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ABSTRACT

Most automatic chord recognition systems follow a standard
approach combining chroma feature extraction, filtering and
pattern matching. However, despite much research, there
is little understanding about the interaction between these
different components, and the optimal parameterization of
their variables. In this paper we perform a systematic evalu-
ation including the most common variations in the literature.
The goal is to gain insight into the potential and limitations
of the standard approach, thus contributing to the identifi-
cation of areas for future development in automatic chord
recognition. In our study we find that filtering has a signifi-
cant impact on performance, with self-transition penalties
being the most important parameter; and that the benefits
of using complex models are mostly, but not entirely, offset
by an appropriate choice of filtering strategies.

1. INTRODUCTION

Chords are defined by the occurrence of harmonically re-
lated musical notes, either simultaneously or in quick suc-
cession. They are the smallest and most fundamental struc-
tures of the tonal system, which, it can be argued, makes
them particularly adept at representing western popular mu-
sic. Therefore, their identification is of great importance
to a wide variety of applications in computer music, in-
formation retrieval and musicology. Chord transcriptions,
however, are not readily available for most recorded mu-
sic and can only be generated by highly-trained musicians.
This motivates the development of automatic approaches
to chord recognition, and explains the interest that this task
has generated on the music computing community over the
last decade.

A number of approaches to automatic chord recognition
are discussed in the literature, several of which are men-
tioned in this paper. Notable amongst those, are the works
of Fujishima [1], which introduced the use of chroma fea-
tures to represent signal content, and of Sheh and Ellis [2],
which pioneered the use of hidden Markov models (HMM)
for chord recognition. It can be argued that all subsequent
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works are variations of the standard approach defined by
both those papers, comprising a combination of chroma
feature extraction, filtering and pattern matching, as shown
in Figure 1. This is attested to by the homogeneity of most
submissions to the yearly MIREX chord recognition task.

A direct consequence of this overlap is the existence
of a number of important system variables that cut across
approaches. Understanding these variables, their relation
and relative importance in recognition results, is necessary
in order to assess the limitations of the standard approach.
Unfortunately, save a few exceptions (e.g. [3]), the litera-
ture lacks a comprehensive and holistic assessment on how
parameter changes affect chord recognition.

The goal of this paper is to investigate the effect of com-
mon variables and to reveal their interrelationships, thereby
providing valuable information that can guide future devel-
opments in automatic chord recognition. To this end, we
perform a systematic evaluation including the most com-
mon and distinguishable variations in the literature. It must
be clarified that covering the full range of possible varia-
tions is beyond the scope of this study. Instead we choose to
use standard techniques for feature extraction and filtering,
and concentrate our evaluation on variations of filtering
parameters and the testing of different pattern matching
approaches.

The remainder of this paper is organized as follows:
Section 2 introduces the standard approach and discusses
common variations at each stage; Section 3 presents the
evaluation methodology and discusses the experimental
results; while Section 4 includes our conclusions and direc-
tions for future work.

2. ARCHITECTURE OF A CHORD
RECOGNITION SYSTEM

Most chord recognition systems share a common archi-
tecture comprised of four main stages: feature extraction,
pre-filtering, pattern matching and post-filtering as seen in
Figure 1. We discuss each of these steps in detail in the
following sections.

2.1 Feature Extraction

The most popular features used for chord recognition are 12-
dimensional Pitch Class Profile (PCP), or chroma features
[1–12]. Chroma features represent the energy present in
each of the twelve pitch classes, and are typically derived by
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Feature Extraction

Pre-filtering

Pattern Matching

Post-filtering

Chord Sequence

Audio

Figure 1. The basic architecture of the standard approach to
automatic chord recognition (dotted lines indicate optional
steps).

mapping each frequency bin of the Discrete Fourier Trans-
form (DFT) spectrum to a corresponding pitch class. Many
variations on chroma feature extraction are documented in
the literature [4, 8, 9, 13, 14].

The most common approach is based on the constant-
Q transform, a spectral analysis technique in which the
frequency channels are spaced logarithmically [15]. The
constant-Q transform Xcq of an audio fragment x(n) can
be calculated as:

Xcq(k) =

L(k)−1∑
n=0

w(n, k)x(n)e−j2πfkn (1)

where k is the bin position, w(n, k) is a window function
of length L(k), and fk is the center frequency of the kth

filter bank. The calculation of the center frequency fk is
based on the frequencies of the equal tempered scale with:

fk = 2k/βfmin (2)

where β is the number of bins per octave, and fmin is the
minimum analysis frequency. From the constant-Q spec-
trum Xcq, the β-bin constant-Q chroma can be calculated
as:

Ccq(b, n) =
M∑
m=0

|Xcq(b+mβ, n)| (3)

where b ∈ [1, β], andM is the total number of octaves in the
constant-Q spectrum determined by the maximum analysis
frequency fmax. Finally the dimensionality of the β-bin
chroma features computed in (3) is reduced to 12 bins by
averaging adjacent bins using β/12-wide non-overlapping
Gaussian windows.

The noteworthy thing in this stage is that most systems
extract a chromagram with fixed frame rates (i.e. hop size)
of 24 - 256 ms, which is significantly faster than the typ-
ical rate of chord changes in music. Only a few systems
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(c) 96 ms hop size after smoothing with N = 15

Figure 2. Chromagrams computed from the first 20 seconds
of “Let It Be”.

(e.g. [10]) use chroma features extracted from segmented
audio frames with variable (and often slower) rates such
as beat-synchronous chroma. Errors in the initial feature
analysis, e.g. onset detection or beat tracking, in such sys-
tems propagate through the subsequent processing stages
and can hurt overall performance.

In this paper we follow the fixed frame rate approach in
order to focus on the effects of the remaining processing
stages on overall performance. We use β = 36, with the
analysis performed between fmin = 65.4Hz and fmax =
1046.5Hz 1 . The resulting window length and hop size are
8192 (186 ms) and 4096 (93 ms) samples respectively at
44100 Hz sample rate.

2.2 Pre-filtering

In order to precisely identify chord boundaries the frame
rate of the chroma features must be faster than the rate of
chord changes in a piece of music. This is demonstrated in
Figure 2 (a) and (b) which compare chromagrams computed
using 1 second and 96 ms hop sizes, respectively. The lower
precision in Figure 2(a) is clearly visible. For example, the
chord change at 11.5 seconds visible in Figure 2(b) is not
present in Figure 2(a) at all. Moreover, the longer window
exaggerates the influence of transient noise. For example,
the short burst of noise in the A pitch class at 14 seconds in
Figure 2(b), is drawn out over a full second in Figure 2(a).

However, the disadvantage of using such a short window
is that the frames of the resulting chromagram are indepen-
dent of the long term trend of the signal and respond to local
changes, thus becoming sensitive to transients and noise in
the signal. A popular technique to cope with this problem is
to pre-process the chromagram prior to pattern matching us-
ing a low pass filter [1, 3–5, 8, 9, 11]. In this paper, we use

1 In popular music, the harmonics of a musical note are usually stronger
than the non-harmonic components up to 1 kHz [16].
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a moving average filter which can be calculated as follows:

ĉ(n) =
1

N

N−1∑
τ=0

c

(
n+ τ − N − 1

2

)
(4)

where c(n) is a frame of the chromagram, ĉ(n) is a frame
of the smoothed chromagram and n is the frame index. In
this paper, N = 0 is defined as no filtering.

Intuitively, this technique improves pattern matching
because it minimizes the effect of transients and noise in the
signal by smoothing the features across neighboring frames.
Figure 2(c) shows an example of the output of this process.
The noise between 13 and 15 seconds in Figure 2(b) are
filtered out in Figure 2(c).

2.3 Pattern Matching

The function of the pattern matching stage is to measure
the fit of a set of predefined chord models, corresponding to
each of the 24 major and minor triads, to each frame of the
input chromagram, thus classifying each frame as being one
of the 24 chords. The two most common approaches are
based on a deterministic chord template generated by hand
or a probabilistic chord model trained from examples of
real music. The former approach is quite simple, but many
variations of the probabilistic approach have been proposed.
In this paper, we evaluate deterministic chord templates and
three probabilistic chord models.

2.3.1 Binary chord template

A binary chord template is the simplest and one of the most
popular chord models [1, 3–5, 7, 8]. This deterministic
chord model is manually generated based on knowledge of
the notes used in musical chords. In a binary chord template
vector, each component corresponding to a chord-tone 2 is
set to 1, and the other components are set to 0. 3 While
some systems use variations of the binary chord template
that incorporate information about higher harmonics pro-
duced by each chord-tone, recent studies have shown that
simple binary chord templates are sufficient to obtain a
good level of accuracy [7].

2.3.2 Probabilistic chord models

More sophisticated chord models are created by defining
probability distributions for each chord class. A popular
choice is the multivariate Gaussian distribution. In some
systems, the Gaussian chord models are defined manually
as with binary templates [3, 5]. More commonly, the distri-
bution parameters are estimated from labeled data.

More precise chord models in the form of Gaussian mix-
ture models (GMM) are sometimes constructed instead of
single Gaussian models [12, 17]. Such models use multiple
Gaussian distributions to represent each chord. Different
components represent more nuanced instantiations of each
chord in the training data, producing a more precise fit. This
comes at the cost of requiring more sophisticated training

2 The pitches which make up a chord are called chord-tones and any
other pitches are called non-chord-tones.

3 For example, the binary template for a “C Maj” triad is [ 1 0 0 0 1 0 0
1 0 0 0 0 ] where the left to right order of the vector components follows
the twelve-tone equally tempered scale from C.

using an Expectation-Maximization (EM) algorithm and
increased computation when computing probabilities.

Finally, Khadkevich and Omologo [12] use a more com-
plex chord model based on hidden Markov models (HMM)
which enforces temporal continuity constraints not present
in the other chord models. This chord model follows the
topology typically used in automatic speech recognition,
consisting of a 3-state, left-to-right HMM with the emission
probability under each state consisting of a GMM.

All of the probabilistic models described in this section
use Gaussian distributions with either diagonal or full co-
variance matrices. In most cases a diagonal covariance
matrix is used under the assumption that the feature vec-
tor components are uncorrelated. In contrast, full covari-
ance matrices capture correlations between different pitch
classes. In this paper, we prepared two versions of prob-
abilistic chord models, each with a diagonal and a full
covariance matrices. For GMM chord models, we use 5, 10,
15, 20 and 25 mixture components.

The trained Gaussian and GMM models are denoted
M`cv, where ` specifies the number of components in the
model and cv specifies the type of covariance matrix, diag
or full; e.g. a single Gaussian model with diagonal covari-
ances is referred to as M1diag and a 5 component GMM
with full covariance is M5full. The 3-state HMMs are de-
noted as H`cv, and follow the same conventions as GMMs.
For HMM models, ` indicates the number of mixture com-
ponents used in each state of the model.

The parameters of the chord models are estimated from
annotated training data using the EM algorithm. During
training, the training data is segmented into 12 major triad
and 12 minor triad segments based on the chord annotations.
In order to compensate for the limited amount of training
data, every chord segment is transposed to the key of C
and this key-normalized data is used to train C-major and
C-minor models. The trained chord models are then re-
transposed to the remaining 11 major and 11 minor keys to
define the remaining chord models.

2.4 Post-filtering

The post-filtering stage shown in Figure 1 is used to smooth
the sequence of predicted chord labels over time, thereby
minimizing the number of spurious chords that only last
for a small number of frames. Such mis-detections can be
caused by short bursts of noise, which are very common in
real music signals (e.g. see in Figure 2(b)). In most systems,
post-filtering is performed with a Viterbi decoder, while
some systems based on chord templates use a median filter
instead [4, 7]. The Viterbi decoder finds the most likely
sequence of chords based on the chord-type probabilities
computed in the pattern matching stage.

The performance of the Viterbi decoding process is deter-
mined by the transition probability matrix, which describes
the first-order temporal relationship between chords. Many
researchers have concentrated on finding the optimal setting
for these parameters. One approach has been to generate
the matrix manually based on knowledge of music theory
[3], while others have estimated the transition probabilities
from music annotations [18].
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(a) (b)

(c) (d)

Figure 2: State-transition distribution A: (a) initializa-
tion of A using the circle of fifths, (b) trained on Another
Crossroads (M. Chapman), (c) trained on Eight days a
week (The Beatles), and (d) trained on Love me do (The
Beatles). All axes represent the 24 lexical chords (C→B
then c→b)

We have chosen a rather narrow space of chords. We
did not include dyads nor other more complex chords such
as augmented, diminished, 7th or 9th chords. Our intu-
ition is that by including too many chords, both complex
and simple, we run the risk of “overfitting” our models
to a particular piece of music. As a quick thought exper-
iment, imagine if the set of chords were simply the en-
tire

∑

n=1..12

(12
n

)

= 212 − 1 possible combinations of 12
notes. Then the set of chord labels would be equivalent
to the set of 12-bin chroma and one would not gain any
insight into the harmonic “substance” of a piece, as each
observation would likely be labeled with itself. This is
an extreme example but it illustrates the intuition that the
richer the lexical chord set becomes, the more our feature
selection algorithms might overfit one piece of music and
not be useful for the task of determining music similarity.

While it is clear that the harmony of only the crudest
music can be reduced to a mere succession of major and
minor triads, as this choice of lexicon might be thought to
assume, we believe that this is a sound basis for a proba-
bilistic approach to labeling. In other words, the lexicon is
a robust mid-level representation of the salient harmonic
characteristics of many types of music, notably popular
music.

4.2 HMM initialization

In this paper we are not going to cover the basics of hid-
den Markov modeling. This is far better covered in works
such as (Rabiner, 1989) and even by previous music HMM
papers cited above. Instead, we begin by describing the
initialization procedure for the model. As labeled training
data is difficult to come by, we forgo supervised learning
and instead use the unsupervised mechanics of HMMs for
parameter estimation. However, with unsupervised train-
ing it is crucial that one start the model off in a reason-

able state, so that the patterns it learns correspond with
the states over which one is trying to do inference.

4.2.1 Initial state distribution [π]

Our estimate of π is 1
24 for each of the 24 states in the

model. We have no reason to prefer, a priori, any state
above any other.

4.2.2 State transition matrix [A]

Prior to observing an actual piece of music we also do not
know what states are more likely to follow other states.
However, this is where a bit of musical knowledge is use-
ful. In a song, we might not yet know whether a C major
triad is more often followed by a B! major or a D ma-
jor. But it is reasonable to assume that both hypotheses
are more likely than an F" major. Most music tends not to
make large, quick harmonic shifts. One might gradually
wander from the C to the F", but not immediately. We use
this notion to initialize our state transition matrix.
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The figure above is a doubly-nested circle of fifths,
with the minor triads (lower case) staggered throughout
the major triads (upper case). Triads closer to each other
on the circle are more consonant, and thus receive higher
initial transition probability mass than triads further away.
Specifically, the transition C→C is given a probability

12+ε
144+24ε , where ε is a small smoothing constant, C→e =

11+ε
144+24ε and then clockwise in a decreasing manner, un-

til C→F" = 0+ε
144+24ε . At that point, the probabilities be-

gin increasing again, with C→b! = 1+ε
144+24ε and C→a =

11+ε
144+24ε .

The entire 24×24 transition matrix, as seen in Figure
2(a), is constructed in a similar manner for every state,
with a state’s transition to itself receiving the highest ini-
tial probability estimate, and the remaining transitions re-
ceiving probability mass relative to their distance around
the 24-element circle above.

4.2.3 Observation (output) distribution [B]

Each state in the model generates, with some probability,
an observation vector. We assume a continuous observa-
tion distribution function modeled using a single multi-
variate Gaussian for each state, each with mean vector µ
and covariance matrix Σ.

Sheh and Ellis (2003) use random initialization of µ
and a Σ covariance matrix with all off diagonal elements
set to 0, reflecting their assumption of completely uncor-
related features. We wish to avoid this assumption. One
of the main purposes of this paper is to argue that musical
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Figure 3. (a) Doubly-nested circle of fifths, (b) Chord
transition probability matrix TC5.

Much of the previous work contains little discussion of
the self-transition probability, which describes the probabil-
ity of staying in the same chord from frame to frame. While
some previous work reports improving the accuracy rate
by manipulating the transition matrix, we argue that most
of the improvement is contributed by a relatively high self-
transition probability, which essentially acts to minimize the
number of chord transitions. In a fast-frame-rate analysis,
the probability of remaining in a chord is larger than that of
moving to another chord, since the rate of chord changes is
much slower than the frame rate. Thus, finding the optimal
parameter for the self-transition probability tends to have
more influence than the other parameters.

To evaluate this assumption, we define the transition
penalty P , which is widely used in HMM-based speech
recognition systems. This penalty adjusts the strength of
the self-transition probability relative to transitions between
different chords. It is applied as follows:

log(âij) =

{
log(aij)− log(P ) for i 6= j

log(aij) for i = j
(5)

where A = [aij ] is the original transition probability matrix
and Â = [âij ] is the modified matrix with penalty P .

In the case of the 3-state HMM model, this penalty is
only applied to the transitions between chords, not transi-
tions within the 3 states comprising the chord model. Since
the internal HMM states already enforce temporal conti-
nuity within a chord (similar to self-transition probability),
we set the diagonal entries of the chord transition matrix
used for HMM post-filtering to zero. Therefore, P only
changes the transition probabilities between different chord
HMMs without touching the internal transitions between
the 3 states.

We also evaluate the effect of different transition proba-
bility matrices on performance. As a baseline we define a
uniform transition matrix TU in which all transitions have
the same probability (1/24 in our task).

For the transition probability matrix derived from music
theory, we define a circle of fifths transition matrix TC5, as
proposed by [5]. In TC5, the transition probability between
two chords is derived from the distance between two chords
in the doubly-nested circle of fifths (see Figure 3(a)). In this
paper, for a fair evaluation of the parameter P (described in
Section 2.4) against TU , the diagonal entries of TC5 (self-
transition probabilities) are adjusted to 1/24 and the other
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Figure 4. (a) TB and (b) TU , both for 24 chord detection
task after applying the transition penalty P = 2.0

members in each row are normalized to sum to 23/24 (see
Figure 3(b)).

Finally, we define a transition matrix estimated from
training data, TB . TB , is estimated from bigrams of sym-
bolic data in the training set. As in the training procedure
for the chord models described in Section 2.3, we only cal-
culate chord transitions relative to the current chord, i.e. we
assume that all transitions happen from a root of C major
or C minor. For example, the transitions C→ Am and E
→ C#m are both counted as C → Am (I → vi). 4 The
key-normalized bigrams are then transposed to the other
major and minor roots to form the final matrix. We adjust
the diagonal entries to 1/24 as we do for TC5. Figure 4
shows an example of the transition matrices TB and TU
after applying the transition penalty P using Eqn. (5).

3. EXPERIMENTS

In this section we describe a series of experiments to evalu-
ate the effect of each processing stage on chord recognition
performance. We evaluate the system variations using the
well-known Beatles data set, 180 annotated songs from
12 Beatles albums (containing 13 discs).The ground truth
chord annotations of the songs are kindly provided by C.
Harte [19]. 5 The evaluations are performed on 12 major,
12 minor and a no-chord detection task.

Each experiment is performed using a 13-fold cross val-
idation. For each fold, one album is selected as a test set,
and the remaining 12 albums are used for training. The
chord recognition rate is calculated as follows:

Accuracy =
total duration of correct chords

total duration of dataset
×100% (6)

and is averaged across all cross-validation folds.

3.1 Pattern matching without filtering

In order to isolate the power of different pattern matching
techniques from the effect of the other processing stages we
evaluate the different chord models described in Section 2.3

4 In this paper, Roman Numerals are open used to indicate the harmonic
relationship between two chords without reference to actual chord symbols.
In this notation, the first seven Roman Numerals represent a major scale
degree from the root. Capital letters are used for major triads, while
lowercase letters are used for minor triads, and a flat(b) or sharp(#) in front
of a Roman Numeral lowers or raises the diatonic pitch by a half step.
e.g. Both C → Am and E → C#m can be expressed as I→ vi

5 http://isophonics.net/content/reference-annotations-beatles
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Figure 5. Chord classification errors from the experiment
described in Section 3.1. The results are key-normalized to
major (top) and minor (bottom) triads and averaged across
all roots. The center labels (I of major triad detection and
i of minor triad detection) represent correct classification
and the remaining labels represent misclassified chords in
Roman Numeral notation. The order of the labels follows
the order of the doubly-nested circle of fifths in Figure 3(a).

without performing pre- or post-filtering. The 3-state chord
HMM is excluded, because it requires post-filtering. The
results are shown in Table 1.

Gauss. # 1 5 10 15 20 25 BT

M
full 46.8 45.0 44.7 45.1 46.9 46.8

46.69
diag 40.1 42.1 42.6 43.6 45.5 45.5

Table 1. Average accuracies of pattern matching methods
with different chord models without filtering.

It would be reasonable to expect that performance should
improve with increasing complexity of the chord model.
However, the results in Table 1 contradict this expectation.
In fact, none of the trained probabilistic models significantly
outperform the simple binary template BT . All of the
probabilistic models using diagonal covariance perform
worse than BT , while those that utilize full covariance have
performance roughly on par with BT . Another surprising
result is that the performance of the GMM systems is no
better than that of the single Gaussian chord model M1full.

All of the chord models based on full covariance ma-
trices perform better than the corresponding models based
on diagonal covariance matrices. This gap is reduced by
increasing the number of mixture components in the GMM.
This trend is almost perfectly maintained across all experi-
ments, therefore we only report results using full covariance
matrices in the remaining experiments.

The distribution of chord detection errors is shown in
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Figure 6. Average chord detection accuracy as a function
of moving average pre-filter order N .

Figure 5. The majority of errors are the result of confusions
between harmonically related chords, i.e. those which share
the same notes. For example, the chords in a parallel rela-
tionship (I and i), share a common root and fifth, and have
only a semi-tone difference between the thirds. The fig-
ure also shows that actually M25full outperforms M1full
and BT on minor chord detection. However, this is not
reflected in the total overall results shown in Table 1, only
25% of the test set is comprised of minor chords, and so the
decreased performance on major chord constributes more
to the average performance.

3.2 Effect of pre-filtering

In this section we evaluate the effect of the pre-filtering pro-
cedure described in Section 2.2 on chord recognition perfor-
mance. The chord models are retrained for each setting of
the smoothing filter length N , and the filtered chromagrams
are used for testing. The 3-state HMM template is excluded
for the reasons described in Section 3.1.

The results are shown in Figure 6. Overall, pre-filtering
improves performance over the results in Section 3.1 by
about 20%. However, the best results for all chord models
are almost the same (65.6% ± 0.1) except M1full (66.3%).
The optimal N values for the chord models are also similar
(N = 15). Once again, the number of mixture components
in the GMMs has little effect on performance. The highest
accuracy came from the simplest probabilistic model.

Many of the mis-classified frames in the previous exper-
iment consist of very short (1− 5 frame) segments caused
by transient noise similar to that shown in Figure 2(b). The
large improvement shown in this section is due to the fact
that the pre-filtering process largely suppresses this noise.

It seems that training hurts the performance due to over-
fitting to the small training set and to reduced data variance
caused by smoothing the features. In Figure 6, the accu-
racies of the 25 Gaussian models decrease faster than the
single Gaussian models with increasing N . In other words
the smoothed data tends to lead to overfitting, especially for
chord models containing a large number of parameters.

Figure 7 shows the distribution of chord errors. As ex-
pected, a large portion of the performance improvement
relative to the results reported in Section 3.1 is the result
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Figure 7. Major(top) and Minor(bottom) distribution of detections for different N

of fewer confusions between harmonically related chords.
As a result, all the distributions of detections are similar to
each other at the optimal N . The trained Gaussian model
doesn’t show any significant improvement against the bi-
nary template in this experiment.

3.3 Effect of post-filtering

In this experiment we evaluate the use of the different tran-
sition probability matrices defined in Section 2.4 and the
effect of the transition penalty P . The pre-filtering parame-
ter N is therefore fixed to 0 while P is varied. In order to
smooth the output of BT , pseudo probabilities are calcu-
lated by taking the reciprocal of the Euclidean distances be-
tween chromagram frames and the chord templates. These
are then passed through the Viterbi decoder.

Gauss. # 1 5 10 15 20 25 BT

TU

P 15 23 22 20 19 15 1.25
M 67.9 70.3 69.6 69.3 73.2 74.4 70.4
P 16 18 14 11 8 9
H 67.4 71.7 72.5 72.7 74.4 75.0

TC5

P 15 22 22 20 19 16 1.5
M 68.0 70.4 69.8 69.6 73.3 74.7 70.2
P 16 18 14 10 9 8
H 67.6 71.9 72.6 72.9 74.5 75.0

TB

P 15 22 21 20 18 16 2.5
M 68.5 70.7 70.3 70.2 73.8 75.1 70.6
P 16 15 16 10 9 8
H 68.2 72.2 73.0 73.5 75.1 75.6

Table 2. Accuracy of each chord model using different
chord transition matrices. Each model-transition matrix
combination is shown with the P value that maximizes
accuracy.

The results are summarized in Table 2. For all systems,
post-filtering shows a significant improvement over the
results in the previous section, especially in the case of
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Figure 8. Average accuracy as a function of P using the
TU transition matrix (N = 0).

GMM chord models. Another surprising trend is that there
is little difference in performance between the different
transition matrices. The largest difference between them is
only about 0.8%.

In addition, as shown in Figure 8, the parameter P has
different effects on each of the chord models. The BT
plot has a very steep curve and peaks at a smaller setting
than any other model (P = 1.25). The system is overly
sensitive to the transition penalty because the likelihoods
of each chord class under this model tend to be very close
together (i.e. it is not very discriminative), so, for large P ,
the transition probability overwhelms the likelihood.

On the contrary, the HMM chord model is much less sen-
sitive to P than the other systems. This is due to the smooth-
ing caused by the high internal self-transition probabilities
already present within the chord models. The maximum
accuracies of H25full and M25full are almost identical at
each optimal P value. The two curves match up quite well
if that of M25full is moved about 10 units to the left.

3.4 Combined pre- and post-filtering

Finally, we explore the relationship between pre- and post-
filtering and evaluate all possible parameter combinations.

6



G. # 1 5 10 15 20 25 BT

N , P 7, 18 3, 23 3, 19 3, 18 3, 21 3, 17 3, 2.5

M 70.4 73.0 74.4 74.7 75.1 75.4 70.8

N , P 9, 7 3, 18 3, 13 3, 11 3, 11 3, 10

H 70.2 73.7 74.9 74.9 75.4 75.7

Table 3. The best accuracy of each chord model with TB
and optimal N and P .

Since, as described in Section 3.3, the exact transition ma-
trix has a very small effect on performance, we only utilize
TB in this experiment.

The optimal N,P parameter combination for each sys-
tem is shown in Table 3 along with the corresponding chord
recognition accuracy. The best results occur using relatively
little pre-filtering (N = 3) with transition penalty P similar
to the optimal settings found in the previous experiment.
The combination of both filtering stages has minimal effect
on the best performing system, however it does bring the
performance of the systems based on simpler GMM chord
models to the same level as the HMM systems. From this
we can conclude that the additional pre-filtering stage can be
used in place of the more computationally complex HMM
chord model without significantly affecting performance.

Compared to the results of post-filtering alone in Table 2,
pre-filtering increases the accuracy of all chord models. The
smoothing across very short frames (N = 3) yields signifi-
cantly improved accuracy, especially in the case of GMM
chord models. However, this effect decreases as number
of Gaussians increases. For M25full the smoothing has
no significant effect on performance. Overall, the combi-
nation of pre- and post-filtering decreases the difference
in performance between the GMM chord models. More
than doubling the size of the model from 10 to 25 mixture
components increases performance by only 1%.

A similar trend can be seen in the performance of the
HMM systems. More notably, the small gaps (less than 1%)
between GMM and HMM systems with the same number
of Gaussians implies that additional pre-filtering can com-
pensate for the additional smoothing present in the more
complex model. The 3-state left-to-right HMM architec-
ture requires that each recognized chord have a minimum
length of 3 frames. As described in the previous section,
this has an implicit smoothing effect and provides better
time-persistence than a single frame level chord detection.
The results in Table 3 demonstrate that the overall effect is
similar to that of the 3 frame moving average filter.

3.5 Summary

Table 4 summarizes the experiments described in this sec-
tion. All combinations of filtering strategies and pattern
matching techniques are shown. T-tests show that differ-
ences in accuracy greater than 1% are statistically signifi-
cant (p < 0.01). The performance improvements seen when
moving down each column demonstrate the very large im-
pact of filtering on the accuracy of chord recognition system.
Post-filtering has the largest impact, primarily due to the
self-transition penalties, and the combination of pre- and

Chord
Models BT M1 M25

3-state HMM
H1 H25

No Filtering 46.69 46.76 46.77

Pre-filtering 65.50 66.27 65.72

Post-filtering 70.60 68.52 75.14 68.16 75.56

Pre & Post 70.82 70.44 75.40 70.23 75.70

Table 4. The best results of each chord model for each
experiment.

post-filtering leads to relatively small improvement over the
optimal choice of post-filter alone, however this improve-
ment was only statistically significant for M1 and H1. De-
spite the great deal of research investigating different chord
models, we have observed relatively small performance
differences between the models in our experiments. Given
optimal filtering settings, all systems perform within 5%
of each other (bottom row of Table 4). It is worth noting
that the chord models used most often in the literature are
based on diagonal covariance matrices [2, 6, 12, 17, 18]. In
our experiments, diagonal covariance models performed an
average of about 2% lower than the corresponding models
based on full covariance matrices.

There is a general trend of improving performance with
increasingly complex chord models, but the effect is dom-
inated by the number of parameters used by each model,
i.e. the number of mixture components or states. The best
results are obtained using the most complex system based
on HMM chord models. The system contains the largest
number of parameters and therefore has the highest risk
of overfitting to the small training data set used in these
experiments.

4. CONCLUSION

This paper presents a systematic evaluation of increasingly
complex variations of the standard approach to automatic
chord recognition, with a focus on the impact of filtering
and pattern matching strategies. Experimental results show
that filtering, both before and after pattern matching, has
a significant impact on the accuracy of recognition. In
the case of pre-filtering we found that variations of the
parameter N have a similar effect across different models,
with the optimal value increasing performance by as much
as 20% upon the unfiltered case. Optimal post-filtering
can increase performance by little less than 30%, with high
self-transition probabilities (determined by the parameter
P ) being entirely responsible for this change. Unlike N ,
optimal values of P have to be carefully chosen for each
different model. Combining pre- and post-filtering brings
about only marginal improvement over the optimal choice
of post-filtering. Surprisingly, we found that the effect of
different transition matrices is negligible. This indicates
that, at fast frame-rates, any attempts to encode information
about likely chord transitions is rendered moot by the need
to enforce continuity in the estimations.

While the best overall results are obtained for M25full
and H25full, it is worth noting that the benefits of using
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complex models are mostly offset by an appropriate choice
of filtering strategies. Notably, the best performance using
simple binary template matching is only 5% less than the
best performance using a network of 3-state HMMs, with
mixtures of 25 full-covariance Gaussians per state. This
is troublesome not only because of the significant differ-
ence in computational cost and overall complexity between
these two models, but also because the extensive testing
and parameter selection on such a small and homogeneous
dataset most likely means that the difference is attributable
to overfitting and is not generalizable to other music.

Of course, these findings are only valid for fast, fixed-
rate features, and could be alleviated by slowing down the
feature rate, or by using variable-rate methods such as beat
segmentation. However, the former will have an impact on
accurate detection of chord transition boundaries (which, if
increases in accuracy are forthcoming, might be less of an
issue), while in the case of the latter, it is far from clear that
the current state of the art in beat tracking can ensure robust
performance across a wide variety of music, and thus avoid
issues of error propagation.

In either case, it is worth pointing out that lower feature
frame-rates will considerably reduce the amount of avail-
able data, which will in turn negatively affect our ability
to train complex models, such as the ones considered in
this paper. This, together with the above mentioned issues
of overfitting (which we believe to be widespread in chord
recognition research), highlights the need for data collection
as a necessary step in the development of better approaches.
More data will also support the use of discriminative mod-
els for pattern matching (which has proven successful in
MIREX-09 [20]) and for supervised training of complex dy-
namic models integrating rhythmic, harmonic and structural
analysis [10]. Finally, we have yet to evaluate the impact of
different feature extraction strategies and test new methods
(e.g. [14]) that have already shown promise in related music
analysis tasks.
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ABSTRACT

We propose two novel lyrics-to-audio alignment methods
which make use of additional chord information. In the
first method we extend an existing hidden Markov model
(HMM) for lyrics alignment [1] by adding a chord model
based on the chroma features often used in automatic audio
chord detection. However, the textual transcriptions found
on the Internet usually provide chords only for the first
among all verses (or choruses, etc.). The second method
we propose is therefore designed to work on these incom-
plete transcriptions by finding a phrase-level segmenta-
tion of the song using the partial chord information avail-
able. This segmentation is then used to constrain the lyrics
alignment. Both methods are tested against hand-labelled
ground truth annotations of word beginnings. We use our
first method to show that chords and lyrics complement
each other, boosting accuracy from 59.1% (only chroma
feature) and 46.0% (only phoneme feature) to 88.0% (0.51
seconds mean absolute displacement). Alignment perfor-
mance decreases with incomplete chord annotations, but
we show that our second method compensates for this in-
formation loss and achieves an accuracy of 72.7%.

1. INTRODUCTION

Few things can rival the importance of lyrics to the char-
acter and success of popular songs. Words and music
come together to tell a story or to evoke a particular mood.
Even musically untrained listeners can relate to situations
and feelings described in the lyrics, and as a result very
few hit songs are entirely instrumental [2]. Provided with
the recording of a song and the corresponding lyrics tran-
script, a human listener can easily find out which position
in the recording corresponds to a certain word. We call
detecting these relationships by means of a computer pro-
gram lyrics-to-audio alignment, a music computing task
that has so far been solved only partially. Solutions to
the problem have a wide range of commercial applications
such as the computer-aided generation of annotations for
karaoke, song-browsing by lyrics, and the generation of
audio thumbnails [3], also known as audio summarization.

The first system addressing the lyrics-to-audio align-

Copyright: c©2010 Matthias Mauch et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Bm Bm  Bm G  G G   G G A A    A A  A A   A
   Once   you  were  my  love,  now  just
Bm        G            A 
   Once   you  were  my  love,  now  just

audio

MFCCs

chroma

Figure 1: Integrating chord information in the lyrics-
to-audio alignment process (schematic illustration). The
chords printed black represent chord changes, grey chords
are continued from a prior chord change. Word-chord
combinations are aligned with two audio features: an
MFCC-based phoneme feature and chroma.

ment problem was a multimodal approach proposed by
Wang et al. [4], which has since been developed further
[5]. The method makes relatively strong assumptions on
the form and meter (time signature) of the songs, which en-
ables preliminary chorus-detection and beat-tracking steps
to aid the final low-level lyrics alignment step. In [1] a left-
to-right hidden Markov model (HMM) architecture is used
to align lyrics to audio, based on observed mel frequency
cepstral coefficients (MFCCs). Here too, several prepro-
cessing steps such as singing melody segregation and vo-
cal activity detection are employed, but these make fewer
assumptions, and the more complex HMM models the evo-
lution of single phonemes in time. Similar HMM-based
approaches have been used in [6] and [7]. A special case
of lyrics alignment based on the speech melody of Can-
tonese has been presented in [8]. These existing lyrics-to-
audio alignment systems have used only two information
sources: the audio file and the lyrics.

In this paper we propose two novel techniques that in-
tegrate additional textual chord information (Figure 1) into
the alignment framework:

1. an extension of the lyrics-to-audio alignment
paradigm to incorporate chords and chroma features
in the ideal case of complete chord information, and

2. a three-step method that can recover missing chord
information by locating phrase-level boundaries
based on the partially given chords.
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...

Verse:
Bm       G           D                A
    Once you were my love, now just a friend,
Bm         G                 D        A 
    What a cruel thing to pretend.
Bm        G                  D              A
     A mistake I made, there was a price to pay.
Bm    G                D     A
   In tears you walked away,

Verse:
When I see you hand in hand with some other
I slowly go insane.
Memories of the way we used to be ...
Oh God, please stop the pain.

Chorus:
D   G            Em   A
Oh,   once in a life time
D/F#        G    A
Nothing can last forever
  D/F#          G
I know it's not too late
          A7          F#/A#
Would you let this be our   fate?
  Bm            G                Asus4
I know you'd be right but please stay
A         
Don't walk away

Instrumental:
Bm G D A Bm G A

Chorus:
Oh, once in a life time
Nothing can last forever
I know it's not too late
Would you let this be our fate?
I know you'd be right but please stay.
Don't walk away.

...

first verse: all
lyrics and

chords given
��
�

subsequent
verse: only

lyrics; chords
are omitted

�
��

blank line
separates song

segments
XXX

heading defines
segment type #

##

Figure 2: Excerpt adapted from “Once In A Lifetime”
(RWC-MDB-P-2001 No. 82 [9]) in the chords and lyrics
format similar to that found in many transcriptions on the
Internet.

The motivation for the integration of chords is the vast
availability of paired textual chord and lyrics transcrip-
tions on the Internet through websites such as “Ultimate
Guitar” 1 and “Chordie” 2 . Though there is no formal def-
inition of the format used in the transcriptions appearing
on the Internet, they will generally look similar to the one
shown in Figure 2. It contains the lyrics of the song with
chord labels written in the line above the corresponding
lyrics line. Chords are usually written exactly over the
words they start on, and labels written over whitespace de-
note chords that start before the next word. In our exam-
ple (Figure 2) the lyrics of the verses are all accompanied
by the same chord sequence, but the chord labels are only
given for the first instance. This shortcut can be applied to
any song segment type that has more than one instance, and
transcribers usually use the shorter format to save space
and effort. Song segment names can be indicated above
the first line of the corresponding lyrics block. Song seg-
ments are separated by blank lines, and instrumental parts
are given as a single line containing only the chord pro-
gression.

The rest of the paper is structured as follows. Section 2
describes the hidden Markov model we use for lyrics align-
ment and also provides the results in the case of complete
chord information. Section 3 deals with the method that
compensates for incomplete chord annotations by locating
phrase-level boundaries, and discusses its results. Future

1 http://www.ultimate-guitar.com
2 http://www.chordie.com

work is discussed in Section 4, and Section 5 concludes
the paper.

2. USING CHORDS TO AID
LYRICS-TO-AUDIO ALIGNMENT

This section presents our technique to align audio record-
ings with textual chord and lyrics transcriptions such as the
ones described in Section 1. To show that the chord infor-
mation does indeed aid lyrics alignment, we start with the
case in which complete chord information is given. More
precisely, we make the following assumptions:

complete lyrics Repeated lyrics are explicitly given.

segment names The names of song segments (e.g. verse,
chorus, ...) are given above every lyrics block.

complete chords Chords for every song segment instance
are given.

This last assumption is a departure from the format shown
in Figure 2, and in Section 3 we will show that it can be
relaxed.

An existing HMM-based lyrics alignment system is
used as a baseline and then adapted for the additional in-
put of 12-dimensional chroma features using an existing
chord model [10]. We will give a short outline of the base-
line method (Section 2.1), and then explain the extension
to chroma and chords in Section 2.2. The results of the
technique used in this section are given in Section 2.3.

2.1 Baseline Method

The baseline method [1] is based on a hidden Markov
model (HMM) in which each phoneme is represented by
three hidden states, and the observed nodes correspond
to the low-level feature, which we will call phoneme fea-
ture. To be precise, given a phoneme state s, the 25 ele-
ments of the phoneme feature vector xm with the distribu-
tion Pm(xm|s) consist of 12 MFCCs, 12 ∆MFCCs and 1
element containing the power difference (the subscript m
stands for MFCC). These 12+12+1 elements are modelled
as a 25-dimensional Gaussian mixture model with 16 mix-
ture components. The transition probabilities between the
three states of a phoneme and the Gaussian mixtures are
trained on Japanese singing. For use with English lyrics,
phonemes are retrieved using the Carnegie Mellon Uni-
versity Pronouncing Dictionary 3 and then mapped to their
Japanese counterpart. A left-to-right layout is used for the
HMM, i.e. all words appear in exactly the order provided.
The possibility of pauses between words is modelled by
introducing optional “short pause” states, whose phoneme
feature emissions are trained from the non-voiced parts of
the songs.

Since the main lyrics are usually present only in the
predominant voice, the audio is pre-processed to eliminate
all other sounds. To achieve this the main melody voice
is segregated in three steps: first, the predominant fun-
damental frequency is detected using PreFEst [11]. The

3 http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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phoneme chroma

sampling 16000 Hz 11025 Hz
frame length 25ms 372ms

window Hamming Hamming
frame rate 100 Hz 10 Hz

Table 1: Signal processing parameters of the two audio
features.

estimated frequency at every 10ms frame is used to find
the further harmonics, and the weights of the harmonics
are computed. Finally, the resulting harmonic structure
is used to re-synthesize the segregated melody line. The
MFCCs necessary for the inference are extracted from the
re-synthesized voice at intervals of 10ms (details in Ta-
ble 1).

A second pre-processing step is the vocal activity detec-
tion (VAD), which uses a simple probabilistic model with
only two states (vocal or non-vocal) to find sung sections.
The audio features used for this method are LPC-derived
cepstral coefficients and ∆F0 (fundamental frequency dif-
ference). The method is parameterized such that few vocal
regions are missed, even if this causes some instrumental
regions to be misclassified as vocal.

The HMM is decoded using the Viterbi algorithm, dur-
ing which the regions classified as non-vocal are con-
strained to emit only short pause states. This HMM is also
a flexible framework which enables the integration of dif-
ferent features, as we explain below.

2.2 HMM Network with Lyrics and Chords

In order to integrate chords in the baseline method de-
scribed above we need to parse the chords and lyrics files,
calculate a low-level harmonic feature (chromagram) and
extend the HMM so that it can process the additional in-
formation.

After parsing the chords and lyrics file of a song, every
word can be associated with a chord, the lyrics line it is in,
and the song segment this line is part of. In the present im-
plementation a chord change on a word is assumed to start
at the beginning of a word. While only the word-chord
association is needed for the HMM, the line and segment
information retained can later be used to obtain the loca-
tions of lines and song segments.

Chroma is a low-level feature that relates to musical
harmony and has been used in many chord and key de-
tection tasks [12, 13], but only rarely for chord alignment
[14]. Chroma is also frequently used for score-to-audio
alignment [15]. A chroma vector usually has twelve di-
mensions, containing activation values of the twelve pitch
classes C, C#,. . ., B. Our chroma extraction method [16]
uses the original audio before melody segregation. It first
calculates a pitch spectrum with three bins per semitone,
which is then adjusted for minor deviations from the stan-
dard 440 Hz tuning. Then, the background spectrum (lo-
cal mean) is subtracted and the remaining spectrum is fur-
ther normalized by the running standard deviation, which
is a form of spectral whitening. Finally, assuming tones

with an exponential harmonics envelope, the non-negative
least squares algorithm [17] is used to find the activation
of every note, which is then mapped to the corresponding
chroma bin. Since chords change much more slowly than
phonemes, the chroma method extracts features at a frame
rate of 10Hz (Table 1), and to match the 100Hz rate of the
MFCCs we duplicate the chroma vectors accordingly.

The hidden states of the HMM are designed as in the
baseline method, with the difference that every state now
has two properties: the phoneme and the chord. The ob-
served emissions of the joint phoneme and chroma feature
x = (xm, xm) are modelled by a probability distribution
with log-density

logP (x|s) = a logPm(xm|s) + b logPc(xc|s), (1)

where Pm(xm|s) is the baseline phoneme model, and
a = b = 1.0 are weight parameters, which can be mod-
ified for testing. The subscripts m and c stand for MFCCs
and chroma, respectively. Pc(xc|s) is the chord model, a
set of 145 12-dimensional Gaussians that models the emis-
sions of 145 different chords: 12 chord types (major, mi-
nor, major 7th,...) transposed to all 12 semitones, and one
“no chord” type. The means of chord pitch classes are set
to 1, all others to 0. All variance parameters in the diagonal
covariance matrices are set to 0.2 [18].

For inference we use an implementation of the Viterbi
algorithm developed for the baseline method. The output
of the Viterbi decoder assigns to every phoneme the esti-
mated time interval within the song.

2.3 Results I

We ran two sets of eight experiments, one with vocal ac-
tivity detection, and one without. In each set we var-
ied the phoneme and chroma feature weights a and b in
(1) within {0.0, 0.5, 1.0} (the case in which both features
have zero weight is omitted). In order to evaluate the per-
formance of our method we chose 15 songs (13 pop hits
and 2 songs 4 from the RWC Music Database [9]) with En-
glish lyrics (see Table 2) and hand-labelled every word
in these songs with its onset time in seconds. Previous
work in lyrics-to-audio alignment has been evaluated only
on phrase level, for which hand-labelling is less laborious,
but the often uneven distribution of words over a lyric line
makes word-level alignment a more meaningful ground
truth representation. We evaluate the alignment according
to two criteria. The mean percentage

p =
1

Nsongs

∑
song k

1

Nwords

∑
word i

1|t̂i−ti|<1 × 100

︸ ︷︷ ︸
average percentage over kth song

(2)

of start time estimates t̂i that fall within one second of the
start time ti of the corresponding ground truth word, av-
eraged over songs. We will simply call this measure accu-

4 RWC-MDB-P-2001 Nos. 82 and 84.
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Once

Once

1.03

you

you

0.12

were

were

0.05

my

my

0.13

love

love

0.27

-
time

ground truth t

alignment t̂

absolute
displacement
in seconds

Figure 3: Calculation of the performance metrics. In this example, the accuracy p from Equation (2) is 80% because four
of the five words have an absolute displacement of < 1 second. The mean absolute displacement d, see Equation (3), is
0.32 seconds, which is simply the arithmetic mean of the five absolute displacements.

Artist Song

1 Bangles Eternal Flame
2 U2 With Or Without You
3 Robert Palmer Addicted To Love
4 Martika Toy Soldiers
5 Queen We Are The Champions
6 Simon and Garfunkel Cecilia
7 Otis Redding The Dock Of The Bay
8 Shinya Iguchi (RWC) Once In A Life Time
9 ABBA Knowing Me Knowing You
10 Duran Duran Ordinary World
11 Toto Africa
12 Santana Black Magic Woman
13 Shinya Iguchi (RWC) Someday
14 Franz Ferdinand Do You Want To
15 Duffy Warwick Avenue

Table 2: The songs used for evaluation.

racy. A second measure is the mean absolute displacement

d =
1

Nsongs

∑
song k

1

Nwords

∑
word i

|t̂i − ti|︸ ︷︷ ︸
mean abs. displacement in kth song

(3)

between the time instant ti at beginning of the ith target
word and its estimate t̂i, which is also averaged over all
songs. Both metrics are illustrated in Figure 3.

Table 3 shows accuracy values, i.e. the mean percent-
age p as defined in Equation (2), for all tests. They can
be summarized as follows: the highest accuracy of 88.0%
is achieved with chroma and phoneme feature, but no vo-
cal activity detection (VAD); the chroma features provide
large scale alignment while the phonemes provide short-
term alignment; VAD does improve results for the baseline
method, i.e. when chroma is switched off. The next para-
graphs provide more detailed explanations.

Table 3a shows results without VAD. The first column
contains the results for which no chroma information was
used (b = 0.0). The results in the second and third
columns show that the additional information provided by
the chord labels substantially boosts accuracy, for exam-

ple from 38.4% (a = 1.0, b = 0.0) to the best result
of 88.0% (a = 1.0, b = 1.0). While chord informa-
tion yields the greatest improvement, we can also observe
that using chord information alone does not provide a very
good alignment result. For example, consider a chroma
weight fixed at b = 1.0: when the phoneme feature is
“off” (a = 0.0), we obtain only a mediocre alignment re-
sult of 59.1% accuracy, but setting a = 1.0, we obtain the
top result of 88.0%. Our interpretation of these results is
intuitive. Since chords occupy longer time spans and are
therefore “hard to miss”, they provide large scale align-
ment. The phonemes in the lyrics, on the other hand, often
have very short time spans and are easy to miss in a rich
polyphonic music environment. However, with good large
scale alignment—as provided by the chords—their short
term lyrics-to-audio alignment capabilities exceed those of
chords.

We can also observe that when no chord information is
given, VAD provides a similar kind of large scale align-
ment: for the baseline method (a = 1.0, b = 0.0) the
use of VAD increases accuracy from 38.4% (Table 3a) to
46.0% (Table 3b). Table 3b also shows that using chroma
and VAD together results in accuracy values slightly lower
than the top ones, which has been caused by regions er-
roneously classified as non-vocal by VAD. The conclusion
is: if full chord information is not available, use VAD; if
chord information is available, use chroma instead.

The same pattern emerges for the mean absolute dis-
placement d of words (Table 4). Here also, the best value,
0.51 seconds, is achieved when using both chroma and
phoneme features (without VAD), compared to 1.26 sec-
onds for the best result of the baseline method (with VAD).

One downside to the best methods mentioned so far
is that the complete chords assumption is not always ful-
filled, since transcribers often omit chord annotations for
harmonically repeated sections (see Figure 2). The next
section presents a method which—through intelligent use
of the remaining chord information—deals with this situ-
ation and achieves results approaching the best ones seen
above.
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chroma weight
b = 0.0 b = 0.5 b = 1.0

phoneme
weight

a = 0.0 — 59.1 59.1
a = 0.5 34.8 86.8 83.1
a = 1.0 38.4 87.6 88.0

(a) accuracy without VAD

chroma weight
b = 0.0 b = 0.5 b = 1.0

phoneme
weight

a = 0.0 — 52.3 52.3
a = 0.5 42.0 77.8 77.3
a = 1.0 46.0 81.9 78.5

(b) accuracy with VAD

Table 3: Accuracy: mean percentage p as defined in Equation (2) for tests without and with vocal activity detection (VAD).
Chroma and phoneme feature combined lead to the best results for the method using complete chord information. For a
detailed discussion see Section 2.3.

chroma weight
b = 0.0 b = 0.5 b = 1.0

phoneme
weight

a = 0.0 — 1.98 1.99
a = 0.5 8.22 0.63 1.06
a = 1.0 6.93 0.72 0.51

(a) mean absolute displacement without VAD

chroma weight
b = 0.0 b = 0.5 b = 1.0

phoneme
weight

a = 0.0 — 3.74 3.73
a = 0.5 5.52 1.67 1.69
a = 1.0 4.67 1.26 1.65

(b) mean absolute displacement with VAD

Table 4: Mean absolute displacement d in seconds as defined in Equation (3) for tests without and with vocal activity
detection (VAD). For a detailed discussion see Section 2.3.

3. RECOVERING PARTIALLY MISSING CHORDS

As we have seen in Figure 2, among all verses (or choruses,
etc.) it is usually only the first one that is annotated with
chords. Our method presented above cannot be applied
directly anymore because in the remaining segments it is
no longer clear which chord to associate with which word.

We will now consider this more difficult case by relax-
ing the “complete chords” assumption given in Section 2
and replace it with an assumption that is more in line with
real world files:

incomplete chords Chords are given for the first occur-
rence of a song segment; subsequent occurrences of
the same segment type have no chord information.
They do still have the same number of lyric lines.

Transcriptions such as the one shown in Figure 2 now com-
ply with our new set of assumptions.

While our basic method from Section 2 works in a sin-
gle alignment step, the recovery method proposed in this
section consists of the following three steps:

(a) naı̈ve alignment: the basic alignment method as in
Section 2, but missing chords are modelled by a “no
chord” profile.

(b) phrase-level segmentation: the results of the alignment
are used to build a new chord-based HMM for phrase-
level segmentation.

(c) constrained alignment: the phrase-level segmentation
result is fed back to the original alignment HMM: in-
ference is performed constrained by phrase location.

Sections 3.1 to 3.3 will explain these steps in more detail
and Section 3.4 presents the results.

3.1 Naı̈ve Alignment

In this context we call “naı̈ve” taking the best perform-
ing model from Section 2 (a = 1.0, b = 1.0, no VAD),
which depends on chords and chroma, and apply it to
the case of incomplete chords. We simply use the “no
chord” model for words with missing chords, which en-
sures that no preference is given to any chord. This is step
(a) in the above method outline. As could be expected, the
scarcity of information leads to a substantial performance
decrease, from 88.0% (as discussed in the previous sec-
tion) to 58.44%. Clearly, the partial chord information is
not sufficient to maintain a good long-term alignment over
the whole song. However, the first occurrence of a song
segment type such as a verse is always given with lyrics
and chord information, and we have shown in Section 2.3
that alignment performance is generally good when both
features are used, so it would be likely to find good align-
ment at least in the song segments for which chord infor-
mation is not omitted. This is indeed the case: if we restrict
the evaluation of the “naı̈vely” obtained results to the song
segments annotated with chords, we obtain a higher level
of accuracy: 72.1%. This has motivated us to implement
the following two steps (b) and (c).

3.2 Phrase-level Segmentation

This is step (b), according to the system overview given
above. We build a new HMM based entirely on chords and
chroma, with three hierarchical levels depicted in Figure 4:
chord, song segment, and song, based on the first (naı̈ve)
alignment step explained above. We assume indeed that in
segments with complete chord information the word time
estimates are nearly correct. Since the words are associated
with chords, they provide us with an estimate of the chord
lengths for every segment type. For each segment with
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complete chords we will use these chord lengths to spec-
ify a new segment-specific HMM as a left-to-right chord
sequence. Chords that cross a lyric line boundary, as the
one from the first to the second lyric line in Figure 2, are
duplicated such that a line always starts with a chord. This
is important because otherwise the model based only on
chroma observations could not find the correct new phrase
beginning.

The model of each chord is determined by its length `
in seconds: it is modelled by d2`e states, i.e. two states per
second. Only self-transitions or transitions to the next state
are allowed (see Figure 4a). The self-transition probability
is s = 0.2, and hence the expected duration of one state is
0.5 seconds at a frame rate of 10 Hz 5 . The expected dura-
tion of the chord is d`e, i.e. the length estimated in the pre-
vious step, up to rounding. Of course, we could have mod-
elled each chord with one state with a higher self transition
probability, but that would have led to a geometrically dis-
tributed chord duration model and hence to a bias towards
short durations. The chord duration in our implementation
model follows a negative binomial distribution—similar to
the one used in [19]—in which the probability of very short
chord durations is reduced.

The chord models are then concatenated to form a left-
to-right model of the chord progression in one segment,
as illustrated in Figure 4b. The segment HMMs are then
combined to the final left-to-right song HMM. Since we
assume we know the names of all segments, and hence
their succession, we can simply concatenate the individ-
ual segment HMMs in the correct order, as can be seen in
the example in Figure 4c. Of course, segment models may
appear several times.

3.3 Constrained Alignment

This third step (c) integrates the results calculated in the
two previous steps (a) and (b). We now run the HMM in-
ference from the first step once again, but using the esti-
mated lyric line beginnings from the previous step (b): we
constrain the Viterbi search at frames of line beginnings to
exactly the word the line starts with. To be precise, it is the
short pause state preceding this word that is fixed to start
at the estimated line beginning, so that lines that start with
a chord, but no lyrics are not forced to start with a word.

3.4 Results II

We chose the method that performed best in the experi-
ments reported in Section 2.3 for the further experiments,
i.e. the feature weight parameters are set to a = 1.0 and
b = 1.0. We used the same eight songs (see Table 2) and
performed two more experiments, firstly the naı̈ve applica-
tion (a) of the original chord and lyrics alignment method,
and secondly the full method including steps (a), (b) and
(c). The accuracy results are given in Figure 5, together
with the result obtained under complete chord information.
First of all, we observe that the results of the naı̈ve method
are worse than the results with complete chord informa-
tion: with respect to the method with complete chords at

5 Since this HMM does not involve MFCCs we use the native chroma
frame rate.
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Figure 5: Songwise comparison. Top figure: black bars
represent the accuracy obtained using all chord informa-
tion (see Section 2); blank circles represent accuracy with
partial chord data (chords of repeated segments removed);
filled circles represent accuracy using our chord informa-
tion recovery method as explained in Section 3. Bottom
figure: proportion of lyrics lines for which chord informa-
tion is available after partial removal.

method accuracy in %

full chord information 88.0
incomplete chords (naı̈ve method) 58.4
incomplete chords with recovery 72.7

Table 5: Accuracy for the methods presented in Section 3,
as explained in 3.4.

the top of the figure, removing chord information clearly
decreases accuracy (defined in Equation 2) from 88.0% to
58.4%. Our proposed method, i.e. steps (a) to (c), can re-
cover much of the lost information by applying phrase con-
straints, resulting in an accuracy of 72.7%.

Figure 5 illustrates where the chord information recov-
ery method presented in this section works best: the blank
and filled circles connected by solid lines show the im-
provement from the naı̈ve method (blank) to the method
with chord information recovery (filled). The songs are
sorted by amount of improvement (same order as given
in Table 2), and we observe that the recovery method im-
proves results for the first 11 (of 15) songs. The differences
are more substantial, if the accuracy of the naı̈ve method is
low. It is also interesting to observe that the improvement
correlates negatively with the amount of chord information
provided (see the percentage of lines with available chord
information at the bottom of Figure 5).

Our results imply furthermore that the segmentation
achieved in step (b) is very good. As far as we know, this is
the first time that a chord progression model of song seg-
ments has been applied for song segmentation, made pos-
sible by the partially given chord data. A particularly inter-
esting feature is the capability of finding structures down
to the phrase level, as the example Figure 6 demonstrates.
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in state 1 state 2 state 3 out

(a) chord model: example of one chord of length ` = 1.5 seconds

in D G . . . A7 D out

(b) song segment model: example of the verse

in Verse Verse . . . Instrumental Chorus out

(c) song structure model

Figure 4: HMM for phrase-level segmentation. Though the network is a strict left-to-right HMM, it can be thought of in
terms of three hierarchical layers representing chords, song segments, and song structure.

audio

segment

phrase

has chords

Figure 6: Automatic segmentation as explained in Section 3.2. The top line is a representation of the audio waveform of
the song Eternal Flame by the Bangles, with means and maxima of positive values indicated in grey and black, respectively.
Below are the automatically detected segments, with names from the chords and lyrics annotation file. Underneath is the
corresponding phrase-level segmentation (i.e. lyric lines). We can clearly see that the verse has six lines, the bridge has
only three, while the instrumental section has no lyrics and hence no further segmentation. In the bottom line the segments
for which chord information was available are shaded dark.

4. DISCUSSION AND FUTURE WORK

Clearly, our chord information recovery method does not
improve results for all songs, but in our experiments it did
improve results for the majority of songs. No high-level
music computing method can claim perfect accuracy, and
systems that contain a number of successive steps suffer
from errors that are propagated down to subsequent steps.
We have presented such a system in this paper and are
aware of this shortcoming. An approach that integrates
all three steps into one would be much more elegant—
and probably more effective. The main problem under par-
tially missing chord data is that three song representations
have to be aligned: lyrics, chords and audio. Finding a
model that encompasses all poses a significant challenge
and we are not aware of standard statistical models that
directly lend themselves to this task. Once found, such
a model could also provide more accurate alignment for
cases in which the chord labelling is of low quality, e.g.
when chords are not written exactly over the right words.

In a more efficient system, the audio feature generation
should be unified to avoid the overhead of operating with
different sample rates. We also plan to implement an appli-
cation of the methods presented here: a machine that auto-
matically generates guitar/singing karaoke annotations and
allows a new advanced karaoke experience for musicians.
In fact, real-time alignment could make such an application
an electronic lead-sheet tool for bands. In the present study
the chord and lyrics files were checked and edited so they
could be parsed unambiguously. For example, we made
sure that the names of song segments were unambiguously
recognizable as such so they would not be parsed as lyrics.
In an application aimed at non-expert users, this “clean-up”

would have to be performed automatically, i.e. the parsing
of the files would have to be much more robust. This is an
interesting research problem in itself.

However, our primary goal is to further relax the as-
sumptions made about the chord and lyrics data. For exam-
ple, dropping the requirement that the succession or names
of the song segments are given would make our method
even more applicable to “sloppy” real world song annota-
tions, and the segmentation method based on chord pro-
gressions presented in Section 3.3 is a promising starting
point to finding song segments with no a priori informa-
tion about their order. The next great music computing
challenge is then to perform the task of chord-aided align-
ment without any prior chord information and automat-
ically generate Internet-style chord and lyrics transcrip-
tions. Though several systems for fully automatic struc-
tural segmentation and chord extraction exist, we are aware
of none that combine the different parts needed: integrat-
ing more musical features is however one of the goals of
the Sound and Music Computing Roadmap 6 and we ex-
pect that the most interesting music computing applica-
tions of the future will be those that aim to reach that goal.

5. CONCLUSIONS

This paper has shown that additional chord information in
a textual “Internet” format can lead to substantially im-
proved lyrics-to-chord alignment performance. This is true
in the case in which chord information is provided for ev-
ery part of the song, but also if the chords are only tran-
scribed once for every song segment type (e.g. for the
first of three verses), a shortcut often found in files in

6 http://smcnetwork.org/roadmap
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the Internet. We have proposed two methods that allow
us to deal with these situations: the first one is based
on an existing hidden Markov model that uses MFCC
phoneme features for lyrics-to-audio alignment. We ex-
tend it by integrating chroma emissions and describe each
hidden state in terms of the phoneme and the chord. We
achieve an accuracy of 88.0% compared to 46.0% without
chroma and 59.1% without phoneme features. If parts of
the chord information are removed, the method performs
worse (58.4%), though still better than the baseline method
without chroma features. Our second proposed method
succeeds in recovering much of the information lost: it
uses the remaining partial chord information to build a new
HMM with chord progression models for every song seg-
ment. Viterbi decoding of this HMM identifies the phrase
structure of the song, so that lyrics alignment can be con-
strained to the correct phrase. This strategy boosts accu-
racy by more than 14 percentage points to 72.7%. We
show that the improvement on individual songs is partic-
ularly marked when large parts of the chord information
are missing.

We have noted that the results of the second method
imply a good performance of the segmentation method.
This is the first time that segment-specific chord progres-
sion models have been used for segmentation and phrase-
finding. Similar models may allow us to further relax as-
sumptions on the chords and lyrics input format and hence
to achieve robust performance in real-world situations.
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ABSTRACT

Chord symbols and progressions are a common way to de-
scribe musical harmony. In this paper we presentSEQ, a
pattern representation using the Web Ontology Language
OWL DL and its application to modelling chord sequences.
SEQ provides a logical representation of order informa-
tion, which is not available directly in OWL DL, together
with an intuitive notation. It therefore allows the use of
OWL reasoners for tasks such as classification of sequences
by patterns and determining subsumption relationships be-
tween the patterns. TheSEQ representation is used to
express distinctive pattern obtained using data mining of
multiple viewpoints of chord sequences.

1. INTRODUCTION

The Semantic Web is an effort to augment the conventional
Web with explicit machine-processable semantic metadata
to serve as a backbone for a variety of automated content
processing and retrieval task [1, 2]. In this context, sev-
eral techniques for the logical description and querying of
web data have been developed. Particularly, modelling of
knowledge in web ontologies using the Description Logic
OWL DL [3] enables automatic reasoning. However, these
techniques have been developed with the focus on termino-
logical metadata and the use of these techniques to reason
on structured objects such as found in music representation
is still in its beginnings.

For our approach, we chose chord sequences as a start-
ing point as these are a popular representation and have in-
creasingly gained research interest [4, 5]. They are also at a
convenient and powerful level of musical abstraction. For
example, within the “Music Ontology" effort patterns have
been learned from chord sequences available in the Seman-
tic Web data format RDF [6, 7]. The patterns themselves
however have not been expressed with Semantic Web tech-
niques. Indeed, neither RDF nor OWL offer ad hoc support
for representing sequential structures.

We have developed a generic representation for sequen-
tial patterns in OWL DL that we callSEQ, extending the

Copyright:©2010 Wissmann et al. This is an open-access article distributed under

the terms ofthe Creative Commons Attribution License, which permits unrestricted
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work of [8], and applied it to chord sequence representa-
tion. Notation and expressivityare similar to regular ex-
pressions, and allow the expression of different levels of
abstraction. Several reasoning tasks on such a representa-
tion can be solved using readily available OWL reasoners.
In a web retrieval scenario, for example, instance checking
can be used to find chord sequences that match or contain a
search pattern. More interestingly, subsumption checking
analyses pattern inclusion.

To demonstrate how theSEQ representation can be used
to enrich the results of pattern discovery, we translated dis-
tinctive chord patterns, which were learned from a corpus
using a statistical learning approach in [9], intoSEQ and
used an OWL reasoner for the calculation of subsumption
relations and instance retrieval.

2. MODELLING KNOWLEDGE IN OWL DL

OWL DL belongs to the Description Logic (DL) family of
knowledge representation languages [10]. DLs are popular
for describing the knowledge of a domain of interest by
formalising its terminology using
• instancesi , j , . . .,
• concepts C, D, . . . and
• propertiesR, S, . . .

Most DLs correspond to fragments of first order logic
such thatinstances,conceptsandpropertiescorrespond to
constants,unarypredicatesandbinary predicates.

An ontologyis a set of axioms that define relationships
between these terms. The part of the ontology that asserts
facts about instances is called the ABox, while the part that
defines the terminology is called TBox. From a first order
logic perspective, ABox axioms assert predicates on con-
stants while TBox axioms describe predicate structures on
variables. Basic forms of terminological axioms are
• concept subsumption (C ⊑ D) and
• equivalence (C ≡ D).

Basic forms of assertional axioms are
• type assertions (i ∃C) and
• property assertions (R(i, j)).

Here C and D can stand foratomic concepts but can
also be compositeexpressionsas we will further illustrate.

In this paper we mainly focus on modelling structural
aspects of chord sequences, but will consider some exam-
ple concept expressions from the domain of music meta-
data as DL syntax was originally introduced for describing
terminologies and it is therefore most intuitive to describe
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Figure 1: Structure of an example sequential pattern

the relationships between words. Amotivation for this is
also to highlight the possibilities of DLs for reasoning on
musical structures and musical metadata within one single
logical framework. For example, consider the TBox

Musician ≡ ∃performed.Music ⊔ ∃wrote.Music

Composer ≡ ∃wrote.Music

These axioms define a musician as somebody who per-
formed or wrote music, and a composer to be someone who
wrote music. Here boolean constructs and property restric-
tions are used to form expressions. DLs provide boolean
constructors¬C, C ⊓ D, C ⊔ D. As DLs have first order
logic semantics we can think of these as complement,in-
tersection and union of sets (of instances). Further, DLs
allow to quantify over properties (∃R.C, ∀R.C, ∃=nR.C,
∃≤nR.C, ∃≥nR.C), e.g. stating that for an instance that is
a Composer there exists a propertywrote with the range
Music. OWL Reasoners provide certain standard reason-
ing services. For example, bysubsumption reasoningon
the TBox a reasoner can be infer that all composers are
necessarily musicians (Composer ⊑ Musician). In fact all
subsumption problems in DLs are decidable, i.e. we can
do this for any two concept descriptions. So the main chal-
lenge is to capture the interesting aspects of a terminology
as DL axioms, whereas the reasoning is done automati-
cally.

A further reasoner task is classification of an ABox with
respect to TBox concepts. Consider the facts

wrote(mozart,magic_flute),

wrote(shakespeare,hamlet),

magic_flute ∃Music,

shakespeare ∃∀wrote.Literature

Here, for example, Mozart will be classified as composer
and musician. Shakespeare willnot be classified as musi-
cian as he just wrote literature.

Additional DL constructs exist that allow to assert sub-
property relationship, inverse property relationship and char-
acteristics of properties such as being functional, transitive,
reflexive, irreflexive, symmetric or asymmetric. We refer
the reader to [10] and [11] for a more detailed discussion
of DLs.

3. MODELLING SEQUENCES IN OWL

The wish to model sequences arises naturally in the music
domain, given its temporal nature. Unfortunately, there are
no native constructs within OWL DL to express sequence
patterns. Drummond et al. [8] proposed to use alinked list
approach. We extended this approach and developedSEQ,
an ontological representation of sequence patterns.

In the following we describe the axiomatisation of basic
SEQ patterns and give examples. The axiomatization of
the linked list structure follows the ideas of Drummond et
al. [8]. One difference is that we introduce an initial com-
ponent because this is crucial for the behaviour of pattern
subsumption and for the creation of more complex pattern
constructs. Further we introduce a notation to express se-
quences in a more intuitive (yet formal) way.

The core structure of aSEQ pattern is similar to a linked
list. Figure 1 shows an example. Components of patterns
are linked by solid dots. Each component can be associated
with linking and content properties: Linking is expressed
by using thefunctional propertyhasNext (solid arrow)
that connects a component to its immediate successor or by
using thetransitivepropertyfollowedBy (dashed arrow)
that connects a component to all following components. A
patternis characterised by restricting these properties. As
the subproperty relationshiphasNext ⊑ followedBy is
asserted forSEQ patterns,followedBy relationships are
are implicitly defined between all connected components
(dotted arrows).

The propertyhasContent can be used to describe the
content of a pattern component. Finally, we introduce an
intital component (α) with no precursor and no content and
a final component (ω) with no successor and no content
(see table 1 for definitions) . A sequence patternSP1 that
describes sequences that consist of “some instances ofW,
thenX, thenY, then followed byZ” (as shown in fig. 1) can
be described by the DL concept

SP1 ≡ α ⊓ ∃followedBy.(∃hasContent.W

⊓ ∃hasNext.(∃hasContent.X

⊓ ∃hasNext.(∃hasContent.Y

⊓ ∃followedBy.(∃hasContent.Z

⊓ ∃followedBy.ω))))

Forsimplification, we can state this expression equivalently
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Syntax Semantics

succeeds C ⊳ D C⊓ ∃hasNext.D

T
B

ox

follows C⋯D C⊓ ∃isFollowedBy.D
has content [C] ∃hasContent.C
initial α ¬∃followedBy−.⊺ ⊓ ∃≤0hasContent.⊺
terminal ω ¬∃followedBy.⊺ ⊓ ∃≤0hasContent.⊺

Table 1: A selection ofSEQ constructs and their definition.C andD denote arbitrary DL concepts

in SEQ notation as

SP1 ≡ [W] ⊳ [X] ⊳ [Y]⋯[Z]

with α andω are not explicitly stated and arrows, dots and
square brackets capturing the detailsof the succeeds, fol-
lows and content restrictions. Consider, the pattern

SP2 ≡ [W] ⊳ [X] ⊳ [Y] ⊳ [Z]

The difference withSP1 here is thatY has to be directly fol-
lowed byZ. Intuitively we expectthatSP2 is more special-
ized thanSP1 and all instances ofSP2 will also be instances
of SP1. As we have formalizedSEQ patterns as DL con-
cepts, we can directly usethe machinery for computing
DL concept subsumption to automatically compute pattern
subsumption. In this case a standard DL reasoner will infer
the subsumption relationshipSP2 ⊑ SP1 (taking into con-
sideration thathasNext is a subproperty offollowedBy).

The possibilities of subsumption reasoning get more in-
teresting whenwe use conceptexpressions(such as we
have done in theMusician example) rather than simple
concept names. For example we could define a chord by
its properties, e.g.

⎡⎢⎢⎢⎢⎢⎣

∃ root . C
⊓ ∃ triad . Maj
⊓ ∃ seventh . b7

⎤⎥⎥⎥⎥⎥⎦

where the pattern characterises a chord by the properties
root, triad andseventh. Given another more general
pattern that for example only restricts root and triad a rea-
soner could infer a subsumption relationship such as

⎡⎢⎢⎢⎢⎢⎣

∃ root . C
⊓ ∃ triad . Maj
⊓ ∃ seventh . b7

⎤⎥⎥⎥⎥⎥⎦

⊑ [
∃ root . C

⊓ ∃ triad . Maj
]

In the work described in the following section we re-
strict ourselves to patterns that describe their content as a
conjunction of features (functional properties) as we can
discover patterns of this form automatically using the pat-
tern discovery method by [9]. Note, that in principle it is
also possible to make use of further DL operators when
defining patterns. For example, the pattern

[
∃ root . ¬(F ⊔ G)

⊓ ∃ triad . Maj
]

matches major chords that have a root other thenF or G,
and given our previous example pattern would give rise to

the subsumption relationship:

⎡⎢⎢⎢⎢⎢⎣

∃ root . C
⊓ ∃ triad . Maj
⊓ ∃ seventh . b7

⎤⎥⎥⎥⎥⎥⎦

⊑ [
∃ root . ¬(F ⊔ G)

⊓ ∃ triad . Maj
]

Naturally the question arises how such patterns can be
created in practise. As manual modelling is often costly
and time consuming, it is interesting to investigate meth-
ods for automatic pattern creation. In the following sec-
tion we will outline the relationship of theSEQ formalism
to the established viewpoint approach to automatic pattern
discovery.

4. SUBSUMPTION STRUCTURE OF
DISTINCTIVE CHORD PATTERNS

ThoughSEQ patterns can be specified in a top-down man-
ner by a knowledge engineer, it is interesting to learn them
from a corpus of music. This approach leads to the ques-
tion which patterns are most relevant and interesting, which
is a typical question from the field of data mining. Depend-
ing on the application, there are different relevant proper-
ties. For the classification of music, which is very useful
in a Semantic Web scenario, we are interested in distinc-
tive patterns that help differentiate one class from another,
and general patterns that apply to many relevant data sets
in a class. Conklin [9] has applied this approach to chord
sequences and found a number of relevant patterns that we
further analysed usingSEQ.

4.1 Representation of Feature Set Patterns

Pattern discovery usingmultiple viewpointsis a machine
learning approach for discovering patterns in sequential
musical data. It has mainly been used for discovery of pat-
terns in melodies, but recently also for learning patterns in
chord progressions [9]. Input and patterns are represented
using afeature setrepresentation [12].

For a sequence of musical events (e.g. chords), view-
points are computed. A viewpointτ is a function from
events to values in a specific range set. A feature is defined
asτ ∶ v whereτ is a feature name andv a feature value. A
feature setthen is aconjunctionof features

{τ1 ∶ v1, . . . , τn ∶ vn}

and apatternis a sequence

f1, . . . , fm

where eachfi is a feature set.
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events: Im7 IVm7 Im7 Vbm7b5 IV7 IIIsm7b5

fe
at

ur
es

degree I IV I Vb IV IIIs

basedegree I IV I V IV III

kp I II/IV I V/VII II/IV III

triad Min Min Min Dim Maj Dim

rootmvt � 4n 5n 5b 7s 7n

Table 2: Example decomposition of chord-events into feature sets for viewpointlearning

Table 2 shows an example of how a chord progression
is represented as a sequence of feature sets. The view-
pointsdegree, triad andbasedegree directly relate to
the chord symbol. Relationships between events are mod-
elled as features that belong to a single event and have to
be read as referring back to the previous event. The feature
rootmvt ∶ 4n for example expresses that the current root
event is a fourth about the previous event. In the case of
the first event features of this kind take the value� as there
is no previous event they could refer to. We use further
viewpoints in later examples such asmeeus that indicates
harmonic function (tonic (T), dominant (D) or subdominant
(S)) as described by [13],kp that indicates chord degree
classes as described by [14] andratio(dur) that indicates
the relative duration of an event.

4.2 Translation of Feature Set Patterns toSEQ

Feature set patterns can be translated intoSEQ using a
translation functionT that is defined as follows. Each fea-
tureτ ∶ v can be translated into a DL property restriction

T(τ ∶ v) = ∃τ.v

where every viewpointτ corresponds to afunctionalprop-
erty τ and the valuev is the filler that the property is re-
stricted to. A feature set is described by a DL concept in-
tersection

T({τ1 ∶ v1, . . . , τn ∶ vn}) = ∃τ1.v1 ⊓ . . . ⊓ ∃τn.vn

A feature set patternf1 . . . fm can then be expressed using
hasNext relationships as

T( f1, . . . , fm) = [T( f1)] ⊳ . . . ⊳ [T( fm)]

In the following we will show examples of genre-specific
chord sequence patterns thathave been learned from chord
sequences tagged with the genresjazz,classicandpop.

4.3 Maximally General Distinctive Chord Patterns

A maximally general distinctive pattern(MGDP) is a pat-
tern that is distinctive above a threshold and not subsumed
by any other distinctive pattern. They are least likely to
overfit the corpus and hence most likely to be useful for
classification. To measure distinctiveness the likelihood
ratio of a patternP is employed. This is defined in [9, 15]
as

Δ(P)
de f
=

p(P∣⊕)
p(P∣⊖)

=
c⊕(P)× n⊖

c⊖(P)× n⊕

wherep(P∣⊕) is the probability of the patternP in the cor-
pus, p(P∣⊖) is the probability of the patternP in the an-
ticorpus (consisting of pieces of different classes),c⊕(P)
andc⊖(P) are the count of the pattern in the corpus and
the anticorpus respectively,andn⊕ andn⊖ are the size of
the corpus and anticorpus respectively.

Figure 2 (top) illustrates threeMGDPs chosen from a
much larger set of highly distinctive patterns that were dis-
covered in a corpus of 856 chord sequences, divided into
genres jazz (338), classical (235), and popular (283) [16].
The interestΔ(P) of the pattern is indicated: for example,
the first pattern is overrepresented by a factor of 12.45. The
numbers in brackets indicate that the length of the pattern is
2 and it occurs in 65 jazz sequences but only 8 sequences in
the anticorpus (classical and popular sequences). The pat-
tern indicates a minor triad on degreeIII, followed by any
triad on degreeIII (due to the fact that themeeus property
indicates theT (tonic) chord transformation). Note that de-
spite this high level of abstraction in this pattern it remains
highly distinctive in this corpus for the jazz genre.

In the middle of Figure 2, instances of each of these
patterns are represented as fully saturated feature set se-
quences.

4.4 Subsumption Structure

To compute the subsumption structure of the learned view-
point patterns we translated viewpoint patterns intoSEQ
concepts and used a DL reasoner to infer their subsumption
relationships.

The bottom part of Figure 2 illustrates a small fragment
of a subsumption hierarchy of viewpoint patterns, created
from a larger set of pattern that aremaximally generaland
distinctive(MGDP). The subsumption relationships were
computed by theSEQ-translation of the MGDPs. To com-
pute the subsumption relationships we translated the pat-
terns intoSEQ and then use the OWL reasoner Pellet1 to
classify. This figure has restricted the representation to five
MGDP that appear onthe righthand side of the hierarchy.

Some internal concepts have been constructed inSEQ
and it can be seen how these capture commonalities be-
tween the MGDPs thereby providing richer structure to
a flat MGDP set. At the left hand side of the figure are
“primitive” features contained in single component pat-
terns. Substantial structure can be seen. For example,
triad ∶ Min can be seen to occur in four MGDPs and in
addition in one internalSEQ pattern.

1 http://clarkparsia.com/pellet/
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{ ratio(dur) ∶ 1/2 }

{ kp ∶ III }

{ kp ∶ I }

{ meeus ∶ T }

{ meeus ∶ D }

{ meeus ∶ S }

{ kp ∶ VI }

{ degree ∶ II }

{ ratio(dur) ∶ 1 }

{ triad ∶ Min }

{ kp ∶ II/IV }

{
kp ∶ III

triad ∶ Min
}

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ratio(dur) ∶ 1

meeus ∶ D

kp ∶ II/IV

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ratio(dur) ∶ 1

meeus ∶ D

kp ∶ II/IV

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,{ triad ∶ Min } ,{ kp ∶ VI }

pattern 13.60 (3) (71, 8)

{
kp ∶ III

triad ∶ Min
} ,{ meeus ∶ T }

pattern 12.45 (2) (65, 8)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ratio(dur) ∶ 1

meeus ∶ D

kp ∶ II/IV
degree ∶ II

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

,{
kp ∶ II/IV

triad ∶ Min
}

pattern 9.43 (2) (80, 13)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ratio(dur) ∶ 1/2
meeus ∶ S

triad ∶ Min

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,{ kp ∶ I }

pattern 9.66 (2) (63, 10)

{
kp ∶ III

triad ∶ Min
} ,{ kp ∶ III }

⊺

pattern 12.45 (2) (65, 8)

Pattern Subsumption

Figure 2: Example of learned MGDP-patterns (top), matching sequences (middle) and patternsubsumption (bottom).
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5. CONCLUSIONS

We introduced theSEQ language and showed how it ex-
pressessequential patterns and discussed some aspects of
syntax and the DL semantics ofSEQ. We demonstrated
the usage ofSEQ to represent and analyse chord patterns
that were discovered from a corpus using viewpoint learn-
ing. A DL reasoner can then use such patterns to classify
instance data. Further, the patterns can be classified au-
tomatically in terms of their subsumption relationships as
illustrated for distinctive patterns from [9].

Several possibilities for future research arise. Reason-
ing on metadata descriptions (as in our introductory exam-
ple) and structural descriptions within the same reasoning
formalism might offer interesting new application possibil-
ities for musicology and music information retrieval. Fur-
ther, the machine-learned descriptions could be comple-
mented with relationships between basic musical entities
such as notes, scales and chord as found in the harmony
literature.
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ABSTRACT

We present a methodto generate human-like performance
expression for polyphonic piano music. Probabilistic mod-
els and machine learning techniques have been success-
fully applied to solve the problem of generating human-
like expressive performance, given a music score. In case
of polyphonic music, however, it was difficult to make
models tractable and a huge amount of training data was
necessary, because performance contexts and relationships
of performance expressions are very complex. To over-
come these problems, we propose a method with a com-
bination of probabilistic models for melody and harmony.
The experimental results show that the proposed method
was able to generate fluctuations of performance expres-
sion parameters for polyphonic piano music such like hu-
man performers do. The results of the subjective evalu-
ations are also reported which indicate that their sounds
were human-like and had certain degree of musicality.

1. INTRODUCTION

Human music performances include expression which is
not written in scores. This is one of the reasons why peo-
ple prefer performed music by famous performers rather
than performances without expression which can be di-
rectly rendered from the score itself. But the mechanism of
human music performances is still not clear and therefore it
is very difficult to generate human-like music performance
expression automatically, given a music score.

However, if we can construct such a system, it will be
useful for general users to obtain a copyright-free music
performance automatically which can be used as a back-
ground music for their own original videos and home pages,
for instance. In addition, it will be also useful for sup-
porting music composition and education for not only pro-
fessional musicians but also general users who have lit-
tle knowledge of music. For example, users can obtain
human-like expressive performances for their original songs
very easily, even if they can not play a music instrument.

We focus on piano performances because there are many

Copyright: c©2010 Tae Hun Kim et al. This is an open-access article distributed

under the terms of theCreative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

solo pieces for piano and performance expressions can be
represented with relatively few parameters comparing with
string and wind instruments. If we look at human perfor-
mance expression for polyphonic piano music, we can ob-
serve that tempo, dynamics and performed note durations
are changing permanently for melodies (Fig.1) and ob-
serve that differences of note onset-time, velocity and per-
formed note duration for harmonies (Fig.2) . The problem
of generating human-like expressive performance is to esti-
mate fluctuations of these performance expression param-
eters, given a music score. However, it is a very difficult
problem, because many relationships between score and its
performance expression are not explicit.

To solve this problem, probabilistic models and ma-
chine learning from human performance expression have
been successfully applied. In case of polyphonic music,
however, it was difficult to make models tractable and a
huge amount of training data was necessary, because per-
formance contexts and relationships of performance ex-
pressions are very complex.

In this paper, we present a method to generate human-
like expressive performances for polyphonic piano music
by learning from human performance expression while avoid-
ing data sparseness problems.

2. RELATED WORKS

Many computational methods for automatic music perfor-
mance rendering have been proposed, such as rule-based
expert systems, query-by-case methods and machine learn-
ing [2]. In this section, only probabilistic model based
works which take advantage of machine learning from hu-
man performance expression will be briefly summarized.

S. Flossmann introducesperformance contextand pro-
pose a probabilistic model for monophonic melody[3]. The
model is trained with a large amount of human perfor-
mance expression recorded by two professional pianists,
N. Magaloff and R. Batik. Performance expression is pre-
dicted by estimation of 3 parameters such as tempo, dy-
namics and articulations. K. Teramura propose a computa-
tional method for imitating music performance expression
of famous pianists using Gaussian Process with a mono-
phonic melody model[4]. For predicting tempo fluctua-
tions, she considers periodical characteristics of tempo and
reports good results for pieces in three-four time such as
waltzes.[5].
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Figure 1. Performance expression for melody of a human performer (Ingrid Haebler, from CrestMusePEDB[1]). a)
Fluctuations of instantaneous tempo which are calculated by the equation (1). b) Dynamics calculated by the equation (2).
c) Fluctuations ofperformed duration which are calculated by the equation (3). These graphs show how human performance
expression for melody looks like. Note that upper and lower outer-voices have different performance expressions.

These two works are based on monophonic melody mod-
els and they report quite good results for generating human-
like performance expression. However, they don’t discuss
how to generate expression for polyphonic piano music.

There are some possible methods to generate perfor-
mance expression for polyphonic piano music with mono-
phonic melody models. For example, 1) generate perfor-
mance expression of extracted main melody (e. g. soprano
voice) from given music pieces and copy them to all other
voices, 2) extract all voices and generate performance ex-
pression for each voice and combine them, 3) treat a poly-
phonic music piece as an one dimensional sequence of
notes which is sorted by time and pitch orders.

However, these methods have some limitations. By 1)
it is impossible to generate the characteristics of human
music performance expression for polyphonic piano music
which are mentioned above. 2) has a problem to extract all
voices from given score which is very difficult. By 3) it is
possible to generate different performance expression for
each note even though input scores are polyphonic, how-
ever, its musical structure will be lost.

G. Grindlay proposes a Hidden Markov Model-based
expressive music performance system and he discusses how
to generate performance expression for accompaniment parts
[6]. However, it is not possible to generate differences of
performance expression of each note in case of harmony.

3. METHOD

In this paper, we present a method for performance ren-
dering for polyphonic piano music with a combination of
probabilistic models for melody and harmony.

Polyphonic piano music can be approximated with a
combination of upper and lower outer-voices and harmonies.
This is because human percepts outer-voices easier than
inner-voices and inner-voices are related with sounds of

harmonies[7]. In addition, upper and lower outer-voices
don’t have the sameperformance expression (Fig.1).

Music performancecan be regarded as a combination of
global and local expressions. Global expression is the ex-
pression resulted from interpretation of expression marks
such ascresc.andrit. . Local expression is the expression
which has no expression marks for itself and is conditioned
by local note-level contexts such as Fig.1.

In this paper, we will focus on local expression, be-
cause we believe that it is important forhuman-likeness
of performance expression. However, generating local ex-
pression is difficult, because relationships to their contexts
are not explicit. To overcome this problem, a probabilistic
model is applicable because it makes possible to capture
some tendencies of relationships. If we assume that the re-
lationships between contexts and performance expressions
are probabilistic, then generating local expression can be
regarded as an optimization problem to find the most prob-
abilistic sequence of performance expression, given a se-
quence of performance contexts which are represented by
rich score features.

Based on these discussions, we propose following strat-
egy to generate human-like performance expression for poly-
phonic piano music:

Learning performance expression

1. Split music scores for training into right and left hands.

2. Extract sequences of the highest notes for right hand
and sequences of the lowest notes for left hand. These
two sequences are regarded as outer-voices. Extract
harmonies for each hand.

3. Train left and right hand melody models with corre-
sponding performance expressions of the extracted
outer-voices.
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Figure 2. Performance expression for harmony of a human performer (Ingird Haebler, from CrestMusePEDB). Note
index is an index of sorted sequence of notes in a given harmony (The first note is the highest note in a given harmony).
a) Differences of onset-time calculated by the equation (4). b) Differences of velocity calculated by the equation (5). c)
Differences of performed note duration calculated by the equation (6). These graphs show how human performs harmonies.
Note that each notehas a different performance expression to the others.

4. Train left and right harmony models with correspond-
ing performance expressions of the extracted har-
monies.

Generating performance expression

1. Split a input music score into right and left hands.

2. Extract a sequence of the highest notes and estimate
its performance expression with the trained melody
model for right hand. Extract a sequence of the low-
est notes and estimate its performance expression
with the trained melody model for left hand.

3. Estimate performance expression for right hand har-
monies using the trained right hand harmony model
and estimate performance expression for left hand
harmonies using the trained left hand harmony model.

4. Combine the 4 estimated performance expressions.

On this strategy, we split scores into upper and lower outer-
voices and harmonies. Therefore, it is possible to generate
human-like performance expression for polyphonic piano
music with relatively simple score features and first-order
Markov chain models using a small amount of training
data.

Followings are details of melody and harmony model
and its learning and estimation.

3.1 Melody model

3.1.1 Performance expression parameters

For melody model, 3 performance expression parameters
are considered: instantaneous tempo, loudness and per-
formed note duration. Fluctuations of each performance
parameter can be modeled with first-order linear Markov

chains if we assume that the current parameter value is
conditioned only by its previous parameter value. In this
way, we can avoid fast fluctuations which cause unnatural
sounds.

Instantaneous Tempo

TempoFactor
t
= log(

Tempo
t

Temposcope
avg

) (1)

where Temposcope
avg is the average tempo ofnt−3, nt−2, nt−1,

nt, nt+1, whennt is the current note to perform.

Loudness

Loudnessmelody
t

= log(
Velocity

t

Velocityscope
avg

) (2)

where Velocityscope
avg is the average velocity ofnt−3, nt−2,

nt−1, nt, nt+1, whennt is the current note to perform.

Performed note duration

DurationFactormelody
t

= log(
Durationreal

t

Durationscore
t

) (3)

where Durationscore
t

and Durationreal
t

are nominal durations
in given scores and performed note durations by human
performers, respectively.

3.1.2 Score features

For performance expression of a melody, we assume that
performance contexts are different for each performance
expression parameter, even if the performing note is iden-
tical. Therefore, different score features are considered for
each parameter (Table1).
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Table 1. Score features for melody model

Instantaneous
tempo

Loudness Performed
note duration

- Pitch -
- Durationscore Durationscore

NoteInterval I,
II, III, IV

NoteInterval I,
II, III, IV

NoteInterval I,
II, III, IV

DurationRatio
I, II, III, IV

DurationRatio
I, II, III, IV

DurationRatio
I, II, III, IV

Metric I, II Metric I, II Metric I, II
Articulation
Marks

Articulation
Marks

Articulation
Marks

In the score features, Pitch means an absolute pitch as
MIDI note number and Durationscore is a nominal duration
in a given score. NoteInterval I, II, III, IV are the note
intervals of pair(nt−3, nt−2), (nt−2, nt−1), (nt−1, nt),
(nt, nt+1) wherent is the current note, respectively. Dura-
tionRatio I, II, III, IV are duration ratios of each pair above.
Metric is a variable which has a value from{very strong,
strong, weak} and MetricI, II are Metric of previous and
current note, respectively. ArticulationMarks is an articu-
lation mark such asstaccato,accentandfermata.

3.2 Harmony model

3.2.1 Performance expression parameters

For harmony model, 3 performance expression parame-
ters are considered: difference of onset-time, loudness and
performed note duration. A sequence of parameter values
which is sorted by pitch can be modeled with a first-order
linear Markov chain to avoid a large difference of parame-
ter values which causes an unnatural sound.

Difference of onset-time

DiffOnsetTimei = OnsetTimeo − OnsetTimei (4)

where OnsetTimeo is onset time of a note, which belongs
to outer-voices, in a given harmony. OnsetTimei is onset
time of the current note to perform. DiffOnsetTime is a
difference of onset-times, when a quarter note has a length
of 1.0 (See [1]).

Loudness

Loudnessharmony
i

= log(
Velocity

i

Velocity
o

) (5)

where Velocity
o

is velocity of a note, which belongs to
outer voices, in a given harmony. Velocity

i
is velocity of

the current note to perform.

Performed note duration

DurationFactorharmony
i

= log(
Durationreal

i

Durationreal
o

) (6)

Table 2. Scorefeatures for harmony model

Difference of
onset-time

Loudness Performed
note duration

Pitch
Durationscore

NoteDistance
OuterNote

where Durationreal
o

and Durationreal
i

are performed duration
of a note, which belongs to outer voices, in a given har-
mony and performed duration of the current note, respec-
tively.

3.2.2 Score features

For performance expression of a harmony, same score fea-
tures are considered for all 3 performance expression pa-
rameters (Table2).

In score features,Pitch is an absolute pitch as MIDI note
number and Durationscore is a nominal duration in a score.
NoteDistance is measured by a note interval between the
note belongs to outer voices and the current note to per-
form. OuterNote is a variable which hastrue, if the current
note is an outer note of the harmony andfalse, otherwise.

3.3 Learning and estimation

Because sequences of performance expression for both of
melody and harmony are modeled by linear chain Markov
models, any of HMM-like probabilistic models is appli-
cable for learning and estimation. In the experiments, we
employed Conditional Random Fields[8], which show bet-
ter performances for input sequences represented by rich
features. Both of melody and harmony models are train-
able with Maximum Likelihood Estimation using Stochas-
tic Gradient Descent algorithm[9] and performance expres-
sion can be estimated with Viterbi algorithm. To imple-
ment the proposed method, we used ”crfsgd” package by
León Bottou1 .

3.4 Quantization of performance expression
parameters

Performance expression parameters should be quantized
into discrete values for learning and estimating performance
expression, because CRFs are frameworks for predicting
label sequences and therefore it is not able to estimate con-
tinuous values. In the experiments, the parameters were
quantized into 32 labels withk-means algorithm. Initial
values of the algorithm are given by random sampling from
the prior distribution of performance expression parame-
ters which is obtained from the training data and therefore
a non-linear quantization preserving the prior distribution
of performance parameter values is possible, for example,
more probable values of performance expression parame-
ters are quantized into small size bins.

1 http://leon.bottou.org/projects/sgd
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Table 3. Training data for experiment 1. 4 performances
of 1 piece were used totally.

Piece Performer
Piano Sonata KV331, 1st Mov. Hiroko Naka-

mura
Piano Sonata KV331, 1st Mov. Norio Shimizu
Piano Sonata KV331, 1st Mov. Ingrid Haebler
Piano Sonata KV331, 1st Mov. Lily Kraus

4. EVALUATION

To evaluate proposed method for generating human-like
performance expression for polyphonic piano music, we
conducted two experiments: for test pieces which are known
to the implemented system and for test pieces which are
unknown to the system. To evaluate human-likeness and
musicality of the generated performance expression with
the proposed method, we also conducted subjective evalu-
ations for them.

In the experiments, we trained melody and harmony
models with CrestMusePEDB ver. 2.3[1]. In the subjec-
tive evaluations,we used sound samples which are ren-
dered with a sampling-based virtual instrument, ”Garritan
Instruments for Finale2009” from Garritan Libraries.

4.1 Experimental environments

Experiment 1 – For known pieces to the system In ex-
periment 1, we evaluated the proposed method for known
pieces to the system. Melody and harmony models were
trained with 4 human performances of W. A. Mozart, Pi-
ano Sonata, KV. 331, 1st Movement (Table3). As the
test piece, we usedthe same piece. It is composed with
several harmonies and therefore we can see, if the pro-
posed method is able to generate performance expression
for polyphonic piano music.

Experiment 2 – For unknown pieces to the system In
experiment 2, we evaluated the proposed method for un-
known pieces to the system. Melody and harmony mod-
els were trained with 14 pieces of F. Chopin which are
performed by Vladimir Ashkenazy (Table4). As the test
piece, we used F. Chopin, Nocturne No. 10, Op. 32, 2nd
Movement which is not included in the training data set.
This piece was selected because melodies and harmonies
are mixed and it is usually performed with profound ex-
pression.

4.2 Generation results

As the results of experiment 1, the common performance
expression of 4 performers were learned and generated.

We mentioned that the upper and lower outer-voices
have different fluctuations of performance expression to
each other in case of human performances. Probably, this
is because each voice has a different role, for example, the
upper outer-voice is a melody and the lower outer-voice is

Table 4. Training data for experiment 2. 14 performances
of 14 pieces were used totally.

Pieces Performer
Prelude Op. 28 No. 1, 4, 7, 15,
20 (5 pieces)

V. Ashkenazy

Etude Op.10-3, 10-4, 25-11 (3
pieces)

V. Ashkenazy

Waltz Op. 18, 34-2, 64-2, 69-1,
69-2 (5 pieces)

V. Ashkenazy

Nocturne No. 2 Op. 9-2 (1
piece)

V. Ashkenazy

an accompaniment. Fig.3 shows that there are also differ-
ences between fluctuations of performance expression pa-
rameters such as loudness and performed note duration of
upper and lower outer-voices in the generated performance
expression with proposed method.

For harmony, we mentioned that human performance
expression have different onset-time, loudness, and per-
formed duration for each note. Probably, this is resulted by
influences from the interpretation of the piece by perform-
ers and the characteristcs of their fingering. Fig.4 shows
that generated performance expressions with the proposed
method also has different performance parameter values
such as onset-time, loudness and performed duration for
each note.

The fluctuations were not random, for example, per-
formed durations of lower voice showed a certain pattern
according to a given accompaniment pattern, for example,
the lowest note A is performed aslegato.

These results indicate that with the proposed method,
it is able to automatically generate fluctuations of perfor-
mance expression parameters forknownpolyphonic piano
music, with certain degree of musicality.

From the results of experiment 2, we also can see that
upper and lower outer-voices have different fluctuations
of performance expression parameters. For harmony, all
notes have different performance parameter values to each
other (Fig.5).

The fluctuations were not random, for example, tempo
fluctuations showed a certain pattern according to measure
borders (a tempo-arch was observed for each measure).

These results show that with proposed method, it is also
able to automatically generate fluctuations of performance
expression parameters forunknownpolyphonic piano mu-
sic, with certain degree of musicality.

4.3 Subjective evaluation

The experimental results show that the proposed method
is able to generate meaningful fluctuations of performance
expression parameters for polyphonic piano music. To eval-
uate their human-likeness and musicality, we have con-
ducted subjective evaluations.

For the evaluations, we prepared 3 performance expres-
sions which are generated with the proposed method: W.
A. Mozart, Piano Sonata, KV. 331, 1st Movement which
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Figure 3. The results of experiment 1 (melody). a) Fluctuations of instantaneous tempo calculated by the equation (1).
b) Dynamics calculated with the equations (2). c) Fluctuations of performed note duration which are calculated by the
equation (3). These results show that the generated performance expression for melody with the proposed method have
fluctuations of performance expression parameters such like human performance expression do and they are not arbitrary.

is the result of experiment 1, F. Chopin, Nocturne No. 10,
Op. 32, 2nd Movement which is the result of experiment 2
and W. A. Mozart, Piano Sonata KV. 545, 3rd Movement
whose performance expression is newly generated with the
models trained with 6 pieces of Mozart’s piano sonata2

performed by M. J. Pires.
In addition, we prepared 3 more sound samples for each

piece (total 12 samples): performance without expression,
human performance expression, and performance expres-
sion for comparison. Performance expression for compar-
ison has expression only for upper outer-voice and it is
copied to the other voices and therefore upper and lower
outer-voices have the same expression and each note of
harmony also has the same expression. The purpose of
preparing performance expression for comparison is to see
if the proposed method considering polyphonic character-
istics is effective to generate human-like performance ex-
pression for polyphonic piano music.

Human-likeness and musicality of each sound sample
were evaluated by 25 participants3 with 6 scaled scores,
where 1 means ”not human-like at all” and 6 means ”very
human-like” for human-likeness and 1 means ”not musical
at all” and 6 means ”very musical” for musicality.

Fig. 6 shows the results of subjective evaluations.4 In
this figure, we can see that performance expressions gener-
ated with proposed method were evaluated that they sounded
more human-like and musical for all 3 pieces comparing
with performances without expression. In the cases of Mozart’s
Piano Sonata KV.331, 1 Mov. and Chopin’s Nocturne No.
10, Op.32, 2nd Mov., participants evaluated them with the
scores which are very closed to human performance ex-

2 W. A. Mozart, PianoSonata, KV279-1, 279-2, 279-3, 331-1, 545-1,
545-2. Note that KV545-3 is not included in the training data.

3 6 non-musicians, 17 hobby-musicians and 2 professional musicians
participated in the experiment.

4 Differences of average scores are tested by the Analysis Of Variance
and its post-hoc test (p < 0.05)

pression (ANOVA indicates that thess differences are not
significant). It means that performance expressions with
the proposed method sounded human-like and musical for
these pieces.

For Mozart’s Piano Sonata, KV. 545, 3rd Mov., per-
formance expression with proposed method obtained rel-
atively low score comparing with human performance ex-
pression. This might be because for Mozart’s piano sonata
with fast tempo, global expression by interpretations of ex-
pression marks and musical structure is more important
than local expression which are related with note-level con-
texts. In the experiment, human performance expression
included both of local and global expressions and therefore
performance expression with proposed method obtained
such a low score comparing with human performance ex-
pression.

However, the averages of the 3 pieces show that perfor-
mance expressions with proposed method obtained better
scores than performance expressions for comparison and
overall human-likeness and musicality of performance ex-
pressions with proposed method are most closed to human
performance expressions comparing with other sound sam-
ples. Probably, this is because the proposed method is able
to generate more profound expression than performance
expression for comparison, especially for polyphonic pi-
ano music.

These results show that the proposed method is effec-
tive to generate performance expression for polyphonic pi-
ano music and its generation results sound human-like and
have certain degree of musicality.

5. CONCLUSION

We proposed a method to generate human-like performances
for polyphonic piano music with a combination of proba-
bilistic melody and harmony models. With the experiments
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Figure 4. The results of experiment 1(harmony). a) Differences of onset-time calculated by the equation (4). b) Differences
of velocity calculated by the equation (5). c) Differences of performed note duration which are calculated by the equation
(6). These results show that the generated performance expression for harmony with the proposed method have different
parameter values for each note, such like human performance expression do.

and the subjective evaluations, we showed that our method
is effective to generate performance expression for known
and unknown polyphonic piano music and they sound human-
like and musical with profound expression.

Global expression by interpretations of expression marks
and musical structure are also very important for human-
like expressive performance. But expression marks are not
easy to interpret, because each expression mark also has
its certain performance context and therefore its interpreta-
tion is varying. As the next step, we will challenge to learn
and estimate global expression to generate more human-
like performances with more profound expression.

We believe that there is a possibility to learn person-
ality of a specific performer through training models with
his or her real performances. Therefore, we will experi-
ment on the proposed method to see its ability to gener-
ate distinguish performance expression for each performer.
This will be useful not only for searching a specific per-
former from a music database, but also for musicological
researches of human music performances.
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Figure 5. The results of experiment 2. a) Fluctuations of instantaneous tempo calculated by the equation (1). b) Dynamics
for melody calculated by the equation (2). c) Velocity differences of the harmony notes which are calculated with the
equation (5). d) Differences of performed note duration of the harmony notes which are calculated by the equation (6).
Fluctuations of performed note duration for melody and Onset-time differences of the harmony notes are omitted due to
space limitations.

Figure 6. The results of subjective evaluations. A is performances without expression (deadpan). B is performance
expression for comparison. C is performance expression with proposed method. D is human performance expression. Note
that human performance expression includes local and global expression. a) shows the results for W. A. Mozart, Piano
Sonata, KV. 331, 1st Movement and b) shows the results for W. A. Piano Sonata, KV. 545, 3rd Movement. c) shows the
results for F. Chopin, Nocturne No. 10, Op. 32, 2nd Movement and d) shows the average human-likeness and musicality
of the 3 pieces.
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ABSTRACT 
An essential part of the oboe technique is the reed-
making process, where the raw material is carved and 
shaped. Different oboe schools define different types of 
shapes, and argue about their adequacy for a better sound 
and performance. This paper focuses on the perceptual 
influence of 3 reed-making types. 

We chose 6 reeds representing 3 pairs of each style 
(French, German, American) and recorded 116 sound 
samples with two oboists in controlled conditions. N=63 
sound stimuli were selected: 9 diminuendo long tones, 18 
eight-note phrases from which 18 low-pitched and 18 
high-pitched tones were extracted. Tones were normal-
ized in pitch and intensity to help listeners focusing on 
timbre. 40 participants (20 non-oboist musicians and 20 
professional oboists) completed a free-grouping task on 
each of the 4 stimulus sets, grouping sounds by global 
similarity. 

Results show that the most salient production parame-
ters are the attack type and the oboist-oboe. The reed-
making shows no significant influence on isolated tones 
and a marginal influence on complex phrases, and inter-
reed differences are more important than inter-reed-
making differences. Reed-making is important in per-
formance technique but has no influence on the perceived 
timbre. Future research will deal with performer proprio-
ception of the reed making  

1. INTRODUCTION 
There are several hypotheses among musicians and musi-
cal schools about the importance of reed-making style in 
the performance technique and the sound obtained. The 
experiments presented in this paper try to bring an objec-
tive study on what really is perceivable in the sound when 
selecting different reed types, namely the German, 
French and American styles [9]. We can decompose 
roughly the elements that influence the sound in oboe 
performance in three parts: the instrument body, the per-
former and the reed. Reeds and their shape are essential 
in the whole production of sound, and as stated by fa-
mous oboe theorist Haynes [8] “c’est l’anche qui donne 

la vie”. In spite of the well known importance of the reed, 
we must wait until the XIXth century to find the first de-
tailed written instructions on how to make a reed, and we 
may deduct that previously they were transmitted through 
oral communication and through handicrafts imitation 
[3].  

From the beginning of the XIXth century on, we have 
very detailed descriptions on reed making and the prob-
lems that may arise when sharpening the reed [1,2,5,11, 
15,16,18,19], but only Brod [2] makes a comprehensive 
study on the different ways to sharpen the reed in the 
different national schools, comparing the different for-
eign styles, mainly Italian and German, and comparing 
them to the French style, and he includes some links be-
tween reed making technique and sound quality, describ-
ing the German style as dur (harsh) and sourd (muffled) 
and proposing the French style as the most convenient for 
a better oboe performance. In Spain there is also a dis-
tinction of sound quality made by theorists [10][11].  
We have then an extensive theoretical corpus about reed-
making and a tentative description of the sound obtained. 
The goal of this study is to measure the eventual percep-
tual differences between reed-making styles. The litera-
ture does not provide with a systematic study of the influ-
ence of the reed-making the sound production in spite of 
the repeated theoretical importance attached to this proc-
ess. Some studies, like Ledet’s [9], make a reference to 
the changes in sound perception but we find hardly any 
experiment that measures the direct influence of reed 
making on acoustic measurements or perception changes. 
A specific study focuses on the effect of the intonation of 
the crow of the reed on the tone quality of the oboe [13] 
using basically one reed-making style (the American). 

[14] investigated the influence of the reed brand on the 
acoustic proprieties of the sound with no reference to the 
reed-making style, and they make a survey with oboists 
with general questions on the reed and no actual percep-
tion of the sound. Their results show that professional 
oboists respond that they find the reed as more important 
than the oboe body but they don’t show a preference for a 
specific brand, and the authors provide no significance 
tests on their results. We find the same lack of signifi-
cance tests in another experiment [4] that used the re-
sponses of 5 oboists on several components of the reed 
structure: tube diameter, internal gauging, and reed brand.   

In order to obtain a significant answer on the perceived 
and measurable influence of reed-making in sound pro-
duction, we need therefore to control all the stages from 
the very process of reed making, reed selection, sound 

Copyright: © 2010 Blasco-Yepes and Payri. This is an open-access 
article distributed under the terms of the Creative Commons 
Attribution License 3.0 Unported, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 
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recording and sound production, and the creation of a 
perception task that is centered on sound perception and 
not abstract descriptions of the reed, and following the 
methodology of timbre perception experiments. 

2. REED MAKING PROCESS 

 

Figure 1. Photograph of the 6 reeds that were chosen for 
recording the sound material of the experiment.  

 

 

Figure 2. Schematic representation of the 3 styles of 
reed-making. From left to right: French, American and 
German. The 3 styles are clearly differentiated by the tip 
and back areas.  

The reed-making process is the essential parameter for 
this experimental design, and the reeds were made spe-
cifically for this research work. We used the 3 main 
styles defined by Ledet [9]: American, French and Ger-
man. We tied a total of 25 reeds, using the same manu-
facturer, staple, internal gouge canes, tube diameter and 
length. Reed-making was done by hand and when this 
process was finished, the best reeds with the best material 
were chosen for the recording. We used a total of 6 reeds, 
2 reeds for each type of reed-making. In this experiment, 
we leave out other aspects of the oboe such as recognition 

of the different instrument and their schools, the technical 
aspects of the reeds (type of canes, staples, etc.) or the 
brand of instruments. 

The specific characteristics were as follows: 
• Internal gouges: 0’57mm 
• Total length (only tied): 74mm 
• Total length (cut): 73mm 
• Tube diameter: 10'25-10'50mm 
• Cane shape: RC12 
• Manufacturer of canes: Le Roseau Chantant 
• Staple: Chiarugi 47mm 2+  

3. PERFORMANCE RECORDING 
3.1 Recorded sounds 

Two professional oboists participated in the recording 
sessions. Both oboists used their own instrument, so that 
they were used to the idiosyncrasies of their oboe. We 
made sure that both instruments were of the same type, 
namely, a Yamaha 831 (professional, semiautomatic), 
and from the same 4000 series. This provided the maxi-
mum similarity in the oboe bodies. Both oboists belong 
mostly to the German school, and both were trained in 
Valencia, and were direct or indirect pupils of Lothar 
Koch. The oboists were instructed to avoid adapting their 
technique to the reed characteristics. The recording was 
made in a single session, at the recording studio of the 
Gandía Campus Radio of the Polytechnic University of 
Valencia. This room has suitable characteristics for voice 
and instruments recording. Four AKG C451B micro-
phones were used. These microphones were located one 
above, one below and two on the sides of the performers, 
who played sitting and maintaining the same position 
from the microphones. 

 

Figure 3. Amplitude/time and sonogram representation 
of the long isolated tone. The reed arrow points out the 
end of the stable portion of the sound and the green ar-
row the end of the perceived sound. The blue line repre-
sents F0 (Hz) and the yellow line represents the intensity 
(dB).  

The conditions of temperature (25ºC) and relative hu-
midity (75%) were constant during the 3 hours of the 
recording session. We recorded 116 sound samples and in 
this experiment we used the following material: 
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• Long notes: note G4, with duration of 12s doing a 
gradual diminuendo (from fortissimo to pianissimo). 

• 8-tone musical phrases: 4 notes G6 and 4 notes D4, of 
8s. The phrases were played in two ways, first with a 
tongue attack (i.e. pronouncing the letter "t") and sec-
ond with a breath attack (without the tongue).  

• From each phrase we extracted a low-pitched note 
(D6) and a high-pitched note (G6) with a duration of 
1s. 

 

Figure 4. Music notation representation of the diminu-
endo long tone.  

The main interest in choosing a long diminuendo note 
is to test the flexibility of the reed. Theoretically, a more 
flexible reed will allow a larger range of dynamics in the 
diminuendo, although it may induce a progressive drop in 
pitch. Figure 3 displays the sonogram of a diminuendo 
tone with an indication of the stable and unstable part of 
the sound. Figure 4 shows the musical notation the musi-
cians had to play. 
 

  

Figure 5. Music notation representation of the eight-
tone musical phrase. The notes that were used in the 
short-tone experiment are circled out. 

 

Figure 6. Amplitude/time and sonogram representation 
of an eight-tone musical phrase. The blue line represents 
F0 (Hz) and the yellow line represents the intensity (dB).  

The 8-note phrase, displayed in figure 5 with musical 
notation, was used to test the response of the reeds to the 
different ways to attack a sound. This tests the rigidity of 
the reed, as some reeds respond better to the air pressure 
during an attack and some may over-vibrate and play a 

harmonic tone or fail to sound properly. The tongue at-
tack is sharper and produces an instant increase in pres-
sure. In figure 6 we can see an 8-tone sequence using a 
tongue attack where some notes fail to sound at the right 
pitch and intensity.  

From the phrase we isolated a low pitched tone and a 
high pitched tone, selecting preferably the second note of 
the group as illustrated in figure 5, and if the second note 
was failed, using the third, so that we had a note with a 
stabilized sound production without the possible irregu-
larities of the initial or final note of the group. The iso-
lated tones were used to study the timbre with the differ-
ent reeds and attacks, and the long phrases were used to 
judge the general stability of the reed with the given at-
tack. The notes that were played use the lower register 
and higher register of the oboe, with an abrupt change 
within the phrase that tests the general equilibrium of the 
reed. 

3.2 Acoustic measurements and sound normalization 

We did a preliminary acoustic study on the same material 
and this shows that there are significant differences in 
pitch according to the reeds and styles of reed-making. 
Particularly, the German school differed from the Ameri-
can and French. 

This experience focuses on the timbral differences be-
tween different reeds and reed-making styles, and the 
most accepted framework for timbre comparison is to use 
sounds of equal pitch, intensity and duration. Thus we 
normalized each sound in intensity and pitch, using the 
theoretical frequency of the note (G4, D4, G6). Even if 
pitch differences were small, when comparing sounds any 
pitch change becomes very salient and overcomes other 
features. Pitch normalization was made by decelerating or 
accelerating the frequency, therefore we introduced no 
timbre change, and as the difference in pitch was small 
(less than a semitone) the speed change has not caused 
any significant alteration of duration. 

4. TIMBRE PERCEPTION EXPERIENCE 
4.1 Holistic perception task 

The main goal of our experiment is to analyze the effects 
of reed making on sound timbre. Therefore we have used  
holistic listening as it is the most accepted perceptual task 
in timbral studies as described by Grey or McAdams 
[6,7,12]: in this kind of task, listeners group the sounds 
according to the global perceived similarity. The timbre 
research experiments mostly compare inter-instrument 
differences, but this method is also perfectly suitable to 
detect timbral differences within the sounds of an instru-
ment. As mentioned before, we normalize the sounds in 
pitch and intensity, as well as tone duration, as the most 
accepted working definition of timbre is what differenti-
ates tones of equal pitch, intensity and duration. With the 
groupings made by each listener, a matrix is made, with 0 
when two sounds do not belong to the same group and 1 
when they do. The individual matrices have all the prop-
erties of a distance, and they are aggregated into a matrix 
by adding the different values of each listener. The result-
ing matrix fits again the properties of a distance and can 
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be analyzed with multidimensional scaling techniques to 
discover the main axes of the perceptual space of the set 
of sounds. 

We insist in the fact that by using a free grouping task, 
with no previous information on the sounds and no direc-
tions on how to classify them, we hope that the listeners 
will focus on the actual perception of the timbre, and will 
not try to use their knowledge of reed-making. The goal 
is to understand if there is any timbre variation associated 
with reed making, and furthermore, to understand the 
relative importance of each factor in the global timbre 
perception, such as differences in the performer, the in-
strument or the idiosyncrasies of each reed.  

4.2 Task 

We created four sets of sounds, and each set was pre-
sented independently to the listeners. Once the listener 
had completed the grouping of a given set, the next set 
was loaded. The sets increased in stimulus complexity 
and diversity. To establish the order of presentation, we 
took in account the fact that we had 8-note phrases, and 
isolated notes from these phrases. As the goal was to 
force a reduced listening as described by Schaeffer [17], 
the isolated tones were presented first and the phrase last, 
presuming that if listeners heard the phrase first, they 
would try to match the isolated note grouping to what 
they had done with the complex samples. The diminu-
endo set was the simplest as it had less items which var-
ied less, as no attack differences were present. The sets 
were presented in this order: 
• Stimuli set 1: 9 diminuendo long tone (G4). 
• Stimuli set 2: 18 short-tone low-pitched notes (D4), 9 

with a tongue-attack and 9 without. 
• Stimuli set 3: 18 short-tone high-pitched note (G6), 9 

with a tongue-attack and 9 without. 
• Stimuli set 4: 18 phrases with 4 low-pitched note (D4) 

and 4 high-pitched notes (G6), 9 with a tongue-attack 
and 9 without. 

 

Figure 7. Screenshot of the interactive tool developed 
for free-grouping sound perception. 

Listeners used an interactive interface to listen the 
sounds and drag the corresponding icons as shown in 
figure 7. The interface presented the listeners with a set 
of sounds (associated with an icon that they could freely 
move and listen) and they had to group them according to 
their global similarity (holistic listening). In addition, the 
listeners could write in the boxes a description of the 
group of sounds and its differentiating features (free ver-

balization). The listening task was done individually, 
with headphones and had an approximate duration of 20 
minutes. 

4.3 Participants 

40 participants (20 non-oboist musicians and 20 profes-
sional oboists) completed a free-grouping task. 

5. RESULTS 
5.1 Data 

Each classification of a set of sounds corresponds to a 
matrix which fits all the properties of a distance and it is 
calculated by adding 1 every time a pair of sounds have 
been grouped apart. 

5.2 Response coherence 

We tested the inter-rater response coherence by measur-
ing Cronbach’s Alpha, as displayed in figure 8. We can 
see that the group of oboists has a higher inter-rater co-
herence, probably due to the fact that oboists are more 
used to listen analytically the sounds of the oboe and may 
have common criteria acquired in the learning process.  

There is also a clear difference between the diminuendi 
tones and the rest: the diminuendi did not have differ-
ences in the attack where as in the rest of sounds sets we 
had 2 types of attack. This has reduced the production 
differences, and therefore the listeners did not have clear 
criteria to group the sounds. We will see (figures 10 & 
11) that the reed-making differences have not been per-
ceptually very salient. When in a set of items we reduce 
the factors that may differentiate them, the raters should 
focus on the remaining factors if they are perceptually 
relevant. In this case, the diminuendi had the reed-making 
and the performer as production differences, and instead 
of focusing on reed-making sound differences, they just 
did not have a consistent grouping, so we can hypothesize 
that reed-making is not perceptually very relevant for the 
sets of sounds we have created. Differences between 
sound sets in the behavioral results may measure true 
differences in the perceptual qualities of the tones, but we 
can also consider that the effect of increased practice with 
the sorting task has derived in a increased agreement be-
tween listeners, therefore increasing the Cronbach’s Al-
pha value. 
 

 

Figure 8. Cronbach’s Alpha values for the responses of 
the two groups of listeners in each set of sounds. 
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5.3 Multidimensional scaling 

We performed a multidimensional scaling on each of the 
response matrices, using a bi-dimensional model (as the 
tri-dimensional model did not explain much more vari-
ability) to detect the main criteria used by the listeners. 
The variability explained by the scaling was RSQ= 65% 
for set 1, RSQ=79% for set 2, RSQ=76% for set 3 and 
RSQ= 91 % for set 4. As we can see, the variability ex-
plained is low except for set 4, and only for set 4 the di-
mensions obtained could be explained, as shown in figure 
9. On the figure we circled out the groups corresponding 
to the MDS analysis: horizontally (dimension 1) two 
groups can be divided according to the attack type: breath 
versus tongue and we have circled out with a dashed line 
the sounds of breath attack; vertically (dimension 2) also 
two groups appear according to the performer, we have 
displayed the sounds of the 2d oboist with a solid line.  

 

Figure 9. Multidimensional scaling of the stimuli set 4. 
The first 2 letters are related to the style of lowering: 
letter S shows a breath-attack. Last letter shows the per-
former. 

5.4 The relative influence of the factors 
 

Tests (Pearson) χ²  
Stimuli Participants χ² df Asymp. Sig. 

(2-sided) 
Non-oboist 13.0** 1 .000 Diminu-

endi Oboist 11.7** 1 .001 
Non-oboist 2.15 1 .142 Low-

pitched Oboist 5.27* 1 .022 
Non-oboist 7.78** 1 .005 High-

pitched Oboist .403 1 .525 
Non-oboist 11.1** 1 .001 Long 

phrases Oboist 48.3** 1 .000 

* significant to the 0.05, ** significant to the 0.01 

Table 1. Pearson χ² test comparing the responses differ-
ences for the factor “performer” for each set of stimuli. 

To determine if the different styles of reeds affect the 
perception of listeners, we have done a test of χ² dividing 

the participants into two groups: professional musicians 
and oboists. We have compared if there were significant 
differences in the groupings of listeners using the follow-
ing factors: the oboist (2 oboists), attack (2 types of at-
tack, with the exception of diminuendi stimuli which pre-
sent only one type of attack), reed-making style (3 styles) 
and reeds (6 reeds: variability inter-reed and intra-
school).  
 

Tests (Pearson) χ²  
Stimuli Participants χ² df Asymp. Sig. 

(2-sided) 
Non-oboist .140 1 .709 Diminu-

endi Oboist 3.91* 1 .048 
Non-oboist .237 1 .626 Low-

pitched Oboist .501 1 .479 
Non-oboist 1.43 1 .231 High-

pitched Oboist 1.79 1 .181 
Non-oboist 5.44* 1 .020 Long 

phrases Oboist .916 1 .338 

* significant to the 0.05, ** significant to the 0.01 

Table 2. Pearson χ² test comparing the responses differ-
ences for the factor “reed-making style” for each set of 
stimuli. 

In all the stimuli, the results show that the elements 
that affect most the perception of the participants are the 
attack type (table 2) and the performers (table 1), and 
these differences are significant for both professional 
musicians and oboists listeners. The performer is not a 
significant parameter only for short-tone high-pitched 
notes in the oboists listener group. 

As can be seen in table 2, the factor with the least sig-
nificant differences is the reed-making style; these differ-
ences appear only for sentences of 8 notes in the group of 
listeners who are not oboists (p=,020). In diminuendi 
cases we can observe a significant difference for oboist 
listeners (p=,048). 
 

Tests (Pearson) χ²  
Stimuli Participants χ² df Asymp. Sig. 

(2-sided) 
Non-oboist .566 1 .452 Diminu-

endi Oboist 3.37 1 .066 
Non-oboist .745 1 .388 Low-

pitched Oboist 9.81** 1 .002 
Non-oboist 3.99* 1 .046 High-

pitched Oboist 2.51 1 .113 
Non-oboist 6.22* 1 .013 Long 

phrases Oboist 18.1** 1 .000 

* significant to the 0.05, ** significant to the 0.01 

Table 3. Pearson χ² test comparing the responses differ-
ences for the factor “reed” for each set of stimuli. 

By contrast, we can see in table 3 that the differences 
between individual reeds (independently of the making 
style) are relevant for both oboists and non-oboists for the 

                                         2d oboist 

         
             breath   
             attack 
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low-pitched tones and even more for the complete 
phrases. In figure 10 we summarize the results of the dif-
ferent χ² tests we have performed. As we can see, the 
attack type is by far the most relevant factor when it is 
present (it is not present in the diminuendi set). The at-
tack type has a significant influence in every case. To 
have a better comparison for the remaining factors, we 
eliminated the attack as shown in figure 11. 
 

 

Figure 10. Graphical display of the χ² values for the four 
factors under study. 

 

Figure 11. Graphical display of the χ² values for the 
three factors excluding the attack type.  

Tables 4, 5, 6 and 7 describe the results for the Pearson 
Chi-square tests using the responses from all the partici-
pants and using as parameter the four factors under study. 
These results are graphically summarized in figures 10 
and 11. 
 

Tests (Pearson) χ²  
Diminu-

endi 
χ² df Asymp. Sig. (2-sided) 

Attack - - - 
Performer 24.738** 1 .000 

Reed 3.31 1 .069 
Reed 

making 2.71 1 .100 

* significant to the 0.05, ** significant to the 0.01 
 
We see in figure 11 that the performer is the most in-

fluential factor after the attack, and it is also significant 
for all the sets. For the diminuendo set the importance of 
the performance is higher than for the other isolated note 

sets (low and high pitched notes), which can have two 
causes: the diminuendo notes are longer and therefore 
listeners may distinguish better performance differences, 
and also, the diminuendo notes were performed with the 
same type of attack; when the most salient feature (at-
tack) is suppressed listeners may focus their attention to 
the remaining performance differences. As can be seen in 
the tables, the inter-reed differences are more salient than 
the inter-reed-making style differences. This means that 
the specific characteristics of the reed overcome the in-
fluences of the reed-making. Furthermore, the reed-
making only becomes significant with the 8-tone phrases, 
where listeners can focus on performing technique (miss-
ing notes, performing regularity in the different notes) 
rather than on mere timbral differences. 

Table 4. Pearson χ² test results for the diminuendo set. 

Tests (Pearson) χ²  
Low-

pitched 
χ² df Asymp. Sig. (2-sided) 

Attack 213.156** 1 .000 
Performer 7.01** 1 .008 

Reed 2.393 1 .122 
Reed 

making .708 1 .400 

* significant to the 0.05, ** significant to the 0.01 

Table 5. Pearson χ² test for the Low-pitched set. 

Tests (Pearson) χ²  
High-

pitched 
χ² df Asymp. Sig. (2-sided) 

Attack 47.099** 1 .000 
Performer 6.211* 1 .013 

Reed 6.467* 1 .011 
Reed 

making 3.181 1 .075 

* significant to the 0.05, ** significant to the 0.01 

Table 6. Pearson χ² test for the High-pitched set. 

Tests (Pearson) χ²  
Long 

phrases 
χ² df Asymp. Sig. (2-sided) 

Attack 408.233** 1 .000 
Performer 51.552** 1 .000 

Reed 22.344** 1 .000 
Reed 

making 5.511* 1 .018 

* significant to the 0.05, ** significant to the 0.01 

Table 7. Pearson χ² test for the Long phrases set . 

6. CONCLUSIONS 
The main result of our experiment is that reed-making 
style has a minimal impact on the global shaping of tim-
bre. Performance-related features like the type of attack 
or the technique of the performer become more salient 
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when they are present and are the only features that con-
sistently influence perception. Multidimensional scaling 
shows that there is no common strategy, and in particular 
no strategy associated with reed making, when listeners 
deal with isolated tones; whereas there are some signifi-
cant results when listening to 8-note phrases due to attack 
and instrument differences. Bearing in mind that the iso-
lated tones (high or low-pitched) come from the phrases, 
and even if it is the same original sound material, the 
length and added complexity of the phrases bring out 
different perceptive properties. Long stimuli (isolated 
diminuendo tones and 8-note phrases) bring a more sig-
nificant distinction between performers, as indicated in 
table 1. In no case we can detect that reed-making style is 
a dimension of sound similarity. We can conclude there-
fore that there is no consistent timbre variation associated 
with reed making in our material.  

First, we point out that the difference between isolated 
tones and phrases is interesting, as many studies on musi-
cal timbre or performance do not compare the results on 
these two kinds of material. The fact that longer and more 
complex samples bring coherent classifications can mean 
that listeners focus their attention on technical performing 
differences: both performers reported that some sound 
samples were easier to achieve with one sort of reed than 
with others, and, for instance, in some cases we have a 
longer delay in the onset of the high-pitched notes that 
come after the low-pitched notes, or some notes are not 
stable more frequently with one type of reed than others. 
Reed making may therefore influence the technical abil-
ity to achieve some technical requirements and will influ-
ence the global performance but not particularly the tim-
bre, which is the focus of this paper. The fact that the 
sounds were normalized in pitch and intensity may also 
be a factor in the lack of consistent classification strat-
egies, as these two factors are always most salient for 
trained and untrained listeners; a previous study showed 
that there were some significant differences between 
reeds in tuning and other acoustic parameters. 

Second, we have detected an important gap between 
the sound perception and the comments provided by the 
performers: the two oboists that recorded the sound sam-
ples reported differences between the reeds in general and 
between reed-making styles in particular. Although we 
did not realize a systematic study of the performers per-
ception, we are inclined to believe that there is indeed a 
strong mechanical and haptic difference as reed making is 
consistently reported as an essential part in the oboe func-
tioning, by oboe practitioners and learning manuals. Our 
future research is going to study systematically the pro-
prioception of the oboe performer, comparing it with the 
sound perception. For that matter, we are going to use a 
large set of reeds made using mechanical sharpeners that 
yield always the same shape. The oboists will play a cer-
tain number of exercises that will stress technical quali-
ties of the reed and the oboe, and for each exercise, each 
oboist will report the proprioception about the elasticity, 
resistance, ease of use for intonation or for the different 
types of attack, etc. The resulting exercises will be re-
corded and the sounds will be used in further tests of 
sound perception to detect if there are some features of 

reed making that are sensitive to the performer but not to 
the audience. 
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ABSTRACT 
The orchestral timpani are a key component in western 
classical music, although their weight, size, and fragility 
make their transportation very difficult. Current commer-
cial software synthesizers for the Orchestral Timpani are 
primarily sample-based and work with a MIDI keyboard, 
giving the user control over the note amplitude and pitch. 
This approach implements a virtual five-piece set of or-
chestral timpani, which is controlled using a pressure-
sensitive graphics tablet. A brief analysis of the mechan-
ics and playing techniques of the Timpani is presented, 
followed by their approximation by this model’s control 
scheme and sound engine. Thereon, the details of the 
model’s implementation are explained, and finally the 
results of the model are presented along with conclusions 
on the subject. 

1. INTRODUCTION 
The Timpani (also known as kettledrums) are a type of 
drum and, as such, belong to the musical family of per-
cussion instruments; they consist of a thin membrane or 
head stretched over a large bowl traditionally made of 
copper. Unlike most drums, the timpani are capable of 
producing a strong pitch sensation when struck, and can 
be tuned via a mechanism that adjusts the tension of the 
membrane over the bowl. The most commonly used type 
of timpani today is the pedal timpani, in which the player 
controls a pedal with his/her foot which either increases 
or decreases the tension of the membrane, thus altering 
the drum’s pitch. Older variations of timpani (e.g. the 
timpani used in the baroque period) are tuned by adjust-
ing the tuning bolts individually.  

Timpani are primarily used in sets of two or more, 
according to the music piece’s requirements and, of 
course, the number of timpani available (it is not unusual 
for percussionists to play with one less drum than the 
piece requires, due to limitations). The largest of the 
commonly used timpani sets consists of five timpani, 
each with a diameter of roughly 32, 29, 26, 23 and 20 
inches respectively. 

Following the advances in software synthesizers, 
several commercially available products included sam-

ple-based models for the Orchestral Timpani as part of a 
larger Virtual Instrument Suite (examples include Edi-
rol’s HQ-Orchestral, IK Multimedia’s Miroslav Phil-
harmonik and Eastwest/Quantum Leap’s Advanced Or-
chestra Set). These models, while useful for composers 
that wish to add to their compositions a few sporadic 
notes or pre-recorded timpani rolls (fast consecutive hits 
that create a rumbling sound), are designed to be con-
trolled by a MIDI keyboard and thus do not take advan-
tage of the instrument’s continuous pitch range nor its 
vibrational mode-dependent timbre. 

Our approach implements a real-time system that 
aims for two goals: to give the user control over every 
important factor that shapes the final sound of the instru-
ment, while keeping the control scheme as simple and 
intuitive to the user as possible. A third and equally im-
portant goal was for the system to be easily available to 
potential users without the need for advanced control 
interfaces or high-performance computer systems. 

The remainder of this paper is organized as follows: 
In Section 2, previous work on the subject is presented. 
Section 3 provides a brief overview of the instrument’s 
unique sound mechanics, as well as the specific tech-
niques employed by professional timpanists in order to 
achieve different sounds. Section 4 presents the design 
and architecture of our model. Section 5 contains the final 
model implementation details. Section 6 presents our 
results. Finally, Section 7 contains our conclusions as 
well as recommendations for future work. 

2. PREVIOUS WORK 
An important amount of research has gone into modeling 
the sound of percussion instruments and their abstrac-
tions (such as ideal membranes, plates etc.).  One of the 
most promising and mature fields is Physical Modeling 
[1], or the simulation of the sound generation mechanism 
for a particular instrument. The clear advantage of this 
approach is that, through Physical Modeling, most pa-
rameters that partake in the creation of the sound are 
adjustable, thus making meaningful interaction with the 
model very intuitive for the user.  

In this field, a very prominent approach is the use of 
the Digital Waveguide Mesh [2], in which a membrane is 
simulated by a set of one-dimensional digital waveguides, 
very much like a tennis racket’s strings simulate an elas-
tic membrane. Two-dimensional and three-dimensional 
realizations efficiently simulate membranes and acoustic 
spaces, while a significant improvement over this ap-

Copyright: © 2010 Papiotis et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 
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proach is frequency warping [3] in an interpolated three-
dimensional mesh. Besides these cases, recent work on 
modeling rigid bars and plates [4] is also promising. An 
especially interesting combination of physical modeling 
for percussion instruments and multi-dimensional user 
input can be found in [5]. In this approach, a two-
dimensional force matrix is used to both excite and damp 
a waveguide mesh, attempting to simulate the expressive 
qualities of hand drumming. 

Another approach for two-dimensional membranes 
is presented in [6], making use of the so-called Func-
tional Transfer Methods [7] - utilizing an analytical form 
of the modal parameters for a multi-dimensional differen-
tial system such as a membrane. There are more ap-
proaches to physically modeling nonlinear circular mem-
branes [8], as well as two-membrane air coupling systems 
with strings such as a snare drum [9]. However, these 
approaches are relatively far from the specific physiology 
of the Timpani, and will not be discussed further. 

There exist two complete numerical models specifi-
cally targeting the Timpani [10,11], and experimental 
results are promising. In [11], the model delves into the 
complexities of the Timpani as a physical system with 
great detail, taking into account the motion of the mallet 
and its nonlinear interaction with the membrane, the 
transverse displacement of the membrane, and the sound 
pressure inside and outside the enclosed cavity of the 
resonator bowl. Unfortunately, the aforementioned com-
plexity of these models makes them unsuitable for a real-
time system. 

Finally, a very interesting and similar to this work 
project can be seen in [12], where a hardware sample-
based model attempts to simulate the sound and control 
scheme of the kettledrum. This project is based on a cus-
tom-created drum pad with piezoelectric transducers, and 
sends input data from an electric circuit board via the RS-
232 protocol to a PC where the audio output is calculated 
and played back. This project features a single kettle-
drum, one type of mallets, and uses an analog foot pedal 
to tune the drum. 

3. TIMPANI SOUND PROPERTIES AND 
PLAYING TECHNIQUES 

In order to provide a context for the subject at hand, key 
principles and terms related to the sound and playing 
conventions of the Timpani will be briefly presented. 
This is essential as this will be the base on which our 
model is designed. 
 

3.1 Sound properties of the Timpani 
 
As it was mentioned in the introduction, what distin-
guishes timpani from other drum-type instruments is the 
fact that they are able of producing a strong pitch sensa-
tion. The pitch is controlled using a tuning mechanism, 
and the tonal range of each drum is usually a perfect fifth 
(depending on the condition of the drum as well as its 
size). On certain types of Timpani, this range can be ex-
panded to a full octave. Since the pitch is altered in a con-

tinuous manner by simply modifying the tension of the 
membrane, the Timpani are capable of producing any 
possible pitch within their tonal range, including micro-
tonal intervals as well as “glissandi” or sliding notes. 

Another important factor that sets Timpani apart 
from drums with a smaller skin surface, is the fact that 
they are highly sensitive to the distance of each hit from 
the center. Since circular membranes are two-
dimensional, they can vibrate in many modes simultane-
ously and most of these modes are not harmonic; that is 
the frequencies of higher modes are not n*f0, n=1, 2, …, 
k (where f0 is the fundamental frequency and k the num-
ber of harmonics) as is the case with the harmonic series. 
Moreover, vibration in two dimensions means that there 
are two vibrational modes simultaneously and therefore 
two sets of nodal points; nodal circles and nodal diame-
ters [13]. 

 

 

Figure 1. Vibrational Modes of a circular membrane. 

When the (01) mode is excited, there are zero nodal 
diameters and one nodal circle on the boundaries of the 
membrane (see Fig.1). When the (11) mode is excited, 
there is one nodal diameter and one nodal circle, et cet-
era. However, not all of these modes produce a musically 
meaningful result; for this reason, there is a set of pre-
ferred modes [13], which timpanists and composers alike 
are very familiar with and exploit to achieve a different 
timbre that matches the musical occasion. 
 

3.2 Playing techniques & conventions 
 
As with most percussion instruments, the choice of mal-
lets in Timpani performances is very important. There are 
several types of mallets which vary on the hardness of the 
mallet head and the material it is made of, as well as the 
elasticity of the mallet’s shaft. Almost every musical 
piece instructs the player on the type of mallets to use, 
ranging from soft felt mallets, flannel mallets, harder 
mallets used also for marimbaphones, and mallets with 
wooden heads. Each type changes not only the attack of 
each note, but also the timbre that is produced. 

Most musical pieces written for/including timpani 
also demand that the timpanist tunes the drums as he/she 
plays. Almost all advanced pieces change the set’s tuning 
during the piece, and many require that the timpanist 
changes the tuning of a drum while it is still resonating. 
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This sliding note technique is called glissando, and is 
commonly used in conjunction with timpani rolls. 

The concept of a drum roll is central to all percus-
sion instruments, and it consists of fast consecutive 
strikes on the drum’s surface that alternate between the 
player’s left and right hand. This is especially important 
for the timpani, as it creates a rumbling, drone-like sound 
which is pivotal all timpani pieces. 

Finally, a known technique in music for timpani is 
membrane damping. A timpanist often touches the mem-
brane in order to mute that drum; another technique is the 
use of mutes, which resemble small pillows and are 
placed on the membrane throughout the musical piece 
while the timpanist plays, in order to reduce the vibration 
and “dry out” the sound produced. 

4. DESIGN OF THE MODEL 
In order to satisfy the model’s requirements in terms of 
sound synthesis and user interaction scheme, these two 
attributes needed to take full advantage of each other. 
Therefore, in the following section we present our choice 
for the model’s sound engine and control scheme, as well 
as the final design of the system. 
 

4.1 Sound synthesis 
 
We considered two different approaches for the sound 
synthesis engine: Physical Modeling, and Sample-based 
synthesis. 

Judging by the quality of the existing physical and 
numerical models for timpani presented in section 2, our 
initial idea was to implement our model based on a 
physical modeling synthesis algorithm such as the digital 
waveguide mesh, coupled with a model for the drum’s 
resonator bowl. Considering recent advances in the field, 
it is easy to deduce that an extremely realistic physical 
model would produce the best results; on the other hand, 
physical models include numerous mathematical calcula-
tions which, in a three-dimensional system such as the 
kettledrum, would not only require significant processing 
power but also potentially introduce numerical errors in 
order to compute the output in real time. 

The second approach would be a sample-based 
model; such a system is implemented in the commercially 
available timpani models, and could be partially con-
nected to the pathologies shared by them. However, one 
cannot separate the interface from the virtual instrument: 
MIDI keyboards only allow for discretized pitch and note 
amplitude based on the velocity and number of the key 
pressed. Such a system is effective for instruments with 
keys (such as pianos or organs), or even some string and 
wind instruments. If an appropriate control interface pro-
vides more input dimensions, the manner in which sam-
ples are interpolated to produce the synthesized sound 
can produce very convincing results [1]. Moreover, sam-
ple-based synthesis is far less computationally intensive 
than a physical model, which is very important in a real-
time application. For these reasons, we decided to im-
plement a sample-based model, which is controlled by an 
appropriately multi-dimensional interface. 

4.2 Control scheme 

As described in section 3, the most important pa-
rameters that shape the sound of the Timpani are the hit 
coordinates, the type of mallets used, the tuning of each 
drum, the use of damping/mutes, and of course the 
strength of the hit. 

From the above parameters it is obvious that the in-
terface used to control our model must possess at least 
two important qualities; provide two-dimensional coordi-
nates for the position of the mallet’s strike, and be pres-
sure-sensitive. All other parameters (type of mallets, tun-
ing, and mutes) can be selected using the existing control-
lers in a computer, such as the mouse and/or keyboard. 

There are several interfaces that provide two-
dimensional, pressure sensitive input. However, one of 
our goals was to design a system that would be available 
to the majority of potential users; thus, we had to exclude 
expensive controllers such as the hit coordinate-sensitive 
Mandala drum pad [14] or touch screens, as well as cus-
tom-designed interfaces such as pads equipped with mul-
tiple piezoelectric transducers. 

Another alternative would be a webcam-based ap-
proach; unfortunately, ordinary webcams have a rela-
tively low frame rate, and are prone to errors caused by 
distractions within the capture area. 

As our system required a widely available but at the 
same time relatively precise interface, our choice was to 
use a digitizer tablet. Although tablets do not provide 
tactile feedback (such as the previous solutions), they are 
accessible due to their low starting price (~50 Euros), and 
provide high capture precision (albeit with a restricted 
surface area, especially for cheap models). Moreover, 
most digitizer tablets also feature scroll wheels and pro-
grammable buttons; these extra controls can be used to 
change the tuning of the timpani as well as the mallet 
type. 

 

4.3 The model 
 

Having decided to use a sample-based synthesis al-
gorithm, we needed to determine the number and nature 
of the samples that would comprise the soundbank for 
our model. 

4.3.1 Hit coordinates 
 

In timpani sheet music, there are predominantly four 
different written notes to signify the coordinate of the hit 
(see Fig. 2). 

 
Figure 2. Sheet notation for hit coordinates. 

 
From top to bottom and left to right, these symbols spec-
ify the hit position as normal (i.e. at ¾r from the drum’s 
center, where r equals the radius of the drum), staccato or 
close to the drum’s center, legato or close to the drum’s 
rim, and the final symbol signifies a hit either on the cen-
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ter or on the rim of the drum’s head, further explained 
using footnotes on the sheet music. Thus, five different 
hit positions were recorded in the soundbank. 

4.3.2 Dynamics 
 

In order to have a dynamically varied model, it is 
not sufficient to play back the samples at different levels 
of amplitude. A kettledrum’s sound differs greatly when 
it is struck softly rather than strongly, as the harmonics 
and partials present in the attack and release parts of the 
note evolve differently. Therefore, it was pivotal to the 
model’s realistic nature that several dynamic levels were 
recorded. 

In classical music, dynamics range from ppp (pi-
anissisimo, very very soft) to fff (fortissisimo, very very 
loud). Of all those dynamic values, the most commonly 
met are pianissimo, piano, mezzo piano, mezzo forte, 
forte, and fortissimo. Dynamics outside this range (as 
well as the mezzo piano dynamic) are meaningful musi-
cally, but can be achieved by adjusting the level of a re-
corded sample since their distance from the next closest 
value is small. In our model, the samples were recorded 
in five different dynamic values (pp, p, mf, f, ff). 

4.3.3 Types of mallets 
 
There are many different types of mallets that can 

be used in order to create a unique sound. Often timpa-
nists freely choose the type of mallet to achieve a specific 
sound, even if it contradicts the piece’s instructions. 
Overall, timpani mallets fall into three categories: soft 
mallets, with heads typically made from wool or flannel; 
hard mallets	  with wooden heads wrapped in thick thread 
resembling those used for chromatic percussion such as 
the Marimba or the Vibraphone; and finally wooden mal-
lets, or mallets with wooden heads that are wrapped in 
leather. 

In order to control the size of the soundbank, the 
samples were recorded with three different pairs of mal-
lets, with each pair being the most commonly used in its 
category: soft wool mallets, Marimba mallets with 
thread-wrapped heads and bare wooden mallets. 

4.3.4 Tuning range 
 

Western music theory divides an octave in 12 inter-
vals, the chromatic scale. Of these 12 intervals, only 
eight fit in the tonal range of a typical kettledrum. How-
ever, to record all 8 notes would not only result in an ex-
ceedingly large soundbank, but would also deprive the 
model of the ability to slide between notes, achieving 
microtonal intervals and performing glissandi. Thus, an 
efficient real-time algorithm had to be created so that 
each drum could achieve any possible tuning between its 
lowest and highest possible note. 

The most obvious way to achieve such a result 
would be to simply pitch-shift a middle note, in order to 
emulate higher and lower pitches. However, it was evi-
dent early in out experiments that such a solution would 

neglect the difference between the harmonic series pre-
sent in two notes with different pitch (see Fig.3). 

 

 
 
Figure 3. A2 and E2 played on a 29’’ kettledrum. 
 
The most important segments of a Timpani note are 

respectively its attack and decay, as is the case with most 
instruments. Figure 4 shows the spectrogram of a C2 note 
played on a 29’’ kettledrum: 

 

 
 

Figure 4. C2 played on a 29’’ kettledrum. 
 
The difference between Figure 3 and Figure 4 is evident: 
to pitch-shift either of these notes in order to match the 
other would distort the original timbre of the note we are 
trying to get. Figure 5 shows the spectrograms of two 
different C2 notes, produced by pitch-shifting an A2 and 
an E2 respectively: 
 

 
 

Figure 5. A2 and E2 pitch-shifted to reach C2. 
 

It can be observed in Figure 5 that each shifted note has 
different similarities to the actual C2 note. Namely, the 
attack part of the pitched-down E2 note is a good ap-
proximation of the C2 note’s attack, whereas the decay 
part of the pitched-up A2 note matches with the decay of 
the natural C note. Of course, this can be observed better 
acoustically, but a common element that is present both 
acoustically and visually is that, while the pitched-down 
note provides a more precise representation of the har-
monics contained in the actual note, the pitched-up note 
retains a better approximation of the duration and time 
evolution of the original note (since the duration of the 
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pitched-down E2 note is a mere 2.2 seconds, while the 
duration of the pitched-up A2 note is 6.2 seconds). 

Taking advantage of this knowledge, we imple-
mented a crossfading algorithm that gradually combines 
the two pitch-shifted notes to create the final note. This 
way, we managed to both restrict the size of our sound-
bank, and to achieve all possible tunings within each 
drum’s tonal range. 

Pseudocode for this crossfading algorithm can be 
seen in Figure 6. In essence, our engine utilizes two 
notes, each one at the boundary of the kettledrum’s tonal 
range; these notes are aptly named the high and low note, 
respectively. Using time-domain pitch shifting, the high 
note is shifted downwards and the low note is shifted 
upwards to match the desired pitch. 

 

 
 

Figure 6. Pseudocode for the crossfading algorithm. 
 

One must keep in mind that the pitched-down high 
note is significantly shorter in duration than the pitched-
up low note; the crossfading algorithm utilizes the attack 
of the high note and gradually makes the transition to the 
decay of the low note, thus emulating the duration of the 
desired note as well. 

Note that all calculations are done in a single-
sample basis, while the audio buffer is also ‘fed’ one 
sample at a time. With this technique, the user can mod-
ify the pitch of each drum in real time without any audi-
ble artifacts or abnormalities in the produced note. 

4.3.5 Damping 
 
It is very hard to simulate a damped note from an 

existing recording of a ‘normal’ note. Seeing as our 
soundbank was increasing in a rapid manner, we decided 
to omit the choice of damped notes or mutes for the time 
being. However, this is an important feature and methods 
to include it are currently under investigation. 

 
 

5. IMPLEMENTATION OF THE MODEL 
Our final Timpani model consists of a pressure-sensitive 
digitizer tablet as the surface for all five timpani, using 
the stylus as a mallet and the tablet’s scroll wheels as 
tuning cogs. The model’s soundbank consists of 750 re-
corded samples, that feature 5 dynamic values, 5 hit 
points, 3 mallet types, and 2 notes for each of the five 
different kettledrums.  

5.1 Sample acquisition 

All samples were recorded at a conservatorium, us-
ing a five-piece set of Adams symphonic timpani. In or-
der to control the exact dynamic and hit position for each 
sample, a simple mechanism was constructed (see Fig. 7); 
the mechanism consisted of an elastic length of metal 
suspended over the drum’s head, on which the mallet was 
attached. 

 
 

Figure 7. The mechanism created to control hit 
strength and position. 

Each sample was given a unique ID number, in or-
der to simplify the loading and management of samples. 
The ID was created with the following format: 
1000*[type of mallet] - 0 for soft, 1 for hard and 2 for 
wooden mallets; 100*[number of drum] – 0 for the 20’’ 
drum, 1 for the 23’’ drum etc; 10*[dynamic value] – 0 for 
pianissimo, 2 for piano etc; and finally, 1*[hit position] – 
0 for the center of the drum, 1 for staccato, and so on. For 
example, sample 2431 is a strike on the staccato position, 
with a mezzoforte dynamic value, on the 32-inch drum 
with hard mallets. 

5.2 Coding language & Audio processing API 

The two main programming languages considered 
for the project implementation were Java and C++. Due 
to limited tablet support in Linux-based systems and rela-
tively high latency in sample pre-mixing and event proc-
essing in Java, a Win-32 C++ implementation was cho-
sen. 

Our API of choice was the Synthesis Toolkit (STK) 
[15] in combination with RtAudio [16], due to its low-
level functionality, versatility, and low latency perform-
ance. Moreover, STK and RtAudio are cross-platform; 
this allows for future porting of this project in order to 
make it available in Linux- and OSX-based systems. 

5.3 Memory management 

Currently, every sample is loaded in the memory 
during the program’s startup; unfortunately, this way the 
application takes up to 1.100 megabytes of memory. 
However, it is a very easy task to modify the application 
so it only loads the samples needed for the mallet type 
chosen, thus reducing its memory footprint to 350 mega-
bytes of RAM. Since the project intended to give the 
player full control over the timpani set as a timpanist 
would have, it was deemed important that the user could 
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switch between mallets without any delay or additional 
loading. 

5.4 User Interface 

Hit coordinates and strength are retrieved through 
the input provided by the tablet. For visualization pur-
poses, a printed sheet depicting the position of each drum 
is placed on the tablet, as seen in Figure 8.  

 
Figure 8. An example of the printed sheet used to visual-

ize the position & size of each kettledrum. 
 
A significant drawback of the control scheme is the 

fact that tablet drivers only allow for one stylus to be 
used. We bypassed this restriction by applying a simple 
solution; when the stylus hits the tablet, the first note is 
produced. For as long as the stylus stays pressed on the 
tablet, the x-axis direction in which it is moving is re-
corded; when the direction changes, a new note is pro-
duced. This way, the user can control the speed and dy-
namics of the timpani roll by ‘drawing’ smaller or wider 
circles on the tablet surface. 

The system uses the default Windows libraries for 
tablet devices that ships bundled with all tablet drivers, 
thus eliminating the need for specific libraries. In the 
event that a tablet does not have scrolling wheels, the 
mouse wheel can be used to tune the each kettledrum in 
real time. Finally, the selection of mallet type is available 
to the user through the application’s GUI. 

6. RESULTS 
6.1 Synthesis quality 

The spectrograms of three real and synthesized 
notes  can be seen in Figures 9-11. The synthesized notes 
were produced by the tuning algorithm presented in 4.3.4, 
using A2 and E2 as the low and high note respectively. 
As it can be seen, the overall structure and evolution of 
the harmonic series is faithful to the recorded notes; how-
ever, in cases such as the D2 note it can be seen that the 
higher harmonics are slightly enhanced. 

Figure 9. Comparison between a synthesized B2 note 
played on a 29’’ kettledrum, and the real note. 

 
Figure 10. Comparison between a synthesized C2 note 

played on a 29’’ kettledrum, and the real note. 

 
Figure 11. Comparison between a synthesized D2 note 

played on a 29’’ kettledrum, and the real note. 
 
An audiovisual demonstration of the model will soon be 
publically available on the Internet for evaluation pur-
poses, on the address provided in [17]. 

6.2 Audio Latency 

The real-time response of the model yields an audio 
latency of 25 milliseconds when tested with a bulk Real-
tek on-board audio card using the DirectSound audio 
driver. For an external audio card using an ASIO driver, 
audio latency is below 12 milliseconds. 

7. CONCLUSIONS & FUTURE WORK 
In this paper, we presented a working system that imple-
ments a real-time model of the Orchestral Timpani, con-
trolled by a digitizer tablet. The user has control over 
almost every parameter that defines and shapes the sound 
of the instrument, and these parameters can be modified 
and adjusted in real time. Our results demonstrate that we 
successfully emulate the sound of the Orchestral Tim-
pani, while achieving low latency. 

On the other hand, there are certain drawbacks to 
our approach, the first of which is its rather high memory 
demands. A compromise would be to only keep the sam-
ples for one type of mallets loaded in the memory, impos-
ing a brief loading time when the user chooses another 
type of mallets. However, a more efficient memory man-
agement scheme could be utilized in order to constantly 
maintain all samples loaded in the memory. 

Another drawback is the fact that tablets only allow 
for one stylus to be used. This has its toll on the interac-
tion scheme, as the instrument was designed to work with 
two mallets. Moreover, tablets do not provide tactile 
feedback of any kind, a characteristic which is inextrica-
bly linked with the process of playing percussion instru-
ments; to this end, multi-touch input interfaces that pro-
vide tactile feedback to the user must be investigated in 
the future. 
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Finally, the model used in this project applies to 
many percussion instruments sensitive to different hit 
coordinates & hit strengths such as cymbals, bass drums, 
and gongs. If a new soundbank was recorded to feature 
such instruments, almost all algorithms and methods cre-
ated for this project could easily be modified to include 
such instruments. 
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ABSTRACT

We consider the task of inferring associations between two
differently-distributed and unlabelled sets of timbre data.
This arises in applications such as concatenative synthesis/
audio mosaicing in which one audio recording is used to
control sound synthesis through concatenating fragments
of an unrelated source recording. Timbre is a multidimen-
sional attribute with interactions between dimensions, so it
is non-trivial to design a search process which makes best
use of the timbral variety available in the source record-
ing. We must be able to map from control signals whose
timbre features have different distributions from the source
material, yet labelling large collections of timbral sounds
is often impractical, so we seek an unsupervised technique
which can infer relationships between distributions. We
present a regression tree technique which learns associa-
tions between two unlabelled multidimensional distribu-
tions, and apply the technique to a simple timbral concate-
native synthesis system. We demonstrate numerically that
the mapping makes better use of the source material than a
nearest-neighbour search.

1. INTRODUCTION

This paper aims to improve musical expression by audio-
based control of timbre. There are various applications in
which the timbral analysis of a sound is used to control a
system whose output is sound of a different type, such as
concatenative synthesis [1][2][3], query-by-example [4] or
adaptive digital audio effects [5]. In such cases there are
two different timbral distributions to consider – that of the
controlling sound, and that of the audio output – and we
wish to be able to map from one to the other. Often the two
distributions are quite different, since for example we may
wish to map from vocal sounds on to timbres which cannot
be produced vocally, so the issue of mapping is non-trivial.

In this paper we argue that mapping through standard
techniques such as nearest-neighbour search may be in-
sufficient, and we present a new nonparametric technique
based on regression trees which accounts for the differ-
ences between timbral distributions. We then apply the
technique in a simplified timbral concatenative synthesis
system, and demonstrate numerically that the mapping
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makes better use of the source material than a nearest-
neighbour search.

1.1 Timbre trajectories: absolute or relative?

In order to map the timbre trajectory of a sound (its evolu-
tion over time) onto another, we will require some timbre
analysis of the signal. An issue that affects our choice of
search strategy is whether the timbral analysis should best
be treated as absolute context-independent data, or whether
it should be treated as relative – for example, relative to the
range of the sound source which produced it. Given a par-
ticular timbral “coordinate”, should we treat it differently
if we knew that it was produced by a clarinet or by a vi-
olin? Would such information imply a difference in the
expressive purpose of the sound?

The common definition of timbre describes it as that
attribute which enables a listener to differentiate sounds
which are equal in pitch and loudness [6]. It therefore
does not demand that timbre be an absolute or context-
invariant attribute of a sound. Research into music tim-
bre perception has taken a similar stance, basing experi-
ments on comparisons among sets of sound examples [7,
8, 9, 10]. Such studies often explain results in part through
acoustic features derived from the examples, which can
imply a context-independent notion of timbre inherent in
the signal. However Grey [11] finds evidence for context-
dependence of timbre perception in musical patterns. Laka-
tos [12] offers some consideration of contextual effects by
investigating sets of harmonic and percussive sounds both
separately and combined. He presents evidence supporting
the existence of two broadly context-independent timbre
dimensions but also for some degree of contextual influ-
ence on timbre judgements.

Musical applications of timbre analysis often use acous-
tic features taken from the signal (e.g. [13][14, Chapter
16]), implicitly treating timbre as absolute. This will cer-
tainly be appropriate in situations where the timbre data
contains strong semantic “anchors” – a clear example of
this occurs in human speech, where vowels are largely char-
acterised by the absolute positions of the main resonances
(formants) on the frequency scale [15]. However, the ev-
idence of context-dependence in musical timbre suggests
this may not always be the case. Consider a system which
synthesises sound based on timbral examples produced by
voice (e.g. [14, Part III]): the human voice is naturally con-
strained to its own timbre range, yet we may well wish to
induce the system to produce sounds outside this range. In
fact we consider this to be a basic requirement, since such
ability to extend our timbral range is one of the main ap-
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peals of such technologies.

1.2 Timbre lookup strategies

The most basic form of timbral search is perhaps a nearest-
neighbour (NN) search [16], often using Euclidean dis-
tance. Since timbre features in general have quite different
ranges, their ranges may be standardised before search, or
a scale-invariant metric such as Mahalanobis distance may
be used [17]. For example, Schwarz [14, Chapter 16] uses
the Euclidean distance normalised over the entire database
of sounds. This normalisation accounts for differences be-
tween the ranges of the features, but not for differences
between the timbral range of the different sound sources
included in the database. Note that timbral distance search
is but one criterion used in a concatenative synthesiser such
as this, which uses a constraint-satisfaction framework to
combine criteria related to duration, pitch and other con-
siderations.

Large database search systems often do not store the
raw timbral co-ordinates needed for NN search, but para-
metrically model the timbre of a recording (e.g. using
Gaussian Mixture Models) and store the model parame-
ters [13]. Timbral search can then be performed by finding
the parameter-set which maximises the likelihood of query
data.

Whether search is performed by instance-based meth-
ods such as NN or model-based methods such as Gaussian
Mixture Model likelihood, the difference in timbral ranges
of different sound sources is often neglected, perhaps re-
flecting an approach to timbre as absolute rather than rela-
tive. One approach to account for this could be to standard-
ise the mean and variance of timbre features for each type
of sound source, or for each recorded audio excerpt, which
would accommodate the large-scale differences. However
it would fail to account properly for multidimensional in-
teractions in the data such as the movement of one region
relative to the rest of the distribution.

Rather than pursuing the idea of a normalisation scheme
as a precursor to search, in this paper we develop an in-
tegrated method which automatically learns to map from
one data distribution to another, assuming similarities in
the orientation of the datasets in timbre space but allow-
ing for differences in the distributions at large and small
scales. Tree methods are attractive in this context because
recursive partitioning provides a generic approach to divid-
ing multidimensional distributions into regions of interest
at multiple scales. We next describe the method, before
applying it in a concatenative synthesis experiment.

2. AUTO-ASSOCIATIVE REGRESSION TREES

A regression tree [18, Chapter 8] is a computationally ef-
ficient nonparametric way to analyse structure in a multi-
variate dataset, with a continuous-valued response variable
to be predicted by a set of independent variables. The core
concept is to recursively partition the dataset, at each step
splitting it into two subsets using a threshold on one of the
independent variables (i.e. a splitting hyperplane orthogo-
nal to one axis). The choice of split at each step is made

to minimise an “impurity” criterion for the value of the re-
sponse variable in the subsets, often based on the mean
squared error [18, Section 8.3]:

impurity(α) =
nα∑
i=1

(yi − ȳ)2 (1)

where nα is the number of data points in the subset α under
consideration, and ȳ the mean of the sampled values of the
response variable yi for the points in α.

The original formulation of regression trees was con-
cerned with predicting a single univariate response vari-
able. They were subsequently extended to multivariate re-
sponses, for example by [19] using a direct multivariate
extension of (1):

impurity(α) =
nα∑
i=1

p∑
j=1

(yij − ȳj)2 (2)

with definitions as in (1) except that the yi (and therefore
also ȳ) are now p-dimensional vector values, with j index-
ing over the dimensions.

This extension yields a framework that can learn to in-
fer relationships between one multivariate data distribution
(the independent variables) and another (the response) –
hence their potential application to the inference of map-
ping from one set of multivariate timbre data to another.
One limitation of this is that the regression is still a su-
pervised technique, meaning that the pairwise association
between items in the training datasets would need to be
provided. In applications such as ours, where we might
have a large database of short audio fragments from var-
ious sources, it will often be impractical to annotate the
data, so we seek an unsupervised method. We will develop
an existing unsupervised application of regression trees for
this task.

2.1 Auto-association and multivariate splits

Questier et al. [19] apply regression trees to the task of
discovering structure in unsupervised multivariate data, by
equating the response variables with the independent vari-
ables, to create an auto-associative multivariate regression
tree (AAMRT). In other words they apply a standard re-
gression tree with the multivariate-response extension, but
there is no separation between the variables used to split
the dataset and the variables whose impurity is to be min-
imised – the independent variables are made to “predict
themselves”. This is reminiscent of data-driven histogram-
ming [20]; in the work of Questier et al. it is used for
feature-selection by analysing which features are most com-
monly used for splitting.

There are in fact two types of multivariate extension to
the standard regression tree.We have already described the
multivariate-response extension; also the choice of split-
ting plane can be generalised so that it can take any orien-
tation in the feature space rather than being aligned with
one axis [21]. We refer to this as the multivariate-splits
extension. Gama [22] shows that this extension can reduce
bias in the resulting estimator. Further, it may make more
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effective use of the available information if there is a lim-
ited number of datapoints: if there are N data points then
there can be no more than around log2N splits used to
reach a leaf in a balanced binary tree. This could well be
fewer than the number of dimensions, meaning the infor-
mation from some dimensions would be neglected. For the
remapping task discussed in the next section, then, we will
use a regression tree that is based on AAMRT but multi-
variate in both senses.

Note that the impurity measures (1) & (2) are equivalent
to the sum of variances in the subsets, up to a multiplication
factor which we can disregard for the purposes of minimi-
sation. By the law of total variance (see e.g. [23, Appendix
S]), minimising the total variance within the subsets is the
same as maximising the variance of the centroids; there-
fore the impurity criterion selects the split which gives the
largest difference of the centroids of the response variable
in the resulting subsets. If only univariate splits are allowed
then this can be optimised as given in [18, Chapter 8]. In
the multivariate-splits variant, maximising the variance of
the centroids is achieved simply by selecting the hyper-
plane perpendicular to the first principal component in the
(centred) data. This multivariate-splits variant of AAMRT
allows for efficient implementation since the leading prin-
cipal component in a dataset can be calculated efficiently
e.g. by expectation-maximisation [24].

3. CROSS-ASSOCIATION

We wish to generalise the AAMRT method to apply it to
two datasets defined on the same space. A simple approach
would be to combine the two datasets into one and then
apply AAMRT, but this would not allow the algorithm to
adapt separately to the two datasets, to account for differ-
ences in location.

Instead, we modify the algorithm so that at each step of
the recursion the data coming from the two distributions
are separately centred. One single principal component is
then calculated from their union. The recursion therefore
generates two “similar but different” trees, implementing
the notion that the two datasets have similarities in struc-
ture (the orientations of the splitting planes are the same)
but may have differences in location at various scales (the
centroids of large or small subsets of the data are allowed
to differ). This is illustrated schematically in Figure 1.

If the datasets are unequal sizes then the larger set will
tend to dominate over the smaller in calculating the prin-
cipal component. To eliminate this issue we weight the
calculation so as to give equal emphasis to each of the
datasets, equivalent to finding the principal component of
the union J of weighted datasets:

J =
⋃

(NY (X − CX), NX(Y − CY )) (3)

where X and Y represent the data (sub)sets, CX and CY
their centroids, and NX and NY the number of points they
contain.

The resulting cross-associative multivariate regression
tree (XAMRT) algorithm is summarised in Figure 2. Note
that we do not prune the tree [18, Chapter 3], since for the

Figure 1. Schematic representation of the first two steps
in the recursion. In the first step (top), the centroids of
each dataset are calculated separately, and then a splitting
plane with a common orientation is chosen. The second
step (bottom) is the same but performed separately on each
of the partitions produced in the first step.

timbral application presented here, all of the variation in
the training set is useful for resynthesis.

To perform a remapping using a XAMRT data struc-
ture, one takes a data point and descends the tree, at each
split centring it by subtracting CX or CY as appropriate
and then deciding which side of the splitting plane it falls.
When the leaf node is reached, it contains two sets of train-
ing data points (a subset each of X and Y ). To choose a
corresponding coordinate relating to the opposite distribu-
tion, one could for example use a random datum selected
from the opposite subset, or the centroid of that subset, de-
pending on the application. (If the sizes of the datasets are
similar then the leaf will often contain just one datum from
each of the two distributions.)

4. TIMBRE REMAPPING EXPERIMENT

Our algorithm can be applied to timbre remapping tasks,
i.e. ones in which the timbral trajectory of a sound source
is used to control that of some other system. Concatenative
synthesis is an example of such a task, in the case where
an input sound is used as the controller for the concate-
native synthesiser (also referred to as audio mosaicing).
Concatenative synthesis is not the only example of timbral
application of our algorithm – we are investigating appli-
cation of the technique in general synthesiser control – but
it presents a known system in which timbres from hetero-
geneous sources are used to control sound generation.

Numerical evaluation of timbre remapping quality is
difficult since the perceptual quality and musical merit of
the audio result have no obvious objective metric. How-
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XAMRT(X,Y )
CX ← centroid of X
CY ← centroid of Y
J ← result of equation (3)
p← principal component of J
Xl ← X ∩ ((X − CX) · p > 0)
Xr ← X ∩ ((X − CX) · p ≤ 0)
Yl ← Y ∩ ((Y − CY ) · p > 0)
Yr ← Y ∩ ((Y − CY ) · p ≤ 0)
if Xl is singular or Yl is singular

then L = [Xl, Yl]
else L = XAMRT(Xl, Yl)

if Xr is singular or Yr is singular
then R = [Xr, Yr]
else R = XAMRT(Xr, Yr)

return [L, R]

Figure 2. The cross-associative algorithm. X and Y are
the two sets of vectors between which associations will be
inferred.

Description Duration (sec) No. of grains
Amen breakbeat 7 69
Beatboxing 93 882
Fireworks 16 163
Kitchen sounds 49 355
Thunder 8 65

Table 1. Audio excerpts used. “No. of grains” is the num-
ber of 100ms grains segmented and analysed from the au-
dio (excluding silent frames) – see text for details.

ever, concatenative synthesis offers the opportunity for nu-
merical evaluation by studying the statistics of usage of the
different grains, as will be described in Section 4.4.

We require an experiment which will probe the tim-
bral matching performance of our algorithm. Concatena-
tive synthesisers typically operate not only on timbre, but
use pitch and duration as well as temporal continuity con-
straints in their search strategy, and then modify the se-
lected grains further to improve the match [25]. While
recognising the importance of these aspects in a full con-
catenative synthesis system, we designed an experiment in
which the role of pitch, duration and temporal continuity
were minimised, by excluding such factors from grain con-
struction/analysis/resynthesis, and also by selecting audio
excerpts whose variation is primarily timbral.

We first describe the audio excerpts we used and how
timbre was analysed, before describing the concatenative
synthesiser and our performance metric.

4.1 Audio data

In order to focus on the timbral aspect, we selected a set of
audio excerpts in which the interesting variation is primar-
ily timbral and pitch is less relevant. The five excerpts –
two musical (percussive) and three non-musical – are listed

in Table 1 and are also available online. 1 The excerpts are
44.1 kHz mono recordings.

The excerpts are quite heterogeneous, not only in sound
source but also in duration (up to an order of magnitude).
They each contain various amounts/types of audio event,
which are not annotated. This wide variety of excerpts was
selected to give a clear impression of the success of the
remapping techniques at drawing timbral analogies.

4.2 Timbre features

We chose a set of 10 common acoustic timbre features:
spectral power, spectral power ratio in 5 log-spaced sub-
bands (50–400, 400–800, 800–1600, 1600–3200, and 3200–
6400 Hz), spectral centroid, spectral 95- and 25-percentiles
and zero-crossing rate (for definitions see [26]).

Analysis was performed on audio “grains”: units of
fixed 100ms duration taken from the audio excerpt every
100ms (i.e. with no overlap). Each grain was analysed by
segmenting into frames of 1024 samples (at 44.1 kHz sam-
pling rate) with 50% overlap, then measuring the feature
values for each frame and recording the mean value of each
feature for the grain. Grains with a very low spectral power
(< 0.002) were treated as silences and discarded. The tim-
bre features of the remaining grains were normalised to
zero mean and unit variance within each excerpt. Analysis
was performed in SuperCollider 3.3.1 [27].

4.3 Timbral concatenative synthesiser

We designed a simple concatenative synthesiser using only
timbral matching, either by a standard nearest-neighbour
(NN) search or by our algorithm. Given two excerpts –
one which is the source of grains to be played back, and
one which is the control excerpt determining the order of
playback – and the timbral metadata for the grains in the
two excerpts, the synthesis procedure works as follows:

For each grain in the control excerpt, if the grain is silent
(power < 0.002) then we replace it with silence. Other-
wise we replace it with a grain selected from the other ex-
cerpt by performing a lookup of the timbre features – either
a NN search or the XAMRT tree regression. For numeri-
cal evaluation, the choice of grain is recorded. For audio
resynthesis, the new set of grains is output with a 50ms
linear crossfade between grains.

The NN search uses the standard Euclidean distance,
facilitated using a k-d tree data structure [28]. Note that
the timbre features are normalised for each excerpt, mean-
ing the NN search is in a normalised space rather than the
space of the raw feature values.

In both the NN and XAMRT lookup there is an issue
of tie-breaking. More than one source grain could be re-
trieved – at the minimum distance from the query (for NN)
or in the leaf node retrieved from the query (for XAMRT)
– yet we must choose only one. This is not highly likely
for NN search (depending on the numerical precision of
the implementation) but will occur in XAMRT when map-
ping from a small to a large dataset, since the tree can grow
only to the size allowed by the smaller dataset. Additional

1 http://archive.org/details/xamrtconcat2010
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criteria (e.g. continuity) could be used to break the tie, but
for this experiment we keep the design simple and avoid
confounding factors by always choosing the grain from the
earliest part of the recording in such a case.

4.4 Evaluation method

The ultimate evaluation of musical synthesis techniques is
through listening tests; however we defer this to later work,
when we plan to incorporate the technique into more com-
plete synthesis systems. For development and comparison
purposes it is particularly helpful to have objective mea-
sures of success. It is natural to expect that a good concate-
native synthesiser will make wide use of the “alphabet” of
available sound grains, so as to generate a rich as possi-
ble output from the limited alphabet. Here we develop this
notion into an information-theoretic evaluation measure.

Communication through finite discrete alphabets has
been well studied in information theory [29]. A key
information-theoretic quantity is the (Shannon) entropy,
defined for a discrete random variable X taking values
from an alphabet A as

H(X) = −
|A|∑
i=1

pi log pi (4)

where pi is the probability that X = Ai and |A| is the
number of elements inA. The entropy H(X) is a measure
of the information content of X , and has the range

0 ≤ H(X) ≤ log |A| (5)

with the maximum achieved iffX is uniformly distributed.
If the alphabet size is known then we can define a nor-

malised version of the entropy called the efficiency

Efficiency(X) =
H(X)
log |A|

(6)

which indicates the information content relative to some
optimised alphabet giving a uniform distribution. This can
be used for example when X is a quantisation of a contin-
uous variable, indicating the appropriateness of the quanti-
sation scheme to the data distribution.

We can apply such an analysis to our concatenative syn-
thesis, since it fits straightforwardly into this framework:
timbral expression is measured using a set of continuous
acoustic features, and then “quantised” by selecting one
grain from an alphabet to be output. It does not deductively
follow that a scheme which produces a higher entropy pro-
duces the most pleasing audio results. However, a scheme
which produces a low entropy will tend to be one which
has an uneven probability distribution over the grains, and
therefore is likely to sound relatively impoverished – for
example, some grains will tend to be repeated more often
than in a high-entropy scheme. Therefore the efficiency
measure is useful in combination with the resynthesised
audio results for evaluating the grain selection scheme.

Query type Efficiency (%)
Nearest neighbour 70.8 ± 4.4
XAMRT 84.5 ± 4.8

Table 2. Experimental values for the information-theoretic
efficiency of the lookup methods. Means and 95% confi-
dence intervals are given. The improvement is significant
at the p < 0.000001 level (paired t-test, two-tailed, 19 de-
grees of freedom, t = 12.47).

4.5 Results

We applied the concatenative synthesis of Section 4.3 to
each of the 20 pairwise combinations of the 5 audio ex-
cerpts (excluding self-to-self combinations, which are al-
ways 100% efficient) using each of the two lookup meth-
ods (NN and XAMRT). We then measured the information-
theoretic efficiency (6) of each run. Table 2 summarises the
efficiencies for each lookup method. Our method is seen
to be significantly better than the NN search, improving
efficiency by over 13 percentage points.

Audio examples of the output are available online. 1

Note that the reconstructed audio examples sound rather
unnatural because the experiment is not conducted in a full
concatenative synthesis framework. In particular we use
a uniform grain duration of 100ms and impose no tempo-
ral constraints, whereas a full concatenative synthesis sys-
tem typically segments sounds using detected onsets and
includes temporal constraints for continuity, and therefore
is able to synthesise much more natural attack/sustain dy-
namics [25].

Such factors mean our audio outputs are tricky to judge
by listening, and it is not quite clear how far the advan-
tage in efficient use of grains translates into an improved
perceptual richness of the output – i.e. into improvements
in the timbral analogies made. Nevertheless, our method
shows promise as the timbral component of a multi-attribute
search which could potentially be used in concatenative
synthesis, as well as other applications requiring timbral
search from audio examples (e.g. query-by-example [4]).

5. CONCLUSIONS AND FURTHER WORK

We have developed a nonparametric technique able to learn
associations from one unlabelled data distribution to an-
other defined on the same space, assuming similarity in
structure of the data distributions but accounting for dif-
ferences in location and shape. This provides a robust and
efficient way to map timbre trajectories from one sound
source onto timbre trajectories to be performed with a dif-
ferent sound source, making good use of the timbral vari-
ation available in the latter. In experiments with a simpli-
fied concatenative synthesiser, we have demonstrated that
it makes significantly better use of the source material than
a nearest-neighbour search.

Future work would integrate this approach into a full
concatenative synthesis framework, and supplement the ob-
jective tests with listening tests. We also intend to apply
the technique to other types of synthesis to control them
by audio input.
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ABSTRACT

This paper addresses one aspect of human music cogni-
tion, which is the recollection of melodic sequences stored
in short-term memory, and the manipulation of such items
in working memory, by measuring spans of successfully
recalled melodic sequences. In order to avoid long-term
memory collaboration in this task, short-term memory mea-
surements are made using randomly-generated melodic se-
quences, which in turn may sound difficult and unfamiliar
to many experimental subjects. We investigate the depen-
dence of melodic span measures on such aspects as famil-
iarity and difficulty, both in direct-order recalling (as it re-
lates to short-term memory capacity) and in inverse-order
recalling (as it relates to working memory capacity). We
also discuss the relation of these measurements to cogni-
tive models of short-term and working memory for verbal
and melodic material.

1. INTRODUCTION

Understanding human music cognition is a colossal task,
which nevertheless must be undertaken. Besides its sci-
entific interest per se, better understanding the way we
humans process musical information should allow further
developments in computational psychoacoustics, particu-
larly in cognitive models for automatic feature extraction,
with implications for both automatic musical analysis and
computer-based sound synthesis.

This study is a small contribution to the understanding
of one very restricted musical cognitive task, namely our
ability to reproduce melodic fragments we never heard be-
fore. This ability involves a part of our cognition usually
referred to as short-term memory, which has been exten-
sively studied in the field of experimental psychology [1].
More recently, Baddeley and Hitch [2] proposed a refined
model called working memory, that subsumed the notion
of short-term memory, and eventually became the de facto
standard model referring to short-term memory.

We wish to investigate the response level of our work-
ing memory to simple tasks such as reproducing a melodic
fragment in direct order or in inverse order (also called re-
verse or retrograde, not to be confused with melodic inver-

Copyright: c©2010 Mariana E. Benassi-Werke et al. This is an open-access ar-
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sion). Such an experiment is a straightforward transposi-
tion of classical experiments with working memory using
sequences of digits or words, which in our case is aimed at
identifying common or disparate elements in the process-
ing of verbal and melodic information. As in the verbal
case, random sequences should be used in order to avoid
the contribution of long-term memory, which we routinely
use in the memorization of whole musical pieces, for in-
stance.

Random melodies can be quite hard to recall due to
many concurrent factors, which might be empirically hy-
pothesized, such as the number of distinct tones in a se-
quence, or the interval relations between adjacent notes.
Similar factors might also affect the memorization of num-
bers or words, although interval relations may have no
meaning in most non-musical contexts. Other factors, such
as word-length and phonological similarity, are well-known
to affect verbal memorization [3].

The difference in number and internal organization of
distinct tones is also a characteristic feature of musical
scales, such as the pentatonic (5-tone), diatonic (7-tone)
and chromatic (12-tone) scales. Particularly in western
musical education, diatonic and chromatic scales are ev-
erywhere present, from church modes through classical
tonal music to 20th-century atonality. Yet the frequency
with which diatonic scales have been employed in western
folk, popular and classical music overshadows those rela-
tively few pristine examples of entirely chromatic compo-
sitions. It is relatively safe to say that the average person
growing up in western civilization is biased towards being
more familiar with diatonic rather than chromatic musical
examples.

Different interval relations between adjacent notes might
also affect differently our perception, memorization and
ability to reproduce melodic sequences. To name a few
cases where such difference is mentioned, Fux’s Gradus
ad Parnassum of 1725 advises composers not to use large
melodic leaps such as sixths or sevenths because they are
hard to sing, and Nicola Vaccaj’s Metodo Pratico di Canto
of 1832 is arranged progressively according to melodic
leaps. This suggests that smaller intervals (seconds and
thirds) are easier (to sing) than larger intervals, and raises
the question of whether they might also be easier to mem-
orize.

Our main goal is to investigate the effects of familiarity
and difficulty of melodies on our cognitive ability to re-
produce and to retrograde such melodies at first hearing. It
should be noted that we do not attempt to define the general
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notions of familiarity and difficulty in music, but instead
we identified two particular aspects that seem to capture a
fragment of these general notions. By adopting diatonic
and chromatic scales as representatives of more or less fa-
miliar melodic contexts, we are constraining our experi-
ment in well-defined ways, enabling us to question whether
(this aspect of) familiarity influences melodic span mea-
sures. Also, by comparing the memorization of melodies
made up of only small intervals to general melodies with-
out interval constraints we may have a glimpse at the effect
of melodic difficulty on our working memory.

Although the answer to these questions may appear self-
evident for a practising musician, we intend to give ob-
jective, experimental answers to these questions. These
answers, it should also be noted, are assumed to depend
on history and culture, and ours are no exception, since
we work within the biased boundaries of our experimental
population. Our efforts are not directed to uncovering uni-
versal or innate facts about human cognition, and we make
no claim to universal validity. Any such claim would have
to be verified by crosscultural or transhistorical experimen-
tation.

Another goal of this text is to discuss the differences
and similarities between verbal and melodic memoriza-
tion, and their possible implications for the structure of
the working memory model. By comparing performance
measures, in both forward and backward span tests, for se-
quences of digits and tones, it is possible to better under-
stand the underlying mechanisms that comprise working
memory. Specifically, we add a few experimental facts to
the discussion of whether there might be a separate short-
term memory component for dealing with tonal informa-
tion [4, 5, 6, 7].

This paper is organized as follows. We introduce the
cognitive model of working memory in section 2, and de-
scribe the methodology for constructing and applying the
experiment on human subjects in section 3. We discuss
the computational analysis of experimental data, the statis-
tical analysis for hypothesis testing, and the experimental
results in cognitive terms in section 4, and final remarks
and pointers to future research are given in section 5.

2. THEORETICAL FRAMEWORK

The working memory model proposed by Baddeley and
Hitch [2] in 1974 consists of three interconnected com-
ponents (see figure 1), namely the central executive, the
phonological loop and the visuospatial sketchpad. The
system formed by these interconnected components is sup-
posed to account for short-term storage and real-time pro-
cessing of incoming information, and is vital for higher
cognitive functions such as reasoning, planning and com-
munication. A fourth component named episodic buffer
was later added by Baddeley [3], but its discussion lies out-
side the scope of this paper.

According to this model, the phonological (also called
articulatory) loop is responsible for short-term storage of
auditory information and is capable of maintaining items
in memory, for instance by using a subvocal rehearsal pro-
cess. The visuospatial sketchpad (or scratchpad) allows for

Executive

CentralVisuospatial

Sketchpad

Phonological

Loop

Long−Term Memory

Working Memory

Semantics LTM

EpisodicVisual
Language

Figure 1. Baddeley and Hitch’s Working Memory model.

temporary storage and manipulation of visual and spatial
information. The central executive is the attentional focus
of the system and is responsible for controlling and co-
ordinating the other subsystems, allowing for the recollec-
tion of recent experience and the symbolic manipulation of
recollected items [3]. Both visuospatial and phonological
subsystems are supposed to interact with long-term mem-
ory components, such as language and visual semantics,
that may aggregate meaning to items in working memory.

A verifiable characteristic of these subsystems is the
fact that they have limited storage capacity, which can be
measured by digit span tests [8]. These tests consist of pre-
senting random digit sequences of increasing length and
asking for immediate reproduction. The forward digit span
of an individual is defined as the maximum length of a se-
quence he or she is able to correctly reproduce; usually two
sequences are tried for each length, to account for slips of
attention or other disturbing factors unrelated to memory
capacity. The backward digit span reflects an individual’s
ability to correctly reproduce a sequence of digits in in-
verse order, and measures the working memory capacity of
simple symbolic manipulation of recently-presented items.

One interesting aspect of span measures is the fact that
they are highly dependent on several aspects of the na-
ture of information being presented. For instance, digit
span measures differ significantly across languages, prob-
ably due to differences in word size, phonetic similarity
and semantic context [9, 10]. The effect of these differ-
ences can be examined by measuring memory spans for se-
quences of words of controlled size and phonetic content,
or for sequences in different languages using bilingual sub-
jects. For these subjects, the measured span of recollection
of sequences of numbers or words in their first language
is higher than spans in their second language [10, 11, 9].
According to Thorn & Gathercole [9], the maintenance
in the phonological loop of familiar sound patterns of a
well-known language benefits from lexical and sublexical
knowledge to complement mental representations, and is
thus more effective for the first language than for the sec-
ond language in bilingual subjects. These results suggest
that the storage of items in the phonological loop is influ-
enced by semantic and phonological long-term memory, as
proposed by Ardilla [10].

Although phonetic and semantic aspects have been ex-
tensively studied within the working memory model for
verbal items, purely tonal information have received con-
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siderably less attention in the literature [4, 5, 6, 7]. These
works are concerned with recognition tests, where an iso-
lated tone (stimulus) is presented and after a few seconds
is compared to another tone (target). The insertion of ir-
relevant and unrelated tones between stimulus and target
is known to degrade performance in tone recognition tests,
whereas in digit recognition tests with irrelevant digits in-
serted between stimulus and target the decay in perfor-
mance is barely noticeable [5]. This suggests that mecha-
nisms of melodic and verbal storage might be independent.

One way of tackling this difficult question is by study-
ing differences in memory span performance for melodic
sequences both in direct and inverse order. One measure of
performance degradation of backward spans with respect
to direct span measures for the same information type is
the span index, defined as the relative difference between
forward and backward span measures. Different informa-
tion processed by the same underlying mechanism would
probably suffer from comparable degradation when pass-
ing from forward spans to backward spans, whereas signif-
icant differences in span index suggest that the underlying
mechanisms might be different.

3. EXPERIMENTAL METHODOLOGY

In this section we present the methodology used in our ex-
periments. The level of details offered should enable the
realization of similar experiments with different popula-
tions and the comparison of both quantitative and qualita-
tive results. We discuss the methodology in three stages.
In section 3.1 we discuss the generation of the melodic se-
quences with varying levels of difficulty and familiarity (as
discussed in section 1). In section 3.2 we discuss the pre-
requisites for individuals participating in the experiment,
and also the first steps in selecting a reasonable popula-
tion. The final application of the span tests is discussed in
section 3.3.

3.1 Sequence Generation

The generation of data used in the melodic span tests is a
crucial step in setting up the experiment, because the sev-
eral sequences should reflect the relevant aspects of the
questions we would like to answer. As discussed in sec-
tion 1, we want to compare the difference in span perfor-
mance in a more familiar and in a less familiar melodic
context, as well as in a constrained, less difficult inter-
val context and in an unconstrained, more difficult interval
context. The defining attributes for these musical contexts
in this particular experiment is as follows:

Familiarity: sequences are generated either within a sin-
gle diatonic scale (e.g., C major) or within a chro-
matic scale.

Difficulty: subsequent tones in a sequence are generated
either with constrained intervals (up to a major third
upwards or downwards) or without any interval con-
straints.

These categories might be easily extended to consider
other scales (e.g., pentatonic or quarter-tone scales) and

other levels of difficulty (e.g., leaps up to a fifth or up to
an octave), but the duration of the tests increase correspon-
dently, and can easily become unbearable for the experi-
mental subject. The average duration of the current exper-
iment for each subject was about 90 minutes.

