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T cell acute lymphoblastic leukemias (T-ALLs) arise from the malignant transformation of hematopoietic progeni-
tors primed toward T cell development, as result of a multistep oncogenic process involving constitutive activation 
of NOTCH signaling and genetic alterations in transcription factors, signaling oncogenes, and tumor suppres-
sors. Notably, these genetic alterations define distinct molecular groups of T-ALL with specific gene expression 
signatures and clinicobiological features. This review summarizes recent advances in our understanding of the 
molecular genetics of T-ALL.

T cell acute lymphoblastic leukemias (T-ALLs) are aggressive hema-
tologic tumors resulting from the malignant transformation of T 
cell progenitors. T-ALL accounts for 10%–15% of pediatric and 25% 
of adult ALL cases (1) and is characteristically more frequent in 
males than females. Clinically, T-ALL patients show diffuse infil-
tration of the bone marrow by immature T cell lymphoblasts, high 
white blood cell counts, mediastinal masses with pleural effusions, 
and frequent infiltration of the central nervous system at diagnosis. 
Although originally associated with high relapse rates, the progno-
sis of T-ALL has gradually improved with the Introduction of inten-
sified chemotherapy, with cure rates in modern protocols reaching 
over 75% in children and about 50% in adults with this disease (2). 
However, the outcome of T-ALL patients with primary resistant or 
relapsed leukemia remains poor (3, 4). Therefore, current research 
efforts are focused on the search for targets for the development 
of more effective and less toxic antileukemic drugs (5), which will 
likely require a greater degree of specificity and an improved under-
standing of the molecular events that lead to the disease.

T cell transformation is a multi-step process in which differ-
ent genetic alterations cooperate to alter the normal mechanisms 
that control cell growth, proliferation, survival, and differentia-
tion during thymocyte development. In this context, constitutive 
activation of NOTCH1 signaling is the most prominent oncogenic 
pathway in T cell transformation (6). However, deletions of the 
CDKN2A locus in chromosome band 9p21, which encompasses 
the p16/INK4A and p14/ARF suppressor genes, are present in more 
than 70% of all T-ALL cases (1, 7). Thus, constitutive activation of 
NOTCH signaling cooperates with loss of p16/INK4A and p14/ARF 
in T cell transformation and constitutes the core of the oncogenic 
program in the pathogenesis of T-ALL.

In addition, T-ALLs characteristically show the translocation 
and aberrant expression of transcription factor oncogenes. These 
chromosomal rearrangements place T-ALL transcription factor 
oncogenes under the control of strong T cell–specific enhancers 
located in the TCRB (7q34) or TCRA–TCRD (14q11) loci, result-
ing in their aberrant expression in T cell progenitors. These onco-
genic transcription factors include basic helix-loop-helix (bHLH) 
family members such as TAL1 (8–10), TAL2 (11), LYL1 (12), and 
BHLHB1 (13); LIM-only domain (LMO) genes such as LMO1 and 
LMO2 (14–16); the TLX1/HOX11 (17–19), TLX3/HOX11L2 (1, 20), 

NKX2.1 (21), NKX2.2 (21), NKX2.5 (22), and HOXA homeobox 
(HOX) genes (23, 24); MYC (25); MYB (26); and TAN1, a truncated 
and constitutively activated form of the NOTCH1 receptor (27). In 
addition, some of these T cell transcription factor oncogenes can 
be activated as result of alternative genetic rearrangements. Most 
notably, the TLX3/HOX11L2 locus is recurrently translocated to T 
cell regulatory sequences in the proximity of the BCL11B locus and 
only rarely translocated to the TCR loci (20). In addition, small 
intrachromosomal deletions in chromosome 1p32 result in TAL1 
overexpression (28), and cryptic deletions in chromosome 11p13 
can lead to activation of the LMO2 oncogene (29).

Importantly, gene expression profiling studies have revealed a 
limited number of well-defined molecular groups of T-ALL (1, 21, 
23, 30), which share unique gene expression signatures reflect-
ing distinct stages of arrest during T cell development (1). Early 
immature T-ALLs show an early block at the double-negative stage 
of thymocyte development (1, 31, 32). In contrast, early cortical 
T-ALLs are characteristically CD1a, CD4, and CD8 positive and 
are typically associated with activation of the TLX1, TLX3, NKX2.1, 
and NKX2.2 homeobox genes (1, 21). Finally, late-cortical thymo-
cyte T-ALLs express CD4, CD8, and CD3 and show activation of 
the TAL1 transcription factor oncogene (1). Table 1 provides an 
overview of all main driving genetic lesions that characterize these 
unique molecular genetic T-ALL subtypes.

