

[198] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. Vienna, Austria, 2015. URL: https://www.R-project.
org/.

https://wiki.python.org/moin/ParallelProcessing
http://www.parallel
python.com
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver
http://parsl-project.org
http://parsl-project.org
https://www.pbspro.org
https://doi.org/10.1007/s10723-016-9366-y
http://pluto-compiler.source
forge.net
http://web.cse.ohio-state.edu/~pouchet.2/software/poly
bench
http://www.cs.vu.nl/ibis/javagat.html
https://doi.org/10.1145/2063384.2063465
https://doi.org/10.1145/2063384.2063465
https://puppet.com
https://github.com/cristianrcv/pycompss-autoparallel
https://compss-doc.readthedocs.io/en/2.6/Sections/02_User_Manual_App_Development.html
https://compss-doc.readthedocs.io/en/2.6/Sections/02_User_Manual_App_Development.html
https://spark.apache.org/docs/latest/api/python/index.html
https://spark.apache.org/docs/latest/api/python/index.html
https://www.py
thon.org
https://doi.org/10.1109/PDP.2008.37
https://www.R-project.org/
https://www.R-project.org/

166 BIBLIOGRAPHY

[199] RedHat OpenShift (Red Hat Inc., 2019). Retrieved from https://www.openshift.
com. Accessed 3 December, 2019.

[200] D. A. Reed and J. Dongarra. “Exascale Computing and Big Data”. In: Communications
of the ACM 58.7 (July 2015), pp. 56–68. DOI: 10.1145/2699414.

[201] rOCCI - A Ruby OCCI Framework (F. Feldhaus, 2012). Retrieved from http://occi-
wg.org/2012/04/02/rocci- a- ruby- occi- framework/index.html.
Accessed 4 May, 2020.

[202] M. Rocklin. “Dask: Parallel Computation with Blocked algorithms and Task Schedul-
ing”. In: 2015, pp. 130 –136. DOI: 10.25080/Majora-95ae3ab6-01e.

[203] G. van Rossum and F. L. Drake. The Python Language Reference Manual. Network The-
ory Ltd., 2011. ISBN: 1906966141, 9781906966140. DOI: 10.5555/2011965.

[204] P. Russom and et al. “Big data analytics”. In: TDWI best practices report, fourth quarter
19 (2011).

[205] S. Sagiroglu and D. Sinanc. “Big data: A review”. In: International Conference on Collab-
oration Technologies and Systems (CTS) (2013), pp. 42–47. DOI: 10.1109/CTS.2013.
6567202.

[206] K. Sala and et al. “Improving the interoperability between MPI and task-based pro-
gramming models”. In: Proceedings of the 25th European MPI Users’ Group Meeting.
2018, pp. 1–11.

[207] O. Sefraoui, M. Aissaoui, and M. Eleuldj. “OpenStack: toward an open-source so-
lution for cloud computing”. In: International Journal of Computer Applications 55.3
(2012), pp. 38–42.

[208] S. Shahrivari. “Beyond batch processing: towards real-time and streaming big data”.
In: Computers 3.4 (2014), pp. 117–129. DOI: 10.3390/computers3040117.

[209] C. Simmendinger and et al. “Interoperability strategies for GASPI and MPI in large-
scale scientific applications”. In: The International Journal of High Performance Comput-
ing Applications 33.3 (2019), pp. 554–568. DOI: 10.1177/1094342018808359.

[210] Singularity (Sylabs.io, 2020). Retrieved from https://sylabs.io/docs. Accessed
19 February, 2020.

[211] Slurm Workload Manager (Slurm Team, 2019). Retrieved from https : / / slurm .
schedmd.com. Accessed 3 December, 2019.

[212] B. Stroustrup. The C++ programming language. Pearson Education. 2013.

[213] A. Sukumaran-Rajam and P. Clauss. “The Polyhedral Model of Nonlinear Loops”.
In: ACM Trans. Archit. Code Optim. 12.4 (Dec. 2015), 48:1–48:27. ISSN: 1544-3566. DOI:
10.1145/2838734.

[214] Swarm Mode Overview (Docker Inc., 2019). Retrieved from https://docs.docker.
com/engine/swarm. Accessed 3 December, 2019.

[215] E. Tejedor and et al. “PyCOMPSs: Parallel computational workflows in Python”.
In: The International Journal of High Performance Computing Applications (IJHPCA) 31
(2017), pp. 66–82. DOI: 10.1177/1094342015594678.

[216] E. Tejedor and et al. “PyCOMPSs: Parallel computational workflows in Python”.
In: The International Journal of High Performance Computing Applications (IJHPCA) 31.1
(2017), pp. 66–82.