For each of the four combined contexts (more/less fa-
miliar and more/less difficult) a list of sequences of ascend-
ing length is generated, starting with 2 notes and going up
to 10 notes, and always in pairs (2 sequences with N notes,
for N=2,. . .,10). Since these tests require the subject to
sing a melodic sequence, care should be taken with respect
to the range of allowable tones. Each individual voice has
its own tessitura, but in order to achieve uniformity of data
and results some sort of compromise must be reached. We
adopted a common range for female voices of [C4. . .C5],
that correspond roughly to the intersection of soprano and
alto registers (considering non-professional singers), and
correspondingly the range of [C3. . .C4] for male voices.
This corresponds to using up to 8 distinct tones in dia-
tonic sequences and up to 13 distinct tones in chromatic
sequences.

In order to be able to compare the effects of these con-
texts to what happens in similarly constrained verbal con-
texts, each melodic sequence was used to create a corre-
sponding numerical sequence, by adopting the translations
C4=1, D4=2, . . ., C5=8 for diatonic sequences and C4=1,
C#4=2, . . ., C5=13 for chromatic sequences (and analo-
gously for male voices). This way, we may also verify
whether such restrictions on the number of symbols and in-
ternal structure of the sequences have some impact in span
performance measures of numerical sequences.

Three additional constraints that appear in digit span
tests were added in the sequence generation in order to
avoid redundant sequences, which might be easier to re-
call due to the effect of chunking [3]:

• tones in a sequence can only reappear if strictly nec-
essary (i.e., if sequence length > # of distinct tones
used), and in such case there should be at least four
distinct intermediate tones between repeated tones.

• sequences with large monotonic subsequences (e.g.,
5 or more successive upward or downward steps) or
with few direction changes (e.g., less than 2 break-
points in a sequence with 7 or more tones) should be
discarded.

• sequences with a large common subsequence (N≥3)
with respect to the previous sequence in the same set
(or a large repeating subsequence within it) should
also be discarded.

Sequences to be used in inverse order were indepen-
dently generated, instead of reusing direct order sequences,
to avoid long-term memory collaboration. A total of 144
melodic sequences were thus generated, and the same
amount of numerical sequences were obtained by direct
translation.

Subsequently, all sequences were converted to audio,
to guarantee that every individual is exposed to the same
stimuli. Tones were synthesized as suggested in [7], by
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using plain sine waves, with 0.1 sec fade-in and fade-out
ramps and a total duration of 0.5 sec per tone, followed
by 0.5 sec of silence. Numbers were recorded using both
female and male voices and sequenced in order to keep the
same duration of 1 sec between the starts of consecutive
numbers.

3.2 Population Requirements

A first requirement for any individual participating in this
experiment was already stated in the previous section.
Since responses are collected via singing, the individuals
have to be able to sing; more precisely, we need to be sure
that each individual participating in the experiment has the
ability to hear a tone and reproduce it correctly, within a
reasonably defined tolerance.

For our experiment we considered a population of vol-
unteers that consisted of amateur choir singers and mu-
sic undergraduate students. This may be viewed as a het-
erogeneous population, since they show significant differ-
ences in musical background, singing skills and even musi-
cal memory skills (since those without sight-reading skills
usually rely only on their memory for acquiring repertoire).
With all their diversity, they generally satisfy the two most
important aspects in defining the population for this ex-
periment, which are (1) the common exposure to western
popular and classical music and (2) the ability to sing in
tune.

We defined a tuning test to be applied before the ac-
tual span tests, which consisted of hearing tones and re-
producing each one immediately after hearing it (no se-
quence memorization required). We used a 12-tone row
(taken from Schoenberg’s Variations Op. 31) for this test,
and only individuals who reproduced the 12 tones correctly
would be considered for the final experiment.

The tolerance used to decide whether a tone has been
correctly reproduced is also a critical point of the experi-
ment. It should be noted that the experiment tries to grasp
something that lies inside the subject’s mind (i.e., in his
memory), but the empirical data is modulated by his/her
vocal skills. In an attempt to overcome this difficulty, we
accept as correct any tone within a quarter-tone distance
from the target, even if just in passing (in the case of an
unstable vocal emission). More details are given in sec-
tion 4.1.

3.3 Span Tests

An experimental session consists of a short explanation
about the nature of the experiment and the format of the
tests, after which the volunteer reads and signs a written
informed consent to become part of the experimental re-
search. This is then followed by the tuning test, and af-
ter that the actual span tests. The application of the 144
melodic span tests (plus 144 numerical span tests 1 ) as de-
fined earlier is divided into categories of similar data in as-
cending length order, such as “random diatonic sequences

1 We use the term numerical span instead of the usual digit span be-
cause in our sequences items may be composed of two digits, and this
is likely to affect span measures causing them to differ from well-known
digit span values.

with restricted intervals in direct order”, and so on. The
ordering of these categories needs to be balanced, by using
several distinct permutations of the categories, in order to
cancel out the effects of fatigue and progressive familiar-
ization of experimental subjects with the tests.

As in the case of classic digit span tests, each cate-
gory of sequences of ascending length has 2 distinct se-
quences for each length value, and the span of a subject
for that particular category is defined as the largest length
N for which the subject correctly reproduces at least one
of the sequences for all lengths up to N. This flexibility is
supposed to account for distraction, singing mistakes, and
other disturbing factors not necessarily related to an indi-
vidual’s working memory system.

Forward span measures correspond to span values for
sequences that were supposed to be reproduced in direct
order (i.e., as heard). Analogously, backward span mea-
sures correspond to span values for sequences that were
supposed to be mentally reversed by the subject before be-
ing sung back.

The presentation of stimuli is always made using head-
phones to minimize external interference, and all responses
are recorded using a microphone. In our tests, stimuli were
organized for individual presentation in a computer with
an external M-Audio MobilePre USB soundboard, and all
recordings were made with a Samson C15 Studio condens-
er microphone using 16 bit samples and 44.1 kHz sampling
rate.

4. EXPERIMENTAL RESULTS

The experiment described in the previous section was con-
ducted with 13 volunteers, 8 amateur choir singers and
5 music undergraduate students. Of these, 10 volunteers
passed the tuning test and were used in the analysis. The
other 3 volunteers were amateur choir singers who had bor-
derline tuning results (exactly 1 tone off by a semitone) and
were discarded. Such borderline results might be attributed
to distraction or other factors unrelated to perceptual or
singing skills, and may be futurely included in analysis as
a separate population.

The recordings were automatically analyzed and semi-
automatically graded, giving a span measure for each indi-
vidual and for each category of sequences (as discussed in
the previous section). These measures were then submitted
to statistical Analysis of Variance (ANOVA), out of which
our original hypotheses were put to test. These steps and
some cognitive remarks are given in the subsequent sec-
tions.

4.1 Analyzing the Recordings

All recordings were analyzed using a monophonic tran-
scription audio system specially tailored for this experi-
ment. The application context departs from traditional au-
tomatic transcription problems in several aspects, such as
irrelevance of precise rhythmic information, a priori knowl-
edge of timbral structure (voice), and silence as a separator
of relevant events, to name a few. This characterizes a rel-
atively simpler transcription subproblem, which is solved
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by a four-step method described below.
The first step of the analysis was based on [12]. Record-

ed signals were divided in frames of 1024 samples and a
peak-detection strategy was applied for each frame, cre-
ating a set of candidate spectral peaks. The accuracy of
peak estimates was improved using signal derivatives [13],
and F0 estimates for each frame were obtained by maxi-
mizing the cumulative harmonic energy of each candidate
peak [12].

The second step of the analysis consisted in filtering
out spurious results of the first step by median filtering
F0 values and subsequently marking nearly-silent frames
as event separators. This step produced a nearly stable F0
profile for each isolated utterance.

The third step consisted in transcribing these F0 pro-
files into symbols in a 24-step quarter-tone scale. This was
done in order to correctly identify tones that were off by
half a semitone, which should be considered correct (see
section 3.2). This rounding-up to a 24-step scale involves
a round-up error of the order of 1/2 of a quarter-tone, or
1/8 of a tone, and so the total tolerance adopted for this
analysis was actually 3/8 of a tone, which is not so much if
natural vibrato is taken into account.

The last step of the audio analysis consists of grouping
up those symbols of the 24-step quarter-tone scale corre-
sponding to a single profile and translate them into pairs
(N,P) where N stands for a possible note (such as C#3 or
B4) and P is the percentage of time of that profile for which
the note could be accepted as N. For instance, an output
like the following

-----------------------------------------
Event Detected: Intensity=411.783
Start=0.673s End=1.196s Duration=0.522s
Possible Notes: D 4 (99%), C#4 (29%)
-----------------------------------------
Event Detected: Intensity=515.923
Start=1.428s End=1.974s Duration=0.546s
Possible Notes: C 4 (99%), B 3 (60%)
-----------------------------------------

states that the first note could be accepted as a D4 for 99%
of that utterance’s duration, but it could also be accepted
as a C#4 for 29% of the time (it might be the case that the
note was a little bit flat during attack or decay), whereas
the second note could be either C4 or B3 (because F0 val-
ues were in between these two notes for 60% of the time).
So the output of this analysis can be seen as a probabilis-
tic transcription taking the tolerance of 3/8 of a tone into
account.

All recordings were semi-automatically graded by this
transcription system. By that we mean that conversion of
recordings into span measures has been double-checked by
a musically trained person. This was done for two main
reasons: (1) to minimize the possibility of automatic tran-
scription errors being transferred to the statistical analy-
sis, with an impact in cognitive results; and (2) to gather
extensive subjective evaluation about the transcription sys-
tem, by applying it to over 800 recorded notes, and veri-
fying that correct notes (according to a musically trained
person) were always identified by the transcription system
with P>33%.

4.2 Statistical Comparison of Span Results

The output from the previous analysis is a set of numerical
measurements for each individual and each test category.
For simplicity, these categories were labeled with short
names such as 7 and 12 for diatonic and chromatic span
measures, and 3 and X for the categories related to diffi-
culty (3 = intervals constrained to at most a major third,
and X = no interval constraint). This data was submitted
to a Repeated Measure Two-Way ANOVA on the effects
of familiarity and difficulty, and post-hoc Newman-Keuls
tests when necessary, using Statistica c© r5. Each possible
comparison between groups of measures that might be sta-
tistically different has a corresponding significance level p,
and small values of p (typically p<0.05) are interpreted as
indicating a real difference between groups.

Figure 2 shows the averages and standard errors for the
melodic span measures in direct order, or forward melodic
spans (FMS), in all four categories.
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Figure 2. Forward melodic span measures.

The average forward melodic span for category 7 3 (5.9
notes) was significantly higher than the others (FMS(7 X)=
4.9, FMS(12 3)=5.0 and FMS(12 X)=4.5), with a signif-
icance level p<0.023. We may assume that the smaller
number of items combined with a simpler internal struc-
ture does in fact ease the memorization task. Pairwise
comparisons between the other 3 categories do not show
statistically significant differences. This is not equivalent
to saying that there are no differences, but simply that the
experimental data for this population does not allow such
conclusions to be drawn with reasonable confidence. A
larger population might improve significance levels, allow-
ing other hypotheses of pairwise comparisons, such as
span(12 3)>span(12 X), to be confirmed or refuted.

With a two-way ANOVA we can study the effects of the
familiarity (scale) irrespectively of difficulty (constrained
or unconstrained melodic leaps), by combining all mea-
sures for the diatonic scale (7 3 and 7 X) and statistically
comparing this group of measures to the results for the
chromatic scale (12 3 and 12 X). This comparison allows
us to conclude that average measures for the diatonic scale
(FMS(7)=5.4) are significantly higher (p<0.018) than mea-
sures for the chromatic scale (FMS(12)=4.75). Compar-
ing the two levels of difficulty irrespectively of familiar-
ity leads to a similar conclusion, i.e., average measures
for constrained sequences (FMS(3)=5.45) are significantly
higher (p<0.026) than for unconstrained sequences
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(FMS(X)=4.7).
It is interesting to compare these results to the corre-

sponding span measures for numerical sequences that were
built after melodic sequences by direct translation. Fig-
ure 3 shows the results of these tests. The labels (7), (12),
(3) and (X) have been maintained, although in this context
they only reflect the amount of allowed numbers (8 or 13)
and the allowed differences between adjacent numbers.
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Figure 3. Forward numerical span measures.

Considering all four categories, forward numerical spans
are higher than forward melodic spans (p<0.020), which
means that sequences of numbers are more easily recalled
than melodic sequences in the context of this experiment.

Here we also observe the same combined results as be-
fore, namely FNS(7) is significantly higher than FNS(12)
(p<0.006), and FNS(3)is significantly higher than FNS(X)
(p<0.024). This raises some important questions about the
interpretation of melodic span results, which will be ad-
dressed in section 4.3.

We now turn to melodic spans in inverse order, or back-
ward melodic spans (BMS). Figure 4 shows averages and
standard errors for this experimental data.
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Figure 4. Backward melodic span measures.

The only worthy comparison here is between BMS(3)=
2.7 and BMS(X)=2 which refer to difficulty levels, but
the significance level p=0.094 is higher than 0.05, which
means that the confidence in this comparison is relatively
low. This might be confirmed with a larger population.

It should be mentioned that these backward span mea-
sures are affected by the presence of several zeros corre-
sponding to subjects who couldn’t reproduce any sequences
in reverse order (sequences start with 2 distinct tones). This,

combined with many other low results (BMS=2) contribu-
tes to what is called floor effect, which has important con-
sequences for statistical analysis of these data.
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Figure 5. Backward numerical span measures.

Figure 5 shows backward numerical span measures.
This data allows the conclusions that BNS(7)=5.85 is high-
er than BNS(12)=4.85 (p<0.017), and that BNS(3)=5.75
is higher than BNS(X)=4.95 (p<0.019), or in other words,
both the smaller number of symbols and the simplified in-
terval structure of the sequences do in fact help the memo-
rization and mental reversal of sequences of numbers.

It can also be drawn from this data that backward nu-
merical span measures are higher than the corresponding
backward melodic spans (p<0.005). This means that ret-
rograding melodic sequences is in fact much more difficult
than reversing numerical sequences, and the confidence
level of this conclusion is high.

The next section focuses on possible cognitive interpre-
tation of the above quantitative and qualitative conclusions.

4.3 Cognitive Aspects

We shall first address the differences and similarities in for-
ward span measures for melodic and numerical sequences.
We concluded in section 4.2 that numerical span measures
were generally higher than melodic span measures. This
could be explained by the many associations that numbers
in working memory have with long-term memory knowl-
edge, such as visual and linguistic alternative representa-
tions. A similar phenomenon has been observed in individ-
uals with absolute pitch, who resorted to verbal strategies
to achieve a higher melodic span [14].

Another interesting comparison is the fact that the re-
stricted contexts (7 and 3) did increase forward span mea-
sures with respect to less restricted contexts (12 and X),
both with melodic and numerical sequences. This raises
the possibility of a single explanation accounting for both
phenomena, which might not be an exclusively musical
explanation. Items (numbers, pitches) that are close to
one another in their respective representation spaces might
be more effectively combined into larger chunks (subse-
quences, motifs) in the working memory, effectively al-
lowing a larger number of items to be stored.

It has been observed that the number of symbols (8 or
13) also affect span measures. This effect might be intu-
itive in the numerical domain, since some numbers are rep-
resented by two digits and might also have a comparatively
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larger mental representation. But in the musical domain
we have been looking at those categories (7 and 12) as
representatives of more or less familiar contexts. It might
be argued that a single explanation (number of symbols)
would account for both observations. We would coun-
terargue that chromatic sequences with length less than 8
also have less than 8 distinct symbols, so non-diatonic 8-
element subsets of a 13-element chromatic scale already
appeared in our experiment; the only difference is the fact
that these 8-element subsets are not fixed within each cate-
gory. An experiment might be made using other 8-element
fixed subsets of a 13-element chromatic scale to provide a
more well-founded comparison.

In backward melodic span measures we observed a floor
effect that make it more difficult to draw qualitative con-
clusions from statistical analysis. It might be the case that
chunking of close elements within a musical scale make
the process of reversal of a sequence easier. In any case,
by comparison with the reversal of numerical sequences,
musical retrogradation of unheard melodic sequences ap-
pears to be a very difficult task.

It is interesting to notice that backward digit span mea-
sures are affected by restricted contexts such as 7 (8 instead
of 12 symbols) or 3 (small rather than large intervals). This
suggests that chunking of information in working mem-
ory is probably more effective in reversing numerical se-
quences rather than melodic sequences.

It might be wondered about the effect which training
would have in both tests. Reversal of numerical sequences
does not appear to be a frequently applied task in elemen-
tary school, and the same could be said about melodic ret-
rogradation without the aid of a writing pad. Yet the results
suggest that dealing with numbers in working memory is
naturally easier than dealing with notes, in the sense that
our population was not specifically trained for neither of
these tasks.

These differences in behavior of backward span mea-
sures with respect to forward span measures are made more
clear when they are expressed by relative differences or
span indices, defined as

(forward span - backward span)
(forward span)

.

Figures 6 and 7 show these values for melodic indices and
numerical indices, respectively.
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Figure 6. Indices for melodic span measures.
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Figure 7. Indices for numerical span measures.

These values reflect the relative difficulty in mentally
reversing sequences with respect to simply reproducing
them in direct order. Statistical analysis allow the conclu-
sion that numerical indices are higher than melodic indices
with a significance level p<0.0006.

It is interesting to compare these indices to numerical
indices of other languages. For instance, digit span indices
for English, Spanish, Hebrew and German are in the range
[0.09, . . .,0.26] [10, 15, 16], and this range also includes
all four numerical span indices that we obtained.

On the other hand, digit span indices for Mandarin are
relatively higher, around 0.48±0.05 according to Hsieh &
Tori [17]. This value is closer to what we obtained as
melodic span indices. It might be argued that Mandarin
is a tonal language, meaning that pitch variation within a
phoneme is a component of semantic value, and so even
the task of remembering numbers (or reversing them) re-
quires some attention to melodic profile.

These differences suggest that the underlying mecha-
nisms for verbal and tonal processing might be different, as
suggested by other authors [7]. Baddeley’s working mem-
ory model includes separate components for visuospatial
and phonological information, but does not distinguish be-
tween phonological information with verbal content or
purely acoustic information. By observing the differences
in numerical and melodic span indices we could consider a
subdivision of the phonological loop into two components
responsible for verbal and acoustical material, or even the
existence of a component for acoustic processing which is
separate from the phonological loop.

5. CONCLUSION AND FURTHER RESEARCH

This paper has brought experimental facts about human
music cognition, which might be relevant for computa-
tional psychoacoustics and for the development of cog-
nitive models for automatic feature extraction. We have
studied the impact of familiarity and difficulty in the task
of memorizing melodic sequences, by adding simple con-
straints to the generation of test sequences.

We observed that both familiarity and difficulty (in the
sense defined in section 3.1) contribute to higher forward
melodic span measure. A similar finding in forward nu-
merical span measures adds to the understanding of the
melodic results in two ways: it provides a possible ex-
planation to measure differences related to difficulty as a
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consequence of chunking, and it also raises the question of
whether the number of symbols alone would be responsi-
ble for the observed differences with respect to what we
called familiarity.

Observing behavioral differences in backward numeri-
cal and melodic span measures, and specially comparing
span indices to other well-known experiments, we suggest
that the underlying mechanisms for dealing with verbal
and acoustic information in working memory are probably
not the same, since a similar mechanism operating simi-
larly on both information would not display the observed
levels of degradation in backward spans with respect to for-
ward span measures.

The experiment described here can be easily extended
and applied to other population groups. Some of the fac-
tors that may contribute to relevant findings are: the size
of the population, considering other groups such as profes-
sional singers or non-singer professional musicians, and
also considering other levels of familiarity or difficulty or
even other aspects of melodic sequences not contemplated
here.

Future work may also combine this type of experiment
to neuroimaging techniques to help mapping cognitive sub-
systems of the working memory model to particular acti-
vation areas in the human brain. Some studies that follow
this idea are the localization of regions involved in recog-
nition tests with melodic material using PET scans [7], and
the localization of areas involved in the subvocal rehearsal
strategy of the phonological loop for verbal and melodic
material using fMRI [18].
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ABSTRACT

In this paper we propose a divergence measure which is
applied to the analysis of the relationships between gesture
and sound. Technically, the divergence measure is defined
based on a Hidden Markov Model (HMM) that is used to
model the time profile of sound descriptors. Particularly,
we used this divergence to analyze the results of experi-
ments where participants were asked to perform physical
gestures while listening to specific sounds. We found that
the proposed divergence is able to measure global and local
differences in either time alignment or amplitude between
gesture and sound descriptors.

1. INTRODUCTION

Our research is concerned with the modelling of the re-
lationships between gesture and sound in music perfor-
mance. Several authors have recently shown the impor-
tance of these relations in the understanding of sound per-
ception, cognitive musical representation and action-oriented
meanings ([1], [2], [3]), which constitutes a key issue for
expressive virtual instrument design ([4], [5]).

A gesture is described here as a set of movement pa-
rameters measured by a motion capture system. In turn,
a sound is described as a set of audio descriptors repre-
senting musical properties such as audio energy, timbre or
pitch. Specifically, our goal is to propose a computational
model enabling the measure of the similarities between the
gesture parameters and sound descriptors.

Previous works on the quantitative analysis of the gesture-
sound relationship often deal with variance-based statisti-
cal methods as principal correlation analysis (PCA) ([6])
or canonical correlation analysis (CCA) ([7]). PCA al-
lows for the determination of principal components that
models the variation of the gesture parameters. Analyzing
these components together with musical features (as tempo
or metric) enabled to understand how listeners try to syn-
chronize their movements on music beats ([6], [8]). In [7]
the CCA method is used as a selection tool for mapping
analysis. In this work, we showed that this method can re-
turn the gesture and sound predominant features. However,
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both variance-based methods suffer from a lack of tempo-
ral modeling. Actually, these models assume as stationary
both gesture parameters and audio descriptors, in the sense
that statistical moments (mean, variance, etc.) do not de-
pend on the ordering of the data. As a matter of fact, these
models return a global static similarity measure without
considering intrinsic dynamic changes.

To overcome these limitations, it is necessary to model
the time profiles of the parameters. A large number of
works dealing with time series modelling are based on hid-
den Markov models. HMM-based methods indeed allow
for the temporal modeling of a sequence of incoming events,
and have been used in audio speech recognition [9], ges-
ture recognition ([10], [11]) and multimodal audio-visual
speech recognition [12]. The common classification task
generally considers a sequence as a unit to be classified
and returns a decision once completed based on the com-
putation of likelihood values. In [11] the authors present
a HMM method designed for continuous modeling of ges-
ture signals, that allows for the real-time assessment of the
recognition process. Moreover, this method allows for the
use of a single example for the learning procedure.

We propose to use in order to provide a measurement
tool in a cross-modal fashion. HMM were already em-
ployed in cross-modal contexts : audio speech and video
[13], [14]. Here the novelty is to use HMM methods to
model relationships between non-verbal sounds and hand
gesture of passive listeners. More precisely, we propose
here to use this method to further define a statistical dis-
tance between two time profiles, typically called a diver-
gence measure (see for instance [15]) in information pro-
cessing. Specifically, we report here that this HMM-based
divergence measure has properties, induced by its under-
lying Markov process [16], that makes it suitable to study
the time evolution of the similarity between gesture param-
eters and sound descriptors.

This paper is structured as follows. First, we describe
the general method and context of this work. Second, we
present the theoretical framework of hidden Markov mod-
eling (section 3). In section 4 we detail the divergence
measure based on this framework and a specific learning
process. Third, we report an experiment and the results
that illustrate a possible use of our method (section 5). Fi-
nally, we conclude and present future works in section 6.
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2. CONTEXT AND GOAL

Consider the following experiment: a participant listens to
a specific sound several times, and then proposes a phys-
ical gesture that “mimics” the sound. The gesture is then
performed (and captured) while the participant listens to
the sound. Our general aim is to answer the following
question: how can we analyse the gesture in relation to
the sound ?

In this experiment, the gestures can be considered as a
“response” to a “stimulus”, which is actually the sound.
In our framework, we will thus consider the sound as the
“model” and the gestures as the “observations”, as if they
were generated by the model.

For each participant’s gestures, as illustrated in figure 1,
our model should allow us to compute a divergence mea-
sure between each gesture and the corresponding sound (or
in other words, to quantify similarity/dissimilarity between
the gesture and sound). In the next section, we describe the
mathematical framework enabling the computation of such
a divergence measure. It is based on Hidden Markov Mod-
eling permitting real time musical applications.

Gesture Gesture...

Participant 1 Participant N

Sound HMM-based Divergence measure

...

...

Observation Observation

Model

D1 DN

Figure 1. Methodology: Each participant’s trials are taken
as input and a selected sound is taken as model. We mea-
sure the divergence between each trial and the sound.

3. HIDDEN MARKOV MODELING

In this section we briefly report the theoretical HMM frame-
work used to further define the divergence measure in sec-
tion 4.

3.1 Definition

Hidden Markov modeling can be considered as two statisti-
cally dependent families of random sequences O,X ([17],
[16], [9]). The first family corresponds to the observations
tOtutPN which represent measurements of a natural phe-
nomenon. A single random variable Ot of this stochas-
tic process takes value in a continuous finite dimensional
space O (e.g Rp). The second family of random process
is the underlying state process tXnunPN. A state process

is a first-order time-homogenous Markov chain and takes
values in a state space denoted by X � t1, 2, . . . , Nu. If
we note T the length of O, statistical dependency between
the two processes can be written as

P pO1 . . . OT |X1 . . . XT q �
T¹
t�1

P pOt|Xtq (1)

We define a hidden Markov model as

λ � pA,B, πq

Where A is the time-invariant stochastic matrix, or tran-
sition matrix, P pXt�1 � j1|Xt � j2q, pj1, j2q P X 2;
B is the time invariant observation distribution bjpoq �
P pOt � o|Xt � jq, j P X ; and π is the initial state proba-
bility distribution P pX0 � jq, j P X . The HMM structure
is reported in figure 2.

Xt−1 Xt Xt+1

Ot+1OtOt−1

Xt ∈ X

Ot ∈ O

Figure 2. A general schema of HMM. tXtutPN is the
model state random process where each state emits an ob-
servation Ot with a probability defined by B

In our case, tX0 . . . XT u corresponds to an index se-
quence of audio descriptor samples and tO1 . . . OT u a se-
quence of vector of samples from gesture parameter sig-
nals.

3.2 Topology

A and π must be fixed according to a modeling strategy.
π describes where in the sequence model we start to de-
code. A is used to constrain the neighborhood of state j,
taken at time t, in which a model state must be taken at
the next time step t � 1. This data has a great influence
on the resulting decoding computation. Let’s consider two
extreme situations for a forward Markov chain topology as
illustrated in figure 3.

In the first case, if current state is j we constrain to
look forward until j � 1 for the best state emitting Ot�1

whereas in the second case we allow to look forward until
the last state N to find this closest state. Usually, topology
is learned from the data to have the most suitable model.
Otherwise, we can tuned up the model according to a spe-
cific required behavior. For instance, as we work with con-
tinuous time series, a forward model will be chosen.

3.3 Learning

Here we present how λ is learned using the approach pre-
sented in [11]. The parameters A (transition probability
matrix) and π (initial probability) are fixed according to
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k k+1 k+2
1

k k+2

1

1/(N-k+1)

1/(N-k+1)

1/(N-k+1) ...

1.

2. k+1

Figure 3. Two extreme cases of topology. First, one step
forward is permitted in the state space. Second, each state
from the current to the last one can be caught

user’s choice of topology. B is such that time invariant
observation distributions are gaussians, i.e

bjpoq � 1

σ
?
2π

exp

��1

2

po� µjq2
σ2

�
(2)

Gaussian functions are centered on the model signal sam-
ples and the standard deviation σ can be adjusted by the
user (see figure 4). In our case, model signal samples
are the audio feature samples computed from the chosen
sound. A single example, namely the model, is needed for
the learning procedure.

...

(µ,σ)

Time

Sa
m

pl
e 

Un
it

Figure 4. Learning phase. Gaussian functions are centered
on the model signal samples and the standard deviation σ
is a priori defined as a tolerance parameter.

Thereby, rather learning based on training data, the ob-
servation probabilities are chosen such that the sound sig-
nal is the most likely observation sequence. In this way,
we seek for the most likely gesture as the most similar to
audio descriptor temporal evolution.

3.4 Decoding

Given an input sequence O and a HMM λ, one of the in-
teresting problems is to compute the probability P pO|λq.
As mentioned in [9], in practice we usually compute the
logarithm of this probability as

log rP pO|λqs �
Ţ

t�1

log

�
Ņ

j�1

αtpjq
�

(3)

Where αtpiq is called the forward variable and is defined
as αtpiq � P pO1O2 . . . Ot, Xt � i|λq, namely the proba-
bility of having the observation sequenceO1 . . . Ot and the
current state i. Also, this variable can be computed recur-
sively providing an incremental method to find the desired

probability [9], i.e @j P v1, Nw
t � 1 α1pjq � πjbjpO1q

t ¡ 1 αtpjq �
�

Ņ

i�1

αt�1piqaij
�
bjpOtq

(4)

This forward inference allows for real time applications
in which input signal is decoded inductively.

4. DIVERGENCE MEASURE

In this section we define the divergence measure based on
the HMM framework and the learning method described
in section 3.3. Three main properties of this divergence
are proved below: non-negativity; global minimum; non-
symmetry.

4.1 Divergence Measure Definition

We consider two uniformly sampled signals: a modelM �
tM1, . . . ,MNu and an observation O � tO1, . . . , OT u.
We define here the divergence measure between the obser-
vation O and a HMM learned from signal M as in section
3.3, based on decoding presented in section 3.4. We de-
note λM � pAM , BM , πM q the HMM learned from M .
As mentioned in 3.3, we fix AM and πM for the diver-
gence independently to M . Observation distributions bMj
are defined as equation (2) with µj �Mj . Hence we have
λM � pA,BM , πq. We define the divergence measure as

DA,πpO||Mq � � log rP pO|λM qs (5)

In the following, for convenience DA,π will be noted D.
Divergence measure corresponds to the logarithm of the
likelihood of having the sequence of observations O given
a model λM learned from a signal M . More precisely,
DpO}Mq measures the divergence between the input ob-
servation and a sequence of model states generating the
observations. This sequence respects temporal structure
of the model thanks to the underlying Markov chain. The
result is a temporal alignment of model states on obser-
vations with a probabilistic measure evaluating how the
alignment fits the observation sequence in terms of time
stretching and amplitude (cf figure 5).

Sample num.
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e 
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1 T

T

1

D(O||M)O1 OT...

Figure 5. The HMM takes as input the sequence of ob-
servations O1 . . . Ot. A sequence of model states (whose
likelihood of emitting observations is maximum) approx-
imates the observations. The quality of modeling is re-
turned and defines DpO}Mq.
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4.2 Divergence Properties

In this section, we present that divergence measure be-
tween observation O and model M defined by (5) satisfies
important properties. We refer the reader to the appendix
for more details.

Non-negativity Divergence DpO}Mq is always positive.
Theoretically, the divergence measure does not have to be
finite. Actually, DpO}Mq is finite because signals consid-
ered have a finite length (T,N   �8) and infinite values
are theoretically impossible, due to numerical precision.
The log of very small values can be either considered as
zero or disregarded.

Lower bound. The most important corollary of non-negativity
is the existence of a lower bound i.e a global minimum for
our divergence measure which varies according to param-
eters A, π, σ. Moreover, the global minimum is explicit.
Depending on A and π, the minimum DpM}Mq is not
necessarily zero. Minimum analysis returns how close the
HMM learned from M can generate O. In section 5.3 we
will show that extremum analysis is pertinent in the anal-
ysis of the similarities between a sound and a gesture per-
formed while listening to it.

For brevity, explicit global minimum is not reported
here and its analytic formulation will not be explicitly used
in the following.

Non-symmetry. The measure is not symmetric. Strategies
to symmetrize divergence measures can be found in the lit-
erature (see for instance [18] for the well known Kullback-
Liebler divergence), but we are interested here in the anal-
ysis of the divergence from an observed gesture to a fixed
sound model and there is a priori no reason why their re-
lation should be symmetric.

4.3 Temporal evolution of the measure

The considered sample-based learning method trains an
HMM that closely models the time evolution of the sig-
nal. Moreover, from forward decoding we can find at each
time t which model state emits the considered observation.
Thus, at each time step the model can inform us on the
close relation between both signals in terms of time evo-
lution and amplitudes. This aims to an explicit temporal
evolution of the divergence measure. Let any truncated
observation signals be denoted by O|t � tO1 . . . Otu and
the whole model λM . Hence D is defined as a function of
time by,

DpO|t}Mq � �
ţ

k�1

log

�
Ņ

j�1

αkpjq
�

(6)

5. EXPERIMENTS

In this section we present an evaluation of the previously
defined divergence measure to gesture and sound data. The
measure returns an overall coefficient of the similarity be-
tween descriptors of both sound and performed gesture.
Temporal evolution of this measure allows for the analy-
sis of temporal coherence of both signals. We discuss the
results at the end of this section.

5.1 Data Collection

The data was collected on May 2008 in the University of
Music in Graz. For the experiment 20 subjects were invited
to perform gestures while listening to a sequence of 18 dif-
ferent recorded sound extracts of a duration between 2.05
and 37.53 seconds with a mean of 9.45 seconds. Most of
the sound extracts were of short duration. Since the expe-
rience was explorative, the sound corpus included a wide
variety of sounds: environmental and musical of different
styles (classical, rock, contemporary).

For each sound, a subject had to imagine a gesture that
he or she performed three times after an arbitrary number
of rehearsals. The gestures were performed with a small
hand-held device that included markers for a camera-based
motion capture system recording its position in Cartesian
coordinates. The task was to imagine that the gesture per-
formed with the hand-held device produces the listened
sound. A foot-pedal allowed the beginning of the move-
ment to be synchronized with the beginning of the play-
back of the sound extract in the rehearsal as well as for the
recording of the final three performances.

5.2 Data Analysis

We refer the reader to the previously introduced method in
figure 1. We first select a sound as a model. This sound is
waves. It is a sequence of five successive rising and falling
ocean’s waves at different amplitudes and durations. Ac-
cording to the sound model, we consider the three trials
performed by each candidate while listening to it.

The divergence measure parameters are set as follows.
The chosen transition matrix corresponding to the Markov
chain topology is illustrated in figure 6 (see [11] for further
explanations). The initial probability distribution π is such
that π1pO1q � 1 and @i � 1, πipO1q � 0. The states of the
Markov chain are the index of the audio descriptor samples
(see section 3.3).

k k+1 k+2

0.25

0.5

0.25

Figure 6. The chosen topology gives the predominant
weight to a transition to the next state. An equal weight
is given to the self-transition and to the transition above
the next state.

The choice of audio description and gesture variables
is based on our previous works (cf. [7]). We have shown
that the predominant features when participants have per-
formed gestures while listening to a wave sound is the au-
dio loudness and gesture velocity. As we present some
results based on the same data, we consider these two uni-
dimensional signals for describing the data.

In the whole set of data captured, some trials had data
missing; for others gesture and sound were not synchro-
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nized and finally some trials were missing for some par-
ticipants. A selection is performed based on these criteria.
Among the 20 participants, a set of 14 are kept. For all
of the 14 participants, we measure the divergence between
each trial and the selected sound. Gesture sequence for
participant s and trial p is noted Os,p, loudness signal is
noted M . Figure 7 reports the results.

In the following, we will focus result analysis on four
key points.

1. Divergence Extrema. Participant performances for
which the divergence measure is the lowest and the
highest

argmin
Os,p

rDpOs,p}Mqs
argmax

Os,p
rDpOs,p}Mqs

2. Gesture Variability. Participant performances for which
the standard deviation of resulting divergences is low
or high.

3. Temporal Alignment. Alignment of the model (audio
descriptor sample index) onto the incoming obser-
vations (gesture parameters): the sequence of states
returning the maximum likelihood.

4. Temporal Evolution. Evolution of divergence mea-
sure for the same selected participant performances
as above.

DpOs,p|t }Mq

5.3 Results and Discussion

Participant #
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Figure 7. The figure reports statistics on divergence mea-
sures between each participant’s trial and the sound waves.
The figure reports each quartile.

Divergence Extrema. Consider first the global mini-
mum and maximum for divergence results obtained on the
whole set of data (cf. figure 7). It reveals that participant 4
holds the minimum 2.24 for the second trial. In the same
way, participant 5 holds the maximum 19.42 for the second
trial. In figure 8, the participant 4’s trial minimizing the di-
vergence measure is plotted on the top-left together with

the model. On the top-right of figure 8, we report the par-
ticipant 5’s trial maximizing the divergence together with
the model. It reveals that participant 4’s gesture is more
synchronized to the sound and the variations in velocity
amplitude fit the best loudness proper variations than par-
ticipant 5’s performance. Actually, participant 4 tends to
increase his arm’s velocity synchronously with each wave
falling. Otherwise, participant 5’s gesture performance ve-
locity does not globally correspond to the corresponding
loudness variations.
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Figure 8. At the top, both gesture velocity signals are plot-
ted in dashed line for both participant 4 (left) and partici-
pant 5 (right). The model (waves loudness) is also plotted
in solid gray line. The bottom is divergence measure at
each t between the respective signals above the plot.

Gesture Variability. Illustration of standard deviation
between trial divergences in figure 7 reflects the tendency
of each participant to perform similar trials in terms of tem-
porality and amplitude. Participant 7 performed very con-
sistent trials compared to participant 4. Divergence medi-
ans suggest that a considered participant performed three
different gesture performances (e.g. participant 2 or 11) or
one really different compared to the remaining two (e.g.
participant 4: the first performance is very distinct from
the other ones). Figure 9 illustrates this analysis reporting
the three trials performed by participants 4 and 7.

In the following, temporal alignment and the resulting
temporal evolution of divergence are analyzed on particu-
lar examples highlighting how we can interpret the use of
such measure for cross-modal analysis.

Temporal Alignment. The divergence measure drasti-
cally decreases if both signal amplitude variations differ
(see figure 8). A standard correlation measure would be-
have similarly. The underlying stochastic structure over-
comes this limitation by aligning both signals taking into
account the ordering of the data. Figure 10 illustrates par-
ticipant 10’s second performance: at the top, original sig-
nals (waves’ loudness and gesture’s velocity); at the bot-
tom, the aligned loudness onto the gesture’s velocity sig-
nal. Even if both signals are not strictly synchronous, the
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Participant 7
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Figure 9. At the top are the trials for which variance
in divergence measure is the lowest. Below we plot tri-
als performed by participant 5 and 6 corresponding to the
highest variance. Divergence median for participant 5 is
roughly the mean (three different trials) of divergence val-
ues whereas divergence median for participant 6 is very
low (one very different trial from the others)

divergence is quite low (6.79). Actually, both signal shapes
are globally coherent. The alignment is roughly a time
shift of the sound signal resulting from a delayed gesture
during the performance. In this example, correlation co-
efficient before the alignment process would be 0.076 and
0.32 afterwards. Resulting aligned sound could be recon-
structed and strategies of reconstruction should be investi-
gated.

Temporal Evolution. As explained in section 4.3, the
quality of model state sequence according to observation
signal can be measured at each time t. At the bottom of
figure 8 are the divergence measures evolving over time
for the second trial of participant 4 (left) and the third of
participant 5 (right). On the one hand, let’s analyze bot-
tom left plot corresponding to participant 4’s performance
(see figure 11 for a better view of the divergence curve).
The first samples of O and M are similar. Incoming obser-
vations have a tiny delay and the algorithm realigns both
signals. The divergence decreases meaning that ampli-
tudes are close (relatively to σ) and the signals are quite
synchronous. Around 2 seconds, the divergence increases:
gesture velocity is very low whereas sound loudness is still
high. Performer’s movement changed of direction involv-
ing a decreasing velocity. A peak of divergence informs us
at which time a divergence occurs and its magnitude per-
mits the degree of mismatching to be evaluated. In this
example, a magnitude of 0.1 represents a small mismatch
as illustrated in figure 11 (top part). Thanks to the under-
lying stochastic structure, the state sequence corrects it-
self according to the new inputs. Indeed, the divergence
measure is then decreasing slowly since the sum over time
(from 1 to t, see equation 3) of the log-probabilities in-
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Figure 10. Temporal alignment of loudness onto gesture’s
velocity. At the top are plotted the original signals : ges-
ture’s velocity in dashed line and loudness in solid line. At
the bottom, gesture’s velocity is unchanged and loudness
is aligned onto the velocity signal.

duces a memory of the past signals’ mismatching. Global
shape presents sawtooth-type variations interpreted as lo-
cal mismatching (peak which magnitude depends on the
amplitude difference) and correction (release) (see figure
11).
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Figure 11. Zoom on divergence measure curve for partic-
ipant 4. Zooming into this curve illustrates sawtooth-type
behavior of the divergence.

Consider now gesture performed by participant 5, shown
in the right part of figure 8. The global evolution of the
divergence measure is increasing indicating that they glob-
ally diverge, contrary to the previous behavior, and its mag-
nitude is higher. The temporal shape shows constant parts
(as around 4sec, 9sec, 13.5sec and 18sec). During these in-
tervals, mismatching has less impact because amplitude of
both signals is lower. The peaks occur for non-synchronized
peaks meaning highly divergent amplitude values. Con-
trary to the respective bottom-left plot, no decreasing can
be seen due to the overall past divergence values that are
not good enough to involve a decrease in the divergence:
as seen before, the sum propagates past mismatching.

Thereby, two different dynamic behaviors for the diver-
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gence measure have been highlighted. Locally mismatch-
ing induced a saw shape for DpO|t}Mq whereas globally
mismatching induced an ascending temporal curve which
can roughly be approximated as piecewise constant. These
behaviors give us useful hints to understand dynamic re-
lationships between gesture and the sound which was lis-
tened to highlighting relevant parts of the signals where
both signals are coherent or really distinct. Unfortunately,
the current model does allow the speed of the decrease to
be parametrized in the model. Otherwise, since the method
considers a global model corresponding to the whole sound
signal, it should be interesting to analyze gesture-sound re-
lationship at an intermediate temporal scale between the
sample and the global signal. Indeed, changes in gesture
control could occur permitting a better fitting between loud-
ness and velocity but the global divergence measure should
not take such dynamic changes into account.

6. CONCLUSIONS

In this paper we have presented a divergence measure based
on a HMM that is used to model the time profile of sound
descriptors. Gestures are considered as observations for
the HMM as if they were generated by the model. The di-
vergence measure allows similarity/dissimilarity between
the gesture and sound to be quantified. This divergence has
the following properties: non-negativity; global minimum;
non-symmetry. Experiments on real data have shown that
the divergence measure is able to analyze either local or
global relationships between physical gesture and the sound
which was listened to in terms of time stretching and am-
plitude variations. Some constraints (changing parameters
A, π or σ) could be added in order to reinforce or relax
softness of the measure. The novelty is to use HMM meth-
ods to model relationships between non-verbal sounds and
hand gesture of passive listeners. The use of HMM is moti-
vated by possible real time implementation and interactive
applications.

Actually, we are designing a gesture-driven sound se-
lection system whose scenario is as follows. First, we
build a sound corpus of distinct audio files with specific
dynamic, timbre or melodic characteristics (environmen-
tal sounds, musical sounds, speech, etc.). Then we choose
an interface allowing physical gesture capturing (e.g. Wi-
iMote). Finally one can perform a gesture and the system
will automatically choose the sound for which the diver-
gence measure returns the minimal value. Such application
could be useful for game-oriented systems, artistic instal-
lations or sound-design software.
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A. APPENDIX
DIVERGENCE MEASURE PROPERTIES

Non-negativity.

@t P v1, T w,
Ņ

i�1

αtpiq � P pO1 . . . Ot|λM q P r0, 1s

Hence,

DpO}Mq � �
Ţ

t�1

log

�
Ņ

j�1

αtpjq
�
P r0,�8s (7)

Lower bound.
Function bMj poq holds a global maximum in Rp for

@j P v1, Nw, Mj � argmax
x

bMj pxq

For brevity, the whole demonstration is not reported here,
but it can be shown that this global maximum aims to a
global maximum for αtpjq leading to a global minimum
for the divergence measure DpO}Mq considering any in-
puts different from the model.

@O �M,DpO}Mq ¥ DpM}Mq (8)

Non-symmetry. From equation (4), let αtpjq be rewritten
as

@t ¥ 1, αtpjq � Ct,jbjpOtq
Where C1,j � πj and Ct,j � °N

i�1 αt�1piqaij . From
respective expression of DpO}Mq and DpM}Oq, we have
@t ¥ 1,

Ņ

j�1

Ct,j

σ
?
2π
e

�pOt �Mjq2
2σ2 �

Ņ

j�1

Ct,j

σ
?
2π
e

�pMt �Ojq2
2σ2

Meaning that the divergence is not symmetric.

DpO}Mq � DpM}Oq (9)
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ABSTRACT 
Spatial movement has been used by composers as a mu-
sical parameter (intention), and this paper focus on the 
reception by the audience of spatial patterns. We present 
the results of a series of perception experiments where a 
total of N=118 listeners had to recognize simple rhythm 
patterns based on the left-right movements of 7 different 
sound types. The stimuli varied in harmonicity (HNR), 
temporal intensity variation, spectral distribution, move-
ment continuity and tempo. Listening conditions included 
stereo loudspeaker open field listening and headphone 
listening. Results show that globally the recognition is 
low, considering the simplicity of the pattern recognition 
task. The factor that most perturbed recognition is the 
intensity variation, with completely unvarying sounds 
yielding better results, and this was more important than 
the listening condition. We conclude that spatial sound 
movement is not suitable as a composition element for 
normally complex music, but it can be recognized by 
untrained listeners using stable sounds and simple pat-
terns. 

1. INTRODUCTION 
The movement of sound in space is a feature that has 
been used as soon as allowed by the technology, namely, 
with the appearance of loudspeakers arrays and their 
control systems. A famous early piece exploring the use 
of space is the Poème électronique by Varèse created in 
1958, with other spatial pieces [13]. Trochimczyk [10] 
makes a thorough inventory of the multiple uses of spa-
tial sound in electro-acoustic music composition, and 
cites the intentions of composers when using spatial 
movements. For instance Xenakis [12] describes the 
goals when using space: “The composition will thereby 
be entirely enriched … both in spatial dimension and in 
movement. The speeds and accelerations of the move-
ment of the sounds will be realized, including logarithmic 
or Archimedean spirals in time and geometrically … [as 
well as] ordered or disordered sonorous masses, rolling 
one against the other like waves”. We can see that there 
was a clear intention of using sound spatial trajectories as 
an element of the musical language and more recently, 
the use of space in contemporary music composition and 
projection has become a widespread musical technique. 
Composers and music theorists have exposed some ideas 
to clarify the intention and reception of spatial sound. 
Sound spatialisation and movement is also a major area 
in audiovisual sound, particularly with film surround 

sound systems but also with plain stereo, and manuals 
provide some hints of do’s and do not’s when locating 
and displacing the sounds on screen and around, relating 
to perception or “in-the-wings” effects in surround sound 
as theorized by Chion [6]. Videogames and even more 
sonification systems try to tame spatial movement of 
sound to convey information and represent spatial data. 
Sound art works space tends to acquire a more effective 
role by establishing more direct connections between 
sounds and the acoustic behaviour of these sounds in a 
particular environment [4], as oppose to music where the 
practice of spatialisation remains attached to the idea of 
sound-source localization and displacement, which is the 
core topic of the research presented in this paper. The 
experiments described here try to explore if the use of 
sound movement can be perceived as a musical element, 
and if spatial patterns can be recognized. 

Sound spatial perception is an area that has received 
much attention and there is an important set of experi-
mental results [2]. Most experiments deal with source 
localization rather than movement recognition, and more 
important, the experiments use very artificial sound stim-
uli and listening conditions in order to obtain measurable 
results. Stimuli most often include pure sinewaves and 
white noise calibrated and stable in time, or chirps that 
have also very strict conditions on how they are synthe-
sized. These stimuli hardly represent the variety and 
complexity of the sounds used in actual musical works or 
in audiovisual productions, and we may not confidently 
extrapolate the results obtained with calibrated sounds to 
the real world.  

The restrictions on listening conditions are also para-
mount: most experiments either directly use headphones 
for hearing the sounds or use anechoic chambers with the 
listener and the loudspeakers located in very precise posi-
tions. For instance, Cheng and Wakefield [5] explain that 
their “binaural examples have been specifically processed 
to be listened to over a good pair of headphones. None-
theless, some of these effects are more successful than 
others, and we realize that not all listeners may be able to 
immediately hear the intended spatial effects. Because 
spatialization effects can be delicate and may vary some-
what from person to person, we suggest listening to each 
sound example in a quiet environment several times over 
headphones, closing one’s eyes to better concentrate on 
the sound.” These listening conditions are very different 
from the concert room if we consider music, and also 
from film theaters or other systems of real-life sound 
projection.  

Copyright: © 2010 Payri. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License 3.0 
Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 
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Finally, the patterns to recognize are very limited: if 
we deal with static sound localization then there are no 
movement patterns, and the experiments about moving 
sound use very simple trajectories, essentially a slow 
progression in a linear and regular way from one point to 
another, which does not account for the more complex 
trajectories usually found in music or audiovisual works. 

Our goal is then to study sound spatial trajectories per-
ception, comparing the artificial conditions on stimuli and 
listening conditions with an approximation to the sound 
types and listening conditions we may encounter in real 
concerts, even if we need to simplify greatly. For that 
matter, we need to create sound stimuli that have a rich-
ness in spectrum and temporal evolution that may reflect 
partially real music sounds, and we use therefore sound 
synthesis and transformation tools that may apply to 
electro-acoustic sound generation like the GRMtools. 

2. EXPERIMENTAL DESIGN 
2.1 Sound spectral and temporal features 

An essential question of this research is to study the in-
fluence of the spectral and temporal features of the sound 
on the perception of spatial movement.  

We created 7 basic timbres, including: 
• 4 synthetic sounds generated with the basic syn-

thesizer of Protools: a pure sine wave, a pure 
square wave, a pink noise, a mixture of the noise 
and the square wave 

• 3 sounds generated out of recorded sounds (an or-
chestral soft sound, a voiced vocal sample, and a 
whispery sound made out of breath) and processed 
with the Freeze function of the GRMtools, which 
applies a procedure similar to granular synthesis 
[7]. These sounds retain the harmonic structure of 
the original sound although they can last indefi-
nitely in time, and they may have grain and allure 
(temporal amplitude variations) [9] 

 
 Sin. Sq. Mix Nois Orc Voc Brt 
Amp 
SD 
(dB) 

0.00 0.00 0.38 0.70 2.57 3.81 2.04 

HNR 
(dB) 

93.7 37.1 4.1 -1.9 7.8 20.4 -3.6 

Sp. 
cent 
(Hz) 

220 478 1390 3488 278 380 4805 

Sp. 
SD 
(Hz) 

1 1032 3195 5346 163 168 3122 

Table 1: Amplitude standard deviation in time (dB), 
harmonicity (harmonics-to-noise ratio, dB), spectral cen-
tre of gravity (Hz) and spectral standard deviation (Hz) 
for the seven basic sounds (sinus, square signal, mix of 
square and noise, noise, orchestral sound, voiced vocal 
sound and breath). 

We can see in table 1 that the sounds have been gener-
ated in such a way that there harmonic samples (sine and 
square waves, vocal sample), samples including both 
harmonic and noise components (mix, orchestral sample) 
and purely noisy sounds (pink noise, breath sample), as 
can be measured by the Harmonics-to-Noise ratio. 

There is also a distribution of temporal amplitude 
variation as all the synthetic sounds are perfectly stable in 
time, while all the sampled sounds have variations in time 
as measured by the Amplitude Standard Deviation. 

2.2 Spatial movement patterns 

This study focuses on the recognition on spatial move-
ment patterns by listeners, and we decided to choose 
simple patterns and simple movements, so that the task 
would be feasible by the listeners without a complex 
training.  

2.2.1 Horizontal plane trajectories  

The psychoacoustics of sound spatial perception basically 
distinguishes three dimensions: the horizontal plane or 
lateral positions, the elevation or median plane, the dis-
tance of the source, and we could add also the source size 
(Blauert 1997). The human hearing mechanism is more 
sensitive to sound along the horizontal axis than the ver-
tical axis. Vertical localization depends on subtle filtering 
of the outer ear and the reflections on the upper part of 
the body and listeners are not very accurate, and more 
importantly, perception depends on highly individual 
corporal differences, which makes listening through 
headphones very dependent on the actual head and ear 
shape correspondence between the listener and the re-
cording or filtering device. Distance perception depends 
on many factors, including the knowledge of the sound 
spectral characteristics by the listener, the loudness, and 
the possible reflections.  

The human hearing system is well adapted to lateral rec-
ognition, thanks to the position of the two ears in the 
same horizontal plane of the head, which makes it possi-
ble and precise both loudspeaker listening and headphone 
listening. Open field listening uses the differences of the 
sound arriving to each ear, controlling for the Interaural 
Time Differences (or more precisely, the interaural phase 
differences) for lower frequencies, generally below 
1500Hz, and the Interaural Level Differences for shorter 
wavelengths that are affected by the head, usually above 
800Hz. Movement types Left-Right movements were 
applied, using the simple panning feature of Protools. For 
this exploratory study it was essential to have a robust 
and easy way to generate the sound stimuli, and we 
avoided more complex spatial trajectories involving spe-
cific software and hardware. Most importantly, L-R 
movements can be reproduced in any stereophonic sys-
tem or with any headphones, and we can measure the 
energy of the sound in the left or right loudspeaker. The 
goal of the study is to study the perception in close to real 
conditions, focusing on open field sound reproduction, 
using real rooms instead of the laboratory conditions of 
anechoic studios with controlled arrays of loudspeakers 
and very restrained listeners’ positions.  
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2.2.2 Evolution type of the moving sounds 

As we can see in figure 1, the movements were per-
formed from 100% Left to 100% Right. 

There were two types of movements: continuous ver-
sus discontinuous. In figure 1 we can see the distribution 
of energy in the left and right channels for a discrete or 
discontinuous evolution (above) and for a continuous 
evolution (below). Only the continuous evolution repre-
sents a true movement sensation, and the discontinuous 
evolution has sounds appearing either at one point or the 
other. 

2.2.3 Rhythmic patterns 

 
Figure 1: Amplitude/time representation of the Left and 
Right channels for the long regular rhythm pattern with a 
continuous movement (below) and a discontinuous evolu-
tion (above) for a square signal sound. 

The task to be performed by the listeners is the recogni-
tion of a pattern, understood as a variation in time. Sim-
ple rhythmic patterns are easier to explain to listeners, 
taking in account that we do not have a clearly estab-
lished vocabulary for spatial movements. The patterns are 
formed by the Left-Right movement of the sound. Two 
simple patterns were created: a regular one (see figure 1) 
and an accelerated one (see figure 2). These simple pat-
terns are easy to understand by untrained listeners and 
were used for all listeners. 

 

 
Figure 2: Amplitude/time representation of the Left and 
Right channels for the long accelerated rhythm pattern 
with a continuous movement (below) and a discontinuous 
evolution (above) for a square signal sound. 

In addition, we created two more complex patterns, 
that represented a duple-meter rhythm pattern (figure 3) 

and a triple meter rhythm pattern (figure 4) that were 
represented with a musical notation to the musician lis-
teners as can be seen in figure 4. 

 

 
Figure 3: Amplitude/time representation of the Left and 
Right channels for the long duple-meter (above) and 
triple meter (below) rhythm patterns with a discontinuous 
evolution for a square signal sound. 

 

 regular 

 
acceler-
ated 

 duple 

 triple 

Figure 4: Musical notation of the 4 rhythm patterns as 
presented to the group of musician listeners. 

2.3 Stimuli combination 

The sound material is created by the combination of the 7 
basic sound timbres, combined with the 4 rhythm pat-
terns, each with either a continuous movement or a dis-
continuous evolution. To create more diversity, we added 
a tempo factor, reproducing the rhythm patterns either 
fast or slow (which represents a duration 1.5 times the 
duration of the fast version). This represents a total of 
112 combinations, or 56 combinations if we consider 
only the 2 simple rhythm patterns. 

2.4 Recognition task 

2.4.1 Listeners 

A total of 118 listeners participated, including: 
• 52 professionally trained musicians, including 47 

students of the Master in Music at UPV (courses 
2007-08, 2008-09, and 2009-10) and 5 students of 
the Higher Conservatory of Castellón, that were later 
eliminated from the computations as their responses 
were inconsistent.  

• 66 students from the film&TV area at UPV (sound 
students of the Master in Digital Postproduction and 
students from the Audiovisual Communication de-
gree programme). 
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2.4.2 Stimuli 

The groups of musicians were presented with stimuli 
representing the 4 rhythmic patterns in figure 4. From the 
112 possible combinations, 56 were chosen, representing 
all the combinations of 7 sound timbres, 4 rhythm pat-
terns, 2 movement types of continuity. Only one tempo 
alternative was chosen for each combination, alternating 
faster and slower versions, in such a way that two differ-
ent sets of stimuli had the alternating fast or slow version 
of each stimulus. Each group of musicians listened to a 
combination or the other. 

The groups of audiovisual communication students lis-
tened to the 56 combinations available with the 2 simple 
rhythm patterns. 

The order of the stimuli presentation was randomized. 

2.4.3 Task  

Listeners were instructed to listen to the rhythmic pat-
terns, and some examples of the stimuli were played, and 
then the instructor explained the rhythmic examples with 
clapping or beating until the differences were clear.  

The listeners responded by circling out the right an-
swer among the possible choices in the printed sheet of 
paper they were handed out. Listeners were also asked to 
recognize two elements that are out of the scope of this 
communication: the nature of the movement (continuous 
versus discontinuous) and whether they heard pitch 
changes. 

2.4.4 Listening conditions 

 

 
Figure 5: Schema representing the distribution of listen-
ers across the room, and the distances that were recorded.  

The main listening setting we wanted to test was open-
field listening in an environment close to real life condi-
tions. We used 4 different classrooms, with a low noise 
level, and in each a set of stereo loudspeakers was used to 
reproduce the sound. The listeners were distributed in 
front of the speakers, and we recorded the position of 
each listener taking in account the distance to the loud-

speakers line and the lateral deviation from the loud-
speakers center axis as represented in figure 5. We also 
recorded the loudspeaker separation in each listening 
session. 

To be able to compare the influence of the listening 
condition, several groups of listeners also heard the 
sounds through headphones connected to the sound card 
of a computer were the sounds were played. To control 
the listening conditions, the headphone listening task was 
also made in groups, using the same headphones for each 
listener.  

3. RESULTS 
3.1 Data 

The responses of the listeners were processed to create 
matrices of 0/1 values, having 1 when the answer of the 
listener corresponded to the correct pattern (correct rec-
ognition) and 0 when the listener did not choose the right 
pattern, either choosing a wrong pattern or indicating that 
no pattern was heard. 

The answers could then be analyzed as such to com-
pare the results of each listener, or they could be proc-
essed as scores representing the mean values for a given 
sound a condition. 

3.2 Factors influencing recognition 

3.2.1 Factors under study 

We studied the influence of every factor by computing a 
regression analysis using all the factors and then studying 
the factors that showed a real influence. We used the 
following factors: 

Sound features as measured with Praat 
(http://www.fon.hum.uva.nl/praat/): harmonicity (har-
monics-to-noise ratio in dB), intensity variation (standard 
deviation of the intensity in dB), synthetic nature (sam-
pled versus completely synthetic), spectral center of grav-
ity (Hz), spectral bandwidth (spectrum standard deviation 
in Hz), skewness.  As harmonicity and intensity variation 
had each three distinct value ranges, we added two extra 
factors that had three possible values (1,2,3) from com-
pletely harmonic to completely noisy, and from com-
pletely stable to very unstable in intensity. 

Movement features: rhythm pattern complexity, 
movement continuity (continuous versus discreet)  

Listening conditions: headphones versus loudspeakers, 
and with the loudspeaker settings: distance from the lis-
tener to loudspeakers, lateral position of the listener from 
the loudspeaker axis, and loudspeaker separation and 
quality. 

3.2.2 Regression on the factors 

Using the factors previously described, we ran a series of 
regression analyses to explain the recognition level. We 
can see the factors in order of importance for all the lis-
tening conditions (figure 6) and for the loudspeaker con-
dition which is the main condition under study (figure 7): 
in these figures we use the Beta value from the regression 
analysis, which is close in nature to a correlation factor. 

Distance to loudspeakers 

Lateral position 

Loudspeaker separation 
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Figure 6: Absolute Beta value as extracted from the 
regression computation using as a variable the pattern 
recognition scores for the non-musician group (above) 
and the musician group (below). Only significant factors 
are displayed. 

 
Figure 7. Loudspeaker Listening Condition: Absolute 
Beta value as extracted from the regression computation 
using as a variable the pattern recognition scores for the 
non-musician group (above) and the musician group 
(below). Only significant factors are displayed. 

A surprising result is that the listening condition is 
relevant in each case, but is not the factor that explains 
most of the results, as seen in figure 6. In particular, the 
variations of intensity and evolution type come first both 

for musicians and non musicians, and the fact that sounds 
are listened through loudspeakers or headphones comes 
as a third or fourth factor, and even if the loudspeaker 
condition did involve a lot of different listening positions 
that were not optimal. We analyze later the influence of 
listening conditions and movement type, but the factor 
that is from far the most influential in the four regression 
analyses is the intensity variation, that is to say, the sound 
features are more relevant than the movement features, 
and those are in turn more important than the listening 
conditions. 

3.3 Influence of the sound features 

 
Figure 8: Mean scores (with confidence intervals) of the 
pattern recognition for each stimuli timbre type. The 
scores are joined into three groups, labeled according to 
the temporal intensity variation of the stimuli. 

The first analysis concerned the influence of each of the 7 
basic sounds we used in the recognition. As can be seen 
in figure 8, 3 groups clearly appeared, and they corre-
sponded to the level of intensity variation in time of the 
basic sound. This is the main factor from the sound fea-
tures, as the harmonicity or other components did not 
explain the difference in the recognition scores. We re-
trieve therefore the regression analysis results showing 
intensity variation as the most important factor. 

3.4 Influence of listening conditions 

We analyzed the pattern recognition scores depending on 
the different factors of the sound stimuli and the listening 
conditions.  

We can see in figure 9 that the different basic sound 
stimuli used have a significant influence on the recogni-
tion of spatial movements, but the factor that seems to be 
really influential is the degree of the temporal variations 
of the intensity of each sound stimulus, as all the syn-
thetic sounds are completely stable in time and yield the 
highest recognition scores, where as the sampled sounds 
have lower scores, and in particular the voice stimulus, 
which has a higher intensity variability and, correspond-
ingly, a lower recognition score.   

no variation 

high variation 

medium variation 
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Figure 9: Mean recognition score for the rhythm patterns 
depending on the group of listeners, the listening condi-
tions and the degree of intensity variation. The scale 
spans from 1 (100% recognition) down to 0 (0% recogni-
tion) and the error bars represent the 95% CI. 

3.5 Influence of movement features 

As we can see in figure 10, there is a similar pattern in 
the influence of intensity variation as previously: the 
recognition ratio drops linearly with the degree of inten-
sity variation, and the other factors like listening condi-
tion, movement continuity or pattern complexity may 
reduce the recognition but as a constant factor to the 
intensity variation influence. 

 

 
Figure 10: Mean recognition score for the rhythm pat-
terns considering only the loudspeaker listening: results 
are grouped by movement continuity type and the degree 
of sound intensity variation. The scale spans from 1 
(100% recognition) down to 0 (0% recognition) and the 
error bars represent the 95% CI. 

3.6 Influence of pattern complexity 

As displayed in figure 10, movement continuity has a 
stronger influence on the groups listening to more com-
plex patterns (musician group) and to analyze the exact 
influence of rhythmic pattern complexity, we performed a 

series of Chi-square tests on the recognition frequency 
depending on the sound types. The results show that for 
the audiovisual group (simple rhythmic patterns) there is 
a significantly lower recognition rate for the accelerated 
pattern, which is more complex than the regular pattern. 
For the musician listeners, two groups clearly appear: the 
complex patterns (duple and triple metered patterns) have 
a significant lower recognition rate (p<0,001) than the 
simple patterns (regular and accelerated). 

Figure 11 displays the recognition scores for the dif-
ferent rhythm patterns, with the significant differences 
circled out. 

 
Figure 11: Mean recognition score for the rhythm pat-
terns considering only the loudspeaker listening: results 
are grouped by pattern type. The scale spans from 1 
(100% recognition) down to 0 (0% recognition) and the 
error bars represent the 95% CI. Results are grouped 
according to significant differences (chi-square test). 

4. CONCLUSIONS 
The most salient result of our experiments is that tempo-
ral variability is the most influential factor from the pa-
rameters we have introduced. This is essential, as either 
in audiovisual sound (a car moving, people walking…) or 
in music (electro-acoustic or mixed instrumental), sounds 
do vary in time, and we never encountered the completely 
stable synthetic sounds that are used in most experiments 
of sound spatial perception. For music purposes, most 
experiments are missing the crucial point by eliminating 
temporal variability.  

The recognition rate is very low for the conditions that 
are closer to real music or audiovisual sound, i.e. loud-
speaker listening of sounds with time variability that 
evolve continuously, recognition rate drops below 30% 
(see figure 10), even if we have only 4 possible patterns 
that are known before hand, and that they are heard alone, 
without coinciding sounds as we would have in a music 
or audiovisual work. Considering that we have an over-
simplified listening task compared to real conditions, the 
recognition rate lets us conclude that spatial trajectories 
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are not suited as a music language parameter with pat-
terns that may be recognized by the audience.  

Another result is that musical training does not im-
prove spatial trajectories recognition, maybe considering 
that this is not a usual musical task. In our case, non-
musicians had even better results than musicians, due to 
the simpler sound stimuli they had to rate. A broad study 
on the reception of Western music features showed that 
some musical capacities are acquired through exposure to 
music without the help of explicit training. These capaci-
ties reach such a degree of sophistication that they enable 
untrained listeners to respond to music as ‘‘musically 
experienced listeners’’ do [1]. These results are extended 
to an area more close to rhythm, perception of timing, 
where judgments are not so much influenced by expertise 
levels, but by exposure to a certain musical idiom. “As 
such, the current study provides evidence for the idea that 
some musical capabilities are acquired through mere 
exposure to music, and that these abilities are more likely 
enhanced by active listening (exposure) than by formal 
musical training (expertise)”[8]. Also, we can see that for 
the most restrictive task, that is, the synthetic stable stim-
uli, with simple patterns, the recognition can be superior 
to 90% and even close to 100% when the sounds do not 
evolve continuously. There is a clear rhythmic pattern in 
this case, but this would be achieved more simply with 
any amplitude variation.  

Sound spectral features (harmonics-to-noise ratio, 
pitch, spectral width) play a residual role compared with 
temporal intensity variations, whereas experiments that 
use only stable sounds tend to describe the influence of 
these features as the most significant [3].  

Finally, the listening condition had a lower influence 
than expected: there was a significant improvement in 
recognition with headphones as opposed to loudspeakers, 
but this difference was less important than the influence 
of sound temporal features. Furthermore, the position of 
the listener in the room or the separation of the loud-
speakers did not have a clear influence on recognition, 
therefore, when dealing with relatively complex sounds, 
the composer or sound designer can guess the recognition 
of the sound movement patterns by the audience, even if 
a particular listener is not located in the perfect spot (in 
stereo or surround configurations). That is to say, pro-
vided that the composer or sound-designer really pay 
attention to what can be heard and not heard in spatial 
movement.  

More importantly for musical applications, when lis-
teners were informally asked about their subjective 
evaluation, they predominantly explained that, even if 
they could mentally recognize some rhythmic patterns, it 
was an abstract mental effort of trying to match the spa-
tial trajectory of a given sound with one of the rhythmic 
patterns, and it was very different from the feeling of 
recognizing rhythm of changing notes that will emerge as 
an intuitive musical pattern. “The ability to analyze sur-
face patterns of pitch, attack, duration, timbre in a refined 
way is probably less important than the ability to inte-
grate all of these features in a structured whole. Without 
an integrative stage of processing, this perceptual ability, 
as refined as it may be, would not have any strong impli-
cation for musical experience.” [8] 

Spatial movement patterns should therefore be re-
stricted to sonification tasks where the sound is perfectly 
stable in time, and the patterns are very simple, possibly 
imitating feasible sound trajectories found in nature like 
the regular pendulum movement or the acceleration that 
can occur with a bouncing object. 
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ABSTRACT

In this paper, we present an experiment whose goal was
to recognize the role of contextual information in the reco-
gnition of environmental sounds.

Forty three subjects participated to a between-subjects
experiment where they were asked to walk on a limited
area in a laboratory, while the illusion of walking on diffe-
rent surfaces was simulated, with and without an accompa-
nying soundscape. Results show that, in some conditions,
adding a soundscape significantly improves surfaces’ reco-
gnition.

1. INTRODUCTION

When exploring a place by walking, at least two categories
of sounds can be identified: the persons own footsteps and
the surrounding soundscape. In the movie industry, foot-
steps sounds represent important elements. Chion writes
of footstep sounds as being rich in what he refers to as
materializing sound indices – those features that can lend
concreteness and materiality to what is on-screen, or con-
trarily, make it seem abstracted and unreal [1]. Studies on
soundscape originated with the work of R. Murray Schafer
[2]. Among other ideas, Schafer proposed soundwalks as
empirical methods for identifying a soundscape for a spe-
cific location. In a soundwalk people are supposed to move
in a specific location, noticing all the environmental so-
unds heard. Schafer claimed that each place has a sound-
mark, i.e., sounds which one identifies a place with. The
idea of experiencing a place by listening has been recently
further developed by Blesser and Salter [3]. By synthesi-
zing technical, aesthetical and humanistic considerations,
the authors describe the field of aural architecture and its
importance in everyday life.

In the field of virtual reality, studies have recently shown
how the addition of auditory cues could lead to measura-
ble enhancement in the feeling of presence. Results are
available on sound delivery methods [4, 5] or sound quality
[6, 5]. Recently, the role of self-sound to enhance sense of
presence in virtual environments has been investigated. By
combining different kinds of auditory feedback consisting
of interactive footsteps sounds created by ego-motion with
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static soundscapes, it was shown how motion in virtual re-
ality is significantly enhanced when moving sound sources
and ego-motion are rendered [7].

In [8, 9, 10], a system to synthesize in real-time the
sound of footsteps on different materials was presented.
The system was composed of a set of four contact micro-
phones, a multichannel soundcard, a set of headphones and
a laptop. The microphones detected real footsteps sounds
from users, from which the ground reaction force (GRF)
was estimated. Such GRF was used to control a sound
synthesis engine based on physical models.

This interactive system was evaluated in a between-sub-
jects experiment, where it was compared to a recognition
task including recorded and synthesized offline sounds. Re-
sults showed that subjects were able to recognize most of
the synthesized surfaces with high accuracy. Similar accu-
racy was also noticed in the recognition of real recorded
footsteps sounds, which was an indication of the success
of the proposed algorithms and their control [9].

In this paper, we are interested in understanding whether
the addition of a soundscape enhances the recognition of
the simulated surfaces. Our hypothesis is that context plays
an important role in the recognition of the material a per-
son is stepping upon. In order to test such hypothesis, we
designed different soundscapes, described in the following
section.

2. SOUNDSCAPE DESIGN

The soundscapes of the following environments were built:

1. A beach and seaside during the summer

2. A courtyard of a farm in the countryside

3. A ski slope

4. A forest

5. A park during the fall

Such soundscapes were designed according to the in-
dications given by subjects answering to a questionnaire.
Precisely, ten subjects, chosen among those not performing
the experiment, were asked to imagine which sounds could
occur in the above mentioned environments.

Subjects were asked the following question: “Imagine
that you are right now in a forest: which sounds do you
think you would hear?” In this particular environment,
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subjects indicated sounds like trees, birds, different ani-
mals. Among the answers provided, we chose those which
were stated by more than one subject, and collected a cor-
responding sound material using appropriate recordings of
real sounds.

Such sounds were chosen among those available both
on the Hollywood Edge sound effects library 1 and on the
Freesound.org website. 2

The chosen sounds were opportunely edited and assembled
using the sound editor Adobe Audition 3. Soundscapes
were designed with the goal of providing a clear idea of
the designed environment already from the first seconds.

3. EXPERIMENT

We conducted an experiment whose goal was to investigate
the ability of subjects to recognize the different walking
sounds they were exposed to in three conditions: without
soundscapes, with coherent soundscapes and with incohe-
rent soundscapes.
The footsteps sounds provided during the three conditions
were synthesized sounds generated in real time while sub-
jects were walking using the interactive system described
in the previous section. The soundscapes were audio files
played in background independently from the subjects mo-
vements. The volumes of both footsteps and soundscapes
were set by empirical investigation.

One of our hypotheses was that the recognition would
have improved using coherent soundscapes rather than the
conditions with no soundscapes and with incoherent sound-
scapes. Similarly we hypothesized higher evaluations in
terms of realism and quality in presence of coherent sound-
scapes.

3.1 Methods

A between-subject experiment with the following three con-
ditions was conducted:

1. Condition 1: footsteps sounds without soundscapes.

2. Condition 2: footsteps sounds with coherent sound-
scapes.

3. Condition 3: footsteps sounds with incoherent sound-
scapes.

Participants were exposed to 10 trials in conditions 1
and 2, and 12 trials in condition 3.

During conditions 1 and 2, 5 stimuli were presented
twice in randomized order. The stimuli in condition 1 con-
sisted of footsteps sounds on the following surfaces: beach
sand, gravel, snow (in particular deep snow), forest under-
brush (a forest floor composed by dirt, leaves and branches
breaking), dry leaves. In condition 2 the stimuli consisted
of the same footsteps sounds provided in condition 1 with
in addition the corresponding coherent soundscape men-
tioned in section 2.

1 www.hollywoodedge.com/
2 www.freesound.org/

During condition 3, 6 stimuli were presented twice in
randomized order. The stimuli consisted of footsteps so-
unds on the surfaces beach sand, snow, forest underbrush,
with in addition an incoherent soundscape. As an example
in presence of the footstep sound on beach sand the pro-
vided soundscapes corresponded to those of footstep so-
unds on snow (i.e., the ski slope) and on forest underbrush
(i.e., the forest environment).

3.1.1 Participants

Forty three participants were divided in three groups to
perform the three conditions in a between-subjects experi-
ments (n = 15, n = 15 and n = 13 respectively). The three
groups were composed respectively of 11 men and 4 wo-
men, aged between 21 and 28 (mean = 23.67, standard de-
viation = 2.12), 8 men and 7 women, aged between 19
and 38 (mean = 24.67, standard deviation = 5.97), and 6
men and 7 women, aged between 21 and 30 (mean = 24,
standard deviation = 3.1). All participants reported nor-
mal hearing conditions. All participants were naive with
respect to the experimental setup and to the purpose of the
experiment.

During the experiment the shoes used by subjects were
sneakers, trainers, boots and other kinds of shoes with rub-
ber soil.
The participants took on average about 11, 13 and 16 min-
utes for conditions 1, 2 and 3 respectively.

3.1.2 Setup

The experiment was carried out in an acoustically isolated
laboratory where the setup was installed (see Fig. 2). Par-
ticipants were asked to walk inside an area delimited by
four microphones placed in a square configuration on a
medium density fiberboard (MDF). 3 Specifically, we used
four Shure BETA 91, 4 high performance condenser mi-
crophones with a tailored frequency response designed spe-
cifically for kick drums and other bass instruments. The
microphones’ features made them a good candidate for the
purpose of capturing footsteps sounds.
The MDF was adopted in place of the carpeted floor of
the laboratory in order to improve the quality of the input
signal.

The floor microphones were connected to a soundcard, 5

which in turn was connected to a laptop running the sound
synthesis engine. Finally the synthesized sounds, as well
as the soundscapes, were provided to the user by means of
a set of headphones. 6

3.1.3 Task

During the experiment the participants were asked to wear
a pair of headphones and to walk on the MDF in the area
delimited by the microphones. They were given a list of
different surfaces to be held in one hand, presented as non-
forced alternate choice. Such list included a range of ma-
terials wider than those presented in experiment. During

3 2.5 x 2 m in size and 1 cm thick.
4 http://www.shure.com/
5 We used the Fireface 800 sound card, http://www.rme-

audio.com/english/firewire/ff800.htm.
6 Beyerdynamic DT-770, http://www.beyerdynamic.de/
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Figure 2. A subject using the interactive footsteps synthe-
sizer. The four contact microphones are clearly noticeable.

the act of walking they listened simultaneously to footsteps
sounds on a different surface according to the stimuli pre-
sented. The task, common to the three conditions, con-
sisted of answering by voice the following three questions
after the presentation of the stimulus:

1. Which surface do you think you are walking on? For
each stimulus choose an answer in the following list:
1) beach sand, 2) gravel, 3) dirt, 4) snow, 5) high
grass, 6) forest underbrush, 7) dry leaves, 8) wood,
9) creaking wood, 10) metal, 11) carpet, 12) con-
crete, 13) frozen snow, 14) puddles, 15) water, 16) I
don’t know.

2. How close to real life is the sound in comparison
with the surface you think it is? Evaluate the degree
of realism on a scale from 1 to 7 (1 = low realism, 7
= high realism).

3. Evaluate the quality of the sound on a scale from 1
to 7 (1 = low quality, 7 = high quality).

In condition 2 and 3, participants were also asked to re-
cognize what was the environment they were walking.
They were informed that they could choose the same mate-
rial more than once and that they were not forced to choose
all the materials in the list. In addition they could use the
interactive system as much as they wanted before giving an
answer. When passed to the next stimulus they could not
change the answer to the previous stimuli.

At the conclusion of the experiment, participants were also
given the opportunity to leave an open comment on their
experience interacting with the system.

3.2 Results

The collected answers were analyzed and compared be-
tween the three conditions. Results are shown in tables 1,
2 and 3.

The first noticeable element emerging from the three ta-
bles is that the use of the interactive system in the condition
of coherent soundscapes gave rise to a better recognition of
the surfaces and a higher evaluation of realism and quality
of the proposed sounds, rather than the conditions with no
soundscapes and with incoherent soundscapes. Concern-
ing the percentages of correct answers, they are higher for
condition 2 compared to condition 1, for each surface, and
the analysis by means of a chi-square test reveals that such
differences are statistically significant for beach sand (p =
0.005515) and forest underbrush (p = 0.01904).
It is particularly interesting to notice that overall adding
a soundscape enhances the recognition factor, and this is
especially noticeable for those situations where the reco-
gnition was rather low without a soundscape.

Similarly the percentages of correct answers are higher
for condition 2 compared to condition 3, for each surface,
in particular the differences are statistically significant for
beach sand (p = 6.232e-07), snow (p = 0.01439) and forest
underbrush (p = 0.001637).
Furthermore, the percentages of correct answers are higher
for condition 1 compared to condition 3, for each surface,
but the differences are not statistically significant.

The analysis of the wrong answers reveals that in all
the experiments none of the presented aggregate surfaces
was recognized as a solid surface. This means that all sub-
jects were able to identify at least the nature of the sur-
face, which was an expected feature of the simulations.
An observation from the subjects performing the experi-
ment was that many subjects perceived the simulated so-
unds as very similar, and therefore hard to recognize and
distinguish from the list provided.

It is interesting to examine what happens when sub-
jects are exposed to soundscapes which are incoherent, as
shown in Table 3. In this situation, we consider as cor-
rect the answer provided when subjects recognize the sur-
face they are walking on, and not the soundscape. As it
can be noticed, the percentage of correct answers is quite
low. As expected, adding an incoherent soundscape cre-
ates a stronger context which often confuses the subjects.
This can be observed, for example, in the case of beach
sand footsteps which were rendered together with a forest
soundscape and a ski slope soundscape. The recognition
rate is higher in the first case than in the second, where
several subjects confused sand with snow. The subjects’
answers for the three conditions are outlined in the confu-
sion matrices shown in Table 4, 5, 6 respectively. Such ma-
trices show information concerning actual classifications
performed by the subjects. From the matrices, it can be
noticed how the subjects’ recognition varies from condi-
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tion 1 to condition 2. As an example, the first row of the
matrix illustrated the number of subjects which recognized
the beach sand surface, with (Table 4) and without (Table
5) a soundscape. The role of the soundscape to enhance
the recognition is clearly noticeable.

Table 6 illustrates the confusion matrix for condition
3, i.e., when incoherent soundscapes are presented to the
subjects. In this situation, it is clearly noticeable how the
nature of the soundscape plays an important role. More-
over, it can be noticed how the incoherent soundscape is in
most situation predominant, in the sense that subjects tend
to judge the surface they are stepping upon more listening
to the soundscape than listening to the actual surface. On
the other hand, even if subjects are not able to recognize
the surface they are stepping upon, they never confuse its
nature, in the sense that they never select a solid surface
when exposed to an aggregate one.

In addition, Tables 1, 2 and 3 show the degree to which
participants judged the realism and quality of the expe-
rience. The degree of realism was calculated by look-
ing only at that data from correct answers, i.e., when the
surfaces were correctly recognized. This choice was per-
formed since we were interested in understanding whether
the simulation of specific surfaces recognized by the sub-
jects was satisfactory.

As far as the quality judgement is concerned, the data
was based on all the answers different from “I don’t know”.

The mean of realism is higher for condition 2 compared
to condition 1 for each surface with the exception of beach
sand (which is almost equal). The analysis by means of
a t-test reveals that such differences are statistically signi-
ficant for snow (p = 0.01055) and forest underbrush (p =
0.005595).
Analogously, the mean of realism is higher for condition 2
compared to condition 3 for each surface with the excep-
tion of beach sand (which is almost equal). In particular,
the differences are statistically significant for beach sand
(p = 0.002568) and snow (p = 0.001938).
Moreover, the mean of realism is higher for condition 1
compared to condition 3 for each surface with the excep-
tion of forest underbrush, which is minor. Such differences
are statistically significant for beach sand (p = 0.001302),
and for forest underbrush (p = 0.03438), which, as said, is
greater for experiment 3.

As regards the mean of quality, it is higher for condition
2 compared to condition 1, with statistically significant
differences for all the surfaces with the exception of dry
leaves: beach sand (p = 0.009619), gravel (p = 0.02169),
snow (p = 0.0006874) and forest underbrush (p = 0.02198).
The mean of quality is higher for condition 2 compared
to condition 3 for each surface, and in particular the dif-
ferences are statistically significant for beach sand (p =
0.006187), for snow (p = 9.596e-05).
Furthermore, the mean of quality is similar for condition 1
compared to condition 3, with the exception of forest un-
derbrush for which it is higher in condition 3 compared to
condition 1, with statistically significant differences (p =
0.03204).

% Correct % Wrong % “I don’t know” Realism Quality
answers answers

Beach Sand 50. 46.67 3.33 5.2 4.7241
Gravel 83.33 6.67 10. 5.2 4.6296
Snow 73.33 26.67 0. 5.2955 5.1167
Forest 40. 50. 10. 3.5 4.1923
Underbrush
Dry Leaves 16.67 63.33 20. 4.4 3.9167

Table 1. Results of condition 1: recognition of the surfaces
without soundscapes.

% Correct %Wrong % “I don’t know” Realism Quality % Correct
answers answers soundscape

Beach Sand 86.67 10. 3.33 5.1481 5.5172 93.33
Gravel 86.67 13.33 0. 5.3077 5.4 86.67
Snow 80. 20. 0. 6.1667 6.0667 83.33
Forest 73.33 26.67 0. 4.9091 5.0333 100.
Underbrush
Dry Leaves 30. 70. 0. 4.4444 4.5 96.67

Table 2. Results of condition 2: recognition of the surfaces
with coherent soundscapes.

The comparison about the percentages of “I don’t know”
answers reveals that for each surface they are higher for
condition 1 compared to condition 2, and for condition 3
compared to condition 2. In addition, they are higher for
condition 3 compared to condition 1, for each surface with
the exception of forest underbrush (which is minor).

As regards the percentages of correct answers about the
soundscapes presented, they are higher for condition 2 com-
pared to condition 3, and in particular the differences are
statistically significant for the ski slope soundscape (p =
0.0003945).

Overall, subjects observed that soundscapes play an im-
portant role in recognition of the surfaces, precisely for
their ability to create a context. Especially in terms of con-
flicting cues, as it was the case in condition 3, subjects
were trying to identify the strongest cues, i.e. the element
which had the strongest recognition factor. Sometimes the
subjects found this task quite hard to complete, and this is
why the percentage of “I don’t know” answers is higher in
condition 3 as opposed to condition 2.

When leaving a comment, several subjects observed that
the recognition of snow was extremely realistic. This ob-
servation is also confirmed by the high degree of realism
(mean = 5.3) and quality (mean = 5.1) with which such
surface was rated.

On the other hand, for some subjects the concept of dry
leaves was rather confusing, and this is also confirmed by
the low recognition rate of such surface.

Overall, this experiment represents a strong indication

Material Soundscape % Correct % Wrong % No idea Realism Quality % Correct
answers answers soundscape

Beach Sand Forest 38.46 57.7 3.84 4 5.16 88.46
Beach Sand Ski slope 15.38 69.24 15.38 3.75 4.3182 38.46
Snow Forest 50 42.31 7.69 5.2857 5.3542 96.15
Snow Beach 50 46.16 3.84 4.7692 5 88.46
Forest Beach 38.46 53.85 7.69 4.8 4.9583 65.38
Underbrush
Forest Ski slope 30.76 65.4 3.84 4.3 4.6087 46.15
Underbrush

Table 3. Results of condition 3: recognition of the surfaces
with incoherent soundscapes.
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BS GL SW UB DL HG DR FS WD CW MT CC PD WT CP —
BS 15 2 6 2 2 2 1
GL 25 1 1 3
SW 22 1 1 6
UB 4 12 1 10 3
DL 9 4 5 6 6

Legend: WD wood CW creaking wood SW snow UB underbrush
— don’t know FS Frozen snow BS beach sand GL Gravel
MT metal HG High grass DL dry leaves CC concrete
DR dirt PD puddles WT Water CP carpet

Table 4. Confusion matrix of condition 1.

BS GL SW UB DL HG DR FS WD CW MT CC PD WT CP —
BS 26 1 1 1 1
GL 26 3 1
SW 2 24 4
UB 1 2 22 1 4
DL 6 9 9 6

Legend: WD wood CW creaking wood SW snow UB underbrush
— don’t know FS Frozen snow BS beach sand GL Gravel
MT metal HG High grass DL dry leaves CC concrete
DR dirt PD puddles WT Water CP carpet

Table 5. Confusion matrix of condition 2.

Soundscape BS GL SW UB DL HG DR FS WD CW MT CC PD WT CP —
BS Forest 10 2 5 3 1 1 3 1
BS Ski slope 4 1 5 1 5 3 1 1 1 4
SW Forest 5 13 1 1 4 2
SW Beach 2 6 13 2 2 1
UB Beach 3 4 10 2 5 2
UB Ski slope 1 1 8 3 1 2 8 1 1

Legend: WD wood CW creaking wood SW snow UB underbrush
— don’t know FS Frozen snow BS beach sand GL Gravel
MT metal HG High grass DL dry leaves CC concrete
DR dirt PD puddles WT Water CP carpet

Table 6. Confusion matrix of condition 3.

78



of the importance of context in the recognition of a vir-
tual auditory place, where self sounds created by users’
footsteps and soundscapes are combined. Further inves-
tigations are needed to enhance the realism of the simu-
lated soundscape, in particular by having the auditory cues
changing according to the motion of the subject in the space.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we describe an experiment whose goal is to
understand the role of soundscapes in creating a sense of
place and context when designing a virtual walking expe-
rience. In this particular experiment, the user was not able
to interact with the soundscapes, which were made of mere
soundtracks. The results described are an interesting star-
ting point for further investigations on the role of environ-
mental sounds to create a sense of place. While walking an
acting in an environment, a person is exposed to her own
self-sounds as well as the sounds of the place. This pa-
per presents a preliminary investigation of the role of these
different elements both taken in isolation and combined.
Further investigations are needed to gain a better under-
standing of the cognitive factors involved when subjects
are exposed to different sound events, especially when a
situation of semantic incongruence is present.

We are also planning to design the soundscapes in a
multichannel environment, where moving sound sources
are present, and the location of the different sound events
depends on the location of the subjects. We are also plan-
ning to enhance the simulations with visual and haptic feed-
back. This will allow us to investigate in depth the role of
sound to create a sense of place in unimodal and multi-
modal environments.
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ABSTRACT

We present an experimental environment for working with
physically based sound models. We situate physical mod-
els in an interactive multi-modal space. Users may interact
with the models through touch, using tangible controllers,
or by setting up procedurally animated physical machines.
The system responds with both real-time sound and graph-
ics. A built-in strongly-timed scripting language allows for
a different kind of exploration. The scripting language may
be used to play the models with precise timing, to change
their relation, and to create new behaviors. This environ-
ment gives direct, concrete ways for users to learn about
how physical models work and begin to explore new mu-
sical ideas.

1. INTRODUCTION

Physically based sound synthesis is, for the user, both fa-
miliar and richly expressive. Physical models correspond
to real-world objects, and variations in instrument design
and playing style may be specified using real-world con-
cepts like shape, forces, and material properties.

In this paper we describe an experimental environment
for working with physical models. Interaction in our envi-
ronment is direct and concrete; it corresponds to real-world
experiences but goes beyond the strictly physical.

There are several ways the model can be affected. The
models are situated in a virtual space and may be played
using touch. Tangible controllers may be used to influence
the model or the space they reside in. Small “machines”
based on procedural animation and physics give another
way to explore relations between space, time, and rhythm.
A textual scripting language provides for more precise tim-
ing, deeper exploration, and extension of the system’s be-
havior.

Our environment is multi-modal: models respond both
aurally and visually in real time. We support touch in-
put (as well as conventional mouse input) and input from
different kinds of tangible controllers. We intend for the
users’ different senses - auditory, visual, and kinesthetic -
to work together to create a fuller interaction experience.

This work is certainly inspired by other sound systems
which use interactive touch, most notably the Reactable
[1]. The Reactable situates sound objects in spatial relation

Copyright: c©2010 Ben Schroeder et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which
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Figure 1. Several strings and plates in the direct-
manipulation environment.

and uses space to create rhythmic patterns. Its objects are
based on signal processing and abstract notation; our re-
search uses physically based models and a more concrete,
physical notion of space.

In what follows, we introduce the different kinds of in-
teraction supported by our system: direct manipulation,
tangible controllers, procedural animation, and textual script-
ing. We then conclude with a brief discussion of questions
to be addressed in future research.

1.1 Video and audio examples

Video examples (with sound) demonstrating several fea-
tures of our system are available on the web at
http://www.youtube.com/user/avworkspacesmc2010.

2. SPATIAL, MULTI-MODAL INTERACTION

Physical models, like their real-world counterparts, are sit-
uated in time and space. They make sound when things in-
teract with them in physical ways: plucking, bowing, strik-
ing, fretting. This suggests a graphical setting in which
models may be arranged spatially and interacted with us-
ing direct manipulation.

Our environment includes strings and plates as sound-
ing primitives. Figure 1 shows several strings and metal
plates. A user can play the strings by “plucking” them with
the mouse. Moving across several strings at once produces
a strum. Tapping on a plate makes a clanging sound.

Since the strings and the plate are implemented using
physical models, they respond realistically to differing in-
put. For example, real strings and plates produce different
sounds depending on where they are plucked or struck due
to the excitation of different vibrational modes. This is true
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Figure 2. The system running on a diffuse-illumination
multitouch table.

of our models as well.
Sound in a physical model comes from the simulation

of an object’s vibration. The models in our system respond
visually as well as sonically, giving users a way to build
intuition about how changes in shape produce changes in
sound. (The visual response may be exaggerated in scale
far beyond what is realistic.) Time in the system may be
stretched into slow motion, allowing for close examina-
tion of how waves progress through an object. Most of the
graphics in our system are shown in a 2D diagrammatic
perspective, but plates may be tilted in 3D to provide a bet-
ter view of their complex vibrations.

Models may also be changed through simple direct ma-
nipulation. Strings and plates may be stretched to change
their size and hence the sound they produce. String tension
may be set by manipulating a string’s end as though using
a tuning peg. All of these changes are made interactively;
changes can even be made while an object is sounding.

A multitouch surface is a natural setting for this kind
of interaction, and we have experimented with running our
system on a diffuse-illumination multitouch table. (Our ta-
ble is shown in Figure 2; a brief description of the tech-
nology is given in Appendix B.) Although touch is not
strictly necessary for our system, the availability of mul-
tiple touches gives rise to additional kinds of interaction,
such as fretting a string to produce different notes. Fur-
thermore, the table setting allows multiple users to play at
once.

2.1 Physical model implementation

Our string and plate primitives are implemented using fi-
nite differences [2]. In principle, any physical modeling
technique could be used, as long as it accepts input in terms
of forces and positions and provides output in these same
terms.

Finite difference models work especially well in this re-
gard; physical quantities are calculated for each point on a
finite-difference grid at every time step, making it trivial to
use a model’s output for such things as real-time visualiza-
tion. Input is in terms of these same physical quantities. By
contrast, frequency-based techniques such as modal syn-
thesis accept input in terms of forces, but require more
computation in order to provide output in terms of phys-

ical quantities rather than fully synthesized waveforms.
We use a string model described by Chaigne and Asken-

felt [3] and a plate model given by Bilbao [4]. Our string
plucking model is a partial implementation of that described
by Cuzzucoli and Lombardo [5]. The main equations for
the string and plate are reproduced here for convenient ref-
erence and in order that we might mention the available
parameters; for full details, please see the appropriate pa-
pers.

The string model is given by the following equation,
which describes a string’s basic motion as well as inter-
nal and radiative damping. The equation also models dis-
persion due to stiffness, as occurs, for example, in piano
strings.

∂2y

∂t2
= c2

∂2y

∂x2
−εc2L2 ∂

4y

∂x2
−2b1

∂y

∂t
+2b3

∂3y

∂t3
+f(x, x0, t).

(1)
In this equation, c is the speed of sound on the string,

which incorporates tension and the string’s mass density; L
is the string’s length; b1 and b3 are damping constants. The
coefficient ε describes the string’s stiffness. The function
f accounts for force interaction over time.

The plate model is similar but is given in two dimen-
sions.

∂2u

∂t2
= −κ2∇4u+c2∇2u−2σ

∂u

∂t
+b3

∂

∂t
∇2u+f(x, y, t).

(2)
Here, κ describes the plate’s stiffness; c is again the

speed of sound due to any applied tension. The coeffi-
cients σ and b3 are damping constants 1 . The function f
again represents force interaction.

3. TANGIBLE CONTROLLERS

We have discussed one way to influence the system of sound-
ing objects: using touch and spatial motion. Another way
is to use tangible physical controllers and sensors. These
expand the expressivity of the system, giving us ways to
map things like 3D motion, shape, pressure, or tempera-
ture into our environment. In addition, such controllers
have a satisfying physical presence; even simple controls
like sliders and buttons can seem more “real” when made
out of actual plastic and steel rather than pixels.

Our environment can receive messages directly from
MIDI controllers and Wii remotes. It can also receive Jitter
network messages, allowing for the use of Max/MSP/Jitter
as a sort of pre-processing frontend. Messages of this sort
can easily be made to control the parameters of a model,
such as its tension, length, or position, or to induce actions
such as plucks.

More interestingly, controllers might be used to affect
the physical environment in broader ways. Figure 3 shows
a breath controller given a virtual presence. It may be
moved and turned like any other object via direct manipu-
lation. Blowing into the controller causes a “wind” of par-
ticles to enter the space. The particles pluck the strings and

1 Bilbao gives this coefficient as b1, but we have here used b3 for con-
sistency with the string model.
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Figure 3. A “wind” of particles from a breath controller.

Figure 4. A basic procedural machine.

bounce off the plates. We might now consider using a cam-
era system and digital compass to map a person’s physical
location and orientation into the system, letting them in a
sense move through the simulated space, blowing wind as
they go.

4. PROCEDURAL MACHINES

Procedural animation techniques introduce more variety
into the graphical environment and give ways to explore
the role of algorithms in sound generation. We have al-
ready seen one example of this: the particle system of the
breath controller’s “wind”. As encapsulated algorithms,
procedural animations also allow for actions to be repeated
in more precise ways than direct interaction does, and for
the actions to be edited over time. This supports an itera-
tive style of design.

Figure 4 shows a basic procedural machine. In this sys-
tem, there is an emitter on the left that sends particles into
the environment at a regular rate, like a metronome. The
slab to its right rotates back and forth, bouncing the parti-
cles either to the top plate, made of metal, or to the bottom
plate, made of wood. Occasionally a particle ricochets off
the slab head-on and plucks the string behind the emitter.
By controlling the rate and angle of particle emission, the
user can make different rhythmic patterns and learn about
relationships between organized space, velocity, and time.

Other kinds of emitters are possible. For example, we
have built objects that split incoming particles into two.
Gravity (in any direction and strength) adds another twist

Figure 5. Procedural crawlers which fret strings.

to the possibilities of particle motion.
Physics is not the only way to interact algorithmically

with the system. In Figure 5, small robots crawl around
the space, moving to random locations on a grid. When a
crawler moves to a string, it latches on, fretting the string
for a time, before moving off in a random direction again.

5. INTERACTIVE PROGRAMMING

So far, we have described several high-level ways to in-
teract with sound models. Our environment also includes a
textual language which provides for low-level access to the
models. This has two purposes. First, textual scripting is
a flexible way to set up direct-manipulation environments
like those described above and to describe new procedural
elements. Scripts, like procedural animations, support iter-
ative design by allowing for the reuse and careful editing
of algorithms.

Second, while direct manipulation is approachable and
concrete, text is a good choice for describing more sophis-
ticated interactions. In particular, it is more apparent how
to use parameterization and abstraction in this context, and
timing may be made more precise.

The textual language is interactive and runs in conjunc-
tion with the direct manipulation environment. This allows
a user to go back and forth between the two as desired.

A complete reference is beyond the scope of this pa-
per. However, the examples that follow are intended to
give an idea of how the language works. We introduce the
examples with a short discussion of the textual language’s
general structure and philosophy.

5.1 Language structure and philosophy

The textual language is a prototype-based object-oriented
language; it is similar in many ways to Self [6] or Smalltalk.
Our concern in this environment is mainly for ad-hoc and
on-the-fly programming, rather than the construction of
larger software systems. We have therefore emphasized
programming facilities that support experimentation, rather
than ones that support longer-term efforts. Although the
underlying language is capable of representing complex
abstractions, we have mainly concentrated on its use in an
interactive context.
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Figure 6. Scripting takes place through an interactive
workspace.

Most interaction with the language happens through a
text window called a “Workspace” (Figure 6). This is sim-
ilar to the interactive command line or read-eval-print loop
provided by some environments, but it retains more context
from step to step. Code in a Workspace can be executed
line-by-line; results may be printed; old code can be revis-
ited. In keeping with the philosophy of supporting experi-
mentation, variables set at the top level of our Workspaces
are defined automatically, allowing users to define names
as they go.

The textual environment runs concurrently with the direct-
manipulation environment and with audio output. In this
way, results from code execution can be seen immediately,
and changes in the output can be investigated more closely
using code. Users can move freely between the two levels
as needed; in a multi-user setting, one person might even
be playing an instrument using touch while the other mod-
ifies it using code.

Our language follows ChucK [7] in being strongly timed.
The simulation time for a given thread proceeds (and audio
samples are calculated) only when the programmer explic-
itly asks for it to do so. Code between such statements is
considered, from the perspective of the simulation, to exe-
cute instantaneously. In this way, the programmer is given
full control over timing and coordination.

In our environment, it is possible that no user-level code
is running at some particular time, but instead that all in-
teraction is taking place through the direct-manipulation
environment. In that case, simulation time proceeds along
with real time.

5.2 A simple example

Imagine that you wanted to try playing some notes on plucked
strings. You might start by making a string and tuning it.

stringD: stringModel make.
stringD frequency: 146.80.

This puts a string, tuned to D, on the screen, and assigns
it the variable name “stringD”. You can pluck the string by
hand or using code.

stringD pluckAtFraction: 0.7.

We can add a second string, positioning it a little be-
low the first. Plucking the strings at timed intervals while
changing their notes plays a familiar tune. (Quotes are used
below to add comments.)

stringA: stringModel make.
stringA frequency: 110.
stringA center: 0 @ -0.01.

stringD fretAtIndex: 2. "E"
stringD pluckAtFraction: 0.7.
simTime advance: 0.25 seconds.

stringD fretAtIndex: 0. "D"
stringD pluckAtFraction: 0.7.
simTime advance: 0.25 seconds.

stringA fretAtIndex: 3. "C"
stringA pluckAtFraction: 0.7.
simTime advance: 0.25 seconds.

stringD pluckAtFraction: 0.7.
simTime advance: 0.25 seconds.

stringD fretAtIndex: 2. "E"
3 timesRepeat:
[stringD pluckAtFraction: 0.7.
simTime advance: 0.25 seconds].

5.3 Making physical changes

One of the strengths of many physical models is their abil-
ity to represent different kinds of material. Strings are cre-
ated by default as nylon strings. We can change the strings
above to be steel strings by assigning new material proper-
ties.

{stringA. stringD} do:
[:each |
each
changeMaterialDensity: 7800.0
youngsModulus: 200e9].

For convenience, this keeps the strings at the same fre-
quency as before by adjusting their tension to match the
new material. The strings will sound slightly different due
to their new material properties and tension. Other prop-
erties of the models, such as damping coefficients, may be
changed as well.

5.4 Adding new behaviors

The lengths of the strings in the direct manipulation envi-
ronment can be changed; this also changes their frequency.
The tune in the code above is written in terms of the built-
in frets, which are proportional to the length of the string
(they are set at half-steps, like guitar frets). Therefore,
changing the length of the string would transpose the tune
up and down; this could be done while the tune was playing
to act as a sort of simple (if not strictly realistic) tremolo
arm (or “whammy bar”).
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Figure 7. Facilities for running code in continuous loops.

However, the tune is written on two strings. It would be
difficult to change these in exactly the same way simply by
dragging. We can keep the second string up to date with
the first using the following code.

stringA learn:
(|
partner <- nil.
matchLength = (| delta |
delta: partner endPoint

- partner startPoint.
endPoint: startPoint + delta).

|).
stringA partner: stringD.

[[true] whileTrue:
[stringA matchLength.
simTime advance: 0.01 seconds]] fork.

This code first teaches the A string a new behavior, how
to match length with a partner. It then creates a new inde-
pendent thread which asks the string to match length every
hundredth of a second.

Note that this acts like a constraint, but it is only an ap-
proximation of one. In particular, it is not updated contin-
uously, and the custom matching code could be expensive
to run frequently. A facility for constraints is a topic for
future research.

Forking new continuously-running threads is useful for
many things. When working with threads, it is important to
be able to stop and start them at will, while retaining their
code. (In the example above, the thread never stops.) The
graphical environment therefore has a facility for running
continuously-looping code, as shown in Figure 7.

One could envision a way to express the length-matching
behavior via direct manipulation, such as attaching all of
the strings to a rigid bar and then moving the bar: a kind
of virtual tremolo arm to match the behavior. The script-
ing environment lets us prototype new ideas before adding
them at higher levels.

5.5 New procedural objects

Code may also be used to create new kinds of objects for
the procedural animation environment. Figure 8 shows
a simple but complete example of an emitter that sends

firework: proceduralElement make.
firework learn:
(|
emit = (| newBall. theta |
newBall: ball make.
newBall radius: 0.01.
newBall dragFactor: 0.01.
newBall beFading.
newBall position: position.

theta: ((24 atRandom) * 15.0)
asRadians.

newBall impulse:
(theta cos @ theta sin)

* (0.1 @ 0.1)).

burst = (||
40 timesRepeat:
[| waitTime |
emit.

waitTime: (5 + 5 atRandom)
milliseconds.

simTime advance: waitTime]).
|).

Figure 8. A “fireworks” animation object.

a burst of particles into the space at random angles and
speeds. It may be activated by executing fireworks
burst.

6. CONCLUSION AND FUTURE WORK

We have described our interactive environment for exper-
imenting with physical models in space and in code. The
environment supports several different kinds of interaction
with the models, from direct playing to the use of procedu-
ral animation and physics and exploration through code.

Our goal with this environment has been to provide for
easy, high-level experimentation with physical models. How-
ever, the range of expressiveness of physical models is
deep, and we have only scratched the surface.

For example, we might want facilities for creating new
models of a player’s interaction with a string: different
kinds of plucks, bowing, fretting models, playing string
harmonics, rasgueado, and more. We might consider phys-
ical models that change over time in unrealizable but phys-
ically plausible ways, such as a web of strings that shifts
around, splitting and reconnecting over time. Models might
be connected to one another and resonate. Input from more
sophisticated tangible controllers or even other instruments
might be used to drive models. In addition, several musi-
cally important concepts addressed in existing languages
go unaddressed here.

In our future research, we hope to address deeper ques-
tions such as these. We expect that new abstractions, meth-
ods of interaction, and language facilities will help make
the full power of physical models truly accessible.
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A. IMPLEMENTATION NOTES

Our system runs in real time on commodity Macintosh
hardware. We make use of several open-source libraries:
RtMidi and RtAudio [13], DarwiinRemote [10], and the
Box2D physics engine [8]. Our multi-touch implementa-
tion uses the CCV tracking system [9] and the TUIO mul-
titouch protocol [11].

Figure 9. A diffuse-illumination multitouch table.

B. DIFFUSE-ILLUMINATION MULTITOUCH

One setting for our system has been a diffuse-illumination
multitouch table. This appendix contains a brief discus-
sion of how such tables may be implemented. A more
complete description of this and other multitouch imple-
mentation techniques may be found in an excellent online
book by the NUI Group [12].

Multitouch tables allow for direct interaction with dis-
played images. A major question in the implementation
of such tables is therefore how to detect touches. Diffuse-
illumination tables detect touches via a camera system; to
distinguish between actual touches and changes in the dis-
play, they rely on the difference between visible and in-
frared light.

As shown in Figure 9, both a projector and a camera
are mounted below the table surface. A mirror may be
used (as shown here) to allow for larger projections without
requiring the table to be very deep.

The projector displays a video image on a projection
surface at the top of the table. This image is made up only
of visible light; commodity projectors typically do not emit
any infrared light. A number of infrared LED panels also
illuminate the projection surface. Since these only emit
light in the infrared spectrum, they are invisible to users of
the table. The illumination is meant to be spread evenly
across the surface. To some extent, the light is diffused by
the surface itself, which is semi-opaque; to further avoid
”hot spots” of illumination, light is often bounced off of a
wall or other surface before reaching the top of the table.

The camera is equipped with an infrared-passing filter;
it only “sees” infrared light and does not react to changes
in the visible part of the spectrum. If nothing is touching
the table, then, the camera sees a static image, even if the
video image displayed by the projector is changing.

If a user touches the table, light reflects more strongly
from the location of the touch. Techniques from computer
vision are used to isolate the area of the touch from the
surrounding static background. Multiple touches are seen
as separate areas in the resulting image. These touches are
tracked over time; their locations and shapes are passed to
higher-level software such as our system for further pro-
cessing.
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ABSTRACT

In this paper, three state of the art non-stationary sinu-
soidal analysis methods based on Fourier transform (FT)
are compared - the derivative method, reassignment and
generalized reassignment.1 The derivative method and
reassignment weredesigned to analyze linear log-AM/linear
FM sinusoids. Generalized reassignment can analyze si-
nusoids containing arbitrary order modulations, however
the discussion will be limited to linear log-AM/linear FM
in order to compare it objectively to reassignment and the
derivative method. In this paper, the equivalence of reas-
signment and the derivative method is shown to hold for ar-
bitray order modulation estimation and theoretical compar-
ison with generalized reassignment is presented. The re-
sults of tests conducted on two different frequency ranges,
full range (frequencies up to Nyquist) and reduced range
(frequencies up to 3/4 Nyquist) frequency range, are com-
pared to the Cramer-Rao bounds (CRBs).

1. INTRODUCTION

Sinusoidal modeling of sound signals is used in many au-
dio analysis/synthesis applications [1],[2],[3]. Several anal-
ysis methods for estimating sinusoidal model parameters
based on Short Time Fourier Transform (STFT) assume
that the underlying sinusoid is quasi-stationary inside a se-
lected time frame [4],[5],[6]. Since real world sounds of-
ten violate this assumption, the analysis methods able to
detect first order polynomial modulations have received
much attention [7],[8],[9],[10],[11]. It is straightforward
to see [12] that the reassignment method could be theoreti-
cally generalizedto detect higher order polynomial modu-
lations for both log-AM and FM. As it was shown in [8]
and [13] that the reassignment and the derivative meth-
ods are theoretically identical, then the same must hold

1 The latter method was not explicitly named in [14] where it was first
presented, therefore the authors decided on the namegeneralized reas-
signment, because the method exhibits similarity with the original reas-
signment and can successfully analyze ageneralized sinusoid(a sinu-
soid with arbitrary order polynomial log-AM and FM function), a term
adopted from [15]. The method exhibits close relation to the derivative
method as well, however the namegeneralized derivative methodcould
cause ambiguity with the method described in [8].

Copyright: c©2010 Saˇso Muševič et al. This is an open-access article distributed

under the terms of theCreative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

for the derivative method. However, expressions for esti-
mating higher order modulations get very complex in both
cases and its derivations are not straightforward. The theo-
retical equality of both methods can be exploited to con-
struct the generalized reassignment method [14], which
estimates parameters of signal modulations up to an arbi-
trary degree, although some restrictions concerning win-
dow function apply. In [15] the generalized reassignment
is shown to work forany linear transform, which includes
the STFT, the wavelet transform or even a combination of
them.
The derivative method, reassignment and generalized reas-
signment are all based on the same theoretical background,
yet perform quite different in practice. Therefore, a de-
tailed comparison of its internal mechanics is performed in
the present document. In section2, the common theoreti-
cal background including general equations for parameter
estimations is derived. The differences between reassign-
ment and the derivative method are described and method-
specific parameter estimate expressions for the two are de-
rived from the general ones, providing a mathematically
identical proof already given in [8] and [13], extended to
an arbitrary modulation degree. In section3 the theoretical
differences between original and generalized reassignment
are outlined. Section4 describes the test environment and
summarizes accuracies collected in tests of all three esti-
mators and compares them to CRBs. Conclusions and fu-
ture work suggestions are given in section5.

2. REASSIGNMENT AND THE DERIVATIVE
METHOD

This section demonstrates that reassignment and the deriva-
tive method are two versions of the same algorithm. This
fact was already pointed out in [8] and [13]. Present deriva-
tions prove that the derivative method is essentially a reas-
signment method with a slightly modified STFT definition
or vice versa. In the following expression, the STFT defi-
nitions for the derivative method (D) and reassignment (R)
are given respectively:

STFT
(
s(t), w(t); t, ω

)
=

D

Sw(t, ω) =
∫ ∞

−∞

s(τ + t)w(τ)e−jωτdτ
(1)
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STFT
(
s(t), w(t); t, ω

)
=

R

Sw(t, ω) =
∫ t+∞

t−∞

s(τ̄ )w(τ̄ − t)e−jω(τ̄−t)dτ̄ ,
(2)

wheres(t), w(t) are signal and window functions respec-
tively. It is obvious, that the second definition can be de-
rived from the first by substituting the variables:τ = τ̄−t.
Essentially

R

Sw =
D

Sw; however, its the time/frequency
derivatives yield different expressions (see Appendix A),
yet a common notationSw will be used for both

R

Sw and
D

Sw from this point on.
Sw is a function of time and frequency which can be writ-
ten in polar form as:

Sw(t, ω) = exp
(
a(t, ω) + jφ(t, ω)

)
. (3)

From the above representation, amplitude and phase func-
tions of time and frequency can be written as:

a(t, ω) = ℜ

(

log
(
Sw(t, ω)

))

(4)

φ(t, ω) = ℑ

(

log
(
Sw(t, ω)

))

. (5)

Reassigned frequency and time equations can be expressed
for this general case as:

ω̂(t, ω) =
∂

∂t
φ(t, ω) = ℑ

(
∂Sw

∂t

Sw

)

(6)

t̂(t, ω) = t−
∂

∂ω
φ(t, ω) = t−ℑ

(
∂Sw

∂ω

Sw

)

. (7)

Linear log-AM/linear FM are commonly defined in the fol-
lowing form:

s(t) = exp
(
λ0 + µ0t+ j(φ0 + ω0t+

ψ0

2
t2)
)
. (8)

As pointed out in[8] and [10], general log-AM and FM
expressions can bewritten as:

µ̂(t, ω) =
∂

∂t
a(t, ω) = ℜ

(
∂Sw

∂t

Sw

)

(9)

ψ̂(t, ω) =
∂ω̂

∂t̂
=
∂ω̂

∂t
/
∂t̂

∂t
(10)

∂ω̂

∂t
= ℑ

(
∂2Sw

∂t2
Sw −

(
∂Sw

∂t

)2

(
Sw

)2

)

(11)

∂t̂

∂t
= 1 −ℑ

(
∂2Sw

∂ω∂t
Sw −

∂Sw

∂ω
∂Sw

∂t
(
Sw

)2

)

. (12)

The above equations provide estimate espressions indepen-
dent of the method used and thus hold for both reassign-
ment and the derivative method. Once linear log-AM, fre-
quency and linear FM parameters are estimated, the fol-
lowing expressions can be used to obtain accurate esti-

mates for the two static parameters [7],[8]:

Γw(ω, µ, ψ) =

∫ ∞

−∞

w(t) exp

(

µt+ j

(

ωt+
ψ

2
t2
))

dt

(13)

â0 =

∣
∣
∣
∣
∣

Sw

Γw(ω∆, µ̂0, ψ̂0)

∣
∣
∣
∣
∣

(14)

φ̂0 = 6

(

Sw

Γw(ω∆, µ̂0, ψ̂0)

)

. (15)

In order to obtain the above expressions for the two meth-
ods, partial frequency and time derivatives ofSw should be
computed for reassignment and the derivative method. In
the following formulas,Sw′ andStw represent the STFT of
a signal, but the window derivative and time-ramped win-
dow functions are used instead of the original ones respec-
tively, whileS′

w represents the STFT of the time derivative
of a signal. For reassignment, the following expressions
with some restrictions (see Appendix A) apply:

∂

∂t
Sw = −Sw′ + jωSw (16)

∂

∂ω
Sw = −jStw (17)

∂2

∂ω∂t
Sw = jStw′ + jSw + ωStw (18)

∂2

∂t2
Sw = Sw′′ − 2jωSw′ − ω2Sw. (19)

Detailed derivations of 16 and 17 can be found in Ap-
pendix A (see equations 39, 40 and43). Equation18 is
derived in detail in Appendix A (see equation41), however
the generalized rule (see equation42) for time derivatives
can be used as well.Equation19 can be derived by us-
ing equation42 twice. For the derivative method, slightly
simpler expressions hold:

∂

∂t
Sw = S′

w (20)

∂

∂ω
Sw = −jStw (21)

∂2

∂ω∂t
Sw = −jS′

tw (22)

∂2

∂t2
Sw = S′′

w. (23)

Substitutingreassignment STFT expressions16-19into gen-
eral equations forparameter estimations6-12yields:

R

ω̂(t, ω) = ω −ℑ

(
Sw′

Sw

)

(24)

R

µ̂(t, ω) = −ℜ

(
Sw′

Sw

)

(25)

R

ψ̂(t, ω) =
ℑ

(
SwSw′′−(Sw′)

2

(Sw)2

)

ℜ

(
Stw′Sw−StwSw

(Sw)2

) , (26)

which are well known reassignment expressions for esti-
mating parameters of log-AM/FM sinusoids. Analogously,

87



substituting derivative method STFT expressions20-23into
same equations results in:

D

ω̂(t, ω) = ℑ

(
S′

w

Sw

)

(27)

D

µ̂(t, ω) = ℜ

(
S′

w

Sw

)

(28)

D

ψ̂(t, ω) =
ℑ

(
S′′

w

Sw

)

− 2
D

µ̂(t, ω)
D

ω̂(t, ω)

1 + ℜ

(
S′

twSw−StwS′

w

(Sw)2

) , (29)

which are the derivative method expressions as given in [8]
and [13]. Since expressions27and28are straightforward,
only detailed derivations of equation29 can be found in
Appendix B (see equations50, 51).
This section has clearly demonstrated that reassignment
and the derivative method are in fact analogous methods,
derived from the same general linear log-AM/linear FM
equations. The only difference is the definition of STFT,
which results in quite different expressions for parame-
ter estimates. Mathematically identical proof was already
given in [8] and [13], however it was given for each pa-
rameter of linear log-AM/linear FM sinusoids separately
and thus does not prove the equivalence of the two meth-
ods for arbitrarly modulated sinusoids. In order to prove
equivalence of the methods in such a general case, arbi-
trary order time derivatives of general linear FM parameter
expressions (equation10) should be considered:∂

nω̂

∂t̂n
=

∂nω̂
∂tn /

∂nt̂
∂tn . Such expressionswould contain STFTs of the

form ∂k+lSw

∂tk∂ωl . By using the rules 42, 43, 44, 45 it is pos-
sible to transformthe general expressions into reassign-
ment ones, containing STFTs of the formSw(k)tl and anal-
ogously into the derivative method ones, containing STFTs
of the formS

(k)

tl . It is straightforward that reassignment
and corresponding derivative method expressions are iden-
tical for all modulation degrees. The same procedure can
be performed for log-AM, concluding the proof of equality
of the two methods for an arbitrary modulated sinusoid.
The derivative method requires computation of signal time-
derivatives, as opposed to reassignment, which requires
computation of the window time-derivatives. In practice,
it is impossible to avoid errors computing time derivative
of the signal in time domain. For that purpose, a deriva-
tion filter is used, however unacceptable errors occur at
high frequencies [8]. Further, using such filter increases
the frame length requirements of STFT and raises com-
putational complexity. When performing STFT, analytical
expression for window function is known in most cases,
therefore exact analytical expression for its time deriva-
tives can generally be computed before performing STFT,
which does not add any computational complexity. It can
be concluded that lower computational complexity and higher
accuracy is expected from the reassignment estimates com-
pared to the derivative method ones. However, tests have
shown that in the reduced frequency range (up to 3/4 Nyquist),
methods perform comparably [8].

3. REASSIGNMENT AND GENERALIZED
REASSIGNMENT

Generalized reassignment is the latest method based on the
same backround as reassignment and the derivative method.
The method is essentially based on the derivative method,
as it uses signal derivatives for estimating the parameters.
However, integrationper-partesis used to transform ex-
pressions containing signal derivatives to expressions con-
taining ramped window derivatives [14]. Final expressions
resemble much more those of reassignment than those of
the derivative method. Although it is designed to esti-
mate arbitrary order log-AM/FM modulations, the discus-
sion will be restricted to linear log-AM/FM signals. The
following equations apply in this context (from [14]):

(
GR

µ̂(t, ω) + j
GR

ω̂(t, ω))Sw + j
GR

ψ̂(t, ω)Stw =

− Sw′ + jωSw (30)

Sw′′ − j2ωSw′ − Swω
2 =

(
GR

µ̂(t, ω) + j
GR

ω̂(t, ω))(−Sw′ + jωSw) −
GR

ψ̂(t, ω)Stw.

(31)

From above equations, the following estimates can be ex-
pressed [14]:

GR

ψ̂(t, ω) =
ℑ

(
SwSw′′−(Sw′)

2

(Sw)2

)

ℜ

(
Sw′Stw−StwSw

(Sw)2

) (32)

GR

µ̂(t, ω) + j
GR

ω̂(t, ω) = jω −
Sw′

Sw

− j
GR

ψ̂(t, ω)
Stw

Sw

⇒

(33)

GR

ω̂(t, ω) =

R
ω̂

︷ ︸︸ ︷

ω −ℑ

(
Sw′

Sw

)

−
GR

ψ̂(t, ω)

t∆=t̂−t
︷ ︸︸ ︷

ℜ

(
Stw

Sw

)

(34)

GR

µ̂(t, ω) =

R
µ̂

︷ ︸︸ ︷

−ℜ

(
Sw′

Sw

)

−
GR

ψ̂(t, ω)ℑ

(
Stw

Sw

)

.

(35)

The FM estimateexpression is identical to that of original
reassignment. The frequency and log-AM estimates on the
other hand, contain additional terms compared to those of
original reassignment. In the case of the frequency esti-
mate, the additional term isψt∆. The original frequency
reassignment gives a frequency estimate at a reassigned

time t̂, so the time shiftt∆ = t̂− t = ℜ

(
Stw

Sw

)

can be used

to correct the frequency estimate (e.g.:movefrequency
estimate back to desired time), once FM is estimated. In
the case of a log-AM estimate, no such time correction is
present, as the log-AM is modeled to be constant. How-

ever, another term̂ψℑ
(

Stw

Sw

)

with no straightforward in-

terpretation is present. It can be thought of as a correction
of an error that presence of FM causes on AM estimation.
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It will be shown in tests that this additional terms improve
frequency and AM estimate significantly in high signal-to-
noise (SNR) ratios.

4. TESTS AND RESULTS

For easier comparison, the test parameter set was choosen
identical to the one in [8], with exception of a frequency
range. The test frequencies (100 in total) were linearly
distributed over two different frequency ranges: reduced
frequency range, 20Hz-16538Hz (3/4 of Nyquist) and full
frequency range, 20Hz-22050Hz (Nyquist), the results for
each range are plotted separately. All other test param-
eters were linearly distributed in the following ranges: 7
different phase values in range[−π, π], 5 log-AM values
values in[−100, 100] range and 5 different FM values in
[−10000, 10000]. Hanning window of length 511 samples
and sampling frequency of 44100Hz was used. The error
variance was calculated using all parameter combinations.
In the case of the derivative method, the derivation filter
as described in [8] of length 1023 was used and the frame
length was extended to 1533 samples (511+2 1023−1

2
). Af-

ter convolution with the filter, only the middle 511 samples
out of 1533 were kept to avoid edge effect.
In order to perform parameter estimations, all the algo-
rithms require an initial frequency estimate, which is a con-
sequence of the fact that STFT is a function of frequency
and time. The initial frequency estimate is commonly ac-
quired by taking the bin frequency of the magnitude spec-
trum peak. Once a frequency estimate is made (using the
bin frequency of the peak), this estimate itself can be used
to estimate other parameters, even tore-estimatethe fre-
quency itself. Such a procedure can be performed many
times, thus iteratively obtaining presumably more accurate
estimations in each iteration. In [8], the derivative method
was tested in the following setting: the bin frequency of
the spectrum peak is used to obtain a frequency estimate,
which is in turn used to estimate log-AM/FM and finally
static log-amplitude/phase, but the frequency itself is not
reestimated. On the other hand, reassignment was tested
by using the bin frequency of spectrum peak for all esti-
mates. In the presented test results, all algorithms use a fre-
quency estimate (not the inital bin frequency of the peak)
to obtain all subsequent higher order, as well as static pa-
rameter estimates. For that, it is reasonable to expect that
reassignment will achieve better results as reported in [8].
Further, the FM estimates of the derivative method as de-
fined in [8] did not take into account the group delay, which
was pointed out in [13], thus the improvement of the FM
estimate of the derivative method is also expected.
The estimation errors of the derivative method are identical
for log-amplitude, log-AM, phase and frequency to those
presented in [8], tested in 20Hz-16538Hz (3/4 Nyquist)
frequency range. The FM estimate improved as expected.
Reassignment performs significantly better than reported
in [8], which renders the accuracy difference between the
two in the reduced frequency range negligible. General-
ized reassignment performs superior for all parameter es-
timations except FM in this frequency range, where all
three methods perform roughly the same. Using the full

frequency range, estimate errors of the derivative method
rise significantly, while the original reassignment performs
even better. Generalized reassignment again performs sig-
nificantly better in all cases and seems to be unaffected by
frequency range changes. This suggests, that generalized
reassignment achieves identical accuracy for all frequen-
cies. It is important to note, that a significant accuracy
difference between reassignment and generalized reassign-
ment occurs in higher SNR region. For each parameter es-
timation, it is possible to define a SNR value, above which
the accuracies of reassignment and generalized reassign-
ment differ significantly. Below such SNR value however,
the two methods perform equally.
All three algorithms were implemented in Octave program-
ming language and the tests were conducted with Octave
2.9.9 (x86-64 bit Debian distribution) on a Sun Grid En-
gine 6.2 (SGE) cluster.

5. CONCLUSION

This document analyzes and compares three state of the art
methods for non-stationary analysis and compares them to
CRBs. It has been shown that generalized reassignment is
the most appropriate method for analyzing complex linear
log-AM/FM signals. Generalized reassignment is able to
detect an arbitrary log-AM/FM degree of a sinusoid and
achieves superior accuracy in the linear log-AM/linear FM
case and should therefore be the topic of further research
concerning the analysis of real world signals: both multi-
component and real. In this case, the degree of modulation
of each sinusoid under study is unknown and determin-
ing its exact degree is crucial, as errors rise significantly
when the modeled modulation degree is set either too high
or too low [13]. Furthermore, the usual window functions
like Hanning cannot be used when analyzing higher order
modulations, as its second time derivative does not reach
0 at the start and end of the frame (required by the algo-
rithm). Some higher order window functions were pro-
posed in [13], however its exact accuracy currently remains
unknown; therefore a more detailed study of window func-
tions satisfying the restrictions of the algorithm should be
researched. It is reasonable to expect, that such window
functions would exhibit less desirable time-frequency trade
offs. To avoid accuracy deterioration, limiting the analysis
algorithm to a certain degree of modulation is crucial and
could be balanced with a multi resolution method of some
sort, for example a wavelet transform based one, a similar
idea already pointed out in [15].
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Figure 1: Parameter estimation errors for reassignment, the derivative method and generalized reassignment.
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7. APPENDIX A

As already briefly mentioned in section1, the equality
R

Sw =
D

Sw holds for allt andω, yeteach equation yields a differ-
ent time derivative expression. When the window function
is assumed to be of finite support, and consequently the
infinite integral bounds are replaced by finite ones, the ex-
pressions for

R

Sw and
D

Sw change to:

D

Sw(t, ω) =

∫ T
2

−T
2

s(τ + t)w(τ)e−jωτ dτ (36)

R

Sw(t, ω) =

∫ t+ T
2

t−T
2

s(τ̄ )w(τ̄ − t)e−jω(τ̄−t)dτ̄ , (37)

where the window function time support is assumed to
be T. The partial time derivative of integral expression37
should be taken with care, as integral limits depend on time
and the time derivative operator cannot simply be brought
inside the integral. Using the Leibniz’s integral rule on

R

Sw

yields:

∂

∂t

R

Sw(t, ω) =

∂

∂t

∫ t+ T
2

t−T
2

s(τ̄ )w(τ̄ − t)e−jω(τ̄−t)dτ̄ =

s(t+
T

2
)

=0
︷ ︸︸ ︷

w(
T

2
) e−jω T

2 − s(t−
T

2
)

=0
︷ ︸︸ ︷

w(−
T

2
) ejω T

2 +

∫ t+ T
2

t−T
2

s(τ̄ )
∂

∂t

[

w(τ̄ − t)e−jω(τ̄−t)
]

dτ̄ .

(38)

With the additional restriction that the window function
reaches 0 at both its edges, e.g.:w(T

2
) = w(−T

2
) =

0, the first two terms of the above expression can be ne-
glected. The restriction modifies equation38 in a way,
as if the integral boundaries wouldn’t depend on the time
variable and thus the time derivative operator can simply
be brought inside the integral. Throughout this appendix
it will be assumed, that the window function and its arbi-
trary time derivative reach 0 at both edges, eg:w(k)(T

2
) =

w(k)(−T
2
) = 0 for all k and consequently the time deriva-

tion operator can always be brought inside the integral.
Note, that the partial frequency derivative operators can be
brought inside the integral for both

R

Sw and
D

Sw, as well as
the partial time derivative in the case of

D

Sw without any
additional restrictions. In the following derivations the in-
tegral bounds will be omitted for the sake of clarity. For

reassignment the following holds:

∂

∂t

R

Sw =

∫

s(τ)
∂

∂t

[

w(τ − t)e−jω(τ−t)
]

dτ =

∫

s(τ)

−w′
(t)

︷ ︸︸ ︷

∂

∂t
[w(τ − t)] e−jω(τ−t)dτ+

∫

s(τ)w(τ − t)

jωe−jω(τ−t)

︷ ︸︸ ︷

∂

∂t

[

e−jω(τ−t)
]

dτ =

− Sw′ + jωSw

(39)

∂

∂ω

R

Sw =

∫

s(τ)w(τ − t)

−j(τ−t)e−jω(τ−t)

︷ ︸︸ ︷

∂

∂ω

[

e−jω(τ−t)
]

dτ =

− jStw

(40)

∂

∂t

R

Stw =
∫

s(τ)
∂

∂t

[

w(τ − t)(τ − t)e−jω(τ−t)
]

dτ =

∫

s(τ)

−w′
(τ−t)

︷ ︸︸ ︷

∂

∂t
[w(τ − t)](τ − t)e−jω(τ−t)dτ+

∫

s(τ)w(τ − t)

−1
︷ ︸︸ ︷

∂

∂t
[τ − t] e−jω(τ−t)dτ+

∫

s(τ)w(τ − t)(τ − t)

jωe−jω(τ−t)

︷ ︸︸ ︷

∂

∂t

[

e−jω(τ−t)
]

dτ =

− Sw′ − Sw + jωSw.

(41)

It is informative to generalize the time and frequency deriva-
tive expressions for the reassignment STFT using arbitrary
window time derivative, ramped with an arbitrary polyno-
mial:

∂

∂t

R

Stnw(k) =
∫

s(τ)
∂

∂t

[

w(k)(τ − t)(τ − t)ne−jω(τ−t)
]

dτ =

∫

s(τ)

−w(k+1)
(τ−t)

︷ ︸︸ ︷

∂

∂t
[w(k)(τ − t)](τ − t)ne−jω(τ−t)dτ+

∫

s(τ)w(k)(τ − t)

−n(τ−t)n−1

︷ ︸︸ ︷

∂

∂t
[(τ − t)n] e−jω(τ−t)dτ+

∫

s(τ)w(k)(τ − t)(τ − t)n

jωe−jω(τ−t)

︷ ︸︸ ︷

∂

∂t

[

e−jω(τ−t)
]

dτ =

− Stnw(k+1) − Stn−1w(k)n+ jωStnw(k)

(42)
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∂

∂ω

R

Stnw(k) =

∫

s(τ)w(k)(τ − t)(τ − t)n

−j(τ−t)e−jω(τ−t)

︷ ︸︸ ︷

∂

∂ω

[

e−jω(τ−t)
]

dτ =

− jStn+1w(k) .

(43)

Equation42 corresponds to equations39 and 41 for the
values ofk = 0, n = 0 andk = 0, n = 1 respectively and
equation43 corresponds to equation40 for the values of
k = 0, n = 0.
Analogously, for the derivative method STFTs, time and
frequency derivatives can be generalized for an arbitray
signal time derivative, using a window ramped with an ar-
bitrary polynomial:

∂

∂t

D

S
(k)

tnw =
∫

∂

∂t

[

s(k)(τ + t)
]

w(τ)τne−jωτdτ =

S
(k+1)

tnw

(44)

∂

∂ω

D

S
(k)

tnw =

∫ ∞

−∞

s(τ + t)w(τ)τn

−jτe−jωτ

︷ ︸︸ ︷

∂

∂ω

[
e−jωτ

]
dτ =

− jS
(k)

tn+1w
.

(45)

8. APPENDIX B

Substituting the reassignment STFT expressions16-19into
general equations for frequency, log-AM and FM estima-

tions defined in6,9,10yields:

R

ω̂(t, ω) = ℑ

(
−Sw′ + jωSw

Sw

)

= ℑ

(

jω −
Sw′

Sw

)

= ω −ℑ

(
Sw′

Sw

)

(46)

R

µ̂(t, ω) = ℜ

(
−Sw′ + jωSw

Sw

)

= ℜ

(

jω −
Sw′

Sw

)

= −ℜ

(
Sw′

Sw

)

(47)

R

ψ̂(t, ω) =
∂
R

ω̂

∂t
/
∂
R

t̂

∂t

∂
R

ω̂

∂t
= ℑ

(
(Sw′′ − 2jωSw′ − ω2Sw)Sw

(Sw)2

)

−ℑ

(
(−Sw′ + jωSw)2

(Sw)2

)

= ℑ

(
Sw′′Sw − (Sw′)2

(Sw)2

)

(48)

∂
R

t̂

∂t
= 1 −ℑ

(
(−Sw′ − Sw + jωSw)Sw)

(Sw)2

)

−ℑ

(
jSw(−Sw′ + jωSw

(Sw)2

)

= 1 −ℑ

(

j
(Sw)2 + Stw′Sw − StwSw

(Sw)2

)

= ℜ

(
Stw′Sw − StwSw

(Sw)2

)

.

(49)

Substituting the derivative method STFT expressions20-
23 into general equations for frequency and log-AM esti-
mations defined in6,9 yield straightforward expressions,
however the expression for FM estimate10deserves more
attention:

D

ψ̂(t, ω) =
∂
D

ω̂

∂t
/
∂
D

t̂

∂t

∂
D

ω̂

∂t
= ℑ

(
S′′

wSw − (S′
w)2

(Sw)2

)

= ℑ

(
S′′

w

Sw

)

−

2ℜ

„

S′

w
Sw

«

ℑ

„

S′

w
Sw

«

︷ ︸︸ ︷

ℑ

((
S′

w

Sw

)2
)

= ℑ

(
S′′

w

Sw

)

− 2
D

µ̂(t, ω)
D

ψ̂(t, ω)

(50)

∂
D

t̂

∂t
= 1 −ℑ

(
−jS′

twSw + jStwS
′
w

(Sw)2

)

= 1 + ℜ

(
S′

twSw − StwS
′
w

(Sw)2

)

.

(51)
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ABSTRACT 

This paper focuses on phaseshaping techniques and their 
relation to classical abstract synthesis methods. Elemen-
tary polynomial and geometric phaseshapers, such as 
those based on the modulo operation and linear transfor-
mations, are investigated. They are then applied to the 
generation of classic and novel oscillator effects by using 
nested phaseshaping compositions. New oscillator algo-
rithms introduced in this paper include single-oscillator 
hard sync, triangle modulation, efficient supersaw simu-
lation, and sinusoidal waveshape modulation effects. The 
digital waveforms produced with phaseshaping tech-
niques are generally discontinuous, which leads to alias-
ing artifacts. Aliasing can be effectively reduced by mod-
ifying samples around each discontinuity using the pre-
viously proposed polynomial bandlimited step function 
(polyBLEP) method. 

1. INTRODUCTION 

The generation of complex musical timbres has been 
approached from various angles in sound computing. One 
elegant solution, which has provided a wide scope for 
research and implementation, has been that of distortion 
techniques. Within this area, various techniques have 
been put forward, such as frequency modulation (FM) 
[3], phase distortion (PD) [5,9], nonlinear waveshaping 
[1,10,14,16], and discrete summation formulae (DSF) 
[11]. These are in many cases equivalent and can be used 
as alternative ways to describe and implement a given 
algorithm, as discussed in [7]. 

In particular, the waveshaping method provides a 
computationally simple means to produce potentially rich 
spectra. Its principle is quite straightforward, starting 
with a discrete-time sinusoidal signal, 

 ,)sin()( nnx ω=   (1) 

where ω is the angular frequency and n is the discrete 
sample index, a complex (i.e., non-sinusoidal) spectrum 
can be obtained via a mapping such as 

[ ],)()( nxfny =                                (2) 

where f[.] is an arbitrary nonlinear function called a wa-
veshaper. The well-known classic FM synthesis equation, 
for instance, can be rewritten as a waveshaping expres-
sion 
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[ ] [ ] ,)(sin)sin()(cos)cos(
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nxIn
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ω
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where ωc is the carrier frequency and the waveshapers 
cos(.) and sin(.) act on the sinusoidal modulation signal 
x(n) of Equation 1. 

Similarly, it is possible to describe PD as a form of 
waveshaping. This is demonstrated by starting with the 
following expression defining a sinusoidal oscillator:  

 [ ].)(2cos)( nny πφ=  (4) 

The function φ(n) is the normalized phase defined by  

[ ] ,1mod/)1()( s0 ffnn +−= φφ            (5)
 

where f0 is the fundamental frequency, fs is the sampling 
rate, and x mod 1 = x – x, and x is the floor function 
denoting the largest integer that is not greater than x. To 
implement a PD oscillator, the phase is then applied to a 
nonlinear function g(x):  

 [ ]{ }.)(2cos)( ngny φπ=  (6) 

A linear g(x) would result in a sinusoid whose frequency 
is transposed. However, with nonlinear g(x), the shape of 
the output waveform is modified. 

From a waveshaping perspective, Equation 4 can be 
described as a sinusoidal waveshaper acting on a complex 
input waveform s(n) = 2πφ(n): 

[ ].)()( nsfny =                                  (7) 

This transforms the phase signal s(n) into the output 
signal y(n) by means of a waveshaper f(x) = cos(x). The 
waveshaper can be implemented as a function or as a 
lookup table that acts on the normalized value of the 
phase signal. The typical phase generator producing s(n) 
is the unipolar modulo counter φ(n) of Equation 5, which 
is also a unipolar geometric non-bandlimited sawtooth 
wave. 

In this vein, Equation 6 can be seen as based on a 
form of double waveshaping, where two functions, g(x) 
and cos(x), are applied to an input sawtooth wave φ(n). 
This is perfectly equivalent to the principle of distorting 
the phase function φ(n) of a sinusoidal oscillator. 
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In this paper, the term ‘phaseshaping’ [7] is used to 
describe the generalization of the phase function distor-
tion g[φ(n)]. The aim here is to investigate elementary 
polynomial and geometrical phaseshapers, and then dis-
cuss their application in classic and novel oscillator algo-
rithms. 

2. ELEMENTARY PHASESHAPERS 

The investigation is began by proposing two fundamental 
phaseshaping concepts, entitled nested phaseshaping and 
phaseshaper entities. Nested phaseshaping is related to 
function composition, in which the result of the inner 
function serves as the input to the outer function. Equa-
tion 8 shows an example of nesting at three levels, ex-
pressed in the basic form in Equation 8a and its equiva-
lent shorthand notation in Equation 8b. 

 [ ]{ },)()( xhgfny =  (8a) 

 .)()( xhgfny oo=   (8b) 

For the purposes of this paper, x is assumed to be a 
signal which flows from the inner function towards the 
outer ones, transforming at each step into the final shape 
given by the outmost function. The graphical representa-
tion of this composition is thus a signal block diagram, 
similar to the one shown in Figure 1. 

 

Figure 1. Graphical representation of Equation 8.  

It is further assumed that the source of the chain is the 
unipolar modulo counter φ(n) of Equation 5, and that the 
rightmost block is the waveshaper producing the final 
output signal. The blocks or functions between these two 
extremes are called phaseshapers, because they act on the 
phase signal φ(n) and because the input of the final wave-
shaper is essentially a phase signal as well. Having said 
this, note that in some cases the output of the chain is the 
phase signal itself instead of the product of the wavesha-
per. 

Phaseshaper entities are frequently used phaseshapers 
that have fixed predefined semantics. These include 

 [ ] 1mod)()(mod1 nxnx =   (9a) 

 [ ] mnxmnxm mod)(),(mod =   (9b) 

 [ ] 1)(2)(b −= nxnxg   (9c) 

 [ ] ,5.0)(5.0)(u += nxnxg   (9d) 

where mod1 is the modulo-1 operation, modm is the real-
valued modulo-m operation (m ∈ R), gb is the bipolar 
transformation converting a unipolar signal into its bipo-
lar form, and gu its opposite unipolar transformation. 

2.1 Ramp-like Fractional Period Phase Signals 

Phaseshaper entities gb and gu are linear transformations, 
whose general expression is given by the phaseshaper 

 [ ] ,)(),( 010,1lin anxaanxg +=   (10) 

where a1 and a0 are the scaling and shifting factors, re-
spectively. Assuming that x(n) is given by φ(n) – which is 
restricted to values between 0 and 1 – one notices that the 
output of glin is no longer constrained to the range [0,1], 
which is the expected normalized phase range of most 
waveshaper terminals of the shaper chain. 

The output of glin should therefore be normalized. One 
way of doing this is to apply the mod1 phaseshaper entity 
to obtain 

 [ ].),(mod)( 0,1lin1
anxgny o=   (11) 

The effect of this normalization is seen in Figure 2, 
which plots the output of Equation 11 using parameter 
values a1 = 1.5 and a0 = 0. The sampling rate fs = 44.1 
kHz is used in all examples of this paper. In this example, 
the modulo operation is activated first within the context 
of mod1 (producing the full-height phase cycle) and then 
within the context of glin (producing the fractional phase 
cycle)1. Parameter a1 thus controls the length of the phase 
period (when a1 > 1) or the slope of the phase signal 
(when a1 < 1). The shifting term a0 contributes to the DC 
offset of the produced phase signal. 

 

Figure 2. Ramp-like phase signal with a fractional phase 
period (a1 = 1.5 and a0 = 0). The fundamental frequency 
is f0 = 441 Hz, as in all plots of this section.  

2.2 Triangular Fractional Period Phase Signals 

The unipolar modulo counter signal φ(n) can be trans-
formed into a bipolar sawtooth waveform by applying the 
gb phaseshaper entity of Equation 9c. Then, by feeding 
this sawtooth waveform through the absolute value func-
tion, a unipolar triangular signal [20] is obtained, which 
can be further shaped by glin and mod1 to get phaseshaper 

 [ ] [ ]{ } .)(absmod),( blin10,1tri nxgganxg oo=   (12) 

Alternatively the abs{.} term of Equation 12 can be re-
placed with the piecewise linear triangular waveform 
definition 
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The fractional period phase signal produced by gtri is 
depicted in Figure 3, which shows that because the slope 
of the triangle wave is two times steeper than that of a 

                                                           
1 Here the term phase cycle is adapted to describe the segment that 
takes the phase value from 0 to 1, and the term phase period to describe 
the total period of the modulo counter signal φ(n). 
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sawtooth, the frequency of the phase cycle is doubled. 
The phase period of gtri therefore contains two complete 
periods of Equation 11 and, as expected, the latter period 
is reversed in time. Because of this symmetry, gtri pro-
duces less dramatic effects on the output of the shaper 
chain. 

 

Figure 3. Triangular phase signal with a fractional phase 
period (a1 = 1.5 and a0 = 0). 

2.3 Rectangular Signals 

The unipolar modulo counter signal φ(n) can also be 
shaped into a unipolar square wave by first replacing the 
abs{.} term of gtri with the signum function and then 
applying the unipolar transformation entity gu to the re-
sult. Unfortunately, this construction does not allow for 
variable-width duty cycles. 

Variable-width pulse signals can be generated by sub-
tracting two out-of-phase ramp signals from each other 
[19], and then by offsetting the difference with the duty 
width, it is possible to obtain their unipolar representa-
tions. The generating phaseshaper is given by 

 [ ] ,)()(),(pulse wwPnxnxwnxg ++−=   (14) 

where w defines the pulse width (0 ≤ w ≤ 1) and P = fs/f0 
is the period of x(n). Since Equation 14 is linear and does 
not thus introduce aliasing, it is well suited for situations 
where x(n) is a bandlimited or an antialiased signal. 
However, if aliasing problems are not a concern, the 
trivial unipolar pulse waveform definition 
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is able to produce similar results more efficiently. 
Although a rectangular signal is not a useful phase sig-

nal by itself, it may be combined with other phaseshapers 
for two-segment phase sequences. For instance, the ex-
pression for the variable-slope phase signal of Figure 4 is 
x(n){1 + gpulse[x(n) – 1, w]}. Another application for rec-
tangular signals is the algebraic sawtooth shifter de-
scribed in [4].  

 

Figure 4. Variable-slope phase signal (w = 0.5). 

2.4 Tilted Triangular Fractional Period Phase Signals 

Instead of subtracting two sawtooth waveforms from 
each other, subtracting two out-of-phase parabolic wave-
forms produces a variable-slope triangle wave [13]. Us-
ing phaseshaping techniques, this can be implemented as 

 [ ] [ ] [ ]{ } ,)()(),( T
2

b
2

bTvtri bwnxgnxgawnxs +−−=   (16) 

where w is the duty width, aT = 1/[8(w – w2)], and bT = 
0.5. Although Equation 16 may be used as a standalone 
phase generator, it can be further generalized by shaping 
it with a glin and mod1 sequence. This results in the phase-
shaper 

 [ ] [ ].)(mod,),( vtrilin10,1vtri nxsgawnxg oo=   (17) 

Figure 5 plots a fractional period phase signal generat-
ed by gvtri. Comparing this with Figure 3, it is noted that 
the slopes of the up- and down-ramp cycles are weighted 
by the duty width w. As expected, with w = 0.5 the slopes 
become equal in magnitude, at which point gvtri and gtri 
produce identical results. Therefore, Equation 17 can be 
seen as a generalization of Equation 12. 

 

Figure 5. Variable-slope triangular phase signal with a 
fractional phase period (a1 = 1.5, a0 = 0, w = 0.75). 

2.5 Phase Signals with Ripples 

The definition of the general modulo operation of Equa-
tion 9b is 

   ,/)()(mod)( mnxmnxmnx −=   (18) 

where m ∈ R is the real-valued wrapping modulus. For 
efficiency reasons, practical applications usually set m = 
1, making Equation 18 equal to the fractional part of x(n). 
In some applications, however, it is desirable to generate 
a phaseshaper whose output is decorated with small-
amplitude ripples. This can be achieved by utilizing the 
phaseshaper entity modm (with a low fractional m value), 
as in 

 [ ] [ ].),(mod)(),(ripple mnxnxmnxg m+=   (19) 

An example phase signal generated by this phasesha-
per is shown in Figure 6. 

 

Figure 6. Phase signal with ripples (m = 0.05). 
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3. OSCILLATOR ALGORITHMS 

This section describes the application of the elementary 
phaseshapers in classic and novel oscillator algorithms. 

3.1 Waveslices 

The waveforms produced by physical analog oscillators 
diverge from trivial piecewise linear sawtooth, pulse, and 
triangle waveshapes. Although these deviations are subtle 
in the spectral domain, they contribute to the characteris-
tic sound of the synthesizer [15]. 

These nonlinear waveshapes may be approximated 
with higher order polynomial or sinusoidal waveshapers. 
For example, Figure 7a shows an approximation of the 
Minimoog Voyager sawtooth waveform, which was gen-
erated using 

 [ ]{ }.25.0),(2sin)( 1linb == anggny φπo   (20) 

Parameter a1 is set to a value smaller than unity so that 
only a portion of the entire sine wave period is included 
in the output. The spectrum of the waveform produced by 
Equation 20 is shown in Figure 7b. As can be seen, the 
abrupt transition caused by the modulo operation of φ(n) 
introduces a questionable amount of aliasing. 

 
Figure 7. Approximation of the Minimoog Voyager 
sawtooth waveform. (a,b) Trivial and (c,d) aliasing-
suppressed implementation. The thin lines of (a) and (c) 
plot the phase signal, while the thick lines show the 
waveshaper output (f0 = 1245 Hz). 

3.2 Antialiasing 

The amount of aliasing can be suppressed by smoothing 
the transition in the time domain. An efficient method to 
accomplish this is the polynomial bandlimited step func-

tion (polyBLEP) [18], which is a simplification of the 
minBLEP method originally proposed by Brandt [2]. 
PolyBLEP modifies the values of two samples that are 
located before and after the modulo transition by evaluat-
ing a second-order correction polynomial and adding the 
result to the values of the two original waveform samples. 

Figures 7c and 7d show the aliasing-suppressed wave-
form and spectrum of Equation 20 after applying the 
polyBLEP method. The aliasing is suppressed considera-
bly at low and middle frequencies and, although the arti-
facts are still clearly visible in the spectrum plot, their 
effect is greatly diminished because of the properties of 
human hearing. The effect of transition smoothing is also 
visible in the time domain as the minima of the waveform 
do not reach the level of –1. Interestingly, the same effect 
is also observable in the original analog Minimoog 
Voyager waveform. 

This suggests yet another phaseshaper entity that ap-
plies the polyBLEP method to its input signal, thereby 
performing a soft modulo-1 operation. This antialiasing 
phaseshaper is denoted as 

 [ ] [ ] ,,),(polyBLEP,),(mod sss hTnxhTnx =   (21) 

where Ts = f0 / fs is the phase increment of signal x(n) and 
h is the maximum height of the discontinuity. The sign of 
h should be negative for falling transitions. A detailed 
explanation of the polyBLEP is out of the scope of this 
paper, but interested readers may consult Reference [18] 
and the source code published in the companion page of 
this paper2. 

3.3 Oscillator Synchronization 

In classic oscillator hard synchronization (hardsync), the 
phase of the slave oscillator is reset each time the master 
oscillator finishes its cycle [2,17]. As shown in Figure 2, 
modulo-based phaseshaping is capable of producing 
similar effects by first utilizing the linear transformation 
phaseshaper glin and then processing the result with the 
modulo-1 phaseshaper entity mod1. The latter operation 
synthesizes the free-running cycles of the slave oscillator, 
while the former generates the hardsynced transition. A 
computationally efficient trivial single-oscillator hard-
sync implementation is therefore given by the phaseshap-
ing composition 

 [ ] [ ] .11mod)(2),(mod)( 11lin1b −== nxaanxggny oo   (22) 

The synchronization rate between the master and the 
slave oscillator is modeled by a1, which is given in terms 
of the classic hardsync implementation as 

 ,/ masterslave1 ffa =   (23) 

where fslave is the slave and fmaster is the master oscillator 
frequency, respectively. Figure 8 shows the waveform 
and spectrum produced by the aliasing-suppressed single-
oscillator hardsync algorithm for a1 = 2.5. 

                                                           
2 http://www.acoustics.hut.fi/go/smc2010-phaseshaping 
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Figure 8. (top) Waveform and (bottom) spectrum of the 
single-oscillator hardsync algorithm in which the po-
lyBLEP method is used to suppress aliasing (a1 = 2.5, f0 
= 1245 Hz). 

Instead of resetting the phase of the slave, oscillator 
soft synchronization (softsync) inverts the phase incre-
ment of the slave oscillator at the points of synchroniza-
tion. The trivial single-oscillator softsync implementation 
utilizes the output of the phaseshaper gtri of Equation 12 
either directly or indirectly through a triangular wavesha-
per function stri{ x}: 

 [ ]1trib ),()( anxggny o=   (24a) 

 [ ]{ }.),()( 1tritrib anxgsgny o=   (24b) 

Figure 9 shows the phase signal gtri (thin line) on top of 
the resulting waveshaping operation of Equation 24b 
(thick line). The phase signal does not produce softsync 
in a strict sense, because the slopes of both ramps are 
inverted after the synchronization instant. However, this 
does not have a profound effect on the produced timbre. 

 

Figure 9. Trivial single-oscillator softsync effect. The 
thin line plots the phase signal, while the thick line 
shows the result of the waveshaping acting on that 
phase, as in all waveform plots in the subsequent exam-
ples (a1 = 1.25 and f0 = 441 Hz). 

3.4 Pulse-width Modulation 

Pulse-width modulation (PWM) changes the relative 
durations of the high and low state segments of a rectan-
gular signal, while the frequency and the amplitude of the 
signal remain constant [17]. This can be achieved in two 
ways: 

 [ ]wnxggny ),()( pulseb o=   (25a) 

 [ ]{ },),(mod)( 1lin1bpulse, anxgsny o=   (25b) 

where spulse,b is the bipolar transformation of Equation 15. 
Both forms produce classic PWM when 0 < a1 = w < 1. 
When a1 > 1, Equation 25b produces a trivial hardsynced 
square wave.  

3.5 Triangle Modulation 

One of the first commercial virtual analog synthesizers, 
the Roland JP-8000, introduced three original oscillator 
effects [15]. One of these effects is triangle modulation 
(see Figure 10a), which can be implemented using a 
scaled bipolar triangular phase signal xT(n) with a ceiling 
function: 

 
[ ]
 ( ) ,5.0)()(2)(

1,2),()(

TT

triTMT

−−=
−=

nxnxny

nxganx   (26) 

where aTM is the modulation amount in the range [0.7, 1], 
and x denotes the ceiling function, which returns the 
smallest integer not less than x. Figure 10b shows both 
signals of Equation 26 with aTM = 0.82, corresponding to 
the Roland JP-8000 triangle modulation offset parameter 
value 64/127.  

 

Figure 10. (a) Roland JP-8000 triangle modulation and 
(b) its simulation. The thin line plots the scaled phase 
signal xT(n), while the thick line shows the output signal 
y(n) (aTM = 0.82, f0 = 261.63 Hz, and JP-8000 offset 
parameter = 64/127). 

Higher amounts of modulation increase the slope of 
the ramp and the magnitude of the v-shaped segments. At 
the maximum modulation aTM = 1 the magnitude of the v-
shapes becomes 0.5. Figure 11 shows the effect of aTM to 
the lower half of the baseband spectrum. As can be seen, 
the spectrum consists of odd harmonics only, the 3rd par-
tial being the most prominent throughout the entire para-
meter range. The relative strengths of other harmonics 
change dynamically with aTM, producing sweeping for-
mant-like oscillator synchronization type effects. 

The timbre that is produced by the maximum modula-
tion amount aTM = 1 can also be synthesized using the 
bitwise logical modulation [6]. This is not surprising, 
because the bitwise XOR operation is related to the stair-
case functions mod(.) and ceiling(.) employed here. The 
expression for the equivalent logical triangle modulation 
is 
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Figure 11. The effect of the modulation amount aTM to 
the Roland JP-8000 triangle modulation spectrum. 

 [ ]{ } .5.0xor)(2)( tritri nxgsny =   (27) 

3.6 Supersaw 

The most well-known Roland JP-8000 oscillator effect is 
supersaw, which emulates a bank of seven slightly de-
tuned oscillators [15]. Previously, an algorithm for pro-
ducing the supersaw signal using the bandlimited im-
pulse-train method has been proposed in [12]. However, 
instead of utilizing seven oscillators, our supersaw simu-
lation employs only one sinusoidal waveshaper that is 
driven by a slightly modified gripple phaseshaper: 

 [ ] [ ]{ } ,),(mod),(modsin)( 21b mnxmnxgny mm += o  (28) 

where m1 and m2 are the ripple amounts, and x(n) = 
glin[φ(n),a1] = a1φ(n). The difference between the gripple 
phaseshaper of Equation 19 and that of Equation 28 is the 
added modulo operation of the first term. 

Figure 12 shows three waveforms produced by the su-
persaw simulation algorithm, using three different ripple 
amounts m1. Since a1 < 2π, only a portion of the entire 
sine wave cycle is used as a virtual analog sawtooth oscil-
lator. However, because a1 > 1, the phase signal extends 
beyond a single phase cycle – thereby introducing an 
additional discontinuity to the ripple-edged waveform. 

 

Figure 12. Supersaw simulation. (a) m1 = 0.75, (b) m1 = 
0.5, (c) m1 = 0.25  (a1 = 1.5, m2 = 0.88, and f0 = 441 Hz). 

Al though Equation 28 is capable of synthesizing cha-
racteristic spectrally rich supersaw timbres, the sound is 
still not a convincing simulation of a multi-oscillator set-
up. This is due to a lack of timbral variations over time, 
which is a distinctive feature of a slightly detuned oscilla-
tor bank. To overcome this, a low frequency oscillator 
(LFO) may be connected to the m1 parameter of the algo-
rithm, as shown in Figure 13. 

 

Figure 13. Block diagram of the supersaw simulation 
algorithm. 

Figure 13 shows also that nested phaseshaping is a 
practical tool that provides a modular approach to sound 
synthesis and is therefore instantly applicable in systems 
such as Max, Pure Data, and Reaktor. However, some 
implementations might opt for minimizing the number of 
function calls in the code. An example of this is shown in 
Equation 22. 

3.7 Phaseshaping for a Sinusoidal Waveshaper 

3.7.1 Sinusoid with a Variable-slope Ramp Phase 

Figure 14a shows the output of a sinusoidal waveshaper 
acting on the variable-slope phase signal of Figure 4. The 
waveshape consists of concatenated half- and full-cycle 
sine wave segments alternating at a frequency ratio of 
1:2. The spectrum contains all harmonics and decays 

 
Figure 14. Variable-slope phase signal applied to a 
sinusoidal waveshaper. (a) Duty width w = 0.50, (b) duty 
width w = 0.85 (f0 = 392 Hz). 
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fairly rapidly because the waveform has discontinuities 
only in its derivatives. 

The phase signal of Figure 14a was generated by mul-
tiplying a ramp signal with a square waveform. By re-
placing the 50% duty-width square with a variable width 
pulse signal, it becomes possible to alter the relative 
widths of the half- and full-cycle sine segments, as shown 
in Figure 14b. As can be seen, the fundamental frequency 
component is reinforced as the width of the full-cycle 
segment is increased. The spectrum also shows modest 
formant regions that sweep across the baseband when the 
pulse width is modulated with an LFO. 

3.7.2 Sinusoid with a Variable-slope Triangular Phase 

The variable-slope triangular phase generator gvtri of 
Equation 17 is closely related to the phase shape of the 
previous section. However, there are two major differ-
ences as can be seen in Figure 15. First, applying a sinu-
soidal waveshaper to the output of gvtri produces a more 
prominent formant region, whose position may be con-
trolled using the a1 parameter. Second, outside this for-
mant region, every fourth harmonic is missing from the 
spectrum. The aliasing artifacts are also more pro-
nounced, because the symmetrical nature of the phase-
shaper is reflected as the sharp peaks of the waveshaped 
output. 

 
Figure 15. Variable-slope triangular phase signal ap-
plied to a sinusoidal waveshaper (a1 = 1.5, w = 0.75, and 
f0 = 392 Hz). 

Decreasing the value of parameter a1 below 1 bends 
the phase signal from a perfect triangle (a1 = 0.5) towards 
a rising ramp shape (a1 = 0). At a1 = 0.5, the waveshaper 
output is a half-cycle sine wave, which gradually bends 
towards the extreme quarter-cycle segment shown in 
Figure 7. In between, the spectral tilt becomes less steep, 
thereby making it possible to control the amount of high 
end spectral content, as shown in Figure 16. 

Lower values of a1 produce more high end content, 
and at the same time, the amount of aliasing increases. By 
comparing Figure 16 to Figure 7, it is noted that poly-
BLEP provides better aliasing suppression than the sinu-
soidal waveshaping in effect here. 

 

 
Figure 16. Bent sinusoidal half-cycle (a1 = 0.25, w = 
0.2, and f0 = 1245 Hz). 

4. CONCLUSIONS 

This paper investigated elementary phaseshapers, which 
were based on low-level entities such as modulo opera-
tions and linear transformations. All elementary phase-
shapers were derived from the unipolar modulo counter 
signal, which is a common building block of digital 
sound synthesis systems. 

The elementary phaseshapers were then arranged into 
nested higher-level topologies to form polynomial and 
geometrical phaseshaper compositions. These included 
fractional period, variable-width and variable-slope ramp, 
triangular, rectangular, and ripple-edged phaseshapers. 

The phaseshaper compositions were finally utilized in 
classic and novel oscillator effect algorithms. The novel 
algorithms comprised single-oscillator hardsync, triangle 
modulation, efficient supersaw simulation, and sinusoidal 
waveshape modulation effects. 

These synthesis algorithms produce evolving spectra, 
which can be manipulated with a continuous controller 
device or a control rate function generator, using a com-
pact set of synthesis parameters. The algorithms are most 
useful in providing animation to the otherwise static tim-
bres, and as such, respond well to secondary control 
streams that carry minute articulated expressions of the 
performer. 

Because of the modulo operation, the produced wave-
forms are generally discontinuous, leading to aliasing 
artifacts. However, it was found that a previously pro-
posed polynomial bandlimited step function (polyBLEP) 
is an efficient method to reduce aliasing. 

The authors believe that nested phaseshaping is a flex-
ible tool that has many practical uses in the design and 
implementation of modular sound synthesis applications. 
Furthermore, because the phase signal has a profound 
effect on the produced timbre, phaseshaping may also be 
used in sculpting yet-unheard sonic material. 

Online sound examples and software are available at 
http://www.acoustics.hut.fi/go/smc2010-phaseshaping. 
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ABSTRACT

Time-frequency representationsare commonly used tools
for therepresentation of audio and inparticular musicsig-
nals. From a theoretical point of view, these representa-
tions are linked to Gabor frames. Frame theory yields a
convenient reconstruction method making post-processing
unnecessary. Furthermore, using dual or tight frames in the
reconstruction, we may resynthesize localized components
from so-called sparse representation coefficients. Sparsity
of coefficients is directly reinforced by the application of
a ℓ1-penalization term on the coefficients. We introduce
an iterative algorithm leading to sparse coefficients and
demonstrate the effect of using these coefficients in sev-
eral examples. In particular, we are interested in the ability
of a sparsity promoting approach to the task of separating
components with overlapping analysis coefficients in the
time-frequency domain. We also apply our approach to the
problem of auditory scene description, i.e. source identifi-
cation in a complex audio mixture.

1. INTRODUCTION

Time-frequency representations such as the spectrogram or
short-time Fourier transform seem to be well suited for
the representation of music. However, due to the uncer-
tainty principle, a certain smearing of the time-frequency
coefficients is unavoidable. This effect will often create
overlap between components that would not be expected
to overlap by their nature, e.g. two sinusoids with close
frequencies. For other components, the overlapping area
may be increased, thus complicating the task of separating
certain components with approximately disjoint support in
the time-frequency domain. For example, one might be in-
terested in suppressing a certain instrument’s contribution
from a music signal. Such approaches are used in Com-
putational Auditory Scene Analysis by the name of Time-
Frequency masks. In this contribution, we describe the na-
ture of time-frequency representations from a mathemati-
cal point of view. We then introduce a model and a cor-
responding algorithm for actively obtaining a sparse signal
representation. The model rests on the fact that the time-
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frequency representations typically used in the audio sig-
nal processing community, are highly redundant. Hence,
the representation coefficients are not unique and we may
impose additional assumptions on the coefficients. Here,
we will describe the effect of imposing anℓ1-penalization
on the coefficients. We will show for several synthetic and
real signals, that this leads to sharper representations and
better separation properties. We apply the presented meth-
ods to the problem of auditory scene description. More
precisely, given a mixture of known source sounds, we
wish to determine the activity pattern for each source. This
will be achieved by correlating representation coefficients
of the sources with those of the mixture. In this setting, we
compare the canonical time-frequency coefficients to those
obtained from sparse regression in the time-frequency do-
main. The idea to use the sparse coefficients in place of
the the canonical ones rests on the assumption, that these
coefficients accurately capture the main characteristics of
each of the sources. We will show that results obtained
from sparse time-frequency representations improve those
obtained from canonical representations. In particular, the
amount of false positives is reduced, which is an important
issue as pointed out in [1]. Thus, sparsity constraints help
to avoid artificial correlations between signal components.

2. GABOR FRAMES: ANALYSIS AND SYNTHESIS

Given a discrete sequence of real or complex numbers,
x[n], n ∈ Z, as well as a, usually compactly supported,
window functionϕ[n], n ∈ Z, the short-time Fourier
transform (or STFT) ofx[n] is given, fork ∈ Z andω ∈
[−0.5, 0.5] by

Vϕx(k, ω) =

∞∑

n=−∞

x[n]ϕ[n− k]e−2πiωn. (1)

Now, in practice, a subsampled version of (1) will usually
be applied. Also, since the windowϕ has finite lengthl, we
deal with a finite number offrequency bins. Hence, the re-
sult of the sampled STFT, also called Gabor transform, [2],
is a matrix of sizeN ×M , whereN is the number of time
shifts by a time-constant, or hop-size,a considered.M is
thenumber of frequency bins, hence the length of the FFT,
given byl/b, b being the frequency-shift constant.
To gain a more general point of view, it is convenient, to
consider the coefficientsVϕx(ka,mb) obtained from sub-
sampling in (1), as inner products between the signalx and
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time-frequency-shiftedwindows. We define the inner prod-
uctx andy ∈ C

L as

〈x, y〉 =

L−1∑

n=0

x[n]y[n]. (2)

ϕ will from now on be called window function.

Definition 1 (Time-frequency shifts) Letx ∈ C
L.

Tkx[n] := x[n − k] is called translation operator or time
shift byk.
Mlx[n] := e

2πiln

L x[n], l ∈ Z is called modulation opera-
tor or frequency shift byl.
The composition of these operators,MlTk, is a time-frequency
shift operator.

The family
ϕk,m := MmbTkaϕ (3)

for a window functionϕ ∈ C
L, m = 0, . . . ,M − 1 and

k = 0, . . . ,K − 1, whereKa = Mb = L, is called the set
of Gabor analysis functions.
We next describe, under which conditions a signal is un-
ambiguously defined by a family of Gabor atoms. The the-
ory of framesgives the appropriate framework and we first
state the defining inequalities for signals of finite energy.

Definition 2 A set of Gabor analysis functionsϕk,m in C
L

is called a Gabor frame, if there exist constantsA,B > 0,
so that, for allf ∈ C

L

A‖f‖2 ≤

M−1∑

m=0

K−1∑

k=0

|〈f, ϕk,m〉|2 ≤ B‖f‖2. (4)

If A = B, then the functionsϕk,m form atight frame.
The above inequality can be understood as an “approxi-
mate Plancherel formula”, characterizing the preservation
of energy by the transform and leading to the invertibility
of the frame operator S:

Sf =
∑

k,m∈Z×Z

〈f, ϕk,m〉ϕk,m (5)

Note that the frame operator is usually defined as an oper-
ator onL2(Rd) and the relation to the finite discrete case
is actually of interest in itself, see [3, 4] for more details.
Since we only consider the finite disrete case, which is of
interest for implementation, we maythink ofS as a matrix
mappingCL toC

L.
The invertibility ofS is equivalent to the existence of frame
bounds0 < A,B < ∞ in the frame inequality in (4). The
invertibility of S, now, leads to the existence of so-called
dual frames,yielding convenient reconstruction formulas.
This can easily be seen as follows: The canonicaldual
frameϕ̃k,m, is given by

ϕ̃k,m = S−1ϕk,m. (6)

For Gabor frames, the elements of the dual frameS−1ϕk,m

are generated from a single function (the dual windowϕ̃),
and will hence be denoted by(ϕ̃k,m). This follows from

the fact thatS and S−1 (the frame operator and its in-
verse) commute with the modulation and translation oper-
atorsMmb andTka, for m = 1, . . . ,M andk = 1, . . . ,K,
see e.g. [5]. Hence,

f = S−1Sf =
∑

〈f, ϕk,m〉ϕ̃k,m. (7)

The coefficients used in (7) are calledcanonicalin order
to distinguish them from (infinitely many) other possible
expansion coefficients with respectto the same frame. In
the case of a tight frame,S = AI, whereI denotes the
identity operator, and thereforeS−1 = 1

A
I. Tight frames

will be further discussed in the next subsection.
In the finite discrete caseof f ∈ C

L a collection{ϕk,m} ⊂
C

L with N = KM can only be a frame, ifL ≤ N and if
the matrixG, defined as theN × L matrix havingϕk,m

as its(n + kM) − th row, has full rank. In this case, the
frame bounds arethe maximum and minimum eigenval-
ues of the frame operatorS = G∗ · G. Here,G∗ denotes
the adjoint ofG. The eigenvalues of this positive matrix
yield information about numerical stability. The closer the
frame-bounds are, the closer the frame operator will be be
to a diagonal matrix. IfA andB differ too much, the in-
version of the frame operator is numerically unstable.
In applications in audio signal processing, redundancy of
2, 4 or even higher is common. Further, the effective length
of the windowϕ equals or is shorter1 than the FFT-length.
In this special situation, the frame operator takes a surpris-
ingly simple form:
From the definitionof the frame operator

Sf =
∑

k,m

〈f, ϕk,m〉ϕk,m

a straight-forward calculation (see [3] for details) shows
that the single entries ofS are given by

Sji =

{

M
∑K−1

k=0
Tkaϕ[j]Tkaϕ[i] if |j − i| modM = 0

0 else
(8)

SinceM ≥ l, wherel is the window-length,j = i is the
only case for which|j − i| modM = 0 holds andϕ[j]
andϕ[i] are both non-zero. Therefore, the frame operator
is diagonal and the dual window̃ϕ is calculated as

ϕ̃[n] = ϕ[n]/(M

K−1∑

k=0

Tka|ϕ[n]|
2)

2.1 Tight frames: synthesising with the analysis
window

As mentioned above, for atight frame, the frame operator
equals identity up to a constant factor. This is as close as
we may get to an orthonormal basis. As a matter of fact,
for any given Gabor frame, a corresponding tight frame can
be found and, as for dual frames, by a surprisingly simple
formula in many situations of practical relevance.
Note that the frame operatorS is a positive and symmetric
and therefore selfadjoint operator, from which it follows

1 E.g. in the case of zero padding.
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that S−1 andS− 1

2 are selfadjoint as well and commute
with time-frequency shifts.
These properties allow the following manipulations of ex-
pansion (7):

∑

k,m

〈f, ϕk,m〉ϕ̃k,m = S−1Sf =S− 1

2SS− 1

2 f

=
∑

k,m

〈f, S− 1

2ϕk,m〉S− 1

2ϕk,m =
∑

k,m

〈f, ϕt
k,m〉ϕt

k,m

Remark 1 Note that the tight window given byϕt = S− 1

2 ·
ϕ is closest to the original window in the following sense:
Let ϕ be a window generatinga frame for lattice con-
stantsa and b and letϕt be the tight window given as
ϕt = S− 1

2ϕ. Then for any functionh generating a tight
frame for lattice constantsa and b, the followingholds
[6]:

‖ϕ− ϕt‖2 ≤ ‖ϕ− h‖2

This result shows that the tight window calculated asϕt =
S− 1

2ϕ combines the advantage of using the same window
for analysis and synthesis with optimalsimilarity to a given
analysis window. At the same time no “correction” by mul-
tiplication with a gain function is necessary after process-
ing, which makes processing more efficient and the results
less ambiguous in the case of modification of the synthe-
sis coefficients. This property becomes even more relevant,
if the canonical Gabor coefficients are modified in some
sense before resynthesis, e.g. in the case of time-frequency
masking. In this case, the choice of a tight frame for analy-
sis and synthesis minimizes the error arising from sampling
in the coefficient domain. In the case of sparse coefficients,
which we consider in the next section, tight frames also al-
low for a reliable interpretation of the obtained coefficients
as well as satisfying reconstruction from these coefficients.

In analogy to the dual window and under the same con-
ditions, we may deduce that the tight windowϕt corre-
sponding to a given windowϕ and the time constanta can
be calculated as:

ϕt[n] = (S− 1

2ϕ)[n] = ϕ[n]/
(
M

√
√
√
√

K−1∑

k=0

Tka|ϕ[n]|2
)

3. ENFORCING SPARSITY BY AN ℓ1

CONSTRAINT

Being convinced thatthe signal components of interest have
a sparse, at least approximative, representation in the atomic
systems we use, we may directly look for relevant coeffi-
cients only. The prior information can be introduced by
assuming an appropriate distribution of the coefficients.
Mathematically, minimization of anℓ1-constraint on the
coefficients yields explicit solutions and fast algorithms.2

In fact, theℓ1-constraint corresponds to a prior on the co-
efficientsc of the form

p(c) = exp(−µ‖c‖1).

2 Note, that it has been proved that certain situationsℓ1-minimization
in fact yieldsthe optimally sparse solution, see [7].

This prior leads to the following minimization problem.
Given a tight Gaborframewith elementsϕt

k,m, we wish to
minimize the following expression:

∆(x) = ‖
∑

k,m

ck,mϕt
k,m − x̂‖22 + µ‖c‖ℓ1 (9)

where‖c‖ℓ1 =
∑

k,m |ck,m| is the ℓ1-norm of the coef-
ficient sequence and̂x = x + n is the observed signal,
possibly contaminated by noisen. For orthonormal bases
(instead of frames), the problem formulation in (9) leads to
a well-known soft-thresholding solution. However, in the
over-completesituationof frames, the situation is more in-
tricate and an iterative procedure has to be applied.

3.1 Landweber iterations

While the classical basis pursuit [8] may be solved by lin-
ear programming algorithms, iterative thresholding is com-
monly used to solve the minimizationproblem posed in
(9). Other algorithms exist, see [9, Chapter 12] for a thor-
ough overview, however, the Landweber algorithm pro-
posedin the current situation appeals by its simplicity and
easy implementation. In the statistics community the it-
erative soft thresholding has been known for some time
under the name ”the lasso”, [10]. The choice ofµ is usu-
ally a delicate task and mirrors assumptions on the noise
variance present in thesignal model. In fact, increasingµ
corresponds to the assumption of a higher noise variance
and will thus lead to a sparser solution.
Let Gϕt denote the Gabor analysis matrix corresponding
to the tight system at hand and letG∗

ϕt denote the corre-
sponding synthesis system which is just the adjoint ofGϕt

in the case of a tight frame. To find the solution of (9),
consider the sequence of iterates

c
n = Sµ(c

n−1 +Gϕt(x̂−G∗
ϕtc

n−1)), (10)

wherecn are the expansion coefficientsobtained in thenth

step,c0 is arbitrary and the thresholding operatorSµ is
given by

Sµ(ck,m) =







ck,m + µ
2
, ck,m ≤ −µ

2

0 |ck,m| < µ
2

ck,m − µ
2
, ck,m ≥ µ

2

(11)

It should be noted thatGϕt x̂ are the coefficients of the orig-
inal data, which have to be calculated just once. The itera-
tions thus consist of a gradient step (10), in which the co-
efficients are updated, and the soft thresholding step given
in (11). Usually a stopping criterion is built into the al-
gorithm using a fixed tolerance for‖cn − c

n−1‖, unless a
maximum number of iterationsis reached before the stop-
ping criterion is met.
According to [11], the corresponding iterative algorithm
converges to the solution of (9).

3.2 Two examples

Wefirst consider a synthetic signal comprised of twosinu-
soids with frequencies1300Hz and1400Hz, given a sam-
pling rate of8192. We use a Gaussian window of400
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Figure 1. Gabor coefficients and sparse representation of
two close sinusoids

samples length, the time-shift parametera = 100 and cal-
culate the canonical Gabor coefficients,shown in the first
display of Figure1. The second display, then, shows the
coefficients resulting fromℓ1-penalization on the expan-
sion coefficients according to (9). It is immediately ob-
vious, that the algorithm visually separates the two signal
components. Note that approximate reconstruction from
thesecoefficients is possible, as the correct phase factors
are generated by the algorithm. A small error occurs, de-
pending on the choice ofµ in (9).
Our second example is a short extract from a music signal

consisting of apiano, a double-bass and drums, see Fig-
ure 2. Again, we calculate the sparse coefficients, once
with a wide Gaussian window, to represent the tonal parts,
and once with anarrow Gaussian window to obtain sparser
coefficients for transient parts. The results are shown in
the 2nd and last display. Reconstructing from sparse coef-
ficients, obtained with the wide window, yields a rather sat-
isfying reproduction of the tonal part (bass, piano), while
the residual coefficients mainly contain the cymbals’ con-
tribution. Note that, to this point, we have not applied any
sophisticated statistical model to suppress noise or separate
signal components, nor have we used any more sophis-
ticated sparsity constrained as suggested in [12] to better
encode dependencies between the single coefficients. We
only use the fact that arelevant part of the signal has a
sparse representation in the frame used for analysis. This
example underlines the possible merits of the approach to
the task of separating components in the time-frequency
domain. Similar results using other overcomplete dictio-
naries have been obtained before, see e.g. [13], where
sparse representations of signals were considered using the
modulated complex lapped transform (MCLT). Important
issuesconcerning the efficient encoding of the positions
and values of the significant coefficients that arise in ob-
taining sparse coefficients such as those mentioned in e.g.
[13, 14] will not be discussed in this paper. Let us just re-
mark, however, that the number of significant coefficients
in our experiments amounts to0.3% to 3% of the size of
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Figure 2. Sparse coefficients for a music signal

the coefficients space.

4. APPLICATION: AUDITORY SCENE
DESCRIPTION

Our next application isin the area of auditory scene de-
scription, i.e. the classification of audio sources in sound
mixtures of several sources. Please note that we are not
aiming at source separation but at the easier task of source
identification. On the other hand we are going beyond
recognition of instrumental sources [15] by including a
wider variety of sounds [1]. Also, although closely related
to the workdone in the very active research domain ofmu-
sic transcription, see, e.g. [16,17], our approach addresses
a slightly different task. Since our primary interest is in
electro-acoustic music, for which often welldefined sound
grains are either pre-defined or can be extracted from a
given composition, we wish to automatically determine,
whether a particular source sound is present at a specific
time in the piece. This is an important step in the process of
automatic or semi-automatic annotation of electro-acoustic
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Figure 3. Canonical coefficients of four sources
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Figure 4. Sparse coefficients of four sources

music.

4.1 Sound Sources

The sources in our example are:

• source 1: single high note playedon a Glockenspiel
(one second long)

• source 2: long note played on an accordion of medium
pitch (ten seconds long)

• source 3: long clarinet tone, low pitch (seven sec-
onds long)

• source 4: noisy clarinet sound, without pitch, air
only (eight seconds long)

The canonical and sparse coefficients of the sources are
shown in Figure3 and Figure4, respectively.

While sources 2 and 3 are harmonic sounds produced
by instruments, source 1 is an inharmonicsound produced
by a bell and sound 4 is a noisy sound with little harmonic
constituents. These sources were chosen to reflect the wide

variety in spectral and temporal characteristics displayed
by sounds commonly used in electro-acoustic composi-
tion.

4.2 Method

We consider the following setting: we are given a sound
file generated byN known sourcessj , j = 1, . . . , N , which
can be active for any given time t. The signal then is a sum
of shifted copies of the sourcessj at timetk, i.e. sj(t−tk).
For the purpose of our experiment however, we approxi-
matef at uniform overlapping time intervalsIl as a linear
combination of the sources:

fIl ≈

N∑

j=1

aj,Ils
j , (12)

whereaj,Il is a function storing the activation pattern, i.e.
a binary function with values in{0, 1}. We wish to recover
aj,Il for j = 1, . . . , N , over the intervalsIl.
To do so, we observe the following. Since we expect ap-
proximate orthogonality of the various sources in the trans-
form domain, we may assume that the correlation between
the coefficients of the mixture and each of the sources re-
flects the presence of the sources. We therefore proceed
as follows: time-frequency coefficients of both the source
specimen and the mixture are being computed; overlap-
ping time slices of the time-frequency coefficients are cor-
related with time-slices of the same length from all four
source specimen.

In the sequel we are going to use the absolute values of
both the canonical Gabor coefficients and the sparse coeffi-
cientsck,m obtained as solution of (9). For brevity, we set
ŝk,m = |Vϕs(k,m)| = |〈s, ϕk,m〉| and ĉk,m = |ck,m|. In
orderto judge the approximate orthogonality of the source
specimen in the coefficient domain, we define the inner
product of coefficient matriceŝs1, ŝ2 as

〈ŝ1, ŝ2〉M =
∑

k

∑

m

ŝ1k,m · ŝ2k,m

and consider the following matrices:

CMi,j = 〈ŝi, ŝj〉M , andCMspars
i,j = 〈ĉi, ĉj〉M .

We normalize the coefficients corresponding to the various
sources, so that we can say that deviation from orthogonal-
ity between the sources is reflected in deviation from di-
agonality of the matricesCM andCMspars, respectively.
On the other hand, if the condition number of the obtained
matrices is good, the correlation between sources can be
corrected by applying the inverse of the respective matrix
to the obtained correlations between mixture and sources.
For clarity, we describe the de-correlation step for time-
frequency coefficientŝf of any signalf without specify-
ing whether the coefficients are canonical or sparse for the
moment. For the mixture signalf we observe:

〈f̂Il , ŝ
k〉 ≈

N∑

j=1

aj,Il〈ŝ
j , ŝk〉,
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so that in order to retrieve the coefficientsaj,Il , we have
to solve a system of equations involving thematricesCM
or CMspars. The detailed procedure is described in Sec-
tion 4.3below.

• Note that it is vital in our method to consider time-
frequency coefficients ratherthan just single spectral
representations. This takes the time-structure of the
signals into account. This procedure makes it un-
necessary to examine the correlation coefficients in
every time-instant.

• Since the time-structure of the sources is essential
to the performance of our method, transient signal
components, in particular clicks, are not well-described.
However, methods for extraction of transient signal
components exist, see e.g. [18,19,20,21], and there-
fore, their classification may be considered separately.

• For the simulations discussed below,we chose time-
slices of one second length and an overlap of0.5
seconds. As we will see, for sources with significant
time-structure, this approach yields rather satisfying
results.

4.3 Experiment and results

In the experiments, we consider a one minute signal mix
consisting of the four sources mentioned above, at most
three of which are active at any time. We calculate the
Gabor coefficients of the whole length of the mix (one
minute) but just one second for each of the sources us-
ing the following parameters: a Hanning window of length
1024 samples (corresponding to23ms at a sampling rate
of 44100Hz) with a hop size of512, from which a tight
window is obtained. This yields a Gabor coefficient matrix
of size1024 × 5169 for the signal mix and1024 × 88 for
each of the sources. We then consider time-slicesf̂Il of the
Gabor coefficient matrix of the same size as the coefficient
matrix of the sources, hence corresponding to a duration
of 1 second. We consider an overlap factor of 2 between
subsequent time-slices, resulting in116 time positions in
our setting. We then compute the correlation-matrixC, of
size6× 116, whose entries are given by

Cj,l = 〈f̂Il , ŝ
j〉M .

Since the model for each time-slice is approximated to be
a linear combination of the sources, solving for the coeffi-
cientsaj,Il amounts to computing forinv(CM) ∗ C. For
the four sources in our experiments, we obtain condition
numbers2.9936 and 1.6425 for CM andCMspars, re-
spectively, which reflects, in this case, their deviation from
the identity. This can be interpreted by saying that the
sparse coefficients of the sources have less overlap than
the canonical coefficients, as expected.
The resulting activation matrix is then normalized for each
source, such that the maximum value assumed is1 for
each source. Hence the same threshold is simultaneously
applied to all sources, entries above the threshold are set
to 1 while the rest are set to 0. The same procedure is
applied to the sparse representation of the signal and the

sources. The sparse coefficients have been obtained by ap-
plying Landweber iterations withµ = 0.04.
Figure5 shows the true map of time positions where each
source is present (target map, black indicating presence of
a source), as well as thematrices obtained from the above
mentioned procedure, using the Gabor coefficients and the
sparse representation with threshold values0.145 and0.2
(with the lower threshold being optimal for the sparse rep-
resentation and the higher for Gabor coefficients).

In comparing the resulting matrices with the true maps,
we analyze the receiver operating characteristic (ROC) curve
and compute the following:

• accuracy= TP+TN
TP+TN+FP+FN

• specificity= TN
TN+FP

• sensitivity= TP
TP+FN

,

whereTP, TN, FP, FN signify true positives,true
negatives, false positives, and false negatives, respectively.
We see in Figure6 the corresponding graphs plotted over
varying threshold values.

An ideal method for identifying the sources in the mix-
ture wouldhave both specificity and sensitivity equal to
one. In more realistic settings it is necessary to find a
threshold where a good compromise between high speci-
ficity and sensitivity exits. As can be seen from the right-
most plot in Figure6, both the canonical and sparse rep-
resentations yield almost equal results in terms of sensi-
tivity. With increasing threshold,less and less sources are
detected correctly. But as can be seen from the middle plot
in Figure6, the optimum value for specificity is reached
earlier for the sparse representation. This means that one
can choose a threshold where specificity isoptimal (i.e.
no false positives) while still having very high sensitivity
(i.e. high amount of true positives). This also results in
the optimum value in terms of accuracy being reached ear-
lier for sparse representations (leftmost plot in Figure6).
These slightly improved results are due to the lower cross-
correlation between signalcomponents in the sparse repre-
sentation.

