7 research outputs found

    Owl ontology quality assessment and optimization in the cybersecurity domain

    Get PDF
    The purpose of this dissertation is to assess the quality of ontologies in patterns perceived by cybersecurity context. A content analysis between ontologies indicated that there were more pronounced differences in OWL ontologies in the cybersecurity field. Results showed an increase of relevance from expressivity to variability. Additionally, no differences were found in strategies used in most of the incidents. The ontology background needs to be emphasized to understand the quality of the phenomena. In addition, ontologies are a means of representing an area of knowledge through their semantic structure. The search of information and integration of data from different origins provides a common base that guarantees the coherence of the data. This can be categorized and described in a normative way. The unification of information with the world that surrounds us allows to create synergies between entities and relationships. However, the area of cybersecurity is one of the real-world domains where knowledge is uncertain. It is therefore necessary to analyze the challenges of choosing the appropriate representation of un-structured information. Vulnerabilities are identified, but incident response is not an automatic mechanism for understanding and processing unstructured text found on the web.O objetivo desta dissertação foi avaliar a qualidade das ontologias, em padrões percebidos pelo contexto de cibersegurança. Uma análise de conteúdo entre ontologias indicou que havia diferenças mais pronunciadas por ontologias OWL no campo da cibersegurança. Os resultados mostram um aumento da relevância de expressividade para a variabilidade. Além disso, não foram encontradas diferenças em estratégias utilizadas na maioria dos incidentes. O conhecimento das ontologias precisa de ser enfatizado para se entender os fenómenos de qualidade. Além disso, as ontologias são um meio de representar uma área de conhecimento através da sua estrutura semântica e facilita a pesquisa de informações e a integração de dados de diferentes origens, pois fornecem uma base comum que garante a coerência dos dados, categorizados e descritos, de forma normativa. A unificação da informação com o mundo que nos rodeia permite criar sinergias entre entidades e relacionamentos. No entanto, a área de cibersegurança é um dos domínios do mundo real em que o conhecimento é incerto e é fundamental analisar os desafios de escolher a representação apropriada de informações não estruturadas. As vulnerabilidades são identificadas, mas a resposta a incidentes não é um mecanismo automático para se entender e processar textos não estruturados encontrados na web

    Towards an Ontology-Based Phenotypic Query Model

    Get PDF
    Clinical research based on data from patient or study data management systems plays an important role in transferring basic findings into the daily practices of physicians. To support study recruitment, diagnostic processes, and risk factor evaluation, search queries for such management systems can be used. Typically, the query syntax as well as the underlying data structure vary greatly between different data management systems. This makes it difficult for domain experts (e.g., clinicians) to build and execute search queries. In this work, the Core Ontology of Phenotypes is used as a general model for phenotypic knowledge. This knowledge is required to create search queries that determine and classify individuals (e.g., patients or study participants) whose morphology, function, behaviour, or biochemical and physiological properties meet specific phenotype classes. A specific model describing a set of particular phenotype classes is called a Phenotype Specification Ontology. Such an ontology can be automatically converted to search queries on data management systems. The methods described have already been used successfully in several projects. Using ontologies to model phenotypic knowledge on patient or study data management systems is a viable approach. It allows clinicians to model from a domain perspective without knowing the actual data structure or query language

    Design Approach to Unified Service API Modeling for Semantic Interoperability of Cross-enterprise Vehicle Applications

    Get PDF
    This work was partially supported by Ministry of Education, Youth and Sports of the Czech Republic, university specific research, project SGS-2019-018 Processing of heterogeneous data and its specialized applications

