175,440 research outputs found

    Giraffe translocation population viability analysis

    Get PDF
    Most populations of giraffes have declined in recent decades, leading to the recent IUCN decision to upgrade the species to Vulnerable status, and some subspecies to Endangered. Translocations have been used as a conservation tool to re-introduce giraffes to previously occupied areas or establish new populations, but guidelines for founding populations are lacking. To provide general guidelines for translocation projects regarding feasibility, we simulated various scenarios of translocated giraffe populations to identify viable age and sex distributions of founding populations using population viability analysis (PVA) implemented in Vortex software. We explored the parameter space for demography and the genetic load, examining how variation in founding numbers and sex ratios affected 100 yr probability of population extinction and genetic diversity. We found that even very small numbers of founders (N ≤ 10 females) can appear to be successful in the first decades due to transient positive population growth, but with moderate population growth rate and moderate genetic load, long-term population viability (probability of extinction 95% genetic diversity of the source population in an isolated population, 50 females and 5 males are recommended to compose the founding population. Sensitivity analyses revealed first-year survival and reproductive rate were the simulation parameters with the greatest proportional influence on probability of extinction and genetic diversity. These simulations highlight important considerations for translocation success and data gaps including true genetic load in wild giraffe populations

    Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of Medicago and chickpea.

    Get PDF
    Lentil (Lens culinaris Medik.) is a global food crop with increasing importance for food security in south Asia and other regions. Lens ervoides, a wild relative of cultivated lentil, is an important source of agronomic trait variation. Lens is a member of the galegoid clade of the Papilionoideae family, which includes other important dietary legumes such as chickpea (Cicer arietinum) and pea (Pisum sativum), and the sequenced model legume Medicago truncatula. Understanding the genetic structure of Lens spp. in relation to more fully sequenced legumes would allow leveraging of genomic resources. A set of 1107 TOG-based amplicons were identified in L. ervoides and a subset thereof used to design SNP markers for mapping. A map of L. ervoides consisting of 377 SNP markers spread across seven linkage groups was developed using a GoldenGate genotyping array and single SNP marker assays. Comparison with maps of M. truncatula and L. culinaris documented considerable shared synteny and led to the identification of a few major translocations and a major inversion that distinguish Lens from M. truncatula, as well as a translocation that distinguishes L. culinaris from L. ervoides. The identification of chromosome-level differences among Lens spp. will aid in the understanding of introgression of genes from L. ervoides into cultivated L. culinaris, furthering genetic research and breeding applications in lentil

    Rapid mapping of chromosomal breakpoints: from blood to BAC in 20 days

    Get PDF
    Structural chromosome aberrations and associated segmental or chromosomal aneusomies are major causes of reproductive failure in humans. Despite the fact that carriers of reciprocal balanced translocation often have no other clinical symptoms or disease, impaired chromosome homologue pairing in meiosis and karyokinesis errors lead to over-representation of translocations carriers in the infertile population and in recurrent pregnancy loss patients. At present, clinicians have no means to select healthy germ cells or balanced zygotes in vivo, but in vitro fertilization (IVF) followed by preimplantation genetic diagnosis (PGD) offers translocation carriers a chance to select balanced or normal embryos for transfer. Although a combination of telomeric and centromeric probes can differentiate embryos that are unbalanced from normal or unbalanced ones, a seemingly random position of breakpoints in these IVF-patients poses a serious obstacle to differentiating between normal and balanced embryos, which for most translocation couples, is desirable. Using a carrier with reciprocal translocation t(4;13) as an example, we describe our state-of-the-art approach to the preparation of patient-specific DNA probes that span or 'extent' the breakpoints. With the techniques and resources described here, most breakpoints can be accurately mapped in a matter of days using carrier lymphocytes, and a few extra days are allowed for PGD-probe optimization. The optimized probes will then be suitable for interphase cell analysis, a prerequisite for PGD since blastomeres are biopsied from normally growing day 3 – embryos regardless of their position in the mitotic cell cycle. Furthermore, routine application of these rapid methods should make PGD even more affordable for translocation carriers enrolled in IVF programs

    Multi-environment QTL mixed models for drought stress adaptation in wheat

    Get PDF
    Many quantitative trait loci (QTL) detection methods ignore QTL-by-environment interaction (QEI) and are limited in accommodation of error and environment-specific variance. This paper outlines a mixed model approach using a recombinant inbred spring wheat population grown in six drought stress trials. Genotype estimates for yield, anthesis date and height were calculated using the best design and spatial effects model for each trial. Parsimonious factor analytic models best captured the variance-covariance structure, including genetic correlations, among environments. The 1RS.1BL rye chromosome translocation (from one parent) which decreased progeny yield by 13.8 g m(-2) was explicitly included in the QTL model. Simple interval mapping (SIM) was used in a genome-wide scan for significant QTL, where QTL effects were fitted as fixed environment-specific effects. All significant environment-specific QTL were subsequently included in a multi-QTL model and evaluated for main and QEI effects with non-significant QEI effects being dropped. QTL effects (either consistent or environment-specific) included eight yield, four anthesis, and six height QTL. One yield QTL co-located (or was linked) to an anthesis QTL, while another co-located with a height QTL. In the final multi-QTL model, only one QTL for yield (6 g m(-2)) was consistent across environments (no QEI), while the remaining QTL had significant QEI effects (average size per environment of 5.1 g m(-2)). Compared to single trial analyses, the described framework allowed explicit modelling and detection of QEI effects and incorporation of additional classification information about genotypes