5. CONCLUSIONS AND PERSPECTIVES

We suggested to apply a sparsity-promoting norm on the
coefficients in a Gabor expansion. We also recalled how
to calculate dual and tight Gabor frames for the situation
most commonly encountered in audio signal processing.
It seems highly recommendable to prefer tight frames if
modification of the canonical coefficients is envisaged. In
an application to classification of sound sources, experi-
mental results indicate that sparse coefficients help to avoid
false positives as compared to the results obtained from
using canonical Gabor coefficients. Since sensitivity is
comparable for both sets of coefficients, choosing a sparse
representations leads to slightly better over-all classifica-
tion results. The influence of various parameters, in par-
ticular the effects of the threshold in the Landweber it-
erations is yet to be investigated. Future work will also
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include the application of more sophisticated coefficient
norms as suggested in [12] as well as the usage of frames
other thanGabor frames, e.g. wavelets, in order to include
transient components. Furthermore,systematic evaluation
on a more extensive data base will allow us to judge the
influence of the various parameters involved.
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ABSTRACT
New cloud computing ways open a new paradigm for
music composition. Our music composing system is now
distributed on the Web shaping what we call as Computer
Music Cloud (CMC). This approach benefits from the
technological advantages involved in distributed
computing and the possibility of implementing specialized
and independent music services which may in turn be
part of multiple CMCs. The music representation used in
a CMC plays a key role in successful integration. This
paper analyses the requirements for efficient music
representation for CMC composition: high music
representativity, database storage, and textual form.
Finally, it focuses on its textual shape, presenting
MusicJSON, a format for music information interchange
among the different services composing a CMC.
MusicJSON and database-shaped representation, both
based on an experienced sound and complete music
representation, offer an innovative proposal for music
cloud representation.

1 . INTRODUCTION
Cloud Computing, a new term defined in varied ways [7],
involves a new paradigm in which computer infrastructure
and software are provided as a service [5]. This services
themselves are referred to as Software as a Service (SaaS).
Google Apps is a clear example of SaaS [8]. Computation
infrastructure is also offered as a service (IaaS), thus
enabling the user to run the customer software.

This new paradigm offers new possibilities for the
design of composition systems. Fig. 1 shows the
Computer Music Cloud (CMC) approach where the
system is distributed across specialized online services
[2]. The user interface is now a web application running
in a standard browser (1). A storage service is used as
an edition memory (2). An intelligent-dedicated service
is allocated for music calculation and development (3).
Output formats such as MIDI, graphic score and sound file
are rendered by independent services exclusively devoted
to this task (4). The web application includes user sessions
to allow multiple users to use the system. Both public
and user libraries (5) are also provided for music objects.
Intermediary music elements can be stored in the library
and also serialized into a MusicJSON format file, as
described below.

Fig. 1. Basic Structure of a Composition Music
Cloud

This CMC approach has several advantages. Some of
them come from Cloud Computing, such as scalability,
optimization and reuse of available resources. Others
come from web applications, such as decentralized
information, being able to work from any computer with
a standard Internet connection and browser, and the
inherited code. Also, the division of the music system
into services allows for the design and implementation of
independent services with the most appropriate tools, It is
apart from the availability of a service for different CMC
systems. Since services can be shared, the design of new
music systems is facilitated by the joint work of different
services controlled by a web application.

The key factor in successful integration is the use of
a well-defined music representation for music data
interchange. This is also the objective of this paper:
presenting a proposal for the interchange of music
information among the services which shape a music
composition cloud. In the next section, the types of
services included in this cloud are analysed as a base
to define the requirements to be fulfilled by the selected
music representation, tackled in Section 3. Section 4
describes the MusicJSON format as a textual form of
the used representation, while Section 5 describes some
use examples. The paper ends with some conclusions and
some points referred to related work.

2 . MUSIC SERVICES IN THE CMC
In a simple form, Music Web Services are servers
receiving a request and performing a task. At the end
of a task the resulting objects are returned to the stream

Copyright: © 2010 Jesus L. Alvaro. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.
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or stored in an interchange database. The access to this
database is a valuable feature for services since it is a
shared workspace where the componets of music
composition are represented. The Music Services of the
cloud can be classified according to their function. These
services are described in the following subsections.

2.1 Input
This group includes the services aimed particularly at
incorporating new music elements and translating them
from other input formats.

2.2 Agents
They are those services which are capable of inspecting
and modifying music composition, as well as introducing
new elements. They include human user interfaces, but
they may also consider other intelligent elements taking
part in music composition[4]: introducing decisions,
suggestions or modifications. In our prototype, we have
developed a web application [2] acting as a user interface
through the edition of music objects.

2.3 Storage
There are two main types of storage services: libraries and
composition environments. Libraries store music objects
which shall be used in different compositions. There are
general libraries and user libraries. Main lib stores shared
music elements as global definitions. This content
comprises music elements shared by all users as a shared
music language. User-related music objects are stored in
the User lib and include composer-defined music objects
which can be reused in several parts or compositions.

Composition environments are the storage services
where the piece is progressively composed. This database
contains the composition environment (i.e., everything
related to the piece currently under composition), and does
not only act as a space for information interchange, but
also as a real and shared music environment with which
several services can interact simultaneously and
coordinatedly.

2.4 Development
The services in this group perform development processes.
As explained in [1], development is the process by which
higher-abstraction symbolic elements are turned into
lower-abstraction ones. High-abstraction symbols are
implemented as meta-events and represent music objects
such as motives, segments, and other composing
abstractions [1]. Algorithmic composition developers and
other intelligent services, such as constraint solvers or
genetic algorithms, are examples of this type of music
development service .

2.5 Output
These services produce output formats as a response to
requests from other services. They render formats from
the element currently under edition for immediate
composer feedback as well as the whole score or audio.
The MIDI file for audio playing and standard notation in

a graphic format are two clear examples of this. Other
output formats are also possible by integrating a suitable
translation service.

3 . MUSIC REPRESENTATION FOR THE
CMC

To achieve an effective integration of all elements in the
cloud for music composition, all services must share the
same music representation. This representation must meet
three main requirements: satisfactorily represent the basic
elements of music composition in a solid hierarchy of
classes; present a representation form for storing music
objects in a database; and count on a textual form which
facilitates the interchange of music objects among the
different services. Besides, the cloud's distributed nature
must also be taken into account by incorporating the
possibility of distribution in the data. All these elements
are described in the following subsections.

Fig. 2. Abstract, Database and Textual Forms
of Music Representation

3.1 EVMusic Representation
The proposal is based on EVMusic representation [1]. It
is a robust model with high multi-level representativity,
multiple topologies and meticulous, detailed
representation of music pitch, as well as full compatibility
with traditional music notation. Likewise, its multi-level
nature and expandability allow for representing music
elements at varied abstraction levels.

EVMusic representation counts on a complete
hierarchical organization of classes designed in the
platform-independent UML [13], which allows for its use
in multiple programming languages. Figure 3 shows a
brief extract from the UML representation, showing only
some of the classes present in the music fragment in
Figure 6, which shall work as a reference for subsequent
examples. The present paper is not aimed at contributing
a detailed analysis of EVMusic classes. Nevertheless, we
shall contribute a brief description of some of the most
relevant aspects shown in this figure, particularly the
relations.

In a UML Class Diagram [12], the inheritance relation
among classes is represented with a hollow pointed arrow.
Thus, it can be observed in this figure that a scoreelement
is an event, which in turn is a treeobj just like singlepitch.
Inheritance relations can also be multiple, as it occurs with
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the note class. Thus, it can be deduced that a note is either
a score element with a unique pitch ,or a pitch temporarily
placed on the score.

Containment relations are indicated by means of
rhombus-shaped arrows and the name of the relation.
Thus, it can be observed in the figure that an object of
the aggregate class includes an attribute known as pitches,
which is a container of singlepitch-like elements.
Therefore, a chord (an nchord-like object) which inherits
the aggregate properties is a scoreelement which contains
several singlepitches. Grace notes are also represented
with a content relation: they are a sequence of
singlepitches which ornament a scoreelement and are
stored in its slot known as graces. Finally, the structure of
similar objects is also indicated by the content relation. In
EVMusic, each event is by default a group of subevents,
as clearly reflected in the fractal-like structure of music
time. Thus, these subevents are stored in the slot events of
the main event. The tree structure is represented by means
of the treeobj class and its parent relation. It is extended
to all representation elements and shall be commented on
in the following section.

Fig. 3. UML Diagram with some classes of
EvMusic Representation

3.2 Database Stored Representation
Database storage allows several services to share the same
data and collaborate in the composition process. The
information stored in a database is organized in tables
of records. The database representation must achieve two
objectives: store music instances and store the relations
among these forms.

Figure 4 shows a simplified scheme with some
database fields. To represent the objects of a particular
class, the table of the database incorporates the field
objclass, which contains the name of the object class.
The attributes of each class are usually represented by

fields with the name of the attribute. In this figure, these
attributes are indicated in the rows of predefined attributes
(AttributeA, AttributeB,...) Importantly, appropriate
representations must enable the incorporation of new
elements, even those which have not been defined yet.
Some pairs of generic fields have been provided with
this purpose. These pairs of generic fields store both the
name of the attribute and its value. They are indicated in
the central rows of this figure as Expandable Attributes.
For instance, if we want to incorporate a new attribute
known as "zattrib", the register will contain "zattrib" in the
field attrib1name, and its value in the field attrib1value.
Thus, implementing a new storage system is not necessary
when a new class, with its new attributes, is defined.

Fig. 4. Record Structure of Data Base

The relations among the music objects are also
represented in the database. Among all of them, the
containment or belonging relation is likely to be the most
important one. As we have already mentioned, the music
objects of the abstract EVMusic representation are usually
tree-shaped related. To be stored in a database, these tree
structures must be previously converted into records. For
this purpose, the three main classes of EV representation
are subclassed from a tree node class treeobj, shown in
Fig. 3. Thus, every object is identified by a unique
reference and a parent attribute. This allows to represent
a large tree structure of nested events as a set of records for
individual retrieval or update. By default, the slot parent
always refers to the containment relation. However, other
relation can be used for this main tree. The field
parentrelationship (abbreviated as rel) was incorporated
with this aim. For instance, the last row in Table 1, shows
how the grace note indicates the main note nt03 as parent,
but the parent relationship in this case is not a temporary
structure, but a grace-note structure, so its value in the
field rel is "grace".

The representation of relations has been completed by
incorporating new relatives. As it can be observed in
Figure 4, the main relation parent was added pairs of
fields aimed at indicating new relatives. Thus, for
instance, a new relation r1 can be incorporated by
indicating the reference of the referred object in the field
relative1 and the relation between them in the field
r1relationship. The incorporation of new relations in the

112

http://docs.google.com/File?id=df84tzcv_239dbbbj8hn_b
http://docs.google.com/File?id=df84tzcv_239dbbbj8hn_b


database contributes an important degree of
representativity since it opens new creative and
representative possibilities, such as, for instance, the
opportunity of representing constraints among music
objects or the definition of some objects according to
others. Multiple relations also allow for the coexistence
of several organizations of objects, letting , for instance,
the same note belong to both a temporary structure
(represented by the relation parent) and a harmonic
structure (represented by an extended relation)
simultaneously.

Table 1. Database Content for a simple
example

Table 1 shows the database content for the music example
notated in Figure 6. The objclass field indicates the class
of every instance. Note the relation with the music
example and the following listing code in Section 4.1

The music objects described in the database of a music
storage service can belong either to the environment of the
music piece currently under composition, or to a general
or user library. Library objects are referred to by other
objects by putting the prefixes x.lib and the reference of
the library before the reference of the object, as we shall
see in the following examples.

3.3 MusicJSON Textual Representation
The third specification which must be met by the CMC
representation is counting on a textual form which allows
music information to be interchanged among services
through web streams.

When it comes to design an appropriate textual format
for data, basing on formats already widely-used in the
Internet seems a rather convenient strategy. Web
applications usually use XML and JSON (Java Script
Object Notation) [11] for data interchange. Both formats
meet the requirements. XML has been successfully used
for score representation [15]. However, we opted for
JSON, mainly due to the large JSON-compatible tool
library available at the time of writing this paper, and
the fact that JSON is the interchange format for some of
the main Internet web services such as Google or Yahoo.
In addition, JSON provides great features such as human
readability and dynamic unclosed object support, a very
valuable feature inherited from the prototype-based nature
of JavaScript [10]. To facilitate communication, JSON
also offers JSONP [9] and its corresponding libraries for

web applications, which extends interaction flexibility
among web services.

As mentioned in [11], "JSON is a lightweight data-
interchange format. It is easy for humans to read and
write. It is easy for machines to parse and generate.[...]
JSON is built on two structures:

• A collection of name/value pairs. In various
languages, this is realized as an object, record,
structure, dictionary, hash table, keyed list, or
associative array

• An ordered list of values. In most languages,
this is realized as an array, vector, list, or
sequence."

These universal data structures in JSON can be used to
describe EvMusic objects and communicate among web
music services. MusicJSON is the name given to this use.
Once the database-shaped representation has been
detailed, MusicJSON is easily understandable since they
are directly and closely related. MusicJSON can be
understood as a serialization of database content.
MusicJSON objects are therefore collections of key/value
pairs which have been assigned the afore-described
attribute objclass, so each object always declares its class.

Fig. 5. A note instance in UML, database and
MusicJSON representation

To give a simple example, Figure 5 shows the same object
as an instance in a ULM diagram, as an entry in the
database, and as a MusicJSON text. Please observe that
the textual representation includes the attribute objclass
with the value "note".
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The code in Section 4.1 shows a more illustrative
example applied to a brief music fragment. Compared to
its standard notation in Figure 6, and Table 1, MusicJSON
code is easily understandable. In order to improve the
readability, some data semantics are allowed in
MusicJSON, like the use of pitch names instead of
numbers, as shown in the code.

In MusicJSON not all the attributes of the object are
necessary, but only the relevant ones (i.e., those necessary
for object definition and abstract-instance construction).
If the values corresponding to a necessary property are
not indicated, the default values of its corresponding class,
or even specific default values defined for a particular
group of objects shall be taken. The key defaultcontent is
provided with this purpose.

Regarding structures, represented in the database as
content relations among entries, MusicJSON is not a mere
serialization of each database register. It can represent
arrays or lists, so structures are presented directly in a
deployed form. This tree structure can be observed in the
listing code in Section 4.1, which spreads completely the
tree score -> section -> staff -> part -> note.

Table 2. Extended references in MusicJSON

Other valuable feature of MusicJSON is related to its
distributed nature: extended references. Like a hyper-
document, MusicJSON allows for the use of external
objects either from a library or directly. A new kind of xref
object was defined with this purpose. The following table
shows some types of extended references such as external
objects by means of URL, elements of an imported library,
elements defined in a variable, or contextual elements.

Referred objects can be used in two ways: either
defining an xref-type object (as shown by the third
column), or using directly the extended reference with the
notation of prefixes separated by dots (as shown in the
last column). The former section has already shown how
library objects are referred to with the prefix x-lib. The
extended reference for an external object is denoted by
the prefix x.url followed by the URL of the object. The
individual and direct references to a previously-defined
object are indicated by the prefix x.def followed by the
reference previously defined within the same context.

The incorporation of xref objects and extended
references is an important value added to textual
representation since it allows for combining varied
elements which can be distributed in the Web. Arguably,
this makes it a valuable feature for a knowlegde
representation for the Cloud. In addition the use of
extended references, is open to the definition of new
references by using new prefixes. For instance, the last
row in Table 2 shows a reference to the context of musical
time, denoted by the prefix x.ctx.mtime. The time context
of a music object is very important, as in harmony. For
instance, an extended reference of this type enables the
definition of an object which depends on the current
harmonic context.

4 . MUSICJSON IN EXAMPLES
This section shows some illustrative examples of the use
of MusicJSON.

4.1 Music Fragment in Traditional Notation
As previously stated, MusicJSON is compatible with the
traditional notation. For the sake of illustration, we
include a simple example of traditional notation of a brief
music fragment and its corresponding representation in
the MusicJSON format. All music objects in the example
are represented in the UML diagram of Figure 3. Note
MusicJSON's high readability and clear relation to
traditional notation. Also note the generic tree structure
of a score: score -> section -> staff -> part -> note, at
the beginning of the code, and the relation to the database
content in Table 1 representing the same music example.

Fig. 6. Score notation of the example

{
"objclass": "score",
"pos": 0,
"events": [{

"objclass": "section",
"pos": 1,
"events": [{

"objclass": "staff",
"name": "Violin",
"pspellorder": 1,
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"events": [{
"objclass": "part",
"track": 1,
"pos": 1,
"events": [{

"objclass": "note",
"pos": 0,
"dur": "0.5",
"pitch": 69,
"art": "st"
"dyn": "mf",

},
{

"objclass": "note",
"pos": 0.5,
"dur": "0.5",
"pitch": 69,
"art": "st"

},
{

"objclass": "note",
"pos": 1,
"dur": "0.75",
"pitch": "d5",
"legato": "start",
"graces": [{

"objclass": "spitch",
"pitch": 76

}]
},
{

"objclass": "note",
"pos": 1.75,
"dur": "0.25",
"pitch": 73,
"legato": "end"

},
{

"objclass": "note",
"pos": 2,
"dur": "0.5",
"pitch": 74,
"art": "st"

},
{

"objclass": "note",
"pos": 2.5,
"dur": "0.5",
"pitch": 76,
"art": "st"

},
{

"objclass": "nchord",
"pos": 3,
"dur": "1",
"pitches": [{

"objclass": "spitch",
"pitch": "f#5"

},
{

"objclass": "spitch",
"pitch": 69

}
]

}
]

}]
}]

}]
}

4.2 Storage Service Access
The interchange of musical information between the
services of the CMC can be done directly, but it is also
possible to exchange it in a shared form through the
database. Any exchange of information with the Storage
Service is done in MuiscJSON format; not just musical
objects, but also the communication protocol. The storage
service responds to standard GET requests with a URL
that ends with the function to perform, usually a CRUD
function (Create, Retrieve, Update, Delete). The request
is accompanied by two parameters: a data parameter with
information in MusicJSON format and a second parameter
named callback, as the JSONP function to be returned.
To give an example, Table 3 shows a complete update
request to change the duration of note with ref "note_84"
to a new value of 12.

url http://evmusic.fauno.org/storage03/
update

callback stcCallback1002

data {"duration":12,"ref":"note_84"}

Table 3. MusicJSON request parameters

After updating the corresponding data in the storage
service, the returned response has the following form:

Callback({"message": "Message Content",
"data":[responsed data], "success": true})

This means that the returned data are sent back along with
a status message confirming the transaction, everything
encapsulated in a function with the name of the callback,
as required by the JSONP data transaction, so the service
can accept AJAX requests from other domains. In our
example, here is is the response received to the update
request above:

stcCallback1002({"message": "Updated
record", "data": {"track": "1", "objclass":
"note", "pitch": "39", "start": 6,
"duration": 12, "ref": "note_84", "id":
84}, "success": true}

4.3 Library Use
Library services can make use of predefined musical
objects. To use a library service, this must be declared
in lib section of the document in a key-value pair. The
reference name for that library is assigned as the key,
while the URL that returns the library itself, usually
encapsulated as JSONP, is assigned as the value.

"lib": {
"main": "http://evmusic.fauno.org/lib/

main/instruments",
... ,

}

The content of the library returned from the given address
is:
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LibraryCallBack({
"message":"Sent data: 45 entries",
"data":{
"flute":{

"objclass":"pinstrument",
"families":[

"wind", "air",
"wood", "woodwind"],

"clef":"treble",
"transpose":0,
"stafforder":1.2,
"constraints":{

"minpitch":"c4",
"maxpitch":"c7",
"usualpitch":"g5",
"polyphony":1,
"maxtime":12,
"maxspeed":90,
"maxlegatointerval":17
},

"techniques":[
"frullato", "whistle",
"air", "keysound"]

},
"oboe":{

"objclass":"pinstrument",
...
}

...
},
"success":"true"})

In this case, the complete library is returned, but it is
also possible to ask for only one object from the library,
by completing the URL with the key that corresponds
to that object. Thus, instead of downloading the whole
library, we save memory by downloading only the data
we need. For instance, in order to access only the flute
instrument, we would use the following URL:
"http://evmusic.fauno.org/lib/main/instruments/
flute".

In order to use an object from the library, the x.lib
prefix followed by the library key must be indicated as
reference, as shown in Table 2. The MusicJSON code
of the referred object will replace the library call during
parsing:

{
"objclass": "scoinstrument",
"name": "Flauta",
"value": "x.lib.main.flute"
}

4.4 MusicJSON File
Every EvMusic object, from single notes to complex
structures, can be serialized into a MusicJSON text and
subsequently transmitted through the Web. In addition,
MusicJSON can be used as a music format for local
storage of compositions. Next listing code shows a draft
example of the proposed description of an EvMusic file.

{"objclass":"evmusicfile","ver":"1002",
"content":

{"lib":{

"instruments":"http://evmusic.fauno.org/lib/
main/instruments",

"pcstypes":

"http://evmusic.fauno.org/lib/main/
pcstypes",

"mypcs": "http://evmusic.fauno.org/
lib/jesus/pcstypes",

"mymotives":
"http://evmusic.fauno.org/lib/jesus/motives"

},
"def":{

"ma": {"objclass":"motive",
"symbol":[  0,7, 5,4,2,0  ],
"slength": "+-+- +-++ +---"},

"flamenco": {"objclass":"pcstype",
"pcs":[  0,5,7,13 ],},

},
"orc":{

"flauta": {"objclass":"instrument",

"value":"x.lib.instruments.flute",
"role":"r1"}

"cello": {"objclass":"instrument",

"value":"x.lib.instruments.cello",
"role":"r2"}

},
"score":{

"objclass": "score",
"pos": 0,
"events": [{

"objclass": "section",
"pos": 1,
"events": [{

"objclass": "staff",
"name": "flauta",
"pspellorder": 1,
"events": [{

"objclass": "part",
"track": 1,
"pos": 1,
"events": [{

"objclass": "note",
"pos": 0,
"dur": "0.5",
"pitch": 62,
"art": "st"

},
...

... ]},
{"objclass":"section","pos": 60,

...
},],}}}

}}

The code shows four sections in the content. The second
section named lib is a dictionary of libraries to be loaded.
Both main and user libraries can be addressed. The
following section includes local definitions of objects. As
an example, a motive and a chord type are defined. Next
section establishes instrumentation assignments by means
of the arrangement object role. Last section is the score
itself, where all events are placed in a tree structure using
parts. Using MusicJSON as the intermediary
communication format enables us to connect several
music services forming a cloud composition system.

5 . CONCLUSION
This paper puts forward a model of musical representation
for the Computer Music Cloud, a new paradigm in which
musical computing systems are distributed in several
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musical services over a computing cloud. This new
environment allows to build new systems by putting
various services to work together. We present a new
architecture which allows to design specialized
autonomous musical services that can be implemented
separately in different platforms, and may even serve
multiple systems simultaneously.

Effective integration of such musical services in the
CMC depends on the definition of a music representation
that they all share and that will enable efficient exchange
of musical information. Musical representation should
fulfill three main requirements:1) to have a high and
flexible representativity for music composition, 2) to
provide a form allowing music objects to be stored as
entries of a database; and 3) to count on a text format that
facilitates information exchange, as well as the integration
of different data sources.

Our new proposal is based on the robust musical
representation for EvMusic composition described in
UML which has proved effective in actual composition
experiments [1,3]. Above this abstract model of classes,
the database form representation and the textual
representation MusicJSON have been incorporated.

MusicJSON can represent the complete EvMusic class
system together with its different topologies and its
comprehensive treatment of musical pitch. In addition to
being compatible with conventional musical notation, it
can represent higher abstraction structures at multiple
levels. It is not only a simple format for exchange of
musical objects in text form, but it also integrates musical
information from different services. It can also handle
references to external objects and libraries. Several
examples of use have been shown: representing a music
fragment, protocol for sharing musical elements between
services, use of libraries and the file format. MusicJSON
is based on JSON, an increasingly used format on the
Internet. Therefore it inherits its expandability and
prototyping features, and benefits from its extensive
library of available tools and services.

MusicJSON, EvMusic representation and the database
musical format have been tested in real CMC prototypes
that incorporate different types of music services [2].
Significantly, it is one of the first proposals for music
representation in the new paradigm of Musical
Composition in the Cloud. This CMC approach also opens
multiple possibilities for derivative work. Once you define
an efficient shared music representation for the cloud, any
music service can be easily incorporated into the new
paradigm: services that translate input and output
representations, some applications for collaborative
composition among multiple users, musical teaching
assistants, and even the integration of true intelligent
composition agents. It provides a promising environment
for the research in Musical Artificial Intelligence (MAI),
where specialised agents can cooperate in a music
composition environment sharing the same music
representation [4]. Likewise, the paradigm shift that
involves the CMC, offers new interesting possibilities for

web applications acting as user interfaces in the Computer
Music Cloud, taking advantage of new technological
developments such as the upcoming HTML5 [14]
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ABSTRACT

Analysis and description of musical expression is a sub-
stantial field within musicology. However, manual annota-
tion of large corpora of music, a prerequisite for describ-
ing and comparing different artists’ styles, is very labor-
intensive. Therefore, computer systems are needed that
can annotate recordings of different performances auto-
matically, requiring only minimal corrections by the user.
In this paper, we apply Dynamic Time Warping for audio-
to-score alignment to extract the onset times of all indi-
vidual notes within an audio recording, and compare two
strategies for improving accuracy. The first one is based on
increasing the temporal resolution of the features used. To
cope with constraints in terms of computational costs, we
apply a divide and conquer pattern. The second strategy is
introducing a post-processing step in which the onset time
of each individual note is revised. The advantage of this
method is that, in contrast to default algorithms, arpeggios
and asynchronies can be resolved as well.

1. INTRODUCTION

An important subfield of musicology is the analysis and de-
scription of musical style and expression. However, large
corpora of annotated pieces of music played by several per-
formers are needed to extract meaningful patterns or to
support previously developed hypotheses. Such data can
be acquired by performing pieces on computer-monitored
instruments.

Despite the advantage of providing accurate and exten-
sive data, using computer-monitored instruments for data
acquisition has several substantial shortcomings. First of
all, one can assume that music students might be persuaded
quite easily to take part in such a project, but it will be
hard to persuade top-class artists to do so. Secondly, it is
not possible to analyze an artist’s expressive evolution over
long periods. And finally, research could not include artists
who, although dead, remain famous and whose music is
enjoyed by a broad audience.

Another source of data are audio recordings, which are
not only cheap but also available in an extensive variety.

Copyright: c©2010 Bernhard Niedermayer et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution License 3.0 Unported, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

However, the raw audio signal must be annotated before
any high-level analysis can be performed, and manual an-
notation is very labor-intensive. In order to carry out re-
search on large corpora of music, automatic – or at least
semi-automatic – methods for data acquisition are needed.

The most general approach of collecting symbolic data
from audio recordings would be Automatic Music Tran-
scription. However, accuracy and robustness of state-of-
the-art transcription methods do not meet the requirements
of applications such as musical performance analysis. Es-
pecially in the context of classical music, where it can be
assumed that the piece played is known in advance, using
an audio file in combination with additional information
given by the score has therefore become a common prac-
tice. Since the notes played are known a priori, the task is
to extract the exact parameters of each note from the audio
recording.

Such parameters do not only include the timing and the
loudness of a note, but also characteristics such as its artic-
ulation or, when considering piano, pedal pressure. How-
ever, since knowing at which exact point in an audio sig-
nal a note is played is a prerequisite for estimating further
properties, most current research is focused solely on this.
The task is to temporally align or synchronize the notes
given by the score to an audio recording - a process known
as audio-to-score alignment.

In doing so, features are calculated from individual time
frames of the audio signal. There are two main state-of-the
art approaches to incorporating the score information: The
score, which is by default given in MIDI-format, is used
to either build a graphical model [1], such as an HMM, or
it is used to compute a sequence of the same features as
extracted from the audio signal [2]. Score and audio rep-
resentations are then related to each other using the Viterbi
algorithm or Dynamic Time Warping.

We use Dynamic Time Warping to compute this align-
ment. Since the algorithm is of quadratic complexity in
both time and space, the temporal resolution of the fea-
tures extracted cannot be increased arbitrarily without en-
countering limitations in terms of computational cost. One
method of reducing the complexity is to apply a divide and
conquer pattern splitting a piece into several sections us-
ing anchor notes, for which the timing is known. Dynamic
Time Warping can then be performed on these individual
sections without losing generality.

In [3], which originally introduced this approach, an-
chor notes were selected by the user. We propose a method
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Figure 1. System overview

for extracting such anchor notes automatically. To this end,
Dynamic Time Warping is performed once, using a coarse
temporal resolution. Based on this initial estimate, anchor
notes for which the timing can be extracted with relatively
high confidence are identified and their onset times are re-
vised.

Another shortcoming Dynamic Time Warping shares
with the approach based upon graphical models is that sev-
eral notes that occur simultaneously in the score, such as
the individual notes of a chord, are always aligned to the
same time frame of the audio signal. This is probably not
relevant to applications such as augmented audio players.
In performance analysis, however, this precludes the han-
dling of arpeggiations or asynchronies. Therefore, we pro-
pose a post-processing step in which the onset time of each
individual note is revised.

This post-processing step resembles the one described
in [4] in both methodology and results. However, [4] used
a beta-distribution to model the expectation strength of a
note occurring at a certain point between two anchor notes.
The beta-distribution was chosen because of its restriction
to a fixed interval and the flexibility of its shape, but its use
lacks probability-theoretic justification. In this paper, we
show that comparable results can be obtained, by applying
a weighting which reflects the normally distributed errors
made by Dynamic Time Warping.

Figure 1 shows the system architecture, which is further
described below as follows. First, we give an overview of
related work in Section 2. Then, we explain the audio-
to-midi alignment using coarse and fine Dynamic Time
Warping in Section 3 and the extraction of the anchor notes
based on the coarse alignment in Section 4. Section 5 de-

scribes the post-processing step. In Section 6, an evalua-
tion of the system is presented, followed by conclusions in
Section 7.

2. RELATED WORK

In offline audio-to-score alignment, a major group of ap-
proaches is based on chroma vectors in combination with
Dynamic Time Warping (DTW) [2, 3, 4, 5, 6, 7]. This
method has proven to yield robust global alignments. How-
ever, it cannot compete with onset detection algorithms
concerning local accuracy. This was shown in [8], where,
as a consequence, the idea of chroma vectors was com-
bined with (pitch-wise) spectral flux – a feature used in
onset detection.

A way of applying machine learning techniques to re-
fine music alignments was shown in [5]: A neural network
that detects note boundaries is trained on the result of an
alignment. In an iterative process, the alignment can then
be improved using the neural network’s output, and the
training is repeated.

Another approach of improving accuracy is to increase
temporal resolution. Since DTW is of the orderO(n2), this
method is constrained by computational costs. The divide
and conquer principle aside, [6] uses a multi-scale algo-
rithm where in each iteration the resolution is increased
and, at the same time, the area searched for an optimal
alignment is narrowed down.

[7] and [9] combined those two strategies in an efficient
way: Both compute an alignment based on DTW and then
refine the note onsets within a search window around the
initial estimates. Since the size of these search windows
is small, a relatively high temporal resolution can be cho-
sen. The additional features used in this post-processing
step emphasize onsets of individual pitches. In doing so,
the DTW algorithm’s problem of unresolved arpeggiations
or asynchronies becomes irrelevant. However, in contrast
to the system presented here, the method in [9] relies on
manual path initialization in the DTW step, and in [7], po-
tentially conflicting notes are not revised, only marked for
further processing.

3. AUDIO-TO-MIDI ALIGNMENT

3.1 Chroma Vectors

Chroma vectors are the feature used in most alignment sys-
tems because of their robustness to several common phe-
nomena in music, such as changing timbre or different de-
grees of polyphony. In [2], chroma vectors were shown
to outperform several other features in the context of audio
matching and alignment. They consist of a 12-dimensional
vector per time frame, in which each element represents
one pitch class (C, C#, D, . . . ).

When calculating chroma vectors from a midi file, the
energies (in midi terminology velocities) of all pitches be-
longing to the same pitch class are summed up. Addition-
ally, it is beneficial to also consider harmonics by adding
decreasing contributions of energies to the corresponding
pitch classes. In contrast, when considering an audio sig-
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nal, the pitches of notes sounding within a certain time
frame are not known a priori. In this case, the values are
computed based on an STFT spectrogram by summing up
the energies of those frequency bins which are mapped to
the same pitch class. The mapping is done by choosing the
pitch (and the corresponding pitch class with its index i)
with the smallest frequency deviation from a bin’s center
frequency fk, according to

i =

[
round

(
12 log2

(
fk
440

))]
mod 12 (1)

Within the work reported here, we use two STFT con-
figurations: (i) a window size of 4096 samples and a hop
size of 1024 samples, referred to as moderate resolution;
and (ii) a window size 512 and a hop size 128, referred to
as high resolution.

3.2 Dynamic Time Warping

After the feature extraction step, the score and the audio
signal are both represented by a sequence of feature vec-
tors. To evaluate an alignment, a cost function must be
defined which measures the error made when aligning a
specific frame of the first sequence to the corresponding
frame of the second one. Preliminary experiments showed
that the Euclidean distance yields better results within our
framework than other functions, such as the cosine dis-
tance or the symmetric Kullback-Leibler divergence.

Using this cost function, a similarity matrix S can be
calculated. The rows of S represent the time frames of
the audio recording, while the columns represent the time
frames of the score. Each value Sij gives the cost of align-
ing frame i of the audio signal to frame j of the score. All
continuous and monotonic paths through S which begin
and end at the two end-points of the main diagonal repre-
sent valid alignments. The sum of all Sij along an align-
ment path is the respective global alignment cost.

DTW computes an optimal alignment, i.e., the one min-
imizing the global cost, in two steps. In the first one, the
optimal cost Cij of each partial alignment, ending with
frame i of the audio signal being aligned to frame j of the
score representation, is calculated according to

C(i, j) = min


C(i− 1, j − 1) + Sij

C(i− 1, j) + Sij

C(i, j − 1) + Sij

(2)

By starting at C0,0 = S0,0 and storing all intermedi-
ary results in a matrix C, this recursion can be calculated
efficiently.
CN−1,M−1 is the minimal global alignment cost. How-

ever, in this application, the cost itself is not as important
as the alignment path corresponding to this optimum. This
path is obtained in the second step by backtracking based
on knowledge of which of the three options in equation
2 was used in each step. This information can easily be
stored during the forward step. For a more detailed de-
scription of the basic DTW algorithm, we refer the inter-
ested reader to [10].

3.3 Efficiency Considerations

Given two sequences of lengthsN andM , DTW is of com-
plexity O(N ∗M) in both time and space. This resolves
to O(N2) under the assumption that the score is stretched
to the length of the audio signal prior to the feature extrac-
tion step. This precludes aligning arbitrarily long feature
sequences and therefore limits both the lengths of pieces to
be aligned and temporal resolution.

A classical method of improving the efficiency of DTW
is to constrain the search for an optimal alignment path to
a certain area within the similarity matrix S, such as the
Itakura parallelogram or the Sakoe-Chiba band [10]. This
is based on the assumption that expressive tempo changes
will not exceed certain limits, or that the alternation of
speeding up and slowing down will prevent the alignment
path from deviating from the main diagonal by more than
a maximum offset. These approaches can reduce compu-
tational costs to the order of O(2N). However, there is the
risk that, at some point, the assumptions do not hold and
the true alignment path leaves the search area.

Other methods which share similar strengths and weak-
nesses are Path Pruning, in which only the most promising
partial paths with costs below an adaptive threshold are fur-
ther expanded, Shortcut Path, where only the alignment of
frames corresponding to note on- and offsets are consid-
ered, and multi-scale DTW [6].

A completely different approach is to perform an online
alignment – also known as score following [11]. This al-
gorithm does not consider a piece as a whole, but advances
through the audio signal incrementally. This works for ar-
bitrarily long pieces and, leaving the real-time aspect out
of consideration, arbitrarily high feature resolutions. The
drawback is that the method can only extract instantaneous
optima at each step and cannot guarantee that a global op-
timum is found.

3.4 Divide and Conquer Approach

[3] introduced a divide and conquer approach to improve
the efficiency of DTW. Given a set of anchor notes for
which the exact timing is known, solving the alignment
problem for the whole piece can be reduced to finding op-
timal alignments between each pair of consecutive anchor
notes. Given a maximal interval c between two anchors,
the sub-DTWs are computed in O(c2) in both time and
space. When considering the whole piece, the space com-
plexity ofO(c2)=̂O(1) does not change. Time complexity,
however, increases to O(c2 ∗ N/c) = O(c ∗ N)=̂O(N).
Compared to the original algorithm of order O(N ∗M),
this approach reduces complexity and guarantees that a
globally optimal alignment is found.

This increase in efficiency is countered by the additional
problem of how to identify suitable anchor notes and how
to extract their respective onset times. [3] proposed an
approach in which the user selects an anchor configura-
tion manually or verifies suggestions made by the algo-
rithm. These suggestions are established based on cues
such as pauses, long isolated fortissimo chords, or notes
with salient fundamental pitches, i.e., pitches that do not
overlap with harmonics of concurrently played notes.
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4. ANCHOR EXTRACTION

In this paper, we show how anchor notes can be determined
automatically. The selection is based on a coarse DTW
computed as described above. Within a search window
around the first onset estimate of each note, a revised can-
didate is then extracted using the Pitch Activation feature
as described in [7]. Finally, all notes for which ambiguities
arise are dropped from the list of anchors.

Doing this has two implications. First, basing anchor
selection on an initial alignment alters the method, shifting
it away from the original divide and conquer approach and
towards a special multi-scale DTW. Second, the algorithm
is not guaranteed to find the global optimum, since errors
in the anchor selection result in inaccurate alignments.

4.1 Pitch Activation

The feature used for revising onset candidates is pitch ac-
tivation, which is calculated by applying a modification of
non-negative matrix factorization (NMF) to audio data in
the frequency domain. NMF is the decomposition of an
input matrix V of size n ×m into two output matrices W
and H of sizes m× r and r × n such that the elements of
all these matrices are non-negative and

V ≈WH (3)

The reconstruction error, i.e., the deviation ofWH from
V , can be measured with several cost functions such as the
Euclidean distance or the Kullback-Leibler divergence. An
optimal factorization is calculated by minimizing this cost.

Applied to audio processing, NMF can be used to fac-
torize a spectrogram into a dictionary W of weighted fre-
quency groups and the corresponding activation energies
H of these frequency groups over time. Depending on
V and the parameter r, the base components in W can
represent models of single tones or chords. But since the
NMF algorithm, as originally introduced in [12], is unsu-
pervised, it is more likely that some of the components also
describe single partials, special patterns during an attack,
sustain, or decay phase of a note, or even just noise. How-
ever, in the context of audio-to-score alignment, where the
piece played is known a priori, we assume the instrument
or set of instruments playing to be known as well. Thus,
tone models can also be trained using supervised methods.

Based on this assumption, a dictionary W of tone mod-
els is trained in advance ([7, 4, 13]). The training data
comprises recordings of single tones played at several de-
grees of loudness on the instrument under consideration. A
short-time Fourier transform is calculated and factorized
while exploiting knowledge of the tone samples. Since
only one tone is played in each sample, the number of com-
ponents r is set to one. The activation energy of this com-
ponent w over time is fixed to h and assumed to be equal
to the amplitude envelope. Equation 3 then resolves to

V ≈ wh (4)

By minimizing the reconstruction error, a tone model
is learned from each training sample. Since the relative

(a)

(b)

Figure 2. Example of activation patterns: (b) shows the
first bar of Mozart’s piano sonata k279. In (a) the activation
patterns of the single pitches are plotted in ascending order.

energy of the harmonics depends on the intensity, prelimi-
nary models are trained using several degrees of loudness,
and the final model is then obtained by taking the average
weight for each frequency.

Given this fixed dictionaryW , equation 3 can be rewrit-
ten as

v ≈Wh (5)

where v and h are single columns of V and H that can
now be processed independently. Since in both equation
5 and equation 4 there is only one variable left, a non-
negative least squares optimization minimizing the mean
square criterion

f =
1

2
‖Wh− v ‖2 (6)

can be applied instead of the original NMF methods.
This not only reduces computational costs but also, due to
the independence of individual frames, makes the pitch ac-
tivation h – a frame-wise f0 estimation – a feature suitable
for online algorithms.

Figure 2 shows an example of such activation patterns.
The dictionary used for the factorization consisted of the
models describing those pitches which are expected to be
played within the time range shown only.

4.2 Anchor selection

For the anchor selection, the pitch activation feature is used
to revise the onset estimates obtained by DTW. W is com-
posed from the tone models of those pitches, expected to
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be played within the search window and an additional com-
ponent modeling white noise. The new onset candidate is
set to the frame with the maximal increase of hp, where p
is the index of the component corresponding to the pitch of
the note under consideration. In cases in which the onset
is unambiguous, these onset candidates have proven to be
very accurate. But in cases in which the same note is re-
peated several times within the search window, this method
is too simple and very likely to fail.

To solve this dilemma, notes that are expected to be
played more often than once within the search window
are disregarded as potential anchors. Also, all notes for
which the onset is ambiguous, i.e., for which the differ-
ence between the onset estimate obtained by the initial
coarse DTW and the revised onset time exceeds a certain
threshold, are dropped from the list of anchor candidates.
In doing so, the anchor selection benefits from the robust-
ness of the DTW as well as from the accuracy of the pitch
activation-based onset revision.

Although this approach is very simple, our evaluation in
Section 6 shows that by adjusting the onset times of these
anchor notes only, the overall result is improved signifi-
cantly.

5. POST PROCESSING FOR POLYPHONIC
PIECES

As pointed out before, both DTW and alignment meth-
ods based on graphical models suffer from the shortcoming
that notes which are indicated in the score as being played
simultaneously simultaneously will inherently be aligned
to the same time frame within the audio signal. Hence, in-
creasing the temporal feature resolution to arbitrary dimen-
sions as described in Section 3 benefits monophonic pieces
for which the onsets of individual notes are extracted and
pieces which are too long to be processed as a whole, even
when using moderate resolutions. However, when consid-
ering polyphonic pieces, notes which are indicated in the
score as being played simultaneously will never be played
precisely simultaneously by the performer due to arpeggia-
tions or asynchronies. Therefore, using a resolution high
enough to break a chord down into several notes and their
individual onsets results in an ambiguous onset time for
the chord as a whole. It is not clear if the estimate obtained
by DTW or the Viterbi algorithm represents the note which
is played first, the one which is played last, or some time
in between where the cumulative energy of all chord notes
has exceeded a certain threshold.

To overcome this problem, we apply a post-processing
step in which the onset times of all non-anchor notes are
revised as well. We assume that the high-resolution DTW
computed by our system yields relatively accurate estima-
tions and that deviations from the real onset times follow a
normal distribution. Therefore, on the one hand, a search
window of length 2l centered around the initial estimate is
considered. On the other hand, feature values computed to
refine the onset time are weighted using a Gaussian win-
dow.

However, the choice of features is not trivial. Pure onset
detection functions, such as spectral flux, are not sufficient,

since, when dealing with polyphonic pieces, the onsets of
other chord notes must be expected to occur within the im-
mediate vicinity of a note. Also, the pitch activation feature
used for anchor selection is not suitable, since it performs
poorly in situations of repeated notes.

Preliminary experiments showed that, considering the
remaining non-anchor notes, the increase in the energy of
the fundamental frequency of a note is the most reliable
and accurate onset estimate. We obtain this information
from a constant Q transform with a frequency resolution
of one bin per semitone and set the revised onset candidate
to the time frame at which the maximal increase occurs.

Parameter values of around 100 ms for the search ra-
dius l and 0.4 for the standard deviation σ of the Gaussian
window have proven to yield good results. A detailed eval-
uation can be found in the next section.

6. EVALUATION

6.1 Evaluation Method

The evaluation was done using the first movements of 11
Mozart sonatas played by a professional pianist. The per-
formances were recorded on a computer-monitored Bösen-
dorfer SE290 grand piano, logging the exact onset times of
all notes. The data comprises more than 30.000 notes with
an overall performance time of more than one hour. Scores
were presented to the system in midi format.

The absolute temporal displacement between aligned
notes and the ground truth served as the main evaluation
criterion. We investigated the median absolute displace-
ment, the 75th, and the 95th percentile. In our opinion,
this shows a clearer view of a system’s performance than
the mean and variance of absolute displacements, since
these values are more sensitive to outliers. When consid-
ering only mean and variance, it is difficult to distinguish
systems that yield accurate estimates for most notes but
produce a few outliers with relatively large temporal dis-
placement, from systems which are more robust but less
accurate.

In the evaluation of the whole system including the post-
processing, we include two other criteria. The long-term
goal of our research is to provide an annotation system
that detects onset times as accurately as a human. Only
a very small number of notes for which manual correc-
tion is needed should remain. [14] showed that humans do
not perceive timing deviations smaller than 10 ms. There-
fore, we also investigated the proportion of notes which are
aligned with a timing deviation below this threshold.

Furthermore, we determined the percentage of the notes
aligned with a displacement of less than 50 ms. This crite-
rion is well known from the field of onset detection. Here,
it reflects the ratio of reasonably well aligned notes to out-
liers.

6.2 Evaluation Results

Table 1 shows the accuracy of the selected anchor notes
in comparison to the non-anchor notes before and after
performing the fine resolution DTW. One can clearly see
that the anchor nodes are indeed more accurate than the
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50% < x[ms] 75% < x[ms] 95% < x[ms]
piece duration # notes # anchors

anch. orig. new anch. orig. new anch. orig. new
K.279-1 4:55 2803 885 6.0 15.7 15.8 13.3 29.6 29.8 43.7 127 128
K.280-1 4:48 2491 987 5.7 23.2 22.9 12.1 44.6 44.6 43.5 165 165
K.281-1 4:29 2648 954 6.6 25.2 25.1 13.3 47.3 47.2 47.8 137 138
K.282-1 7:35 1907 513 7.8 26.8 26.7 14.5 64.0 64.2 80.8 388 389
K.283-1 5:22 3304 875 8.1 15.5 15.4 14.4 27.8 27.8 40.9 67.8 68.2
K.284-1 5:17 3700 853 7.0 15.2 15.3 15.9 30.6 30.7 62.3 108 107
K.330-1 6:14 3160 888 6.0 16.0 15.9 10.5 29.4 29.3 37.9 148 146
K.332-1 6:02 3470 844 11.5 22.8 22.9 19.0 42.1 42.3 61.3 167 168
K.333-1 6:44 3774 1122 8.0 17.1 17.1 14.4 30.3 30.4 42.1 105 105
K.457-1 6:15 2993 885 9.2 21.3 21.3 16.3 40.5 40.3 59.8 267 267
K.475-1 4:58 1284 371 15.4 36.3 36.3 23.7 92.0 92.5 79.4 270 270

Table 1. Comparison between accuracy (median, 75th percentile, and 95th percentile) of the anchor notes (anch.), the non-
anchor notes computed by the coarse DTW (orig.), and the non-anchor notes after performing the fine DTW implementing
the divide and conquer pattern (new)

50% < x[ms] 75% < x[ms] 95% < x[ms]
piece # notes

orig. anch. new orig. anch. new orig. anch. new
K.279-1 2803 15.7 11.2 11.8 30.0 24.5 25.7 103 101 103
K.280-1 2491 23.6 12.7 13.4 41.9 32.0 32.8 126 127 126
K.281-1 2648 24.2 15.2 16.1 42.4 36.5 36.9 114 114 114
K.282-1 1907 23.5 18.7 19.6 53.7 47.2 48.1 354 354 354
K.283-1 3304 14.6 12.7 12.8 27.1 24.5 24.8 62.0 60.8 60.9
K.284-1 3700 15.4 12.5 13.1 31.0 26.9 27.4 96.8 98.0 98.0
K.330-1 3160 14.9 11.4 11.8 27.7 24.0 24.7 118 118 115
K.332-1 3470 20.5 18.4 18.6 38.6 35.6 36.3 138 140 138
K.333-1 3774 16.2 12.9 13.4 29.3 25.8 26.4 79.6 75.8 76.4
K.457-1 2993 19.4 15.7 16.2 36.9 33.5 34.2 204 203 202
K.475-1 1284 29.7 24.5 25.0 68.4 65.5 65.9 224 224 224

all 31534 18.4 14.1 14.7 35.2 30.1 30.8 130 131 131

Table 2. Overall accuracy (median, 75th percentile, and 95th percentile) of the divide and conquer DTW (new) compared
to the coarse DTW with the anchor notes revised (anch.) and the coarse DTW without anchor note revisions (orig.)

remaining notes. However, it is remarkable that the high-
resolution DTW implementing the divide and conquer prin-
ciple does not improve the results obtained by the original
implementation using a moderate temporal resolution. A
discussion on this issue is given in the next section.

It is worth mentioning that, due to the semi-automatic
nature of the anchor selection, only a very small number
of anchors was used in [3]. In our approach, the number
of anchors is much larger, as shown in Table 1. Qualitative
analysis of single passages showed that there are “easy”
sections, in which no ambiguities occur and almost every
single note is chosen to serve as anchor, whereas there are
“difficult” sections within a piece in which only few an-
chors are found. Although not required, the high number
of anchor notes is desirable, since, in contrast to [3], the
objective here was not only efficiency, but also to investi-
gate accuracy aspects. This approach to anchor selection
clearly outperforms the DTW variant in terms of accuracy.

Recalling the whole system’s architecture, as depicted
in Figure 1, Table 2 compares the results after the indi-
vidual stages - the coarse DTW, the coarse DTW with re-
vised anchor notes, and the high-resolution DTW exploit-
ing these anchor notes. It is even more apparent that, while

the revision of anchor notes improves the result signifi-
cantly, the additional high-resolution DTW even decreases
the overall accuracy very slightly.

The overall accuracy of the whole system including the
post-processing step is listed in Table 3. According to
our evaluation criteria, more than 90% of all notes were
aligned reasonably well, i.e., such that evaluation frame-
works used in onset detection would classify them as cor-
rect. Almost half of the notes were aligned with an er-
ror small enough not to be perceived by a human listener.
Comparing the percentiles to the ones given in Table 2
clearly proves the benefit of the post-processing step.

Since the high-resolution DTW did not improve the re-
sults, the question arises if the system performed better
without this step. Applying the post-processing method
directly to the results of the anchor selection yielded sim-
ilar results as the whole system. The overall number of
notes with a temporal displacement of less than 10 ms in-
creased slightly to 49.2%, while the number of notes with
an alignment error of less than 50 ms decreased to 88.9%.
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piece # notes 50% < x[ms] 75% < x[ms] 95% < x[ms] x < 10ms x < 50ms
K.279-1 2803 7.7 20.3 93.3 59.4% 90.7%
K.280-1 2491 7.3 16.0 79.0 62.0% 91.5%
K.281-1 2648 9.1 21.8 112 53.4% 89.8%
K.282-1 1907 11.4 22.0 258 44.3% 85.9%
K.283-1 3304 10.1 17.6 51.7 49.3% 94.8%
K.284-1 3700 8.1 20.1 78.5 57.7% 90.4%
K.330-1 3160 8.0 16.0 66.3 58.8% 93.5%
K.332-1 3470 15.8 25.8 106 31.6% 90.0%
K.333-1 3774 10.4 19.0 60.3 48.5% 93.3%
K.457-1 2993 13.4 25.1 164 37.6% 86.1%
K.475-1 1284 19.0 30.0 359 24.7% 85.6%

all 31534 10.3 21.3 92.6 49.0% 90.7%

Table 3. Overall accuracy after post-processing

7. CONCLUSIONS

We have described two strategies to improve the accuracy
of offline audio-to-score alignments. One is to apply a
higher feature resolution. In order not to be constrained
by computational costs, a divide and conquer approach ex-
ploiting selected anchor notes was used.

The second strategy is to include a post-processing step
which works on the level of individual notes. Here, we
have proposed an approach that combines the robustness
of DTW with the accuracy of a special onset feature by
weighting the feature values using a Gaussian window cen-
tered around the onset estimate obtained by DTW. In [4],
which introduced a very similar post-processing method,
the analog weighting of feature values was done based on
a beta-distribution, which was used for pragmatic reasons
only. In contrast, the Gaussian window applied in our ap-
proach is justified by the actual data.

Our evaluation showed that the largest improvement is
due to the revision of the anchor notes. Based on this step,
increasing the temporal resolution does, remarkably, not
yield higher, but even slightly lower overall accuracy. A
possible explanation is that, on the one hand, errors caused
by arpeggiations or asynchronies cannot be eliminated by
DTW or related algorithms, independently of the temporal
resolution. On the other hand, the same features – chroma
vectors – were used for the initial coarse alignment and
the high-resolution DTW. In cases in which chroma vec-
tors, despite their advantages, are not powerful enough to
represent all information that would be needed, the feature
resolution becomes irrelevant.

Also, only notes for which the revised onset obtained
by the pitch activation feature was near the initial estimate
were chosen as anchors. This was necessary to exclude
ambiguous cases. However, the revised anchors themselves
never deviate from the initial alignment path by more than
a small threshold. Therefore, the additional information
produced by theses corrections is limited.

The post-processing step, in contrast, improved the re-
sult of the DTW including the revision of anchor notes sig-
nificantly. We attribute this to the same factors as men-
tioned above. First, a new feature which is independent
of the ones used previously is introduced to the system
and therefore adds new information. Also, since the post-

processing steps work at the level of independent notes,
asynchronies can now be resolved.

We conclude that the DTW algorithm using features of
moderate resolution works with high robustness and sat-
isfactory accuracy. Improvements of the algorithm which
can exploit features with higher temporal resolution did not
improve the overall results. We will therefore concentrate
our future work on more advanced post-processing meth-
ods, since this is the area where we see the largest potential
for improvements.
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ABSTRACT

In this paper we propose to use a set of block-level au-
dio features for automatic tag prediction. As the proposed
feature set is extremely high-dimensional we will investi-
gate the Principal Component Analysis (PCA) as compres-
sion method to make the tag classification computationally
tractable. We will then compare this block-level feature
set to a standard feature set that is used in a state-of-the-
art tag prediction approach. To compare the two feature
sets we report on the tag classification results obtained for
two publicly available tag classification datasets using the
same classification approach for both feature sets. We will
show that the proposed features set outperform the stan-
dard feature set, thus contributing to the state-of-the-art in
automatic tag prediction.

1. INTRODUCTION

Today there exist many online music platforms like for ex-
ample Last.fm 1 that allow users to annotate the songs they
are listening to with semantic labels, so called tags. This
way the users themselves collaboratively create semantic
descriptions of the available music universe. The tags as-
sociated with a song can then for example be used to search
for new music (tag-based browsing) or to automatically
generate music recommendations. One major drawback
of tag-based browsing or recommendation systems is that
in the case a song has not yet been annotated by a num-
ber of users too little or unreliable information is available
about a song, such that it cannot be included in the search
or recommendation process. This issues is known as the
cold-start problem [1].

One approach to solve the cold-start problem for tag-
based music search and recommendation systems is to pre-
dict tags that users would associate with a given song from
the audio signal itself. This task is called automatic tag
prediction and is a relatively new research area in Music
Information Retrieval (MIR). Automatic tag prediction can

1 www.last.fm
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be interpreted as a special case of multi-label classifica-
tion. The task of tag prediction can be defined as follows:
Given a set of tags T = {t1, ..., tA} and a set of songs
S = {s1, ..., sR} predict for each song sj ∈ S the tag an-
notation vector y = (y1, ..., yA), where yi > 0 if tag ti
has been associated with the audio track by a number of
users, and yi = 0 otherwise. Thus, the yi’s describe the
strength of the semantic association between a tag ti and
a song sj and are called tag affinities or semantic weights.
If the semantic weights are mapped to {0, 1}, then they
can be interpreted as class labels. Although tag affinities
can be quite valuable in some applications, e.g. automatic
similarity estimation [2] or specific retrieval tasks, in this
paper we focus on the binary tag classification task, which
can be interpreted as a specific sub-task of tag prediction,
where a tag is either applicable for a given song or not.

In contrast to recent research on automatic tag predic-
tion, which basically focuses on improving the tag classifi-
cation approach [3, 4], in this paper we propose the use of
a new, more powerful set of audio features, namely block-
level features. Block-level feature have already proven to
be useful in automatic music genre classification [5] and
in automatic music similarity estimation [6]. Here we will
investigate if block-level features are also useful with re-
spect to the task of automatic tag classification. A specific
problem in this context that we will address is the high di-
mensionality of the described set of block-level features.

The rest of the paper is organized as follows: Section
2 discusses related work. Section 3 describes the two fea-
tures sets – block-level features and ‘standard’ feature set
– that are compared in the final evaluation. In section 4 we
present the tag classification approach used in the evalu-
ation. Section 5 presents the evaluation datasets, the per-
formance measures, and the results of the conducted tag
classification experiments. Conclusions and directions for
future work are given in Section 6.

2. RELATED WORK

Although automatic tag predictions is a relatively new
area in Music Information Retrieval the Music Information
Retrieval Evaluation eXchange (MIREX) 2 , a competitive
evaluation, has driven the development of several auto-
matic tag classification systems. A good overview of state-
of-the-art systems can therefore be found in the accom-
panying descriptions of the participating systems in the

2 http://www.music-ir.org/mirexwiki
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MIREX tag classification task. In the literature, in contrast,
there exist only a few publications focusing on automatic
tag prediction.

One of the most important contributions to the area
of automatic tag prediction is the work of Turnbull et al.
[7]. To the best of our knowledge, they proposed the first
tag prediction system based on a generative probabilistic
model, where each tag is modeled as a distribution over
the audio feature space (Delta-MFCC vectors). Further-
more, they also contributed to the evaluation of tag predic-
tion systems by creating an evaluation dataset, the CAL500
dataset (see Section 5.1). Another probabilistic approach
was proposed by Hoffman et al. [8]. Their Codeword
Bernoulli Average (CBA) model is a probabilistic genera-
tive latent variable model. Vector-quantized Delta-MFCCs
serve as observations to the generative model. Their ap-
proach is a simple and fast and, according to Hoffman
et al., outperforms the method of Turnbull et al. on the
CAL500 dataset.

Besides these probabilistic models, there are two recent
publications by Mahieux et al. [4] and Ness et al. [3] on
systems using a stacked hierarchy of binary classifiers. In
both of these there is one binary classifier per tag, at the
first level. Then the probabilistic output, the predicted tag
affinity, of each binary tag classifier is used as the input to
a second classification stage, where there is once more one
classifier per tag. The advantage of this setup is that the
second stage classifiers can now take into account the cor-
relations between tags. Implausible combinations of tag
predictions from the first stage can be corrected. We will
denote such a classification approach as “stacked general-
ization”, in accordance with [3]. For our feature set com-
parison we will use exactly the same stacked generalization
approach as proposed in [3], as this procedure is already
implemented and publicly available via the MARSYAS
(Music Analysis, Retrieval and Synthesis for Audio Sig-
nals) 3 open source framework. That not only permits us
to compare two feature sets using one and the same state-
of-the-art tag classification approach, but also to put the
obtained results into the context of the MIREX tag classi-
fication task: in last year’s (2009) run of the tag classifica-
tion contest the approach based of the MARSYAS frame-
work ranked second (with respect to the per tag f-score),
only insignificantly worse than the leading algorithm.

3. FEATURES FOR AUTOMATIC TAG
CLASSIFICATION

In this section we first describe the block processing frame-
work (3.1) and then the block-level features (3.2) that are
used for automatic tag prediction. This feature set sig-
nificantly differs from standard feature sets used in mu-
sic information retrieval and has recently been proposed
for automatic genre classification [5] and for content-based
music similarity estimation [6]. Unfortunately, the pre-
sented block-level are all very high-dimensional, which
is not desirable in the context of classification because of
the high computational costs resulting from the very high-

3 www.marsyas.info

Figure 1. Block by block processing of the cent spectrum.

dimensional feature space. Therefore in subsection 3.3 we
propose to compress the block-level audio features via the
well-known Principal Component Analysis (PCA). In sub-
section 3.4 we will then present the standard feature set
extracted by the MARSYAS framework that we compare
the proposed features to.

3.1 The block processing Framework

The idea of processing audio block by block is inspired
by the feature extraction process described in [9, 10, 11].
However, instead of just computing rhythm patterns or
fluctuation patterns from the audio signal one can gener-
alize this approach and define a generic framework. Based
on this framework one can then compute other features
(e.g., the ones presented in section 3.2) to describe the con-
tent of an audio signal. One advantage of block-level fea-
tures over frame-level features like, e.g., MFCCs is that
each block comprises a sequence of several frames, which
allows the extracted features to better capture temporal in-
formation. The basic block processing framework can be
subdivided into two stages: first, the block processing stage
and second, the generalization step.

3.1.1 Block Processing

For block-based audio features the whole spectrum is pro-
cessed in terms of blocks. Each block consists of a fixed
number of spectral frames defined by the block size. Two
successive blocks are related by advancing in time by a
given number of frames specified by the hop size. Depend-
ing on the hop size blocks may overlap, or there can even
be unprocessed frames in between the blocks. Although
the hop size could also vary within a single file to reduce
aliasing effects, here we only consider constant hop sizes.
Figure 1 illustrates the basic process.

A block can be interpreted as a matrix that has W
columns defined by the block width and H rows defined by
the frequency resolution (the number of frequency bins):
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block =

 bH,1 · · · bH,W

...
. . .

...
b1,1 · · · b1,W

 (1)

3.1.2 Generalization

To come up with a global feature vector per song, the fea-
ture values of all blocks must be combined into a single
representation for the whole song. To combine local block-
level feature values into a model of a song, a summariza-
tion function is applied to each dimension of the feature
vectors. Typical summarization functions are, for example,
the mean, median, certain percentiles, or the variance over
a feature dimension. Interestingly, also the classic Bag of
Frames approach (BOF) [12] can be interpreted as a spe-
cial case within this framework. The block size would in
this case correspond to a single frame only, and a Gaussian
Mixture Model would be used as summarization function.
However, we do not consider distribution models as sum-
marization functions here, as our goal is to define a song
model whose components can be interpreted as vectors in
a vector space. The generalization process is illustrated in
Fig. 2 for the median as summarization function.

In the following, we describe how to compute the fea-
ture values on a single block and give the specific summa-
rization function for each feature. While Fig. 2 depicts
the block level features as vectors, the features described
below will be matrices. This makes no difference to the
generalization step, however, as the summarization func-
tion is applied component by component; the generalized
song-level features will thus also be matrices.

3.2 Block-Level Features

3.2.1 Audio Preprocessing

All block-level features presented in this paper are based
on the same spectral representation: the cent-scaled magni-
tude spectrum. To obtain this, the input signal is downsam-
pled to 22 kHz and transformed to the frequency domain
by applying a Short Time Fourier Transform (STFT) using
a window size of 2048 samples, a hop size of 512 samples
and a Hanning window. Then we compute the magnitude
spectrum |X(f)| thereof and account for the musical na-
ture of the audio signals by mapping the magnitude spec-
trum with linear frequency resolution onto the logarithmic
Cent scale [13] given by Equation (2).

fcent = 1200 log2(fHz/(440 ∗ ( 1200
√

2)−5700)) (2)

The compressed magnitude spectrum X(k) is then trans-
formed according to Eq.3 to obtain a logarithmic scale.
Altogether, the mapping onto the Cent scale is a fast ap-
proximation of a constant-Q transform, but with constant
window size for all frequency bins.

X(k)dB = 20 log10(X(k)) (3)

Finally, to make the obtained spectrum loudness-invariant,
we normalize it by removing the mean computed over a

sliding window from each audio frame as described in [5].
All features presented in the next section are based on the
normalized cent spectrum. Note that the reported param-
eter settings for the audio features in the following sub-
sections were obtained via optimization with respect to a
genre classification task (on a different music collection
that the ones used here).

3.2.2 Spectral Pattern (SP)

To characterize the frequency or timbral content of each
song we take short blocks of the cent spectrum containing
10 frames. A hop size of 5 frames is used. Then we simply
sort each frequency band of the block.

SP =

 sort(bH,1 · · · bH,W )
...

. . .
...

sort(b1,1 · · · b1,W )

 (4)

As summarization function the 0.9 percentile is used.

3.2.3 Delta Spectral Pattern (DSP)

The Delta Spectral Pattern is extracted by computing the
difference between the original cent spectrum and a copy
of the spectrum delayed by 3 frames, to emphasize onsets.
The resulting delta spectrum is rectified so that only pos-
itive values are kept. Then we proceed exactly as for the
Spectral Pattern and sort each frequency band of a block.
A block size of 25 frames and a hop size of 5 frames are
used, and the 0.9 percentile serves as summarization func-
tion. It is important to note that the DSP’s block size dif-
fers from the block size of the SP; both were obtained via
optimization. Consequently, the SP and the DSP capture
information over different time spans.

3.2.4 Variance Delta Spectral Pattern (VDSP)

The feature extraction process of the Variance Delta Spec-
tral Pattern is the same as for the Delta Spectral Pattern
(DSP). The only difference is that the Variance is used as
summarization function over the individual feature dimen-
sions. While the Delta Spectral Pattern (DSP) tries to cap-
ture the strength of onsets, the VDSP should indicate if
the strength of the onsets varies over time or, to be more
precise, over the individual blocks. A hop size of 5 and a
block size of 25 frames are used.

3.2.5 Logarithmic Fluctuation Pattern (LFP)

To represent the rhythmic structure of a song we extract
the Logarithmic Fluctuation Patterns, a modified version of
the Fluctuation Pattern proposed by Pampalk et al. [9]. A
block size of 512 and a hop size of 128 are used. We take
the FFT for each frequency band of the block to extract
the periodicities in each band. We only keep the ampli-
tude modulations up to 600 bpm. The amplitude modula-
tion coefficients are weighted based on the psychoacoustic
model of the fluctuation strength according to the original
approach in [9]. To represent the extracted rhythm pattern
in a more tempo invariant way, we then follow the idea in
[14, 15] and represent periodicity in log scale instead of
linear scale. Finally, we blur the resulting pattern with a
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Figure 2. Generalization from block level features to song feature vectors, with the median as summarization function.

Gaussian filter, but for the frequency dimension only. The
summarization function is the 0.6 percentile.

3.2.6 Correlation Pattern (CP)

To extract the Correlation Pattern the frequency resolution
is first reduced to 52 bands. This was found to be use-
ful by optimization and also reduces the dimensionality of
the resulting pattern. Then we compute the pairwise linear
correlation coefficient (Pearson Correlation) between each
pair of frequency bands, which gives a a symmetric cor-
relation matrix. The Correlation Pattern can capture, for
example, harmonic relations of frequency bands when sus-
tained musical tones are present. Also rhythmic relations
can be reflected by the CP. For example, if a bass drum is
always hit simultaneously with a high-hat this would re-
sult in a strong positive correlation between low and high
frequency bands. Visualizations of the CP show interest-
ing patterns for different types of songs. For example the
presence of a singing voice leads to very specific correla-
tion patterns. A block size of 256 frames and a hop size of
128 frames is used. The summarization function for this
feature is the 0.5 percentile.

3.2.7 Spectral Contrast Pattern (SCP)

The Spectral Contrast [16] is a feature that roughly esti-
mates the “tone-ness” of a spectral frame. This is real-
ized by computing the difference between spectral peaks
and valleys in several sub-bands. As strong spectral peaks
roughly correspond to tonal components and flat spectral
excerpts are often related to noise-like or percussive ele-
ments, the difference between peaks and valleys character-
izes the toneness in each sub-band. In our implementation
the Spectral Contrast is computed from a cent scaled spec-
trum subdivided into 20 frequency bands. For each audio
frame, we compute in each band the difference between the
maximum value and the minimum value of the frequency
bins within the band. This results in 20 Spectral Contrast
values per frame. The values pertaining to an entire block
are then sorted within each frequency band, as already de-
scribed for the SP above. A block size of 40 frames and a
hop size of 20 frames are used. The summarization func-
tion is the 0.1 percentile.

Figure 3 visualizes the proposed set of features for two
different songs, a Hip-Hop and a Jazz song.

Figure 3. Visualization of the proposed block-level pat-
terns for a Hip-Hop song (upper) and a Jazz song (lower).

3.3 PCA Compression

Unfortunately, the described block-level features are all
high-dimensional. For instance, an LFP has 37 (periodici-
ties)× 98 (audio frequencies) = 3626 dimensions. Feature
spaces of such high dimensionality are a serious problem
in classification tasks, in terms of both overfitting and com-
putational complexity. However, thanks to the vector space
representation of the individual features we can use stan-
dard dimensionality reduction techniques to reduce the size
of the features. A standard Principal Component Analysis
(PCA) [17] is used to compress each block-level feature
separately. The number of principal components that is
suitable to compress a single feature (LFP, SP, DSP, VDSP,
SCP, CP) depends on the underlying data and will always
be a trade-off between quality and compression rate. In
Section 5.3 we will therefore perform a set of tag classifica-
tion experiments to identify an optimal trade-off between
classification quality and compression rate. The next sub-
section briefly introduces the standard audio features that
the presented block-level features are compared to in the
evaluation.
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3.4 ‘Standard’ Audio Features

We compare the described block-level feature to a standard
feature set that can easily and efficiently be extracted by
the MARSYAS framework. The features are the Spectral
Centroid, the Rolloff, the Flux and the Mel-Frequency
Cepstral Coefficients (MFCC). Altogether, 16 numbers
are extracted per audio frame. To capture some temporal
information a running mean and standard deviation over a
texture window of M frames is computed. The result in-
termediate features of the running mean computation still
have the same rate as the original feature vectors. To come
up with a single feature vector per song the intermedi-
ate running mean and standard deviation features are once
more summarized by computing mean and standard devi-
ation thereof. The overall result is a single 64-dimensional
feature vector per audio clip. A more detailed description
can be found in [18]. Finally, it is worth mentioning that all
dimensions of both feature sets are always Min-Max nor-
malized before they are used as input to the classification
approach, which will be presented in the next section.

4. CLASSIFICATION APPROACH

As already mentioned we will use the classification method
implemented in the MARSYAS framework to generate the
tag predictions, for both features sets. MARSYAS im-
plements a two stage classification schema (see figure 4)
called “stacked generalization”[3]. In the first stage one
audio feature vector per song serves as the input to a
set of binary classifiers, one for each tag. In our case
the binary classifiers are linear Support Vector Machines
(SVMs) with probabilistic outputs. The probabilistic out-
puts of all binary classifiers of the first stage form the tag
affinity vector (TAV). The TAV can be directly used to gen-
erate tag classifications by mapping the result for each tag
either to 1 (tag present) or 0 (tag not present); the resulting
vector is called tag binary vector (TBV). In MARSYAS
this is realized via a thresholding approach. The threshold
for each tag is chosen such that the number of testing songs
associated with a given tag is proportional to the frequency
of the tag in the training set. In our evaluation we will de-
note the results obtained via this first classification stage
stage 1 results (S1).

However, instead of just binarizing the obtained tag
affinity vector one can additionally make use of prior
knowledge about tag co-occurrences by feeding the ob-
tained TAV into a second classification stage, which con-
sists once again of one linear Support Vector Machine clas-
sifier per tag, but now with the TAV as input. As in the first
stage the probabilistic output of the second stage classifiers
can be interpreted as tag affinity vector. To distinguish the
probabilistic output of the second stage from the proba-
bilistic output of the first stage, the former is called stacked
tag affinity vector (STAV). The binary classification result,
called stacked tag binary vector (STBV) or stage 2 result
(S2), is then obtained via the same thresholding approach
as described for the first stage.

Although the stacked generalization approach as de-
scribed clearly has some merits, there is one weak point

Figure 4. Stacked Generalization classification schema,
visualization from [3]

in this schema, which is the specific thresholding strategy
used by MARSYAS to generate the binary classification
results (setting the threshold such that it leads to a certain
percentage of positive predictions on the test set). It seems
that this is an unconventional way of dealing with the class
imbalance problem, which is one of the major problems
in automatic tag classification. One future research direc-
tion will be to investigate more conventional approaches
to deal with the class imbalance problem. In the following
section we will present classification results for both stages
(S1,S2) of stacked generalization tag classification.

5. EXPERIMENTS

In this section, we introduce the two datasets that are used
in our evaluation, discuss the performance measures em-
ployed, and present the results of the experiments. We will
first report on an evaluation of the applicability of PCA
compression to the block-level feature set, and then present
tag classification experiments for the direct comparison of
the block-level and the standard audio feature set.

5.1 Datasets

5.1.1 CAL500

The CAL500 dataset [7] consists of 500 Western popular
songs by 500 different artists. These songs have been anno-
tated by 66 students with predefined semantic concepts that
relate to six basic categories: instruments, vocal charac-
teristic, genres, emotions, preferred listening scenario and
acoustic qualities of a song (e.g. tempo, energy or sound
quality). These concepts were then mapped to a set of 174
tags including positive and negative tags. Based on the
user data binary annotation vectors were derived by ensur-
ing a certain user agreement on the assigned tags. Figure 5
(left) shows the percentage of song that are annotated with
each tag. Tags are sorted according to their annotation fre-
quency. The most frequent tag in this dataset is applied to
88.4% of all songs. Typically, either a tag is used to anno-
tate a majority of all songs or just for a few songs. Figure 5
(b) shows that the 90 most frequently applied tags account
for 89.2% of all annotations.
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Figure 5. Percentage of annotated songs per tag (left) and
percentage of accumulated annotations of the first k most
frequent tags (CAL500).

Figure 6. Percentage of annotated songs per tag (left) and
percentage of accumulated annotations of the first k most
frequent tags (Magnatagatune).

5.1.2 Magnatagatune

The second dataset in our evaluation is the Magnatagatune
[19] dataset. This huge dataset contains 21642 songs an-
notated with 188 tags. The tags were collected by a music
and sound annotation game, the TagATune 4 game. The
dataset also contains 30 seconds audio excerpts of all songs
that have been annotated by the players of the game. All
the tags in the dataset have been verified (i.e. a tag is as-
sociated with an audio clip only if it is generated inde-
pendently by more than 2 players, and only tags that are
associated with more than 50 songs are included). From
the tag distribution (figure 6) one can see that in terms
of binary decisions (tag present / not present), the classi-
fication tasks are even more skewed than on the CAL500
dataset. The most frequently used tag applies to 22.42%
of all songs only. 110 out of the 188 tags are used for less
than 1% of all songs. From figure 6 one can see that the
87 most frequently used tags account for 89.86% of all an-
notations. This dataset is rather difficult to handle because
of its size and the extremely skewed class distributions. To
our knowledge, only Ness et al. [3] have so far presented
results for this dataset.

5.2 Performance Measures

As automatic tag classification is a relatively new research
area the performance measures used for evaluation vary

4 http://www.tagatune.org

significantly. Accuracy, precision, recall, f-score, true pos-
itive rate and true negative rate have been used. The only
measure that is used in all evaluations is the f-score. There-
fore, we will use the f-Score (see Eq.5 below) as one per-
formance measure. As a second quality measure we use
the G-mean (8) [20], which is a combination of Sensitiv-
ity (Acc+), also known as true positive rate, and Speci-
ficity (Acc−), also known as true negative rate. As such,
it is a nice and compact measure that has the advantage of
taking the class imbalance into consideration. We believe
that these two quality measures together yield a compact
and also comprehensive evaluation. Both measures can be
computed globally over the entire (global) binary tag clas-
sification matrix, or separately for each tag and then aver-
aged across tags. To differentiate between global and aver-
aged performance measures the averaged per tag measures
are named avg. F-Score and avg. Gmean, respectively. It
is also important to note that we focus on the specific sub-
task of tag classification in this paper and therefore do not
report on performance measures related to tag probabilities
(or tag affinities) like average AUC-ROC.

f-Score =
2× precision× recall
(precision + recall)

(5)

Acc− = TN/(TN + FP) (6)

Acc+ = TP/(TP + FN) (7)

G-mean = (Acc− × Acc+)
1
2 (8)

5.3 Evaluation of the PCA Compression

To make the block-level features applicable to the task of
automatic tag classification, we have to reduce their di-
mensionality in order to make the classification computa-
tionally tractable. As already discussed above, we use a
standard Principal Component Analysis (PCA) to achieve
this. However, both the compression rate and the achiev-
able classification quality clearly depend on the number of
principal components used to represent each block level-
feature. In our evaluation we determine the number of
principal components individually for each pattern (LFP,
SP, DSP, SCP, CP, VDSP), based on the total variance cap-
tured by the k most important principal components. For
example, given that we want to keep 80% of the total vari-
ance we compute the PCA for each pattern and then keep
the number of principal components such that at least 80%
of the total variance is accounted for. Thus, the prespeci-
fied variance determines the resulting feature size for each
pattern individually.

To evaluate the PCA compression for different percent-
ages of the total variance the CAL 500 dataset and two fold
cross-validation is used. To compute the principal com-
ponents only the features of the training set were used to
prevent possible overfitting effects. As a consequence the
dimensionality of the compressed feature set differs for the
two cross-validation folds. The same split into two cross-
validation folds were used for all experiments. The evalu-
ation results are summarized in table 1. One can see that
a feature set capturing about 70% to 80% of the total vari-
ance seems optimal in terms of tag classification quality.
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Interestingly, also even a extreme reduction of the feature
space to only about 37 dimensions performs comparably
well. With respect to the stage 1 predictions some PCA
compressed feature sets even outperform the original fea-
ture set. Furthermore, the second classification stage yields
an improvement over the first for all evaluated feature sets.
The best classification performance, however, is achieved
by the uncompressed feature set using stacked generaliza-
tion. It is also important to note that the decay in clas-
sification quality with a high number of principal compo-
nents is related to the low number of data points that are
available for the projection: the CAL500 consists of only
500 songs, in a feature space with 9448 dimensions. Al-
together, we can conclude from these experiments that the
proposed PCA compression approach does not diminish
the tag prediction quality too much and is therefore a rea-
sonable approach to reduce the size of the feature space.

5.4 Evaluation of the Feature Set Comparison

To compare the two feature sets we report on the pre-
sented performance measures obtained via 2-fold cross-
validation on two different datasets (CAL500 and Mag-
natagatune). The same cross-validation split was used for
the evaluated feature sets. These results are summarized
in table 2, which gives the global performance measures
computed over the global binary classification matrix, and
the averaged per-tag performance measures. SAF denotes
the standard audio feature set and BLF-PCA denotes the
PCA compressed block-level feature set. BLF-FULL de-
notes the result of the uncompressed block-level feature
set, which we only report for the smaller CAL500 dataset,
because it was computationally not tractable on the larger
Magnatagatune dataset. On the CAL500 dataset the BLF-
PCA feature set consists of the 75 most important princi-
pal components capturing 75% of the total variance. On
the larger Magnatagtune dataset the same variance thresh-
old of 75% was used. For each performance measure the
highest score on each dataset is highlighted in bold face.
Clearly, the BLF-PCA feature set outperforms the standard
feature set (SAF). An interesting finding is that the un-
compressed block-level feature set (BLF-FULL) performs
poorly on the first classification stage and obtains the high-
est scores for the second classification stage. We speculate
that the bad performance in the first classification stage is
related to the high dimensionality of this feature set. An-
other interesting detail is that the achievable gain in quality
due to the improved feature set is in many cases relatively
bigger than the gain from the second classification stage.
Altogether, we can conclude that independent of the over-
all performance measure, either global or averaged per tag,
the compressed block-level feature set compares favorably
to a standard feature set.

6. CONCLUSIONS AND FUTURE WORK

In this paper have compared a set of recently proposed
block-level features to standard audio features with respect
to the task of automatic tag classification. We have shown
that the proposed block-level feature set compares favor-

ably to a standard feature set for the evaluated tag classifi-
cation approach on two different datasets. Since the eval-
uated system with the standard features took the second
rank in the MIREX 2009 tag classification task, we can
conclude that the same system with the block-level fea-
tures instead of the standard features is a state-of-the-art
tag classification system.

Future research directions will include the exploration
of standard techniques to account for the class imbalance
problem of tags (e.g., over- or under-sampling [20]), in-
stead of the rather unconventional threshold approach. An-
other interesting research direction will be to follow the
idea of West et al. [2] and try to use automatically esti-
mated tag and genre affinities for music similarity estima-
tion.
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ABSTRACT

The Bag-of-Frames (BoF) approach has been widely
used in music genre classification. In this approach, music
genres are represented by statistical models of low-level
features computed on short frames (e.g. in the tenth of ms)
of audio signal. In the design of such models, a common
procedure in BoF approaches is to represent each music
genre by sets of instances (i.e. frame-based feature vec-
tors) inferred from training data. The common underlying
assumption is that the majority of such instances do cap-
ture somehow the (musical) specificities of each genre, and
that obtaining good classification performance is a matter
of size of the training dataset, and fine-tuning feature ex-
traction and learning algorithm parameters.

We report on extensive tests on two music databases that
contradict this assumption. We show that there is little or
no benefit in seeking a thorough representation of the fea-
ture vectorsfor each class. In particular, we show that
genre classification performances are similar when repre-
senting music pieces from a number of different genres
with the same set of symbols derived from a single genre
or from all the genres. We conclude that our experiments
provide additional evidence to the hypothesis that common
low-level features of isolated audio frames are not repre-
sentative of music genres.

1. INTRODUCTION

A large literature exists on automatic classification of mu-
sic pieces based on raw audio data. Providing a complete
review is out of the scope of this paper, interested read-
ers are referred to [1] and [2]. Most approaches to date
share the same underlying algorithmic architecture [1]: the
Bag-of-Frame (BoF) approach. Music genres are repre-
sented via long-term statistical models of large collections
of feature vectors computed on short frames of audio sig-
nal (on the scale of tenth of ms). In the BoF approach, it
is implicit that all frames have a similar information load,
and that all are significant in the modeling of genres. A
prototypical implementation of this architecture, now con-
sidered standard procedure, uses Gaussian Mixture Mod-
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eling (GMMs) of short-term Mel-Frequency Cepstral Co-
efficients (MFCCs).

Aucouturier [1] discusses the existence of a “glass-ceil-
ing” to the performance of the BoF approach to music
genre classification. He argues that it is fundamentally
bound and that a change of paradigm to music genre mod-
eling is needed. A number of recent papers also challenge
the BoF approach arguing that all frames may not have the
same information load and propose to train models of mu-
sic genre on a selection of the available training data, either
the most representative, or the most discriminative [3, 4, 5].
In previous research on the topic of instance selection for
music genre classification [6], we showed that when rep-
resenting music signals by common low-level features (i.e.
MFCCs and spectral features), similar classification accu-
racies could be obtained when training classifiers on all of
the training data available, or on few training data instances
from each class.

In this paper, we go a step further and propose the hy-
pothesis that values of common low-level features on iso-
lated signal frames arenot representative of music genres.
In other words, the performance of BoF music genre mod-
els may be bound because there would be not such thing as
a “typical e.g. Rock, or Classical frame” (more precisely,
no such thing as “typical sets of low-level audio feature
values for a e.g. Rock, or Classical frame”).

To address this hypothesis, we conduct systematic ex-
periments in which models of music genres are built with
training data representative ofonly part of the genresfrom
the dataset.

These experiments imply (1) the definition of a code-
book, generated from different partitions of some available
training data (section2), and (2) the expression of training
examples from each genre with this codebook and the ac-
tual training of genre models (section3.1). In the remain-
der of section3, we describe experimental details regard-
ing data and audio features used. Section4 reports results
of our experiments and in section5, we propose some con-
clusions and directions for future research.

2. CODEBOOK GENERATION PROCEDURES

Following the technique described in [5], the experiments
reported in this paper are based on a codebook approach.
The feature vectors extracted from the training set are pro-
cessed in order to select a limited number of representa-
tive feature vectors that constitute the codebook. We ex-
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perimented several approaches for the constitution of the
codebook, including selecting the centroids obtained with
k-means, selecting the most representative feature vectors
according to the probability density function modeled with
a Gaussian Mixture Model, and combinations of both ap-
proaches (see [5] for more details). In this paper, to avoid
any particular bias, we use random selection of feature vec-
tors, as follows.

Codebooks are generated by randomly selectingk1 fea-
ture vectors from each music piece and then selectingk2
feature vectors in the set ofN × k1 feature vectors (where
N corresponds to the number of music pieces in the train-
ing set). In both cases a uniform distribution is used. For
all experiments described in this paper we usedk1 = 20
andk2 = 200.

Notice that the creation of codebooks is an unsupervised
process, i.e. each music piece is processed independently
of the class it belongs to. Three kinds of codebooks were
generated:

Using data from all genres but oneThe codebook is gen-
erated ignoring class X. This is repeated for each
class. The codebooks obtained this way are called
“all-but-X”.

Using data from a single genreIn this case codebooks are
generated using the feature vectors found in music
pieces from only one genre. These codebooks are
referred as “only-X”.

Using data from all genres As a base for comparison, we
generated codebooks that use the data from all classes,
as described previously. These codebooks are called
“all-genres”.

3. EXPERIMENTS

3.1 Classification models

3.1.1 Data representation by vector quantization

Input data to the classifiers (both for training and testing)
is based on a codebook approach: each music piece is first
converted into a sequence of discrete symbols pertaining
to one of the codebook symbols considered here, through
vector quantization of the audio features. More precisely,
for each music piece, the feature vector of each frame is as-
signed a symbol corresponding to the nearest symbol in the
set ofk2 = 200 possible symbols of the given codebook
(see section2).

Finally, depending on the classifier, each music piece is
represented by either a normalized histogram of the sym-
bols frequency, or the sequence of symbols itself.

3.1.2 Histogram + k-NN

The k-NN algorithm treats the histograms as points in ak2
dimensional space. The music pieces in the training set are
used as examples, and a new music piece is classified by a
majority vote of its neighbors. In our experiments, we used
a 5-NN classifier. The nearest neighbors were calculated

based on two distance metrics: the Euclidean distance, and
a symmetric version of the Kullback-Leibler divergence:

D (P‖Q) = DKL (P‖Q) +DKL (Q‖P ) (1)

where,Q andP are the normalized histograms of two mu-
sic pieces, and

DKL (P‖Q) =

k2∑

i=1

P (i) log
P (i)

Q(i)
(2)

is the Kullback-Leibler divergence, andP (i) is thei-bin of
the histogramP . In order to use this divergence, the distri-
butionsP andQmust have non-zero entries. However, this
can happen if one or more symbols from the codebook are
not used in the representation of a given music piece. To
overcome this limitation, we add one hit to all histogram
bins before performing the histogram normalization.

3.1.3 Histogram + SVM

A Support Vector Machine (SVM) [7] was used with a Ra-
dial Basis Function kernel withγ = 1/k2 (wherek2 is the
number of features, i.e. 200), and a costC = 2000. Exper-
iments for determining optimal parameter values are left
for future work.

3.1.4 Markov models

This classification method is based on Markov modeling.
A Markov model is build for each genre, by computing
the transition probabilities (bigrams) for each group of se-
quences [5]. The outcome is set of transition matrices, one
for each class, containing the probabilities,P (sj |si), of
each symbolsj given the preceding symbolsi. For classi-
fication, the test music piece is converted into a sequence
of symbols,S = {s1, s2, . . . , sn}, and the (logarithmic)
probability of the sequence given each model is calculated:

LM (S) = log (PM (si=1,...,n))

= log (PM (s1)) +
n∑

i=2

log (PM (si|si−1))

(3)
wherePM represents the symbols probability mass func-
tion for the modelM . The music class is chosen by the
model with the highest scoreLM .

3.2 Data

Two datasets were used in our experiments. The first one is
a subset of the Latin Music Database (henceforth, “LMD
dataset”), and the second is the ISMIR 2004 Genre Classi-
fication Contest (henceforth, “ISMIR04 dataset”).

3.2.1 LMD

The Latin Music Database [8] is composed of 3,227 full-
length music pieces, uniformly distributed over 10 genres:
Axé, Bachata, Bolero, Forró, Gaúcha, Merengue, Pagode,
Salsa, Sertaneja, and Tango. For our experiments, we cre-
ated a subset of 900 music pieces, which are divided in
three folds of equal size (30 pieces per class). We used an
artist filter [9, 10] to ensure that the music pieces from a

135



specific artist are present in one and only one of the three
folds. We also added the constraint of the same number of
artists per fold.

3.2.2 ISMIR04

This dataset was created for the genre classification contest
organized during the ISMIR 2004 conference [11], 1 and
is divided in six genres with a total of 729 music pieces
for training and 729 music pieces for testing. The music
piece distribution among the six genres is: 320 Classical,
115 Electronic, 26 JazzBlues, 45 MetalPunk, 101 Rock-
Pop, and 122 World. As in the original ISMIR 2004 con-
test, the dataset does not account for artist filtering between
both sets.

3.3 Audio Features

We used the free MARSYAS framework2 to extract 17 au-
dio features from 46ms frames of the audio signals (mono,
sampled at 22050Hz, no overlap). The features are com-
monly used in audio genre classification tasks: the zero
crossing rate, spectral centroid, rolloff frequency, spectral
flux, and 13 MFCCs, including MFCC0.

3.4 Evaluation Metrics

We report the accuracy obtained over test sets only, both
for the ISMIR04 and LMD datasets.

On the evaluation on the ISMIR04 dataset, we kept the
original training-testing division proposed in the ISMIR
2004 genre classification contest.

The evaluation on the LMD dataset follows a three-fold
cross validation procedure: two folds are used for training
and one for testing, with all the permutations of the folds.
The performance measure is the accuracy averaged over
the three test runs.

4. RESULTS AND DISCUSSION

First of all, it is interesting to notice that results obtained on
the ISMIR04 and LMD datasets are comparable to state-
of-the-art results. For instance, the best result obtained on
ISMIR04 is79.8%, which is very similar to the results ob-
tained by the best algorithms in the last MIREX in which
this data was used (i.e. MIREX 2005).3 The best result
obtained on LMD is64.9%, when the best result on this
dataset in MIREX 2009 was74.6% and the average accu-
racy accounting for all participants was55.5%.

In almost every set of experiment we found that the clas-
sifiers based on Markov models is better than the three
other alternatives. This observation tends to confirm the
fact that the information contained in the temporal sequence
is indeed relevant to the classification into genres.

Tables1 and2 show the overall classification accuracy
for the ISMIR04 and the LMD datasets respectively when
one genre is not used in the codebook generation process.
The lines represent accuracy scores obtained with different

1 http://ismir2004.ismir.net/ISMIRContest.html
2 http://marsyas.sness.net/
3 http://www.music-ir.org/mirex/2005/

ISMIR04 — all-but-one genre
Markov SVM k-NN k-NNKL

all genres 79.0 68.6 73.0 76.0
all-but-Class. 79.3 68.3 70.8 73.7
all-but-Elec. 79.7 68.6 69.3 73.7
all-but-JaBl. 78.3 67.8 70.6 74.6
all-but-MePu. 79.3 68.5 71.5 75.9
all-but-RoPo. 78.6 68.2 73.3 75.3
all-but-Wor. 79.1 68.2 73.3 74.3
Average 79.1 68.3 71.5 74.6

Table 1. Results for the ISMIR04 dataset. Each line repre-
sents the average accuracy (over all genres) obtained with
codebooks generated from all but one genre. The last line
contains the average of lines 2 to 7. The first line con-
tains the results obtained with a codebook computed with
all genres. Results in bold are those that outperform those
of the first line.

classification procedures (columns). For the sake of com-
parison, the first line contains the results obtained with a
codebook computed with all genres.

From these experiments (Tables1 and2) one can see
that when the feature vectors from one class are ignored
in the creation of the codebook, we do not observe a se-
vere decrease of the accuracy. In some cases the accuracy
obtained without one of the classes is equal or better than
when all genres are used (numbers with bold font).

LMD — all-but-one genre
Markov SVM k-NN k-NNKL

all genres 64.0 54.2 47.0 52.2

all-but-Axé 62.7 56.6 50.1 52.7
all-but-Bach. 64.9 54.1 48.1 52.7
all-but-Bole. 63.0 54.9 49.9 53.0
all-but-Forr. 61.1 53.8 48.9 51.2
all-but-Gáu. 63.6 53.1 48.3 50.9
all-but-Mer. 63.7 53.6 47.8 50.4
all-but-Pag. 63.5 54.0 49.1 52.7
all-but-Sals. 63.5 53.7 47.9 50.8
all-but-Sert. 62.8 54.3 48.9 51.4
all-but-Tan. 63.1 54.3 48.9 51.9
Average 63.2 54.2 48.8 51.8

Table 2. Results for the LMD dataset. Each line repre-
sents the average accuracy (over all genres) obtained with
codebooks generated from all but one genre. The last line
contains the average of lines 2 to 11. The first line con-
tains the results obtained with a codebook computed with
all genres.

Tables3 and 4 are very similar to table1 and 2, but
in this case, the codebooks were computed using feature
vectors from only one genre.

It can be seen that reducing dramatically the universe of
feature vectors, the average accuracy compared to the case
where all genres are used is not substantially different.
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ISMIR04 — only one genre
Markov SVM k-NN k-NNKL

all genres 79.0 68.6 73.0 76.0
only-Class. 76.3 62.8 66.8 71.7
only-Elec. 79.4 67.2 70.9 73.4
only-JaBl 78.5 66.8 67.2 72.7
only-MePu. 74.8 66.9 65.3 72.3
only-RoPo. 75.7 67.2 70.5 75.4
only-Wor. 79.8 67.5 69.8 73.3
Average 77.4 66.4 68.4 73.1
All − Average 1.6 2.2 4.6 2.9

Table 3. Results for the ISMIR04 dataset. Each line repre-
sents the accuracy obtained with codebooks generated with
data from a single genre. The last line shows the decrease
in accuracy between results obtained with a codebook gen-
erated with data from all genres and average results ob-
tained with a codebook generated with data from a single
genre.

LMD — only one genre
Markov SVM k-NN k-NNKL

all 64.0 54.2 47.0 52.2

only-Axé 59.9 54.4 49.6 52.2
only-Bach. 64.9 53.7 45.8 51.7
only-Bole. 62.1 53.0 45.6 49.0
only-Forr. 64.7 53.9 49.6 52.9
only-Gáu. 64.6 54.6 49.8 55.8
only-Mer. 62.3 53.6 48.7 51.0
only-Pag. 63.5 53.0 48.5 50.8
only-Sals. 63.9 53.1 47.2 50.9
only-Sert. 61.9 53.3 49.2 54.3
only-Tan. 55.0 46.2 40.1 43.6
Average 62.3 52.9 47.4 51.2

Table 4. Results for the LMD dataset. Each line repre-
sents average results obtained with codebooks generated
with data from a single genre.

In the case of the ISMIR04 dataset, using only one genre
for building the codebook leads to an average decrease of
1.6 percentage points for Markov models, 2.2 percentage
points for SVM, 4.6 percentage points for k-NN and 2.9
percentage points for k-NNKL. It is interesting to note that
the non-parametric method (k-NN) is the most affected by
a reduction of the amount of data. However, we can also
see that, at least for the Markov model classifier, in some
cases performance can be better when using only one genre
to build the codebook.

In the case of the LMD dataset (Table4), we observe
that, in numerous cases, the accuracy obtained with code-
books modeled after only one genre is equal or better than
the one obtained using all genres. From these experiments
we can see that using a small subset of the feature vectors,
even if they belong to only one genre, we are still able to
build a classifier that performs well.

ISMIR04
all all-but-1 only-1 Diff.

Classical 96.9 95.3 96.6 1.3
Electronic 71.1 72.8 73.7 0.9
JazzBlues 63.4 69.3 76.9 7.6
MetalPunk 71.1 75.6 64.4 −11.2
RockPop 61.8 61.8 64.7 2.9
World 59.9 60.7 63.1 2.4

Table 5. Breakdown with respect to genres of the results
for the ISMIR04 dataset, using Markov models classifiers.
Each row shows the accuracy observed for the correspond-
ing class with the three different kinds of codebooks. For
instance, the entry in the fourth line second column (75.6)
is the percentage of correctly classified music pieces for the
class MetalPunk, using a codebook computed with feature
vectors from all genres but MetalPunk. The last column
contains the difference between the only-1 and all-but-1
accuracies.

LMD
all all-but-1 only-1 Diff.

Axé 44.4 41.1 36.7 −4.4
Bach. 83.3 84.4 86.7 2.3
Bole. 76.7 74.4 82.2 7.8
Forr. 37.8 35.6 35.6 0.0
Gaúc. 44.4 47.8 53.3 5.5
Mere. 80.0 76.7 81.1 4.4
Pago. 56.7 56.7 60.0 3.3
Sals. 68.9 65.6 72.2 6.6
Sert. 61.1 54.4 64.4 10.0
Tang. 86.7 85.6 85.6 0.0

Table 6. Breakdown with respect to genres of the re-
sults for the LMD dataset, using Markov models classi-
fiers. Each row show the accuracy observed for the corre-
sponding class with the three different kinds of codebooks.
The last column contains the difference between the only-1
and all-but-1 accuracies.

Since the performance is measured on all classes, a lower
classification rate on one class may be hidden by higher
scores on others. Therefore we evaluated the accuracy ob-
tained for each class with each of the three ways of build-
ing the codebooks. These results are shown in tables5 and
6. In the case of the ISMIR04 dataset (table5), one can
see that the differences in accuracy between using only a
given class (4th column) and not using that class at all in
the generation of the codebook (3rd column) is rather small
with two exceptions: JazzBlues and MetalPunk, albeit in
an opposite way. These exceptions may be explained by
the fact that both categories are represented with a very
small number of music pieces (26 for JazzBlues and 45 for
MetalPunk).

We also studied the effect of using only one class for
codebook creation on the accuracy observed on other classes.
The results are shown in table7 for the ISMIR04 dataset
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ISMIR04
only-Class. only-Elec. only-JaBu only-MePu. only-RoPo. only-Wor.Diff.

Class. 96.6 95.9 95.6 91.3 91.6 95.9 0.7
Elec. 69.3 73.7 71.1 67.5 71.1 72.8 0.9
JaBu. 57.7 69.2 76.9 61.5 65.4 65.4 7.7
MePu. 77.8 73.3 77.8 64.4 73.3 82.2 4.4
RoPo. 51.0 61.8 59.8 63.7 64.7 59.8 1.0
Wor. 54.1 60.7 56.6 54.1 50.8 63.1 2.4

Table 7. Genre breakdown results for the ISMIR04 dataset using Markov models with different codebooks based on
only one class. The table entries are class accuracies (lines) for a given codebook (columns). The last column shows the
difference between the best (bold) and the second best accuracy (underlined) of each row.

LMD
only-Ax. only-Ba. only-Bo. only-Fo. only-Gá. only-Me. only-Pa. only-Sa. only-Se. only-Ta.Diff.

Axé 36.5 42.2 22.1 44.4 45.6 46.7 37.8 44.4 45.6 37.8 1.1
Bach. 81.1 86.7 83.3 83.3 84.4 83.3 85.6 84.4 81.1 83.2 1.1
Bole. 76.7 77.8 82.2 68.9 74.4 70.0 70.0 72.2 68.9 80.0 2.2
Forr. 34.4 34.4 32.2 35.6 32.2 34.4 41.1 33.3 32.2 36.7 4.4
Gáu. 44.4 51.1 43.3 53.3 53.3 48.9 44.4 51.1 45.6 33.3 2.2
Mer. 75.6 76.7 77.8 80.0 77.8 81.1 75.6 77.8 76.7 72.2 1.1
Pag. 50.0 57.8 55.6 60.0 60.0 48.9 60 .0 57.8 53.3 50.0 2.2
Sals. 61.1 74.4 72.2 72.2 72.2 63.3 61.1 40.3 65.6 42.2 2.2
Sert. 52.2 61.1 55.6 64.4 58.9 62.2 58.9 60.0 64.4 28.9 2.2
Tan 86.7 86.7 84.4 84.4 87.8 84.4 88.9 85.6 85.6 85.6 1.1

Table 8. Genre breakdown results for the LMD dataset using Markov models with different codebooks based on with
only one class. The table entries are class accuracies (lines) for a given codebook (columns). The last column shows the
difference between the best (bold) and the second best accuracy (underlined) of each row.

and in table8 for the LMD dataset. Each row of these
tables contain the accuracy observed on one class (rows)
when using a codebook based on each single class (columns).
Values in bold font correspond to the maximum of each
row and can be interpreted as the best codebook for the rep-
resentation of each class. For example, in table7 we can
seethat all classes but MetalPunk are better represented by
a codebook defined using the same class. But if we look at
the second best accuracy (underlined numbers) we can see
that using feature vectors from a different class can lead
to seemingly similar performance. The difference between
best and second best accuracy is shown in the last column.
For example, Classical music may be represented by fea-
ture vectors that belong to Electronic or World music los-
ing only 0.7 percentage points in accuracy. RockPop may
be represented by MetalPunk or Electronic feature vectors,
losing only 1 percentage point. Counter examples can be
found with the cases of JazzBlues and MetalPunk but this
may be caused by the fact that those classes are represented
by a small number of music pieces when compared to other
classes. It is notable that in some cases (such as Classical
and Electronic) the ability of using a genre to represent
another genre occurs with genres that are perceived very
differently by listeners.

When looking at table8, which describes the same ex-
periments with the LMD dataset, one can see that the dif-
ference between the best and the second best accuracy is

small, showing that a genre may be represented using fea-
ture vectors from another genre without losing too much
accuracy, and in some cases even increasing accuracy ap-
parently.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we tackle the problem of music genre classi-
fication with low-level features computed on collections of
audio frames. In the common approach to this problem, it
is generally assumed that the majority of frames of a par-
ticular genre (or, more precisely, their representations via
MFCCs and other common low-level features) carry infor-
mation that is specific to that genre. The main conclusion
of our experiments is that common low-level features com-
puted on individual audio frames are in fact not represen-
tative of music genres (even if their distributions are). We
demonstrate that seeking the most extensive and thorough
representation of each genre with respect to such low-level
features does in fact not bring any benefit in terms of clas-
sification accuracy.

Specifically, in our experiments, music pieces from di-
verse genres are represented by sequences of symbols from
a codebook. This codebook is made up of feature vectors
from either one, all, or a selection of genres. We show
that the classification accuracy averaged over all genres is
very similar when the codebook is derived from data of all
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genres vs. data of all genres but one (tables1 and 2), or vs.
dataof only one single genre (tables3 and4). This appears
to betrue for diverse classifiers. Further, the provenance of
the data used for deriving the codebook does not seem to
have a profound impact on classification accuracy of each
particular genre (tables5 and6), even in the case where
the data used comes from one single, different genre (ta-
bles7 and8). These results appear to hold for two different
datasets of very different natures.

This is not to say that such frame-based representations
are not useful for music genre classification, as they in-
deed permit to classify better than random. However, even
if collectionsof frames can represent music genres with
some success, we show here thatindividual frames do not.

Given the relatively small variations in accuracies for a
given genre, and the fact that these variations go both ways
(small decrease in some cases and small increase in some
others), we suspect that statistical significance tests would
show the near equivalence of accuracies over each genres.
This is an avenue for future work.

We believe that the results detailed in this paper con-
tribute to the emerging idea that significant improvements
in music genre classification will require the design of bet-
ter initial signal representations, features that carry infor-
mation that would be specific to genres, closer to musical
concepts [12].
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ABSTRACT 
This paper provides an overview of a cueing 
system, the Master Cue Generator (MCG) used 
to trigger performers (humans or computers) 
over an IP-based network. The performers are 
scattered in several locations and receive cues 
to help them interact musically over the net-
work. The paper proposes a classification of 
cues that dynamically evolve and reshape as the 
performance takes place. This begets the explo-
ration of various issues such as how to represent 
and port a hierarchy of control over a net-
worked music performance (NMP) and also 
takes into account parameters inherent to a net-
work such as latency and distance. This ap-
proach is based on several years of practice-led 
research in the field of NMP, a discipline that is 
gaining grounds within the music technology 
community both as a practice and through the 
development of tools and strategies for interact-
ing over disparate locations.  

1. INTRODUCTION 

Performing in real time over high-speed net-
works is a now well-accepted paradigm and has 
become an integral part of Telematic Art, con-
sidered by authors such as Roy Ascott, “as an 
artistic medium in itself” [1]. There have been 
several attempts to achieve interactive telematic 
performances. However the first telematic con-
cert, using high-speed research networks with 
no audio compression and thus allowing CD 
like audio quality took place between two 
spaces at Stanford University in 2000, with an 
ensemble split and performing about one kilo-
meter apart [3]. This initial test was led by the 
Sound Waves over the Internet from Real-time 
Echoes (SoundWIRE) project founded in 1998 
at Stanford University [3]. SoundWIRE, 

through various experiments and studies such as 
the “clapping experiment” [4], which measured 
a threshold in milliseconds for ensemble accu-
racy, set the grounds for further development in 
the field of networked music performance 
(NMP). The discipline of NMP branched out in 
many directions, and due to its nature, which 
involves being distributed, led to the involve-
ment of several new participants. The work of 
SoundWIRE, however, demonstrated that it was 
possible to interact musically over a long dis-
tance despite the inherent latency of the net-
work. The excitement of being able to play 
apart led to the challenge of choosing whether 
music performed over a network could be sim-
ply improvised or formally structured through 
the help of network-centric cueing mechanisms. 

2. IMPROVISATION 

The network provides a platform for sharing 
synchronization information and cues as it al-
lows several performers to share a common 
infrastructure for exchanging common musical 
structures. Performing over the network intro-
duces the principle of dislocation of performers 
as they are not in the same space but are playing 
in real time together whilst being located in 
several spaces. Free improvisation has been a 
practice often employed in NMP due to its em-
phasis on musician-to-musician interaction and 
flexibility of materials; thus providing a good 
basis for developing musical strategies for in-
teracting over a network regardless of its la-
tency. Free improvisation as outlined by Derek 
Bailey, “pre-dates any other music – mankind’s 
first musical performance could not have been 
anything other than a free improvisation” [2]. It 
is therefore not surprising that new media envi-
ronments, such as NMPs, resort to basic sorts of 
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musical forms, which do not involve a formal 
structure. NMP is such a recent practice that 
most performances will start from an empty 
shell, where the infrastructure will first be put 
into place followed by numerous tests to make 
sure that the communication works and final-
ised by a short rehearsal. The fact that the IP –
based network is the medium that interconnects 
them will play a crucial role in the development 
of those social interactions through space and 
time. In this context, and based on several years 
of research in the field through large scale 
NMPs such as the Disparate Bodies series [7] as 
well as the experimentations of the Net. Vs. Net 
Collective [8], the development of coherent 
network centric cueing strategies was needed.  

It is due to the fact that, very quickly the im-
provized performance requires some sort of 
formalization so that performers can be cued 
over the network, leading to the inclusion of a 
basic structure within the improvisation. In this 
context and as a result of the practice in the 
field, a formal classification of networked cues 
and how they can be used to interact musically 
over the network made sense.   

3. CUES 
3.1 Rationale 

In order to provide an easy way to represent 
various cue information over the network, an 
integrated cueing system called the Master Cue 
Generator (MCG) was developed. The MCG 
aims to provide a rough standard to distribute 
cues over the network. The MCG has been used 
and tested in several NMPs such as the Dispa-
rate Bodies series [7] and with the Net. Vs. Net 
Collective [8]. The system is continuously be-
ing developed further with the goal to achieve a 
common cueing structured language for net-
worked music improvisation.    

The MCG was built with Max/Msp [6] and is 
able to send cues to a multitude of locations as 
standard OpenSoundControl (OSC) [9] mes-
sages, meaning that any OSC compliant appli-
cation is able to receive the cues and converse 
back to the MCG should a direct feedback be 
necessary. The MCG was initially designed to 

function based on a client/server architecture. 
However, it was later discovered that  modifica-
tions of the network configuration should be 
possible based on the changing attribution of 
roles, defined as who plays the role of the MCG 
in the network. This complex and challenging 
aspect is currently being developed. 

Currently, the MCG broadcasts important musi-
cal information by providing a basic structure to 
the nodes playing over the network, such as 
which section of the piece the nodes are in, as 
well as warning messages that the piece is about 
to switch to another section. The types of cues 
and their specific nature can be customized de-
pending on the artistic approach given to the 
piece.  

 

Figure 1. The MCG engine 

3.2 Types of Cues 

There are three types of cues that have been so 
far identified as part of the classification: tem-
poral behavioural and notational. All the cues 
below have been developed based on the prac-
tice in the field and the classification is con-
stantly being updated as the practice progresses. 

3.2.1 Temporal Cues 

Temporal cues are sent out as information from 
the server to the nodes and are related to timing. 
Examples include the length of a cue, a warning 
that the cue is about to finish, or how much time 
a given node is in control of the improvisation 
until the given node delegates its control to an-
other node and thus conceptually modifying the 
topology of the network. They are the most im-
portant types of cues, in order to keep the en-
semble together and, thereby, can be synchro-
nized with various audio triggering cues, which 
are indicators that the structured improvisation 
is about to change from one section to another.  

3.2.2 Behavioral Cues 

Behavioral cues are cues that are sent with a 
certain scenario attached to them. This can, for 
example, include the triggering of a waveform, 
or the suggestion that a given node needs to 
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play certain nodes only above the note C4. Be-
havioural cues can also trigger physical ele-
ments in a remote space such as the ringing of a 
distant bell or the triggering of an analogue syn-
thesizer. Behavioural cues are more complex 
types of cues. They allow the broadcast of mes-
sages that will have an influence on the actual 
audio content of the piece being performed over 
the network. Behavioural cues are often part of 
the process of a structured network improvisa-
tion. An example is the triggering of pre-
recorded waveforms that reside on remote com-
puters.  

The waveforms are being played back remotely 
but triggered by the MCG. Behavioural cues 
also have the potential to influence the actual 
frequency content of each remote node by 
broadcasting messages that will interpolate or 
cut-off. The MCG, in this case, provides the 
intelligence behind the system by ensuring that 
each node has a different frequency bandwidth. 
The frequency dependent interconnections that 
are being created in this case, also allow for a 
morphing of frequency range distributions 
across the nodes. For example, a node can de-
cide to borrow a frequency range from another 
node, in which case the frequency distribution 
is swapped between nodes. Amplitude control is 
also an important type of behavioral cue. As 
part of the pre-defined structured improvisation, 
a distribution of amplitudes across the nodes 
can be implemented in advance.  

It allows the distribution of intensities across 
the network and is a very democratically aware 
way of ensuring that each node can be properly 
identified during a performance. For example, 
in the case of a performance between three 
nodes, the MCG will make sure that in Section 
1 of a piece, Node 1 is the loudest, while Node 
2 is the quietest and Node 3 is at mid-level. As 
a result, reasonably complex interdependencies 
can be achieved by swapping loudness informa-
tion between nodes as well as interpolating 
them. They are, of course, many other interac-
tion cues that can be created and their types and 
resulting actions wholly depend on desired ob-
jectives in the design of the performance. 

3.2.3 Notational Cues 

Notational cues are able to display content that 
can be identified by the performers as being 
helpful in the good running of the performance. 
This can include the visualisation of the wave-
forms from each site, the display of the cue 
number, a countdown or dynamic shapes that 
can be activated by various factors in the per-
formance. Transmitting concrete or abstract 
notation based information is a real challenge 
over a network due to the latency and of the 
different distances between the MCG and the 
nodes. Even though the MCG is capable of re-
triggering events so that a cue information ar-
rives simultaneously at all nodes, which is a 
punctual or periodical type of information, the 
triggering mechanism does not work well for 
continuous information and, thereby, a drift is 
likely to occur over a period of time. Therefore, 
notational cues have traditionally been sent over 
the network in a punctual fashion, where the 
graphical representation is analogous to a slide 
show. If some events are of continuous nature, 
they tend to be transferred to remote nodes be-
fore the performance and triggered remotely. In 
order to efficiently represent the cues and the 
synchronicity information, a set of visualisation 
tools has been developed to simply, but effi-
ciently, display score information on various 
sites.  

3.2.4 Active/Passive Cues 

The three types of cues identified above can 
have two distinct modes of operations: 

Passive: the cues are only sent as a suggestion 
to the nodes. Each node can decide whether or 
not to follow the guidelines suggested by the 
MCG. One particular example includes a sug-
gestion that one node should decrease its gen-
eral amplitude while another node should stay 
steady or a flashing warning indicating that the 
improvisation is about to switch to another sec-
tion. Passive cues are generally rendered 
graphically as part of the score of the structured 
improvisation so that performers can take the 
suggestions (or obligations) into account while 
performing in remote sites. 
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Active: the cues are actively trigger-
ing/processing a concrete element on a distant 
node. This includes, amongst others, the open-
ing of a filter or the interpolation of its center 
frequency, the reduction or augmentation of the 
amplitude of a distant node or the activation of 
a remote oscillator. Another aspect of active 
cueing that is currently being explored is not 
only the triggering of events from the MCG, but 
also the triggering of events from node to node. 
This possibility adds to the complexity of dis-
tributed cues and permits the building of com-
plex patterns and interdependencies that use the 
network to create them.  

A cue can be both passive and active simulta-
neously. One example would be the triggering 
of a sample along with the visual indication that 
a sample is about to be triggered. This intro-
duces both an automated musical event (the 
sample) and an indication to a human performer 
that an event is about to occur, hence, suggest-
ing a reaction of some sort.  

 

 

Figure 2. Cue types and corresponding examples 

 

4. CHANGING TOPOLOGIES 

The MCG should not be location centric by 
always being located in the same physical 
space, but should be able to take over a specific 
node at a given time. This leads to a far greater 
flexibility of the network topology as the MCG 
can virtually travel between nodes and position 
itself at any point on the network. 

The option to change topologies means that, an 
NMP can start as a basic star network topology 
with one node being at the center of the net-
work. In this case, the chosen node is not only 
at the center of the network but also takes the 
role of a leader in the performance. At any time 
the controlling node can transfer its powers to 
another node on the network. The move can 
happen when switching from a cue to another in 
the piece or it can be randomly attributed based 
on the distribution of roles and voting by other 
participants or the audience. Many permutations 
are possible, which lead ultimately to a change 
in the network topology. For example, in the 
case of a network with four nodes, called A, B, 
C and D respectively, if node C takes the lead, 
all the commands from the MCG will be issued 
by node C until the next change in topology. 
This series of permutations, as a network im-
provisation takes place, is analogous to the mo-
dus operandi of a musical improvisation that 
would happen on a real stage in terms of dele-
gating control to a performer over others. This 
approach adds various levels of interplays be-
tween dislocated performers and leads to the 
creation of music that uses the network archi-
tecture as the core and to a certain extent as the 
score.  

The concept of changing topologies outlined 
above allows the creation of complex interde-
pendencies over the network (local or wide-
area) and can easily implement some of the 
earlier network topology principles for musical 
collaboration such as the ones illustrated by 
Weinberg [11]. The MCG to node relationships 
allows the implementation of a, “Process Cen-
tered Musical Network” [12]. The flexibility 
brought by the MCG in terms of network topol-
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ogy for the improvisation of musical content 
brings an additional layer of structure that is not 
necessarily musical, per se, but allows an allo-
cation of performative roles despite the distance 
and the absence of physical contacts between 
the performers. This concept also ties up well 
with Weinberg’s principles especially when the 
notion of Goal Oriented Interaction is men-
tioned [12].  

The latter introduces two separate principles of 
interactions: Collaboration and Competition. 
The MCG along with structured improvisation 
allows the ensemble to morph between the no-
tion of collaboration and the notion of competi-
tion, in musical terms, which creates diametri-
cally opposed musical forms that are created by 
the changes in network topology. 

 

Figure 3. Changing relationship between nodes and 
MCG 

5. THE ISSUE OF LATENCY 

Latency is a pretty common term in the field of 
computer music and is defined as, “the delay 
between the stimulus and the response” [13]. In 
a more musical fashion and when parallelised 
with the speed of sound in air, latency can be 
defined as, “the speed of sound through com-
puter algorithms” [10]. In the context of NMP, 
latency is often considered as a musical feature 
in its own right and, “can be used as a specific 
compositional tool” [13]. It needs to be high-
lighted that regardless of the quality and band-
width of the networks used for NMPs the dis-
tance between two nodes will introduce a cer-
tain amount of latency. Even data traveling over 
fiber optic networks will be subject to a certain 
latency, not only because it cannot travel faster 
than the speed of light but also because that data 
will go through several switches and hubs along 

the way, introducing conversions and thus slow-
ing down its delivery to destination. The MCG 
includes two approaches to latency, which are 
defined as synchronous interactions and asyn-
chronous interactions. 
5.1 Synchronous interactions 

In this case the relationship between the MCG 
and the nodes is calculated in terms of time lag. 
For example, if the relationship from the MCG 
to node A is 100 milliseconds and the relation-
ship from the MCG to node B is 75 millisec-
onds, an additional 25 milliseconds will be 
added to the relationship between the MCG and 
node B so that cues arrive at exactly the same 
time at node A and C. Since the networks used 
in this case are very stable, the timing is very 
likely to stay firm through the piece. 
5.2 Asynchronous interactions 

In this case, the MCG ignores the latency values 
between the MCG and the nodes and deals with 
the network as it is, leading to the generation of 
rhythmical patterns created by the network it-
self. 

6. CONCLUSION AND FUTURE WORK 

As illustrated through this paper, the MCG is 
the outcome of several years of practice in the 
field of NMP to answer the growing needs for 
distributed cueing structures. This ever-
evolving exercise is an attempt to formalize 
some sort of convention in the practice of NMP 
and will be developed further as the practice 
progresses over time.  

In the short to medium term, the goals regarding 
the development of the MCG and associated 
cueing strategies are:  

- To develop a proper cross-platform ap-
plication so that the system can be em-
braced by a wider community 

- To offer a web platform on which a set 
of standard messages fitting in the cues 
classification outlined in this paper can 
be implemented and formalized by the 
NMP community 

- To advertise in a more formal manner, 
mostly through online channels, applica-
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relationships allows the implementation of a, “Process Centered Musical Network” 

(Weinberg 2005). The flexibility brought by the MCG in terms of network topology 

for the improvisation of musical content brings an additional layer of structure that is 

not necessarily musical, per se, but allows an allocation of performative roles despite 

the distance and the absence of physical contacts between the performers. This 

concept also ties up well with Weinberg’s principles especially when the notion of 

Goal Oriented Interaction is mentioned (Weinberg 2005). The latter introduces, 

according to Weinberg, two separate principles of interactions: Collaboration and 

Competition. The MCG along with structured improvisation allows the ensemble to 

morph between the notion of collaboration and the notion of competition, in musical 

terms, which creates diametrically opposed musical forms that are created by a 

change in network topology. 

 
Figure 19: Reconfiguration of the MCG and the changing relationship to nodes 
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tions and event in which the MCG is be-
ing used and can be further developed. 

- To make the MCG freely available on-
line to the NMP community. 
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ABSTRACT

A range of systems exist for collaborative music making
on multi-touch surfaces. Some of them have been highly
successful, but currently there is no systematic way of de-
signing them, to maximise collaboration for a particular
user group. We are particularly interested in systems that
will engage novices and experts. We designed a simple
application in an initial attempt to clearly analyse some
of the issues. Our application allows groups of users to
express themselves in collaborative music making using
pre-composed materials. User studies were video recorded
and analysed using two techniques derived from Grounded
Theory and Content Analysis. A questionnaire was also
conducted and evaluated. Findings suggest that the appli-
cation affords engaging interaction. Enhancements for col-
laborative music making on multi-touch surfaces are dis-
cussed. Finally, future work on the prototype is proposed
to maximise engagement.

1. INTRODUCTION

Applications for collaborative music making on multi-
touch surfaces are an ideal setting for creative collabora-
tion because they afford group participation and immediate
music playing. According to Blaine and Fels [1], musical
collaboration systems commonly restrict musical control,
which facilitates novices’ participation in the musical ex-
perience. The authors argue that the quality of the expe-
rience of using a collaborative music system takes prece-
dence over the music produced: specifically that opportu-
nities for social interaction, communication and connec-
tion with other partners is key to a satisfactory user expe-
rience. According to Mercer and Littleton [2], this pro-
vides us with a distinctive opportunity to foster learning
and meaning-making through social interaction.

An analysis of the issues and techniques of music inter-
faces for multi-touch surfaces can provide us with a bet-
ter understanding of these systems and help us to improve
collaborative interaction. For that purpose, an exploratory
user study was conducted and videotaped using a proto-
type application for a musical activity. Besides, qualitative
evaluation was undertaken adapting Grounded Theory and

Copyright: c©2010 Robin Laney et al. This is an open-access article distributed
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Content Analysis. Quantitative evaluation was also under-
taken based on questionnaire results. The main focus of
the analysis is on the evaluation of the collaborative in-
teractions enabled by the application. Enhancements for
multi-touch applications for collaborative music making
are discussed. Future work on the prototype is proposed
to maximise engagement.

2. BACKGROUND

In this section we consider ways to address how people
engage with technology in creative settings and musical
multi-touch surfaces.

2.1 Creative engagement

There are numerous theoretical accounts of the nature of
creative engagement with art and artefacts. Current models
are based on a pragmatist view, which conceptualises the
aesthetic and affective value of an object as lying not in
the object itself, but in an individual’s or a group’s rich set
of interactions with it [3, 4]. The phenomena of personal
full immersion in an activity, also known as “flow” [4], has
been extended to groups as means of heightening group
productivity [5]. Facilitating productive conversation is a
key way to achieve such “group flow”. In the context of
collective composition of music, Bryan-Kinns et al. [6] see
attunement to others’ contributions as the central principle
of creative engagement.

2.2 Musical multi-touch surfaces

Musical tabletop applications are not new. A pioneering
work is the ReacTable [7, 8], which allows a group of peo-
ple to share control of a modular synthesizer by manipulat-
ing physical objects on a round table. The Music Table [9]
uses a tangible interface based on cards representing notes
or phrases laid on a table. Audiopad [10] uses the track-
ing of physical objects on a tabletop to access samples, cut
between loops and carry out digital signal processing. Au-
diocubes [11] enables users to configure a signal process-
ing network through the placement of physical cubes con-
taining digital signal processors. In Xenakis [12], Markov
Models are induced by placing stones on a tabletop inter-
face. In contrast to all these systems, where movement of
tangible objects is key, there are other systems centered on
multi-touch interaction. Iwai’s Composition on the Table
[13] allows users to create music and visuals by interacting
with four tables which display switches, dials, turntables
and sliders. Stereotronic Multi-Synth Orchestra [14] uses

146

mailto: r.c.laney@open.ac.uk
mailto: c.h.dobbyn@open.ac.uk
mailto: a.xambo@open.ac.uk
mailto: k.s.littleton@open.ac.uk
mailto: n.dalton@open.ac.uk
mailto: mattia.schirosa@upf.edu
mailto: d.e.miell@ed.ac.uk
http://creativecommons.org/licenses/by/3.0/


a multi-touch interface based on a concentric sequencer
where notes can be placed. The work presented here is
the design and evaluation of a simple multi-touch system
which allows a group of people to create music by inter-
acting using buttons. By keeping the system minimal, we
are able to investigate the essential aspects of engaging in-
teraction.

3. DESIGN CONSIDERATIONS

In this section we describe the properties and issues of
multi-user instruments and of multi-touch systems.

3.1 Multi-user instruments

According to Jordà [15], multi-user instruments are tools
that not only facilitate responsiveness and interaction be-
tween each performer and the instrument, but also between
performers. The degree of interaction between performers
is a key factor in achieving an engaging collective inter-
play. New digital instruments are especially suited for mu-
sic collaboration because they are multi-process oriented
supporting multiple and parallel musical processes [15] as
well as their interface layouts being flexible enough to be
able to exploit several strategies of collaboration by dis-
tributing the controls [16]. Thus, issues to be considered
in multi-user instruments are shared versus local control as
well as complexity versus simplicity.

3.1.1 Shared vs. local control

Shared controls, local controls or both are traditionally
accommodated by collaborative multi-user instruments.
Shared controls allow users to have a common display
where the control is shared and can be the object of group
discussion, whereas local controls consist in replicated
controls which tend to be easier to reach for users and are
identified with territoriality [16]. However, in the latter
there is a design challenge when the number of replicated
controls is large. The controls of a multi-user instrument
may afford flexible or fixed number of performers; fixed
or dynamic roles; and democratic or hierarchical relation-
ships among users [15].

3.1.2 Complexity vs. simplicity

According to Blaine and Fels [17], collaborative musical
interfaces engage social interaction. This facilitates both
novices and experts to make music. A tradeoff should be
considered between enabling virtuosity (appealing to ad-
vanced musicians who prefer to have free rein to exploit
the expressivity of the instrument), and limiting the fea-
tures offered to enable simplicity of use (important to en-
able novice musicians to participate easily).

3.2 Multi-touch systems

The properties of multi-touch systems are specially suited
to the key design needs of musical instruments in general,
and multi-user instruments in particular. In 1985, Buxton
[18] introduced a set of properties, issues and techniques
in multi-touch systems, later reviewed in 2007 [19], which

have been applied to the question of multi-user musical in-
struments in this paper. In summary, the features consid-
ered are discrete versus continuous actions, size of display
and context, sense of touch enabled and multiplicity of in-
teraction opportunities.

3.2.1 Discrete vs. continuous

Multi-touch interaction can support both discrete and con-
tinuous actions. An example of a multi-touch interface us-
ing discrete actions would be an audio mixer, where one
or more fingers push buttons or switches. An example of a
continuous action could be also an audio mixer, but where
one or more fingers move sliders, dials or knobs; or a wave-
form editor, where two fingers stretch a waveform.

3.2.2 Size and context

Display size is a decisive factor in how many fingers or
hands can be used as well as how many performers can in-
teract. Given that there is no mechanical intermediate de-
vice such as a mouse or a stylus, multi-touch systems are
useful in tough environments such as classrooms or public
spaces where these additional input devices can get dam-
aged.

3.2.3 Sense of touch

Contact and position are traditionally those most used as-
pects of touch in multi-touch systems. Other features ex-
ploited are the degree of pressure; the angle of the finger
relative to the surface; or the frictional force. However,
there are some issues to be considered such as having lower
precision than pointing with a stylus that can be solved, for
example, by integrating physical controls with the inter-
face [20, 16]. Besides, although the features of a physical
input device are emulated, the interaction is actually with
a virtual device where the visual supersedes other senses
such as kinesthesia. As a result, users typically pay more
attention to audiovisual feedback, which therefore should
be reinforced in these systems.

3.2.4 Multiplicity

In multi-touch systems, some considerations to take into
account are the following: first, even though the manipu-
lation of a single point of contact can be exploited, multi-
ple points are easier to use. Second, many of the interac-
tion techniques from GUI (pointing at, dragging, clicking
down or double clicking, for example) can be applicable in
a multi-touch context using gestures based on discrete and
continuous actions. Similarly, the same interaction tech-
nique can be split into multi-hand or multi-finger, depend-
ing on the granularity of the interaction sought. Lastly,
where there are multiple users, the system should be able
to distinguish the gestures and touches of the users from
one another.

4. PROTOTYPE

In 2009, a project was undertaken in collaboration with the
Milton Keynes Art Gallery under the theme of galleries
and musical engagement. A prototype was developed with
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the aim of enabling up to four users to collaborate on a
composition.

The system needed to engage advanced musicians as
well as novices given the emphasis on collaborative in-
teraction. To this end, a simple prototype for a multi-
touch tabletop was built where users could develop a mu-
sical composition using a palette of pre-composed sam-
ples. The system was populated with musical phrases in
a traditional pop-contemporary musical style, emphasising
harmony and rhythm, instead of complex melodic evolu-
tion (such as in jazz or classical music). Each user con-
trolled a set of four graphical buttons which corresponded
to four looping samples representing an instrument (bass
line, drum line, keyboard line and percussion line). Each
sample in the set consisted of a single musical phrase, con-
sistent with all the others, which went from less to more
complex. This evolution was shown in the buttons of the
interface with a rounded shape from less to more filled.
An additional button was also controlled by the user which
toggled between either playing the sound through head-
phones in a private space or publicly through speakers (see
Figure 1 the corresponding interface diagram). This switch
icon changed shape and pulses when public mode was se-
lected. The user was able to contribute by deciding which
sample loop of his or her corresponding instrument was
played and when it was triggered. Although each user
could only play four samples, which meant there were only
256 combinations of loops, it represented an initial context
for observing the processes of collaborative composition.

1

2 3

4

1 Bass line
2 Drum line
3 Keyboard line
4 Percussion line

Sample loop
Active sample loop
Headphones
Speakers

Figure 1. Interface diagram.

Regarding the hardware and software of the system, fin-
gers are illuminated using diffuse infrared illumination and
tracked with a camera underneath the table which encodes
the information as a real time video stream. The reacTIVi-
sion [21] vision engine processes the video stream iden-
tifying the position of the finger tips. This data is en-
coded with the TUIO protocol over OSC and sent to a
multi-touch software application (MTS). The MTS man-
ages both visuals and audio: whereas the visual feedback,
which is projected on to the surface, is defined using the
programming language Processing [22]; the audio compo-
nent is built using the visual programming language for
music MAX/MSP [23].

5. METHOD

In this section a case study protocol is described which
serves as a framework for an exploratory multi-case study.
Afterwards, the qualitative approach to the analysis of the
data is explained.

5.1 Exploratory multi-case study

A case study protocol was designed with the aim of study-
ing the above prototype for collaborative music making.
The approach was exploratory [24], in order to build an
initial understanding of the situation. Video was chosen as
the primary data source, given its advantages of multiple
replay and closer multimodal analysis of interaction and
also because the full range of behaviours and speech can
be recorded easily, compared to other possible approaches
[25]. Case studies of three groups were conducted in order
to work with an initial phase of evaluation (see Figure 2).

Figure 2. Four users playing with the prototype.

The aim of the case study was to examine the extent
to which the application enabled users to collaborate and
the degree of mutual engagement in the creative process it
afforded [6]. Involving participants with a range of levels
of self-rated music knowledge was expected to provide a
deeper insight into the situation because we would be able
to examine the perspectives of both novices and experts. A
number of features were observed: the ease of learning to
use the application, the establishment of various roles for
participants in the collaborative setting and how decision
making was handled. Public spaces were ideal settings
for carrying out this study for two main reasons: first, the
physical proportions of these tabletop applications require
ample space; and second, if they were to be used in per-
formance and music learning, they would require shared
spaces of similar size, with room for a group of participants
and perhaps an audience. Thus, the user studies were con-
ducted in a spacious atrium. Next, the musical tasks and
questionnaire are described.

5.1.1 Musical tasks

With each group, three musical tasks of different character
as well as an informal discussion were video-recorded in
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order to generate sufficient data to analyse several aspects
of behaviours using the prototype application. We were in-
terested in any difficulties users might experience with the
application, to what extent it enabled them to collaborate,
and the degree to which it engaged them.

The tasks to be performed were the following:

1. T1. Initial period of sound exploration (3 min).

2. T2. Structured task with a score and a coordinator
(7 min).

3. T3. Unstructured task of free improvisation (5-10
min).

4. T4. Informal discussion.

Each user had two signs with the messages of “sounds
good” and “sounds bad” which could be raised at any mo-
ment of the performance.

Firstly, the explorative task was devoted to taking first
steps with the tool. Participants were encouraged to switch
between phrases, create solos and even make mistakes in-
tentionally in order to learn how to control their own in-
strument. Secondly, the structured task was designed to
produce a collaborative piece of music following a score
(see Figure 3) and led by a coordinator who gave instruc-
tions during the interpretation of the musical score. The
musical structure was built according to a traditional ap-
proach of musical dynamics, consisting of an introduction
(two instruments), a crescendo (three instruments), a res-
olution (four instruments, but one is present sparingly), a
diminuendo (three to two instruments), a more intensive
crescendo (four instruments), a finale (four instruments)
and, afterwards, a coda (decreasing one by one from three
instruments). Each part lasted one minute, and a sign was
given 30 seconds before the next move. In this task, the
team was expected to decide which instruments should
take part in each phase. This task was intended to help par-
ticipants become accustomed to working together, in order
to prepare them for the next task. Thirdly, an unstructured
task of free improvisation without a coordinator and with
no imposed rules was performed. In a more experimental
fashion, the team was expected to decide not only the mu-
sical content but also the structure. Fourthly, an informal
brief focus group discussion with the participants was held
about the music compositions and how the music applica-
tion could be improved.

5.1.2 Questionnaire

After that, a short text-based questionnaire was adminis-
tered in order to collect information about the participants’
profiles with questions about age, gender or previous mu-
sic knowledge as well as the user experience with ques-
tions about the level of collaboration, difficulty, enjoyment
or concentration.

5.2 Data analysis

By analysing the data from each set of observations, gen-
eral patterns were extracted. These generalisations facili-
tate a better understanding of collaborative music making

2 3 3 2 4 4 3 2 1

# INSTRUMENTS

IN
TE

N
SI

TY

1. 
INTRO

2. 
CRESCENDO

3. 
RESOLUTIO

N

4. 
DIM

INUENDO

5. 
CRESCENDO +

6. 
FINALE

7. 
CODA

Figure 3. Graphical score of the structured task.

on touchable surfaces in particular, and collaborative in-
teraction in general. For that purpose, two complementary
qualitative approaches for data analysis were adapted: on
the one hand, Grounded Theory, where open coding is ap-
plied to the data collected in a bottom-up fashion; and on
the other hand, Content Analysis, where structured coding
is identified taking a top-down perspective. By using two
complementary analytical techniques a more rounded un-
derstanding could be achieved.

5.2.1 Open coding

Grounded Theory (GT) [24] is a qualitative research
method employed in the social sciences that derives theo-
retical explanations from the data without having hypothe-
ses in mind. In the initial stage of analysing the experi-
ments, GT was adapted to offer a first insight to the data.
According to this inductive procedure, the steps taken are:
first, open coding of the video interactions identifying key
moments (e.g. behaviours or opinions); second, grouping
the codes by concepts; and third, generating general expla-
nations from the categorisation of the concepts. Given that
this approach is based on creative interpretation, we add
more evidence by complementing GT with Content Anal-
ysis.

5.2.2 Structured coding

Content Analysis (CA) is defined by Holsti (1969) as “any
technique for making inferences by objectively and sys-
tematically identifying specified characteristics of mes-
sages” [24]. This definition includes content analysis of
text, videos, music or drawings. There are varied ap-
proaches to CA using quantitative, qualitative or both tech-
niques. Our approach is derived from ethnographic content
analysis or qualitative content analysis [26], an approach to
documents that emphasizes the role of the investigator in
the construction of the meaning of texts. The steps taken
are the same as those explained in the open coding section,
but with a difference in the first step: structured codes help
us identify key points of the video-recorded interactions.
The nomenclature is chosen from two existing theoretical
frameworks. The first one is a general framework of tan-
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gible social interaction [27]. The second one is focused on
the engagement between participants in music collabora-
tion [6].

6. FINDINGS

In this section we present the results obtained from the ex-
ploratory multi-case study. Participants, tasks, open cod-
ing, structured coding and the questionnaire are described.

6.1 Participants

We recruited 12 people. We conducted sessions with three
groups, each with four participants, made up as follows:

• Group 1 (G1) contained fairly experienced musi-
cians, with a combined level of skill (based on a self-
assessment on a scale of 1 – 5) of 16;

• Group 2 (G2) comprised one experienced musician
and three novices; the combined self-assessed rating
was 8;

• Group 3 (G3) consisted of less musically adept par-
ticipants, with a combined self-assessed rating of 9.

6.2 Tasks

All the sessions were videotaped. After each, we held an
informal discussion with the participants around the table,
talking through questions such as their feelings about the
exercise, the quality of the composition they had evolved,
and how the application could be improved.

In general, the three groups alternated between deciding
some collaborative strategies before playing with deciding
while playing. For example, the group with more advanced
skills planned the unstructured task whereas the other two
groups planned the structured task.

6.3 Findings from open coding

From transcription of the video speech and behaviours, and
then the process of open coding, we identified the follow-
ing concepts: collaboration, musical aesthetics, learning
process and system design.

6.3.1 Collaboration

Collaboration in terms of awareness of other instruments
was a challenge: “I think to be really aware of what we do
we need to have maybe more time” (G1); “Should I con-
centrate on my own tempos or be aware of the other tem-
pos?” (G2); “I think I hear all of them, maybe not the bass
but it is fine” (G3). More visual feedback was requested:
“I think it could be interesting to have a visual control of
what is going on” (G1); “Adding a metronome, and maybe
a different colour for the first bit, would help everyone to
follow all the loops, the patterns” (G1); “We have to count
each other and see what to do (...) a metronome at a right
place” (G3).

In all three groups there is speech evidence of collabo-
rative decision making before starting the musical tasks or
while playing, with beginning sentences such as “I suggest,

Shall we?, Should I?, Who’s gonna?, Are we?, I think, Do
we?, How about?, We can, Let’s” (G1); “We can, I think,
What do you think?, Let’s, Can someone?, Can we?, You
can” (G2) and “I suggest, Let’s, Who?, Do you want? We
can, Why don’t you, I think, We could” (G3).

6.3.2 Musical Aesthetics

Emotiveness was expressed mostly with body gestures:
all three groups voted regularly either “sounds good” or
“sounds bad”; there were applauses at the end of the pieces
(G1, G3) and one user even imitated a bass guitar player
(G2).

Playfulness was conveyed with sentences such as “It
was enjoyable” (G2); “I think I am having too much fun”
(G3); and “It was very funny, I liked it a lot” (G2).

6.3.3 Learning process

The different parts of the structured task were understood
with difficulty: “I found that it was difficult to figure out
how to do the crescendo and the diminuendo” (G1); “Too
much rules” (G2); and “I haven’t understood what is the
difference between finale and crescendo” (G3).

6.3.4 System design

The system responsiveness determined the expressivity:
“The only difficulty that I had was switching” (G1); “ I
was too slowly, I’ll try again” (G2) and “[When pressing a
button] stays on and doesn’t go off immediately was diffi-
cult” (G3).

Several improvements were suggested regarding indi-
vidual expressivity with the presence of more features such
as volume control (G1, G3); more samples (G1, G3); bet-
ter responsiveness of the system (G3); a preview for the
next sound to be played (G1) and a visual distinction be-
tween the active sound and the preview sound (G1). These
features would provide more support to advanced users.
Other suggestions were about improving the collaboration
among the users with the presence of global shareable con-
trols such as capability of modifying others (G3) or visual
feedback such as the tempo (G1) or what other users where
doing (G1). Another aspect commented on was how to im-
prove the communication between users with the presence
of virtual buttons for voting “sounds good” or “sounds
bad” (G1) and also a big screen for visualising the music
(G2).

Fun and social interaction were associated with the sys-
tem. Possible contexts in public spaces were suggested
such as a pub (G2) or a radio station (G2). Its use as a tool
for composing was also mentioned (G3).

6.4 Findings from structured coding

Below we look at the concepts in [27] of tangible manipu-
lation, spatial interaction, embodied facilitation or expres-
sive representation (6.4.1 – 6.4.4) and the features in [6] of
mutual awareness, shared and consistent representations,
mutual modifiability and annotation (6.4.5 – 6.4.8). We
found that some of the content analysed was already dis-
cussed in the open coding process (6.3), which provides
consistency.
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6.4.1 Tangible manipulation

The system provided a clear relationship between actions
such as selecting a sample and effects such as listening
to the sound selected: “It was not difficult (G1)”; “The
technology was quite easy to get used to” (G3). However,
rapid feedback during the interaction should be improved
in terms of responsiveness (see quotes in 6.3.4), in order to
facilitate expressivity and collaboration.

6.4.2 Spatial interaction

The space where the user studies were conducted facil-
itated a meaningful public space where people met and
made music collaboratively with the system. However, the
reciprocal fact of seeing and being seen could be improved
with more visual cues of what was happening (see quotes
in 6.3.4) The large size of the table with the display di-
vided into four replicated controls allowed communication
using body movement while interacting with the system
(see quotes in 6.3.2).

6.4.3 Embodied facilitation

The set-up size as well as the form and location of the con-
trols determined the way users collaborated. The options
of manipulation were constrained to a single sound for
each user. This aspect could be improved allowing mul-
tiple access points for each user: “Would be nice if you
could play two [samples] at the same time” (G3). A repre-
sentation built on users’ experience should also be devel-
oped in order to connect not only with the skills of novices
but also with experts (see quotes in 6.3.4).

6.4.4 Expressive representation

Users talked while interacting with the system, and they
made decisions (see quotes in 6.3.1). Legibility of system
reactions could be improved with visual feedback and bet-
ter responsiveness (see quotes in 6.3.4).

6.4.5 Mutual awareness

The awareness of who was contributing and what they
were contributing was difficult (see quotes in 6.3.1). This
could be solved by strengthening with visual feedback the
representation of both the identity of the contributor and of
what kind of contribution it was. The awareness of where
they were contributing was partial given that users only had
individual controls and they reported difficulty in concen-
trating on both the individual contribution and the collabo-
rative music piece (see quotes in 6.3.1).

6.4.6 Shared representations

A consistent view of the shared activity, independently of
the user, is equivalent to the discussion conducted in spa-
tial interaction of the previous theoretical framework (see
quotes in 6.4.2).

6.4.7 Mutual modifiability

In a collaborative setting the presence of roles can imply an
undesired hierarchical approach. The capacity of mutual

modifiability, thus, can be a mechanism for having demo-
cratic roles. Thus, the system should incorporate this fea-
ture (see quotes in 6.3.4): “Sometimes I missed pushing
the buttons of other people” (G3). That could avoid situa-
tions such as: “I feel that this one [keyboard] is having a
lot of impact on the other sounds” (G1) or “[keyboard] is
the most influencer” (G3).

6.4.8 Annotation

All tasks engaged conversation and the mechanism of vot-
ing specially contributed to supporting mutual engagement
(see quotes in 6.3.2).

6.5 Findings from questionnaire

Data was also collected using a questionnaire, which was
designed to probe such issues as how aware each partic-
ipant had been of other instruments; the difficulty of the
tasks, and how much they felt they had enjoyed and con-
centrated on them; and the extent to which they considered
they had operated as a team and felt part of a collaborative
process. Responses were recorded using numerical scores,
but the questionnaire also asked for qualitative feedback
on how participants organised themselves as a group and
the nature of any rules they created. Although question-
naires were anonymous, we recorded the participants age,
gender, previous experience, love of music, and the instru-
ment they had been allocated on the table.

The questionnaire included the following five state-
ments, with participants asked to give a score of between 1
and 5 (1 = strongly disagree; 5 = strongly agree).

• Q1. I felt we operated as a team.

• Q2. I felt part of a collaborative process.

• Q3. It was difficult to play.

• Q4. I enjoyed the music making task.

• Q5. I concentrated intensely on the music making
task.

Q1

Q2

Q3

Q4

Q5

1 2 3 4 5

3,67

4,58

2,25

4,17

3,88

strongly disagree strongly agree

Figure 4. Averages for the 5 statements.

Satisfaction with the level of participation was generally
high, with Q1 scoring an average of 3.88 and Q2 scoring
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4.17. The difference between the team and collaborative
scores may be of some interest, but was relatively small.
No participant found the game especially difficult. To the
Q3 statement the average response was 2.25. Participants
reported high levels of enjoyment (Q4 average 4.58) and
concentration (Q5 3.67). The fact that enjoyment and con-
centration were rated high and difficulty low is promising
(see Figure 4).

7. DISCUSSION

Our appraisal of the three sessions focuses on three aspects
of the groups performance:

1. the modes participants found to collaborate with one
another;

2. difficulties that participants encountered and the ex-
tent to which they found the exercise engaging;

3. the degree of satisfaction at the end result. The per-
ceived value of the musical product is obviously of
importance.

In the actual sessions, four broad modes of interaction
were used:

1. Visual. Participants were standing around the four
sides of the table, and were thus able to look at each
other.

2. Talking. Participants were free to address comments
and suggestions to one another.

3. Auditory. Participants could choose to listen care-
fully to the patterns created by the other instruments
and to concentrate on blending their own instrument
with these.

4. Gestural. Participants could indicate suggestions
and emotions by body motion.

As might be expected, groups used all four modes of in-
teraction. Strategies of collaboration were suggested either
before playing or during the music making tasks. Partici-
pants looked at one another consistently, in part probably
influenced by the distribution of the setting. Similarly, the
participants listened during all tasks, but with the support
of other modes of interaction given the expressed diffi-
culties in distinguishing each instrument. Body gestures
were manifested constantly in pointing, voting “sounds
good/bad”, laughing or applauses.

Another interesting aspect of the groups possible col-
laboration was whether leaders emerged, or whether the
collaborations were egalitarian. In Group 2, in particular,
we anticipated that the experienced musician might take
the lead. Perhaps surprisingly, in none of the groups did
any dominant figure emerge, although one or another par-
ticipant occasionally took the lead.

The findings of this study help us understand engage-
ment in music collaboration. Qualitative video analysis
and the questionnaires provide indication of participants

having mutual engaging interaction in terms of being en-
gaged with the music collaboratively produced and also be-
ing engaged with others in the activity. High degree of sat-
isfaction at the end result is evidenced mostly by the ges-
tural mode. The evidence found of participants exchang-
ing ideas constantly indicates that the application strongly
facilitates conversation, which, as noted earlier, is impor-
tant in terms of group productivity. Within a user-centered
design approach of active participation of users in the pro-
cess of designing the system, the most two prominent as-
pects that have emerged as enhancements of multi-touch
systems in music collaboration are:

• Responsiveness. The responsiveness determines the
perceived emotiveness. This parameter should be
adequately related to the system performance in
terms of time and computer resources used. A con-
sistent audiovisual feedback will enhance the per-
ceived response of the system.

• Shared vs. individual controls. Both shared and in-
dividual spaces are needed. Shared features would
strength mutual awareness and mutual modifiability.
Individual spaces would strength personal opinion,
musical identity and musical expression.

8. CONCLUSIONS AND FUTURE WORK

In this article, we described multi-user instruments and
multi-touch systems, by enumerating their most prominent
properties and issues. Then, we presented a simple and
constrained prototype and explained the qualitative evalu-
ation methodology undertaken in order to evaluate its cre-
ative engagement. Besides, we provided evidence of en-
gagement and satisfaction with the end result. However,
this initial exploratory case study should be complemented
with a more formal study adding a control group in order to
confirm that a minimal and constrained instrument as such
can successfully engage. Finally, we proposed what de-
sign aspects should be considered in multi-touch surfaces
for collaborative music making in order to support engage-
ment. So far, this evaluation method not only provides
us evidence of creative engagement but also an approach
which can help us improve the prototype design.

We are interested in how many, and what type of, af-
fordances such systems should offer in order to maximise
engagement. At present the touchable nature of the table
surface is not fully exploited, and there is scope to im-
prove the responsiveness of the system and to redesign the
distribution of shared versus individual controls. Further-
more, there is a plan to add individual continuous controls
for sound parameter modifications in order to both encour-
age a process-oriented composition and improve engage-
ment of advanced musicians. The mutual experience might
be enhanced and collaboration deepened, by adding com-
mon controls – such as a metronome, through which global
tempo could be displayed and altered. A balance between
adding more features and keeping simplicity must be kept
in order to attract both novices and experts alike.
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ABSTRACT

This paper builds upon the existing Reactable musical plat-
form and aims at extending and improving its approach to
music theory 1 . Sections 1 and 2.2 explain the motivations
that led to the development of this proposal from a musical
point of view while also giving a music education perspec-
tive. In section 2 we’ll see a brief survey on tabletop and
tangible multi-user systems for audiovisual performance
and we’ll also briefly introduce the process of implicit learn-
ing, we’ll formulate a hypothesis about music as a natural
language, and describe how the work hereafter presented
can help music education. In section 3 we’ll describe the
current state of the art about music theory on the Reactable,
followed by an original proposal about a way to extend and
improve it. Finally we’ll see how people who had a chance
to test the system found it interesting and playful, while
also giving important feedback that can be used to improve
many practical aspects of the implementation.

1. INTRODUCTION

The Reactable is a digital musical instrument with a multi
user tabletop and tangible interface, designed to explore
and perform experimental electronic music giving users the
highest possible degree of freedom. Therefore it is a precise
design choice to give it no knowledge of any form of music
theory.

As the Reactable became widely known, it attracted
interest from both experimental and traditional musicians,
these latter complaining about the lack of a way to include
“traditional” music in a performance, where “traditional”
music means melodies made of notes.

In response to this, a set of objects was developed. This
set includes a “sequencer” (fig. 2) that pilots waveform
generators by telling them which notes of the western chro-
matic scale to play, and an object called “tonalizer” (fig.
1) that constrained all waveform generators to play only a

1 Disclaimer: the results here presented reflect my personal research
and opinions on the topic and, although being done in collaboration with
the creators of the Reactable, they don’t necessarily express the opinions
and visions of the original team. Therefore all the developments I proposed
are to be considered as a possible direction to be thoroughly examined,
evaluated and validated through experimentation involving potential users
of the system.

Copyright: c©2010 Andrea Franceschini et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License 3.0 Unported,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

Figure 1. The current tonalizer.

Figure 2. The current sequencer “playing” a plucked string
instrument synthesizer.

limited set of pitches, from the whole chromatic scale to its
subsets.

Since traditional music was not a priority for the Re-
actable, these two objects were developed to the minimum
level of functionality. For example, melodies have to be
stored in advance and can only be selected by rotating the
object. On the other hand, the tonalizer allows for “live”
setting of a number of presets, but it basically allows to
select any note on the scale, without any form of correction
or automatic suggestion, thus requiring performers to have
a certain level of music knowledge. Given tonalizer’s target
audience, such an assumption seems reasonable, but it can
have unexpected – possibly unpleasant – results when used
by unexperienced performers.
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In section 2.1 we’ll briefly cover the history of audio-
visual and tangible interfaces, starting from the first ex-
periments in audiovisual performance, to the most recent
developments in computer-based tangible and multi-touch
interfaces for sound and music manipulation. Section 2.2
presents a perspective about implicit learning, arguing how
music can be considered a natural language, thus the knowl-
edge about language learning can be applied to music in
a similar way. This will be the key point in claiming that
the work presented in section 3 is an approach to music
theory on the Reactable, and eventually an effective aid
to explicitly learn abstract music theory concepts, as we
shall see in section 4.2. Finally, section 4.1 will present an
overview of the main results that emerged from preliminary
tests with users, covering both strong and weak points that
will guide the future development phases.

2. BACKGROUND

2.1 Audiovisual and Tangible interfaces

As a tabletop and tangible interface for music performance
with visual feedback, the Reactable puts together ideas that
date quite back in time. If we think of a visual analogous
to music, probably the earliest known machinery was built
in 1734 by Louis-Bertrand Castel [1]. Later examples,
which appeared during the early twentieth century, were the
Clavilux by Thomas Wilfred (1919), and the Lumigraph by
Oskar Fischinger (1955).

In recent years computers became more and more in-
volved in music performance and production, and a num-
ber of different programs and interfaces were developed.
One interesting example is Music Mouse by Laurie Spiegel
(1985), which is a software intended to turn a personal com-
puter into a musical instrument capable of being performed
live by one user. In fact it turns motion of the computer’s
mouse into harmony and melody patterns, thus requiring
virtually no music knowledge to the user, whom in turn can
entirely focus on direction of the performance. Another
interesting example is Instant Music by Electronic Arts
(1986), which is a software explicitly aimed at musicians to
assist them in creating original music, or even support them
in a live performance on other instruments. The software al-
lows users to “draw” melodies with no apparent limit, while
a background correction process ensures that no “wrong
notes” are played. Once again we have a system that applies
harmony rules to allow users with even limited experience
to proficiently create music.

Last but not least, tabletop and tangible computing has
received lots of attention in the last decade, but the concept
itself can be tracked earlier in time, for example in popular
science fiction. An early notable example of Tangible User
Interface is the “Urban Planning Workbench” [2], but more
music-oriented works exist, such as the Jam-O-Drum [3],
a gaming platform for up to twelve contemporary players,
and the Audiopad [4], a musical instrument that replicates
a modular synthesizer using RFID-tagged pucks.

As it is common in modern translucent tabletop inter-
faces, the Reactable also employs multi-touch interaction,
thus allowing to perform gestures with fingers, other than

with tangible objects. This makes it possible to develop
interactive visuals that arguably allow to control many pa-
rameters using little space and a “familiar” interface 2 .

2.2 Music education

Implicit learning is the process through which an individual
becomes sensitive to the underlaying regularities of highly
structured systems, like language or music. Even if such
knowledge remains at a level such that one is not able to
explicitly describe the rules, it influences perception and
interaction with the environment [5]. The most prominent
real-life example is natural language. Babies learn to speak
at an early age by imitation, then later they explicitly learn
why and how concatenation of some particular sounds con-
veys a meaningful message. More information about this
topic is provided in [5] and [6].

It’s been argued that the origin of music itself may be
similar to that of natural languages [7]. If we think of music
as a natural language then we can suppose it comes with its
own set of symbols, words and sentences, all tied together
by a grammar, a set of rules of a given harmony system.
In this sense, each harmony system is a different natural
language as much as English and Italian are. Also, genera-
tive grammar approaches have been used in musicology to
analyze musical pieces [8] though the idea of a “universal
grammar” 3 has not received much consensus while evi-
dence of author specific, or even period specific, grammars
is much more accepted.

In the hypothesis of music as a natural language, we
can go further into assuming the existence of an associated
transformational grammar through which it is not only pos-
sible to understand new and meaningful sentences, but also
to produce them. More information about such grammars
and their relationship with languages is provided in [9].

Assuming this hypothesis holds for music, we may start
to see how the Reactable, with the modifications hereafter
proposed, can prove 4 to be a valuable aid to music edu-
cation. In fact, music is usually taught through teaching
a musical instrument. While this is actually something a
music student expects, it is also a time and resource inten-
sive process. Moreover, empyrical evidence among music
instructors seems to suggest that learning a second, possi-
bly quite different, instrument when a first one is already
mastered, is usually easier. The most likely explanation
seems to be that a student approaching a second instrument
already knows abstract concepts of music theory, so he or
she may find it easier to relate to a new instrument when al-
ready knowing what it is to be musically expected. Despite

2 Of course most of the parameters can be controlled with other tangible
objects – in fact some of them are. Nonetheless some metaphores are more
appropriate in some cases, for example users tend to be more used to a
button other than the presence or absence of some specific tangible object
when it comes to determine an on/off state of some sort.

3 The term “universal” most reasonably refers to all music compositions
under a single harmony system instead of a grammar that describes all
the possible harmony systems, the latter being a fascinating hypothesis,
though still unproven.

4 It shall be clear that this is a proposal that can be taken into considera-
tion only after the system is fully developed and evaluated, and its usability
is strongly assessed. In fact such assessment requires an extensive exper-
imentation phase involving music teachers and students on many levels,
therefore the instrument is required to not pose significant difficulties that
can invalidate the eventual findings.
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seeming reasonable, this hypothesis merely comes from
empyrical observations and so far it seems it’s not been
formally assessed 5 .

2.2.1 The Reactable as a learning aid

As it’s detailed in [6], regularities and relations between
tones, scales, chords, etc, are important when it comes to
implicit learning, and learning in general. This is the key
point being used argue that learning western tonal music
can be optimised and improved using multimedia tools that
emphasize such structures.

As we shall see in the next section, this paper’s proposal
can be effectively turned into such a system by integrating
notions of musical structures and presenting them as an
optional operating mode. In fact the system we’re going
to describe, together with the whole Reactable platform, is
intended to be a non-intimidating, easy and playful musical
instrument that can give students the ability to experience
musical concepts by reducing the complexity of learning
a traditional musical instrument, while leveraging on the
implicit experience of music theory one may have uncon-
sciously acquired.

It’s finally worth noting that even if [6] only analyses
western music theory, it can be argued that regularities and
relations between other cultures’ notions of musical struc-
tures exist, though they can be quite different from those
existing in western music. However, if a tool is properly
designed to be flexible and extendable enough, it should
also be easy to adapt it to different rules, and this is one of
the main goals that drove the design process we’ll briefly
see in the next section.

3. DESIGN AND IMPLEMENTATION

In section 1 we’ve briefly seen the current implementation
of tonalizer and sequencer objects. Without further ado,
let’s examine the new implementation proposed in this work.
While this paper only focuses on the finished proposal, an
in-depth discussion of the proposal and design process that
led to it can be found in [10].

3.1 Tonalizer

The “new” tonalizer was initially quite different from the
original object, both visually and conceptually. It started
as a round object surrounded by an arbitrary number of
concentric rings, each divided into 12 sectors – one per tone
in the chromatic scale, each tone representing a chord by its
tonic. Each ring could be rotated in order to align different
tones, thus allowing users to activate them by drawing a
single stroke passing over each of them. This design had
the potential to express progressions and transpositions, and
it also could have worked as a melodic sequencer, except
for the fact that it could potentially take a very large space
on the Reactable. Therefore the original idea of chord slots
came back and, with appropriate modifications, the design
in figure 3 was eventually chosen.

5 Such assessment is obviously far beyond the scope of this paper, but
it can be taken into further consideration as a future development.

Figure 3. The new tonalizer.

The design depicted in figure 3 features new tonalizer’s
most complex configuration, the simplest being only made
by the top round object and its surrounding button ring.
While the original tonalizer uses a similar ring to choose
which notes are to be allowed, this proposal uses it as a stor-
age for “chord presets”. A chord preset is an usual chord,
such as the G#7 shown in the figure. This chord is used
to derive a number of scales whose notes can be played
along with the chord without resulting in “unpleasant” com-
binations. Users may then select which scale should be
used with that particular chord, and from that moment on
the notes of that scale become the only playable notes by
any other waveform generator. Furthermore, some sort of
“progression” object – the bottom one in figure 3 – can be
used to produce an entire progression of chords starting
with the chosen one and following the chosen specification
– in this example a 12-bar minor blues progression in G#
should be selected, and eventually “played” according to an
external timing source.

Last but not least, this proposal introduces the concept
of handwriting recognition. This feature was introduced as
a compact yet powerful way to create chord presets. As we
will see in section 4, it turned out that users liked the idea,
and mostly found it funny and helpful – even if the actual
implementation had some glitches and didn’t always work
as expected.

3.2 Sequencer

After the “unified” design was discarded – as described in
3.1 – the idea of a piano-roll like interface was immedi-
ately considered. In fact this idea went under a number of
feature additions remaining almost untouched in its visual
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Figure 4. The new sequencer in editing mode with some
gestures being performed.

appearance.
Figure 4 depicts the proposed melodic sequencer while

editing a sequence. Like the tonalizer, it has a button ring
around it as a sequence preset storage. On the other hand,
unlike the current sequencer, these presets can be modified
on the fly during a performance, rather than being pre-
loaded. This is performed using the grid that’s shown in
the figure. The x axis represents time, while the y axis
represents the notes of the scale that’s currently chosen – for
example, the scale in the figure may be a major pentatonic
so, assuming the chord is the one of figure 3, the notes
would be G#, A#, B#, D# and E#. Strokes and taps
are used to turn on and off notes in the sequence. While
a simple tap results in the obvious trigger of a note, the
way a stroke acts is a bit more complex. In figure 3 we
see that notes are triggered on some special points, namely
stroke’s extremes and “zero derivative” points – where the
“derivative” is considered relatively to the x axis of the grid.
Arguably some other cues can be used, such as speed of the
finger, but this initial set proved to be sufficient most of the
times.

4. RESULTS AND FUTURE DEVELOPMENT

4.1 Testing and evaluation

The whole design process went through a series of iterations
which subsequently integrated suggestions from people fa-
miliar with the Reactable itself and with usability and HCI
topics. In addition to that, two informal sessions with users
were performed. The first one involved a few people who
were familiar with the Reactable and HCI topics, and it
was performed using the actual Reactable hardware running
a proof-of-concept implementation of this proposal. The
second one has been performed with users who were mostly
unaware of both the Reactable and HCI, but with a basic
to high level of music knowledge. This second phase was
conducted with a slightly modified version of the proof-of-
concept implementation running in a simulator, since the
actual hardware was not available. Both groups of people
were told about the Reactable, the purpose of the system
here presented and its basic concepts – such as handwriting
recognition and stroke-based composition – but not how to
actually perform tasks such as chord and melody creation.
They were told to perform a series of tasks, from creating
a chord preset to composing a simple melody, and their
reactions were recorded.

Figure 5. The action of drawing the letter A. Since there’s
no edit action associated with letter A, a new A major chord
is going to be created.

Figure 6. The piano-roll like interface with the stroke
gesture used prior to analysis.

Although few data was gathered, these two phases re-
ported mixed yet interesting results.

• Most of the people familiar with the Reactable re-
garded this proposal as an interesting development,
mostly because of the possibility to choose a subset
of notes that ensures that no mistakes are made, while
also doubting that this whole renewed Tonalizer could
really add some significant value to the Reactable as
an instrument. On the other hand, some of those who
weren’t familiar enough with the Reactable didn’t
always get how this was an improvement at all, being
just more fascinated with the original Reactable and
its sound exploration freedom.

• Regarding the overall simplicity of task performance,
most of the people – both familiar and not – reported
that some actions weren’t that obvious to perform, for
example the gesture that opens the piano-roll (figure
6).

• They also reported that the reason because some slots
around the tangibles were filled or empty was not
really clear, although finding it reasonable when told.
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This suggests that a more expressive visual feedback
may be developed for greater clarity.

• Almost everyone noticed that the piano-roll didn’t
always work as expected. This was absolutely ex-
pected due to the unrefined implementation of the
algorithms.

• Nonetheless almost everybody found the handwriting
idea (figure 5) pretty interesting in perspective, even
funny, although it didn’t always work as expected,
but this is again due to unrefined implementation.

All these observations suggest a number of practical im-
provements that’ll be addressed in the future. For a com-
plete review of the improvable aspects of this proposal, see
[10].

4.2 Future developments about different musical
cultures and music education

Western tonal music, not unlike many other musical sys-
tems, features relations between chords, scales and tones.
The key point that would make this proposal a valuable aid
to music education is the integration of such structures into
the two proposed objects. Thinking in the western tonal
music framework, a Tonalizer that can communicate con-
cepts like the circle of fifths or the relations between chords
in a progression, and a Sequencer that highlights whose
tones are stable, whose are passing, and whose are con-
sonant/dissonant, would be helpful in internalizing music
theory.

However, as already hinted in subsection 2.2, not all the
musical systems rely on the same concepts found in western
music theory. The integration and effective conveyance of
these different sets of rules using the objects proposed in
this paper is a challenging development that would involve
an extensive study of the musical systems to be integrated,
followed by the design of a proper interface that can profi-
ciently help to understand the desired concepts.

There is a final note that’s worth making about subsec-
tion 2.2. Music education is not the entire story. In fact,
during the development process there had been contacts
with people involved in education and assistance to people
with disabilities, such as physical handicaps, or even autism
and learning disorders. None of them knew about the Re-
actable, yet it extremely fascinated most of them as a tool
to make disabled people approach music and possibly help
them express themselves. Though extremely interesting,
this is far beyond the scope of this work. Nonetheless, with
a more developed and assessed system, further investigation
may be possible.

5. CONCLUSIONS

In this paper we’ve seen how the Reactable’s existing ap-
proach to pitch-based music can be extended and eventually
generalized to approach music theory in a broader sense.
Even if not all the possible directions and ideas have been
implemented and tested, they will be addressed in the fu-
ture.

The objects here presented proved to work 6 and people
involved in informal testing sessions expressed interest in
the project and provided useful feedback to start a new
development phase.

An extensive formal testing and assessment phase will
also be required, first during the development process, and
second after the system is mature enough to start experi-
menting in real world music education situations.
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[11] S. Jordà, G. Geiger, M. Alonso, and M. Kaltenbrunner,
“The reacTable: Exploring the synergy between live
music performance and tabletop tangible interfaces,”
in Proceedings of the first international conference on

“Tangible and Embedded Interaction” (TEI07), Baton
Rouge, Louisiana, 2007.

6 An early demonstration performed on the actual Reactable hardware
is available at http://vimeo.com/4325822.

158

http://vimeo.com/4325822


[12] M. Bosi, “Extending physical computing on the Re-
actable,” Master’s thesis, Universitat Pompeu Fabra,
2009.

159



TOWARDS ADAPTIVE MUSIC GENERATION BY REINFORCEMENT
LEARNING OF MUSICAL TENSION

Sylvain Le Groux
SPECS

Universitat Pompeu Fabra
sylvain.legroux@upf.edu

Paul F.M.J. Verschure
SPECS and ICREA

Universitat Pompeu Fabra
paul.verschure@upf.edu

ABSTRACT

Although music is often defined as the “language of emo-
tion”, the exact nature of the relationship between musical
parameters and the emotional response of the listener re-
mains an open question. Whereas traditional psycholog-
ical research usually focuses on an analytical approach,
involving the rating of static sounds or preexisting musi-
cal pieces, we propose a synthetic approach based on a
novel adaptive interactive music system controlled by an
autonomous reinforcement learning agent. Preliminary re-
sults suggest an autonomous mapping from musical pa-
rameters (such as tempo, articulation and dynamics) to the
perception of tension is possible. This paves the way for
interesting applications in music therapy, interactive gam-
ing, and physiologically-based musical instruments.

1. INTRODUCTION

Music is generally admitted to be a powerful carrier of
emotion or mood regulator, and various studies have ad-
dressed the effect of specific musical parameters on emo-
tional states [1, 2, 3, 4, 5, 6]. Although many different self-
report, physiological and observational means have been
used, in most of the cases those studies are based on the
same paradigm: one measures emotional responses while
the subject is presented to a static sound sample with spe-
cific acoustic characteristics or an excerpt of music repre-
sentative of a certain type of emotions.

In this paper, we take a synthetic and dynamic approach
to the exploration of mappings between perceived musi-
cal tension [7, 8] and a set of musical parameters by using
Reinforcement Learning (RL) [9].

Reinforcement learning (as well as agent-based tech-
nology) has already been used in various musical systems
and most notably for improving real time automatic impro-
visation [10, 11, 12, 13]. Musical systems that have used
reinforcement learning can roughly be divided into three
main categories based on the choice of the reward charac-
terizing the quality of musical actions. In one scenario the
reward is defined to match internal goals (a set of rules for

Copyright: c©2010 Sylvain Le Groux et al. This is
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Figure 1. The system is composed of three main compo-
nents: the music engine (SiMS), the reinforcement learn-
ing agent and the listener who provides the reward signal

instance), in another scenario it can be given by the audi-
ence (a like/dislike criterion), or else it is based on some
notion of musical style imitation [13]. Unlike most previ-
ous examples where the reward relates to some predefined
musical rules or quality of improvisation, we are interested
in the emotional feedback from the listener in terms of per-
ceived musical tension (Figure 1).

Reinforcement learning is a biologically plausible ma-
chine learning technique particularly suited for an explo-
rative and adaptive approach to emotional mapping as it
tries to find a sequence of parameter change that optimizes
a reward function (in our case musical tension). This ap-
proach contrasts with expert systems such as the KTH rule
system [14, 15] that can modulate the expressivity of music
by applying a set of predefined rules inferred from previous
extensive music and performance analysis. Here, we pro-
pose a paradigm where the system learns to autonomously
tune its own parameters in function of the desired reward
function (musical tension) without using any a-priori mu-
sical rule.

Interestingly enough, the biological validity of RL is
supported by numerous studies in psychology and neu-
roscience that found various examples of reinforcement
learning in animal behavior (e.g. foraging behavior of bees
[16], the dopamine system in primate brains [17], ...).
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Figure 2. SiMS is a situated music generation framework
based on a hierarchy of musical agents communicating via
the OSC protocol.

2. A HIERARCHY OF MUSICAL AGENTS FOR
MUSIC GENERATION

We generate the music with SiMS/iMuSe, a Situated Intel-
ligent Interactive Music Server programmed in Max/MSP
[18] and C++. SiMS’s affective music engine is composed
of a hierarchy of perceptually meaningful musical agents
(Figure 2) interacting and communicating via the OSC pro-
tocol [19]. SiMS is entirely based on a networked architec-
ture. It implements various algorithmic composition tools
(e.g: generation of tonal, Brownian and serial series of
pitches and rhythms) and a set of synthesis techniques val-
idated by psychoacoustical tests [20, 3]. Inspired by previ-
ous works on musical performance modeling [14], iMuSe
allows to modulate the expressiveness of music generation
by varying parameters such as phrasing, articulation and
performance noise.

Our interactive music system follows a biomimetic ar-
chitecture that is multi-level and loosly distinguishes sens-
ing (the reward function) from processing (adaptive map-
pings by the RL algorithm) and actions (changes of musi-
cal parameters). It has to be emphasized though that we do
not believe that these stages are discrete modules. Rather,
they will share bi-directional interactions both internal to
the architecture as through the environment itself [21]. In
this respect it is a further advance from the traditional sep-
aration of sensing, processing and response paradigm[22]
which was at the core of traditional AI models.

In this project, we study the modulation of music by
three parameters contributing to the perception of musical
tension, namely articulation, tempo and dynamics.

While conceptually fairly simple, the music material
generator has been designed to keep the balance between

predictability and surprise. The real-time algorithmic com-
position process is inspired by works from minimalist com-
posers such as Terry Riley (In C, 1964) where a set of basic
precomposed musical cells are chosen and modulated at
the time of performance creating an ever-changing piece.

The choice of base musical material relies on the ex-
tended serialism paradigm. We a priori defined sets for
every parameter (rhythm, pitch, register, dynamics, artic-
ulation). The generation of music from these sets is then
using non-deterministic selection principles, as proposed
by Gottfried Michael Koenig [23]. (The sequencer mod-
ules in SiMS can, for instance, choose a random element
from a set, or choose all the elements in order successively,
choose all the elements in reverse order, or play all the el-
ements once without repetition, etc.)

For this project we used a simple modal pitch serie [0,
3, 5, 7, 10] shared by three different voices (2 monophonic
and 1 polyphonic). The first monophonic voice is the lead,
the second is the bass line, and the third polyphonic voice is
the chord accompaniment. The rhythmic values are coded
as 16n for a sixteenth note, 8n for a eighth note, etc. The
dynamic values are coded as midi velocity from 0 to 127.
The other parameters correspond to standard pitch class set
and register notation. The pitch content for all the voices
is based on the same mode.

• Voice1:

– Rhythm: [16n 16n 16n 16n 8n 8n 4n 4n]

– Pitch: [0, 3, 5, 7, 10]

– Register: [5 5 5 6 6 6 7 7 7]

– Dynamics: [90 90 120 50 80]

• Voice2:

– Rhythm:[4n 4n 4n 8n 8n]

– Pitch: [0, 3, 5, 7, 10]

– Register: [3 3 3 3 4 4 4 4]

– Dynamics: [90 90 120 50 80]

• Polyphonic Voice:

– Rhythm: [2n 4n 2n 4n]

– Pitch: [0 3 5 7 10]

– Register: [5]

– Dynamics: [60 80 90 30]

– with chord variations on the degrees [1 4 5]

The selection principle was set to “series” for all the pa-
rameters so the piece would not repeat in an obvious way
1 . This composition paradigm allows the generation of
constantly varying, yet coherent, musical sequences. Prop-
erties of the music generation such as articulation, dynam-
ics modulation and tempo are then modulated by the RL
algorithm in function of the reward defined as the musical
tension perceived by the listener.

1 Samples: http://www.dtic.upf.edu/˜slegroux/confs/SMC10
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Figure 3. The agent-environment interaction (from [9])

3. MUSICAL PARAMETER MODULATION BY
REINFORCEMENT LEARNING

3.1 Introduction

Our goal is to teach our musical agent to choose a sequence
of musical gestures (choice of musical parameters) that
will increase the musical tension perceived by the listener.
This can be modeled as an active reinforcement learning
(RL) problem where the learning agent must decide what
musical action to take depending on the emotional feed-
back (musical tension) given by the listener in real-time
(Figure 1). The agent is implemented as a Max/MSP ex-
ternal in C++, based on RLKit and the Flext framework
2 .

The interaction between the agent and its environment
can be formalized as a Markov Decision Process (MDP)
where [9]:

• at each discrete time t, the agent observes the envi-
ronment’s state st ∈ S, where S is the set of possible
states (in our case the musical parameters driving the
generation of music).

• it selects an action at ∈ A(st), where A(st) is the
set of actions available in state st (here, the actions
correspond to an increase or decrease of the musical
parameter value)

• the action is performed and a time step later the agent
receives a reward rt+1 ∈ R and reaches a new state
st+1 (the reward is given by the listener’s perception
of musical tension)

• at time t the policy is a mapping πt(s,a) defined as
the probability that at = a if st = s and the agent
updates its policy as a result of experience

3.2 Returns

The agent acts upon the environment following some pol-
icy π. The change in the environment introduced by the
agent’s actions is communicated via the reinforcement sig-
nal r. The goal of the agent is to maximize the reward it
receives in the long run. The discounted return Rt is de-
fined as:

Rt =
∞∑
k=0

γkrt+k+1 (1)

2 http://puredata.info/Members/thomas/flext/

where 0 ≤ γ ≤ 1 is the discount rate that determines the
present value of future rewards. If γ = 0, the agent only
maximizes immediate rewards. In other words, γ defines
the importance of future rewards for an action (increasing
or decreasing a specific musical parameter).

3.3 Value functions

Value functions of states or state-action pairs are functions
that estimate how good (in terms of future rewards) it is for
an agent to be in a given state (or to perform a given action
in a given state).
V π(s) is the state-value function for policy π. It gives

the value of a state s under a policy π, or the expected
return when starting in s and following π. For MDPs we
have:

V π(s) = Eπ{Rt|st = s}

= Eπ{
∞∑
k=0

γkrt+k+1|st = s}

Qπ(s, a) , or action-value function for policy π, gives the
value of taking action a in a state s under a policy π.

Qπ(s, a) = Eπ{Rt|st = s, at = a}

= Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a}

We define as optimal policies the ones that give higher ex-
pected return than all the others. Thus,V ∗(s) = maxπV

π(s),
and Q∗(s, a) = maxπQ

π(s, a) which gives Q∗(s, a) =
E{rt+1 + γV ∗(st+1)|st = s, at = a}

3.4 Value function estimation

3.4.1 Temporal Difference (TD) prediction

Several methods can be used to evaluate the value func-
tions. We chose TD learning methods over Monte Carlo
methods as they allow for online incremental learning. With
Monte Carlo methods, one must wait until the end of an
episode whereas with TD, one need to wait only one time
step. The TD learning update rule for V ∗ the estimate of
V is given by:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

where α is the step-size parameter or learning rate. It con-
trols how fast the algorithm will adapt.

3.4.2 Sarsa TD control

For the transitions from state-action pairs we use a method
similar to TD learning called sarsa on-policy control. On-
policy methods try to improve the policy that is used to
make decision. The update rule is given by:

Q(st, at) ← Q(st, at) + α[rt+1 +

... γQ(st+1, at+1)−Q(st, at)]
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3.4.3 Memory: Eligibility traces (Sarsa(λ))

An eligibility trace is a temporary memory of the occur-
rence of an event.

We define et(s, a) the trace of the state-action pair s, a
at time t. At each step, the traces for all states decay by γλ
and the eligibility trace for the state visited is incremented.
λ represent the trace decay. It acts as a memory and sets the
exponential decay of a reward based on previous context.

et(s, a) =

{
γλet−1(s, a) + 1 for s = st , a = at

γλet−1(s, a) if s 6= st

we have the update rule

Qt+1(s, a) = Qt(s, a) + αδtet(s, a)

where

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at)

3.4.4 Action-value methods

For the action-value method, we chose a ε-greedy policy.
Most of the time it chooses an action that has maximal es-
timated action value but with probability ε it instead select
an action at random [9].

4. MUSICAL TENSION AS A REWARD
FUNCTION

We chose to base the autonomous modulation of the mu-
sical parameters on the perception of tension. It has often
been said that musical experience may be characterized by
an ebb and flow of tension that gives rise to emotional re-
sponses [24, 25]. Tension is considered a global attribute
of music, and there are many musical factors that can con-
tribute to tension such as pitch range, sound level dynam-
ics, note density, harmonic relations, implicit expectations,
...

The validity and properties of this concept in music have
been investigated in various psychological studies. In par-
ticular, it has been shown that behavioral judgements of
tension are intuitive and consistent across participants [7,
8]. Tension has also been found to correlate with the judge-
ment of the amount of emotion of a musical piece and
relates to changes in physiology (electrodermal activity,
heart-rate, respiration) [26].

Since tension is a well-studied one-dimensional param-
eter representative of a higher-dimensional affective mu-
sical experience, it makes a good candidate for the one-
dimensional reinforcer signal of our learning agent.

5. PILOT EXPERIMENT

As a first proof of concept, we looked at the real-time be-
haviour of the adaptive music system when responding to
the musical tension (reward) provided by a human listener.
The tension was measured by a slider GUI controlled by
a standard computer mouse. The value of the slider was
sampled every 100 ms. The listener was given the follow-
ing instructions before performing the task: “use the slider

to express the tension you experience during the musical
performance. Move the slider upwards when tension in-
creases and downward when it decreases”.

The music generation is based on the base material de-
scribed in section 2. The first monophonic voice controlled
the right hand of a piano, the second monophonic voice
an upright acoustic bass and the polyphonic voice the left
hand of a piano. All the instruments were taken from the
EXS 24 sampler from Logic Pro (Apple).

The modulation parameter space is of dimension 3. Dy-
namics modulation is obtained via a midi velocity gain
factor between [0.0, 2.0]. Articulation is defined on the
interval [0.0, 2.0] (where a value > 1 corresponds to a
legato and < 1 a staccato). Tempo is modulated from 10
to 200 BPM. Each dimension was discretized into 8 levels,
so each action of the reinforcement algorithm produces an
audible difference. The reward values are discretized into
three values representing musical tension levels (low=0,
medium=1 and high=2).

We empirically setup the sarsa(λ) parameters, to ε =
0.4, λ = 0.8, γ = 0.1, α = 0.05 in order to have an inter-
esting musical balance between explorative and exploita-
tive behaviors and some influence of memory on learning.
ε is the probability of taking a random action. λ is the ex-
ponential decay of reward (the higher λ, the less the agent
remembers). α is the learning rate (if α is high, the agent
learns faster but can lead to suboptimal solutions).

5.0.5 One dimension: independant adaptive modulation
of Dynamics, Articulation and Tempo

As our first test case we looked at the learning of one pa-
rameter at a time. For dynamics, we found a significant
correlation (r = 0.9, p < 0.01): the tension increased
when velocity increased (Figure 4). This result is con-
sistent with previous psychological literature on tension
and musical form [27]. Similar trends were found for ar-
ticulation (r = 0.25, p < 0.01) (Figure 5) and tempo
(r = 0.64, p < 0.01) (Figure 6). Whereas litterature on
tempo supports this trend [28, 2], reports on articulation
are more ambiguous [2].

5.0.6 Two dimensions: modulation of Tempo and
Dynamics

When testing the algorithm on the 2-dimensional param-
eter space of Tempo and Dynamics, the convergence is
slower. For our example trial, an average reward of medium
tension (value of 1) is only achieved after 16 minutes of
training (1000 s.) (Figure 7) compared to 3 minutes (200
s.) for dynamics only (Figure 4). We observe significant
correlations between tempo (r = 0.9, p < 0.01), dynam-
ics (r = 0.9, p < 0.01) and reward in this example, so
the method remains useful for the study the relationship
between parameters and musical tension. Nevertheless, in
this setup, the time taken to converge towards a maximum
mean reward would be too long for real-world applications
such as mood induction or music therapy.
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Figure 4. The RL agent automatically learns to map an
increase of perceived tension, provided by the listener as
a reward signal, to an increase of the dynamics gain. Dy-
namics gain level is in green, cumulated mean level is in
red/thin, reward is in blue/crossed and cumulated mean re-
ward is in red/thick.
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Figure 5. The RL agent learns to map an increase of per-
ceive tension (reward) to longer articulations.
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Figure 6. The RL agent learns to map an increase of mu-
sical tension (reward) to faster tempi.
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Figure 7. The RL agent learns to map an increase of mu-
sical tension (reward in blue/thick) to faster tempi (param-
eter 1 in green/dashed) and higher dynamics (parameter 2
in red/dashed).

5.0.7 Three dimensions: adaptive modulation of Volume,
Tempo and Articulation

When generalizing to three musical parameters (three di-
mensional state space), the results were less obvious within
a comparable interactive session time frame. After a train-
ing of 15 minutes, the different parameters values were still
fluctuating, although we could extract some trends from
the data. It appeared that velocity and tempo were in-
creased for higher tension, but the influence of the articu-
lation parameter was not always clear. In figure 8 we show
some excerpt where a clear relationship between musical
parameter modulation and tension could be observed. The
piano roll representative of a moment where the user per-
ceived low tension (center) exhibits sparse rhythmic den-
sity due to lower tempi , long notes (long articulation) and
low velocity (high velocity is represented as red) whereas
a passage where the listener perceived high tension (right)
exhibits denser, sharper and louder notes. The left figure
representing an early stage of the reinforcement learning
(beginning of the session) does not seem to exhibit any spe-
cial characteristics (we can observe both sharp and long ar-
ticulation. e.g. the low voice (register C1 to C2) is not very
dense compared to the other voices). From these trends,
we can hypothesize that perception of low tension would
relate to sparse density, long articulation and low dynam-
ics which corresponds to both intuition and previous offline
systematic studies [27].

These preliminary tests are encouraging and suggest that
a reinforcement learning framework can be used to teach
an interactive music system (with no prior musical map-
pings) how to adapt to the perception of the listener. To
assess the viability of this model, we plan more extensive
experiments in future studies.

6. CONCLUSION

In this paper we proposed a new synthetic framework for
the investigation of the relationship between musical pa-
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Learning Low tension High tension

Figure 8. A piano roll representation of an interactive
learning session at various stage of learning. At the be-
ginning of the session (left), the musical output shows no
specifc characteristics. After 10 min of learning, excerpts
where low tension (center) and high tension reward is pro-
vided by the listener (right) exhibit different characteristics
(cf text). The length of the notes correspond to articulation.
Colors from blue to red correspond to low and high volume
respectively.

rameters and the perception of musical tension. We created
an original algorithmic music piece that can be modulated
by parameters such as articulation, velocity and tempo, as-
sumed to influence tension. The modulation of those pa-
rameters was autonomously learned in real-time by a re-
inforcement learning agent optimizing the reward signal
based on the musical tension perceived by the listener. This
real-time learning of musical parameters provides an in-
teresting alternative to more traditional research on music
and emotion. We could observe correlations between spe-
cific musical parameters and an increase of perceived mu-
sical tension. Nevertheless, one limitation of this method
for real-time adaptive music is the time taken by the algo-
rithm to converge towards a maximum average reward, es-
pecially if the parameter space is of higher dimensions. We
will improve several aspects of the experiment in follow-
up studies. The influence of the reinforcement learning
parameters on the convergence needs to be tested in more
details, and other relevant musical parameters will be taken
into account. In the future we will also run experiments to
assess the coherence and statistical significance of these
results over a larger population.
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ABSTRACT 
The interaction between composers and performers has 
recently acquired new challenges with the advent of scores 
in real time. Such systems potentiate new approaches to 
composition and performance by imposing new 
possibilities and constraints. 

Õdaiko is a real-time graphical score generator 
and features a composer playing live electronic music, an 
assistant to the composer generating the scores and finally 
the performer(s). In this paper, I present Õdaiko, focusing 
on its implementations and the related composer-assistant-
performer interactions as a basis for development. 

1. INTRODUCTION 
Recent computation and network power make possible to 
generate scores in real time thus opening a new paradigm 
for the composer-performer interaction. 
 In Õdaiko, I  create a system relating rhythm, 
density changes over time, real time score generation and 
live electronic music. Scores generated in real-time pose 
novel approaches to composition and performance. The 
motivation to design Õdaiko was to explore the 
possibilities that such a system can contribute to the 
composer-performer relationship and to composition itself. 
 In Õdaiko, a score is generated in real time using 
graphic notation, providing cues to a performer (or group 
of performers) on when to play musical events. These 
musical events are pitches or other sounds relating to pre-
defined electronic music events that are played live by the 
composer. In a performance using Õdaiko, the musician(s) 
have to respond to the music being played according to the 
temporal cues being generated by the system in real time. 

2. STATE OF THE ART 
Computers and network technologies have fostered and 

simplified the development of new interfaces while 
enhancing new relationships between musicians and 
composers.  

The work done in this area has been increasingly 
growing in the last decade. Systems such as Automatic 
Notation Generators (ANG) [1], eScore [2] or Flock [3] 
address in different ways the use of real-time generated 
scores in performance, each of them focusing on different 
elements of interaction and different performance 
situations.  

The ANG consists on various custom software 
tools developed to aid algorithmic composition. One of 
them is the LiveScore, developed by Harris Wulfson [1], 
which connects computers through a wireless network and 
displays a proportional notation system using a standard 5-
line staff. A stochastically oriented algorithm accomplishes 
the data for the score. In this system synchronization is 
important and it is achieved by a moving vertical line 
indicating when and which to play.  eScore was developed 
at Queens University in Belfast by McClelland and Alcorn 
[2]. Through an interactive drawing table, the composer 
can send musical gestures to the screen of the performers, 
and at the same time (s)he is triggering electronic music 
effects and/or samples. It features three different notation 
possibilities including page mode, scattering mode and 
scrolling mode, all of them based on standard music 
notation.  

Flock [3] is an environment developed by Jason 
Freeman and Mark Godfrey that includes musicians, 
dancers, video, electronic sound and audience. Through a 
camera installed on the ceiling, the software keeps track of 
position of performers and generates musical notation 
according to the xy coordinates of the performers . The 
notation used is either standard or graphical. Throughout 
the performance, different musical density textures are 
created. 