The diversity of genetic lesions involved in the pathogenesis of 
T-ALL is further complicated by a number of recurrent cytogenetic 
and molecular alterations that are common between all molecu-
lar subtypes and cause deregulation in specific cellular processes, 
including cell cycle signaling, cell growth and proliferation, chro-
matin remodeling, T cell differentiation, and self-renewal (Table 2).

Recent studies have linked the early immature T-ALL group with 
the activation of a transcriptional program related to hematopoietic 
stem cells and myeloid progenitors (32, 33), aberrant expression of 
the MEF2C gene (21), mutations in acute myeloid leukemia onco-
genes and tumor suppressors (32, 33) and inactivation of important 
transcription factors such as RUNX1, GATA3, and ETV6 (32, 33). 
Notably, these tumors frequently show absence of biallelic TCRγ 
deletions (34) and are associated with a very poor prognosis (31, 34).

Constitutive activation of NOTCH1 signaling in T-ALL
The NOTCH signaling pathway plays a critical role in cell lineage 
commitment decisions during development (ref. 35 and Figure 1). 
Aberrant NOTCH1 signaling was originally linked to the patho-
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genesis of T-ALL by the cloning of the t(7;9)(q34;q34.3) chromo-
somal translocation, which leads to the expression of a truncated 
and constitutively active form of NOTCH1 (27). However, the cen-
tral role of NOTCH1 in T cell transformation was only realized 
upon the identification of activating mutations in the NOTCH1 
gene present in over 50% of T-ALL cases (6). NOTCH1 mutations 
typically involve specific domains responsible for controlling the 
initiation and termination of NOTCH signaling (6, 36). In addition 
FBXW7 mutations, present in about 15% of T-ALL cases, contribute 
to NOTCH activation by impairing the proteasomal degradation 
of activated NOTCH1 in the nucleus (refs. 37, 38, and Figure 2).

The identification of activating NOTCH1 mutations, present 
in nearly 60% of T-ALL patients, has created enormous interest 
in developing molecularly tailored therapies for T-ALL (6). Most 
notably, γ-secretase inhibitors (GSIs), which block the proteolytic 
cleavage of the NOTCH receptors and preclude the release of acti-
vated NOTCH1 (ICN1) from the membrane, have been proposed 
as potential targeted therapy in T-ALL (6, 39–42). More recently, 
stapled peptides targeting the NOTCH transcriptional complex 
and NOTCH1-specific inhibitory antibodies have been proposed 
as alternative anti-NOTCH1 therapies for the treatment of T-ALL 
(refs. 43, 44, and Figure 1).

A number of studies have recently addressed the prognostic sig-
nificance of NOTCH1 and FBXW7 mutations in T-ALL (45–51). 
Overall, these studies show that NOTCH activation is associated 
with improved early therapeutic response and increased sensitiv-
ity to glucocorticoids. However, this early benefit only translates 
into improved overall survival in some studies (45–48). The asso-

ciation of NOTCH1 mutations with increased glucocorticoid 
response is particularly intriguing given that expression of acti-
vated NOTCH1 can impair glucocorticoid-induced cell death in 
thymocytes (52) and that blocking NOTCH1 signaling with GSIs 
can reverse glucocorticoid resistance in some T-ALLs (53). This last 
notion was recently tested in a preclinical setting using a combina-
tion of PF-03084014, a clinically-relevant GSI, and dexamethasone 
in glucocorticoid-resistant T-ALL. The study revealed that this glu-
cocorticoid/GSI combination has a synergistic antileukemic effect 
in human T-ALL cell lines, primary human T-ALL patient samples, 
and in an in vivo mouse xenograft model of T-ALL (54).