[217] D. Thain, T. Tannenbaum, and M. Livny. “Distributed computing in practice: the
Condor experience”. In: Concurrency and computation: practice and experience 17.2-4
(2005), pp. 323–356.

https://www.openshift.com
https://www.openshift.com
https://doi.org/10.1145/2699414
http://occi-wg.org/2012/04/02/rocci-a-ruby-occi-framework/index.html
http://occi-wg.org/2012/04/02/rocci-a-ruby-occi-framework/index.html
https://doi.org/10.25080/Majora-95ae3ab6-01e
https://doi.org/10.5555/2011965
https://doi.org/10.1109/CTS.2013.6567202
https://doi.org/10.1109/CTS.2013.6567202
https://doi.org/10.3390/computers3040117
https://doi.org/10.1177/1094342018808359
https://sylabs.io/docs
https://slurm.schedmd.com
https://slurm.schedmd.com
https://doi.org/10.1145/2838734
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://doi.org/10.1177/1094342015594678

BIBLIOGRAPHY 167

[218] The Intersection of AI, HPC and HPDA: How Next-Generation Workflows Will Drive To-
morrow’s Breakthroughs (Damkroger, P. A., 2018). Retrieved from https : / / www .
top500.org. Accessed 7 August, 2019.

[219] The Kepler Project (Kepler Contributors, 2017). Retrieved from https://kepler-
project.org. Accessed 1 April, 2019.

[220] The OmpSs Programming Model (Barcelona Supercomputing Center, 2020). Retrieved from
https://pm.bsc.es/ompss. Accessed 27 February, 2020.

[221] The Swift Parallel Scripting Language (Swift Project Team, 2019). Retrieved from http:
//swift-lang.org/main. Accessed 26 March, 2019.

[222] Threading Building Blocks (Intel, 2019). Retrieved from https://software.intel.
com/en-us/tbb. Accessed 8 October, 2019.

[223] G. Toraldo. Opennebula 3 cloud computing. Packt Publishing Ltd, 2012.

[224] TORQUE Resource Manager (Adaptive Computing Inc., 2019). Retrieved from https:
//www.adaptivecomputing.com/products/torque. Accessed 3 December,
2019.

[225] A. Toshniwal and et al. “Storm@ twitter”. In: Proceedings of the 2014 ACM SIGMOD in-
ternational conference on Management of data. ACM. 2014, pp. 147–156. DOI: 10.1145/
2588555.2595641.

[226] V. K. Vavilapalli and et al. “Apache hadoop yarn: Yet another resource negotiator”.
In: Proceedings of the 4th annual Symposium on Cloud Computing. ACM, 2013, p. 5.

[227] C. Vecchiola, X. Chu, and R. Buyya. “Aneka: A software platform for .NET-based
cloud computing”. In: High Speed and Large Scale Scientific Computing 18 (July 2009),
pp. 267–295. DOI: 10.3233/978-1-60750-073-5-267.

[228] Virtual Machine Manager Documentation (Microsoft, 2020). Retrieved from https://
docs.microsoft.com/en-gb/system-center/vmm/?view=sc-vmm-2019.
Accessed 4 May, 2020.

[229] VM Ware (VMware Inc., 2017). Retrieved from http://www.vmware.com. Accessed
11 April, 2017.

[230] S. var der Walt, S. C. Colbert, and G. Varoquaux. “The NumPy Array: A Structure
for Efficient Numerical Computation”. In: Computing in Science and Engg. 13.2 (Mar.
2011), pp. 22–30. DOI: 10.1109/MCSE.2011.37.

[231] X. Wen and et al. “Comparison of open-source cloud management platforms: Open-
Stack and OpenNebula”. In: 2012 9th International Conference on Fuzzy Systems and
Knowledge Discovery. 2012, pp. 2457–2461.

[232] M. Wilde and et al. “Swift: A language for distributed parallel scripting”. In: Parallel
Computing 37(9) (2011), pp. 633–652. DOI: 10.1016/j.parco.2011.05.005.

[233] O. Yildiz et al. “Heterogeneous hierarchical workflow composition”. In: Computing
in Science & Engineering 21.4 (2019), pp. 76–86.

[234] A. B. Yoo, M. A. Jette, and M. Grondona. “Slurm: Simple linux utility for resource
management”. In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer,
2003, pp. 44–60.

[235] M. Zaharia and et al. “Discretized Streams: An Efficient and Fault-Tolerant Model
for Stream Processing on Large Clusters”. In: HotCloud 12 (2012), pp. 10–16. DOI:
10.5555/2342763.2342773.