3. ÕDAIKO 
Õdaiko continues the trend of live score generation. The 
main feature that distinguishes this system from the ones 

Copyright: © 2010 Lopes. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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presented above is its focus on rhythm and temporal-
domain data. The sieves, developed by Xenakis [4], is the 
fundamental core of rhythm generation and music 
development, providing a way to place musical events in 
the time domain which the performers have to respond. All 
the previous examples presented here are pitch based 
whereas Õdaiko uses rhythm as the foremost structural 
element, not presenting any pitch indications. 
 

3.1. Overview 
 
Õdaiko offers flexible scoring possibilities. Based on a 
sieve formula, rhythmic events are positioned in time, 
allowing a composer to arrange rhythm and to modulate it 
in real time. 

The Õdaiko environment produces graphical 
scores by the action of a human assistant who makes use of 
a dedicated interface to perform a pre-composed guidance 
score. In addition, the composer performs live electronic 
music having previously composed a guidance score for 
the assistant. The purpose of Õdaiko is to make available 
the possibility to structure music by means of rhythm and 
also offer the possibility to shape density and, 
consequently, formal structure in real time.  

Õdaiko is a cross-platform, stand-alone 
application for performance developed in MaxMSP [5] and 
Processing [6]. The MaxMSP part of the application 
enables the composer to play live-electronic music, 
provides the interface for the human assistant, and sends 
data to be rendered as real-time scores by an application 
developed in Processing. All of the software modules 
communicate with themselves by Open Sound Control 
(OSC) [7]. 

3.2. The importance of sieves 

Sieve theory was developed by Xenakis [4] and recently 
summarized by Ariza [8]. Xenakis used the sieves to 
produce pitch scales and rhythmic series in many of his 
compositions, although it could be used to generate data 
for several musical parameters. The sieve consists on a 
formula of one or more residual classes, combined or not 
by logic operators, producing a sequence of integers. A 
residual class consists of two integer values, a modulus 
(M) and a shift (S). While the modulus can be any positive 
integer, the shift must be 0 or M-1. In Õdaiko, the 
modulus and the shift are notated M@I, as proposed by 
Ariza [8]. Given a sequence 4@0, each value in the 
sequence consists of all integers x where the following 
condition is satisfied: x%4==0. This is will produce the 
following sequence […-8, -4, 0, 4, 8…]. In Õdaiko only 
the positive part of the resulting integer sequence is used, 
up to a maximum of 300, to place events in time. It 
follows that if only one sieve is used then the sequence 
will be periodic with a period identical to the modulus. In 

Õdaiko, the sequence produced by the sieve is the 
reference to place musical events in a score. Although 
Xenakis used several combinations of sieves in his pieces, 
producing complex sequences, in Õdaiko only 
combinations of two can be used facilitating the assistant 
to make an accurate guess on how much a performer will 
play. 
 The sieve is one of the main elements in Õdaiko 
since it allows the assistant to work rhythm on the 
immediate present but also prepare the future shaping the 
scores in real time. 

3.3. Beyond pitch notation paradigm 
 
The focus of Õdaiko is the possibility to shape rhythm and 
form in real time upon an established framework, letting 
historical significant aspects like pitch, dynamics or 
articulations to happen spontaneously. Õdaiko notation 
doesn’t provide pitch information, only rhythm. 
 Pitch, and the intrinsic musical features mention 
above, are dealt in rehearsals through collaboration 
between performers, assistant and composer, leading to 
the establishment of sectional areas and general sound 
textures. An established framework, or sectional area, is 
embedded in an assumption of materials fostering the 
composer to compose them in real time. This established 
sectional areas are the ones that the composer will use to 
create the guidance score, indispensable to the assistant. 

For Õdaiko, I propose that rhythm should be the 
foremost feature of organization and development of 
music along a performance. 

3.4. Typical Setup 
 
A typical setup of Õdaiko will include a laptop for each 
performer, a laptop for the assistant and a laptop for the 
composer/manipulator of the electronic music. Each of 
these stations has dedicated software. 
 All the communications are accomplished using 
OSC [7] in a hierarchical structure from composer-
assistant-performer. The composer controls the main clock 
and sends data to the assistant about succeeding sections 
of the piece, expressed in the form of letters, which he/she 
has to perform according to the pre-composed guidance 
score. The assistant then interprets and sends the data for 
the performer(s) computer(s) screen in order to render the 
score(s). In addition, the assistant can also alert the 
composer if he/she is doing, or is going to do, a solo. 

3.5. The role of the assistant 
 
In Õdaiko the composer performing electronic music is 
considerer as autonomous as each musician performing his 
instrument, creating the necessity to have someone 
dedicated for the score generation. 
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The assistant is someone who knows the system 
and essentially is able to facilitate the composer’s musical 
ideas while generating the score(s). 
 The assistant is responsible for leading the music 
through the sectional areas, operating gradual passages in 
the scores, making his contribution active and vital in the 
musical outcome. Although he/she is interpreting a 
guidance score pre-composed by the composer (see Figure 
1.), his interpretation and musical time flow contributes 
decisively to the musical outcome of the piece, making its 
influence significant in both the creative process of 
composition and performance. 
 

 

Figure 1.  Pre-composed score 

4. NOTATION AND INTERFACE 

Non-traditional scores offer demanding commitment from 
musicians, especially if they are generated in real time. 
Õdaiko uses a graphical approach to notation based on the 
classical piano-roll.  
 Each score can have three different situations. 
These can be the sieves panel, the solo panel or the silence 
panel. The passages between each panel are made through 
a cue on the top-right corner of the screen that fades out. 

4.1. The Sieves panel 
 
Each sieve places moving events (from right to left) on a 
graphical staff (see Figure 2).  
 

 

Figure 2. The sieves panel 

These events should be performed when they hit a barline. 
The events can have five possible durations and three 
different shapes (triangle, square, or inverted triangle – 
see Figure 3). Each shape has a different performance 
intention. When the performer sees a square she/he should 
play the musical event with little or no modification over 
time whereas the triangle results in a dramatic change on 
the event. For example, if a square appears and the 
performer plays a chord, it should maintain itself still 
while if a triangle appears the same chord could be 
repeated over its duration while doing a crescendo or an 
accelerando. Although the shape for a stream of events is 
always the same, their durations is chosen making use of a 
probability scheme which includes the possibility of 
having most of the events big, most of them small or 
random size. 
 

 
 

Figure 3. Event attributes 
 

 The score display is 1080 pixels width and 680 
pixels height. The vertical barline default position is 120 
pixels from the leftmost of the score layout. The smallest 
event is a square of 30 pixels and it represents the 16th 
note in reference to the main time/bpm clock. (see Figure 
4). This means that there are 32 units divisions on the 
score. In the case of a sieve of 1@0 [0,1,2,3,4…300] it 
means that there will be an event in each unit division. In 
the case of 10@0 [0,10,20,30…300] it means that for each 
10 unit divisions, it will be placed an event. 
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Figure 4. Pixel relationship 

 
The assistant, in addition, can move the vertical 

barline along the x-axis. This results in smaller or bigger 
time spaces between the appearance of the event and its 
performance. The maximum displacement the vertical 
barline can have is up to 60 pixels from the right end of 
the score layout. 

4.2. Solo panel 
 
The solo panel (see Figure 5) allows the performer to do a 
solo. It features a line in the middle of the screen and a 
circumference in the middle of the line. Both randomly 
change brightness with occasional blobs of white shapes 
masking everything.  
 There is no specific musical meaning for the 
animation, however it has been helpful to enhance 
performers less comfortable with free improvisation, 
providing something to keep them going. 
 

 

Figure 5. The solo panel 

4.3. Silence panel 
 
A black screen tells the performer(s) to stop playing 
 

4.4.  Assistant Interface 
 
The application (see Figure 6) includes a section where 
the assistant can choose which panel to display in each 
performer screen, which sieve to use, the probability size 
of each event and its shape. He can also move the vertical 
barline that provides the cue of each performer. There is 
also a more general section that includes the possibility to 
change, at the same time, for the same panel, all the 
laptops. It is also possible to send the same sieve to all the 
laptops, enhancing synchronization of the ensemble, as 
well as sending a warning to the composer if he/she is 
doing a solo. 
 In addition, there are tools that provide the 
assistant to check if the wireless network is working 
properly and also to receive information, sent from the 
composer, about which section of the piece is being 
played. 
 

4.5. Electronic Music Modules 
 
Electronic music is performed using modules (see Figure 
7). Featuring a maximum of 25 modules, they are 
designed in such a way to share common rhythmic 
characteristics.  
 Each module has two important parameters: The 
time distance between consecutive events and their 
associated time periodicity. The first one controls the time 
space for each event, and the second one, within the time 
space defined by the first one, controls its linked regular 
or irregular division of time. The composer chooses the 
time reference in beats per minute, which is the same that 
controls Õdaiko score engine. 
 A composer can sonically design each module, 
programming it in MaxMSP making use of a template. In 
this way and by the benefit of using a computer, the 
composer can address real-time synthesis based on rhythm 
at a sample level or control electronic music gestures 
making use of musical processes defined in each module. 
 In addition, the use of electronic music also 
offers the possibility to blend acoustical with electronic 
music. 
 

 

Figure 7. Electronic Music Module 
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Figure 6. Assistant Interface 
 

5. COMPOSITION AND PERFORMANCE 
Õdaiko allows the composer to shape rhythm and form in 
real time. 

Using sieves allows the possibility of complex 
rhythmic textures, on a vertical or horizontal level. 
Aspects like beat, pulse and meter along with 
polyrhythmic and polymetric music can be enhanced 
within a group of performers. The sieves also allow 
exploring the aspect of time and form while generating 
and changing it in real time. Nevertheless, a long 
performance made only by the sieves panel could become 
troublesome and musically uninteresting. Since Õdaiko 
lends itself for performers comfortable with 
improvisation, a solo panel was added in order to free the 
performance from continuous limitations. It is also clear 
that, regarding rhythm, silence is as important as sound, 
thus, a panel of silence was incorporated. The mixture of 
all these three possibilities is very exciting and rich for 
composition and interactive systems. 

The assistant is a vital part of the system since he 
is in charge of generating the scores and mediating the 
composer’s thoughts. Upon a given structure, the assistant 
generates the scores and operates the gradual changes 
between each section of the piece, assuming him as a lead 
element for the musical outcome. 

 

 
Figure 8. Performance Relationship Models 

6. PERFORMANCE ISSUES 
Õdaiko is tool for real time composition developed in a 
very personal compositional perspective.  Generally 
speaking it allows a composer to address flexible musical 
densities in a stochastically way and in real time. 

The most obvious challenge is the way the 
performers will interpret the graphical score giving the 
fact that no pitch indication is provided. This is 
particularly challenging as it goes against the traditional 
practice of instruments and also most of the academic 
music teaching. The performers also abandon the concepts 
of form and development since the scores are generated in 
real time. These features make the rehearsals one of the 
more important aspects in order to achieve a good 
performance. 

The most musically effective performances have 
involved the use of percussion instruments such as the 
Gamelan or, in the case of pitch instruments, coherent 
pitch zones. This lends the performers a sonic quality that 
offers constancy in combination with recurrent electronic 
music pitched sounds samples. 

7. FUTURE WORK 
Performance based studies will be accomplished in order 
to attain a better insight on the matter of rhythm relations 
and graphical notation. A second parallel study will be 
about the constraints that a real time score has in 
performance. 

Recent pieces composed for Õdaiko 
demonstrated that rhythm and real-time score generation 
can be compositionally rewarding and that the possibility 
of screen-based notation can be immense.  
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 Different musicians and instruments, from 
traditional acoustical ones to electronic based ones, will be 
invited to play Õdaiko and share ideas and thoughts. 

Õdaiko is intended for public release. 

8. CONCLUSIONS 
In this paper I’ve shown Õdaiko, a real time graphical 
score system based on rhythm that enables the composer 
to address rhythm in a structural manner. This way of 
addressing composition promotes the composer to 
establish rhythm relations “in the present” but also to 
focus on musical form, thus, the future. 
 The usage of real time graphical generated scores 
enhances new relations between composer, performers 
and performance itself. I then presented some practical 
outcome and future work to be developed. 

9. ACKNOWLEDGEMENTS 
Õdaiko was developed as part of my master’s degree [9]. I 
would like to thank Joel Ryan and Paul Berg my advisors 
for all their support and guidance. I also would like to 
thank Carlos Guedes and Rui Penha for all their ideas and 
criticism.  

10. REFERENCES 
[1] Barret, Douglas G.,Winter, M., Wulfson, H. 
“Automatic Notation Generators”. In Proceedings of the 
2007 New Interfaces For Musical Expression, New York, 
EUA, 2007. 
 
[2] McClelland, C., Alcorn, M. “Exporing New 
Composer/Performer Interactions Using Real-Time 
Notation” In Proceedings of the International Computer 
Music Conference, Belfast, Ireland, 2008. 
 
[3] Freeman, J., Godfrey, M. Technology, “Real-Time 
Notation, and Audience Participation in Flock”. In 
International Computer Music Conference, Belfast, 
Ireland, 2008. 
 
[4] Xenakis, I. “Formalized Music, Thought and 
Mathematics in Music” Pendagron Press, 1992. 
 
[5] (http://www.cycling74.com) 
 
[6] (http://www.processing.org) 
 
[7] (http://opensoundcontrol.org) 
 
[8] Ariza, Christopher “The Xenakis Sieve as Object: A 
New Model and Complete Implementation” In Computer 
Music Journal, Summer 2005, Vol. 29, No.2, pag 40-60, 
MIT. 
 

[9] Lopes, Filipe “Õdaiko a Real Time Score Generator” 
Master Thesis, Institute of Sonology, The Hague, Holland, 
2009  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

171



STYLE EMULATION OF DRUM PATTERNS BY 
MEANS OF EVOLUTIONARY METHODS AND STA-

TISTICAL ANALYSIS 
Gilberto Bernardes Caros Guedes Bruce Pennycook 

Faculdade de Engenharia da Uni-
versidade do Porto 

bernardes7@gmail.com 

INESC, Porto 
carlosguedes@mac.com 

University of Texas, Austin 
bpennycook@mail.utexas.edu 

ABSTRACT 
In this paper we present an application using an evolu-
tionary algorithm for real-time generation of polyphonic 
drum loops in a particular style. The population of 
rhythms is derived from analysis of MIDI drum loops, 
which profile each style for subsequent automatic genera-
tion of rhythmic patterns that evolve over time through 
genetic algorithm operators and user input data. 

1. INTRODUCTION 
Application kin.genalgorthythm is a Pd patch that uses a 
genetic algorithm (GA) and statistical analysis data gath-
ered from pre-existing MIDI drum loops in order to per-
form automatic variations on existing drumming styles. 
This is done in real time and is mainly intended for real-
time performance driven by user-controlled data. 

GAs are known for being a powerful technique for 
problem solving by searching in a vast space of possibili-
ties, created from conventional genetic operators such as 
crossover and mutation, by means of a fitness function, 
which typically consists of an objective function that is 
able to rank all chromosomes in order to find an optimal 
solution. This method has been widely used as a creative 
tool in music, particularly for the development of varia-
tion of music sequences [1,2,3]. However, as noted by 
Biles [1], encoding a fitness function in a GA for real-
time operation in music is a major issue due to the com-
plexity of the aesthetic judgments related to this task. 

Papadopoulos and Wiggins [5] present a categoriza-
tion of musically-oriented GA applications based on the 
use of fitness functions. They establish a major difference 
between the use of an objective fitness function and a 
human one. In other words, they discuss the difference 
between evaluations of chromosomes based on formally 
stated computable functions, or in human judgment as a 
means of replacing the fitness function.  

The solution we adopt here does not use a fitness 
function, and encodes several musical constraints directly 
in the GA’s operators involved in the generation of new 
populations. This is done to avoid non-musical search 
spaces.  

Our approach is inspired on Arne Eigenfeldt’s Ki-
netic Engine [2,4] and focuses on two points: (1) an 
elaboration on the crossover technique proposed by Ei-
genfeldt; (2) the introduction of a metrical-supervision 
procedure on the mutation operator. Our elaboration on 

the crossover technique proposed by Eigenfeldt considers 
different lengths of the parental chromosome. The metri-
cal supervision procedure operated on the mutation op-
erator mutates the events according to the meter of the 
drum loop by using the metric indispensability principle 
presented by Clarence Barlow [6]. 

The output of the algorithm thus results from the se-
lection of the best candidate from an evolving population 
of metrically coherent rhythms produced by the GA. Sub-
sequently, the user can further control the musical output 
by introducing two parameters – density and complexity 
of events. These parameters can be introduced in real or 
non-real time, but they do not affect the metrical coher-
ence or the style of the rhythmic sequence.  

2. SYSTEM DESIGN 
Below we present the design scheme for 
kin.genalgorhythm. The two blocks at the left (Analysis 
and Stored analysis) deal with previous analysis and stor-
age of MIDI drum loops. The data gather and stored from 
these blocks will feed and initialize the main block (Gen-
eration of metrically supervised population) that uses a 
genetic algorithm containing two operators – crossover 
and mutation. This central block is responsible for the 
creation of a finite number of metrically coherent popula-
tions. Finally, at the right we have two blocks (User input 
and Performance), which deal directly with the performa-
tive aspects of the algorithm. These blocks have two 
roles. The first (User input) is to find the optimal solution 
from the generated offspring population, based on user 
input data – complexity and density. The second (Per-
formance) appropriately distributes the rhythmic phrase 
among several drum parts.  

 
Figure 1. The design scheme for kin.genalgorithm. Copyright: © 2010 Gilberto Bernardes et al. This is an open-access 

article distributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 
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3. INITIALIZATION 
We do previous non-real-time analyses of poly-

phonic MIDI drum loops in a particular style in order to 
inform the algorithm about the specificities of that style. 
The analysis block of the algorithm will output the prob-
ability distribution of event occurrences for each individ-
ual part within a measure. In other words, each resulting 
vector corresponds to the normalized histogram of events 
that occur in each subdivision of a pre-defined measure.  
A general vector, which takes into account all instrumen-
tal parts is also defined in order to gather the metrical 
accent distribution of the style under analysis. We use 
two different collections of MIDI loops containing style 
and tempo annotations available in the Free Pack from 
Groove Monkey [7] and Apple’s Logic Pro [8]. In Figure 
2 we can observe the normalized probability distribution 
for the Mambo loops from the Groove Monkey Pack [7]. 

 
 Figure 2. Normalized probability distribution obtained 
with the analysis of the Mambo loops from the Groove 
Monkey Pack [7] of the 16 pulses comprising the 16th 
note level of a 4/4 meter.  
 

Prior to the analysis, all the loops labeled with 
the same style (e.g. “70s Street Drums”) are quantized, 
assembled together in a MIDI sequencer, and subse-
quently exported as a sole MIDI file. Our application uses 
a feature that can store the analyses and provide an in-
stant access for future use.  

The analysis block is dependent on three vari-
ables that have to be introduced by the user: (1) the 
tempo of the loop, indicated in beats per minute (BPM); 
(2) the length of the chromosome to be analyzed, which 
corresponds to the number of subdivisions in each meas-
ure (for example in a 4/4 meter at the 16th level, we 
would have 16 subdivisions); and (3) the amount of sub-
divisions each pulse contains (drawing on the previous 
example, and assuming that we have 16 subdivision, we 
would have to inform the algorithm that each pulse con-
tains 4 subdivisions, in order to define a 4/4 meter at the 
16th note level). 

4. EVOLUTIONARY METHODS 
The evolution of the GA is mainly governed by two prin-
ciples: crossover and mutation. In this section we present 
the transformations we operated in principles advanced 
by Eigenfeldt [2,4] as well as a novel model to metrically 
supervise the mutation operator. 

4.1 Crossover 
Crossover is a standard evolutionary technique in GA, in 

which portions of two individuals (parents) are spliced 
together at random split points and rejoined inter-
changeably in order produce a new variation (children). 
When combining the two parental chromosomes the idea 
behind this operation is that the resulting chromosomes 
may be better than both of the parents if it takes the best 
characteristics from each of the parents. 

As Eigenfeldt points [2,4], crossover is not a 
usual developmental technique in music due to the arbi-
trary method used to determine the splitting point. In or-
der to circumvent this problem, Eigenfeldt proposes the 
use of a single parent chromosome in which a first-order 
Markov chain is applied to perform the crossover. How-
ever, since most styles analyzed here do not present much 
variation, we found a tendency to obtain almost the exact 
same sequence in all offspring populations. Several ex-
periments showed us that if we increase the dimension of 
the parental chromosome, the amount of novelty in-
creases as well. Therefore, an average length 60 beats 
(around 30 seconds of a sequence at 120 BPM) revealed 
much more proficient results.  

 The resulting chain of events is based on a tran-
sition table, which gives the probability of moving from 
one state to another. The pairs of successive rhythmic 
cells are coupled using the object anal that computes the 
transition matrix. Object prob is then used to generate the 
events according to the transition matrix. Both objects 
belong to the cyclone external library in Pd-extended [9]. 
In order to compute the transition matrix, we convert the 
binary representation of each rhythmic cell of the off-
spring chromosomes sequences to decimal (see Figure 3). 
When making the analysis, the user already defines the 
length of each rhythmic cell. Our method ignores the du-
ration of each note, as this does not affect the outcome – 
we are dealing with percussive instruments with a natural 
decay. Special attention is paid to beginnings of offspring 
phrases, which are restricted to the first rhythmic cell of 
the analyzed material. 
 

 
Figure 3. Example of an offspring in musical, binary, and 
decimal representations. 

4.2 Mutation  
The purpose of mutation is to introduce and preserve di-
versity in the offspring population in order to access a 
wider range of possible musical densities. A common 
usage of this technique, involves altering a certain num-
ber of arbitrary bits in a genetic sequence depending on 
the level of desired mutation. 

The method we use is a variation of a stochastic 
algorithm, usually known as roulette-wheel selection 
(RWS). For each bin, a random number is generated and 
compared against a segment division, deciding if the sub-
division in cause should be mutated or not. 

In our approach, we bias the mutation operator 
in order to produce a metrically coherent output. This is 

1.00 0.00 0.86 0.0.57 0.86 0.57 0.86 0.57 0.86 0.00 0.86 0.71 0.86 0.57 0.86 0.57 
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done using a decision-making process that takes into ac-
count Barlow’s metrical indispensability principle [6]. 
The amount of mutation is assigned by default to the 
level of desired density as input by the user. Low and 
high densities are assigned to low and high mutation ra-
tios respectively. The metrical coherence of the off-
springs is preserved independently from the mutation 
ratio. 

4.2.1 Metrically-supervised Mutation 

Barlow’s metric indispensability principle defines the 
probabilistic weight each accent at metrical level on a 
given meter should have in order for that meter to be per-
ceived – i.e. how indispensible is each accent at a certain 
metrical level for a meter to be felt. 

The accents’ weights are calculated by a formula 
that takes into account the meter (e.g. 4/4) and the metri-
cal level (e.g. 16th note) for which one wants to calculate 
the indispensabilities. The metrical level is defined by a 
unique product of prime factors which equals the number 
of pulses at that metrical level, and takes into account the 
division (binary or ternary) at higher levels. For example, 
the six pulses comprising the 8th-note level in a ¾ meter 
would be defined as 3x2 (representing the three quarter 
notes at the quarter-note level that subdivide into two 8th-
notes at the level below), whereas the six pulses compris-
ing the 8th-note level in 6/8 would be represented as 2x3 
(two dotted quarters that subdivide into three 8th-notes). 
Below we show the normalized distribution for the 16 
pulses comprising the 16th note level in 4/4. 

 
Figure 4. Probability distribution given by Clarence Bar-
low’s indispensability formula for the 16 pulses compris-
ing the 16th note level of 4/4, which is defined as 
2x2x2x2.  
 

Barlow’s metrical indispensability algorithm has 
been effectively used to automatically generate rhythm at 
a certain meter. In this application, we use these distribu-
tions as a metrical template that is applied to the mutation 
operator of the GA, by supplying the threshold mutation 
values for each of the measure subdivisions.  

Aside from metrical indispensability, we imple-
mented two other different vectors that can be used in-
stead. One is the probability distribution vector of each 
analyzed style, and the other is the mean of the product of 
the last vector and the metric indispensability vector. Fur-
ther research should explore other possible metrical tem-
plates by using other vectors. Empirically, we observe 
almost the same quality results with the current three pos-
sibilities. 

5. PERFORMANCE 

Initially, the user must define the style she or he wants to 
perform; either by selecting one of the pre-stored analy-
ses or by analyzing a midi drums sequence. In order to 
create variation at the macro structural level the user can 
assign values for two parameters (density and complex-
ity), either in real- or non-real time.  

5.1 Density and complexity parameters 
Whenever a genetic operator (crossover or mutation) is 
applied to create offspring populations, the values of den-
sity and complexity for each offspring are calculated. 
 The density of each rhythmic phrase corre-
sponds to the rate of the attacks per measure. For exam-
ple, if we have the following string: [1, 0, 0, 0, 1, 0, 1, 1, 
1, 0, 1, 0, 1, 1, 1, 1], the density is calculated by diving 
the sum of all the string values (10), and the total number 
of values of the string (16), which gives a density of 
0.625. 
 The complexity parameter specifies the degree 
of syncopation by weighting the events occurring at the 
weaker pulses of the metric structure. It is calculated in 
three steps: 1- by multiplying each offspring vector by 
the symmetric of the indispensability vector around 0.5 
(i.e. by subtracting each value from 1.0); 2- by summing 
all the values resulting from the operation; and 3- by di-
viding the sum by the number of elements in the vector. 
This way, vectors containing more events on weaker 
pulses of the metrical level (i.e. more syncopated) have 
higher complexity values. Figure 5 describes the proce-
dure. 

 
Figure 5. Steps for computing the complexity of each 
vector. 
 
For each offspring population the program computes a 
table like the one shown below.  
 

 
Table 1. Example of a density and complexity measure-
ments. 
 

1.00 0.00 0.53 0.27 0.80 0.13 0.67 0.40 0.93 0.07 0.60 0.30 0.87 0.02 0.73 0.47 

Sequence Density Complexity 
10000010 10001000 10000010 10100110 0.3125 3.77419 
10000010 10101110 10001010 10001010 0.40625 4.93548 
10000000 10001000 10000000 10100010 0.21875 3 
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5.2 Selection for Performance 
The user must provide values corresponding to the den-
sity and complexity of the phrase for performance, so that 
the algorithm at runtime chooses offsprings that are 
closely related to the values input by the user.  
 The selection is done by finding the offspring 
that presents the highest correlation between a vector 
defined by the two values given by the user (density, 
complexity), and the correspondent vectors for all gener-
ated population. The density and complexity values can 
be assigned and stored previously in a table or altered in 
real-time. In Figure 6 we can observe the two different 
input approaches: the non-real time methods that can be 
stored in a timeline (graph on the top right of the win-
dow), and the real-time method by directly adapting the 
density and complexity sliders (below the timeline). The 
algorithm reads a new value on the beginning of each 
new sequence. 
 

 
 

Figure 6. Main window in Pure Data presetting the inter-
face where the user can both store the complexity and 
density values in a timeline (in the upper right) or alter 
the values in real-time directly on the sliders (below the 
timeline).  
 

5.3 Performance 
At runtime, the algorithm (1) will sequentially read the 
selected offspring, and (2) will evaluate in all probabilis-
tic distribution tables (each corresponding to a different 
part: i.e. snare drum, hi-hat) to select if that part will play 
or not.  

We felt the necessity to implement two rules that 
constrain the output in order to avoid certain non-musical 
situations. The first was to avoid the coincidence of simi-
lar instruments, and the second was to avoid the exces-
sive appearance of phrase beginning accents such as 
crash-cymbal hits. In order to solve the first situation we 
restricted similar instruments to play in the same subdivi-
sion of the beat, opting for the strongest/sharpest one – 
e.g. if we have for the same beat a snare drum and a steel 
snare drum, we will only play the second one. For the 
second situation, we restricted the appearance of strong 
accents (such as crash cymbals) to the first of each four 
phrases.  

A special attention should be paid to the tempo of 
the generative patterns, which by default is assigned to 
the tempo the user has introduced during the analysis. 
Certain styles have a clear BPM range associated with it, 
and this factor can determinant for the perception of a 
certain style. For example if we consider styles such as 
House music and Funk, the tempo difference is crucial to 
denote the difference between them, since they have al-
most the same generative profile.  

6. CONCLUSION 
In this paper we present an application that generates 
rhythmic patterns in a specific style by means of a genetic 
algorithm and statistical analysis. Major differences from 
similar software include the focus on the emulation of 
different styles and special attention is given to the metri-
cal coherence of the output. The use of Barlow’s indis-
pensability algorithm [6] proved to be an efficient method 
for assuring metrical coherence in the offspring genera-
tion by mutation. 

The software, analyses and generated samples used 
in the study are available at: 
http://sites.google.com/site/kineticproject09/home. 
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ABSTRACT

The paper describes a simple but effective method for in-
corporating automatically learned tempo models into real-
time music tracking systems. In particular, instead of train-
ing our system with ‘rehearsal data’ by a particular per-
former, we provide it with many different interpretations
of a given piece, possibly by many different performers.
During the tracking process the system continuously re-
combines this information to come up with an accurate
tempo hypothesis. We present this approach in the context
of a real-time tracking system that is robust to almost ar-
bitrary deviations from the score (e.g. omissions, forward
and backward jumps, unexpected repetitions or re-starts)
by the live performer.

1. INTRODUCTION

Real-time audio tracking systems, which listen to a musi-
cal performance through a microphone and automatically
recognize at any time the current position in the musical
score, even if the live performance varies in tempo and
sound, promise to be useful in a wide range of applications.
They can serve as a (musical) partner to the performer(s)
by e.g. automatically accompanying them, interacting with
them or supplementing their art by the creation of visual-
izations of their performance.

In this paper we propose a very simple and general meth-
od for incorporating learned tempo models into real-time
music trackers. These tempo models need not reflect one
specific way of how to perform a piece of music, but rather
illustrate many different possible performance strategies
(in terms of timing and tempo). We present this approach
in the context of a real-time music tracking system that is
extremely robust in the face of almost arbitrary structural
changes (e.g. disruptions or re-starts) during a live perfor-
mance.

This unique ability distinguishes our real-time tracking
system from the two major advanced score followers that
have been developed in recent years. These systems have
two quite different domains in mind. While Christopher
Raphael’s ‘Music Plus One’ [1] focuses on the automatic
accompaniment of music containing a quite regular pulse,

Copyright: c©2010 Andreas Arzt et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

like western classical music, where close synchronization
between the solo and the accompanying parts are required,
Arshia Cont’s system ‘Antescofo’ [2] addresses a slightly
different domain, namely, contemporary music by com-
posers like Boulez, Cage and Stockhausen, with musical
characteristics quite different from ‘classical’ music. Dur-
ing the tracking process both systems are guided by sophis-
ticated tempo models.

In contrast to the above-mentioned systems, which are
based on probabilistic models, our music follower uses On-
line Dynamic Time Warping (ODTW) as its basic tracking
algorithm (at multiple levels – see Section 3). Even with-
out a predictive model of tempo, this algorithm is surpris-
ingly robust. But for passages with extremely expressive
timing, knowledge about plausible performance strategies
is needed to improve the precision of real-time alignment.
In this paper we will show two simple and very general
ways of doing so, the second of which actually permits the
system to adapt to different ways of playing without sepa-
rate training each time.

In the following, we first re-capitulate the basic prin-
ciples of our approach to on-line music following (Sec-
tion 2), briefly point to a recent extension that makes the
algorithm robust to almost arbitrary disruptions in a per-
formance (Section 3; the details of this are described in a
separate paper [3]), and then describe two simple, but ef-
fective ways of introducing expressive tempo information
into the tracking process in Sections 4 and 5.

2. A HIGHLY ROBUST MUSIC TRACKER

Our approach to score following is via audio-to-audio align-
ment. That is, rather than trying to transcribe the incoming
audio stream into discrete notes and align the transcrip-
tion to the score, we first convert a MIDI version of the
given score into a sound file by using a software synthe-
sizer. The result is a ‘machine-like’, low-quality rendition
of the piece, in which, due to the information stored in the
MIDI file, we know the time of every event (e.g. note on-
sets).

2.1 Data Representation

The score audio stream and the live input stream to be
aligned are represented as sequences of analysis frames,
computed via a windowed FFT of the signal with a ham-
ming window of size 46ms and a hop size of 20ms. The
data is mapped into 84 frequency bins, spread linearly up
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to 370Hz and logarithmically above, with semitone spac-
ing. In order to emphasize note onsets, which are the most
important indicators of musical timing, only the increase in
energy in each bin relative to the previous frame is stored.

2.2 On-line Dynamic Time Warping (ODTW)

This algorithm is the core of our real-time audio tracking
system. ODTW takes two time series describing the au-
dio signals – one known completely beforehand (the score)
and one coming in in real time (the live performance) –,
computes an on-line alignment, and at any time returns the
current position in the score. In the following we only give
a short intuitive description of this algorithm, for further
details we refer the reader to [4].

Dynamic Time Warping (DTW) is an off-line alignment
method for two time series based on a local cost measure
and an alignment cost matrix computed using dynamic pro-
gramming, where each cell contains the costs of the opti-
mal alignment up to this cell. After the matrix computa-
tion is completed the optimal alignment path is obtained
by tracing the dynamic programming recursion backwards
(backward path).

Originally proposed by Dixon in [4], the ODTW algo-
rithm is based on the standard DTW algorithm, but has two
important properties making it useable in real-time sys-
tems: the alignment is computed incrementally by always
expanding the matrix into the direction (row or column)
containing the minimal costs (forward path), and it has lin-
ear time and space complexity, as only a fixed number of
cells around the forward path is computed.

At any time during the alignment it is also possible to
compute a backward path starting at the current position,
producing an off-line alignment of the two time series which
generally is much more accurate. This constantly updated,
very accurate alignment of the last couple of seconds will
be used heavily throughout this paper. See also Figure 1
for an illustration of the above-mentioned concepts.

Improvements to this algorithm, focusing both on adap-
tivity and robustness, were presented in [5] and are incor-
porated in our system, including the ‘backward-forward
strategy’, which reconsiders past decisions (using the back-
ward path) and tries to improve the precision of the current
score position hypothesis.

In the following, we will give a short description of a
dynamic and general solution to the problem of how to
deal with structural changes effectively on-line, and then
describe and evaluate our main new contribution: two ways
to estimate the current tempo of a performance on-line, and
how to use this information to improve the alignment.

3. ‘ANY-TIME’ REAL-TIME AUDIO TRACKING

In [3] we introduced a unique feature to this system, namely
the ability to cope with arbitrary structural deviations from
the score during a live performance. At the core is a pro-
cess that continually updates and evaluates high-level hy-
potheses about possible current positions in the score, which
are then verified or rejected by multiple instances of the
basic alignment algorithm described above. To guide our

Figure 1. Illustration of the ODTW algorithm, showing
the iteratively computed forward path (white), the much
more accurate backward path (grey, also catching the one
onset that the forward path misaligned), and the correct
note onsets (yellow crosses, annotated beforehand). In the
background the local alignment costs for all pairs of cells
are displayed. Also note the white areas in the upper left
and lower right corners, illustrating the constrained path
computation around the forward path.

system in the face of possible repetitions and to avoid ran-
dom jumps between identical parts in the score, we also
introduced automatically computed information about the
structure of the piece to be tracked. We chose to call our
new approach ‘Any-time Music Tracking’, as the system is
continuously ready to receive input and find out what the
performers are doing, and where they are in the piece.

Figure 2 visually demonstrates the capabilities of our
system. In this case 5 different performances of the Prelude
in G minor Op. 23 No. 5 by Sergei Rachmaninoff are
tracked that start not at the beginning, but 20 bars into the
piece. While the basic system finds the correct position
after a long timespan (basically by chance), our ‘any-time’
tracker almost instantly identifies the correct position.

While testing this real-time tracking system with com-
plex piano music played with a lot of expressive freedom in
terms of tempo changes, we realized the need for a tempo
model to improve the alignment accuracy and the robust-
ness of our system. In the following we propose two simple
tempo models, one only based on the analysis of the most
recent couple of seconds of the live performance (Section
4) and one having access to automatically extracted ad-
ditional knowledge about possible future tempo develop-
ments (Section 5). The result will be a robust real-time
tracker that is able to adapt to and even anticipate tempo
changes of the performer, thus leading to a significant in-
crease in alignment precision.
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Figure 2. ’Starting in the middle’: A visual comparison
of the capabilities of the tracker in [5] and the ‘any-time’
real-time tracking system described in [3]. 5 performances
of the g minor Prelude by Rachmaninoff, with bars 0-20
missing, are aligned to the score by both systems. For all
performances, the ‘any-time’ real-time tracker (a) almost
instantly identifies the correct position, while the old sys-
tem (b) finds the correct position by mere chance.

4. A (VERY) SIMPLE TEMPO MODEL

4.1 Computation of the Current Tempo

The computation of the current tempo of the performance
(relative to the score representation) is based on a con-
stantly updated backward path starting in the current po-
sition of the forward calculation. As the backward path, in
contrast to the forward path which has to make its decisions
on-line, has perfect information about the performance – at
least up to the current position in the performance –, it is
much more accurate and reliable than the forward path (see
also Figure 1).

Intuitively, the slope of such a backward path represents
the relative tempo differences between the score represen-
tation and the actual performance. Given a perfect align-
ment, the slope between the last two onsets would give a
very good estimation about the current tempo. But as the
correctness of the alignment of these last onsets generally
is quite uncertain, one has to discard the last few onsets
and use a larger window over more note onsets to come up
with a reliable tempo estimation.

In particular, our tempo computation algorithm uses a
method described in [6]. It is based on a rectified version of
the backward alignment path, where the path between note
onsets is discarded and the onsets (known from the score
representation) are instead linearly connected. In this way,
possible instabilities of the alignment path between onsets
(as, e.g., between the 2nd and 3rd onset in the lower left
corner in Fig.1) are smoothed away.

After computing this path, the n = 20 most recent note
onsets which lie at least 1 second in the past are selected,
and the local tempo for each onset is computed by consid-
ering the slope of the rectified path in a window with size 3
seconds centered on the onset. This results in a vector vt of
length n of relative tempo deviations from the score repre-
sentation. Finally, an estimate of the current relative tempo
t is computed using Eq.1, which emphasizes more recent
tempo developments while not discarding older tempo in-

formation completely, for robustness considerations.

t =

∑n
i=1(ti ∗ i)∑n

i=1 i
(1)

Of course, due to the simplicity of the procedure and
especially the fact that only information older than 1 sec-
ond is used, this tempo estimation can recognize tempo
changes only with some delay. However, the computation
is very fast, which is important for real-time applications,
and it proved very useful for the task we have in mind.

4.2 Feeding Tempo Information to the ODTW

Based on the observation that both the alignment preci-
sion and the robustness directly depend on the similarity
between the tempo of the performance and the score rep-
resentation, we now use the current tempo estimate to alter
the score representation on the fly, stretching or compress-
ing it to match the tempo of the performance as closely as
possible. This is done by altering the sequence of feature
vectors representing the score audio. The relative tempo is
directly used as the probability to compress or extend the
sequence by either adding new vectors or removing vec-
tors.

More precisely, after every incoming frame from the
live performance, and before the actual path computation,
the current relative tempo t is computed as given above,
where t = 1 means that the live performance and the score
representation currently are in the exact same tempo and
t > 1 means that the performance is faster than the score
representation. The current position in the score ps is given
by the forward path and thus coincides with the index of
the last processed frame of the score representation. If
a newly computed random number r between 0 and 1 is
larger than t (or 1

t if t > 1) an alteration step takes place.
If t > 1, a feature vector is removed from the score repre-
sentation by replacing ps+1 and ps+2 with a mean vector
of ps + 1 and ps + 2. And if t < 1, a new feature vector,
computed as the mean of ps and ps+1 is inserted next into
the sequence between ps and ps+1. As our system is based
on features emphasizing note onsets, score feature vectors
representing onsets (which are known from the score) are
not duplicated, as more (and wrong) onsets would be in-
troduced to the score representation. In such cases the al-
teration process is postponed until the next frame. Further-
more, to avoid that the system could get stuck at one frame,
alterations may take place at most 3 times in a row.

5. ‘LEARNING’ TEMPO DEVIATIONS FROM
DIFFERENT PERFORMERS

As will be shown later in Section 6, the introduction of this
very simple tempo model – simply using the current esti-
mated tempo to stretch/compress the reference score audio
– already leads to considerably improved tracking results.
But especially at phrase boundaries with huge changes in
tempo (e.g. a slow-down or a speed-up by a factor of 2
is not uncommon, see also Figure 3) the above-mentioned
delay in the recognition of tempo changes still results in
large alignment errors. Furthermore, such tempo changes
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Figure 3. Tempo curves (at the level of quarter notes) automatically extracted from 5 different commercial recordings of
the Prelude Op. 23 No. 5 by Rachmaninoff. Note especially the slow-down around beat 130 and the subsequent speed-up
around beat 190 and the generally big differences in timing between the performances.

are very hard to catch instantly, even with more reactive
tempo models. To cope with this problem we came up with
an automatic and very general way to provide the system
with information about possible ways in which a performer
might shape the tempo of the piece.

First we extract tempo curves from various different
performances (audio recordings) of the piece in question.
Again, as for the real-time tempo estimation, this is done
completely automatically using the method described in
[6] (see Section 4.1), but as the whole performance is known
beforehand and the tempo analysis can be done off-line
there is now no need for further smoothing of the tempo
computation. These tempo curves (see Figure 3) are di-
rectly imported into our real-time tracking system.

We use this additional information during the tracking
process to compute a tempo estimate based not only on
tracking information about the last couple of seconds, but
also on similarities to other known performances. More
precisely, as before, after every iteration of the path com-
putation algorithm the vector vt containing tempo infor-
mation at note onsets is updated based on the backward
path and the above-mentioned local tempo computation
method. But now the tempo curve of the live performance
over the last w = 50 onsets, again located at least 1 sec-
ond in the past, is compared to the previously stored tempo
curves at the same position. To do this all n tempo curves
are first normalized to represent the same mean tempo over
these w onsets as the live performance. The Euclidean dis-
tances between the curve of the live performance and the
stored curves are computed. These distances are inverted
and normalized to sum up to 1, thus now representing the
similarity to the tempo curve of the live performance.

Based on the stored tempo curves our system can now
estimate the tempo at the current position. As the current
position should be somewhere between the last aligned on-
set oj and the onset oj+1 to be aligned next, we compute
the current tempo t according to Formula 2, where ti,oj and
ti,oj+1 represent the (scaled) tempo information of curve i
at onset oj and oj+1 respectively, and si is the similarity

value of tempo curve i.

t =

∑n
i=1[(ti,oj + ti,oj+1)si]

2
(2)

Intuitively, the tempo is estimated as the mean of the tempo
estimates at these 2 onsets, which in turn are computed
as a weighted sum of the (scaled) tempi in the stored per-
formance curves, with each curve contributing according
to its local similarity to the current performance. Please
note that this approach somewhat differs from typical ways
of training a score follower to follow a particular perfor-
mance. We are not feeding the system with ‘rehearsal data’
by a particular musician, but with many different ways of
how to perform the piece in question, as the analyzed per-
formances may be by different performers and differ heav-
ily in their interpretation style. The system then decides
on-line at every iteration how to weigh the curves, effec-
tively selecting a mixture of the curves which represents
the current performance best.

6. EVALUATION

The precision of our system was thoroughly tested on vari-
ous pieces of music (see Table 1), with very well known
musicians like Vladimir Horowitz, Vladimir Ashkenazy
and Daniel Barenboim amongst the performers. While we
currently focus on classical piano music, to show the inde-
pendence of specific instruments we also tested our system
on an oboe sonata by Mozart and the 1st movement of the
5th symphony by Beethoven.

As for the evaluation reference alignments of the perfor-
mances are needed, Table 1 also indicates how the ground
truth data was prepared. For the performance excerpts of
the Ballade Op. 38 No. 1 by Chopin (CB) we have ac-
cess to very accurate data about every note onset (‘match-
files’), as these were recorded on a computer-monitored
grand piano. For the performances of the 3 movements of
Mozart’s Sonata KV279 (MS) the evaluation is based on
exact information about every beat time, which was manu-
ally compiled. The evaluation of the other pieces is based
on off-line alignments produced by our system, which gen-
erally are much more precise than on-line alignments. We
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ID Composer Piece Name Instruments # Perf. Eval. Type
BF Bach Fugue BMV847 Piano 7 Offline Align.
BS Beethoven 5th Symphony, 1st Movement Orchestra 5 Offline Align.
CB Chopin Ballade Op. 38 No. 1 (excerpt) Piano 22 Match
CW Chopin Waltz Op. 34 No. 1 Piano 8 Offline Align.
MO1 Mozart Oboe Quartet KV370 Mov. 1 Oboe, Violin, Viola, Cello 5 Offline Align.
MO3 Mozart Oboe Quartet KV370 Mov. 3 Oboe, Violin, Viola, Cello 5 Offline Align.
MS1 Mozart Sonata KV279 Mov. 1 Piano 5 Beats
MS2 Mozart Sonata KV279 Mov. 2 Piano 5 Beats
MS3 Mozart Sonata KV279 Mov. 3 Piano 5 Beats
RP Rachmaninoff Prelude Op. 23 No. 5 Piano 5 Offline Align.
SI Schubert Impromptu D935 No. 2 Piano 12 Offline Align.

Table 1. The data set used for the evaluation of our real-time tracking system.

are well aware that this information is not guaranteed to
be entirely accurate, but we manually checked the align-
ments for obvious errors and are quite confident that the re-
sults based on these alignments are reasonable, especially
as evaluations of CB and MS based on these alignments
led to very similar numbers compared to the evaluation on
the correct reference alignments.

For all pieces we used audio files synthesized from pub-
licly available ‘flat’ MIDI files with fixed tempo as score
representation, only the MIDI representing the Beethoven
Symphony contained sparse tempo annotations.

The evaluation took the form of a cross-validation. Ev-
ery performance in our data set (Table 1) was aligned with
3 algorithms: the system introduced in [5] with only mi-
nor changes and optimizations; the system including the
simple tempo model (Section 4); and the tempo model that
has access to a set of possible performance strategies (Sec-
tion 5). For the latter, all recordings pertaining to the given
piece were used except, of course, for the performance cur-
rently being aligned. The result, for each performance and
each algorithm, is a set of events with detection times in
milliseconds.

The evaluation itself was performed as proposed in [7].
For each event i the difference (offset ei) in milliseconds
to the reference alignment is computed. An event i is re-
ported as missing if it is aligned with ei > 250ms. This
percentage of notes thus misaligned (or, inversely, the per-
centage of correctly aligned notes) is the main performance
measure for a real-time music tracking system. Further
statistics, providing information about the alignment preci-
sion on those events that were correctly matched, and thus
computed on ei excluding missed events (eci), are the av-
erage error, defined as the mean over the absolute values
of all eci, the mean error, defined as the regular mean with-
out taking the absolute value, and the standard deviation of
eci. Finally two measures are computed which sum up the
overall performance of the system: the piecewise precision
rate (PP) as the average of the percentage of correctly de-
tected events for each group of performances (see Table 1)
and the overall precision rate (OP) on the whole database.

Table 2 summarizes the results. Clearly, both tempo
models lead to large improvements in tracking accuracy
for pieces played with a lot of expressive freedom, espe-

cially for the Schubert Impromptu (SI), the Rachmaninov
Prelude (RP) and the Chopin Waltz (CW), for which the
number of missed notes is more than halved. Nonetheless
these kinds of music still pose a great challenge to real-
time tracking systems. As the results for the Beethoven
Symphony (BS) show, our system can also cope quite well
with orchestral music and does not depend on specific in-
struments. This is also supported by the results on the
Oboe Quartet (MO).

As was to be expected, the results for pieces with less
extreme tempo deviations were improved to a much smaller
extent. Further investigation showed that as intended, the
‘learned’ tempo curves guided the alignment path more ac-
curately and more reactively during huge tempo changes
(i.e., at phrase boundaries).

Unfortunately it is not easy to make comparisons be-
tween different approaches in the literature, as the focus
on a particular kind of music (e.g. contemporary vs. ro-
mantic piano music or monophonic vs. heavily polyphonic
music) and the area of application (e.g. automatic accom-
paniment vs. visualization of music) have a huge influence
on the design of the system. That makes it hard to com-
pile a well-balanced ground truth database suitable for all
systems.

With this in mind, and the fact that most of our results
are currently only computed relative to off-line alignments
as ground truth, we merely want to point out some obser-
vations. First there is an overlap between our data set and
the one used for the evaluation of ‘Antescofo’ [2], which
was already used professionally in a number of live per-
formances. Using the same evaluation metrics, our sys-
tem performed significantly better (1.9% vs. 9.33% missed
notes) on the Fugue by Bach (BF). Of course the result for
‘Antescofo’ is based on only 1 single performance, which
may not even be in our data set. Furthermore, we are
quite sure that our system will perform significantly worse
than ‘Antescofo’ on sparse monophonic data, as we do not
explicitly detect note onsets and our forward path tends
to ‘randomly’ wander around during long pauses between
note onsets. Also, we allow our system to report notes
early while ‘Antescofo’ is purely reactive, thus effectively
giving our system twice as large a window to report onsets
‘correctly’. While for the task of automatic accompani-
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No Tempo Model Simple Tempo Model ‘Learned’ Tempo Model
Offset (ms) % Offset (ms) % Offset (ms) %

ID Avg. Mean STD Miss Avg. Mean STD Miss Avg. Mean STD Miss
BF 52.1 -15.3 70.4 2.7% 41.7 0.1 61.3 2.2% 41.3 -0.3 59.3 1.9%
BS 84.1 4.3 106.5 15.9% 79.0 -11.6 100.8 15.0% 78.3 -6.4 100.3 13.9%
CB 63.1 16.6 83.7 10.9% 62.4 8.6 83.8 10.0% 63.1 3.9 85.2 9.9%
CW 86.3 -24.6 107.1 27.6% 78.7 -23.2 99.2 16.3% 75.4 -20.2 95.7 11.9%
MO1 94.8 -75.7 89.1 15.0% 70.1 -22.8 90.0 7.0% 72.1 -30.5 89.9 6.9%
MO3 99.9 -84.5 85.3 18.4% 64.3 -18.0 84.0 7.9% 65.7 -16.9 85.8 7.0%
MS1 47.4 13.8 64.5 3.6% 44.9 9.7 62.5 3.3% 42.7 10.1 59.5 3.2%
MS2 85.6 -21.3 104.8 19.8% 71.8 -4.7 93.7 13.8% 73.3 -6.4 94.5 11.3%
MS3 44.1 28.7 58.4 3.9% 40.2 6.7 59.5 3.3% 39.5 9.9 58.5 2.1%
RP 79.8 -18.7 102.0 31.8% 75.5 -10.5 96.8 17.1% 70.9 -10.6 93.2 14.8%
SI 107.3 -59.2 113.9 41.8% 77.9 -32.8 95.2 23.6% 78.7 -33.1 95.7 20.1%
OP 83.2% 89.7% 91.1%
PP 81.1% 87.9% 91.4%

Table 2. Real-time alignment results for all 3 evaluated systems (see text).

ment notes reported early are very bothersome, we think
that for the task of real-time music visualization, which is
our current focus, this is more tolerable.

Unfortunately, we could not find a comparable evalu-
ation of ‘Music Plus One’ [1], which, like our system,
focuses on classical music. However, a number of live
demonstrations and available videos suggest that the sys-
tem works very well in real-time accompaniment settings,
not only reacting to tempo changes, but actually predicting
them quite well.

That said, our real-time tracking system combines com-
petitive alignment results with a unique feature not found
in the above-mentioned systems: the ability to cope with
arbitrary jumps of the performer(s) on-line by continuously
tracking the performance at a coarser level and refining hy-
potheses about the current score position (see Section 3).
This not only allows to, e.g., automatically cope with arbi-
trary rehearsal situations, where the musician(s) may keep
repeating parts of the piece over and over, but effectively
makes it impossible for the system to get lost. (Detailed
experimental proof of that can be found in [3].)

7. CONCLUSION AND FUTURE WORK

We have presented a new approach to the incorporation
of tempo information into a very robust real-time track-
ing system that is capable of dealing on-line with almost
arbitrary structural deviations from the score. We demon-
strated two ways to compute a tempo estimate, one only
based on the alignment of the last couple of seconds of the
performance, and one additionally based on a collection of
previously extracted possible timing patterns, thus giving
the system the means to anticipate tempo changes of the
performer. The system was evaluated on a range of pieces
from Western classical music. Both tempo models lead
to significantly improved alignment results, especially for
pieces played with a lot of expressive freedom.

An important direction for future work is the introduc-
tion of explicit event detection into our system, based on

both an estimation of the timing and an analysis of the in-
coming audio frames. Furthermore we should think about
ways to use the extracted tempo information to further im-
prove the high level ‘any-time’ tracking process (not de-
scribed in this paper – see [3]).
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ABSTRACT

In this paper we describe a method to detect patterns in
dance movements. Such patterns can be used in the context
of interactive dance systems to allow dancers to influence
computational systems with their body movements. For
the detection of motion patterns, dynamic time warping
is used to compute the distance between two given move-
ments. A custom threshold clustering algorithm is used for
subsequent unsupervised classification of movements. For
the evaluation of the presented method, a wearable sensor
system was built. To quantify the accuracy of the classifica-
tion, a custom label space mapping was designed to allow
comparison of sequences with disparate label sets.

1. INTRODUCTION

Detecting patterns in movements is useful in a number
of scenarios. Here, the focus is on dance movements in
particular and their application in the area of interactive
dance. In interactive dance human movements influence
a computational system and motion patterns provide an
additional capability in this process.

Interactive dance applications can mostly be found in the
areas of art, gaming and clubs. For artistic purposes interac-
tive dance is primarily used in installations, performance art
and contemporary dance. Often dancers are given a certain
level of control over the audio playing or the stage lighting.
Dance is also used for generative art pieces to control a
visualization. Video games, using interactive dance, mostly
are interested in rhythmic patterns and how well a player
adheres to a given step sequence.

The target scenario for this paper is the usage of inter-
active dance in a club setting. One open question in that
context is how to enable more audience interaction and in-
teractive dance is one possible way to do so. In this way it
can provide an additional tool to DJs, VJs or other stake-
holders in the overall experience. User studies with DJs
and VJs have shown that they primarily assess a crowd’s
level of excitement and involvement using visual cues [1, 2].
Technological means to help with this assessment were gen-
erally viewed critically with participants fearing a loss of
artistic freedom.
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Recognizing dance patterns can serve two roles in this
scenario. Such systems could, e.g., be used to gather in-
formation about dancers to provide an additional layer of
information to DJs and VJs. A more interesting use how-
ever, is the possibility to outfit members of a DJ or VJ
team with this technology. While being able to immerse
themselves in the crowd they would still retain a level of
control over the artistic process via their own movements.
Pre-defined mappings or live mapping by a partner can be
used to translate such movements to the desired auditive and
visual output. Where other systems, e.g., provide continu-
ous value activity measures, pattern information provides
information in a discrete label space. Thus, pattern informa-
tion can provide an additional informational layer to work
with.

Interactive dance in a dance club context was explored
by Ulyate and Bianciardi at the 1998 ACM SIGGRAPH
convention, where they tested a number of prototypes [3].
They found that those devices that allowed for more free-
dom of movement, were yielding more satisfying dance
interactions than devices such as buttons or pads. They also
devised the role of an “experience jockey”, who controls
the overall experience and changes mappings according to
the current situation.

Also interested in dance club interactions, Feldmeier
did a user study on their viability and quality [4]. Several
user tests on groups of up to 200 participants were done
and showed an overall positive user response to the system.
Participants enjoyed the experience itself and felt that the
music and lighting adapted well to their motions.

2. RELATED WORK

This section discusses sensor options for capturing dance
movements and algorithms that have used to analyze dance
movement.

2.1 Sensors for Interactive Dance

There are a number of different approaches to make dance
movements available to the computer.

2.1.1 Sensing floors

Sensing floors have been used to detect foot steps. Sensing
floor systems vary with respect to resolution, modularity,
size and response time. One of the first sensing floor system
Johnstone’s PodoBoard [5]. To use the system, metal plates
had to be placed on the shoes of the users. Furthermore,
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a pressure sensor was used to estimate the velocity of the
shoe when touching the board. The Magic Carpet system
was made of a grid of wires that were insulated with a piezo-
electric material [6]. Furthermore, two doppler radars were
present in the MagicCarpet system to detect upper body
movement. The LiteFoot system detects lower body move-
ments based on optical sensors, which are placed below
the translucent floor [7]. The Z-Tiles is uses piezoelectric
sensing to sense foot steps [8]. Similar to the LiteFoot, the
Z-Tiles is assembled from modular plates that can be freely
combined. Srinivasan et al. built a modular system based
on pressure sensitive polymers [9].

2.1.2 Sensing Shoes

Paradiso & Hu built a sensing shoe that allowed to measure
the pressure exerted by the toes and the heel with piezo-
electric pads, the bending of the shoe with a force-sensitive
strip, and the movements with inertial sensors [10]. The
Shadow Dancer system was based on a stet dancing shoe
equipped with pressure sensors at the tip and the heel [11].
Fujimoto et al. used a three-axis accelerometer to the tip of
each shoe [12].

2.1.3 Camera-Based Systems

Bevilacqua et al. used a marker-based motion capture sys-
tem to track the movements of dancers [13]. Castellano et
al. analyzed the camera signals with the EyesWeb platform
to determine the quantity of motion and the amount of space
a dancer occupies [14]. Ng uses a camera to track dancers
that wear color-coded costumes [15]. Guedes uses video
data to detect the frequency spectrum of dancing move-
ments [16]. For this purpose, the difference of luminance
between two sequential frames is computed and input into
an array of 150 band pass filters.

2.1.4 Wearable Sensors

Various sensing technologies have been used to build wear-
able sensors to record dance movements: Hromin et al. used
accelerometers, flex sensors, temerature sensors, photore-
sistors and pressure sensors among others [17]. Aylward
& Paradiso used inertial sensing [18]. El-Nasr & Vasilakos
use a special armband that measures heat flux, skin temper-
ature, near body temperature and galvanic skin response
and heart rate [19]. Based on that data, the dancer’s arousal
state is estimated.

An important aspect of a wearable sensor system that
is used to record dance movements is the communication
protocol to transmit the data to the computer. Hromin et al.
use Bluetooth [17] and Aylward & Paradiso developed their
own wireless protocol [18]. The mentioned approaches
have the advantage that they are power efficient, which
helps to increase the uptime that can be achieved without
changing batteries. The WiSe Box transmits the sensor
data via WiFi [20]. The sensor values are packed in OSC
messages before transmission.

2.2 Recognition Algorithms

Detecting patterns in motions or working with motions in
general requires a way to detect similarities in motions.

Algorithms doing so roughly fall into two categories:

Temporal Feature Classification Compare two motion se-
quences directly or using a set of descriptors

Non-Temporal Feature Classification Transform the data
into a different space before further processing

With a way to determine similarities available, classification
could be done via methods such as support vector machines
(SVM), neural networks or the k-nearest neighbors (k-NN)
algorithm.

2.3 Temporal Feature Classification

Gutknecht et al. used hidden markov machines (HMM)
for Butoh, a form of experimental dance [21]. Setting
out to classify movements, they designed a discreet three-
dimensional motion space (intensity, form and flow) yield-
ing a total of 64 motion categories. Dancers are equipped
with three-axis accelerometers at the wrist, upper arm and
upper leg, whose readings are relayed via Bluetooth. For
classification, the values in a two second long sliding win-
dow are transformed into a sequence of features. On those
features three HMMs (one for each dimension) are used
to determine the most likely motion state sequence. The
final motion state decision for the block is done using a
majority vote. Gutknecht et al. furthermore designed a
mapping from the motion space to a custom emotion space
and subsequently derived a visualization from the detected
emotional state.

Another method, somewhat similar to HMMs is dynamic
time warping (DTW). The general idea is to compute the
similarity of two given sequences that may differ in the
temporal domain.

Tang et al. developed an algorithm to find repetitive
patterns in motion capture data of dances [22]. 35 mark-
ers are tracked on a participant and the resulting posture
data is normalized. From the resulting motion sequence a
similarity matrix is derived. Postures in two frames are sim-
ilar if the sum of the point by point euclidean distances is
low. Repetitive motions can now be deducted from the sim-
ilarity matrix, where diagonal patterns of similarity denote
sequences, equally changing over time. Tracing patterns
in the binarized similarity matrix in some respects is thus
equal to similar image processing problems. Tang et al. use
DTW to find such traces. Finally, using auto-clustering,
patterns are classified as either cyclic or acyclic and an
estimate of the cycle period is computed.

Fujimoto et al. used DTW to match foot movements to
pre-recorded motion data [23]. Dancers perform their steps
on top of a background track of constant rhythm. Based
on the recognized dance steps, sounds are generated to go
along with that background track.

DTW was also used by Bettens and Todoroff, who set out
to detect gestures in a continuous sensor data stream [24].
For this purpose two sensors (three-axis accelerometer and
two-axis gyroscope) are placed on both ankles of a dancing
viola player. When performing, the downsampled sensor
values are matched against a database of pre-recorded ges-
tures. However, no segmentation of the live signal is tried.
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Figure 1. One of the used sensor nodes

The signal is matched against the database at a number of
different offsets instead.

2.4 Non-Temporal Feature Classification

Peng et al. built a system using two orthogonal cameras
[25]. Based on training data, synthesized views are gener-
ated and used to build a tensor. During runtime the video
data is similarly transformed into a corresponding tensor.
Tensors are decomposed using higher order singular value
decomposition, and used to approximate a view-invariant
pose coefficient vector. With the coefficient vectors of the
training set several classifiers were trained and subsequently
evaluated. In their tests support vector machine (SVM)
classifiers outranked fixed-threshold and von Mises-Fisher
recognizers with recognition rates around 85% and a false
detection rate of about 5%.

Nevada and Leman developed a method that is able to
detect periodic movements in samba dance [26]. Two pro-
fessional samba dancers were recorded on video, which
was manually processed to derive a set of feature vectors.
A periodicity transform [27] is used to find movements cor-
relating with the musical meter. Thus, the proportion of
periodicities in the signal is determined (independently for
both dimensions). While no classification of gestures was
performed, they noted that their approach could provide a
useful methodology for dance analysis, with the periodici-
ties potentially being used as classification features.

3. DANCESTIX

The Dancestix is a wearable sensor system that we devel-
oped and custom-built to record dance movements. The
requirements for the Dancestix were:

• Measurement accuracy (R1),

• Usability in a dance club (R2), and

• Wearing comfort (R3).

The Dancestix consists of several inertial sensor nodes, a
Gumstix embedded Linux system, and an interface board.

3.1 Inertial sensor nodes

The inertial nodes provide measurements of 3D linear accel-
eration and 3D angular velocity. The 3-axis accelerometer
ADXL330 by Analog Devices was used to measure linear
acceleration. Angular velocities were measured with the

Figure 2. The interface board and the Gumstix

2-axis gyroscope IDG-300 by InvenSense and the single-
axis gyroscope ADXRS300 by Analog Devices. The mea-
surements were performed at a resolution of 10 bit and a
sampling rate of 100 Hz. The ADXL330 provides a mea-
surement range of±3g, the IDG-300 provides±500◦/s and
the ADXRS300 provides ±300◦/s. The sensor nodes send
the data to the interface board over CAN (Controller-area
network). We built four of said sensor nodes. A sensor
was worn around the hip, on the right upper arm, on the
right forearm and on the right thigh. Further details on the
inertial sensor nodes can be found in [28].

3.2 Interface board and Gumstix

The interface board connects the sensor nodes to the Gum-
stix embedded Linux system (a Verdex Pro XM4 mainboard
with console-vx and netpro-vx expansions). The interface
board communicates with the sensors over CAN and trans-
mits the sensor data to the Gumstix over a serial interface
(RS232). Furthermore, the interface board acts as a central
power supply for the inertial sensor nodes and the Gum-
stix. Wi-Fi is used for communication of the data from the
Gumstix to a host computer.

3.3 Discussion

Because of the wired connection between the sensor nodes
and the interface board, a local power supply at each sensor
node is unnecessary. This helps to reduce the weight of the
sensor nodes, which is beneficial for measurement accuracy
(R1) as independent motion of the sensor because of its
inertia is minimized. Furthermore, the reduced weight and
size are beneficial for wearing comfort (R3). The disad-
vantage of wires running along the dancer’s body could
be eliminated by integrating the wires and sensors into a
special clothing.

Bluetooth and ZigBee were among the options that were
considered for wireless transmission of the sensor data to
a host computer. Bluetooth and ZigBee have the advan-
tage that they consume significantly less power than Wi-Fi,
which would maximize battery lifetime. However, Blue-
tooth and ZigBee are intended for wireless personal area
networks (WPAN) with operating spaces of typically 10 m
[29], which would be too little to be usable in a dance
club (R2). Furthermore, the number of sensor-equipped
dancers would be too limited if Bluetooth or ZigBee were
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used. Bluetooth allows only seven slaves per master and
ZigBee has a communication bandwidth of only 250 kb/s
while a single Dancestix produces 24kb/s of data (4 sensors,
6 DoF/sensor, 100 samples/s, 10 bit/sample).

4. DANCE PATTERN RECOGNITION

When searching for patterns we are doing so on the measure
level. While not all patterns in all forms of dance conform
to this division, it is an appropriate choice for the target
scenario. According to this choice, the dance data is to be
split into blocks, each corresponding to one measure.

Segmenting motion data into measures is not an easy
task though. While some approaches exist to perform beat
detection on motion data, e.g., the work by Enke [30], de-
tecting beats in audio tracks is far more accurate. We used
BeatRoot by Dixon [31] to compute the beat timestamps for
the audio track beforehand. As the audio is in 4/4 format,
four beats are automatically grouped to form one measure.
The resulting blocks of motion data are multi-dimensional
sequences of samples. The set of all blocks is denoted as B.

4.1 Block Similarities

Finding reoccurring patterns ultimately is a problem of find-
ing similar blocks. If the difference between two blocks is
sufficiently small, chances are the movement in the second
one is a reiteration of the first one. There are two problems
at hand: how to determine the similarity of two blocks and
what threshold to use when grouping them together. While
the second problem requires some evaluation and is detailed
later on, the first shall be described in this section.

We determine block similarities via the DTW algorithm
[32]. In DTW, a mapping from an input sequence to a given
sequence is found that minimizes the distance between them
(using the euclidian distance metric for sequence element
distances). The sequences do not need to be of equal length,
as DTW corrects for differences in speed, but need to be
of the same dimensionality. Running the DTW algorithm
on two sequences yields two measures: a distance between
those two sequences, and a so-called warp path that de-
scribes the best possible alignment of the two sequences.
The best possible alignment is that alignment, which mini-
mizes the overall distance between the two sequences.

To speed up the DTW computations one can use con-
straints to limit the amount of calculations needed. We
used FastDTW by Salvador and Chan [33] instead of a
basic DTW. This algorithm reduces DTW complexity by
iteratively computing the DTW for a coarser resolution, pro-
jecting it to a finer one and refining it. Using that multilevel
approach, FastDTW works in O

(
n
)
, similar to constrained

versions of DTW. Due to the nature of the algorithm a cer-
tain level of error is induced. This is primarily dependent
on the radius used. Analysis by Salvador and Chan showed,
that for higher radii the error converges to 0. Furthermore,
this convergence is significantly faster than in constraint
based DTW implementations. An analysis of appropriate
FastDTW radii for the movement data used here, is given in
Section 6.

4.2 Classification

With a way to compute block similarities, further process-
ing steps have to be taken to classify blocks into distinct
groups. As no a priori knowledge on possible patterns is
assumed, for maximal flexibility during live performances,
classification is unsupervised and solely depends on statis-
tical information. Furthermore, classification should work
in real-time on streams of incoming motion data blocks.
Unfortunately, having no set of labels given and the require-
ment to assign new labels to blocks as they come in, im-
poses severe restrictions on the classification. For example,
a simple k-NN clustering would not work, as the number of
desired clusters k is not known. Changing assigned labels
later on is also undesirable, as such a change could confuse
label consumers. For example, VJs using class information
should be able to rely on consistent labels when using them
to enrich their work. Thus, algorithms determining clusters
by reexamining the classes for all available data from the
set do not work. An algorithm is needed that preserves
previous class assignments and classifies new blocks based
on previous classification choices.

We used a threshold clustering approach for this purpose
that assigns class labels on-the-fly and unsupervised. As-
signed class labels are immutable as required above. In this
approach, an input stream of motion data blocks shall be
modeled as a sequence S, with

S = (s1, s2, s3, . . .) with sn ∈ B. (1)

Clusters of blocks are modeled as sets C and represent
blocks that were grouped together. All clusters are stored
in sequence L, where a cluster’s index in this sequence also
serves as class label.

For the first incoming block S(1), there is no decision
to be made. It is the foundation for a first cluster, thus
resulting in

L = ({S (1)}) . (2)

For subsequent blocks, the best matching preexisting
cluster has to be determined. This assumes a distance func-
tion dist is defined, which for the purposes of this paper
will be the DTW algorithm. In addition to that function, a
threshold t has to be provided as well. The distance from
a new block S(i) to an already found cluster C in L, is
defined as the average distance to C’s members.

clusterDistance (S(i), C) =
1

|C|
∑
c∈C

dist (S (i) , c) (3)

The best match of a new block is hence given as the cluster
with the smallest distance to, from all available clusters.

bestMatch (S (i) , L) = argmin{
clusterDistance (S (i) , Ln) : 1 ≤ n ≤ |L| (4)

}

Based on the given threshold t, new blocks are either
assigned to the best matching cluster or not. If the distance
from the block to its best matching cluster is lower than t it
is considered to belong to it. If that is not the case, a new
cluster is created based on that block.
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The threshold has to be chosen carefully for good results.
If it is set too low, all blocks are considered unrelated and
are assigned their own class. Conversely, a threshold value
that is too high, leads to undesired mashing of blocks that
should have been distinguished. The threshold value is
dependent on the moves used and the features chosen. In
Section 6, results for different threshold values are shown
in detail.

5. EVALUATION METHOD

The proposed algorithm was evaluated in a user study with
four participants. A remix of Lady Gaga’s song “Just Dance”
was used in this study. At 119 bpm it is moderately fast and
fits into the desired target scenario. The length of 4:54 min
(which corresponds to 145 measures) is long enough to
allow for several different dance patterns to be tested in a
realistic setting. With a prominent bass drum track it also
allows for accurate beat detection and makes it easy for
participants to stay on time.

Six different dance movements were defined and assem-
bled into a choreography for the study:

A. Side steps with no arm movement

B. Rock steps sideways without arm movement

C. Rock steps sideways with arm movement

D. Side steps with arm movement

E. Side steps with arms up in the air

F. Standing still with head bopping

There are two distinct foot movements combined with three
possible arm movements. In addition, there is a resting
pose, used in three short intermissions present in the song.
The movements were chosen as to allow participants to take
part in the evaluation without lengthy training and for their
good fit to a club setting. More complex movements were
deemed too difficult for non-professional dancers in an ad
hoc evaluation session.

Before starting a recording session, all participants were
instructed on the testing procedure. The dance moves to
be performed were explained to them beforehand as well.
While recording, additional help was provided in the form
of oral notification of upcoming transitions and movement
instructions.

5.1 Classification Quality Rating

Running the proposed algorithm on the recorded dance data
yields a sequence of class labels. The choreography given
to the participants also defines a sequence of classes. When
rating the classification quality the matching between those
two sequences has to be determined. As the classifier labels
blocks without a priori label information the set of labels
used in both sequences will be disparate. Hence, a best fit
label space mapping algorithm was used to align the label
sequences.

Given are two label sequences A and B with correspond-
ing label spaces A and B:

A = (a1, a2, a3, . . .) an ∈ A
B = (b1, b2, b3, . . .) bn ∈ B (5)

To compare A and B we need a function that maps A to
B. This function should be injective as to not allow multi
mappings to the same label:

f : A → B
f(a1) = f(a2)⇒ a1 = a2 (6)

To find this mapping a cost matrix C is used. This matrix
of size |A| × |B| is initialized to the zero matrix. Now both
label sequences are traversed and the cost matrix is updated
accordingly:

Ci = Ci−1 +Di

Di
x,y =


1 if ai = Ax ∧ bi = By
0 if ai 6= Ax

−1 if ai = Ax ∧ bi 6= By
(7)

In the final cost matrix higher values indicate good fits.
The mapping can then be extracted by reducing the matrix.
Before doing so, however, the matrix is normalized with
the corresponding class frequencies.

In each reduction step that mapping is found in the ma-
trix, which has the best fit. This is denoted by the highest
cell value in the cost matrix. The row and column of said
mapping are then eliminated from the matrix. This process
continues while there are still open classes to be mapped
from and mapped to.

After this reduction a mapping from one label set to
the other is found. For sets differing in size, some classes
will not map to another one or will not be mapped to. The
quality of the results from a classification can thus now be
quantified via simple equality testing.

6. RESULTS

Based on the recorded motion data from several participants,
the performance of the DTW algorithm was evaluated. Sev-
eral aspects are of interest at this point:

• How well can distinct movements be distinguished?

• What is the influence of parameter choices?

• How strong is the influence of the sequence length?

The error rate is sometimes deceiving. Consider an
algorithm that assigns a new label to each block. As the
identifier mapping (see Section 5.1) tries to find the best
fit, some blocks are still seen as correct. Specifically, an
amount of blocks equal to the number of distinct classes
in the given sequence is considered correct. Applying that
logic to a sequence of 20 blocks with four distinct given
classes, 20% would be seen as correctly classified even
though no blocks were grouped. For longer sequences, this
problem becomes less of an issue, as long as the number of
distinct given classes does not increase correspondingly.
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Figure 3. Comparing cost and error rate of different Fast-
DTW radius choices.
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Figure 4. Comparison of error rate when detecting differ-
ences between pairs of movement.

The other extreme is a classification that assigns all
blocks to the same class. The identifier mapping will con-
nect that class with the given class of the highest frequency.
To put this in perspective, consider a 20 block sequence
with one 10 block spanning class and two classes spanning
5 blocks. A recognized sequence of only one class would
map to the 10 block long given sequence. Thus, 50% of
the data is considered as correctly classified. This prob-
lem becomes less of an issue when the number of distinct
given classes goes up or given classes are more uniformly
distributed.

6.1 Dynamic Time Warping Radius

In a first step, appropriate radii for use with DTW were
determined. As mentioned in Section 4.1, this value in-
fluences the computational cost and accuracy of the DTW
algorithm. A multitude of DTW radii were tested on a
full dance recording (145 blocks), with results shown in
Figure 3. As can be seen any radius higher than 3 does
not result in less errors. The computational cost increases
significantly, though. Based on this result, a DTW radius of
4 was chosen for all subsequent DTW calculations.

6.2 Pairwise Motion Comparison

To determine the suitability of DTW, it was tested on a
sequence of two different motion patterns. Sixteen blocks
from a recorded session were used, spanning about 32 sec-
onds in time. Each motion in the pair to be tested spans half
of those blocks. As can be seen in Figure 4, our method was
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Figure 5. Classification results for several subsequences of
sensor data. The width of each bar denotes the data range
being used.
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Figure 6. Comparing classification results from multiple
participants.

able to correctly differentiate between motion pairs. Note
that there is a range of threshold values being appropriate
and some pairs are easier to differentiate than others.

6.3 Influence of Sequence Length

The length of a sequence has an influence on the classifica-
tion accuracy. One aspect is that over time, slight changes
to a dance move are more likely to occur. While it is com-
paratively easy to perform the same move for 20 seconds,
it is harder to repeat the same move after 2 minutes have
passed. Thus, one would expect that a classification of
shorter time spans contains less errors. To test this, one
recording was analyzed in various windows. Looking at
the results in Figure 5, a certain increase in overall error is
apparent. While analyzing sequences of 15 block length,
the maximum error was below 20%, the overall error in a
classification of the whole sequence was at slightly over
30%. The data also shows peaks in error rate in later parts
of the recorded sequence. Some of that can be attributed to
the sensor straps loosening and required fastening motions.
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6.4 Comparison of Several Recordings

Figures 6 shows how well the DTW approach was able to
classify recordings from four participants. As can be seen,
some participant’s motions were more easily discernable
than other’s. Also, each participants seems to have a sepa-
rate best performing threshold. However, all curves exhibit
somewhat similar behavior over the threshold range.

6.5 Comparison of Error Rate by Dance Move

While an overall error measure provides a general perfor-
mance estimate, determining the error per dance move helps
with a more in-depth understanding. Figure 7 shows such
data for all participants. The variance in error rate is deceiv-
ing to some extent, as the different recordings have different
base error rates. Thus, the relative error rates are the most
interesting aspect here. Looking at the data, classes 2 and 6
seem to be an issue. Those two coincidentally are also the
two classes with the least amount of motion being required
for them. On the other hand, more vivid movements were
detected comparatively well.

6.6 Threshold Choice

In most previous comparisons the error rate was given as
a function of the threshold being used. It could also be
seen in Section 6.4 how the chosen threshold varies with

each participant and performs best at different ranges. In
Figure 8, a comparison of the best performing thresholds is
shown. As can be seen, the range of appropriate thresholds
is roughly contained in the [0.5, 0.8] interval.

7. CONCLUSION

As shown in Section 6, DTW based classification is able
to correctly distinguish two given motions in one sequence.
Working with data from real dance recordings, error rates of
about 20-30% have been achieved. The results indicate that
some movements were harder to distinguish than others.
Especially movements eliciting low sensor responses were
problematic. However, more pronounced movements were
recognized much better.
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“SYSSOMO: A Pedagogical Tool for Analyzing Move-
ment Variants Between Different Pianists,” in 5th In-
ternational Conference on Enactive Interfaces, (Pisa,
Italy), Edizione ETS, 2008.

[29] J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A Comparative
Study of Wireless Protocols: Bluetooth, UWB, ZigBee,
and Wi-Fi,” IECON 2007 - 33rd Annual Conference of
the IEEE Industrial Electronics Society, 2007.

[30] U. Enke, DanSense: Rhythmic Analysis of Dance
Movements Using Acceleration-Onset Times. Master
thesis, RWTH Aachen University, 2006.

[31] S. Dixon, “Evaluation of the Audio Beat Tracking Sys-
tem BeatRoot,” Journal of New Music Research, vol. 36,
2007.

[32] H. Sakoe and S. Chiba, “Dynamic Programming Al-
gorithm Optimization for Spoken Word Recognition,”
IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 26, no. 1, 1978.

[33] S. Salvador and P. Chan, “FastDTW: Toward Accurate
Dynamic Time Warping in Linear Time and Space,” in
KDD Workshop on Mining Temporal and Sequential
Data, (Seattle, WA), 2004.

190



Analysis and automatic annotation of singer’s postures during concert and
rehearsal

Maarten Grachten Michiel Demey Dirk Moelants
Institute of Psychoacoustics and Electronic Music (IPEM)

Department of Musicology – Ghent University
Ghent, Belgium

http://www.ipem.ugent.be

Marc Leman

ABSTRACT

Bodily movement of music performers is widely acknowl-
edged to be a means of communication with the audience.
For singers, where the necessity of movement for sound
production is limited, postures, i.e. static positions of the
body, may be relevant in addition to actual movements. In
this study, we present the results of an analysis of a singer’s
postures, focusing on differences in postures between a
dress rehearsal without audience and a concert with au-
dience. We provide an analysis based on manual anno-
tation of postures and propose and evaluate methods for
automatic annotation of postures based on motion sensing
data, showing that automatic annotation is a viable alter-
native to manual annotation. Results furthermore suggest
that the presence of an audience leads the singer to use
more ‘open’ postures, and differentiate more between dif-
ferent postures. Also, speed differences of transitions from
one posture to another are more pronounced in concert than
during rehearsal.

1. INTRODUCTION AND RELATED WORK

The performance of music is naturally accompanied by
corporal gestures of the performing musician. The form
and roles of these gestures in music performance appear
to be heterogeneous and have led to considerable inves-
tigation [1, 2, 3]. A distinction has been made between
four categories of gestures: (a) sound-producing gestures,
necessary to create sound; (b) communicative gestures be-
tween musicians or between the musician and the audi-
ence; (c) sound-facilitating gestures, which accompany the
first category; and (d) sound accompanying gestures like
dancing, that are generally not produced by the musician
himself [4, 5]. In singing performance sound-producing
gestures are very limited, the actual sound is produced in-
side the body and the only visually perceivable elements
are the articulation of the mouth and possibly the breath-
ing. Sound-facilitating gestures are equally limited and
restricted to posture changes that facilitate singing in e.g.
high or low registers. Most of the gestures perceived in
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singing performance can therefore be attributed to com-
munication, and more specifically to communication with
the audience. It can be shown through subtle gestures like
facial expressions, but is most obvious in the movements
of hand and arms and to a lesser extend the head and the
upper body. These gestures may for example reflect the
temporal structure of the piece, convey the mood of the
piece, or underline the meaning or importance of certain
words or phrases. Therefore the study of gestural aspects
of singing performance can give us information on struc-
tural elements of the music, as well as on expression and
communication.

Many studies on perceived expressivity in musician’s
gestures exist, based on direct measurements as well as on
observations (for an overview see [5]), however these stud-
ies almost entirely deal with instrumentalists. Despite the
importance of gestural communication in singing perfor-
mance, studies on this topic are scarce. If we want to study
gestural communication between a singer and the public,
we can compare a performance in a dress rehearsal and in
the actual concert. The performance during the dress re-
hearsal is supposed to be technically and interpretatively
mature and will be performed in the same setting and the
same order as the concert. The one aspect that is clearly
different is the presence of a public. In general performing
musicians acknowledge that the interaction with the pub-
lic affects their performance, but very little is known about
what is actually changing and how. Intuitively one could
say that musical elements like the timing and dynamics
change, but also the gestural communication is changing,
using different movements, facial expressions or eye con-
tact. By using multi-modal measurements (audio, video,
movement sensors) and the development of new analytical
techniques, we can quantify different aspects of the per-
formance and thus develop a set of parameters that can be
used to compare performances, in casu to detect the differ-
ences between a rehearsal and a concert performance.

This paper focuses on a singer’s postures and the transi-
tions between them. Techniques that allow automatic clas-
sification of a set of typical postures are presented and ap-
plied to the comparison of the recordings from the dress
rehearsal and the concert.

2. DATA

A dress rehearsal and a concert by singer Chia-Fen Wu and
viola da gamba player Dirk Moelants were recorded. The

191

http://www.ipem.ugent.be


Index Composer Piece
01 Giulio Caccini Dolcissimo Sospiri
02 Giulio Caccini Movetevi a pieta
03 Barbara Strozzi Moralit amorosa
04 Barbara Strozzi Non occore
05 Richard Sumarte Daphne
06 John Dowland Come Again
07 John Dowland Flow my tears
08 Robert Johnson Hark, hark, the lark
09 Tobias Hume Tobacco
10 Thomas Morley It was a lover and his lass
11 Richard Sumarte What if a day
12 Richard Sumarte Whoope doe me no harme
13 Henry Purcell How sweet it is to love
14 Henry Purcell Music for a while
15 Henry Purcell If music be the food of love
16 Teng Yu-Hsien Bang Chun Hong
17 Yang San-Lang Go Luan Hue
18 traditional Chinese Ye Lai Shiang

Table 1. Overview of the concert program analyzed in this
paper. The pieces will henceforth be referred to by the
numbers on the left

program is given in table 1. Three pieces (05, 11 & 12)
are short pieces for solo viola da gamba, they will not be
considered in the present study. All the other pieces are
performed by a (soprano) voice with viola da gamba ac-
companiment. The first 15 pieces are period-style arrange-
ments of 17th century baroque music. The last piece (18)
is a traditional Chinese song, in the concert performance
it was brought as an encore. The two pieces before (16 &
17) are Taiwanese art songs from the middle of the previ-
ous century.

Three different measurements were made of the two
performances: an audio recording, a measurement of the
movement and a video recording. The audio was recorded
using a mobile recorder with a built-in microphone (Zoom
H2) positioned at the side of the stage. The movement of
the performers was measured using wireless accelerome-
ters with a range of +/-3g and with 2 or 3 sensitive axes.
The singer had a sensor on each wrist and one sensor on her
back. The sensors were attached to the skin with medical
bandage tape underneath the clothes in such a way that they
did not hamper the movements of the performers and that
they were not visible for the audience. The accelerometers
were connected to a standalone, battery powered, wireless
ADC module (Wi-microDig, Infusion Systems) that digi-
tizes the analogue sensor data and transmits this data wire-
less via Bluetooth. A Bluetooth class 1 interface was used
enabling a range of 100m making it possible to collect the
data from the balcony in the back of the concert hall. The
sensor data was recorded at a sampling rate of 100Hz us-
ing a Max/MSP patch. Furthermore, the entire concert and
rehearsal was videotaped using a Canon HV30 camera.

3. DATA ANALYSIS

3.1 Posture occurrences and durations

A first step in the analysis was the creation of a ground-
truth of the postures used by the singer. First all the video
material was watched to determine the different postures

0 1 2 3 4

5 6 7 8 9

Figure 1. Typical examples of the 10 different categories
of postures as found in the singers performance

used. In total 10 categories of postures could be distin-
guished: 0. Arms down, hands joined, 1. hands joined
in front of the body, 2. both arms slightly spread in front
of the body, 3. both arms in front of the body, left arm
above right arm, 4. both arms in front of the body, right
arm above left arm, 5. right arm next to the body, left arm
in front, 6. left arm next to the body, right arm in front, 7.
two arms next to the body, 8. one arm next to the body, the
other spread open and 9. two arms spread out. Examples
of each posture, taken from the video recording are shown
in figure 1.

In a next stage these 10 postures were used in a de-
tailed manual analysis done by author DM using the pro-
gram Annotation (http://www.saysosoft.com). A
global overview of the postures used in the rehearsal and
the concert is given in table 2. This shows that the singer
changed posture more often during the concert, reflected in
a increase of total postures of 9.75%. Postures 0, 8 and 9
are not very common, but still it is striking that they only
occur during the concert performance. In figure 2 the rep-
resentation is a bit simplified by grouping these three ges-
tures as ‘others’ and by adding the symmetrical postures
3/4 and 5/6 together. The upper two pie diagrams represent
the number of postures counted (analogous to table 2), the
lower two represent the total time of each posture type. It
shows that the most important change occurs in the num-
ber of and time spent in posture 1, that is hands joined in
front of the body. This posture is considered as a ‘rest-
ing’ or ‘starting’ posture, and can thus be seen as the least
‘communicative’ or ‘expressive’ posture. This posture is
largely replaced by more ‘open’ postures in the concert
performance (types 5, 6 and 7).

As we count more stable postures in the concert perfor-
mance, this implies that there are more transitions. In to-
tal the number of transitions increases with 10.26%, from
341 to 376. Despite the larger number of transitions, we
see that the average duration of a transition increases with
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posture rehearsal concert
0 0 3
1 57 27
2 65 71
3 37 31
4 3 1
5 36 86
6 43 26
7 118 141
8 0 1
9 0 7

sum 359 394

Table 2. Comparison of the number of posture occurrences
for each of the 10 categories in rehearsal and concert per-
formance, summed over all pieces

Figure 2. Top row: The relative occurrence of each posture
(number of instances); Bottom row: Cumulative duration
of each posture

6.45%, from 1.61s to 1.72s. However, as the distribution
of the posture types in both performances is different (cf.
supra), it is dangerous to make such a general comparison.
Therefore the 20 most important transitions, occurring at
least twice in each performance where selected. The av-
erage length of these transitions in both performances is
shown in figure 3. It shows that there is often a large in-
crease in average duration, while only four transition types
show a small decrease in average duration. The grand av-
erage of these 20 transitions increases with 21.62% from
1.54s to 1.87s between rehearsal and concert performance.
This shows that the singer puts more emphasis on the tran-
sitions, by making them slower or by increasing the dis-
tance.

3.2 Posture and transition analysis

For a further quantification of the postures by the singer the
3D accelerometer sensor data is analyzed. Starting from
the 3D acceleration measured at the wrists of the singer it

Figure 3. Differences in transition durations between re-
hearsal and concert, for the 20 most frequent transitions
between postures

Figure 4. Three postures with the orientation of the 3D
accelerometer on the left arm

is possible to calculate the orientation of the forearm with
respect to the vertical direction (along the gravity force).
This calculation is valid for slow movements in which the
total size of the acceleration stays around the value of 1 g.
The angles are determined with the following formula:

αi = arccos

 ai√
a2x + a2y + a2z

with i = x, y, z

where ax, ay, az are the 3 components of the acceleration
and αi is the angle between the vertical direction and the
acceleration direction under study. In figure 4 these angles
are illustrated for the left arm of the singer for three typical
postures.

For the study described below the angle in the direction
along the forearm is studied (the y-component of the ac-
celerometer). Given the manual annotations of the differ-
ent postures of the singer the angles for left and right fore-
arm (denoted αl and αr respectively) can be determined
from the accelerometer data. This leads to the plots shown
in figure 5.

One can see that there is a large overlap between posture
1 and 2 which both have similar angles and cannot be dis-
entangled from each other. Furthermore the angular spread
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Figure 5. The angle of the left and right forearm extracted
from accelerometer data for the rehearsal (left) and concert
(right) condition. The different colors/symbols represent
the different postures determined from manual annotation
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Figure 6. The correlation between the mean angular ve-
locity and the difference in angular velocity for concert
and rehearsal conditions. Each data point corresponds to
the transitions occurring in a single song of the repertoire

of the data is smaller in the rehearsal condition. This can
be quantified by determining the angular center of each
posture. The mean Euclidean distance between these cen-
ters (in degrees) for the rehearsal and concert conditions
are 42.91◦, and 50.72◦, respectively, with a mean differ-
ence of 7.81◦. A (single-sided) Wilcoxon signed rank test
between the angle pairs corresponding to each posture re-
veals that the distances between postures are significantly
smaller during rehearsal than during the concert condition
(z = −2.5732, p = 0.005).

On the other hand we can also study the transitions be-
tween postures based on the calculated angles. When look-
ing at the angular velocity of the transitions occurring in
each song a clear correlation is found between the mean
velocity of the two conditions and the difference between
the velocities as can be seen in figure 6. A linear fit shows
a slope of .64. Note that the data point with the highest
difference corresponds to the last song which was brought
as an encore.

These results are in accordance with previous findings
stated in [6] where an increase in intensity of movement
was found in the concert condition for songs with a higher
average value.

3.3 Automatic recognition of postures during
rehearsal and concert

The above analysis of the data is based on manual anno-
tations of postures using video recordings of the perfor-
mances. This is generally considered to be the most reli-
able method of annotating data, but even for a moderate
amount of data such as used in this study, manual anno-
tation is a very laborious task. However, it is to be ex-
pected that each of the postures identified above should
have its own signature in the forearm angles as computed
from the acceleration data. Indeed, plotting the left and
right forearm angles corresponding to the different pos-
tures (figure 5) shows various clearly identifiable clusters.

In this subsection we describe a straight-forward method
to cluster pairs of forearm angles into postures, and discuss
the results. The method consists in first separating postures
and transitions, and subsequently clustering the data corre-
sponding postures. In the third part of this subsection we
describe the results of the automatic annotation as applied
to the data, and evaluate them using the manual annotation.

3.3.1 Separation of postures and transitions

The first step is to determine which time segments corre-
spond to postures and which to transitions from one pos-
ture into another. Since a posture is by definition a more
or less static position of the body, we use a criterion that
states that a time segment represents a posture precisely if
the average change of angle per arm does not exceed a par-
ticular threshold γ within that segment. This corresponds
to the following criterion:

max

[
1

(K−1)
∑K
n=2 |αl(n)− αl(n− 1)|,

1
(K−1)

∑K
n=2 |αr(n)− αr(n− 1)|

]
< γ (1)

where K is the window size, αl(n), and αr(n) are the
angles of left and right forearm at time n respectively, and
γ is the threshold parameter, representing the maximum
average change of angle allowed in a posture (in degrees
per second).

3.3.2 Clustering of postures

Literature on machine learning and data mining offers a
myriad of clustering algorithms. Most, if not all of these
algorithms in some form or another rely on parameters to
reflect information about the data to be clustered. Depend-
ing on the algorithm, parameters can reflect for instance
the number of clusters to identify, the maximal variance
tolerated within a cluster, or the a priori probability that
two data points belong to the same cluster.

In our case, we can easily obtain useful knowledge about
the data to be clustered, in the form of approximate fore-
arm angles for the singer’s postures. A set of postures is
identified by skimming over the video recording, and for
each posture an estimation of the forearm angles is made.
For example, for the posture ‘right hand above left hand’
(in front of the body), we expect forearm angles approxi-
mately in the middle of the range 180◦ (arm straight down)
and 0◦ (arm straight up), where the angle of the right arm is
somewhat smaller than that of the left arm. In this manner,
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Figure 7. Postures and their typical left and right forearm
angle configurations; the x and y axis display the angles of
the left and right forearm in degrees, respectively

pairs of forearm angles are defined to serve as cluster pro-
totypes. The prototypes for each posture are displayed in
figure 7. Note that the figure contains six postures, rather
than ten. The reason for this simplification is that in the
limited representation of postures as angles of left and right
forearms, some postures are not distinguishable. In partic-
ular, postures 1 and 2 (hands joined, and hands slightly
open in front of the body), and the various postures where
both arms are stretched downward (postures 8, 9, 7, and
0), are all characterized by very similar angles. For this
reason, posture 2 has been merged into posture 1 (hands
joined), and postures 8, 9, and 0 have been merged into the
more frequent posture 7 (both hands down).

Because of the availability of cluster prototypes as a
form of knowledge about the data, our particular inter-
est is in clustering algorithms that can take advantage of
this knowledge. One such algorithm is the well-known K-
means algorithm. Typically, the algorithm is initialized by
choosing K random cluster prototypes, but by setting the
cluster prototypes deliberately, we can make the algorithm
start from hypothesized prototypes, and update these pro-
totypes in accordance with the data.

We also present another simple clustering algorithm that
we designed for the purpose of adapting hypothesized clus-
ter prototypes. The algorithm starts from a given set of
prototypes, and assigns data points to clusters in a greedy
manner, at each occasion allocating the unallocated data
point that is closest to any of the prototypes (assigning that
point to the prototype that is closest). After the assignment,
the prototype of the is updated to reflect the new cluster
member.

This clustering method (we will call it prototype clus-
tering) is formalized in the pseudo code of algorithm 1.
The set X is a set of data points (in this case a vector con-
taining left and right forearm angles) to be clustered using
the initial cluster centers (prototypes) ci (1 ≤ i ≤ K). Fur-
thermore, Xi ⊂ X denotes the (initially empty) subset of
X that belongs to cluster i, σi is the variance within cluster
i (defined to be zero in case the cluster is empty), and Xi

denotes the prototype of the setXi, in this case the centroid

of the vectors in Xi.

Algorithm 1: PROTOTYPE-CLUSTERING(c1, · · · , cK)

while X 6= ∅

do


x, i← argminx,i

||x−ci||
1+σi

Xi ← Xi ∪ {x}
X ← X/{x}
ci ← Xi

return (c1, · · · , cK , X1, · · · , Xk)

The selection of the data point x and and the cluster i to
join depends on the variance σi of the cluster, in such a way
that the agglomeration of data points into disperse clusters
is easier than the agglomeration into compact clusters. In
this way the criterion for adding a data point to a cluster
becomes, informally speaking: ‘how much is a data point
inside the cloud of data points that form the cluster’, rather
than ‘how far is the data point from the center of the clus-
ter’.

Some other characteristics of this algorithm are that it
allows for unequal population of clusters: Clusters do not
necessarily get populated, depending on the structure of
the data. Furthermore, in spite of its greedy nature, for a
given data set, the outcome of the algorithm is robust to
variations in initial prototypes.

We have run the K-means and the prototype clustering
algorithms on the posture segments of the forearm angle
data, using different values for the threshold parameter γ
(eq. 1). The outcome of the various clusterings have been
evaluated in terms of precision and recall with respect to
the manual posture annotations.

Figure 8 summarizes the results, for the values of γ: 6,
10, 15, 20, 15, 20, 25, 30, 40, 50, and 60 degrees per sec-
ond. Note that for both clustering algorithms, the thresh-
old values that give optimal accuracies are roughly from 20
to 30 degrees per second. In this range prototype cluster-
ing slightly outperforms K-means clustering. Using γ =
25◦/s, the precision and recall of both algorithms and for
both conditions is shown in table 3. Figure 9 shows the cor-
responding cluster assignments of the angle-pairs graphi-
cally. Apart from the differences due to merging the clus-
ters 1 and 2 on the one hand, and 7, 8, 9 and 0 on the
other, the resulting clustering is similar to the manual an-
notations, as displayed in figure 5. Moreover, the effect of
postures being more distinct during concert than rehearsal
is also observed through the this clustering. This effect
was confirmed using a Wilcoxon signed rank test (z =
−4.3493, p < 0.005).

3.3.3 Analysis of transition speeds based on automatic
annotation

Apart from the postures themselves, the transitions from
one posture to another convey systematic differences be-
tween rehearsal and performance, as shown in section 3.2.
In particular, songs where the forearm velocity during tran-
sitions is low on average (across rehearsal and concert),
tend to show lower average forearm velocities during con-
cert than during rehearsal. Conversely, in songs with higher
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Figure 8. Precision and recall values for the discussed
clustering method for concert and rehearsal data sets, using
different values of γ (eq. 1)

Rehearsal Concert
Precision Recall Precision Recall

K-Means 0.79 0.81 0.80 0.83
Pr-Clust 0.81 0.83 0.83 0.87

Table 3. The precision and recall of posture recognition
using K-means and prototype clustering in the concert and
rehearsal condition, respectively, using a threshold value
of γ = 25◦/s

average forearm velocities, forearm velocities during con-
cert are higher than during concert (see figure 6).

Interestingly, this trend is also clearly visible in the au-
tomatic annotation, as shown in figure 10. The slope of the
fitted line is 1.13, versus .64 when the analysis is based on
manual annotation. Although the slope of the regression
line is proportional to the threshold parameter γ (eq. 1),
slopes higher than .66 were obtained for all settings of γ.
This shows the persistence of the effect, independently of
the parameters used for the automatic annotation.

4. DISCUSSION

The results presented in this paper are twofold. Firstly,
in subsections 3.1 and 3.2, we have made an analysis of
a singer’s postures (and transitions) during rehearsal and
concerts. This analysis is based on manual annotation of
the data. Secondly, in subsection 3.3, we have proposed
and evaluated a method to automate the annotation process.
In this section, we will discuss the outcome of both parts,
starting with the first.

The main findings presented in subsections 3.1 and 3.2
can be summarized as follows: Firstly, with an increase
of almost 10%, a greater number of postures was regis-
tered during concert than during rehearsal. All postures
observed during rehearsal were also observed during con-

Figure 9. The angle of the left and right forearm extracted
from accelerometer data for the rehearsal (left) and concert
(right) condition. The different colors/symbols represent
the different postures determined from automatic annota-
tion using prototype clustering with γ = 25◦/s
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Figure 10. The correlation between the mean angular ve-
locity and the difference in angular velocity for concert and
rehearsal conditions. Each data point corresponds to the
transitions occurring in a single song of the repertoire

cert. Conversely however, three types of postures (8, 9,
and 0) observed during concert, were not present during re-
hearsal. Thus, a wider variety of postures was used by the
singer during concert. The open postures 5, 6, and 7 were
more frequent during concert, at the expense of posture
1, that can be characterized as a closed position. Further-
more, during concert the transitions between two postures
were over 20% longer on average than during rehearsal.

The analysis of the motion sensing data revealed that in
terms of left and right forearm angles, postures are less dis-
tinct during rehearsal than during concert, in the sense that
the clusters representing the various postures (see figure 5)
are more separated during concert than during rehearsal.
An investigation of the mean angular velocity of transi-
tions per song, as identified using the criterion in equa-
tion (1), showed that songs with low average angular ve-
locity tended to have lower angular velocities during con-
cert than during rehearsal, whereas songs with high aver-
age angular velocity tended to have higher average veloc-
ity during concert than during rehearsal (see figure 6). In
other words, the way the singer moved between postures
differs from song to song, and these differences are more
pronounced during concert than during rehearsal.
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From the above findings, it becomes clear that between
rehearsal and concert, there are systematic differences in
the singer’s use of her body as part of the music perfor-
mance. We assume here that the major difference between
the concert and condition is the presence of an audience
during the concert, and consequently a musical communi-
cation process between performers and audience which is
absent during the rehearsal. Based on this assumption, a
consistent view arises from the results, which is that the
presence of the audience invites, or perhaps even requires
the singer to use her body as a means of communication.
It leads to a greater variety of postures that are more open
in character. Furthermore, during concert the postures are
more distinct in terms of the orientation of the forearms,
making it easier for the audience to distinguish between
different postures. This is in line with previous work on
the role of the body in communication, which suggests that
an open body position in contrast to a closed body position
reinforces the communicator’s intent to persuade [7, 8].

The systematic differences in angular velocity during
transitions between postures from song to song, and the
fact that these differences are amplified during the con-
cert, strongly suggests that transitions between postures
also have an expressive function. They may be used by the
performer to emphasize changes or other significant mo-
ments of the music. The fact that transitions are substan-
tially longer on average during concert can be partly ex-
plained by the larger distance between postures. But it can
also indicate a stronger emphatic role of transitions dur-
ing the concert. Further work is needed to investigate this
possibility.

It is interesting to see these results in the light of the
model of musical communication proposed in [9]. This
model consists in the abstract view that the performer en-
codes his or her musical intentions in sonic and visual en-
ergy. This energy is received by the listener 1 , who de-
codes the sonic and visual forms by a mirroring process
in order to understand the performer’s intentions, in a way
similar in nature to the way other social behavior, like em-
pathy, is thought to come about. Such behavior is thought
to have a neurological basis [10], in the form of so-called
mirror neurons (see [11]).

If we assume that the performer’s musical intentions
stay constant throughout rehearsal and performance, the
fact that her corporal behavior is more articulate during the
concert might be taken as an intent to encode the musical
intentions in a clearer and more detailed way, in order to
facilitate disambiguation by the listener in the decoding of
the musical intentions.

The results presented in subsection 3.3 show that, with
a relatively small amount of prior knowledge (viz. a de-
scription of the set of postures in terms of forearm angles),
posture annotation can be done automatically based on mo-
tion sensing data, rather than manually using video record-
ings. The accuracy of the annotations in terms of precision
and recall lies in the range of 80 to 90 percent. We have
also shown that effects observed from manual annotations,

1 In this context ‘listener’ should be taken more generally to mean ob-
server.

such as amplification of differences in average angular ve-
locity during transition can be reproduced using automatic
annotations (see figure 6, and 10).

Lastly, a noteworthy result from the automatic cluster-
ing of postures based on angular data is that clustering ac-
curacies are generally higher for the concert than for the
rehearsal condition, as can be seen from figure 8. This is
likely due to the fact that postures are more distinct dur-
ing the concert, and it illustrates how the singer’s efforts to
communicate to an audience also facilitate recognition of
postures using automatic methods.

5. CONCLUSIONS

Although it is generally acknowledged that the presence
of an audience has an effect on the various types of ex-
pression of music performers, not much is known about
the way such changes manifest. With the aim of investi-
gating the effect of an audience on the corporal expression
of a singer in classical performance together with a gamba
player, we have focused on the singer’s postures and tran-
sitions between postures. Several systematic differences
have been found between the dress rehearsal and the con-
cert performances. The findings reinforce the view that the
presence of an audience involves a musical communica-
tion process between performer and audience that leads to
more articulate postures and movements, which are likely
to improve the audience’s understanding of the performer’s
musical intentions.

Furthermore, a method was proposed to automate the
annotation of postures on which the analysis is based. Rather
than manual posture annotation of video recordings, the
automated annotation uses motion sensor data. The au-
tomatic annotation involves a novel data clustering tech-
nique, prototype clustering, that can accommodate prior
knowledge in the form of cluster prototypes. This tech-
nique outperforms the K-means clustering algorithm ini-
tialized with the same cluster prototypes. An evaluation of
this automated annotation method shows that it may be a
viable alternative to manual annotation.
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ABSTRACT 
The focus of this project is the manipulation of a robotic 
voice signal for the purpose of adding emotional expres-
sion. In particular, the main aim was to design the emo-
tion expressed by a robotic voice by manipulating spe-
cific acoustic parameters such as pitch, amplitude and 
speech rate. The three basic emotions considered were: 
anger, happiness and sadness. 
Knowledge based on the analysis of emotional sentences 
recorded by actors was used to develop a program in 
Max/MSP to ‘emotionally’ manipulate neutral sentences 
produced by a Text-To-Speech (TTS) synthesiser. A lis-
tening test was created to verify the program success in 
simulating different emotions. We found that test subjects 
could separate the sad sentences from the others, while 
the discrimination between angry and happy sentences 
was not as clear. 

1. INTRODUCTION 
In many science fiction films we have become accus-
tomed to seeing onscreen robots expressing many human-
like emotions. Whether it be the fretful C-3PO (from Star 
Wars), the philosophical Jonny Five (from Short Circuit) 
or the deranged computer HAL (from 2001: A Space Od-
yssey), the machines that populate these fictional realities 
have developed ways of expressing themselves that go 
beyond their basic programming. The concept of a talk-
ing machine is something that is becoming more and 
more a reality, with the advent of Text-To-Speech sys-
tems that allow the user to type text into a computer and 
have it read back to them by a synthetic voice. The nature 
of these voices, however, tends to be neutral in tone and 
often devoid of any signs of emotion and expression.  
The intention of this study is to investigate the effect that 
emotion has on the acoustic signal of the human voice, 
and apply this knowledge towards replicating three fun-
damental emotions upon a neutral, synthetic robotic 
voice.  The applications of this research are varied: from 
the enhancement of speech-based auditory displays, such 
as Text-To-Speech systems, to speech sound design for 
creative industries such as film and games. 

2. HUMAN EMOTION AND SPEECH 
This section introduces fundamental background knowl-
edge on speech production and emotions to facilitate the 
understating of the project for the reader non-expert in 
these areas. 

2.1 Human speech production 
Human speech is produced as air is drawn into the lungs 
and then pushed through the vocal folds, causing them to 
vibrate. Depending upon the tension and position of the 
vocal folds, the varying pressure of air upon the glottis 
can create a range of different frequencies, which gives 
‘voice’ to the sounds we utter. The sound of our breath 
can also produce ‘unvoiced’ sounds, which occur without 
any vibration of the vocal folds. To illustrate the differ-
ence between voiced and unvoiced sounds, Pinker [1, 
p.164] compares the sounds heard when one makes an 
unvoiced sssssss sound with a zzzzzzz sound, which is 
voiced. Human speech sounds are then further modified 
as they pass through the mouth.  
Humans are also able to change the sound of their voice 
through intonation. This is achieved through changing the 
position and tension of the vocal folds, which directly 
affects the pitch of the voice. As Pinker states, the proc-
ess of intonation is “what makes natural speech sound 
different from the speech of robots from old science fic-
tion movies” [1, p.169]. 

2.2 Definitions of Basic Emotions 
Before identifying how emotions affect the human voice 
it is important to consider what an emotion is. Ekman [2] 
identifies three important definitions in which commenta-
tors have come to understand the term ‘basic’ emotion.  
The first definition draws a distinction between ‘basic’ 
emotions such as anger, fear, disgust and sadness, believ-
ing them to be fundamentally different from one another 
[ibid., p.45]. The second definition suggests that a ‘basic’ 
emotion has evolved from the need to deal with funda-
mental life tasks, so that they are ways of dealing with 
situations that are thrown at us during the course of eve-
ryday life. Ekman himself believes that “the primary 
function of emotion is to mobilise the organism to deal 
quickly with important interpersonal encounters, prepared 
to do by what types of activity have been adaptive in the 
past” [ibid., p.46]. A third way of considering a ‘basic’ 
emotion is to think of it as the root of some more com-
plex or compounded emotions [ibid., pp.46-7]. Anger, for 
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instance, could give rise to a hot fury or a cold annoy-
ance.  

2.3 Emotional factors that affect the human voice 
signal 
The effect of basic emotions on the human voice is some-
thing that can alter the sound of the voice. Indeed, ac-
cording to Scherer [3], “even slight changes in physio-
logical regulation will produce variations in the acoustic 
pattern of the speech waveform” [ibid., p.240].  
O’Shaughnessy [4, pp.204-242] outlines a number of 
methods that have been developed for analysing the con-
tent of human speech, such as studying the time and fre-
quency-domains and methods for estimating/detecting 
changes in pitch. Most of the methods have been useful 
for speech coders who have been trying to re-create hu-
man speech synthetically, such as in the Text-To-Speech 
systems, yet they can also provide analysts with a way of 
seeing key changes in the voice signal due to factors such 
as emotions. In the time-domain parameters of the voice, 
for instance, one can quickly interpret the intensity and 
rate of speech, as well as the level of the voice [ibid, 
p.211]. The frequency-domain, on the other hand, can 
give the speech analyst an idea of the frequencies con-
tained within the voice. In a study looking into identify-
ing personality markers in speech, Scherer [5, p.153] 
identifies the changes to the fundamental frequency of the 
voice (in terms of its pitch), the intensity of the voice 
(how loud certain words are spoken) and the energy dis-
tribution within the voice spectrum, which directly affects 
the quality of the spoken voice, as the main elements that 
are changed by an emotion experienced by a speaker. 
Added to this is the further parameter of the rate of 
speech. This criterion examines the speed in which words 
are spoken in natural speech, which may include natural 
pauses, silent periods, and moments where the speech 
flow is disrupted [ibid., p.160]. So by examining the fun-
damental frequency, pitch, intensity and speed of the 
voice, one can begin to identify the changes in the voice 
that occur when the speaker experiences an emotion. 
Scherer [3, p.239] further alludes to studies in which key 
characteristics of the human voice signal have been digi-
tally changed in an attempt to change the perception of 
how the voice sounds, and to influence the listener into 
thinking that the voice has been modified by certain emo-
tions.  The main variables of the voice signal that are ad-
justed in these studies are the fundamental frequency 
range (F0), the pitch variations or contours, the intensity, 
duration and accent structure of real utterances [ibid.]. 
Out of all these variables, Scherer reports that the F0 
range had the biggest effect on the listeners, with a nar-
row F0 suggesting an emotional state such as sadness and 
a wide F0 “judged as expressing high arousal, producing 
attributions of strong negative emotions such as annoy-
ance or anger, or for the presence of strongly developed 
speaker attitudes such as involvement, reproach, or em-
pathic stress” [ibid.]. Similarly, high intensity in the voice 
signal was perceived negatively, associated with aggres-
sive attitudes, whereas short voiced segments, uttered 
with a fast speech rate, were interpreted as being joyous 
in their nature, as opposed to slow speech rate segments 

with a long duration which were perceived to be akin to 
emotional sadness [ibid.]. 
A further factor that may be taken into account when in-
vestigating emotion changes in the human voice is to 
consider the level of emotional arousal that the voice is 
influenced by. In a recent study into the changes in into-
nation when emotions are expressed through speech, 
Bänzinger and Scherer [6, p.257] highlight a distinction 
between two levels of emotional arousal. High arousal 
emotions, such as hot anger, panic fear, despaired sadness 
and elated joy, often are associated with a raised voice, 
fast speech rate, and higher pitch, when compared to low 
arousal emotions, such as cold anger, depressed sadness, 
calm joy/happiness and anxious fear [ibid.]. This division 
of emotional states into hot and cold elements supports 
the view held by Ekman [2] that each emotion is not a 
single emotional state, but belongs to “a family of related 
states” [ibid., p.55], providing a variety of emotional re-
actions depending upon the situation in which the emo-
tion is experienced. 

2.4 Related studies and novelty of this project 
One previous attempt to synthesise speech with emotion 
is accounted by Murray and Arnott [7], who built a 
speech synthesiser that modeled six primary emotions: 
anger, happiness, sadness, fear, disgust and grief. The 
speech synthesiser attempted to replicate each emotion in 
four stages. First of all they set some neutral pitch and 
duration rules that would act as the basis for the synthetic 
speech before any emotional effects were applied. This 
acted as a basis for which they developed a second set of 
rules which attempted to personalise the voice, to give it 
a certain voice quality, so that, for example, “a breathy 
voice would remain breathy with emotional effects added 
later” [ibid., p.371]. Each of the emotion dependent rules 
were then applied, implementing changes specific to the 
chosen emotion that the synthesiser was trying to repli-
cate. This included changes such as increasing the pitch 
and duration of stressed vowels, altering the pitch direc-
tion of inflections on word endings, adding pauses after 
longer words, and eliminating abrupt changes in pitch 
and between phonemes [ibid., pp.376-7]. The final stage 
was to send the resulting phonemes and their associated 
pitch and duration values to the synthesiser, in order to 
create the speech sound. Murray and Arnott first derive 
the emotional rules by analysing the emotional speech 
performed by actors and then verify the success of the 
rules using a listening test in which subjects are asked to 
discriminate the emotion portrayed by the synthesised 
sentences. 
Murray and Arnott study [7] is based on sound synthesis 
or copy synthesis  [8], i.e. it is a study in which acoustic 
features are copied from real emotion portrayals and used 
to resynthesise new emotion portrayals. This type of 
study is relatively uncommon. Juslin and Laukka made a 
very comprehensive review of 104 vocal expression stud-
ies [8], searching all papers from 1900, and found that 
only 20% of the studies were based on copy synthesis. 
With this research we hope to add useful knowledge to a 
research field still relatively unexplored. 
An additional novelty of this study is represented by the 
fact that, instead of synthesising the emotional speech, we 
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process already synthesised speech samples and “apply” 
the emotions as an “effect” on the speech sample (rather 
like a reverb effect is applied onto a dry audio sample). 
The results of this study should be useful in particular for 
sound designers with the task of processing speech to 
make it sound emotional for creative applications (e.g. 
films and games). It is also important to note that we fo-
cus on a non-natural voice, i.e. a robotic sounding voice. 
For this reason the “naturalness” of the processed voice is 
not a concern in this study.  

3. DESIGNING THE EMOTION 
CONTENT OF A SPEECH SIGNAL 

For this project eight test phrases were chosen to be the 
basis for emotional analysis and the construction of the 
program’s presets. The phrases were specifically chosen 
so that they were void of emotional content, i.e. they 
would not indicate or suggest, from their wording, the 
emotion being portrayed by the speaker. The 8 phrases 
consisted of one command statement, “put the butter on 
the table” (indicated in this paper as phrase 1), two de-
scriptive statements, “the window is wide open” (indi-
cated as phrase 2) and “the orange is round” (indicated as 
phrase 8), one question, “what time is it?” (indicated as 
phrase 3), one long statement, “one plus one equals two, 
two plus two equals four” (indicated as phrase 4), and 
three phrases containing only monosyllabic or short 
words: one counting up from 1 to 5 (indicated as phrase 
5), one counting down from 5 to 1 (indicated as phrase 6) 
and one containing 5 numbers in no particular order “one, 
seven, nine, two, three” (indicated as phrase 7).  

3.1 Voice actors 
In order to investigate the changes that emotions have on 
the human voice, four male vocal actors were selected to 
perform the 8 test phrases, simulating various emotional 
states. The recording set-up used (equipment, recording 
studio, and distance between source and microphone) was 
the same for each performance. The actors were first 
asked to read out each phrase into an AKG 414 micro-
phone in their “normal” reading voice, thus obtaining a 
neutral basis through which to compare the proceeding 
emotional states. The actors were then asked to read out 
each phrase again in a mildly angry voice, under the di-
rection that they were growing increasingly annoyed at 
having to read out the phrases. Following this, the actors 
were asked to read out the phrases in an angry voice once 
more, but with greater intensity, in order to simulate an 
explosive anger. These two steps were repeated with the 
emotions of happiness and sadness, in order to obtain 
both mild and intense examples of each. It was decided 
that the intense emotional recordings would act as a basis 
for the emotional presets in the program to be built for 
the processing of the robotic voice, mainly because they 
were the most likely to make a strong impression on the 
listener. 
Once the recordings were made, they were analysed to 
extract information regarding:  

• the exact timing of each word and the length of 
any pauses or silent periods that appeared within 
a phrase;  

• the fundamental frequency variation and the 
number of pitch variations or contours per 
phrase, and whether each pitch contour was up-
ward or downward directed (this was obtained 
through the pitch analysis pane of the Wave-
Surfer software [9]);  

• the amplitude variation within the phrase.  

3.2 Analysis of the actors’ voices 
In order to analyse the changes that the emotions have on 
the actors’ voices, mean averages of pitch, speech rate 
and amplitude parameters were taken for each phrase, 
based upon the data collected from the four actors’ 
speech samples. In this way, the average duration of 
speech, pitch range, number of pitch contours and ampli-
tude ranges for each of the three emotions were calcu-
lated for each phrase. The actors’ mean average “neutral” 
voice was then used as a basis to map the changes to the 
duration, pitch and amplitude of each phrase.  
The test phrases produced a number of common trends 
that related to type of phrase, the emotion spoken and its 
effect on the voice.  

3.2.1 Phrase duration 
Figure 1 shows the average duration of each phrase. 
Higher bars indicate a longer duration and, when compar-
ing the four emotional versions of the same phrase, a 
slower speech rate, whereas shorter bars indicate a shorter 
duration and, when considering different versions of the 
same phrase, a faster speech rate. 
 

 
Figure 1: Phrase Duration (averages and standard 

deviations of the four actors’ performances) 

We looked at how each emotional phrase deviates from 
its neutral version and we noted that the phrases involv-
ing only monosyllabic or short words (phrases 5, 6 and 7) 
saw the greatest reduction in duration for the angry and 
happy phrases (-20% and below the duration of the neu-
tral phrase). In the cases of phrases 1, 3 and 8, the aver-
age angry and happy phrases were slower than their 
equivalent neutral voices. Half of the sad phrases saw 
over a 20% increase in duration, whereas the short words 
phrases (phrases 5, 6 and 7) saw an increase in duration 
between 10-20%. The average length of pauses per 
phrase was also measured. The sad phrases saw the long-
est overall pauses with 5 out of the 8 sad phrases having 

201



the longest phrase duration. Half of the happy phrases 
contained pauses that were longer than the angry equiva-
lent, whereas only angry phrases 2 and 5 contained 
pauses that were longer than their happy equivalent. 

3.2.2 Pitch Analysis 
In order to investigate the emotional changes in pitch, the 
maximum peak in fundamental frequency (F0), the num-
ber of pitch contours (or pitch variations) per phrase and 
the direction of pitch contours were examined. 
Figure 2 shows the average maximum peak of F0 for 
each phrase. 
 

 
Figure 2: Maximum F0 Peak (averages and stan-
dard deviations of the four actors’ performances) 

For all phrases, anger and happiness have high F0 peaks, 
while sadness has low F0 peaks. 
With the exception of phrase 4, anger phrases have the 
highest peak fundamental frequency of the 3 emotions. 
The average maximum peak frequency range of the angry 
phrases sits between 246Hz-281Hz, with 6 out of the 8 
phrases averaging above 250Hz. The happy phrases have 
a range of 225Hz-269Hz, with 2 of the 8 phrases averag-
ing above 250Hz. The sad phrases have lowest funda-
mental frequency peaks, operating within a range of 
143Hz-186Hz. 
Overall, the variation in the number of pitch contours was 
dependent on the type of phrase. Some of the angry 
phrases saw the greatest increase in the number of pitch 
contours, while the happy phrases showed greater varia-
tion between increases and decreases, from phrase to 
phrase. The sad phrases generally saw a decrease in the 
number of pitch contours, with two exceptions. 
The average direction of pitch contours per phrase was 
calculated by counting every upward curve as a positive 
value (+1) and every downward directed contour as a 
negative value (-1). The result for each phrase was totaled 
and an average obtained. The majority of the neutral 
phrases contained downward directed pitch contours. The 
majority of the angry phrases contained more downward 
directed pitch contours, whereas the happy phrases varied 
between having upward directed or downward directed 
pitch contours. The majority of the sad phrases contained 
downward directed contours. 

3.2.3 Amplitude analysis 
Figure 3 shows the average maximum amplitude peak for 
each of the 8 phrases based upon the actors’ perform-
ances.  

 
Figure 3: Maximum Amplitude Peak (averages 
and standard deviations of the four actors’ per-
formances) 

We can see that for all the phrases, anger and happiness 
have the high peaks, while sadness have low peaks. 
The sad phrases had the lowest maximum amplitude 
peaks, with all of the sad phrases peaking below 95dB. 
All the angry phrases and 7 out of 8 happy phrases had 
peaks that exceeded 100dB. 

3.3 The “robotic” text-to-speech voice 
In addition to the actors’ recordings, the 8 phrases were 
also recorded by the Text-To-Speech voice “Fred” set to 
the “Normal” rate of speech, which can be found within 
the system settings for speech in a Mac computer with the 
OS X 10.5.8 operating system. This robotic-sounding 
voice was to act as the primary voice for the program and 
was to be manipulated to sound angry, sad or happy.  

3.4 The Max/MSP program 
The emotion-shaping program that was constructed used 
a real-time granular synthesizer built by Mattijs Kneppers 
for use in Max MSP 5. Kneppers’ [10] patch was chosen 
because of the way it could smoothly alter the length and 
pitch of a sound.  
Only a few changes were made to Kneppers’ original 
patch in order to make it more suitable for modeling the 
speech rate, pitch and volume of a speech file over the 
course of time. Three function graphs were introduced: 
one controlling the speech rate, one controlling the pitch 
and one controlling the volume of sound files loaded into 
the buffer. The ranges for the pitch shift, the time stretch 
and the volume changes were also adapted to the needs of 
this project. 

3.5 Constructing the Presets 
A decision was made to have three presets for each 
phrase per emotion, so that the total number of presets for 
each phrase would be nine (3 x angry, 3 x sad and 3 x 
happy). 
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The first preset for each phrase was constructed using 
information collected from the analysis of the actors’ 
readings of the phrases. This was achieved through plot-
ting a graph of the average speech rate for each phrase, 
and transposing this onto the speech rate graph in the 
main interface of the Max/MSP program. Average pitch 
and amplitude graphs of the actors’ phrases were also 
used as a rough guide for the pitch and volume function 
graphs.  
The other two presets were created by tweaking the pa-
rameters of the first preset in an attempt to improve the 
emotional content. This would involve either increasing 
or decreasing each of the three elements (speech 
rate/pitch/volume) in order to exaggerate the phrase and 
make it express a strong emotion.  Another method was 
to listen to specific actors’ performances of the phrases 
and try and match it through the automation of points 
within the function graphs. In the case of the angry 
phrases, for example, it was helpful to listen out for the 
words within the phrase that were exaggerated or stressed 
the most. The presets that were perceived to be the most 
successful were then selected for testing purposes. 

3.6 Listening test 
A listening test was designed to measure the effectiveness 
of the presets created. The test included the neutral 
phrases, which were the basis for the emotional presets. 
This allowed us to verify whether they were really per-
ceived as devoid of emotions.  
For the test we adopted a similar approach to Bänzinger 
and Scherer [6 p.259] who, when testing the changes of 
intonation in emotional expression, provided their listen-
ers with four visual-analogue rating scales, each repre-
senting the “intensity” (ranging from no emotion to ex-
treme emotion) of the four emotions that were the focus 
of the study.  
Similarly we created a test using the 8 neutral TTS 
phrases and the 24 presets made using the Max/MSP 
patch (8 x angry, 8 x sad, 8 x happy). 
In the test, each participant first entered details pertaining 
to their date of birth, sex and whether English was their 
first language, then they were required to listen to each 
phrase and answer the following two questions: 
(i.) What is the emotional state of the voice? …to see if 
their answer matched the intended emotion conveyed 
through phrase.  
(ii.) How intense is the emotion? …to gauge how strongly 
they thought the emotion perceived was expressed. 
In order to answer question (i.), the participant had to 
select one of the four following radio buttons: Angry, 
Sad, Happy, Neutral. For question (ii.) the participant had 
to position a horizontal slider between two points one 
representing weak intensity and the other strong intensity, 
i.e. the slider ranged from 1 (weak) to 5 (strong). Each 
participant was allowed to listen to each phrase as may 
times as they desired, but they had to answer both ques-
tions before being allowed to move on to the next phrase. 
The phrases were played to each participant in a random 
order so that they were not able to predict what emotion 
might come next. The test was constructed using the java 
based audio-visual test-builder Skatta [11]. 

4. LISTENING TEST RESULTS 
 
20 people took part in the test, with an even split between 
male and female participants. 14 of the test participants 
were British and had learnt English as their first lan-
guage, while for the other 6, who varied in ethnicity, 
English was not their first language. 

4.1 Chi-Square Tests Results 
The results of the first question of the test were analysed 
using the non-parametric Chi-Square test. This test can 
tell us if subjects attributed a particular emotion to a 
phrase in a random fashion (producing a non-significant 
result for the Chi-Square, i.e. p > 0.05) or not (producing 
a significant result for the Chi-Square, i.e. p < 0.05). 
Then we looked at which emotion had the most counts 
and therefore made the bigger contribution towards the 
significance of the Chi-Square. In the significant cases, 
we looked at the average score of the intensity of the 
emotion to gauge how strongly the emotion was por-
trayed. This is summarised in Table1, where A=Anger, 
H=Happiness, N=Neutral, S=Sadness, E=significant 
Emotion and I= Intensity of significant emotion. 
 
 
Overall:  
no phrase distinc-
tion 

Chi-
Square 

Signifi-
cance 
(p) 

Significant  
Emotion 

Anger 72.75 0.000 Happiness 
Happiness 34.35 0.000 Happiness 
Neutral 79.85 0.000 Neutral 
Sadness 222.65 0.000 Sadness 
Phrase by phrase Chi-

Square 
Signifi-
cance 
(p) 

E I 

Emotion: Anger     
1-Put the butter… 7.6 0.055    
2-The window… 22.8 0.000  H 3.36 
3-What time… 7.9 0.019  H 2.73 
4-One plus one… 12.4 0.002  H 3 
5-One, two, … 2.8 0.247    
6-Five, four, … 4.0 0.261    
7-One, seven, nine 9.2 0.027 H 2.91 
8-The orange … 14.0 0.003  H 2.25 
Emotion:  
Happiness 

    

1-Put the butter… 4.8 0.187    
2-The window… 6.7 0.035  H 3.17 
3-What time… 2.8 0.423    
4-One plus one… 14.8 0.002  H 2.67 
5-One, two, … 1.2 0.753    
6-Five, four, … 0.7 0.705    
7-One, seven, nine 2.0 0.572   
8-The orange … 16.3 0.000  H 2.87 
Emotion: Neutral     
1-Put the butter… 11.2 0.011  A 3 
2-The window… 7.6 0.055    
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3-What time… 1.3 0.522    
4-One plus one… 9.2 0.027  N 3.1 
5-One, two, … 22.8 0.000  N 3.14 
6-Five, four, … 7.2 0.007  N 3.19 
7-One, seven, nine 3.7 0.157   
8-The orange … 21.6 0.000  N 2.43 
Emotion: Sadness     
1-Put the butter… 11.2 0.011  S 3.09 
2-The window… 5.0 0.025  S 2.2 
3-What time… 28.9 0.000  S 3.24 
4-One plus one… 5.0 0.025  S 3.21 
5-One, two, … 7.2 0.007  S 3.63 
6-Five, four, … 12.4 0.002  S 3.07 
7-One, seven, nine 24.1 0.000 S 4.06 
8-The orange … 26.8 0.000  S 3.2 

Table 1: Chi-Square results 

From these results, we can see that the sad emotion is 
consistently the best recognised across all phrases. 4 out 
of the 8 neutral phrases have been correctly recognised, 
whereas 1 is wrongly recognised as angry. 3 out of 8 
happy phrases have been correctly recognised. The angry 
phrase type failed to be recognised correctly, attaining 
results of non-significance or significantly happy (in 5 
cases). In terms of successful matches per phrase, phrases 
4 and 8 have the most number of correctly identified 
emotions, each sharing an overall success rate of 75%. 
Phrases 1, 3 and 7 generated the least matches, with only 
1 out of the 4 emotions identified correctly. 

4.2 Intensity Results 
Seven out of eight sad phrases score an intensity higher 
than 3. The highest intensity score for sadness is 4.06 for 
phrase 7. Phrase 5 follows with 3.63, then phrases 3, 4, 8, 
1, 6, and 2. The highest intensity score for the signifi-
cantly happy phrases is phrase 2 with a score of 3.17. 
Phrases 4 and 8 score 2.67 and 2.87 respectively. 
Five out of eight angry phrases (2,3,4,7,8) have been in-
correctly recognised as happy. Phrases 2 and 4 have 
scores of 3.63 and 3 respectively, while the rest of the 
sentences have scores between 2 and 3. It is interesting to 
note that for these phrases, which were manipulated to 
portray anger but were recognised as happy, the next 
emotion that has high scores of intensity is anger indicat-
ing that subjects seemed confused between these two 
emotions. 
Four phrases (4,5,6,8) in the neutral case score as signifi-
cantly neutral, with 3 of these (4,5,6) having intensity 
scores higher than 3. The highest intensity score is 3.19 
for phrase 6. Phrase 1 results as significantly angry with 
an intensity score of 3.  However, as with the confusion 
between idenification of anger and happy outlined above, 
the second most chosen emotion is the intended emotion, 
neutral, with an intensity score of 3. 

4.3 Overall confusion matrix 
Table 2 shows the confusion matrix for the overall ex-
periment. The numbers represent the percentage of sub-
jects that selected a particular perceived emotion for all 
the phrases with a specific intended emotion. The Chi-
Square is significant for all the emotions. 

 
Intended 
emotion 
→ 

Perceived 
emotion 
↓ 

Anger Happiness Neutral Sadness 

Anger 30 11 26 10 
Happi-
ness 49 43 14 2 
Neutral 17 25 53 13 
Sadness 4 21 7 75 

Table 2: Confusion matrix without distinction of 
phrase 

This overall result shows that sad, neutral and happy 
phrases are relatively well recognised, while angry 
phrases are confused as being happy.  

5. DISCUSSION 
Based upon the results of this study, it is possible to as-
sert that specific changes to the speech rate, pitch and 
amplitude of the human voice do affect the way the voice 
is perceived emotionally. However, not all manipulations 
have been successful in this project. The most evident 
unsuccessful result is the manipulation to obtain angry 
phrases. In some cases these have been mistaken for 
happy.  
Less than half of the happy phrases were recognised as 
happy showing that the approach used is possibly going 
in the right direction, but requires further refinement. 
From the analysis of the actors’ voices we can see that 
anger and happiness have similar trends in terms of 
speech rate, pitch and amplitude variation. Although an-
ger usually exceeded happiness for the majority of these 
parameters, there were a few phrases where happiness 
exceeded anger. This seems to indicate a close relation-
ship between the emotions of anger and happiness that 
makes it a lot more difficult to distinguish between the 
two when attempting to simulate them onto a robotic-
sounding voice. One possible reason why the angry and 
happy phrases obtain poor results could be that further 
stimuli, such as a facial expression or an emotionally-
loaded phrase, is needed for a participant to be able to 
distinguish between an angry voice and a happy voice. 
Alternatively, maybe further alterations to the voice, that 
go beyond simply adjusting the speech rate, pitch and 
amplitude, need to occur before anger becomes more 
distinct from happiness. 
The successful recognition rate for the sad phrases con-
firms that if the pitch, duration and amplitude of the ro-
botic neutral voice all decrease, then the voice will sound 
sad.  
Four out of eight neutral phrases were recognised as neu-
tral. For three neutral phrases no clear emotional state 
could be assigned therefore the “neutralness” of these 
phrases is unclear in this test. It is possible that with a 
larger number of subjects the perceived emotional state of 
these sentences could emerge more clearly. 
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In the case of neutral phrase 1, the participants rated the 
emotion as being angry. A possible reason for this may 
be the words within the phrase. Whilst the phrase itself 
doesn’t contain any emotion-specific words, the nature of 
the sentence is a command. Participants may have 
thought this sounded forceful and angry in this instance. 
Murray and Arnott  [7] allude to a similar occurrence 
when testing the phrases from their HAMLET system, 
where the words within the phrase itself caused partici-
pants to imagine “a stereotypical situation where the 
phrase might be used” [ibid., p.387]. 
Overall, this project is successful in giving more insight 
into methods that could be employed to design emotional 
expression in a robotic voice.  There are, however, a 
number of improvements that can be made to the work. 
Difficulties were encountered when constructing the pre-
sets. This related to how the pitch and amplitude data, 
based on the actors’ voices, could be used accurately in 
the program. As the pitch and volume of the actors’ 
voices vary significantly over the course of a phrase, it 
was particularly difficult to judge on which words to 
make specific pitch and amplitude adjustments. Indeed, 
one might benefit from trying to model the pitch and am-
plitude of a robotic voice based on one actor’s perform-
ance, rather than an average of several. 
Currently, the function graphs in the user interface of the 
Max/MSP patch used to manipulate the phrases can be 
used to sketch out the changes in speech 
rate/pitch/amplitude over the course of a phrase with rela-
tive ease, but at the cost of accuracy.  
Furthermore, the presets used for testing could be im-
proved by gaining feedback from a panel of experts (e.g. 
theatre directors, actors, etc.). 
A further, larger study that includes the improvements 
mentioned above has been planned and is under devel-
opment at present. We plan to report the results of this 
new experiment in the near future. 

6. CONCLUSION 
A program was constructed during this study that “ap-
plies” three emotional states onto a robotic-sounding 
Text-To-Speech voice. This study has examined how 
changes in speech rate, pitch and amplitude affect the 
human voice and has applied this knowledge towards 
creating a number of emotional presets that allow the user 
to make a robotic speech signal sound angry, sad or 
happy. The resulting presets were tested on a wider audi-
ence and the results from this test indicated that decreases 
in speech rate, pitch and amplitude create the impression 
of sadness. The test also showed that the angry and hap-
piness presets were very closely related, indicating that 
speech rate, pitch and amplitude adjustments alone, or 
without a greater degree of accuracy, are not enough to 
make anger distinct from happiness. From these results, a 
number of enhancements and further work was sug-
gested, which should help to clarify how we can improve 
emotion expression in a robotic voice. 
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ABSTRACT

Voiced vowel production in human speech depends both on
oscillation of the vocal folds and on the vocal tract shape, the
latter contributing to the appearance of formants in the spec-
trum of the speech signal. Many speech synthesis models
use a feed-forward source-filter model, where the magnitude
frequency response of the vocal tract is approximated with
sufficient accuracy by the spectral envelope of the speech
signal. In this research, a method is presented for real-time
estimation of the vocal tract area function from the recorded
voice by matching spectral formants to those in the output
spectra of a piecewise cylindrical waveguide model hav-
ing various configurations of cross-sectional area. When a
match is found, the formants are placed into streams so their
movement may be tracked over time and unintended action
such as dropped formants or the wavering of an untrained
voice may be accounted for. A parameter is made avail-
able to adjust the algorithm’s sensitivity to change in the
produced sound: sensitivity can be reduced for novice users
and later increased for estimation of more subtle nuances.

1 INTRODUCTION

Estimation of the vocal tract area function from an incoming
voice signal is a task that has numerous proposed solutions,
as several applications would greatly benefit from accurate
depictions of the vocal tract shape during speech. For ex-
ample, studies have found that displaying the vocal tract to
the hearing impaired can improve their overall speech per-
formance [11, 15] as well as being an effective instructional
tool for singers [14]. Recent studies have aimed to iden-
tify useful features from the voice signal for musical control
[7, 6]. Some have identified the vocal tract shape as a poten-
tial feature for musical control and have used vision-based
methods for its estimation [5, 10]. Here, we propose using
the vocal tract shape as input data for control, though leav-
ing the actual application and mapping strategy to the user,
and present a method for extracting this shape directly from
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recorded voice by calibrating to the output of a waveguide
model.

Human speech depends both on the oscillation of the vo-
cal folds in the glottis and on the shape of the vocal tract.
Producing a particular vowel sound requires changing the
effective cross-sectional area function of the vocal tract that
contributes to the appearance of formant peaks in the fre-
quency spectrum of the speech signal. While several algo-
rithms have been proposed to identify the vocal tract area
function from recorded speech, the most common involve
either computing reflection coefficients from linear predic-
tive coding (LPC) or autoregressive (AR) models using, for
example, Yule-Walker or Levinson-Durbin methods [2, 18],
or by directly tracking formant peaks in the spectral enve-
lope of recorded speech [9, 3]. Both approaches assume a
simplified feed-forward source-filter model of the voice, and
produce best results on vowel sounds, as the articulation of
consonants is more complicated than purely changing the
vocal tract shape.

For many applications, the feed-forward filter model is
considered to be sufficiently accurate as there is weak cou-
pling between the massy vocal folds and the vocal tract. It
should be mentioned however, that a stronger influence of
the vibrating source is observed on the spectral envelope—
and thus the formant peaks—for feed-back models that more
strongly couple the glottal excitation and vocal tract [17].
Likely due to this and other simplifications in the filter model,
such as inaccurate estimates of unknown propagation losses
and termination reflection/transmission functions, the detec-
tion of vocal tract shape from reflection coefficients has pro-
duced inconsistent and inaccurate results, both in this work
and in that of other authors [9, 12, 19]. Furthermore, accu-
racy deteriorates rapidly with an increase in sampling rate,
making its use limited for the singing voice which typically
requires a greater bandwidth than its spoken counterpart.

Formant-based analysis-by-synthesis methods may pro-
duce better results as they overcome filter inaccuracies by
only requiring a most likely fit to a synthesis model’s out-
put. Depending on the method used, calibrating a recorded
signal to the output of a very detailed and accurate model
could introduce potentially restrictive computational cost,
thus making it inappropriate for real-time use. In this par-
ticular case, there is also the possibility of estimating one
of several vocal tract shapes that produce indistinguishable
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spectra. Care must therefore be taken to constrain possible
shapes so they are physiologically reasonable.

In this work, we present an efficient and accurate formant-
based vocal tract area function estimation algorithm, specif-
ically designed for real-time musical control. As described
in Section 3, the algorithm identifies formants on a sample
frame basis, and places them into streams, enabling their
movement to be tracked over time.

In Section 4, minimum action is applied to improve us-
ability, algorithm performance, and the visual feedback to
the user, by smoothing formant streams to account for un-
intended action such as dropped formants or the wavering
of an untrained voice (see Section 4). It considers that some
users will have greater control of their voice than others, and
provides a parameter for adjusting the algorithm’s sensitiv-
ity to a change in the produced sound.

Section 5 describes how estimated formants are com-
pared and matched to a database of formants collected of-
fline from the output of the vocal tract model (described in
Section 2) having various configurations of cross-sectional
area.

2 A SIMPLIFIED VOCAL TRACT MODEL

It is well known that digital waveguide modeling may be
used to simulate plane and spherical waves propagating in
cylindrical and conical acoustic tubes [16]. More complex
shapes, such as those produced by the vocal tract when us-
ing the velum, jaw, tongue and lips to voice different vowel
sounds, can be approximated using a sequence of cylindri-
cal waveguide elements separated by scattering junctions
accounting for the reflection and transmission that occurs
when a change in cross-sectional area creates a correspond-
ing change of impedance.
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Figure 1. A waveguidemodel of an acoustic tube closed
at one end with reflectionR0(ω) and open at the other with
reflectionRL(ω). The tube has a singlechange in cross-
sectional area at the center, creating a two-port scattering
junction with reflection and transmission defined byk, a co-
efficient set according to the relative areas of the two sec-
tions.

The way in which a shape departing from the purely cylin-
drical contributes to formant peaks in the magnitude spec-
trum may be seen by considering a simple model with only
two cylindrical waveguide segments of the same length but
with different cross-sectional areas,A1 andA2 respectively

(see Figure 1). The two-port scattering junction models
the reflection and transmission that occurs at the change in
cross-sectional area, where the reflection coefficient is given
by

k = (A1 − A2)/(A1 + A2). (1)

The response atY (z) (corresponding to the mouth) to input
X(z) (corresponding to the glottis) is given by

Y (z) = X(z)(1 + k)z
−2

[1 + b + b
2

+ . . .] +

Y (z)RL(z)R0(z)(1 − k
2
)z

−4
[1 + b + . . .] +

Y (z)RL(−k)z
−2

, (2)

where
b = R0(z)kz

−2
. (3)

Equation (2) is the sum of three terms corresponding to the
possible signal flow paths toY (z), with the first two terms
including the infinite series generated by the circulating path
in the first waveguide segment. Using the closed form resp-
resentation and substituting (3) into (2) yields all-pole filter
transfer function

H(z) = Y (z)/X(z)

=
(1 + k)z

−2

1 + k(RL(z) − R0(z))z−2 − RL(z)R0(z)z−4
.

(4)

Setting end reflection functions

R0(z) = 1, and RL(z) = −1

makes the system lossless withtransfer function

Ĥ(z) =
(1 + k)z

−2

1 − 2kz−2 + z−4
, (5)

preserves the harmonic structure of an open end tube, and
allows forobservation of the effects of the junction.

Factoring the denominator in (5) yields the intermediate
complex conjugate pair,

ρ = k + j

√

1 − k2 ρ
∗

= k − j

√

1 − k2, (6)

and ultimately the four roots/poles of the filter given by

p1 =
√

ρ, p2 = −
√

ρ, p3 = p
∗
1
, p4 = p

∗
2
. (7)

Figure 2 shows how the poles shift as a function ofk and
thus in responseto a change in cross-sectional area. Shift-
ing poles corresponds to a shift of harmonic peaks in the
magnitude which, when more sections with varying cross-
section are considered, leads to regions in the spectrum with
increased and decreased energy, and the appearance of for-
mant peaks during vowel production.

Increasing the number of segments increases the num-
ber of poles in the vocal tract transfer function. As shown
in (6) and (7), filter poles are a function of the reflection
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Figure 2. The four poles of transfer function (5) plotted for
five values of reflection coefficientk. The uniform cylin-
drical tube hasa reflection coefficient ofk = 0 and corre-
sponds to a uniform/harmonic spacing of poles (or peaks in
the magnitude spectrum). A change ink corresponds to a
change in the cross-sectional area to the tube and the ob-
served shifting of poles in the vocal tract transfer function.

coefficient, allowing a change in cross-sectional area to be
inferred directly from filter poles. The complexity involved
in this recursive problem however, is unnecessarily expen-
sive (though not prohibitively so) for real-time applications,
and yields far more data than is required to identify the vo-
cal tract shape with the accuracy desired here. Rather, it was
found that a vocal tract shape could be sufficiently charac-
terized using only up four formant peaks in the magnitude
of its frequency response.

3 TRACKING FORMANTS IN VOCAL OUTPUT

An incoming sample frame of recorded voice is windowed
and processed to extract its spectral envelope—a curve as-
sumed to approximate the magnitude of the vocal tract fre-
quency response—with formants peaks in the spectra being
identified by tracking curve local maxima.

Notice from the log spectrum in Figure 3 (upper curve)
that the position of weaker formants is sometimes obscured
by the presence of more pronounced formants having greater
amplitude and bandwidth. As shown by the broken-line
curve in Figure 3 (lower curve), the second derivative of
the log magnitude spectrum may be taken to produce more
prominent bends in the curve contour at peak locations, ef-
fectively reducing the formant bandwidth and accentuating
the position of “merged” formants [13]. Though is also pos-
sible to take the third derivative of the phase spectrum [8]
to yield further improvement in bandwidth attenuation and
peak accentuation, this method was found to be less success-
ful in tracking merged formants with significantly different
amplitudes, and thus produced less consistent results.

Once the most prominent formant peaks are detected,
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Figure 3. The log magnitude spectrum of an input sam-
ple frame (upper solid line) and its second derivative (lower
broken line), with the latter accentuating the position of
“merged” formants.

they are placed into formant streams that track the move-
ment of a formant number from frame to frame. These for-
mant streams are necessary to account for dropped formants
and improve usability and performance as discussed in Sec-
tion 4. Limiting the streams to a maximum of four was suffi-
cient to uniquely identify a corresponding vocal tract model.

Figure 4. Example of formant stream assignment: Analysis
of current frameFn yields two detected formant peaks at
154 Hz and 2492 Hz. The firstpeak at 154 Hz is closest to
the first formant of the previous frameFn−1 and is thus as-
signed to the first formant streamf1(n). Similarly, the peak
at 2492 Hz is assigned to the third formant streamf3(n).
To accommodate for the “dropped” formant in the second
stream, the last value assigned from the previous frame is
held over to the current frame.

To determine to which stream a formant peak should be
assigned, a distance measure is taken between the estimated
formant peak of a current frameFn and the stream-assigned
neighbouring formants of the previous frame,Fn−1, with
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the formant being assigned to the stream of its neighbour
closest in frequency. If the difference between formant fre-
quencies exceeds athreshold, an additional formant stream
becomes active. Though it is possible to have up to four
streams, it is most common to use only three.

The process is illustrated by the example in Figure 4,
where only two peaks have been detected with three active
streams, flagging the possibility that a formant was unin-
tentionally “dropped”. Accounting for such absent formant
peaks, as described in Section 4, further improves usability
of the system.

4 MINIMUM ACTION FOR IMPROVED
USABILITY

There are the two situations in which a formant may unin-
tentionally temporarily disappear from one sample frame to
the next: 1) when the algorithm fails to detect it for a partic-
ular frame or more likely 2) an untrained voice is unable to
consistently sustain the quality of the produced sound. As
shown in Figure 5 (top), either instance generates a sharp
null in the formant tracking curve.

To accommodate for this, minimum action is assumed,
and such significant temporary drops in the curve are con-
sidered unlikely or unintentional (with minimum action sug-
gesting too much effort would be required to intentionally
produce such a drastic change). Consider again the exam-
ple shown in Figure 4, which shows only two peaks be-
ing detected in the presence of three active formant curves.
Since the detected peak is placed in the third stream, it is
the second formant that was dropped. In this case, the last
value in the second stream is held over to the current frame,
f2(n) = f2(n− 1). In this way, when/if the formant returns
in subsequent frame analysis, it will be placed in the cor-
rect stream and the sharp nulls in the curves will be avoided
(see top and middle of Figure 5). The repetition of formants
within a stream can occur up to four times before the stream
is deemed inactive.

Algorithm performance and visual feedback to the user is
further improved by applying a smoothing filter to the for-
mant tracking curves, effectively stabilizing the movement
of the formants and compensating for unintentional waver-
ing of the less-trained voice. An amplitude envelope fol-
lower given by,

f̂m(n) = (1 − ν)|fm(n)| + νf̂m(n − 1), (8)

is applied to the formant streamsfm(n), whereν determines
how quickly changes infm(n) are tracked. Ifν is close to
one, changes are tracked slowly, making the smoothed curve
f̂m(n) less sensitive to change. Ifν is close to zero,fm(n)

has an immediate influence on̂fm(n). A higherν, therefore
may be appropriate for untrained voices, but with practice,
the parameter value may be decreased to allow for better
detection of subtle nuances.
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Figure 5. Three active formant streams with the third stream
having sharp nulls due to temporarily dropped formants
(top). Nulls are avoided byholding values from the pre-
vious frame when a formant is flagged as being dropped
(middle). Further smoothing is applied to compensate for
unintentional wavering in the less-trained voice (bottom).

Regardless of ability, formants shift rapidly during an
onset of (or change in) the vocal/vowel sound, and thus
detected formants are added to streams only once the for-
mants have settled and the speech waveform is more sus-
tained. (This creates latency in the visual feedback to the
user equal to the onset duration). Extensive methods for de-
tecting attacks in sounds from musical instruments are not
necessary here, particularly since they are considered to be
less effective when applied to the voice [4]. Figure 6 shows
the waveform recorded when a speaker produces the vowel
sounds /ee/ to /oo/ and back to /ee/. In spite of the speaker’s
attempt to keep the amplitude constant, the waveform enve-
lope clearly shows a change in energy at the locations of the
changing events. This result is expected when considering
that the waxing and waning in the frequency spectrum due
to shifting formants will have an equivalent effect on the sig-
nal’s energy in both time and frequency domains (Parseval’s
theorem).

The onset of an event is therefore identified solely by
tracking steep slopes in the amplitude envelope of the speech
signal. At an event onset, the formant peaks are still de-
tected, but with their rate of change being recorded from
frame to frame. Once this value is sufficiently reduced and
the position of the speaker/singer’s formants settle, the onset
region is considered to have passed and the algorithm may
resume with the process of formant stream assignment and
vocal tract shape estimation.

5 ESTIMATION OF THE VOCAL TRACT SHAPE

With the estimated formant streams in place, the final step is
to search the database produced by the output of the model
configured to various shapes, and find the most likely can-
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Figure 6. Amplitude envelope produced when voicing vow-
els /ee/ then /oo/ then back to /ee/ while attempting to keep
the amplitude (loudness)constant. The amplitude envelope
clearly shows the locations of these event changes.

didate.
A piecewise cylindrical waveguide model, similar to that

shown in Figure 1, was developed havingNs sections, each
with NA possible cross-sectional area values, yieldingN

Ns

A

possible combinations. Considering all possible combina-
tions yields duplicate shapes however, fewer corresponding
vocal tract area functions are produced by considering only
the change in cross section. Here,Ns = 7 andNA = 5

seemed to produce the best results when considering perfor-
mance, usability and accuracy, and the intended application
of real-time musical control.

A table maps the model’s vocal tract area function to the
formant frequencies in its output spectra. The table is sorted
by grouping the shapes based on the number of detected for-
mants. The formants detected from the incoming speech
signal (as described in Section 3) are compared to the en-
tire portion of the database having the same number of for-
mants. The Euclidean distanced(fU, fM) is used to mea-
sure which set of formants generated by the modelfMm

best match those generated by the userfUm:

d(fU, fM) =

√

√

√

√

M
∑

m=1

(fUm − fMm)2, (9)

whereM is the number of detected formants. The estimated
vocal tract shape displayed tothe user remains static until
another event onset is detected. Once a new shape is identi-
fied, linear interpolation is performed over the next frame to
smooth the transition, and thus the visual display, between
the two shapes.

6 RESULTS AND CONCLUSIONS

Figures 7 and 8 provide vocal tract estimation examples of
sung vowels /au/ and /ee/. The lower plots of the two fig-
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Figure 7. Estimation of vocal tract shape for vowel sound
/au/.
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Figure 8. Estimation of vocal tract shape for vowel sound
/ee/.

Figure 9. Pure Data object displaying /au/ example

210



ures compare the spectral envelope of the voice signal to
the spectral envelope generated by the vocal tract model of
the estimated shape.The differences between the spectral
envelope of the voice and the model can be attributed to
simplifications of the source-filter model, the wave propaga-
tion losses and unknown termination reflection/transmission
functions (as discussed in Section 1). Also a factor is the
limited resolution of the vocal tract model look-up table.
Though increasing the resolution would produce more spec-
tral envelopes for comparison, it would increase the number
of permutations and possibly adversely affect real-time per-
formance without necessarily improving estimate accuracy.

With this method, we provide a vocal tract area function
estimation algorithm that offers a suitable level of sensitiv-
ity for users having varying abilities. The use of formant
streams enable a formant’s movement to be tracked over
time so that the vocal tract shape may be stabilized by ac-
counting for unintended action, thereby improving its use
for musical control.

Strategies for mapping the vocal tract area function data
to control other music applications are left to the user. The
authors are currently interfacing this work to the control of
parametric synthesis models and polyphonic virtual instru-
ments.

The algorithm is implemented in PureData (Pd) [1], a
real-time audio programming environment popular among
musicians. This facilitates control data acquisition, visual
and audio feedback display, as well as mappings to other
music and sound synthesis applications. The object will be
made available to the public upon request.
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ABSTRACT

This study takes place in the framework of an ongoing
research dealing with the analysis, synthesis and gestural
control of sonic textures. Sonic textures include a wide
range of sounds featured by random properties in a short-
term scale and constant characteristics in a long-term scale.
In this paper, we describe two recent contributions related
to this field: the first one aimed at providing a sonic tex-
tures space based on human perception. For that purpose,
we conducted a psychoacoustic experiment, relying on a
tangible interface, where subjects were asked to evaluate
similarity between sonic textures by gathering them in sev-
eral groups. The second part of this study aimed at ex-
perimenting the control of sonic textures synthesis using
a tangible interactive table. We also designed a musical
tabletop application inspired by the metaphor of a sonic
space exploration. This gave very promising insights on
the possibilities offered by such interfaces for the real-time
processing of sonic textures.

1. INTRODUCTION

Before presenting the two main contributions of this paper,
i.e. the creation of a perceptual space of sonic textures re-
lying on the result of a psychoacoustic experiment and its
exploration by an interactive tangible interface, we will in-
troduce in the following sections some important concepts
underlying this research: first we will bring some elements
defining the class of the sonic textures, then we will com-
pare the two approaches that can be adopted when address-
ing the question of sound classification and finally present
the original RFID-based tangible interface we used for this
study.

1.1 The sonic textures

Sonic textures are characterized in terms of both micro-
scopic and macroscopic features: on the short-term scale,
they are composed of a series of micro-structural elements
which are subject to randomness, whereas on the long-term
scale, the characteristics of the structure and randomness
remain constant. Some environmental sounds, such as rain,

Copyright: c©2010 Jean-Julien Filatriau et al. This is
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waterfalls or wind, are amongst the most obvious exam-
ples of this group of sounds but it is also possible to find
textures in a musical context, especially in contemporary
or electro-acoustic compositions [1]. The computer mu-
sic community has recently drawn attention to sonic tex-
tures [2] and both synthesis and analysis-synthesis meth-
ods, specifically dedicated to this class of sounds, have
been developed lately [3, 4].

1.2 Features-based vs. perceptual classification of
sounds

Two main approaches can be followed when dealing with
the characterization and classification of musical sounds.
The first one refers to Music Information Retrieval (MIR)
and relies on an objective description of the sound based
on a series of features computed on the audio signal [5,
6]. The MIR community enhanced quickly over the last
decade and a number of MIR tools, such as Marsyas 1 ,
CLAM 2 or the MIRToolbox 3 , are hence available nowa-
days for experimentation.

The second strategy, which is adopted here, is a perception-
based approach of sound classification. In this case, the
classification does not rely on mathematical descriptors any-
more but rather on the results of psychoacoustic experi-
ments. On such experiments human listeners are asked
to evaluate similarity between pairs of sounds, to gather
sounds in categories or to assess distance between several
groups of sounds. These methods are commonly used in
studies related to instrumental timbre perception [7, 8],
musical emotion assessment [9] or environmental sounds
categorization [10, 11]. These two complementary approaches
for sound classification, i.e. descriptors-based and perception-
based, aim at addressing specific questions and provide
slightly different results.

1.3 Tangisense, a new platform for intuitive and
collaborative interaction

A tangible user interface (TUI) is a user interface in which
a person interacts with digital information through the phys-
ical environment. It derives from the theoretical concept of
tangible interactivity which states that the manipulation of
real physical objects is much more efficient than the uti-
lization of virtual widgets on a screen [12]. A part of this
work is based on Tangisense, a platform for intuitive and
collaborative interaction using an interactive table coupled

1 http://www.marsyas.info
2 http://clam-project.org
3 http://users.jyu.fi/ lartillo/mirtoolbox
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with tangible objects [13]. This new interface relies on
RFID technology (Radio-frequency IDentification), which
enables the users to manipulate tangible objects equipped
with one or several RFID tags. The current prototype of
Tangisense is composed of an array of 1600 RFID anten-
nas in the form of 25 squared tiles. The surface of the inter-
active area is about 1m2 divided in a 80x80 grid, enabling
the detection of more than 60 tangible objects moving si-
multaneously on the table with a spatial precision of 1.25
cm. In terms of temporal resolution, the sampling rate of
the table is 20 Hz, that is the position of a tangible object
is refreshed every 50 ms.

Tangisense allows users to interact with two kinds of
objects: ’tangible objects’, which can be found in the con-
text of everyday life, physically accessible and easy to grasp
by the user, and ’virtual objects’ displayed on the table
using LED diodes associated to each RFID antenna. The
original software architecture of Tangisense is written in
the cross-platform language Java, but a bridge based on the
OpenSoundControl protocol has been implemented to al-
low the table to communicate with a series of OSC-compatible
programming environments such as Max/MSP, Pure Data,
or Processing.

Since a couple of years touchable and tangible inter-
faces have been widely used for musical expression [14,
15, 16]. Due to its original RFID-based technology, Tangisense
differs from most of these interfaces, which rely on com-
puter vision tracking. One of the main advantages com-
pared to camera-based tabletops is that Tangisense is not
sensitive to lightning conditions, and does not require any
preliminary calibration step before utilization. Thanks to
the thickness of the tiles (15 cm), the interactive surface
may be inserted in reduced spaces and placed in any po-
sition, for example vertically against a wall. The current
version of this tangible table does not include multi-touch
tactile display, but this functionality will be included in the
next prototype, allowing direct interaction using fingers.

2. CREATION OF A PERCEPTUAL SONIC
TEXTURES SPACE

In order to study the perception of sonic textures in a mu-
sical context, we conducted a psychoacoustic experiment
where a series of participants were asked to gather ex-
amples of such textures in groups according to their per-
ceived similarity. By summing up the results provided by
all the participants and processing them through a multi-
dimensional scaling analysis (MDS), we have been able to
provide a collective map of sonic textures based on all par-
ticipants’ perception. This experiment was implemented
in Java and used the interactive tangible table described in
the previous section as control interface.

2.1 Musical sonic textures collection

For the purpose of this psychoacoustic experiment, we se-
lected a set of 16 musical sonic textures extracted from
electronic and electro-acoustic musical pieces written by

Index Piece Composer
1 Bohor Y. Xenakis
2 Concret PH Y. Xenakis
3 Cross Over K. Hofstetter
4 Ermine M. Namblard
5 Ermine M. Namblard
6 Etheraction J-M. Couturier
7 Foley Room A. Tobin
8 Gobi the Desert Monolake
9 Sur la plage à l’aube M. Redolfi
10 La légende du jaguar M. Redolfi
11 Microsound C. Roads
12 Microsound C. Roads
13 Nodal H. Vaggione
14 Orient-Occident Y. Xenakis
15 Tune of Wind C-W. Weng
16 De Zarb à Daf L. Ceccarelli

Table 1. List of musical excerpts used for the sonic tex-
tures grouping experiment.

various composers 4 , as listed in Table 1. To be selected,
musical excerpts must fulfill the main criteria defining the
sonic textures, i.e. presenting both short-term random prop-
erties and constant long-term characteristics. They should
also present a certain degree of abstractness, i.e. the source
of the sound should not be easily identifiable, in order to
make the listener focus on the acoustical attributes of the
textures and avoid a categorization based on the recogni-
tion of the sound source. Each excerpt was extracted as
an approximately 10 seconds duration stereophonic sound
file. The experimenter adjusted the loudness accordingly.

2.2 Experimental protocol

In this grouping experiment, also named free categoriza-
tion task, subjects were asked to cluster sonic textures from
a stimuli set into several groups according to their per-
ceived similarity. As illustrated in Figure 1 and Figure 2,
they performed this task by manipulating three different
kinds of tangible items on the interactive table:

• 16 cubic ’sound objects’ numbered from 1 to 16, as-
sociated to one sonic texture of the stimuli set,

• 4 ’basket objects’ , creating virtual rectangular bas-
kets on the table,

• one ’loudspeaker object’, allowing to draw a virtual
circular listening area on the table

To listen to each sonic texture from the stimuli set, the
participant had to place the actual tangible sound object
within the listening area drawn around the tangible loud-
speaker object. The volume of the sound was mapped ac-
cording to the distance with the center of the listening area,
and the size of the listening area let the possibility for the

4 Material related to this study, like the collection of musical excerpts
used for the listening tests and videos showing the experiment process,
are available online: http://www.tele.ucl.ac.be/˜jjfil/SMC10.html
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Virtual baskets

Tangible 
sounds objects

Virtual 
listening area 

Tangible 
loudspeaker object

Tangible 
"basket objects"

Figure 1. Representation of the tangible and virtual ob-
jects used in the sonic textures grouping experiment.

participant to listen to several sounds simultaneously. Then
the participant was invited to gather the sounds in groups
according to their similarity by putting the actual tangible
sound objects within relevant virtual baskets. At the be-
ginning of the experiment three baskets were available for
the subject, who could ask for a fourth basket if needed.
An important instruction given by the experimenter was
that subject had no obligation to place each sonic texture
in a group, in order to avoid a ’garbage basket’ including
heterogeneous sounds. At the end of the classification, the
subject could thus leave one or several sounds unclassified,
if he or she thought these sounds did not share enough sim-
ilar characteristics to belong to any group.

In order to make the participant feel comfortable with
both the categorization task and the manipulation of the
tangible interface, time was not limited and even not mea-
sured as an indicator of subject’s ability. The average du-
ration for each user to achieve the sounds gathering was
approximately fifteen minutes.

Once grouping completed, each participant answered an
oral questionnaire where they were first asked to evaluate
both the difficulty of the sound grouping task and the uti-
lization of the tangible interface to complete this task. Par-
ticipants were then asked to explain their categorization by
describing the method they adopted to gather the sounds,
and by specifying the content of the baskets by associating
keywords to each class of sonic textures.

2.3 MDS analysis

For each subject participating to this experiment, a sonic
textures distance matrix was created based on the result
the sounds gathering. The creation of this distance ma-
trix relied on a straightforward Boolean rule: if sounds be-
longed to the same group, their mutual distance was set to
zero, in this opposite case, their distance was set to 1. As a
consequence, leftover sounds had a distance of 0 between
themselves and 1 with any other sounds. Figure 3 shows
an example of sonic textures classification and the result-
ing individual, symmetrical and binary distance matrix.

Figure 2. A subject completing the sonic textures group-
ing experiment using the tangible interactive table.

Compute sounds 
distance matrix

Sound1 Sound4 Sound7

Sound12 Sound16

Sound2 Sound3 Sound8

Sound14 Sound15

Sound5 Sound6 Sound9

Sound10 Sound13

Sound11
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Unclassified sounds

Basket 1 Basket 2

  0  1  1  0  1  1  0  1  1  1  1  0  1  1  1  0
  1  0  0  1  1  1  1  0  1  1  1  1  1  0  0  1
  1  0  0  1  1  1  1  0  1  1  1  1  1  0  0  1
  0  1  1  0  1  1  0  1  1  1  1  0  1  1  1  0
  1  1  1  1  0  0  1  1  0  0  1  1  0  1  1  1
  1  1  1  1  0  0  1  1  0  0  1  1  0  1  1  1
  0  1  1  0  1  1  0  1  1  1  1  0  1  1  1  0
  1  0  0  1  1  1  1  0  1  1  1  1  1  0  0  1
  1  1  1  1  0  0  1  1  0  0  1  1  0  1  1  1
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  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1
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  1  0  0  1  1  1  1  0  1  1  1  1  1  0  0  1
  0  1  1  0  1  1  0  1  1  1  1  0  1  1  1  0
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Figure 3. At the top, an example of sonic textures group-
ing, at the bottom the resulting distance matrix.

23 participants, aged from 13 to 60 and having vari-
ous degrees of musical training and experience in sound
processing, performed the experiment. A global distance
matrix was then put together summing all the 23 individ-
ual binary matrices. With this collective matrix, we ap-
plied a multidimensional scaling analysis (MDS) in order
to construct a best-fitting geometric map of the sonic tex-
tures stimuli set.

Multidimensional scaling is a set of statistical techniques
widely used in information visualization to explore simi-
larities or dissimilarities in data [17]. It takes as an input
a matrix of inter-point distances, summarizing the dissim-
ilarities measured in the input data, and creates a configu-
ration of points. An iterative algorithm is used to optimize
the relative position of the data on the map to match the
dissimilarities, which can be issued from different types
of measurements. Ideally, the resulting space is in two
or three dimensions, and the Euclidean distances between
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them reproduce the original distance matrix. This method
has been widely used in earlier works related to perceptual
sound classification, especially for the creation of percep-
tual representation of instrumental timbre [7, 8].

Figure 4 shows the 2-D and 3-D perceptual spaces of
sonic textures resulting from the MDS analysis results of
the 23 participants provided after the grouping experiment.

2.4 MDS evaluation

For the purpose of our study, we fed the MDS algorithm
with the 16-by-16 collective sonic textures distance ma-
trix D, corresponding to the sum of all the individual dis-
tance matrices. MDS returned an 16-by-16 configuration
matrix Y, whose rows were the coordinates of the 16 re-
constructed points in a 16-dimensional space; this space
could be reduced by considering only the k first columns
of Y, corresponding to the reconstruction of the 16 points
in a k-dimensions space. In our case, the evaluation of the
MDS analysis mainly consisted of determining if the re-
duction to a 2-D or 3-D space, easy to visualize, provided
a reasonable approximation to the original distance matrix
D.

A common method consists of evaluating the sorted eigen-
values of the scalar product matrix Y*Y’: the relative mag-
nitudes of those eigenvalues indicate the relative contribu-
tion of the corresponding columns of Y in reproducing the
original distance matrix D with the reconstructed points. If
only the first two or three eigenvalues are large, then only
those coordinates of the points in Y are needed to accu-
rately reproduce D. Figure 5 displays a scree plot of the
scalar product matrix Y*Y’ resulting of our MDS anal-
ysis, i.e. the eigenvalues of this matrix, normalized and
sorted in a descending order of magnitude. We can see two
large positive eigenvalues on the scree plot, which means
that the configuration of points created by the MDS can
be plotted in a 2D map. The four negative eigenvalues
indicate that the distances on the reconstructed space are
not Euclidean, that is no configuration of points can ex-
actly reproduce the original distance matrix D issued from
the sounds grouping experiment. Fortunately, these nega-
tive eigenvalues are relatively small in comparison to the
largest positive ones, which indicate that the reduction to
the two first columns of Y provide a fairly accurate approx-
imation of the distance matrix D. For a detailed description
of the multidimensional scaling analysis and its evaluation
methods, interested reader can refer to [17].

2.5 Discussion

Over the 23 participants who performed this experiment,
65% classified the sounds set in three groups and 35% in
four groups. More than 60% of the baskets contained 4 or
5 sounds in the case of the 3-groups classification and 3 or
4 sounds in the case of the 4-groups classification. The av-
erage number of isolated sounds, i.e. not gathered with any
other sounds, was 1.2 in the case of the 3-groups classifi-
cation and 1.375 in the case of the 4-groups classification.
Eight participants did not leave out any sound.

During the step of the verbal explanation, where sub-
jects were asked to describe the groups according to one or

Figure 5. Scree plot of the scalar product matrix Y*Y,
showing the sorted eigenvalues, normalized by the maxi-
mal eigenvalue, as a function of the eigenvalue index.

several keywords, interesting information came up regard-
ing the way the sonic textures were perceived by the partic-
ipants and which were criteria used by the participants to
make their own classification. Four main categories came
out among the keywords provided by the subjects:

• keywords describing the sound source evoked by the
sonic texture: water, nature, machines, factories,
etc. . .

• keywords describing the emotion evoked by the sonic
texture: relaxing, unpleasant, frightening, annoying,
etc. . .

• keywords related to the form of the texture, some-
how linked to its temporal profile: continuous sounds,
fluid sounds, grainy sounds, smooth sounds, rhyth-
mic sounds, percussive sounds etc. . .

• keywords related to the color of the texture, which
may somehow related to its spectral content: bright,
metallic, etc. . .

It was interesting to note that some subjects could use
the same keywords to characterize groups that included
different sounds.

In terms of interaction, people agreed about the value
of the tangible interface for such a free categorization task,
which may sometimes turn out to be unpleasant when us-
ing a traditional mouse-based user interface. Benefits of-
fered by such interfaces for organizing, exploring and clas-
sifying data have already been proved by the computer-
human interaction community [18]. In our setting, the ma-
nipulation of physical tangible objects was quick and in-
tuitive, and the possibility offered to the user to listen to
several sounds simultaneously was very helpful to validate
the grouping.

Primary conclusions can be drawn from the observation
of the perceptual sonic textures spaces resulting of this psy-
choacoustic experiment (Figure 4). First of all, it is worth

215



Figure 4. 2-D and 3-D sonic textures spaces resulting of the MDS analysis.

mentioning that the positions of the sounds were relatively
scattered all around the space, which reflects some kind of
variability between the subjects’ answers. However, clus-
ters of sounds clearly appear in the sound space, which
indicate certain coherence between the subjects’ answers.
For instance, 83% of the participants agreed to gather tex-
tures 5 and 10 in the same basket. These two observations
- variability and consistency of subjects answers - tend to
indicate that the grouping of these textures was not a trivial
task.

2.6 Future tracks

This paper describes an ongoing long-term research work
focused on the analysis and synthesis of sonic textures.
The next step of this research will aim at attempting to in-
terpret the geometrical configuration of the sonic textures
in the perceptual map issued from the MDS analysis with
regard to the factors that may explain the ordering of the
points along the various dimensions of the space. We are
going to describe specifically each sonic texture in terms of
a series of signal descriptors typically used in music infor-
mation retrieval [6], including spectral descriptors (spec-
tral centroid, spectral spread), temporal descriptors (RMS
energy, zerocrossing rate) and spectro-temporal descrip-
tors (spectral flux, roughness). Once those features will
have been combined, we will try to determine if one or
several of these signal descriptors can be mapped to the
dimensions of the perceptual space.

One of our assumptions, inspired by Schaeffer’s approach
on morphological description of sound [19], is that per-
ception of sonic textures could be based on two main at-
tributes, i.e. the color and the form of the texture. We
assume that color of a sonic texture is related to its spectral
content and could be somehow characterized by its spectral
features. By form, we would like to address the notion of
granularity of the textures. A descriptor based on a short-
term analysis of the temporal envelope evolution could en-
able to quantitatively estimate this attribute. Recent works
proposed by [20] and introducing a hybrid model of sound
relying on both concepts of sound color and density could

be an inspirational track for the following of our research.
Among the other tracks we like to address in a near fu-

ture, we plan to extend the MDS analysis by treating the
collective distance matrix issued form this sound grouping
experiment with a hierarchical clustering algorithm. Hi-
erarchical clustering is a way to investigate grouping in
data over a variety of scales, by creating a cluster tree
[21]. This could provide complementary information to
the MDS analysis. Another track we would like to inves-
tigate is the creation of an individual sonic textures space,
relying on results of psychoacoustic experiments of a sin-
gle subject. For that, we plan to conduct another series of
listening tests including the grouping experiment followed
by a second dissimilarity experiment. In this second exper-
iment, participants will be asked to refine the classification
issued from the grouping experiment by numerically rat-
ing the distance between sonic textures belonging to the
same group. This would allow the creation of an individ-
ual sounds distance matrix which could then be analyzed
by multidimensional scaling. This experiment has already
been prototyped with the tangible interface and should be
conducted in the following weeks.

3. INTERACTIVE AND TANGIBLE
EXPLORATION OF A SONIC TEXTURES SPACE

This second part of our research aimed at investigating how
a tangible interactive table such as Tangisense could be
used for a gestural interaction with sonic textures in real-
time. In order to achieve this, we designed a musical table-
top application inspired by the metaphor of the exploration
of a gravitational sonic textures space.

3.1 Related works

Recently, there has been a growing interest towards ex-
perimenting multi-touch and tangible devices for musical
purposes. From pioneer works, such as Audiopad [22] or
the Reactable [14], to the most recent ones like the Brick-
table [16], artists and researchers have highlighted the pos-
sibilities offered by such interfaces for musical expression
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and performance. Some of these studies were dealing with
the use of a tabletop interface for the exploration of sonic
spaces, but addressed this question according to a MIR-
oriented approach aiming at facilitating the navigation in
large music collections [23, 24]. This is a slightly differ-
ent approach than the one adopted in this present study,
described in the next section.

3.2 A gravitational sonic space

As shown in Figure 6, we considered the sonic space as
a gravitational system populated by n ’sounds attractors’
which exert attraction force on m ’sound actuators’ de-
pending on their relative distance. Each attractor has its
own mass, represented by the radius of its surrounding cir-
cle, which is proportional to the attraction force it exerts.
The sonic interaction is designed as follow: a sound, taken
from the set of sonic textures used in the psychoacoustic
experiment presented above, is associated to each attrac-
tor. Each actuator generates an audio track composed of
the mix of the n sonic textures associated to the attractors
that are present in the space. The weight of each sonic tex-
ture in the mix depends on the forces exerted by the cor-
responding attractors on the actuator. In order to enhance
the possibilities of interaction, we added to the actuators
the ability to process the sonic textures through live granu-
lation.

This musical experiment was developed under Max-MSP,
which communicated with the interactive table through OSC.
The exploration of the sonic space partly relied on inter-
polation tools developed by [25] and on GMU, a flexible
granular synthesis environment in Max/MSP [26].

3.3 Interaction with the tangible table

As shown in Figure 7 and Figure 8, the exploration of the
sonic textures space is performed by manipulating three
kinds of tangible objects 5 :

• 6 hemispheric tangible ’sound actuators’,

• 16 cubic tangible ’sound attractors’,

• one ’tangible rubber’,

The tangible sound actuators are used to physically nav-
igate in the sonic space. These objects are hemispheric and
equipped with five RFID tags; beside increasing the ro-
bustness of the detection, it allows to provide information
related to the inclination of the object on the table. We also
chose to map the sound granulation parameters, i.e. grains
length and triggering, to the rotation of the actuators.

The initial idea was to limit the exploration to a fixed
perceptual sonic textures space, i.e. resulting of the psy-
choacoustic experiment described in section 2. However in
order to increase the interactivity and enhance the possibil-
ities of expression, we chose to give the performer the abil-
ity to freely design, populate and modify the sonic space
by handling the tangible objects himself. At the beginning

5 a video demonstrating this musical tabletop application is available
online: http://www.tele.ucl.ac.be/˜jjfil/SMC10.html

Sound actuators Sound attractors

Weight of each attractor on the actuators

Figure 6. Representation of a sonic textures space popu-
lated by 13 sound attractors of various mass and 4 sound
actuators.

of the performance, the user could choose to load the con-
figuration of the attractors corresponding to the perceptual
map issued from the psychoacoustic experiment, or to start
from an empty space and populate the sonic space by plac-
ing tangible attractors on the table. Sound attractors are
represented by illuminated areas on the table; to prevent
a cluttering on the table and facilitate the navigation into
the sonic space, attractors were persistent, which means
that they would keep their position in the sonic space even
if the corresponding tangible sound object was removed
from the table. A tangible rubber is placed at the disposal
of the performer to remove any unwanted sound attractor.

3.4 Evaluation and future tracks

This musical tabletop application constitutes the first at-
tempt to control real-time sound processes using the RFID-
based tangible interface. The mapping between gestures
and sound parameters designed in this application allows
the performer to interact with sonic textures through a large
range of musical gestures: while a seamless navigation in
the sonic space is made possible by sliding the tangible
sound actuators along the table, drawing actuator trajecto-
ries through rapid gestures allows to shape the sound mat-
ter intuitively. Multilayered soundscapes can be composed
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Tangible 
sound attractors

Tangible sound actuators 
equipped with five RFID tags

Tangible rubber

Figure 7. The three kinds of tangible objects used for ex-
ploring the sonic textures space.

by fixing the position of some actuators in specific areas
of the sonic space while moving around other actuators in
different regions of the table. The exploration of the sonic
space by several performers is also possible (Figure 9) and
demonstrates the potential of such kind of interfaces for
collaborative musical improvisation. Although the sonic
space browsed in the first version of this instrument was
composed of sonic textures selected for the purpose of our
psychoacoustic experiment, it can easily be extended to
any sound source. Such interface providing intuitive inter-
action with sound could thus be of interest for musicians or
phonographers using field recordings as a primary sound
material in their compositions.

4. CONCLUSION

The study described here above included two main parts:
the first one aimed at building a space of sonic textures
based on human perception. For that purpose, we con-
ducted a psychoacoustic experiment where 23 participants
were asked to gather a set of musical sonic textures ex-
tracted from various electronic or electro-acoustic pieces in
a few groups according to their perceived similarity. This
experiment relied on a new interactive and tangible inter-
face based on RFID technology. A multidimensional scal-
ing analysis (MDS) was applied to the results provided by
the 23 subjects who completed the sounds grouping exper-
iment, enabling to build both 2-D and 3-D perceptual sonic
textures spaces. An important track we would like to inves-
tigate in a near future is the likely correspondence between
audio descriptors of the sonic textures and dimensions of
a perceptual sound space. The second part of this study
was performance-oriented and aimed at investigating the
possibilities offered by a tangible interface for the gestu-
ral control of sonic textures. We also designed a musical
tabletop application enabling to navigate in a gravitational

Sound attractorsSound actuators

Figure 8. Interactive exploration of the sonic textures
space using tangible sound actuators and attractors.

Figure 9. Collaborative exploration of the sonic space by
two performers

sonic texture environment through a tangible interaction.
The first attempts to test this application brought up some
very promising insights regarding the possibilities offered
by such interfaces for the real-time processing of sonic tex-
tures.
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ABSTRACT 

In this paper, the project AV Clash will be presented. AV 
Clash is a Web-based tool for integrated audiovisual ex-
pression, created by Video Jack (the author and André 
Carrilho, with the assistance of Gokce Taskan). In AV 
Clash, users can manipulate seven “objects” that repre-
sent sounds, incorporating audio-reactive animations and 
graphical user interface elements to control animation 
and sound. The sounds are retrieved from online sound 
database Freesound.org, while the animations are internal 
to the project. AV Clash addresses the following research 
question: how to create a tool for integrated audiovisual 
expression, with customizable content, which is flexible, 
playful to use and engaging to observe? After an intro-
duction to the project, a contextualization with similar 
works is presented, followed by a presentation of the mo-
tivations behind the project, and past work by Video 
Jack. Then the project and its functionalities are de-
scribed. Finally, conclusions are presented, assessing the 
achievement of the initial aims, and addressing the limita-
tions of the project, while outlining paths for future de-
velopments. 

1. INTRODUCTION 
AV Clash is a Web-based project by Video Jack (the 
author and André Carrilho, with the assistance of Gokce 
Taskan), which allows for the creation of audiovisual 
compositions, consisting of combinations of sound and 
animation loops. AV Clash is composed of seven audio-
visual units, which enable playback and manipulation of 
four different loops of sound and audio-reactive visuals 
(one combination of audio and visuals at a time). These 
units were named “Interactive AudioVisual Objects” 
(“IAVOs”) since they are composed of user interface (UI) 
elements that trigger and manipulate sounds, together 
with animations that react to those sounds. The sounds in 
AV Clash are retrieved from Freesound.org, an online 
sound database. The animations were developed by An-
dré Carrilho. 

AV Clash is still being developed, and tested, by Video 
Jack. Therefore it is not online yet, although Video Jack 
have already registered the domain 
www.avclash.com, where the project will be hosted. 
For now, this domain points to a page where demonstra-
tion tracks recorded with AV Clash can be listened to. No 
public presentations (performances or exhibitions) have 
been made with the project yet. 

2. CONTEXTUALIZATION 
AV Clash follows a long tradition of explorations towards 
integration of sound and image. Ancient Greek philoso-
phers, such as Aristotle and Pythagoras, considered that 
there was a correlation between the musical scale and the 
rainbow spectrum of hues [4]. The color to music correla-
tion was further explored in the Renaissance by several 
artists, including Leonardo da Vinci, and later by Isaac 
Newton [9, pp. 45-46]. Newton’s experiments influenced 
the creation of the Ocular Harpsichord, an early “color 
organ” by Father Louis Bertrand Castel, around 1730 [4].  

Wallace Rimington created his electric Colour Organ 
in 1893, which “mixed primary colors into more nuanced 
hues that could be projected on gently-moving gauzy 
curtains to obtain polymorphous color flows” [3]. This 
Colour Organ inspired composer Alexander Scriabin to 
write “a scenario of changing colors into the score of his 
1910 Prometheus symphony” [3]. The tradition of color 
organs continued into the mid 20th century, and influ-
enced abstract filmmakers – “for the cinema, with its 
standardized methods of production, reproduction and 
exhibition, seemed the ideal vehicle for Color Music” [3]. 

In the 1920s, Oskar Fischinger and Walther Ruttman 
created “visual music” films in Germany – a combination 
of tinted animation with live music [4]. Oskar Fischinger 
moved to Hollywood in 1936, becoming an inspiration to 
a younger generation of visual music artists, such as Jor-
dan Belson, Harry Smith and brothers John and James 
Whitney. The Whitney brothers “decided to take up ab-
stract animation after seeing a screening of Oskar's films” 
[3]. John Whitney is “widely considered ‘the father of 
computer graphics’” for his explorations of computer-
generated visuals through mathematical functions [6, p. 
15]. He was among the first generation to use computers 
for the creation of artworks in the 1960s.  

Copyright: © 2010 Nuno N. Correia. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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Progress in computing hardware played an important 
role in the dissemination of digital art from the late 20th 
century onwards. Sound is one of the major areas of ex-
ploration for digital artists. Artistic digital sound and mu-
sic is a vast territory, that includes: “pure sound art 
(without any visual component), audio-visual installation 
environment and software, Internet-based projects that 
allow for real-time, multi-user compositions and remixes, 
as well as networked projects that involve public places 
or nomadic devices” [6, p. 133]. 

These digital sound and music projects are frequently 
interactive, and some of them incorporate visuals: “(they) 
also commonly take the form of interactive installations 
or ‘sculptures’ that respond to different kinds of user in-
put or translate data into sounds and visuals” [6, p. 136]. 
Many of these projects that combine music and visuals 
digitally “stand in the tradition of kinetic light perform-
ance or the visual music of the German abstractor and 
painter Oskar Fischinger” [6, p. 134]. Among the artists 
that explore integrated audiovisual expression by digital 
means are: Golan Levin, notably with his Audiovisual 
Environment Suite; Toshio Iwai, with projects such as his 
recent Electroplankton and Tenori-On; and John Klima, 
namely with Glasbead, an “online art work that enables 
up to 20 simultaneous participants to make music col-
laboratively via a colorful three-dimensional interface” 
[8, p. 54]. 

Internet proved to be a fertile territory for developing 
digital sound and music projects, exploring the possibili-
ties of connecting different musicians, sound artists, and 
their audiences. In 1998, Sergi Jordà created the first ver-
sion of FMOL, “an Internet-based music composition 
system that could allow cybercomposers to participate in 
the creation of the music for La Fura’s next show, F@ust 
3.0 (…) freely inspired by Goethe’s work” [2, p. 326]. 
Like Glasbead, it allowed for online collaborative music 
composition. 

Freesound Radio 1 (2009) is another example of Web-
based sonic collaboration. It is an online “experimental 
environment that allows users to collectively explore the 
content in Freesound.org by listening to combinations of 
sounds represented using a graph data structure” [7, p. 1]. 
Freesound Radio retrieves sounds from Freesound.org, 
“one of the most widely used sites for sharing sound files 
licensed under a Creative Commons (CC) license” [7, p. 
1]. 

3. MOTIVATION AND PREVIOUS WORK 
AV Clash is Video Jack’s fourth major interactive audio-
visual project, after Heat Seeker (2006), AVOL (2007) 
and Master and Margarita (2009).  

Among previous Video Jack projects, the most direct 
predecessor of AV Clash is AVOL 2. AVOL allows for the 
integrated manipulation of sound and visual elements. 
The project is composed of seven “objects”, which enable 

                                                             
1 http://radio.freesound.org/ 
2 http://www.videojackstudios.com/projects/avol   

triggering four possible combinations of sound and 
visuals. These “objects” integrate graphical user interface 
elements to manipulate the audiovisual combinations. 
Objects can be moved around the screen, and object colli-
sions generate special animations and sounds. 

After the conclusion of AVOL in 2007, and its presen-
tation in several festivals in 2008, the author detected 
several limitations in the project. Among these limitations 
are: a fixed number of sound and animation loops; a 
small degree of audio and visual manipulation possibili-
ties; difficulty in making simultaneous changes in multi-
ple objects; absence of recording or sharing capabilities; 
difficulties in identifying each object; and lack of col-
laboration functionalities.  

Video Jack started developing a new project in early 
2010, entitled AV Clash, to address the limitations of 
AVOL. In order to allow for a greater audio flexibility, the 
author decided to connect this new project to an online 
sound database. Freesound.org, with its vast repository of 
Creative Commons licensed sounds and its tag-based 
audio categorization, seemed to be adequate. The prece-
dent of Freesound Radio, which is successful in retriev-
ing sounds from Freesound.org for sonic composition, 
also pointed out in this direction. The animations would 
still be developed by Video Jack, but it would be possible 
for users to choose among a list of different animations 
associated with a certain tag. The author invited a former 
student, Gokce Taskan, to collaborate on the program-
ming side of the development. Because of the importance 
of vector animation for the project, Freesound Radio’s 
successful usage of Flash, and the experience gained with 
previous projects, Video Jack decided to continue using 
Adobe Flash for the development of AV Clash.  