Alterations in cell cycle regulators
The CDKN2A locus in the short arm of chromosome 9 contains 
the p16INK4A and p14ARF tumor suppressor genes. P16INK4A 
directly blocks cyclin D–CDK4/6 complexes, whereas p14ARF 
inhibits MDM2, a negative regulator of the TP53 oncoprotein 
(55, 56). CDKN2A deletions are the most frequent abnormality in 
T-ALL, present in over 70% of patients (7). In addition, the t(12;14)
(p13;q11) and t(7;12)(q34;p13) translocations can induce aber-
rantly high levels of expression of the CCND2 cell cycle regulator 
(57) and chromosomal deletions recurrently inactivate RB1 and 
CDKN1B in some T-ALL cases (58, 59).

The prognostic implications of loss of heterozygosity at the short 
arm of chromosome 9 were evaluated in pediatric T-ALL patients 
treated according to the Berlin-Frankfurt-Munster regimen (60). 
This study showed that loss of heterozygosity at 9p was associated 
with a favorable initial treatment response in T-ALL (60).

Table 1
Genetic lesions that define molecular-genetic subtypes in T-ALL

Gene category Gene target Genetic rearrangement Outcome (ref.) FrequencyA (ref.)
bHLH family members TAL1 t(1;14)(p32;q11) Good (66–68) 3% (28)
  t(1;7)(p32;q34) Good (66–68) 3% (28)
  1p32 deletion Good (66–68) 16%–30% (61)
 TAL2 t(7;9)(q34;q32) NA 1% (11, 30)
 LYL1 t(7;19)(q34;p13) NA 1% (12)
 BHLHB1 t(14;21)(q11.2;q22) NA 1% (13)
LMO family members LMO1 t(11;14)(p15;q11) NA 1% (15, 30)
  t(7;11)(q34;p15) NA 1% (15, 30)
 LMO2 t(11;14)(p13;q11) NA 6% (126)
  t(7;11)(q34;p13) NA 6% (126)
  11p13 deletion NA 3% (29)
 LMO3 t(7;12)(q34;p12) NA <1% (21)
Homeobox family members TLX1 t(11;14)(p15;q11) Good (76) 5%–10% (126)
    30% (76, 88)
 TLX3 t(11;14)(p15;q11) Poor (83, 88, 126) 20% (20)
   No impact (67) 5% (84)
   Good (127) 5% (84)
 HOXA Inv(7)(p15q34) NA 3% (23, 128)
  t(7;7)(p15;q34) NA 3% (23, 128)
 HOXA (CALM-AF10) t(10;11)(p13;q14) Poor (87, 126) 5%–10% (87)
 HOXA (MLL-ENL) t(11;19)(q23;p13) NA 1% (88)
 HOXA (SET-NUP214) 9q34 deletion No impact (33) 3% (30)
  inv(14)(q11.2q13) NA 
 NKX2.1 inv(14)(q13q32.33) NA 5% (21)
  t(7;14)(q34;q13) NA 
 NKX2.2 t(14;20)(q11;p11) NA 1% (21)
Proto-oncogene c-MYB t(6;7)(q23;q34) NA 3% (26)

AFrequency refers to the frequency in which each mutation occurs in the patient population.
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T-ALL–specific transcription factor oncogenes
Class II bHLH transcription factors. Overexpression and aberrant 
activation of a number of bHLH transcription factors activated 
by chromosomal translocations is a frequent oncogenic event in 
T-ALL. These proteins are characterized by a basic domain that 
mediates DNA binding and two α-helices connected by a loop 
that are involved in the formation of homodimeric and heterodi-
meric complexes. The TAL1 gene in chromosome band 1p32 is a 
key regulator of hematopoietic stem cell development expressed 
in hematopoietic progenitors, mast cells, and erythroid and mega-
karyocyte progenitors (5). Abnormal expression of TAL1 is present 
in approximately 60% of T-ALL cases as a result of various chromo-
somal rearrangements (1, 61). Thus, in 3% of childhood T-ALL, the 
translocation t(1;14)(p32;q11) places TAL1 gene expression under 
the control of TCRA/D enhancers. In addition, 16%–30% of T-ALLs 
harbor a small intrachromosomal rearrangement that places TAL1 
under the control of the promoter of the neighbor gene STIL, 
which is highly expressed in T cells (28). T-ALL cases with TAL1 
expression show developmental arrest at the late double-positive 