    The molecular basis of T cell acute lymphoblastic leukemia

    Get PDF
    T cell acute lymphoblastic leukemias (T-ALLs) arise from the malignant transformation of hematopoietic progenitors primed toward T cell development, as result of a multistep oncogenic process involving constitutive activation of NOTCH signaling and genetic alterations in transcription factors, signaling oncogenes, and tumor suppressors. Notably, these genetic alterations define distinct molecular groups of T-ALL with specific gene expression signatures and clinicobiological features. This review summarizes recent advances in our understanding of the molecular genetics of T-ALL

    High Levels of Genetic Divergence Detected in Sacramento Perch Suggests Two Divergent Translocation Sources

    Get PDF
    Translocation has been used to conserve imperiled fishes and create new fisheries. One species for which translocation has played a significant role is the Sacramento Perch Archoplites interruptus. Extirpated from its native range, the Sacramento Perch has been introduced throughout California and Nevada through multiple translocation events, though historical records are incomplete. Recent assessments of eight previously uncharacterized Sacramento Perch populations have prompted reevaluation of range-wide population structure to inform a genetic management plan for long-term resiliency of this species. We examined Sacramento Perch genetic diversity and population structure across the current range of the species using 12 microsatellite markers. We analyzed samples from the eight uncharacterized populations and seven populations previously studied by Schwartz and May (2008). Bayesian clustering supported two distinct clusters of Sacramento Perch herein designated as A and B. Within these two clusters we detected hierarchical substructure, likely due to genetic drift after population founding. Genetic differentiation among populations within the same cluster was relatively low (FST = 0.023–0.176), while differentiation among populations from different clusters was higher (FST = 0.190–0.320). The existence of two strongly divergent genetic clusters in Sacramento Perch suggests two distinct translocation sources, and we recommend that these clusters be treated as genetic management units (GMUs). The B GMU populations had fairly low levels of genetic diversity relative to the A GMU populations. All populations showed evidence of past bottlenecks, and most had effective population sizes placing them at risk for inbreeding depression. Human-facilitated gene flow is recommended to prevent further genetic diversity loss. Due to uncertainty surrounding Sacramento Perch translocation history and strong levels of divergence between the two GMUs, translocations should be facilitated only between populations within the same GMU

    Wheat-barley hybridization – the last forty years

    Get PDF
    Abstract Several useful alien gene transfers have been reported from related species into wheat (Triticum aestivum), but very few publications have dealt with the development of wheat/barley (Hordeum vulgare) introgression lines. An overview is given here of wheat 9 barley hybridization over the last forty years, including the development of wheat 9 barley hybrids, and of addition and translocation lines with various barley cultivars. A short summary is also given of the wheat 9 barley hybrids produced with other Hordeum species. The meiotic pairing behaviour of wheat 9 barley hybrids is presented, with special regard to the detection of wheat– barley homoeologous pairing using the molecular cytogenetic technique GISH. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the production and characterization of the latest wheat/barley translocation lines are presented. An overview of the agronomical traits (b-glucan content, earliness, salt tolerance, sprouting resistance, etc.) of the newly developed introgression lines is given. The exploitation and possible use of wheat/barley introgression lines for the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed

    Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step by step approach

    Get PDF
    Modern potato breeding requires over 100,000 seedlings per new variety. Main reasons are (1) the increasing number of traits that have to be combined in this tetraploid vegetatively propagated crop, and (2) an increasing number of traits (e.g., resistance to biotic stress) originates from wild species. Pre-breeding by introgression or induced translocation is an expensive way of transferring single traits (such as R-genes, coding for resistance to biotic stress) to the cultivated plant. The most important obstacle is simultaneous transfer of undesired neighbouring alien alleles as linkage drag. Stacking several genes from different wild sources is increasing this linkage drag problem tremendously. Biotechnology has enabled transformation of alien genes into the plant. Initially, transgenes were originating mainly from microorganisms, viruses or non-crossable plant species, or they were chimeric. Moreover, selection markers coding for antibiotic resistance or herbicide resistance were needed. Transgenes are a new gene source for plant breeding and, therefore, additional regulations like the EU Directive 2001/18/EC were developed. Because of a strong opposition against genetic modification of plants in Europe, the application of this Directive is strict, very expensive, hampering the introduction of genetically modified (GM) crops and the use of this technology by small and medium-sized enterprises (SMEs). Currently, GM crops are almost the exclusive domain of multinationals. Meanwhile, not only transgenes but also natural genes from the plant species itself or from crossable plant species, called cisgenes, are available and the alien selection genes can be avoided in the end product. This opens the way for cisgenic crops without alien genes. The existing EU directive for GM organisms is not designed for this new development. The cisgenes belong to the existing breeders¿ gene pool. The use of this classical gene pool has been regulated already in agreements regarding breeders¿ rights. We are proposing a step by step approach starting with a crop and gene specific derogation and monitoring towards a general exemption of cisgenic plants from the Directive. Two examples, i.e. development of cisgenic potato for resistance to Phytophthora infestans and cisgenic apple for resistance to Venturia inaequalis are discussed shortly for illustration of the importance of cisgenesis as a new tool for traditional plant breeding. Cisgenesis is simplifying introgression and induced translocation breeding tremendously and is highly recommended for SMEs and developing countrie
    corecore