AV Clash expands on AVOL, by addressing the follow-
ing research question: how to create a tool for integrated 
audiovisual expression, with customizable content, which 
is flexible, playful to use and engaging to observe? 

4. DESCRIPTION OF THE TOOL 
4.1 Image and Sound Association 

Each IAVO has a “tag” associated to it, which is re-
trieved from Freesound.org. In a first stage of develop-
ment, 10 Freesound.org tags will be supported, chosen 
from its most popular tags. AV Clash contains seven an-
imations per tag, in a total of 70 animations. The tag of 
each IAVO acts as a filter to the possible four sounds and 
four animations it may contain. Each tag is associated 
with a color. During one AV Clash session, the user may 
change sounds and animations, and even the tag, of each 
IAVO. More tags and animations will be added in later 
stages of development. 

4.2 Start Screen and Stage 

When users enter AV Clash, they are presented with a 
screen composed of seven colored vertical bars, of equal 
width – the stage. Each bar, colored according to the as-
sociated tag, represents a different activation point for 
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each IAVO. When the project starts, the sounds are 
loaded from online sound database Freesound.org. As the 
28 sounds are loading, a circular pre-loader appears near 
the bottom of the screen, to represent the loading process 
of the four sounds associated with each IAVO. The name 
of the tag is shown above the circle. A percentage is 
shown in the center of the circle, displaying the total 
loaded percentage of the four sounds. 

The selection of initial tags, sounds and animations is 
random. Seven random tags are selected by the software, 
and then four random sounds and animations are selected 
per tag, among the ones associated with that tag. The 
sounds are not picked among the totality of sounds avail-
able per tag, but rather from the 20 most popular sounds 
with that tag (based on number of downloads from Free-
sound.org). 

After all 28 sounds have been loaded, the bars disap-
pear – they split up in two at the point where the pre-
loader was, and retracts into the top and bottom edges. 
The IAVOs appear in the place of the pre-loaders, but 
they are not playing yet.  

The stage is resizable, adapting to changes in the 
browser size. However, there is a minimum size, beyond 
which it does not shrink further (800 by 600 pixels). 

4.3 “Stopped IAVO” User Interface and Functionali-
ties 

When an IAVO is not playing, it shows a limited set of 
options. If the user is not rolling over the object with the 
cursor, only an outer “ring” is shown, and a central but-
ton, colored according to the object’s tag. This ring al-
lows for the IAVO to be dragged and “thrown” on the 
stage. When the cursor rolls over the object, additional 
options are shown: four audiovisual loop selection but-
tons, and a red button, which deletes the object (Figure 
1.). The tag of the object is also shown above the IAVO. 

 
Figure 1. Stopped IAVO, in rollout (left) and rollover 
(right) states 

4.4 “Playing IAVO” User Interface and Functionali-
ties 

The UI of each playing IAVO is composed of nine but-
tons and two sliders  (Figure 2.). 

 
Figure 2. UI of playing IAVO, with second sound 
selected 

4.4.1 Presentation of Main UI Elements 

The UI is arranged around and inside the IAVO’s “ring”, 
which allows for dragging and throwing the object 
around the stage. The ring also incorporates two faders, 
shaped as semi circles on each of the sides. Inside of the 
ring are nine buttons, four of which arranged in a two-by-
two grid (the “selection buttons”), with four additional 
buttons in the outside middle points of the grid (red stop 
button on top, green “solo” button on bottom, cyan audio 
effect button on the left, and magenta visual effect button 
on the right), and one more button in its center (the 
“back” button). 

Different UI elements are visible, depending on user 
interaction and the position of the cursor relatively to the 
IAVO. In its “passive” state, when the user is not inter-
acting with it, only the outer half of the ring and part of 
the faders are shown – the fader thumbs are hidden (Fig-
ure 3., left). When the user rolls over the outer half of the 
ring, its inner half appears, and also the fader thumbs 
(Figure 3., right), allowing for the manipulation of the 
faders. Rolling over within the inner half of the ring 
causes the whole UI of the IAVO to appear (Figure 2.), 
and also the tag of the object, shown above the IAVO. 

 
Figure 3. UI of playing IAVO in "roll out" state (left) 
and outer ring "roll over" (right) 
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4.4.2 Buttons and Faders 

Pressing one of the selection buttons causes a switch in 
the audio and animation loops currently playing. The 
button relative to the audiovisual loop playing is always 
hidden. 

Pressing the red button stops the sound and animation 
currently playing (the IAVO switches to “stopped” posi-
tion). The green button “solos” the IAVO, stopping all 
the remaining ones. When an IAVO is stopped, all its 
settings (volume, effect selection and setting) are reset.  

The center button (colored according to the tag as-
signed to the IAVO) reveals additional audio and anima-
tion selection and manipulation options (the “back” of the 
object, described below).  

Pressing the cyan button modifies the four loop selec-
tion buttons, coloring them in cyan. The selection buttons 
become audio effect selection buttons. There are four 
audio effects per IAVO: filter, phaser, distortion and de-
lay. The button relative to the selected effect is hidden. 
Selecting an effect or pressing the cyan button again re-
verts the selection buttons to white (they become loop 
selection buttons again). The filter effect is activated by 
default (Figure 4.). 

 
Figure 4. UI of playing IAVO with audio effects se-
lection buttons (cyan) activated 

The magenta button behaves similarly to the cyan but-
ton. The selection buttons become magenta, allowing for 
selection of visual effect. Visual effects determine how 
the animation of the IAVO reacts to its audio loop. Each 
animation consists of two parts – one that is audio reac-
tive, and another one that is not. The non-reactive ele-
ment serves the purpose of making the IAVO always 
visible, even when the visual effect makes its audio reac-
tive component occasionally disappear. The default vis-
ual effect is scale: the size of the animation decreases or 
increases proportionally to the amplitude of the sound. 
The remaining behaviors are: opacity (opacity of anima-
tions react to sound amplitude); blur (blur level of anima-
tions is inversely proportional to the sound amplitude); 
and RGB transformation (red, green and blue values of 
the animation are transformed proportionally to sound 
amplitude). 

Independently of the color of the selection buttons, 
rolling out of the IAVO and rolling in again presents the 

loop selection buttons (and not the cyan or magenta effect 
buttons). 

The left fader controls the intensity of the audio effect. 
Its default value is zero (minimum). The right fader con-
trols the volume of the sound, and the size of the anima-
tion (both its reactive and non reactive elements). Its de-
fault position is in the middle. 

4.5 Dragging, Throwing and Clashes 

An IAVO can be dragged and repositioned on the stage. 
It can also be “thrown”, by dragging and releasing the 
IAVO in motion. The “throw” behavior causes the IAVO 
to continue moving in the direction and the speed it had 
when released, indefinitely, until the user clicks on it 
again, or presses the "back stage" button. If the IAVO 
reaches the edges of the screen, it starts moving in the 
opposite direction, with the same speed.  

When a moving IAVO hits another object, a clash 
animation occurs, and a clash sound is triggered within 
the static object. The IAVO starts moving in the opposite 
direction. The collision sound consists of a one second 
random segment, from one of the four sounds of the static 
IAVO that is currently not playing (picked randomly), 
with a delay effect applied to it.  

4.6 IAVO User Interface and Functionalities – 
“Back” 

When the user presses the center button of the IAVO, an 
animation occurs, transforming the UI of the object: the 
four selection buttons expand into four larger rectangles, 
and the central button is enlarged and rotated. All the 
remaining previous UI elements disappear, with the ex-
ception of the ring, which still is partially visible under-
neath the new four rectangles (Figure 5.). 

 
Figure 5. Back of the IAVO, in rollover state 
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Each of the four new rectangles allows users to pick 
and adjust sounds and animations for the respective four 
loop selection buttons of the IAVO. Each rectangle is 
composed of two elements: a graphical representation of 
the sound loop, on the top, and an image from the anima-
tion, on the bottom. Sliders on top allow for adjusting the 
start and stop positions for the loop. A slider on the bot-
tom allows for adjusting the reactivity of the animation to 
the sounds, since some sounds might have a lower dy-
namic range than others. Moving this “audio reactive 
sensitivity” slider to the right compensates for a lower 
sound dynamics. The default position of this slider is 
center. 

By clicking in the sound image, a pop-up menu ap-
pears, allowing for the selection of other sounds from 
Freesound.org with the same tag. The pop-up menu in-
cludes the following information per sound: file name; 
short description; duration; author name. The pop-up ap-
pears up or down from the point where the user has 
clicked, depending where there is more space in the 
screen. When one sound is selected, a pre-loader anima-
tion is triggered – a circle starts to be drawn around the 
ring of the IAVO. When the circle is fully drawn, the 
sound has finished loading. 

Clicking in the animation image activates a pop-up 
with images and names of other animations associated 
with that tag. Changes in the sound or image do not pro-
duce any immediate change in the current animation or 
sound playing in that IAVO (unless it occurs in the rec-
tangle relative to the loop that is playing). In the left of 
the rectangle is a play button, which previews the current 
selection of sound and image, without closing the “back” 
of the object. The play button becomes then a stop button. 

When the user presses the central button, the “back” of 
the IAVO is closed, with an animation that mirrors its 
opening (in reverse). If there were any changes in the 
sound or animation, within the rectangle relative to the 
loop that was playing before, these changes will now be 
reflected. In case the preview had been active previously 
to closing, that audiovisual loop remains playing. If the 
IAVO was stopped, it will remain stopped, unless the 
preview had been active. 

4.7 Deleting an IAVO, and Making it Reappear 

When an IAVO is stopped, its red button is not longer a 
stop button, but instead a delete button (as was shown in 
Figure 1.). When this delete button is pressed, the object 
disappears, and the correspondent colored bar reappears, 
in the same position it had in the start of the application.  

This reappearance occurs with an animation: the bar 
appears from the top and bottom edges of the stage. By 
clicking anywhere in this bar, the bar disappears again, 
and the IAVO reappears in that point (stopped). The bar 
disappears into the top and bottom edges of the screen by 
splitting in two at the point where the user has clicked 
(Figure 6.). 

 
Figure 6. Stage with four active bars, representing 
four deleted IAVOs 

4.8 “Back Stage” 

In the upper right corner of the stage, there is a “back 
stage” button. Activating the “back stage” option allows 
for introducing changes to multiple objects in the same 
screen, and also for changing the tag of each IAVO (Fig-
ure 7.). 

 
Figure 7. "Back stage" of AV Clash 

Pressing the “back stage” button triggers a series of 
events. The “back stage” button becomes a “stage” but-
ton. If any object had its “back” visible, it will be closed 
first. All IAVOs move back to the area of their original 
bar, aligned vertically to the same position, near the bot-
tom of the stage. All bars of active IAVOs reappear by 
expanding from the top and bottom of the stage to the 
vertical position of the IAVO, but do not close com-
pletely, stopping at the edge of its ring. Regarding the 
IAVOs that were not active, their bars open slightly, re-
vealing their ring (aligned vertically with the remaining 
objects). Immediately after, all IAVOs reveal their 
“back”, with the same animation described above. One 
more element is shown in this animation: a tag button 
appears above the objects, sliding from behind them. The 
sounds and animations that were playing previously con-
tinue to play. Two black bars appear on top and in the 
bottom of the screen. The top bar reveals load and save 
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options, while the bottom bar shows the credits of the 
project. 

Now users can change all animations and sounds of all 
IAVOs, similarly to how they could change the “back” of 
each IAVO individually. Additionally, users can change 
tags. By pressing the tag button that is now on top of each 
IAVO, a pop-up appears with a list of tags. (Figure 8.).  

 
Figure 8. "Back stage" with several pop-ups open 

A change in tag loads four new sounds from Free-
sound.org, chosen randomly among the 20 most popular 
ones with that tag. A pre-loader animation then takes 
place, similar to the circular initial pre-loader, and the 
sound change pre-loader (overlapped with the IAVO). 
When the loading process concludes, all sounds and an-
imations of the IAVO are replaced. The IAVO reverts to 
its defaults, and if any sound or animation was playing, it 
is stopped. The bars disappear, mirroring the start of the 
project. 

The “Save Set” button generates a file storing all the 
options for each IAVO: tag and list of the four sounds 
and animations; volume and effect level information; and 
audio and visual effect. The “Load Set” button loads a 
previously recorded file, consequently changing all the 
information of each IAVO, and loading new sounds. 

5. REFLECTIONS ON THE INTERAC-
TION DESIGN OF AV CLASH 

In AV Clash, only the most relevant UI elements are visi-
ble at a given time. Since IAVOs contain a large amount 
of buttons and interactive elements, they are shown and 
hidden depending on the position of the mouse relative to 
the IAVO, and if the IAVO is playing or not. For exam-
ple, rolling over the ring of a playing IAVO reveals the 
interactive possibilities contained in the ring, previously 
hidden (volume and effect fader thumbs, enlarged ring 
for dragging and throwing). If the user moves the cursor 
further towards the inside of the ring, more interface op-
tions appear (playback and effects buttons). Donald Nor-
mal classifies this approach as modularization  - creating 
separate functional modules, “each with a limited set of 
controls, each specialized for some different aspects of 
the task” [5, p. 174]. 

Visibility is important not only for modularity, but also 
to hide irrelevant options in a certain context. For exam-
ple, if an IAVO is not playing, the volume and effect fad-
ers are hidden. As Donald Norman states, “a good de-
signer makes sure that appropriate actions are perceptible 
and inappropriate ones invisible” [5, p. xii]. 

This hiding and showing of elements also indicates 
feedback, sending users “information about what action 
has actually been done, what result has been accom-
plished”  [5, p. 27]. Another example of this principle 
occurs when users press one of the playback selection 
buttons – the button becomes invisible. 

The graphic design of interactive elements in AV Clash 
is meant to convey its functionality. An example of this 
approach is the design of the ring, which has a jagged 
appearance, meant to reflect its “draggable” affordance. 
According to Norman, affordances refer to “the perceived 
and actual properties of the thing, particularly those fun-
damental properties that determine just how the thing 
could possibly be used” [5, p. 9]. 

The notion of mapping, meaning the relationship be-
tween the controls and the results [5, p. 23], is also ex-
plored in AV Clash. An example of this is the mapping of 
each IAVO to a specific screen area in the beginning of 
the session, to which it returns to when users press the 
“back stage” option. Mappings are also implemented 
when a playback selection button expands to a full audio 
and visual loop selection interface – the audio and visual 
loop selection options are located in the same quadrant of 
the correspondent selection button. 

Besides an emphasis on functionality, the UI of AV 
Clash also references its own aesthetic universe, con-
nected to the circular nature of the animations. These 
animations, although abstract, are often inspired by con-
centric “real” objects such as flowers, planets, biological 
and molecular/atomic structures. The visual appeal of the 
UI is meant to induce playfulness: “the mouse and the 
pen-based interface allow the user the immediacy of 
touching, dragging, and manipulating visually attractive 
interfaces” [1, p. 23]. 

6. CONCLUSIONS 
6.1 Assessment Regarding Initial Aims 

The author considers that AV Clash has fulfilled the ob-
jective of developing the structure behind AVOL into a 
more flexible project, in terms of source sounds (im-
ported from Freesound.org), animations (although less 
diverse than the sounds) and audiovisual manipulation 
(through the implementation of sonic and visual effects). 
The introduction of the “throw” behavior and the devel-
opment of the “clash” behavior contributed to a higher 
degree of playfulness. The use of colors and tags (im-
ported from Freesound.org) to identify IAVOs also fa-
cilitates recognition of objects. The colored bars create a 
higher visual diversity on the stage. The “save set” func-
tionality introduces an option to save all settings for all 
IAVOs, allowing for the storing and sharing of user op-
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tions. Besides loading new sounds, the “load set” button 
can quickly change multiple parameters within a session. 

However, several limitations have been identified by 
the author in the project, which should be addressed in a 
future project, or in a new version of AV Clash.  

6.2 Paths for future developments 

AV Clash could benefit from accessing more content, and 
from having more content manipulation capabilities. The 
visual diversity of AV Clash is still small compared to its 
audio side. A database for visuals (possibly vector based 
animations) could be created, which would then be used 
by AV Clash similarly to Freesound.org for sound. Fur-
ther audio and visual effects could be added. Specific tags 
for AV Clash could be created in Freesound.org to ensure 
coherence of results. 

Recording capabilities could be built in AV Clash, in 
order to allow users to record their sessions. Content 
sharing could also be implemented, not only of sets but 
also of those recording sessions. This content sharing 
could also integrate with profiles of users in Free-
sound.org. 

Collaboration functionalities could also be imple-
mented. Users could be allowed to take control of a cer-
tain IAVO, and play with it. The different users would 
“jam” together, each with his/her own IAVO. This sys-
tem would resemble how a band plays in a “real life” 
stage. 

A “sequence” mode could be implemented in AV 
Clash, which would not simply playback one of the 
sounds of each IAVO, but instead run through the four 
sounds – in a linear sequence; randomly; or in another 
sequence defined by the user (for example, by drawing a 
path in the “back” of the object connecting the four 
sounds, thus specifying the order). This “sequence” mode 
is inspired by Freesound Radio. 

6.3 Final Reflections 

These conclusions are preliminary. AV Clash is under 
development, as mentioned before, and is being tested by 
Video Jack. Therefore it is not online yet, and no public 
presentations have been done. Video Jack intend to re-
lease AV Clash online soon, in July 2010. They wish to 
start presenting the project shortly after, as installation 
and performance. A domain name has been registered for 
the project.3 Currently it only displays a few preliminary 
recordings using a prototype version of the project. 

Feedback gathered from users after releasing AV 
Clash, and from presentations, will enrich the conclu-
sions presented in this paper. The author intends to con-
duct interviews to users, to better assess these conclu-
sions. 

The author believes that there is a vast potential for the 
type of application that AV Clash represents – a playful 
tool for integrated audiovisual expression, which gathers 
audiovisual resources from Internet repositories, and that 

                                                             
3 http://www.avclash.com    

explores the potential of connecting users through the 
Web via their creativity. 
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ABSTRACT

This paper describes the development of a set of electronic
music instruments (PHOXES), which are based on physi-
cal modeling sound synthesis. The instruments are mod-
ular, meaning that they can be combined with each other
in various ways in order to create richer systems, challeng-
ing both the control and perception, and thereby also the
sonic potential of the models. A method for evaluating the
PHOXES has been explored in the form of a pre-test where
a test subject borrowed the instrument for a period of 10
days. The longer test period makes way for a more nu-
anced qualitative evaluation of how such instruments might
be integrated into workflows of real world users.

1. INTRODUCTION

The PHOXES (Physical Boxes) are a set of musical instru-
ments, which are based on physical modeling sound syn-
thesis. They were developed in order to investigate how
high level exploratory control structures have an impact on
the sonic potential of physical models.

1.1 Exploring Physical Modeling

Traditionally the goal when developing physical models
has been to accurately simulate the physical mechanisms,
which produce sound in the real world. When controlling
these models the goal has often been to achieve the same
nuanced input capabilities as one would have when playing
real acoustic instruments striving for an enhanced expres-
sivity or intimacy.

This research deals with the ongoing investigation into
how control structures for physical modeling sound syn-
thesis, can enhance the explorability and thereby the cre-
ative potential of the technique. One goal is to understand
how physical modeling can be controlled in order to ac-
commodate the work processes of the end user (for us the
experimental electronic musician). The focus is not on ex-
pressivity or intimacy of musical controllers, but on en-
hancing their exploratory and creative potential (note that
these are not apposed to each other as a higher level of in-
timacy can also lead to a higher degree of exploration [1]).

Copyright: c©2010 Steven Gelineck et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Figure 1. The PHOXES system is modular and cur-
rently implements four different modules each implement-
ing a different physical model and a different excitation
controller. Upper from left: friction PHOX and particle
PHOX. Lower from left: drum PHOX and tube PHOX.

We believe that physical modeling bears with it an obvious
potential to maintain the balance between intuitive control
and that certain amount of complexity that is needed in
order facilitate the exploratory processes, which are so im-
portant for supporting creativity. Within creativity support
tools research this balance is referred to as Low threshold,
high ceiling, and wide walls [2].

One way of creating a low threshold can be to design
input devices, which are built upon traditional acoustic in-
struments. Controls will not only be familiar, there will
also be a great amount of users, who have already spent
years on refining expert playing techniques. In develop-
ing the PHOXES we have worked in the opposite direction
by leveraging on input devices and control structures found
in commercial electronic music instruments, merging them
with alternate input devices specifically suited towards the
physical models.

2. PHOXES

Each PHOX is an instrument on its own implementing a
physical model, an excitation controller and four knobs for
adjusting various model parameters (mostly resonator pa-
rameters). The excitation controller lets the user inject en-
ergy into the physical model by performing musical ges-
tures, which intuitively relate to that model. For instance
the tube PHOX implements a flute controller for exciting a
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turbulence model. The user receives visual feedback in the
form of exact control values on an LCD screen mounted
on each PHOX.

Each PHOX works as a musical instrument on its own,
but the PHOXES are modular, meaning that two or more
PHOXES can be combined in various ways to produce son-
ically richer systems. Although each physical model is still
fixed this lets the user explore the models in a totally dif-
ferent and more abstract way. Each PHOX still upholds an
intuitive perception of how the sound is produced, because
of the perceived causality inherent in the physical model-
ing technique. But when they are combined this perceived
causality is challenged, altering both the gesture space pro-
vided by the PHOXES and the sonic potential of the mod-
els. How this is handled is described later in Section 2.5.

The goal when developing the PHOXES was to create
a flexible system that while keeping each physical model
fixed (not letting the user assemble their own physical model
as seen in for example [3]), the users are able to com-
bine the different models in various ways thereby achiev-
ing a different exploration of the sonic possibilities made
available by each model. This section will describe the
design and implementation of the PHOXES - in particu-
lar the physical models used, the choice of control devices
(including how they were built) and the mapping strategies
for developing the modular system.

2.1 Physical Models

Each of the individual PHOXES implements a different
physical model, each representing a different physical mod-
eling technique. They vary in complexity, sonic fidelity
and physicality (which type of excitation gesture they nat-
urally propose). The four PHOXES (as seen in Figure 1)
and the physical models on which they are based are:

• tube PHOX - implements a turbulence model with
a simple nonlinear exciter [4] and a one-dimensional
waveguide resonator [5].

• particle PHOX - implements a particle model with
a stochastic excitation based on Physically Informed
Sonic Modeling (PhISM) by Perry Cook [6].

• friction PHOX - implements a friction model with a
complex nonlinear exciter [7] and a one-dimensional
waveguide resonator.

• drum PHOX - implements two identical drum mod-
els each with a simple nonlinear exciter and a two-
dimensional waveguide resonator [8].

2.2 Physical Devices

As described in Section 1.1 the PHOXES have been in-
spired by commercial electronic music instruments. It was
important that the eventual test environment was as natu-
ral for the test subjects as possible, which is also why the
PHOXES were designed with a look and feel that were
convincing enough to resemble real commercial hardware
synthesizers. The PHOXES could have been presented

Figure 2. The flute controller is implemented using an
amplified low pressure sensor mounted to the end of a tube,
which the user blows into.

(and perhaps partially controlled) in a software environ-
ment, but it was important for us to put emphasis on the
physical devices as standalone instruments - even though
they are not. Finally, it was crucial that they were robust
and durable enough to make a long term evaluation possi-
ble.

Each of the four PHOXES is implemented using a Phid-
getTextLCD with PhidgetInterfaceKit 8/8/8 1 , which pro-
vides 8 analog inputs, 8 digital inputs, 8 digital outputs,
and a 2-line by 20-character LCD screen. This makes it
possible to control mapping settings, control settings, and
display settings in a customized menu system directly on
each of the instruments. The instruments connect to the
computer via USB and communication, sound synthesis
and mapping is handled directly from Max/MSP. The sys-
tem has been tested on a MacBook Pro with 2.4 GHz Intel
Core 2 Duo processor and 4GB 667 MHz DDR2 SDRAM
- Mac OSX 10.5.8.

2.3 Excitation Controllers

Each PHOX implements a different excitation controller,
which naturally relates to the physical model of that PHOX.
The excitation controllers are as follows:

2.3.1 tube PHOX Excitation Control - Flute

The tube PHOX implements a flute controller, which by
default controls the turbulence model. The flute controller
implements an amplified low pressure sensor 2 , which is
attached to a tube that the user blows into - see Figure 2.
The pressure sensor is very responsive and is sensitive enough
for detecting very small differences in air pressure pro-
duced by the blowing gesture and because the signal is am-
plified it connects directly into the Phidget interface 3 . The
air pressure is mapped to the input energy into the physical
model.

2.3.2 particle PHOX Excitation Control - Crank

The particle PHOX implements a crank as its default exci-
tation controller - see Figure 3. The crank is attached to a

1 from http://phidgets.com
2 the 1INCH-D-4V from All Sensors
3 could also be an Arduino or CUI interface or the likes
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Figure 3. The crank is used as excitation controller for
the particle PHOX. It is attached to a multi-turn rotational
potentiometer.

Figure 4. The friction PHOX implements a ribbon sensor,
which lets the user slide his or finger back and forth over
the surface to create energy.

multi-turn rotational potentiometer 4 and the rotational ve-
locity of the potentiometer is mapped to the input energy
of the physical model - the probability of a particle hit in
the case of the particle PHOX.

2.3.3 friction PHOX Excitation Control - Slide Surface

The friction excitation controller is implemented using a
ribbon sensor (a soft potentiometer 5 ) - see Figure 4. The
user slides his or her finger back and forth on the surface
to create energy. The velocity of the motion is mapped to
the input energy of the physical model.

2.3.4 drum PHOX Excitation Control - Drum Triggers

The excitation controller for the drum PHOX consists of
two drum triggers built from piezo transducers 6 - see Figure 5.
The transducer produces a voltage when struck - this is
thresholded to detect a hit and peak detected to determine
the velocity of the hit.

2.4 Model Parameter Controls

Each PHOX also implements four knobs, which let the
users control selected parameters of the physical model.
For instance one is able to adjust how long the tube is, or
how dampened the particles collide. Physically, they are
controlled by simple knobs (potentiometers), which help
establish the look of the PHOXES by aesthetically con-
necting them to more traditional electronic instruments or
controllers. They present a familiar control surface, which
lowers the threshold for electronic musicians initially learn-
ing the instruments and finally, because they are the same
on each PHOX, they help to perceptually connect the dif-
ferent PHOXES into one system.

4 Model 357 from Vishay
5 SoftPot from Spectra Symbol
6 KPSG100 from Kingstate

Figure 5. The drum PHOX implements two drum triggers,
which were implemented by mounting two piezoelectric
discs under two layers of foam.

The following is an overview of which model param-
eters are controllable. Parameters for the tube PHOX are
tube length 1, tube length 2, vibrato, and flute airyness).
Parameters for the particle PHOX are fundamental frequency,
approximate frequency of four partials, amount of random-
ization of partial frequencies, and bandwidth of the par-
tials. Parameters for the friction PHOX are frequency 1,
frequency 2, downward force, and roughness (randomness
of force and amount of noise). Finally, parameters for the
drum PHOX are left drum size, left drum frequency distor-
tion, right drum size, and right drum frequency distortion.

2.5 Modularity

2.5.1 Exploration of excitation gestures

By default each PHOX has a dedicated controller, which
is intended to presents a natural intuitive relationship be-
tween excitation gesture and model. This helps the user to
get a first intuitive impression of the model’s control pos-
sibilities. However, the user can also choose to control the
physical model using the excitation controller imbedded in
any of the other PHOXES. For instance instead of exciting
the friction model of the friction PHOX using the slide sur-
face one is able to use the crank. This lets the user explore
different playing styles by performing different excitation
gestures - thereby hopefully achieving a deeper exploration
of the sonic potential of the physical models.

The flexibility of the PHOXES system entails an im-
plementation challenge because each PHOX must uphold
a meaningful relationship between input gesture and the
sound being produced no matter what type of excitation
gesture. The idea is to use energy as the common denom-
inator as each model relies on energy in order to be ex-
cited. But how that energy mechanically relates to each
model must be defined. The challenge becomes particu-
larly interesting when shifting between continuous excita-
tion gestures (e.g. blowing into the flute controller) and
instantaneous excitation gestures (e.g. tapping/striking the
drum trigger). A number of different possible mapping so-
lutions were considered, but we chose to map the energy
of a drum hit to an energy envelope, which has a peak pro-
portional to the hit velocity and which decays in energy
again proportional to the hit velocity (linear decay lasting
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between 200 and 500 ms.). This means that when using the
drum triggers to excite for instance the turbulence model,
the amount of air pressure (exciting the turbulence model)
will be enveloped according to the hit velocity of the drum.

For mapping a continuous gesture (e.g. rotating the
crank) to a model that normally is excited by instantaneous
gestures (tapping/striking the drum trigger) a similar chal-
lenge occurs. We have chosen to let the instantaneous ges-
ture take shape as a scraping mechanism, which creates
small instantaneous excitations we can use for exciting the
drum. How frequent the excitations occur and their indi-
vidual velocities depend on the velocity of the continuous
gesture.

2.5.2 Controlling one physical model with another

Energy into the physical model of a PHOX need not come
from an excitation controller. The system makes it possi-
ble for the user to drive the physical model using the output
sound from a different model - similar to [9]. This means
that for instance the turbulence model, which by default is
excited with a certain amount of white noise (proportional
to how hard the user blows), can be excited by the output
sound from e.g. the drum model. This is done by substi-
tuting the white noise with the audio output from the drum
model. It thus becomes the drum sound, which drives the
turbulence model. The result is a sort of fusion between
the two models, where the turbulence model acts as a sort
of audio effect, which is used to color the drum sound.

Earlier research has shown that interesting timbres from
one model can be transferred to another model, and mod-
els, which users rate as boring can become interesting when
combined in this fashion with other models - (even with
each other) [10]. The PHOXES extend this idea by mak-
ing it possible to combine many models at the same time
(for instance use the crank of the particle PHOX to excite
the turbulence model of the tube PHOX then letting the
resulting audio signal excite the friction PHOX and so on
and so forth).

Because the user is able to excite one PHOX with audio
output from a different PHOX, each model must have a
way of taking audio as input and somehow substituting that
with the energy input of the model.

For complete details regarding mapping go to http:
//media.aau.dk/˜stg/phoxes/.

3. PRE-TEST

In order to explore a suitable method for evaluating the
PHOXES a pre-test was conducted. Carrying out any for-
mal evaluation of these kinds of instrumental systems in
the rather complex environment of creative music making
has proven to be quite challenging. Different evaluation
methods have been proposed for evaluation of musical in-
terfaces inspired by methodologies found in the field of
Human Computer Interaction (HCI) [11, 12]. For this pre-
test we wanted to explore methodologies related not so
much to the performance or usability of the system (how
well the user is able to perform specific tasks) but more the
overall experience with the system dealing with softer he-
donic qualities [13, 14, 15] - for instance how well the user

identifies with the instruments, whether they are inspiring
to work with or how well the system supports musical ex-
ploration.

Most formal evaluations of musical interfaces are car-
ried out under circumstances far from the natural environ-
ment of the electronic musician, which may be adequate
for various specific usability issues [16]. But we believe
that this makes it difficult to evaluate factors of more qual-
itative nature. Earlier research [17] has also suggested that
tests need to be carried out over longer periods of time,
which is especially enforced when evaluating more com-
plex systems.

The pre-test was carried out using one male test person
who is an experienced experimental electronic musician.
He has extensive experience with both traditional acoustic
instruments (mostly percussion instruments) and with var-
ious electronic instruments as both a composer and a per-
former. The test took place over a period of 10 days where
the test-subject borrowed the PHOXES. The test was very
free as the test person did not receive any instruction as to
any specific tasks to perform during the 10 days. The test
subject was instructed to treat the instruments as he would
any new musical device that came into his possession.

In order to asses the implications of the longer test pe-
riod, first impressions were noted by having the test sub-
ject fill in a questionnaire after having played around with
the PHOXES for approximately one hour. The question-
naire was comprised of two forms: One was the AttrakD-
iff 7 hedonic / pragmatic evaluation form also used in [13],
which lets the user rate the system based on a series of op-
posite/bipolar word-pairs relating to hedonistic and prag-
matic qualities of interactive systems. The other was a
semi-quantitative Likert-scale style evaluation form that lets
the user rate each individual PHOX and the overall system
in regards to features more closely related to the specific
area of physical modeling based electronic instruments -
such as whether the instruments provided sonic diversity,
or felt like a real acoustic instrument. The same ques-
tionnaire was filled out after the 10 days test period. Fi-
nally an open interview was conducted to gather qualita-
tive statements about how the test-subject worked with the
PHOXES, whether that changed throughout the test-period
and which issues arose during the test-period.

4. RESULTS AND DISCUSSION

The main focus when evaluating the data collected in the
pre-test was on the methodological approach, and specif-
ically on what kind of system improvements have to be
made if this kind of evaluation method is to succeed on a
greater scale. However, the results of the evaluation have
been included to provide an initial idea of the perceived
qualities of the PHOXES system. Note that they are to-
tally subjective and inconclusive as only one test subject
participated in the test.

The results indicate that the test subject was highly mo-
tivated and stimulated by the PHOXES system (Hedonic
Quality - Stimulation) and found them having a high per-

7 http://www.attrakdiff.de
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Figure 6. Results of the AttrakDiff evaluation. The fol-
lowing dimensions are evaluated: Pragmatic Quality (PQ),
Hedonic Quality - Identity (HQ-I), Hedonic Quality - Stim-
ulation (HQ-S) and Attractiveness (ATT). Fore study cor-
responds to first impressions and after study corresponds
to the final evaluation.

ceived quality (Attractiveness). The subject’s identifica-
tion with the system was above average (Hedonic Quality
- Identity) - as so was the perceived usability (Pragmatic
Quality).

Surprisingly the perceived hedonic and pragmatic quali-
ties stayed more or less unaltered when comparing answers
from the first impressions evaluation and the final evalua-
tion after the 10 days - See Figure 6.

Problems with the PHOXES in regards to the relatively
uncontrollable test scenario were found in the computa-
tional cost of the physical models. The DSP CPU load
would limit the test subject as he integrated the PHOXES
into larger sequences/multitrack recordings in his preferred
digital audio workstation (Ableton Live). This was quite
unfortunate, as it is important for us to examine how the
PHOXES are able to integrate into the work flow of even-
tual future test subjects in order to evaluate their exploratory
qualities. Apart from cleaning up the code (Max/MSP patch
and externals) making it run more smoothly, a solution
could be to keep the processing on a separate dedicated
machine. On the positive side, the physical interfaces were
easy to setup and physically durable enough for the 10 days
test period.

There was a problem that the test subject did not get to
explore parts of the modular system. As the test subject put
it; he didn’t get to the advanced settings. It is difficult to
say whether the system was too complicated, whether the
system was not presented intuitively enough, or whether
the test period might have been too short. The subject
might also have been too focussed on improving playing
skills, focussing on the interplay between controllers and
models, and not so much on the combining of models. On
one hand more time or explicit tasks could be given to the
participants in order to get them to focus on certain parts of
the system. On the other hand it is valuable to see how dif-
ferent uses of the system might arise by absence of specific
tasks.

We were pleased to experience that the PHOXES sys-
tem was robust enough to handle 10 days of use without
our interference. For future testing we will improve the
PHOXES in accordance with the improvements described

above. We will continue to explore the methodological ap-
proach, including a longer test period and more task ori-
ented restrictions to parts of the evaluation period.
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ABSTRACT

An Augmented Music Score is a graphic space providing
the representation, composition and manipulation of het-
erogeneous music objects (music scores but also images,
text, signals...), both in the graphic and time domains. In
addition, it supports the representation of the music perfor-
mance, considered as a specific sound or gestural instance
of the score. This paper presents the theoretical foundation
of the augmented music score as well as an application -
an augmented score viewer - that implements the proposed
solutions.

1. INTRODUCTION

Music notation has a long history and evolved through ages.
From the ancient neumes to the contemporary music nota-
tion, the western culture is rich of the many ways explored
to represent the music. From symbolic or prescriptive no-
tations to pure graphic representation, the music score has
always been in constant interaction with the creative and
artistic process.

However, although the music representations have ex-
ploded with the advent of computer music [1, 2, 3], the
music score, intended to the performer, didn’t evolved in
proportion to the new music forms. In particular, there is
a significant gap between interactive music and the static
way it is generally notated: a performer has generally a
traditional paper score, plus a computer screen displaying
a rough number or letter to indicate the state of the inter-
action system. At the same time, we can observe the emer-
gence of new needs in terms of music representation.

In the domain of electro-acoustic music, analytic scores
- music scores made a postriori - like the ”Portraits poly-
chromes” 1 , become common tools for the musicologists
but have little support from the existing computer music
software, apart the remarkable approach proposed for years
by the Acousmograph [4, 5].

In the music pedagogy domain and based on a mirror
metaphor, experiments have been made to extend the mu-
sic score in order to provide feedback to students learn-
ing and practising a traditional music instrument [6, 7].

1 http://www.ina-entreprise.com/entreprise/activites/recherches-
musicales/portraits-polychromes.html
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With this approach, an extended music score has been de-
veloped, supporting various annotations, including perfor-
mance representations based on the audio signal, all in the
context of a dynamic score layout. The limitations of the
system rely mainly on a monophonic score centered ap-
proach and on a static design of the performance represen-
tation, making the system tricky to extend and to reuse.

New technologies allow now for real-time interaction
and processing of musical, sound and gestural informa-
tion. The Interlude project 2 takes place in this domain and
touches upon new digital paradigms for exploration and in-
teraction of expressive movement with music. The present
work on Augmented Music Scores is part of this project and
addresses interaction with symbolic content issues, while
extending and generalizing previous music score extension
approaches [7].

At the heart of the Augmented Music Score are the fol-
lowing main objectives:

• the score extension to arbitrary graphic objects: ac-
tually, we aim to consider arbitrary graphic objects
(music scores but also images, text, signal represen-
tation...) as possible score candidates;

• the expression of relations between graphic and time
space: considering that time is a constant and com-
mon property of all musical objects, we give a time
position and a time dimension to any score compo-
nent, which also implies to make the temporal rela-
tions graphically visible;

• the performance representation, gesture or audio ba-
sed, with the aim to develop a system dynamically
extensible.

None of the existing systems for music representation
includes these kind of features: although generally extended
to support contemporary music, tools like Lilypond [8],
ENP [9], NoteAbility [10] or the Guido Engine [11] pro-
poses a traditional music score approach and are not suited
to dynamic music notation.

Although the organization of the graphic space consis-
tently to the time space [12], or the synchronization of
various medias [13], are among the current concerns, no
formalism has been proposed to express relations between
time and graphic space in a general music context.

Although tools for sound visualizations have been de-
veloped [14, 4], they are based on a fixed set of represen-
tations and don’t support dynamic extensions.

2 http://interlude.ircam.fr

233



Synchronization of heterogeneous medias in the gra-
phic domain raises issues related to non-linearity, non-con-
tinuity, non-bijectivity. Based on previous experience, we
propose to approach the problem using segmentation and
the description of relations between segments - we will
next use the term mappings to refer to these relations.

The representation of the music performance, whether
sound or gestural, is approached with a reverse perspec-
tive: the graphic representation of a signal is viewed as
a graphic signal, i.e. as a composite signal including all
the information for the graphic rendering. This approach,
which abstracts the representation calculation, results in an
opened system, that can be dynamically extended.

We will first describe the theoretical foundations of the
mappings and the context of use in the augmented music
score framework. Next, we will explain how the system
handles the performance signals to build graphic signals.
Finally, an augmented music score viewer is presented and
particularly its control API, which is actually a set of OSC
messages[15].

2. TIME AND GRAPHIC RELATIONS

We talk of time synchronization in the graphic domain to
refer to the graphic representation of the temporal relations
between components of a score. Our previous experience
in this domain [6, 7] led us to approach the question of
these relations by the means of segmentation and the de-
scription of relations between segments. The term map-
pings is used to refer to these relations.

The role of a mapping is to make connections between
the segments of different resources, where a segment is a
contiguous zone of a resource. As previously mentioned,
a resource can be an arbitrary object (music notation, im-
ages, text, signals...). The mappings are typically used to
link graphic positions, music time and audio resources lo-
cations. For example, a mapping between an audio record-
ing and a music score makes the connection between audio
locations (expressed in frames) and the music time (ex-
pressed in quarter note divisions). A mapping between a
music score and its graphic representation makes the con-
nection between music time positions and graphic posi-
tions. Combining these mappings allows to make connec-
tions between all the time based resources.

The next sections describe the theoretical foundation for
the notions of segment, segmentation and mapping. These
foundations are independent of any implementation and of
any resource specific information. They are followed by
concrete use cases, implemented in the framework of the
augmented score viewer.

2.1 Definitions

We will first introduce the notions of time and graphic seg-
ments. Next we will generalize these concrete definitions
to an abstract, generic segment definition.

2.1.1 Time segment

A time segment is defined as an interval i = [t0, t1[ such
as t0 6 t1.

An interval i = [t0, t1[ is said empty when t0 = t1. We
will use � to denote empty intervals.

Intersection of time segments (figure 1) is the largest
interval such as:

∀im, ∀in, im ∩ in := {j | j ∈ im ∧ j ∈ in}

t1t0 t3t1t0

x1x0

y1

y0

t2

a b

a b

Figure 1. From left to right: a time segment and time
segments intersection.

2.1.2 Graphic segment

A graphic segment g is defined as a rectangle given by two
intervals g = (ix, iy) where ix is an interval on the x-axis
and iy , on the y-axis.

A graphic segment g = (ix, iy) is said empty when
ix = � or iy = �

The intersection operation ∩ between graphic segments
(figure 2) is defined such as:

∀g = (ix, iy), ∀g′ = (i′x, i
′
y), g ∩ g′ = (ix ∩ i′x, iy ∩ i′y)

t1t0 t3t1t0

x1x0

y1

y0

t2

a b

a b

Figure 2. From left to right: a graphic segment and graphic
segments intersection.

2.2 Segment generalization

We will extend the definitions above to a general definition
of a n-dimensional segment. A n-dimensional segment is
defined as a set of n intervals sn = {i1, ..., in} where ij is
an interval on the dimension j.

A segment sn is said empty when ∃i ∈ sn | i = �
Intersection between segments is defined as the set of

their intervals intersection:

sn1 ∩ sn2 = (i1 ∩ j1, ..., in ∩ jn) (1)

where sn1 = (i1, ..., in) et sn2 = (j1, ..., jn)

2.3 Resource segmentation

A segment-able resource R is an n dimensions resource
defined by a segment Sn of dimension n.
The segmentation of a resource R is the set of segments
Seg(R) = {sn1 , ...sni } such as:

∀i, j ∈ Seg(R) i ∩ j = � the segments are disjoint
∀i ∈ Seg(R) i ∩ Sn = i segments are included in R

234



2.4 Mapping

A mapping is a relation between segmentations.
For a mapping M ⊆ Seg(R1) × Seg(R2) we define

two functions:

M+(i) = {i′ ∈ Seg(R2) | (i, i′) ∈M} (2)

that gives the set of segments from R2 associated to the
segment i from R1; and the reverse function:

M−(i′) = {i ∈ Seg(R1) | (i, i′) ∈M} (3)

that gives the set of segments from R1 associated to the
segment i′ from R2.

These functions are defined for a set of segments as the
union of each segment mapping:

M+({i1, ...in}) = {M+(i1)∪M+(i2)...∪M+(in)} (4)

and

M−({i1, ...in}) = {M−(i1)∪M−(i2)...∪M−(in)} (5)

2.5 Mappings composition

Mappings composition is quite straightforward.
For a mapping M1 ⊆ Seg(R1)× Seg(R2)
and a mapping M2 ⊆ Seg(R2)× Seg(R3), then :

M1 ◦M2 ⊆ Seg(R1)× Seg(R3)

2.6 Augmented Score segmentations and mappings

All the resources that are part of an augmented score have a
graphic and a temporal dimension. Thus, they are segment-
able in the graphic and time spaces. Unless specified oth-
erwise, time is referring to music time (i.e. metronomic
time).

In addition, each resource type is segment-able in its
specific space: audio frames linear space for an audio sig-
nal, two dimensional space organized in lines/columns for
text, etc.

type segmentations and mappings required
text graphic↔ text↔ time

score graphic↔ wrapped time↔ time
image graphic↔ pixel↔ time

vectorial graphic graphic↔ vectorial↔ time
signal graphic↔ frame↔ time

Table 1. Segmentations and mappings for each component
type

Table 1 lists the segmentations and mappings used by
the different component types. Mappings are indicated us-
ing arrows (↔). Note that the arrows link segments of dif-
ferent types (the segment qualifier is omitted). Segmen-
tations and mappings in italic are automatically computed
by the system, those in bold have to be provided externally.
This typology could be extended to any kind of resource,
provided that for any new type, a mapping exists to go from
the graphic space to the time space.

Note that an intermediate time segmentation, the wrapped
time, is necessary for music score in order to catch repeated
sections and jumps (to sign, to coda, etc.).

Composition of these mappings is at the basis of the
mechanisms to address and synchronize the components
both in the graphic and time spaces.

2.7 Synchronization examples

Let’s consider two score components A and B with their
corresponding graphic and time segmentations:

Seg(Ag), Seg(At), Seg(Bg), Seg(Bt).
In addition, B has an intermediate segmentation Seg(Bl)
expressed in the resource local space units (e.g. frames for
an audio signal). The mappings

MA ⊆ Seg(Ag)× Seg(At)
and MB ⊆ Seg(Bt)× Seg(Bl)

give the correspondence between graphic and time space
for A and between time and local space for B.

When synchronizing objects and deciding on what po-
sition should be used as base position, we have introduced
a master/slave relation between components: a slave is al-
ways constrained to its master space.

2.7.1 Graphic alignment of time positions

It corresponds typically to the alignment of a cursor on a
score: the cursor indicates a time position but without tem-
poral extension.

Let’s consider that B is A slave and we want to graph-
ically align B to A at a time t. Let s = [t0, t1[ be the A
segment containing the time t. The corresponding graphic
segment is:

M−A (s) = {gi ∈ Seg(Ag) | (g, s) ∈MA}

When M−A (s) contains a single segment, B graphic posi-
tion can be computed by simple linear interpolation i.e.:

(xB , yB) = (gx0 + (gx1 − gx0).δ, gy0)

where gx0 and gx1 are the graphic segment first and last x
coordinates and δ = (t− t0)/(t1 − t0).
yB is arbitrary fixed to gy0 but it is actually controlled

by a synchronization mode (over, above, below).
When s is mapped to several graphic segments, the op-

eration can be repeated for each segment.

2.7.2 Segments graphic alignment

It corresponds typically to the alignment of a performance
representation: the performance curve is made of segments
(e.g. corresponding to notes) and each segment has to be
aligned to the corresponding score location and duration.

The basic principle of segments alignment consists for
each of the master graphic segment, to retrieve the corre-
sponding slave segment expressed in the slave local coor-
dinates and to render this slave segment in the space of
the master graphic segment. Provided that Seg(At) =
Seg(Bt), the operation may be viewed as the mapping
composition

MA ◦MB ⊆ Seg(Ag)× Seg(Bl)
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Figure 3 gives an example of different alignments obtained
using different segmentations.

Figure 3. The same car bitmap synchronized to different
time positions. The image is made of a single graphic seg-
ment and has a quarter note duration. It is stretched to the
corresponding score graphic segments.

3. PERFORMANCE REPRESENTATION

Work on the performance representation takes root in pre-
vious experiences about the visualization of music instru-
ment playing, made in a pedagogic context [7]. Our pre-
vious approach was based on a graphic rendering engine,
taking signals and a representation type as input, and pro-
ducing the corresponding image. The static embedding of
the representation types in the rendering engine was one of
the main limitations of the approach, implying to modify
the engine for any new type.

In the context of the augmented score, our ambition was
to develop a dynamically extensible system, avoiding this
limitation. To do that, the graphic representation of a sig-
nal is viewed as a graphic signal, i.e. as a composite signal
including all the information required for its graphic ren-
dering.

The resulting performance representation object is a first
order music score component: it has a date, a duration and
thus can be synchronized to any other component.

3.1 Graphic signals

We define a graphic signal as a composite signal made of:

• a y signal: the graphic y coordinates

• a h signal: the graphic thickness at the y position

• a c signal: the graphic color

To make simple, we assume that the color space addressed
by c has one dimension. Figure 4 gives an example of these
parameters in the graphic space, at a time t.

�

�

��

Figure 4. Graphic signal parameters at a time t.

Now, let’s consider a signal S defined as a time func-
tion:

f(t) : R→ R3 = (y, h, c) | y, h, c ∈ R

then this signal may contain everything to be directly drawn
i.e. without additional computation.

Such a system may also be viewed as an oscilloscope
taking the 3 graphic signal components as input.

3.2 Signals composition

In order to build composite signals to be used as graphic
signals, we have introduced a signals parallelization oper-
ation.

Let’s consider S, the set of signals s : N→ R.
The parallel operation ’/’ is defined as:

s1/s2/.../sn : S→ Sn | si ∈ S (6)

The time function of a parallel signal sn ∈ Sn is the
parallelization of each signal’s time function:

f(t) = (f0(t), f1(t), ...fn(t)) | fi(t) : N→ R (7)

3.3 Parallel signals types

To implement the system, we have defined several parallel
signals types:

• a color signal type, based on the HSBA color model
[hue, saturation, brigthness, transparency]:

c ::=
−−−−−−→
(h, s, b, a) | h, s, b, a ∈ R

• a graphic signal type that includes a y signal, a thick-
ness signal th, followed by the 4 components of the
color signal:

g ::=
−−−−−−−−−−→
(y, th, h, s, b, a) | y, th, h, s, b, a ∈ R

• a parallel graphic signals type to support several
graphic signals in parallel:

gn ::= −→g | g ∈ R6

3.4 Graphic signals examples

In order to validate our model, we will describe several
representation types that were statically implemented with
the previous approach.

3.4.1 Pitch representation

Represents notes pitches on the y-axis using the fundamen-
tal frequency (figure 5).

Figure 5. Pitch representation.

The corresponding graphic signal is expressed as:

g = Sf0 / kt / kc

where Sf0 : fundamental frequency
kt : a constant thickness signal
kc : a constant color signal
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Figure 6. Intonation representation.

3.4.2 Intonation representation

Represents the difference between a fundamental frequency
and a reference frequency (figure 6).

The corresponding graphic signal is expressed as:

g = Sf0 − Sfr / kt / kc

where Sf0 : fundamental frequency
Sfr : reference frequency
kt : a constant thickness signal
kc : a constant color signal

3.4.3 Articulations

Makes use of the signal RMS values to control the graphic
thickness (figure 7).

Figure 7. Articulations.

The corresponding graphic signal is expressed as:

g = ky / Srms / kc

where ky : signal y constant
Srms : RMS signal
kc : a constant color signal

3.4.4 Pitch and articulation combined

Makes use of the fundamental frequency and RMS values
to draw articulations shifted by the pitches (figure 8).

Figure 8. Pitch and articulation combined.

The corresponding graphic signal is expressed as:

g = Sf0 / Srms / kc

where Sf0 : fundamental frequency
Srms : RMS signal
kc : a constant color signal

3.4.5 Pitch and harmonics combined

Combines the fundamental frequency to the first harmon-
ics RMS values (figure 9). Each harmonic has a different
color.

We will describe the corresponding graphic signal in
several steps. First, we build the fundamental frequency
graphic as above (see section 3.4.4) :

g0 = Sf0 / Srms0 / kc0

Figure 9. Pitch and harmonics combined.

where Sf0 : fundamental frequency
Srms0 : f0 RMS values
kc0 : a constant color signal

Next we build the graphic for the harmonic 1:

g1 = Sf0 / Srms1 + Srms0 / kc1

Srms1 : harmonic 1 RMS values
kc1 : a constant color signal

Next, the graphic for the harmonic 2:

g2 = Sf0/ Srms2 + Srms1 + Srms0 / kc2

Srms2 : harmonic 2 RMS values
kc2 : a constant color signal

etc.

And we finally combine them into a parallel graphic sig-
nal:

g = g2 / g1 / g0

4. THE AUGMENTED MUSIC SCORE VIEWER

The implementation takes the form of a C++ library - the
Interlude library - as well as an augmented score viewer,
build on top of this library. This viewer has no user inter-
face since it has been primarily designed to be controlled
via OSC messages i.e. using external applications like
Max/MSP or Pure Data.

4.1 Messages general format

An Interlude OSC message is made of an OSC address,
followed by a message string, followed by 0 to n param-
eters. The message string could be viewed as the method
name of the object identified by the OSC address.

The OSC address is a string or a regular expression
matching several objects. The OSC address space includes
predefined static nodes:

/ITL corresponds to the Interlude viewer application
/ITL/scene corresponds to the rendering scene, actu-

ally the augmented score address.
The score components have addresses of the form:

/ITL/scene/anyname where anyname is an arbitrary
user defined name.

The score components parameters can be addressed with
messages strings like x, y or z to control the x, y or z posi-
tion. Table 2 gives the main message strings, supported by
all the components. Almost these messages have a relative
form e.g. dx for a relative x displacement.

The next sections present examples of OSC messages
setting up a score including synchronized components. Note
that the messages list corresponds strictly to the file for-
mat of a score. Note also that these examples are static
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message strings component parameters
x, y, z, scale, angle scale and position
date, duration, clock time management

color, hsb color management

Table 2. The main messages, supported by all the score
components.

while real-time interaction is always possible, for example
to move objects in time by sending date or clock mes-
sages (similar to MIDI clocks).

4.2 A simple cursor example
This example shows a cursor synchronized to a graphic
bitmap. Lines beginning with a ’#’ are comments inter-
leaved with the messages.

# creates the score as an image
/ITL/scene/turenas set img "score.png"
# sets the image graphic to time mapping
/ITL/scene/turenas mapf "turenas.map"
# sets the score title and position
/ITL/scene/title set txt "Turenas - John..."
/ITL/scene/title x -0.36
/ITL/scene/title y -0.86
/ITL/scene/title scale 3.0
# creates a rectangle used as cursor
/ITL/scene/cursor set rect 0.004 0.217176
/ITL/scene/cursor z 0.5
/ITL/scene/cursor color 204 0 48 132
# synchronizes the cursor to the score
/ITL/scene/sync cursor turenas v
# moves the cursor in time
/ITL/scene/cursor date 123 4

The mapping file turenas.map describes the relation betwwen
the image segments and the time. The image is segmented in 3
parts corresponding to each lines. For each line, the first segment
applies to the graphic space (expressed in pixels intervals) and
the second segment to the time space (expressed as rationals).

( [27,780[ [15,193[ ) ( [0/4,225/4[ )
( [27,782[ [216,394[ ) ( [225/4,520/4[ )
( [27,511[ [417,594[ ) ( [520/4,594/4[ )

The result is given by the figure 10. The cursor is located to
the image position corresponding to its date.

4.3 Nested synchronization example

This example uses 3 components; the first one is master of the
second, which is master of the third one.

# creates a score using an image
/ITL/scene/score set img "score.jpg"
# sets the score graphic to time mapping
/ITL/scene/score mapf "score.map"

# creates a text using a text file
/ITL/scene/text set txtf "comment.txt"
# changes the text scale
/ITL/scene/text scale 3.0
# and the text color
/ITL/scene/text color 0 0 240 255
# put the text in front
/ITL/scene/text z 0.5
# and sets the text to time mapping
/ITL/scene/text mapf "comment.map"

# creates a ball as vectorial graphic
/ITL/scene/ball set ellipse 0.2 0.2
# puts it in front
/ITL/scene/ball z 0.4
# changes the ball color
/ITL/scene/ball color 250 50 0 255

# sets all the objects date
/ITL/scene/* date 4 1
# sets the text slave of the score
/ITL/scene/sync text score
# sets the ball slave of the text
/ITL/scene/sync ball text

Note the use of a wildcard in the OSC address to set all the
objects date with a single message. The corresponding result is
given by figure 11.

4.4 A signal synchronized to a score

This example show a graphic signal synchronized to a GMN score.
Note that a graphic signal is a first order music score component:
it has a date and a duration and can be synchronized to any other
object.

# declare a y signal with size 200
/ITL/scene/signal/y size 200
# declare a thickness signal
/ITL/scene/signal/t size 200
# combines y and t + constant color signals
/ITL/scene/signal/sig set y t 0. 1. 1. 1.
# build the corresponding graphic signal
/ITL/scene/myGraph set graph sig
# set its date and duration
/ITL/scene/myGraph date 7 4
/ITL/scene/myGraph duration 2 4
# creates the score
/ITL/scene/score set gmnf "score.gmn"
# synchronize the graphic signal to the score
/ITL/scene/sync myGraph score h

The corresponding result is given by figure 12. The signal can
move and receive data in real-time. Note that the score graphic to
time mapping is automatically computed by the system.

5. CONCLUSION

Our approach for synchronizing arbitrary objects in the graphic
space according to their time relations, combines the advantages
of simplicity and flexibility: a great variety of behaviors may be
obtained depending on the defined segmentations and mappings.
This method is independent of any implementation.

The proposed solution to include the performance represen-
tation into the music score is also characterized by its simplicity
and flexibility. It consists in abstracting the representation com-
putation from the rendering engine, which results in an opened
and dynamically extensible system.

The resulting augmented music score supports heterogeneous
components and proposes an original music notation approach,
opening new spaces to music and performance representation.

There are many potential application domains, including ped-
agogic applications, games,... But we also hope that new music
forms like interactive music, will take advantage of this research
and its developments.

The Interlude Augmented Music Score framework is an open
source project. The viewer is available from the Interlude web
site at http://interlude.ircam.fr.
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Figure 10. Turenas score: analysis and graphic transcription by Laurent Pottier. The transcription is taken from the
INA-GRM ”Portraits polychromes” and reimplemented using the augmented score framework.

!"#$%&!'()&*+%(+,

%-*.)#"*'/0('"*&

(""111

Figure 11. A score with nested synchronization. It includes a bitmap, text and a vectorial graphic. The text is synchronized
to the bitmap and the circle to the text. When receiving time messages (e.g. clock), each object moves relatively to its
master.

Figure 12. A graphic signal synchronized to a GMN score. The signal can move and receive data in real-time.
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ABSTRACT

It is known that one of the most important tasks in mu-
sic post-production is equalization. Equalization can be
applied in several ways, but one of the main purposes it
serves is masking minimization. This is done so that the
listener can appreciate the timbral qualities of all instru-
ments within a musical mix. However, the study of mask-
ing between the different instruments of a multi-track mix
has not received a lot of attention, and a quantitative mea-
sure based on perceptual studies has not yet been proposed.
This paper presents such a measure, along with a study of
masking between several common instruments. The mea-
sure proposed (cross-adaptive signal-to-masker ratio) is in-
tended to serve as an analysis tool to be used by audio engi-
neers when trying to combat masking using their preferred
equalization techniques.

1. INTRODUCTION

Computers are being used to perform complex tasks that
are inherently human and with a high degree of accuracy.
Some examples of this are speech recognition [1] and au-
tomatic musical genre classification [2]. Recently, the pos-
sibility of a computer being able to down-mix a multi-track
recording like an audio engineer is starting to be explored
[3,4,5], and although the use of perceptual models has not
been exploited for this purpose, it is the authors opinion
that using computational models of perception might prove
useful, if not indispensable, to achieve good results. The
underlying complexities and non-linearities involved in the
process of down-mixing are numerous, mainly because multi-
track down mixing is a task where both technology and cre-
ativity co-exist in equal proportions so an exact set of rules
for mixing does not really exist. In order for automatic
down-mixing to become feasible many individual issues
need to be tackled, for example, automatic panning, auto-
matic dynamics control and automatic equalization. This
work is a step towards the latter.

1.1 Masking within a musical context

When mixing a song, most of the decisions of an audio
engineer are influenced by context; the genre of the mu-
sic, the intended audience and for all we know even the

Copyright: c©2010 Sebastian Vega et al. This is an open-access article distributed
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weather at the time of mixing can influence the engineer.
Nevertheless there is one aspect of a mix that is crucial and
for which most audio engineers share the same view. This
is masking. Masking has been defined as the process by
which the threshold of audibility for one sound is raised
by the presence of another (masking) sound. Also, as the
amount by which the threshold of audibility of a sound is
raised by the presence of another (masking) sound. The
unit customarily used is the decibel [6].

However, when talking in terms of a musical mix, the
term attains a quite different definition, namely; when one
signal competes with another, reducing the hearing sys-
tems ability to fully hear the desired signal, masking has
occurred [7]. The latter definition emphasizes the fact that
in a multi-track mix several instruments are fighting to be
heard, so the ability to fully hear every individual instru-
ment is reduced. Accordingly, when there is a lot of mask-
ing going on between the different tracks of a multi-track
recording, the resulting mix is cloudy and confusing. On
the other hand, an unmasked mix is the one where all the
instruments are clearly defined thus allowing the listener to
fully appreciate their timbral characteristics. As such, it is
the authors opinion that masking minimization should be
one of the pillars of an automatic mixing system.

Luckily, masking minimization is not a mystery; it is
known that audio engineers employ three weapons when
combating masking: setting the relative levels of tracks
appropriately (thus giving priority to some of them), pan-
ning the tracks with similar content to opposite sides of the
stereo panorama, and equalization to ensure that each track
is allocated a portion of the spectrum.

1.2 Motivation behind this work

It is clear that there is a lot of ground to be covered in terms
of studying the factors that influence the engineers deci-
sions when performing the three steps mentioned above.
For example, if an audio engineer is using the techniques
to combat masking, an analysis tool that is able to quan-
tify masking would come very useful, this analysis tool
could also be useful for automating the process of mask-
ing minimization. To the authors knowledge, a measure of
masking based on perceptual studies has not yet been pro-
posed within the context of a mix. It is then the intention
of this work to provide a meaningful quantitative measure
of masking between the different tracks of a multi-track
recording. The proposed measure is based on the widely
accepted power spectrum model of masking [8]. The next
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section presents each stage of the model in detail. The
interaction between several common instruments (electric
guitar, bass, synthesizer) is analyzed in section 3, and con-
clusions are presented in section 4.

2. THE CROSS-ADAPTIVE SIGNAL-TO-MASKER
RATIO (SMR)

As mentioned before the main idea behind this work was to
implement an analysis tool for audio engineers to be used
when equalizing a multi-track recording in the attempt to
spectrally unmask the different tracks. Additionally, given
that the model is able to quantify masking, another possi-
ble application of the model is in a content-based equal-
ization system. Such an equalizer falls under the category
of Adaptive Audio Effects (A-DAFX) [9]. The main idea
behind this type of effect is that the processing that takes
place is controlled by sound features derived from the in-
put sound over time. Additionally, a cross-adaptive effect
is defined to be a type of A-DAFX that has multiple in-
puts/outputs and the individual processing of a single in-
put is dependent on the content of all the inputs. This type
of processing requires a feature extraction stage (analysis
stage) that takes the interaction between all the inputs into
account. Furthermore, because the aim of the equaliza-
tion is to minimize unwanted masking, the analysis stage
should be performed on a perceptual domain and based
on psychoacoustic studies. The next section introduces
such an analysis stage, namely, the cross-adaptive signal-
to-masker ratio.

2.1 The Power Spectrum Model of Masking

A widely accepted model of masking has been proposed
by Moore [8]. The model is based on many psychoacous-
tical experiments that have been carried out and improved
in the past few decades [6]. Most of the steps of the cross-
adaptive SMR explained below have been based on this
model. Briefly, to calculate the amount of masking be-
tween two sounds, the excitation patterns for the two sounds
are calculated. Then, the regions with significant excita-
tion overlap in time and frequency are detected and finally
a decision is made for each of these regions in which a
sound is labeled as masker and the other one as maskee
(the sound that is masked). The idea is that when mini-
mizing unwanted masking, the sounds that are considered
maskers in a given region are attenuated to achieve a de-
sired signal-to-masker ratio expressed in decibels.

2.2 Outer/Middle Ear Filtering

The first step of the model is to transform the input sounds
to a perceptual representation across frequency and time.
For this we must first account for the transmission of sound
through the outer and middle ear. Several experiments have
helped to determine the transfer function of this filter [6];
it is depicted in figure 1. The filter shows a clear peak
in the region around 3 kHz and significant attenuation to
low and high frequencies. The filtering is performed in the
frequency domain by multiplying the magnitude spectrum

Figure 1. Magnitude Response of the outer/middle ear fil-
ter. The filtering is applied in the frequency domain by
multiplying the above response with the magnitude spec-
trum of each frame of audio.

of each frame of audio with the response shown in figure
1.

2.3 Excitation Pattern

The next step, after applying the outer/middle ear filter-
ing is to calculate the excitation patterns of the analyzed
sounds. The excitation pattern is meant to correspond to
the average neural activity in response to a steady sound as
a function of frequency [10]. It is calculated as the squared
sum of the output (energy at the output) of each auditory
filter described below as a function of the filters centre fre-
quency. As such, the excitation pattern is a vector which
contains the output energy of each of the 43 auditory filters
of a frame of audio.

2.3.1 Auditory Filter Shape

Several experiments have been performed in order to esti-
mate the shape of the auditory filters in the basilar mem-
brane [8]. It has been concluded that the auditory filters
take the form of a rounded exponential function. In addi-
tion it has been determined that the shape of these filters
vary significantly with the level of the input sound it re-
ceives. Figure 2 illustrates this. Note that the lower fre-
quency slope of the filter becomes less steep as the input
level increases. This fact has a great implication in the case
of music mixing. An engineer usually mixes a song in the
60 to 85 dB SPL range and this is also a reasonable range
at which most people listen to music. This means that at
this level the auditory filters in the cochlea take the cor-
responding form depicted in figure 2. This fact, together
with the fact that the auditory filter bandwidths increase
with center frequency, constitute what is known as the up-
ward spread of masking. The upward spread of masking
refers to the fact that low frequency sounds are more effec-
tive at masking higher frequency sounds. For this reason
this model assumes that the music will be listened to at
levels around 60-85 dB SPL, thus the auditory filters that
are implemented are asymmetric, having an approximate
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Figure 2. The response of the auditory filter has been
found to change with input level. In the figure we can see
the response of the auditory filter centered at 1KHz for dif-
ferent input levels ranging from 20 to 90 dB SPL. As you
can see, the lower frequency slope becomes less steep with
increasing input level.

shape to the one shown in figure 2 when the input level is
70 dB SPL.

2.3.2 Auditory Filter Bandwidths

The bandwidths of the auditory filters have also been found
to change across frequency [6]. In this particular model the
bandwidths are made to increase as a function of center
frequency according to the Equivalent Rectangular Band-
width scale:

ERB = 24.7(4.37F + 1) (1)

Where F is frequency in kHz. This scale differs from
the traditional Bark scale in that the bandwidths keep de-
creasing below 500 Hz [6]. Figure 3 shows the relation-
ship between ERB band number and ERB bandwidth. In
this model, the excitation pattern is calculated using 43
rounded exponential auditory filters spaced one ERB apart
starting at fc = 50 Hz.

2.3.3 The Excitogram

The last step in calculating the Excitation Pattern is simple.
The energy at the output of each auditory filter is calculated
as a function of the filters centre frequency and the result-
ing vector constitutes the excitation pattern at a given time.
Additionally, because we are interested in the sounds tem-
poral evolution we calculate an excitation pattern over time
to form the excitogram [10]. Two example excitograms
are depicted in figure 4 and figure 5. They were calculated
with a window size of 46 ms and a hop size of 23 ms. The
auditory filtering was applied in the frequency domain as a
set of multiplications with the filters responses.

Figure 3. The relationship between the ERB band (1-43)
and the auditory filter bandwidth at that band is shown in
the figure.

Figure 4. The excitogram of a guitar strum (Am). It can
be seen that higher frequencies decay faster than lower fre-
quencies, this is an acoustic property of vibrating strings.

Figure 5. The excitogram of a sustained trumpet note (C3).
It can be seen that this note is fairly stationary.
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2.4 Masking Coefficient

The next step in the model is the calculation of the mask-
ing coefficient. This is a number between 0 and 1 that cor-
responds to the amount of effective excitation overlap be-
tween two sounds. The masking coefficient between two
excitations is given by the following equation:

MC(t, b) = 1−

(
|e1(t, b)− e2(t, b)|

60dB

)
(2)

Where e1 and e2 are the matrices containing the exci-
tograms of each sound in decibels. The absolute value of
the difference between the excitations is normalized with
respect to 60 dB and then subtracted from one. As a re-
sult, when the excitograms have a similar value for a given
ERB band and time, the MC is close to one. This specific
case would yield a low signal-to-masker ratio in that band,
as the auditory filter gets a similar amount of energy from
both sounds, so this means that both sounds are heavily
competing to be heard. As this is the definition of mask-
ing we have adopted (see section 1.1) we call this descrip-
tor the masking coefficient. In practice, all of the values
of the excitations below a certain threshold thex were dis-
carded in the computation of the Masking Coefficient; this
was done to avoid having high MC values at regions where
the excitation values were low because it is assumed that
these components are masked by the louder components
anyways. Also, the values of the MC which are less than
a given threshold thmc are set to zero as we believe they
are not significant. The values of thmc as well as thex

were obtained experimentally, but they could be turned into
user-controlled parameters. In the example above values of
thex = 20dB and thmc = 0.5 were used. It is worth to an-
alyze the MC descriptor depicted in figure 6. Basically,
the MC descriptor above is saying that there is significant
masking going on at the beginning of the sound (the first
5 seconds or so) and only in bands 1-28 approximately. If
we look at the excitations of the sounds in the figures 4
and 5 we can see that the trumpet sound is longer than the
guitar strum. This is why in figure 6 there is no masking
detected after the sound of the strum has died off (around
second 5). Also, as you may know, the high frequencies
in a guitar strum tend to decay faster than the low frequen-
cies; this means that the trumpet note and the guitar strum
are no longer competing to be heard in the higher bands
after the high frequencies of the strum have decayed. This
can also be seen in figure 6.

2.5 The Cross Adaptive SMR

The last step in the model is the computation of the cross-
adaptive signal-to-masker ratio. This means that a decision
needs to be made in which one of the sounds is considered
a masker and the other one a maskee in a given band and
time. This is done because it well may be that a guitar
sound can be masking (competing with) the bass in the
lower bands, but it can be masked by the trumpet in the
higher bands. In order to do this, the model makes use of
two excitation descriptors, namely, the excitation centroid
EC and the weighted average of the three most excited

Figure 6. The masking coefficient descriptor is a measure
of the effective excitation overlap between two sounds.
The figure above shows the MC between the guitar strum
and sustained trumpet note of the examples above.

Figure 7. Descriptors EC (top) and EA (bottom) for the
guitar strum.

auditory filters ERB band number (weighted by their ex-
citation value), from now on EA. These descriptors are
calculated in order to estimate the spectral region in which
the sounds should live. For example, a bass should live
well below a guitar and a guitar should live well below
the cymbals, and these descriptors are able to give us this
information. The masker/maskee estimation can be better
illustrated with an example. In the case of the guitar strum
sound (s=1) and trumpet note sound (s=2) both descriptors
are calculated for both sounds. Figure 7 and figure 8 show
the calculated descriptors for both sounds. Based on these

descriptors a decision is made like follows. For each of the
time/frequency regions where the MC reveals masking the
following distances are calculated:

∆cs = |bt − ECt,s| (3)

∆c3s = |bt − EAt,s| (4)

Where bt is the band where masking was detected (by the
MC descriptor) at a given time t. ECt,s is the excitation
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Figure 8. Descriptors EC (top) and EA (bottom) for the
sustained trumpet note.

centroid of track s at time t. From these values (∆c1,∆c2)
we can figure out if the spectral region in which the sounds
were competing is closer to the centroid of either sound,
which we are assuming is the region around which the
sound should live. Therefore, the sound responsible for the
smallest value of ∆ (either using equation 3 or 4) is consid-
ered to be the maskee (the sound that is being masked), and
the other sound is considered the masker. It has been de-
termined that the descriptors mentioned above behave dif-
ferently depending on the sound. Sometimes the centroid
is smoother and sometimes the 3-peak average ERB value
is smoother. The pros and cons of using either descriptor
for the analysis are still under investigation but as an initial
suggestion, the descriptor that shows the smoothest evolu-
tion should be chosen. An example of such decision us-
ing only the centroid (only using equation 3) is depicted in
figure 9. The red regions corresponds to the regions where
the trumpet is considered a maskee, the green region corre-
sponds to the regions where the guitar is considered a mas-
kee. In the region where a sound is considered a maskee
the sound is protected in the sense that in order to increase
the signal-to-masker ratio, the other sound will be attenu-
ated in that band. In this specific case, the sound of the
guitar in the higher bands was protected at the beginning
of the sound, but once the higher frequencies decayed, the
guitar was assigned to the lower bands and the trumpet was
assigned to the higher bands. This demonstrates the ability
of the system to dynamically adapt to the relationship be-
tween the two sounds. Apart from being able to allocate a
portion of the spectrum to each sound, the proposed model
is also able to quantify the amount of masking between the
tracks, this means that an audio engineer could keep track
of exact values that work for given situations. To quan-
tify the amount of masking we calculate the SMR which is
explained next.

Finally, now that the sounds have been labeled as masker/
maskee, it is possible to calculate the signal-to-masker ra-
tio at any auditory filter at any point in time. The SMR is
then given by:

SMRt,b = 10log10

(
Est,b
Emt,b

)
(5)

Figure 9. The masker/maskee decision for the guitar strum
and sustained trumpet note. It can be seen that the deci-
sion dynamically adapts the content of both sounds. In this
case, equation 3 is responsible for the decision.

Figure 10. Instantaneous SMR for guitar strum and sus-
tained trumpet note. The decision function is responsible
for labeling the sound as masker (Em) or maskee (Es).

Where Es is the excitation of the maskee (protected signal)
at time t and band b, and Em is the excitation of the masker
at time t and band b. This is the measure that is used to
quantify masking between the different instruments, it is
expressed in decibels. An example of the SMR measure
for a frame (around second 0.75) of the sounds above is
depicted in figure 10. As you can see, the SMR does not
have a value for some bands; this means that the MC did
not detect any masking in those areas. The MC used to
calculate the above SMR was calculated with a thmc = 0.8
which means that only areas with a high degree of excita-
tion overlapping are considered. The SMR can have both
positive and negative values, a value close to 0 indicates
a similar amount of energy of both sounds in that audi-
tory filter. A positive increasing value indicates less mask-
ing (less competition) and a negative value indicates more
masking (the energy of the masker is higher in that audi-
tory filter, so there is more competition). To summarize,
the whole process of calculating the cross-adaptive SMR
is made up of four fundamental blocks. The first step is to
calculate the excitations of the input tracks by first filter-
ing each input track with the outer/middle ear filter, then
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Figure 11. Overview of cross-adaptive SMR computation.

passing them through an auditory filter-bank and summing
the squared energy of each filter’s output as a function of
the filters centre frequency. Then, the masking coefficient
is calculated using equation 2. Then, in order to label the
tracks as either masker or maskee, both the excitation cen-
troid (EC) and the MC descriptor are used in equation 3,
or alternatively, the 3-peak excitation centroid (EA) and
the MC descriptor are used in equation 4. Once the sounds
are labelled across frequency and time (see figure 9) it is
possible to use equation 5 to obtain the SMR. Remember
that the auditory filter-bank is made up of 43 rounded ex-
ponential filters, each spaced one ERB apart (equation 1),
with the first filter at fc = 50 Hz.

3. ANALYSIS OF COMMON INSTRUMENTS

This section is concerned with the analysis of the proposed
model. Four common instruments of a multi-track record-
ing are selected, namely the bass, rhythm electric guitar 1
(playing chords), synthesizer, and electric guitar 2 (playing
arpeggios an octave above the chords). We will see how
these tracks mask each other across frequency and time in
a song excerpt of length 9 seconds. The analysis is done
with a graphical user interface that allows setting the rela-
tive levels of the tracks before they are analyzed. This is
very important as the relative levels between tracks dictate
the amount of masking between them. The tracks are set
to the same relative levels for all cases (or very similar),
the idea is to investigate their interaction. The first case to
be explored is the bass. Figure 12 shows the result of the
analysis between the bass and the rest of the tracks. The re-
gions where the bass is masked are shown in green. As you

Figure 12. Top: bass and electric guitar 1. Middle: bass
and synth. Bottom: bass and electric guitar 2.

can see, in all of the cases the bass was found to be masked
in the lower bands, this agrees with intuition as it is known
that the bass guitar should be the dominant instrument in
the lower ranges. In this specific case, the instrument that
seems to be interfering the most with the bass is the syn-
thesizer, and the instrument that interferes the least with
the bass, is the electric guitar 2. Following is the analysis
of the rhythm electric guitar 1. The images below show the
results of the analysis between the guitar and the rest of the
tracks. The regions where the electric guitar 1 is masked
are shown in green, and the regions where the electric gui-
tar is masking another sound are shown in red. As you
can observe, the electric guitar 1 is masking more bands of
other sounds than the bass did. Also, the instrument that
seems to mask the electric guitar 1 the most is the electric
guitar 2, followed by the synthesizer. An interesting fact to
observe is that the electric guitar 2 is masking the electric
guitar 1 in band 10, but the synth is not (at least for most
of the time). All of these subtle details can be useful to an
audio engineer when equalizing the sounds.

Next we will observe the interaction between the syn-
thesizer and the rest of the sounds. Figure 13 shows the
results of the analysis between the synth and the rest of
the sounds. In the case of the synth we can observe
that the only instrument that is masked by the synth in
the lower bands is the bass. Also, the electric guitars both
show a similar interaction with the synth, although elec-
tric guitar 1 seems to be interfering with the synth in lower
bands. From the visualization of these results it is possible
to make some conclusions once the interaction between all
tracks has been analyzed. First of all, the bass track was
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Figure 13. Top: electric guitar1 and bass. Middle: electric
guitar1 and synth. Bottom: electric guitar1 and electric
guitar 2.

Figure 14. Top: synth and bass. Middle: synth and electric
guitar1. Bottom: synth and electric guitar 2.

determined to be masked in the lower bands for all cases,
this means that this instrument should definitively occupy
the lower bands and the rest of the tracks should be attenu-
ated at those bands to increase the signal-to-masker ratio of
the bass in a given region. Secondly, The rhythm electric
guitar 1 was masked below band 5 and above band 10 by
the electric guitar 2 and it was masked only above band 10
by the synth, this implies that the electric guitar 2 should
live higher in frequency than the electric guitar 1, which in
turn should live higher in frequency than the synthesizer.

4. CONCLUSIONS

A quantitative measure of masking between the different
tracks of a multi-track recording has been implemented.
We have seen that the model is able to decide if an instru-
ment is acting as a masker or as a maskee in a time/frequency
representation by means of analyzing its spectral content.
This decision has been analyzed with several common in-
strument tracks and we have shown that the model is able
to allocate a portion of the spectrum to each instrument,
which is a task that most audio engineers need to develop
a skill for. Furthermore, once the decision has been made
we can calculate the SMR for any band at any point in time
where masking is detected which means that masking can
be quantified. Also, the visualization of this decision can
be very useful for audio engineers when equalizing tracks
to reduce masking, which is known to be an important task
in music post-production [7]. Furthermore, the proposed
model could also be used as the analysis stage of an adap-
tive audio effect in the future that could automate the mask-
ing minimization process, although this matter is still un-
der investigation.
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ABSTRACT 
Music performance is processing to embody musical 
ideas in concrete sound, giving expression to tempo and 
dynamics and articulation to each note. Human compe-
tence in music performance rendering is enhanced and 
fostered by supplementing a lack of performance skill 
and musical knowledge using computers. This paper in-
troduces a performance design environment called Mix-
tract, which assists users in designing “phrasing,” and a 
performance design guideline called the Hoshina-
Mixtract method executable on Mixtract. Mixtract pro-
vides its users with a function for assisting in the analysis 
of phrase structure and a function to show the degree of 
importance of each note in a phrase group. We verified 
that the proposed system and method help seven children 
to externalize their musical thought and help them trans-
form their subjective musical thoughts into objective ones. 

1. INTRODUCTION 
Making and performing music is regarded as very effec-
tive ways to foster musical competence. However, in 
many cases, lack of control or skill with musical instru-
ments can limit the ability to test a personal free musical 
thought.  

If people can use a computer system to test their musical 
thought, listen to their attempts in the form of sound 
feedback, and receive assistance with their limited skill, 
their musical competence will likely increase. 

Some music composition systems that transform graphic 
materials into sound are available for this goal. UPIC [2], 
designed by Iannis Xenakis in 1977, is the most famous 
and historically important system. The software version 
of UPIC, called Iannix, is currently available in a 
Max/MSP environment. For a commercial software 
package, Kid Pix, released in 1989 [7] for Macintosh, is 
regarded as the first edutainment application for children 
to enjoy creating sound sequences by drawing graphic 
icons. One study used interactive composing environ-
ments to return a musical passage in response to a play-

er’s input, which has been used for music education pur-
poses [3]. 

This study deals with competence in performance render-
ing rather than musical composition. Performance render-
ing is a process of creating a musical idea as a vivid 
movement of loudness, tempo and articulation of note 
sequences. Musical performance interfaces based on beat 
tapping or conducting interfaces are available for this 
purpose [9][11][12]. In contrast with these real time ap-
plications, our study aims at letting users more carefully 
consider performance rendering based on phrasing. 
Phrasing is musical expression related to vocalization and 
respiration. This musically important expression is easy 
for people to grasp. However, it is not easy to understand 
how to control phrasing. Moreover, structuring phrasing 
is difficult without guidelines. The authors have been 
developing a performance design system called Mixtract 
to cope with this difficulty and have formalized a music 
interpretation theory to be used on Mixtract [6]. That is, 
we provided an environment to test musical thought re-
garding phrasing with sound feedback for users who lack 
performance skills. 

The construction of this paper is as follows. In the next 
section, phrasing and an overview of Mixtract are intro-
duced. The Mixtract overview is followed by explana-
tions of each function for assisting in phrasing design. 
Then, practical phrasing design methods using Mixtract 
and the preliminary evaluation executed for elementary 
and junior high school students are described. 

2. OVERVIEW OF MIXTRACT 
2.1 Phrasing and Mixtract 

A common property of all music is that all adjacent notes 
are musically connected, and the sequence of successive 
notes forms a musically meaningful group, which is re-
ferred to as a “phrase.” Phrases are also combined with 
each other to construct the phrase structure. 

The phrase structure of a musical piece is not always 
unique. There are many possible candidate phrase struc-
tures. Musicians and conductors select one of the possible 
phrase structures and embody it in sound, as the structure 
is conveyed to the audience, as shown in Figure 1. There 
are various ways to express a phrase structure. The com- 

Copyright: © 2010 Mitsuyo Hashida et al. This is an open-access 
article distributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 
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Figure 1. An image curve of phrasing (from [8]). The 
horizontal axis shows the timeline, and the vertical axis 
shows dynamics and tempo. Phrases consist of a hierar-
chical structure, and there are rainbow-shape curves of 
dynamics, tempo and articulation in each phrase. 

 

bined expression of tempo, dynamics and the articulation 
of each note of the piece are heard as the individuality of 
the performer.  

In the construction of a design assistant system, it is im-
portant to ensure considerable flexibility for users. How-
ever, too much flexibility can confuse users. The follow-
ing two priorities must be considered in designing a mus-
ical design assistant system: (1) The system can function 
as an environment in which to test a user's musical ideas 
with real sound, and (2) the system provides automatic 
functions to complement the user's input while maintain-
ing the user's intention. Mixtract is a musical expression 
design-supporting environment based on the above ideas. 

Figure 2 shows an overview of Mixtract. Users of Mix-
tract first put a score into the system by hand on the piano 
roll editor view or by importing a MusicXML file. Next, 
they specify groups of notes as phrases and give them 
expression (dynamics, tempo and articulation) curves. 

Musical expressions given by expression curves are con-
sistently consolidated into the whole expression. The 
onset time, the offset time and the dynamics of each note 
may be individually edited, if desired. Every time the 
user edits one of the expression curves, the piano roll that 
shows the performance preview is updated. Mixtract al-
lows users to listen to the performance at any editing 
stage. This feedback is effectively used in performance 
design. 

Our policy in designing Mixtract is that users are respon-
sible for performance design tasks, including determina-
tion of phrase structure and editing the expression curves. 
Automatic processing technology is employed to fill in 
where users lack skill or have no special requirements. 
The following functions based on cognitive music theo-
ries are provided for this goal.  

2.1.1 Hierarchical Phrase Structure Analysis 

In order to free users from the tedious work of giving a 
hierarchical phrase structure to the system, Mixtract sup-
ports an automatic analysis of hierarchical phrase struc-
ture that preserves user-provided phrases. This function is 
based on A Generative Theory of Tonal Music (GTTM) 
[10]. 

GTTM itself does not offer a solution to ambiguous 
phrase structure. It can, however, effectively make up the 
remainder of the structure that the user does not directly 
specify. The detailed design of the interactive features of 
GTTM will be described in a later section. 

 

 

Figure 2. Overview of Mixtract 
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2.1.2 Phrasing Design Based on Apex Note 

There are two well-known principles of phrase expres-
sion: (a) giving an accent of velocity to the beginning 
note of a group and (b) rainbow-shape expression [1]. 
Rainbow-shape expression increases dynamics and tempi 
from the beginning note and then decreases them to the 
last note of that group. 

These principles of phrase expression are simple. How-
ever, it is confusing to decide whether to employ (a) or 
(b) and to find the apex note of phrase in (b). To solve 
this difficulty, we formalized a musical interpretation 
theory [8] proposed by Hoshina, one of the best supervi-
sors of directing brass bands in Japan. He showed the 
existence of the apex notes of phrases and an outline of 
how to find the apex notes through score analysis. Mix-
tract provides users with an apex probability viewer, as 
shown using several shades of red in Figure 3. A policy 
of editing an expression curve to make the apex fall at the 
apex note contributes to reducing the amount of trial and 
error in finding good expression curves. 

3. EDITING PERFORMANCE CURVES 
AND SYNTHESIS OF EXPRESSION 

Mixtract provides a performance design GUI using ex-
pression curves for each phrase and an editor for the start 
timing, duration and dynamics of each note. In this sec-
tion, we illustrate the performance design interface using 
expression curves and describe its representation algo-
rithm. 

3.1 Editing Expression curves 

When a phrase structure is fixed, the system prepares 
default shapes for the expression curves: tempo curve, 
dynamics curve, and articulation curve. When users of 
the system click a phrase, the expression curve editor, as 
shown in Figure 3, appears. The users participate the per-
formance design by editing the expression curves. 

3.2 Tempo Curve and Calculation of Note-on and 
Note-off Timing 

A tempo curve value is given using exponent representa-
tion; 0: no change, 1: tempo-up to double, -1: tempo-
down to half. The total tempo expression of hierarchical 
phrases is expressed by the following equation: 

 

Tempo t( ) = ωk × GroupTempok t( )
k =1

n
∑          (1)  

where GroupTempok(t) is the tempo curve of the phrase 
that locates the score time t, and Wk is the weight of the 
curve of the phrase. Note-on and note-off timing are cal-
culated by the integration of Tempo(t). The real time be-
tween score time t0 and t1, denoted as Time(t0, t1), is cal-
culated using the following equation: 

 

Figure 3. Performance curves and the editor with the 
apex probability viewer. The toggle buttons for dynamics 
(blue), tempo (green) and articulation (red) turn each ex-
pression curve on or off. The curve selected by the left 
radio button can be edited using a mouse. The apex prob-
ability of notes is shown using shades of red in the apex 
probability viewer. 

 

 

Time t0,t1( )= DeltaDuration × 2−Tempo t( )

t = t0

t = t1

∑          (2) 

where DeltaDuration is the value prescribed by the aver-
age tempo (beats per minute) and resolution of the inte-
gration range. This equation makes the expression of the 
gradual tempo change within a beat portable to a real 
time scheduling application such as the conducting inter-
face. 

3.3 Dynamics curve and calculation of velocity 

The overall dynamics of the note is given by the summa-
tion of the dynamics curves of the hierarchical phrases, as 
in the timing calculation. 

 

Dyn t( ) = ω k × GroupDynk t( )
k =1

n

∑                          (3) 

The dynamics of the note at score tine t is given by the 
following equation, as the dynamics is calculated with 
velocity of MIDI expression. 

 

Vel t( ) = StdVel + Dyn t( )                             (4) 

where StdVel is the default standard value (64).  

3.4 Articulation Curve and Calculation of Note-off 
Timing 

Articulation refers to a performance technique, which 
affects the transition or continuity on single note to the 
following note. The current version of Mixtract deals 
with digital keyboard instruments. In this situation, the  
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Figure 4. Phrase structure. Green boxes are user-
specified phrases, while blue and gray boxes are the sys-
tem-analyzed hierarchical phrases based on the user’s 
phrases. Red lines are phrase boundary candidates esti-
mated by the system. 

 

major control parameter for articulation is the timing of 
each note-off. 

The score time of the ith note offset, denoted as Noffset (i), 
is revised using the following equation: 

( ) ( )
( ) ( ) ( )( )iNiNtnGroupArtcliN

iNiN

TVOnsetTV

OnsetOffset

+×

+=
        (5) 

where NOnset(i) and NTV(i) are score onset time and time 
value of the ith note respectively. GroupArtcltn(t) is the 
ratio of the articulation curve of the phrases at score time 
t. The real time of NOffset(i) to be issued is calculated using 
equation (2). 

3.5 Expression of Expression Marks  

For the expression marks such as crescendo and staccato, 
which are explicitly described in the score, Mixtract pro-
vides a replacement function in the form of expression 
curves. Like the expression curves of phrases, these 
curves can be edited. 

3.6 Chords and Polyphony 

The data description in the current version of Mixtract 
adopts procedures to place all notes in a single voice part, 
namely, single staff notation. It is possible to generate 
performance expression in melodies consisting of mul-
tiple voice parts, including the chord; however, the cur-
rent system is not intended for the performance design of 
polyphony and tempi, each part of which may proceed 
differently. System implementation for polyphony is one 
of our future plans. 

 
Figure 5. Outline of phrase structure analysis 

 

4. HIERARCHICAL PHRASE STRUC-
TURE ANALYSIS FUNCTION 

Musical phrase structure is ambiguous. Mozart's Piano 
Sonata K.331 (see Figure 4, upper part) is often cited by 
books dealing with musical theories as an example of this 
ambiguity. Mixtract provides a function that automatical-
ly analyzes the remainder of the phrase structure that the 
users do not assign. The users give the primary phrase 
boundary that they especially want to assign when listen-
ing to melodies. In the lower part of Figure 4, the phrases 
in green are those given by the user, and the phrases in 
other colors are phrase structure obtained automatically. 

The goal of the design of the structure analysis is to re-
flect the user's intention and direct manipulation. Figure 5 
shows the overview of the function for phrase structure 
analysis. If the phrase part analyzed automatically differs 
from what the user wants, the user can edit the phrase 
boundary position again, and the system will analyze the 
remainder again. This procedure is repeated until the user 
obtains the desired phrase structure. 

4.1 Reflection of User’s Intention 

The function for automatic analysis of phrase structure is 
based on exGTTM [5]. ExGTTM is an extension of 
GTTM [10], because it may work as a computational 
model. 

There are likely to be cases in which the users’ direction 
contradicts the automatic analysis. Mixtract gives priority 
to the user’s grouping direction. The lower and the upper 
structures of the concerned phrase are combined or di-
vided, preserving the users’ direction. Then, each default 
preference weight of the contradictory rules for grouping 
of exGTTM is revised to reflect the user's preference. The 
user is allowed to choose the default preference weight or 
the revised preference weight the next time the automatic 
phrase structure analysis is applied. The system also sup-
ports a function to find the same motives that the user 
assigned, which also helps to reduce the tediousness of 
the task. 
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Figure 6. Hoshina’s interpretation and Expression of the 2nd Movement of Beethoven’s Piano Sonata “Pathetique”: The 
annotated slurs are according to the Henle Edition. The brackets above the main melody indicate Hoshina’s grouping, 
and the stars indicate the apices of those groups. The Crescendo and diminuendo are written by the author based on his 
expression. 

 

4.2 Direct Manipulation 

When users of exGTTM want to change some phrase 
boundaries, they have to influence the system's behavior 
by specifying the preference weight of each rule, Instead 
of this indirect operation; Mixtract users are allowed to 
edit the phrase boundaries directly. They can assign 
phrases intuitively by just listening to the music, without 
any knowledge of the meaning of each rule for grouping. 
This is one of the key features that nonprofessional 
people can use this system. 

5. PHRASE APEX ANALYSIS FUNCTION 
Mixtract provides a function to guide the apex note of a 
phrase based on the conditions that Hoshina described for 
how a note may be recognized as the apex: the crest in 
the outline of a note sequence, notes with a long time 
value, more strained notes in the tension-resolution struc-
ture, and so on. He also suggested that the last note of a 
phrase cannot be the apex. Figure 6 shows an example of 
apex analysis by Hoshina. 

Hoshina's theory is distinctive compared with other music 
theories. However, it is too subjective to be directly used 
as a computational model. Therefore, we formalized the 
theory as rules, added some additional principles, and 
fixed the value of the point of each rule empirically as 
shown in Table 1 (last page). The likelihood of each 
note's being the apex is calculated by adding the points of 
the corresponding rules for the note. The result of the 
calculation is converted into shades of red on the piano 
roll, as shown in Figure 3. 

6. PERFORMANCE DESIGN METHOD 
USING MIXTRACT AND 

 EVALUATION 
6.1 Performance Design Method 

Mixtract itself is a general environment for phrasing ex-
pression design. Inexperienced musicians, including be-
ginners and children, may be confused as to which of a 
lower or higher phrase should be selected to give expres-
sion or how to edit a free-hand expression curve. To re-
duce such confusion, we set up a set of guidelines for 
phrasing called HMM (Hoshina-Mixtract Method) that 
can be used on Mixtract, based on Hoshina’s theory.  

In using HMM, first the user has to specify the primary 
phrase line, which is a sequence of phrases composed of 
a few measure lengths. Some people may think that it is 
not easy to judge phrase boundaries simply by looking at 
a visual score (piano roll). However, some of the breath 
points of singing melodies will be phrase boundaries. 
Using the playback function of Mixtract, the user can 
specify the phrase boundaries almost intuitively. Next, 
the user edits each expression curve for the dynamics, 
tempo and articulation of the phrases of the primary 
phrase line, as referring the information of each phrase 
apex. The user directly modifies the onset time, the offset 
time and the dynamics of each note, if needed. The con-
crete steps of HMM are as follows: 

 

Hoshina-Mixtract Method 
Step 1: Specification of the primary phrase line 

1. Input initial primary phrase line 
2. Modify and fix the line using playback function 
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Step 2: Specification of the apex of each phrase of the 
primary phrase line 

1. System shows apex candidates with probability 
2. (User fixes apex notes) 

Step 3: Expression design of the primary phrase line 
with apex information 

1. System gives default parameters of expression 
curves based on Hoshina’s theory 

2. Edit expression curves 
3. (Converting Expression Marks into expression 

curves) 

Step 4: Expression design of the higher-level phrases of 
the primary phrase line 

1. (System gives default parameters of expression 
curves that as they may express the phrase as a 
group) 

2. Adjust the position of the apex and the ampli-
tude range of each curve, if necessary. 

Step 5: (Modification of the onset time, the offset time 
and dynamics of each note) 

The procedures in parentheses are optional. The user may 
go back to a previous procedure at any point, if desired. 

6.2 Workshops for Phrase Expression Design with 
HMM 

We conducted a workshop to investigate the effectiveness 
of Mixtract and HMM in helping around children to learn 
phrase design. The workshop participants were five ele-
mentary school students, ten to eleven years old, and two 
fourteen-year-old junior high school students belonging  

 

 

 
Figure 7. Photograph of the workshop on phrase expres-
sion using Mixtract for seven children. 

to a brass band club at their school. The workshop was 
led by a high school music teacher who also teaches 
children to play the piano and who majored in piano and 
completed a master's degree in music. None of the partic-
ipants had ever studied music in depth, although some 
could play piano and some could play a brass instrument. 
Figure 7 shows some photographs of the workshop. 

After the workshop, all of the participants commented, “It 
was interesting to listen to expression is changed by mod-
ifying depth of expression curves.” One of the junior high 
school students commented, “I want to bring back the 
system to my home to think of phrase expression more 
deeply for my club activity.” The following comment by 
the lecturer was more meaningful: “I reminded myself 
that I have never taught students phrasing as a general 
concept and a concrete methodology so far. I was made 
to reconsider how to teach music through this workshop. 
In this sense, I was a student in this workshop, too.” 

7. DISCUSSION AND FUTURE WORK  
7.1 Mixtract as Phrase Design Environment 

Mixtract is a music performance design framework that 
facilitates phrase expression. It includes functions that 
perform hierarchical phrase structure analysis and apex 
note analysis, and it provides an expression curve editor 
for each phrase. 

The educational goal of Mixtract is to let its users exter-
nalize and formalize their tacit knowledge about musical 
performance. For this goal, it is crucial to give the users 
feedback on how the users’ actions affect the result. The 
most recent version of the commercial notation software 
Finale [4] includes functions that render expression 
marks into expressive sound, and the performance render-
ing system SuperConductor [13] generates expressive 
performance based on the expression of metric structure. 
Commercial music sequencers are equipped with piano-
roll visualization, and each has its own GUI. These sys-
tems contribute to improving efficiency in music perfor-
mance production, but they are not necessarily good 
frameworks for letting the users consider phrasing. 

The design of phrase expression in Mixtract is executed 
as non-real-time processing through the repetition of edit-
ing. Another computer-assisted approach to letting the 
user think about phrase expression is the use of perfor-
mance systems that work with beat tapping or conducting 
interfaces such as RadioBaton [11], iFP [9] and Fami-
lyEnsemble [12]. One of the biggest advantages of using 
these systems is that the player can express tempi and 
dynamics with simple physical movement, without wor-
rying about pursuing the correct notes of scores. Real-
time control and feedback are among the advantages of 
this approach. On the other hand, this function can be a 
disadvantage if the goal is to let the users formalize their 
tacit knowledge about phrase expression. 
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We believe that combining the use of Mixtract and a per-
formance interface based on beat tapping could contri-
bute greatly to increasing competence in musical perfor-
mance, especially for individuals who lack performance 
skill and musical knowledge. 

7.2 Future Work 

As described in the implementation section, the current 
version of Mixtract is applicable to clearly multi-part 
music, but not to truly polyphonic music. Implementing a 
version for polyphonic music is a primary technical goal. 
The second technical goal is to provide an automatic 
harmonic analysis function to assist in apex probability 
analysis. This function will also be necessary when deal-
ing with polyphony. 

Experienced musicians already understand how to cap-
ture and express phrases, but this understanding is in the 
form of tacit knowledge, and even experienced musicians 
cannot always explain how expression is produced as a 
combination of dynamic, tempo and articulation of notes. 
We expect Mixtract and HMM to help externalize such 
tacit knowledge. In particular, workshops where partici-
pants can explore their expression are expected to raise 
not only their musical competence but also their musical 
culture level. Our workshop was only preliminary. We 
plan to continue workshops and to modify the method, 
and we plan to construct a curriculum for practical work-
shops executable by educational facilities in the near fu-
ture. 

8. CONCLUSION 
We developed Mixtract as an environment to support 
musical performance design focusing on phrase expres-
sion. In this paper, we described the concept of the sys-
tem design, the hierarchical phrase structure analysis and 
the phrase apex analysis, and we then showed an ap-
proach for phrasing called HMM that can be used on 
Mixtract, based on Hoshina’s theory. We also described a 
preliminary evaluative study of Mixtract and HMM's 
performance for use in designing phrase expression by 
elementary and junior high school children. 

Mixtract itself is a framework for performance design. 
Unlike most automatic performance rendering systems to 
date, Mixtract assists its user's music interpretation and 
helps to convey the musical interpretive intent to the sys-
tem. In the preliminary study using HMM, we observed 
that children continued to edit curves and listen to the 
changes until they obtained the desired result. They were 
able to see the form of the expression curve together with 
the apex-likelihood. We are convinced that the children's 
subjective idea of phrase expression is shifted to an ob-
jective one through their own active editing and sound 
and visual feedback. 

We are still at an early stage of providing a musical envi-
ronment in which people are able to practice musical per-
formance, especially focusing on phrasing, in an active 
environment. We hope to continue to perform experi-
ments in the use of Mixtract by both of experienced and 
inexperienced musicians to foster musical competence in 
performance rendering and will analyze the results in 
future work. 
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ABSTRACT

Composition is viewed as a process that has its own
temporal dimension. This process can sometimes be
highly non-linear, sometimes is carried out in real-
time during a performance. A model is proposed that
unifies the creational and the performance time and
that traces the history of the creation of a piece. This
model is based on a transformation that enhances data
structures to become persistent. Confluent persistence
allows navigation to any previous version of a piece,
to create version branches at any point, and to com-
bine different versions with each other. This concept is
tuned to integrate two important aspects, retroactiv-
ity and multiplicities. Three representative problems
are posed: How to define dependancies on entities that
change over time, how to introduce changes ex-post
that affect future versions, and how to continue work-
ing on parallel versions of a piece. Solutions based
on our test implementation in the Scala language are
presented. Our approach opens new possibilities in
the area of music analysis and can conflate disparate
notions of composition such as tape composition, in-
teractive sound installation, and live improvisation.
They can be represented by the same data structure
and both offline and realtime manipulations happen
within the same transactional model.

1. CONCEPTUAL FOUNDATION

1.1 The Double Nature of Composition

Time, along with space the fundamental parameter
of composing pieces of music and sound art, appears
in various forms. A fundamental distinction can be
drawn between the creational time tK – the time in
which a composer creates or manipulates a piece –
and performance time tP – the time in which a piece
is presented to a listener. One feels reminded of the
double nature of the term composition, as pointed out
by Koenig: «By musical composition we generally un-
derstand the production of an instrumental score or

Copyright: c©2010 Hanns Holger Rutz et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution License 3.0 Unported, which per-

mits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

a tape of electronic music. However, we also under-
stand composition as the result of composing [...] (we
say for instance: “I have heard a composition by com-
poser X”).» [1, p. 191] The hermetic view that the
«concept of composition is accordingly closed with re-
gard to the result, but open with regard to the mak-
ing of a composition» [1, ibid.], however is dropped
in favour of one where the electroacoustic composer
is regarded as the «first listener» 1 , often being able
to “perform” the piece in total or part while working
on it, or in fact performing it in a live improvisation
where part of the work is composed (put together)
while being performed, not necessarily arriving at one
pre-defined result.

A special case is added by the medium of sound
installation, where the “piece” often does not have a
beginning or ending, and in which the listener chooses
the time span of exposure to the sounds, sometimes
even influencing the piece in an interactive way. It
is therefore useful to depart from a perspective where
the process of composition terminates in a fixed com-
position, but rather to consider indeterminacy as an
essential ingredient, and therefore to look out for ways
in which indeterminacy can be represented and ma-
nipulated in a composition system. Tentatively, we
further divide elements in tP into those forming a vir-
tual (or prospective) structure and into those forming
several actual realisations of that structure.

1.2 Databases

An interesting taxonomy has been developed in re-
search on database systems: In a bi-temporal database,
two timelines are distinguished: The valid time de-
fines the time in which a database entry has exis-
tence in “reality”, when it «accurately modeled real-
ity» [3]. On the other hand, someone is maintaining
and editing the database, performing operations on
the transactional level, where time means «when an
event is recorded in the database» [4]. The two time-
lines are often seen as orthogonal to each other, and
common queries are punctiform with regard to trans-
actional time and interval based with regard to valid
time (cf. [5]). It follows that, if a composition is con-

1 The term is deliberately taken from Daniel Charles who
demands «a music that takes care to consider the composer not
as the organizer of a technological ritual but, more modestly, as
the first listener». [2, p. 152]
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sidered being a kind of database, the composer takes
the role of the operator on the database, and trans-
actional time corresponds with tK. The entries in the
database, the elements from which the music is con-
structed, form one or more valid timeline fragments in
virtual tP and eventually become one particular actual
timeline in tP per performance.

1.3 Persistence

The extension of the valid by the transactional time
layer introduces the history of the creation of a work.
In the taxonomy of Driscoll et al., we call ephemeral a
data structure which is agnostic of its history, so that
any modification to it would let the previous state
fall into oblivion. On the other hand, enhancing an
ephemeral structure so that its previous states are still
accessible, makes it become persistent [6]. The dis-
tinct variants of an ephemeral structure we call “ver-
sions”, and the versions form vertices in a directed
graph such that one vertex vj points to another vk if
vk was created by applying some modification to the
ephemeral structure in version vj .

In a linear perspective, each transaction corresponds
with a new version of the database. However, in a non-
linear perspective, one could depart from any previous
version and branch off. Finally one could even create
a version by combining two previous versions. In the
first case, the graph is a linear path, and the enhanced
structure is called partially persistent, meaning that
«all versions can be accessed but only the newest ver-
sion can be modified». The second case produces a
graph which is a tree, and we speak of full persistence,
where «every version can be both accessed and modi-
fied». In the last case the enhancement which uses «an
ephemeral data structure that supports an update in
which two different versions are combined» is called
confluent persistence, and the versions have the most
general form of a directed acyclic graph (DAG) [6].

We will use persistence not only to model the evolu-
tion of a piece in tK, but also to use version branching
and melding as a joint between virtual elements and
one or more actual realisations in tP. This way we
unify the compositional process and the performance
of pieces.

A critique of the persistence approach comes from
Demaine et al. who state that, since versions are never
overwritten and versions can only depend on previous
versions, «the dependence relationship between two
versions never changes. [...] Thus, the persistence
paradigm is [...] inappropriate for when changes must
be made directly to the past state of the structure.» [7]
Instead they propose «retroactive data structures» as
a new approach that can incorporate deliberate ma-
nipulations of past states of a data structure. Un-
like persistence for which general transformations have
been proposed, retroactivity requires special solutions
for each particular data structure. In section 2.5 we
will face a problem that seemingly calls for some kind
of retroactivity, and we will see that it can well be

solved within the persistence paradigm.

1.4 Multiplicities

If now the compositional process is seen as a sequence
of decision-making or actualisation, we may integrate
indeterminacy into this model. Indeterminacy can be
attributed to three sources: Chance operations, inter-
active sensorial input, and generative (self-modifying
or memorising) structures. Indeterminacy can be sub-
sumed under other forms of multiplicities, namely the
exploratory behaviour of the composer who concur-
rently or successively develops different versions of
(parts of) a piece, and scale where different versions
are developed for different contexts, e.g. modes of spa-
tialisation. In total this leads to five types of multiplic-
ities. The task is then to elaborate appropriate models
for the virtual sources of multiplicities, for example a
model of chance operations, a model of interactive in-
put, etc. Although this is beyond the scope of this
paper, we will use a simple placeholder for temporal
values which are unknown in a version to show that
our general model can indeed be extended to represent
multiplicities.

2. IMPLEMENTATION

2.1 An Overview of Confluent Persistence

Fiat and Kaplan [8] have developed general algorithms
for turning any ephemeral linked data structure into
its confluently persistent counterpart. Our contribu-
tion is to apply this framework to the representation
of temporal objects, extending it in several ways. Be-
fore we describe problem cases and their solution, it
is therefore necessary to give a brief overview of this
framework.

The ephemeral data structure is considered to be
composed of any number of nodes each of which can
have “data” and “pointer” fields. The pointer fields are
used to link nodes together, while the data fields hold
primitive values. Instead of distinguishing data and
pointer fields, we prefer to speak about mutable fields
used to store immutable values and mutable fields used
to refer to other mutable objects.

Each ephemeral node is transformed into a “fat”
node which contains information about all its states
through different versions, using some kind of dictio-
nary for each field. To distinguish which version we
are looking at, the notion of a node pedigree is intro-
duced which basically is a sequence of version identi-
fiers (or vertices), starting from the version in which
a node was created (the seminal version), and carry-
ing successively the identifiers of the versions through
which the node was brought to the currently accessed
version. The identifier of a fat node thus is the tuple
composed of the node pedigree and a reference to the
fat node structure.

To access a field in a particular version of a fat
node, each ephemeral field is replaced by a fat field
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which consists of a search trie 2 that carries all values
that have ever been assigned to that field, stored in
the leaves of the trie, and the paths into the trie being
the so-called assignment pedigrees, again a sequence
of version identifiers. In the case of pointer fields –
references to mutable objects –, node identifiers are
stored in the trie, and in the retrieval a transforma-
tion called «Pedigree Prefix Substitution» is applied
to update the node identifier so that it becomes a valid
and unique access identifier within the current path in
the version DAG.

The notion of pedigrees allows for the appearance
of an ephemeral node more than once within the same
version, while maintaining correct access to each ele-
ment. The operation by which a node is re-introduced
into a version is called a “meld”, and it allows for ex-
ample to catenate a linked list to itself or to an older
version of itself.

Our implementation uses Fiat and Kaplan’s com-
pressed-path representation of pedigrees. It is based
on the observation that there are often long linear
sequences in the version graph which produce weak
performance when using a full-path pedigree repre-
sentation. In the full-path representation, the trie
keys grow linearly with the number of versions. In
the compressed-path method, the graph is split into
disjoint (sub-)trees, each of which has an associated
level `, can only be entered at most once per path
and will be represented by two symbols – the iden-
tifier of the version at which one enters the subtree
and the identifier of the version from which one leaves
the subtree (or the terminal version if the path ends
in this subtree). A new subtree with an incremented
level needs to be created when a meld operation is
based on elements from versions of the same tree level.
The so-called index c̃(p) of the compressed path c(p)
is used now as key into the search trie of the fat fields.
It contains all elements of c(p) but the last, the par-
ticular version vertex inside one subtree. The value
stored in the trie is a data structure that contains all
the mappings from the target vertices of assignments
(last elements of compressed paths) to the assigned
values. Given a query key, this structure can find the
nearest ancestor vertex in the subtree.

For the tries, we employ the lexicographic splay tree
of Sleator and Tarjan [9], for the target vertex map-
ping we use a plain list along with a total ordering of
the vertices imposed by the pre-order and post-order
of the subtree, as suggested by Dietz [10] 3 , although
more sophisticated and better performing data struc-
tures are known (cf. [11]).

2 A trie, also called prefix tree, is an associative data structure
where the key consists of a sequence of elements. To find a value
in the trie, the first element of the key is compared to the root
node and the according branch is taken, then the second element
is compared to the node at the second level, and so forth.

3 Briefly, a vertex vj is ancestor of another vertex vk, if vj
appears left to vk in the pre-order traversal and right to it in
the post-order traversal of the tree. Among the candidates, the
element that is rightmost in the pre-order list is the nearest
ancestor.

2.2 Posing a Problem

We will introduce our approach by posing a simple
problem, illustrated in Figure 1, that is to be solved.

Figure 1. First problem: How to define the depen-
dancy of region r2 on r1 such that the former automat-
ically moves along with the latter in future versions?

Bi-temporality is modeled by associating each ver-
sion vertex vj with a point on the creational time-
line (implicit), and the performance timeline tP is ex-
pressed in the ephemeral data structure such that ob-
jects in time are associated with a time interval in tP.
Let the basic class of such objects be (fat) regions, de-
noted by rj . A region can be anything from an audio
file snippet to a code block that generates synthesised
sound. Let i(rj) be the interval of a region, specified
by a beginning time start and a duration dur, such
that i(rj) = (start, dur). These points in time we call
periods.

There are three operations performed by the com-
poser. In v1, a new region r1 is created, forming the
initial element of the performance timeline. The sec-
ond operation, forming the next version v2, adds a
second region r2 such that i(r2) starts at a fixed off-
set after i(r1) stops. Finally, the composer decides
that r1 should last longer and adjusts the duration
of its interval accordingly. The problem is to define
the relationship between r1 and r2 such that under
the modification of r1, we preserve the intention of r2
following r1.

We assume a set of arithmetic operations on in-
tervals and periods, such as addition 4 . In v2 we
would say that i(r2) is created by an expression such as
(start = stop(i(r1)) + po, dur = pd) where po is some
period offset and pd some period duration. However,
the manifest idea of applying the confluent persistence
technique to either resolve the value of the fat inter-
val field of r1 at version v2 or to create a fat pointer
reference entry to it at version v2 would create the
fixed “dependence relationship” that was criticised by
the retroactive approach – i(r2) would depend on i(r1)
assigned in the version that is closest ancestor of v2.
What we want instead is to depend on this interval
no matter at which version of i(r1) we are looking.
The solution is to use a kind of dynamic reference.

4 E.g., we simply define an interval’s stop as start + dur.
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Before we give this solution, we present our testing
framework.

2.3 The Testing Framework

For our implementation, we use the Scala program-
ming language [12]. Scala combines object-oriented
and functional approaches and has a rich type system
with single class inheritance and multiple mixins called
traits. A trait can declare a set of abstract methods,
but can also provide concrete definitions. Although
Scala is a compiled language, we use a read-eval-print-
loop (REPL) that allows one to create version vertices
and navigate between them step-by-step. We also an-
ticipate that in a composition environment based on
this framework, the composer would typically create
structures in a REPL. Furthermore, we provide access
to the persistence sensitive environment in the form of
an internal domain specific language extension which
is realised by a combination of methods imported into
the REPL scope and so-called implicit conversions, a
language construct of Scala that can be used to seem-
ingly enrich existing classes with new methods. For
example, we add a method secs to the floating point
class Double to create period literals. Figure 2 shows
an overview of the classes involved.

The environment maintains two access paths into
the version graph, one for reading and one for writing.
When creating a new version, referencing and access-
ing existing objects involves the reading path which
denotes the version we are departing from, and assign-
ments are made using the writing path which denotes
the newly created version. A single version step is per-
formed by method t[T](thunk: => T): T which takes
an argument thunk – a parameterless function with
result type T – and evaluates it in a context where the
read access corresponds to the current version, and the
write access corresponds to a version newly derived
from the current version. The first step in figure 1
becomes:

val r1 = t { region("r1", 0.secs :< 3.secs) }

Note how the interval literal is constructed by tak-
ing a start and a dur period and catenating them with
the :< operator. The result of this operation is stored
in value r1. It is a special region handle that the
environment automatically converts to a region iden-
tifier when used. This saves us from explicitly updat-
ing each access identifier when navigating through the
version graph.

2.4 Solution to the Problem

Assuming that method interval on the region object
returns a reference with the desired semantics as re-
quested in the conclusion of section 2.2, the code for
versions v2 and v3 becomes:

val r2 = t { region("r2", (r1.interval.stop +

2.secs) :< 5.secs) }

t { r1.interval = 0.secs :< 7.secs }

These semantics are achieved by constructing an
IntervalProxy that wraps the underlying fat interval
field in r1. This proxy delegates the interval methods
by using a special access method. When arithmetics
are performed on the proxy’s start or dur fields, they
are wrapped in special PeriodExpr objects.

The access call performs a pedigree prefix substi-
tution as in the pointer retrieval of [8], but prior ac-
cessing the fat field. As a consequence, the proxy ac-
knowledges all modifications made to the field between
the creation of the proxy and the current version. We
therefore call this behaviour “fluent”. In order to ac-
cess a region’s interval without the fluent behaviour,
the proxy is fixed via r1.interval.fixed (cf. fig. 2).
Note that linearity in tK is maintained, so i(r2) in v2
is still referring to i(r1) in version v1!

2.5 Retroactive Operations

In the second problem, the approach of section 2.4
does not help, as we are now faced with version branch-
ing. The problem is depicted in figure 3.

Figure 3. The second problem addresses changes that
need to affect more than one future version.

Here the composer decided to begin with a region
r1 but leaves its duration subject to a later decision.
Next, a version v2 is produced by adding another re-
gion to start after region r1 stops, similar to the pre-
vious example. The dependency of the regions is in-
dicated by the arrow from r2 to r1. After completing
version v2, the composer tries out a different variant,
starting over from version v1, the result of which is
version v3. The finishing task, deciding on the final in-
terval of r1, seemingly calls for a retroactive operation
– a correction of v1. However, throughout our frame-
work we pursue the preservation of causality, that is,
the original states of v1 . . . v3 must still be accessible.
The solution is to insert a new vertex v4 between v1
and its former children, as shown in figure 4(a).

The data structure maintained for the nearest an-
cestor search within a subtree – and until now we have
only dealt with graphs consisting of a single tree –
can be tuned for such a quasi-retroactive insertion.
Method retroc inserts a new version vertex (here v4)
right after its parent vertex (here v1) in the pre-order
traversal list, and right before it in the post-order
traversal list. In this case, this yields a pre-order of
〈v1,v4, v2, v3〉 and a post-order of 〈v2, v3,v4, v1〉, sat-
isfying the condition of v4 being the closest ancestor
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Figure 2. Class Diagram. Depicted are only those classes, attributes and methods referred to in this paper.

(a) (b)

Figure 4. Retroactive vertices. (a) Single“corrective”
operation. (b) Incorporating multiplicities.

of v2 and of v3 (cf. footnote 3 ). The corresponding
code is:

val r1 = t { region("r1", 0.secs :< ?) }

val v1 = currentVersion

val r2 = t { region("r2", (r1.interval.stop +

2.secs) :< 5.secs) }

v1.use

val r3 = t { region("r3", (r1.interval.stop +

3.secs) :< 7.secs) }

v1.use // parent of the retroactive vertex

retroc { r1.interval = 0.secs :< 4.secs }

We use ? as a placeholder for an unspecified period.
The currentVersion method is used to capture the
currently accessed version path. Navigation back to
a particular version is achieved by calling use on a
version path.

It has not been explained yet how the linearity of tK
is preserved, so that the original states of versions v2
and v3 are not lost. This is achieved by conditioning

the ancestor lookup using the monotonically increas-
ing vertex indices: When looking up a target vertex
vk, only vertices vj , j ≤ k are considered. Therefore,
v4 becomes effective only after creating further de-
scendants from the graph’s leaves. For example, if v5
is created from v2, the modifications of v4 will be ef-
fective in v5 (since 4 ≤ 5), but not in v2 (since 4 > 2),
preserving the original state of v2. This conditional
behaviour is indicated in figure 4(a): In v2 and v3 the
dashed arrows are followed, while in descendants of v2
and v3 the solid arrows are effective.

Going back to the conceptual layout, intuitively one
could think of using repeated retroactive insertions to
represent the various outcomes of a multiplicity. For
instance, if

?
v5 was a new correction to i(r1), it would

be inserted as a retroactive child vertex to v4. How-
ever, the composer would not be able to freely switch
between these two variants for i(r1) at a later point,
precisely because we enforced the linearity in tK.

We introduce another method multi which is ded-
icated to this problem. multi can only be executed
on leaves of the graph, because it enforces a succes-
sive tree split. Figure 4(b) illustrates this: Initially,
multi creates a neutral vertex v2 which functions as
a common ancestor for any future outcomes of the
multiplicity. The versions v3 and v4 inserted after
the multiplicity are enforced to start new subtrees
at level `2. All vertices belonging to the multiplic-
ity, located at the smaller tree level `1, will be explic-
itly included in the compressed path-representations
as exiting vertices and can thus be seen as mutual
switches. For instance, if we wish to access version v3
incorporating variant v5, the compressed path would
be 〈v1,v5, v3, v3〉, if variant v6 was desired, the path
would be 〈v1,v6, v3, v3〉.
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2.6 Melding and Parallel Motion of Versions

The enforcement of tree splitting in multi makes one
think of the original meld operation. Indeed the ver-
tices of the versions succeeding a multiplicity may have
an indegree of > 1 (the indegree is the number of vari-
ants realised) which is also characteristic of a version
meld. The difference is, that in the original confluent
persistence framework, the set of access pointers to
the data structure remains the same. With the use of
multiplicities we are facilitating what we call “parallel
motion” in the version graph so that there are differ-
ent access paths to a particular vertex, carrying the
information about which variant of each multiplicity
is “active”. This is clarified by a final example, shown
in figure 5.

Figure 5. The third problem demands a facility to
continue in a piece without settling on one particular
version (v3 versus v4).

Here, the composer has planned a section for live
improvisation and created a container c1 for it in the
first version. A multiplicity (neutral vertex v2) is cre-
ated to host the different improvisations, so one can
later switch forth and back between them. The two
variants v3 and v4 are simply modeled by adding re-
gions to the container, as the framework really is ag-
nostic to whether an operation is carried out offline
or in realtime. As the composition finally carries on
in v5, this version automatically has a tree level incre-
mented from `1 to `2. The following code simulates
this:

val c1 = t { container("c1") }

val m = multi

c1.use

val (r1, r2) = m.variant {

(region("r1", 0.secs :< 4.secs),

region("r2", 5.secs :< 2.secs)) }

val v3 = m.lastVariant

val (r3, r4) = m.variant {

(region("r3", 0.secs :< 2.5.secs),

region("r4", 3.5.secs :< 3.secs)) }

val v4 = m.lastVariant

rootContainer.use

val r5 = t { region("r5", (c1.interval.stop +

2.secs) :< 4.secs) }

m.useVariant(v3)

r5.interval.fixed // result: 9.secs :< 4.secs

m.useVariant(v4)

r5.interval.fixed // result: 8.5.secs :< 4.secs

As can be seen, method variant { } creates a new
variant transaction, while useVariant updates the ac-
cess path to include a particular variant. Since inde-
pendent regions are created in the two variants, they
cannot be used as references for v5. This reference
problem is solved by introducing the container ob-
ject. Implicitly, in all the previous examples, the re-
gions had been added to the default rootContainer.
We explicitly revert to it for region r5 by calling root-
Container.use.

The neutral vertex v2 gains additional significance
here: As r5 is created, it is added to the root con-
tainer. Assuming that containers are modeled using
a list of the contained objects along with a field for
the size of this list, assignments with compressed path
〈v1,v2, v5, v5〉 are produced in the fat root container.
If now variant v3 is activated, the current access path
becomes 〈v1,v3, v5, v5〉. Consequently, a query for the
number of objects in the root container would termi-
nate in the trie at v1, producing the wrong result, since
c1 was the only container in v1.

This last problem is solved by enhancing the maxi-
mum prefix search in the trie such that if a vertex (here
v3) is not found and this vertex belongs to a multiplic-
ity, it is replaced by the corresponding neutral vertex
(here v2) and the last splaying is repeated.

3. CONCLUSION

We have modeled and an implemented the music com-
position process as a confluently persistent data struc-
ture where the version DAG forms the creational time-
line tK, and the structure itself contains temporal ob-
jects relating to performance time tP. We have en-
hanced this structure with two new operations retroc

to incorporate quasi-retroactive decision making and
multi to integrate realisation variants of the piece.
The apriority of Allombert et al. [13] – ”1. The com-
positional process: the composer builds his interactive
score [...] 2. The performance process: the interactive
score is no more edited”– becomes meaningless, as the
realisations become part of “the piece”, they re-build
it.

The framework remains to be tested in a real-world
and real-time application. For this, an efficient sched-
uler representation of the temporal objects is needed.
Changes induced by retroactivity and switching be-
tween variants of a multiplicity need to be propagated
(e.g., in some form of publisher-subscriber pattern),
and cases where queries become invalid must be han-
dled. This question of inconsistency has been investi-
gated by Acar et al. [14].
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ABSTRACT

Computer language for the description of pattern has been
employed for both analysis and composition of music. In
this paper we investigate the latter, with particular inter-
est in pattern language for use in live coding performance
[1]. Towards this end we introduce Tidal, a pattern lan-
guage designed for music improvisation, and embedded in
the Haskell programming language.

Tidal represents polyphonic patterns as a time varying
function, providing an extensible range of pattern genera-
tors and combinators for composing patterns out of hier-
archies of sub-patterns. Open Sound Control (OSC) mes-
sages are used to trigger sound events, where each OSC
parameter may be expressed as a pattern. Tidal is designed
to allow patterns to be created and modified during a live
coded performance, aided by terse, expressive syntax and
integration with an emerging time synchronisation stan-
dard.

1. INTRODUCTION

When we view the composed sequence “abcabcabc. . . ” we
quickly infer the pattern “repeat abc”. This is inference
of hierarchy aiding memory of long sequences, prediction
of future values and recognition of objects. Pattern per-
vades the arts; as Alfred Whitehead [2] eloquently puts it,
“Art is the imposing of a pattern on experience, and our
aesthetic enjoyment is recognition of the pattern.” To our
shame these words were background to Whitehead lam-
basting those taking quotes out of context, but nonetheless
communicate a role of pattern supported here; one individ-
ual encodes a pattern and another decodes it, both actively
engaged with the work while creating their own experi-
ence. In this paper we examine the encoding of pattern
in particular, introducing Tidal, a computer language for
encoding musical patterns during improvised live coding
performances [1].

Pattern is everywhere, and the subject of musical pat-
tern is a broad subject alone. The desire to capture musical
patterns with machines goes back to well before electronic
computers. For example, Leonardo da Vinci invented a
hurdy gurdy with movable pegs to encode a pattern, and
multiple adjustable reeds which transformed the pattern
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into a canon [3]. Hierarchies and heterarchies of repeat-
ing structure run throughout much of music theory, and
computational approaches to music analysis, indexing and
composition all have focus on discrete musical events and
the rules to which they conform [4, §4.2]. From this we
assert that the encoding of pattern is fundamental to mu-
sic making. In the following we review support given to
musical pattern making by computer language, and then
introduce Tidal, a language for live improvisation of musi-
cal pattern. Before that we motivate the discussion through
brief review of the practice of live coding, for which Tidal
has been created.

2. LIVE CODING

Since 2003 an active group of practitioners and researchers
[5] have been developing new (and rejuvinating old) ap-
proaches to improvising computer music and video ani-
mation; activity collectively known as live coding [6, 1,
7]. The archetypal live coding performance involves pro-
grammers writing code on stage, with their screens pro-
jected for an audience. The code is dynamically inter-
preted, taking on edits on-the fly without losing process
state, so that no unwanted discontinuities in the output oc-
cur. Here a software development process is the perfor-
mance, with the musical or visual work generated not by a
finished program, but its journey of development from an
empty text editor to complex algorithm, generating contin-
uously changing musical or visual form along the way.

A key challenge set to live coders is to react quickly in
musical response to other performers, or else on their own
whim. This can be difficult due to a straight trade off in the
level of abstraction they have chosen; while a traditional
instrumentalist makes one movement to make one sound,
a live coder makes many movements (key presses) in order
to describe many sounds. It is in a live coder’s interest to
find highly expressive computer language that allows their
ideas to be described succinctly. The subject of We believe
the prese focus on the composition of pattern language pro-
vides a positive step in the right direction.

3. PATTERN LANGUAGE

Literature on pattern language is mainly concerned with
analysis of composed works relative to a particular the-
ory of music. For example Simon and Sumner [8] pro-
pose a formal language for music analysis, consisting of
a minimal grammar for describing phrase structure within
periodic patterns. Their language allows for multidimen-

264

mailto:alex@slab.org
mailto:g.wiggins@gold.ac.uk
http://creativecommons.org/licenses/by/3.0/


sional patterns, where different aspects such as note value,
onset and duration may be expressed together. The gram-
mar is based on a language used for description of aptitude
tests which treat pattern induction as a correlate for intel-
ligence. Somewhat relatedly, research has since suggested
that there is a causal link between music listening and in-
telligence [9], known as the “Mozart effect”. However this
result has proved highly controversial [10], and we would
certainly not claim that pattern language makes you clever.
Deutsch and Feroe [11] introduced a similar pattern lan-
guage to that of Simon and Sumners, for the analysis of
hierarchical relationships in tonal music with reference to
gestalt theory of perception.

The analytical perspective shown in the above lan-
guages puts focus on simple patterns with unambiguous
interpretation. Music composition however demands com-
plex patterns with many possible interpretations, leading
to divergent perception across listeners. Therefore pattern
language for synthesis of music requires a different ap-
proach from analysis. Indeed, a need for the design of
pattern language for music composition is identified by
Laurie Spiegel in her 1981 paper “Manipulations of Mu-
sical Patterns” [12]. Twelve classes of pattern transforma-
tion, taken from Spiegel’s own introspection as a composer
are detailed: transposition (translation by value), rever-
sal (value inversion or time reversal), rotation (cycle time
phase), phase offset (relative rotation, e.g. a canon), rescal-
ing (of time or value), interpolation (adding midpoints and
ornamentation), extrapolation (continuation), fragmenta-
tion (breaking up of an established pattern), substitution
(against expectation), combination (by value – mixing/-
counterpoint/harmony), sequencing (by time – editing) and
repetition. Spiegel felt these to be ‘tried and true’ basic op-
erations, which should be included in computer music ed-
itors alongside insert, delete and search-and-replace. Fur-
ther, Spiegel proposed that studying these transformations
could aid our understanding of the temporal forms shared
by music and experimental film, including human percep-
tion of them.

Pattern transformations are evident in Spiegel’s own
Music Mouse software, and can also be seen in music soft-
ware based on the traditional studio recording paradigm
such as Steinberg Cubase and Apple Logic Studio. How-
ever Spiegel is a strong advocate for the role of the mu-
sician programmer, and expresses hope that these pattern
transformations would be formalised into programming li-
braries. Such libraries have indeed since emerged. Hi-
erarchical Music Specification Language (HMSL) devel-
oped in the 1980s includes an extensible framework for al-
gorithmic composition, with some inbuilt pattern transfor-
mations. The Scheme based Common Music environment,
developed from 1989, contains a well developed object ori-
ented pattern library [13]; classes are provided for pattern
transformations such as permutation, rotation and random
selection, and for pattern generation such as Markov mod-
els, state transition and rewrite rules. The SuperCollider
language [14] also comes with a extensive pattern library,
benefiting from an active free software development com-
munity, and with advanced support for live coding. These

systems are all inspiration for our own pattern language,
introduced below.

4. TIDAL

Tidal is a pattern language embedded in the Haskell pro-
gramming language, consisting of pattern representation,
a library of pattern generators and combinators, an event
scheduler and programmer’s live coding interface. This
is an extensive re-write of earlier work introduced under
the working title of Petrol [15]. Extensions include im-
proved pattern representation and fully configurable inte-
gration with the Open Sound Control (OSC) protocol [16].

4.1 Features

Before examining Tidal in detail we first characterise it in
terms of features expected of a pattern language.

4.1.1 Host language

Tidal is a domain specific language embedded in the
Haskell programming language. The choice of Haskell al-
lows us to use its powerful type system, but also forces us
to work within strict constraints brought by its static types
and pure functions. We can however turn this strictness to
our advantage, through use of Haskell’s pioneering type-
level constructs such as functors and monads. Once the
notion of a pattern is defined in terms of these constructs
a whole range of cutting edge computer research becomes
available, which can then be explored for application in
describing musical pattern.

Tidal inherits Haskell’s syntax which is both terse
(thanks to its declarative approach) and flexible, for exam-
ple it is trivial to define new infix operators. Terse syntax
allows for faster expression of ideas, and therefore a tighter
programmer feedback loop more suitable for creative tasks
[17].

4.1.2 Pattern composition

In Tidal, patterns may be composed of numerous sub-
patterns in a variety of ways and to arbitrary depth, to
produce complex wholes from simple parts. This could
include concatenating patterns time-wise, merging them
so that they co-occur, or performing pairwise operations
across patterns, for example combining two numerical pat-
terns by multiplying their values together. Composition
may be heterarchical, where sub-pattern transformations
are applied at more than one level of depth within a larger
pattern.

4.1.3 Random access

Both Common Music and SuperCollider represent patterns
using lazy evaluated lists, where values are calculated one
at a time as needed, rather than all together when the list
is defined. This allows long, perhaps infinitely long lists
to be represented efficiently in memory as generator func-
tions, useful for representing fractal patterns for example.
In some languages, including Haskell, lists are lazily evalu-
ated by default, without need for special syntax. This is not
how patterns are represented in Tidal however. Lazy lists
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are practical for linear operations, but you cannot evaluate
the 100th value without first evaluating the first 99. This is
a particular problem for live coding; if you were to change
the definition of a lazy list, in order to continue where you
left off you must regenerate the entire performance up to
the current time position. 1 Further, it is much more com-
putationally expensive to perform operations over a whole
pattern without random access, even in the case of straight-
forward reversal.

Tidal allows for random access by representing a pattern
not as a list of events but as a function from time values to
events. A full description is given in §4.2.

4.1.4 Time representation

Time can be conceptualised either as linear change with
forward order of succession, or as a repeating cycle where
the end is also the beginning of the next repetition [18]. We
can relate the former to the latter by noting that the phase
plane of a sine wave is a circle; a sine wave progresses
over linear time, but its oscillation is a repeating cycle. As
a temporal artform, the same division is present in music,
in repeating rhythmic structures that nonetheless progress
linearly. For this reason Tidal allows both periodic and
infinite patterns to be represented.

Another important distinction is between discrete and
continuous time. In music tradition, time may be notated
within discrete symbols, such as Western staff notation
or Indian bol syllables, but performed with subtle phras-
ing over continuous time. Tidal maintains this distinction,
where patterns are events over discrete time steps, but may
include patterns of floating point onset time deltas. More
details on this in §5.1.

4.1.5 Ready-made generators and transforms

A pattern library should contain a range of basic pattern
generators and transforms, which can be straightforwardly
composed into complex structures. It may also contain
more complex transforms, or else have a community repos-
itory where such patterns may be shared. Tidal contains a
range of these, some of which are inspired by other pattern
languages, and others that come for free from Haskell’s
standard library of functions, including its general support
for manipulating collections.

4.1.6 Community

“Computers’re bringing about a situation
that’s like the invention of harmony. Sub-
routines are like chords. No one would think
of keeping a chord to himself. You’d give it
to anyone who wanted it. You’d welcome al-
terations of it. Sub-routines are altered by a
single punch. We’re getting music made by
man himself: not just one man.” John Cage,
1969 [19]

John Cage’s vision has not universally met with real-
ity, much music software is proprietary, and in the United

1 SuperCollider supports live coding patterns using PatternProxiess
[7]. These act as place-holders within a pattern, allowing a programmer
to define sub-patterns which may be modified later.

States sound synthesis algorithms are impeded by software
patents. However computer music languages are judged
by their communities, sharing code and ideas freely, par-
ticularly around languages released as free software them-
selves. A pattern language then should make sharing ab-
stract musical ideas straightforward, so short snippets of
code may be easily used, modified and passed on. This is
certainly possible with Tidal, although this is a young lan-
guage which has not yet had a community grow around it.
Towards this end however, the first author is developing a
website for sharing snippets of musical code, for Tidal and
other languages.

4.2 Representation

We now turn to the detail of how Tidal represents patterns.
The period of a pattern – the duration at which it repeats –
is represented in Haskell’s type system as an integer:

type Period = Maybe Int

The integer type Int is encapulated within the Maybe

type, so that we can represent both periodic and non-
periodic (i.e. infinite) patterns. For example the pattern “a
followed by repeating bs” has a Period of Nothing, and
“abcdefgh, repeated” would have a Period of Just 8 2 .

The structure of a pattern is defined as a function from
integer time to a list of events:

type Behaviour a = Int → [Maybe a]

The name of the Behaviour type is borrowed from re-
active programming nomenclature [20], where a behaviour
is the term for a time-varying value. Note that Behaviour
is an abstract type, where a is a wild card standing for
any other type. For example a pattern of musical notes
could be of type Behaviour String, where pitch labels
are represented as character strings, or alternatively of type
Behaviour Int for a pattern of MIDI numbered note
events. Another thing to note is that the Maybe type is
again employed so that non-values may be included in a
list of events. The reader may ask, why would you want to
store non-values in a list at all? We might simply answer
that a rest has a particular musical identity and so needs
to be represented. More practical motivation is shown in
§5, where Nothing is shown to have different meaning in
different situations.

A pattern then is composed of a Behaviour and
Period, given the field names at and period respec-
tively:

data Pattern a =
Pattern {at :: Behaviour, period :: Period}

A pattern may be constructed as in the following exam-
ple representing the repeating sequence “0, 2, 4, 6”:

p = Pattern {at = λn → [Just ((n ‘mod‘ 4) ∗ 2)],
period = Just 4}

We access values by evaluating a behaviour with a time
value, for example with the above pattern, at p 1 evalu-
ates to [Just 2]. As this is a cyclic pattern of period 4,
at p 5 would give the same result, as would at p (-3).

2 Just andNothing are the two constructors of Haskell’sMaybe
type
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The above pattern is expressed as a function over time.
An approach more idiomatic to Haskell would be to de-
fine it recursively, in this case defining at p 0 to return
Just [0] and subsequent at p n to return the value at
n - 1 plus two. However great care must be taken when
introducing such dependencies between time steps; it is
easy to produce uncomputable patterns, or as in this case
patterns which may require whole cycles to be computed
to find values at a single time point.

4.3 Pattern generators

A pattern would not normally be described by directly in-
voking the constructor in the rather long-winded manner
shown in the previous section, but by calling one of the
pattern generating functions provided by Tidal. These con-
sist of generators of basic repeating forms analogous to
sine, square and triangle waves, and a parser of complex
sequences. The sine1 function produces a sine cycle of
floating point numbers in the range 0 to 1 with a given
period, here rendered as grey values with the drawGray

function:

drawGray $ sine1 16

Tidal is designed for use in live music improvisation,
but is also applicable for off-line composition, or for non
musical domains. We take this opportunity to illustrate the
examples in the following sections with visual patterns of
colour as above, in sympathy with the present medium. For
space efficiency the above cyclic pattern is rendered as a
row of blocks, but ideally would be rendered as a circle, as
the end of one cycle is also the beginning of the next.

Linear interpolation between values, somewhat related
to musical glissandi, is provided by the tween function:

drawGray $ tween 0.0 1.0 16

If a pattern is given as a string, it is parsed according
to the context, made possible through Haskell’s type infer-
ence, and a string overloading extension.

draw "black blue lightgrey"

In the above example the draw function requires a
colour pattern, and so a parser of colour names is automat-
ically employed. Tidal can parse the basic types String,
Bool, Int and Float and it is straightforward to add more
as needed. All these parsers are expressed in terms of a
common parser, which provides syntax for combining sub-
patterns together into polymetric patterns. Sub-patterns
with different periods may be combined either by repeti-
tion or by padding. In both cases the result is a combined
pattern with period of the lowest common multiple of those
of the constituent patterns. Combining patterns by repeti-
tion is denoted by square brackets, where constituent parts

are separated by commas. In the following example the
first part is repeated twice and the second thrice:

draw "[black blue green, orange red]"

Note that co-occurring events are visualised by the draw
function as vertically stacked colour blocks.

Combining by padding each part with rests is denoted
with curly brackets, and inspired by the Bol Processor [21].
In this example the first part is padded with one rest every
step, and the second with two rests:

draw "{black blue green, orange red}"

In the above example there are steps where two events
co-occur, and the block is split in two, where one event
occurs, taking up the whole block, and where no events
occur and the block is blank.

Polymetries may be embedded to any depth (note the
use of a tilde to denote a rest):

draw "[{black ˜ grey, orange}, red green]"

4.4 Pattern combinators

If an underlying pattern representation were to be a list, a
pattern transformer would have to operate directly on se-
quences of events. For example, we might rotate a pat-
tern one step forward by popping from the end of the list,
and unshifting/consing the result to the head of the list. In
Tidal, because a pattern is a function from time to events,
a transformer may manipulate time as well as events. Ac-
cordingly the Tidal function rotL for rotating a pattern to
the left is straightforwardly defined as:

rotL p n =
Pattern (λt → at p (t + n)) (period p)

Rotating to the right is simply defined as the inverse:

rotR p n = rotL p (0 - n)

We won’t go into the implementation details of all the
pattern transformers here, suffice to say that they are all
implemented as composable behaviours. The reader may
refer to the source code for further details.

The cat function concatenates patterns together time-
wise:

drawGray $ cat [tween 0 1 8, tween 1 0 8]

As you might expect, the period of the resulting pattern
will be the sum of the constituent pattern periods, unless
one of the constituents is infinite, in which case the result
will also be infinite.

A periodic pattern may be reversed with rev:
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drawGray $ rev (sine1 8)

Or alternatively expressed forwards and then in reverse
with palindrome:

drawGray $ palindrome (sine1 8)

The every function allows transformations to be ap-
plied to periodic patterns every n cycles. For example, to
rotate a pattern by a single step every third repetition:

draw $ every 3 (1 ‘rotR‘) "black grey red"

The Pattern type is defined as an applicative functor, al-
lowing a function to be applied to every element of a pat-
tern using the <$> functor map operator. For example,
we may add some blue to a whole pattern by mapping the
blend function (from the Haskell Colour library) over its
elements:

draw $ blend 0.5 blue <$> p
where p = every 3 (1 ‘rotR‘) "black grey red"

If we were doing something similar to a sound rather
than colour event, we might understand it as a musical
transposition. We can also apply the functor map condi-
tionally, for example to transpose every third cycle:

drawGray $ every 3 ((+ 0.6) <$>) "0.2 0.3 0 0.4"

The Haskell applicative functor syntax also allows a
new pattern to be composed by applying a function to com-
binations of values from other patterns. For example, the
following gives a polyrhythmic lightening and darkening
effect, by blending values from two patterns:

draw $
(blend 0.5) <$> "red blue" <∗>

"white white black"

The use of <∗> here deserves some explanation. It al-
lows us to map a function over more than one pattern at a
time. In the above example, for each call to blend, a value
is taken from each pattern. The <∗> operator is defined
for Patterns so that all events are used at least once, and no
more than necessary to fulfil this constraint. Operationally,
the shorter list of events is repeated until it is the same
length as the longer; this is behaviour halfway between that
of a Haskell List and a ZipList. For implementation de-
tails please refer to the code, but the end result are minimal
combinations of polyphonic events without discarding any
values.

The Tidal onsets function filters out elements that do
not begin a phrase. Here we manipulate the onsets of a
pattern (blending them with red), before combining them
back with the original pattern.

draw $ combine [blend 0.5 red <$> onsets p, p]
where p = "blue orange ˜ ˜ [green, pink] red ˜"

The onsets function is particularly useful in cross-
domain patterning, for example taking a pattern of notes
and accentuating phrase onsets by making a time onset
and/or velocity pattern from it.

5. OPEN SOUND CONTROL PATTERNS

Tidal has no capability for sound synthesis itself, but in-
stead represents and schedules patterns of OSC messages
to be sent to a synthesiser. Below we see how the ‘shape’
of an OSC message is described in Tidal:

synth = OscShape {path = "/trigger",
params =
[ F "note" Nothing,
F "velocity" (Just 1),
S "wave" (Just "triangle")

],
timestamp = True
}

This is a trivial "/trigger" message consisting of two
floating point parameters and one string parameter. Each
parameter may be given a default value in the OscShape;
in this case velocity has a default of 1, wave has a default
of "triangle" and note has no default. This means if a
OSC pattern contains a message without a note value set,
there will be no value to default it to, and so the message is
discarded. Pattern accessors for each parameter are defined
using names given in the OscShape:

note = makeF synth "note"
velocity = makeF synth "velocity"
wave = makeS synth "wave"

5.1 Scheduling

As timestamp is set to True in our OscShape exam-
ple, one extra pattern accessor is available to us, for onset
deltas:

onset = makeT synth

This allows us to make time patterns, applying sub-
tle (or if you prefer, unsubtle) expression. This is imple-
mented by wrapping each message in a timestamped OSC
bundle. A simple example is to vary onset times by up to
0.02 seconds using a sine function:

onset $ (∗ 0.02) <$> sine 16

Instances of Tidal can synchronise with each other (and
indeed other systems) via the NetClock protocol (http:
//netclock.slab.org/). NetClock is based upon
time synchronisation in SuperCollider [14]. This means
that time patterns can notionally schedule events to occur
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in the past, up to the SuperCollider control latency, which
has a default of 0.2 seconds.

It is also possible to create tempo patterns to globally af-
fect all NetClock clients, for example to double the tempo
over 32 time steps:

tempo $ tween 120 240 32

5.2 Sending messages

We connect our OSC pattern to a synthesiser using a
stream, passing the network address and port of the syn-
thesiser, along with the OscShape we defined earlier:

s ← stream "127.0.0.1" 7770 synth

This starts a scheduling thread for sending the mes-
sages, and returns a function for replacing the current pat-
tern in shared memory. Patterns are composed into an OSC
message Pattern and streamed to the synthesiser as follows:

s $ note ("50 ˜ 62 60 ˜ ˜")
˜˜ velocity foo
˜˜ wave "square"
˜˜ onset ((∗ 0.01) <$> foo)

where foo = sine1 16

The ˜˜ operator merges the three parameter patterns
and the onset pattern together, into a single OSC message
pattern. This is then passed to the stream s, replacing the
currently scheduled pattern. Note that both velocity and
onset are defined in terms of the separately defined pat-
tern foo.

5.3 Use in music improvisation

Music improvisation is made possible in Tidal using the
dynamic Glasgow Haskell Compiler Interpreter (http:
//www.haskell.org/ghc/). This allows the mu-
sician to develop a pattern over successive calls, per-
haps modifying the preceding listing to transpose the note
values every third period, make a polyrhythmic pattern
of wave shapes, or combine multiple onset patterns into
a chorus effect. Tidal provides a mode for the iconic
emacs programmer’s editor (http://www.gnu.org/
software/emacs/) as a GHCI interface, allowing pat-
terns to be live coded within an advanced developers envi-
ronment. 3

6. CONCLUSION

We have introduced Tidal, a language designed for live
coding of musical pattern. Tidal has already been field
tested through several performances by the first author, in-
cluding to large audiences at international music festivals,
informing ongoing development of the system. The system
will be tested further through a series of planned work-
shops with potential users, and full documented release of
the code, which is already available in its present form at
http://yaxu.org/tidal/. A research programme
is planned towards the development of a Graphical User

3 Projecting the emacs interface as part of a live coding performance
has its own aesthetic, having a particularly strong effect on many devel-
opers in the audience, either of elation or revulsion.

Interface for live musical pattern making, with Tidal pro-
viding the pattern language. Work is ongoing towards ap-
plying Tidal to the domain of live video animation, with
current focus on colour transitions over time inspired by
the inventions of Mary Hallock-Greenwalt [22]. As men-
tioned in §4.1.6, we hope that a website for sharing ideas
and code for musical patterning will encourage connec-
tions between communities of musicians and programmers
interested in pattern.
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ABSTRACT

Even if lasting less than three minutes, Iannis Xenakis’
Concret PH is one of the most influential works in the
electroacoustic domain. It was originally created to be dif-
fused in the Philips Pavilion, designed by the same Xenakis
for the 1958 World Fair in Brussels. As the Pavilion was
dismantled in 1959, the original spatialization design de-
vised from the Pavilion has been lost. The paper presents
new findings about the spatialization of Concret PH. It dis-
cusses them in the light of Xenakis’ aesthetics, and con-
sequently proposes a plausible reconstruction of the spa-
tialization design. Finally, it proposes a real-time, inter-
active implementation of the reconstructed spatialization,
rendered on a 8-channel setup using a VBAP technique.

1. INTRODUCTION

In 1956 Iannis Xenakis was working in the studio of Le
Corbusier, when Philips company commissioned the fa-
mous architect a pavilion for the 1958 World Fair in Brus-
sels 1 . The fair, being the first after the II World War, was
a crucial event for the company: in particular, Louis Kalff,
artistic director of Philips, considered it an occasion not
to be renounced in order to show the world the technolog-
ical advancements of the Dutch company. Le Corbusier
accepted the commission and replied by promising to real-
ize not an exhibit structure but a revolutionary “electronic
poem”. Le Corbusier’s conception strictly adhered to the
modernistic assumption that sees in technology the way in
which art can fulfill a palingenesis of humanity: the archi-
tect proposed Philips a Wagnerian total artwork of sound
and lights, taking place in a space explicitly designed as
a container for the show. As a consequence, the project
for the Philips Pavilion resulted in a complex work of art,
the Poème électronique: an 8-minute multimedia work in
which architecture, image and sound were deeply inter-
mingled. The show included a black and white film, made
of two filmed sequences created from still images, various

1 This work extends the EU-funded VEP Project
(http://edu.vrmmp.it/vep/), that has reconstructed the Philips
Pavilion and the Poème électronique using virtual reality techniques. For
a presentation of the project, including previous works, see [1].
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Figure 1. The Philips
Pavilion at the Brussels
World Fair in 1958
(Courtesy Anton
Buczynski).

tape of the film of Poème Électronique at the Philips
company archives, and a film of the construc-
tion works of the pavilion at the Philips company
archives); and drawings and models (archived at Fon-
dation Le Corbusier in Paris and the Getty Center
in Los Angeles [sketches, plans, and scale models
of the pavilion; schemata of the technical equip-
ment, described in the Philips Technical Review;
control score for the succession of visual effects; and
sketches and descriptions of the visual effects]).

But the experience of Poème Électronique,
“conceived and executed for a specific space, and
perhaps more importantly, utilizing a specific sound
system related to that space” (Treib 1996, p. 211),
was lost. The Poème was received by the audience
as a Gesamtkunstwerk: “one no longer hears the
sound[;] one finds oneself in the heart of the sound
source. One does not listen to sound, one lives it”
(Ouellette 1966, p. 201). Varèse himself heard his
music for the first time “literally projected into

space” (Varèse as quoted in Schwartz and Childs
1967, p. 207). Thus, every archival effort that seeks
to preserve the essence of this aesthetic concept
must allow for an integration of the music, visual
elements, and their architectural realization, which
was specifically designed as a delivery instrument
for the multimedia content.

This article describes an integral approach to
regain access to Poème Électronique through virtual
reality (VR) technologies that include a reconstruc-
tion of the physical space in computer graphics
(CG). We pursued a simulative approach to the
reconstruction of the work; that is, we simulate
the processing/temporal aspects of the artwork by
integrating in a VR software environment all the
findings of a thorough philological investigation,
converted into a digital format. The final work can
then be delivered as a VR installation. This approach
realizes Treib’s “silver lining” about the music of
the Poème: “[N]o recording can conjure the space as

26 Computer Music Journal

Figure 1. The Philips Pavilion.

light effects over the whole space, and electronic music to
be delivered onto a multichannel system. While keeping
for himself the creation of the visual part of the show, Le
Corbusier asked one of the most avantgardist composers
of XX-th Century to join the project, Edgar Varèse. In the
occasion, Varèse created, as a musical counterpart for the
visual component, his Poème électronique: originally a 3-
track tape music, Varèse’s Poème is one of the undisputed
masterpiece of electronic music. At that time, Iannis Xe-
nakis was an associate at Le Corbusier’s studio, where he
had already developed some of his well-known architec-
tural exploits (e.g. the monastery of La Tourette). Xenakis
was responsible for the design of the space. Xenakis turned
Le Corbusier’s original idea of a shell-like structure, based
on a stomach-shaped plant, into a self-carrying, concrete
shell, higher than 20 meters. More, the Pavilion’s shape
was generated by Xenakis as rule-based surfaces, namely
hyperbolic paraboloids: the resulting shape was a tridi-
mensional architectural object made of continuous curved
lines. By explicit admission of Xenakis, the ruled surfaces
of the Pavilion (see Figure 1) bear a structural relation to
the striking opus 1 of the composer/architect, Metastaseis
(1953/54) [2]. In this work, Xenakis started from a theo-
retical problem, that of defining a continuous transition be-
tween two discrete states (Xenakis, cited in [3], also [4], p.
32). The solution was based on devising a system of string
glissandos with different speeds and ranges (“sonic spaces
of continuous evolution”, [5], p. 10). While designing the
pavilion, his “inspiration was pin-pointed by the experi-
ment with Metastaseis”, so that there is a “causal chain
of ideas” connecting the two works. Thus, in the Philips

271

mailto:andrea.valle@unito.it
mailto:info@keestazelaar.com
mailto:vincenzo@di.unito.it
http://creativecommons.org/licenses/by/3.0/


Pavilion, “music and architecture found an intimate con-
nection” ([5], p. 10). The internal surfaces of the Pavilion,
covered with asbestos, were then literally encrusted with
loudspeakers (for a total of 350). Loudspeakers were or-
ganized into “sound routes” (allowing sound to travel the
space) and “clusters” (groups of contiguous loudspeakers
playing together). Their presence converted the Pavilion
into a “sounding room” ([6], 210), where, after more than
30 years, Varèse was able to finally listen to his music “lit-
erally projected into space” (Varèse, cited in [7]). Apart
from the link with Metastaseis, the Philips Pavilion in-
cludes a second relevant element in relation to Xenakis’
music. As a composer, Xenakis was allowed by Le Cor-
busier to create a short piece that should act as an inter-
lude between two performances of the show: the 8 min-
utes of the Poème électronique were embedded in a cyclic
program of 10 minutes, which was supposed to run con-
tinuously. The two additional minutes were reserved for
an intermission, which would enable one audience to leave
the pavilion while the next to enter, the “Interlude sonore”.
The Interlude would have then entered Xenakis’ catalogue
with the name of ‘Concret PH”. Because of its quite singu-
lar sonic structure (see later), the piece has gained a con-
sistent fame, far beyond the specialists of contemporary
and electronic music, and has been hailed as a precursor
of “electronica” ([8], see also [9]). While discussing the
piece, Harley observes that “the mobile sound trajectories
throughout the Philips Pavilion would have no doubt been
astonishing” ([10], p. 19). Still its original relation with the
space of the Pavilion remains unclear. In the next sections,
we first take into account newly available information on
the Interlude/Concret PH from unpublished sources; then
we discuss issues related to its spatialization in the Philips
Pavilion and propose a novel reconstruction from unpub-
lished sources; finally, we describe a simulation of the spa-
tialization implemented on a 8-channel setup, presented
publicly on January, 15th, 2010 at the EMF Foundation
in New York, in the occasion of the the exhibition “Iannis
Xenakis. Composer, Architect, Visionary” at The Drawing
Center [11].

2. BEFORE CONCRET PH: THE INTERLUDE

In this section we reconstruct the history of the Interlude
merging information from already published sources with
new data coming from unpublished letters by Louis Kalff
(now at the Philips Archive and in the private collection of
Peter Wever, co-author of a historical study of the Brus-
sels Expo [12]). The Interlude music was composed by
Iannis Xenakis, and resembled his later published work
Concret PH, but was not identical to it. The title “Con-
cret PH” did not appear once in the correspondence relat-
ing to the design of the pavilion or in the official credits.
On the plate near the entrance of the pavilion it was called
“Interlude Sonore”, which was also the title under which
it was mentioned in the book Poème électronique released
by Le Corbusier’s collaborator Jean Petit [13]. An origi-
nal version of the Interlude Sonore was found back in the
archive of the Institute of Sonology in The Netherlands. It
consists of three tracks and has a duration of 1’52”. From

the instructions Le Corbusier gave to Xenakis for the in-
termission music on 27 November 1957, one indeed gets
the impression that he had little knowledge of the impor-
tance of Xenakis as a composer: “I have thought very seri-
ously about your two minutes of music. What is it about?
[. . . ] it is a sort of carnival hawking, in which it is possi-
ble to pack a lot of wit and content that can touch a crowd
that by definition is inattentive.” ([6], p. 205). The let-
ter ended with a very firm refusal to Xenakis’ request to
leave the office for three weeks to work on his piece in
Eindhoven, using the same advanced equipment as Varèse
was using for the Poème. Two days later, Le Corbusier
sent a diagram of the intermission to Kalff which gave a
description of Xenakis’ music, very close to the music as
we know it now: “Clouds of intermittent sounds, varying
in density and intensity, and moving within the space of
the pavilion.”([6], p. 206). On 2 December 1957, Xenakis
wrote to Kalff, describing the character of the intermission
music as “sober, surprising and of an artistic quality, and
at least as good as the rest of the spectacle”. As in the
case of Poème électronique, Concret PH was to be deliv-
ered inside the Pavilion, where loudspeakers were arranged
into sound routes and cluster. Figure 2 shows a diagram of
loudspeaker organization, from an original sketch by Xe-
nakis. Sound routes are indicated in the text, clusters are
marked with letters A, B, C, D, E, U and J. In order to spa-
tialize sounds, a complex, totally automatic, routing sys-
tem was devised, based on selectors as used in automatic
telephone exchanges, switching on and off the loudspeak-
ers [14] [1]. In the case of Poème électronique, a spatial-
ization score was written. It includes instructions about
when to drive a certain track into a certain loudspeaker
group. If the group is a cluster, all the composing loud-
speakers are activated/disactivated at the same time. If it
is a sound route, then a stepping rate is indicated (i.e., the
rate at which the sound travels along a route), in stepping
impulses per second. In the sound routes, a sound “moves”
as it is progressively routed from a speaker to the following
one. The score was then translated into signals for control-
ling the dialers. Signals were recorded on a control tape to
be played during the performance, driving the audio sys-
tem. In a letter to Kalff from 11 March 1958, Xenakis
gave a clear description of the material of the Interlude
Sonore and the way it was supposed to be spatialized in
the pavilion was given: “We recorded the sound of char-
coal, and it is very beautiful. Please answer the following
questions as soon as possible: a) will I be able to utilise
three independent (but synchronised) tracks? b) will I be
able to determine simultaneously the speed of movement
along the horizontal belt?”. Xenakis then explicitly indi-
cates that each tracks was characterized in his intentions
by a specific “sound” and a specific “speed” [15]. He also
included a drawing (Figure 3), where sounds were indi-
cated with Roman letters a, b, c and speeds with Greek let-
ters α, β, γ. Kalff answered two days later: “We can [. . . ]
use only one track to reproduce your composition. The
sound of the tape will be spread along the horizontal circle
of loudspeakers surrounding the pavilion at a height of 3 to
4 metres. Along this circle, which will have approximately
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Figure 9. Diagram of
clusters and routes of
loudspeakers, adapted
from Xenakis’s original
sketch (reported in Petit
1958).

Figure 5b), we were able to locate 350 loudspeakers,
as claimed in Kalff, Tak, and de Bruin (1958), orga-
nized into seven clusters and eight routes. (Notice
that we ended up with 15 groups, as in Xenakis’s
drawing, but a different organization.) For final
aural-rendering purposes, the speakers of the routes
were organized into 181 five-speaker groups. Each
of the seven clusters and each five-speaker group
counted as an individual sound source for the virtual
show, with a total of 188 virtual sound sources.

To validate the CG model, we selected a number
of original photos (from the archives) that were
representative of all the viewpoints, and we guessed
an adequate positioning, orientation, and field of
view of a virtual camera for carrying out a matching
process between the original and the virtual
photos.

The Visual Component

Retrieval of content elements from the visual
component included the original black-and-white
film, conceived by Le Corbusier, arranged by Jean
Petit, and edited by Philippe Agostini; and the visual
effects, conceived by Le Corbusier and Kalff and
realized through a number of projection devices.

Figure 10. Loudspeaker
positioning through
photo-matching of the
original loudspeakers in
the CG model.

The film was retrieved from the Philips Company
Archives on a VHS tape and digitized after a time-
stretching process: in fact, the 25-frame PAL format
tape shortened the original film of 8 minutes (at
24 frames per second) to 7’41”. The digitized film
was delivered through a player implemented in the
visual-rendering process (see subsequent discussion).

The ambiances and special effects were not
available contents, but they were reconstructed by
taking into account the original technical setup
of the installation (Kalff, Tak, and de Bruin 1958;
Petit 1958). The visual effects were reconstructed
from the schemata sketched by Le Corbusier
and documented by Petit. These schemata were
retrieved from the Fondation Le Corbusier in Paris
and the Getty Center in Los Angeles. The latter
schemata had hand-written marks in German,
French, and Dutch, that represent decisions made
at the last minute in Brussels with the goal of
simplifying the color combinations. We identified
56 different ambiances, including the three color
zones, the shapes and colors of the light projections,
and special effects (e.g., sun, moon, lightning).

Then, we positioned the projections (in terms of
graphical textures) on the surfaces again by studying
the placement of projectors and other lighting
devices in the CG model (based on Figure 8b). The
visual rendering of all the effects was achieved
through a mixture of real-time and off-line CG
techniques (see Figure 11). Each ambiance was
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Figure 2. Diagram of clusters and routes of loudspeakers,
adapted from Xenakis’ original sketch (from [1]).

100 loudspeakers 2 , the sound could move and stop at the
points of your choice. [. . . ] The two other synchronised
tapes could then only be used to reproduce other simulta-
neous sounds from other directions” [15]. It also becomes
clear from the technical description of the whole system in
Philips Technical Review [14] that it would be impossible
to feed three different sound sources to one ’route du son,
let alone having them travel at different speeds in differ-
ent directions. More, a route could only stand or move in
one direction. In Varèse’s score for Poème électronique,
routes never stands, but always move: otherwise, indeed,
they would simply act as clusters. Xenakis, obviously dis-
appointed, wrote back on 17 March 1958: “With this let-
ter I include a copy of the two minutes score. This score
was conceived for three tapes and for high speeds of move-
ment. You now tell me that I have only one track at my
disposal [for the movement]. I am sorry to hear that, but
I will adapt myself. But then I would like to know if the
conceived speeds in the score are possible, and on the other
side if the technicians will have sufficient time to make all
the necessary connections. May I ask you for your opinion
on the copy I send you? This would be the best way for me
to find out about the technical limitations. Please send me
this as soon as possible” (17 March 1958) [15]. But then
in the end, Tak, the technical supervisor for sound-related
aspects in the Pavilion, seemed to have come up with a
solution: “We believe that it would be more fascinating if
your sounds would be reproduced with all available means.
This is why we asked our technicians to develop the equip-
ment in such a way that the machines with three tracks and
the machines for the automation can be used during the
intermission as well. I have the pleasure to tell you that
they managed to do that and that you have three individual
tracks at your disposal. What you demand in the excerpt
of your composition will be possible to realise.” (24 March
1958) [15]. Xenakis then sent the three tapes and showed
his gratitude for being allowed to use the spatial possibil-
ities of the sound system in the pavilion: “By the end of
this week I will send the tapes and the score of the two

2 The number of loudspeaker for the route is estimated in 52 by [1].

minutes of the Interlude, and my answer to the nice letter
of Tak, who together with you, authorises me to use the
third dimension.” (April 3rd, 1958) [15]. Four days later,
in another letter to Kalff, Xenakis continued: “I think that
in the meantime you should have well received the three
tapes of the music for the Interlude. I hereby include the
stereophonic [sic] score and a letter to Tak. [. . . ] The three
tapes will give you an impression of the sounds and their
composition (articulation). New effects will be created in
three dimensions. Despite their identity, the uniformity of
the used sounds will not disturb the timbral richness em-
ployed by Varèse. I thus stayed in my very secondary role.
I have only used the third dimension according to your in-
structions. If that would be too disturbing, we could re-
turn to the horizontal zone. I have added another 30 sec-
onds, because I don’t think two minutes will be enough
to empty and fill the building, even if we would use tear
gas (and by the way, why not?)” [15]. Kalff replied to
Xenakis on 9 April 1958: “We have received your tapes
in good order. We have given them to Tak, together with
the score. He is working day and night to complete the
composition of Varèse with the three-dimensional effects”
[15]. When Xenakis was able to hear his piece inside of
the pavilion for the first time is not completely clear, but in
a letter on 18 April 1958 to Varèse, he showed his dissat-
isfaction with the quality of the tapes [15]. According to
a report by Kalff, efforts to improve the playback quality
of the Interlude Sonore were undertaken between 24 April
and 2 May 1958: “Mr. Tak will go to Eindhoven to pro-
cess the sound tapes of Xenakis for the intermission [. . . ]
He will be finished by the end of the week and will bring
them to Brussels either the 28th or the 29th” 3 . After hav-
ing heard the complete program in the Pavilion for the first
time on 2 May 1958, Xenakis was still not happy because
the tapes had been remastered in Eindhoven at a level be-
low his specifications and his likings. Kalff acknowledged
the problem, and in a letter from 28 July 1958, Xenakis
was invited to go to Eindhoven and work on the revisions
in August; the final versions, however, would have been
completed only in early August [6]. Indeed, the letters
show a sort of continuous reworking process of the piece,
both concerning sound material and spazialization.

3. SPATIALIZATION RECONSTRUCTION

In order to reconstruct the spatialization of the Interlude,
possible clues can be found in the sonic structure of the
piece, in Xenakis’ spatialization strategies after the Pavil-
ion, and in Xenakis’ aesthetics at the time.
As we are still investigating about the 3-track tape (the final
version mentioned by Xenakis was 2’30”, while the 3-track
tape we found is less than 2 minutes), in the following we
take into account (and use for reconstruction) the currently
available version by EMF 4 , lasting 2’40”, mixed down to
mono. In his well-known book Formalized music [5], Xe-
nakis describes Concret PH as an example of “Markovian
Stochastic Music” [5]. For the composer, the piece demon-
strates that “stochastics is valuable not only in instrumen-

3 Letter from the private collection of Peter Wever.
4 Iannis Xenakis, Electronic Music, EMF, CD EM102.

273



Figure 3. Drawing by Xenakis (unpublished letter
to Kalff), explaining the spatialisation of the Interlude
Sonore.

tal music, but also in electromagnetic music” ([5], p. 43).
The same chapter introduces the first theoretical proposal
for what would then be called “granular synthesis”: Con-
cret PH could be considered as its first example [9]. Xe-
nakis, as most scholars, individuates the crucial aspect of
the piece in sound material, not in spatialization: that is,
in the use of micro, particulated, undifferentiated sound
matter to achieving a sense of continuous transformation.
Concret PH is a textural composition, with no specific tem-
poral macroform, a “cloud filled with splinters of sound”
([9], p. 203), resulting in “dry, but sparkling study” ([16],
p. 18). The granular sound matter reveals a specific tactile
quality [17], that can remind the concrete surfaces of the
Pavilion [18]. While there are many references in litera-
ture to Concret PH, still the only detailed analysis is the
one proposed by Di Scipio [19]. According to Di Scipio
the piece is based on a systemic approach to composition,
also evident in Analogique A et B [9]. The most relevant
aspect of the piece is sound behavior at the micro level,
that results from a process of densification, based on the
layering of two textures. The “rather simple macroscopic
shape” then depends from a single transition from the first
to second texture. While Di Scipio’s general remarks are
very insightful, his analysis is phenomenologically not so
convincing 5 . In fact, it is possible to retrieve at least 3
textures (to these, maybe a variation of the second can be
added). Figure 4 shows two excerpts from a sonographic
representation of Concret PH 6 . The piece starts with tex-
ture 1, in crescendo: here (Figure 4, top left), the spectrum
presents energy spread almost exclusively over 4000 Hz.
Even if at 30’ some lower impulses can be heard, the sec-
ond, lower texture enters definitively at 43”: new grains
are distinctively lower than previous ones, and they appear
on the spectrum as black spots in the range between 2500
and 3500 Herz (Figure 4, top, dotdashed box). The dou-
ble layering of the textures 1 and 2 is kept stable until 84”.
Then, gliding grains, still from texture 2, appear, with an
increasing density and relevance. After 2’05”, a third, dis-
tinct layer is superimposed: it shows a larger spectrum,
both in the low and high frequencies, and it is character-
ized by a sort of sweeping motion (Figure 4, bottom). The
piece ends with texture 3 fading out (2’40”), leaving the
texture 1 alone.
Concerning Xenakis’ spatializations after the Philips Pavil-

5 It must be noted that the Di Scipio’s analysis was based on a the
version of Concret PH from the Nonesuch LP, and made use of scarcely
readable sonograms produced in 1984.

6 As the piece is structurally made of large-band impulses, the spec-
trum is very dense and sonograms are not particularly helpful. Here they
are used only to show large discontinuities among textures.
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Figure 4. Sonograms of two excerpts from Concret PH.
Entering of textures 1 (top) and 2 (bottom) (note the differ-
ent frequency ranges).

ion, the composer made a large use of loudspeakers in
many other works. The Poème électronique was a model
for Xenakis’ experimentation with sound and light sys-
tems, the Polytopes 7 [20] and the electroacoustic work
Bohor (1968) was for 8 channels. But even if the com-
poser himself has described in depth many of his compo-
sition techniques, no detailed info on spatialization strate-
gies in multichannel setup is available, to our knowledge.
Still, we know that Xenakis applied to the control of lights
and sounds in space the same aesthetic principles and for-
mal procedures he used in his musical composition: as an
example, concerning the Polytope de Montréal (1967), he
stated that his “total experience with musical composition
was used to serve light composition” (Xenakis, cit, in [20],
57). As evident in [2], the composer has always strived to a
unified form of thought. Hence the need, in order to define
a formal model for the control of the sound speed, to take
into account some aspects of Xenakis’ aesthetics.
Concerning the position of Interlude/Concret PH in the
Xenakisian corpus, it must be noted that, apart from his
seminal work Metastaseis (1953-54) (directly inspiring the
Pavilion), Pithoprakta (1955-56)’s inspiring model came
from theory of gas molecules, governing the stochastic dis-
tribution of sound events [19], [21]. Analogously, Achor-
ripsis (1957-58) can be considered a sonification of prob-
ability distributions, following the model of gas diffusion
[22] [23]. The same principles are at work in his electro-
acoustic music. In Diamorphoses (1957) he applied stochas-
tic principles, while Analogiques A et B introduced Marko-
vian Stochastic Music [5] [19], and the notions of Gabor
quanta. Speaking about Pithoprakta in 1956, Xenakis un-
derlines the role of the “Gas Parable”, one of the “para-
bles” he used to conceptualize the organization of sound
events [2]. In the Gas model, the two main parameters
to be considered are pressure and temperature: pressure

7 More, the shape of the Diatope (1979) bears a striking resemblance
with the Philips Pavilion.
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is the density of events, while temperature is the speed of
molecules (that is, it represents kinetic energy). Indeed,
Xenakis loves to speak about music in terms of its “tem-
perature”. This allows to introduce another typical element
of Xenakis’ geometric imagery: line. Metastaseis and the
Pavilion are examples of the composer’s fascination with
ruled surfaces, and glissandos are Xenakis’ preferite exam-
ples of lines in music. Not by chance, they are put in rela-
tion to temperature of molecules [5]. As the sound material
of the Concret PH is indeed made of sound molecules, the
sound spatialization should make them travel around the
Pavilion. As in a cloud of particles, masses can travel at
different speeds.
In our reconstruction, we embrace a conservative approach,
assuming as a plausible hypothesis that Xenakis consid-
ered initially three tracks, each one with a different texture:
tracks, made of molecular sounds, were not only character-
ized by specific densities and temperatures of sound molecules
(one can think in particular of the gliding grains), but, co-
herently, also by a specific speed of diffusion in the space.
As he was not permitted to use three tracks in the space,
these were mixed down onto a single track tape, to be de-
livered in the route I. As we discussed, it seems that, at the
end, the access to the “3D dimension” was possible too, but
in some sense Xenakis considered it optional, and available
sources are not clear about what was effectively imple-
mented in the Pavilion. The use of the 3rd dimension can
be obtained by delivering the other tracks on other sound
routes, going up and down in the pavilion, or by diffusing
them from fixed positions, most probably from the large
clusters above the entrance and exit (hence the reference
to “stereophonic” placement by Xenakis). This second hy-
pothesis is consistent with [1]. Following the conservative
hypothesis, in our reconstruction the spatialization of the
Interlude uses a mono track, as it is limited to the horizon-
tal route, in the form of a continuous variation of speed (ac-
celeration/deceleration), with no clusters involved (clusters
could be easily added to our design). Also, we assume that
the design of the spatialization for other routes could fol-
low the same principle that we are going to discuss. Thus,
the final spatialization score would have been made of acti-
vation events for route I occurring at variable time intervals
(i.e. created by a variable stepping rate).
Taking into account Xenakis’ original idea of having three
autonomous tracks, from the analysis of Concret PH, we
assume three different textural layers, where each texture
is characterized by a specific speed. In the spatialization
design, each texture is given a certain speed, that can be
thought as the rotation speed of the layer over the looping
horizontal route. Hence, the total rotation speed (the actual
parameter to be reconstructed) is the sum of the three dif-
ferent speeds (Figure 5). In order to calculate the speed
of each layer, a direct relation between the average du-
ration of the impulsive events and the average rate is as-
sumed: the shorter the event, the lower the average rate.
The available speed range, expressed in activation rate for
loudspeaker is [0, 10], where 0 represents no motion and 10
loudspeaker/second was the technical limitation for Philips
Pavilion hardware, i.e. the maximum rate at which the

Figure 5. From top to bottom, speeds of layers 1, 2 and 3,
overall speed, and sampled overall speed.

loudspeakers can be activated/disactivated [14]. Each tex-
ture’s speed is defined in a certain interval and actually
randomly selected by using a Gaussian distribution (Gaus-
sian distributions were extensively used by Xenakis at that
time [5]). As the average speed is proportional to textural
density, textures 1 and 2 are opposed to 3, much thicker.
The first and the second textures have speeds included in
the range [2, 4]. Texture 3’s speed is in a higher, smaller
range, [3, 4]. Each texture is given a duration range. Dur-
ing the generation process, a duration is selected in the
range, again following a Gaussian distribution. For the
duration, speed increases/decreases continuously, as it is
calculated by linearly interpolating the starting speed and
the next one. In each texture, average duration is propor-
tional to textural density. The duration range in seconds
for texture 1 is [1, 3], and [2, 5] for texture 2, as the latter
shows a slower pace and the emergence of quasi-pitched
grains. Texture 3 is associated the smaller duration range,
[0.3, 2], meaning that speed values are selected at the high-
est rate. This methodology, based on linear interpolation,
is based on the relevance of the visual geometric model
of the line in Xenakis’ work: Xenakis always draws lines
on paper while composing, and the ruled surfaces of the
Philips Pavilion bear a strict relation to the sketches for
the score of Metastaseis. Speeds for each texture are rep-
resented in Figure 5, with speed expressed in activation
impulses per second. In order to define loudspeaker acti-
vation/disactivation and to create the final score, we have
to remember that speakers are discrete, so it is necessary
to define activation/disactivation events by sampling the
speed curve. The process works as follow:

1. at t0 select speed s and activate loudspeaker l0
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Figure 6. Relations between the virtual space and the final
8-channel setup.

2. calculate the duration d of the event, i.e. the time
interval to the activation of loudspeaker. As s rep-
resents the rate of activation of loudspeaker, if, e.g.,
s = 2, then the next loudspeaker will be activated
after d = 1

s = 0.5 seconds

3. write an event e in the score, with loudspeaker index
0 and duration d

4. wait for d seconds

At time t0+d, a new speed is selected, and so on, until total
duration has passed. As the horizontal route wraps around,
the process keeps going on until the total time of the piece
has passed. The algorithm can be thought as a Sample and
Hold applied to the total speed curve (with variable rate
depending on sampled speed). Also, if s > 10, then speed
is clipped to s = 10. The sampled and clipped speed is
shown in Figure 5, bottom.

4. IMPLEMENTATION

The proposed Concret PH’s spatialization has been imple-
mented in a virtual reality application, that simulates the
whole Poème électronique inside the Philips Pavilion. By
using VR techniques, the resulting installation let the user
experience again the original show, placing her/him into a
virtual space created by computer graphics and spatialized
audio. The application extends the VEP project [1]. Dif-
ferent versions of the VEP application have been imple-
mented by the VEP project: a single-user, immersive setup
with headphones and stereoscopic head-mounted display, a
“shared” multi-user version with binaural audio (as in the
first version) but using screen projection, a non-interactive
six-channel version on a DVD-video. Here we present a
new version where the audio component is driven by a VR
engine, capable of delivering interactive, real-time audio
through a multichannel generic setup (Figure 6). Concerning
the Philips Pavilion and the Poème électronique, it relies
on the data provided by the VEP project, and integrates
the new findings about Interlude/Concret PH discussed be-
fore. The general architecture of the real-time versions of
the VEP applications features three components: a Com-
puter Graphic Engine, a Control Engine, and an Audio
Engine. All the events of the show (concerning the con-
trol of audio/video elements of the Poème électronique)
are recorded sequentially in a score. The score is a text

x

y

z
a

b

Figure 7. 2D Localization and 3D distance rendering.

file where each line specifies an event. The Control En-
gine parses the score in order to retrieve events. At the
same time, it also monitors user interaction (i.e. changes
of his/her position). For each event, be it a score- or a
user one, it sends the opportune commands to the Video
and Audio Engines, via OSC messages. Here we do not
discuss in details the architecture (see[1]), and we focus
instead on the Audio Engine 8 . It uses Vector-Based Am-
plitude Panning (VBAP) [24], a triangle based general-
ization of equal-power panning that has been extensively
tested with VR applications [25]: it allows to render an
arbitrary source in a virtual space on a ring or half dome
of loudspeakers (in both cases, the loudspeakers have all
the same distances from the ideal listener). The ring/dome
can include an arbitrary number of loudspeakers, placed
on arbitrary points of the circumference/sphere. In short,
by passing the position data related to a virtual source to
a VBAP algorithm, the latter can render the virtual posi-
tion through a physical multichannel setup. In the virtual
Philips Pavilion, the sound sources are the 350 loudspeak-
ers, each with a fixed position on the Pavilion’s walls. Our
final setup made use of an 8-loudspeaker ring, with the au-
dience standing around the ideal listener position, in the
centre of the ring (Figure 6). In order to pass from a 3D
space (in the Pavilion) to a 2D space (the ring), we dis-
carded the height of the loudspeakers (that is, we projected
the loudspeaker positions on the horizontal plane). This
means that, with respect to Figure 7, loudspeaker a and b
will have the same position. In relation to space simula-
tion, we used VBAP algorithms to recreate sound local-
ization [26]. In order to render distance cues (intensity,
direct/reverberat ratio, spectrum) [27], we used the inverse
square law to scale amplitude in relation to distance of the
loudspeakers from the listener. We avoided to add rever-
beration (reverberation data for the Pavilion are available
from the VEP Project), as it would then be superimposed
to the one of the physical space (that cannot be controlled a
priori), and we considered spectral filtering not so relevant
in the closed space of the Pavilion. While for localization
we discard third dimension of original sources, 3D coordi-
nates are still used to calculate distance. As an example,
in Figure 7, source b will indeed sound from a position,
but at least from b distance. Differently from [1], in this
version the virtual listener can move freely in the Pavil-
ion, and her/his position has to be merged with the source
position in order to determine the actual orientation to be

8 In must also be noted that Concret PH was to be played during the
interlude. As a consequence, no visual elements were present while Xe-
nakis’ music was played in the dark Pavilion, thus creating a purely acous-
matic context for the piece.
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rendered. The audio application has been developed us-
ing the SuperCollider environment: it features a high-level,
object-oriented, interactive language together with a real-
time, efficient audio server. With respect to other similar
projects (Chuck[28], Impromptu [29]), the SuperCollider
language combines features common to other general and
audio-specific programming languages (e.g. respectively
Smalltalk and Csound), and, at the same time, it allows to
generate programmatically complex GUIs. It includes na-
tive support to OSC protocol, and VBAP algorithms are
available from the BEASTmulch library 9 . The architec-
ture of the audio application is shown in Figure 8. It re-
ceives OSC messages from the Control Engine. The ac-
tual setup includes 8 loudspeakers fed by 8-channel audio,
with an added subwoofer receiving a mix down of the 8
audio streams. Its main subcomponents are Runner (1),
Players (3), Sources (5) and DSP (7). The Runner han-
dles all the communications with the Control Engine. On
initialization, it loads the required audio tracks (2): for
each track (3 in case of the Poème électronique, 1 for Con-
cret PH), it creates a playback unit (3) and routes it to in-
ternal busses (4). It creates sources (5) and controls all
the processes related to them. In turn, sources represent
sources in the pavilion (i.e. loudspeakers), and encapsu-
late audio DSP capabilities for both playing back audio
and spatialization rendering. There are 350 sources, one
for each loudspeaker. Each source outputs 8-channel audio
via VBAP algorithm, written on 8 common internal busses
(6). These busses are routed to the DSP subcomponent
(7), that allows for a global control on the audio streams,
so that they can be adjusted in relation to the physical lis-
tening space. After being scaled through global amplitude
scaling (“volume”), the 8 audio streams are mixed down to
be sent to the LFE channel. The sub volume provides inde-
pendent scaling for the subwoofer signal. In real-time in-
teraction, the Control Engine sends event-related messages
to the Runner. There are three types of events: startup,
score, user. Startup events requires to start/stop the play-
back units, and are used for syncing the Audio Engine with
the Control Engine. Score events are the ones scripted in
the score (resulting from reconstructed spatialization), and
occurs when a loudspeaker in the Pavilion start or stop re-
ceiving audio. In the case that a loudspeaker is started in

9 http://www.beast.bham.ac.uk/research/mulch.shtml

the virtual pavilion, the Runner calculates the theta/rho
parameters (representing position in polar coordinates) by
merging the position of the virtual source (passed with the
message) and the listener’s one (stored by the Audio En-
gine). More, dist parameter is calculated, representing
the distance of the source from the listener in 3D. Then,
the related source is activated, and the required track is
routed. The source is passed the spatial parameters (theta,
rho, dist), so that it can properly process the incoming sig-
nal (from the routed track), and render audio. The Runner
keeps track of active sources in the “active list”, and stores
the actual position of the listener. When a loudspeaker is
no more active, a stop audio message is sent by the Control
Engine: on receiving, the source is paused and removed
from the active list. Finally, user events occur when the
position of the listener in the virtual space changes, that
is when the actual user explores the virtual Pavilion e.g.
by means of a joystick. In that case, the listener position
is updated, and theta, rho, dist parameters are re-
calculated and passed to sources in the active list. In this
way, the 8-channel panning and the scaling for each source
are recalculated.

5. CONCLUSIONS AND FUTURE WORKS

The reconstruction of the Poème électronique has shown
how many and intermingled are the issues emerging from
XX-th century artworks that massively involve short-living
and ad hoc technological solutions and devices [30]. These
issues, concerning philological, technological, aesthetic as-
pects, clearly emerge in the case of the Interlude Sonore.
Our conservative approach has allowed us to re-experience
a plausible diffusion of Xenakis’ work in a virtual space,
and, in the occasion, to develop an innovative technolog-
ical solution for a multichannel rendering of the Philips
Pavilion. The spatialization proposed at the EMF event
has received a very positive feedback from the audience
and the specialized press:“the digital manipulation of the
original sound material was admirable and effective” [31].
In the future, we plan to analyze in depth, and eventually
integrate, the three audio tracks of the Interlude we found.
Also, we are still searching for the original spatialization
score by Xenakis. Finally, we plan to develop alternate
versions of the spatialization including the third dimension
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using the same framework, as VBAP techniques allow to
simulate 3D localization.
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ABSTRACT 
Query-by-Humming (QBH) is an increasingly prominent 
technology that allows users to browse through a song 
database by singing/humming a part of the song they 
wish to retrieve. Besides these cases, QBH can also be 
used to track the performance of a user in applications 
such as Score Alignment and Real-Time Accompani-
ment. In this paper we present an online QBH algorithm 
for audio recordings of singing voice, which uses a 
multi-similarity measurement approach to pinpoint the 
location of a query within a musical piece taking into 
account the pitch contour, phonetic content and RMS 
energy envelope. Experiments show that our approach 
can achieve 75.4% Top-1 accuracy in locating an exact 
melody from the whole song, and 57.8% Top-1 accuracy 
in locating the phrase that contains the exact lyrics – an 
improvement of 170% over the basic pitch contour 
method. Average query duration is 6 seconds while aver-
age runtime in MATLAB is 0.8 times the duration of the 
query. 

1. INTRODUCTION 
1.1 Presentation of the context 

Query by Humming has gained attention as an approach, 
partly due to the increasing size of music collections; it is 
far easier to hum/sing the main melody for the song one 
wants to retrieve than search for it using the title and/or 
semantic labels. Further signs of the growing presence of 
QBH as an audio querying concept are also demonstrated 
by its inclusion as part of the of the MIREX contests 
since 2006. 

However, this is not the only occasion on which 
QBH can be applied. Real-time Accompaniment systems 
such as Score Following/Alignment [1] attempt to align 
an existing score to the performance of a soloist in an 
online manner, very much like a human accompanist 
would align and adapt his/her performance to match that 
of the soloist. 

Unfortunately, capable accompanists are hard to 
come by, especially for pieces of advanced difficulty. For 
this reason, an intelligent accompaniment system would 

be very useful for the soloist, as it would allow him/her 
to train and prepare for a performance without the need 
of a compromise for a sub-standard accompanist or the 
reduction of his opportunities to practice for a challeng-
ing piece. 

In this context, a capable QBH system would be 
valuable as a front-end; it would automatically locate the 
soloist’s position within the musical piece and provide 
the starting point for the alignment process. The soloist 
could stop and start again from a different point in the 
piece, without having to manually adjust the starting po-
sition.  

However, virtually every musical piece contains 
repetitions of the same melody; simply put, there are 
several starting points for most queried melodies, a detail 
that is overlooked in most QBH implementations avail-
able currently. In the special case of the singing voice, a 
useful feature that could be utilized to discriminate be-
tween identical melodies are the piece’s lyrics; with the 
exception of repeating parts such as the bridge or the 
chorus, every melodic line is coupled with a different 
lyric line. Therefore, if one can match the lyrics of the 
query to the lyrics of the reference, the exact location of 
the soloist within the piece would be pinpointed with 
perfect accuracy. 