stage of thymocyte development (1). In addition, LYL1, TAL2, and 
BHLHB1, three genes encoding bHLH factors closely related to 
TAL1, are translocated and aberrantly expressed in rare cases of 
T-ALL (11–13). The oncogenic potential of TAL1 is illustrated 
by the induction of T-ALL in transgenic mice expressing TAL1 in 
developing thymocytes (62, 63). In T-ALL cells, TAL1 forms pri-
marily inactive transcriptional complexes that contain E proteins 
and the LMO factors, LMO1 and LMO2, resulting in decreased 
expression of E protein target genes. Thus, although TAL1 may be 
present in transcriptional complexes activating the expression of 
some target genes (64), it has been proposed that the oncogenic 
activity of TAL1 could be mediated primarily by reducing the level 
of transcriptional activity of promoters normally controlled by E 
proteins (65). From a clinical point of view, a number of studies 
have suggested that late-cortical thymocyte T-ALLs showing TAL1 
gene rearrangements have a more favorable outcome (66–68).

LMO proteins. LIM domain proteins were originally linked with 
T-ALL in cases harboring the t(11;14)(p15;q11) and t(11;14)
(p13;q11) chromosomal translocations involving the LMO1 and 

Table 2
Classification of other recurrent genetic alterations in T-ALL

Category Gene target Genetic rearrangement Outcome (ref.) Frequency (ref.)
NOTCH1 pathway NOTCH1 t(7;9)(q34;p13) NA <1% (27)
  Activating mutation Good (51, 129) >60% (6)
   GPR (45, 49, 50) 
   No impact (48) 
 FBXW7 Inactivating mutation NA 8%–30% (37, 38)
Cell cycle defects CDKN2A/2B 9p21 deletion methylation Good (60) 70% (7)
 CCND2 t(7;12)(q34;p13) NA 1% (57)
  t(12;14)(p13;q11)  
 RB1 13q14 deletion No impact (33) 4% (58)
 CDKN1B 12p13 deletion NA 2% (59)
Cell growth transcription factor  MYC t(8;14)(q24;q11) NA 1% (25)
tumor suppressors WT1 Inactivating mutation/deletion No impact (80) 10% (80)
 LEF1 Inactivating mutation/deletion NA 10%–15% (93)
 ETV6 Inactivating mutation/deletion No impact (33) 13% (32, 33)
 BCL11B Inactivating mutation/deletion No impact (33) 10% (98)
 RUNX1 Inactivating mutation/deletion No impact (33) 10%–20% (100, 101)
   Poor (101) 
 GATA3 Inactivating mutation/deletion Poor (33) 5% (33)
Signal transduction PTEN Inactivating mutation No impact (106, 130) 10% (33, 106, 130)
  10q23 deletion Poor (33) 10% (33, 106, 130)
 NUP214-ABL1 Episomal 9q34 amplification Poor (108) 4% (108)
   No impact (131) 
 EML1-ABL1 t(9;14)(q34;q32) NA <1% (109)
 ETV6-ABL1 t(9;12)(q34;p13) NA <1% (110)
 BCR-ABL1 t(9;22)(q34;q11) Poor (132) <1% (132)
 NRAS Activating mutation No impact (33) 5%–10% (32, 113)
 NF1 Inactivating mutation/deletion No impact (33) 3% (114)
 JAK1 Activating mutation No impact (33) 4%–18% (118, 119)
 ETV6-JAK2 t(9;12)(p24;p13) NA <1% (117)
 JAK3 activating mutation No impact (33) 5% (33)
 FLT3 activating mutation No impact (33) 2%–4% (133, 134)
 IL7R activating mutation No impact (33) 10% (120, 121)
Chromatin remodeling EZH2 Inactivating mutation/deletion Poor (33) 10%–15% (33, 135)
 SUZ12 Inactivating mutation/deletion No impact (33) 10% (33)
 EED Inactivating mutation/deletion No impact (33) 10% (33)
 PHF6 Inactivating mutation/deletion No impact (81) 20%–40% (81)

GPR, good prednisone response.
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LMO2 genes, respectively (14–16). Although these translocations 
only occur in 9% of pediatric T-ALL, aberrant LMO2 expression can 
be found in up to 45% of T-ALL cases, suggesting additional mech-
anisms of activation. Unlike bHLH proteins, LMO1 and LMO2 
do not interact directly with DNA; but they form transcriptional 
complexes with TAL1 and LYL1 (1, 69). Consistently, activation of 
LMO1 and LMO2 is most frequently found in cases with deregu-
lated TAL1 and/or LYL1 expression (1). In line with this notion, 
the oncogenic activity of Lmo1 or Lmo2 in transgenic mice (70, 71) 
was shown to be enhanced in double-transgenic animals express-
ing TAL1 in developing thymocytes (69, 72).