    Refactoring in der Ontologiegetriebenen Softwareentwicklung

    Get PDF
    In der vorliegenden Arbeit wird ein Konzept zur Entwicklung und Evolution ontologiegetriebener Softwaresysteme erarbeitet. Ontologiegetriebene Softwaresysteme sind Softwaresysteme, bei denen Ontologien als zentrale Designdokumente zum Einsatz kommen. Ontologien sind gleichzeitig zentrale Bestandteile des ausführbaren Systems und dienen zur Strukturbeschreibung und Datenhaltung. Dabei werden Teile des Softwaresystems automatisch aus den Strukturbeschreibungen der Ontologie abgeleitet. Diese Arbeit konzentriert sich auf die Weiterentwicklung solcher Systeme und stellt dafür einen Katalog von Ontologie-Refactorings auf. Es werden mehrere Werkzeuge, gemeinsam als OntoMore bezeichnet, implementiert, um die Umsetzbarkeit des aufgestellten Konzepts zu zeigen. OntoMore kann Ontologien in Metamodelle und Modelle des EMF umwandeln und somit in Softwaresysteme integrieren. Außerdem ist es in der Lage, Refactorings auf beiden Strukturen synchron auszuführen. Dieser Prozess wird als Co-Refactoring bezeichnet. Damit wird die konsistente Evolution von Ontologien und Modellen sichergestellt. Die Implementierung wird anhand einer Beispiel-Ontologie zum Freelancer-Management evaluiert.:1 Einleitung 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Zielsetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Gliederung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Grundlagen 5 2.1 Modellgetriebene Softwareentwicklung . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Ontologien und semantische Techniken 11 3.1 Grundlagen semantischer Techniken . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Ontologien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Definition und Begriffe . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Die Web Ontology Language (OWL) . . . . . . . . . . . . . . . . . . . 14 3.2.3 Ontologie-Syntaxen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.4 Beschreibungslogiken, Teilsprachen und Profile . . . . . . . . . . . . . 18 3.2.5 Abfragen mit SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.6 Beispiele für Ontologien . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Ontologie-Evolution und Versionierung . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Unterschiede zwischen Ontologie-Evolution und Refactoring . . . . . . . . . . . 23 3.5 Zukünftige Entwicklungen – Linked Data . . . . . . . . . . . . . . . . . . . . . 24 3.6 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Eingesetzte Werkzeuge 27 4.1 Verbindung von Ontologien und Modellen mit OntoMoPP . . . . . . . . . . . 27 4.2 Generisches Modell-Refactoring mit Refactory . . . . . . . . . . . . . . . . . . 28 5 Stand der Forschung 31 5.1 Abbildung von Ontologien auf Domänenmodelle . . . . . . . . . . . . . . . . . 31 5.1.1 Einsatz von Ontologien in der Modellierung . . . . . . . . . . . . . . . 31 5.1.2 Abbildungen zwischen Ontologien und Datenbanken . . . . . . . . . . . 35 5.2 Ontologie-Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2.1 Anforderungen an Ontologie-Evolution . . . . . . . . . . . . . . . . . . 37 5.2.2 Elementare und komplexe Änderungsoperationen . . . . . . . . . . . . 38 5.2.3 KAON – Das Karlsruhe Ontology and Semantic Web Framework . . . . 38 5.2.4 Das NeOn-Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2.5 Protégé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2.6 Bewertung vorhandener Systeme zur Ontologie-Evolution . . . . . . . . 47 5.3 Co-Evolution von Metamodellen und Modellen . . . . . . . . . . . . . . . . . . 48 5.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6 Konzept zur Entwicklung und Evolution ontologiegetriebener Softwaresysteme 51 6.1 Gesamtkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 OWL-Ecore-Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3 Refactorings für OWL und Ecore . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.1 Definition und Katalog von Ontologie-Refactorings . . . . . . . . . . . 62 6.3.2 Schema eines Ontologie-Refactorings . . . . . . . . . . . . . . . . . . . 63 6.3.3 Beispiel eines Ontologie-Refactorings . . . . . . . . . . . . . . . . . . . 66 6.4 Co-Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4.1 Definition und Ansätze . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4.2 Herleitung und Architekturvergleich . . . . . . . . . . . . . . . . . . . 70 6.4.3 Der CoRefactorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7 Praktische Umsetzung 75 7.1 Architektur und eingesetzte Techniken . . . . . . . . . . . . . . . . . . . . . . 75 7.2 Testgetriebene Entwicklung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3 OWL-Ecore-Transformator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4 Refactoring mit Refactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5 CoRefactorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.6 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8 Evaluation 91 8.1 Die Beispiel-Ontologie: FrOnto . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.2 Bewertung der Umsetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.3 Grenzen der Umsetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.4 Grenzen der Konzeption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9 Zusammenfassung 101 9.1 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.1.1 Das Gesamtkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.1.2 Beziehung zwischen Ontologien und Domänenmodellen . . . . . . . . . 101 9.1.3 Konzeption von Refactorings und Co-Refactorings . . . . . . . . . . . . 102 9.1.4 Implementierung von OntoMore . . . . . . . . . . . . . . . . . . . . . 103 9.1.5 Evaluation anhand einer Beispiel-Ontologie . . . . . . . . . . . . . . . 103 9.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Anhang i A Weitere Ontologie-Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . i B Auswirkungen von Ontologie-Refactorings bezüglich der Datenmigration . . . . . . i C Die MiniFrOnto vor und nach dem Refactoring . . . . . . . . . . . . . . . . . . . iii D Refactoring mit der OWL-API . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abbildungsverzeichnis vii Tabellenverzeichnis ix Listings xi Abkürzungsverzeichnis xiii Literaturverzeichnis xvIn this thesis an approach is elaborated for the development and evolution of ontology-driven software systems. Ontology-driven software systems are software systems for which ontologies serve as main design documents. Ontologies are furthermore central parts of the running system. They describe the structure of the system and hold data. Parts of the software system are automatically derived from the structure descriptions of the ontology. This work concentrates on the evolution of those systems, thereby defining a catalogue of ontology refactorings. A tool suite called OntoMore is implemented to show the feasibility of the elaborated approach. OntoMore can transform ontologies in metamodels and models of EMF to integrate them in software systems. It can furthermore execute refactorings synchronously on both structures, which is called Co-Refactoring. Hence the consistent evolution of ontologies and models is ensured. The implementation is evaluated with an example ontology about the freelancer domain.:1 Einleitung 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Zielsetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Gliederung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Grundlagen 5 2.1 Modellgetriebene Softwareentwicklung . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Ontologien und semantische Techniken 11 3.1 Grundlagen semantischer Techniken . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Ontologien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Definition und Begriffe . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Die Web Ontology Language (OWL) . . . . . . . . . . . . . . . . . . . 14 3.2.3 Ontologie-Syntaxen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.4 Beschreibungslogiken, Teilsprachen und Profile . . . . . . . . . . . . . 18 3.2.5 Abfragen mit SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.6 Beispiele für Ontologien . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Ontologie-Evolution und Versionierung . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Unterschiede zwischen Ontologie-Evolution und Refactoring . . . . . . . . . . . 23 3.5 Zukünftige Entwicklungen – Linked Data . . . . . . . . . . . . . . . . . . . . . 24 3.6 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Eingesetzte Werkzeuge 27 4.1 Verbindung von Ontologien und Modellen mit OntoMoPP . . . . . . . . . . . 27 4.2 Generisches Modell-Refactoring mit Refactory . . . . . . . . . . . . . . . . . . 28 5 Stand der Forschung 31 5.1 Abbildung von Ontologien auf Domänenmodelle . . . . . . . . . . . . . . . . . 31 5.1.1 Einsatz von Ontologien in der Modellierung . . . . . . . . . . . . . . . 31 5.1.2 Abbildungen zwischen Ontologien und Datenbanken . . . . . . . . . . . 35 5.2 Ontologie-Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2.1 Anforderungen an Ontologie-Evolution . . . . . . . . . . . . . . . . . . 37 5.2.2 Elementare und komplexe Änderungsoperationen . . . . . . . . . . . . 38 5.2.3 KAON – Das Karlsruhe Ontology and Semantic Web Framework . . . . 38 5.2.4 Das NeOn-Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2.5 Protégé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2.6 Bewertung vorhandener Systeme zur Ontologie-Evolution . . . . . . . . 47 5.3 Co-Evolution von Metamodellen und Modellen . . . . . . . . . . . . . . . . . . 48 5.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6 Konzept zur Entwicklung und Evolution ontologiegetriebener Softwaresysteme 51 6.1 Gesamtkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 OWL-Ecore-Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3 Refactorings für OWL und Ecore . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.1 Definition und Katalog von Ontologie-Refactorings . . . . . . . . . . . 62 6.3.2 Schema eines Ontologie-Refactorings . . . . . . . . . . . . . . . . . . . 63 6.3.3 Beispiel eines Ontologie-Refactorings . . . . . . . . . . . . . . . . . . . 66 6.4 Co-Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4.1 Definition und Ansätze . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4.2 Herleitung und Architekturvergleich . . . . . . . . . . . . . . . . . . . 70 6.4.3 Der CoRefactorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7 Praktische Umsetzung 75 7.1 Architektur und eingesetzte Techniken . . . . . . . . . . . . . . . . . . . . . . 75 7.2 Testgetriebene Entwicklung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3 OWL-Ecore-Transformator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4 Refactoring mit Refactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5 CoRefactorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.6 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8 Evaluation 91 8.1 Die Beispiel-Ontologie: FrOnto . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.2 Bewertung der Umsetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.3 Grenzen der Umsetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.4 Grenzen der Konzeption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9 Zusammenfassung 101 9.1 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.1.1 Das Gesamtkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.1.2 Beziehung zwischen Ontologien und Domänenmodellen . . . . . . . . . 101 9.1.3 Konzeption von Refactorings und Co-Refactorings . . . . . . . . . . . . 102 9.1.4 Implementierung von OntoMore . . . . . . . . . . . . . . . . . . . . . 103 9.1.5 Evaluation anhand einer Beispiel-Ontologie . . . . . . . . . . . . . . . 103 9.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Anhang i A Weitere Ontologie-Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . i B Auswirkungen von Ontologie-Refactorings bezüglich der Datenmigration . . . . . . i C Die MiniFrOnto vor und nach dem Refactoring . . . . . . . . . . . . . . . . . . . iii D Refactoring mit der OWL-API . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abbildungsverzeichnis vii Tabellenverzeichnis ix Listings xi Abkürzungsverzeichnis xiii Literaturverzeichnis x