1.2 Related Work 

As mentioned before, there is a significant amount 
of research done in the field of QBH, and as a standalone 
research field it is increasing in maturity. Early works on 
content-based audio or music retrieval are primarily 
based on signal processing and the acoustic similarity of 
the whole waveform [2]. 

Recent advances in the field utilize only the pitch 
contour of the query, which is directly transcribed from 
audio and compared to MIDI representations of all pieces 
within a database [3]. This approach yields satisfactory 
results, but strongly depends on the quality and accuracy 
of the query. Furthermore, this method performs a certain 
simplification over the input data to the point where dis-
crimination between two or more candidates becomes a 
very hard task. Other approaches include a further range 
of features to calculate similarity, such as rhythm and 
pitch intervals [4], or relative interval slopes [5].  

Predominantly, two different distance metrics are 
used in order to calculate the similarity between the 
query and the musical pieces within the database: frame-
based and note-based similarity. Either one has its ad-
vantages; frame-base similarity is more accurate and ro-

Copyright: © 2010 Papiotis et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 
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bust, but is time-consuming. On the other hand, note-
based similarity is faster, but offers less precision. A 
more efficient approach which utilizes the second metric 
can be found in [6], where the query is transcribed into 
pitch vectors and a list of candidate melodies is retrieved 
from the song database using locality sensitive hashing. 

 Another interesting approach from which our work 
borrows elements is the use of multi-similarity fusion, or 
the combination of the two distance metrics [7]; first, 
note-based similarity is used in order to quickly filter out 
the least similar candidates, and then frame-based simi-
larity is applied to more accurately retrieve the best can-
didates. 

Regarding lyrics recognition, a promising approach 
that is partly similar to our work approach is presented in 
[8], where a supervised Hidden Markov Model is used to 
recognize phonemes in a song using a pre-processed lyr-
ics file, with an interesting application in QBH which 
achieves an accuracy of 57%. Another approach can be 
seen in [9], where an existing lyrics file is aligned to a 
vocal performance in Cantonese, using a combination of 
melody transcription, onset detection and Dynamic Time 
Warping (DTW) [10]. 

1.3 Our approach 

Since we are trying to locate the exact position of a 
query within a single musical piece, the conditions and 
goals are relatively different to most of the cases pre-
sented above. Furthermore, the system has to work in a 
real-time accompaniment context; this restricts the aver-
age duration of the queries, since the QBH algorithm has 
but a small amount of seconds to return the located 
phrase. 

Another goal of this work is to reduce the number 
of dependencies in terms of input as much as possible; 
for this reason, we avoided the use of auxiliary MIDI 
scores for the reference vocals as well as text files con-
taining the lyrics for each phrase. This way, the only pre-
requisite for this system is a relatively stable audio re-
cording of the reference vocals, such as the vocals in the 
originally recorded track. This recording is used to match 
the position of the queries sung by the user; it also serves 
as a reference through which the user’s deviations in time 
and dynamics can be calculated to align the accompani-
ment to the user’s performance. However, the latter part 
is still in progress and will not be discussed in this arti-
cle. 

The remainder of this paper is organized as follows: 
In Section 2, an overview of our system is provided. Sec-
tion 3 focuses on implementation details for our ap-
proach. Section 4 shows our experimental results on the 
accuracy of the algorithm, and finally Section 5 contains 
our conclusions and future work recommendations. 

2. SYSTEM OVERVIEW 
As you can see in Figure 1, our system can be analyzed 
in four main processing modules. One is the pitch con-
tour post-processing module, and three separate imple-
mentations of the Dynamic Time Warping algorithm –  

 
Figure 1. Overview of our system’s four modules 

organized by online and offline analysis. 

for the Pitch Contour, Mel-frequency Cepstral Coeffi-
cients and RMS Energy respectively. The two basic in-
puts for the system are the audio recordings of the refer-
ence vocals and the query.  

2.1 Pitch transcription and post-processing 

Both the reference vocals and the query are tran-
scribed with the Yin algorithm [6], which produces a 
fairly accurate preliminary form of the F0 contour. How-
ever, YIN introduces several errors, the most prominent 
of which are the so-called “octave errors” – falsely 
choosing a fundamental frequency of twice or half the 
correct F0. 

In order to overcome this problem, we first deter-
mine the tonal range of the recording by finding its 
maximum and minimum value where the aperiodicity of 
the signal is lower than a given threshold. Knowing the 
tonal range, we restore the values that are outside it by 
adding or subtracting a constant number. This way, the 
contour of the melody remains intact and is just “moved” 
using a certain offset. 

Another problem we had to overcome are points in 
the recording containing consonants, roughness in the 
voice, or any brief burst of noise that “pollutes” the me-
lodic content of the recording. Since these points do not 
have pitch, they can be removed using an aperiodicity 
threshold over which all values are set to zero.  The gaps 
created are then bridged using an average value.  

Finally, to smooth out the curve and speed up the 
DTW algorithm, we downsample the contour by a factor 
of 100.  

 

2.2 Contour-based DTW 

After obtaining the processed pitch contour of the 
query and the reference melody, we perform the DTW 
algorithm between the query and a sliding window of the 
reference that is equal to the length of the query. This 
returns a curve with the warping cost for every window 
of the reference (see Fig.2). 
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fquery =  lquery
h

fref  =  lref  -  lquery
h

 
Figure 2. Contour-based DTW costs. 

As seen in Figure 2, we select the local minima of 
this curve as the best candidates for the query. It can be 
observed that there are at least four phrases with the 
same melodic contour as the query; this is normal as 
songs have repeating melodies with different lyrics each 
time. 

2.3 MFCC and RMS energy-based DTW 

Having selected the best candidates, we try to match 
the phonetic content of the query based on the Mel fre-
quency Cepstral coefficients and the pattern of words and 
silences as represented in the RMS Energy envelope. The 
DTW algorithm is performed between the retrieved can-
didates and the query twice more – once for the MFCCs 
and once for the RMS envelopes, thus producing two sets 
of warping costs. 

2.4 Multi-Similarity Fusion 

Finally, all three warping costs are combined, to 
help determine the best candidate. Each one of the cost 
vectors is normalized by its norm and added to the final 
costs vector. The minimum value of this vector is re-
turned, signifying the position where the query was lo-
cated. 

3. IMPLEMENTATION DETAILS 
The implementation of the proposed system was done in 
MATLAB. For the reference melodies, 7 vocal mono-
phonic recordings of songs from the pop/rock genre were 
used, while the queries were recorded independently by a 
single user and comprised of 114 phrases with an average 
duration of 6 seconds each. 

The whole system consists of two basic functions: 
yinToTrajectory, which performs the post-processing algo-
rithm described in 2.1, and QBHLyricFinder, which calcu-
lates the DTW costs as shown in 2.2. In yinToTrajectory, 
the aperiodicity threshold is required as a parameter; val-
ues higher than the threshold are removed and replaced 
with an average value curve. In QBHLyricFinder, only the 
hop-size for the Contour-based DTW has to be adjusted 
by the user; it has been observed, however, that a hop-
size of 400ms or less achieves the best results. 

For the pitch contour & RMS energy DTW, 
Euclidian distance was used in order to construct the 
similarity matrix. For the Mel-frequency Cepstral coeffi-

cients, the cosine similarity between the two MFCC ma-
trices was used, as is also the case with the DTW imple-
mentation found in [10]. 

As we need the system to work as part of an Inter-
active accompaniment application, computational effi-
ciency is very important: after the user has sung the 
query, he/she keeps singing; the system must calculate 
the query’s exact position within the reference and start 
playback from the point the user has reached by that 
moment. In average, our system’s response time is 4.65 
seconds for a 6.45-second query. Of course, the response 
might vary according to the number of candidates chosen 
during the pitch-contour DTW calculation. Out of these 
4.65 seconds, 3.17 correspond to the YIN analysis of the 
query as well as the post-processing, 1.03 seconds corre-
spond to the Contour-base DTW, and 0.47 seconds to the 
rest of the algorithm. 

4. EXPERIMENTAL RESULTS 
As mentioned before, 114 recorded phrases covering the 
whole of 7 different tracks were used as queries. In our 
context, a phrase is defined as a small group of words, 
matched with an individual melody, that stands as a con-
ceptually distinct unit within the song – which is usually 
a line of the lyrics with its associated melody. Only the 
best-matching phrase is retrieved by the algorithm; we 
considered the output of the algorithm a hit, if the phrase 
returned had an overlap of at least 50% with the query. 

Besides the main accuracy of the algorithm, we also 
calculated for each track the random guess accuracy for 
lyrics matching, the mean MFCC similarity between the 
reference and querying voice, the melodic variation of 
the track and the accuracy of the post-processed pitch 
contour.  

4.1 Random guess accuracy 

Since an overlap of at least 50% between the retrieved 
phrase and the query is considered a hit, the first frame of 
the retrieved phrase must be located at half the query’s 
length before or after the actual first frame within the 
reference; more simply put, the overlap between the re-
trieved phrase and the query can either occur at the 
query’s first or second half, but the duration of the re-
trieved phrase is always equal in length to the query. 
Therefore, the range of positions (in number of frames) 
that are considered correct is equal to 

   
             ,                            (1) 

 
where lquery is the length of the query and h is the hop size 
of the sliding DTW window, in frames. Similarly, the 
last frame of the retrieved phrase must be located at half 
the query’s length before or after the actual last frame 
within the reference, so the range of all possible positions 
is equal to 
  

            ,                       (2) 
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where lref  is the length of the reference in frames. 

This way, the random guess accuracy can be com-
puted using the following formula: 

 
                         (3) 

 
 

Some of the songs contain phrases that are repeated 
throughout its duration, therefore increasing the random 
guess accuracy. Moreover, when two identical phrases 
appear sequentially (i.e. the end of the first coincides 
with the beginning of the second), any frame between the 
middle of the first repetition and the middle of the second 
repetition is considered a hit. For these cases, the random 
guess accuracy is equal to 

  
 

        ,                 (4) 

 
where nr is the number of repetitions for that phrase and 
nb is the number of shared boundaries between sequential 
phrases. Since in these cases the accuracy changes ac-
cording to nr and nb, we compute it as a weighted average 
of all phrases within the song. 

It can be argued that two identical phrases, which 
contain the same lyrics content and melody, might be 
emphasized differently in each repetition and can there-
fore qualify as separate phrases; this is currently viewed 
as a very subtle difference by our approach and such 
phrases are not treated individually. However, it is a 
valid case in some types of music (such as in operatic 
arias) and shall be investigated in the near future. 

The overall random guess accuracy for each song as 
well as the average random accuracy can be seen in Ta-
ble 1: 

 
Song name Random guess accuracy 
She's leaving home 0.076 
Butterflies & hurricanes 0.055 
Nude 0.036 
Bohemian Rhapsody 0.049 
A day in the life 0.041 
All the small things 0.134 
Message in a bottle 0.066 

Average baseline accuracy 0.0471 
 

Table 1. Individual and average baseline accuracy for 
lyrics matching. 

 
The average baseline was computed using a weighted 
sum, according to the number of queries for each song. 

4.2 Average accuracy 

The average accuracy of our algorithm was calcu-
lated as the number of queries located correctly over the 
total number of queries. In order to evaluate our results 

clearly and draw conclusions, we also calculated a num-
ber of features for each song, which are shown together 
with the average accuracy in Table 2. 

 
Song ID Accuracy Timbre 

similarity 
Contour 
accuracy 

Melodic 
variation 

SLH 0.61 0.3505 4 0.23 
B&H 0.66 0.4091 4 0.27 
N 0.61 0.7506 5 0.61 
BR 0.57 0.374 1 0.57 
ADITL 0.45 0.6172 2 0.29 
ATST 0.6 0.3564 2 0.5 
MIAB 0.6 0.2992 2 0.8 
Overall 0.585    

Table 2.  Accuracy and computed features (song IDs are 
derived from the initials of the song title). 

 
Timbre similarity was calculated as the mean cosine 

similarity between a query and the relevant phrase from 
the reference recording, in order to observe how different 
singers (each with his/her own pronunciation and timbre) 
influence the lyrics matching.  

Pitch contour accuracy was qualitatively graded 
from 1 to 5, according to the smoothness of the reference 
pitch contour as well as its similarity with the actual vo-
cal line - it was observed that the pitch contour retains 
errors and noisy elements even after the post-processing.  

Finally, melodic variation was calculated for each 
song as the number of unique phrases within a song over 
the total number of phrases in it; a melody is considered 
unique if its pitch contour is not repeated within the song. 
High melodic variation characterizes a piece where the 
vocal melodies are seldom reused, whereas low melodic 
variation characterizes pieces that feature repetitive 
melodies. 

As our results show, average accuracy for our algo-
rithm is 58.5% with a random guess accuracy of 4.7%, 
while the accuracy of our program when trying to only 
locate a phrase with the same contour is 75.4%. We also 
tested an implementation of the basic QBH algorithm 
using only the pitch contour to match the queried phrase; 
the accuracy amounted to 34% when trying to locate a 
phrase with the same lyrics, and 72.8% when trying to 
only locate a phrase with the same contour; this demon-
strates that using other features besides pitch contour can 
actually increase the retrieval accuracy even when the 
objective is not to retrieve phonetic-matching content. 

It can be seen from Table 2 that the most evident 
factor affecting the accuracy is the quality of the pitch 
transcription (Contour accuracy), although the calcula-
tion of this feature was qualitative. This is expected, 
since the performance of the MFCC-based matching is 
heavily improved when the candidates are fewer and 
more accurate. Since the timbre of the reference voice is 
statistically bound to be rather dissimilar to the querying 
voice, the number of candidates that ‘survive’ through 
the Contour-based DTW must be restricted only to the 
best-matching contours. The melodic variation does not 
have a big impact on accuracy since, based on our quali-
tative observations, almost all variations of a queried 
melody appear among the chosen candidates. 
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5. CONCLUSIONS AND FUTURE WORK 
In this paper we presented a lyrics-matching Query by 
Humming algorithm that can be used as a front-end for 
an interactive real-time accompaniment system special-
ized for singing voice. An audiovisual demonstration of 
our system is available on the Internet for evaluation pur-
poses, on the address provided in [11]. Our experiments 
demonstrate that this approach shows promising results 
in the context of a time critical, single-output determinis-
tic system. However, our experiments are limited in 
number and were tested with a single user; efforts to 
remediate this are currently underway. 

An immediate improvement over the algorithm 
would be a better pitch contour post-processing module 
for the reference vocal recording, as it is demonstrated 
that its performance directly influences the accuracy; 
such an improvement could be the addition of an HMM-
based model that would align an existing MIDI score to 
the reference recording, in order to avoid discontinuities 
and errors in the reference contour. 

Another improvement that would bridge the gap be-
tween the contour-matching and the lyrics-matching ac-
curacy would be to utilize the residual part of both the 
query and the reference recordings, in order to rectify the 
MFCC-based similarity measure. This way, all melodic 
content would be discarded when trying to match the 
lyrics in two phrases with an identical melody.  

Finally, as this system is designed to be executed in 
an interactive environment, a mapping could be gradu-
ally performed between the reference recording and the 
user’s voice, in order to increase the lyrics-matching ac-
curacy through extended use.  
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ABSTRACT

In this paper, we present our research on left hand gesture
acquisition and analysis in guitar performances. The main
goal of our research is the study of expressiveness. Here,
we focus on a detection model for the left hand fingering
based on gesture information. We use a capacitive sensora
to capture fingering positions and we look for a prototyp-
ical description of the most common fingering positions
in guitar playing. We report the performed experiments
and study the obtained results proposing the use of clas-
sification techniques to automatically determine the finger
positions.

1. INTRODUCTION

Guitar is one of the most popular instruments in western
culture. The guitar (and the music it produces) has been
object of study in many disciplines, i.e. musicology, soci-
ology, physics or computer science. Focusing on acoustic
and signal processing disciplines, there are many interest-
ing studies explaining its physical behavior and produced
sound [1, 2]. Nevertheless, the essence of guitar music
is sometimes reflected by subtile particularities which are
completely dependent on the players, styles, and musical
genres. Although some successful approaches exist in the
literature [3], these particularities are, sometimes, difficult
to identify only with recorded audio data. The richness of
the guitar expressivity raises a challenge that, even analyz-
ing each string individually, i.e. using hexaphonic pickups,
it is still partially tackled. In this context, caption of ges-
tures in guitar performances becomes a good complement
to the audio recording.

The study of performer gestures in music is not new.
For instance, Young [4] presented a system to capture the
performance parameters in violin playing. Focusing on
the guitar, there are some interesting approaches study-
ing the gestures of guitar players [5, 6]. Centering on the
finger movements, the available approaches are tradition-
ally based on the analysis of images. Burns and Wander-
ley [7, 8] proposed a method to visually detect and rec-
ognize fingering gestures of the left hand of a guitarist.
Heijink and Meulenbroek [9] proposed the use of a three-
dimensional motion tracking system (Optotrak 3020) to

Copyright: c©2010 Enric Guaus et al. This is an open-access article distributed
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analyze the behavior of the left hand in a classical gui-
tar. Norton [10] proposed the use of another optical mo-
tion caption system based on the Phase Space Inc., with
quite successful results. Although these optical systems
have proved to partly solve and represent guitar gestures,
some occlusion problems may appear in specific finger po-
sitions. The proposed acquisition system is a good com-
plement to the existing ones.

Our research focuses on understanding of particular ar-
ticulations used by different players, styles or musical gen-
res. For that, we need to capture gesture information from
the left hand and to detect its exact position. With such in-
formation, we can (1) detect the fingering in a given score,
and (2) predict the possible articulations and plucked strings
even before the sound is produced. The goal of this paper is
to present a model that detects the left hand position, based
on gesture information, using classification techniques.

The paper is organized as follows: First, in Section2,
we describe the sensors we use. Then, Section3 shows
the list of recorded excerpts, and explains the pattern cre-
ation process from the recorded data. Next, in Section4,
we carefully analyze the obtained recordings, propose the
use of classification techniques to automatically classify
the patterns, and analyze the results. Finally, we summa-
rize the results achieved, present research conclusions, and
propose the next steps of our research in Section5.

2. ACQUISITION

The acquisition system is based on capacitive sensors, de-
scribed in [11]. Capacitive sensors are not new. In 1919,
Lev Termen invented the Theremin, considered the first
electronic instrument in history. Lev Termen exploited the
capacitive effect of a player near two antennas, one con-
trolling the pitch and the other controlling the loudness, of
an harmonic signal. More recently, new musical interfaces
also use capacitive sensors to control musical parameters
[12, 13].

The proposed system consists of an array of capacitive
sensors, mounted on the fretboard of the guitar, config-
ured in load mode [14], where the distance between the
electrode and a single object (the performer’s finger in our
case) is measured through a change in capacitance of the
electrode to ground. These sensors provide information
relative to the presence of fingers into that specific fret.
Moreover, depending on the number of fingers present in a
given fret, the position of these fingers, and the pressure of
the fingers to the strings, the response of the sensors differ.
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Figure 1. Gesture caption system based on capacitive sen-
sors (mounted on the fretboard) and Arduino (mounted on
the body).

Capacitive variations are collected by Arduino1 , an open-
source electronics prototyping platform, programmed us-
ing Capsense2 , a capacitive sensing library for Arduino.
Capsenseconverts the Arduino digital pins into capacitive
sensors that are used to sense the electrical capacitance
of the human body. The acquisition system is shown in
Figure1.

As reported in [11], capacitive sensors can be noisy, and
crosstalk between measured capacitances at different frets
may appear. Moreover, the finger position in a given left
hand situation is never exactly the same, depending on mu-
sical parameters (loudness, style, etc.) or the player (length
of the fingers, etc.). Because of these two reasons, col-
lected data can not be directly processed, and we propose
the use of automatic classification techniques to tackle the
problem.

3. RECORDINGS

3.1 Score

In usual guitar playing conditions, the index finger over
a fret (not necessarily pressing) defines a position. The
following fingers are, by default, on the three following
frets. Then, the score defines the exceptions to this default
fingering. Beyond that, although the score does not modify
this default fingering, the fingers can press different strings.
So, we have to address our problem in two dimensions: (1)
the overall hand position, defined by the index finger, and
(2) the played strings at that position, from 1 (high pitch
string) to 6 (low pitch string). The huge number of possible
finger combinations forces us to organize them according
to a given criterion. The parameters we can play with are:

Hand position: The hand can move up and down the fret-
board. In our case, the number of sensorized frets
is 10, which allows us to move the hand from fret 1
(with fingers over frets 1, 2, 3, and 4) to fret 7 (with
fingers over frets 7, 8, 9 and 10), using the default
fingering.

Finger positions: Each fret can be excited by a different
number of fingers. We consider there are 5 possible

1 www.arduino.cc
2 http://www.arduino.cc/playground/Main/CapSense

1st. finger 1 finger/fret 2 fingers/fret 3 fingers/fret

bar 6000 6200 6300
6001 6201 6030
6010 6210 6003
6011 6020
6100 6021
6101 6120
6110
6111

1 finger 1000 1200 1300
1001 1201 1030
1010 1210 1003
1011 1020
1100 1021
1101 1120
1110
1111

2 fingers 2000
2100
2200

Table 1. Finger activation combinations for each default
fingering position. 4 digits refer to 4 successive frets. Each
digit corresponds to the number of fingers pressing at the
same fret. These positions can be played in different hand
positions and in different strings.6 refers to bar activation,
1 refers to 1 finger activation at any string,2 refers to 2
finger activation at the same fret at any strings, and3 refers
to 3 finger activation at the same fret at any strings. The
highlighted combinations represent the recorded cases.

situations: 0, 1, 2, 3 and 6 (bar). ”0” means that
the fret is not active (i.e. there is no finger acting on
that fret), ”1” means that only one finger is acting on
that fret, whatever the string is pressing, and so on.
A 6 (bar) means that the full index finger is acting
on that fret all over the strings. We also made some
recordings with a half-bar (pressing only strings 1,
2 and 3), but for this study, we consider half-bars as
normal bars.

Pressed strings: For each finger position and default fin-
gering, there are multiple combinations for pressing
strings, as shown in Table1. From all the available
combinations, there are some which are not really
used because of (a) the hand can not physically hold
that combination, or (b) they have no musical mean-
ing. The highlighted combinations in Table1 repre-
sent the recorded cases.

Beyond that, it is important to distinguish between po-
sitions that can seem similar (i.e.1000 and0010) but the
hand position is completely different and, as a consequence
of that, the residual capacitive measure from the other fin-
gers is different. The use of one of these two options is
determined by the musical context, which is not covered in
this paper. Then, for simplicity, we will skip these alterna-
tive recordings.
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Position Played strings Category

1000 s1, s2, s3, s4, s5, s6 1000a
1010 s5s6, s4s5, s3s4, s2s3, s1s2 1010a
1010 s4s6, s3s5, s2s4, s1s3 1010b
1010 s3s6, s2s5, s1s4 1010c
1100 s5s6, s4s5, s3s4, s2s3, s1s2 1100a
1100 s4s6, s3s5, s2s4, s1s3 1100b
1100 s3s6, s2s5, s1s4 1100c
1110 s5s4s6, s4s3s5, s3s2s4, s2s1s31110a
1110 s4s5s6, s3s4s5, s2s3s4, s1s2s31110b
1200 s5s6s4, s4s5s3, s3s4s2, s2s3s11200a
1200 s4s6s5, s3s5s4, s2s4s3, s1s3s21200b
2000 s6s5, s5s4, s4s3, s3s2, s2s1 2000a
2100 s6s4s5, s5s3s4, s4s2s3, s3s1s22100a
2100 s5s4s6, s4s3s5, s3s2s4, s2s1s32100b
2200 s5s3s4s2, s4s2s3s1 2200a
6000 full, half 6000a
6010 s5, s2 6010a
6020 s5s4, s4s3 6020a
6100 s5, s2 6100a
6110 s3s5, s2s4 6110a
6120 s3s5s4, s2s4s3 6120a
6210 s4s3s5, s3s2s4 6210a

Table 2. Detailed list of all the recorded positions, speci-
fying the played strings. Each recording includes the hand
position moving from fret 1 to 7. The s1..s6 stands for the
played string. Each string specification follows an ascend-
ing order from finger 1 to 4. In this paper, we refer these
positions according to theCategory column.

The recorded positions are not all the complete combi-
nations. The recorded subset represents, under our point
of view, the most common situations in real guitar perfor-
mances, and also covers some specific situations in which
the position recognition presents a difficulty (i.e.6020 vs
6120). For each of the proposed positions, several string
combinations have been recorded. The same configuration
of fingers over the frets also include different possibilities.
For instance, the position1200 may representAm with fin-
gers 1,2, and 3 at strings 2, 4 and 3, respectively, or the
Emaj with the same fingers at strings 3, 5, and 4, respec-
tively, by moving the whole hand 1 string down. In our
analysis, we consider these positions are equivalent. Be-
yond that, the same position1200 may representAm with
fingers 1,2, and 3 at strings 2, 4 and 3, respectively, or
D7 with fingers 1, 2, and 3 at strings 2, 3 and 1, respec-
tively. Note how the order of the fingers has changed. In
our analysis, we study whether these positions present an
equivalent response or not.

Table2 shows a detailed list of all the recorded posi-
tions, specifying the played strings. Each recording in-
cludes the hand position moving from fret 1 to 7. From the
multiple options for each configuration, we have used that
one covering the worst case, i.e., we recorded6110s3s5
instead of6110s5s3 because, in the first case, the hand is
near the fretboard producing a higher crosstalk between the
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Figure 2. recorded audio and data from capacitive sensors
for the 1010-s6s5 position.

measured data from frets.

3.2 Data processing

For all the recordings detailed in Table2, the audio data
from a microphone, and the data from capacitive sensors
is captured. Data from capacitive sensors is converted to
MIDI. We use 10 MIDI channels, one for each fret, and
the information is stored as PitchBend messages to obtain a
better resolution. As explained in [11], MIDI data provided
by the Arduino does not have a constant sampling rate. We
apply automatic resampling obtaining a constant sampling
rate sr=30[Hz], which is quite low but accomplishes our
requirements. Each hand position has a duration of 4 beats
in a 4/4 bar at 60[bpm]. The first bar is used as pre-roll, the
second bar is used to play an open strings position in all
the recordings, and the specified position starts at the 3rd.
bar. Figure2 shows an example of the recorded audio and
gesturalinformation. All the recorded MIDI files can be
downloaded atwww.iiia.csic.es/guitarLab/.

The goal of this paper is to obtain models for each fin-
gering position. We assume the collected data for the same
position played at different hand positions is similar (that
is, from frets 1 to 7). Then, we collapse all the information
for each recording (moving the hand from fret 1 to 7) and
build a pattern for that finger position. In order to avoid
possible variations produced by the hand movements, we
only use information from beats 2 and 3 of every bar, in
which we assume the hand position is stable, and compute
the mean for all the acquired data from sensors in this pe-
riod of time. We know the extracted information from bars
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Figure 3. Patterns for finger positions 1, 2, 3 and 4 with respect to the fret position of the index finger, collected for
the 1010b position. Each column corresponds to the same pattern modifying reference frets (from 1 to 7), and each
row corresponds to the same pattern modifying strings (s4s6, s3s5, s2s4, and s1s3). Vertical scale refers to measured
capacitance.

2 and 3 may differ from the information obtained in other
scores (we are a bit conservative, here) but our goal is to
obtain the patterns in which the real and faster recordings
will be compared to. These means are used to build a pat-
tern for finger positions 1, 2, 3 and 4 with respect to the
fret position of the index finger. After some preliminary
experiments, we may assume that the information from
the other frets is not relevant. These patterns are also col-
lapsed through playing the same finger position at different
strings.

In summary, we create, for each position, a pattern for
frets 1 to 4 (relative to the position of the index finger)
moving the position horizontally on the fretboard (moving
the hand from low pitches to high pitches) and vertically
(moving the strings from low pitch to high pitch). Figure3
shows an example of some individual patterns collected to
create the 1010 position. Plottings for all the patterns can
be downloaded atwww.iiia.csic.es/guitarLab/.

4. ANALYSIS

In this section, we present the patterns that define different
finger positions and the analysis of collected data. Specifi-
cally, we are interested in verifying the following hypothe-

ses: (H1) Moving up and down the same position through
strings does not change the pattern; (H2) Moving up and
down the same position through the fretboard does not change
the pattern; (H3) The presence of a bar is always detected
and it does not mask the information of following frets;
(H4) Positions with one finger per fret can be detected;
(H5) Positions with more than one finger per fret can be de-
tected; and (H6) Different finger positions under the same
fret configuration present a different the pattern.

The analysis of the collected data is divided in three
parts. First, we describe how patterns are created. Then,
we analyze whether the obtained patterns are coherent with
what we expected. Finally, we analyze whether the ob-
tained patterns can discriminate between different positions
automatically.

4.1 Pattern creation

For all the obtained patterns (some of them are shown in
Figure3) and for each recorded position, the behavior is
similar. This means that the given values and slopes are
equivalent for each row, that is, the same pattern is ob-
tained by playing at different reference frets by moving the
hand horizontally on the fretboard, and for each column,
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Figure 4. Patterns obtained from means and standard deviations for all the recordings at different finger positions. Position
6000 jumps to 16000, but we skip the vertical scale from 0 to 5000 to ease visual comparison.

that is, the same pattern is obtained by playing at differ-
ent strings. This result verifies the hypotheses H1 and H2.
Then, we may group the patterns for each detailed position
in Table2 into one of the the 22 proposed categories.

4.2 Study of patterns

As expected, the patterns captured with capacitative sen-
sors are not linear combinations of the basic1000, 0100,
0010, and0001 patterns. That is, the finger positions are
influencing neighboring frets. However, the slopes are con-
sistent with the activated frets. For instance,6210 record-
ings present a descending slope whereas6120 recordings
tend to emphasize a sub-peak at third fret.

Regarding finger combinations with a bar, the experi-
ments demonstrate that the presence of a bar does not mask
the other fingers (see Figure4). Indeed, the presence of a
bar generates more stable positions (diminishing standard
deviation). This result verifies hypothesis H3. Positions
1000 and2000 can be confused because the slope is sim-
ilar and the unique difference is the absolute value of the
first fret. Although this value is higher at position2000,
the difference is not large enough to establish a decision
point.

Finger combinations in which consecutive frets are acti-
vated, present a more clear behavior, both in terms of slope
and small deviation. The clearest exponents are record-
ings with only one finger (1000) or a bar (6000) pressing
the strings, but positions like1110, 1200, 2000, 2100, and
2200 follow also a clear behavior.

Two finger combinations require a deeper analysis:1100
and1010 (see Figure4). The two combinations were played
with the second active finger pressing lower strings, and

lower capacitive values were expected. But higher values
were obtained. Regarding position1100, the measured rel-
ative capacitance is really similar to position1200, thus,
our system won’t be able to distinguish among these to fin-
ger combinations. Regarding position1010, the first finger
sometimes causes a low activation (see Figure3). More-
over, because the middle finger tends to be close to the
fretboard, the measured relative capacitance in the second
fret is similar to the measured when one finger is present.
These observations partly verify hypotheses H4 and H5,
and the use of an automatic classification algorithm will
help us to study them in detail.

4.3 Automatic detection

Once we have verified the measured patterns mostly agree
with the expected ones, we analyzed whether an automatic
classifier might identify them. We have 22 categories (in-
cluding 75 possible finger combinations) recorded at 7 ref-
erence fret positions, that is, a data-set with 525 record-
ings. As discussed in Section4.2, not only the absolute
values are important in the analysis, but the slopes. In or-
der to include slope relative information to the system, we
computed the difference of the means from one fret with
respect to the previous one.

The baseline for random classification is 1/22=4,54%.
For simplicity, we use a K-nearest neighbours classifier
(with K=3) and evaluate using 10-fold cross validation.
Results provide an overall accuracy of 44,6% (weighted
averaged precision = 0.449, weighted averaged recall =
0.446, weighted averaged f-measure = 0.435). The con-
fusion matrix is shown in Figure5, and precision and re-
call values for individual categories are shown in Table3.
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Figure 5. Results of automatic classification using K-
nearestneighbours with K=3. Rows indicate categories
that should be classified and columns indicate automati-
cally classified categories. Indexes follow these categories:
(1)1000a, (2) 1010a, (3) 1010b, (4) 1010c, (5) 1100a, (6)
1100b, (7) 1100c, (8) 1110a, (9) 1110b, (10) 1200a, (11)
1200b, (12) 2000a, (13) 2100a, (14) 2100a, (15) 2200a,
(16) 6000a, (17) 6010a, (18) 6020a, (19) 6100a, (20)
6110a, (21) 6120a, and (22) 6210a.

Rows indicate categories that should be classified and co-
lumns indicate automatically classified categories

Position 16 (6000) is perfectly classified. But we ob-
serve some confusions between the other positions. First,
indexes 1 and 12 (positions1000 and2000, respectively)
are the worst classified, but confusions are only among
them. This is an expected confusion and it does not affect
the identification from the different positions at all. Be-
yond that, we also observe important confusions between
indexes 2, 3, and 4, which correspond to positions 1010a,
1010b, and 1010c, respectively. Note how all these con-
fusions belong to position1010, but changing the finger’s
order, that is, they are equivalent. The number of fingers
pressing the frets is the same, and our sensor is not de-
signed to distinguish between them. In a similar way, more
confusions can be found between indexes 5, 6, and 7 (po-
sitions 1100a, 1100b, and1100c, respectively), between
indexes 8 and 9 (positions1110a and1110b, respectively),
between indexes 10 and 11 (positions1200a and1200b,
respectively), and between indexes 13 and 14 (positions
2100a and2100b respectively). But the number of fingers
over the frets is always the same. In the forthcoming po-
sitions, with the presence of a bar, confusions are more
spread in the space, because the number of fingers on the
frets is maximum.

We repeat the automatic classification process by col-
lapsing the equivalent positions (see Table2). With the
resulting 15 categories, and the baseline for random clas-
sification is 1/15=6.67%, We achieved an overall accuracy
of 69.5% (weighted averaged precision = 0.67, weighted
averaged recall = 0.695, weighted averaged f-measure =
0.673). The confusion matrix is shown in Figure6, and
precision and recall values for individual categories are
shown in Table3. Only significant two confusions are still
remaining: between positions1000 and2000, and between
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Figure 6. Results of automatic for collapsed categories
classification using K-nearest neighbours with K=3. Rows
indicate categories that should be classified and columns
indicate automatically classified categories. Indexes fol-
low these categories: (1)1000, (2) 1010, (3) 1100, (4)
1110, (5) 1200, (6) 2000, (7) 2100, (8) 2200, (9) 6000,
(10) 6010, (11) 6020, (12) 6100, (13) 6110, (14) 6120, and
(15) 6210.

positions1100 and 1200, as reported in Section4.2. For
the otherfinger combinations, confusions are not significa-
tive and more spread in the space. Thus, the behavior of
the automatic classifier is coherent. To conclude, hypothe-
ses H4 and H5 are partially verified, and hypothesis H6 is
verified.

5. CONCLUSIONS

The overall goal of our research is to understand expres-
sivity in guitar performances through particular articula-
tions used by different players, styles or musical genres.
For that, we need to capture gesture information from the
left hand to analyze the fingering and possible articula-
tions.In this context, this paper presented a model that de-
tects the left hand position, based on gesture information,
using classification techniques.

We proposed an acquisition system based on capacitive
sensors, we discussed the scores and formats for record-
ings and analyzed the results directly from the data and us-
ing a state of the art automatic classifier. We proposed a list
of hypotheses that were practically verified, but results us-
ing the proposed automatic classifier can be improved. For
that, more research is required. Specifically, we will focus
our efforts on improving the gesture acquisition system, by
including information from hexaphonic pickup, and musi-
cal context information to the classification algorithm.

6. ACKNOWLEDGMENTS

This work was partially funded by NEXT-CBR (TIN2009-
13692-C03-01), IL4LTS (CSIC-200450E557) and by the
Generalitat de Catalunya under the grant 2009-SGR-1434.

289



Expanded Collapsed
Position Precision Recall Precision Recall

1000 0.735 0.857 0.714 0.833
1010s3s6 0.324 0.524 0.85 0.944
1010 s4s6 0.333 0.286
1010 s5s6 0.395 0.429
1100 s3s6 0.333 0.714 0.681 0.889
1100 s4s6 0.286 0.429
1100 s5s6 0.250 0.257
1110 s4s5s6 0.364 0.286 0.722 0.813
1110 s5s4s6 0.357 0.357
1200s4s6s5 0.227 0.179 0.483 0.292
1200 s5s6s4 0.478 0.393
2000 s6s5 0.655 0.543 0.625 0.500
2100 s5s4s6 0.323 0.357 0.689 0.646
2100 s6s4s5 0.556 0.357
2200s4s2s3s1 0.688 0.786 0.750 0.857
6000 1.000 1.000 1.000 1.000
6010 0.438 0.50 0.333 0.417
6020 s5s4 0.786 0.786 0.917 0.917
6100 0.727 0.571 0.636 0.583
6110 0.000 0.000 0.00 0.000
6120s3s5s4 0.500 0.143 0.500 0.250
6210 s4s3s5 0.400 0.143 0.500 0.250

Table 3. Precision and recall for automatic classification for (a) all the fingering positions individually classified (See
Figure5), and (b) collapsed fingering positions (See Figure6).
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ABSTRACT

Voice conversion is an emergent problem in voice and
speech processing with increasing commercial interest, due
to applications such as Speech-to-Speech Translation (SST)
and personalized Text-To-Speech (TTS) systems. A Voice
Conversion system should allow the mapping of acousti-
cal features of sentences pronounced by a source speaker
to values corresponding to the voice of a target speaker, in
such a way that the processed output is perceived as a sen-
tence uttered by the target speaker. In the last two decades
the number of scientific contributions to the voice conver-
sion problem has grown considerably, and a solid overview
of the historical process as well as of the proposed tech-
niques is indispensable for those willing to contribute to
the field. The goal of this text is to provide a critical sur-
vey that combines historical presentation to technical dis-
cussion while pointing out advantages and drawbacks of
each technique, and to bring a discussion of future direc-
tions, specially referring to the development of a percep-
tual benchmark process for voice conversion systems.

1. INTRODUCTION

Speech is an inherently human communication tool. The
development of computational systems that process speech
in various ways is a very interesting and important chal-
lenge. Systems that concentrate on the intelligible content
of speech, such as speech recognition and text-to-speech
systems, have received widespread attention due to impor-
tant applications in providing accessibility for disabled in-
dividuals, as well as applications in human-computer in-
terface design and in security systems. Some systems fo-
cus mainly on the timbral quality of speech, for instance
speaker identification systems, whereas others are equally
concerned about intelligible and timbral aspects, such as
singing voice synthesis [1].

This paper concentrates on the Voice Conversion (VC)
problem as introduced by Childers et al. [2], which is the
task of converting a sentence uttered by a source speaker in
such a way that the converted result appears to be the same
sentence spoken with a different voice, i.e. that of a target
speaker. It is important to make a few distinctions between
(VC) and related problems clear.

Copyright: c©2010 A. F. Machado et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided
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Voice Transformation is a general problem that encom-
passes all tasks and methods that modify any features of a
voice signal; for instance, pitch shifting or time-stretching
a recorded sentence are examples of voice transformations.
Voice Morphing is a term borrowed from image process-
ing, and is the special case of voice transformation where
two voices are blended to form a virtual third voice, where
usually the two source voices speak or sing the same thing
synchronously. Instances of these techniques have been
made known to the general public through films such as
Farinelli (where a soprano and a countertenor voices are
blended to make up a pretended castratto voice) or Alvin
and the Chipmunks (where chipmunks voices are pitch-
shifted/formant-corrected actors voices).

A Voice Conversion system takes into account both the
timbre and the prosody of the source and target speakers.
While timbre and prosody are qualities that are easy to rec-
ognize and hard to define in general terms, in the specific
context of voice conversion timbral features are usually as-
sociated with the dynamic spectral envelope of the voice
signal, whereas prosody is related to pitch/energy contours
and rhythmic distribution of phonemes.

In order to define the transformations related to tim-
bre and prosody, VC systems usually depend on a training
phase, which may be text-dependent or text-independent.
In the first case, both source and target speakers have to
record the same sentence; after that, both recordings are
time-aligned (using for instance Dynamic Time Warping [3,
4, 5]), and acoustic features are mapped synchronously be-
tween recordings.

In the text-independent case [6], source and target speak-
ers are not required to record the exact same sentences.
Recordings are usually segmented into frames which are
mapped into a feature space and clustered into groups of
similar frames, defining artificial phonetic categories,
which may or may not coincide with usual phonemes. Acous-
tical parameters of the source sentence are then mapped
within each category, according to similarity of source and
target frames.

Another distinctive aspect of VC systems is related to
the phonetic content of the languages used in training and
in actual conversion. In voice conversion within a single
language, both text-dependent and text-independent train-
ings are feasible, and artificial phonetic classes are more
likely to reflect actual phonetic classes, since the sets of
phonemes present in source and target recordings are basi-
cally the same.

On the other hand, Crosslingual Voice Conversion [7]
assumes that source and target subjects speak different lan-
guages (A and B, respectively), and a sentence (in lan-
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guage A) from the source speaker should sound as if spo-
ken (untranslated, of course) by the target speaker. This
process involves a text-independent training strategy, and
is predicated on the assumptions that similar phonemes ex-
ist within the languages A and B, and that substitution by
similar phonemes would not instantly prohibit comprehen-
sion of the converted speech.

Some attempts at crosslingual conversion have been
made using bilingual individuals [8], since they allow text-
dependent training, by using sentences in language B spo-
ken by the source speaker. This allows the specification of
timbral transformations between similar phonemes (in lan-
guage B) from source and target, which are later applied to
phonemes in language A to obtain similar phonemes with
the timbre of the target.

1.1 Applications

There has been an increasing interest in voice conversion
systems, specially in telecommunication companies such
as CENET [9]. Some of the applications of voice conver-
sion with a commercial interest are:

• Customization of Text-To-Speech (TTS) interactive
systems [6, 10].

• Personalized virtual interpreters: this is a combina-
tion of speech recognition followed by automatic
translation and finally TTS in the destination lan-
guage using the voice of the original speaker. Some
examples are the Verbmobil project (German/En-
glish and German/Japanese real-time voice transla-
tion), and TC-STAR [11, 12, 6, 13, 14, 15, 16, 17]
which aims at providing Speech-to-Speech Transla-
tion (SST) in several languages.

• Biometric voice authentication systems: the devel-
opment of voice conversion techniques has a natu-
ral interplay with the development of voice authen-
tication systems, which are subject to attacks (in this
case using voice disguise) as any other security sys-
tem.

• Voice restoration systems: these are aimed at people
who suffered some voice-impairing pathology.

1.2 A Typical Voice Conversion System

Figure 1 presents a sketch of a typical voice conversion
system. The system receives sentences from the source
speaker (S0) and from the target speaker (T0), which are
used in a training phase to define a transformation (T ) from
source speaker features (which may be local or global) to
target speaker features. Afterwards, the system receives a
new sentence Sf from the source speaker and synthesizes
a sentence Tf , which should carry the same message as Sf

but with the vocal qualities of the target speaker.
The training phase is generally the first necessary step

for voice conversion. This is the stage where data from
both speakers is collected and processed, in order to ob-
tain a reasonable characterization of the acoustic features

Figure 1. Typical Voice Conversion System.

of each speaker, thus allowing the definition of the trans-
formation to be used in the subsequent stage. According to
figure 1, in this phase the VCS:

1. Receives input sentences S0 and T0.

2. Extracts relevant acoustic features for each speaker,
creating alternative representations Σ0 and Θ0 for
source and target speakers, respectively.

3. Processes the acoustic features Σ0 and Θ0 in order to
obtain a database of local (frame-based) and global
(sentence-based) descriptors for both speakers.

4. Defines a transformation from local and global source
descriptors to local and global target descriptors.

The transformation phase has a similar structure: input
sentences Sf are represented as Σf in an acoustical feature
space, which is then converted by the transformation de-
fined in the training phase into a representation Θf , which
is finally inverse transformed into a sentence Tf .

The alternative representation of the sentences in a space
of acoustical features (Σ and Θ in the diagram) is sup-
posed to preserve enough information so as to allow not
only plain resynthesis but also manipulation of timbral and
prosodic aspects of the signal. Since many of these are
time-varying attributes of the signal, the extraction of acous-
tic features is usually done on a frame-by-frame basis.
Acoustic descriptors are said to be local if they describe a
feature of a single frame, and global if they correspond to a
whole sentence or to a model of the speaker. Examples of
local descriptors are instantaneous pitch, energy, and spec-
tral envelope, or the artificial phonetic category to which a
particular frame belongs. Examples of global descriptors
are means and standard deviations of pitch or energy mea-
surements, or estimates of the glottal pulse and vocal tract
for each speaker.

There is no general consensus with respect to frame
size. In theory, frames smaller than 10 ms may be consid-
ered stationary due to the inertia of larynx and vocal tract
within such timespans [18]. In practice, frames of 15 ms
or 25 ms are frequently used [19, 20], and are considered
stationary in a broader sense. Some authors [7, 13] prefer
to use variable-sized frames defined by an integral number
of periods of the quasi-stationary voice signal, which are
called pitch-synchronous frames.
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The choice of frame size is also related to the choice of
sample rate, since both combined determine spectral accu-
racy. In theory, sample rates should never be smaller than
6 kHz, since the human voice has important formant fre-
quencies below 3 kHz, but in practice the sample rates of
8 kHz and 16 kHz are frequently used, and larger sample
rates are advised for high-quality voice conversion.

The reconstruction of a voice signal from processed
frames must be carefully planned, since changes in spectral
content may introduce audible artifacts due to phase dif-
ferences between adjacent frames, and may be perceived
as high-frequency noise, clicks or ringing frequencies that
did not exist in the input signal.

The following section presents a historical overview of
articles dealing with voice conversion, and also the main
techniques introduced. Section 3 presents a comparative
overview of these contributions based on perceptual tests.
Section 4 discusses some of the frequent difficulties faced
when developing VC systems, and some of the proposed
solutions. Finally, section 5 summarizes possible future
directions in VC development, as presented in the recent
literature, and discusses comparison standards for future
VC systems.

2. STATE-OF-ART TECHNIQUES IN VOICE
CONVERSION SYSTEMS

This section brings a historical overview of techniques used
in Voice Conversion, as well as a classification of the tech-
niques according to their interrelations.

2.1 Historical Overview of VC techniques

Many voice conversion (VC) techniques have been pro-
posed since the original formulation of the voice conver-
sion problem by Childers et al. [2] in 1985. Childers pro-
posed solution involved a mapping of acoustical features
from a source speaker to a target speaker. A year later,
Shikano [21] proposes to use vector quantization (VQ) tech-
niques and codebook sentences.

A few years later, in 1990, Abe [19] introduces the idea
of crosslingual voice conversion systems (CVCS) using
bilingual subjects, and in 1991, Valbret [22] rekindles the
discussion by proposing personalized Text-to-Speech sys-
tems using the idea of Dynamic Frequency Warping (DFW).

In 1995, Childers [20] introduces the idea of VC based
on the physiological model of glottal pulse and vocal tract,
and Narendranath [23] adds Artificial Neural Networks
(ANN) to the list of VC techniques.

By the end of the 90’s, Arslan [24] proposes a model
using Line Spectral Frequencies for spectral envelope rep-
resentation, which results in the STASC (Speaker Transfor-
mation Algorithm using Segmental Codebooks) algorithm,
and Stylianou [9] uses Gaussian Mixture Models (GMMs)
combined with Mel-Frequency Cepstral Coefficients
(MFCCs) as an alternative to spectral envelope represen-
tation.

In 2001, Toda [25] proposes a combined spectral repre-
sentation and voice conversion technique named

STRAIGHT (Speech Transformation and Representation us-
ing Adaptive Interpolation of weiGHTed spectrum), which
allows the manipulation of spectral, acoustical and rhyth-
mic parameters. A year later Türk [26] proposes a variation
of Arslan’s STASC algorithm using the Discrete Wavelet
Transform (DWT).

Sündermann [7] made a series of contributions since
2003. He has established the concept of text-independent
voice conversion and has been the first to propose a text-
independent crosslingual voice conversion system that did
not require bilingual subjects for training the system. He
also brought up to the field of voice conversion a tech-
nique known as Vocal Tract Length Normalization (VTLN),
which had been originally proposed in 1995 by Kamm et
al. [27] in the context of speech recognition.

More recent contributions by Rentzos [28], Ye [29] [29],
Rao [30] and Zhang [31] have focused in probabilistic tech-
niques, such as GMMs, codebook sentences, and techniques
such as ANN and DFW, among others.

In the next section, a more detailed view of voice signal
representation and transformation techniques frequently
used in voice conversion systems is given.

2.2 Classification of VC techniques

Voice conversion techniques may be classified according
to the acoustical features used in the alternative represen-
tation of the signals, as well as according to the transfor-
mation techniques employed in conversion.

2.2.1 Representation Models

There are a few parameters that are usually computed for
each frame, such as pitch (F0), energy (rms), and some
representation of frequency content, which is fundamental
both for classification and transformation of voice quality.
Besides the Fourier spectrum and its envelope, voice con-
version systems use many other representation models for
a voice signal, such as:

Voice-based models: Vocal Tract Length Normalization
(VTLN), Formant Frequencies, and Glottal Flow
models.

Mixed Voice/Signal Models: Linear Prediction Coding
(LPC), Line Spectral Frequencies (LSF), Cepstral
Coefficients, and Speech Transformation and Repre-
sentation using Adaptative Interpolation of
weiGHTed spectrum (STRAIGHT).

Signal-based models: Improved Power Spectrum Enve-
lope (IPSE), Discrete Wavelet Transform (DWT),
Harmonic plus Noise Model (HNM).

Voice-based models are based on representations of hu-
man voice-producing mechanisms, using concepts such as
glottal pulse, which is the raw signal produced by vocal
folds, and vocal tract, which comprises the oral and nasal
cavities, palate, tongue, jaw and lips, and is responsible for
many timbral voice qualities.

Mixed voice/signal models are actually signal models
that provide compact representations for the signals. Since
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they are largely used by the speech recognition commu-
nity, they acquired many helpful voice-related interpreta-
tions. For instance, parts of the cepstrum are often related
to formant regions (and thus to vocal tract contribution)
or to the fundamental frequency, and LPC coefficients and
LPC residuals can also sometimes be associated to vocal
tract and glottal pulse (viewed in a subtractive synthesis
context).

Purely signal-based models are based on general time-
domain and frequency-domain signal representations, and
are usually devoid of specific voice-related or phonetic-
related semantics. The harmonic-plus-noise model is more
specific than the others, but is specially useful in tracking
voiced portions (e.g., vowels) of the signal.

Besides the usual linear frequency spacing that is com-
mon to Fourier-based methods, many of these techniques
also allow the use of alternative frequency scales such as
BARK and MEL [32].

2.2.2 Transformation Techniques

The transformation phase in voice conversion systems is
concerned with every acoustic feature used in the repre-
sentation of the voice signal. This includes pitch shifting
and energy compensation, but also the transformation of
frequency content in such a way that both timbral aspects
and intelligibility are taken into account. Transformation
techniques are intrinsically tied to representation models.
Some of the common techniques are:

Statistical Techniques: Gaussian Mixture Models
(GMM), Hidden Markov Models (HMM), Multi-
Space Probability Distributions, Maximum Likeli-
hood Estimators (MLE), Principal Component Anal-
ysis (PCA), Unit Selection (US), Frame Selection
(FS), K-means, K-histograms.

Cognitive Techniques: Artificial Neural Networks
(ANN), Radial Basis Function Neural Networks
(RBFNN), Classification And Regression Trees
(CART), Topological Feature Mapping, and Gener-
ative Topographic Mapping.

Linear Algebra Techniques: Bilinear Models, Singular
Value Decomposition (SVD), Weighted Linear In-
terpolations (WLI) and Perceptually Weighted Lin-
ear Transformations, and Linear Regression (LRE,
LMR, MLLR).

Signal Processing Techniques: Vector Quantization (VQ)
and Codebook Sentences, Speaker Transformation
Algorithm using Segmental Codebooks (STASC),
and Frequency Warping (FW, DFW, WFW).

These techniques basically differ with respect to the way
they look at data. For instance, statistical techniques usu-
ally assume that data such as feature vectors or vocal pa-
rameters have a random component and may be reason-
ably described by means and standard deviations (Gaus-
sian model), or that they evolve over time according to
simple rules based on the recent past (Markov models).

Cognitive techniques are based on learning processes
using abstract neuronal structures, and usually depend on

a training phase (where both inputs and outputs are avail-
able). Frequently they are used for decision problems
(where only 2 possible output values are available), for in-
stance in speech recognition, where a separate network is
trained for every specific phoneme or word or sentence that
is going to be recognized.

Linear algebra techniques are based on geometrical in-
terpretations of data, for instance in finding simplified mod-
els by orthogonal projection (linear regression), in obtain-
ing convex combinations of input data (weighted interpola-
tions), or in decomposing transformations into orthogonal
components (SVD).

Signal processing techniques define transformations
based on time-domain or frequency-domain representations
of the signal. These may try to encode a signal using a li-
brary of frequently found signal segments or codewords,
or to convert timbre-related voice qualities by modifying
frequency scale representations (warping).

The above categories also frequently overlap in the case
of voice-conversion techniques. For instance, LRE and
SVD are frequently used as statistical tools, and both PCA
and vector quantization are built using linear algebra frame-
work.

In the next section some of the usual methods for evalu-
ating voice conversion systems are presented and discussed.

3. EVALUATIONS

The two fundamental questions related to the evaluation of
voice conversion addresses the ideas of similarity of the
timbre of the converted voice with respect to the target
voice, and of the quality of the result with respect to sound
artifacts or intelligibility. Several attempts have been made
in trying to answer those questions both objectively and
subjectively.

3.1 Objective Evaluation

In this setting it is required that the target sentence be also
recorded by the target speaker, thus providing a golden
standard to which the converted sentence is compared.
Both target and converted sentences are time-aligned and
then a global distance between the time-aligned sentences
is computed. This global distance can be computed by
accumulating differences between time-aligned frames, or
using other acoustical measures, such as cepstral distortion
(CD) [25], among others.

It has been observed that such objective measures are
not necessarily correlated to human perception or to human
preferences [33]. In fact, some works report large objective
distances and good subjective evaluations [26].

3.2 Subjective Evaluation

Due to the difficulty in defining good objective distance
measures which are perceptually meaningful, and also due
to the difficulty in comparing objective values using dif-
ferent metrical distances, some authors have preferred to
evaluate the performance of their systems by standard sub-
jective tests such as MOS and ABX.
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The MOS or Mean Opinion Score test is basically an
evaluation process using 5 values for grading the output,
in this case the quality of the converted voice and its sim-
ilarity to the target voice. The values are standardized as
5=excellent, 4=good, 3=fair, 2=poor, 1=bad. The project
TC-STAR [11, 12] proposes a standard perceptual test us-
ing MOS as a measure of both quality and similarity.

Tables 1 and 2 bring a collection of MOS results for
quality and similarity, respectively, of several voice conver-
sion systems, as presented by their authors. In experimen-
tal voice conversion tests, a distinction is usually made be-
tween intra-gender conversion (indicated by M →M and
F → F in the tables) and inter-gender conversion (M →
F and F →M ). The method of Rao [30] has received the
highest grading for quality of conversion, whereas Rent-
zos [28] methods have been graded higher for similarity
of timbres. Some authors [16, 3] reported that variants of
their methods were able to significantly improve quality
gradings at the expense of lower similarity gradings, prob-
ably due to excessive smoothing issues (see section 4).

Year Author Quality MOS Technique
1997 Kim [34] 3.42 VQ

1998 Kain [10] 4.20 (M →M )
2.70 (M → F ) GMM

1998 Stylianou [9] ≈ 2.70 GMM

2001 Toda [25] ≈ 4.20 (M →M )
≈ 2.70 (F → F )

GMM
DFW

2004 Pfitzinger [5] ≈ 1.50 WLI

2005 Toda [35] ≈ 3.10 (F →M )
≈ 3.30 (M → F ) MLE

2006 Nurminen [14] 2.09 GMM

2006 Duxans [6] 2.37 GMM
CART

2006 Sündermann [17] 2.7 (Txt-Dependent)
2.6 (Txt-Independent) US

2006 Rao [30] 4.56 (M → F )
4.71 (F →M ) WLI

2006 Shuang [15] 4.09 (UK English)
3.68 (CN Mandarin) FW

2007 Dutoit [3] 2.56 FS

2007 Erro [13]

3.27 (M →M )
3.00 (M → F )
3.60 (F →M )
4.20 (F → F )

WFW

2007 Fujii [4] 3.03 (F → F )
2.75 (M → F ) US

2008 Shuang [16] 3.48 FW

2008 Zhang [36]

3.00 (M →M )
2.70 (M → F )
3.10 (F →M )
2.80 (F → F )

VQ

2008 Desai [37] ≈ 2.70 ANN

2009 Zhang [31] 2.70 (F →M )
2.50 (F → F ) VQ

Table 1. Experimental Results for Quality MOS in Voice
Conversion systems.

These tests have all been made using source and tar-
get speakers of the same language. Some MOS results for
crosslingual conversion between English and Spanish have
been reported by Duxans [6] in 2006. In his study, MOS
gradings for quality were 2.37 for Spanish-to-Spanish con-
version and 2.33 for Spanish-to-English conversion, and

Year Author Similarity MOS Technique
2003 Rentzos [28] 3.65 HMM

2006 Nurminen [14]

3.10 (F → F )
3.05 (F →M )
2.20 (M → F )
1.77 (M →M )

GMM

2006 Duxans [6] 3.18 GMM
CART

2006 Rao [30] 2.92 (M → F )
3.23 (F →M ) WLI

2006 Shuang [15] 1.87 (UK English)
2.77 (CN Mandarin) FW

2007 Dutoit [3] 2.77 FS

2007 Erro [13]

2.93 (M →M )
3.27 (M → F )
2.53 (F →M )
3.00 (F → F )

WFW

2008 Shuang [16] 2.20 FW

2008 Zhang [36]

2.20 (M →M )
2.30 (M → F )
2.50 (F →M )
2.10 (F → F )

VQ

Table 2. Experimental Results for Similarity MOS in Voice
Conversion systems.

similarity MOS gradings were 3.18 (Spanish-to-Spanish)
and 2.79 (Spanish-to-English).

The ABX test is a two-alternative test that is often used
in comparing similarity between converted and target sen-
tences. In this test, experimental subjects have to decide
whether a given sentence X is closer in vocal quality to
one of a pair of sentences A and B, where one of them is
the source and the other is the target, not necessarily in that
order. Success is measured by the percentage of answers
of the type X ≈ T where T ∈ {A, B} is the target.

Table 3 shows a set of ABX results of several voice
conversion systems, as reported by their authors. Among
these, a method by Fujii [4] stands out with extremely high
scores. The main problem with interpreting ABX scores is
the fact that subjects are not allowed to answer that the sen-
tence X is not similar to neither A nor B, if that is the case.
It can be inferred that a method that is successful accord-
ing to an ABX test might in fact have a very low similarity-
MOS value, as long as the similarity of the X sentences to
their respective source speakers were even lower.

Another use of the ABX test is the comparison of two
different techniques applied to the same problem. In this
setting X is the target sentence, and A and B are the con-
verted sentences using both techniques. Subjects are re-
quired to answer which of the sentences is closer to the
target, but here the subject is allowed to answer “neither”.
Success rates are computed for each technique as the per-
centage of sentences for which that technique has been
chosen as closer to the target.

Among authors using this type of test are Pozo [42] and
Desai [37]. Pozo compared his Joint Estimation Analysis-
Synthesis (JEAS) method to the Pitch-Synchronous Har-
monic Model (PSHM), obtaining the following success
rates: 41% (M → M ), 37% (M → F ), 33% (F → M )
and 36.5% (F → F ). Desai [37] compared his method us-
ing ANN to traditional GMM methods, obtaining an ABX
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Year Author ABX Index Technique
1998 Kain [10] 52.5% (M →M )

97.5% (M → F ) GMM

1998 Stylianou [9] 97% GMM

1999 Arslan [24] 78% (M →M )
100% (M → F ) STASC

2001 Toda [25] ≈ 77% (M →M )
≈ 83% (F → F )

GMM
DFW

2004 Orphanidou [38]

79.5% (M →M )
86.3% (M → F )
88.6% (F →M )
77.3% (F → F )

RBFNN

2005 Toda [35] ≈ 84% (M ↔ F ) MLE
2005 Zhang [39] 87.5% GMM
2006 Ye e Young [29] 91.8% GMM

2007 Fujii [4]

100% (M →M )
100% (M → F )
100% (F →M )
98.0% (F → F )

US

2007 Hanzlicek [40] 87.2% (F →M )
70.8% (F → F ) GMM

2008 Yue [41] 92.0%
GMM
HMM

2008 Zhang [36]

≈ 62% (M →M )
≈ 80.5% (M → F )
≈ 78.5% (F →M )
≈ 55% (F → F )

VQ

2009 Zhang [31] 68% (M → F )
84% (F → F ) VQ

Table 3. Experimental Results for ABX indices in Voice
Conversion systems.

success rate for similarity of 65.0%. Likewise, Türk [26]
compared his Subband conversion to Full-band methods,
reporting an ABX index of 92.9% for similarity.

Comparing empirical results such as those reported in
this section without considering the details of the experi-
mental settings makes little (if any) sense. There are many
concurrent factors that can significantly influence the out-
come of an experiment, such as the number of sentences,
number of subjects, subject listening sensitivity, original
audio quality, unambiguity of the questions, among many
others.

For instance, experimental settings must be carefully
defined and questions must be carefully explained in or-
der to obtain consistent experimental data. The description
of the experiment should be detailed enough so as to en-
able independent replication of experimental results. Also,
statistical analysis should be taken seriously, including hy-
pothesis testing and measured significance levels, in order
to derive statistically significant conclusions.

Another related difficulty is the lack of a standard data-
base for voice conversion. For instance, Zhang [39] uses
the MSRA Mandarin Database, Toda [35] uses the
MOCHA Database, Ye e Young [29] uses the VOICES
Database, whereas Türk [26] and Guido [43] use the
TIMIT Database, which is probably the most popular
choice.

These observations reinforce the need for some kind
of Benchmark for subjective experimental evaluations of
voice conversion systems, enabling researchers to set up
similar experiments and to obtain comparable experimen-

tal data. This would benefit the community by helping to
correctly identify advantages and limitations of each tech-
nique, which are the subject of the next section.

4. LIMITATIONS AND CHALLENGES

There are many open problems in voice conversion, which
have been identified in several previous articles:

Phonetic Issues: in crosslingual voice conversion it is
well-known that many phonemes in the source language
may not exist in the target language. Bilingual subjects
have been used [8] in order to derive phonetic transforma-
tions that allow similar but not identical phonemes to be
converted between languages. Whether such transforma-
tions might be successfully used in other (not bilingual)
subjects is an open question.

Prosody Issues: there are many global acoustic aspects
that are decisive in order to obtain good conversions, such
as average pitch and standard pitch deviation, average and
standard deviation of energy, statistics related to the rhyth-
mic flow of speech, and so on. Some (but not all) of these
issues are discussed in Helander [44] and Hanzlicek [45].

Quality Issues: some of the problems that are perceived
as a lack of quality are hissing noise, ringing tones, clicks
and also timbral aspects that may be described as a syn-
thetic or unnatural voice. For instance, large pitch shifts
without formant correction may degrade quality (and even
intelligibility) of the converted voice. These issues have
been reported many times [9, 10, 4] and are easily detected
in subjective tests.

Similarity Issues: these are related to the timbral quality
and vocal identity, mainly correlated to phonetic aspects of
speech, although they may easily be confused with qual-
ity and prosody issues in experimental tests. In theory,
a purely synthetic voice might be perceived as unnatural
but similar in timbre to a target voice. Intergender voice
conversion is particularly susceptible to this type of prob-
lem [10, 23]

Evaluation Issues: this has been discussed in the previous
section. Objective measures such as spectral distance or
cepstral distortion may be uncorrelated to human percep-
tual measures [33, 26], whereas subjective measures such
as MOS or ABX may be useful if some sort of experimental
benchmark is agreed upon.

Excessive Smoothing Issues: this is a technical issue
caused by interpolation methods in the transformation
phase, which degrade the spectrum by eliminating details
and reducing the similarity of target and converted voi-
ces [35, 46, 47].

Overfitting Issues: this is a counterpart of the previous
issue, and is caused by using excessive data in training
and obtaining an excessively fine-grained transformation
which might produce discontinuities between adjacent
frames [47].
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5. CONCLUSION

This text has presented the voice conversion problem and
discussed some of its application contexts, such as TTS
customization [10, 6] and virtual interpreters [11, 12]. Ma-
jor contributions in the recent literature, as well as compar-
ative results, have also been presented and discussed.

High-level representation models for voice signals are a
critical aspect of any voice conversion system, since they
define and also constrain the available transformation tech-
niques. Aspects such as timbre, prosody and intelligibility
should all be taken into account for better results in terms
of naturalness and fluency of virtual interpreters and of
customized TTS systems [10, 6]. The challenge of crosslin-
gual voice conversion has brought interest to studies of
phonetic similarities and differences across languages and
automatic phonetic transformation, specially resorting to
bilingual individuals [19, 8].

The choice of training model for a voice conversion sys-
tem usually depend on specific requirements (for instance,
attempts at breaking a voice security system may require
text-dependent training in order to minimize conversion er-
rors) or on availability of data (for instance, if crosslingual
conversion between non-bilingual subjects is desired, then
text-independent training is the only available option).

Transformation techniques should be considered not
only in relation to compatible representation models, but
also with respect to the prosodic and timbral aspects that
will be converted, since they define how a voice conversion
system views and manipulates such high-level representa-
tion data.

Among the open research problems, the definition of a
benchmark for the subjective comparison of voice conver-
sion systems for quality and similarity assessment seems to
be one the most urgent issues. Some progress has already
been made in this respect through the TC-STAR project [11,
12], but a more thorough specification of reproducible ex-
periments is desirable.
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[11] D. Sündermann, H. Höge, A. Bonafonte, H. Ney, and
J. Hirschberg, “TC-STAR: Cross-language voice con-
version revisited,” TC-STAR WSST, pp. 231–236, 2006.
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ABSTRACT

Automatic composition techniques are important in sense
of upgrading musical applications for amateur musicians
such as composition support systems. In this paper, we
present an algorithm that can automatically generate songs
from Japanese lyrics. The algorithm is designed by con-
sidering composition as an optimal-solution search prob-
lem under constraints given by the prosody of the lyrics.
To verify the algorithm, we launched Orpheus which com-
poses with the visitor’s lyrics on the web-site, and 56,000
songs were produced within a year. Evaluation results on
the generated songs are also reported, indicating that Or-
pheus can help users to compose their own original Japanese
songs.

1. INTRODUCTION

Recently, there has been wide interest in automatic com-
position algorithms which can help amateur musicians to
compose original tunes. Although considerable amount of
research has been done on automatic composition[1][2][3],
much less has been done on composing songs from the
lyrics, and the question of what information in the lyrics
should be exploited for generating songs remains. Syntac-
tic information of the lyrics are used in some researches[4]
to compose a song from the lyrics. Musicologists argue
that there are considerable correlations between music and
prosody. In case of composing songs, prosody plays a
more important role. However, no system that uses prosody
has yet been attempted.

2. MELODY COMPOSITION ALGORITHM
EXPLOITING PROSODY OF JAPANESE LYRICS

Our objective is to develop a method to generate a melody
automatically which satisfies the constraints given by the
prosody of Japanese lyrics. We define melody composi-
tion here as generating a melody given the lyrics, patterns
of rhythms (by “rhythm tree” which is described later in
this section), and harmony sequence with specifications of
tonality and scale.

Copyright: c©2010 Satoru Fukayama et al. This is

an open-access article distributed under the terms of the
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Figure 1. Pitch contuor of “ka’mi” and “kami”’: the
pitch accent of the Japanese word is lexically contrastive
in ka’mi(A) ’god’ vs. kami’(B) ’paper’.

The composition algorithm consists of two parts. The
former part is for designing the rhythm for the melody by
considering the uniformity of the rhythm in the song. The
latter is for designing the pitch of each note with proba-
bilistic inference.

We firstly review the properties of Japanese prosody and
argue the importance of considering prosodic information
when composing Japanese songs. Secondly, we describe
a method to generate rhythm of the melody. Then, we
discuss how to obtain a proper pitch given the rhythm,
harmony sequence, and the lyrics. Finally, we introduce
our automatic song composition system Orpheus, which is
based on our proposed algorithm and used in the evalua-
tions.

2.1 Japanese Prosody and its Role in Composition

Japanese is said to “have a fixed shape consisting of a sharp
decline around the accented syllable, a decline that is usu-
ally analysed as a drop from a H 1 tone to a L 2 ”[5]. Fur-
thermore, “the place of the accent is lexically contrastive,
as in ka’mi ‘god’ vs. kami’ ‘paper”’[5]. (Fig. 1)

A melody attached to the lyrics cause an effect similar
to the accent. Therefore we can assume that the prosody of
Japanese lyrics imposes constraits on pitch motions of the
melody.

2.2 Composition of Rhythm

In order to design a rhythm on the given lyrics, two prob-
lems have to be considered. The first problem is the alloca-
tion of lyrics on the melody, and the other problem is how
to handle the unity of rhythm in the same song.

1 H: high
2 L: low
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Figure 2. By using the “rhythm tree”(above), rhythm cor-
responding to the number of syllables are generated with
consideration of keeping the unity of rhythm feature in the
same song.

2.2.1 Allocation of Lyrics on Melody

In order to solve the first problem, we assumed that melody
consists of segments and the lyrics should be divided into
these segments. For instance, 2 bars can be handled as a
segment for a song with a length of 8 bars. This is because
the lyrics input by the user are not always “formatted” as
poem like the usual lyrics are.

Furthermore, in most classical Japanese songs, one syl-
lable (mora) corresponds to one note in a melody. Thus
the number of notes in each segment is determined by al-
locating the syllables. When we consider the constraits on
dividing the lyrics, the following 3 criteria can be assumed:

• A simillar number of syllables in each segments is
prefered.

• The border of the segments should not be crossed
over within a word.

• Too short lyrics should be iterated prior to allocation.

Under these constraits, we can solve the syllable allocation
problem by using dynamic programming.

2.2.2 Keeping Unity of Rhythm in Melody

Even though the numbers of notes in each of the segments
are decided, there still exist a large degree of freedom in
rhythm. One possible way to put constraits on rhythm is to
arrange that the generated rhythm belogs to a same “fam-
ily” of rhythm. It is reasonable to assume that the “rhythm
family” does not change in a relatively short song.

Here the second problem, that is, the requirement to
keep the unity of rhythm in melody arises. To cope with
this problem, we introduce a “rhythm tree” that is one rhythm
has a simillar feature when one can be derived by uniting
or dividing the note just one on the another. In practice, a
tree structured templates of rhythm as shown in Fig. 2 are
prepared by hand beforhand. Since the number of sylla-
bles in each segment corresponds to the number of notes,
this tree structured template determine the rhythm in each
segment.(Fig. 2)

2.3 Composition of Pitches

2.3.1 Composition with Probabilistic Inference

In this section, we discuss on how to obtain a pitch se-
quence. Although there are some discussions on the defi-
nition of melody, still it is likely to say there are certain ten-
dency in melody. For example, in case of song, pitches of
the melody would be constrained by the usual voice range
of the singer. The prosody of the lyrics also impose con-
straints on pitch motions of the melody. As we reviewed at
section 2.1, pitch motions of Japanese songs largely follow
the up-ward and down-ward motions based on the prosody
of the lyrics. Furthermore, chord progression, bass line of
the accompaniment part and durations of each notes im-
pose constraints on occurence and transition of pitches on
the basis of écuriture of composition, such as harmony and
counterpoint. Althogh exploiting these écuritures are not
always indispensable to discuss how can we generate a
cutting edge contemporary music automatically, still we
can assume that these écuritures would secure the quality
of generated songs with our algorithm for the purpose of
composition support system for amateur musicians.

If a certain melody were obtained, the melody would
satisfy these constraits as we disucussed above. Conversely,
we can compose a song by finding the melody which opti-
mally meets the condition. Let the pitch sequence as a se-
quence of MIDI note number be XN

1 = x1x2 · · ·xN , and
the sequence of conditions on pitch sequence be Y N

1 =
y1y2 · · · yN , where each yn involves chord label with an-
notations of scale and tonality(cn), duration of the note
(dn), MIDI note number of the accompaniment bass (bn),
and pitch accent information, i.e. yn = (cn, dn, bn, an).
Let us also denote P

(
XN

1 |Y N
1

)
as conditional probability

for XN
1 given Y N

1 which represent the tendency of pitch
sequences XN

1 under condition Y N
1 . The composition of

pitch for melody can be considered as finding an optimal
sequence XN

1
∗ given Y N

1 which maximize P
(
XN

1 |Y N
1

)
:

XN
1

∗
= argmax

XN
1

P
(
XN

1 |CN
1

)
. (1)

By assuming

P
(
xn|Xn−1

1 , Y N
1

)
' P

(
xn|xn−1, Y

N
1

)
, (2)

equation (1) will be as follows:

XN
1

∗
= argmax

XN
1

N∏
n=1

P
(
xn|xn−1, Y

N
1

)
, (3)

where P
(
x1|x0, Y

N
1

)
= P

(
x1|Y N

1

)
.

Since there are 128N possible sequence of pitches, it is
computationally unfeasible to search the optimal sequence
by calculating probabilities for all of the possible sequences.
However, we can obtain the optimal pitch sequence in or-
der O (N) using dynamic programming[6].

2.4 Implementation of the Composition System

Orpheus is an automatic composition system that we im-
plemented using proposed algorithm for melody compo-
sition. This system computes melody from the lyrics in-
put with choices of chord progressions, rhythm pattern,
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Figure 3. Flow chart of processes: Orpheus generates songs with the lyrics input and the choices of patterns.

and accompaniment instruments. Flow chart of the pro-
cesses is shown in Fig. 3. We used Galatea-Talk[7] text-to-
speech engine to analyze the prosody of Japanese lyrics,
and HMM singing voice synthesizer[8] to generate the vo-
cal part. We also implemented the system as a web-based
application 3 .

3. EVALUATION RESULTS

We did two experiments to evaluate the algorithm. Firstly,
we asked a classical music composer to evaluate generated
songs in five-grade evaluation. The results on 59 generated
songs are shown in Fig. 5 These results indicate that 83.1%
of the generated pieces satisfactorily follow classical music
theory, and 91.6% of the songs were voted as attractive
aside from musical theory. Example of generated song is
shown in Fig. 4.

Secondly, we uploaded our system to get comments from
a large number of users on the internet. During a year of
operation, about 56,000 songs were generated by the users
and 1378 people answered the questions about Orpheus
and the generated songs. Summarization of answers in
five-grade evaluation is shown in Fig. 6 Judging from the
results, about 70.8% commented that the generated songs
are attractive, and 84.9% of the users had fun trying this
system.

4. DISCUSSIONS

The evaluations results by a composer indicate that most
of the generated songs are able to be called “melody” at
least in theory. Songs that are evaluated “very poor” had
irregular usages of non-chord tones which rule cannot be
described with the relationship between the current note
and the previous note.

Evaluation by the users on the internet suggest that our
composition system is an enjoyable solution for amateur

3 http://orpheus.hil.t.u-tokyo.ac.jp

Figure 5. Evaluation results on 59 generated songs by a
classical music composer. 83.1% of the generated pieces
satisfactorily follow classical music theory, and 91.6% of
the songs were voted as attractive aside from musical the-
ory.

Figure 6. Evaluation results on generated songs and the
Orpheus by 1378 users. 70.8% commented that the gen-
erated songs are attractive, and 84.9% of the users had fun
trying this system.
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Figure 4. Example of generated song: this song was generated with the lyrics input of weather forecast. The red lines
indicates the pitch accents of the Japanese lyrics. The pitch motions of the melody follows the pitch accent of the lyrics.

to compose their original songs. One reason for the result
could be the directability on generating songs. Users can
generate various melody by typing arbitrary lyrics since
the generated song will vary based on the prosody of the
lyrics. This may enabled the user not only generating a
song automatically but also to generate their original songs
with their original lyrics.

5. CONCLUSION

This research attempted to design an algorithm to compose
a song automatically from the lyrics using prosody infor-
mation, which enables users to make their original songs
easily. The results indicate that our method and imple-
mented system Orpheus is an enjoyable solution for am-
ateur musicians.

However, it should be noted that our algorithm can be
applied to lyrics written in “pitch accent” languages only.
As a next step, we plan to extend the composition algo-
rithm to handle “stress accent” languages, such as English,
by putting constraints on metric structure of the melody.

6. REFERENCES

[1] L. Hiller and L. Isaacson, Experimental Music.
McGraw-Hill, 1959.

[2] I. Xenakis, Formalized Music. Revised edition. Pen-
dragon Press, 1992.

[3] D. Cope, Computers and Musical Style. A-R Editions,
1991.

[4] K. H. et al., “Automatic song composer from phrase
structure of lyrics,” in Proc. of 57th Information Pro-
cessing Society of Japan Annual Convention, pp. 11–
12, 1998.

[5] M. E. Beckman and J. B. Pierrehumbert, “Intonational
structure in japanese and english,” in Phonology Year-
book 3, pp. 255–309, 1986.

[6] R. E. Bellman, Dynamic Programing. Princeton Uni-
versity Press, 1957.

[7] S. K. et al., “Galatea: Open-source software for devel-
oping anthropomorphic spoken dialog agents,” in Life-
Like Characters, pp. 187–212, Springer-Verlag, 2004.

[8] S. S. et al., “A singing voice synthesis system based on
hidden marcov model,” in Transactions of Information
Processing Society of Japan, pp. 719–727, 2004.

302



MIMICRY OF TONE PRODUCTION: RESULTS FROM A PILOT
EXPERIMENT

Tommaso Bianco
IRCAM, CNRS - UMR STMS, Paris
tommaso.bianco@ircam.fr

Marcelo M. Wanderley
Idmil, McGill University, Montreal

marcelo.wanderley@mcgill.ca

Frederic Bevilacqua
IRCAM, CNRS - UMR STMS, Paris

frederic.bevilacqua@ircam.fr

ABSTRACT

In this paper we present the description and the first results
of a pilot experiment in which participants were requested
to mimic the production of sonic elements trough different
control modalities. Results show different degrees of de-
pendence of the control temporal profiles with the dynamic
level and temporal ordering of the stimuli. The protocol
and methodology here advanced may turn useful for ame-
liorating existing mapping strategies for gesture based in-
teractive media, with particular emphasis to adaptive con-
trol of physics-based models for sound synthesis.

1. INTRODUCTION

The decoupling between control input and acoustical out-
put in computer music instruments opened a problematic
that still remains central for research in the musical do-
main: the combination between ease of use and effective-
ness, two fundamental components of system’s usability
[1]. If we consider the case of control for virtual acoustical
instruments based on physical modeling, this combination
can become even more baffling. The user may indeed be
compelled to control an instrument without the interaction
feedback, and with a physical interface that bases on a con-
trol modality far different from the real case.

The connection between user’s intention and sonic out-
come has been previously tackled at different levels: at a
physical and physiological level for the choice of the ma-
chine transducers [2] [3], at gestural level for the definition
of tasks and evaluation of performance [4] or evaluation
of similarities [5], and at a cognitive level, for the under-
standing of mental coding of musical experience though
motor-mimetic imagery [6] [7]. If aiming at developing in-
telligent machines for music production, it is evident that
these layers must be considered in conjunction. To achieve
maximal effectiveness, the mapping model should there-
fore adapt to the idiosyncrasies of the physical interface
and personal abilities of the user. In a similar situation, the
natural skills developed through everyday activity could
guarantee the user an initial level of expertise, even to peo-
ple who usually don’t have the opportunity to make music
[8].

Copyright: c©2010 Tommaso Bianco et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License, which per-
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original author and source are credited.

In this direction we conducted a pilot experiment where
the user had to mimic the production of simple musical el-
ements. A similar concept appeared in previous literature,
under the terms of motor-mimetic sketching, sound-tracing
[6], sound “gestureification” [9].

Analogously to those experiments, here as well subjects
were demanded to transfer a mental imagery of a perceived
acoustical event onto human movement. However, the con-
currency of the following aspects tells apart the present ac-
count from previous experiments:

• the user’s intentions were to be communicated trough
a specific task and control modality 1

• the mimicry activity was performed trough a con-
trol modality different from the one that produced
the sound stimulus (as happens on the contrary for
air playing activity [6])

• the user had to rely only on primary feedback [2],
i.e. visual, tactile and proprioceptive cues

• the musical stimulus was limited to simple tones,
and the user was explicitly asked to address only
to sound intensity; this reduction was motivated by
the attempt to limit influences of cognitive and cul-
tural aspects raised by melodic and rhythmic devel-
opments.

• stimuli perception and control action were tasks se-
quentially separated

2. METHOD

This experience is intended to explore gestural control for
sound production. In particular, we focus on position and
velocity control for different sound dynamics, and on ges-
ture coarticulation, a term that defines the “process whereby
the properties of a segment are altered due to the influences
exerted on it by neighboring segments” [11], referred to
with the term articulation in the musical domain [12]. In
outline, a group of participants was asked to listen to trum-
pet tones and to mimic their production acting with a de-
vice. In the following we describe in detail the components
and protocol of the experiment.

1 for control modality we refer to the modality of physical interaction
that allows the user to communicate her intentions through a device as in
[10]
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Figure 1. Score notation and loudness profiles computed
through Zwicker method [13], for isolated (up) and con-
secutive (down) notes

2.1 Stimuli

The acoustic stimuli presented to the subjects consisted of
a set of tones produced by a real trumpet performer and
recorded during a previous experiment [14]. The audio was
presented to the subjects through a headphones set, and the
rate of audio amplification was adjusted for each subject in
order to assure a neat but comfortable listening. Score no-
tation and loudness profiles of tones are presented in Fig. 1
Isolated notes were presented in triplets of increasing or
decreasing loudness, forming a listening stream of ca 2.5s,
whereas couple of articulated notes were presented singu-
larly for each condition, with a maximal duration of ca
1.2s.

2.2 Participants

Five subjects took part to the experiment: four males and
one female, aged between 25 and 30 years. All subjects
were student members or collaborators of the Idmil lab-
oratory, thus involved in research in the musical domain.
Part of them were also trained musicians in piano, trumpet
and violin performance.

2.3 Material and apparatus

The subjects were seated on a chair in front of a table, and
were asked to move a marker leaning on the table by per-
forming planar movement along a line. A sketch of the
task setup is shown in Fig. 2 The marker was a sensor
of the Polhemus Liberty interface, which tracked its po-
sition in time at 120 Hz by means of a custom made driver
software developed at Idmil laboratory. The marker was
cloth-covered in order to reduce the mechanical resistance
of friction of the contact with the table surface. The par-
ticipants were left free to position their arm and body with
respect to the material setup, with the only precaution of

marker
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Figure 2. Sketch of the material and configuration setup
for the experiment. At top, the displacement over time of
the marker, for the mimicry of production of two consecu-
tive tones trough control in velocity

finding the most comfortable solution in order to avoid ob-
struction or limitation of the movement during the perfor-
mance of the tasks.

2.4 Protocol

The protocol consisted of two stages, each of which in-
volved a different control modality. During the first stage,
participants were presented with the series of notes and
were asked to mimic the production of the sounds in loud-
ness by relating instantaneous position of the marker with
instantaneous value of loudness. Before performing the
trials, they were instructed to choose along the line on the
table two extreme positions distant 50cm, representatives
of zero loudness and of maximal loudness perceived. Af-
ter listening to each stimulus, subjects had to move the
marker from the zero loudness point, across the loudness
scale, and back to the origin point, so as to reproduce the
loudness profile of the sounds. In the second stage, sub-
jects were asked to relate loudness of sounds with instan-
taneous velocity of the marker. In this configuration, still
position of the marker represented the silence, while an ar-
bitrary maximal linear velocity the maximal loudness per-
ceived. At the beginning of each experiment, the testers
were let to familiarize with the task in order to determine
the most comfortable movement amplitudes and speeds.
Participants were explicitly told to reproduce the loudness
profile as accurately as possible, bot in amplitude and tem-
poral variations, and to discard all other auditory attributes.
When presented with couples of joined notes, control though
velocity was explicitly asked to be performed on the same
movement direction, whereas direction was left arbitrary
for the tasks with isolated notes.
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and maxima in position profiles (left) and velocity profiles
(right): mean (solid lines) and standard deviations (dashed
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control profiles: : mean (solid lines) and standard devia-
tions (dashed line)

2.5 Analysis

Loudness profiles of the acoustic stimuli were computed
with Zwicker method, which makes use of several psycho-
acoustical principles in order to give an estimate of the av-
erage person’s impression of the sound intensity for temporal-
ly variable sounds [13]. The profiles computed are dis-
played in Fig. 1. It is worth pointing out that the values
of loudness in sones are dependent on an estimation of the
real sound pressure level presented to the subjects. These
were indeed supposed to have been exposed to an aver-
age sound pressure level of 69 db, which lies in the decibel
scale as the average comfortable volume for a quiet labora-
tory setting. The role of possible error in the normalization
was investigated and we found that even an error of 20dB
would have caused only minor relative difference in our
present study.

Each movement trial was manually trimmed from the
recordings and examined for amplitude and temporal vari-
ations. In a second step, each segment has been resized
and rendered in a functional form by means of the FDA
Matlab toolbox. Functional conversion with smoothing
penalty allowed to represent each movement profile as a
continuous and derivable function, and to control smooth-
ness degree of higher order derivatives (which presented ir-
regular spikes due to errors in the sensing and streaming of
the capturing system). Control with the generalized cross-
validation criterion assured a good compromise between
the smoothing effect and the fit to the original curves [15].
In order to have more representative curves for each con-

dition, trial records for the same condition (up to 5) were
subsequently aligned by means of landmarks registration.
Roughly, this process allows to align features by estimat-
ing a strictly increasing nonlinear transformation of time
that takes all the times of a given feature into a common
value [15].

Indicative measures of shape similarity between nor-
malized curves have been computed by means of the mean
square error method described in Ch.8.5 of [15]. This method
assured the consideration of an eventual temporal defor-
mation introduced by the registration process. These mea-
sures have been computed for the single isolated notes, the
single notes embedded in sequence of two notes, and for
the entire sequence comprising two notes.

3. RESULTS

The subjects revealed a systematic behavior in the dura-
tion and maximal amplitude of control profiles. Fig. 3
displays the maximum values of stimuli loudness versus
maximum values of control profiles for the three dynam-
ics conditions. The plot evidences the increase in move-
ment amplitude and peak velocity with loudness, as ex-
plicitly requested in the task. For both control modalities,
amplitudes generally scale linearly with the logarithm of
loudness in sones (a measure unit directly proportional to
loudness). The light deviation from a linear trend in the
semilog plot for some subjects correlates with singular val-
ues in standard deviation or in movement durations. In the
case of control by position, higher amplitude for subject 5
in the louder note goes with a greater duration if suppos-
ing that he maintained the same amount in velocity. In the
case of control by velocity, subjects exhibiting light diver-
gence from linear trend present higher standard deviation
or erroneous duration estimation (Fig. 4).

Standard deviation revealed higher for control through
velocity, indicating a possible higher difficulty in deliver-
ing consistency among trials.

The mean durations of movements together with the
ground truth of stimuli events durations for each condition
is shown in Fig. 4. Globally the participants tended to over-
estimate the duration of the event. Comparison of the two
plots reveals that this overestimation is dominant for po-
sition control. For louder tones, the two modalities reveal
a divergent behavior: an increase in duration for control
though position and a decrease for control though velocity.

Temporal profiles of stimuli loudness, position, and ve-
locity control for a representative participant are reported
in Fig. 5. In plots on second and third columns, the three
superposed curves resume the mean of five registered tri-
als for each dynamic condition. Position curves and deriva-
tives conform previous results of human point to point reach-
ing movements, characterized by amplitude invariant sym-
metric bell-shaped velocity [16]. On the contrary, am-
plitude invariance does not behold for velocity profiles,
whose shape varies to a greater extent between cases. All
participants except one manifested a behavior similar to
that in figure, transiting from triangular or trapezoidal shape
into a bell shape when movement peak velocity exceeds
60cm/s. Subject 3, who was the only participant without
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Figure 5. Extract of control profiles for one subject in iso-
lated tones task, for pp, mf, and ff dynamics
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Figure 6. Extract of control profiles for two subjects
in consecutive tones task for non legato (solid), legato
(dashed), and staccato (dash-dot) articulation. The up row
reports profiles in control trough position, the down row
profiles in control trough velocity. In first column stimuli
loudness, equal for position and velocity tasks

professional musical training, singularly presented similar
profiles at all movement amplitudes.

Control profiles for coarticulated notes for two subjects
are displayed in Fig 6. The curves reveal distinct method
between subjects for the performance of the task, yet pre-
serving the relation between conditions visible in the stim-
uli profiles. Articulatory degree between the tones reflects
in the transient parts between the two strokes, with the level
of descend correctly marking the distinction between the
three coarticulation strategies. Subject 2 manifested the
extreme behavior for position control, performing no de-
scend for the legato condition. Subject 4, who was mu-
sically trained in violin performance, showed the closest
match in profile shapes between the two control modali-
ties.

Indicative values of similarity between curves for each
condition are given in Fig. 7, in which higher values rep-
resent higher discrepancy between stimuli profile and ges-
ture profile. Results show that control trough position in
general performs better then control with velocity in sim-
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Figure 7. Values of joint amplitude and phase variability
as computed by formulas 8.3 and 8.5 in [15]. Higher val-
ues represent higher discrepancy between stimulus profile
and gesture profile. Values are computed for single note in
isolated pp, mf, and ff condition, single note (average) em-
bedded in consecutive nl, l, and s condition, and on entire
record for consecutive nl, l, and s condition

ulating the profile of the stimulus. Moreover, performance
required in the task decreases for consecutive notes, both
when considering the entire couple segment and when the
single embedded note (segmented at minima).

4. DISCUSSION

The goal of the present study was to investigate the role of
musical dynamics and articulation on human motor control
for the mimicry of sound production. Two control modali-
ties were examined, position and velocity.

Both modalities revealed to overestimate the duration of
the stimuli, and to scale almost linearly with the logarithm
of the loudness perceived. We advance the hypothesis that
this scaling could be the outcome of two causes. On a per-
formance level, faster and wider movements could have
been automatically reduced by the participant because of
arm biomechanical limitations. On a cognitive level, sound
loudness could have been mentally associated to move-
ment kinematics - as explicitly demanded in the task - in
conjunction with movement effort. Effort on joint torques
and muscular activation, which has been shown to scale in
amplitude and duration with the movement speed [17] [18]
[19], may have participated in reducing the performance of
the tasks for wider/faster movements.

The two modalities deviated to some extent in variabil-
ity. If we consider variability in-between trials as an in-
dicator of difficulty, Fig. 3 and Fig. 4 suggest that con-
trol trough velocity could be a harder task than control
by position. A substantial reliance on visual over kines-
thetic feedback for position control could be the cause for
a more consistence performance. Support of this hypoth-
esis is given by the fact that participants with developed
acuteness for arm velocity profiles (typical of violin play-
ers, alike subject 4) delivered comparable results between
the two modalities.

The two control modalities differentiate also in terms
of profile shape (Fig. 5). Position control manifested over
all dynamics conditions a bell-shaped velocity profile typ-
ical of point to point movements, whose velocity profile
has been largely proved to be invariant to duration, dis-
tance, and peak velocity [17] [21] [16] [22]. Control in
velocity, on the contrary, did not show the same invariant
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property. By comparing our profiles (Fig. 5) with theo-
retical accounts that addressed the modeling of movement
in terms of effort minimization [23] [24], we can advance
the hypothesis that a change in the motor control strategy
adopted in the mimicry took place along with the change
in stimuli dynamics.

To our knowledge, no study on human pointing move-
ments proposed requirements similar to our experiment.
Literature on pointing movement tasks usually refers to
Fitt’s law for a quantitative description between movement
time and amplitude. However, Fitt’s model grounds on the
condition of self-paced movements, that is movements in
which the execution time behaves as a by-product of the
speed-accuracy trade off - participants are required to move
as fast and as accurate as possible. This model however
has proved to fail in describing tasks where subjects are
required to move at a specified time [20]. In this experi-
ment the movement task is based both on temporal and on
spatial constraints. Participants had to assure maximal ac-
curacy both in the end point positions (intensity levels) and
in the movement timing (duration and temporal profile). In
the musical domain, similar conditions form the requisites
for the performance of the violin, for which bowing tech-
niques have been investigated in terms of motor control
strategies in [25].

The comparison between profiles for isolated and con-
secutive notes revealed that the sequential ordering of ges-
ture units do not resolve in simple temporal sequencing,
but entails a structural change to its constituents which af-
fects the all sequence. Velocity profiles for velocity based
control, indeed, converted to bell-shaped in all participants
even for peak velocities under 60 cm/s, contrary to the case
of isolated notes, thus revealing that in terms of motor con-
trol, a different strategy may be in use.

Whether the mimicry of two notes should be consid-
ered as the repetition of two discrete tasks or as a per-se
unary rhythmic task is an open question, which still puz-
zles general motor control research [26]. Brain imaging
studies revealed that the performance of rhythmic move-
ments involve different brain areas then when performing
discrete movements [27], giving support to the idea that
rhythmic movements cannot be considered as the concate-
nation of discrete movements. In the present experiment,
stimuli quantity was limited to two elements in order to
prevent the emergence of frequency or pace effects. How-
ever, change in profiles and different values of similarity
between gestures and stimuli (Fig. 7) lead us to suppose
that to some degree a change in behavior took place.

5. CONCLUSION AND FUTURE DIRECTION

In this paper we have presented the description and results
of a pilot experiment in which participants mimicked with
different control modalities the production of sound stim-
uli. In the broader context of human-computer interaction,
our experiment sets, to put it as Buxton [28], on prag-
matism, in that it considers the interdependence of trans-
ducer or control modality with the visual and kinesthetic
skills engaged in the interaction. Idiosyncrasies between
modalities and between users, both in values and temporal

profiles, indicate that a mapping strategy capable to adapt
to the control channel and to the user natural skills could
accelerate the “process whereby novices begin to perform
like experts” [28]. On a higher level, recognition of coar-
ticulation effects may help in extracting semantic cues on
the embedding of gesture units in human-computer phrasal
dialogue.

For a future case study, we envision to improve some
aspects of the experiment. First, the substitution of head-
phones with loudspeakers will help in the monitoring of
the effective acoustical intensity delivered to the subjects.
Secondly, we foresee to use trumpet tones synthetically
produced by a physical modeling synthesis software 2 as
acoustical stimuli. Synthesized material will permit to avoid
dissimilarity between tones (see Fig. 1) caused by incon-
sistency in the trumpet player performance, consequently
excluding the presence of uncontrolled external factors that
could interfere in the mimicry task. We are currently work-
ing on the trumpet model in order to augment tongue and
airflow interaction for a more realistic simulation of artic-
ulation techniques.
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ABSTRACT

In audio based music similarity, a well known effect is
the existence of hubs, i.e. songs which appear similar to
many other songs without showing any meaningful per-
ceptual similarity. We show that this effect depends on
the homogeneity of the samples under consideration. We
compare three small sound collections (consisting of poly-
phonic music, environmental sounds, and samples of indi-
vidual musical instruments) with regard to their hubness.
We find that the collection consisting of cleanly recorded
musical instruments produces the smallest hubs, wheras
hubness increases with inhomogeneity of the audio signals.
We also investigate how well the three data sets can be
mapped into a 2D visualization space by a dimensionality
reduction algorithm based on Multidimensional Scaling.

1. INTRODUCTION

One of the central goals in Music Information Retrieval
is the computation of audio similarity. Proper modeling of
audio similarity enables a whole range of applications: mu-
sic classification/recommendation, content-based search,
etc. The de facto standard approach to computation of
audio similarity is timbre similarity based on parameteri-
zation of audio using Mel Frequency Cepstral Coefficients
(MFCCs) plus Gaussian mixtures as statistical modeling
(see Sec. 3.1). However, it is also an established fact that
this approach suffers from the so-called hub problem [1]:
sound samples which are, according to the audio similarity
function, similar to very many other sound samples with-
out showing any meaningful perceptual similarity to them.
The hub problem of course interferes with all applications
of audio similarity: hub samples keep appearing unwont-
edly often in recommendations, they degrade classification
performance, etc.

Although the phenomenon of hubs is not yet fully un-
derstood, a number of results already exist. Aucouturier
and Pachet [2] established that hubs are distributed along a
scale-free distribution, i.e. non-hub samples are extremely
common and large hubs are extremely rare. This is true
for MFCCs modelled with different kinds of Gaussian
mixtures as well as Hidden Markov Models, irrespective
whether parametric Kullback-Leibler divergence or non-

Copyright: c©2010 Martin Gasser et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

parametric histograms plus Euclidean distances are used
for computation of similarity. But is also true that hub-
ness is not the property of a sound sample per se since
non-parametric and parametric approaches produce very
different hubs. It has also been noted that audio recorded
from urban soundscapes, different from polyphonic mu-
sic, does not produce hubs [3] since its spectral content
seems to be more homogeneous and therefore probably
easier to model. Direct interference with the Gaussian
models during or after learning has also been tried (e.g.
homogenization of model variances) although with mixed
results. Whereas some authors report an increase in hub-
ness [2], others observed the opposite [4]. Using a Hierar-
chical Dirichlet Process instead of Gaussians for modeling
MFCCs seems to avoid the hub problem altogether [5].

Our main interest in this paper is to explore whether
the hub problem also exists in data bases of audio samples
(e.g. short recordings of individual notes played on indi-
vidual instruments) rather than data bases of whole songs.
We are also interested in finding out how hubs influence
lower dimensional projections of audio data bases. Such
projections have been very popular for enabling interac-
tive visualizations of data bases of songs [6–8] as well as
samples [9, 10]. Despite the popularity of these interfaces
based on lower dimensional projections, it has not yet been
clarified how hubs influence and possibly impair these vi-
sualizations.

Our contribution to the understanding of the hub prob-
lem and its consequences are twofold: (i) We support the
assumption that hubness is less predominant in collections
of environmental sound textures [3] than in music collec-
tions, and show that it is even weaker in musical instru-
ment databases and (ii) we show that hubness is related
to the cluster structure of data by inspecting Multidimen-
sional Scaling projections (i.e. hubs tend to lie in the cen-
ters of clusters, the more clusters can be found in a data
set, the smaller are the hubs).

2. DATA

In this research, we used three sound collections of size =
1000. However, we assume that the results remain valid
for bigger databases as well.

2.1 Music collection

We used a subset of a data base comprised of the music of
an Austrian music portal. The FM4 Soundpark is an in-
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Category Number of samples
Foreign Towns & Countrysides 10

Nature Ambiences 22
Birds and Animals 73

Wind 38
Water 49
Rain 33

Planes and Trains 52
Cars 99

Traffic 49
Guns 91

Crashes&Impacts 19
Sports and Boats 85

Towns 21
General Ambiences 359

Table 1. Structure of environmental sounds collection

Instrument Number of samples
Strings Ensemble 185

Double Bass Ensemble 135
Clarinet 191

Tuba 133
Drums 200
Flute 56
Horn 100

Table 2. Structure of musical instruments collection

ternet platform 1 of the Austrian public radio station FM4.
This internet platform allows artists to present their mu-
sic free of any cost in the WWW. All interested parties
can download this music free of any charge. This mu-
sic collection contains about 10000 songs and is organized
in a rather coarse genre taxonomy. The artists themselves
choose which of the GM = 6 genre labels “Hip Hop, Reg-
gae, Funk, Electronic, Pop and Rock” best describe their
music. The artists are allowed to choose one or two of the
genre labels. We use a data base of size = 1000 songs for
our experiments.

2.2 Environmental sample collection

The collection of environmental sounds consists of subsets
of the commercially available sound effects libraries Sound
Ideas 2 and Hollywood Edge 3 .

2.3 Collection of musical instruments

The musical instruments collection consists of a subset of a
commercially available sample collection for professional
composers. Tab. 2 gives an overview of the structure of our
evaluation dataset.

1 http://www.soundpark.at
2 http://www.sound-ideas.com/
3 http://www.hollywoodedge.com/

3. METHODS

In this paper we use Single Gaussian (G1) distributions of
Mel Frequency Cepstral Coefficients (MFCCs) to model
the spectral content of individual sound samples; based on
the bag-of-frames approach, those models represent the av-
erage spectral envelope and covariances between the indi-
vidual coefficients, corresponding to the specific “sound”
or “timbre” of a sample. By comparing the statistical mod-
els using the symmetric Kullback-Leibler divergence, we
calculate a dissimilarity measure between samples.

For the visualization mapping, we arrange sound sam-
ples in 2D space, such that the distances between the
2D locations approximate the acoustic distances. To con-
struct the 2D arrangement, we use Multidimensional Scal-
ing [11].

3.1 Mel Frequency Cepstral Coefficients and Single
Gaussians (G1)

We use the following approach to compute acoustic simi-
larity. For a given collection of sound samples, it consists
of the following steps:

1. for each sample, compute MFCCs for short overlap-
ping frames

2. train a single Gaussian (G1) to model each of the
samples

3. compute a distance matrixMG1 between all samples
using the symmetrized Kullback-Leibler divergence
between respective G1 models

The sound samples are resampled to 22050Hz and
mixed down to mono audio signals. Then, we divide the
raw audio data into overlapping frames of short duration
and use Mel Frequency Cepstral Coefficients (MFCC) to
represent the spectrum of each frame. MFCCs are a per-
ceptually meaningful and spectrally smoothed parameteri-
zation of audio signals and a standard technique for com-
putation of spectral similarity in music analysis (see e.g.
[12]). The frame size for computation of MFCCs for our
experiments was 23.2ms (512 samples), we used a hop
size of 11.6ms (256 samples). We used the first d = 20
MFCCs for all experiments.

A single Gaussian (G1) with full covariance represents
the MFCCs of each sample [13]. For two single Gaus-
sians, p(x) = N (x;µp,Σp) and q(x) = N (x;µq,Σq), the
closed form of the Kullback-Leibler divergence is defined
as [14]:

KLN (p‖q) =
1

2

(
log

(
det (Σp)

det (Σq)

)
+ Tr

(
Σ−1p Σq

)
+ (µp − µq)

′
Σ−1p (µq − µp)− d

) (1)

where Tr(M) denotes the trace of the matrix M ,
Tr(M) = Σi=1..nmi,i. The divergence is symmetrized
by computing:

KLsym =
KLN (p‖q) +KLN (q‖p)

2
(2)
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3.2 Visualization algorithm

It is well known that the symmetric KL divergence be-
tween Gaussians does not satisfy the requirements to a
proper distance measure [15]. However, it is possible to
embed data items in a Euclidean space, such that the Eu-
clidean distances between pairs approximate the original
data distances as closely as possible. Such techniques are
generally termed Multidimensional Scaling [16]. One pos-
sible approach to solve the Multidimensional Scaling prob-
lem are spring models [17,18], physically inspired models
of spring-connected nodes aiming at finding a node place-
ment that minimizes the cumulative deflection from the
springs’ resting states. Mapping distances in feature space
to spring lengths, a spring model solves the MDS problem.
Implicitly, this implements a gradient-descent based solu-
tion algorithm, where a placement of the nodes that min-
imizes the overall stress (the deflection from the springs’
resting state) is constructed. Eq. 3 gives a measure for the
normalized stress in an MDS mapping.

S =
Σi<j(dac(i, j)− dlo(i, j))2

Σi<jdlo(i, j)
(3)

(dac: acoustic distance, dlo: distance in low dimensional
space, i, j: data points)

4. RESULTS

4.1 Hubs in sample databases

As a measure of the hubness of a given sample, we use
the so-called n-occurrence [2], i.e. the number of times the
sample occurs in the first n nearest neighbors of all the
other samples in the data base. Please note that the mean
n-occurrence across all samples in a data base is equal to
n. Any n-occurrence significantly bigger than n there-
fore indicates existence of a hub. For every sample in the
data bases, we computed the first n nearest neighbors. The
first n nearest neighbors are the n samples with minimum
Kullback-Leibler divergence (Equ. 2) to the query sample.

The results given in Tab. 3 show results calculated from
the three data sets. We give the number of nearest neigh-
bors n, the absolute number of the maximum n-occurrence
maxhub (i.e. the biggest hub), the percentage of samples
in whose nearest neighbor lists this biggest hub can be
found maxhub% = maxhub/size and the percentage of
hubs hub3% (i.e. the percentage of samples of which the
n-occurrence is more than three times n).

When looking at the results, it should be immediately
clear that music collections are more prone to hubness than
collections of environmental textures or musical instru-
ments. This can be intuitively justified because the spec-
tral structure of music is much less homogeneous than that
of sound textures or even individual musical instruments.
Thus, it is quite likely that a given musical piece is similar
to a higher-than-average number of other pieces.

4.2 MDS mappings of the data sets

Fig. 1(a), 1(b), and 1(c) show 2D embeddings of the mu-
sic, textures, and instruments data sets, respectively. We

data set n maxhub maxhub% hub3%

MUSIC 50 358 35.80 5.20
TEXTURES 50 190 19.04 0.90

INST 50 172 17.18 0.29

Table 3. Hub analysis results for the three data sets

data set stress
MUSIC 0.0327

TEXTURES 0.0434
INST 0.0556

Table 4. Stress values after 1500 MDS iterations

ran 1500 iterations of the MDS algorithm on the data. Ad-
ditionally to the location of the samples, we also plotted
the 50 largest hubs (samples that appear most often in the
nearest neighbor lists of all other samples) and the smallest
orphans (samples that rarely appear in the nearest neighbor
lists of all other samples). Hubs are marked with a green
dot, orphans with a red ‘X‘-sign.

The music data in fig. 1(a) seems to contain only one
cluster and all hubs are located within the center of this
cluster. Orphans are located at the border of the point
cloud.

Fig. 1(b) and fig. 1(c) show a different picture. Here we
can clearly see the existence of a more complex clustering
in the data (e.g., sounds of engines vs. wind/sea textures,
flutes vs. double bass) and the hubs are distributed more
evenly over the clusters. We can also see that orphans do
not strictly lie at the border of the point cloud anymore.
Since MDS aims at minimizing the sum of squared differ-
ences between high- and low-dimensional distances, it is
clear that in the music data set, hubs (i.e. samples with
small distance to a large number of other samples) should
go to the center of the point cloud, whereas orphans are
pushed to the borders.

To measure the performance of MDS, we evaluate the
stress formula 3 for all three data sets. Tab. 4 shows the
stress values after 1500 iterations of the gradient descent-
based MDS algorithm. Apparently, it is more difficult for
the algorithm to cope with data sets containing multiple
clusters, whereas the data set containing one cluster yields
the lowest stress value, although it also contains the largest
hubs.

5. CONCLUSION & FUTURE WORK

We have shown that music collections are indeed more
prone to the hubness problem than collections of sound
textures or musical instruments. We suppose that this is
due to the high degree of inhomogeneity in individual mu-
sical pieces, whereas environmental sounds or individual
instruments have a relatively stationary spectral structure.

We have also shown that hubs are generally located in-
side clusters of data, thus, the more clusters are present in
the data, the lower is the degree of hubness, since hubs are
distributed across clusters.
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(a) Music

(b) Textures

(c) Instruments

Figure 1. Distribution of hubs and orphans in MDS pro-
jections of the data sets.

For sound textures and samples of musical instruments,
the G1 similarity measure produced far fewer hubs than for
the music collection; the MDS visualizations of textures
and instruments also reflected the structure of the data sets
visually, which could be an important argument for suc-
cessful navigation inside sample libraries.

We have also developed a demonstration application
that can be used to interactively explore the data sets we
used by zooming/panning in the MDS embeddings and by
playing back individual audio samples. It can be used to
easily retrieve similar-sounding material from sample li-
braries without using any metadata.

Next steps in our research will include experiments with
other features that also reflect time-dependent properties of
the signal and the development of more advanced ways to
visualize data in multiple feature spaces.
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ABSTRACT

In the field of audio restoration, the most popular method
is the Short Time Spectral Attenuation (STSA). Although
this method reduces the noise and improves the SNR, it
mostly tends to introduce signal distortion and a residual
noise called musical noise (a tonal, random, isolated, time-
varying noise). This work presents a new audio restora-
tion algorithm based on Non-negative Matrix Factoriza-
tion (NMF) with a noise suppression rule that introduce
the masking phenomenon of the human hearing to calcu-
late a noise masking threshold from the estimated target
source. Extensive test with PESQ measure at low SNR
(i.e. < 10dB) show that the method does not introduce
musical noise and permits to control the trade-off between
undesired component suppression and source attenuation.
In particular, we show that NMF is a suitable technique to
extract the clean audio signal from undesired non station-
ary noise in a monaural recording of ethnic music. More-
over, we carry out a listening test in order to compare NMF
with the state of the art audio restoration framework using
the EBU MUSHRA test method. The encouraging results
obtained with this methodology in the presented case study
support their applicability in several fields of audio restora-
tion.

1. INTRODUCTION

The ethnic-musical heritage – often the only testimonial of
past oral cultures – is in danger of disappearing: the au-
dio documents were usually recorded in non-professional
carriers by means of amateur recording system. Thus, for
their appropriate fruition and/or for a suitable use of Music
Information Retrieval techniques it is necessary to process
the signals by means of audio restoration algorithms.

Different strategies can be adopted in a combined way
with audio restoration algorithms, in accordance with the
final purposes of the access copy:

• Documental approach: in this case, the de-noising

Copyright: c©2010 Giuseppe Cabras, Sergio Canazza, Pier Luca Montessoro and

Roberto Rinaldo. This is an open-access article distributed under the terms of the

Creative Commons Attribution License, which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are
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algorithms only concern the cases in which the in-
ternal evidence of the degradation is unquestionable,
without going beyond the technological level of that
time.

• Aesthetical approach: it pursues a sound quality that
matches the actual user’s expectations (for both new
commercial editions and to arrange the signal before
the use of MIR techniques).

• Sociological approach: it has the purpose of obtain-
ing a historical reconstruction of the recording as it
was listened to at the time (see Storm, Type I [1]).

• Reconstructive approach: it has the objective of pre-
serving the intention of the author (see Storm, Type
II [1])

In order to reach one or more of the above aims, it
is necessary to have at disposal several audio restoration
instruments (often in the same audio document there are
corruptions with different physical characteristics, that can
be attenuated with different de-noise filters). The audio
restoration algorithms can be divided into three categories
[2]:

1. frequency-domain methods, such as various forms
of non-casual Wiener filtering or spectral subtrac-
tion schemes and recent algorithms that attempt to
incorporate knowledge of the human auditory sys-
tem; these methods use little a priori information;

2. time-domain restoration by signal models such as
Extended Kalman Filtering (EKF): in these methods
a lot of a priori information is required in order to es-
timate the statistical description of the audio events;

3. restoration by source models: only a priori informa-
tion is used.

The advantage of frequency-domain methods is that they
are straightforward and easy to implement. However, the
limitations are as follows: musical noise (short sinusoids
randomly distributed over time and frequency) is unavoid-
able; the results depend on a good noise estimation. Restora-
tion by source model is limited to very few cases (e.g. only
monophonic recordings) and it is not generalizable. The
EKF is able, in principle, to simultaneously solve the prob-
lems of filtering, parameter tracking and elimination of the
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outliers, but it is very sensitive to parameter setting and
ineffective where the Signal-to-Noise Ratio (SNR) is very
low (< 10dB), as happen in many ethnic music audio doc-
uments.

This work presents a new audio restoration method –
that fall within the first category – based on Non-negative
Matrix Factorization (NMF), an emerging new technique
in the blind extraction of signals recorded in a variety of
different fields. The application of NMF to the analysis
of monaural recordings is relatively recent. We show that
NMF is a suitable technique to extract the clean audio sig-
nal from undesired non stationary noise in a monaural record-
ing of ethnic music. More specifically, based on finding
by Wolfe and Godsill [3], we develop a perceptually mo-
tivated distortion measure as a generalization of the Mini-
mum Mean Square Error (MMSE) cost function that incor-
porates the masking threshold. Moreover, we carry out a
listening test in order to compare NMF with the state of the
art audio restoration framework using the EBU MUSHRA
test method.

A recent approach to separate an acoustic source is pro-
vided by Non-negative Matrix Factorization (NMF). The
basic idea is that we can obtain a meaningful part-based
factor decomposition [4] from a data observation (e.g., the
monaural recording) by the only constrain of non-negativity
and sparsity, since no cancellation of factors can occur
and only additive combinations are permitted. The use of
sparse code can favor a factorization where only a few dic-
tionary elements are used to model the source, introducing
an `1 norm penalty term on the coefficients of the code ma-
trix, which explicitly enforces sparseness [5]. However, a
further non trivial step is needed to assign the decomposed
parts to the source of interest (e.g., the original audio sig-
nal) to discard the interference source (e.g., the corrupting
noise). The proposed approach tries to solve this problem
with a solution based on an extended Non-negative Ma-
trix Factorization algorithm and prior knowledge on inter-
ference. In addition, our approach reduces both distortion
and perceptually annoying musical noise by taking into ac-
count the masking phenomenon of the human hearing, in
order to calculate a noise masking threshold from the esti-
mated target source.

We apply this method to improve the quality of noisy
recordings of ethnic music on Shellac 78 rpm phonographic
discs. The Shellac disc is a common audio mechanical car-
rier, where the audio information is recorded by means of
a groove cut into the surface by a stylus modulated by the
sound, either directly in the case of acoustic recordings or
by electronic amplifiers. There are more than 1,000,000
Shellac discs in the worldwide audio archives containing
music never re-recorded (R&B, Jazz, Ethnic, Western clas-
sical, etc.).

The rest of this paper is organized as follows. Sec. 2
details the proposed audio restoration method: in partic-
ular, Sec. 2.5 introduces perceptually motivated Bayesian
suppression rules used. In order to validate the system, we
carry out a listening test – using ethnic music audio docu-
ments – in order to compare NMF with the state of the art
audio restoration framework using the EBU MUSHRA test

method (Sec. 3). Final conclusions are drawn in Sec. 4.

2. AUDIO ENHANCEMENT FRAMEWORK

The objective of the proposed method is to estimate the
undesired components, or interference, n(t) and the source
of interest, or target, s(t) directly from the observable data
mix (i.e. in the time domain), with the minimum a priori
knowledge. We assume that saturation effects are absent in
the mixed observable signal x(t), that can be expressed as:

x(t) = s(t) + n(t) (1)

We assume that s(t) and n(t) are uncorrelated. This
extends linearity in the power spectral domain, and let us to
transform the data in a non-negative representation suitable
for NMF processing:

|X(t, f)|2 = |S(t, f)|2 + |N(t, f)|2 (2)

where the observable signal x(t) is transformed in a time-
frequency representation X(t, f). Our method is shown
in Fig. 1 and functional modules are discussed in the next
subsections.

Figure 1. General scheme of the proposed audio enhance-
ment framework.

2.1 Signal Representation

A common technique to manipulate audio signals consists
of transforming the time-varying observed signal in a time-
frequency representation (by means a Short Time Fourier
Transform – STFT – analysis) which shows the signal en-
ergy variation along time elements (frames) and frequency
elements (bins), thus providing a non-negative matrix rep-
resentation. In the following, we represent the signal in the
time-log frequency domain as an element-wise exponenti-
ated STFT:

X = |STFT{x(t)}|γ (3)

The linearity expressed by Eq. 2 applies also to Eq. 3
when γ = 2, but wide experimentation shows that γ is
an important parameter to NMF performance. In particu-
lar, it turns out that γ = 2 is a bad choice for component
separation, while an optimal choice is γ = 0.67, which
corresponds to the cube root compression of power STFT.
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Surprisingly, this is consistent with Stevens’ Power Law
exponent for the perceived loudness of a sound pressure of
3 kHz tone stimulus. Moreover, Stevens’ Power Law was
used to model cochlear non-linearities [6] and intensity to
loudness conversion in Perceptual Linear Predictive (PLP)
speech analysis [7]. More recently, Plourde and Cham-
pagne integrated the cochlear compressive nonlinearity in a
Bayesian Short Time Spectral Attenuation (STSA) estima-
tion for speech enhancement [8]. This curious coincidence
about the exponent value, suggests to follow a perceptually
motivated approach to audio de-noising, as we explain in
Sec. 2.5.

2.2 Voice Activity Detection

A Voice Activity Detector (VAD) is widely used as a com-
ponent of speech enhancement methods to update the noise
spectrum frame by frame. In our implementation, a statistical-
model based VAD [9] is used to construct two diagonal
binary square matrices:

A(t, t) =

{
1, if target source is present in frame t
0, otherwise.

(4)

and its complementary Ā(t, t).
This allows us to train the undesired components dictio-

nary, computing NMF on the signal:

Z(f, t) = X(f, t)Ā(t, t) (5)

during target-absent periods, and then separate the target
components dictionary, computing a modified NMF ∗ on
the signal:

Y (f, t) = X(f, t)A(t, t) (6)

during target-present periods. Assuming that the target and
the undesired component are additive (as stated in Eq. 1),
the VAD module has to decide, for each frame t, in favor
of one of the two hypotheses:

H0 : Xf = Nf : target source absent, (7)
H1 : Xf = Sf +Nf : target source present. (8)

2.3 Undesired component training

During training stage, we assume availability of some target-
absent frames, computed applying a VAD to the observ-
able signal X(f, t); the resulting signal Z(f, t) of Eq. 5 is
equivalent toX(f, t), with target-present frame suppressed.
Applying a Regularized Euclidean NMF to Z(f, t), we ob-
tain the strictly positive dictionary Dn(f, k) and sparse
code Hn(k, f) matrices, where k is the number of user
defined elements of interference. Following the simplifica-
tion proposed in [5], we define the multiplicative iterative
computation of Hn and Dn:

X̂n = D̄nHn;Hn ← Hn •
D̄T
nZ

D̄T
n X̂n + λn

; (9)

Dn ← D̄n •
ZHT

n + D̄n • (1(X̂nH
T
n • D̄n))

X̂nHT
n + D̄n • (1(ZHT

n • D̄n))
. (10)

Where D̄n is the Euclidean column-wise normalization
of Dn in current iteration (see Sec. 2.4), the • operator
indicates element-wise multiplication, the fraction line in-
dicates element-wise division, and 1 is a square matrix of
ones. The regularization parameter λn weights the impor-
tance of the sparsity term to the reconstruction.

The final Dn matrix represents the dictionary of the in-
terference learned from data and it will be used by the next
module to estimate the two additive sources composing the
mixed signal.

2.4 Estimation of undesired source and target source

In order to estimate the sources, we use again a constrai-
ned NMF (NMF*) to compute the dictionary of the target
source and the sparse code of both sources. Assuming,
as usual, the additivity of sources, the dictionary of the
mixed signal can be seen as the concatenation of the in-
dividual source dictionaries. Moreover, the sparse code of
the mixed signal can be seen as the concatenation of the
individual source sparse codes:

X = Xs +Xn =
[
DsDn

] [Hs

Hn

]
+E = DH +E (11)

In the previous equation, E is an unknown matrix repre-
senting approximation errors. We can not solve Eq. 11 di-
rectly with NMF, due to a permutation ambiguity. In fact,
we can write

DH = (DP )(P−1H) (12)

where P is a generalized permutation matrix, i.e., a matrix
with only one non-zero positive element in each row and
each column.

Schmidt, Larsen and Hsiao [10] suggest to pre-compute
Dn, as we have done in the previous section for the inter-
ference in theZ(f, t) signal; then learnDs(f,m),Hs(m, t)
and Hn(k, t), where m is the number of user defined el-
ements of the target source, with a modified constrained
NMF, which we apply to Y (t, f) in Eq. 6 (i.e. the observed
signal in the target-present frames). We describe here the
developed one-dictionary constrained (D∗

n) algorithm:

1. InitializeDs(f,m),Hs(m, t) andHn(k, t) with ran-
dom values in the range [0÷1]; to multiplyHs(m, t)
and Hn(k, t) by A to suppress target-absent frames.

2. Define Euclidean column-wise normalization of the
target dictionary to prevent joint numerical drifts in
Hs and Ds:

D̄s(f,m) =
Ds(f,m)√∑
f Ds(f,m)2

=
Ds(f,m)

||Ds(m)||2
.

(13)

3. Calculate the overall reconstruction according to:

X̂ = D̄sHs + D̄nHn. (14)

4. Update the sparse code of target according to the
rule:

Hs ← Hs •
D̄T
s Y

D̄T
s X̂ + `s

. (15)
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5. Calculate the overall reconstruction as in Eq. 14.

6. Update the sparse code of interference according to
the rule:

Hn ← Hn •
D̄T
nY

D̄T
n X̂ + `n

. (16)

7. Calculate the overall reconstruction as in Eq. 14.

8. Update the target non-normalized dictionary accord-
ing to the rule:

Ds ← D̄s •
Y HT

s + D̄s • (1(X̂HT
s • D̄s))

X̂HT
s + D̄s • (1(Y HT

s • D̄s))
. (17)

9. Repeat from step 2 until it reach the convergence of
the Euclidean Cost function to minimize:

C(i) =
1

2

∑
f,t

(Y (f, t)− X̂(f, t))2+

`n
∑
k,t

Hn(k, t) + `s
∑
m,t

Hs(m, t).
(18)

We stop the algorithm at iteration iwhen |Ci−Ci−1| <
εCi. The regularization parameters `s and `n determine
the degree of sparsity in the activity matrix. Dn, the dictio-
nary of the undesired component, is left unchanged by this
algorithm because it is predefined and fixed by the previ-
ous training stage; moreover, we do not seek a sparse code
for the fixed dictionary, but the code that minimizes the re-
construction error, setting `n = 0. In general λn, `s, k and
m are depending on unknown sources. In our experimen-
tal datasets, good results were obtained for λn = 0.2 and
`s = 0.05, k = 256 and m = 256, confirming in a wider
field of application the results of Schmidt et al. [10].

2.5 Perceptually motivated Bayesian Suppression
Rules

The output of the two previous stages are the estimation of
Ds, Hs, Dn and Hn; we can estimate the spectrogram of
the target source and interference in target-present frames
as:

X̂s = DsHs (19)

X̂n = DnHn (20)

Figure 2 shows the result spectrograms of X̂s and X̂n

where the undesired component is the period stationary
wide-band noise present in the observed extract 4 of Sec. 3.

We can reconstruct the target source using a noise sup-
pression rule, a well known technique in speech enhance-
ment and audio denoising in general. A suppression rule
may be viewed as a non-negative real-valued time-frequency-
varying gainG(f, t), applied to the observable, target-present
signal spectrum Y (f, t), in order to estimate the target source
spectrum:

Ŝ(f, t) = G(f, t) • Y (f, t) with 0 ≤ G(f, t) ≤ 1 (21)

Although in many cases, with high SNR, we can get a
good reconstructed target source by means of the Wiener
filter, in low SNR we get increasing target distortion and
perceptually annoying musical noise (a tonal, random, iso-
lated, time-varying noise). Generally speaking, we can re-
duce noise suppression in favor of better audio fidelity or
speech intelligibility introducing the masking phenomenon
of the human hearing model to calculate a noise masking
threshold from the estimated target source. A listener tol-
erates additive interference, as long as its energy remains
below the masking threshold defined by the target source
energy, and we don’t need to suppress this masked interfer-
ence because it is non-audible. In this sense we suppress
only the non-masked excess of interference.

A widely used, simple but effective masking model was
proposed by Johnston [11] to mask the distorsion intro-
duced in speech and audio process and adopted with suc-
cess in speech enhancement. In this psychoacoustic model,
a weak interference at a certain frequency is made inaudi-
ble by a stronger target occurring simultaneously (i.e., in
the same frame) within the same perceptual frequency range,
termed Critical Band, and across Critical Bands, apply-
ing a convolution with a spreading function. The John-
ston’s masking threshold calculation does not take into ac-
count backward or forward temporal masking. According
to Wolfe and Godsill [3], we can formulate a perceptu-
ally motivated distortion measure as a generalization of the
Minimum Mean Square Error (MMSE) cost function that
incorporates the masking threshold:

CWG(S, Ŝ, T ) =


(
Ŝ − S − T

2

)2
−
(
T
2

)2
,

if
∣∣∣Ŝ − S − T

2

∣∣∣ > T
2 ;

0, otherwise.
(22)

where S is the true but unknown STFT amplitude of the
source, Ŝ is the STFT amplitude of estimated source and
T is the masking threshold; for simplicity, we omit the fre-
quency f and the frame t indices. We can see in Eq. 22
that no cost is assigned if the estimation error is below the
masking threshold and a penalty cost is assigned only when
the estimation error is above the masking threshold. This
prevent unwanted source attenuation when the undesired
component is masked and suppress only human ear per-
ceptible undesired component. Unfortunately, the analyti-
cal minimization of E[CWG(S, Ŝ, T )] is intractable and a
numerical implementation was adopted by the authors [3].

In our perceptually motivated model, depicted in fig. 3,
we followed a different approach based on [12], where a
perceptually criterion was implicitly implemented by weight-
ing error STFT amplitude with a filter that has the shape of
the inverse STFT amplitude of the source, so that less em-
phasis is placed near the formant peaks (implicit masked)
and more emphasis is placed on spectral valleys (implicit
unmasked):

CWE(S, Ŝ, p) = (Ŝ − S)2 • Spwith− 2 < p ≤ 0 (23)

where p is a real value time-frequency parameter that
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Figure 2. Spectrograms of original noisy signal X (top), estimated target source X̂s (center) and estimated interference
X̂n (bottom) of 24.5 seconds excerpt ‘Sta terra nun fa pi mia’ (see Sec. 3 item 4), spectrograms are in log-frequency
representation, from fmin = 50Hz and 24bin/octave resolution. Audio pattern and period stationary wide-band noise
are clearly separated.

Figure 3. The proposed perceptual suppression
rule scheme based on threshold-mask-adaptive weighted
Bayesian estimator.

emphasizes spectral valleys when negative. This cost func-
tion is known as Weighted Euclidean distortion measure
and the analytical minimization of E[CWE(S, Ŝ, p)], as-
suming S(f, t) modelled as statistically independent zero-
mean Gaussian random variables, evaluates to the time-
frequency gain GWE(f, t):

GWE =

√
ν

γ
•

Γ
(
p+1
2 + 1

)
• Φ

(
−p+1

2 , 1;−ν
)

Γ
(
p
2 + 1

)
• Φ

(
−p2 , 1;−ν

) , p > −2

(24)
where:

γ =
X

X̂n

; ξ =
X̂s

X̂n

; ν =
ξ

1 + ξ
• γ (25)

Γ(·) denotes the gamma function and Φ(a, b; z) denotes
the confluent hypergeometric function. When p = 0, we
get the classical Ephraim and Malha MMSE STSA estima-
tor [13].

We consider now a similar cost function, also proposed
in [12], called Weighted Cosh distortion measure:

CWCOSH(S, Ŝ, p) =

(
S

Ŝ
+
Ŝ

S
− 1

)
•Sp with −1 < p ≤ 0

(26)
this cost function, again, emphasize spectral valleys when

p is negative and evaluates to the GWCOSH(f, t) gain:

GWCOSH =

√
ν

γ
•

√
Γ
(
p+3
2

)
• Φ

(
−p+1

2 , 1;−ν
)

Γ
(
p+1
2

)
• Φ

(
−p−1

2 , 1;−ν
) , p > −1

(27)
The third Bayesian Estimator implemented in the frame-

work is the β-Order MMSE STSA estimator (βSA), pro-
posed in [14], and further developed in [15]. The MMSE-
STSA estimator [13] [16] was generalized by the real ex-
ponent parameter β (for uniformity with previous estima-
tors, we continue to call p):

CSA(S, Ŝ, p) = (Ŝp − Sp)2 with − 2 < p < 0 (28)

taking p < 0, the behavior to penalize the cost function
is similar to Weighted Euclidean Distortion Measure of
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Eq. 23, and both perform an accurate estimation of source
in spectral valleys. The gain function GSA(f, t) derived
from the βSA estimator is expressible as:

GSA =

√
ν

γ
•
[
Γ
(p

2
+ 1
)
• Φ

(
−p

2
, 1;−ν

)]1/p
, p > −2

(29)
When p→ 0, the βSA is equivalent to the Ephraim and

Malah MMSE log-STSA [16].
Extensive tests of the three perceptually motivated Bayesian

estimators, with PESQ measure and informal audio assess-
ment on speech phrases at low SNR (i.e. < 10dB), show
that all of them perform equally well, in the sense that they
don’t introduce musical noise and permit to control the
trade-off between undesired component suppression and
source attenuation by varying the parameter p. A perfor-
mance evaluation and comparative audio samples are avail-
able in http://dialogo.fisica.uniud.it/BASS/
ComparisionWithGustafsson02.

Indeed, the optimal choice of the real parameter p(f, t)
is an important performance issue. Therefore, we con-
sidered to express explicitly the relation with the mask-
ing threshold T (f, t), although in an heuristic manner. We
have seen that the undesired component can be reduced by
decreasing p, however this leads to more source distortion.
Therefore, the adaptation is based on the following con-
sideration: if the masking threshold is high, interference
will be masked and consequently inaudible. Consequently,
there is no need to reduce, which helps to keep distortion
as low as possible. In this case the parameter p is kept to
his maximal value: p = pmax. However, if the masking
threshold is low, undesired component will be unpleasant
or even annoying to the ear and it is necessary to reduce it.
This is done by a decrease of p toward his minimum value:
p = pmin. For each frame t, the minimum of the mask-
ing threshold T (f, t) corresponds to the minimum of the
power parameter p(f, t). In order to avoid discontinuities
in the gain function G due to this adaptation, a smooth-
ing operation is applied, controlled by user value x. The
adaptation of the parameter p(f, t) is performed with the
following relation:

p(f, t) =

(
T (f, t)− Tmin(t)

Tmax(t)− Tmin(t)

)x
(pmax−pmin) +pmin

(30)
where Tmax(t) and Tmin(t) are the maximal and minimal
values of noise masking threshold T (f, t) at current frame
t. In this way, p(f, t) adapts to a minimal interference re-
duction for the maximal values of the masking threshold
(i.e. in correspondence of source formant peaks) and a
maximal reduction for the minimal values of the threshold
(i.e. in correspondence of spectral valleys). Figure 4 show
the simple smoothing curves obtained with Eq. 30 varying
the smoothing parameter x.

The minimal and maximal values of p and x determine
the tradeoff between residual noise and source distortion.
A number of experiments with different noise types and
levels have been performed to select the appropriate values
for these parameters.

Figure 4. Parameter p versus the normalized mask-
ing threshold T for smoothing parameter x =
(0.25, 0.33, 0.5, 0.67, 1), pmin = −1.98, pmax = 0.

For additive interference at SNR proximal to 0 dB, the
following values have been chosen in order to obtain a
good tradeoff for a human listener for each Bayesian es-
timator:

1. For Weighted Euclidean: pWEmax = 0,
pWEmin = −1.98;

2. For Weighted Cosh: pWCOSHmax = 0,
pWCOSHmin = −0.99;

3. For βSA: pmax = −0.001, pmin = −1.98;

The smoothing exponent is kept fixed for all estimators:
x = 0.5.

This tradeoff can be easily changed depending on the
application; in general, only a regulation of pmin is needed
to optimal tradeoff.

The use of Johnston’ simultaneous masking threshold
estimation allows the construction of effective and sophis-
ticated perceptual noise suppression rules. However, if the
threshold is not correctly estimated, performance greatly
suffers in terms of very annoying musical noise injected in
the target source waveform, compromising any noise sup-
pression rule. To properly estimate the threshold, we need
an extremely accurate estimation of the target source spec-
trum X̂s(f, t) that we obtained with NMF.

3. SUBJECTIVE EVALUATION

To validate the system, a listening test was conducted. As
audio material, several sound documents of ethnic music
were considered.

Material. Four music pieces recorded in Shellac disc
were used. In order to minimize fatigue and maximize at-
tention by the participating subjects, we selected the 20
first seconds of each stimulus. Since the task was more
a comparison than an individual analysis, those short ex-
tracts seemed to be sufficient.
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1. Chi campa deritto campo aflitto (Who lives honestly
lives poorly, by Perrocato and Canoro), Eduardo Migli-
accio (voc) - 78 rpm 10” Victor 14-81712-B (BVE
46692-2), rec. in New York, August, 14, 1928, length
3’36”. In the excerpt considered: singing voice and
music.

2. Il funerale di Rodolfo Valentino (The funeral of Rodolfo
Valentino), Compagnia Columbia (2 male singers, 2
female singers, bells and Orchestra) - 78 rpm 10”
Columbia 14230-F (w 107117 2), rec. in New York,
September, 1926, length 2’55”. In the excerpt con-
sidered: speech voices.

3. La signorina sfinciusa (The funny girl), Leonardo
Dia (voc), Alfredo Cibelli (mandolin), unknowns (2
guitars) - 78 rpm 10” Victor V-12067-A (BVE 53944-
2), rec. in New York, July, 24, 1929, length 3’20”.
In the excerpt considered: singing voice and music.

4. Sta terra nun fa pi mia (This land is not for me, by
R. Gioiosa, arr. R. Romani), Rosina Gioiosa Trubia
(voc), Alfredo Cibelli (mandolin), unknowns (2 gui-
tars) - 78 rpm 10” Brunswick 58073B (E 26621/2),
rec. in New York, February, 23, 1928, length 3’22”.
In the excerpt considered: singing voice and music.

Noisy stimuli was pre-processed with the Extended Kal-
man Filter, detailed in [17] (in de-click mode), then broad
band restoration was performed using our framework with
the suppression rule detailed in 2.5, as well as the following
three commercial products, selected among the most ap-
preciated products in the audio archives and post-processing
studios:

1. X-Noise of Waves Restoration bundle (Waves V6
Update 2);

2. Denoiser (with the Musical noise suppression filter
enabled) of iZotope RX v1.06;

3. Auto Dehiss of CEDAR Tools;

The CEDAR Tools plug-ins are used in a Pro Tools HD
system. The parameters used to control the different sys-
tems were subjectively set to obtain the best tradeoff be-
tween noise removal and music signal preservation. In this
way 16 restored stimuli were produced.

Test method. The tests were conducted using the EBU
MUSHRA test method [18], which is a recommended eval-
uation method adopted by ITU [19]. This protocol is based
on the “double-blind triple-stimulus with hidden reference”
method, which is stable and permits accurate detection of
small impairments. An important feature of this method is
the inclusion of the hidden reference and of two bandwidth-
limited anchors signals (7 kHz and 3.5 kHz).

The noisy stimuli under test are all real-world signals.
This implies that we can not compare test enhanced sound
with a high quality reference sound (graded 5.0 at the top
of the grading scale), but with the noisy reference sound
(graded 0.0). Moreover, negative scores are allowed to
evaluate test sounds that rate worse then the noisy refer-
ence. At least the hidden reference must be graded 0.0 by

the evaluator. All the other test stimuli and hidden anchors
can be evaluated subjectively to rate the overall quality of
sound excerpts.

Training phase. The purpose of the training phase, ac-
cording to the MUSHRA specification, was to allow each
listener: i) to become familiar with all the sound excerpts
under test and their quality-level ranges; ii) to learn how to
use the test equipment and the grading scale.

Listeners. Two subject groups were selected:

1. Musically trained (MT): 12 researchers (musicolo-
gists and/or musicians) of the University of Padova
and 12 technicians of different international audio
archives.

2. Musically untrained (MU): 16 students in Informa-
tion Engineering (University of Padova).

Equipment. The audio signals were recorded at 44.1
kHz/24 bit (uncompressed sound files) and played through
Apple PowerBook Pro 2.4 GHz Intel Core 2 Duo with 2
GB 1067 MHz DDR3 equipped with a D/A converter RME
Fireface 400, and headphones AKG K 501. The listeners
could play in any order all the stimuli under test, including
the hidden reference and the two bandwidth-limited anchor
signals.

Test duration. The training session for each listener
took approximately 40’, including an explanation about the
tests and equipment, and a practice grading session. The
grading phase consisted of 4 test sessions (one for each
music piece), each one containing 9 test signals (1 noisy
signal, 6 restored signals, 2 anchors). Each session took,
on average, about 8 minutes. Subjects were allowed a rest
period between each session, but not during a session.

Main results. The statistical analysis method described
in the MUSHRA specification was used to process the test
data. The results are presented in Tab. 1 as mean grades.
The results from six listeners (five of them belong to MU
group, one to MT) were rejected because the mean of their
rates (in absolute value) on hidden references is greater
than +/− 0.5.

The quality range between the best and worst restora-
tion system is only 0.80 (MT group) and 0.40(MUgroup).
In general there are only two systems with a score > 3.5:
our Tool and CEDAR. Our algorithm produces scores sim-
ilar to CEDAR in both test sessions (better for MU group)
and better than the others softwares.

Table 1. Mean for restored stimuli and anchors, 34 sub-
jects. MT = Musically trained; MU = Musically untrained.

Restoration
system

MT
group

MU
group Average

Our Tool +3.00 +4.20 +3.60
CEDAR Tools +3.40 +4.00 +3.70
Waves +2.80 +3.80 +3.30
iZotope RX +2.20 +3.80 +3.00
Anchor 7 kHz −2.69 +0.20 −1.02
Anchor 3.5 kHz −5.00 −4.20 −4.60
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4. CONCLUSIONS

This study is focused on the restoration of single chan-
nel audio recordings of ethnic music: for this purpose,
we applied EKF framework to audio signal enhancement
problems. In this paper we investigate the use of the Non-
negative Matrix Factorization (NMF): we show that NMF
is a suitable technique to extract the clean audio signal
from undesired non stationary noise in a monaural record-
ing with low SNR. More specifically, we introduce a per-
ceptual suppression rule based on an advanced psychoa-
coustic models (Sec. 2.5. To evaluate the proposed ap-
proach a subjective audio enhancement experiments was
carried out (see Section 3). The results of this experiments
show that the proposed method results in improved audio
quality and that it is a useful alternative to the classical
STSA methods.

Future work will carry out an intensive application of
this audio restoration environment on two real archives of
ethnic music phonographic discs.
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ABSTRACT

This paper proposes a computationally efficient method
for computing the constant-Q transform (CQT) of a time-
domain signal. CQT refers to a time-frequency represen-
tation where the frequency bins are geometrically spaced
and the Q-factors (ratios of the center frequencies to band-
widths) of all bins are equal. An inverse transform is pro-
posed which enables a reasonable-quality (around 55dB
signal-to-noise ratio) reconstruction of the original signal
from its CQT coefficients. Here CQTs with high Q-factors,
equivalent to 12–96 bins per octave, are of particular inter-
est. The proposed method is flexible with regard to the
number of bins per octave, the applied window function,
and the Q-factor, and is particularly suitable for the anal-
ysis of music signals. A reference implementation of the
proposed methods is published as a Matlab toolbox. The
toolbox includes user-interface tools that facilitate spectral
data visualization and the indexing and working with the
data structure produced by the CQT.

1. INTRODUCTION

Constant-Q transform (CQT) here refers to a technique
that transforms a time-domain signal x(n) into the time-
frequency domain so that the center frequencies of the fre-
quency bins are geometrically spaced and their Q-factors
are all equal. In effect, this means that the frequency res-
olution is better for low frequencies and the time resolu-
tion is better for high frequencies. The CQT is essen-
tially a wavelet transform, but here the term CQT is pre-
ferred since it underlines the fact that we are consider-
ing transforms with relatively high Q-factors, equivalent
to 12–96 bins per octave. This renders many of the con-
ventional wavelet transform techniques inadequate; for ex-
ample methods based on iterated filterbanks would require
filtering the input signal hundreds of times.

The CQT is well-motivated from both musical and per-
ceptual viewpoints. The fundamental frequencies (F0s) of
the tones in Western music are geometrically spaced: in
the standard 12-tone equal temperament, for example, the
F0s obey Fk = 440Hz× 2k/12, where k ∈ [−50, 40] is an

1 Equally contributing authors.
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integer. From auditory perspective, the frequency resolu-
tion of the peripheral hearing system of humans is approx-
imately constant-Q over a wide range from 20kHz down to
approximately 500Hz, below which the Q-values get pro-
gressively smaller [1]. From perceptual audio coding, we
know that the shortest transform window lengths have to
be of the order 3ms in order to retain high quality, whereas
higher frequency resolution is required to carry out coding
at low frequencies [2]. All this is in sharp contrast with
the conventional discrete Fourier transform (DFT) which
has linearly spaced frequency bins and therefore cannot
satisfy the varying time and frequency resolution require-
ments over the wide range of audible frequencies.

There are at least three reasons why the CQT has not
widely replaced the DFT in audio signal processing. Firstly,
it is computationally more intensive than the DFT. Sec-
ondly, the CQT lacks an inverse transform that would allow
perfect reconstruction of the original signal from its trans-
form coefficients. Thirdly, CQT produces a data structure
that is more difficult to work with than the time-frequency
matrix (spectrogram) obtained by using short-time Fourier
transform in successive time frames. The last problem is
due to the fact that in CQT, the time resolution varies for
different frequency bins, in effect meaning that the ”sam-
pling” of different frequency bins is not synchronized. In
this paper, we propose solutions to these three problems.

As already mentioned above, constant-Q transform can
be viewed as a wavelet transform. The wavelet literature is
well-matured (see e.g. [3]) and constant-Q (wavelet) trans-
forms have been proposed that lead to perfect reconstruc-
tion. However most of the work has focused on critically-
sampled dyadic wavelet transforms, where the frequency
resolution is only one bin per octave – this is clearly in-
sufficient for music signal analysis. Recently, perfect re-
construction wavelet transforms have been proposed that
have rational dilation factors, meaning that the center fre-
quencies of the bins are spaced by p/q, where p and q are
integers [4, 5]. However, these are based on iterated fil-
ter banks and are therefore less attractive computationally
when high Q-factors, such as 12–96 bins per octave, are re-
quired. Another interesting direction of research has been
the application of frequency warping on a time-domain sig-
nal in such a way that the DFT of the warped signal is
related to the DFT of the original signal via a frequency
warping function [6, 7]. A problem with these is that the
warping filters have infinite impulse responses which makes
it hard to design an inverse transform.

Brown and Puckette proposed a computationally effi-
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cient technique for computing constant-Q transforms with
high Q factors based on the fast Fourier transform (FFT)
and a frequency-domain kernel [8, 9]. A drawback of this
CQT implementation is that there is no inverse transform
for it. Recently, FitzGerald has shown that a good qual-
ity approximate inverse transform can be obtained if the
signal to be inverted has a sparse representation in the dis-
crete Fourier transform domain [10]. However, this is not
true for music signals in general.

This paper proposes specific solutions to the three prob-
lems of CQT mentioned above. Our solution to the compu-
tational efficiency problem is based on the technique pro-
posed by Brown and Puckette in [9] which we extend to
further improve its computational efficiency. Secondly, we
propose to structure the transform kernel in such a way that
reasonable-quality inverse transform (approximately 55dB
signal-to-noise ratio) is obtained using the conjugate trans-
pose of the CQT transform kernel. The reconstruction is
achieved introducing only a moderate amount of redun-
dancy (by factor four or five) to the transform (here re-
dundancy refers to the number of elements in the trans-
form compared to the samples in the original time-domain
signal). Thirdly, we propose interface tools for the data
structure that facilitate working with the signal in the trans-
form domain. A reference implementation of the proposed
methods is provided as a Matlab toolbox at http://www.
elec.qmul.ac.uk/people/anssik/cqt/.

2. SIGNAL MODEL

The CQT transform XCQ(k, n) of a discrete time-domain
signal x(n) is defined by

XCQ(k, n) =

n+bNk/2c∑
j=n−bNk/2c

x(j)a∗k(j − n+Nk/2) (1)

where k = 1, 2, . . . ,K indexes the frequency bins of the
CQT, b·c denotes rounding towards negative infinity and
a∗k(n) denotes the complex conjugate of ak(n). The basis
functions ak(n) are complex-valued waveforms, here also
called time-frequency atoms, and are defined by

ak(n) =
1

Nk
w

(
n

Nk

)
exp

[
−i2πnfk

fs

]
(2)

where fk is the center frequency of bin k, fs denotes the
sampling rate, and w(t), is a continuous window func-
tion (for example Hann or Blackman window), sampled
at points determined by t. The window function is zero
outside the range t ∈ [0, 1].

The window lenghts Nk ∈ R in (1)–(2) are real-valued
and inversely proportional to fk in order to have the same
Q-factor for all bins k. Note that in (1) the windows are
centered at the sample n of the input signal. Different win-
dow functions will be discussed in Sec. 5.

In the CQT considered here, the center frequencies fk
obey

fk = f12
k−1
B (3)

where f1 is the center frequency of the lowest-frequency
bin, and B determines the number of bins per octave. In

practice,B is the most important parameter of choice when
using the CQT, because it determines the time-frequency
resolution trade-off of the CQT.

The Q-factor of bin k is given by

Qk
def.
=

fk
∆fk

=
Nkfk
∆ωfs

(4)

where ∆fk denotes the −3dB bandwidth of the frequency
response of the atom ak(n) and ∆ω is the −3dB band-
width of the mainlobe of the spectrum of the window func-
tion w(t), being ∆ω ≈ 1.50 [DFT bins] for the Hann win-
dow and ∆ω ≈ 1.73 for Blackman, for example. The Q-
factors Qk are by definition the same for all bins, therefore
we omit the subscript and write simply Q below.

It is typically desirable to make Q as large as possible,
so as to make the bandwidth ∆fk of each bin as small as
possible and thus introduce minimal frequency smearing.
However, we cannot employ arbitrarily high Q factors –
otherwise portions of the spectrum between the bins would
not be analyzed. The value of Q that introduces minimal
frequency smearing but still allows signal reconstruction is

Q =
q

∆ω(2
1
B − 1)

(5)

where 0 < q / 1 is a scaling factor, and typically q = 1.
Values of q smaller than 1 can be used to improve the time
resolution at the cost of degrading the frequency resolu-
tion. Important to note is that setting for example q = 0.5
and B = 48 leads to exactly the same time-frequency res-
olution trade-off as setting q = 1 and B = 24, but the
former contains twice more frequency bins per octave. In
this sense, values q < 1 can be seen to implement oversam-
pling of the frequency axis, analogously to the use of zero
padding when calculating the DFT. For example q = 0.5
corresponds to oversampling factor of 2: the effective fre-
quency resolution is equivalent to B/2 bins per octave, al-
though B bins per octave are computed.

Substituting (5) in (4) and solving for Nk, we get

Nk =
qfs

fk(2
1
B − 1)

(6)

where we see that the dependency on ∆ω has disappeared.
It is not computationally reasonable to calculate the co-

efficients XCQ(k, n) at all positions n of the input signal.
To enable signal reconstruction from the CQT coefficients,
successive atoms can be placed Hk samples apart (“hop
size”). In order to analyze all parts of the signal prop-
erly and to achieve reasonable signal reconstruction, values
0 < Hk / 1

2Nk are useful.

3. ALGORITHM FOR COMPUTING THE
TRANSFORM

The computationally-efficient forward CQT transform pro-
posed here is based on the principles proposed by Brown
and Puckette in [9]. Therefore we first explain the tech-
nique proposed in [9] and then describe the extensions in
Subsection 3.2.
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Figure 1. The upper panel illustrates the real part of the
transform bases (temporal kernel) that can be used to cal-
culate the CQT over two octaves, with 12 bins per octave.
The lower panel shows the absolute values of the corre-
sponding spectral kernel.

3.1 Algorithm of Brown and Puckette

Let us assume that we want to calculate the CQT trans-
form coefficients XCQ(k, n) as defined by (1) at one point
n of an input signal x(n). A direct implementation of (1)
obviously requires calculating inner products of the input
signal with each of the transform bases. The upper panel of
Fig. 1 illustrates the real part of the transform bases ak(n),
assuming here for simplicity only B = 12 bins per octave
and a frequency range of two octaves.

A computationally more efficient implementation is ob-
tained by utilizing the identity

N−1∑
n=0

x(n)a∗(n) =

N−1∑
j=0

X(j)A∗(j) (7)

where X(j) denotes the discrete Fourier transform (DFT)
of x(n) and A(j) denotes the DFT of a(n). Equation (7)
holds for any discrete signals x(n) and a(n) and stems
from Parseval’s theorem [3].

Using (7), the CQT transform in (1) can be written as

XCQ(k,N/2) =

N∑
j=0

X(j)A∗k(j) (8)

where Ak(j) is the complex-valued N -point DFT of the
transform basis ak(n) so that the bases ak(n) are centered
at the pointN/2 within the transform frame. Following the

terminology of [9], we will refer to Ak(j) as the spectral
kernels and to ak(n) as the temporal kernels. The lower
panel of Fig. 1 illustrates the absolute values of the spectral
kernels Ak(j) corresponding to temporal kernels ak(n) in
the upper panel.

As observed by Brown and Puckette, the spectral ker-
nels Ak(j) are sparse: most of the values being near zero
because they are Fourier transforms of modulated sinu-
soids. Therefore the summation in (8) can be limited to
values near the peak in the spectral kernel to achieve suf-
ficient numerical accuracy – omitting near-zero values in
Ak(j). This is the main idea of the efficient CQT transform
proposed in [9]. It is also easy to see that the summing has
to be carried out for positive frequencies only, followed by
multiplication by two.

For convenience, we store the spectral kernels Ak(j) as
columns in matrix A. The transform in (8) can then be
written in matrix form as

XCQ = A∗X (9)

where A∗ denotes the conjugate transpose of A. Matrices
X and XCQ have only one column each, containing the
DFT valuesX(j) and the corresponding CQT coefficients,
respectively.

3.2 Processing One Octave at a Time

There are two remaining problems with the method out-
lined in the previous subsection. Firstly, when a wide range
of frequencies is considered (for example, eight octaves
from 60Hz to 16kHz), quite long DFT transform blocks are
required and the spectral kernel is no longer very sparse,
since the frequency responses of higher frequency bins are
wider as can be seen from Fig. 1. Secondly, in order to
analyze all parts of the input signal adequately, the CQT
transform for the highest frequency bins has to be calcu-
lated at least every NK/2 samples apart, where NK is the
window length for the highest CQT bin. Both of these fac-
tors reduce the computational efficiency of the method.

We propose two extensions to address the above prob-
lems. The first is processing by octaves. 2 We use a spec-
tral kernel matrix A which produces the CQT for the high-
est octave only. After computing the highest-octave CQT
bins over the entire signal, the input signal is lowpass fil-
tered and downsampled by factor two, and then the same
process is repeated to calculate the CQT bins for the next
octave, using exactly the same DFT block size and spec-
tral kernel (see (8)). This is repeated iteratively until the
desired number of octaves has been covered. Figure 2 il-
lustrates this process.

Since the spectral kernel A now represents frequency
bins that are at maximum one octave apart, the length of
the DFT block can be made quite short (according to Nk

of the lowest CQT bin) and the matrix A is very sparse
even for the highest-frequency bins.

Another computational efficiency improvement is ob-
tained by using several temporally translated versions of
the transform bases ak(n) within the same spectral kernel

2 We want to credit J. Brown for mentioning this possibility already in
[8], although octave-by-octave processing was not implemented in [8, 9].
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Figure 2. An overview of computing the CQT one octave
at the time. Here G(f) is a lowpass filter and ↓ 2 denotes
downsampling by factor two.

matrix A. In other words, successive columns of A con-
tain the DFTs of ak(n) that have been temporally shifted
to different locations. As a result, DFT transforms of the
input signal x(n) to obtain the DFT spectrum X(j) in (8)
need to be computed less often: if there are P successive
atoms within the same spectral kernel, the DFTs need to be
computed P times less often.

Figure 3 illustrates the general structure of the kernel
matrix applied in this paper. In the shown example, the
number of bins per octave B = 12. By looking closely,
it can be seen that the highest four kernel functions have
the same center frequency, but correspond to four differ-
ent temporal locations. Similarly, the two lowest kernel
functions correspond to the same frequency, but different
temporal locations. The detailed structure of the spectral
kernel will be discussed in Sec. 5; here it suffices to say
that the kernel structure is crucial for high-quality recon-
struction (inverse CQT) of the input signal x(n) from the
CQT coefficients.

The transform for a single octave (indicated by ”CQT
for one octave” in Fig. 2) is defined as follows. Let xd(n)
denote a signal that is obtained by decimating the input
signal d times by factor two. The sampling rate of xd(n)
is therefore fs/2d. The signal xd(n) is blocked into DFT
transform frames of lengthNDFT which are positionedHDFT

samples apart (i.e., successive frames overlap by NDFT −
HDFT samples). Each frame is Fourier transformed using a
rectangular window and the resulting spectrogram is stored
in a matrix X, where column m contains the complex-
valued spectrum of frame m (positive frequencies only).
Then the CQT transform XCQ

d for this octave d is calcu-
lated as

XCQ
d = A∗Xd (10)

where A∗ is the conjugate transpose of the complex-valued
spectral kernel matrix for one octave as described above.
The column m of XCQ

d contains the CQT coefficients rep-
resenting DFT block m and the different rows of XCQ

d cor-
respond to the different spectral kernels that are stored in
the different columns of matrix A.

The above process is repeated for each successive oc-
tave, as illustrated in Fig. 2. Note that the kernel remains
the same for all octaves. Also, the DFT length NDFT (in
samples) remains the same despite the decimations, there-

Figure 3. Illustration of the general structure of the kernel
matrices used in this paper. The upper panel shows the real
part of the temporal kernel used to compute the CQT for
one octave. The lower panel shows the absolute values of
the corresponding spectral kernel.

fore the effective FFT length (in seconds) doubles in each
decimation. The first octave is computed using signal x0(n),
which is identical to the input, x(n).

The decimated signals xd(n) are obtained from xd−1(n)
by lowpass filtering and downsampling by factor two. For
the lowpass filter G(f), we use zero-phase forward-and-
reverse filtering with a sixth-order Butterworth IIR filter
that has a cut-off frequency fs/4. Forward-and-reverse fil-
tering means that after filtering in the forward direction,
the filtered sequence is reversed and run back through the
filter and the result of the second filtering is then reversed
once more. The result has precisely zero phase distortion
and magnitude modified by the square of the filter’s mag-
nitude response. Figure 4 shows the magnitude response of
the lowpass filter G(f) (square of the magnitude response
of sixth-order Butterworth filter). Downsampling by factor
two is then done simply by removing every second sample
of the time-domain signal.

A final practical consideration is to deal with the be-
ginning and end of the input signal x(n). We address
this problem by padding 2D−1N1 zeros at be beginning
of the signal and 2D−1NDFT zeros at the end of the signal,
whereN1 is the window length of the lowest-frequency bin
within the one-octave kernel, D is the number of octaves
calculated, and NDFT is the length of the DFT frame. The
zero padding is done before any of the CQT computations,
and the zeros are then removed at the inverse transform
stage. Note that a smaller number of zeros is needed, if the
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Figure 4. Magnitude response of the lowpass filter G(f).

zero padding is done separately for each octave, but this
would make the implementation less clear and therefore
we assume that the number of zeros padded is negligible
in comparison to the length of the input signal x(n).

3.3 Computational Complexity

Let L denote the length of the input signal x(n) after the
zero padding at the beginning and the end. The number of
DFT frames m to cover the entire signal before any deci-
mation is b(L − NDFT)/HDFTc + 1. For the next octave,
the number of fast Fourier transforms (FFTs) is roughly
twice smaller, b(L/2 − NDFT)/HDFTc + 1, in fact a bit
more than twice smaller. For the next octave, the num-
ber of DFT transforms is rought four times smaller, and so
forth. Since 1 + 1

2 + 1
4 + 1

8 + . . . ≈ 2, the total number C
of FFTs to compute is

C ≤ 2 (b(L−NDFT)/HDFTc+ 1) (11)

regardless of the number of octaves computed.
For each of theC DFT frames, the complex-valued DFT

spectrum (a column vector) has to be multiplied by the
conjugate transpose of the spectral kernel A∗ (see (10)).
However, since A is sparse, the number of multiplications
is quite small. In our reference Matlab implementation, the
matrix is implemented as a sparse matrix, therefore also the
memory complexity of storing A is quite low. The exact
number of non-zero elements in A depends on the kernel
structure and the threshold below which the near-zero ele-
ments are rounded to zero (see 8). The number of lowpass
filterings is proportional to the number of octaves D and
causes a non-negligible computational load too.

To compare the complexity of the proposed method with
that of the original method by Brown and Puckette [9],
consider a case where the CQT is computed over an eight-
octave range. If atoms over all octaves are stored into a
single kernel, the frequency kernels in the highest octave
will have 27 = 128 times more non-zero elements than the
corresponding atoms in the lowest octave, and the number
of multiplications in (9) increases in the same proportion.
The lengths of the DFT transform frames, in turn, have to
be 128 times larger in order to accommodate the lowest-
frequency atoms without decimation.

4. INVERSE CQT TRANSFORM

Figure 5 shows an overview of the inverse CQT transform
(ICQT), where an approximation x̂(n) of the input sig-
nal x(n) is reconstructed from the octave-wise CQT co-

Figure 5. An overview of the inverse CQT transform
(ICQT), where an approximation x̂(n) of the input sig-
nal x(n) is reconstructed from the octave-wise CQT co-
efficient matrices XCQ

d .

efficient matrices XCQ
d . The process is analogous to the

forward transform, except that all is done in reverse order.
The block indicated by ”ICQT for one octave” in Fig. 5

corresponds to the reconstruction of a time-domain signal
yd(n) that represents only one-octave range of the input
signal x(n). The signal yd(n) is obtained as follows. First,
an inverse spectral kernel V is applied to reconstruct the
complex-valued DFT bins within this single octave:

Yd = V∗XCQ
d (12)

where the column m of Yd contains the complex-valued
DFT approximating the column m of Xd in (10), but only
over the frequency bins that belong to this octave – outside
this octave, Yd is zero. The structure of the inverse spec-
tral kernel V will be described in Sec. 5: we use kernels
for which V = A∗, meaning that the inverse kernel is a
conjugate transpose of the forward transform kernel. 3

Since each column of Yd only contains the DFT spec-
trum for the positive frequencies, each column is augmented
with its complex conjugate spectrum to reconstruct the neg-
ative frequencies (for real-valued time-domain signals, the
DFT spectrum is conjugate-symmetric). The resulting columns
are inverse DFT transformed to obtain the time-domain
signals within each DFT block, and successive DFT blocks
are then overlap-added to construct the entire signal yd(n)
over time.

The signal yd(n) contains a reconstruction of one oc-
tave of the original input signal x(n). This signal is added
to a signal that already contains a reconstruction of all the
lower octaves (d+ 1, d+ 2, . . . , D−1) in order to obtain a
signal x̂d(n) that approximates the input signal for octaves
d, d+1, . . . , D−1. The signal x̂d(n) is then upsampled by
factor two by inserting zeros between the original samples,
multiplying the signal by two, and lowpass filtering using
zero-phase forward-and-reverse filtering with a sixth-order
Butterworth IIR filter having cut-off frequency fs/4 (the
same that was used at the analysis stage).

The above process is repeated for each octave at a time,
as illustrated in Fig. 5. After reconstructing all the octaves,
d = 0, 1, . . . , D − 1, the resulting signal x̂0(n) ≡ x̂(n) is
an approximate reconstruction of the input signal x(n).

3 Note that then Yd = V∗XCQ
d = AA∗Xd, where multiplication

by AA∗ actually implements a near-perfect one-octave bandpass filter.
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The computational complexity of the inverse transform
is approximately the same as that of the forward transform:
here, instead of FFTs, inverse FFTs are computed, and in-
stead of the spectral kernel, the inverse kernel is applied.
Since we use V = A∗, the inverse kernel is sparse too.

5. KERNEL DESIGN

As already mentioned in Sec. 3.2, we use a transform ker-
nel that contains frequency bins over one octave range, and
several time-shifted atoms for each frequency bin k. These
time-shifted atoms should cover the input signal over the
HDFT samples between the beginning of DFT framem and
the beginning of the next frame, m+ 1.

5.1 General Considerations

It is natural to expect that all samples of the input signal
x(n) have an equal weight in the transform, and therefore
to require that successive window functions w(n) for bin
k sum up to approximately unity over the entire signal. In
the case of an analysis-synthesis system (CQT followed by
inverse CQT), the squares of successive window functions,
[w(n)]

2, have to sum to unity. This is because the signal
will be windowed twice at the time-frequency location of
each atom: once when applying A∗ for the CQT, and sec-
ond time when applying V∗ ≡ A for the ICQT. Applying
windowing at the synthesis (ICQT) stage is necessary in or-
der to avoid audible artefacts if the signal is manipulated in
the CQT transform domain. If no processing takes place in
the transform domain, the above requirement (that [w(n)]

2

sum to unity) leads to a high-quality reconstruction.
Typically, then, the window function w(n) is defined to

be the square root of one of the commonly used window
functions (e.g. Hann or Blackman). For analysis-only ap-
plications, the square root can be omitted to improve the
time-frequency localization properties of the window.

Most window functions (e.g. Hann and Hamming) sum
to a constant value only when the distance between suc-
cessive windows Hk = 1

zNk, where z ≥ 2 is an integer
and Nk is the window size for atom k. For an individual
frequency bin k, the DFT frame hop HDFT can be chosen
to be an integer multiple of 1

zNk so that exactly an integer
number of time-shifted atoms would fit between the begin-
nings of frame m and m+ 1, and these time-shifted atoms
would be stored in the kernel A. However, this require-
ment for HDFT cannot be simultaneously satisfied for all
frequency bins k with different Nk. A reasonable solution
is obtained by using a relatively large DFT frame size, in
which case HDFT can be made large relative to atom sizes
Nk, and therebyHDFT approximately divisible by 1

zNk for
all k. This approach leads to a reasonable quality results.
However, due to the fact that such a kernel contains a dif-
ferent number of atoms for each bin, accessing and ma-
nipulating the CQT coefficients in the transform domain
becomes slightly more complicated numerically, and the
quality of the reconstruction degrades since neighbouring
atoms are not temporally synchronized. Also, sparsity of
the spectral kernel A suffers since DFT frame size is large
relative to the atom sizes Nk.

5.2 Proposed Kernel Structure

Due to the above reasons, we propose a kernel, where the
atoms within each octave are synchronized in the sense that
they are centered at the same, successive, points in time.
In this case, the temporal ripple can be minimized by us-
ing a window function that roughly sums up to unity for a
wide range of overlap values. Blackman and Blackman-
Harris windows are particularly suitable here: provided
that successive windows overlap at least by 66% and 75%
for Blackman and B.-Harris windows, respectively, the ex-
act amount of overlap is not important, but successive win-
dows sum up to approximately a constant value which can
be normalized to unity. Using such windows it is now pos-
sible to use the same number of temporal atoms for each
bin by defining a common hop size HATOM for all atoms
in the kernel. The relative hop size HATOM/Nk will thus
vary accross bins k, but only up to the factor two between
the smallest and the largest atom in the one-octave kernel.

The parameter HATOM determines a trade-off between
reconstruction quality (SNR of the signal reconstructed by
ICQT) and redundancy of the representation. Having small
value ofHATOM leads to high quality, but also more redun-
dancy, that is, larger number of CQT coefficients in propor-
tion to the number of samples in the input signal. However,
a default value for HATOM is easy to calculate: we recom-
mend using HATOM/NK ≈ 1

3 or 1
4 , where NK denotes the

lenght of the shortest atom within the one-octave kernel.
This leads to redundancy factors around five and quality
that is near to the optimal (around 55dB).

It should be noted that although the atoms are centered
at same temporal positions within each octave, at the next-
lower, octave, the atoms are centered at only every second
of these temporal positions, due to the decimation by factor
two before processing the next octave.

The number of temporally shifted atoms within the one-
octave kernel is the same for all bins k in the above-described
approach. In practice, we choose a DFT frame length that
is the next power of two of the largest atom within the oc-
tave, and then populate the kernel with as many temporally
shifted atoms as there fit. The DFT frame hopHDFT is then
chosen accordingly. This leads to the most sparse spectral
kernel A and therefore the fastest implementation.

To understand why neighbouring bins sum up to unity
over frequency (and not just over time), note that within
each octave, neighbouring bins are centered at same point
and their lengths Nk are only slightly different, assuming
B > 12 bins per octave. As a result, the neighbouring bins
perform sampling of time-frequency domain that is locally
very similar to that of the DFT, and similarly to the DFT,
sum up to an almost perfectly flat frequency response.

6. REDUNDANCY

The redundancy factor R of the proposed CQT transform
is given by

R =
2CCQT

CIN
(13)

where CCQT and CIN denote the amount of CQT coeffi-
cients and the amount of samples in the input signal, re-
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spectively. The factor 2 is due to the fact that CQT coeffi-
cients are complex-valued.

The amount of CQT coefficients produced by process-
ing the highest octave is COCT = CINB/(hNK), where
h = HATOM/NK is the atom hop size relative to the length
NK of the shortest atom (hiqhest-frequency bin). Substi-
tuting the length NK from (6), we get

COCT =
CINfKB(2

1
B − 1)

hqfs
≈ 0.7CINfK

hqfs
(14)

where the latter approximation is obtained by noting that
B(2

1
B − 1) ≈ 0.7 when B ≥ 12. Here we have assumed

that the number of bins per octave B ≥ 12.
Since the length of the input signal decreases by the fac-

tor of two at each decimation, it is easy to see from (14)
that the number of CQT coefficients decreases by the same
factor for each octave down. Therefore the overall amount
of data for a large number of octaves is COCT(1 + 1

2 + 1
4 +

1
8 + . . .) ≈ 2COCT. Substituting this to (13), the overall
redundancy of the CQT transform is

R =
2× 2× COCT

CIN
=

2.8fK
hqfs

. (15)

Here we can see that the redundancy is proportional to
the highest frequency analyzed, fK , and inversely propor-
tional to the relative atom hop size h and the Q-value scal-
ing factor q (see 5).

7. INTERFACE TOOLS FOR THE CQT DATA

In the described kernel structure, temporal positions where
XCQ(k, n) is calculated are the same for all bins within
one octave (although the actual time resolution of course
decreases from the highest to the lowest bin since the atom
lengths vary). Moving down to the lower octaves, how-
ever, the number of points where XCQ(k, n) is evaluated
decreases by factor two at each octave, and therefore the
number of time points whereXCQ(k, n) is evaluated is not
the same for all bins from the lowest frequency bin (of the
lowest octave) to the highest bin (of the highest octave).

In order to allow the user an easy access to the infor-
mation without minding the inherent time sampling tech-
nique, the reference implementation of the toolbox in Mat-
lab contains interface tools to access the CQT data in a
representation that is regularly sampled in time. This “ras-
terised” CQT data structure is achieved by data interpo-
lation between the time points XCQ(k, n) that have been
computed by the CQT. With the interface tools, the user
can obtain the entire CQT matrix representing the input
data, or access only extracts of it. It is also possible to
access only a certain time slice n of the CQT transform
XCQ(k, n) or all the CQT coefficients of a certain fre-
quency bin over time.

Another important tool is a function for plotting the
magnitude of the CQT transformXCQ(k, n) in a form sim-
ilar to the DFT spectrogram using the described interpo-
lation technique. Figure 6 shows the CQT transform of
a four-second music excerpt containing singing, acoustic
guitar, bass, and synthesizer sounds. More examples can
be found online at the URL given in Introduction.

Figure 6. CQT transform of a music excerpt containing
singing, acoustic guitar, bass, and synthesizer sounds.

8. RESULTS

Figure 7 shows the quality of the reconstructed time-domain
signal x̂(n) as a function of the redundacy R (see (13))
and different window functions w(n). Here the number of
bins per octave was B = 48. In this plot, the redundancy
was increased by decreasing the relative hopsize h of the
shortest atom from 0.6 to 0.1. A constant Q scaling factor
q = 1 has been used, which means that only time-domain
redundancy has been added. Using q = 0.5 (frequency-
domain oversampling) would improve the quality further
by ≈ 3dB but also increase the redundancy by factor two,
therefore results are shown only for q = 1.

The input signal was Gaussian random noise, bandpass
filtered to contain only frequency components within the
range being analysed: we used fK = fs/3 = 14.7kHz for
the highest CQT bin, and analyzed eight octaves down to
57Hz. Random noise represents a “worst case”: for music
signals, the reconstruction quality is typically a few deci-
bels better. Redundancy factors were calculated by substi-
tuting fK = 14.7kHz and fs = 2 × 14.7kHz into (15),
where the latter is the sampling rate required to represent
the time domain signal up to 14.7kHz. 4

Signal-to-noise ratios (SNRs) were calculated by com-
paring the reconstructed signal x̂(n) after inverse CQT with
the input signal x(n):

SNR = 10 log10

∑
n[x(n)]2∑

n[x̂(n)− x(n)]2
(16)

It can be observed that the choice of the window func-
tion has crucial influence on the quality of the reconstruc-
tion. For a very low redundancy, corresponding to a large
atom hop size, the highest SNR values are achieved us-
ing a Hann window. For the redundancy range from 3
to 4.5 the Blackman window performs best, whereas for

4 Note that if an input signal is to be analyzed up to the Nyquist fre-
quency (fK = fs/2), the input signal has to be slightly upsampled (say,
f ′s = 4

3
fs) before applying the proposed method, since the lowpass filter

G(f) in Fig. 4 is not ideal.
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Figure 7. Quality of the reconstructed signal as a function
of the window function w(n) and the redundancy R.

Figure 8. Quality of the reconstructed signal as a function
of the number of bins per octave, B, and redundancy R.

R > 4.5 the Blackman-Harris window achieves the high-
est SNR values. This result can be explained by consid-
ering the time ripple of the different window functions for
varying hop sizes. The Blackman-Harris window shows
large time ripple with small overlap values, but for overlap
values greater than 75%, consecutive windows sum up to
unity almost perfectly. The Blackman window has simi-
lar properties but converges slower to a low level of ripple.
Figure 7 shows that using Blackman-Harris window, SNR
values of about 55dB are achieved with R ≈ 5.

Fig. 8 shows the quality of the reconstructed time-domain
signal x̂(n) as a function of the redundacy R (see (13)) us-
ing a Blackman-Harris window and different values for B
(bins per octave). It can be observed that the quality of
the reconstructed signal improves by increasing the num-
ber of bins per octave, achieving up to 60 dB SNR using
B = 96. The property of the Blackman-Harris window ob-
taining the highest SNR values already for low redundancy
values is independent of the number of bins per octave.
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10. CONCLUSIONS

Computationally efficient methods were proposed for com-
puting the CQT and its inverse transform. The proposed
techniques lead to a reasonable-quality reconstruction (around
55dB) of an input signal from its CQT coefficients while
requiring only moderate redundancy (by factor four or five)
in the CQT representation. A reference implementation of
the methods is provided as a Matlab toolbox. It is hoped to
be useful for several applications, including sound source
separation, music signal analysis, and audio effects.
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ABSTRACT

In this paper, we propose a computational method of au-
tomatic music composition which generates pieces based
on counterpoint and imitation. Counterpoint is a compo-
sitional technique to make several independent melodies
which sound harmonious when they are played simultane-
ously. Imitation is another compositional technique which
repeats a theme in each voice and associate the voices. Our
computational method consists of the stochastic model of
counterpoint and that of imitation. Both stochastic models
are simple Markov models whose unit of state is a beat.
We formulate the problem as the problem to find the piece
which maximize the product of probabilities that corre-
spond to both stochastic models. Dynamic programming
can be used to find the solution because the models are
simple Markov models. Experimental results show that our
method can generate pieces which satisfy the requirements
of counterpoint within two successive beats, and can real-
ize imitations of the theme with flexible transformations.

1. INTRODUCTION

Counterpoint is one of the most basic principles for com-
position and arrangement. It is a composition technique
for tuning voices, which are independent in contour and
rhythm. Counterpoint consists of many prohibitions and
recommendations such as ones which regulate the progres-
sion of a melody or the progression of interval between
voices as shown in figure 1. It takes long time to master
counterpoint, because finding melodies which satisfy many
conditions is difficult. Therefore, realization of automatic
contrapuntal composition will be valuable.

Imitation is also a very important technique for con-
trapuntal music. In a piece based on imitation, a theme
melody is exposed at the start of the piece and melodies
which imitate the theme repeatedly occur in all voices. As
a result, imitation gives sense of unity to the piece. Imita-
tion is an indispensable basis for some musical forms such
as canon or fugue. Automatic composition systems based
on counterpoint and imitation are useful because whole
musical pieces can be obtained by simply providing a short
theme and setting the structure of the piece.
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Figure 1. Examples of requirements of counterpoint. The
left figure shows a requirement for melodies.Conjunct
motions (bar 1) should be used frequently. Skips (bar 2)
should be used occasionally. The right figure shows a re-
quirement for intervals between voices. Parallel fifths is
prohibited [1, 2].

There are some previous studies about automatic coun-
terpoint, such as rule-based approaches [3, 4] and methods
based on stochastic models [5, 6]. A method based on hid-
den Markov models is also proposed in [7]. These studies
are dealing with a kind of arrangement which is a com-
position of counter-melodies played simultaneously with a
main melody which is given (cantus firmus).

In this paper, we aim at contrapuntal composition based
on imitation of a given theme. We do not aim at generating
pieces which are better than human compositions, but gen-
erating pieces which are acceptable from the standpoint of
counterpoint and imitation.

Cope also proposes an contrapuntal composition sys-
tem , which is based on the method of re-combination us-
ing the fragments of existing music as the components of
generated pieces [8]. The limitation of his approach is
that results are likely to be similar to particular pieces he
uses, and that is his intention. The difference between our
purpose and Cope’s purpose is on this point. We intend
to formulate general model without such limitation of the
method of re-combination and generate new pieces.

We focus on two-voice free counterpoint, while there
are various types in rhythms and the number of voices
in counterpoint. Although the number of voices varies,
the most important things are the relations in each pair of
voices. Therefore, we focus on two-voice counterpoint,
which is the most basic type of counterpoint about the
number of voices. Concerning the rhythm, there are strict
counterpoint and free counterpoint. The former is devel-
oped for pedagogy and has several kinds of fixed rhythms.
The latter has variable rhythms and is more practical. We
focus on practical composition and therefore deal with free
counterpoint. In the following sections, counterpoint means
free counterpoint.

2. STOCHASTIC APPROACH TO
COUNTERPOINT AND IMITATION

In this section, we discuss a stochastic approach to the pro-
cess of composition and introduce three assumptions. The
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formulation for the automatic composition based on coun-
terpoint and imitation is derived from theseassumptions.

2.1 Asummption about the Contrapuntal
Composition

To generate proper contrapuntal pieces, we should define
what is proper and what is not proper for the music we
try to generate. For this purpose, it is considered to be ef-
fective to adopt a stochastic approach. Although we can
use the knowledge of counterpoint represented by explicit
rules, all the qualities of music can not be represented only
by rules of counterpoint. In actual composition, a sub-
stantial part of selecting notes are handled by the com-
poser’s intuition. Therefore, it is better to model not only
the knowledge of counterpoint but also the tendencies of
composers. To model composer’s tendencies of compos-
ing contrapuntal pieces, we propose a stochastic approach
based on the following assumption;

Assumption 1 When an experienced composer write a con-
trapuntal piece, he or she is subjected to a probability dis-
tribution Pr(X) which is formed by knowledge and train-
ing of counterpoint, and realizes composition by a trial
from the probability distribution (the variableX correspon-
ds to a piece of music).

In this point of view, existing contrapuntal pieces can be
considered as the outputs from the probability distribu-
tion Pr(X) and have high probabilities. In reverse, pieces
which have high probabilities are considered to satisfy the
requirements of counterpoint and to be acceptable as pieces
of music. This probability distribution is considered to be
the model of the contrapuntal composer.

2.2 Assumption about Three Steps of Composition
based on Imitation

The process of composition based on imitation can be roug-
hly divided into three steps:

1. The first step is to obtain a themeT . It can be com-
posed by composers or taken from existing melo-
dies.

2. The second step is to planS, the structure of imita-
tions and cadences. The structure of imitations indi-
cates where and from what pitch imitations begin.

3. The third step is to select concrete notes and com-
pose the actual pieceX.

In practice, these three steps are not necessarily separated.
However, these steps are considered to be carried out step
by step from an idealistic viewpoint.S varies with the
length and proportion of the piece according to time and
circumstances. Therefore,S is better to be planned or se-
lected by the user of the system before the automatic com-
position is started. For this reason,S should be also given
as well as the themeT . These ideas are summed up as the
following assumption;

Assumption 2 When a composer makes a piece based on
imitation, he or she firstly obtainT , a theme to be imi-
tated. Next,S, the structure of imitations and cadences is
decided. Then, composition using the themeT and struc-
tureS is started.

If we deal with the style of tonal counterpoint, the struc-
ture S should include the plan of code progressions and
key modulations. In this paper, however,S do not includes
them. To make the problem simple, we deal with modal
counterpoint, which is mainly the style of the Renaissance
period and do not have code progressions.

2.3 Asummption about the Composition based on
Imitation

The process of composition based on imitation of a theme
can be viewed from the standpoint of probability in a sim-
ilar way to assumption 1. Although imitation tends to be
similar to the theme, imitation is not necessarily identical
to it. For example, pitch shifts on the scale, intention to
avoid unnatural harmonies, and tonality often affect imita-
tions and transform them from the original theme. Such
flexibility is necessary where strict imitations cause unfa-
vorable results. A probability distribution in the next as-
sumption is useful to realize such flexibility;

Assumption 3When an experienced composer composes a
piece based on imitation of a theme, he or she obtains the
themeT and plans the structureS. After that, the com-
poser composes the pieceX. At this time, the composer is
subjected to a conditional probabilityIm(X|T, S), which
is formed by experiences of composition.

This probabilityIm(X|T, S) is considered as the model of
imitation-based composition.

2.4 Formulation Based on the Three Assumptions

From these three assumptions, the problem of the auto-
matic contrapuntal composition based on imitation of a
theme is considered as a problem to obtain the pieceX
which give high probabilities to both the probability of the
stochastic model of counterpoint and that of imitation. We
show an example of the piece we intend to generate in fig-
ure 2. WhenT andS are given, the best piecẽX can be
formulated as the pieceX which maximizes the product of
Pr(X) andIm(X|T, S):

X̃ = argmax
X

Pr(X)Im(X|T, S). (1)

By this formulation, pieces which realize flexible imita-
tion and satisfy counterpoint are expected to be generated.
However, it is difficult to obtain the values ofPr(X) and
Im(X|T, S) directly from statistics on exsisting pieces of
music. The reason is that the number of possible pieces
is much larger than that of existing pieces. Therefore, it
is necessary to extract the essential information that deter-
mine Pr(X) and Im(X|T, S), and to approximate these
probabilities.
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Figure 2. An example of a piece based on counterpoint
and imitation [2]. Black circles indicate the starting points
and the starting pitches of imitations. Domains bounded
by dashed lines indicate imitations.

3. FORMALIZATION OF STOCHASTIC MODELS
FOR COUNTERPOINT AND IMITATION

In this section, we propose stochastic models of counter-
point and imitation which approximate equation 1 in the
case of two voices.

3.1 Formalization of the Stochastic Model of
Counterpoint

To calculatePr(X) and findX̃, data sparseness problem
and exponential expansion of computational cost must be
dealt with. A realistic solution is to approximate the prob-
ability by using existing probabilities and transition prob-
abilities of short unit. Meanwhile, in composition and lis-
tening music, there are beat transitions behind concrete
notes and they are written or listened upon beat transi-
tions. Therefore, it is natural to adopt the length of a beat
as the unit length of the states of probabilities. Defining
x1, x2, ¢ ¢ ¢ , xN as information of each beat of the piece
X, Pr(X) is transformed as:

Pr(X) =
N∏

i=2

Pr(xi|xi¡1, xi¡2, ¢ ¢ ¢ , x1)Pr(x1). (2)

Equation (2) can be approximated using a simple Markov
model, which is a favorable model in perspective of the
computational cost. The ideas behind the approximation
are as follows. Most requirements of the counterpoint are
concerned with regulating the transition of pitch and the
interval between voices. These requirements tend to be in-
cluded within two successive beats. Therefore, assuming
that long-raged dependences are ignorable,Pr(X) can be
approximated by a simple Markov model whose unit of the
state is a beat as:

Pr(X) '
N∏

i=2

Pr(xi|xi¡1)Pr(x1). (3)

Dynamic programming, by which the solution of prob-
ability maximization can be efficiently searched, can be
applied to the simple Markov model. That is why the sim-
ple Markov model is advantageous. The details of dynamic
programming are explained in section 4.

It is difficult to obtainPr(xi|xi¡1) andPr(x1) statisti-
cally, becausexi contains information of multiple voices
and have many possible variations of states, and therefore

further approximation is necessary. Referring to the re-
quirements of counterpoint, it is considered thatPr(xi|xi¡1)
andPr(x1) are correlated with some elements which con-
sist of them. As such elements, there are;

² Transition of pitch

² Transition of rhythm in each voice

² Transition of interval between voices

² Co-occurrence of rhythms of both voices

It is considered that there is a tendency that the higher
probabilities of these elements are, the higher the proba-
bility Pr(xi|xi¡1) andPr(x1) are. The transition of pitch
in a voice is related to the composition of the melodic pro-
gression, the transition of rhythm in a voice is related to
the sense of rhythm and the note lengths, and the transi-
tion of interval between voices are related to the composi-
tion of harmony. Co-occurrence of rhythms of both voices
are related to independence of voices and balance between
voices.

Therefore, in equation (3), it is appropriate thatPr(xi|
xi¡1) andPr(x1) are approximated by products of proba-
bilities related to such elements;

Pr(X) '
N∏

i=2

{Pr(p1
i |p1

i¡1)Pr(r1
i |r1

i¡1)

Pr(p2
i |p2

i¡1)Pr(r2
i |r2

i¡1)
Pr(ai,i¡1)Pr(r1

i , r2
i ) }

Pr(p1
1)Pr(p2

1)Pr(r1
1)Pr(r2

1)Pr(a1)Pr(r1
1, r

2
1).

(4)

rj
i andpj

i are the information of the rhythm pattern and
the series of pitch of each voice in the beati. j means the
index of the part.j = 1 corresponds to the upper voice and
j = 2 corresponds to the lower voice.ai,i¡1 is the series of
transition of the interval between the voices from the last
interval ofxi¡1 to the last interval ofxi (the information of
motions are also included. An oblique motion from major
third to perfect fourth is an example of a component of the
series).a1 is the series of transition of interval inx1.

3.2 Formalization of the Stochastic Model of Imitation

When we try to obtain the value ofIm(X|T, S), data sparse-
ness problem and the problem of computational cost occur
as well as when we obtain the value ofP(X). To deal with
these problem, it is necessary to approximateIm(X|T, S).
Before formalizing the approximated stochastic model of
imitation, we define some variables.Q is defined as the
number of imitations.Tn is defined as whatT is shifted in
pitch to start with the first pitch of thenth imitation. The
unit of pitch shift is a semitone. The first pitch of thenth
imitation is determined byS. Mn is the part ofX which
corresponds to thenth imitation. L is the number of beats
within T (which is equal to the number of beats withinTn

or Mn). tnl is information of thelth (1 ≤ l ≤ L) beat of
Tn. mn

l is information of thelth beat ofMn.
In view of following ideas, we approximateIm(X|T, S).

We can consider that there is a tendency that the more
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Mn, which is a part ofX, is similar toTn, the higher the
probability Im(X|T, S) is. Also, it is natural to assume
that defferent imitations are independent. On the other
hand, it is considered that whatever the notes in the re-
gion which is not the part of imitations or cadences are,
Im(X|T, S) do not vary so much and can be regarded as
constant. To make the problem simple, we always treat
X as a piece which have the cadences determined byS
(otherwise,Im(X|T, S) is regarded as zero). Therefore,
Im(X|T, S) can be approximated as the product of the
probabilities of each imitation as;

Im(X|T, S) '
Q∏

n=1

Im(Mn|Tn). (5)

To maximize both probabilities of the stochastic mod-
els at once, it is advantageous ifIm(Mn|Tn), the proba-
bility of imitation of each time in equation (5), can be rep-
resented by a simple Markov model which have the unit
of a beat, similar to the contrapuntal stochastic model. If
Im(Mn|Tn) is represented by a simple Markov model, dy-
namic programming can be used.

Im(Mn|Tn) is considered to depend on the similarity of
Tn andMn. This similarity is considered to be determined
mainly by four elements discussed later in this subsec-
tion. These four elements are reflected inIm(mn

l |mn
l¡1,

tnl , tnl¡1), which is a part ofIm(Mn|Tn). Im(Mn|Tn) can
be transformed as equation (6). The relations other than
that of the two successive beats in each probability can be
ignored as we mention later in this subsection. Therefore
equation (7) can be derived from equation (6).