Although many of the genetic programs controlled by oncogenic 
LMO factors remain to be elucidated, a recent report from McCor-
mack and coworkers has shown that forced expression of Lmo2 in 
mouse T cell progenitor cells confers self-renewal capacity to this 
normally non–self-renewing population (73). These results suggest 
a close relationship between the activation of stem cell properties 
and the oncogenic effects of LMO2 in T cell precursors (73). How-
ever, this model does not seem to reflect the late-cortical immu-
nophenotypic arrest observed in primary LMO2-rearranged human 
T-ALL samples. LMO2 rearrangements predicted poor outcome in a 
stratified analysis of pediatric T-ALL patients (29). However, given 
the small number of patients that harbor this specific genetic rear-
rangement, the significance of these findings needs to be validated 
in larger and independent T-ALL patient cohorts.

HOX transcription factor oncogenes TLX1, TLX3, and HOXA. HOX 
transcription factors play essential roles in body patterning and 
organogenesis during development. TLX1 is the founding member 
of a family of HOX genes that includes TLX2 and TLX3 (74). TLX1 
was originally identified as the gene translocated into the TCRA/D 
locus in the recurrent t(10;14)(q24;q11) in T-ALL (17–19, 75).  
This genetic rearrangement induces aberrant TLX1 expression 
and occurs in about 5%–10% of pediatric and 30% of adult T-ALLs 
(1, 76). Recently, the leukemogenic role of TLX1 in T cell trans-
formation has been firmly established using a TLX1 transgenic 
mouse model that developed clonal T cell leukemias (77). Notably, 
TLX1-induced T-ALLs in mice shared a common transcriptional 
program with TLX1-positive human tumors characterized by the 
downregulation of TLX1 direct target genes.

TLX3 is overexpressed in 20%–25% of pediatric and 5% of adult 
T-ALLs harboring the t(5;14)(q35;q32) translocation (20). This 
rearrangement places the TLX3 oncogene under the control of 
strong T cell regulatory elements in the BCL11B locus (20). Cur-
rently, the in vivo role of aberrant TLX3 expression in the patho-
genesis of T-ALL remains to be established.

TLX1 and TLX3 leukemias share an overlapping mechanism 
of transformation, have convergent gene expression signatures, 
and show specific cooperating mutations rarely present in non-
TLX–induced leukemias, including the NUP214-ABL1 fusion 
oncogene and mutations in the PTPN2, Wilms tumor 1 (WT1), 
and PHF6 tumor suppressors (78–81). In addition, it was recent-
ly proposed that the unique cortical thymic maturation arrest 
in TLX-induced tumors may be related to the binding of TLX1/
TLX3-ETS1 complexes to TCRA enhancer sequences, with the 
consequent downregulation of TCRA gene rearrangement and 
expression (82). TLX1 expression has been linked with a favor-
able prognosis and a low risk of relapse in children and adults 
(1, 76). However, aberrant TLX3 expression is associated with 
a less favorable prognosis and a higher incidence of relapse in 
some studies (83, 84).

Finally, about 3% of T-ALL patients harbor translocations 
in the HOXA cluster of HOX genes in 7p15 into the TCRB and 
TCRG loci, resulting in aberrant expression of the HOXA10 and 
HOXA9 genes (23). In addition, chromosomal translocations that 
generate fusion transcripts encoding chimeric transcription fac-
tor oncogenes can also be found in T-ALL. About 5% of T-ALLs 
express the MLL-AFF1 (MLL-AF4) and MLL-MLLT1 (MLL-ENL) 
fusion genes (85). Notably, MLL fusion oncogenes are associated 
with poor prognosis in precursor B cell ALL, although the MLL-
MLLT1 fusion rearrangement seems to confer a favorable progno-