[236] M. Zaharia and et al. “Discretized Streams: An Efficient and Fault-Tolerant Model for
Stream Processing on Large Clusters”. In: HotCloud 12 (2012), pp. 10–16.

https://www.top500.org
https://www.top500.org
https://kepler-project.org
https://kepler-project.org
https://pm.bsc.es/ompss
http://swift-lang.org/main
http://swift-lang.org/main
https://software.intel.com/en-us/tbb
https://software.intel.com/en-us/tbb
https://www.adaptivecomputing.com/products/torque
https://www.adaptivecomputing.com/products/torque
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.3233/978-1-60750-073-5-267
https://docs.microsoft.com/en-gb/system-center/vmm/?view=sc-vmm-2019
https://docs.microsoft.com/en-gb/system-center/vmm/?view=sc-vmm-2019
http://www.vmware.com
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1016/j.parco.2011.05.005
https://doi.org/10.5555/2342763.2342773

168 BIBLIOGRAPHY

[237] M. Zaharia and et al. “Spark: Cluster Computing with Working Set”. In: Proceedings
of the 2nd USENIX Conference on Hot Topics in Cloud Computing (2010). DOI: 10.5555/
1863103.1863113.

[238] C. Zheng and D. Thain. “Integrating Containers into Workflows: A Case Study Using
Makeflow, Work Queue, and Docker”. In: Proceedings of the 8th International Workshop
on Virtualization Technologies in Distributed Computing. ACM. 2015, pp. 31–38.

https://doi.org/10.5555/1863103.1863113
https://doi.org/10.5555/1863103.1863113

	Dedication
	Declaration of authorship
	Acknowledgements
	Abstract
	Resumen
	Resum
	Contents
	List of Figures
	List of Listings
	List of Tables
	List of Abbreviations
	Glossary
	I Introduction
	Introduction
	Context
	The Distributed Computing era
	The joint venture towards the Exascale Computing
	Task-based Workflows and Dataflows
	Batch Processing and Continous Processing

	Objectives and contributions
	Research Questions
	Detailed objectives
	Contributions to the field
	Publications

	Tools and methodology
	Tools
	Methodology
	Scientific method design
	Development strategy
	Validation strategy

	Dissertation structure

	State of the art
	Distributed Computing
	Task-based Workflows
	Software discussion and examples
	Taxonomy
	Analysis

	Dataflows
	Software discussion and examples
	Taxonomy
	Analysis

	Background
	COMPSs
	Programming model
	Java
	Python
	Annotations' summary

	Runtime system
	Task life-cycle

	MPI

	II Contributions
	Orchestration of complex workflows
	General overview
	Related Work
	Programming model annotations
	Method annotations
	Java
	Python

	Parameter annotations
	Prefix parameter annotation

	Runtime master
	Task detection
	Task scheduler

	Worker executors
	Invokers

	Use Case: NMMB-MONARCH
	Application overview
	Parallelisation design
	Evaluation
	Parallelisation analysis
	Computing infrastructure
	Simulation dataset
	Global performance
	Performance per step
	Behaviour analysis
	Scientific analysis

	Computational resources using container techonologies
	General overview
	Related Work
	Resource Orchestration Platforms
	Batch ROP
	Software discussion and examples
	Taxonomy
	Analysis

	Interactive ROP
	Software discussion and examples
	Taxonomy
	Analysis

	Description of reference ROP
	OpenStack
	OpenNebula
	Docker framework
	Kubernetes
	Singularity
	Mesos

	Architecture
	Static computational resources
	COMPSs static resources management
	New static container management
	Submission command
	Container image creation
	Container execution

	Use Case 1: Docker

	HPC computational resources
	COMPSs HPC resources management
	New HPC container management
	Use Case 2: Singularity

	Dynamic computational resources
	COMPSs dynamic resources management
	New dynamic container management
	Use Case 3: Docker
	Use Case 4: Mesos

	Evaluation
	Computing infrastructure
	Benchmark applications
	Docker
	Deployment evaluation
	Performance evaluation
	Adaptation evaluation

	Singularity
	Deployment evaluation
	Performance evaluation
	Porting of a real-world application: GUIDANCE

	Mesos
	Deployment evaluation
	Performance evaluation

	Discussion

	Automatic parallelisation
	General overview
	Related work
	PLUTO
	Loop tiling

	Architecture
	AutoParallel module
	Taskification of loop tiles
	Python extension for CLooG

	Programmability evaluation
	Centre of Mass

	Performance evaluation
	Computing infrastructure
	General description of the applications
	Cholesky
	LU
	QR

	Evaluation of the automatic data blocking
	GEMM

	Discussion

	Transparent execution of Hybrid Workflows
	General overview
	Related work
	Task-based frameworks
	Dataflow frameworks
	Hybrid frameworks

	Kafka
	Architecture
	Distributed Stream interface
	Distributed Stream implementations
	Object streams
	File streams

	Distributed Stream Library
	Programming model extensions
	Runtime extensions

	Use cases
	Use case 1: Continuous data generation
	Use case 2: Asynchronous data exchange
	Use case 3: External streams
	Use case 4: Dataflows with nested task-based workflows

	Evaluation
	Experimental setup
	Gain of processing data continuously
	Gain of removing synchronisations
	Stream writers and readers scalability and load balance
	Runtime overhead

	Discussion

	III Conclusions and future work
	Conclusions and future work
	Conclusions
	Future work

	IV Bibliography
	Bibliography