Im(Mn|Tn)

=
L∏

l=2

Im(mn
l |mn

l¡1 ¢ ¢ ¢mn
1 , Tn)Im(mn

1 |Tn) (6)

'
L∏

l=2

Im(mn
l |mn

l¡1, t
n
l , tnl¡1)Im(mn

1 |tn1 ) (7)

Equation (7) indicates that dynamic programming can be
applied, because the stochastic model of imitation is equiv-
alent to the simple Markov model in this equation.

As previously mentioned, the elements which are im-
portant in order to measure the similality ofTn andMn

are:

1. similarity of direction of pitch transition (upward and
downward skip, upward and downward conjunct mo-
tion, and stay in the same pitch)

2. similarity of melodic interval

3. similarity of pitch

4. similarity of rhythm.

Among the four elements, the first and the forth are con-
sidered to be most important because the rough character
of the melody is determined by these. The second and the
third elements are considered to have a secondary role. If

these four similarities betweenTn andMn are high enough,
the imitation is expected to be successful.

Similarity of direction and melodic interval can be judg
ed by comparison of the transitions from the previous note
to the present note. Similarity of pitch can be judged by
comparison of only the present note. Similarity of rhythm
can be judged by comparison of the onset in each time.
Therefore, these four elements are considered to be re-
flected inIm(mn

l |mn
l¡1, t

n
l , tnl¡1).

4. DYNAMIC PROGRAMMING

In this section we explain dynamic programming, which
is a very efficient algorithm and can be used to find the
X that maximizes the probability. Generally speaking, it
takesO(cN ) computing time to search the best answer for
series of lengthN . However, dynamic programming can
reduce the computing time toO(N) by using the locality
of a Markov model.

In this paper, the application of dynamic programming
is as follows. We definep(xi, xi¡1) as the product of the
probabilities across the beati− 1 and the beati relating to
both stochastic models of counterpoint and imitation (eqa-
tion (4) and (7)).xi is the information of the beati in X.
Pmax is the maximum of the cumulative probability of all
p(xi, xi¡1) for eachi. P (xi) is the maximum cumulative
probability of p(xi, xi¡1) until xi appears at the beati.
The Markov property enable us to representP (xi) recur-
sively as;

P (xi) = max
xi−1

{p(xi, xi¡1)P (xi¡1)} . (8)

By preservingP (xi¡1) for everyxi¡1, we can obtainP (xi)
sequentially. Finally, we can obtainPmax as the maximum
of the P (xN ) for everyP (xN ). Furthermore, preparing
the backward pointerb(xi) which indicates the optimal
path forxi from beati− 1, we can obtain the optimal path
which realizesPmax. The optimal path can be obtained by
going back from thexN which realizePmax at the final beat
to the first beat.b(xi) is represented as;

b(xi) = argmax
xi−1

{p(xi, xi¡1)P (xi¡1)} . (9)

5. EXPERIMENT

5.1 Conditions of Experiment

In this section, we report the experiment of generating mu-
sical pieces by the proposed method.

Before computing with the algorithm, we manually pro-
duced the themeT which has length of2 bars at the start of
the lower voice. We also produced the structureS which
start imitation at the2nd ,8th, and13th bars with the note
B in the upper voice, and the7th and12th bars with the
note E in the lower voice. Cadences, which are included in
S, were also given manually.

In relation to the configuration of the probabilities, fur-
ther approximations were done as described in the follow-
ing subsections. As the number of notes in a beat increases,
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the number of states also increases. When the number of
states is large, necessary amount ofstatistical data is also
large. In general, further approximation of equation (4) and
(7) which make it easy to set the value statistically is neces-
sary. To determine the values of the probabilities, musical
knowledge was also used. Statistical features were taken
from “Invention” by J.J.Fux, which is shown in the text-
book of counterpoint [2] as one of the example of a piece
based on counterpoint and imitation.

We adopted eighth note as the minimum unit of time
value of a note, and quarter rest as the minimum unit of a
rest. Rests were not used except in the parts of exposition
of the theme. Dynamic programming was used to find the
results.

5.2 Transition Probability of Pitch

Considering that local properties are the most important in
counterpoint, it is reasonable to approximate the transition
probabilities of pitchPr(pj

i |p
j
i¡1) by the product of local

probabilities. We approximatedPr(pj
i |p

j
i¡1) by the prod-

uct of unigram probabilities of each transition of pitch from
the last pitch ofpj

i¡1 to the last pitch ofpj
i . Unigram prob-

abilities are represented by relative intervals of transition
of pitch (such as major third) to deal with data sparseness
problem. Correction by geometric mean of unigram prob-
abilities is adopted as equation (10), not to be effected by
the number of notes:

Pr(pj
i |p

j
i¡1) '


N(P j

i,i−1)∏
k=1

Pr(pj
i,i¡1,k)

1
N(P

j
i,i−1)

if N(pj
i,i¡1) 6= 0

P0 if N(pj
i,i¡1) = 0

(10)

pj
i,i¡1 is the series of transitions of pitch.pj

i,i¡1,k is the

kth transitionof pitch in pj
i,i¡1. N(pj

i,i¡1) is the number
of transitions of pitch. Where the number of times of pitch
transition is zero (long notes such as half note, ties, etc.),
Pr(pj

i |p
j
i¡1) is given byP0. P0 is obtained by statistics as

the number of times there is no change of pitch within two
successive beats, divided by the number of times there are
changes of pitch within two successive beats. This divi-
tion is done to balance lower case with the upper case in
equation (10). Normalization is not done, because it does
not affect the result.Pr(pj

1), which corresponds to the first
beat, was approximated within a beat in a similar way.

When the statistics of the unigram probabilities of pitch
transition are taken, the probabilities are regarded as the
same value whether the transitions are upward or down-
ward and whether the intervals are major or minor. Where
the interval is compound interval over augmented eighth,
it is regarded as the simple interval (for example, minor
tenth is regarded as minor third). If violations of counter-
point (such as succession of skips in the same direction)
occur in two successive beats, the corresponding probabil-
ities are lowered in equation (10). The unigram probabili-
ties of pitch transition are shown in table 1.

In the piece from which the statistics are taken, no inter-
val of sixth is included by chance. To correct the value of

Table 1. Unigram probabilities of pitch transition.
interval of pitch transition Pr(pj

i,i¡1,k)
prime 0.000
second 0.824
third 0.095
fourth 0.054
fifth 0.014
sixth 0.014

seventh 0.000
octave 0.000

probability of sixth interval, we regarded the value of prob-
ability of sixth interval as the same value as that of fifth
interval. It is reasonable that the probabilities of prime,
seventh and octave intervals are zero in table 1. That is be-
cause prime interval is not favorable and larger skips than
seventh interval are prohibited in counterpoint. The transi-
tions of pitch in the regions of imitation are counted only
once, because the same patterns which are unique to the
theme appear many times.

5.3 Transition Probability of Interval

We approximate transition probabilities of interval in two
steps, because there are many combinations in transitions
of interval.

In the first step, we approximatePr(ai,i¡1) by the prod-
uct of the transition probability of intervalPr(bi,i¡1) and
the probability of motionPr(ci,i¡1) on the assumption that
both are independent:

Pr(ai,i¡1) ' Pr(bi,i¡1)Pr(ci,i¡1). (11)

bi,i¡1 is the series of intervals included inai,i¡1 andci,i¡1

is the series of motions included inai,i¡1.
In the second step,bi,i¡1 andci,i¡1 are approximated

in a similar way to the case of the transition probability of
pitch, and the correction by geometric mean were done as
equation (12) and (13):

Pr(bi,i¡1) '


N(bi,i−1)∏

k=2

Pr(bi,i¡1,k|bi,i¡1,k¡1)
1

N(bi,i−1)

if N(bi,i¡1) 6= 0
B0 if N(bi,i¡1) = 0

(12)

Pr(ci,i¡1) '


N(ci,i−1)∏

k=1

Pr(ci,i¡1,k)
1

N(ci,i−1)

if N(ci,i¡1) 6= 0
C0 if N(ci,i¡1) = 0

(13)

bi,i¡1,k is thekth interval of the seriesbi,i¡1. N(bi,i¡1) is
the numberof the transitions of interval in the seriesbi,i¡1.
ci,i¡1,k is thekth motion of the seriesci,i¡1. N(ci,i¡1) is
the number of motions in the seriesci,i¡1. Where the num-
ber of times of transition of interval is zero, the probability
is given byB0. B0 is obtained by statistics as the number
of times there is no change in interval within two succes-
sive beats, divided by the number of times where there are
changes of interval within two successive beats. Where the
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Table 2. Bigram transition probabilities of interval.

before\ after perfect imperfect consonant dissonant
perfect 0.10 0.40 0.50

imperfect consonant 0.36 0.36 0.27
dissonant 0.09 0.91 0.00

Table 3. Unigram probabili-
ties of motion.

motion Pr(ci,i¡1,k)
parallel 0.121
contrary 0.212
oblique 0.667

Table 4. The values of
P0,B0,C0.

P0 0.342
B0 0.050
C0 0.050

numberof times of motion is zero, the probability is given
by C0. C0 is obtained bystatisticsas the number of times
there is no motion within two successive beats, divided the
number of times there are motions within two successive
beats.Pr(a1), which corresponds to the first beat, is ap-
proximated within a beat in a similar way.

Intervals of the same category (perfect, imperfect con-
sonant, and dissonant) are identified in statistics to reduce
the varieties of transition of interval. If violations of coun-
terpoint occur in two successive beats, the corresponding
probabilities are lowered in equation (11). The bigram
transition probabilities of interval are shown in table 2 and
the unigram probabilities of motion are shown in table 3.
The values ofP0, B0, andC0 are shown in table 3.

5.4 Co-occurrence Probability of Rhythms

Co-occurrence probabilities of rhythms can be determined
by inference based on musical knowledge. In counterpoint,
there is a tendency that rhythms continue regularly by plac-
ing onset in either voice. Where there is a onset in the head
of r1

i or r2
i , Pr(r1

i , r2
i ) is considered to be high. By such

inference,Pr(r1
i , r2

i ) is determined as:

Pr(r1
i , r2

i ) '


0.9 if

there is the onset on the
head ofr1

i or r2
i

0.1 if
there is not the onset on
the head ofr1

i andr2
i

(14)

Possible rhythm patterns for a beat within the condition
of the experiment are shown in figure 3. The ties in figure
3 are the extension of duration to the next beat or from the
previous beat.

5.5 Transition Probabilities of Rhythm

Transition probabilities of rhythmPr(rj
i |r

j
i¡1) are deter-

mined by statistics from the piece mentioned above, be-
cause the transition probabilities of rhythm can not be de-
termined by a simple rule.

There are nine possible rhythms in the condition of this
experiment as shown in figure 3. The transition proba-
bilities among them are shown in table 5. Each possible
Pr(rj

1), which corresponds to the first beat, is assigned the
same value.

1 2 3 4

5 6 7 8 9

Figure 3. Possible rhythm patterns in the condition of the
experiment.

Table 5. Transition probabilities of rhythm.

rhythm pattern
befeore\ after 1 2 3 4 5 6 7 8 9

1 0.441 — 0.382 — 0.176 — — — —
2 0.591 — 0.182 — 0.091 — — — 0.136
3 — 0.767 — 0.033 — 0.200 — — —
4 — 0.500 — 0.500 — — — — —
5 0.267 — 0.267 — 0.467 — — — —
6 — — 1.000 — — — — — —
7 — — — — — — — — —
8 — — — — — — — — —
9 0.500 — 0.500 — — — — — —

5.6 Probability of Imitation

It is difficult to take statistics ofIm(mn
l | mn

l¡1, tnl , tnl¡1) in
equation(7) because the probability depends on the theme
and it has many parameters. On the other hand,Im(mn

l |
mn

l¡1, tnl , tnl¡1) can be determined by inference based on
musical knowledge. Considering that an imitation tend to
be similar to the theme, there should be a tendency that
where the similarity between(mn

l , mn
l¡1) and(tnl , tnl¡1) is

high, Im(mn
l |mn

l¡1, tnl , tnl¡1) is also high.
To measure the similarity between the theme and the

imitation, the four elements mentioned in section 3 (direc-
tion, melodic interval, pitch, and rhythm) can be used. Us-
ing the four elements, the similarities−∆k

l,n(k = 1, 2, 3, 4)
are defined as follows. To compare(mn

l ,mn
l¡1) and (tnl

, tnl¡1), these are sliced into the length of eigths note, which
is the minimum unit in this experiment.

We define similarity of direction as−∆1
l,n. ∆1

l,n is the
sum of the absolute values of the differences of direction
between each slice of(mn

l ,mn
l¡1) and(tnl , tnl¡1). The sum

is taken from the last slices ofmn
l¡1 and tnl¡1 to the last

slices ofmn
l andtnl . Directions are represented as follows.

the upward and downward skips are represented as±3 .
Upward and downward conjunct motions are represented
as±2. Continuation of the same pitch is represented as0.

Similarity of melodic interval is defined as−∆2
l,n. ∆2

l,n

is defined as the sum of the absolute values of the differ-
ences of melodic intervals (the unit is semitone). The sum
is taken from the last slices ofmn

l¡1 and tnl¡1 to the last
slices ofmn

l andtnl .
Similarity of pitch is defined as−∆3

l,n. ∆3
l,n is the sum

of the absolute values of the differences of pitch (the unit
is a semitone). The sum is taken from the first slices to the
last slices ofmn

l andtnl .
Similarity of rhythm is defined as−∆4

l,n. ∆4
l,n is the

sum of the absolute values of the differences of onset val-
ues. Onset value is defined as1 for the position where the
onset exist, and0 for the position where the onset do not
exist. The sum is taken from the first slices ofmn

l andtnl
to the last slices ofmn

l andtnl .
Concerning∆1

l,n and∆2
l,n, the absolute values of the

differences is not included in the sum where the transition
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of pitch or interval is interrupted by a rest. Concerning
∆3

l,n, the absolute valuesof the differences is not included
in the sum where rests appear.

Using these four similarities,Im(mn
l |mn

l¡1, t
n
l , tnl¡1) are

represented as:

Im(mn
l |mn

l¡1, t
n
l , tnl¡1) ' exp(−

4∏
k=1

λk∆k
l,n). (15)

λk(k = 1, 2, 3, 4) in this equation are the weights of each
λk, which are tuned manually in preliminary trial runs.
Values fromλ1 to λ4 are set as12.0, 5.5, 0.5, 40.0 respec-
tively. Im(mn

1 |tn1 ), which corresponds to the first bar, is
similarly approximated within a beat.

5.7 Result and Discussion of Experiment

From the observation of the results, it is confirmed that the
proposed method can generate pieces which largely satisfy
the requirements of counterpoint and imitation. As an ex-
ample, one of the generated pieces is shown in figure 4.

Basic prohibitions of counterpoint such as parallel fifth
or hidden fifth, which are included within succsessive two
beats are not occurring in the piece shown in Figure 4. In
the bar5, 6, and15, suspensions, which is important for
counterpoint are occurring and dissonances are resolved
appropriately. Both melodies are independent in the stand-
point of rhythms in both voices at a time and the motions
between both voices. However, there are some violations
of counterpoint. In the bar3, octave intervals appear both
in the beat2 and the beat4. This is a prohibition of counter-
point which is called “successive accented perfect fifths or
octaves” [2]. Such violations are sometimes observed. The
reason is considered to be that stochastic model of coun-
terpoint is approximated by simple Markov model whose
states have the unit of beat and this model can not deal with
the requirements of counterpoint which have the length
over more than two beats. To cope with this problem,
re-evaluation of theN -best solutions might be effective.
From theN -best solutions, one which completely satisfy
the requirements of counterpoint might be found.

Concerning imitation, adequate treatment is realized by
the effect of stochastic model of imitation. In the positions
where a imitation is done only in one voice (such as the
imitation from the bar3) the theme is not be transformed.
On the other hand, in the positions where imitations in both
voices are overlapping (such as imitation from the bar13.)
the theme is slightly transformed. If strict imitation is done
there, both imitations will interfere mutually and cause vi-
olations of counterpoint. From such observation, we can
say that the stochastic model of imitation realizes flexible
imitation where transformations are necessary.

5.8 Generation with Given Themes

In the previous subsection, the theme is given by the au-
thors. In this subsection, we give examples of the results
in which we use well-known melodies for the theme to
demonstrate that the proposing method can generate pieces
without user’s modification to the theme which may give
advantage unfairly to the proposed method.

4
4

4
4

1

5

9

13

Figure 4. An example of the result. The lower voice ofthe
first two bars is the theme.

= 120

4
4

4
4

= 120

4
4

4
4

Figure 5. The beginning of the fugue of J.S.Bach (upper)
and the result generated withthe same theme (lower).

Figure 5 shows the result using the same theme as the
fugue of “The Well-Tempered Clavier Vol.1 No.3” by J.S.
Bach. In this result, counterpoint is well satisfied and the
imitation is also done well. However, in this theme there
are skips with seventh interval, which is a prohibition of
counterpoint. In the actual pieces like this, violations are
sometimes done deliberately. To deal with such cases, we
did a smoothing by setting the probability of skip with sev-
enth interval as0.001, not0.

Figure 6 shows the result using the melody of “Little
Hans” for the theme. In this result, successive accented
perfect fifths or octaves are occurring across three succes-
sive beats in the bar9, 17, and26. In addition, repetitions
of a phrase, which are unfavorable, are occurring from the
bar26 to 28. This is also caused by the approximation by a
simple Markov model. If we can deal with this weak point
by a method such as re-evaluation of theN -best solutions,
acceptable results might be generated.

6. CONCLUSION

We proposed stochastic models for an automatic composi-
tion based on counterpoint and imitation. The solution is
obtained as a musical piece which maximizes the product

336



= 140

4
4

4
4

6

1

10

15

19

23

27

Figure 6. A result generated with the theme of “Little
Hans”.

of probability of the stochasticmodel of counterpoint and
that of imitation. In this formulation, dynamic program-
ming can be used to search the solution. We reported the
results of experiment to generate musical pieces by the pro-
posed method. The results showed that proposed method
can generate the pieces which satisfy the requirements of
counterpoint that are included in two successive beats. The
results also showed that flexible imitations can be realized
by the effect of the stochastic model of imitation. How-
ever, a week point of the proposed method which should
be improved was revealed. The week point is that the
proposing method can not prevent the occurrences of vi-
olations or anfavorable things for counterpoint which can
not be included in two successive beats. This week point is
considered to be caused by the approximation by a simple
Markov model.

There are several future tasks;

A. Dealing with the requirements of counterpoint which
can not be included in two successive beats.

B. Extensive statistical learning of the probabilities.

C. Extension of the models for more than three voices.

D. Treating note values which are smaller than eighth note.

E. Introduction of tonal harmony and modulations.

F. Modeling of the characteristics of composers or instru-
ments.

For A, re-evaluation of the N-best solutions might resolve
the problem. For B, extensive statistical learning may en-
able us to obtain the values of probabilities more accu-
rately. Furthermore, it may be possible that we can gen-
erate pieces which have diverse tendencies depending on
the selection of the pieces for the statistical learning. For
C, adding terms which are related to all the voices might
realize the models for more than three voices. For D, when
we treat smaller note values than eighth note, the problem
of the increase of the number of the states or the problem of
lack of unity as a piece of music may occur. To avoid the
occurrence of these problems, restriction for the rhythm
patterns might be effective. The restriction might reduce
the number of the states and help to realize the unity as a
piece of music. For E, including the plan of code progres-
sions and modulations into the structureS will be neces-
sary to deal with the counterpoint after the Baroque period.
For F, introducing the feature quantities of composers or
instruments by the musical knowledge or the methods of
data mining may realize finer modelings.
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EXPLORING TIMBRE SPACES WITH TWO MULTIPARAMETRIC
CONTROLLERS
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ABSTRACT

This paper describes the development so far of a system
that uses multiparametric controllers along with an inter-
active high-level search process to navigate timbre spaces.
Either of two previously developed interfaces are used as
input devices; a hand tracking system and a malleable foam
controller. Both interfaces share the property of streaming
continuous multiparametric codependent data. When these
data streams are mapped to synthesis parameters, the con-
trollers can be used to explore the parameter space in an
embodied manner; with the hand tracker, moving or chang-
ing the shape of the hand changes the sound, and with the
foam, deforming its shape changes the sound. The con-
trollers become too sensitive with larger parameter spaces,
so a navigation system was developed to enable high level
control over the subset of the parameter space in which the
controllers are working. By moving and refining the work-
ing range, a timbre space can be progressively explored to
find a desired sound. The search process was developed
by focusing on three scenarios, the control of four, ten and
forty dimensional timbre spaces. The system is used bi-
manually, while one hand is used for detailed search with
one of the input devices, the other hand controls high level
search parameters with MIDI and the computer keyboard.

Initial reactions from two musicians indicate the devel-
opment so far to be successful, the next stage in this project
is to carry out formal user studies.

1. INTRODUCTION

This paper explores the application of two multiparametric
controllers as tools for timbre space navigation, and the
development of high-level search strategies to complement
their use in this context.

A previous study with an EchoFoam controller [1], a
malleable foam interface, showed its potential for explor-
ing timbre spaces. During the study, the controller was
set up to navigate preset fixed subsets of a six-dimensional
phase modulation synthesis patch. The participants manip-
ulated the foam controller in order to change the synthesis
parameters, in effect exploring the sound haptically . The
results suggested it would be interesting to test high-level
strategies for controlling the subset of parameter space within

Copyright: c©2010 Chris Kiefer. This is an open-access article distributed under

the terms of the Creative Commons Attribution License 3.0 Unported, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

which the controller was working, in order to help the user
explore the full space more effectively. The results from
the study also showed some participants perceiving the con-
troller as producing slightly unpredictable or imprecise out-
put, so imposing a larger controllable constraint onto its
output could complement it well, making an interesting
combination of order and unpredictability.

Another controller developed by the author, Phalanger
[2], shares similar low level properties to the foam con-
troller of continuously streaming codependent multipara-
metric control data. Phalanger is a computer vision based
hand tracking system, that outputs hand geometry data for
musical control. It was decided to include both controllers
in the development process, with the aim of creating a tim-
bre space navigation engine that would accept input from
either controller, opening up some interesting opportuni-
ties for comparing these two opposing styles of tangible
and intangible interaction.

The project was approached with the following ques-
tions in mind:

1. Is it possible to navigate subsets of a timbre space
and gradually zoom in to the sound you are search-
ing for?

2. How do these two controllers and this approach com-
pare to conventional editing tools such as a GUI or
knobs and sliders?

3. What are the differences between the two types of
controller in this context?

4. Will this process plug in to any synthesis process?
i.e. is it possible to explore any continually control-
lable synthesis algorithm without knowledge of its
underlying workings?

This paper describes the progress so far on this project,
which has been developed to the point where the first for-
mal evaluation is about to start. The development process
that addressed the above questions will be described, but
first the motivations behind the project are explored.

2. MOTIVATION

Djajadiningrat et. al [3] take the view that the body is typ-
ically neglected in interaction:

‘Current interfaces indeed seem to be built on
the assumption that interaction can be captured
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in schemata and that the body is merely a me-
chanical executor. This view, however, does
not do justice to our embodiment in the world.’

Extending this theme to the use of the hand for creativity
in interaction, Treadaway [4] observes that current digital
technology is ‘deficient in utilising bodily intelligence’.

Exploring the use of bodily intelligence for controlling
digital music tools is the main motivation for this project.
The two controllers used here take an embodied approach
to musical control compared to conventional interfaces such
as the mouse and GUI or knobs and sliders. These con-
ventional interfaces are typically up front, presenting their
function to the user and enabling direct control of parame-
ters. In contrast, these two interfaces output parallel streams
of codependent parameters, and the user is required to em-
ploy their perceptual-motor skills to explore how the inter-
face and mappings will function. This use of perceptual-
motor skills is at the core of playing acoustic music where
an embodied relationship with an instrument is fundamen-
tal to creating music with it. Conventional digital music
interfaces in contrast can lack this embodied interaction,
having more akin to scientific tools.

Further to this, another motivation is to explore accu-
racy and unpredictability of control. Gelineck and Serafin
[5] commented on this issue in their survey of electronic
musicians. 16 of 18 of the musicians they interviewed said
they preferred tools that they don’t fully understand or are
unpredictable in some way. The two interfaces used in
this project have accuracy proportional to the skill of the
user and were perceived in previous studies by some users
as unpredictable and imprecise compared to conventional
controllers. It’s compelling to see how this style of inter-
action can fit into the more precise world of digital music
by imposing a structured framework on them. By applying
these two controllers to the task of timbre space navigation,
this issue can be explored further.

3. RELATED WORK

In [3], Djajadiningrat et. al. explore the use of multipara-
metric interfaces, suggesting these interfaces increase the
bandwidth of interaction, allowing them to exploit motor
skills for more sophisticated control. Focusing on music,
Wanderley and Depalle [6] propose that control with mul-
tiple continuous parameters provides a more musical way
of interacting with computers, moving towards the goal of
control subtlety similar to acoustic instruments. Rovan et.
al. [7] classify mapping schemes as one-to-one, divergent
or convergent, suggesting that convergent mappings have
higher potential for expressivity. Hunt and Kirk [8] carried
out user studies with a multiparametric interface composed
of a mouse and sliders, concluding that this class of inter-
face can be beneficial to musicians, and also that mappings
which are not one-to-one are more engaging.

In the area of timbre space navigation, evolutionary meth-
ods (e.g. [9]) have been well researched. Using interactive
evolution, synthesis patches are encoded as individuals in
a larger population and evolved with genetic techniques to
navigate the search space. Although effective, these tech-

Figure 1. Phalanger in use

niques suffer from the bottleneck of human evaluation of
fitness, which reduces the efficiency of the process. Seago
et. al. [10] explored timbre space navigation, proposing
two strategies, multidimensional line search and the use of
adapted bayesian filters. A controller-based approach is
taken by van Nort and Wanderley [11], who used a graph-
ics tablet and mapping engine to navigate complex sonic
spaces.

This project fits between these areas, applying multi-
parametric controllers to the problem of timbre space nav-
igation. The development of the system will now be de-
scribed, starting by introducing the controllers.

4. TWO MULTIPARAMETRIC CONTROLLERS

These controllers afford two styles of interaction: tangible,
through the manipulation of malleable material, and intan-
gible, through computer vision based hand tracking. Al-
though they differ in these terms, from the point of view
of the data they output they are very similar; both sys-
tems output a continuous multiparametric stream of data,
in which, due to the physical nature of the devices, the pa-
rameters are codependent. Both of these system were de-
veloped using the OpenFrameworks 1 C++ toolkit on Mac
OS X.

4.1 A Hand Tracking Interface

The Phalanger interface is a computer vision based hand
tracking system. It’s a markerless system, so no wearables
are required to use it, instead neural network based skin
colour tracking is used to differentiate the hand from the
background. Having separated out the hand, algorithms
from the openCV 2 library are employed to analyse the ge-
ometry of the hand shape; these parameters (listed in ta-
ble 1) can be streamed to other applications for continuous
control. Another layer of the system tracks hand shape us-
ing Support Vector Machines, however this is not used in
this project; instead the streams of hand geometry data are
used for timbre space navigation. For hardware, the sys-
tem uses a low-cost Sony PS3Eye USB camera at 320x240

1 http://www.openframeworks.cc/
2 http://sourceforge.net/projects/

opencvlibrary/
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1 Coordinates of the topmost point
2 Coordinates of the leftmost point
3 Coordinates of the rightmost point
4 Coordinates of the centroid of the hand
5 The angle of the hand
6 The area of the hand

Table 1. Hand geometry data

resolution. The camera is mounted on a retort stand; in this
case the camera is positioned to point down at the hand on
a desktop.

4.2 Malleable Foam

The EchoFoam controller, an increment to the design pre-
viously described in [1], is a malleable foam controller de-
signed with the aim of enabling nuanced and intuitive mu-
sical control. The device is constructed from conductive
foam, and exploits the property that this material changes
electrical resistance when deformed, in order to track the
shape of the foam. Rather than using separate sensors,
the controller is made from one continuous piece of foam,
with embedded contact wires measuring the resistances be-
tween different points. The controller is constructed from
foam squares that are glued together into a cube. Contact
wires are placed in the top and bottom squares, in the four
corners and in the centre. These two sets of wires are con-
nected to two separate 74HC4051 (de)multiplexer chips on
a circuit board controller by an Arduino 3 . The two sets are
divided into live and sensor wires; a program on the Ar-
duino sequences the (de)multiplexers so that a single wire
is made live on one side of the foam while the five wires on
the other side are scanned to measure resistance between
these contacts and the live point. In this way, ten contacts
can be used to take twenty-five resistance readings from
the foam. These measurements, in combination, provide
a consistent signature describing the shape of the foam in
any particular state of deformation. Figure 2 shows the
controller in use.

This system is tightly coupled with the use of Echo State
Networks (ESNs), which are used as mapping engines to
create control streams from the foam sensor data.

5. MAPPING WITH ECHO STATE NETWORKS

ESNs are a class of recurrent neural network, belonging
under the banner of Reservior Computing techniques [12,
13]. They can be trained to approximate arbitrary dynami-
cal systems, making them very useful tools for the tempo-
ral processing of multiparametric data streams, such as the
outputs from EchoFoam and Phalanger. An ESN consists
of a set of input and output nodes connected to a reservoir
of interconnected nodes. Figure 3 shows a simplified ex-
ample of ESN topology, in practice the central reservoir
would be much larger. To train an ESN, a training set is
created of inputs and outputs which demonstrate the de-
sired behaviour of the trained system. During training, the

3 http://arduino.cc

Figure 2. The Malleable Foam Controller In Use
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Figure 3. An Example ESN

output weights are adjusted to exploit the dynamics of the
reservoir and achieve the desired behaviour. Because only
the outputs weights are adjusted, training is a linear prob-
lem which is fast to solve and makes ESNs convenient and
reliable to use.

In this project, ESNs are used for dimensionality reduc-
tion and as a form of mapping engine. Given the inter-
dependent nature of the output of the foam controller, ESN
mapping is a fundamental part of this system; the data from
Phalanger differs because the parameters can be consid-
ered independently, however for consistency and also for
the purposes of dimensionality reduction, ESNs were used
to map this data as well. For each controller, their output
streams are passed through an ESN and reduced in num-
ber to match the number of parameters of the synthesis
engine being controller. The training process to achieve
this results in an arbitrary mapping, but the outputs change
consistently for each potential set of inputs to the ESN,
making them reliable for musical control. Figure 4 shows
an example of the inputs and outputs of an ESN being used
for dimensionality reduction.

6. SYSTEM ARCHITECTURE

The timbre navigation system consisted of a collection of
different programs and modules. The programs that run
with each controller exist as separate OpenFrameworks ap-
plications, so an overlay application was designed that could
host the timbre search engine and be integrated with both
pieces of software. Figure 5 shows an overview of how
the system was setup. Ableton Live was chosen as the
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Figure 4. Echo State Network Mappings

sound engine; the software communicated with Live us-
ing liveOSC 4 , an OSC/Python interface that runs as part
of Live. This provides a convenient way for the timbre
navigation system to query the amount, type and ranges
of synthesis parameters in Live, and automatically assign
control streams to them.

7. EXPLORING TIMBRE NAVIGATION
STRATEGIES

What we have already is the input from two different con-
trollers, both of which can control an arbitrary number
of parameters in an arbitrary way. With the foam, the
user explores the parameter space by deforming its shape,
and with the hand tracker the user can manipulate param-
eters by moving and changing the shape of their hand.
In both cases, the sound will change in direct relation to
body movement. When controlling larger subsets of the
parameter space, small motions amount to very large tim-
bre changes, so in terms of controllability, working in a
smaller subset is better for fine tuning of the sound. This
means some kind of strategy for moving and narrowing the
subset is required. Both controllers also output codepen-
dent parameters, which means that with direct mapping it
will not always be possible to reach every available timbre,
so a strategy is required to compensate for this.

A timbre navigation engine was designed with these is-
sues in mind, the development of which is now described.
The development took place over three progressively more
complex scenarios. Overall, a blackbox approach was used;
the system was designed with the aim of controlling any
synthesis process with continuously controllable parame-
ters, purely with controllers and no GUI.

7.1 Scenario 1: A Four Dimensional Timbre Space

The control streams were mapped to four parameters of a
virtual analog synthesiser. For this scenario, the core of
the navigation process was designed. To create variable
subsets within which to explore with the controllers, each
controlled parameter was assigned upper and lower bounds
to create a working range, and also a polarity to determine
if the mapping would be inverted. Pressing a key on the

4 http://livecontrol.q3f.org/ableton-liveapi/
liveosc/
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Figure 5. System Architecture

keyboard randomised these ranges and polarities, creating
random areas of the timbre space to explore. The next
step was to facilitate control of the subsets, to allow gradu-
ally refined navigation through the space. To achieve this,
firstly a global percentage multiplier was applied to each
range, so that the ranges could be narrowed around their
center points. A continuous MIDI controller was mapped
to this. Secondly, a mechanism was introduced to move
the center of the ranges; pressing a key on the keyboard
caused the ranges to center on the current value of each pa-
rameter, allowing navigation through the space. With these
functions, the workflow for navigating the parameter space
was as follows:

1. With the ranges set at full, explore different random
subsets of the timbre space until something in the
area of the desired result is found

2. Center on the area of the desired sound and zoom in
a little by shrinking the working ranges

3. Explore the new ranges, getting closer again to the
desired sound

4. Repeat the last two steps until the final result is reached

One issue was that using uniform randomness to deter-
mine the ranges sometimes led to tiny ranges on one pa-
rameter, limiting the scope of exploration. To remedy this,
the random number generator was mapped through a sig-
moid curve, making larger ranges more probable.

Figure 6 shows an example of how a four dimensional
timbre space might be navigated. Each column represents
a synthesis parameter, the shaded boxes represent the work-
ing range for that parameter and the + or - indicates map-
ping polarity. In (a) and (b), different random ranges are
trialed to reach a suitable setting to start refining from. In
(c) the ranges are re-centered and in (d) they are scaled
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Figure 6. Exploring A Timbre Space

down. In (e) and (f), centering and scaling is repeated, ar-
riving at a small subset of the possible space.

Overall, this solution worked satisfactorily for navigat-
ing this smaller timbre space, so the next challenge was to
try exploring more dimensions.

7.2 Scenario 2: A Ten Dimensional Timbre Space

The system was mapped to ten parameters across two plu-
gins, a sampler and a chorus that processed the sampler’s
output. With this amount of parameters, the process still
seemed to work effectively. Up to this point, each out-
put from the controller was mapped to the same parame-
ter on the synthesiser. However, given the nonlinear na-
ture on the controllers, each output stream behaves dif-
ferently from another so this may limit the extent of the
search space which can be navigated. To solve this, when
the ranges were randomised, the parameter targets for each
output stream were now randomised as well. To enable
further control for the navigation process, code was added
to enable mutation; pressing a key on the keyboard caused
gaussian randomness between -10% and 10% to be added
to the bounds of the ranges, allowed subtle variations in
the exploration space. The addition of these new features
helped further improve the control over navigation. The
next scenario to explore was the case of when a synth had
more parameters than could be reasonably output from the
controllers.

7.3 Scenario 3: A Forty Dimensional Timbre Space,
Navigated With 10 Control Streams

The VOPM 5 softsynth was chosen for this scenario, an
FM synthesiser with over forty parameters; forty of these
were selected for control by the navigation engine. This
was an interesting challenge as it involved nonlinear con-
trol of a highly nonlinear soundspace, and also because
FM suffers from difficultly in mapping between gestural
input and synthesis parameters [14]. At first this scenario
seemed to produce no sound on many settings, it was found
that this silence was caused by one key parameter when the
value was above 20%, so this parameter was removed from
the set of targets.

As there were less control streams than parameters to
control, the target parameters were selected as a random
subset of the available targets, and could be changed again
randomly by pressing a key on the keyboard. Selecting a
new random set of targets left the previous targets on the
values they were at when the settings changed, so each new
random jump navigated further through the timbre space.
The nonlinear nature of this timbre space meant that some
settings were silent or would jump very suddenly to a dif-
ferent sound, so a one level undo function was added en-
abling the user to jump back from an unwanted setting.
Navigating through a larger set of target parameters with
random target selection in this manner allowed each new
setting to be explored in an embodied way with the con-
trollers, and rejected with the undo function if the new set
of targets didn’t take the user in the right direction. To
widen the search options further, a function was added to
randomise the ranges of the currently selected targets while
preserving the unselected ones.

8. INITIAL REACTIONS

The system is yet to undergo formal user evaluation, how-
ever some initial thoughts about the system were gathered
from two musicians. During both interviews, debugging
information was showing on the screen at the start; both
musicians found the experience to be much improved with
the visuals removed so they could concentrate on the con-
troller. Most importantly, both musicians found the sys-
tem engaging to use. Both preferred the hand tracker as
the controller, finding it easy to keep points of reference.
One attempted to navigate from a distorted sound to a clean
sound and back again, and achieved this successfully. They
found that with the hand tracker they could return consis-
tently to a previous point in the timbre space, and felt that
their ability to do this would improve with practice.

One issue was with using the range centering process;
when the working ranges are moved to a new centre, the
position on the controller now corresponds to a new po-
sition in the parameter space so the sound changes. This
can disrupt the flow of navigating the search space, as it’s
sometimes difficult to find where the sound you had cen-
tered on is in the new search space, although it should al-
ways be possible to find it. Another issue was with the size

5 http://www.geocities.jp/sam_kb/VOPM/
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of ranges, one interviewee felt it would be better to always
start from much wider ranges or a completely full range.

9. DISCUSSION

The initial reactions demonstrate that the system can work
successfully, although some refinement is needed. The
main issue is the interaction between the range centering
process and the current state of the controller, strategies
need to be found to smooth out this process which in turn
will improve the flow of the navigation experience. An-
other issue was widening the random range selection, this
could be solved by providing MIDI control of the sigmoid
curve which maps the random range values; the user could
determine how likely ranges were to be large.

One interviewee commented that the system was good
for making broader adjustments to the sound, but really
fine adjustment was difficult; bearing this in mind it’s in-
teresting to consider where this type of system fits into the
composition and editing process. Gelineck and Serafin [5]
observe that musicians need more accurate control when
they come to the final stages of a composition, so this sys-
tem would fit in best at the earlier stages of creative explo-
ration. Any settings discovered with the system can be fine
tuned with a mouse and GUI later.

In terms of control, an interesting property of the sys-
tem is the use of randomness; random values are used to
move around the search space in search of a good place to
begin fine-tuning parameters. This is necessitated by the
blackbox approach to parameter control and also by the
nature of the controllers. To determine mappings by some-
thing other than randomness, for example manual control,
would require the attachment of meaning to variables in
the system in relation to the sound being controlled, how-
ever given the embodied nature of the controllers, meaning
in this system is derived from listening and physical in-
teraction in an explorative process. Considering this, using
randomness seems to be the most appropriate approach, al-
though varying the type of randomness, for example with
sigmoid mapping, can increase the level of control.

An interesting aspect of this system is the role of biman-
ual hand use. Treadaway [4], discussing hand use in cre-
ative practice, describes how in manual activities the dom-
inant hand is used for micrometric and internally driven
actions while the non-dominant hand is used for macro-
metric and externally driven actions, reflecting differences
between the left and right brain hemispheres. This pattern
of hand use is echoed with this system, one hand being em-
ployed for detailed exploration of the sound space while
the other controls meta-level search parameters.

Returning to the questions posed in the introduction, on
the issue of whether this system can plug in to any continu-
ally controllable synthesis process, this would seem possi-
ble but with one reservation that the parameters may need
careful selection. In any synthesis engine, as observed in
the FM synthesis scenario, there are certain parameters (for
example master volume) that hold significance over others
and should be excluded in a timbre space search. Param-
eter selection also depends on the intended sequencing of
the sound, for example including envelope attack in the

search space for a sound played as staccato would not be
relevant. Setting the initial target parameters is something
that could be controlled by a GUI, and is part of the wider
creative search process.

Two questions in the introduction concerned the com-
parison of the two controllers used with the system and
also the comparison of the system with conventional con-
trol methods; there is not enough data to answer these yet,
and a formal user evaluation will help to find some an-
swers.

10. CONCLUSION

A system has been presented for the exploration of timbre
spaces, that uses multiparametric controllers and an inter-
active search process to provide both low level and high
level control over navigation. The search process uses a
combination of techniques to progressively move and re-
fine a subset of the full timbre space being explored until
a desired setting is found. Initial reactions to the system
have been encouraging, but more data is needed to evalu-
ate the efficacy of the system. The next step in the project
is a formal user study which will help to answer the ques-
tions posed earlier in the paper, and to improve the design
of the system.
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pierre.jouvelot@mines-paristech.fr

Yann Orlarey
Grame

orlarey@grame.fr

ABSTRACT

Faust is a functional programming language dedicated to
the specification of executable monorate synchronous mu-
sical applications. To extend Faust capabilities to domains
such as spectral processing, we introduce here a multi-
rate extension of the core Faust language. The key idea
is to link rate changes to data structure manipulation op-
erations: creating a vector-valued output signal divides the
rate of input signals by the vector size, while serializing
vectors multiplies rates accordingly. This interplay be-
tween vectors and rates is made possible in the language
static semantics by the introduction of dependent types.
We present a typing semantics, a denotational semantics
and a correctness theorem that show that this extension
preserves the language synchonous characteristics. This
new design is under implementation in the Faust compiler.

1. INTRODUCTION

Since Music III, the first language for digital audio syn-
thesis, developed by Max Mathews in 1959 at Bell Labs,
to Max [1], and from MUSICOMP, considered one of the
very first music composition languages, developed by Le-
jaren Hiller and Robert Baker in 1963, to OpenMusic [2]
and Elody [3], research in music programming languages
has been very active and innovative. With the convergence
of digital arts, such languages, and in particular visual pro-
gramming languages like Max, have gained an even larger
audience, well outside the computer music community.

Within this context, the Faust language [4] introduces
a dual programming paradigm, based on a highly abstract,
purely functional approach to signal processing while of-
fering a high level of performance. Faust semantics is
based on a clean and sound framework that enables math-
ematical correction proofs of Faust applications to be per-
formed, while being complementary to current audio lan-
guages by providing a viable alternative to C/C++ for the
development of efficient signal processing libraries, audio
plug-ins or standalone applications.

The definition of the Faust programming language uses
a two-tiered approach: (1) a core language provides con-
structs to manage signal transformations and (2) a macro
language is used on top of this kernel to build and ma-
nipulate signal processing patterns. The macro language
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has rather straightforward syntax and semantics, since it is
a syntactic variant of the untyped lambda-calculus with a
call-by-name semantics (see [5]). On the other hand, core
Faust is more unusual, since, in accordance with its musi-
cal application domain, it is based on the notion of “signal
processors” (see below).

The original definition of Faust provided in [6] is based
on monorate signal processors; this is a serious limitation
when specifying spectral-based sound manipulation algo-
rithms (such as FFT) or extending the language applicabil-
ity outside the music domain, for instance for image analy-
sis and manipulation (such as data compression). We pro-
pose here a multirate extension of Faust based on a key in-
novative principle: data rate changes are intertwined with
vector data structure manipulation operations, i.e., creating
an output signal where samples are vectors divides the rate
of input signals by the vector size, while serializing vectors
multiplies rates accordingly. Since Faust current definition
does not offer first-class vectors, this proposal kills two
birds with one stone by adding both multirate processing
and vector data structures; this interplay between vectors
and rates is made possible in the typing semantics of Faust
by the introduction of dependent types.

The contributions of this paper are as follows: (1) the
specification of a new extension of Faust for vector pro-
cessing and multirate applications, (2) a static typing se-
mantics of Faust, based on dependent types, (3) a denota-
tional semantics of Faust (the one presented in [6] is op-
erational) and (4) a Frequency Correctness theorem that
validates the multirate synchronous nature of this vector
extension.

After this introduction, Section 2 provides a brief in-
formal survey of Faust basic operations. Section 3 is a
proposal for a multirate extension of this core, which we
illustrate with a simple vector application implementing
a Haar-like subsampling operation. Section 4 defines the
static domains used to define Faust static typing seman-
tics (Section 5). Section 6 defines the semantic domains
and rules used in the Faust dynamic denotational seman-
tics; showing that this multirate extension of Faust indeed
behaves properly, i.e, that signals of different frequencies
merge gracefully in a multirate program, is the subject of
the Frequency Correctness theorem. The last section con-
cludes.

2. OVERVIEW OF FAUST

A Faust program does not describe a sound or a group of
sounds, but a kind of signal processor, something that gets
input signals, itself a function from time ticks t to values,
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and produces output signals. The program source is orga-
nized as a set of definitions mapping identifiers to expres-
sions; the keyword identifier process is the equivalent of
main in C. Running a Faust program amounts to plugging
the I/O signals implicity used by process to the actual
sound environment, such as a microphone and an audio
system, for instance.

To begin with, here are two very simple Faust examples.
The first one produces silence, i.e., a signal providing an
infinite supply of 0s:

process = 0;

Note that 0 is an unusual signal processor, since it takes an
empty set of input signals and generates a signal of con-
stant values, namely the integer 0. The second simple ex-
ample is the conversion of a two-channel stereo signal into
a one-channel mono signal using the + primitive that adds
its two input signals together to yield a single, summed
signal:

process = +;

Faust primitives are assembled via a set of high-level
composition operations, generalizations of the mathemat-
ical function composition operator ◦. For instance, con-
necting the output of + to the input of abs in order to
compute the absolute value of the summed output signal
can be specified using the sequential composition operator
’:’ (colon):

process = + : abs;

Here is an example of parallel composition (a stereo ca-
ble) using the operator ’,’ that puts in parallel its left and
right expressions. It uses the _ (underscore) primitive that
denotes the identity function on signals, akin to a simple
audio cable for a sound engineer:

process = _,_;

These operators can be arbitrarily combined. For exam-
ple, to multiply the input signal by 0.5, one can write:

process = _,0.5 : *;

Taking advantage of some syntactic sugar the details of
which are not addressed here, the above example can be
rewritten, using what functional programmmers know as
curryfication:

process = *(0.5);

The recursive composition operator ’˜’ can be used to
create processors with delayed cycles. Here is the example
of an integrator:

process = + ˜ _;

where the ˜ operator connects here in a feedback loop the
output of + to the input of _, via an implicit connection
to the mem signal processor which implements a 1-sample
delay, and the output of _ is then used as one of the inputs

of +. As a whole, process thus takes a single input signal
s and computes an output signal s′ such that s′(t) = s(t)+
s′(t−1), thus performing a numerical integration operation

To illustrate the use of this recursive operator and also
provide a more meaningful audio example, the following
3-line Faust program defines a pseudo-noise generator:

random = +(12345) ˜ *(1103515245);
noise = random,2147483647.0 : /;
process =
(noise,vslider("noise[style:knob]",

0,0,100,0.1) : *),
100 : /;

The definition of random specifies a (pseudo) random
number generator that produces a signal s such that s(t) =
12345 + 1103515245 ∗ s(t − 1). Indeed, the expression
+(12345) denotes the operation of adding 12345 to a
signal, and similarly for *(1103515245). These two
operations are recursively composed using the ˜ operator,
which connects in a feedback loop the output of +(12345)
to the input of *(1103515245) (via an implicit 1-sample
delay) and the output of *(1103515245) to the input of
+(12345).

The definition of noise transforms the random signal
into a noise signal by scaling it between -1.0 and +1.0,
while the definition of process adds a simple user in-
terface to control the production of sound; the noise signal
is multiplied by the value delivered by a slider to control
its volume. The whole process expression thus does not
take any input signal but outputs a signal of pseudo random
numbers (see the familiar block diagram representation of
this process in Figure 1, where the little square near the
addition block denotes a 1-sample delay operator).

Figure 1. Noise generator process block diagram

The last two composition operators in the definition of
core Faust, <: and :>, perform fan-out and fan-in transfor-
mations, as we illustrate in the next section

3. MULTIRATE EXTENSION

Faust, as described in [4], is a monorate language; in mono-
rate languages, there is just one time domain involved when
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accessing successive signal values. However, digital signal
processing traditionally relies heavily upon subsampling
and oversampling operations, which naturally lead to the
introduction of multirate concepts. Since Faust targets a
subset of DSP processing, the proposal introduced by Yann
Orlarey [7] suggests to use multiple frequencies to deal
with such issues, instead of more general clocks, such as
those present in traditional synchronous programming lan-
guages [8]. We informally describe below this approach,
and illustrates it with a simple example of its use.

3.1 Frequencies for vector processing

We propose to see clocking issues as an add-on to the Faust
static semantics (Faust is a strongly typed language). Fre-
quencies f are elements of the Freq = Q+ domain. Sig-
nals, which are traditionnally typed according to the type
of their codomain, will now be characterized by a pair,
called a rated type, formed by a type and a frequency:
Type] = Type× Freq.

The first key idea is to posit that multiple rates in an ap-
plication are introduced via vectors. Vectors are created us-
ing the new vectorize primitive; informally, it collects
n consecutive samples (the constant value n is provided
by the signal that is the second argument to this primitive)
from an input signal of frequency f and outputs vectors
with n elements at frequency f/n; if the input values are
of type t, then output vector samples have type vectorn(t).
The dual serialize primitive maps a signal of vectors
of type vectorn(t) at frequency f to the signal of frequency
f ∗ n of their linearized elements, of type t. The primitive
[] provides, using as inputs a signal of vectors and one of
integer indexes, an output signal of successively indexed
vector elements. Finally, the primitive # builds a signal of
concatenated vectors from its two vector signal inputs.

The second key feature of this multirate extension is
thus that the size n of vectors are encoded into vector types;
moreover this size is provided via the value of a signal,
argument of the vectorize primitive. This calls for
a dependent-type [9] static semantics that embeds values
within types. Since Faust strives for high run-time perfor-
mance, this type system must furthermore be sophisticated
enough to be able to ensure, at compile time, that a given
signal is constant (when it is to be used as a signal denot-
ing the size of a vector): we introduce intervals of values
in the static semantics to deal with such an issue. Before
describing formally our framework in the remainder of this
paper, we illustrate it with an example.

3.2 Haar Filtering, an Example

To get a better intuitive understanding of how these vec-
tor constructs interact with Faust primitives, we present a
Haar-like downsampling process, a simplified step in the
Discrete Wavelet Transform shown to be of use, for in-
stance, in some audio feature extraction algorithms [10].
The signal processor process takes an input signal s at
frequency f and produces two output signals, the mean
o1 and difference o2, at frequency f/2, such that o1(t) =
(s(2t) + s(2t + 1))/2 and o2(t) = o1(t) − s(2t + 1). It
could be defined in our extended Faust as follows:

down = vectorize(2) : [](1);
mean = _ <: _,mem :> /(2);
left = _,!;
process =

_ <: (mean:down),down <: left,-;

Here, down gathers the data from its input signal in pairs
stored in vectors of size 2 (hence the size 2 used in the
curried version of vectorize) from which the second
element is extracted, again using a signal processor, here
[], curried over its second argument 1 (vector indices start
at 0). This function downsamples its input signal of fre-
quency f into an output signal of frequency f/2, picking
one value over two from the input.

The definition of mean indicates that its input signal s
(denoted by _) is duplicated, using the <: fan-out opera-
tor. Two copies are expected since the output of <: is fed
into a parallel composition of two one-input signals: the
first copy is simply passed along by _, while the second
one is being delayed via mem by one sample. Both signals
s(t) and its delayed copy s(t − 1) are then averaged, us-
ing the fan-in operator :>, which adds the mixed signals to
s(t) + s(t − 1); this sum signal is then divided by 2 us-
ing a curried division operation to yield an average signal
m(t) = (s(t) + s(t− 1))/2.

The signal processor process duplicates its single in-
put s (as before, _) to a two-input parallel process: the first
copy is averaged using mean and then downsampled us-
ing sequencing with down, yielding signal m2; the second
copy is simply downsampled, yielding s2. These two sig-
nals are then fanned-out into the four-input signal proces-
sor left,-; it indeed takes four inputs, since (1) left
takes a pair of signals, here (m2, s2), keeping only its left
component m2 using the primitive ! that maps, by defini-
tion, its own s2 to nothing and (2) the substraction oper-
ation - takes two inputs, here again m2 and s2, yielding
the signal m2 − s2. The end result is the expected pair of
signals (o1, o2) = (m2,m2 − s2) of downsampled means
and differences.

4. STATIC DOMAINS

The multirate extension of Faust static semantics relies heav-
ily on dependent typing, which is formally defined below.

4.1 Dependent Types

Since the values embedded in signals are typed, the static
typing semantics of extended Faust uses basic types b in
Base, which is a defined set of predefined types:

b ∈ Base = int | float

Since our type system uses dependent types, we need a
way to abstract values to yield a decidable framework. We
introduce spans a in Span, which are pairs of signed in-
tegers n or m; spans represent the intervals of values that
expressions may have at run time:

n,m ∈ Zω = {−ω,+ω} ∪ Z
a ∈ Span = Zω × Zω
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where we assume the usual extensions of arithmetic opera-
tions on Z to Zω; we take care in the following to avoid in-
troducing meaningless expressions such as−ω++ω. Note
that we use integer spans here for both integer and floating-
point values for simplicity purposes; extending our frame-
work to deal with floating-point spans is straightforward.
A span a = (n,m) is written [n,m] in the sequel.

All base-typed expressions will be typed with an ele-
ment b of Base, together with a span [n,m] that specifies
an over-approximation of the set of values these expres-
sions might denote. Vectors, as groups of n values, will be
typed using their size (the number n) and the type of their
elements. Finally, since signed integers are part of types,
via spans, we will need to perform some operations over
these values, and thus introduce the notion of type addi-
tion. The type domain is then 1 :

t ∈ Type = Base× Span |
N× Type |
Type× Type

As a short hand, we note b[a] for base types, vectorn(t) for
vector types and t+ t′ for the addition of two types.

Not all combinations of these type-building expressions
make sense. We formally define below the notion of a well-
formed type:

Definition 1 (Well-Formed Type wff (t))
A type t is well-formed, noted wff (t), iff:

• when t = b[n,m], then n ≤ m and ¬(n = m =
−ω) and ¬(n = m = +ω);

• when t = vectorn(t′), then wff (t′) and n ≥ 0;

• when t = t′ + t′′, then wff (t′) and wff (t′′).

4.2 Rated Types

Since vectors are used to introduce multirate signal pro-
cessing into Faust, we need to deal with these rate issues in
the static semantics. As hinted above, we use frequencies
f in Freq to manage rates:

f ∈ Freq = Q

In our framework, the only signal processing operations
that impact frequencies are related to over- and sub-sampl-
ing conversions. To represent such conversions, we use
multiplication and division arithmetic operations, thus defin-
ing Freq as the set of positive rational numbers.

The static semantics of signals manipulated in our ex-
tended Faust thus not only deals with value types, but also
with frequencies. We link these two concepts in the no-
tion 2 of rated types t] in Type]:

t] ∈ Type] = Type× Freq |
Type] × Type]

We will note tf the rated type (t, f) and t]+t′] the addition
of two rated types. We also use simply t when f is not
needed and there is no risk of confusion.

1 The use of the same symbol, t, for both times and types should not
be confusing, since they operate in different semantics.

2 The notation ] is, of course, different from the vector concatenation
Faust primitive.

4.3 Impedances

A Faust signal processor maps sets (we called these beams)
of signals to beams of signals. These beams have a type
(we only represent the type of the image of a signal, since
the domain is always time, and signals can only embed
values of a single type) called an impedance z in Z. Type
checking a Faust expression amounts to verifying the com-
patibility of the input and output impedances of its com-
posed subexpressions:

z ∈ Z =
⋃
n≥0

Type]
n

The null impedance, in Type]
0
, is (), and is used when

no signal is present. A simple impedance is (tf ), and is
the type of a beam containing one signal that maps time to
values of type t at frequency f . The impedance length |z|
is defined such that z ∈ Type]

|z|
. The i-th rated type in

z (1 ≤ i ≤ |z|) is noted z[i]. Two impedances z1 and z2
can be concatenated as z = z1‖z2, to yield an impedance

in Type]
d1+d2 where di = |zi|, defined as follows:

z[i] = z1[i] (1 ≤ i ≤ d1)

z[i+ d1] = z2[i] (1 ≤ i ≤ d2)

To build more complex impedances, we introduce the ‖
iterator as follows:

‖n,n′,dM = (), if n > n′

M(n) ‖ ‖n+d,n′,dM otherwise

where M is a function that maps integers to impedances.
Intuitively, ‖n,n′,dM is the concatenation ofM(n),M(n+
d),M(n + 2d), ...,M(n′). As a short hand, z[n, n′, d],
which selects from z the types from the n-th type to the
n′-th one by step of d , is ‖n,n′,dλi.z[i], while a simple
slice of z is z[n, n′] = z[n, n′, 1].

Definition 2 (Well-Formed Impedance wff (z))
An impedance z is well-formed, noted wff (z), iff, for all
i ∈ [1, |z|], there exist fi, noted ](z[i]), and ti such that
z[i] = ti

fi , with wff (ti) and fi ∈ Freq.

4.4 Schemes

Some Faust processors, such as the identity processor _
or the delay processor mem, are polymorphic. The static
definitions of Faust primitives must thus be type schemes
that abstract their input and output impedances over ab-
stractable sorts S, in Sort. Type schemes k in Scheme are
defined as follows:

S ∈ Sort = {Base,N,Type,Freq,Type]}
k ∈ Scheme = (Var× Sort)∗ × Z× Z

For readability 3 , we note Λx : S...x′ : S′.(z, z′) the
scheme (((x, S), ..., (x′, S′)), z, z′), where x are abstract-
ing variables in Var. These schemes will be instantiated

3 Keeping with a long tradition, we choose the usual ”:” sign to denote
typing relations, even though it is also used to represent the sequence
operation in Faust. The reader should have no problem distinguishing
both uses.
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where needed; the substitution (z, z′)[l′/l] of a list l of
variables by elements in l′ in a pair (z, z′) is defined as
usual.

The static definitions of Faust primitives are gathered in
type environments T that map Faust identifiers to schemes.

5. STATIC SEMANTICS

The static semantics specifies, by induction on Faust syn-
tax, how impedance pairs are assigned to signal processor
expressions. We first define some utilitary operations on
static domains, and then provide static rules for Faust.

5.1 Syntax

Faust syntax uses identifiers I from the set Ide and expres-
sions E in Exp. Numerical constants, be they integers or
floating point numbers, are seen as predefined identifiers.
The syntax of core Faust is thus defined as follows:

E ::= I |
E1 : E2 | E1, E2 |
E1 <: E2 | E1 :> E2 |
E1 ∼ E2

In Faust, every expression represents a signal processor,
i.e., a function that maps signals, which are functions from
time to values, to other signals.

5.2 Impedance Matching

Complex Faust expressions are constructed by connecting
together simpler processor expressions. In the case of fan-
in (respectively fan-out) expressions, such connections re-
quire that the involved signal processors match in some
specific sense: Faust uses the impedance matching relation
z′1 � z2 (resp. ≺) to ensure such compatibility conditions.
Such a relation goes beyond simple type equality by autho-
rizing a larger (resp. smaller) output z′1 to fit into a smaller
(resp. larger) input z2, using the following definitions (�
requires mixing of signals, while ≺ simply dispatches the
unmodified signals) in which d′1 = |z′1| and d2 = |z2|:

z′1 � z2 = d′1d2 6= 0 and

mod(d′1, d2) = 0 and∑
i∈[0,d′

1/d2−1]

z1[1 + id2, (i+ 1)d2] = z2

z′1 ≺ z2 = d′1d2 6= 0 and

mod(d2, d
′
1) = 0 and

‖1,d2,d′
1
λi.z′1 = z2

where equality on impedances is defined by structural in-
duction and “mod” denotes the arithmetic modulo opera-
tion.

Since we deal in our framework with dependent types
(values, via spans, appear in the static domains), perform-
ing the mixing of signals, as above, require the ability to
perform, in the static semantics, additions over impedances
and, consequently, over types; for instance, mixing a signal
of type int[0, 2] with one of type int[3, 6] yields a signal of

type int[3, 8]. To formalize such operations, we assume the
existence of static semantics addition rules such as:

(b+) b[n,m] + b[n′,m′] = b[n+ n′,m+m′]
(v+) vectorn(t) + vectorn(t′) = vectorn(t+ t′)

The presence of values in types also induces a natural
order relationship t ⊂ t′ on Type.

5.3 Type Environments

We assume that there is an initial type environment T0 that
provides the typing definitions for the predefined signal
processors. For instance, T0(_) = Λt] : Type].((t]), (t]))

and T0(+) = Λt] : Type].t′
]

: Type].((t], t′
]
), (t] + t′

]
)).

As a consequence of the implicit mixing introduced by the
impedance matching relation � used in fan-in operations,
signal processors for numerical operators such as + must
be able to deal with any type; they are thus associated to
polymorphic type schemes in the type environment. Their
arguments must also have the same frequency, a constraint
enforced by the use of the same t] in these type schemes. A
similar requirement exists for constants such as 0 (which
are too predefined identifiers in T0).

Introducing the vector extension in the static semantics
simply amounts to adding, beside the empty vector {}, of
type Λf : Freq.t : Type.((), (vector0(t)f )), four bindings
in the initial environment T0:

• T0(vectorize) =
Λf : Freq.f ′ : Freq.t : Type.n : N.
((tf , int[n, n]f

′
), (vectorn(t)f/n));

• T0(#) =
Λf : Freq.t : Type.m : N.n : N.
((vectorm(t)f , vectorn(t)f ), (vectorm+n(t)f ));

• T0([]) =
Λf : Freq.t : Type.n : N.
((vectorn(t)f , int[0, n− 1]f ), (tf ));

• T0(serialize) =
Λf : Freq.t : Type.n : N.((vectorn(t)f ), (tf∗n)).

The dependent type system is key here. In the primitive
vectorize, we are able to specify that the vector size
has to be constant, since its type uses a span restricted to be
one-valued, [n, n]; note that the frequency f ′ of this signal
is also irrelevant, and can be of any value. When concate-
nating vectors with the # processor, the resulting vector
size m+n sums the sizes of the input vectors. We are also
able to ensure that no out-of-bound accesses can occur in
Faust, since the index signal argument fed to the [] signal
processor is constrained, at compile time, to be between 0
and the vector size, since its span is [0, n− 1]. Finally, no-
tice how size information impacts signal frequencies; this
is key to prove the theorem of Section 6.3.

5.4 Typing Rules

Faust is strongly and statically typed. Every expression, a
signal processor, is typed by its I/O impedances:
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Definition 3 (Expression Type Correctness T ` E)
An expression E is type correct in an environment T , noted
T ` E, if there exist z and z′ such that T ` E : (z, z′)
with wff (z) and wff (z′).

The static semantics inference rules are defined in Ta-
ble 1; some are rather straightforward. Rule (i) ensures
that identifiers are typable in the type environment T ; type
schemes can be instantiated to adapt themselves to a given
typing context of Identifier I. In Rule (:), signal proces-
sors are plugged in sequence, which requires that the out-
put impedance of E1 is the same as E2’s input. In Rule (,),
running two signal processors in parallel requires that their
input and output impedances are concatenated. In Rules
(<:) and (:>), the ≺ and � constraints are used to ensure
that a proper matching of the output of E1 to the input of
E2 is possible.

The most involved rule deals with loops (∼). Here, the
input impedance z2 of the feedback expression E2 is con-
strained to be the first |z2| types of the output impedance
z′. Also, the first |z′2| elements of the input impedance
of the main expression E1 must be the same as the ouput
impedance of the feedback expression E2; these looped-
back signals will not thus impact the global input impedance
z1[|z′2|+ 1, |z1|]. Note that the output impedance ẑ′ is here
an approximation of z′. This is introduced not for semantic
reasons, but to make type checking decidable while ensur-
ing that the dependent return type is valid independantly of
the unknown bounds of the iteration space:

Definition 4 (Impedance Widening ẑ)
The widened impedance of z, noted ẑ, is such that |ẑ| = |z|
and ∀i ∈ [1, |z|].ẑ[i] = ẑ[i], with:

• ̂vectorn(t)f = vectorn(t̂)f ;

• b̂[a]f = b[â]f ;

• [̂n,m] = [−ω,+ω].

Basically, all knowledge on value bounds is lost under
widening.

Finally, the typical Rule (⊂) allows types to be extended
according to the order relationship induced by spans in
types and basic types.

6. DYNAMIC SEMANTICS

Since Faust sees parallelism as an implementation issue,
the denotational semantics for core Faust is based on stan-
dard notions and does not introduce parallel-specific con-
cepts such as powerdomains, while remaining synchronous.

6.1 Domains

A Faust expression denotes a signal processor; as such its
semantics manipulates signals, which assign various val-
ues to time events. The dynamic semantics, in particular,
uses integers n, k, d, i (in N) and times t in Time = N.

Signals map times to values v in Val :

v ∈ Val = N + R +
⋃
n≥0

Valn + {⊥}+ {?}

Since the evaluation process may be non-terminating, we
posit that Val is a cpo, with bottom element ⊥; all op-
erations in Val are strict. The value ? denotes error val-
ues (useful to denote non-existing values such as 1/0), and
thus, for any Operator o and Value v different from ⊥, we
assume o(?, v) =?. For a vector v ∈ Valn, represented by
tuples of n elements, we define its size |v| by v ∈ Val|v|.

A signal s, which is a history denoted by a function,
is a member of Signal = Time → Val. We define the
domain dom(s) of a signal s by dom(s) = {t/s(t) 6=⊥}.
The size of this domain |dom(s)|, called its support s, is a
member of N + {ω}, where ω is used to deal with infinite
signals. We gather signals into beams m = (m1, ...,mn)
in Beam =

⋃
n≥0 Signaln.

A signal processor p in Proc is the basic constituent of
Faust programs: p ∈ Proc = Beam → Beam. We define
dim(p) = (n, n′) such that p ∈ Signaln → Signaln

′
.

The standard semantics of a Faust expression is a func-
tion of the semantics of its free identifiers; we collect these
in a state r, a member of State = Ide→ Proc.

6.2 Denotational Rules

We assume given an initial state r0, which binds Faust pre-
defined identifiers to their value, such that, for instance:

r0(_) = λ(s).(s)

r0(+) = λ(s1, s2).(λt.s1(t) + s2(t))

r0(mem) = λ(s).(λt.s(t− 1) if t ≥ 1, 0 if t = 0)

These definitions assume that T ` 0 : t for all types
t, since this is needed for the definition of mem to make
sense.

As in the static semantics, introducing the vector exten-
sion in the dynamic semantics 4 simply amounts to adding,
beside the value λ().(λt.()) for {}, four straightforward
bindings in the initial state:

• r0(vectorize) =
λ(s1, s2).(λt.(s1(nt), ..., s1(n− 1 + nt)),

where n = s2(0));

• r0(#) = λ(s1, s2).(λt.s1(t)‖s2(t));

• r0([]) = λ(s1, s2).(λt.s1(t)[s2(t)]);

• r0(serialize) =
λ(s).(λt. ⊥, if n = |s(0)| = 0,

s(bt/nc)[mod(t, n)] otherwise).

To be able to properly define the semantic function E:

E ∈ Exp→ State→ Beam→ Beam

one needs to ensure that we operate with states that are
type-correct.

Definition 5 (State Type Correctness T ` r)
A state r is type correct in an environment T , noted T ` r,
if, for all I in dom(r), one has T ` I.

4 We consider that all notations introduced to manipulate impedances
can similarly be applied to vectors and beams.
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(i)
T (I) = Λl.(z, z′)

∀(x, S) ∈ l . l′(x) ∈ S
T ` I : (z, z′)[l′/l]

(:)
T ` E1 : (z1, z

′
1)

T ` E2 : (z′1, z
′
2)

T ` E1 : E2 : (z1, z
′
2)

(<:)

T ` E1 : (z1, z
′
1)

T ` E2 : (z2, z
′
2)

z′1 ≺ z2
T ` E1 <: E2 : (z1, z

′
2)

(,)
T ` E1 : (z1, z

′
1)

T ` E2 : (z2, z
′
2)

T ` E1, E2 : (z1‖z2, z′1‖z′2)
(:>)

T ` E1 : (z1, z
′
1)

T ` E2 : (z2, z
′
2)

z′1 � z2
T ` E1 :> E2 : (z1, z

′
2)

(⊂)

T ` E : (z, z′)
z′ ⊂ z′1
z1 ⊂ z
T ` E : (z1, z

′
1)

(∼)

T ` E1 : (z1, z
′)

T ` E2 : (z2, z
′
2)

z2 = z′[1, |z2|]
z′2 = z1[1, |z′2|]

T ` E1 ∼ E2 : (z1[|z′2|+ 1, |z1|], ẑ′)

Table 1. Faust Static Semantics

E[[I]]r = r(I)

E[[E1 : E2]]r = p2 ◦ p1
E[[E1, E2]]r = λm.p1(m[1, d1])‖p2(m[d1 + 1, d1 + d2])

E[[E1 <: E2]]r = λm.p2(‖1,d2,d′
1
λi.p1(m))

E[[E1 :> E2]]r = λm.p2(‖1,d2,1λi.sum(p1(m)[i, d′1, d2]))

where sum((s)) = (s) and sum((s)‖m) = r(+)((s)‖sum(m))

E[[E1 ∼ E2]]r = λm.fix(λm′.p1(p2(@(m′[1, d2]))‖m))

where @(()) = () and @((s)‖m) = E[[mem]]rs‖@(m)

Table 2. Faust Denotational Semantics: we note pi = E[[Ei]]r and (di, d
′
i) = dim(pi)

The semanticsE[[E]]r of an expression E in a type-correct
state r is a function that maps an input beamm to an output
beam m′.

The semantics (see Table 2) of an identifier is available
in the state r. The semantics of ”:” is the usual compo-
sition of the subexpressions’ semantics. The semantics of
a parallel composition is a function that takes a beam of
size at least d1 + d2 and feeds the first d1 signals into p1
and the subsequent d2 into p2; the outputs are concate-
nated. The fan-out construct repeatedly concatenates the
outputs of p1 to feed into the (larger) d2 inputs of p2. The
fan-in construct performs a kind of opposite operation; all
mod(i, d2)-th output values of p1 are summed together to
construct the i-th input value of p2. The loop expression
has the most complex semantics. Its feedback behavior is
represented by a fix point construct; the output of p2 is fed
to p1, after being concatenated to m, to yield m′; the input
of p2 is the one-slot delayed version of m′.

6.3 Frequency Correctness Theorem

In the presence of signals using different rates at run time,
the consistency of their frequency assignment must be en-
sured. In particular, we show below that the support of
signals and, more generally, beams can be bounded in a
way consistent with their relative frequencies; this is the

Frequency Correctness theorem. Of course, this theorem
is only valid if the values denoted by a given Faust ex-
pression are consistent with its type definition, and kept as
such all along execution (see the Subject Reduction theo-
rem linking Faust static and dynamic semantics in [11]).
We proceed first with the definition of this notion of run-
time type correctness.

Definition 6 (Value Type Correctness v : t)
A value v is type correct, noted v : t, iff:

• when v ∈ N, then t = int[n,m] and n ≤ v ≤ m;

• when v ∈ R, then t = float[n,m] and n ≤ v ≤ m;

• when v ∈
⋃

n Valn, then t = vectorn(t′), n = |v|
and, for all i ∈ [0, n− 1], v[i] : t′.

Definition 7 (Signal Type Correctness s : tf )
A signal s is type correct w.r.t. a type tf , noted s : tf , if,
for all u ∈ dom(s), one has s(u) : t.

Definition 8 (Beam Type Correctness m : z)
A beam m is type correct w.r.t. an impedance z, noted
m : z, if |m| = |z| and, for all i ∈ [1, |m|], one has
m[i] : z[i].
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For the evaluation process to preserve consistency, the
environment T and state r, which provide the static and
semantic values of predefined identifiers, must introduce
consistent definitions for their domains:

Definition 9 (State Type Consistency ` T, r)
An environment T and a state r are consistent, noted `
T, r, if, for all I in dom(r), for all z, z′,m, one has: if T `
I : (z, z′) and m : z, then r(I)(m) : z′ and dim(r(I)) =
(|z|, |z′|).

We may now proceed with the issue of frequency.

Definition 10 (Beam Boundness (m, z) ! c)
For any c ∈ Q, a beam m of impedance z is c-bounded,
noted (m, z) ! c, if mini∈[1,|z|](m[i]/](z[i])) ≤ c.

Informally, when (m, z) ! c, then there is at least one
signal i∗ in m that has at most c](z[i∗]) elements in its do-
main of definition 5 . This is interesting since the supports
of signals in a beam m tell us something about how many
values can be computed if we use m as input of a signal
processor. Thus c](z[i∗]) is an upper bound on the num-
ber of elements that can be used in a synchronous com-
putation (all subsequent values are ⊥), thus yielding some
clues about the size of buffers needed to perform it.

Another way to look at c-boundness comes from c itself;
being the inverse of a frequency, its unit is the second, and
thus c is a time. The definition of Beam Boundness yields
an upper bound on the time required to exhaust (at least one
of) the signals of m, thus providing a time limit on compu-
tations that would use these as actual inputs. Even though
this limit, as stated here, holds for a complete computa-
tion, it also applies when one deals with slices of the com-
putation process, for instance when considering buffered
versions of a program.

The Frequency Correctness theorem states that, given a
Faust expression E (with no explicit mem, since its delaying
action extends domains of definition), if the environment T
and state r are consistent and E maps beams of impedance
z to beams of impedance z′, then, given a beam m that is
type correct w.r.t. z and is c-bounded, then the semantics
p(m) of E will yield a c-bounded beam m′ of impedance
z′.

Theorem 1 (Frequency Correctness)
For all E not containing mem, T, z, z′, c, r,m and m′, if
` T, r, m : z, (m, z) ! c, T ` E : (z, z′), then |z′| =
0 ∨ (m′, z′) ! c, where m′ = p(m) : z′ and p = E[[E]]r.

Basically, this theorem (see proof in [11]) tells us that an
upper-bound of the running time of E is always the same,
whichever way we try to assess it via any of its observable
facets (namely input or output data): c is consistent and
thus a characteristics of E. This shows that the synchronous
nature of Faust is preserved.

5 When signals are properly synchronized, e.g., in an actual computa-
tion, all m[i]/](z[i]) are equal, and the comments in this section about
i∗ apply in fact to all signals.

7. CONCLUSION

We provide the typing semantics, denotational semantics
and correctness theorem for a new multirate extension of
Faust, a functional programming language dedicated to mu-
sical applications. We propose to link the introduction of
a vector datatype in a synchronous setting to the presence
multiple signal rates. We describe a dedicated framework
based on a new polymorphic dependent-type static seman-
tics in which both vector sizes and frequencies are values,
and prove a synchrony consistency theorem relating values
and frequencies. This proposal is under implementation in
the Faust compiler.
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ABSTRACT

The Stanza Logo-Motoria is a multimodal interactive sy-
stem for learning and communication developed by means
of the EyesWeb XMI platform. It is permanently installed
in a Primary School where it is used as an alternative and/or
additional tool to traditional ways of teaching. The Stanza
Logo-Motoria is used by all the pupils of the school - from
the first to the fifth grade - including the children with di-
sabilities. This paper describes the system and a presents a
first assessment of the teaching activities carried out using
it.

1. INTRODUCTION

Today, the European Education System consists of an ex-
tremely heterogeneous environment: there is a significant
diversification in levels of learning, a high proportion of
foreign children and a growing number of children with di-
sabilities [1]. In particular, the educational process of stu-
dents with disabilities is a long and complex one, which is
faced in different ways by various European Union coun-
tries. The European Agency for Development in Special
Needs Education affirms that the trend in this field is to im-
plement education policies which place disabled students
in mainstream schools providing different types of sup-
port to teachers in terms of additional staff, teaching ma-
terials, in-service training and technical equipment. Tech-
nology can play a particularly valuable role in promoting
greater adaptability of the Education System and, on the
other hand, increasing the level of cultural demand [2].

Back in 1983, H. Gardner studied the different types
of intelligences developing the Multiple Intelligences The-
ory [3]. This theory suggests that the traditional notion of
intelligence, based on I.Q. testing, is far too limited. In-
stead, Gardner proposes eight different intelligences to ac-
count for a broader range of human potential in children
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and adults. These intelligences are: linguistic, logical-
mathematical, spatial, bodily-kinesthetic, musical, inter-
personal, intrapersonal, naturalist. Gardner says that our
schools and culture focus most of their attention on lingui-
stic and logical-mathematical intelligence. We should also
place equal attention on individuals who are gifted in the
other intelligences: artists, musicians, designers, dancers,
and also disabled students. Unfortunately, many children
who have these gifts do not receive much reinforcement
for them in school. The theory of multiple intelligences
proposes a major transformation in the way our schools
are organized. It suggests that teachers ought be trained
to present their lessons in a wide variety of ways using
music, cooperative learning, art activities, role play, mul-
timedia, field trips, inner reflection, and much more. It is
very significant to recognize and nurture all human minds
and all their combinations in order to encourage interac-
tion with the world, global growth of the person, and the
achievement of the highest possible level of learning [4].

In this framework, this paper presents a multimodal in-
teractive system, Stanza Logo-Motoria, offering an alter-
native and/or additional tool to traditional ways of teach-
ing that often do not adapt to the individual learning abil-
ity. In real-time the system analyzes the full-body move-
ments and gestures of the children within a sensorised en-
vironment and maps them onto real-time manipulation and
processing of audiovisual content. A particular focus is
placed on expressive gestures, i.e., gestures containing and
conveying emotional, affective information. In this way,
the Stanza Logo-Motoria can be exploited by teachers ei-
ther to convey content by means of an alternative method
or also to verify the level of knowledge in children who
better express their capabilities using the visual, spatial, or
bodily intelligence.

The rest of this paper is organized as follows. In Sec. 2
theoretical foundations and related works are briefly intro-
duced. Sec. 3 describes the system architecture of Stanza
Logo-Motoria. Sec. 4 presents the feature extraction com-
ponent and the description of the features the system uses.
Sec. 5 describes how the system and the features extracted
are used in a concrete instance of Stanza: the Resonant
Memory application. In Sec. 6 details of Stanza activities
are presented together with the first results from system as-
sessment. Conclusions are drawn and future plans are laid
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out in Sec. 7.

2. THEORETICAL FOUNDATIONS AND
RELATED WORK

The Stanza Logo-Motoria grounds its theoretical founda-
tions on the Enaction theories and Embodied cognition,
finding a neurophysiological basis on the discovery of the
mirror neuron system. Mirror neurons constitute the neu-
ral substrate for the recognition and comprehension of ac-
tions performed by other individuals. Rizzolatti and Vozza
[5] emphasize the motor aspect of cognition, claiming that
learning is behind the action and that the basis of knowl-
edge is the fact that “we do things”. There are two kinds
of knowledge: one is scientific and objective, the other
is experiential which is our primary knowledge based on
our motor system and our experiences; embodiment is the
necessary condition for the development of cognitive pro-
cesses. This approach [6] is grounded on multi-sensory
coupling of perception and action, motor imitation and is-
sues concerning emotions and subjectivity. Each cognitive
activity is always “situated”, it is inextricably associated
with ’what we are doing physically’ and on the structure
and dynamics of the environment [7].“Learning by doing”
is an important theoretical dimension also for Enactive the-
ories of cognition; Enactive knowledge is based on motor
skills (such as manipulating objects) where Enactive rep-
resentations are acquired by doing [8].

In the Stanza Logo-Motoria, it is possible to recover the
important aspect of motor knowledge and to use it to re-
solve situations of learning difficulties. The Stanza Logo-
Motoria follows this approach, being an environment where
the users must do things to receive a content: they have
to enter the space, choose a location, listen carefully, per-
form activities, they have a reason for learning, ways of
acting and perceiving, a significant environment. Knowl-
edge is not imposed from above but is offered: the users
must “do things” to receive it. Furthermore, the pupils
learn in motion, they seek the content by physically mov-
ing within the space: ideas, thoughts, concepts, and cate-
gories are shaped by aspects of the body [6]. The Stanza
Logo-Motoria becomes an instructional agent [2] by trans-
ferring information and instructional knowledge just as the
teacher presents his/her explanation to students.

By the end of Sixties, Myron Krueger begins his expe-
riments on interactive electronic image, immediately offer-
ing artificial environments constructed manipulating visual
and audio information. He presents [9] the concept of envi-
ronment linked to physical space where the observer seeks
to intervene. Krueger uses spaces directly modified by the
user’s presence without any invasive devices. In the first
experiments, using a sensitized carpet, Krueger extracts the
user’s location within the environment (Glowflow, Meta-
play, Psychic Space) and then he directly manipulated u-
ser’s gestures through video tracking. The Stanza Logo-
Motoria, like Krueger’s space, is an environment where
both spatial position and user’s gestures are detected by
a video-camera. The coordinates of the position and the
measure of open arms gesture correspond in this case to a
specific audio and/or video feedback. Krueger [10] em-

phasizes the role of the body and considers ’responsive
environments’ as tools for the re-appropriation of sensory
faculties sacrificed by the power of audiovisual represen-
tation. In the same way, the Stanza Logo-Motoria is a
tool to retrieve children’s attention span and concentration;
the Stanza Logo-Motoria offers children the chance to re-
experience the feeling of being good and satisfied about
himself during active listening.

Another important example of the use of an interac-
tive multimedia environment with children (and especially
with disabled children) is SOUND=SPACE. In 1984 Rolf
Gehlhaar developed SOUND=SPACE [11], an interactive
multi-user musical environment in which visitors trigger
and influence the production of sounds merely by moving
about an empty space surveyed by an ultrasonic echoloca-
tion system. Since its development, this system has been
displayed publicly worldwide, becoming a particularly fa-
vorite for groups with special needs. SOUND=SPACE is
still being explored by visitors and participants in creative
workshops for special needs groups. Further on, Gehlhaar
and colleagues [12] worked on a new multi-user interac-
tive audio visual installation: CaDaReMi. CaDaReMi ad-
dresses this problem: the user’s difficulty to spatially “an-
chor” his/her activities; CaDaReMi answers by providing
a number of visual clues designed to help the user under-
stand “how things work”, to use the “spectacle” of the in-
stallations to explain it to new users and to make the sound
topologies visible. The Stanza Logo-Motoria, like CaDa-
ReMi, is an environment: stimulant for users to expres-
sively explore a wide range of different sounds; collabo-
rative as it may be used by several persons at the same
time; challenging and interesting, providing a palette of
both familiar and strange sounds; visually engaging, en-
hancing the user’s experiences and promoting their ability
to locate themselves and to decode the events of others in
the space at the same time; socially engaging by promot-
ing user-user interaction, thus strengthening the sense of
working together; intuitive in its functionality and use as
no explanations and no special expertise are required in
order to obtain a first results; learnable and master-able,
being sufficiently complex so that users may, in time, en-
joy the experience of “getting better” at using it and, at the
same time, easy enough for beginners to quickly experi-
ence success.

Unlike the environments described above, the Stanza
Logo-Motoria is an interactive space, permanently installed
at a school, which allows the assimilation of content by
learning through movement. It is a container of knowl-
edge that can be filled with any topic from History to Math,
Geography or Science. The system creates a communica-
tive interactive environment, a place where the user, mov-
ing the body in space and through a simple arm gestures,
causes the production of information that, in absence of the
usual modality of communication (the word), would not be
possible to convey.

The Stanza Logo-Motoria has been developed by us-
ing the EyesWeb XMI platform (www.eyesweb.org). It
addresses the following areas in the SMC Roadmap: In-
teractive Multimedia Systems and Augmented Action and
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Perception.

3. SYSTEM ARCHITECTURE

Fig. 1 shows the overall system architecture for the Stanza
Logo-Motoria. It consists of three major components:

• The input component, receiving the video stream cap-
tured by one or more video-cameras observing the
space and the information gathered by possible fur-
ther environmental sensors (e.g., microphones, pres-
sure sensors on the floor). This component is also
responsible for data pre-processing (e.g., denoising,
background subtraction techniques to extract the sil-
houettes of the users).

• The feature extraction component, which analyzes
the input data in order to get information about (i)
how the user occupies the space (e.g., where they
go; how long they remain in a given area), (ii) the
expressiveness of their gestures. More details on this
component are provided in Sec. 4.

• The component for real-time processing of audiovi-
sual content, which is responsible of the real-time
control and processing of audio and video material
and depends on the features extracted by the feature
extraction component.

The components of the system architecture will be de-
scribed in detail with reference to Resonant Memory, a spe-
cific instance of the Stanza Logo-Motoria .

4. FEATURE EXTRACTION

In Stanza Logo-Motoria a video-camera is used to capture
body and arm gestures. The image stream is processed
and a number of features are extracted. The focus is on
so-called non-invasive approaches. Analysis is grounded
on a multi-layered model for expressive gesture process-
ing [13] which aims at extracting features characterizing
both the occupation of space on the part of the users and
the expressive quality of their gestures (e.g., whether a ges-
ture is smooth or impulsive, determined or hesitant, etc.).
Analysis of both space occupation and gesture is usually
based on the input video stream which is pre-processed in
order to extract the silhouette of the users.

Space analysis starts from the trajectory followed by
each user within the space (e.g., computed as the trajec-
tory of the center of mass of the user). It is possible to
define regions within the space and identify those that are
currently occupied by the users (this information may be
used for example to trigger possible audiovisual content).
The occupation rate for each region is also computed. This
can be used for characterizing the visiting behavior of the
users with respect to the space. For example, if an audio-
visual content is associated with a specific region, a high
occupation rate of that region may indicate a high interest
of the users for a specific content.

The analysis of the gestures is based on features that are
extracted at different levels, from relatively simple (or low

level) ones to more complex features (high-level) describ-
ing gestures in terms of categories inspired to theories and
experiments from psychology and humanities.

Low-level features include basic kinematical features
(e.g., position, velocity, and acceleration of the center of
mass of the silhouette), and silhouette-based features, i.e.,
features directly computed on the silhouette of the user.
Silhouette-based features include, for example, the Mo-
tion Index (i.e., the amount of movement detected by the
video-camera), the Contraction Index (an index measur-
ing the contraction/expansion of the body computed as the
ratio between the area of the silhouette and the area of the
bounding rectangle), the orientation of the body (computed
as the orientation of the major axis of an ellipse approxi-
mating the body).

High-level features are computed from low-level fea-
tures on the basis of theories, models, and experiments
from psychology, biomechanics, and humanities. For ex-
ample, according to Rudolf Laban’s Theory of Effort [14]
a gesture can be quick (impulsive) or sustained (smooth),
direct or flexible, heavy or light. Relevant sources from re-
search in psychology include the works by Wallbott [15],
De Meijer [16], and Boone and Cunningham [17]. Exam-
ples of high-level features include: the Directness Index,
measuring whether a gesture is direct or flexible; the Im-
pulsivity Index, measuring whether a gesture is quick or
sustained; Fluidity, measuring whether a gesture is bounded
and hesitant or unbounded.

The instance of Stanza Logo-Motoria described in the
following - Resonant Memory application - uses mainly
low-level features that can be extracted directly from the
image stream: the overall movement of a human body (Mo-
tion Index), represented as the movement of the centre-of-
mass of the body, and the open arm gesture represented as
the variation in the size of the body bounding box (Con-
traction Index). The focus here is on low-level features be-
cause they are relatively fast and easy to calculate, and at
the same time, sufficient for defining a rich set of gestures
for control. Low-level features are also inspired by studies
on visual perception, and are used to build computational
models inspired by perception [18].

5. THE RESONANT MEMORY APPLICATION

Resonant Memory is an instance of the Stanza Logo-Moto-
ria installed in the Primary School where it is experimen-
tally in use. In Resonant Memory, the space captured by
a web-camera is divided into nine areas: eight of these are
peripheral areas whereas the ninth is central; in this case
the zones are nine but the number may vary depending
on the didactic needs. Sound or visual information cor-
responds to each area. The trajectory of the centre of mass
is used to match a sound to a specific position in space.
A child explores the resonant space in which he/she can
freely move without using sensors:

• Noises, sounds, and music are associated with pe-
ripheral zones and are reproduced when the child
reaches and occupies a peripheral zone;
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Figure 1. System architecture.

Figure 2. The sound reproduction of a story starts when
the child enters the central area.

• Audio reproduction of a story is associated with the
central zone (see Fig. 2); the story provides refer-
ences to the various sounds located in the periph-
eral areas. The child, listening to the story, enjoys
searching for the sounds heard before and, at the
same time, he/she creates the soundtrack of the story.

The video analysis and sound rendering tasks are per-
formed by a software patch developed in the EyesWeb en-
vironment. Fig. 3 shows an overall picture of the patch,
which can be subdivided into three stages. The first is
the input stage: the signal from the camera is processed
in order to extract several low-level features related to the
user’s movements. Background subtraction is achieved via
a statistical approach: the brightness/chromaticity distor-
tion method [19]. Extracted features include the trajectory
of the center of mass, the Motion Index, and the Contrac-
tion Index. In the mapping stage (see Fig. 4), the patch
analyses the features and, according to the user’s actions,
it runs the transitions among four states: exploration, story,
pause, and reset. Finally, the output stage controls the play-
back of a set of pre-recorded audio files.

When the application starts and the user enters in the
area of activity for the first time, the application is in the
exploration mode. Whenever the user reaches one of the
eight peripheral zones, this information is stored by the

system (see Fig. 2). If during the exploration phase the
user reaches the central zone no event is triggered. Only
after all the eight zones have been explored at least once
and the user reaches the central area, the application turns
to the story mode. When the user widens their arms during
the story, the system pauses and the playback of the sound
events is interrupted until the user closes their arms (see
Fig. 5). If the user leaves the area of activity and does not
return for over a certain time limit (which can be pre-set),
the application goes back into reset state which erases the
track of the visited zones. When a new user enters in the
area of activity after the reset, the application starts over
and he/she can begin a new exploration phase.

Currently the input modality is limited to video tracking
and the only the sound modality is used as output for the
following reasons:

• The path of teaching/learning by the use of Stanza
Logo-Motoria in the school was a novelty for stu-
dents and for teachers, therefore we proposed a very
simple, direct and intuitive tool also considering the
limited financial resources of the school.

• In agreement with teachers we thought that, in gen-
eral, children need to recover the ability to listen and
to experience space without any visual references.
The aim is to achieve heightened awareness of space.

• Multi-modality is the ultimate goal: as children learn
to control one of the modalities, the Stanza Logo-
Motoria can evolve and several other modalities can
be introduced according to their own individual paths
of growth.

6. ASSESSMENT

The Stanza Logo-Motoria is a technological tool to en-
hance alternative intelligences and communication; the pur-
pose is to promote learning motivation and develop pupils’
different cognitive styles. The Stanza Logo-Motoria is cur-
rently installed in the “E. Frinta” Primary School in Go-
rizia (Italy). We are evaluating to use the Stanza with 10
Primary School classes, from the first to the fifth grade (a
total of 170 pupils) as follows:
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Figure 3. The patch developed in the EyesWeb environment.
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Figure 4. The subpatch that manages the transition among
the operative states of the application.

Figure 5. The Contraction Index allows the user to stop
the reproduction of the story simply by opening her arms.

Figure 6. Learning English.

• in first grade classes - for a Continuity Project be-
tween Nursery School (10 hours) and Primary school
and for the integration of a child with autism (3 hours);

• in second grade classes - for the Project “Infolibro”
(aimed at the writing of a book for children, 6 hours)
and for the development of the communication skills
of a child with severe autism (5 hours);

• in third grade classes - for history (2 hours);

• in fourth grade classes - for music (6 hours);

• in fifth grade classes - for two children with dyslexia
(7 hours).

• all the classes use the Stanza Logo-Motoria for En-
glish (40 hours).

We will now describe two particular learning pathways:
learning English and the study of science for dyslexic chil-
dren.

6.1 Learning of a foreign language

From March through May the school organized English
language courses held by a mother tongue English teacher;
the courses take place every Thursday afternoon and are
organized on two levels of complexity. Teaching English
through Stanza Logo-Motoria has one main goal: to ac-
custom the children to listening to phonemes that are dif-
ferent from the ones of their own language. In this way
learning a foreign language increases the awareness of non
linguistic tools to communicate, e.g. body language, ima-
ges, sounds, and symbols for their value across all cultures.
The Stanza Logo-Motoria, used as a language vehicle, al-
lows activities to be structured so that genuine connections
with other disciplines are emphasized. Thus, the enhance-
ment of cognitive skills and the Integrated Learning is en-
couraged. Segments of speech and phrases become part of
the pupils’ language knowledge simply because it is used
to carry out a task. So speaking English becomes sponta-
neous, fun, and natural (see fig. 6).

Many languages and methodologies are involved in this
system of teaching:
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• musical language: enjoying music, acquiring skills
to discriminate sound and timbre characteristics of
musical instruments;

• theatrical language: characters animation, mime acts
and conditions;

• use of new technologies;

• use of community languages to learn disciplines: C-
LIL, Content and Language Integrated Learning is a
teaching methodology that involves learning a disci-
pline through a foreign language.

Children explore the eight peripheral areas and they memo-
rize the spatial coordinates of sounds (noises, environmen-
tal sounds or music); then, entering the central area, they
activate a sound reproduction of a story in English. Chil-
dren must then listen carefully in order to trigger the cor-
rect sound at the right time within the story and they have
to move in the space searching for the sounds suggested by
the story. Sometimes, in one or more peripheral zones, we
include several sequences of the story without nouns, ad-
jectives or verbs that the child must insert by saying them
aloud.

High concentration in listening and body movement in
space ensure effective learning. Even after some time, chil-
dren are able to recall the exact contents learnt during a
particular session within the Stanza Logo-Motoria. From
analysis of video recording, together with the teachers we
observed that this method of teaching increases the moti-
vation to listen and consequently to learn new words and
phrases. The evaluation tests carried out successively by
the teachers show that children master the contents assim-
ilated through the Stanza Logo-Motoria.

6.2 Support for dyslexia

Every year the school is presented with cases of dyslexia.
Teachers need to use compensatory and dispensatory mea-
sures in order to facilitate learning on the part of dyslexic
children and apply a specific evaluation. For this reason
Resonant Memory is used also by dyslexic children as an
alternative tool for learning curriculum subjects. In this
case the Stanza is used as follows:

• in the first session the text to study is divided into
sound sequences, each sequence corresponds to an
area of the room; each area of the room is set up
with an empty billboard; the students enter the area,
one at a time, they listen to the text sequence and put
the correct images on the billboard as suggested by
the text;

• in the second session the students enter the area, one
at a time, they listen to the text sequence observing
the images previously positioned onto the poster then
they repeat the content with the help of the images;

• the teachers orally assess whether the students’ per-
formance has improved after using the Stanza.

The school is also attended by a child with visual impair-
ment and one with behavioral disorders who regularly par-
ticipate in activities organized in Stanza. These children
integrate with the group of peers and they succeed in the
tasks because this tool requires learning skills that they ac-
tually possess: there is no text to read, no written questions
to be answered, no strings of mathematical operations to
solve but there are sounds to listen to and movements to
perform.

6.3 Major results

In teaching with the Stanza Logo-Motoria it is possible
to observe immediately great involvement on the part of
the children, high motivation, and extension of the period
of attention. All the school children, including the dis-
abled people, are enthusiastic to use the Stanza. The use
of Stanza Logo-Motoria with disabled children offers them
the possibility to:

• enhance their communication skills providing alter-
natives or additions to the mode of communication
already in place;

• encourage interaction with others and with the envi-
ronment;

• extend the time of attention;

• develop expressivity of gesture;

• improve autonomy through production of intentional
actions.

In particular using the Stanza Logo-Motoria, as a tool for
learning for dyslexic students, allows to bypass the writ-
ten code which, in this case, represents an obstacle to un-
derstanding. Children show greater awareness of contents,
they regain motivation to learn and they are excited to pre-
sent what they have learnt to the teacher and to their class-
mates. Accordingly, children get top scores in the assess-
ment tests of subjects studied in the Stanza. Teachers are
highly motivated to carry out activities in Stanza, indeed
they spontaneously propose topics and paths to explore.

Between January and May we have had the chance to
assess that:

• Compared to the first term (from September to De-
cember when the Stanza Logo-Motoria wasn’t in use)
pupils with dyslexia improved their performance in
evaluation tests as well as their approach to all other
subjects showing an overall greater self-confidence.
Teachers have also noticed that in the Stanza these
children are able to summarize the contents with great-
er security linking the various subjects; a performance
this that they were not able to do only working in the
classroom.

• Regarding English learning, performed in Stanza,
the teacher pointed out that, thanks to the total and
immersive sound perception, the children have a gen-
eral better understanding of English as well as an
improved pronunciation and oral production.
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These assessments were carried out by the teacher through:

• direct observation;

• analysis of video recording made inside the Stanza;

• school assessment tests.

We certainly believe that in time it is possible to gather
more evaluative information; this is a goal that we aim to
achieve in the coming years. We intend to create a control
group that will allow us to assess over time whether there
is a difference between the learning of children who use
the Stanza and those who have never used it. We will also
detect whether a change occurs between the average marks
registered in the past (when the Stanza was not there) and
those of following years (when the Stanza was used).

7. CONCLUSIONS

Experiments conducted on 170 pupils of a Primary School
have shown that the Stanza Logo-Motoria allows users to
gradually face many organization tasks across progressively
complex experiences. To provide a more complete sensory
experience, we plan to modify the system adding a visual
feedback and a spatialized rendering of sound.

We are also thinking of providing further opportunities
for interaction among children by designing a modality in
which the mapping of the gestures of one user depend on
the gestures of another. This feature is essential when the
user has relationship difficulties such as those typical of
autism.

Multimedia is a great opportunity for the evolution of
the Educational System as the children are able to use all
the elements and tools to build a positive relationship with
the world and with themselves. Children who are not yet
adults, bound by the self-control which is typical of written
communication, are human beings in evolution that receive
all the relevant information to put themselves in relation
with the world.
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ABSTRACT

In this paper we describe a new parametric model for syn-
thesizing environmental sound textures, such as running
water, rain, and fire. Sound texture analysis is cast in the
framework of wavelet decomposition and multiresolution
statistical models, that have previously found application
in image texture analysis and synthesis. We stochastically
sample from a model that exploits sparsity of wavelet co-
efficients and their dependencies across scales. By recon-
structing a time-domain signal from the sampled wavelet
trees, we can synthesize distinct but perceptually similar
versions of a sound. In informal listening comparisons our
models are shown to capture key features of certain classes
of texture sounds, while offering the flexibility of a para-
metric framework for sound texture synthesis.

1. INTRODUCTION

Many sounds in our surroundings have textural properties—
yet sound texture is a term difficult to define, because these
sounds are often perceived subconsciously and in a context-
dependent way. Sound textures exhibit some of the statis-
tical properties that are normally attributed to noise, but
they arguably do convey information; not so much in an
information theoretic sense, but rather as a carrier of emo-
tional and situational percepts [1]. Indeed, sound texture—
often denoted atmosphere—forms an important part of the
sound scene in real life, in movies, games and virtual envi-
ronments.

In this work our goal is to synthesize environmental
sounds with textural properties, such as running water, waves,
fire, crowd noises, etc. Eventually, we intend to provide a
building block for an application that automatically gen-
erates soundscapes for virtual environments. Our work is
in the context of stochastic sound synthesis: given a tex-
tural analysis or target sound with statistical characteris-
tics sufficiently close to stationarity, we want to synthe-
size stochastic variations that are perceptually close in their
characteristics to the original but are not mere reproduc-
tions. In a data-driven approach we build a model by
statistical signal analysis. The distributions captured by
the model are then used to synthesize perceptually similar
sounds by stochastic sampling.

Copyright: c©2010 Stefan Kersten et al. This is an open-access article distributed
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permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Previous research suggests that textural sounds are per-
ceived by human listeners in terms of the statistical proper-
ties of constituent features, rather than by individual acous-
tic events [2, 3]. The ability to model texture in a statistical
sense, without detailed knowledge or assumptions about
the structure of the source material, leads to several desir-
able properties that a texture model should possess:

• Compactness of representation: The model should
require significantly less parameters than the origi-
nal coded audio.

• Statistical properties: The signal statistics should
be discoverable using a limited amount of training
data.

In general a texture model for synthesis can be split in
an analysis part and the actual synthesis part. The goal of
the analysis phase is to estimate the joint statistics of sig-
nal coefficients in some decomposition space and combine
them in a parametric or non-parametric model by statisti-
cal analysis. For audio signals, we typically need to es-
timate not only the vertical coefficient relationships, i.e.
their interdependencies across the frequency axis, but also
their horizontal dependencies across time. During the syn-
thesis phase, a new time series of decomposition coeffi-
cients is generated by stochastic sampling from the model.
If our model sufficiently captured the structural coefficient
dependencies, then after transforming the sampled coeffi-
cients to the time domain, we obtain a signal that percep-
tually resembles the original but is not exactly the same.

Multiresolution (MR) signal analysis methods, and in
particular the discrete wavelet transform, have been shown
to be well suited for modeling the dynamics of sound tex-
tures, where important perceptual details are present in var-
ious frequency bands and on different time scales [4, 5, 6].
Even though the wavelet transform can be considered al-
most sparse for many natural signals [8], the coefficients
retain inter- and intra-scale dependencies that have to be
taken into account in a statistical decomposition and syn-
thesis model. It has been shown that for natural signals
like 2D images, the wavelet coefficients themselves are
non-Gaussian, but approximately Gaussian conditioned on
their context, i.e. neighboring coefficients in scale and lo-
cation [7]. The hidden Markov tree (HMT) model [8] is
a parametric statistical model, that captures inter-scale de-
pendencies and is particularly suited to be applied to tree
structured data like wavelet transform coefficients.

While previous approaches to sound texture synthesis
have mostly been based on non-parametric density estima-
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tion techniques—see Section 2 for an overview—the HMT
has been successfully applied to a wide range of image pro-
cessing problems, leaving room for speculation that it will
also be applicable to sound texture modeling. It thus forms
the basis of our approach to sound texture synthesis. Our
model is similar to previous work in that we also use the
wavelet transform for multiresolution signal analysis and
perform density estimation in wavelet decomposition trees.
Our estimator, however, instead of being based on non-
parametric density estimation, explicitly casts the wavelet
coefficient statistics and their interdependencies in a graph-
ical model within the maximum likelihood framework. As
with parametric models in general, when the modeling as-
sumptions match the signals being modeled fairly well, we
can gain from a principled probabilistic approach, e.g. by
introducing priors, dealing with missing data and perform-
ing inference.

The rest of the paper is structured as follows: In Sec-
tion 2 we give an overview of current approaches to sound
texture modeling and multiresolution statistical analysis.
In Section 3 we introduce the basic building blocks of our
texture model, the discrete wavelet transform and the hid-
den Markov tree model and how these fit together in a
synthesis model. In Section 4 we present results of nat-
ural sound textures synthesized from our model and finally
draw some conclusions and mention possible future work
in Section 5.

2. RELATED WORK

While image texture modeling has been under active inves-
tigation for at least 35 years, sound texture modeling has
begun to find a similarly thorough treatment only relatively
recently; for an overview with a focus on synthesis see [9].

Many approaches to sound texture modeling have been
heavily inspired by methods originally developed for mod-
eling texture images. In [4] the authors describe a non-
parametric sound texture model that learns conditional prob-
abilities along paths in a wavelet decomposition tree. Path
probability densities are estimated first for inter-scale co-
efficient dependencies and in a second step for intra-scale
predecessor probabilities. In a similar fashion, [5] estimate
the sound texture statistics on wavelet tree coefficients by
kernel density estimation and histogram sampling, inspired
by the approach taken by Efros and Leung for image tex-
ture synthesis [10]. The authors report improved results
compared to the ones obtained by [4], but didn’t conduct a
conclusive quantitative evaluation.

A large body of research is devoted to the field of multi-
resolution statistical models, and in particular MR Markov
models, for a comprehensive overview see [11]. The hid-
den Markov tree model has been applied to a wide range of
problems in image and signal processing, such as denois-
ing [8, 12, 13, 14] and texture classification and synthesis
[15].

3. METHODS

3.1 The discrete wavelet transform

The discrete wavelet transform decomposes a one- or multi-
dimensional signal z(t) into atoms of shifted and dilated
bandpass wavelet functions ψ(t) and shifted versions of a
lowpass scaling function φ(t), i.e. the signal is represented
on multiple time scales K and frequency scales J :

ψJ,K(t) ≡ 2−J/2ψ(2−J t−K)

φJ0,K(t) ≡ 2−J0/2φ(2−J0t−K)
J,K ∈ Z

(1)

When designed with certain constraints, the wavelet and
scaling functions form an orthonormal basis with the fol-
lowing signal representation [16]:

z(t) =
∑
K

uKφJ0,K(t) +
J0∑

J=0

∑
K

wJ,KψJ,K(t)

uK =
∫
z(t)φ∗J0,K(t)dt

wJ,K =
∫
z(t)ψ∗J,K(t)dt

(2)

where ∗ denotes complex conjugation. uK and wJ,K

are called scaling and detail coefficients, respectively. In
(1) and (2), J specifies the scale or resolution of analysis
– the smaller J , the higher the resolution. J0 is the lowest
level of resolution, where the analysis yields both detail
coefficients and scaling coefficients. In the case of audio
signals, K denotes the temporal support of analysis, i.e.
the amount of time a wavelet ψ(t) is shifted from its sup-
port at time zero. The detail coefficient wJ,K measures the
signal content at time 2JK and frequency 2−Jf0, where
f0 is the wavelet’s center frequency. The approximation
coefficient uK measures the local mean at time 2J0K. Fol-
lowing [8] and in order to reduce notational overhead, we
will adopt a simplified indexing scheme for basis functions
of the decomposition and the resulting coefficients: instead
of indexing by scale J and shift K, we will use a one-
dimensional mapping J,K 7→ Z, where the indices i ∈ Z
have a fixed but unspecified ordering.

In practice, the DWT can be implemented with a pyra-
midal filterbank algorithm, where the signal is recursively
split into lowpass and highpass filter responses, that to-
gether form a quadrature mirror filter pair. Both responses
are downsampled by two; the highpass response forms the
detail coefficients, while the lowpass response is used for
further recursive analysis until a maximum depth is reached.

Due to the recursive structure of the DWT and the shift
and dilation relations based on powers of two, the decom-
position can be represented as a forest (list) of binary trees,
where each coefficient in scale J has two children in the
next finer resolution scale. At the coarsest level of detail
the signal is represented as pairs of detail and approxima-
tion coefficients, at which a binary tree of detail coeffi-
cients is rooted. The decomposition of the time-frequency
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Figure 1: Four level wavelet time-frequency decomposition. Shown are two consecutive trees with frequency running
downward and time to the right.

plane into multiple wavelet trees is shown graphically in
Fig. 1.

The recursive shifting and dilation performed by the
DWT is also the reason for some desirable properties for
the analysis of natural sounds [8]: Locality, i.e. each band-
pass atomψi is localized in both time and frequency, which
implies multi-resolution, i.e. a nested set of scales in time
and frequency is analyzed and compression, i.e. the wave-
let coefficient matrices of many real-world signals are near-
ly sparse. These properties are desirable for the goal of es-
timating the statistics of a wavelet decomposition, as will
become evident in the next paragraph.

3.2 Hidden Markov Tree Models

In general, a hidden Markov model introduces hidden state
variables that are linked in a graphical model with Markov
dependencies between the states, as is the case for the wide-
ly used hidden Markov model (HMM). Often the hidden
states can be viewed as encoding a hidden physical cause
that is not directly observable in the signal itself or its
transformation in feature space.

In our research we focus on MR Markov processes that
are defined on pyramidally organized binary trees, in par-
ticular the hidden Markov tree model. In this model, each
node in a wavelet decomposition tree is identified with a
mixture model, i.e. a hidden, discrete valued state variable
with M possible values and an equal number of paramet-
ric distributions (usually Gaussians) corresponding to the
individual values of the hidden state (Fig. 2).

Instead of assuming a Markov dependency on the wave-
let coefficients as in parametric estimation methods (see
Section 2), the HMT model introduces a first order Markov
dependency between a given hidden state and its children.
In other words and for the example tree in Fig. 2, given
their parent state variable s1, the subtrees rooted at the chil-
dren s2 and s3 are conditionally independent. Similarly,
since the wavelet coefficients are modeled by a distribu-
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Figure 2: Hidden Markov tree model. Associated with
each wavelet coefficient at a certain position in the tree
structure (black node) is a hidden state variable (white
node), that indexes into a family of parametric distribu-
tions.

tion that is only dependent on the node’s state, w2 and w3

are also independent of the rest of the tree given their par-
ent state s1. Given enough data for parameter estimation
and by increasing the number of states M , we can approx-
imate the marginal distributions of wavelet coefficients to
arbitrary precision. This allows us to model marginal dis-
tributions that are highly non-Gaussian, but are Gaussian
conditioned on the parent state variable.

Even though the wavelet transform can be considered
a de-correlator and the decomposition is sparse, the wave-
let coefficients of real-world signals can not be considered
independent, and there remain inter-coefficient dependen-
cies that need to be taken into account in a statistical model.
Fig. 3 shows histograms of wavelet coefficients for a par-
ticular scale in natural sound signals. These distributions
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are sharply peaked around zero with long symmetric tails,
corresponding to the sparsity property of the wavelet trans-
form: there’s a large number of small and only a few large
coefficients.

For modeling the non-Gaussian wavelet coefficient mar-
ginal statistics, we use a two-state Gaussian mixture model,
where one state encodes the peaked distribution of small
coefficients and the other state encodes the tailed distribu-
tion of high-valued coefficients. For wavelet coefficients
w = (w1, . . . , wN ) and hidden states s = (s1, . . . , sN ),
the HMT is defined by the parameters

θ = {ps1(m), εmr
i,p(i), µi,m, σ

2
i,m}

m, r ∈ {0, 1}, 1 ≤ i ≤ N
(3)

with:

• ps1(m) = P (s1 = m), the probability of the root
node s1 being in state m,

• εmr
i,p(i) = P (si = m|sp(i) = r), the conditional

probability of child si being in state m ∈ {0, 1}
given the parent sp(i) is in state r ∈ {0, 1},

• µi,m, the mean of the wavelet coefficient wi given si

is in in state m (1 ≤ i ≤ N) and

• σ2
i,m, the variance of the wavelet coefficientwi given
si is in state m (1 ≤ i ≤ N).

3.2.1 Training of the HMT

In order to find the best parameters fitting a given source
sound, we update the model parameters θ given the train-
ing data w = {wi} (a forest of binary wavelet trees, see
Section 3.1) using a maximum likelihood (ML) approach.
The expectation maximization (EM) framework provides
a solid foundation for estimating the model parameters θ
and the probabilities of the hidden states s and has been
formulated for wavelet-based HMM’s in [8]. The objec-
tive function to be optimized is the log-likelihood function
ln f(w|θ) of the wavelet coefficients given the parameters.
The EM algorithm iteratively updates the parameters until
converging to a local maximum of the log likelihood.

In the following we provide a schematic description of
the algorithm. More information on how we initialized our
models and on the convergence criterion can be found in
Section 3.3.

1. Initialization

(a) Select an initial model estimate θ0,

(b) Set iteration counter l = 0.

2. E step: Calculate P (s|w, θl), the probability of the
hidden state variables S, yielding the expectation

Q(θ|θl) =
∑

s∈{0,1}N

P (s|w, θl) ln f(w,s|θ). (4)

3. M step: Update parameters θ, in order to maximize
Q(θ|θl):

θl+1 = arg max
θ
Q(θ|θl). (5)

4. Convergence: Set l = l+1. If converged, then stop;
else, return to E step.

3.2.2 E Step

The formulas for solving the hidden Markov tree E step
presented in [8] are susceptible to underflow due to the
multiplication of a large number of probabilities smaller
than one. In [13] the authors develop an algorithm that is
immune to underflow and computes the probabilities p(si =
m|w, θ) directly, instead of deriving them from p(si =
m,w = w). The probabilities p(si = m, sρ(i) = n|w, θ),
needed for computing the conditional state probabilities,
can also be extracted directly from their algorithm. Similar
to the original algorithm in [8], the above-mentioned prob-
abilities are computed in separate upward and downward
recursions, comparable to the computation of forward and
backward variables in conventional hidden markov mod-
els. The algorithm has a slightly higher computational
complexity than the one in [8], although it is still linear
in the number of observation trees. For a more thorough
treatment of the computations involved see [13].

3.2.3 M Step

After having calculated P (s|w, θl) in the E step, the M
step consists in straight-forward closed-form updates of the
conditional state probabilities and the parameters of the ob-
servation distributions.

First we calculate the probability of node i being in state
m

psi
(m) =

1
K

K∑
k=1

P (sk
i = m|wk, θl) (6)

Then we update the model parameters by averaging over
the quantities computed in the E-step for each of the K
training examples:

εmr
i,p(i) =

∑K
k=1 P (sk

i = m, sk
p(i) = r|wk, θl)

Kpsp(i)(r)
(7)

µi,m =
∑K

k=1 w
k
i p(s

k
i = m|w, θl)

Kpsi
(m)

(8)

σ2
i,m =

∑K
k=1(w

k
i − µi,m)2P (sk

i = m|wk, θl)
Kpsi

(m)
(9)

3.3 Application to Sound Texture Synthesis

In this section we describe how the hidden Markov Tree
model is adapted to a sound texture synthesis application. 1

1 All of the algorithms used in this work were implemented in the
functional programming language Haskell and a link for download-
ing the package can be found at http://mtg.upf.edu/people/
skersten?p=Sound%20Texture%20Modeling

364

http://mtg.upf.edu/people/skersten?p=Sound%20Texture%20Modeling
http://mtg.upf.edu/people/skersten?p=Sound%20Texture%20Modeling


!3 !2 !1 0 1 2

0

0.1

0.2

0.3

0.4

0.5

d
5

(a) Fire
!0.6 !0.4 !0.2 0 0.2 0.4 0.6

0

0.05

0.1

0.15

0.2

0.25

d
1

(b) Water

Figure 3: Histograms of wavelet coefficients on the first (finest) scale of a five-level decomposition for two natural sounds,
fire (left) and running water (right). The wavelet coefficient statistics for fire are clearly non-Gaussian, while for running
water the statistics approach the Gaussian distribution.

3.3.1 Wavelet decomposition

The signal is first decomposed into wavelet coefficients on
different scales, using Daubechies wavelet functions with
five and ten vanishing moments [16].

The wavelet decomposition yields a forest of binary trees,
each rooted at one of the corse scale wavelet coefficients.
The length of the window corresponding to an individual
tree depends on the depth of the wavelet decomposition.
In our experiments, we chose a decomposition depth of 15
and 16, respectively, which corresponds to a context length
of 215 = 32768 (or 0.74s at a sample rate of 44100) and
216 = 65536 (or 1.5s). In order to yield an even num-
ber of trees, the signal was truncated to an integer multi-
ple of the context length in samples, i.e. from a signal of
length n with a decomposition depth ofm we used the first
b n

2m c ∗ 2m samples. We worked exclusively with mono-
phonic sounds and extracted the left channel from sounds
that have originally been recorded in stereo.

3.3.2 Model construction

The wavelet decomposition tree structure is mapped to a
HMT by associating each coefficient i with a hidden state
variable si that can take one of two discrete values, de-
pending on the value of the parent’s state variable sρ(i)

(see Section 3.2). Together with one normal observation
distribution per state value, each node forms a Gaussian
mixture model that approximates the statistics of a coeffi-
cient at a certain position in the tree. The model has the
same number of nodes as a single wavelet tree and all the
trees in a decomposition forest are regarded to be indepen-
dent samples from the same underlying distribution which
corresponds to the parameter tying across trees described
in [8].

In order to simplify the model, we don’t take the ap-
proximation coefficient corresponding to each corse scale

coefficient into consideration, although an extension to a
two-dimensional Gaussian mixture for the root node would
be straight-forward.

3.3.3 Model initialization and training

Since the EM algorithm only converges to a local mini-
mum of the likelihood function (see Section 3.2), it is im-
portant to find a good initial estimate of the model’s param-
eters. Following [17], we initialize the conditional state
probabilities and the Gaussian distribution parameters by
fitting a two-state Gaussian mixture model (GMM) to each
level of the wavelet decomposition (the corresponding lev-
els of all trees are concatenated). Once the GMM param-
eters have been found by the EM algorithm for Gaussian
mixtures [18], an initial estimate of the conditional state
probabilities εmr

i,p(i) is found by averaging over the number
of joint state occurrences for each tree node

εmr
i,p(i) =

#(si = m and sρ(i) = n)
#(sρ(i) = n)

(10)

During training, each tree of the decomposition forest
is presented to the HMT model as an independent training
example. In the E-step, the probabilities P (Si = m|θ, wi)
and P (Si = m,Sρ(i) = n|θ, wi) are determined as de-
scribed in Section 3.2.2. The M-step then proceeds to up-
date the model parameters according to (7), averaging over
all of the trees in the training set.

We trained our models until the training data log likeli-
hood under the updated model in step l + 1 was within a
margin t of 0.001 of the log likelihood under the model in
step l or when a maximum number n of iterations had been
reached:

rl ≡
ln f(w|θl+1)− ln f(w|θl+1)

ln f(w|θl+1)
(11)
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terminate when 0 ≤ t ≤ rl ∨ l ≥ n.

3.3.4 Synthesis

Sampling from the model begins by choosing an initial
state for the root of the tree based on the estimated prob-
ability mass function (pmf) and sampling a wavelet coef-
ficient from the gaussian probability distribution function
(pdf) associated with the node and the sampled state. The
algorithm proceeds by recursively sampling state pmfs and
observation pdfs at each node given the state of its imme-
diate parent. After having sampled a number of trees from
the model independently from each other—without any ex-
plicit tree sequence model—the resulting forest of binary
wavelet coefficient trees is transformed to the time domain
by the inverse wavelet transform.

4. RESULTS

For a first qualitative evaluation we selected two textural
sounds, fire and running water, from a commercial collec-
tion of environmental sound effects 2 .

Fig. 4 shows the spectrograms of the fire and the water
sound, respectively (left column). The fire texture is com-
posed of little micro-onsets stemming from explosions of
gas enclosed in the firewood. Inter-onset intervals are in
the range of a few milliseconds. The background is filled
with hisses, little pops and some low frequency noise. The
sound of a water stream on the other hand is characterized
by its overall frequency envelope with a broad peak below
5 kHz and a narrow peak around 12 kHz, while the fine
structure is not clearly discernible in the spectrogram.

Informally evaluating the synthesis results by listening 3

shows that the HMT model is able to capture key depen-
dencies between wavelet coefficients of the textural sounds.
In the case of fire, the model built from an analysis with the
longer wavelet function with ten vanishing moments is not
able to reproduce the extremely sharp transients present in
the signal. All three fire reproductions capture the over-
all perceptual quality of the original. This coherence is
ensured by the HMT model by capturing the across scale
coefficient dependencies. The temporal fine structure how-
ever can deviate significantly from the original: In all three
cases the onset patterns are denser than in the source sound
and lack sequential coherence. This can be explained with
the fact that our model doesn’t capture temporal, i.e. within-
scale dependencies of wavelet coefficients explicitly. This
missing feature roughly corresponds to the autocorrelation
feature found to be important for the perception of textures
in both image and sound [15, 3].

Similar to the sounds of fire, the synthesis of the water
sound shows an overall similar spectral shape to the origi-
nal, although an important spectral peak is missing from
around 12 kHz and the high frequency content is more
noisy in general (Fig. 4). In this sound, clearly noticeable
bubbles form an important part of the temporal fine struc-
ture, and this feature is missing from the synthesis. We

2 Blue Box SFX, http://www.eastwestsamples.com/
details.php?cd index=36, accessed 2010-04-27.

3 The synthesis results of our experiments are available on the
web for reference, http://mtg.upf.edu/people/skersten?
p=Sound%20Texture%20Modeling, accessed 2010-06-14

attribute this, as in the case of fire, to the missing autocor-
relation feature in our synthesis model.

All of the synthesis examples show a repeating pattern
with a length close to the wavelet tree size, i.e. directly
related to the decomposition depth, although there is some
minor within-loop variation. This result is an indication
that the model is overfitted to the source material and can
be explained with the relatively low number of training ex-
amples per tree model (around 7 wavelet trees per 10 sec-
onds of source material). We could alleviate the overfitting
effect in two ways: firstly, by using a significantly larger
training set, and secondly, by tying parameters of corre-
lated wavelet coefficients and thereby reducing the number
of states and the number of mixture components. Simply
tying parameters within one level of the wavelet decompo-
sition however was found to be inadequate, because tem-
poral fine structure gets lost and the synthesis result resem-
bles a noisy excitation with roughly the spectral envelope
of the original.

In order to quantitatively assess the synthesis quality,
we conducted a small listening experiment with eleven sub-
jects. We selected three sound examples for each of the five
texture classes applause, crowd chatter, fire, rain and run-
ning water from the Freesound database 4 . We trimmed
the sounds to the first 20 seconds, selected the left chan-
nel and downsampled this sound portion to a uniform sam-
ple rate of 22.5kHz. We then trained a model for each of
the sounds using a wavelet tree decomposition of a depth
of 16, i.e. an analysis frame length of 1.5s, and stopping
training after 40 iterations. By sampling from the models
we synthesized an eight second audio clip for each original
sound file and presented the examples in random order. In
a forced choice test, the subjects had to assign each syn-
thesized sound to one of the five texture classes.

Table 1 shows the confusion matrix of the listening ex-
periment and Table 2 lists the per-class accuracy. Appar-
ently our model adequately captures the key perceptual
properties of the respective sound classes except in the
case of water and rain. The rain/water confusion can be
explained with the missing “larger-scale” fine structure in
the water examples (bubbling, whirling) that draws them
closer to the noisy nature of the synthesized rain. While
applause gets confused with rain on a surface because of
the perceptual similarity between the micro-onsets that com-
prise those texture sounds, the vocal quality of the crowd
chatter is a clearly distinguishing feature, even if poorly
synthesized.

5. CONCLUSIONS

In this work we approached the problem of sound tex-
ture synthesis by application of a multi-resolution statis-
tical model. Our contribution is a model that is able to
capture key dependencies between wavelet coefficients for
certain classes of textural sounds. While the synthesis re-
sults highlight some deficiencies that need to be addressed
in future work, a parametric probabilistic approach to sound
texture modeling has important advantages:

4 http://freesound.org
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Figure 4: Spectrograms of a fire sound (top left), its synthesis (top right) a water stream sound (bottom left) and its synthesis
(bottom right). Both sounds were recorded at a sample rate of 44100 kHz. The spectrum analysis was performed with a
window size of 1024 and a hop size of 256.

Predicted
applause crowd fire rain water

A
ct

ua
l

applause 13 1 0 7 1
crowd 0 24 1 5 2
fire 0 0 30 0 3
rain 1 1 2 17 12
water 6 0 2 19 6

Table 1: Confusion matrix for the listening experiment’s
results with five sound classes of three examples each and
eleven subjects. Due to an error during the model building
process, the applause class contains only two examples.
One user classification for the crowd class was not submit-
ted.

Class
applause crowd fire rain water

Accuracy 0.59 0.75 0.91 0.52 0.18

Table 2: Class accuracies obtained in the listening experi-
ment.

• Probabilistic priors can be used to deal with insuffi-
cient training data or to expose expressive synthesis
control parameters.

• The model can be applied to inference tasks like clas-
sification, segmentation and clustering.

When comparing the synthesized sounds to their origi-
nal source sounds it becomes evident that the model fails to
capture some features that are crucial for auditory percep-
tion of texture, most notably the intra-scale autocorrelation
feature. Another major limitation is the inadequate repre-
sentation of infinite time series, because our model divides
the signal into blocks of a size determined by the model
tree depth, thereby introducing artifacts caused by the po-
sition of the signal relative to the beginning and the end of
the block.

The most intuitive approach to overcome these limita-
tions is to modify the graphical tree model itself, by allow-
ing additional conditional dependencies between nodes on
the same hierarchy level. Because graphs that satisfy cer-
tain conditions on their structure, and in particular on the
cycles formed by their edges, still allow for efficient pa-
rameter estimation in the EM framework—see [19] for a
thorough treatment—it is possible to model within-scale
coefficient dependencies without resorting to Markov-chain
Monte-Carlo or other simulation methods. The significant
increase in the number of parameters needs to be addressed
by aggressive tying, i.e. by using the same parameters for
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a set of variables in the model that exhibit the same statis-
tics. While tying within tree levels yields unsatisfactory
results for the model described in this paper, a modified
model might be able to capture just enough temporal cor-
relations to make this tying scheme feasible. By explicitly
modeling dependencies across time, the wavelet decompo-
sition depth wouldn’t be the only way to capture temporal
context any longer and could be decreased significantly,
resulting in a vastly reduced set of parameters.
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ABSTRACT

This paper discusses a system capable of detecting the po-
sition of the listener through a head-tracking system and
rendering a 3D audio environment by binaural spatializa-
tion. Head tracking is performed through face recognition
algorithms which use a standard webcam, and the result is
presented over headphones, like in other typical binaural
applications. With this system users can choose an audio
file to play, provide a virtual position for the source in an
euclidean space, and then listen to the sound as if it is com-
ing from that position. If they move their head, the signal
provided by the system changes accordingly in real-time,
thus providing a realistic effect.

1. INTRODUCTION

3D sound is becoming a prominent part of entertainment
applications. The degree of involvement reached by movies
and video-games is also due to realistic sound effects, which
can be considered a virtual simulation of a real sound en-
vironment.

In one of the definitions of Virtual Reality, simulation
does not involve only a virtual environment but also an
immersive experience (see [1]); according to another au-
thor, instead of perception based on reality, Virtual Reality
is an alternate reality based on perception (see [2]). An
immersive experience takes advantage from environments
that realistically reproduce the worlds to be simulated.

In our work, we are mainly interested in audio aspects.
Even limiting our goals to a realistic reproduction of a sin-
gle audio source for a single listener, the problem of recre-
ating an immersive experience is not trivial. With a stan-
dard headphones system, sound seems to have its origin in-
side the listener’s head. This problem is solved by binaural
spatialization, described in Section 3, which gives a realis-
tic 3D perception of a sound source S located somewhere
around the listener L. Nowadays, most projects using bin-
aural spatialization aim at animating S keeping the posi-
tion of L fixed. Thanks to well known techniques, such a
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result is quite easy to achieve. However, for an immersive
experience this is not sufficient: it is necessary to know
the position and the orientation of the listener within the
virtual space in order to provide a consistent signal [3], so
that sound sources can remain fixed in virtual space inde-
pendently of head movement, as they are in natural hearing
[4].

As a consequence, we will introduce a head-tracking
system to detect the position of L within the space and
modify the signal delivered through headphones accord-
ingly. The system can now verify the position of S with
respect to L and respond to his/her movements.

At the moment, audio systems typically employ mag-
netic head trackers thanks both to their capability of han-
dling a complete 360◦ rotation and to their good perfor-
mances. Unluckily, due to the necessity of complex dedi-
cated hardware, those systems are suitable only to experi-
mental or research applications. But the increasing power
of home computers is supporting a new generation of opti-
cal head trackers, based primarily on webcams.

This work proposes a low cost spatialization system which
only relies on resources available to most personal comput-
ers. Our solution, developed with MAX/MSP, is based on
a webcam head-tracking system and binaural spatialization
implemented via convolution.

The paper is structured as follows. First we will pro-
vide a short review of related literature and similar sys-
tems. Then the basic concepts about binaural spatialization
techniques will be introduced. Finally we will describe
the integration of a head-tracking system via MAX/MSP
externals - namely the multi-platform, real-time program-
ming environment for graphical, audio, and video process-
ing used to implement our approach - and the real-time
algorithms involved in the processing of audio and video
streams.

2. RELATED WORKS

We want to present here other similar approaches and projects
which served as a basis in the development process. Some
concepts, such as “binaural spatialization” will be intro-
duced in the following.

• Binaural Tools: A MAX/MSP patch from the au-
thor of CIPIC database that performs binaural pan-
ning using Head Related Transfer Function (HRTF)
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measurements. The panner takes an input sound file
and convolves it with a measured sound response
recorded from a selectable angle and elevation. Out-
put can optionally be recorded to a sound file. The
program was created based on some parts of Vin-
cent Choqueuse’s binaural spatializer for Max/MSP
[5]. We started from these works to develop our ap-
proach. They are inspiring as they do not use ex-
ternal libraries and rely solely on MAX capabilities.
This approach has also some drawbacks. For ex-
ample, in order to perform spatialization efficiently,
other techniques could be used but they should be
expressly implemented.

• Spat∼: A Spatial Processor for Musicians and Sound
Engineers [6]. Spat∼ is a real-time spatial process-
ing software which runs on the Ircam Music Work-
station in the MAX graphical signal processing en-
vironment. It provides a library of elementary mod-
ules (pan-pots, equalizers, reverberators, etc.) link-
able into a compact processor integrating the local-
ization of sound events together with the manipula-
tion of room acoustical quality. This processor can
be configured for various reproduction formats over
loudspeakers or headphones, and controlled through
a higher-level user interface including perceptual at-
tributes derived from psychoacoustical research. Ap-
plications include studio recording and computer mu-
sic, virtual reality or variable acoustics in rooms.
The stability and quality of this library could be use-
ful to redesign some structures of our spatializer and
achieve better quality and performances.

• bin ambi: A Real-Time Rendering Engine for Vir-
tual (Binaural) Sound Reproduction [7]. This library
is intended for the use with Miller Puckette’s open
source computer music software Pure Data (PD). The
library is freely downloadable and can be used un-
der the terms of GNU General Public License. It
provides a simple API easy to use for scientific as
well as for artistic projects. In this implementation
there is a room simulation with 2 sound objects and
a listener. One direct signal and 24 early reflections
are calculated and rendered per sound object. The
sound rendering based on mirror sources provides
models for the early reflections. Each reflection will
be encoded into the Ambisonics domain (4th order
3-D) and added to the Ambisonics bus. The listener
rotates the whole Ambisonics field, the Ambisonics
decoder renders the field into 32 discrete signals of
32 virtual loudspeakers. All 32 speaker signals will
be filtered by its HRFT in relation to the left and
to the right ear (binaural decoding). Interpolation is
one of the critical points of such applications. We
can choose an approach like the one proposed here
that could give a better interpolation and sound qual-
ity but increases the computational complexity of the
system.

• 3D-Panner [8]: A SuperCollider-based spatialization
tool for creative musical applications. The program

spatializes monaural sounds through HRTF convo-
lution, allowing the user to create 3D paths in which
the sound source will travel. In 3D Panner the user
can easily create unique paths that can range from
very simple to very complex. These paths can be
saved independently of the sound file itself and ap-
plied to any other monaural source. During play-
back, the sound source is convolved with the interpo-
lated HRTFs in real-time to follow the user-defined
spatial trajectory. This project is inspiring for our
work because we plan to introduce new features, such
as moving sound sources, and we need a way to de-
scribe and handle trajectories.

3. BINAURAL SPATIALIZATION

Binaural spatialization is a technique that aims at reproduc-
ing a real sound environment using only two channels (like
a stereo recording). It is based on the assumption that our
auditory system has only two receivers, namely the ears.
If it is possible to deliver a signal equal (or nearly equal)
to the one which a subject would receive in a real environ-
ment, this will lead to the same perception. Our auditory
system performs various tasks to obtain a representation of
the acoustic environment; most of them are based on the
physical parameters of the signal of interest and are called
“cues” [9][10].

Binaural spatialization can be achieved through various
processes, such as: equalizations and delays, or convolu-
tion with the impulse response of the head (HRIR). The
latter approach is the one we have followed in our work.
In order to obtain these impulses, many experiments in-
volving the use of a dummy head 1 have been made (see
i.e. [11]), thus creating databases of impulse responses.
Most of them use a fixed distance (usually 1 meter) from
S to L, which constitutes a potential limitation.

4. INTEGRATING A HEAD-TRACKING SYSTEM
INTO MAX

In our work, we choose to adopt faceAPI, namely an optical
face tracking system developed by Seeing Machines [12]
that provides a suite of functions for image processing and
face recognition encapsulated in a tracking engine. It is a
commercial product - freely usable only for research pur-
poses - that implements a head tracker with six degrees of
freedom. It can be seen as a “black box” which grants ac-
cess to tracking data through a simple interface oriented to
programming tasks. Basically the engine receives frames
from a webcam, processes them and then returns informa-
tion about the position of the head with respect to the cam-
era.

MAX/MSP is an integrated platform designed for mul-
timedia, and specifically for musical applications [13]. This
graphical real-time environment can be successfully used
by programmers, live performers, “traditional” musicians,
and composers. Within the program objects are also repre-
sented like “black boxes” which accept input through their

1 A dummy head is a mannequin that reproduces the human head.
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inlets and return output data through their outlets. Pro-
grams are built by disposing these entities on a canvas (the
patch) and creating a data flow by linking them together
through patchcords.

MAX provides developers with a collection of APIs to
create external objects and extend its own standard library
[14]. The integration of the head tracker requires to create
a base project for MAX (we used the so called “minimum
project”) and then add references to faceAPI to start devel-
oping the external.

When MAX loads an external, it calls its main() func-
tion which provides initialization features. Once loaded,
the object needs to be instanced by placing it inside a patch.
Then the external allocates memory, defines inlets and out-
lets and configures the webcam. Finally, faceAPI engine
starts sending data about the position of the head. In our
implementation the external reacts only to bang messages: 2

as soon as a message is generated, a function of faceAPI
is invoked to return the position of the head through float
variables.

Each MAX object has to be defined in terms of a C
structure, i.e. a structured type which aggregates a fixed
set of labelled objects, possibly of different types, into a
single object. Our implementation presents only pointers
to the object outlets in order to directly pass variables to
the tracking engine.

typedef struct _head {
t_object c_box;
void *tx_outlet, *ty_outlet, *tz_outlet;
void *rx_outlet, *ry_outlet, *rz_outlet;
void *c_outlet;

} t_head;

Such values represent the translation along 3 axes (tx, ty, tz),
the orientation of the head in radians (rx, ry, rz) and a con-
fidence value. After their detection, values are sent to their
corresponding outlets and they are available to the MAX
environment. In brief, the headtracker external presents
only one inlet that receives bang messages and seven out-
lets that represent the values computed by the tracking en-
gine.

5. THE “HEAD IN SPACE” APPLICATION

This section aims at introducing the Head in Space (HiS)
application for MAX. As discussed in Section 4, we as-
sume that our head-tracking external acts as a black box
that returns a set of parameters regarding the position of
the head.

In Figure 1 a workflow diagram of the system is shown.
In input, two sets of parameters are available to the sys-

tem, in order to define: 1. the position of the listener, and
2. the position of the audio source. Given this information,
and taking into account also the position of the camera,
it is possible to calculate the relative position of the lis-
tener with respect to the source in terms of azimuth, eleva-
tion and distance. This is what the system needs to choose
which impulse response to use for spatialization. Once the

2 A bang is a MAX special message that causes other objects to trigger
their output.

Figure 1. The workflow diagram of the system.

correct HRIR is obtained from the database, it is possible to
perform convolution between a mono audio signal in input
and the stereo impulse response. Since the position both
of the listener and of the source can change over time, an
interpolation mechanism to switch between two different
HRIRs has been implemented.

5.1 Coordinates Extraction

The spatializer uses a spherical-coordinates system that has
its origin in the center of the listener’s head. Source is iden-
tified by a distance measure and two angles, namely az-
imuth on horizontal plane and elevation on median plane.
Angular distances are expressed in degrees and stored in
the patch through integer variables, whereas the distance is
expressed in meters and its value is stored as a float num-
ber.

Please note that the head tracker presents coordinates
in a cartesian form that has its origin in projection cone
of the camera. Thus the representation of coordinates of
the spatializer and the one of the head tracker are differ-
ent and a conversion procedure is needed. The conversion
process first performs a rototranslation of the system in or-
der to provide the new coordinates of translation both of
the source and of the head inside a rectangular reference
system.

Referring to Figure 3, given the coordinates for a generic
pointP , representing the source in a system (O1;X1, Y1, Z1),
we can determine a set of coordinates in a new cartesian
plane (O2;X2, Y2, Z2) that refers to the position of the
head through the relation:

V2 = V0 + (1 + k) ·R · V1 (1)

where:
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Figure 2. An overview of the patch.

Figure 3. The translation system.

V0 =

∥∥∥∥∥∥
x0

y0
z0

∥∥∥∥∥∥ translation components

V1 =

∥∥∥∥∥∥
x1

y1
z1

∥∥∥∥∥∥ known coordinates of P in O1

V2 =

∥∥∥∥∥∥
x2

y2
z2

∥∥∥∥∥∥ unknown coordinates of P in O2

k = 0 scale factor
R = Rx ·Ry ·Rz rotation matrix (2)

R is the matrix obtained by rotating each cartesian triplet
with subscript 1 along its axes X1, Y1, Z1 with rotation of
Rx, Ry, Rz to displace it parallel to X2, Y2, Z2. Rotation
matrixes are:

Rx =

∥∥∥∥∥∥
1 0 0
0 cos(Rx) sin(Rx)
0 − sin(Rx) cos(Rx)

∥∥∥∥∥∥ (3a)

Ry =

∥∥∥∥∥∥
cos(Ry) 0 − sin(Ry)

0 1 0
sin(Ry) 0 cos(Ry)

∥∥∥∥∥∥ (3b)

Rz =

∥∥∥∥∥∥
cos(Rz) sin(Rz) 0
− sin(Rz) cos(Rz) 0

0 0 1

∥∥∥∥∥∥ (3c)

the product Rx ·Ry ·Rz is calculated with (4).
We can now derive formulas to calculate the position in

the new system:

x2 =(x0 + x1)[cos(Ry) cos(Rz)]
+ (y0 + y1)[cos(Rx) sin(Rz)
+ sin(Rx) sin(Rz) cos(Rz)]
+ (z0 + z1)[sin(Rx) sin(Rz)
− cos(Rx) sin(Rz) sin(Rz)]

(5)

y2 =(x0 + x1)[cos(Ry) sin(Rz)]
+

(y0 + y1)[cos(Rx) cos(Rz)
− sin(Rx) sin(Rz) sin(Rz)]
+ (z0 + z1)[sin(Rx) cos(Rz)
+ cos(Rx) sin(Rz) sin(Rz)]

(6)

z2 =(x0 + x1) sin(Ry)
+ (y0 + y1)[sin(Rx) cos(Ry)]
+ (z0 + z1)[cos(Rx) cos(Ry)]

(7)

Now we can calculate spherical coordinates using the
following formulas:

distance ρ =
√
x2 + y2 + z2 (8)

azimuth ϕ = arctan
( z
x

)
(9)

elevation θ =

(
y√

x2 + y2 + z2

)
(10)
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R =

∥∥∥∥∥∥
cos(Ry) cos(Rz) cos(Rx) sin(Rz) + sin(Rx) sin(Ry) cos(Rz) sin(Rx) sin(Rz)− cos(Rx) sin(Ry) sin(Rz)
− cos(Ry) sin(Rz) cos(Rx) cos(Rz)− sin(Rx) sin(Ry) sin(Rz) sin(Rx) cos(Rz) + cos(Rx) sin(Ry) sin(Rz)

sin(Ry) − sin(Rx) cos(Ry) cos(Rx) cos(Ry)

∥∥∥∥∥∥
(4)

Figure 4. The detail of the MAX subpatch for the convo-
lution process.

The new set of coordinates can be employed to retrieve
the right HRIR from the database. Since our database in-
cludes only HRIRs measured at a given distance, we only
use azimuth and elevation. How to use the distance value
to simulate the perception of distance will be explained in
Section 5.4. Since not all the possible pairs of azimuth and
elevation have a corresponding measured HRIR within the
database, we choose the database candidate that minimizes
the euclidean distance.

5.2 The Convolution Process

This section describes the convolution process between an
anechoic signal and a binaural HRIR. We use the CIPIC
database [11], consisting of a set of responses measured
for 45 subjects at 25 different values for azimuth and 50
different values for elevation. Each impulse consists of 200
samples.

Figure 4 illustrates the detail of the subpatch for one
channel. From its first inlet it receives the anechoic signal,
while from the second it gets the index for HRIR within a
buffer∼ object. HRIRs are stored in a single file that con-
catenates all the impulses. Please note that the process is
performed one time for left channel and another one for
right channel. Inside the database, azimuth and elevation
values are numbered through an ad hoc mapping. Given
an azimuth position naz and an elevation position nel we
can calculate the starting point within the buffer with the

Figure 5. The detail of the MAX subpatch for the cross-
fade system.

formula:

[((naz − 1) · 50) + (nel − 1)] · irlength (11)

A buffir∼ object is a finite impulse response (FIR) filter
that loads both coefficients from the buffer and audio sig-
nal, and then performs convolution in time domain. Con-
volution is implemented through a FIR filter since the small
number of samples of HRIRs makes computationally con-
venient to perform it in time domain instead of frequency
domain. buffir∼ object allows to store up to 256 coeffi-
cients.

5.3 Interpolation and Crossfade Among Samples

One of the known problems related to the use of HRIR for
spatialization is the interpolation between two signals con-
volved with two different impulses. This is a very com-
mon case for this kind of real-time applications because
when moving from one azimuth value to another impulses
are very dissimilar. As a consequence, output signal can
change abruptly, thus affecting negatively the perceived
quality of the system. We have designed a simple yet per-
forming interpolation procedure based on crossfade to limit
the artifacts produced by the switch between impulses.

The approach is replicating the audio stream for each
channel that lead to changes to the convolution subpatch.
We add a second buffir∼ object so now the first filter will
produce signals convolved with the current impulse and the
second filter will be loaded with the new HRIR provided by
the new position. Then new signal will gradually overcome
the signal from other filter with a crossfade function. Once
done the role of the two filter will switch. This behaviour
is achieved trough a ggate∼ object.
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As a performance issue it should be noted that in a real
time environment every redundant operation should be avoided.
In our implementation this means that a crossfade between
samples is needed only if a switch has been detected by
a change object that gives a value in output only if it is
not equal to its previous value. This avoid unnecessary
computation by the CPU that are useless if applied to the
same impulse response and could lead to a degradation in
terms of quality. Another improvement is given by the
use of speedlim∼ object that establish the frequency of
messages in terms of minimum number of milliseconds
between each consecutive message. It could happen that
changing azimuth and elevation at the same time two dif-
ferent new messages could be generated in a rapid sequence.
That could lead to a premature refresh in the filter co-
efficients leading to a loss of quality. With this compo-
nent they are spaced by at least 40 msec. This value is
chosen according with the typical refresh rate of a video
stream (25 fps). This value is also used to define the cross-
fade duration between samples, and in our implementation
the crossfade is linear. The user can define a value be-
tween 5 msec and 20 msec. By experiments, depending
on the CPU power, it is possible to achieve a good quality
even at 5 msec. So the overall delay between changes is
20 msec+ 200samples

44100 samples
sec

.

5.4 Simulation of Distance

One of the limitations of the CIPIC database is presenting
candidates only at one given distance. In order to simulate
the distance effect, our patch contains a simple procedure
based on the inverse square law. The function is imple-
mented by an expr∼ object 3 with the expression:

20 log10

(
1

distance

)
dB (12)

We limit the range of the distance value produced by the
head-tracking system between 0.1 and 2. Conventionally
1 identifies the reference distance of the impulse response,
and in this case no gain is applied. The mentioned distance
value is employed to feed the gain of each channel. The
process could be enhanced by adding a filter which simu-
lates the air absorption or using a database where HRIRs
are measured at various distances.

5.5 The Graphical User Interface

The software application that implements the algorithms
described before is a standard patch for MAX/MSP. The
patch uses an ad hoc external to implement the head-tracking
function.

After launching it, the software presents a main window
made of a number of panels and a floating window contain-
ing the image coming from the webcam after faceAPI pro-
cessing. In the latter window, when a face is recognized, a
wireframe contour is superimposed over the face image.

In Figure 6 we present the user interface of the applica-
tion. As regards the main window, it is organized in several

3 An expr∼ object evaluates C-like expressions.

Figure 6. The graphical user interface of the program.

panels. First, it allows to switch on and off the processing
engine. Besides, a number of text boxes and buttons are
used to set the position of the camera and of the source.
Other controls give feedback about the derived position of
the listener and the corresponding translation into azimuth,
elevation, and distance. A 3D representation (with the use
of the OpenGL support of Jitter) of the system made of the
listener (dark cube) and the source (white sphere) is also
provided and updated in real time.

The bottom right panel contains the controls to choose
the audio file to be played and to start the playback.

6. CONCLUSIONS & FUTURE WORKS

This paper has described a working application that per-
forms real-time spatialization of an audio signal based on
the position of the listener.

The system can be improved in several manners. The
use of a single webcam corresponds to a limited resolution
of azimuths and elevations (± 90 azimuth, -30/+60 eleva-
tion, data coming from faceAPI specifications). It could be
possible to combine more cameras in order to fully repre-
sent the space choosing the one with the highest confidence
value.

Another improvement is adding support for more than
one source in order to render a richer environment. It could
also be interesting to take into account moving sound sources;
this implies that a way to describe trajectories needs to be
implemented.

The use of CIPIC database limits the number of possi-
ble measured distances and led us to implement a distance
simulation mechanism, whereas it would be desirable to
switch among HRIRs measured at various distances. Also
the 200-samples HRIRs do not account for rooms ambi-
ence, so a reverberation tool is needed.
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Since the application is structured in modules, it can be
easily extended in order to support the future changes we
have mentioned.

The source code and application are freely available
from the authors at:
http://www.lim.dico.unimi.it/HiS.
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ABSTRACT 

In this paper we analyze the proceedings of all the past 
six editions of the Sound & Music Computing Confer-
ence. The proceedings are analyzed using knowledge 
based “keywords to text” mapping to discover the overall 
conference trends. The analysis is done on the basis of 
number of papers, distinct authors, participation ratio for 
each relevant topic, interdependence of topics in terms of 
shared keywords and the overall popularity of keywords. 
The analysis was done for each conference year as well 
as for the overall collection of proceedings till date. The 
objective of the discussed work is to provide an insight 
over the past six years in the SMC community that was 
envisioned in the roadmap. 

1. INTRODUCTION 
Since its first conference in 2004 to Porto’s 2009 confer-
ence, the Sound & Music Computing field has traveled a 
path, which has given it a status that it could be treated as 
a standalone scientific discipline. The aim of this paper is 
to analyze the evolution of the publications of the SMC 
conference that was envisioned in the roadmap of the 
SMC field [1]. Since these publications were scattered 
over the Internet in individual websites of each confer-
ence year, it was not easy to extract information about the 
conference. 

For the ease of data retrieval & analysis of the publi-
cations on the basis of author participation, topic of inter-
ests, relationship between different topics & the trend 
over the years we decided to build a web repository of all 
the publications of the SMC Conference till date and used 
it for the analysis reported in this particular paper. Con-
trary to the other works presented in [2, 3], the current 
work relies on collaborative effort, knowledge simplifica-
tion and rule based classification. 

 
 

 
 

 
 
Section 2 describes how this repository was built as 

well as its preliminary analysis. The methodology used 
for the analysis of the papers is explained in section 3 
while section 4 presents the results of the analyses that 
were performed and finally in section 5 we discuss the 
conclusion of the analyses and the work done. 

2. THE REPOSITORY 
2.1 Building the repository 

Every published paper of the SMC Conference so far was 
downloaded from each year’s conference’s individual 
website and then manually entered in a relational data-
base management system. Drupal Content Management 
Service [4] was chosen as the framework. 

2.2 Preliminary Analysis 

Preliminary analysis of the built repository was done in 
order to expose the trend about number of papers & 
author participation in each edition as well in the overall 
history of the conference. The results of the preliminary 
analysis are summarized in Table 1. 

 

Year No. of 
Papers 

No. of  Distinct 
Authors 

2004 46 83 
2005 31 68 
2006 25 50 
2007 60 116 
2008 34 70 
2009 62 163 
Overall 258 482 

 

Table 1. Preliminary analysis of the SMC Publications. 

It has to be taken into account that the overall number of 
distinct authors (482) is not the sum of the individual 
distribution of distinct authors for each conference year 
as an author is most likely to participate in two or more 
editions of the conference. Specifically, over the years, 
68 authors have participated in more than one edition of 
the conference. 

Copyright: © 2010 Pratyush et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 
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3. THE METHODOLOGY 

This section describes the overall process, which was 
followed in order to get the analysis result that was envi-
sioned. The process starts with simplification of knowl-
edge to generate “List of Topics” associated with the 
Sound & Music Computing community, secondly a hand-
ful of “Keywords” were created to map each paper to one 
or the other topics in the list. Finally, statistical analyses 
of the papers were done. 

3.1 Knowledge simplification 

To classify all the papers of the previous SMC Confer-
ences on the basis of “Research Topics”, we started with 
the topics for call for papers for the upcoming Sound & 
Music Conference. Since these topics were very specific 
in nature, we classified them into broader topics. The 
classification, of the original topics into broader ones 
was done on the basis of “Similarity in Concepts”.  

This led to the construction of a hierarchical classifi-
cation, constituting two levels of simplification:  

1. “Middle Level Topics” 

2. “High Level Topics” 

The mappings of these two levels of topics are presented 
in Table 2. 

3.2 Keyword building 
Since the papers presented in the SMC Conference did 
not have “Keywords” in the full text, there were two  
options for building a keyword repository for the papers: 
 

1. Automatic extraction of keywords from the ab-
stract of the papers using a probabilistic mixture 
model as introduced in [5]. 

 
2. Use of CSCW methods using Google docs as 

discussed in [6] to collaborate with other re-
searchers of the field to have a consensus on a 
set of keyword for each topic. 

 
For the current work, we used the second method for 

building the keyword list for each middle level topic. The 
consensus was reached using cross validation of the key-
words between each researcher in the second pass of the 
questionnaires. Furthermore, relevance of each keyword 
was checked by searching for the keyword in the SMC 
papers as well as searching for papers using the same 
keyword in Google scholar.  

3.3 Search Mechanism 

The search mechanism attempts to assign a topic to each 
paper, based on the keyword. The entire process can be 
described as below: 

1. Search every keywords of each topic in the ab-
stract & title of each paper. 

2. If a particular keyword is present in the abstract 
or title, we add that keyword & the associated 
topic as a contender for classifying that paper. 

3. Once the keywords are mapped in a particular 
paper, we count the total number of occurrences 
of each keyword & the total presence of key-
words from each topic. 

 Middle level topics 
High level topics Name ID 

3D sound/music, Sound/music signal processing algo-
rithms, Digital Audio Effects, Musical sound source 
separation 

Topic 1 
Processing of sound and music signals 

Sound synthesis, Spectral modeling synthesis, Physical 
modeling for sound generation Topic 2 

Music information retrieval, Musical pattern recogni-
tion/modeling, Computational musicology, Technologies 
for the preservation, access and modeling of musical 
heritage, Automatic music transcription, Musical sound 
source separation and recognition 

Topic 3 

Understanding and modeling sound and music 

Music and emotions, Sound/music and Neuroscience, 
psychology, psychoacoustics, Sound/music perception 
and cognition 

Topic 4 

Interfaces for sound and music 

Interfaces for music creation and fruition, Gesture con-
trolled audio systems, Mobile music, Interactive per-
formance systems, Musical performance modeling Visu-
alization of sound/music data, Sonic interaction design 

Topic 5 

Web 2.0 and music, Networked music generation Topic 6 
Assisted sound and music creation Computer environments for sound/music processing, 

Automatic music Topic 7 

Table 2. Hierarchy between High & Middle Level Topics 
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4. The topic with the maximum number of key-
words present in a paper is decided to be the 
relevant topic for that paper. 

5. If more than one topic has equal presence in a 
paper, we classify the paper as ‘Multiple Topic’. 

6. If none of the keywords could be mapped to a 
paper, we label the paper as ‘Unknown Topic’. 

 

This process is carried out to classify a paper to a Middle 
Level topic using the set of corresponding keywords for 
each topic. For the re-classification of each paper based 
on High Level Topics, we use the relationship between 
the Middle Level & High Level topics as depicted in Ta-
ble 2. Furthermore, if there were discrepancies in the high 
level classification, we assigned those papers as ‘Unclas-
sified’. 

 
Topic ‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ALL 
Multiple 13 4 5 15 8 11 56 
No topic 4 0 1 2 3 3 13 
Topic 1 3 2 1 3 7 3 19 
Topic 2 9 13 7 13 9 10 61 
Topic 3 7 0 5 4 1 13 30 
Topic 4 2 0 1 0 0 2 5 
Topic 5 5 11 4 18 3 15 56 
Topic 6 3 1 1 4 3 5 17 
Topic 7 0 0 0 1 0 0 1 

Table 3. Year wise distribution showing the absolute 
number of papers for each Middle Level Topic. 

 
Topic ‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ALL 
Unclassi-
fied 

13 4 5 13 6 10 51 

No topic 4 0 1 2 3 3 13 
As-
sisted… 

3 1 1 5 3 5 18 

Inter-
faces… 

5 11 4 18 3 15 56 

Process-
ing… 

12 15 8 18 17 14 84 

Understan
ding… 

9 0 6 4 2 15 36 

Table 4. Year wise distribution showing the absolute 
number of papers for each High Level Topic. 

 

4. RESULTS 
The results that we obtained after the analysis are pre-
sented in this section. For better aesthetics of the plots & 
charts, we have used aliases for each Middle Level Topic. 

4.1  Participation ratio for each relevant topic 

Since each paper was classified as either a topic or multi-
ple topic or unknown topic, we can deduce the distribu-
tion of each topic in each year’s conference as well as in 
the overall conference till date.  

Figure 1 shows the distribution of each Middle Level 
Topic in the overall conference history, while Table 3 is 
used to visualize the distribution of each Middle Level 
Topic in each edition of the conference. 

Likewise, Figure 2 displays the distribution of the 
High Level Topics in all years of the conference taken 
together, whereas Table 4 is used to show the distribution 
of these topics in each conference year. 

 

 
 

Figure 1. Publication distribution for Middle Level Topics 
for the overall conference till date. 

 
 

 
 

Figure 2. Publication distribution for High Level topics 
for all years taken together. 

 

4.2 Trends for each level of topics over the entire con-
ference history 

The change in the number of papers for each topic over 
the years is presented both for Middle Level & High 
Level topics in Figure 3 and Figure 4 respectively. 
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Figure 3. Middle Level Topic trend. 

 

 
Figure 4. High Level Topic trend. 
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4.3 Closeness between the topics 
Since we used decision based approach for assigning a 
paper a relevant topic based on the “presence of key-
word”, we observed many papers which were classified 
as particular topic but had a fair amount of keywords of 
other topics were present as well. This can be used to 
deduce the closeness of a topic with others. The cross 
infiltration (presence) of each Middle Level topic in 
every other for the overall conference publications is 
showed in Table 5. 
 
 
Topic 1 2 3 4 5 6 7 
Topic 
1 

58.55 18.42 3.95 0.66 13.
82 

4.61 0.00 

Topic 
2 

9.37 59.10 7.21 1.26 17.
66 

5.23 0.18 

Topic 
3 

6.48 10.65 60.1
9 

4.63 16.
20 

1.85 0.00 

Topic 
4 

12.20 12.20 12.2
0 

43.9
0 

17.
07 

2.44 0.00 

Topic 
5 

15.43 9.88 3.09 2.78 51.
23 

17.4
4 

0.15 

Topic 
6 

2.26 15.04 2.26 3.76 24.
06 

52.6
3 

0.00 

Topic 
7 

0.00 0.00 0.00 0.00 0.0
0 

0.00 100.
00 

Table 5. Presence of each topic in each other (Middle Level). 

4.4 Keywords & their relevance 

As the keywords play a pivotal role in the overall proce-
dure that we presented here, we found out the popularity 
of each individual keyword irrespective of the topic they 
represent in all the papers published in the SMC Confer-
ence till date. 

A keyword cloud representing the popularity or pres-
ence of these keywords is plotted below as Figure 5. The 
most frequent 50 keywords are shown with a font size 
that reflects this popularity. Frequency values range from 
6 to 119 occurrences. 

 
Figure 5. Keyword Cloud 

5. CONCLUSION 
In this paper, we analyzed the proceedings of the past 
SMC Conferences, tried to categorize each published 
paper into one of the proposed 7 Middle Level & 4 High 
Level Topics so that the trend of the SMC Conferences 
could be identified and justified.  

To start with we noticed that 482 authors have par-
ticipated in the SMC Conferences till 2009 and out of 
those, 68 authors have publications in more than one edi-
tion of the conference. 

For e.g. we found out that Topic 2: Sound synthesis, 
Spectral modeling synthesis, Physical modeling for sound 
generation and Topic 5: Interfaces for music creation and 
fruition, Gesture controlled audio systems, Mobile music, 
Interactive performance systems, Musical performance 
modeling Visualization of sound/music data, Sonic inter-
action design remains the most popular topic throughout 
the conference with a combined share of ~77% in SMC 
Conference 2005 and ~45% overall. Of all the confer-
ences till date, the share of Topic 1: 3D sound/music, 
Sound/music signal processing algorithms, Digital Audio 
Effects, Musical sound source separation was highest in 
2008 about 20% and Topic 3: MIR & others had a con-
siderable share in the 2009’s conference with about 21% 
publications. 

From the participation ratio of each Middle Level 
topic in each year, we find the following trends in the 
evolution of some topics over the years: 

1. Web 2.0 grows since 2005, this can be justified 
by the fact that web 2.0 evolved a lot since that 
time, so it attracted much research in the recent 
years. 

2. Sound synthesis/ signal processing has a slight 
decline in percentage in the recent years this 
might be because the growing popularity of 
other fields. 

3. Since the theme of the 2008 conference was 
"Sound in Space", the abrupt increase in the 
number of publications of the topic “3D Audio” 
for that year is justified. 

From the closeness analysis of each topic Vs the oth-
ers, we could clearly see that Topic 1 & Topic 2 are 
closely related to each other, so our classification of 
grouping them together in the higher level of classifica-
tion is fairly justified. Although we have grouped Topic 6 
& Topic 7 together, this is not fairly justified by the data 
presented in Table 5. This is due to the fact that there is a 
hairline difference between the last two high level topics 
and thus Topic 5 & Topic 6 are also closely related as 
depicted in the same table. Alternatively, Topic 5, 6 & 7 
could be regrouped to a new High Level topic as well. 

And finally looking at the Keyword cloud, we could 
see that the popular keywords from the set we had, are 
synthesis, analysis, instrument, realtime, voice, net, etc. 
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Since the overall methodology relied on text mining 
and knowledge simplification using which we classified a 
dataset of nearly 31000 words with a keyword set of 117 
keywords, the evaluation of the system is tough. Moreo-
ver, the evaluation is also hampered by the fact that there 
were no keywords provided by the authors in the SMC 
papers to cross check with.  

To conclude with, we would like to highlight that 
only 5% of the papers were of unknown topic and about 
21% of the papers were of Multiple Topics (unclassified), 
this correlates to the fact that Sound & Music Computing 
is highly inter-disciplinary in nature. Another point to 
take into account is that these conclusions have been de-
duced from the last 6 SMC proceedings, which might not 
represent enough data to support them.  

Also, we would like to continue to explore the presence 
of research groups of different universities in the SMC 
Conferences based on publications and how papers, 
authors & research topics could be classified together on 
the basis of co-authorship, citations and bibliographic 
links.  
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ABSTRACT

Sometimes users of a music retrieval system are not able
to explicitly state what they are looking for. They rather
want to browse a collection in order to get an overview
and to discover interesting content. A common approach
for browsing a collection relies on a similarity-preserving
projection of objects (tracks, albums or artists) onto the
(typically two-dimensional) display space. Inevitably, this
implicates the use of dimension reduction techniques that
cannot always preserve neighborhood and thus introduce
distortions of the similarity space. This paper describes on-
going work on MusicGalaxy – an interactive user-interface
based on an adaptive non-linear multi-focus zoom lens that
alleviates the impact of projection distortions. Further-
more, the interface allows manipulation of the neighbor-
hoods as well as the projection by weighting different fa-
cets of music similarity. This way the visualization can
be adapted to the user’s way of exploring the collection.
Apart from the current interface prototype, findings from
early evaluations are presented.

1. INTRODUCTION

There is a lot of ongoing research in the field of music re-
trieval aiming to improve retrieval results for queries posed
as text, sung, hummed or by example as well as to automat-
ically tag and categorize songs. All these efforts facilitate
scenarios where the user is able to somehow formulate a
query – either by describing the song or by giving exam-
ples. But what if the user cannot pose a query because
the search goal is not clearly defined? E.g., he might look
for background music for a photo slide show but does not
know where to start. All he knows is that he can tell if
it is the right music the moment he hears it. In such a
case, exploratory retrieval systems can help by providing
an overview of the collection and letting the user decide
which regions to explore further.

When it comes to get an overview of a music collec-
tion, neighborhood-preserving projection techniques have
become increasingly popular. Beforehand, the objects to
be projected – depending on the approach, this may be

Copyright: c©2010 Sebastian Stober et al. This is an

open-access article distributed under the terms of the
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artists, albums, tracks or any combination thereof – are
analyzed to extract a set of descriptive features. (Alter-
natively, feature information may also be annotated manu-
ally or collected from external sources such as the EchoN-
est API 1 .) Based on these features, the objects can be
compared – or more specifically: appropriate distance- or
similarity measures can be defined. The general objec-
tive of the projection can then be paraphrased as follows:
Arrange the objects in two or three dimensions (on the
display) in such a way that neighboring objects are very
similar and the similarity decreases with increasing object
distance (on the display). Popular dimensionality reduc-
tion techniques for such a neighborhood-preserving pro-
jection are self-organizing maps (SOM) [1], principal com-
ponent analysis (PCA) [2] and multidimensional scaling
techniques (MDS) [3]. As the feature space of the objects
to be projected usually has far more dimensions than the
display space, the projection inevitably causes some loss
of information – irrespective of which dimensionality re-
duction techniques is applied. Consequently, this leads to
a distorted display of the neighborhoods such that some ob-
jects will appear closer than they actually are, and on the
other hand some objects that are distant in the projection
may in fact be neighbors in feature space.

Another problem that arises when working with simila-
rity-based neighborhoods is that music similarity is highly
subjective and may depend on a person’s background. Con-
sequently, there is more than one way to look at a music
collection – or more specifically to compare two tracks
based on their features: A musician, for instance, might
especially look after structures, harmonics or instrumenta-
tion (possibly paying – conscious- or unconsciously – spe-
cial attention to his own instrument). Non-musicians will
perhaps focus more on overall timbre or general mood.
Others, in turn, may have a high interest in the lyrics as
long as they are able to understand the particular language.
A music retrieval system should be able to incorporate this
subjectiveness in order to better comply with the individ-
ual needs of its users and consequently gain a higher ac-
ceptance. To this end, the system presented in this paper
allows the user to modify the underlying distance mea-
sure by adapting weights for different aspects of similar-
ity. Further, the described user-interface exploits the above
mentioned distorted neighborhood relations during user-
interaction. The approach is based on a multi-focus fish-
eye lens that allows a user to enlarge and explore a region

1 http://developer.echonest.com/
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of interest while at the same time adaptively distorting the
remaining collection to reveal distant regions with similar
tracks.

A broad overview of related work and a discussion of
computational complexity aspects has been given in [4].
This paper focuses primarily on the user-interface and the
interaction. To this end, the fundamental preprocessing
steps are reviewed in Section 2. Section 3 covers impor-
tant aspects of the visualization with Section 3.2 focusing
on the SpringLens distortion technique in particular as the
basis for the user-interaction. The user-interaction is de-
scribed in Section 4. Specifically, Section 4.2 provides in-
sight into how the neighborhood distortions caused by the
projection are addressed. The evaluation process of the
user-interface is described by Section 5. Finally, Section 6
concludes the paper.

2. DATA PREPROCESSING

This section sketches all necessary preprocessing steps that
can be done offline, i.e. before the actual interaction with
the user. For a detailed description, we refer to [4].

2.1 Feature Extraction

The prototype system described here uses collections of
music tracks. As a prerequisite, it is assumed that the
tracks need to be represented by some descriptive features
that can, e.g., be extracted, manually annotated or obtained
form external sources. In the current implementation, con-
tent-based features are extracted utilizing the capabilities
of the frameworks CoMIRVA [5] and JAudio [6]. Specifi-
cally, Gaussian Mixture Models of the Mel Frequency Cep-
stral Coefficients (MFCCs) according to [7] and [8] and
”fluctuation patterns” describing how strong and fast beats
are played within specific frequency bands [9] are com-
puted with CoMIRVA. JAudio is used to extract a global
audio descriptor ”MARSYAS07” as described in [10]. Fur-
ther, lyrics for all songs were obtained through the web ser-
vice of LyricWiki 2 , filtered for stop words, stemmed and
described by document vectors with TFxIDF term weights
[11]. Additional features that are currently only used for
the visualization are ID3 tags (artist, album, title, track
number and year) extracted from the audio files, track play
counts obtained from a last.fm profile, and album covers
gathered through web search.

2.2 Facet Definition

Based on the features associated with the tracks, facets are
defined that refer to different aspects of music (dis-) simi-
larity:

Definition Given a set of features F , let S be the space
determined by the feature values for a set of objects O . A
facet distance metric d (or short: facet) is a distance metric
defined on a subspace S ′ ⊆ S of the feature space and
satisfying the following conditions for any x, y, z ∈ O :

• d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y

2 http://lyricwiki.org

facet name feature distance metric
timbre GMM of MFCCs euclidean distance
rhythm fluctuation patterns euclidean distance

dynamics MARSYAS07 euclidean distance
lyrics TFxIDF vectors cosine distance

Table 1. Facets defined for the current implementation.

• d(x, y) = d(y, x) (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

For instance a facet ”timbre” could be defined on the MFCC-
based feature described in [8] whereas a facet ”text” could
compare the combined information from the features ”ti-
tle” and ”lyrics”. 3

In order to be able to aggregate values from several facet
distance metrics, the following normalization is applied for
all distance values v of a facet d:

v′ = min{1, v

µ+ σ
}

where µ is the mean and σ the standard deviation of all
distance values with respect to d. This truncates very high
distance values and results in a value range of [0, 1]. For the
aggregation, basically any function could be used. In the
current prototype the following parametrized aggregation
functions are predefined:

• d =
√∑l

i=1 wid2i (weighted euclidean distance)

• d =
∑l

i=1 wid
2
i (squared weighted eucl. distance)

• d =
∑l

i=1 widi (weighted sum)

• d = maxi=1..l{widi} (maximum)

• d = mini=1..l{widi} (minimum)

The aggregation functions allow to control the importance
of the facet distances d1, . . . , dl through their associated
weights w1, . . . , wl. Default settings for the facet weights
and the aggregation function are defined by an expert (who
also defined the facets themselves) and can later be adapted
by the user during interaction with the interface. Table 1
lists the facets used in the current implementation.

2.3 Indexing

A small sample of tracks is drawn from the collection with
the objective to approximate the covariance matrix of the
whole collection. These tracks are referred to as land-
marks. Only for these tracks, the projection will be com-
puted later. The remaining tracks will be placed according
to their distances to the landmarks. This reduces the com-
putational complexity of the projection method and facili-
tates near real-time updates in case of parameter changes.

3 It is important to stress the difference to common faceted browsing
and search approaches that rely on a faceted classification of objects to
support users in exploration by filtering available information. Here, no
such filtering by value is applied. Instead, we employ the concept of facet
distances to express different aspects of (dis-)similarity that can be used
for filtering.
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Figure 1. Facet distance cuboid data structure holding the
distance values for N tracks, m landmarks and l facets.

To further speed up the projection, the distances to all
landmarks are precomputed and stored in a 3-dimensional
data structure called ”facet distance cuboid” (Figure 1) that
holds for each song the distance values to all landmarks
for all facets. (As it is not clear at indexing time how the
facet distance values are to be aggregated, the values need
to be stored separately.) Note that the space requirement
effectively scales linearly with the number of tracks as the
number of landmarks and facets can be considered small
or even constant in comparison so that the data structure
should fit into RAM even for large collections.

Further, a neighbor index needs to be constructed to
facilitate fast lookup of neighbors during the interaction.
Currently, nearest neighbors are precomputed for each track
and updated each time the facet aggregation parameters
change. This is not appropriate for large collections and ef-
ficient indexing techniques need to be investigated in future
work. Possible candidates are space partition trees [12]
or approaches based on locality sensitive hashing [13] that
may even be kernelized [14] to allow for more complex
distance metrics. However, as our current research focus
lies on the user-interface, this is only a secondary problem.

3. VISUALIZATION

3.1 Projection Technique

Before the collection can be projected, the facet distances
need to be aggregated. The facet distance cuboid (c.f. Sec-
tion 2.3) already holds the precomputed facet distance val-
ues. I.e., for each (track, landmark)-pair, a list of values
referring to the respective facets can be looked up. The
parametrized aggregation function that computes a single
value from such a list can be fully controlled by the user.

In the projection step, each track is mapped from the
high-dimensional feature space to a 2-D-coordinate that
will later be used to infer its position when displayed on the
screen. Naturally, this projection should be neighborhood-
preserving such that tracks close to each other in feature
space are also close in the projection. We apply a landmark-
or pivot-based multidimensional scaling approach (LMDS)
for the projection as described in detail in [15, 16]. This is a
computationally efficient approximation to classical MDS
that is feasible for application on large data sets as it scales
linearly with the size of the data set. The general idea of

this approach is as follows: Given the sample of landmark
objects selected during preprocessing by some heuristic,
an embedding into low-dimensional space is computed for
these objects using classical MDS. Each remaining data
object can then be located within this space according to
its distances to the landmarks.

3.2 Distortion Technique

Once the 2-D-positions of all tracks are computed, the col-
lection could already be displayed. However, an interme-
diate distortion step is introduced that serves as the basis
for the interaction techniques described later.

The distortion technique is based on an approach origi-
nally developed to model complex nonlinear distortions of
images called ”SpringLens” [17]. A SpringLens consists
of a mesh of mass particles and interconnecting springs
that form a rectangular grid with fixed resolution. Through
the springs, forces are exerted between neighboring parti-
cles affecting their motion. By changing the rest-length of
selected springs, the mesh can be distorted. The deforma-
tion is calculated by a simple iterative physical simulation
over time. This way, the SpringLens functions as a very
flexible lens.

In the context of this work, we apply SpringLens to
simulate a complex superimposition of multiple fish-eye
lenses. We chose a moderate resolution with a maximum
of 50 cells in each dimension for the overlay mesh which
yields sufficient distortion accuracy while real-time capa-
bility is maintained. The distorted position of the projec-
tion points is obtained by barycentric coordinate transfor-
mation with respect to the particle points of the mesh. Ad-
ditionally, z-values are derived from the rest-lengths that
are used in the visualization.

3.3 Visualization Metaphor

The music collection is visualized as a galaxy. Each track
is displayed as a star or as its album cover. The brightness
and (to some extend) the hue of stars depends on a pre-
defined importance measure. In the current implementa-
tion, this is simply the play count (imported from last.fm).
However, it would as well be possible to use (user) ratings
or sophisticated popularity measures. The size and the z-
order (i.e. the order of objects along the z-axis) of the ob-
jects depends on their distortion z-values. Optionally, the
SpringLens mesh overlay can be displayed. The visualiza-
tion then resembles the space-time distortions well known
from gravitational and relativistic physics.

3.4 Filtering

In order to reduce the amount of information displayed at a
time, the user can choose between different filters that de-
cide whether a track is displayed collapsed or expanded –
i.e. as a star or album cover respectively. The resulting dis-
play using these filter modes are shown in Figure 2. Apart
from collapsing or expanding all tracks, it is possible to
expand only those tracks in magnified regions (i.e. with a
z-level above a predefined threshold) or to apply a sparser
filter.
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A sparser filter selects only a subset of the collection
to be expanded that is both, sparse (well distributed) and
representative. Representative tracks are those with a high
importance – a feature (currently the play count) that also
influences a star’s brightness and hue.

The first sparser version used a Delaunay triangulation
constructed incrementally top-down starting with one big
triangle. If the size of a triangle exceeds this threshold,
the most important track within this triangle is chosen for
display and added as a point for the triangulation. This
process continues recursively until no triangle that exceeds
a minimum size threshold contains anymore tracks that
could be added.

The currently used sparser employs a different strat-
egy: It divides the display into a grid of quadratic cells.
The size of the cells depends on the screen resolution and
the minimal display size of the album covers. Further, it
maintains a list of the tracks ranked by importance that is
precomputed and only needs to be updated when the im-
portance values change. On an update, the sparser runs
through its ranked list. For each track it determines the re-
spective grid cell. If the cell and the surrounding cells are
empty, the track is expanded and its cell blocked. (Check-
ing surrounding cells avoids image overlap. The necessary
radius for the surrounding can be derived from the cell and
cover sizes.) This sparser approach produces more appeal-
ing results in terms of the spatial distribution of displayed
covers.

Originally, the set of expanded tracks was updated af-
ter any position changes caused by the distortion overlay.
However, this was considered irritating during early user
tests and the sparser strategy was changed to update only
if the projection or the displayed region changes.

4. INTERACTION

The user-interface as shown in Figure 3 allows several ways
of interacting with the visualization 4 : Users can explore
the collection through common panning & zooming (Sec-
tion 4.1). Alternatively, they can use the adaptive multi-
focus technique introduced with this prototype (Section
4.2). Further, they can change the facet aggregation func-
tion parameters and this way adapt the view on the collec-
tion according to their preferences (Section 4.3). Hover-
ing over a track displays its title and a double-click start
the playback that can be controlled by the player widget at
the bottom of the interface. Apart from this, several dis-
play parameters can be changed such as the filtering mode
(Section 3.4), the size of the displayed album covers or the
visibility of the SpringLens overlay mesh.

4.1 Panning & Zooming

Panning shifts the displayed region whereas zooming de-
creases or increases it. These are very common interaction
techniques that can e.g. be found in programs for geo-
data visualization or image editing. Using the keyboard,
the user can pan with the cursor keys and zoom in and out
with + and − respectively. Alternatively, the mouse can

4 A demo-video is available at http://www.dke-research.de/aucoma

be used: Clicking and holding the left button while moving
the mouse pans the display. The mouse wheel controls the
zoom level. If not the whole region can be displayed, an
overview window indicating the current section is shown in
the top left corner, otherwise it is hidden. Clicking into the
overview window centers the display around the respec-
tive point. Further, the user can drag the section indicator
around which also results in panning.

4.2 Focusing

This interaction techniques allows to visualize – and to
some extend alleviate – the neighborhood distortions in-
troduced by the dimensionality reduction during the pro-
jection. The approach is based on a multi-focus fish-eye
lens that is implemented using the SpringLens distortion
technique (Section 3.2). It consists of a user-controlled pri-
mary focus and a neighborhood-driven secondary focus.

The primary focus is a common fish-eye lens. By mov-
ing this lens around (holding the right mouse button), the
user can zoom into regions of interest. In contrast to the ba-
sic linear zooming function described in Section 4.1, this
results in a nonlinear distortion of the projection. As a re-
sult, the region of interest is enlarged making more space to
display details. At the same time, less interesting regions
are compacted. This way, the user can inspect closely the
region of interest without loosing the overview as his field
of view is not narrowed (as opposed to the linear zoom).
The visual effect produced by the primary zoom resembles
a 2-dimensional version of the popular ”cover flow” effect.

The secondary focus consist of multiple such fish-eye
lenses. These lenses are smaller and cannot be controlled
by the user but are automatically adapted depending on
the primary focus. When the primary focus changes, the
neighbor index (Section 2.3) is queried with the track clos-
est to the center of focus. If nearest neighbors are re-
turned that are not in the primary focus, secondary lenses
are added at the respective positions. As a result, the over-
all distortion of the projection brings the distant nearest
neighbors back closer to the focused region of interest.
Figure 4 shows the primary and secondary focus with vis-
ible SpringLens mesh overlay.

As it can become very tiring to hold the right mouse
button while moving the focus around, the latest prototype
introduces a focus lock mode (toggled with the return key).
In this mode, the user clicks once to start a focus change
and a second time to freeze the focus. Further, in the pre-
vious prototype, the secondary focus was always updated
instantly when the primary focus changed. In the current
version, this behavior can be disabled resulting only in an
update of the secondary focus once the primary focus does
not change anymore.

4.3 Adapting the Aggregation Functions

Two facet control panels allow to adapt two aggregated
distance metrics by choosing a function type (in a drop-
down menu) and adjusting weights for the individual facets
(through sliders). The first aggregated distance metric is
applied to derive the track-landmark distances from the
facet distance cuboid (c.f. Section 2.3). These distances
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Figure 4. SpringLens distortion with only primary focus
(top) and additional secondary focus (bottom).

are then used to compute the projection of the collection.
The second aggregated distance metric is applied to iden-
tify the nearest neighbors of a track and thus indirectly con-
trols the secondary focus.

Changing the aggregation parameters results in a near
real-time update of the display so that the impact of the
change becomes immediately visible: In case of the param-
eters for the nearest neighbor search, some secondary focus
region may disappear while somewhere else a new one ap-
pears with tracks now considered more similar. Here, the
transitions are visualized smoothly due to the underlying
physical simulation of the SpringLens grid. In contrast to
this, a change of the projection similarity parameters has
a more drastic impact on the visualization possibly result-
ing in a complete re-arrangement of all tracks. This is be-
cause the LMDS projection technique produces solutions
that are unique only up to translation, rotation, and reflec-
tion and thus, even a small parameter change may, e.g., flip
the visualization. As this may confuse users, one direction
of future research is to investigate how the position of the
landmarks can be constrained during the projection to pro-
duce more gradual changes.

The two aggregated distance metrics are linked by de-
fault as it is most natural to use the same metric for projec-
tion and neighbor retrieval. However, unlinking them and
using e.g. orthogonal distance metrics can lead to interest-
ing effects: For instance, one may choose to compute the

collection based solely on acoustic facets and find nearest
neighbors for the secondary focus through lyrics similarity.
Such a setting would help to uncover tracks with a similar
topic that (most likely) sound very different.

5. EVALUATION

We follow a user-driven design approach [18] by iteratively
alternating between development and evaluation phases.
This paper describes the state after two significant revi-
sions in the third development phase. The initial prototype
(before the first evaluation) is described in [4] – focusing
primarily on computational complexity and covering a per-
formance evaluation of the projection and distortion meth-
ods. After some further refinements (including for instance
the new sparser filter), this first prototype was presented at
the CeBIT 2010 fair 5 in early March 2010. During the
fair, feedback was collected from a total of 112 visitors
aged between 16 and 63 years. The general reception was
very positive. The projection-based visualization was gen-
erally welcomed as an alternative to common list views.
However, some remarked that additional semantics of the
two display axis would greatly improve orientation. Young
visitors particularly liked the interactivity of the visualiza-
tion whereas older ones tended to have problems with this.
They stated that the reason lay in the amount of informa-
tion displayed which could still be overwhelming. To ad-
dress the problem, they proposed to expand only tracks in
focus, increase the size of objects in focus (compared to
the others) and hide the mesh overlay as the focus would
be already visualized by the expanded and enlarged ob-
jects. All of these proposals have been integrated into the
second prototype that is very briefly described in [19].

The second prototype was tested thoroughly by three
testers. During these tests, the eye movements of the users
were recorded with an Tobii T60 eye-tracker. Using the
adaptive SpringLens focus, the mouse generally followed
the gaze that scans the border of the focus in order to de-
cide on the direction to explore further. This resulted in a
much smoother eye trajectory than the one observed during
usage of panning and zooming where the gaze frequently
switched between the overview window and the objects of
interest – as not to loose orientation. This indicates that the
proposed approach is less tiring for the eyes. However, the
testers criticized the controls used to change the focus – es-
pecially having to hold the right mouse button all the time.
This lead to the introduction of the focus lock mode and
several minor interface improvements not explicitly cov-
ered here.

The third prototype which is described in this paper will
be tested in a larger eye-tracking study that aims to proof
that the interface indeed helps during exploration.

6. CONCLUSIONS

This paper described an interactive user-interface that ad-
dresses a common problem of visualization approaches that

5 The CeBIT is a German trade fair specialized on IT – c.f.
http://www.cebit.de
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are based on neighborhood-preserving projections: Map-
ping music collections from high-dimensional feature space
onto two dimensions, projection errors become inevitable.
Therefore, some objects will appear closer than they actu-
ally are and on the other side, some objects that are distant
in the projection may in fact be neighbors in the feature
space. The described user-interface for exploring music
collections exploits the distorted neighborhood relations
during user-interaction: A multi-focus fish-eye lens is used
to zoom into regions of interest. While the user can con-
trol the primary focus, the secondary focus is automatically
adapted. It consists of multiple smaller fish-eye lenses that
focus on regions that contain tracks that are similar to those
in primary focus but have been projected elsewhere. This
way, the projection errors can to some extend be compen-
sated. Further, by choosing weights for different facets of
similarity, the user can manipulate the projection and the
neighborhood relations visualized by the lens.
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Figure 2. Available filter modes: collapse all (top left), focus (top right), sparse (bottom left), expand all (bottom right).
The SpringLens mesh overlay is visible.
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ABSTRACT

This paper describes a real-time audio analysis/resynthesis
system that we developed for a music piece for ensemble
and electronics. The system combines real-time audio ana-
lysis and concatenative synthesis based on the segmenta-
tion of sound streams into constituting segments and the
description of segments by an efficient set of descriptors
adapted to the given musical context. The system has been
implemented in Max/MSP using the FTM & Co and MuBu
libraries and successfully employed in the production and
performance of the piece. As more and more research in
the domain of music information retrieval, we use the term
of typo-morhpology to designate the description of sounds
by morphologic criteria including the temporal evolution
of sound features that also can provide pertinent means for
the classification of sounds. Although, the article mainly
insists on the technical aspects of the work, it occasional-
ly contextualizes the different technical choices regarding
particular musical aspects.

1. INTRODUCTION

The developments described in this article have been con-
ducted in the framework of the production of the piece «
Caméléon Kaléidoscope » for an ensemble of 15 instru-
ments and electronics by Marco Antonio Suárez Cifuen-
tes. The piece, commissioned by the Ensemble Orche-
stral Contemporain, IRCAM, and the GRAME, has been
premiered at the Biennale Musiques en Scène in Lyon in
march 2010.

The basic idea of this work was to create a real-time sy-
stem that re-orchestrates and responds to solo instruments
and instrument groups using sound materials that are eit-
her pre-recorded or recorded on the fly from the same en-
semble. The musical writing of the piece features densely
articulated musical structures and makes intensively use of
contemporary playing techniques.

The real-time analysis sub-system that we developed in
this context segments audio streams into elementary events
and generates a description for each segment that repres-
ents its perceived duration, its energetic evolution, and its
pitch content. The same technique and descriptors are used
in the real-time analysis of the playing ensemble as for the

Copyright: c©2010 Norbert Schnell et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

description and retrieval of pre-recorded and pre-analysed
materials 1 . This choice has been made to easily allow for
an extension of the system that would extend in real-time
the sound data base used by the resynthesis.

We have chosen the description to efficiently represent
the most essential features of the given musical material.
Although it cannot be considered as a symbolic represen-
tation it permits the composer to manipulate and transform
the analyzed musical phrases as well as to generate new
musical phrases from the recorded material using sequence
patterns and generative algorithms.

In the setup of the piece, the analysis/synthesis system
described in this article is embedded into an environment
of further real-time audio processing applied to the 15 in-
struments of the ensemble such as spatialization, transpo-
sition, and distortion. The system analyzes a single input
stream that can be switched to different instruments and
instrument groups. The synthesis sub-system of the sy-
stem concatenates automatically generated musical phra-
ses from the pre-recorded data base in response to the ana-
lysis of the input stream. Up to 16 synthesis voices are
used in parallel.

1.1 Typo-Morphology

The principals of this analysis picks up on current trends
in music information retrieval research seeking to descri-
be sounds by the temporal development of their features
[1, 2, 3, 4, 5]. This research often refers to Pierre Schaef-
fer’s typo-morphology [6] that provides a framework for
the description of sounds independent of their origin. In
the context of automatic description of sounds of all orig-
ins, and especially in the context of music, Schaeffer’s
work is an excellent source of inspiration in the elaboration
of abstract sound representations that capture the essential
characteristics of sounds from a particular “point of view”.
Many authors have proposed extensions of Schaeffer’s de-
scription system [7] and adapted it to a particular context
of application [8].

1.2 Relaxed Real-Time Analysis/Resynthesis

The system that we developed has all properties of a real-
time audio analysis/resynthesis system. It analyzes an au-
dio input stream and can generate an output stream as a
real-time transformation of the input stream. Although,

1 The pre-recorded materials used in the piece are solo and group re-
cordings of instrument parts extracted from an early version of the score
performed by the players of the ensemble that also performed the premie-
re of the piece.
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the segment based approach of our system makes that the
information about the incoming sound stream is available
only at the end of each segment, which introduces a consi-
derable input/output latency for the system’s responds.