Figure 1
Schematic representation of NOTCH1 signaling in T cell progenitors. 
Interaction of the NOTCH ligand delta-like 4, expressed on the sur-
face of thymic stroma cells, with NOTCH1 triggers a double proteo-
lytic cleavage of the receptor in T cell progenitors first by the ADAM10 
metalloprotease and subsequently by the gamma secretase complex. 
Release of the intracellular domains of NOTCH1 from the membrane 
activates the expression of NOTCH target genes in the nucleus. 
FBXW7 recognizes the PEST domain of activated NOTCH1 and termi-
nates NOTCH signaling in the proteasome. Inhibition of ADAM10 cleav-
age with anti-NOTCH1 inhibitory antibodies, blockage of γ-secretase 
activity with small-molecule inhibitors, and disruption of the NOTCH1 
nuclear transcriptional complex with small SAMH1 peptides are all 
approaches to effectively block NOTCH1 signaling in T-ALL.
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sis in T-ALL (1, 86). In addition, the PICALM-MLLT10 fusion onco-
gene is present in 5%–10% of T-ALLs (23, 87), and a rare cryptic 
del(9)(q34.11q34.13) deletion generating the SET-NUP214 fusion 
gene in T-ALL has been described (30). A common feature of leu-
kemias harboring these fusion transcription factor oncogenes is 
the aberrant expression of HOXA genes (1, 23, 30, 87, 88), suggest-
ing a more general pathogenic role of HOXA dysregulation in the 
pathogenesis of T-ALL.

Proto-oncogenes. The MYC oncogene is activated in 1% of T-ALLs 
as result of the t(8;14)(q24;q11) translocation (25). However, MYC 
is broadly activated in T-ALL and functions as a critical NOTCH1 
direct target gene, promoting cell growth and proliferation (89, 90).

c-MYB, a leucine zipper transcription factor oncogene, is trans-
located and overexpressed in T-ALL cases with the t(6;7)(q23;q32). 
MYB translocations are characteristically found in childhood 
T-ALLs diagnosed before 2 years of age and show a marked 
increase in the expression of proliferation and mitosis genes (26). 
In addition, focal duplications of the MYB locus are present in 
about 10% of T-ALLs (91, 92).

Loss of transcription factor tumor suppressor genes
Over the last few years, a wide variety of tumor suppressor genes 
have been shown to be mutated and deleted in T-ALL. However, 
the specific role of most of these transcriptional regulators in T 
cell transformation remains to be elucidated and is an area of 
active current investigation.

Deletions and mutations in the WT1 gene are present in about 
10% of T-ALLs (78, 80). WT1 mutations found in T-ALL are pre-
dominantly heterozygous frameshift mutations resulting in trun-
cation of the C-terminal zinc finger domains of this transcription 
factor and are frequently associated with oncogenic expression of 
the TLX1, TLX3, or HOXA oncogenes (78, 80).

Monoallelic or biallelic deletions involving the LEF1 locus and 
mutations in the LEF1 gene are present in about 15% of T-ALL 
cases (93). Notably, these leukemias show a characteristic differ-
entiation arrest at the early cortical thymocyte stage of differentia-
tion that resembles that of TLX1-positive tumors (93).

ETV6 encodes an ETS family transcriptional repressor strictly 
required for the development of hematopoietic stem cells (94, 95) 
and plays a prominent role in precursor B cell ALLs harboring 
the t(8;21) translocation, which results in the expression of the 
ETV6-RUNX1 oncogene (96). ETV6 mutations encoding truncated 
proteins with dominant-negative activity are frequently found in 
early immature T-ALLs (32, 33).

BCL11B encodes a transcription factor critically required for 
normal T cell development (97). Loss-of-function mutations 
and heterozygous deletions of the BCL11B are recurrently found 
in T-ALL, suggesting that BCL11B haploinsufficiency may be an 
important pathogenetic event in T cell leukemogenesis (77, 98).

RUNX1 is an important transcription factor tumor suppressor 
gene involved in the pathogenesis of acute myeloid and precursor 
B cell leukemias (99). A recent systems biology study that aimed at 
deciphering the transcriptional regulatory network controlled by 
TLX1 and TLX3 in the pathogenesis T-ALL revealed a prominent 
role for RUNX1 in the control of the oncogenic program down-
stream of the TLX1 and TLX3 HOX transcription factor oncogenes 
(100). Moreover, loss-of-function mutations in RUNX1 can be 
found in immature T-ALL samples, suggesting a tumor suppres-
sor role for RUNX1 in T cell transformation (33, 100, 101).