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Evolutionary genomics : statistical and computational methods

    Get PDF
    This open access book addresses the challenge of analyzing and understanding the evolutionary dynamics of complex biological systems at the genomic level, and elaborates on some promising strategies that would bring us closer to uncovering of the vital relationships between genotype and phenotype. After a few educational primers, the book continues with sections on sequence homology and alignment, phylogenetic methods to study genome evolution, methodologies for evaluating selective pressures on genomic sequences as well as genomic evolution in light of protein domain architecture and transposable elements, population genomics and other omics, and discussions of current bottlenecks in handling and analyzing genomic data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that lead to the best results. Authoritative and comprehensive, Evolutionary Genomics: Statistical and Computational Methods, Second Edition aims to serve both novices in biology with strong statistics and computational skills, and molecular biologists with a good grasp of standard mathematical concepts, in moving this important field of study forward

    Evolutionary Genomics

    Get PDF
    This open access book addresses the challenge of analyzing and understanding the evolutionary dynamics of complex biological systems at the genomic level, and elaborates on some promising strategies that would bring us closer to uncovering of the vital relationships between genotype and phenotype. After a few educational primers, the book continues with sections on sequence homology and alignment, phylogenetic methods to study genome evolution, methodologies for evaluating selective pressures on genomic sequences as well as genomic evolution in light of protein domain architecture and transposable elements, population genomics and other omics, and discussions of current bottlenecks in handling and analyzing genomic data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that lead to the best results. Authoritative and comprehensive, Evolutionary Genomics: Statistical and Computational Methods, Second Edition aims to serve both novices in biology with strong statistics and computational skills, and molecular biologists with a good grasp of standard mathematical concepts, in moving this important field of study forward
    corecore