GATA3 is an important regulator of T cell differentiation and has 
a crucial role in the development of early T cell progenitors (102). 
Recurrent somatic GATA3 mutations have been exclusively identi-
fied in the early immature ETP-T-ALL subtype (33). These GATA3 
mutations cluster in the zinc finger DNA-binding protein domain, 
recurrently involve missense mutations targeting a specific R276 
residue critically required for DNA binding (33), and may be respon-
sible for the early block in T cell development of these leukemias.

Genetic alterations in the chromatin remodeling
The polycomb repressive complex 2 (PRC2) is the “writer” of a 
major repressive chromatin modification, histone H3 lysine 27 

Figure 2
Prevalence and mechanisms of aberrant NOTCH1 signaling in T-ALL 
(40, 125). Schematic representation of the NOTCH1 receptor structure 
is shown for each type of NOTCH1 mutation found in T-ALL. The resting, 
membrane-bound domain structure of the NOTCH1 receptor is shown 
as depicted and described in Figure 1. Crossed-out domains in NOTCH1 
and FBXW7 indicate the targeted areas disrupted in these proteins for 
each of the NOTCH1 and FBXW7 mutant alleles found in T-ALL.
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trimethylation (H3K27me3). Two recent studies reported loss-
of-function mutations and deletions of EZH2 and SUZ12 genes, 
which encode two critical components of the PRC2 complex, in 
up to 25% of T-ALLs (33, 103). In addition, NOTCH1 activation 
was shown to specifically induce loss of the repressive H3K27me3 
mark by antagonizing PRC2 complex activity during T cell trans-
formation, suggesting a dynamic interplay between oncogenic 
NOTCH1 activation and loss of PRC2 function in the pathogen-
esis of T-ALL (103). Importantly, conditional ablation of Ezh2 in 
early hematopoietic progenitors using a conditional knockout 
mouse model revealed a high frequency of spontaneous γδ T cell 
leukemias, further establishing the PRC2 complex as a bona fide 
tumor suppressor in the pathogenesis of T-ALL (104).

PHF6, a plant homeodomain–containing (PHD-containing) fac-
tor with a proposed role in epigenetic regulation of gene expres-
sion, is mutated and deleted about 16% of pediatric and 38% of 
adult T-ALL cases (81). Notably, PHF6 is located in Xq26, and 
PHF6 mutations are almost exclusively found in male patients 
with T-ALL (81). Proteins harboring similar PHD domains have 
been implicated in reading methylation marks present at specific 
histone tail residues, suggesting that loss of PHF6 might influence 
genome-wide chromatin structure.

Genetic alterations in signal transduction pathways
In addition to the above mentioned genetic lesions in transcrip-
tion factors and chromatin regulators, genes encoding critical 
components of signaling pathways controlling the growth, pro-
liferation, lineage commitment, and survival of T cell progenitors 
are frequently mutated in T-ALL.

The PTEN tumor suppressor encodes a critical negative regu-
lator of the PI3K-AKT signaling pathway. PTEN specifically 
dephosphorylates and inactivates PIP3, the lipid second messen-
ger product of the PI3K complex responsible for recruitment and 
activation of the AKT1 kinase (105). Deletion mutations in PTEN 
occur in 5%–10% of T-ALL cases, and overall 17% of T-ALLs lack 
PTEN protein expression (106).

ABL1 rearrangements occur in about 8% of T-ALLs (107), and 
6% of T-ALL cases show a complex rearrangement resulting in 
the episomal amplification and expression of the NUP214-ABL1 
fusion oncogene (108). Interestingly, the NUP214-ABL1 rearrange-
ment is almost exclusively found TLX1 and TLX3 T-ALLs (108), 
which suggests a specific functional interaction between onco-
genic ABL1 signaling and TLX1 expression in the pathogenesis 
of T-ALL. Related ABL1 rearrangements present in T-ALL include 
EML1-ABL1 and ETV6-ABL1 (109, 110). Notably, preclinical test-
ing of small-molecule tyrosine kinase inhibitors (developed for 
the treatment of BCR-ABL1–positive leukemias) in NUP214-ABL1 
tumors support the hypothesis that ABL1 inhibition may be used 
as a targeted therapy in these patients (111, 112).

Prototypical RAS-activating mutations that result in the accu-
mulation of Ras in its active, GTP-bound conformation have been 
described in 5%–10% of T-ALLs, particularly in the early immature 
group (32, 33, 113). In addition, cryptic deletions and/or muta-
tions in the neurofibromatosis type 1 (NF1) gene, which encodes a 
negative regulator of the Ras pathway, occur in 3% of T-ALL (114). 
Importantly, a conditional K-RasG12D murine knockin model, in 
which oncogenic K-Ras was expressed from its endogenous pro-
moter, resulted in a highly penetrant, aggressive T cell leukemia/
lymphoma, further confirming an important role for RAS signal-
ing in T cell transformation (115).

The IL-7 receptor signals through the JAK/STAT pathway and 
is strictly required to support the growth, proliferation, and sur-
vival of early T cell progenitor cells (116). Aberrant JAK signaling 
was first linked with T-ALL in the context of the t(9;12)(p24;p13) 
translocation, a rare rearrangement encoding the constitutively 
active ETV6-JAK2 kinase fusion oncoprotein (117). More recent-
ly, activating mutations in JAK1 and JAK3 have been reported in 
T-ALLs (33, 118, 119). Moreover, somatic gain-of-function muta-
tions in the IL7R gene, encoding the IL-7 receptor and resulting in 
constitutive activation of JAK/STAT signaling, have recently been 
identified in approximately 10% of T-ALLs (120, 121).

The challenge ahead: predicting prognosis and 
developing molecularly targeted drugs
In conclusion, T-ALL is an aggressive hematologic cancer for 
which limited therapeutic options are available for patients 
with primary resistant or relapsed disease, underscoring the 
need for better treatment stratification protocols and for iden-
tifying more effective antileukemic drugs (2). This imperative is 
further supported by studies of the long-term effects of intensi-
fied chemotherapy in T-ALL survivors, which show that gains in 
leukemia-free survival have been achieved in parallel with signifi-
cant increases in rates of acute and chronic life-threatening and 
debilitating toxicities (122).

The identification of activating NOTCH1 mutations that are 
present in over 60% of T-ALL patients (6) created enormous 
interest in developing molecularly tailored therapies for T-ALL 
and prompted the initiation of clinical trials to test the effec-
tiveness of blocking NOTCH1 signaling with GSIs. The combi-
nation of GSIs and glucocorticoids may have increased efficacy 
and decreased toxicity in the treatment of T-ALL (123). In addi-
tion, the presence of activated kinase oncoproteins in a subset 
of T-ALLs may offer an additional opportunity for molecularly 
tailored therapies. Given the efficacy of ABL1 kinase inhibi-
tors for the treatment of BCR-ABL1–positive leukemias and 
the sensitivity of NUP214-ABL1 to these inhibitors (108, 111, 
124), NUP214-ABL1–positive T-ALL patients may benefit from 
the inclusion of ABL1 inhibitors in their treatment schemes. 
Similarly, patients with activating JAK1 (119), JAK3 (33), or IL7R 
mutations (120, 121) might benefit from the JAK/STAT inhibi-
tors currently under development for the treatment of myelo-
proliferative disorders.

Finally, understanding the pathogenesis of T-ALL is critical for 
the development of prognostic markers that may identify patients 
at increased risk of relapse. In light of this, recent studies have 
shown that early immature T-ALLs in children (31) and those with 
an absence of biallelic TCRG deletion (34) have a very poor prog-
nosis. Intensive genetic characterization of these early immature 
leukemias has revealed great heterogeneity among these tumors 
(33). Nevertheless, these early immature leukemias share a gene 
expression signature closely related to hematopoietic stem cells and 
show overlapping myeloid and T-lymphoid immunophenotypic 
features and genetic alterations, suggesting that they may be more 
adequately treated with myeloid-based chemotherapy (32, 33).

Overall, the identification and molecular characterization of 
new oncogenes and tumor suppressors has uncovered much 
of the mechanisms involved in the pathogenesis of T-ALL. The 
development of representative and well-characterized xenograft 
and genetic animal models of T-ALL for preclinical testing, the 
identification of solid biomarkers of treatment response to stan-
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dard therapies, and the development of a dynamic framework of 
clinical trials that facilitates testing new and emerging drugs and 
drug combinations in the clinic are essential to ensure the effective 
translation of this information to the clinic in the form of molecu-
larly tailored therapies for the treatment of T-ALL.
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