The approach to real-time audio processing we promote
with this work inscribes itself into a current trend of real-
time audio processing and interactive systems in music that
relaxes the latency constraints to the benefit of introducing
novel sound representations into this context. The challen-
ge of this work is to provide musically pertinent descrip-
tions of sounds that can be calculated in real-time and to
provide the means to manipulate these representations as a
part of a musical work.

In this sense, we’d like to refer to this approach as rela-
xed real-time audio analysis/synthesis 2 .

This work can also be seen as an extension of existing
concatenative synthesis [9] and audio musaicing [10, 11,
12] systems introducing an efficient set of descriptors re-
presenting the evolution of sound features within a sound
segment.

The implementation of the system is entirely based on
Max/MSP using the FTM & Co [13] libraries Gabor [14]
and MnM [15] as well as a set of modules recently develo-
ped in the framework of the MuBu project [16].

2. SEGMENTATION AND DESCRIPTION

Sound descriptions create a particular “point of view” on
sound materials that has to be optimized in order to fit a
particular application. Similar to other domains of appli-
cation, the work in the context of music composition re-
veals particular aspects of sound descriptions in terms of
their correspondence to actually perceived sound features
and, beyond that, their correspondence to a particular vo-
cabulary of musical writing. While, for the retrieval of
sounds using similarity – directly or after a transforma-
tion/manipoulation of the sound description – this corre-
spondence can stay implicit, the more explicitly the de-
scription reflects musically relevant characteristics corre-
sponding to the vocabulary of musical writing, the more it
can be integrated into a compositional process in articula-
tion with a written musical score.

An important challenge of this work was to optimize
the representation of the audio streams as a sequence of
described segments according to multiple aspects:

• Pertinence regarding the musical material (i.e. in-
strument sounds, style of musical writing and per-
formance)

• Potential in terms of its manipulation as part of the
compositional process

• Efficient real-time calculation of the analysis and availa-
bility of optimized analysis operators in Max/MSP

2 Technically, the overall Max/MSP system stays a synchronous real-
time audio processing system with an audio input/output latency below 50
milliseconds that also applies further (low latency) real-time transformati-
ons to the incoming sounds. Nevertheless, this approach to real-time pro-
cessing also generates new requirements for the processing environment
concerning the possibility to integrate different streams of processing on
different levels of scheduling and possibly having different representati-
ons of time.
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audio input stream

segment description

pitch
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Figure 1. Schematic overview of the analysis sub-system

Figure 1 shows a schematic overview of the analysis
sub-system and its different stages. As in similar systems,
the analysis is organized in multiple stages:

• Extraction of instantaneous (low-level) descriptors
• Segmentation
• Calculation of the segment description

The following subsection will describe and discuss the
techniques that have been employed.

2.1 Instantaneous Audio Descriptor Extraction

As in many other music information retrieval systems, the
first stage of our analysis sub-system extracts instantaneous
audio descriptors from the incoming audio stream. The fol-
lowing low-level descriptors are calculated on frames of
2048 samples with a hop size of 256 samples on the 44.1
kHz input audio stream generating regular streams of audio
descriptors with a period of 5.8 milliseconds:

• Loudness extracted from the power spectrum
• Monophonic pitch
• Pitchness

The loudness is is extracted from the power spectrum
using dBA weighting and the pitch and pitchness are cal-
culated using the Yin algorithm [17].

The following stages of the sub-system perform seg-
mentation and integrate the loudness and pitch information
into a compact description of the segments.

2.2 Onset Detection and Segmentation

The automatic segmentation implemented in the system in
based on an onset detection function calculated as the dif-
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ference of loudness between the current frame and the me-
dian of the loudness over multiple previous frames (typi-
cally 3 to 5). A positive threshold is applied to this function
to determine the instant of segmentation. The parameters
of the algorithm are the length of the median filter and the
segmentation threshold.

A variant of this algorithm had been developed on sin-
ging voice in a former unpublished research project [18].
The original algorithm had been inspired and successfully
validated against other published methods [19, 20] for sin-
ging and spoken voice. Although we tested variants of the
segmentation algorithm using a spectral description (i.e.
MEL band and MFCC coefficients), the performance on
the given sound materials was not significantly improved
compared to the loudness based approach so that it would
have justified the extraction of further spectral descriptions
in the final system 3 .

On the given sound materials, the segmentation per-
forms satisfactory although it evidently fails in two cases
that clearly would be represented as distinct musical events
in a score: extremely soft onsets (i.e. sound segments very
successively appearing from silence) and smooth transiti-
ons between distinguishable events. While the latter is not
an issue for the musical approach for which the system has
been designed, the former remains an unsolved challenge
to be further investigated on.

It was was surprisingly easy to find a parameterization
of the onset detection algorithm for all used sound mate-
rials that well distinguishes local singularities of the input
signal due to sound texture (i.e. roughness) from the onsets
of musical events.

Theoretically, the onset detection function could also be
used to determine the end of a segment by applying a nega-
tive threshold. Although, this technique has the tendency
to cut off resonances and reverberations beyond the main
body of particular sound events (e.g. partially attenuated
chords or plates). In addition, it does not give an appro-
priate estimation of the actual perceived duration of the
sound event. Since an overlap add technique is used for
the synthesis allowing for the synthesis of almost arbitrari-
ly overlapping segments it was not necessary to determine
the end of a segment before the beginning of a the next
giving the possibility to preserve resonances and reverbe-
rations wherever possible.

Consequently, a segment is defined by two successive
onsets. Apart from its total duration, a set of eight descrip-
tors representing its loudness envelope and pitch content is
associated to each segment.

2.3 Loudness Envelope Description

The most essential descriptors of a segment in the given
context concern the perceived energy. During the analysis,
the characteristics of evolution of loudness between two
onsets is recorded into a vector in order to extract the fol-
lowing descriptors:

3 Since in our research project following up on the work described
in this article we seek to include the description of timbre that anyway
requires the extraction of further spectral representations, we are currently
reconsidering this question.

• Maximum loudness
• Effective duration
• Envelope skewness

The maximum loudness represents well the perceived
energy of the segment. The module used to calculate the
other two descriptors actually calculates the first three stan-
dardized moments of the loudness envelope. The effecti-
ve duration is derived from the spread (actually from the
standard deviation) of the envelope by multiplying it with
a constant factor and clipping it to the segment duration
as defined by the inter-onset time. The multiplication fac-
tor that has been found by empirical experimentation (see
4) so that the descriptor represents very well the percei-
ved duration of a segment in comparison to segments with
equal or similar descriptor values and that it can be used
to concatenate a sequence of sound events eliminating or
equalizing the gaps between the end of one event and the
beginning of the next.

The envelope skewness turns out to be an efficient and
robust descriptor to distinguish whether and to which amount
the perceived energy of sound event represented by a given
segment raises or falls. The examples in section 4 illustrate
well this descriptor.

For convenience in the processing of the descriptors,
loudness is represented in the implementation by positive
numbers corresponding to the actually measured loudness
in dBA with an offset of 72 and clipped between 0 and 72
reducing the dynamics range used in all calculations to 72
dB.

2.4 Pitch Content Description

A second set of descriptors that describe a segment con-
cerns the pitch. Several options have been considered for
the extraction of the pitch content of a segment and the evo-
lution of pitch within a segment. Given the sound material,
the extraction of a pitch contour has been excluded. The
majority of segments correspond to contemporary playing
techniques without a clear pitch or multiple pitches (i.e.
multiphonics or piano chords). Relatively few segments
that actually have a monophonic pitch contain glissandi
that would be worth to be described by a contour. The
description we found describing best the pitch content of a
segment is a distribution table accumulating the output of
a pitch tracker over a segment.

As mentioned above, in the current version of the sy-
stem we use a monophonic fundamental frequency estima-
tion module based on the Yin algorithm, that also outputs
a harmonicity coefficient and the sound energy (calculated
as the first coefficient of the auto-correlation). For strictly
monophonic harmonic sounds the module outputs precise
estimation of the pitch and a quality estimation is close to
1. For slightly inharmonic or noisy but pitched sounds (e.g.
due to damped resonances) the harmonicity coefficient de-
creases and for unpitched sounds it is close to 0. If a sound
contains multiple pitches, the module tends to jump from
one pitch to another still representing rather well the per-
ceived pitches and strong resonances present in the seg-
ment. The product of the harmonicity coefficient and the
energy of a frame corresponds to the relative salience of
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the measured pitch. These salience values are accumula-
ted in the pitch distribution table indexed by the estimated
pitch quantized to a quarter-note scale. At an detected on-
set the table is evaluated for the last segment and cleared
to accumulated the pitch distribution of the next segment.
The pitch with the highest weight in this distribution and
its quarter-tone pitch class as well as the centroid and the
standard deviation calculated from the table are represen-
ting the pitch content among the set of descriptors of a seg-
ment.

In addition, the system calculates the mean value of the
harmonicity coefficients for all frames with a loudness abo-
ve a certain threshold (typically -72 dB) over the segment.

In summary, the following five descriptors have been
chosen to represent the pitch content of a segment:

• Most salient pitch in quarter tones represented in
floating-point MIDI pitches

• Pitch class of the most salient pitch
• Centroid of the pitch distribution table
• Standard deviation of the pitch distribution table
• Pitchness

These five descriptors can be seen as a compromise bet-
ween descriptors that actually mean something for the user
of the system (i.e. the composer) and descriptors that re-
present implicitly the most salient features of a segment.

3. SOUND RETRIEVAL AND RESYNTHESIS

The synthesis sub-system relies essentially on a recently
developed set of modules that are designed together with
an optimized data container for Max/MSP called MuBu
[16]. In the Max/MSP implementation of the system, the
data base of pre-recorded sound materials is stored in the
MuBu data container module. The data is aligned to the au-
dio data and associated to the onset time of the respective
segment.

The interaction with the data base of pre-recorded so-
unds relies on a k-nearest neighbor method. The module
used in the system implements a KD-tree allowing for an
efficient retrieval of the segments of the data base of pre-
recorded sounds that comes closed to a given description.
For the retrieval, each descriptor can be given a weight to
define its importance or even to exclude it from the query.
The description for querying sounds can be directly given
by the analysis of an audio input, generated arbitrarily or
by transformation of the output of the analysis.

A basic analysis/resynthesis system is created when using
the descriptors generated by the analysis of an input stream
in real-time directly for the query of a the sound with the
closest description in the data base and playing immedia-
tely the retrieved sound segment. The result of this setup is
an output sound concatenated from sounds present in the
data base that reflects at the same time the material in the
data base as well as the “point of view” on the sound mate-
rial – and sound in general – that is incarnated by the set of
descriptors 4 . In the design phase of the system, we have

4 Since the vector of descriptors is output by the analysis stage at the
end of each segment the timing (i.e. rhythm) of the synthesized sound
does not correspond to the input sound unless the onset times are correc-

intensively made use of this simple setup to permanently
evaluate the performance of the system regaring the perti-
nence of the chosen description.

The most basic transformation of descriptors that we
are experimenting with is the scaling of descriptors values.
Scaling allows, for example, for adapting the range of the
descriptors produced by the analysis of one instrument or
playing style to another. We have calculated for each in-
strument in the data base the mean and standard deviation
as well as the minimum and maximum values of each des-
criptor over all segments. Dependent on the descriptor and
the desired effect one would use either the extreme values
or the statistical distribution as a reference for scaling.

4. EVALUATION AND DEMONSTRATION

The system has been permanently evaluated in listening
experiments during its design. In addition to these expe-
riments that compared the behavior of the system for dif-
ferent sound materials, we have developed a small envi-
ronment around the analysis sub-system to visualize the
analysis data in real-time and offline in Max/MSP. This ap-
plication records the loudness envelope and the pitch dis-
tribution tables as well as the onset times of the segments
in addition to the descriptor values. The recorded data and
the waveform of the corresponding sound segment can be
visualized from multiple points of view using a dedicated
graphical module of FTM & Co and played back with dif-
ferent options 5 .

The fact that programming, real-time and offline analy-
sis/resynthesis, and visualization are possible in the same
environment significantly facilitated the design and imple-
mentation of the system. Although this is common for ma-
ny applications using Max/MSP (or similar environments)
as rapid prototyping and execution environment, the availa-
bility of a large number of efficient analysis and statistical
modeling operators and visualization tools in the FTM &
Co libraries adds to this an additional dimension for the
design of analysis/resynthesis systems.

The screen-shots presented in the figures 2 to 6 show
segments analyzed by the system that are representative
for the sound materials that we have worked with and that
permits to briefly discuss the representation of the sound
segments by the chosen set of descriptors. We selected
different instruments and playing modes.

Each figure shows the loudness curve and pitch distri-
bution table superposed to the waveform of the correspon-
ding segment as well as the nine descriptor values calcu-
lated for the segment. While the standard deviation of the
pitch distribution table has been calculated on the original
values in a scale proportional to the power of the signal, in
the figures below the values are visualized in logarithmic
scale. The effective duration is additionally marked with a
small vertical line crossing the zero-level of the waveform
display.

Even if the segments may appear isolated they are in
fact all real-time segmentations of the original recordings.

ted using an estimated maximal segment duration.
5 For the purpose of this publication the visualization has been simpli-

fied and superposed in a single window.
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The musical writing of the scores used for the recordings
is rather dense, but privileges very clearly articulated re-
latively short events over longer sounds with a continuous
evolution.

Figure 2 shows a pitched marimba note. The pitch dis-
tribution is reduced to a single peak at the pitch of the note
(69) that also corresponds to the low standard deviation
value (0.26). The envelope skewness (0.54) indicates a de-
caying loudness. The relatively low pitchness value corre-
sponds to the inharmonicity of the marimba sound.

Figure 2. Waveform, and description data of a segment of
a marimba note.

The pitch distribution of the segment of a flute note
played with flatterzunge shown in figure 3 represents well
the two salient pitches that are audible when listening to
the sound. The descriptors calculated from the distribution
still represent the pitch of the note (75.5) derived from the
maximum of the distribution, but reduce the two pitches
to an augmentation of the standard deviation (2.94) and a
centroid below the maximum pitch. The low value of the
loudness envelope skewness (0.11) indicates a rather flat
envelope.

Figure 3. Waveform, and description data of a segment of
a flute note with flatterzunge".

The segment represented in figure 4 corresponds to a
clarinet multiphonic emerging from silence with a strong
crescendo. The note onset of this example is strong enough
to be detected by the system. Apart from the strongest peak
that in fact corresponds to the strongest perceived pitch, the
pitch distribution in this example only very vaguely corre-
sponds to the pitch content of the multiphonic. Neverthe-
less, some overall characters of the pitch content are repre-
sented by the high standard deviation (5.8) combined with
a high pitchness value (0.82). The crescendo is well re-
presented by the very low negative skewness value (-1.17).
The segment is cutoff by the onset of a staccato note follo-
wing the crescendo.

Figure 4. Waveform, and description data of a segment of
a clarinet multiphonic.

The pitch distribution of the trombone glissando in figu-
re 5 represents well the pitch range of the glissando. The
additional peaks on the left and the right are octave errors
of the pitch estimation that do not significantly change the
standard deviation of the pitch distribution calculated on
the linear scale values of the table (2.04) corresponding to
2 semitones. The slight crescendo over the segment is ex-
pressed in the negative skewness value (-0.22).

Figure 5. Waveform, and description data of a segment of
a trombone glissando.

The last example in figure 6 visualizes the segmentati-
on and analysis of a short bass note played “ecrasé”. Even
though the effective duration is correctly estimated its dis-
play starting from the beginning the segment is not appro-
priate in this case. The low pitchness value (0.26) witnes-
ses of the noisy character of the sound segment that corre-
sponds to a note in the middle of a staccato sequence. Ne-
vertheless, the most salient perceived pitch of the segment
is represented by the indicted maximum of the distribution
(35.5).

Figure 6. Waveform, and description data of a segment of
double bass note played “ecrasé”.
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5. CONCLUSIONS AND CURRENT RESEARCH

With the work described in this article, we have achie-
ved a first step in the development of a real-time analy-
sis/resynthesis using a segment based description.

Staying rather simple, the description developed for the
context of a contemporary music piece has been proven its
efficiency in the context of the given musical production
and opened for us an interesting field of further investiga-
tion.

Although the system does not perform an explicit clas-
sification, it permits to access to the data base by typo-
mophological criteria.

We are currently working on several improvements and
extensions of the system. The most important improve-
ments mainly concern the detection of soft note onsets and
smooth note transitions as well as the development of a
compact description of timbral aspects.

Further experiments and developments concern the trans-
formation of the segment description and the resulting pos-
sibilities in composition. For example, the descriptor va-
lues can be normalized and scaled or inverted in order to
create corresponding variations in the retrieval of sound
segments and resynthesis.

While we currently do not apply any analysis and mode-
ling of the sequence of segments, the given representation
has an interesting potential to be used in conjunction with
techniques such as Bayesian networks and Factor Oracle.
Sequence modeling may require a more explicit classifica-
tion of segments that can be easily derived by clustering in
the descriptor space.

Even if a segment based approach was an obvious choi-
ce regarding the very strongly articulated character of the
piece we are currently considering alternative techniques
that do not require a segmentation at the analysis stage and
still allow for the manipulation and retrieval of musically
relevant sound segments represented by a temporally inte-
grated description corresponding to the temporal evolution
of sound features.
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ABSTRACT 

Conceptual musical works that lead to a multitude of 
realizations hold a particular interest. One can’t talk 
about a performance without taking into account the 
rules that lead to the existence of that particular 
presentation. After dealing with similar works of open 
forms by Iannis Xenakis and Karlheinz Stockhausen, 
the interest in John Cage’s music is evident. His works 
are “so free” that one can play any part of the material; 
even a void set is welcomed. The freedom is maximal 
and still there are decisions to consider in order to 
perform the piece.  
The present article focuses on the Concert for Piano and 
Orchestra of 1957–58 [1], and it is part of the Cagener 
project, intended to develop a set of conceptual and 
software tools, which generates a representation of the 
pieces, intended to assist the performers in their task. 
The computer serves as a partner in making choices of 
multiple possibilities, mix together sounds of different 
sources and of various kinds and following 
compositional ideas clearly stated.  

1. INTRODUCTION 

The performer approaching John Cage’s music 
composed after the middle of the 20th century is often 
surprised to encounter a large amount of freedom mixed 
with a set of precise instructions. As a common result, 
the musician will determine “a version” in which he will 
decide on the free elements included in the score. A 
fixed score is thus created and used repeatedly. The 
performer will play it without any doubts of the 
composer’s intentions. In fact, most of Cage’s scores 
composed after the fifties are not to be pre-generated. 
Each performance should be unique and undetermined. 
Using the computer helps one to perform, ignoring what 
and when he is going to play. 

2. COMPUTER-AIDED PERFORMANCE 
The musical world offered itself a multitude of tools 
with the evolution of computer technologies. At first, 
dedicated to an employment in musical composition, 
they were oriented and adapted to a use in musical 

analysis and as aid tools to interpretation. 
Several practices concerned with the interpretation 

field were developed. One can mention: 
• The use of audio and MIDI sequencers as “super 

metronomes”. It is common today that interpreters enter 
complete scores in sequencers as a way to work out 
difficulties in the performance (concerning especially 
contemporary pieces). The musician can thus 
progressively work the problematic passages by varying 
the speed; he can approach comfortably various tempi 
changes in combination with eventual rallentandi and 
accelerandi. 

• The use of sequencers or notation programs to 
practice playing in ensemble. This is a logical extension 
of the “Minus-one” idea. 

• The use of dedicated tools capable of correcting the 
player’s interpretation. 

An increasing number of composers prepare 
interpreters’ oriented computer programs in order to help 
them perform with the computer before starting with the 
actual musical piece.  

There are other examples of computer tools created 
by or for interpreters, but our concern here is to show a 
new field developed in the last twenty years. 

In our topic here, the interpretation of a category of 
Cage’s work, in which the concepts of liberty and 
indetermination are predominant, it seems that the paper 
aspect of the scores is an obstacle in the realization. The 
wish that the player could navigate freely, non-
determined and without restraint, through the musical 
material seems not helped by the fact that the music is 
presented on paper, and thus in a determined order.  
Computers may bring a solution to that particular 
difficulty for Cage’s and also other composers’ music. 
The actual playing prevents the musician from doing 
other tasks to orient his choices in “real-time”.  For 
example Iannis Xenakis in Linaia Agon (trio for horn, 
trombone and tuba, 1972) asks for a passage where the 
different instrumental choices are directed by a “gain 
matrix”. The choice is computer-aided in order to enable 
a smooth interpretation [2]. 

One aspect of the tools proposed here is that they are 
oriented towards interpretation. In that concern, the 
interface should “contain” implicitly or explicitly all the 
instructions, constraints and concepts defined by the 
composer, as they will establish an “experimentation Copyright: © 2010 Sluchin et al. This is an open-access article 

distributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 
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field”. For the construction of Computer-aided 
performance (CAP) tools, the careful study of the pieces 
of John Cage and its formalization is necessary. The 
final interface will be, in a certain way, a computer 
model of the particular piece. 

3. THE CONCERT FOR PIANO AND 
ORCHESTRA. 

3.1. Musical Context 

The Concert for Piano and Orchestra (1957–58) marks 
a decisive step towards the definition of the notion of 
« indeterminacy » and appears to be one of the more 
important works of John Cage, a milestone in his path. 
For the first time, control over decisions regarding all 
aspects of music is given to interpreters. Each execution 
may well sound differently from one another, and 
duration may vary each time. It is no “Concerto” for 
piano and orchestra, but a chamber ensemble piece 
whose instrumentation is to be defined at each 
performance. There are parts for thirteen instruments 
(three for violin, two for violas, one for cello, one for 
contrabass, one for flute who doubles on a piccolo and 
alto flute, one for clarinet, one for bassoon doubling on 
the baritone saxophone, one for trumpet, one for 
trombone and one for tuba), solo for piano and 
conductor. The individual parts are all “Solos” meaning 
that there is no relationship or coordination between 
them. Any portion of it (also void) may be chosen to be 
played. A version of Concert may thus have any number 
of these instruments including none, which will, in that 
case, be a silent version as in 4'33".  

3.2. Score Description 

In Concert for Piano and Orchestra there is no full 
score. There are 2 conductor’s score pages, 63 pages 
for piano, and 184 instrumental pages score (Table 1) 

Violin 1: pages 1–16 
Violin 2: pages 17–32 
Violin 3: pages 33–48 
Alto 1: pages 49–64 
Alto 2: pages 65–80 

Trumpet in Bb: pages 81–92 
Violoncello: 93–108 

Tuba in F and Bb: pages 109–120 
Clarinet in Bb: pages 121–132 

Flute, Piccolo, Alto flute: pages 133–144 
Bassoon, Saxophone: pages 145–156 

Double Bass: pages 157–162 
Sliding Trombone: pages 173–184 

Table 1: Instrumental parts 

3.3. Instrumental Scores 

Each instrumental part (each Solo) is composed of one 
page of detailed instructions to performance and of a 
collection of pages containing musical events, called 
“notes” by Cage. Figure 1 shows the third page of the 
trombone score. 

Each instrument page is a collection of punctual musical 
events, (see Figure 2 and Figure 3), displayed on 12 to 
16 music sheets. Each event is a compound one, having 
relative pitch, dynamics, playing modes, and other 
indications.  

 
Figure 1: Page 176 of trombone score 

The events are distributed variously on each sheet, from 
extreme density (music system with around 10 events) 
to empty staves (i.e. trombone score [1, p. 178]).  
 

 
Figure 2: 5th event 3rd 

system of page 176, 
from trombone part. 

 
Figure 3: 5th event 1st 
system of page 176, 
from trombone part. 

3.4. The Piano Score 

The piano part consists of 63 pages; “each page is one 
system for a single pianist”. The elements of a page are 
musical structures that were generated using different 
composition techniques, some varieties of same species 
or altogether different (Figure 4). Sometimes one 
structure is too long and continues on several 
consecutive pages, as for example, the structure “B” in 
page 1 [1, p.4] (Figure 4).  
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3.5. The Conductor’s Score 

Cage has also planed a conductor’s score, but not in the 
traditional way. A conductor, providing the function of 
clock may participates in the performance of Concert. 
He turns his arms like a clock. The time shown by the 
conductor may be compressed, widened or literal 
physical time (His arms may not turn with the same 
velocity of a regular clock). Cage provides a table with 
what he calls “clock time” (the time shown) and the 
“effective time”, from which the conductor prepares his 
conducting score. 

 
Figure 4: Page 1 from the piano part. 

3.6. “Concert” model 
Even if each instrument has his own “instruction page” 
some elements are common to all. Each player is free to 
play any elements of his choice, wholly or in part and in 
any sequence. In this manner, each presentation is 
unique, and Cage considers the piece as “in progress” 
[3]. 

4. PERFORMING CONTEXT 

4.1. The main concepts in John Cage’s early pieces 

In the John Cage’s Concert performance four concepts 
are highlighted: Silence, Chance, Indeterminacy and 
Unintentionality. 

4.1.1. Silence 

In connection with his encounter with Zen Buddhism 
[4], Cage rethinks his understanding of music. As a 
result, he composes 4'33" [5], a work whose 
abandonment of intentional sound production drew 
controversy to his compositions. Cage spoke of silence 
in a new and positive way. Not only has it an 
importance in the creation of structure but one has to 
think of it not as an absence of sound but as a presence 
to fill an acoustical space. 

At first, Cage developed a structural concept of silence, 
considering it as an absence of sound helping to 
structure the music by its alternation with sound. The 
silence between the notes gave the work its cohesion.  

“Formerly, silence was the time lapse between sounds” 
[6, p. 73] 

In the Concert instrumental parts instructions Cage asks: 

“All notes are separated from one another in time, 
preceded and followed by a silence (if only a short 

one).” 

Later, Cage adopted a spatial concept of silence, in 
which it was composed of all the ambient sounds that 
together formed a musical structure. Finally his concept 
evolved towards viewing silence as non-intention. Both 
sound and silence would exist only in the non-intention 
manner of nature [7]. As we will show further, this 
concept will appear clearly in the instructions given to 
the performers. It will be considered as an esthetic 
object as well as a concept not be forgotten in the 
computer solution presented. 

4.1.2. Indeterminacy 

The principal of indeterminacy allows the performers to 
work independently from each other. In this way, the 
musician ignoring the output of his fellow musicians 
will concentrate on his own part and the set of 
instructions, which imposes concentration even if 
degree of the freedom involved is high [8]. 

« Bringing about indeterminacy is bringing about a 
situation in which things would happen that are not 

under my control. » [9, p. 109] 

Another meaning of indeterminacy is the fact that the 
final result is not controlled by the composer himself 
and the result is partially produced by a chain of 
performer’s un-intentional choices.  

4.1.3. Chance 

For John Cage, “chance” is the set of random or non-
determinate processes used in the composition itself. In 
this way he applied the concept of non-intention in the 
musical material choice in his own composition process.  

“Variation in gongs, tom toms, etc. and particularly 
variation in the effects on pianos of the use of 

preparations, prepared me for the renunciation of 
intention and the use of chance operations.” [11, p.91] 

While chance is related to the compositional process, 
indeterminacy is related to the composer’s lack of 
control of the performance. 

"James Pritchett provides a succinct distinction between 
indeterminacy and chance: while  chance “refers to the 

use of some sort of random procedure in the act of  
composition,” indeterminacy “refers to the ability of a 

piece to be performed in substantially different 
ways.”[16, p. 61] 

This clearly shows the difference between these two 
concepts.  
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4.1.4. Unintentionality 

We could find the genesis of the unintentionality 
concept in this  Cage’s quote: 

“Improvisation . . . that is to say not thinking, not using 
chance operations, just letting the sound be, in the 

space, in order that a space can be differentiated from 
the next space which won't have that sound in it. I'm 

perhaps too young at this work to know how to describe 
it.” [10, p. 582] 

The unintentionality concept is the idea that a performer 
produces sounds, musical events without intention, aim, 
purpose, reason or given meaning. As Cage tell us, it 
comes from his Zen Buddhism studies: 

“…, it was rather  my study of Zen Buddhism.  At first,  
my inclination  was to  make music about the ideas that 

I had encountered  in the Orient. The String  Quartet  
[1950]  is about the Indian  view of the seasons,  which 
is creation,  preservation, destruction,  and quiescence;  
also the Indian  idea of the nine permanent  emotions, 

with tranquility  at the center. But then I thought, 
instead  of talking  about it, to do it; instead  of 

discussing  it, to do it. And that would be done by  
making  the music nonintentional,  and starting  from an 

empty mind. At first  I  did this by means of the Magic  
Square.” [11, p. 94] 

4.1.5. Cage and improvisation 

« ... I have avoided improvisation through most of my 
work. Improvisation seemed to me necessarily to have to 
do with memory and taste, likes and dislikes.  » [10, 
581]  

The improvisation for Cage seems to be related to the 
unintentionallity : 

“Improvisation . . . that is to say not thinking, not using 
chance operations, just letting the sound be, in the 

space, in order that a space can be differentiated from 
the next space which won't have that sound in it. I'm 

perhaps too young at this work to know how to describe 
it.” [10, 581] 

4.2. Performance Problems 

Analyzing the Cage instructions and his musical and 
aesthetical points of view, we realize that the traditional 
scores make the players performance difficult, 
especially regarding the "Unintentional" choices of 
different musical objects. The material and sequential 
aspect of paper scores is an obstacle to the realization of 
the Cage’s main idea, that the player could go thru, 
freely, without constraint and without intention through 
the score. 
As it is not always easy to jump quickly between two 
musical elements found on separate pages, one will tend 
to an interpretation privileging the grouping of objects 
belonging to the same page. 

5. COMPUTER MODELING, MODELS 
DESCRIPTION 

5.1. From concepts to reality 

How could one help the player, as well as possible, to 
perform the score in a context of “indetermination” and 
“not-intentionality”? In what manner could one enable 
him to represent the Cage’s musical thought?  
It is the freedom relationship pre-determination that 
gives the player the main problem. Even if we find very 
hard instrumental passages, the main difficulties are: 
making the choice of when and what is to be played, 
what order to choose for the elements, the amount of 
silence to insert between the events, and all this while 
ignoring the output of the other musicians involved. It 
has to be kept in mind that by the absence of intention, 
one should also ignore what he himself is about to 
perform. This means, that the entire score should be at 
the player’s disposal, and that he will make up his mind 
intuitively and spontaneously. One possible solution 
was to provide an adapted interface. Here the choice is 
not only of timing but concerns the material itself.  

5.2. The three interfaces  

Three kinds of interface, ways displaying music, were 
proposed. 

5.2.1. Interface A 

Here (Figure 5, Figure 6), the pages are displayed as 
Cage conceived them originally. The interpreter may 
turn pages sequentially or skip randomly between them. 
The music to his disposal may contain the entire score 
or a subset of it. The choice of what to play is made 
during performance. The interpreter may play or not 
these musical events, and it is up to him to manage the 
time allocated to each page or sequence of elements. 
 

 
Figure 5: Interface A (trombone score) 

 
The main advantage is the fact that the performer can 
navigate easily through the score. The graphic 
disposition of the various events in the paper score 
space may influence the performer. Does there exist a 
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cognitive weight related to their position in the original 
page, which would influence the choices? Do there exist 
“hot” and “cold ” zones “in the graphic space of the 
partition? Some questions remain. 
 

 
Figure 6: Interface A (piano score) 

5.2.2. Interface B 

Here (Figure 7), one event at a the time is displayed. 
The interface proposes two modes. In the first one, the 
event appears “at time” it is to be played. The performer 
is in a position of concentration, waiting for the event 
display, without knowing which one will appear. The 
event remains displayed during a short time (which can 
be parameterize). In the second mode, the player is 
notified of the next following event. He ignores though 
when this one will appear. In this way it helps him to be 
prepared (instrument change, remove or insert a mute, 
tune or detune the instrument, etc). 
This interface leaves little control to the player. 
However, it has the advantage to embody the 
“Indetermination” and the “Unintentionality” asked by 
Cage, and to free the interpreter from the “physical” 
limits of paper score. 
 

 
Figure 7: Interface B 

 

5.2.3. Interface C 

Here (Figure 8), we look for displaying the events in 
time. With this interface, it is possible to build scores 
generated algorithmically, the “elements” of the score 
being reorganized according to various calculation 
modes. Calculation procedures are based either on the 
“instructions” given by Cage to the performers or on 

other methods enabling to reorganize and give 
“directions” to the musical material. 

 
Figure 8: Interface C (violoncello score) 

The setting window (Figure 9) allows changing the 
time displayed by page and some parameters for the 
score generation like the total length of the piece. Cage 
indicates: “given a total performance time-length, the 
player may make any program (including additional 
silences or not) that will fill it”.  

In addition to the idea of freeing the player from the 
physical constraints of the paper score, and of taking in 
account the “Indetermination” and “Unintentionality”, 
this interface also makes it possible for the player to 
prepare himself more efficiently for the various changes 
of instrument configuration and the various playing 
modes. Besides this, it enables the interpreter to use his 
own will at the moment of the execution, by choosing to 
play or not the proposals presented. 

 

 
Figure 9: Setting window for the interface control 

5.3. The conductor’s interface 

The conductor’s interface is perhaps the easiest interface 
to build. Actually it consists of a clock interface (Figure 
10). The data coming from this interface will be sent to 
the player’s computers to drive their chronometers. 

5.4. Score Calculus 

To construct a computer version, two main 
dimensions were calculated: the punctual events order 
and an events distribution in time. 
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Figure 10: Conductor’s interface 

5.4.1. Cournot model of chance 

The first mean of calculus was based on a  
“unintentional choice” modeling, based on a “Cournot 
concept of chance”1, as an aid to the performer to avoid 
intentional or conscious choices. From this point of 
view a sequence will be a combination, a juxtaposition 
(a coincidence) of two independent and deterministic 
values sequences. In our specific case, it means that a 
computer calculated version would consist of a 
sequence of events and a sequence of time positions. 
Each one of these sequences will be calculated 
independently. 

For the events organization we used a “uniform 
random choice” with or without event repetition 
allowed, and for the time structure three methods: 

 1) A “uniform random choice” of time intervals 
between the events (Times between events distributed 
uniformly in the interval {Rand_min_time, 
rand_max_time}) 

2) An “exponential random choice” of time intervals 
between the events (Times between events distributed 
according to exponential distribution of parameter 
"

€ 

λ ") 
3) A “random choice” of time intervals between the 

events (According to a probability distribution function 
built by the user with boundaries {Rand_min_time, 
rand_max_time}) 

To determine the temporal positions of each cell we 
based our calculations on time “between” the cells 
rather  that directly on the positions in time. This 
decision enabled us to model more efficiently and to 
take in account one of the main instructions of Cage 
concerning the need for “silences” between the events 
(4.1.1). 

5.4.1.1  The “time” models 
As a time model, we explored three ways.  The first 

one was a single uniform stochastic distribution scaled 
                                                             
1 « Les évènements amenés par la combinaison ou la rencontre 
de phénomènes qui appartiennent à des séries indépendantes, 
dans l’ordre de la causalité, sont ce qu’on nomme des 
évènements fortuits ou des résultats du hasard ». [12, p. 73 
¶40] 

between a minimum and a maximum time interval 
{Rand_min_time, rand_max_time}. 

The second one, inherited from Iannis Xenakis’s 
experiments at the end of the 1950s [13, p. 26, 169, 171, 
243-246], where a time model based on the exponential 
distribution to calculate the probability of a musical 
event having a given time length.  

 

€ 

f (x)  =
λ e−λx   ;   x  ≥   0
      0     ;   x  <   0

⎧ 
⎨ 
⎩ 

 
  

(1) 

Where: 

€ 

λ : is the average density of events by length unity. 
To implement this we did a javascript Max/MSP 

object using the expression: 

€ 

δ λ( ) =
ln σ( ).−1

λ
  (2) 

with 

€ 

σ  being the result of a uniform random 
variable between 0 and 1. 

The third way was using self-made distributions 
using the <itable> Max/MSP object (Figure 11), where 
different curve shapes are investigated. 
 

 
Figure 11: interface for building our own probability 

distribution 

5.4.2. Deviations and Variations 

It was clear to us that modeling the Concert, is a 
pragmatic way to study and to try to understand the 
Cage’s musical mind. It is why we propose to analyze 
score calculus ways that are the complete opposite of the 
first one. Instead of generating an unpredictable score, 
we try to determine one, using (if possible) all the 
implicit information given by Cage. Our main purpose is 
to try to answer the question “how far could we get away 
from Cage’s instructions without breaking the original 
model”. How “intentionality” could change the score? 
How it could change the Aesthetic. 

As for the first way of calculus, two main 
dimensions were calculated: the punctual events order 
and an events distribution in time.  
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5.4.2.1 Ordering events according with a description vector 
space 
The instrumental parts of Concert give more elements to 
model. Looking closely at each event we have attached 
it to a set of characteristics. For example in the 
trombone part (also known as Solo for Sliding 
trombone) we identified: 

1. Placement (position in the score staff)  
2. Nature of event (played normally, tuning slide 

out, mouthpiece in bell, spit valve open, 
without bell, without bell in jar, with slide 
disconnected, conch, mouthpiece with mute, 
and conch with mute) 

3. Pitch, represented as a MIDI pitch.  
4. Head Size of notes (small, medium, or large)  
5. Dynamic profile (nothing, crescendo, 

diminuendo, both) 
6. Articulation (nothing, breath, soft Tongue, hard 

Tongue) 
7. Vibrato (with or without) 
8. Formant (coloration of the sound when 

sustained: nothing, fluttertongue, double and 
triple tongue, trills etc.) 

9. Formant speed (rit., accel., rit.-accel., accel.-
rit., fast, slow) 

10. Mute (without, straight, plunger, cup, buzz, hat, 
plunger open close) 

11. Arrows & curves (smaller microtonal slides, no 
arrow, curve down, curve up, arrow down, 
arrow up, etc.) 

 
From this information we built a “descriptor vector 
space” where each component vector had the follow 
structure: 
 

€ 

VBD_ i = si , pBD_ i0, pBD_ i1, pBD_ i2 ,..., pBD_ i10( )  (3) 

where 

€ 

si  is a symbol identifying a particular event 

€ 

pBD_ i  j  is the value of the “jth” descriptor for the “ith” 
vector. 
At the same time we built (in the OpenMusic 
composition assisted computer environment) a sequence 
of “target vectors” in the form 

€ 

Vc t[ ] , with 

€ 

t  
representing time, where each vector has the follow 
structure: 
 

€ 

Vc t[ ] = s t[ ], p0 t[ ], p1 t[ ], p2 t[ ],..., p10 t[ ]( )     (4) 

with each parameter descriptor having a dynamic 
evolution in the time. 

For each discrete time value 

€ 

t[ ]  we calculate the 
vector  

€ 

V t[ ] =min dist Vc t[ ],VBD_ i ,ω t[ ]( ){ }    (5) 

where  

€ 

ω t[ ]  =  ω0 t[ ],ω1 t[ ],ω2 t[ ],...,ω10 t[ ]( )   (6) 

it is a weight vector. As distance functions we used 
weighted Euclidian and Chebythchev distances. 

€ 

disteuclid p,q,ω( )  =  pi − qi( )2 *ωi
i=0

10

∑   (7) 

€ 

disteuclid p,q,ω( )  =  max
i

pi − qi *ωi( )    (8) 

Obtaining, in this way, a sequence 

€ 

V = V 0[ ],V 1[ ],V 2[ ],...,V n[ ]{ }  of 

€ 

V t[ ]  vectors 
(equation 4). From this sequence a symbol sequence 

€ 

S  =  s0, s1, s1,..., sn{ } is obtained. Each 

€ 

sk  being the 
first dimension of the correspondent 

€ 

V t[ ]  vector 
(equation 5).  
 
Chebythchev distance showed results where the vector 
derived from equation 5 contains almost one parameter 

€ 

pi  that corresponds to one of the parameters of target 
vector (equation 4). This will lead us to sequences that 
map better with the target vectors evolution. With 
Euclidian distance, as the minimum distance returned is 
a sort of mean distance from the target vector, without 
any need to contain explicitly a 

€ 

pi  parameter, the 
vectors obtained, could be very far (from a musical point 
of view), from what is asked in the target vectors 
evolution. 

5.4.2.2 Time evolution 
As for the first way of calculus we used basically the 

exponential distribution (see equation 1) but with a 
lambda parameter as a time function, 

€ 

λ = λ[t].  

5.4.2.3 Exporting data 
These calculi were made in the OpenMusic 

environment and exported to be read in our Max 
computer interface. 

In that way, one can generate punctual event 
organizations according to one or more constraints on 
the different characteristics. One may give it as input 
curves or functions that describe temporal evolution 
characteristics, or as textual constraints represented as 
logical expressions. This part of the work represent a lot 
of interest, as the player is unable to deal with such 
tasks during a performance. The computer output can 
still be regarded as a proposition of a “version” from 
which the performer still has his choice. This logical 
part of the project is actually implemented in 
OpenMusic environment, but it will be ported very soon 
in the Max/MSP environment. 

6. PERFORMANCES 
Two performances where given. “Triton” (Les Lilas, 
France, May 2th 2009), with Fabian Fiorini (piano), 
Guillaume Orti  (alto sax),  Benny Sluchin  (trombone), 
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Eric-Maria Couturier (violoncello) and Mikhail Malt  
(computer and video improvisation).  
“Hateiva » (Jaffa, Israël, October 29th 2009) Amit 
Dolberg (piano), Yonatan Hadas (clarinet), Benny 
Sluchin (trombone) and Eric-Maria Couturier  
(violoncello). 

7. CONCLUSIONS AND PERSPECTIVES 
The construction of computer models of musical pieces 
is not a neutral process. It is fundamental to know well 
the works under study, understand the constraints left by 
the composer, as well as the historical context of its 
creation. But these are still insufficient in the modeling 
process. Every musical work has a part of liberty and 
ambiguity. These “holes” must to be filled up to enable 
the modeling process. One has to take decisions as a 
function of a work assumption, founded on musical and 
musicological bases. The necessity to represent the 
score or the processes suggested by the composer on 
numerical, symbolic or graphic spaces has great 
importance. Changing the representation of an object 
permits one to see, to consider, to observe and finally to 
understand it in a different manner. The modeling 
process is transformed in a pragmatic analysis of the 
musical phenomena [14] leads us step by step to a 
model of Cage’s thinking 
Concerning the player, in pieces as different as Solos 
from the Concert for Piano and Orchestra, the player 
can concentrate on performing when using the CAP 
interface. After determination of the duration, he does 
not have to prepare his personal version, and will ignore 
completely what music he is going to perform. The 
player may be involved in determining the setting of the 
performance: relative density of the audio elements 
(length of silences), orienting the choice of the 
elements, using characterization of the material given 
(i.e. pitch, timbre, dynamics etc.) on a local or a global 
criteria. One might wonder: when all decisions 
regarding the order of the events of the scores and the 
timing etc. are made by a computer, what remains to be 
done by the performer/interpreter? Firstly, these 
calculations need to be defined by several parameters, 
which are personal choices. The result of the computing 
process is highly dependent of the interface choice and 
organization, therefore is part of the interpretation. 
Secondly, the performer can react and decide if and 
when an event is played, regardless of the fact that it is 
scheduled and displayed by the software. In this way, 
the computing result is a proposition that could be 
modified by the performer, which is in conformity with 
Cage’s original instructions. 

We are looking forward to provide a "Full" version 
of “Computer Assisted Concert“, including a Computer 
“conductor” and 14 computers for players. Performers’ 
interface with 3 different displaying modes, metadata on 
some sequencing events impossibilities, and expanding 
score generation models according to time constraints 
evolution of various “descriptors”. 
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ABSTRACT

This paper presents recent works on controlling and editing
sound spatialization on multiple speakers based on sound
descriptors. It has been implemented as an extension of
Holo-Edit, an OpenSoundControl compliant multitrack spa-
tial trajectory editor developed at GMEM. An SDIF inter-
face has been implemented allowing importing and visual-
izing sound descriptors generated by third party softwares.
A set of scripting tools is proposed to process and map
these time-tagged data to sound trajectory generation.

1. INTRODUCTION

Sound spatialization has become an important field in the
past decades. From Karlheinz Stockhausen early experi-
ments of moving acoustic sound sources around a set of
microphones to contemporary cinematographic multichan-
nel mastering, there has been a lot of growing interests in
experimenting with sound diffusion across multiple loud-
speakers. We can distinguish two main approaches in the
work with sound in space. One has been the GRM’s Acous-
monium1 , initiated by Francois Bayle in 1974 which tends
to spatialize stereo tracks manually from a mixing desk
onto a loudspeaker orchestra. In its main principle, using
an eclectic set of speakers allows the sound to be spatial-
ized by itself, even with no intervention from the electroa-
coustic music performer. The acoustic characteristics of
the different loudspeakers and their position in the concert
hall makes them unique sound sources with their specific
color andtimbre, some enhancing high frequency, some
medium ones, etc. Movements of sound are then created
obviously by electroacoustic music interpretation but also
by themovementand theenergyof the sound itself. The
other main approach has been the virtual acoustic model
where sound spatialization is performed by mathematical
and acoustical laws of sound in space. One is for example
the distance cue which is simulated by attenuating sound

1 Groupe de Recherches Musicales - Paris
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volume (roll-off), filtering high frequencies (air absorp-
tion) and increasing the reverberation ratio of the spatial-
ized sound. Here, movements of sound is done by control-
ling the virtual source position with calculated trajectories
or via external input devices such as joystick or graphics
tablet.

The focus of this paper is between these two models,
in other words to get virtual acoustic movements of sound
closer to the sound properties and behaviors. Our software
environment, Holo-Edit, is a graphical editor for spatial-
ization trajectories and is particularly adapted for control-
ling virtual acoustic DSP softwares. Our main goal here
is to enhance trajectory editing and spatial cues by taking
into account the inner structure and dynamic profiles of the
sound to be spatialized. This is using the principle of adap-
tive audio effects [1] applied to sound spatialization. We
will first detail the main features of the used environment
Holo-Edit, then detail our motivations and finally present
the proposed adaptive spatialization framework.

2. HOLO-EDIT FEATURES

Holo-Edit is initially part of the HoloPhon project initi-
ated in 1996 by Laurent Pottier at GMEM2 [2]. This
project was focused on sound spatialization editing and
control. Growing computing power allowed to develop
custom DSP spatialization softwares written in MaxMSP,
under the generic name Holo-Spat. For now, we will detail
Holo-Edit features, as it is the main environment for our
experiments.

2.1 Workflow

Holo-Edit is a standalone application written in Java/Jogl.
The main underlying paradigm is the control of external
DSP softwares via the OSC protocol. In [3], we showed
the benefits of a stratified approach in sound spatialization
environments. In this scheme, Holo-Edit has its place as
an authoring tool for composing with space. All DSP pro-
cesses are handled in other layers, e.g. in external soft-
wares like MaxMSP, PureData, SuperCollider, etc. Holo-
Edit only deals with movement of sound in space, using
the timeline paradigm found in traditional DAWs to record,
edit, and play back control data. Although a straightfor-
ward OSC protocol has been defined in order especially to

2 Groupe de Musique Experimentale de Marseille
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Figure 1. Time Editorview with cartesian xyz components
and sound waveform.

keep Holo-Edit and the external spatialization software in
sync in terms of time region selection and track muting and
visualizing, an effort is made to standardize the way Holo-
Edit deals with common control messages like source po-
sition. As it is the most promising attempt in that purpose,
we are currently following the SpatDIF [4] initiative, with
first experimental interfaces in the Jamoma Modular envi-
ronment [5].

2.2 Multitrack Data representation and editing

Holo-Edit manipulates trajectory objects which is a set of
time-tagged 3D points. These trajectories have an onset
and offset time. Various graphical editing function can be
achieved on these object like stretch, extend, trim, join.
Maximum time resolution for the trajectories and points
has been set to one millisecond allowing precise sound
event/position mapping.

Additionally, audio waveforms can be imported from
traditional sound files, and included in the composition.
Sound cues are then triggered in parallel with the trajecto-
ries. It also helps in synchronizing sound events and corre-
sponding position in space while editing.

Various representations of spatialization data are pro-
posed. TheRoom Editoris a top-view editor of the vir-
tual scene where you can move points and trajectories.
TheTime Editorin Figure 1 focus on time/data representa-
tion in a similar way as DAW softwares do for automation
curves. The user can view and edit individually cartesian
and polar coordinates components as curves. In this view,
you can also visualize pre-imported sound waveforms time-
aligned with corresponding 3d positions.

The 3d Roomshown in Figure 2 offers a 3d represen-
tation of the trajectories in the virtual scene although no
editing can be achieved in it.

Holo-Edit is closely inspired by traditional Multitrack
DAW. TheScoreview uses the timeline paradigm to repre-
sent the whole spatialized composition. Sound blocks and
trajectory blocks can be moved and copied from one track
to another. Traditional solo and mute functions are also
implemented.

Figure 2. 3D Roomvisualization.

2.3 Data Recording via OSC

Trajectories can be generated in various ways. One of them
is the ability to record track position in real time from an
external program or device via the OSC protocol. Sev-
eral tracks can be recorded at the same time. For each
track, thesegmentmessage allows to start a new trajec-
tory where all future recorded points will be stored. It is
particularly meaningful when using graphics tablet as in-
put device, starting a new trajectory each time the stylus
touches the tablet. In this purpose, user can import sound-
files and then, while playing them, record in real time their
corresponding trajectories. All the proposed transforma-
tion functions can be applied then to smooth, scale or trans-
late the recorded movements.

2.4 Generation/transformation plugins

In the Holo-Edit environment, the ability to process spa-
tially and temporally the spatialization data is an impor-
tant feature. Graphical editing could be a good help but
sometime lacks accuracy for precise and repetitive tasks.
A plugin interface has thus been defined for generative and
transformative functions. They share a common scheme
in their application. Functions are applied into the global
time selection. They can output and/or apply the result on
one, all or only visible tracks. It allows to make batch pro-
cess on several tracks and trajectories. There are three pro-
cess categories :Generative Functions, Spatial Transfor-
mationsandTemporal Transformations. Generative Func-
tions includes circular, lissajou, brownian and random al-
gorithm.Spatial Transformationsdeals with basic geomet-
rical transformation like rotation, translation, proportion.
It also includes some more specific processes like exag-
geration which scale the local movement of a trajectory
leaving the main form unchanged. In theTemporal Trans-
formations, the user can perform time stretch, acceleration
or time reverse.

3. MOTIVATIONS

One often uses algorithmic functions to generate move-
ments of a specified sound. In this framework, circular,
brownian and random movements are the most commonly
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used and offer, in their combinations, a wide range of dif-
ferent spatial figures. Though their efficiency, it is not so
easy to tune their parameters to fit the spatialized sound
behaviors, for example, finding the correct circular speed
with an iterative sound (supposing quasi-synchronous iter-
ations). The same problem comes when using random or
brownian movements on chaotic granular sound materials
where we would wish internal sound events to be placed
individually. Quite often it results in ”spatial contradic-
tions” that is when the spatialization movement contradict
the sound internal behavior andenergy. Note that thisen-
ergy is quite a subjective and cultural notion. Instrumental
sound is good illustration of this phenomenon. When lis-
tening to instrumental sound without any visual stimuli,
the felt movement and energy are generally strongly asso-
ciated with those engaged in the instrumental interpreta-
tion of a musician. String instrumental sound for example
inspire the back and forth movement of the bow. In this
framework, the main idea is to find in sound dynamic char-
acteristics these inner profiles, such profiles helping then in
setting the virtual movement in sync with its properties.

In a traditional sound synthesis workflow, it is not com-
mon to generate spatialization movements when synthesiz-
ing or mixing sound. In the purpose of generating/enhanc-
ing movements closely related to the sound inner struc-
ture, it is obvious that when working with sound synthesis,
we could deduce meaningful time profiles from the differ-
ent modulations and interactions defined in the synthesis
process. Such time profiles could greatly help in creating
spatial movements. Unfortunately, they are not so easy to
route and store in an efficient way. If the internal con-
trol signals of these synthesizer are accessible, MIDI se-
quencers could be a solution but with a known lack of data
and time accuracy.

Moreover, spatialization is still a process which is quite
difficult to setup in a home studio environment. This work
often takes place in dedicated spatialization studio. This is
contributing in making sound generation/mixing and spa-
tialization two processes which hardly come together in the
same place and time.

The main idea is then to be able to analyze sound to
be spatialized, extracting characteristic profiles in its struc-
ture. These profiles can then be mapped to various param-
eters of the trajectory generation/transformation.

4. ADAPTIVE FRAMEWORK

4.1 SDIF Data import and Visualization

SDIF (Sound Description Interchange Format) [6] is a stan-
dard generic, open, and multi platform format for sound
description data storage. An SDIF file contains one or
more sequences of entities calledframes. Each Frames
are time-tagged and typed among a wide range of defined
sound descriptors. For example, let’s cite Fundamental
Frequency, Loudness, Noisiness as traditional synchronous
data flux associated with sounds. These descriptions can
also be asynchronous like transient markers or chord sep-
aration markers. In this case data rate is not necessarily
constant.

Figure 3. Waveform and its fundamental frequency shown
in theSoundPoolwindow.

Figure 4. Scorewindow with waveform and data visual-
ization on top of the trajectories.

We chose SDIF as it is widely adopted in sound analysis
softwares like IRCAM AudioSculpt and AsAnnotation or
Michael Klingbeil’s SPEAR [7]. Current SDIF implemen-
tation includes a library in C/C++. Since Holo-Edit has
been written in java, we had to find a way for interfacing
with this standard SDIF library. Thanks to the SWIG inter-
face (Simplified Wrapper and Interface Generator) [8], we
could develop a native java wrapper for SDIF. It is com-
posed of a java classes and a platform specific jnilib.

SDIF import in Holo-Edit is done via theSoundPool
window. As shown in Figure 3, one can overlay sdif data
and the corresponding previously imported waveform. These
data objects can then be dropped in theScorewindow on
a specific track. At this step, these objects are not yet in-
teracting with the spatialization score. They act more as
visual cues and markers for enhanced editing especially in
the TimeEditorwindow where precise resynchronization
of trajectories and points can be achieved.

An important feature is that data objects can be linked
with waveform objects so that they are always in sync in
the Scoreand theTimeEditorwindow. It is particularly
useful when using these data to generate or modify trajec-
tories as we will see in the next section.

4.2 Direct Mapping Plugins

One key feature of the SDIF support is the ability to use
these time profiles to generate or transform trajectories. A
first step has been to propose a simple plugin interface that
converts these time-tagged values into 3d point parameter.

This generative function works in the same scheme as
the others functions do. It uses the global time selection to
define the region where the new trajectory will be written.
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It generates trajectory in the selected tracks. Data access
is also done according to the time selection. The plugins
scans the score for each overlapping data object instances
in the score and then construct a menu on the interface for
selection of the data we want to use. A special naming pro-
tocol has been defined referencing a data object instance
characterized by the SDIF filename, the SDIF stream id,
its begin time in the score and its parent track. For ex-
ample, an fundamental frequency data object instance on
track 2 starting at 52 seconds would be named :

3-francesca_04.f0.sdif - st.0 1FQ0 - begin time
=0:0:52:000 - Track:2

Note that, as these data objects are in a kind of global
scope, the plugin can access them from all tracks. That can
avoid duplicating the same data object on multiple tracks
when the user wants to generate different mapping of the
same data on multiple tracks.

In the cartesian coordinates version of the plugin, the
user can assign a different data instance to each XYZ com-
ponents. As there can be multiple streams of time tagged
value in a data object, user has to choose an available one
depending on the analysis software which generated the
SDIF file. For Example, with fundamental frequency data
object (FQ0), AudioSculpt gives us four streams which are
Frequencyin Hz, Confidencecoefficient,Scorecoefficient
and linearRealAmplitude. All these values have different
unit so a scaling process has to be made. This is done au-
tomatically with linear mapping from minimum and max-
imum of the data values to -1. and 1. for cartesian com-
ponents. In fact, scaling and translating can be made af-
terwards with all the graphical and algorithmic functions
already available so there is no need to propose scaling fea-
ture in the plugin interface.

This direct data mapping can be interesting for simple
experiments. It allows to easily transform data points into
trajectory points. These profiles can then be shaped in
space and time with all the available editing functions like
scaling, translation, rotation, etc. But as we will see in the
next section, it becomes quite limiting when using more
complex data (like multidimensional ones) or experiment-
ing original transformative plugins.

4.3 Script interface

The direct mapping plugins presented in the last section
can be really helpful for simple data. But quickly comes
the need to have more complex mapping of these profiles.
Obviously, in the scheme of adaptive spatialization, this
process is central; this is where the user defines the rela-
tion between sound characteristics and spatial cues. As it
is a very vast field, it is important to let the user the abil-
ity to experiment by himself original relations. We thus
had to find a workflow as open as possible with a rich ex-
pressivity that can well define complex relations and this is
what scripting can do. Notably, scripts may be particularly
useful in different cases:

1. Performing repetitive tasks efficiently.

2. Applying algorithms with precision on some data.

3. Getting some information about available data.

4. Mathematical functions availability.

5. Creating libraries for trajectory transformations and
generations.

6. Algorithms fast experimentations.

Thanks to theGroovyproject [9] which aims to propose
an agile and dynamic language for the Java Virtual Ma-
chine, we could build a script interface integrated in the
internal Holo-Edit environment. Groovy is built on top of
Java and is found to be an easy to learn and powerful object
oriented scripting language. Its benefits are multiple : on
the fly execution of code from a text buffer or from interac-
tive console, dynamic typing, Java context integration, and
so on. The last one is particularly interesting as it easily
allows to access to any java classes and functions the main
java program uses. In our case, it has greatly simplified the
interface with the Holo-Edit Java objects such as 3d points,
trajectories and tracks. Moreover an abstract java class has
been developed to facilitate scores data access and script-
ing with them.

TheScriptwindow presents a text area where the script
can be edited. An additional text area is shown called ”Val-
ues from score” where useful local variables are proposed.
They arebegin, endanddurationof the global time selec-
tion when the script function was called. It also present
the name of the available SDIF data instances overlapping
the time selection. This name can be copy and paste in the
script and is used as a reference for data instances. Getting
data instance handle is made for example with :

mySDIFdata = getSDIFdata("quat-cel1.f0.sdif -
st.0 1FQ0 - begin time=0:0:38’213 -
Track:0")

Some helper functions has been included in the inter-
face especially for sampling data at a specific time making
transformative script easier when point timestamps of the
transformed trajectory have to remain unchanged.

Here is a simple example of transformative script where
fundamental frequency is mapped to the z components of
the trajectory points :

import holoedit.data.*;

f0data = getSDIFdata(gp,
"3-francesca_04.f0.sdif - st.0
1FQ0 - begin time=0:0:52’290 - Track:2")

int dateBegin = 5171;
int dateEnd = 74636;
double dur = 69465;

float min = minFieldValue(f0data,0);
float max = maxFieldValue(f0data,0);
float mean = meanFieldValue(f0data,0);
float range = max - min;

HoloPoint point;
int date;

for (int i = 0; i < gp.copyTrack.size(); i++)
{
point = gp.copyTrack.elementAt(i);
date = (point.date - dateBegin)*10;
if( hasDataAtTime(f0data,date))

point.z = 50 + ( getDataAtTimeField(f0data,
date,0) -mean ) * 200 / range;

}
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Figure 5. Time Editorview of the trajectory generated by
brightness mapping.

Another benefit of using script is that the user can gener-
ate or transform a trajectory from multiple data instances.
For example, he could use voiced/unvoiced segmentation
and fundamental frequency to define rules of spatial behav-
iors; let’s say for example random movement for unvoiced
part and frequency dependent position for voiced part.

4.4 User case: sound brightness mapping

We will present in this section an example of application
of this adaptive framework. We chose to use sound bright-
ness as it has found to be very efficient to discriminate
sound events in a complex mix. Its profile contains a lot
of relevant informations as it detect timbre abrupt changes.
It could be compared to fundamental frequency but with
more robust results in a great variety of sound materials
(e.g. non harmonic sounds or complex mixture). An inter-
esting feature of sound brightness mapping is that its pro-
file contains good representation of transients and steady
parts of the sound.

Moreover, this example is good illustration of data fil-
tering and processing. Indeed, no known end-user software
can produce brightness, or spectral centroid its DSP equiv-
alent, SDIF files. We thus had to compute it directly from
spectral data. In that purpose, we used a spectral peak anal-
ysis to preprocess and simplify the raw spectrogram. The
peak analysis outputs for each frame a set of peaks defined
by its frequency, amplitude and phase. So we included in
the mapping script the computation of an estimate of the
spectral centroid, that is the frequency barycenter of the
peak set. It gives us a one dimensional data array easily
mappable to a trajectory parameter.

The experiment has been to map this value to the az-
imuth of the source, the distance remaining constant. The
data rate, and consequently the point rate, has been set to
5 ms to be able to capture fast timbre changes. The result
is kind of spatial magnification of the sound. Each occur-
ring similar event gets its own position in space giving a
very coherent spatial image of the sound. The Figure 5
shows the resulting trajectory in the Time Editor with ray,
azimuth, data and waveform curves. This technique works
great for complex mixture or sound material but harmonic
instrumental sounds get poorer results as theirtimbreevolve
much slowly. In this case, it should be probably better to
elaborate algorithms based on fundamental frequency.

5. CONCLUSIONS AND FUTURE WORK

Adaptive spatialization offers a great field of new possi-
bilities in trajectory generation and transformation. We
proposed, to exploit it, an experiment interface in end-
user spatialization authoring tool. It has the benefit to al-
low original editing functions while keeping fast and easy
graphical fine tuning of spatial behaviors. We planned some
enhancements of the script interface to get to a more global
scope on the spatialization score. The generation of trajec-
tories on multiple track for example could help when gen-
erating parallel hardly correlated trajectories. Some partic-
ular generation and transformation algorithms, especially
the one based on sound brightness, will also be imple-
mented has standard Holo-Edit plugins in order to make
them available to user impervious to script editing. The
Holo-Edit software and sources are available for download
on the GMEM websitehttp://www.gmem.org.
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ABSTRACT

Modeling of musical style and stylistic re-injection strate-
gies based on the recombination of learned material have
already been elaborated in music machine improvisation
systems. Case studies have shown that content-dependant
regeneration strategies have great potential for a broad and
innovative sound rendering. We are interested in the study
of the principles under which stylistic reinjection could be
sufficiently controlled, in other words, a framework that
would permit the person behind the computer to guide the
machine improvisation process under a certain logic. In
this paper we analyze this three party interaction scheme
among the isntrument player, the computer and the com-
puter user. We propose a modular architecture for Com-
puter Assisted Improvisation (CAO). We express stylistic
reinjection and music sequence scheduling concepts under
a formalism based on graph theory. With the help of these
formalisms we then study a number problems concerning
temporal and qualitative control of pattern generation by
stylistic re-injection.

1. INTRODUCTION

New computer technologies and enhanced computation ca-
pabilities have brought a new era in real-time computer
music systems. It is interesting to see how artificial in-
telligence (AI) technology has interacted with such sys-
tems, from the early beginning until now, and the effect
that these enhancements have had when setting the ex-
pectations for the future. In the 2002’s review paper [1],
computer music systems are organized in three major cate-
gories: (1) Compositional, (2) Improvisational and (3) Per-
formance systems. Concerning the limits between what we
call computer improvisation and computer performance,
the authors of [1] state the following:

“... Although it is true that the most fundamental char-
acteristic of improvisation is the spontaneous, real-time,
creation of a melody, it is also true that interactivity was not
intended in these approaches, but nevertheless, they could
generate very interesting improvisations.”

Copyright: c©2010 Maniatakos et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

According to [1], first improvisation systems did not
address directly interactivity issues. Algorithmic compo-
sition of melodies, adapatation in harmonic background,
stochastic processes, genetic co-evolution, dynamic sys-
tems, chaotic algorithms, machine learning and natural lan-
guage processing techniques constitute a part of approaches
that one can find in literature about machine improvisation.
However, most of these machine improvisation systems,
even with interesting sound results either in a pre-defined
music style or in the form of free-style computer synthesis,
did not address directly the part of interaction with human.

During the last years, achievements in Artificial Intelli-
gence and new computer technologies have brought a new
era in real-time computer improvisation music systems.
Since real-time systems for music have provided the frame-
work to host improvisation systems, new possibilities have
emerged concerning expressiveness of computer improvi-
sation, real-time control of improvisation parameters and
interaction with human. These have resulted to novel im-
provisation systems that establish a more sophisticated com-
munication between the machine and the instrument player.
Some systems have gone even further in terms of interac-
tivity by envisaging a small participation role for the com-
puter user.

However, as for the interaction design of many of these
systems, the role of the computer user in the overall in-
teraction scheme often seems to be neglected, sometimes
even ignored. What is the real degree of communication
that machines achieve to establish with the instrument play-
ers in a real-world improvisation environment? Is the study
of bipartite communication between instrument player -
computer sufficient enough to model real-world complex
improvisation schemes? More importantly, do modern com-
puter improvisation system really manage to exploit the
potential of this new form of interactivity, that is, between
the computer and its user? And what would be the theo-
retical framework for such an approach that would permit
a double form of interactivity between (1) computer and
instrument player (2) computer and its user?

In our research we are concerned with the aspects of en-
hanced interactivity that can exist in the instrument instru-
ment player - computer - user music improvisation frame-
work. We are interested particularly on the computer - user
communication channel and on the definition of a theoret-
ical as well as of a the computational framework that can
permit such a type of interaction to take place in real-time.
Such a framework differs from the conventional approach
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of other frameworks for machine improvisation in that the
computer user takes an active role in the improvisation pro-
cess. We call the context we study Computer Assisted Im-
provisation (CAI), due to the shift of the subject role from
the computer to the computer user.

Later in this report, we propose a model for three-party
interaction in collective improvisation and present an ar-
chitecture for Computer Assisted Improvisation. We then
introduce a formalism based on graph theory in order to
express concepts within computer assisted improvisation.
This formalism succeeds in expressing unsupervised, content-
dependant learning methods as well as the concept of “stylis-
tic re-injection for the pattern regeneration, furthered en-
riched with new features for user control and expressivity.
Through a bottom-up approach we analyze real-world se-
quence scheduling problems within CAI and study their
resolvability in terms of space and time complexity. In
this scope we present a number of real world music im-
provisation problems and show how these problems can be
expressed and studied in terms of graph theory. Finally we
give notions about our implementation framework GrAIPE
(Graph assisted Interactive Performance Environment) in
the real-time system Max-MSP, as well as about future re-
search plans.

2. BACKGROUND

One of the first models for machine improvisation appeared
in 1992 under the name Flavors Band [4]. Flavors Band
a procedural language for specifying jazz and procedu-
ral music styles. Despite the off-line character of the ap-
proach, due to which one could easily classify the sys-
tem to the computer-assisted composition domain, the ad-
vanced options for musical content variation and phrase
generation combined with musically interesting results in-
spired later systems of machine improvisation. In the com-
puter assisted improvisation context, the interaction paradigm
proposed by Flavors Band could be regarded as a contribu-
tion of major importance, due to the fact that it assigns
the computer user with the role of the musician who takes
high-level offline improvisation decisions according to ma-
chine’s proposals. Adopting a different philosophy as for
the approach, GenJam [6] introduced the use of genetic
algorithms for machine improvisation, thus being the ‘fa-
ther’ of a whole family of improvisation systems in the
cadre of evolutionary computer music. Such systems make
use of evolutionary algorithms in order to create new solos,
melodies and chord successions. It was also one of the first
systems for music companion during performance. Evolu-
tionary algorithms in non supervised methods were intro-
duced by Papadopoulos and Wiggins in 1998 [9]. More
recent learning methods include reccurent neural networks
[5], reinforcement learning [11], or other learning tech-
niques such as ATNs (Augmented Transition Networks)
[7] and Variable order Markov Chains [12].

Thom with her BAND-OUT-OF-A-BOX(BOB) system
[2] addresses the problem of real-time interactive impro-
visation between BOB and a human player. Sever years
later, the LAM (Live Algorithms for Music) Network’s
manifesto underlines the importance of interactivity, un-

der the term autonomy which should substitute the one of
automation. In [14] the LAM manifesto authors describe
the Swarm Music/Granulator systems, which implements a
model of interactivity derived from the organization of so-
cial insects. They give the term ‘reflex systems’ to systems
where ‘incoming sound or data is analysed by software and
a resultant reaction (e.g. a new sound event) is determined
by pre-arranged processes.’ They further claim that this
kind of interaction is ‘weakly interactive because there is
only an illusion of integrated performer-machine interac-
tion, feigned by the designer’. With their work, inspired by
the animal interaction paradigm, they make an interesting
approach to what has prevailed to mean ‘human - computer
interaction’ and bring out the weak point inside real-time
music systems’ design. However, even if they provide the
computer user with a supervising role for the improvisation
of the computer, they don’t give more evidence about how
a three party interaction among real musician - machine -
computer user could take place. Merely due to the fact that
they consider their machine autonomous. But if the hu-
man factor is important for a performance, this should refer
not only to the instrument player but to the person behind
the computer as well. At this point, it seems necessary to
study thoroughly the emerging three party interaction con-
text where each of the participants has an independent and
at the same time collaborative role.

Computer - computer user interaction is studied instead
in the framework of live electronics and live coding, un-
der the ‘laptop-as-instrument’ paradigm. In [15], the au-
thor describes this new form expression in computer mu-
sic and the challenges of coding music on the fly within
some established language for computer music or within
a custom script language. The most widespread are prob-
ably the aforementioned SuperCollider [19], a Smalltalk
derived language with C-like syntax, and most recently
ChucK, a concurrent threading language specifically de-
vised to enable on-the-fly programming [20]. Live cod-
ing is a completely new discipline of study, not only for
music but also for computer science, phsycology and Hu-
man Computer Interaction as well. Thus, it seems -for the
moment- that live coding is constrained by the expressivity
limitations of the existing computer languages, and that it
finds it difficult to generalize to a more complicated inter-
action paradigm which could also involve musicians with
physical instruments.

2.1 OMax and stylistic reinjection

An interaction paradigm which is of major interest for our
research is this of the stylistic reinjection, employed by
the OMax system [3]. OMax is a real-time improvisa-
tion system which use on the fly stylistic learning meth-
ods in order to capture the playing style of the instrument
player. Omax is an unsupervised, context-dependant per-
forming environment, the last stating that it does not have
pre-accuired knowledge but builds its knowledge network
on the fly according to the special features of the player’s
performance. The capacity of OMax to adapt easily to dif-
ferent music styles without any preparation, together with
its ability to treat audio directly as an input through the
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employment of efficient pitch tracking algorithms, make
OMax a very attractive environment for computer impro-
visation.

It is worth pointing out that style capturing is made with
the help of the Factor Oracle Incremental Algorithm, in-
truduced by Allauzen and al. in [13], which repeatedly
adds knowledge in an automaton called Factor Oracle (FO).
Concerning the generation process, this is based on FO and
is extensively described in [3]. With the help of forest of
Suffix Link Trees (SLTs) it is possible to estimate a Re-
ward Function in order to find interconnections between
repeated patterns, which is the key for the pattern gener-
ation. Through this method, one can construct a model
that continuously navigates within an FO. By balancing
linear navigation with pivots and adding a little of non-
determinism to the Selection Function decisions, the sys-
tem can navigate for ever by smoothly recombining exist-
ing patterns. Due to the short-term memory effect, this re-
combination is humanly perceived as a generation, which,
more importantly, preserves the stylistic properties of the
original sequence. The creators of the system call this
method stylistic reinjection: this method relies on recol-
lecting information from the past and re-injecting it to the
future under a form which is consistent to the style of the
original performance. Based on this principle and employ-
ing further heuristic and signal processing techniques to
refine accordingly selections and sound rendering, OMax
succeeds musically in a collective, real-world improvisa-
tion context.

Finally, OMax provides a role for the computer user as
well. During a performance, user can change on the fly a
number improvisation parameters, such as the proportion
between linear navigation and pivot transitions, the qual-
ity of transitions according to common context and rhythm
similarity, define the area of improvisation and cancel im-
mediately the system’s event scheduling tasks in order to
access directly a particular event of the performance and
reinitiate all navigation strategies.

2.2 The Continuator

An other system worth mentioning is The Continuator [12].
Based on variable-order Markov models, the system’s pur-
pose was to fill the gap between interactive music systems
and music imitation systems. The system, handling except
for pitch also polyphony and rhythm, provides content-
dependent pattern generation in real-time. Tests with jazz
players, as well with amateurs and children showed that it
was a system of major importance for the instrument player
- computer interaction scheme.

3. MOTIVATION

In this point, it is interesting to have a look over interaction
aspects between the musician and the machine. Maintain-
ing style properties assures that similar type of information
travels in both directions throughout the musician - ma-
chine communication channel, which is a very important
prerequisite for interaction. Moreover, diversity in musi-
cal language between machines and physical instrument

playing, is one of the main problems encountered by evo-
lutionary improvisation systems. OMax deals well with
this inconvenience, in the sense that the patterns being re-
generated and the articulation within time is based on the
music material played the performer. However, when for
interaction one should study not only information streams
but also design of modules responsible for the Interpreta-
tion of received information [14]. In the case of the in-
strument player, human improvisors can interpret informa-
tion according to their skills developed by practicing with
the instrument, previous improvisational encounters and
stylistic influences. These skills allow -or not- reacting to
surprise events, for instance a sudden change of context.
Concerning the machine, OMax disposes an interpretation
scheme that stores information in the form FO represen-
tation. The question that arises concerns the capability of
this scheme to handle surprise. This question can be gener-
alized as follows: Can stylistic reinjection approach adapt
its pre-declared generation strategies to short-time memory
events? The last implies the need for an specifically con-
figured autonomous agent capable of detecting short-time
memory features of a collective improvisation, understand-
ing their musical nuance and transmitting information to
the central module of strategy generation.

Concerning stylistic reinjection, this approach currently
permits a several amount of control of the overall process.
We described in previous section the computer user’s role
in the OMax improvisation scenario. However, It seems
intriguing to investigate further the role the computer user
can have in such a scenario. For instance, wouldn’t it
be interesting if the computer user could decide himself
the basic features of a pattern? Or if he could schedule
a smooth passage in order that the computer arrives in a
specific sound event within a certain time or exactly at a
time?

We believe that the study of three-party interaction among
can be beneficial for machine improvisation. In particular,
we are interested in the ‘forgotten’ part of computer - com-
puter user interaction, for which we are looking forward to
establishing a continuous dialog interaction scheme. Our
approach is inspired from the importance of the human fac-
tor in a collective performance between humans and ma-
chines, where humans are either implicitly (musicians) or
explicitly (computer users) interacting with the machines.
Though this three party interaction scheme, computer user
is regarded as an equal participant to improvisation.

With respect to existing systems, our interest is to en-
hance the role of the computer user from the one of su-
pervisor to the one of performer. In this scope, instead
of controlling only low level parameters of computer ’s
improvisation, the user is set responsible of providing the
computer with musical, expressive information concerning
the structure and evolution of the improvisation. Inversely,
the computer has a double role: first, the one of an aug-
mented instrument, which understands the language of the
performer and can regenerate patterns in a low level and ar-
ticulate phrases coherent to user’s expressive instructions,
and second, the one of an independent improvisor, able to
respond reflexively to specific changes of music context or
to conduct an improvisation process with respect to a pre-
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specified plan.
Our work consists of setting the computational frame-

work that would permit such operations to take place. This
includes:1) the study of the interaction scheme, 2) the ar-
chitecture for such an interaction scheme 3) an universal
representation of information among the different partici-
pants and 4) a formalism to express and study specific mu-
sical problems, their complexity, and algorithms for their
solution.

4. ARCHITECTURE

In this section we analyze three-party interaction in CAI
and propose a computational architecture for this interac-
tion scheme.

4.1 Three party interaction scheme

In figure 1, one can see the basic concepts of three party in-
teraction in CAI. The participants in this scheme are three:
the musician, the machine (computer) and the performer.
Communication among the three is achieved either directly,
such as the one between the performer and the computer, or
indirectly through the common improvisation sound field.
The term sound field stands for the mixed sound prod-
uct of of all improvisers together. During an improvisa-
tion session, both the musician and the performer receive
a continuous stream of musical information, consisting of
a melange of sounds coming from all sources and thrown
in the shared sound field canvas. They manage to interpret
incoming information through human perception mecha-
nisms. This interpretation includes the separation of the
sound streams and the construction of an abstract internal
representation inside the human brain about the low and
high level parameters of each musical flux as well as the
dynamic features of the collective improvisation. During
session, the musician is in a constant loop with the ma-
chine. He listens to its progressions and responds accord-
ingly. The short-time memory human mechanisms pro-
vides her/him with the capacity to continuously adapt to
the improvisation decisions of the machine and the evolu-
tion of the musical event as a group, as well as with the
ability to react to a sudden change of context.

On the same time, the machine is listening to the mu-
sician and constructs a representation about what he has
played. This is one of the standard principles for human
machine improvisation. Furthermore, machine potentially
adapts to a mid-term memory properties of musician’s play-
ing, thus reinjecting stylistically coherent patterns. During
all these partial interaction schemes, the performer behind
the computer, as a human participant, is also capable of re-
ceiving and analyzing mixed-source musical information,
separating sources and observing the overall evolution.

The novelty of our architecture relies mainly on the con-
cept behind performer - machine’s communication. In-
stead of restricting the performer’s role to a set of deci-
sions to take, our approach aims to subject the performer
in a permanent dialog with the computer. In other words,
instead of taking decisions, the performer ‘discusses’ his
intentions with the computer. First, he expresses his inten-
tions to the system under the form of musical constraints.

These constraints concern time, dynamics, articulation and
other musical parameters and are set either statically or dy-
namically. As a response, the computer proposes certain
solutions to the user, often after accomplishing complex
calculi. The last evaluates the computer’s response and ei-
ther makes a decision or launches a new query to the ma-
chine. Then the machine has either to execute performer’s
decision or to respond to the new query. This procedure
runs permanently and controls the improvisation. An other
important concept in our architecture concerns the com-
puter’s understanding of the common improvisation sound
field. This necessity arises from the fact that despite for
computer’s ability to ‘learn’, in a certain degree, the stylis-
tic features of the musician’s playing, the last does not
stand for the understanding of the overall improvisation.
Thus, There has to be instead a dedicate mechanism that
assures interaction between the machine and the collective
music improvisation. Moreover, such a mechanism can be
beneficial for the performer - machine interaction as well,
as it can make the computer more ‘intelligent’ in his dialog
with the performer.

4.2 General architecture for Computer Assisted
Improvisation

However, for the conception of an architecture for CAI
that permits three party interaction, there are a couple of
important issues to take into account. First, the fact that
the proposed interaction scheme is gravely constrained in
time, due to the fact that all dialogs and decisions are to be
taken in real time ( though in the soft sense). Second, the
computer should be clever enough to provide high-level,
expressive information to the performer about the improvi-
sation, as well as high level decision making tools.

The internal architecture for the computer system is shown
in figure 2. This architecture consist mainly of six modules
which can act either concurrently or sequentially. On the
far left we consider the musician, who feeds information
to two modules: the pre-processing module and the short-
term memory module. The pre-processing module is re-
sponsible for the symbolic encoding of audio information
and stylistic learning. On the far right part of the figure we
see the renderer, the unit that sends audio information to
the collective sound field.

The short-memory processing module serves the under-
standing of the short-term memory features of collective
improvisation. In order to reconstruct internally a com-
plete image for the improvisation’s momentum, this mod-
ules gathers information both from the representation mod-
ule and the scheduler; the first in order to know what is be-
ing played by the musician and the second for monitoring
computer’s playing in short-term. It is possible that in the
future it will be needed that the short-term memory pro-
cessing module will also include an independent audio and
pitch tracking pre-processor in order to reduce the portion
of time required for the detection of surprise events.

In the low-center part of figure 2 one can find the in-
teraction core module. This core consists of a part that is
responsible for interfacing with the performer and a solver
that responds to his questions. The performer lances queries
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Figure 1. Three-party interaction scheme in Computer Assisted Improvisation. In frames (yellow) the new concepts introduced by the proposed
architecture with respect to conventional interaction schemes for machine improvisation.

under the form of constraints. In order to respond, the
solver attires information from the representation module.
The time the performer takes a decision, information is
transmitted to the scheduler. Scheduler is an intelligent
module that accommodates commands arriving from dif-
ferent sources. For instance, a change-of-strategy com-
mand by the performer arrives via to the interaction core
module to the scheduler.

The scheduler is responsible for examining what was
supposed to schedule according to the previous strategy
and organizes a smooth transition between the former and
the current strategy. Sometimes, when contradictory deci-
sions nest inside the scheduler, the last may commit a call
to core’s solver unit in order to take a final decision. It is
worth mentioning that the dotted-line arrow from the short-
term memory processing module towards the scheduler in-
troduces the aspect of reactivity of the system in emer-
gency situations: when the first detects a surprise event,
instead of transmitting information via the representation
module -and thus not make it accessible unless informa-
tion reaches the interaction core-, it reflects information
directly to the scheduler with the form of a ‘scheduling
alarm’. Hence, via this configuration, we leave open in
our architecture the option that the system takes over au-
tonomous action under certain criteria. The last, in com-
bination with those mentioned before in this section estab-
lishes full three party interaction in a CAI context.

5. FORMALISMS FOR COMPUTER ASSISTED
IMPROVISATION WITH THE HELP OF GRAPH

THEORY

Further in this section, we address music sequence schedul-
ing and sequence matching and alignment, two major prob-

lems for CAI. After a short introduction, we give formalisms
for such problems with the help of graph theory.

5.1 Music sequence scheduling

Concerning the notion of music scheduling is usually found
in literature as the problem of assigning music events to a
particular time in the future, commonly within a real-time
system [16]. Scheduling of musical events is one of the
main functionalities in a real-time system [17] where the
user is given the opportunity to plan the execution of a set
of calculi or DSP events, in a relative or absolute man-
ner, sporadically or sequentially. In a parallel study of the
process of scheduling in music computing and other do-
mains of research such as computer science and produc-
tion planning, we could reason that for the general case
described above, musical scheduling refers to the single
machine scheduling and not the job-shop case.

We define Music Sequence Scheduling as the special
task of building a sequence of musical tasks and assign-
ing their execution to consecutive temporal moments.

In our study, we are interested to music sequence schedul-
ing in order to reconstruct new musical phrases based on
symbolically represented music material. Our objective
is to conceptualize methods which will help the user de-
fine some key elements for these phrases, as well as a set
of general or specific rules, and to leave the building and
scheduling of the musical phrase to the computer. In an
improvisation context, the last allows the performer tak-
ing crucial decisions in a high level; on the same time, the
computer takes into account performer’s intentions, sets
up the low-level details of the phrase generation coher-
ently to the user choices and outputs the relevant musical
stream. For instance, a simple sequence scheduling prob-
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Figure 2. Overal Computer Architecture for CAI

lem would consist of navigating throughout a FO with the
same heuristic such as the one used by OMax system, un-
der the additional constraint that we would like to reach a
particular state x in a particular moment t.

5.2 Music sequence matching and alignement

Music sequence matching concerns the capacity of the sys-
tem to recognize if sequence is within its known material.
Music sequence alignment is the problem of finding se-
quences within its corpus which are ‘close’ to a sequence
of reference. The last pre-assumes the definition of a dis-
tance function according to certain criteria. Both are not
in the scope of this paper, but are mentioned for reasons of
clarity.

5.3 Formalisms

The structures used for learning in existing improvisation
systems, even if effective for navigation under certain heuris-
tics, are too specialized to express complex problem of
navigation under constraints. For instance, a FO automa-
ton is sufficient when for agnostic navigation under certain
heuristics among its states, but fails to answer to problems
of scheduling a specific path in time. In order to be able
to express diverge problems of music sequence schedul-
ing, alignment or more complex problems, we are obliged
to use more general graph structures than the ones used in
content-dependent improvisation systems. The advantage
of this approach is that our research then can be then gen-
eralized to include other graph-like structures. Our method
focuses on regenerating material by navigating throughout
graph structures representing the corpus. Due to the rea-
sons mentioned before we will express all stylistic reinjec-
tion related problems under the graph theory formalism.

Formally we describe the process of music sequence
scheduling in the context of stylistic reinjection as follows:

Consider now a continuous sound sequence S. Suppose
that for this sequence it is possible to use an adaptive seg-
mentation method to segment S in n chunks according to
content and a metric m = f (d), d ∈ D, where D a set of
descriptors for S. Each m causes different segmentation
properties i.e different time analysis tm. A symbolic repre-
sentation of S would then be Sm(tm), 1≤m≤M, where M
the number of metrics and tm = 0,1, ..,nm ∀m ∈M.

Axiom 1 The musical style of a continuous sound se-
quence S can be represented by a countably infinite set P
with |P| 6= 0 of connected graphs.

Definition 1
We define stylistic learning as a countably infinite set

F = {Sl1,Sl2, ..,Sln}, |F | 6= 0 of mapping functions Sli :
Sm→Gi(Vi,Ei), where Sm = Smtm∀tm ∈ [0,nm] of sequence
S for a metric m, 1≤ m≤M, Gi a connected graph with a
finite set of vertices Vi and edges Ei as a binary relation on
Vi.

Definition 2 We define as stylistic representation the
countably infinite set P = {Gi(Vi,Ei) : i 6= 0} of digraphs.

Definition 3 We define as sequence reinjection a selec-
tion function
Rseq : (Gi,q)→ Sm with Rseq(Gi,q) = S′m and S′mtm = Smt ′m ,
q a number of constraints q = h(m), m ∈ (1,M).

Definition 4 We define as musical sequence scheduling
as a scheduling function Rsch : (Rseq,Ts(Rseq))→ Sm, with
Ts the setup time for the sequence reinjection Rseq.

With these formalisms we can now begin to study stylis-
tic representation, learning and sequence reinjection with
the help of graphs. These issues now reduce to problems
of constructing graphs, refining arc weights and navigating
along the graphs under certain constraints.

In section 4.2 we underlined the importance of the short-
term memory processing module. Even while the standard
functionality, it should be employed with the mechanism
to quickly decode information that has lately been added
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to the representation, make comparisons with earlier added
performance events and find similarities.

Definition 5 We define Music Sequence Matching (MSM)
as a matching function M : (Sm,S′m)→ [0,1] , where Sm,
S′m symbolic representations of sequences S and S′ for the
same metric m.

Definition 6 We define Music Sequence Alignment (MSA)
the alignment function A : (Sm,S′m,q)→ R where

A(Sm,S′m,q) = min{∑
q

cqxq}, (1)

Sm,S′m symbolic representations of sequences S and S′ re-
spectively for the same metric m, q a number of string op-
erations, cq ∈R a coefficient for an operation q and xq ∈ Z
the number of occurrences of operation q.

With the help of the previous definitions we are ready
to cope with specific musical problems.

6. A SIMPLE PROBLEM ON STYLISTIC
REINJECTION IN CAI

Problem
Let a musical sequence S symbolically represented as

Sn, n ∈ [0,N], and s, t ∈ [0,N] a starting and target point
somewhere within this sequence. Starting from point s,
navigate the quickest possible until the target t, while re-
specting sequence’s stylistic properties.

Definition 7 With the help of axiom 1 and definitions
1, 2, we apply stylistic learning and create a stylistic rep-
resentation digraph G(V,E) for Sn with set of vertices V =
{0,1, ..N} and E the set of edges of G.

We define as Music Transition Graph (MTG) the di-
graph G with the additional following properties:

1. G is connected with no self loops and |V |−1≤ |E| ≤
(|V |−1)2 + |V |−1

2. every ei, j ∈ E represents a possible transition from
vertex i to j during navigation with cost function
wτ(i, j)

3. for every i∈ [0,N−1] there is at least one edge leav-
ing vertex i ei,i+1.

4. let d(i) the duration of a musical event Si ∈ S, d0 = 0.
The cost function of an edge ei, j ∈ E is defined as:

• wτ(i, j) = d( j), if j = i+1, ∀i, j ∈ (0,N)

• wτ(i, j) = 0, if j 6= i+1, ∀i, j ∈ [0,N]

• wτ(0,1) = 0.

Solution to problem
Let a path p =< i0, i1, .., ik > in a graph G′ and the

weight of path p the sum of the weights of its constituent
edges:

w(p) =
k

∑
j=1

w(i j−1, i j). (2)

We define the shortest-path weight from s to t by:

0 A_10 D_8B_21.5 A_4

0

A_6

0

C_3 1 B_7

0

 4 D_5 2

0

0

 3  4 1

Figure 3. A Music Transition Graph for melody ABCADABD. Arc
weights correspond to the note duration of the source. Bidirectional arcs
above and below nodes connect patterns with common context.

δ (s, t) = min{w(p) : s p t}. (3)

Let a MTG G to stylistically represent the sequence Sn.
This graph is connected, with no self loops and no negative
weights. Given that, from definition 7, wτ(i, j) is strictly
by the duration d(i, j) of graph events, our problem con-
sists of finding a MTG’s shortest path problem. The so-
lution for the MTG shortest path exists and can be found
in polynomial time. One of the most known solutions to
this problem can be found with the help of Dijkstra’s al-
gorithm, with complexity O(logV ). Dijkstra’s algorithm
does not solve the single pair shortest-path problem dire-
cly, it solves instead the single-source shortest path prob-
lem, however no algorithms for the single pair shortest path
problem are known that run asymptotically faster than the
best single-source algorithms in the worst case.

Corollary from solution
Given a music sequence, the MTG representation per-

mits solving the problem of accessing from a musical event
s a musical event t within a music sequence S in the less
possible time. Thus, by recombining musical events within
S, we can reproduce a novel sequence from s to t. On the
same time, this sequence respects the network of the MTG
graph, hence the stylistic properties of the original music
sequence.

Application 1
Suppose a music melody S{A,B,C,A,D,A,B,D}, with

durations dS{1.5,1,4,2,3,4,1,2.5}.
We construct a MTG G(V,E) with edges e(i, j) ∈ E

with for e(i, j) : j 6= i+1 the arc connect common context
according to the metric m = PITCH (figure 3).

Suppose that our problem is to find the quickest possi-
ble transition from vertex s = 2 (note B ) to vertex t = 8
(note D). To solve our problem, we can apply Dijkstra’s
algorithm.

We apply the algorithm for our sequence S and state D.
When the algorithm terminates we have the shortest paths
for all graph vertices. We can resume that for our problem
the solution is the path p =< B2,B7,D8 >. For the navi-
gation along a path, we ignore one of two interconnected
components. Hence, the final path is p′ =< B2,D8 >.

We presented the formalisms and the solution to the
simplest sequence scheduling problem. In our research,
we focus on a number of problems that we are treating
with the same methodology. These problems are combi-
nation of problems in sequence scheduling and sequence
alignment domain. A list of the more important ones that
we are dealing with is as follows:

415



1)Find the shortest path in time from a state s to a state
t (examined).

2) The same with problem 1 with the constraint on the
length of common context during recombinations.

3) Find the shortest path in time from a state s to a given
sequence .

4) Find the continuation relatively to given sequence
(Continuator).

5)The same with problem 1 with the additional con-
straint on the total number of recombinations.

6)Find a path from a state s to a state t with a given
duration t, with t1 ≤ t ≤ t2.

7)Find a path from a state s to a state t with a given du-
ration t, with t1 ≤ t ≤ t2 and with the additional constraint
on the total number of recombinations (problem 5 + 6)

7. GRAIPE FOR COMPUTER ASSISTED
IMPROVISATION

Our algorithms and architecture, are integrated in an under
development software under the name GrAIPE. GrAIPE
stands for Graph Assisted Interactive Performance Envi-
ronment. It is an ensemble of modular objects for max-msp
implementing the architecture presented in section 4.2. Con-
cerning GrAIPE’s design and implementation, our basic
priorities are intelligent interfacing to the performer and
efficient well-implemented algorithms for concurrency, in-
teraction and the system’s core main functions. Whether
the software is under development, an instantiation of GrAIL
has already taken place under the name PolyMax for ma-
chine improvisation, simulating with success 10 concur-
rent omax-like improvisers.

8. CONCLUSIONS - FUTURE RESEARCH

In this report we tried to set the basis for a novel, three-
party interaction scheme and proposed a corresponding ar-
chitecture for Computer Assisted Improvisation. Employ-
ing the approach of stylistic learning and stylistic interac-
tion, we operated to formalize this interaction scheme un-
der formalisms inspired from graph theory. We then dis-
cussed a simple music sequence scheduling problem.

Graph approach to CAI appears to be promising for
modeling three-party interaction in a real-time non super-
vised improvisation environment that includes a ‘silicon’
participant. Not only does it permit a formalization of CAI
problems in relation with space and time complexity, but
it also approaches timing and capacity issues with widely
accepted time-space units (for instance, milliseconds) that
can make explicit the connection of our theoretical results
with real-time system own formalism. This can be proved
extremely practical for the future when integrating our the-
oretical results to real-time environment, in contrast with
other formalisms such as in [18] that despite of penetrat-
ing complex interactivity issues, their temporal analysis in
abstract time units makes this connection more implicit.
Furthermore, graph formalization allows transversal bibli-
ography research in all domains where graphs have been
employed (production scheduling, routing and QoS etc.),
and thus permit the generalization of music problems to

universal problems and their confrontation with algorithms
that have been studied in this vast both theoretic and ap-
plicative domain of graph theory.

In the recent future we are focusing on presenting for-
mal solutions for the problems list in the previous section.
Of particular interest are approximate solutions to prob-
lems 5, 6, 7, which are NP-hard for the general case.

Concerning development, GrAIPE has still a lot way
to run until it fits with the requirements set in section 4.2.
Even though already with a scheduler, a basic visualization
module and a scripting module, these modules are being
re-designed to adapt to the new research challenges. Other
modules are a constraint-based user interface and its com-
munication with a solver which is under development.
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ABSTRACT 

The concept of dynamical form is presented as a dimen-
sion of music perception. Dynamical form refers to the 
subjective perception of temporal events in music (explo-
sive, fading out, rising etc.). In a behavioral experiment 
listeners were asked to categorize musical excerpts vary-
ing in musical period, tonality, instrumentation, and 
acoustic features while attending to their dynamical form. 
Data indicates that subjects are sensitive to dynamical 
forms, but were particularly sensitive to a specific one 
(suspense). We also discuss a method of categorizing 
dynamical forms in terms of force dynamics.  

 

1. INTRODUCTION 
In this paper, we introduce the concept of dynamical form 
as a fundamental dimension of musical experience. The 
concept of dynamical form is not related to 'dynamics' in 
the sense of loudness in music, but pertains to the ways in 
which musical change is subjectively perceived. Dynami-
cal forms may be described in language by adjectives 
such as rising, fading out, explosive, surging, lively, ten-
tative, rushing etc. Previous work relevant to dynamical 
form (such as [12],[15]) has typically examined it in 
relation to musical emotion, but we argue that it should 
be considered as a distinct dimension. For instance, a 
musical passage experienced as angry may be angry in an 
eruptive or slowly rising fashion. 
 Dynamical forms are general cross-modal patterns of 
experience grounded in bodily-kinesthetic experience. 
They have been studied in infant psychology ([7]) and 
suggested to be among the earliest and most fundamental 
forms of experience in humans. In this context they are 
referred to as vitality contours or vitality affects, and 
pertain to the way in which temporal events are felt and 
categorized. Some music theorists have suggested their 
relevance to musical experience (e.g., [18]), but experi-
mental work on this is sparse (allthough [1] may be said 
to be related). 
 On the other hand, experimental work in psychoa-
coustics indicates that recognition of events or gestures 
(e.g., [4],[21],[28]), as well as physical properties of the 
sound source (e.g., [3],[5],[8],[22],[24]) are of fundamen-
tal relevance to auditory perception in general. Gestural 
aspects have also been suggested to be of relevance to 
music perception (see e.g. [2]). However, we consider 
gestures to be an instance of the more general category of 

dynamical form. A gesture may be experienced as having 
a certain dynamic form - e.g. eruptive or toning out - but 
dynamical forms may also be experienced in relation to 
physical events (an eruptive volcano or the fading out of 
a river flow).   
 

2. TAXONOMY OF DYNAMICAL FORMS 
With the above in mind, we can provisionally sketch a 
classification scheme of 3 general and independent di-
mensions of musical experience: (a) emotion or valence, 
(b) source properties, and (c) dynamical form. Each 
dimension gives rise to linguistic descriptions that may 
be used to illustrate them: 
 

 
 The studies in music psychology most relevant to 
dynamical form are studies of musical 'tension' or 'force' 
([10],[11],[23]). This may refer to either patterns of ten-
sion and relaxation in harmonic structure, or to the felt 
presence of tension due to rhythmic complexity, acoustic 
dissonance, melodic attraction, etc. A number of experi-
mental studies have used a continuous response method 
to have subjects rate the amount of perceived tension in 
the course of music listening (e.g., [9],[11],[25]).  
 Unlike tension considered as a continuous variable, 
dynamical forms are semantic units of perceived events 
or states. While music may be experienced as a continu-
ous flow of tension, we argue that dynamical forms arise 
from the experience of interaction between opposing 
tension or force tendencies. In physical experience, we 
constantly perceive interactions between objects having 
given force tendencies. We may perceive a man leaning 
against an unlocked door as an unstable scene where 

Table 1. Verbal descriptors of basic listening di-
mensions 

Emotion Source Dynamical 
form 

Mourning 
Angry 
Joyful 
Proud 
Gentle 
Lamenting 

Crunchy 
Heavy 
Compact 
Creaking 
Dirty 
Wet 

Fleeting 
Drawn out 
Explosive 
Floating 
Expanding 
Struggling 

Copyright: © 2010 Hjortkjær et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License 

3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 
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there is a balance between the force applied by the weight 
of the man and the resisting force of the door. Perception 
of scenes like this possesses force dynamical structure in 
the sense described by L. Talmy ([14]) from the point of 
view of language. We will suggest that dynamical forms 
in music can also be categorized in terms of force dynam-
ics.  
 
2.1 A dynamical model of force semantics 

Force dynamical patterns are characterized in terms of 
two interacting force entities with conflicting force ten-
dencies. In the scene with the man leaning against a door 
there are two conflicting force tendencies. We perceive 
the man as potentially moving, but being withheld by the 
stronger force tendency (towards rest) of the door. Force 
dynamical patterns are constituted by the two opposing 
force tendencies (one towards action or motion, and one 
towards rest), and by the balance of strength between 
these tendencies. Perceiving (and describing) the scene 
also incorporates a certain perspective. For instance, one 
would tend to see the man leaning against the door from 
the perspective of the man (rather than viewing the door 
as being leaned-upon by the man).  
 Four basic patterns describing steady-state force op-
positions arise from the possible interactions of these 
structural elements (force tendencies, balance of strength) 
and the perspective. Consider instead, for instance, a man 
that keeps standing in spite of a heavy wind blowing 
upon him. In this scene, the structural roles have 
switched: now the man has a tendency towards rest that is 
stronger than the opposing force tendency of the wind 
(towards action).  
 In addition to these steady-state patterns, correspond-
ing changing-state patterns exist. If the door breaks and 
the man falls down, then there is a change in the struc-
tural elements: the weaker force tendency of the door is 
removed and the man's tendency towards motion is actu-
alized. If the wind knocks the man off his feet, then the 
changing-state pattern is that of a shift in the balance of 
strength between the two force entities. 
 Such semantical force patterns have been described 
by L. Talmy within cognitive linguistics ([14]). They are 
considered to be fundamental cognitive forms underlying 
our understanding of basic phenomena such as causation 
and modality. In the present context, we will suggest that 
force dynamical patterns can be described at a general 
level as a dynamical system. Consider a one-dimensional 
dynamical system with 2 control parameters: 

€ 

x
•

= h + rx − x 3                                    (1) 
 
where h and r represent the magnitudes of the two inter-
acting forces. A stable state of the system correspond to a 
given force tendency (towards action or rest). The system 
undergoes bifurcations when the two force parameters are 
varied continuously. Bifurcations occur around a cusp 
shape in the (r,h)-plane (see figure 1). Inside the cusp, 
there are two asymmetrically stable states (a conflict of 
forces), while there is only one outside. In Figure 1 be-
low, stable states are illustrated by potential functions of 

the flow in given states (stable states corresponding to 
local minima). A 'ball' in the potential minimum indicates 
that the state is realized. The realized states are seen from 
the point of view of the first force entity.  
 

Figure 1. Stability diagram of the (r,h)-plane. 
Stable states are indicated by potential minima. 
Stippled arrows indicate the initial state of a given 
realized state.  

 The model follows the delay convention. This means 
that a stable state (a force tendency) persists until it is 
destroyed. Outside the cusp there is a single stable state 
corresponding to action or rest (corresponding to the 
dominating force). When entering the cusp, a conflict 
between two potential states (rest/action) arises. At the 
midline (h=r) there is a balance of strength between the 
forces, and trajectories across this line correspond to 
transitions between action and rest.   
 The force parameters (h,r) correspond to the percep-
tion of tension. Although these vary continuously there 
are only four qualitatively different conflicting states of 
the system (force dynamical steady state patterns a-d). 
There may be a tendency towards rest (a-b) or towards 
action (c-d). The alternative potential state is either more 
(a-c) or less (b-d) stable resulting in action (a-d) or rest 
(b-c). For instance, in state c we have the situation de-
scribed above of the man leaning against a door.  There is 
a tendency towards motion but a stronger tendency to-
wards rest (causing rest). The man standing in spite of the 
wind appears as state b (a stronger tendency towards 
rest). We may readily extend the model to encompass 
changing-state patterns (where a transition between ac-
tion and rest takes place). This corresponds to trajectories 
either across the cusp (e.g., caused or blocked actions), or 
across the midline (changed balance of strengths, e.g. 
trapped action, overcoming, etc.). 
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 Dynamical forms can be categorized as generalized 
force dynamical patterns. This means that a dynamical 
form can be categorized into specified semantic types or 
dynamic 'archetypes'. The man leaning against the door 
(state c) corresponds to dynamical forms expressing sus-
pense or tension (a state of suppressed action). Force 
magnitudes may vary continuously but the way in which 
they interact with other forces gives rise to a limited 
number of patterns. In relation to music we argue that 
continuously perceived tension gives rise to discrete 
semantic patterns (dynamical forms) that can be charac-
terized by their force dynamical structure.  
 In Figure 2 below, dynamical forms of different 
steady-state types are shown in the bifurcation diagram 
described by verbal labels: 
 

Figure 2. Verbal labels indicating dynamical forms in the 
stability diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. EXPERIMENT 
3.1 Experimental design 

A behavioral experiment was designed to examine 
whether listeners are sensitive to dynamical forms in 
music. Subjects performed two different listening tasks 
on 16 short musical excerpts of existing performed mu-
sic. The excerpts where chosen by the authors to repre-
sent a broad variation on a number of musical parame-
ters: tonality, mode, instrumentation, genre, and period of 
production. The excerpts could all be considered 'classi-
cal music', but included both tonal and atonal music, 
older and more recent music, as well as different instru-
mentations. Excerpts of 10-15 seconds were taken from 
the following works: 

 In choosing the musical excerpts, the authors found 4 
different dynamic forms to be most salient. These may be 
described as (i) overcoming, climaxing (no. 1-4), (ii) 
eruptive, bursting (no. 5-8), (iii) striving, struggling (no. 
9-12), and (iv) suspense, tense (no. 13-16). These corre-
spond to four different force dynamical patterns, as dis-
cussed above. Forms i-ii are changing-state patterns in 
which there is either an overcoming (i) or removal (ii) of 
an antagonistic force. Forms iii-iv correspond to steady-
state patterns c and d respectively in figure 1 (also indi-
cated in figure 2).  

 

No Composer Work Tonality Instr. Year 

1 Liszt Paganini etude no. 
2 (La Campanella) tonal (mi) piano 1851 

2 Mahler  Symphony no. 3, 
6th movement tonal (ma) orch. 1896 

3 Messiaen 
Vingt regards sur 
l'enfant jesus, no. 
X  

atonal piano 1944 

4 Prokofiev Romeo & Juliet, 
finale  atonal orch. 1935 

5 Alva Noto Attack (UTP_) atonal orch. 2009 

6 Beethoven Piano Sonata, op. 
31, 1st movement tonal (mi) piano 1803 

7 Debussy Preludes for piano, 
no. 3 (Animé) tonal (ma) piano 1910 

8 Grisey Modulations atonal orch. 1978 

9 Abrahamsen Boogie Woogie atonal piano 1983 

10 Bartok String quartet no. 
4, 4th movement atonal orch. 1929 

11 Brahms  Cappricio, op. 116, 
no. 2 tonal (mi) piano 1878 

12 Tchaikovsky Slavonic march, 
op. 31 tonal (mi) orch. 1852 

13 Barry 
The sinking of 
Devonshire 
(Soundtrack) 

tonal (mi) orch. 1997 

14 Ligeti Atmosphères atonal orch. 1961 

15 Schubert 
Piano sonata, 
D784, 1st move-
ment 

tonal (mi) piano 1815 

16 Smetana On the seashore tonal (mi) piano 1861 

 

Table 2. List of excerpts used in the experiment 
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 However, subjects were not informed of those forms. 
They were simply instructed to attend to dynamical form 
in general. The concept was introduced to subjects be-
forehand by two different examples of dynamical forms 
in other excerpts. The question of interest was whether 
subjects would group the excerpts according to perceived 
dynamical form across major musical categories (tonal-
ity, period, instrumentation).      
 Fourteen subjects of varying musical background 
participated in the experiment. The experiment consisted 
of two separate parts. In the first part of the experiment, 
similarity ratings were obtained. Subjects were presented 
with triads of excerpts. In each trial, subjects were asked 
to indicate which two excerpts of the three were most 
similar, and to rate their similarity on a discrete rating 
scale (1-7). Each subject was not presented with all pos-
sible combinations of excerpts, but the between-subject 
order of presentation was fixed so that the subjects col-
lectively heard all combinations. The second part of the 
experiment consisted of a free clustering task. All 16 
excerpts could be accessed, and subjects where asked to 
group each of them into four groups or less. They were 
also asked to write word labels indicating how they per-
ceived a given excerpt. The subjects were allowed to 
write as many labels they liked. They gave between 1-3 
labels for each excerpt. 
 

3.2 Results 

A mean similarity matrix between each excerpt was cre-
ated for each task. For the first task, similarities simply 
corresponded to ratings. In the free clustering task, the 
similarities were calculated as percentage overlap be-
tween groups ([19]). The matrices produced by the dif-
ferent tasks were highly correlated, even though the sub-
jects were presented with different subsets of excerpt 
combinations in the first task. Consequently, the two 
matrices are collapsed in the following analysis.  
 A hierarchical cluster analysis (single-linkage) was 
performed on the mean similarity data. Four groups are 
seen in the analysis, indicated in figure 3.  These groups 
were - interestingly - not identical to the ones hypothe-
sized by the authors. For each group, the word labels 
given in the free clustering task were semantically highly 
related across subjects. Labels representative of these 
semantically related categories are shown next to the 
groups in figure 3.  
 The found group structure was compared with a num-
ber of factors that could be suspected to influence the 
perception of similarity between excerpts. A correlational 
analysis was performed, and only instrumentation was 
found to correlate significantly with the behavioral data. 
Neither period of production nor tonality or mode corre-
lated significantly with the data. A number of psychoa-
coustic parameters of potential perceptual relevance were 
obtained by computerized analysis of the audio data. This 
included energy RMS, roughness ([27]), spectral irregu-
larity ([13]), Mel-frequency cepstrum coefficients, tempo, 
flatness of the temporal envelope, and slope of the spec-
tral centroid. All of these were found to have low correla-
tion (< .24) with the behavioral data.  

3.3 Discussion 

The results suggest that listeners when instructed to at-
tend to dynamical forms, group musical excerpts across 
musical periods, genres, tonality, and acoustic features. 
The separation in terms of instrumentation into two broad 
groups (piano/orchestra) does not account for all varia-
tion in the similarity data. This could suggest that the 
subjects are in fact sensitive to dynamical forms that are 
independent of these factors. The verbal labels given by 
subjects also indicated their sensitivity to dynamical 
forms.  
 Interestingly, the similarities perceived by subjects 
were different from the ones suspected by the authors. A 
given musical excerpt may possess a number of dynami-
cal forms simultaneously. For instance, excerpts 5 and 8 
contain sudden differences in instrumentation and loud-
ness that may be experienced as explosive or eruptive. 
But they also have an undefined harmonic structure that 
may cause them to be experienced as tense or expressing 
a state of suspense at a more global level. Apparently, 
this second quality appeared more salient than the first.  
 The moderate clarity of the behavioral data and the 
resulting clustering may be caused by the fact that sub-
jects attended to dynamical forms that are of similar type. 
Three of the four groups (II-IV) have identical force 
dynamical structure. They are different instances of force 
dynamical pattern c: a force tendency towards motion 
with a stronger opposing force. Subjects thus preferably 
attend to dynamical forms expressing a state of tension or 
suspense. Only group I has different force dynamical 
structure (a changing event pattern), expressing a transi-
tion from motion to rest (ending, overcoming).  
 It is interesting to observe the apparent saliency of 
pattern c in music. Theories of musical listening are often 
based on the idea that music is subjectively perceived as 

 

 
Figure 3. Hierarchical cluster analysis of behavioral 
data with verbal labels given by subjects 
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motion ([16],[17],[20],[26]). The salient dynamical form 
found in this experiment, however, is not perceived as 
motion, but as an interaction of forces resulting in rest as 
suspended motion. In this way we may argue that force 
dynamical structure represents a more fundamental way 
of conceiving the subjective nature of music perception.  
 The similarity of perceived dynamical forms makes it 
difficult draw conclusions on the basis of these behav-
ioral results. We would suggest that additional experi-
ments with other musical excerpts, perhaps reflecting an 
even broader range of musical variation, is needed to gain 
more information about the perception of dynamical 
forms. 
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ABSTRACT

This paper faces the general problem of modeling pinna-
related transfer functions (PRTFs) for 3-D sound render-
ing. Following a structuralmodus operandi, we exploit an
algorithm for the decomposition of PRTFs into ear reso-
nances and frequency notches due to reflections over pinna
cavities in order to deliver a method to extract the frequen-
cies of the most important spectral notches. Ray-tracing
analysis reveals a convincing correspondence between ex-
tracted frequencies and pinna cavities of a bunch of sub-
jects. We then propose a model for PRTF synthesis which
allows to control separately the evolution of resonances
and spectral notches through the design of two distinct
filter blocks. The resulting model is suitable for future
integration into a structural head-related transfer function
model, and for parametrization over anthropometrical mea-
surements of a wide range of subjects.

1. INTRODUCTION

Back in 1907, Lord Rayleigh’s Duplex Theory of Local-
ization [1] gave birth to the vast and still little understood
field of 3-D sound. As a matter of fact, the well-known
diffraction formula which approximates the behaviour of a
sound wave produced by an infinite point source around the
listener’s head provided a first glimpse of what we today
call a head-related transfer function (HRTF). Nevertheless,
compared to such centenary theory, most of the relevant
issues in HRTF modeling are relatively recent.

There exists a number of ways to render HRTF-based
spatial audio. Approximations based on low-order ratio-
nal functions [2] and series expansions of HRTFs [3] were
proposed, resulting in simple yet valuable tools for HRTF
modeling. On the other hand the complexity of filter coef-
ficients and weights, respectively, makes both techniques
unsuitable for real-time applications. Conversely, struc-
tural modeling [4] seems nowadays to be an attractive al-
ternative approach for all those scenarios where fast com-
putation is needed: within this characterization, the contri-
bution of the listener’s head, ears and torso to the HRTF
are isolated in several subcomponents, each accounting for
some well-defined physical phenomenon. Thanks to lin-
earity, the global HRTF can be later reconstructed from a
proper combination of all these effects. The result of such

Copyright: c©2010 Simone Spagnol et al. This is an open-access article distributed
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a decomposition is a model which is both economical and
well-suited to real-time implementations. Furthermore, the
intuitive nature of physical parameters gives us the possi-
bility of relating the model to anthropometrical measure-
ments.

Our work focuses on the contribution of the pinna to the
HRTF. Although perceptually dominated by head motion
cues, pinna effects on incident sound waves are of great im-
portance in sound spatialization. Several experiments have
shown that, contrarily to azimuth effects which are dom-
inated by diffraction around the listener’s head and may
be reduced to simple and intuitive binaural quantities, ele-
vation cues are basically monaural and heavily depend on
the listener’s pinna shape, being the result of a superposi-
tion of scattering waves influenced by a number of resonant
modes inside pinna cavities. Within this framework, it is
crucial to find a suitable model for representing the pinna
contribution to the HRTF, whose transfer function we com-
monly refer to as Pinna-Related Transfer Function (PRTF).
In addition, linking the model parameters to straightfor-
ward anthropometric measurements on the user’s pinnas is
equally relevant and represents the ultimate challenge in
this direction. Once such model is available, cascading it
to a simple Head-and-Torso (HAT) model [5] would yield
a complete structural HRTF representation.

In this paper we carry on the work presented in [6].
Exploiting an iterative approach which aims at separating
resonance effects from pinna reflections in experimentally
measured PRTFs, a method for extracting the frequencies
of the most important notches is here sketched, followed
by a discussion on the possible relation between notch fre-
quencies and anthropometry. Finally, a structural model of
the pinna is proposed.

2. PREVIOUS WORKS

Following Batteau’s studies [7], high-frequency compo-
nents which arriveat the listener’s ear are typically re-
flected by the concha wall and rim, provided that their
wavelength is small compared to the pinna dimensions.
Due to interference between the direct and reflected waves,
sharp notches can be observed in the incoming sound’s
spectrum at high frequencies with a periodicity of1/τi,
whereτi is the time delay of thei-th reflection. Such ob-
servation led to a very simple double-path model of the
pinna [8], whose main drawback lies in fixed reflection co-
efficients that overestimate the effective number of notches
in the spectrum. Even so, the model’s fit with experimental
data was found to be reasonably good.

A similar approach was adopted by Barretoet al., whose
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model [9] consists in a reflection structure represented by
four parallel paths, each modeled by a time delayτi and
a magnitude factorρi, cascaded to a low-order resonator
block. As a matter of fact pinna cavities act as resonators,
affecting the frequency content of both the direct and the
reflected sound waves (see Shaw’s work [10] for an ex-
tensive analysis of pinna resonant modes). The model pa-
rameters are fitted by decomposing each specific measured
head-related impulse response (HRIR) into four scaled and
delayed damped sinusoidal components using a procedure
based on the second-order Steiglitz-McBride (STMCB) al-
gorithm, and associating the delay and scaling factor of
each component to the corresponding parameters of its as-
sociated path in the model. Multiple regression analysis
was used in order to link the model parameters to eight
measured anthropometric features [11]. Unfortunately, be-
sides having no clear evidence of the physics behind the
scattering phenomenon, the considered measures can only
be obtained with the help of a 3-D laser scanner. Regard-
less of such particular concerns, this work surely certifies
our final PRTF model’s architecture, viz. a “resonance-
plus-delay” structure.

The approach taken by Raykaret al. for reflection mod-
eling [12] is different and operates both in the time and
frequency domains. The authors used robust digital sig-
nal processing techniques based on the residual of a lin-
ear prediction model for the head-related impulse response
(HRIR) to extract the frequencies of the spectral notches
due to the pinna alone. Specifically, first the autocorrela-
tion function of the HRIR’s windowed LP residual is com-
puted; then, frequencies of the spectral notches are found
as the local minima of the group-delay function of the win-
dowed autocorrelation. In addition, a ray-tracing argument
was exploited to attest that the so found spectral notches
are somehow related to the shape and anthropometry of the
pinna. For each of the extracted notches the correspond-
ing distance was plotted on the image of the pinna, and by
varying elevation such mapping appeared consistent with
reflections on the back of the concha and on the crus helias.
Spectral peaks were extracted in parallel by means of a lin-
ear prediction analysis, yielding results which match quite
well the pinna resonant modes reported by Shaw [10] and
further justifying the “resonance-plus-delay” approach.

Hitherto, another significant contribution on low-cost
modeling of PRTFs was provided by Satarzadehet al. [13].
In this work PRTFs for elevationφ = 0◦ are synthesized
through a model composed of bandpass and comb filters,
which respectively approximate the two major resonances
(Shaw’s resonant modes 1 and 4) and one main reflection.
The two second-order bandpass filters and the comb filter
are interconnected as in Figure1, the latter taking the form
[1+ρ exp(−sT )], whereT is the time delay of the consid-
ered reflection estimated from the spacing of notches in the
PRTF spectrum andρ a frequency-dependent reflection co-
efficient which strongly attenuates low-frequency notches,
coming over Batteau’s model aforementioned limitation.
For what concerns the resonant part, a cylindrical approx-
imation to the concha is used, where depth and width of
the cylinder uniquely define the depth resonance, while

Hdepth

Hwidth

+ Hcomb

Figure 1. The PRTF model proposed by Satarzadehet
al. [13].

the width resonance is thought to be correlated to the time
delay T depending on whether the concha or the rim is
the significant reflector. Though the anthropometric sig-
nificance of the two parameters is not robust, Satarzadeh
claimed that if the pinna has an approximately cylindrical
shaped concha and a structure with a dominant reflection
area (concha or rim), his anthropometry-based filter pro-
vides a good fit to the experimental PRTF. In particular, it
features sufficient adaptability to fit both PRTFs with rich
and poor notch structures.

3. PRTF ANALYSIS

Taking the last two works described in the previous sec-
tion as an inspiration and a “resonance-plus-delay” PRTF
model as starting point, the main and final goal of our work
is the construction of an essential multi-notch filter suit-
able for anthropometric parametrization. This obviously
requires a PRTF analysis step. In order to analyze PRTFs,
we consider measured HRIRs from the CIPIC database
[14], a public domain database of high spatial resolution
HRIR measurementsat 1250 directions for 45 different
subjects along with their anthropometry. We choose to in-
vestigate the behaviour of pinna features in subjects010,
027, 134, and165 in order to facilitate comparison with
previous works on notch frequencies extraction (the same
subjects’ PRTFs were analyzed in [12]).

3.1 Pre-processing

For purpose of analysis we focus on HRIRs sampled on the
median plane, with elevation varying from−45◦ to 90◦.
As a matter of fact, since sensitivity of PRTFs to azimuth
is weak [13], we roughly expect PRTFs to be elevation de-
pendent only. Suchan assumption makes the PRTF model
suitable for all azimuths.

Knowing that the magnitude response of an earless head
with respect to a sound source in the median plane is ide-
ally flat if the head is modeled as a rigid sphere, the only
preprocessing step we apply to obtain a raw estimate of
the PRTF is windowing the corresponding HRIR using a
1.0 ms Hann window [12]. In this way, spectral effects due
to reflections caused by shoulders and torso are removed
from the PRTF estimate.

In order to isolate the spectral notches in the so built
PRTFs we exploit an ad-hoc designed algorithm that re-
turns an estimate of the separated resonant and reflective
components. The idea behind such algorithm is to itera-
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Figure 2. Resonance plots for different elevations.

tively compensate the PRTF magnitude spectrum with an
approximate multi-notch filter until no significant notches
are left. Once convergence is reached, say at iterationn,
the PRTF spectrum embodies the resonant component alone,
while a combination of then multi-notch filters provides
the reflective component. A detailed and accurate descrip-
tion of the separation algorithm is reported in [6].

3.2 Resonances

We now discuss the PRTF features identified by the de-
composition carried out through the separation algorithm.
From the 3-D plots in Figure2 we can study how the reso-
nances’ contribution for Subjects 010 and 165 varies through-
out all available elevations. The center frequency of each
resonance was extracted with the help of an identification
system based on a sixth-order ARMA model [15] and spa-
tially tracked along elevation, resulting in the dotted tracks
superposed on the plots.

We can easily identify two major hot-colored areas in
these plots. The first one, centered around 4 kHz, appears
to be very similar amongst subjects since it spans all eleva-
tions. One may immediately notice that this area includes
Shaw’s omnidirectional mode 1. The resonance’s band-
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Figure 3. Spectralnotch plots for different elevations.

width appears to increase with elevation; however, knowl-
edge of pinna modes implies that a second resonance is
likely to interfere within this frequency range, specifically
Shaw’s mode 2 (centered around7 kHz with a magnitude
of 10 dB). On the other hand, the second hot-colored area
differs both in shape and shade amongst subjects. Still it is
most prominent at low elevations between12 and18 kHz, a
frequency range which is in general agreement with Shaw’s
horizontal modes 4, 5, and 6.

Note that the higher resonance may be perceptually ir-
relevant since it lies near the upper limit of the audible
range. In addition, since the resonances at12 and7 kHz
are excited in mutually exclusive elevation ranges, we may
look forward to a double-resonance filter design.

3.3 Notches

Similarly to the resonance plots, those in Figure3 represent
the frequency notches’ contribution for Subjects027 and
134. As expected, reflection patterns strongly depend on
elevation and pinna shape. While PRTFs generally exhibit
poor notch structures when the source is above the head,
as soon as the elevation angle decreases the number and
depth of frequency notches grows to an extent that varies
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among subjects.
However, several analogies can be noticed here too. In

order to investigate such common trends, we inherit an
analysis tool that is widely used in the field of sinusoidal
modeling, specifically the McAulay-Quatieri partial track-
ing algorithm (see [16] for details), to track the most promi-
nent notches’ patterns along all elevations. Originally, this
algorithm was used to group sinusoidal partials (extracted
through a peak detection algorithm) along consecutive tem-
poral windows according to their spectral location. We im-
plemented the original version [16] of the algorithm; ob-
viously, since in our case elevation dependency replaces
temporal evolution and spectral notches take the role of
partials, we call it “notch tracking” algorithm. The notch
detection step simply locates all of the local minima in the
reflective component’s spectrum, while the matching inter-
val for the notch tracking procedure is set to∆ = 3 kHz.

Since it is preferable to restrict our attention to the fre-
quency range where reflections due to the pinna alone are
most likely seen, and ignore notches which are overall fee-
ble, two post-processing steps are performed on the ob-
tained tracks:

• delete the tracks which are born and die outside the
range4 − 14 kHz;

• delete the tracks that do not present a notch deeper
than5 dB.

The outputs of the notch tracking algorithm are the dot-
ted tracks superposed on the plots in Figure3. Results are
definitely akin to those found in [12] with the use of an
elaborated DSP-based algorithm. Three major tracks are
seen for both subjects, whereas the shorter track in Sub-
ject027’s plot very probably represents the continuation of
the missing track at those elevations. Reasonably, the gap
between tracks is caused by the algorithm’s impossibility
of locating proper minima in that region (due e.g. to su-
perposition of two different notches or the presence in the
magnitude plot of valleys which are not notch-like). How-
ever, the three longer tracks suggest that similar reflection
patterns occur in different PRTFs.

3.4 Reflections and anthropometry

We now move towards the definition of a realistic mapping
between notch frequencies and reflection points over the
pinna, by relating each major notch at frequencyf0 to a
different reflection (assuming it to be the first and most
prominent notch of a periodic series). Reflection models
typically assume that all reflection coefficients are positive.
In such case, in order for destructive interference to occur
(viz. for notches to be produced in the spectrum), the extra
distance travelled by the reflected wave with respect to the
direct wave must be equal to half a wavelength:

td =
1

2f0

. (1)

This assumptionwas used in [12] to trace reflection points
over pinna images based on the extracted notch frequen-
cies.

φd(  )

φ
Acoustic ray

Antitragus

Tragus

Concha

Crus Helias

Rim (Helix)
Antihelix

Figure 4. Anatomy of the pinna.

However, in [17] it was pointed out that over80% out
of a test bed of20 CIPIC subjects exhibit a clear negative
reflection in the HRIR. With the help of a simple physi-
cal model of the pinna the authors argued that, since the
impedance of the pinna is greater than that of air, there
may be a boundary created by an impedance discontinuity
which could produce its own reflection and ultimately re-
verse the phase of the wave. In this latter case, a delay of
half a wavelength would not produce notches in the spec-
trum any more. Instead, destructive interference would ap-
pear for full-wavelength delays only:

td =
1

f0

. (2)

We choose to use this last assumption, and relate notches
to pinna geometry through a simple ray-tracing procedure
similar to the one described in [12].

The distance of each reflection point with respect to the
entrance of the ear canal is calculated through the follow-
ing equation,

d(φ) =
ctd(φ)

2
=

c

2f0(φ)
, (3)

wheref0(φ) representsthe frequency of the current notch
at elevationφ andc is the speed of sound (approximately
343 m/s). The assumption of negative reflection coeffi-
cient causes distances to be roughly doubled with respect
to those computed in [12]. Then, considering the 2-D polar
coordinate systemillustrated in Figure4 with the right ear
canal entrance as origin, each notch is mapped to the point
(d(φ), π + φ).

Results for Subject134 are reported in Figure5. The so-
obtained mapping reveals a high degree of correspondence
between calculated reflection points and pinna geometry:

• the track nearest to the ear canal very closely follows
the concha wall, with a slight displacement at low el-
evations probably caused by the little extra distance
needed by the wave to pass over the crus helias;

• the intermediate track can be associated to a reflec-
tion on the rim’s edge and on the antihelix;

425



Figure 5. Reflection points on Subject134’s right pinna.

• the furthest track follows the shape of the rim and
stops in the vicinity of the point where the rim ter-
minates, hence it is likely to be associated to a re-
flection in the inner wall of it.

This analysis, that yields convincing results for other
subjects too, opens the door for a very attractive approach
to the parametrization of the structural PRTF model based
on individual anthropometry. Given a 2-D image (or possi-
bly a 3-D reconstruction) of the user’s pinna, it is possible
to trace the contours of the concha wall, antihelix and rim,
compute their distances with respect to the ear canal en-
trance, and derive the notch frequencies by reversing Eq.
(3). Obviously, in order to fully justify these findings, ro-
bust theoretical motivations and a rigorous analysis using
a vast test bed of subjects are required. Furthermore, since
notch depth varies strongly with subjects and elevations,
the reflection coefficient must also be estimated for each
point.

4. A STRUCTURAL MODEL OF THE PINNA

The information gathered from the outputs of the decom-
position and notch tracking algorithms allows to model the

PRTF with two resonances and three spectral notches. As
Figure 6 depicts, our final aim is to design two distinct
filter blocks, one accounting for resonances and one for
reflections. Clearly, in order to reach complete control of
the filter parameters, full parametrization of the model on
anthropometrical measurements is needed. Hence for the
moment we shall present the PRTF re-synthesis procedure
driven by the outputs of the two above algorithms.

4.1 Filter design

In Section3.2 we have shown that a PRTF at one specific
elevation includes two main resonances in the frequency
range of interest for the pinna. It is then possible to ap-
proximate the effective resonances by deducing center fre-
quencyfC and magnitudeG of each resonance from the
dotted tracks and directly using the so found parameters to
design two second-order peak filters with fixed bandwidth
fB = 5 kHz of the form [18]

Hres(z) =
V0(1 − h)(1 − z−2)

1 + 2dhz−1 + (2h − 1)z−2
, (4)

where

h =
1

1 + tan(π fB

fs
)
, (5)

d = − cos(2π
fC

fs

), (6)

V0 = 10
G

20 , (7)

and fs is the sampling frequency. A posteriori analysis
of the synthesized resonances has revealed that PRTFs for
high elevations only need the first resonance to be synthe-
sized, being the second very close to it. We thus choose to
bypass the second resonant filter whenφ ≥ 20◦.

Similarly, for what concerns the reflection block, we
feed the center frequencyfC , notch depthG, and band-
width fB parameters coming from the notch tracking algo-
rithm to three second-order notch filters of the form [19]

Hrefl(z) =
1+(1+k)H0

2
+d(1−k)z−1+(−k−(1+k)H0

2
)z−2

1 + d(1 − k)z−1 − kz−2
,

(8)

Hres_1

+

Hres_2

y(t)

x(t)

x(t)

Hrefl_1 Hrefl_2 Hrefl_3

Resonator block

Reflection block

Figure 6. General model for the reconstruction of PRTFs.
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whered is defined as in Eq. (6) and

V0 = 10−
G

20 , (9)

H0 = V0 − 1, (10)

k =
tan(π fB

fs
) − V0

tan(π fB

fs
) + V0

, (11)

each accounting for a different spectral notch. The three
notch filters must be placed in series and cascaded to the
parallel of the two peak filters, resulting in an eighth-order
global filter.

4.2 Results

Figure7 reports the comparison between original and re-
synthesized PRTF magnitudes for three distinct subjects,
each at a different elevation. Adherence rate to the origi-
nal PRTFs is overall satisfactory in the frequency range up
to 14 kHz. Still, several types of imperfections need to be
adjusted: as a first example, deep frequency notches that
appear at low elevations complicate the notch filter design
procedure. In point of fact, if the notch to be approximated
is particularly deep and sharp, the second-order filter will
produce a shallower and broader notch whose bandwidth
may interfere with adjacent notches, resulting in underes-
timating the PRTF magnitude response in the frequency
interval between them. Figures7(a) and7(b) show this be-
haviour around7.5 and10 kHz, respectively. Using a filter
design procedure which forces to respect the notch band-
width specification during re-synthesis would grant a better
rendering of resonances, at the expense of worsening notch
depth accuracy.

The absence of modeled notches over the upper fre-
quency threshold is another cause of imprecision. For in-
stance, Figure7(a) presents an evident mismatch between
original and modeled PRTF just after the12.5-kHz peak,
due to the cut of the frequency notch at14.5 kHz. This
problem may be corrected by increasing the14-kHz thresh-
old in order to take into account a higher number of notches.
However, being the psychoacoustic relevance of this fre-
quency range relatively low, the effective weight of the
mismatch is reduced.

Last but not least, resonance modeling may bring ap-
proximation errors too. In particular, the possible pres-
ence of non-modeled interfering resonances and the fixed-
bandwidth specification both represent a limitation to the
re-synthesis procedure. Furthermore, center frequencies
extracted by the ARMA identification method mentioned
in Section3.2 do not always coincide with peaks in the
PRTF. Thus a stronger criterion for extracting the main pa-
rameters of each resonance is needed. Nevertheless, the
approximation error seems to be negligible in all those cases
where resonances are distinctly identifiable in the PRTF.

In conclusion, the above presented re-synthesis model
appears to be overall effective, especially for PRTFs which
clearly show one or two main resonant modes and moder-
ately deep notches. Figure7(c) supports this assertion.
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Figure 7. Original vs Synthetic PRTF plots.
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5. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach for structural PRTF
modeling, which exploits an algorithm that separates the
resonant and reflective parts of the PRTF spectrum. We
used such decomposition to re-synthesize the original PRTF
through a low-order filter model, whose results show an
overall suitable approximation. In a parallel manner, our
attempt towards the explanation of the scattering process
resulting in the most important spectral notches in the PRTF
provided visually convincing results. Besides improving
the synthesis step, ongoing and future work includes un-
derstanding of the reflection coefficient and relating the
resonant component of the PRTF to anthropometry.
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ABSTRACT

In this paper we describe how graphical scores can be
coupled with synthesis algorithms in the visual program-
ming language PWGL. The present approach is based on
an extensible music notation and a direct connection to a
flexible sound synthesis engine. We implement, as an exer-
cise, a simple working model that makes it possible create
graphical scores out of user defined graphical objects and
connect the graphical objects to specific synthesis meth-
ods.

1. INTRODUCTION

Creating a computer-based, extensible music notation sys-
tem that can be tied directly to sound synthesis is a long-
standing problem in the field of computer music. The
integration between the two major tools, ENP [1] and
PWGLSynth [2], inside the visual programming environ-
ment PWGL [3], is a step to this direction. There exists a
long tradition of tools that explore the possibilities of com-
bining graphics to sound synthesis. Lindemann’s Animal
[4] and Buxton’s SSSP [5] were among the first experi-
ments. A more up-to-date graphical score editor imple-
mentation can be found inside Pd as described by Puckette
[6]. The UPIC [7] system developed by Iannis Xenakis
in the mid 70’s is perhaps the most notable example in
this category and there have been several attempts, such as
the open source IanniX [8], to recreate it using commod-
ity hardware. However, most of these attempts concentrate
solely on graphical notation.

The approach presented here makes no difference be-
tween a traditionally notated score and a graphical one. For
example, the two ENP scores shown in Figure 1 both share
the same underlying representation and they can both be
created, manipulated, and performed in the same way. Up
to now, our attempts of realizing performance models for
ENP have been concentrated on controlling virtual instru-
ments and more traditional sound sources, such as MIDI
and sample libraries.

In this paper, we aim to demonstrate that it is relatively
easy the extend PWGL so that it makes it possible also
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to realize graphical scores. We show how to implement a
PWGL playback device that can be used to play, through
PWGLSynth, graphical scores prepared with the help of
ENP. We describe the protocol that can be used to create
new graphical symbols, demonstrate how to define the spe-
cific synthesis algorithms and how to create the connection
between the two.

The rest of the paper is structured as follows. First,
we give a concise introduction to the playback scheme of
PWGL and build a minimal playback device. Next, we dis-
cuss how to define visual synthesis instruments and collec-
tions thereof, i.e., orchestras. Then, we show how to create
customized graphical objects and demonstrate how to con-
trol the aspects of visualization and synthesis through the
use of properties. Finally, we put it all together by creating
the connection between our synthesis instruments and the
graphical objects. The paper ends with some concluding
remarks.

2. THE IMPLEMENTATION

Figure 6 in the Appendix shows our target score lasting for
about 20 seconds containing some user designed graphical
objects. The score can be edited with the mouse and ob-
jects can be added, deleted, copied, and pasted using key-
board shortcuts. The vertical positioning, size and the du-
ration of the objects can be edited by mouse drags. Other
aspects can be controlled by using user-definable proper-
ties. The benefits and efficiency of using properties has al-
ready been reported by Dannenberg (see, for example [9]).
Properties are name/value pairs and they can be manipu-
lated either manually (through the ENP GUI) or algorith-
mically. In our case, the resulting sound can depend on
or be defined by the graphical attributes. Conversely, the
appearance of the graphical objects can be generated ac-
cording to the synthesis properties.

The example score contains two kinds of objects: (1) a
streaming sound sample player object that displays the
sample data contained in a file named by the :filename
property, and (2) a sine-bank object that reads its frequency
information from a sound analysis database and interpo-
lates between two sets of frequencies. The frequency in-
formation retrieved from the analysis is stored by the syn-
thesis algorithm as a property. The data which, in turn, is
used when drawing the object.
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(a) (b)

Figure 1. (a) a graphical score, and (b) a traditionally notated score both prepared with the help of ENP. These scores share
the same underlying object representation and hierarchy.

2.1 The Playback Device

PWGL Playback Devices are used to generate performance
data (e.g, MIDI) for playback of ENP scores. A new play-
back device can be created by subclassing the abstract
pwgl-playback-device class and specializing the pertinent
methods. The performance data, in turn, is generated by
calling a set of methods in a pre-defined order. Figure
2 shows the primary methods and their order of execu-
tion. As a general rule, the prepare-playback is used to
initialize the player, e.g., by loading a sample database or
preparing a specific instrument setup. add-playback-note-
event method inserts each note found in the score into an
event queue. setup-playback method, in turn, can be used
to send arbitrary messages, such as, volume or pitch-bend
information before the playback starts. Finally, during the
realtime playback, send-playback-event is called for each
event found in the event queue.

prepare-playback

add-playback-note-event(s)

setup-playback

send-playback-event(s)

Figure 2. The pertinent PWGL playback methods and
their order of execution.

Listing 1 shows the implementation of the PWGL play-
back device that can be used to play graphical scores.

We begin to implement our playback device by sub-
classing the pwgl-onset-playback-device class (a) which is
specialized for sound sources that transmit only one play-
back event per note (as opposed to pwgl-onset-offset-play-
device which implements a control protocol, that applies

Listing 1 The definition of the PWGL playback device.
(a) (defclass GS-player (pwgl-onset-play-device) ())

(b) (defmethod prepare-playback* ((self GS-player) score)
(c) (register-GS-instruments)
(d) (compile-GS-expressions score)
(e) (start/stop-GS-player))

(f) (defmethod send-playback-event ((output GS-player)
(g) midi-info &optional vel?)
(h) (dolist (expression (expressions note))
(i) (funcall (read-key expression :rt-event-fn))))

among others to MIDI, where the onset of a note and the
offset of the same note are considered as two separate
events). In our case, this is sufficient, as the duration of
an event can be controlled, for example, with an amplitude
envelope.

Next, prepare-playback* (b-e) registers all the available
synthesis instruments, generates the playback code for the
score objects (see compile-GS-expressions in line d) and
caches the information for efficiency (see Section 2.3).
Also, depending on the state of the synthesizer, it either
starts or stops the playback process.

Finally, we need to specify how the actual playback
event is sent to the output device (PWGLSynth in this
case). The synthesis events have been compiled as function
calls by the compile-GS-expressions method. Thus, send-
playback-event (f-i) simply executes the cached functions
one at the time (see line i).

2.2 Defining the Graphical Objects

Next, we create our custom ENP-expressions[10] and de-
fine their visual appearance using the built-in expression
editor, the ENP Expression Designer (ED, [11]). For our
experimental player we need two kinds of graphical ob-
jects: one that represents sound samples, and another that
represents a sine bank with two sets of sine waves.

Figure 3 gives, as an example, the complete ED session
that is used to define the sound sample expression. As our
system is object-oriented we define a new ENP-expression
class through inheritance. In this case the class name, sam-
ple, is given at the top left part of the editor. This class
identity is of primary importance as it is later used to tie
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together the graphical object created here and the methods
that generate the actual synthesis information.

The visual representation is defined at the upper part
of the editor using the combination of Lisp and a set of
pre-defined OpenGL macros. Here, we first draw a rectan-
gle (draw-2D-box) whose y dimension is chosen arbitrar-
ily and the x dimension corresponds to the duration of the
sample. In addition, we draw the value of the :filename
property above the rectangle, and finally, a built-in func-
tion draw-sound-object is used to draw the sample data in-
side the enclosing rectangle. A preview of the expression
is displayed at the lower part of the editor.

Figure 3. ENP expression designer can be used to define
the objects needed for realizing a graphical score. Here, an
object visually representing a sound sample is realized.

To save some space, for our second object we give only
the code that defines its appearance (see Listing 2). Here,
we assume that the two properties :freqs1 and :freqs2 each
contain a list of frequencies. The two lists of frequencies
are pre-calculated by the part of our scheme that gener-
ates the corresponding synthesis algorithm. The meaning
of these lists is explained in Section 2.3. At this point,
it suffices to know that the graphical output should reflect
that fact that the synthesis algorithm interpolates between
the two frequency sets so that the frequencies defined by
:freqs1 gradually fade out and, conversely, the frequencies
defined by :freqs2 fade in. The code is again relatively
straightforward. Lines a-b access the frequency properties.
Lines c-d retrieve the upper and lower bounds of the whole
frequency envelope. The remaining parts of the code con-
sist of two almost identical section, lines f-i and j-m, that
draw the appropriate frequency sets using colors that fade
in and out accordingly. Finally, in (n) we enclose the object
inside a rectangle.

As can be seen it is relatively easy to define a new
graphical objects in ENP. The process is interactive and
the results are immediately usable. The graphical output

Listing 2 The drawing code of the sine-bank object.
(a) (let ((freqs1 (get-enp-property expression :freqs1))
(b) (freqs2 (get-enp-property expression :freqs2)))
(c) (let ((maxf (max (apply #’max freqs1) (apply #’max freqs2)))
(d) (minf (min (apply #’min freqs1) (apply #’min freqs2))))
(e) (with-GL-line-width 0.5
(f) (with-2D-object :lines
(g) (dolist (freq (pw::g-scaling freqs1 -1.0 1.0 minf maxf))
(h) (with-GL-color :white (add-2d-vertex 0.0 freq))
(i) (with-GL-color :black (add-2d-vertex width freq))))
(j) (with-2D-object :lines
(k) (dolist (freq (pw::g-scaling freqs2 -1.0 1.0 minf maxf))
(l) (with-GL-color :black (add-2d-vertex 0.0 freq))
(m) (with-GL-color :white (add-2d-vertex width freq)))))))
(n) (with-GL-color :gray (draw-2d-box 0.0 -1.1 width 1.1))

can be changed at any time and the changes are dynam-
ically propagated across all the instances of the object in
question.

2.3 Defining the Synthesis Algorithms

Figure 4 shows the visual instrument definition of our sam-
ple player. The connection between the visual instrument
definition shown here and the specific synthesis algorithm
is based on the boxes named synth-plug. These boxes de-
fine control entry points for our instrument. The ones la-
belled “D” (as in discrete) allow us to update values. The
synth-plug boxes labelled “T”, in turn, are used as triggers.
All synth-plug boxes have as their first input the name of
the control parameter (e.g. :amp, :trig, etc.). These sym-
bolic references allow the user to refer to specific inputs
while sending control events to the instrument.

In our visual instrument definition, the lines a, c, and
e are of most importance (cf. Section 2.4). The :set-env
and :trig-env (a) are used to store the incoming envelope
data and trigger it respectively. The two entry points in
(c) are used to control the built-in sample-player box (d).
:id is used to select the sample from the internal sample
database and :trig is used to trigger the sample player to
start playing.

Furthermore, since we are talking about a multi-timbral
player, we also need to define a patch that acts as our or-
chestra definition. As shown in Figure 5 the orchestra
patch contains both instruments (sine-bank and sampler)
and connects them to a PWGLSynth player box. The ab-
straction box containing the sound sample player, the im-
plementation of which is shown in Figure 4, is labeled
“Sampler”, and can be seen at the top right corner of the
patch.

2.4 Connecting the Graphics to Sound Synthesis

So far, we have defined a collection of new ENP-
expressions and synthesis instruments. Next, we need to
create the connection between the two. To accomplish our
task we take an advantage of a newly created RT-events
syntax [12] which can be used to express control infor-
mation using Lisp forms. This syntax allows us to write
Lisp expressions which, in turn, can be used to control
low-level synthesis parameters of our synthesizer, e.g., to
trigger events and write control values to specific inputs.
The connection between the graphical objects and the vi-
sual instrument definition is implemented so that for every
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Figure 4. A PWGL patch showing the implementation of
a simple sample player.

Figure 5. The “synth orchestra” patch containing two
synth instruments sine-bank and sampler.

ENP-expression we provide a method called expression-2-
RT-events which generates control information in the RT-
events format. Furthermore, these methods can read from
and write to the associated graphical objects any freely
chosen property. Thus, the information generated here can
be used to control some visual aspects. Also, the proper-
ties defined by the user or by the graphical object (such as
duration or pitch) can, in turn, be used as a variable in the
control data calculation.

Let us next examine the expression-2-RT-events method
written for the sample player object in more detail. As
explained, the functionality of this object depends on the
:filename property. We used it in our visualization code
to access the correct sample data for drawing. We also
needed the property in our visual instrument definition as
an argument to one of the synth-plug boxes (:id).

In Listing 3 we connect the graphical object to the visual
instrument definition shown in Figure 4 by implementing
the corresponding expression-2-RT-events method. The
:filename property is accessed in our code in (b). The next
lines do various checks (e.g., if the sample exists) and ini-
tializations, such as loading the sample by demand and
accessing the numeric sample id required by the sample-
player. Note, that due to the deliberate use Lisp backquote
syntax, the samples are loaded when the playback data is
generated and cached and not during realtime playback. In
lines c-d the combination of the synth-event :set-env and
the synth-trigger :trig-env is used to store and make active
the amplitude envelope information using the appropriate
entry points found in our visual instrument definition (see
(a) in Figure 4). Finally, (e) – (f) are used to set the ap-
propriate sample id (:id) and to trigger the sample-player
box to render the sound (:trig). Thus, the implementation
is now complete.

Listing 3 The RT-events code implementing the discrete
and continuous control events used to drive our visual in-
strument defined in Figure 4.

(a) (defmethod expression-2-RT-events ((self sample))
(b) (when-let (filename (get-enp-property self :filename))
(c) (let ((sample (sample-object-exists-p filename)))
(d) (unless sample
(e) (setq sample (load-sound-sample (namestring filename))))
(f) (let* ((dur (duration sample))
(g) (id (sampleID sample)))
(h) ‘(with-synth-instrument ,(GS-player-instrument :sampler) 1
(i) (synth-event 0.0 :set-env ’,(make-envelope ’((0.0 0.3)
(j) (0.98 0.3)
(k) (1.0 0.0))
(l) "amp env"
(m) dur)
(n) :id 1 :namespace :sampler)
(o) (synth-trigger 0.0 :trig-env :id 1 :namespace :sampler)
(p) (synth-event 0.0 :id ,id :id 1 :namespace :sampler)
(q) (synth-trigger 0.0 :trig :id 1 :namespace :sampler))))))

3. DISCUSSION

Using the concepts presented here it would be relatively
straightforward to implement, for example, a simple but
working multi-channel sample player à la ProTools. As
an extension we could display the amplitude envelope or
panning as an overlay to the sample objects. Several ENP-
expressions are already able to display break-point func-
tions as a part of the musical texture. Therefore, it would
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be relatively easy to implement this feature as we could in-
corporate the envelope functionality, including display and
editability, through inheritance.

4. CONCLUSIONS

In this paper we describe how graphical scores can be
coupled with arbitrary synthesis algorithms in the visual
programming language PWGL. We demonstrate how to
implement a PWGL playback device that can be used to
play a graphical score. We use the built-in editor to cre-
ate graphical objects that can represent arbitrary complex
synthesis algorithms (e.g., sound samples and resonator
banks). We also demonstrate how to use user definable
properties to control aspects of both sound and graphical
objects. The main contribution of this paper is to show
how an extensible music notation system can be connected
to a flexible sound synthesis engine.
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A. APPENDIX

Figure 6. A graphical score realized with the help of ENP. The objects shown here are user definable and can depend on or
be defined by editable properties or synthesis algorithms connected to them.
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ABSTRACT 
Systems able to find a song based on a sung, hummed, 
or whistled melody are called Query-By-Humming 
(QBH) systems. Tunebot is an online QBH web service 
and iPhone app that connects users to the desired re-
cording on Amazon.com or iTunes. Tunebot’s search-
able database is composed of thousands of user-
contributed melodies. Melodies are collected from user 
queries, sung contributions and through contributions 
from on-line play of an associated iPhone Karaoke 
game: Karaoke Callout. In this paper we describe the 
architecture and workings of the paired systems, as well 
as issues involved in building a real-world, working 
music search engine from user-contributed data.  

INTRODUCTION 
Music audio is one of the most popular categories of 
multimedia content. Examples include the song reposi-
tories of Apple’s popular iTunes 
(www.apple.com/itunes), the indie-music site CD Baby 
(www.cdbaby.com) and Amazon (amazon.com). These 
music collections are indexed by such metadata as title, 
composer, and performer. Finding the desired recording 
with this indexing scheme can be a problem for those 
who do not know the metadata for the desired piece.  

If the user has access to a recording of the desired audio 
(e.g. it is currently playing on the radio), then an audio 
fingerprinting system, such as Musiwave [1] or Shazam 
[2] can be used. Such systems require the query exam-
ple be a (possibly degraded) copy of the exact recording 
desired. This makes audio fingerprinting unsuitable for 
any situation where the user is unable to provide a por-
tion of the exact recording sought (e.g. the song ended 
on the radio before a search could begin).    

Another approach is to identify a song based on enter-
ing its lyrics into a standard text-based search engine. 
This is a relatively mature field with successful com-
mercial search engines (e.g. Google) already available. 
It is not, however, applicable to pieces of music that 
have no lyrics, or in situations where the user remem-

bers the melody but not the words.  

In this work, we concentrate on the situation where the 
user queries a system by singing or humming some por-
tion of the song (“What is the name of the song that 
goes like this?”).  Song identification systems that take 
sung or hummed input are known as query-by-
humming (QBH) systems [3-4]. These are an example 
of melodic search engines. Melodic search engines (in-
cluding QBH and rhythmic search) have received much 
attention in recent years [5-14] and use a melodic frag-
ment as a query, entered as musical notation, through a 
virtual piano keyboard or sung into a microphone.  

Most published research in QBH has focused on the 
matching algorithms and distance measures for melo-
dies. While this is important, there are other technical 
and scientific challenges that must be surmounted to 
build an effective QBH system ready for real-world 
deployment. Example issues include: creation of a large 
database of relevant search keys, handling large num-
bers of users, speeding search as the database goes from 
hundreds to hundreds of thousands of melodies, and 
updating the database and matching algorithms after 
deployment in a seamless way.  

Our solutions to these problems are embodied in Tune-
bot, an online QBH web service that connects users to 
the desired recording on Amazon.com or iTunes. Tune-
bot’s searchable database is composed of thousands of 
user-contributed melodies. Melodies are collected from 
user queries, sung contributions and through contribu-
tions from on-line play of an associated Karaoke game: 
Karaoke Callout. In this paper we describe the architec-
ture and workings of the paired systems, as well as is-
sues involved in building a real-world, working music 
search engine from user-contributed data. 

TUNEBOT 
We embody our solutions to the problems of real-world 
QBH in an on-line web service called Tunebot (tune-
bot.org). Tunebot lets the user search for music by sing-
ing a bit of it (with or without lyrics) as a query. 

The system does not require hand-coded search keys, 
since it automatically updates the database with new 
search keys derived from user queries and contribu-
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tions. To speed data collection and encourage collabora-
tive participation from the public, we integrate Tunebot 
with an online social music game (Karaoke Callout) 
that encourages collaborative tagging of audio with new 
search keys [15].  Karaoke Callout is a Game With A 
Purpose [16] that helps build our knowledge base of 
songs. Users may also register with our website and 
freely contribute sung examples in a manner similar to 
the OpenMind initiative [17]. 

User Interaction  

Tunebot is available as a web service and is currently in 
beta testing as an iPhone application. The user interac-
tion in both the web and iPhone versions is identical:   
1) Sing, 2) Choose. The user simply sings a portion of 
the desired song to Tunebot. The system returns a 
ranked list of songs. Each song is playable by a simple 
click. While the song is playing, the system presents a 
dialog box asking if this is the correct piece of music. If 
the user clicks “yes,” the query is stored in our database 
as a searchable example for that song. The user is then 
connected to either Amazon.com or iTunes where the 
music may be purchased. Figure 1 illustrates this inter-
action on the iPhone version of Tunebot. Figure 2 illus-
trates the Flash-based web interface for Tunebot. 

 
Figure 1. Screen shots of the iPhone interface for 
Tunebot. 

Searchable Database Construction 

Creating searchable keys that can be queried by singing 
is non-trivial. Hand-keying a database with thousands 
or millions of documents consumes prohibitive amounts 
of effort, as does updating and vetting such a database 
as music is created and tastes change. Thus, it is impor-
tant to develop good methods to create and vet percep-
tually relevant search keys for music audio that allow 
the creation of a large music database indexed by musi-
cal content. This database must be expandable after 
deployment so the system may search for new music 
introduced as time goes by. For a system to scale, this 
must be done with minimal training and minimal over-
sight by human operators.  

We do not currently use existing MIDI files or extrac-
tion of melodies from the original polyphonic audio. 
Automated transcription of polyphonic commercial 
recordings is still not sufficiently robust to provide good 
searchable melodies. The symbolically encoded data-
bases available to us do not provide the coverage of 
modern pop, and rock tunes that our users tend to 
search for. Further, as user tastes change and new songs 
are released, a real working system must have the abil-
ity to constantly add songs to the database after de-
ployment. We address these issues by turning to the 
users of the system for contributions. 

 
Figure 2. Screen shot of the Flash-based web in-
terface for Tunebot. 

The database for Tunebot uses searchable melodic keys 
derived from a cappella performances contributed by 
users as a result of playing Karaoke Callout, through 
use of the Tunebot search engine, and by logging in as a 
contributor and singing melodies to the system.  Search 
keys are encoded as described in the section Matching 
and Encoding.  

As of this writing, the Tunebot database contains rough-
ly 11,000 examples for over 3,100 songs. Nearly 900 
songs have 5 or more examples associated with them, 
and over 100 songs have 10 or more examples. The 
database is constantly growing as users contribute new 
songs and new examples for existing songs. To 
illustrate the rate of growth of the database, 5,053 ex-
amples representing 1,017 new songs were added to the 
database in the period from January 1, 2010 to April 15, 
2010. At the current rate of growth, the size of the data-
base should more than double by the end of this year 
compared to its size at the end of 2009.  

System Overview 

The Tunebot architecture is divided into three parts: (1) 
the client, (2) the server-side front-end, and (3) the 
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server-side back-end. These components are shown in 
Figure 3.  

 
Figure 3. An overview of the Tunebot system. 

The client-side is most typically a web browser.  In this 
scenario, a Flash plug-in runs on the client side in the 
browser to record the audio of user queries and contri-
butions and send it to the server.  

The server-side front-end consists of two parts: (1) a set 
of PHP scripts served by an Apache Web Server, and 
(2) the Flash Media Server. The server-side front-end is 
responsible for presenting the user interface to search 
for and contribute songs, managing user information, 
and passing requests and audio files to the back-end. 
The iPhone client under development does not interact 
with the Flash Media Server, instead communicating 
with the server only through a PHP front end, as illus-
trated in Figure 3. 

The server-side back-end is built around a Java servlet, 
running in Apache Tomcat. The back-end implements 
the matching algorithm and computes similarity rank-
ings of submitted queries. Both the front and back ends 
interact directly with the SQL database on the server. 

Encoding Melodies 

Before a melodic comparison takes place, our tran-
scriber estimates the fundamental frequency of the sing-
ing every 20 milliseconds. The note segmenter then 
divides this series of estimates into notes [18]. We en-
code all queries and all melodies in the database as se-
quences (strings) of note intervals. Each note interval is 
represented by a pair of values: the pitch interval (PI) 
between adjacent notes (measured in units of musical 
half-steps) and the log of the ratio between the length of 
a note and the length of the following note (LIR). Note 
lengths are defined to be inter-onset-intervals. We use 
note intervals encoded in this way because they are 
transposition invariant (melodies that differ only in key 
appear the same) and tempo invariant (melodies that 
differ only in tempo appear the same)g.  We represent a 

melody X as a string of note intervals. The encoding of 
a sung example into note intervals is illustrated in 
Figure 4. 

 
Figure 4. Pitch tracking and encoding of a sung 
example. Dots are pitch estimates. Horizontal 
lines are segmented notes. One note interval is 
shown in the rounded square. 

Measuring Distance Between Melodies 

Equation 1 defines a simple metric between note inter-
vals x and y, with pitch intervals xp and yp and LIRs xl 
and yl. 

(1) 

Here, a and b are non-negative weights chosen to opti-
mize performance on a set of example queries for a 
given database of songs.  Of course, when searching in 
a melodic database, one is not comparing individual 
note intervals, but full melodies. To compare melodic 
strings, we use edit distance [19]. 

 The edit distance between two strings is the cost of the 
least expensive way of transforming one string into the 
other. Here, transformation cost (a.k.a. match cost) de-
pends on the comparison function for the individual 
string elements described in Equation 1. We have a 
fixed insertion/deletion cost of one, effectively forcing 
the other parameters to be in these units.  

This simple approach, when paired with a differential 
melodic encoding like our note-interval representation 
(this encoding is crucial to the use of such a simple note 
metric), has been shown to produce comparable search 
performance to more complex distance measures, with-
out the need to optimize many parameters [4].   

Each song in the database is represented by one or more 
sung melodies (search keys). A song’s ranking in the 
search results is determined by the distance between the 
query and the nearest search key for that song. 

Direct comparison of the query to every melody in the 
database becomes prohibitively slow as the size of the 
collection increases. If the comparison function for 
string elements is a metric (like Equation 1) then edit 
distance can also be made a metric [19]. Placing data-
base melodies in a metric space allows efficient search 
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of a melodic database using vantage point trees [20, 
21].  

Vetting the Database 

When a user queries for a particular song (e.g.“Lola”), 
we consider a search successful if the correct target 
song is returned as one of the top answers. The closer 
the target gets to number one, the better the system per-
formance. When a single search fails, it may be difficult 
to tell exactly why. The query may be poorly formed 
(singing “Hey Jude” when searching for “Lola”),   the 
search method may be ineffective for a particular user 
(perhaps a user model needs optimization), or the indi-
vidual search key may not correspond well with what a 
typical person would sing (storing only the verse when 
people sing only the chorus). Maintaining a database of 
past queries and their associated targets makes it possi-
ble to distinguish between cases and react appropriately. 

Each row in Table 1 corresponds to a query made to a 
search engine. Here, “Query Audio” is the recorded 
singing, “Target Title” is the title of the correct target in 
the database and “Target Rank” is the rank of the cor-
rect target in the results returned by the system. In this 
example, every query by User 1 failed to place in the 
top ten. This is an indication that the search engine is 
not optimized properly for this user. Note also that 
every query for “Hey Jude” failed to place within the 
top fifty, regardless of user. This indicates a mismatch 
between the target and the kinds of query example users 
provide. This is in direct contrast to both “Que Sera 
Sera” and “Lola,” each of which has one query whose 
correct target was ranked first.  

 

 

 

 

 

 

 

 

 

Table 1. Examples in a database 

Our searchable database is composed of sung examples, 
keyed to correct song titles. This lets us automatically 
vet our search keys by using them as example queries. 
Those targets with below-average search results can 
then be tagged for search key updating. Such a database 
also allows for principled, automatic improvement of 
our similarity measures, as described in the section Sys-
tem Optimization. 

System Optimization  

Recall that searchable keys in the database are gener-
ated from past queries, sung contributions and examples 
of singing from Karaoke Callout. Each sung example is 
a potential new search key. The effectiveness of this 
new key can be measured by rerunning saved queries 
against this new key. This can be repeated using a key 
based on each query (or even on the union of all que-
ries) and the best new key may then replace or augment 
the original search key for a particular song. This allows 
automatic, constant updating and improvement of the 
database without need for expert intervention.  

A primary measure our system optimizes is mean recip-
rocal right rank (MRRR), shown in Equation 2. The 
right rank of a query is the rank of the correct song for 
the query. We refer to the correct song as the target.  
The mean right rank for a trial is the average right rank 
for all queries in the set.  

 (2) 

We use MRRR because it gives more useful feedback 
than the simple mean right rank. Consider the following 
example. System A returns right ranks of 1, 1, 199, and 
199 for four queries. System B returns 103, 102, 98, and 
97. We prefer a system that ranks the correct target 1st 
half of the time to one that ranks it around 100th every 
time. Mean right rank returns a value of 100 for both 
systems. MRRR returns 0.5 for system A and 0.01 for 
system B.  

When vetting search keys, one need only measure recip-
rocal right rank for each search key in the database. 
When this falls below a given value, it becomes a can-
didate for removal or replacement, as described above.  

Similarly, we use MRRR as the measure of the effec-
tiveness of a melodic similarity measure. We currently 
use the simple edit-distance melody metric described in 
a previous section because it allows the application of 
vantage-point trees to speed search.  This metric, how-
ever, does have tunable parameters that let us weigh the 
relative importance of pitch and rhythm in melody 
matching.  Our system allows re-tuning of the weight of 
such parameters after deployment, as the composition 
of the database and the user queries shift over time [18]. 

The relative importance of rhythm and pitch are charac-
terized by the parameters a and b, respectively, in Equa-
tion 1. The rhythm weight is a, and b is referred to as 
the pitch weight. We cannot know a priori what values 
should be given to these parameters, so these values 
must be determined empirically. It also seems natural to 
wonder if different values would be appropriate for dif-
ferent individuals, depending on how accurate a given 
individual’s singing is with regard to rhythm or pitch. 

59 Hey Jude  3 

39 Que Sera Sera  1 

190 Hey Jude  1 

21 Lola  1 

233 Hey Jude  2 

1 Que Sera Sera  3 

1 Lola  2 

Target 
Rank  

Target Title Query 
Audio 

User 
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To explore these issues we first determined generally 
applicable values for these parameters by optimizing 
MRRR with respect to these parameters over a subset of 
the database. This process yielded an optimal value of 
0.5 for rhythm weight and 0.005 for pitch weight. 
(These values only have meaning relative to the corre-
sponding units used in Equation 1.) These values were 
set as the default parameter values of the system. 

Next we collected a large number of labeled queries for 
a set of four heavy users of the system (more than 512 
queries per user) and computed MRRR over a wide 
range of rhythm weight and pitch weight values. This 
served two purposes: to validate our choice of default 
parameter values, and to determine the importance of 
tuning these parameters per user. Note that this second 
set of queries, and the users who provided them, were 
not part of the initial optimization of the parameter val-
ues and so this constitutes a proper validation. Table 2 
contains an illustrative excerpt of the analysis. 

 
 

User 
Best 

Rhythm 
Weight 

Best 
Pitch 

Weight 

Best 
Individual 

MRRR 

% MRRR 
change from 
best global 

settings  

1 0.400 0.00450 0.4760 +2.1%* 
2 0.475 0.00450 0.4412 +0.9%* 
3 0.525 0.00425 0.4065 +2.4%* 
4 0.475 0.00500 0.3771 +2.4%* 

 
Table 2. Optimal pitch and rhythm weights. Here, * 
means not statistically significant. 
 
Each row of the table shows the result of optimizing 
MRRR with respect to rhythm weight and pitch weight 
for the given user. In each case the optimization was 
done over 512 labeled queries using a grid search with 
17 points in each dimension and a granularity of 0.025 
for rhythm weight and 0.00025 for pitch weight. This 
gave a total of 289 parameter value pairs tried for each 
user.  The % change in MRRR is measured with respect 
to the MRRR achieved using the default rhythm and 
pitch weights learned from an earlier set of singers and 
examples.  

The values shown for MRRR are based on an early 
2010 snapshot of our constantly-growing database of 
real-world, user-contributed sung examples. For this 
experiment, all contributions from the singer for whom 
we optimize the values were removed prior to testing, 
as were all anonymous contributions to the database. 
This was done to ensure no contributions by the singer 
in question were used as searchable targets. Therefore 
the size of the test database depends on the number of 
contributions by the singer in question. The MRRR 
reported for User 1 was based on the largest resulting 
data set (5302 contributions representing 1919 unique 
songs). The data set for User 3 was the smallest (4556 
contributions representing 1730 unique songs). 

Several observations are possible from this table. The 
parameter values that result from optimizing per user 
are fairly close to the defaults learned from a large set 
of earlier singers. The optimal rhythm weight is within 
one grid point in three of four cases and the optimal 
pitch weight is within two grid points in three of four 
cases. More importantly, the improvement in MRRR 
from optimizing these parameters is quite small. In fact, 
it is less than 3% of the MRRR for each singer when 
using the default global parameter values learned from 
another set of singers. This difference is not statistically 
significant when taking into account the variance of 
MRRR on a random sample of 512 queries.  

On the basis of this data and on similar analysis of other 
users, we are confident that our empirically determined 
global defaults for rhythm and pitch weights are valid 
and robust across a wide range of users, in the context 
of the current algorithm and the current composition of 
the database. Given the robustness of the default set-
tings it appears that personalization in this parameter 
space is not necessary. However, our system contains 
several other parameter spaces and algorithmic choices 
where the importance of personalization has not yet 
been explored.  

KARAOKE CALLOUT 
In order to bootstrap the creation of a paired singing-
example/target database and encourage user participa-
tion, we take a page from recent work in participatory 
and collaborative tagging. Particular inspirations in-
clude Open Mind [17] the ESP Game [16] and Karaoke 
Revolution (a popular video game released by Konami 
for the Sony PlayStation 2). 

These examples have inspired us to cast system training 
in the form of a prototype interactive, client-server kar-
aoke game: Karaoke Callout. This game closes the loop 
between system use and system improvement by pro-
viding correct song labels for sung examples, so that we 
can automatically vet and update a musical search en-
gine.  

An initial prototype of this game was originally devel-
oped for Symbian-OS phones [15]. Since creating the 
initial Symbian prototype, we have developed a new 
iPhone version of the game that is in beta testing with a 
small group of users. Those interested in becoming test-
ers or in receiving notification of the final release of the 
game are encouraged to contact the authors of this pa-
per.  

The Karaoke Callout Game Interaction 

The flow of Karaoke Callout proceeds as follows. 
Player 1 selects a song from our constantly growing 
database and sings it into the phone. While singing, the 
player is provided the lyrics to the song (Figure 5, step 
1). If the player has the selected song in their iPod mu-
sic library, then they have the option to sing along as 
the original recording plays. 
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Once the player is done singing, the audio is sent to the 
Tunebot music search engine, which rates the quality of 
the singing by measuring how closely it resembles the 
nearest melodic key for that song in the server database, 
sending a score back to the user (Figure 5, step 2) 

Player 1 may then challenge another person to beat their 
score. If that person is a registered Karaoke Callout 
user,  Player 1 needs to only provide the callout recipi-
ent’s username, and they will be notified of the chal-
lenge via a push notification on their phone  (Figure 5, 
step 3).  If Player 1 wishes to invite a new person to 
play, they can select any email address (their phone 
contact list is provided as a convenience) and a mail 
will be sent to that person explaining how to install and 
play Karaoke Callout.  

 
Figure 5. Screen shots of the iPhone interface for 
Karaoke Callout. 

To accept the challenge, the callout recipient (Player 2) 
sings the song, attempting to better the performance of 
the challenger. The players are then notified of the re-
sults (Figure 5, step 4). This process may then be re-
peated, with either party selecting a new song with 
which to “call out” the other party. Over the course of 
an interaction, numerous examples of each party’s sing-
ing are created and stored in our database.   

Karaoke Callout System Architecture 

The game server (see Figure 6) is divided into three 
main components. The first of these is the Karaoke 

Server (written in PHP), which handles communication 
with the clients, queries the Singing Scorer (our music 
search engine) and stores sung examples in the data-
base. The final component is a SQL database of user 
accounts, audio queries, scores, and challenges. In addi-
tion to our server, the Apple Push Notification Service 
is also in the loop in order to communicate with the 
users when the game is not running. The Singing Scorer 
is modular and separate from the Karaoke Server, al-
lowing each component to be updated independently. 
This is key for implementing automated system person-
alization and learning, as the Singing Scorer is the 
search engine that we wish to optimize (Tunebot). 
 

 
Figure 6. An overview of the KaraokeCallout system 
architecture. 

USAGE STATISTICS 
An ongoing goal of the Tunebot project has been to 
create a live, real-world system available to the general 
public, containing a growing set of songs that are of 
interest to a wide audience, and developed using data 
that represents the queries that real users generate.  The 
usage statistics that follow were collected courtesy of 
Google Analytics.  

In the period from January 15, 2010 to April 15, 2010, 
the Tunebot website had 15,421 unique visitors from 
118 countries and territories. While more than three-
quarters of these visits are from the United States and 
Canada, nearly 2,500 are from Europe and another 
1,000 are from the rest of the world. The site receives 
between 100 and 200 hits on a typical day, most of 
which are new visitors. Figure 7 shows a breakdown of 
visitors by country of origin for the top ten countries. 

Tunebot currently has more than 70 users who have 
chosen to register so that they may contribute songs to 
the system. It is clear the vast majority of users cur-
rently use the system anonymously to perform queries. 
We expect that broad dissemination of Karaoke Callout 
should increase the proportion of registered users. 
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Figure 7. Proportion of visitors to Tunebot, by country 
of origin. Data collected over the period January 15 to 
April 15, 2010 (out of a total 15,421 unique visitors). 

ANALYSIS AND CHALLENGES 
Because we are developing a real-world system, some 
of our efforts have been directed at dealing with the 
practical issues that arise in implementing such a sys-
tem, including robustness, scalability, efficiency, and 
system responsiveness. 

The median length of a user query is around 18 seconds 
of audio, and our system currently takes about 5 sec-
onds to return results from the time the query is re-
ceived. For comparison, the longest query received to 
date is around 48 seconds long, and our system cur-
rently takes about 13 seconds to return a response to 
that query. The turnaround time is a function of several 
factors, including the size of the database and the length 
of the query, both in terms of the overall duration of the 
audio and the number of notes the user has sung. In the 
current implementation of the matching algorithm the 
running time is O(kn), where k is the length of the query 
in notes and n is the number of keys in the database. 
While query lengths are not likely to change in the fu-
ture, the size of the database is expected to grow dra-
matically over time. Algorithmic optimizations such as 
vantage point trees (discussed earlier) are one way to 
deal with the increasing query turnaround time. Another 
possibility, which we have implemented in our devel-
opment environment but not yet in the production sys-
tem, is to distribute the search algorithm across proces-
sors and compute matches in parallel. The potential for 
parallelization to speed up QBH is illustrated in [22]. 

Profiling analysis of our system has shown that a major 
portion of the query processing time is currently spent 
converting the raw audio of the query to the internal key 
representation, even though this phase of the algorithm 
does not dominate asymptotically. Future work includes 
exploring algorithmic and code-level optimizations to 
improve the running time of this portion of the algo-
rithm. 

A separate but related area of work has been to improve 
the scalability of our system in response to growing and 
fluctuating demand. This requires that the Tunebot serv-

ice run on multiple machines concurrently, while main-
taining a synchronized view of the database (so that, for 
example, a newly contributed song will be visible im-
mediately to the user who contributed it). Cloud com-
puting is an appealing solution to provide online serv-
ices in a scalable and distributed fashion. We have de-
veloped a working prototype of Tunebot that is de-
ployed as a virtual machine image on the Amazon Web 
Services cloud infrastructure. 

MOVING FORWARD 
We expect this work will lead to new insight into the 
mappings between human perception, human music 
production and machine-measurable features of music, 
as well as leading to new approaches to automatically 
tagging large databases of multimedia content, new 
approaches to individualized search engines for im-
proved results and new approaches to speed multimedia 
search. 

ACKNOWLEDGEMENTS 
We would like to thank the National Science Founda-
tion for funding to do this research. This work was sup-
ported by NSF Grant number IIS-0812314. 

REFERENCES 
[1] Haitsma, J. and T. Kalker. A Highly Robust Audio 

Fingerprinting System. in ISMIR 2002. 2002. 
Paris, France. 

[2] Wang, A. An Industrial Strength Audio Search 
Algorithm. in 4th International Conference on 
Music Information Retrieval (ISMIR 2003). 2003. 
Baltimore, Maryland, USA. 

[3] Typke, R., F. Wiering, and R.C. Veltkamp. A 
Survey of Music Information Retrieval Systems. in 
ISMIR 2005: 6th International Conference on 
Music Information Retrieval. 2005. London, 
England. 

[4] Dannenberg, R., W. Birmingham, B. Pardo, N. Hu, 
C. Meek, and G. Tzanetakis, A Comparative 
Evaluation of Search Techniques for Query-by-
Humming Using the MUSART Testbed. Journal of 
the American Society for Information Science and 
Technology, 2007: p. in press. 

[5] Hewlett, W.B. and E. Selfridge-Field, eds. Melodic 
Similarity: Concepts, Procedures, and 
Applications. Computing in Musicology. Vol. 11. 
1998, MIT Press: Cambridge, MA. 

[6] Hu, N., R. Dannenberg, and A. Lewis. A 
Probabilistic Model of Melodic Similarity. in 
International Computer Music Conference 
(ICMC). 2002. Goteborg, Sweden: The 
International Computer Music Association. 

441



[7] McNab, R.J., L.A. Smith, D. Bainbridge, and I.H. 
Witten, The New Zealand Digital Library MELody 
inDEX. D-Lib Magazine, 1997. May Issue. 

[8] Uitdenbogerd, A. and J. Zobel. Melodic Matching 
Techniques for Large Music Databases. in Seventh 
ACM International Conference on Multimedia. 
1999. Orlando, FL. 

[9] Kornstadt, A., Themefinder: A Web-based 
Melodic Search Tool, in Melodic Similarity 
Concepts, Procedures, and Applications,, W. 
Hewlett and E. Selfridge-Field, Editors. 1998, MIT 
Press: Cambridge, MA. 

[10] Gillet, O. and G. Richard, Drum Loops Retrieval 
from Spoken Queries. Journal of Intelligent 
Information Systems, 2005. 24(2-3): p. 159-177. 

[11] Salamon, J. and M. Rohrmeier, A Quantitative 
Evaluation of a Two Stage Retrieval Approach for 
a Melodic Query by Example System, Proceedings 
of the 10th International Society of Music 
Information Retrieval Conference (ISMIR 2009), 
Kobe, Japan, 26-30 October 2009,  

[12] Meek, C. and W. Birmingham, A Comprehensive 
Trainable Error model for sung music queries. 
Journal of Artificial Intelligence Research, 2004. 
22: p. 57-91. 

[13] Pauws, S. CubyHum: A Fully Operational Query 
by Humming System. in ISMIR 2002. 2002. Paris, 
France. 

[14] Unal, E., S.S. Narayanan, H. Shih, E. Chew, and 
C.J. Kuo. Creating Data Resources for Designing 
User-centric Front-ends for Query by Humming 
Systems. in Multimedia Information Retrieval. 
2003. 

[15] Shamma, D. and B. Pardo. Karaoke Callout: using 
social and collaborative cell phone networking for 
new entertainment modalities and data collection, 
in Proceedings of ACM Multimedia Workshop on 
Audio and Music Computing for Multimedia 
(AMCMM 2006). 2006.  Santa Barbara, CA, USA. 

[16] von Ahn, L. and L. Dabbish. Labeling Images with 
a Computer Game. in CHI 2004. 2004. Vienna, 
Austria. 

[17] Singh, P., The public acquisition of commonsense 
knowledge, in Proceedings of AAAI Spring 
Symposium on Acquiring (and Using) Linguistic 
(and World) Knowledge for Information Access. 
2002, Palo Alto, CA. 

[18] Little, D., Raffensperger, D, and B. Pardo, A 
Query by Humming System that Learns from 
Experience,  Proceedings of the 8th International 
Conference on Music Information Retrieval, 2007 
Vienna,Austria 

[19] Wagner, R. and M. Fischer, The string-to-string 
correction problem. Journal of the ACM, 1974. 
21(1): p. 168-173. 

[20] Chavez, E., G. Navarro, and J.L. Marroquin, 
Searching in Metric Spaces. ACM Computing 
Surveys, 2001. 33(3): p. 273-321. 

[21] Skalak, M., J. Han, B. Pardo, Speeding Melody 
Search with Vantage Point Trees, Proceedings of 
the  International Society of Music Information 
Retrieval Conference(ISMIR  2008), Philadelphia, 
PA, USA,  September 14-18, 2008. 

[22] Ferraro, P., P. Hanna, L. Imbert, T. Izard, 
Accelerating Query-by-Humming on GPU, 
Proceedings of the International Society for Music 
Information Retrieval, 2009.  

 

 

442



CONCURRENT CONSTRAINTS CONDITIONAL-BRANCHING TIMED
INTERACTIVE SCORES
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ABSTRACT

Multimedia scenarios have multimedia content and inter-
active events associated with computer programs. Inter-
active Scores (IS) is a formalism to represent such sce-
narios by temporal objects, temporal relations (TRs) and
interactive events. IS describe TRs, but IS cannot repre-
sent TRs together with conditional branching. We propose
a model for conditional branching timed IS in the Non-
deterministic Timed Concurrent Constraint (ntcc) calculus.
We ran a prototype of our model in Ntccrt (a real-time ca-
pable interpreter for ntcc) and the response time was ac-
ceptable for real-time interaction. An advantage of ntcc
over Max/MSP or Petri Nets is that conditions and global
constraints are represented declaratively.

1. INTRODUCTION

Interactive multimedia deals with the design of scenarios
where multimedia content and interactive events can be as-
sociated with computer programs. Designers usually cre-
ate multimedia for their scenarios, then they bind them
to external interactive events or programs. Max/MSP and
Pure Data (Pd) [1] are often used to program interactive
scenarios. However, we claim for the need of a general
model to (i) control synthesis based on human gestures and
to (ii) declare relations among multimedia objects (e.g.,
partial-order relations for their execution).

Interactive Scores (IS) is a formalism for the design of
scenarios represented by temporal objects (TOs), temporal
relations (TRs) and interactive events. Examples of TOs
are videos and sounds. TOs can be triggered by interactive
events (usually launched by the user) and several TOs can
be active simultaneously. A TO can contain other TOs.
The hierarchy allows us to control the start or end of a TO
by controlling the start or end of its parent. Moreover, TRs
provide a partial order for the execution of the TOs: TRs
can be used to express precedence between objects.

IS have been subject of study since the beginning of
the century [2], [3]. IS were originally developed for in-
teractive music scores. Recently, the model was extended
by Allombert, Desainte-Catherine, Larralde and Assayag
in [4]. Hence IS can describe any kind of TOs, Allombert
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et al.’s model has inspired two applications: iScore [5] to
compose and perform Electroacoustic music and Virage [6]
to control live spectacles and interactive museums.

IS are successful to describe TRs, but IS have not been
used to represent TRs together with conditional branching.
Conditional branching is used in programming to describe
control structures such as if/else and switch/case. It pro-
vides a mechanism to choose the state of a program de-
pending on a condition and its current state.

Using conditional branching, a designer can create sce-
narios with loops and choices (as in programming). The
user and the system can take decisions during performance
with the degree of freedom described by the designer –
while the system maintains the TRs of the scenario.

The designer can express under which conditions a loop
ends; for instance, when the user changes the value of a
certain variable, the loop stops; or the system non-deter-
ministically chooses to stop.

Unfortunately, there is neither a theoretical model nor a
special-purpose application to support conditional branch-
ing in interactive multimedia. In this work, we propose
a model for conditional-branching timed IS in the Non-
deterministic Timed Concurrent Constraint (ntcc) [7] cal-
culus. In our model we combine TRs, conditional branch-
ing and discrete interactive events in a single model. We
ran a prototype of the model over Ntccrt [8], a real-time
capable interpreter for ntcc.

In a previous work [9], we showed how we can repre-
sent a multimedia installation with loops and choice 1 , and
the pure timed IS model [4] into our model.

1.1 Related work on interactive multimedia

A similar approach to ours was followed by Olarte and
Rueda in [10]. They propose a model for IS in a calculus
similar to ntcc; however, they only modeled TRs. They
verified critical properties on the system. The key point
of their model is that the user can change the hierarchical
structure of the score during performance.

Another system dealing with a hierarchical structure is
Maquettes of OpenMusic [11]. However, OpenMusic is a
software for composition and not real-time interaction.

Another kind of systems capable of real-time interac-
tion are score following systems (see [12]). Such systems
track the performance of a real instrument and they may
play multimedia associated to certain notes of the piece.
However, to use these systems it is necessary to play a real

1 http://www.gmea.net/activite/creation/2007_
2008/pPerez.htm
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instrument; whereas to use IS, the user only has to con-
trol some parameters of the piece, such as the start and end
dates of the TOs.

A model for multimedia interaction that does not re-
quire a real instrument uses Hidden Markov Models to
model probabilistic installations [13]. The system tracks
human motion and it responds to human performance with
chords and pitches depending on the knowledge of previ-
ous training. However, the system requires intensive train-
ing and it is not a tool for composition.

In the domain of composition of interactive music, there
are applications such as Ableton Live 2 . Using Live, a com-
poser can write loops and a musician can control different
parameters of the piece during performance. Live is com-
monly used for Electronic and Electroacoustic music. Un-
fortunately, the means of interaction and the synchroniza-
tion patterns provided by Live are limited.

1.1.1 Formalisms for Interactive Multimedia

To handle complex synchronization patterns and to predict
the behavior of interactive scenarios, formalisms such as
ntcc and Hierarchical Time Stream Petri Networks (HT-
SPN) [14] and have been used to model IS [15, 4].

In HTSPN we can express a variety of TRs, but it is
not easy to represent global constraints (e.g., the number
of TOs playing simultaneously). Instead, ntcc synchro-
nizes processes through a common constraint store, thus
global constraints are explicitly represented in such store.
We chose ntcc because we can easily represent time, con-
straints, choice, and we can verify the model.

Another formalism for defining declaratively partial or-
ders of musical processes and audio is Tempo [16]. How-
ever, Tempo does not allow us to express choice (when
multiple conditions hold), simultaneity and weak time-outs
(e.g., perform an action if the condition cannot be deduced).
A key aspect is that there is a real-time capable interpreter
and automatic verification for Tempo.

At present, there is not an automatic verifier for ntcc.
In the declarative view, ntcc processes can be interpreted
as linear temporal logic formulae. Ntcc includes an in-
ference system in this logic to verify properties of ntcc
models. This inference procedure was proved to be of
exponential time complexity [17]. Nevertheless, we be-
lieve practical automatic verification could be envisioned
for useful subsets of ntcc via model checking (see [18]).

Automated verification for IS will provide information
about the correctness of the system to computer scientists.
It will also provide important properties about the scenario
to its designers and users. It will be possible to verify the
absence of deadlocks, and also that certain TOs will be
played during performance. This kind of properties cannot
be verified in applications with no formal semantics.

1.2 Structure of the paper

The remainder of this paper is structured as follows. Sec-
tion 2 explains ntcc and Ntccrt. Section 3 states our
model for conditional-branching timed IS. Section 4 shows
the ntcc definitions of our model. Section 5 explains our

2 http://www.ableton.com/live/

implementation using Pd and Ntccrt. Finally, section 6
gives some concluding remarks and future work.

2. THE NTCC PROCESS CALCULUS

A family of process calculi is Concurrent Constraint Pro-
gramming (ccp) [19], where a system is modeled in terms
of variables and constraints over some variables. The con-
straints are contained in a common store. There are also
agents that reason about the system variables, based on par-
tial information (by the means of constraints).

Formally, ccp is based upon the idea of a constraint
system (CS). A constraint system includes a set of (basic)
constraints and a relation (i.e., entailment relation |=) to
deduce a constraint with the information supplied by other
constraints.

A ccp system usually includes several CSs for differ-
ent variable types. There are CSs for variable types such
as sets, trees, graphs and natural numbers. A CS providing
arithmetic relations over natural numbers is known as Fi-
nite Domain (FD). As an example, using a FD CS, we can
deduce pitch 6= 60 from the constraints pitch > 40 and
pitch < 59.

Although we can choose an appropriate CS to model
any problem, in ccp it is not possible to delete nor change
information accumulated in the store. For that reason it
is difficult to perceive a notion of discrete time, useful to
model reactive systems communicating with an external
environment (e.g., users, lights, sensors and speakers).
Ntcc introduces to ccp the notion of discrete time as

a sequence of time units. Each time unit starts with a store
(possibly empty) supplied by the environment, and ntcc
executes all the processes scheduled for that time unit. In
contrast to ccp, in ntccwe can model variables changing
values over time. A variable x can take different values at
each time unit. To model that in ccp, we have to create a
new variable xi each time we change the value of x.

2.1 Ntcc in multimedia interaction

In this section we give some examples on how the com-
putational agents of ntcc can be used with a FD CS. A
summary of the agents semantics can be found in Table 1.

Agent Meaning
tell (c) Adds c to the current store
when (c) do A If c holds now run A
local (x) in P Runs P with local variable x
A ‖ B Parallel composition
next A Runs A at the next time-unit
unless (c) next A Unless c holds, next run A∑

i∈I when (ci) do Pi Chooses Pi s.t. (ci) holds
*P Delays P indefinitely
!P Executes P each time-unit

Table 1. Semantics of ntcc agents.

• Using tell it is possible to add constraints to the store
such as tell(60 < pitch2 < 100), which means that
pitch2 is an integer between 60 and 100.
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• When can be used to describe how the system re-
acts to different events; for instance, when pitch1 =
C4∧pitch2 = E4∧pitch3 = G4 do tell(CMayor =
true) adds the constraint CMayor = true to the
current store as soon as the pitch sequence C, E, G
has been played.

• Parallel composition (‖) makes it possible to repre-
sent concurrent processes; for instance, tell (pitch1 =
52) ‖when 48 < pitch1 < 59 do tell (Instrument =
1) tells the store that pitch1 is 52 and concurrently
assigns the instrument to one, since pitch1 is in the
desired interval (see fig. 1).

STORE

tell (pitch1 = 52)

when 48 < pitch1 < 59 do
 tell (instrument = 1)

STORE

when 48 < pitch1 < 59 do
 tell (instrument = 1)

pitch1 = 52

STORE

 tell (instrument = 1)

pitch1 = 52
STORE

pitch1 = 52

instrument = 1

Figure 1. An example of the ntcc agents.

• Next is useful when we want to model variables chang-
ing over time; for instance, when (pitch1 = 60) do
next tell (pitch1 <> 60) means that if pitch1 is
equal to 60 in the current time unit, it will be differ-
ent from 60 in the next time unit.

• Unless is useful to model systems reacting when a
condition is not satisfied or when the condition can-
not be deduced from the store; for instance, unless
(pitch1 = 60) next tell (lastP itch <> 60) reacts
when pitch1 = 60 is false or when pitch1 = 60
cannot be deduced from the store (e.g., pitch1 was
not played in the current time unit).

• Star (*) can be used to delay the end of a process in-
definitely, but not forever; for instance, ∗tell (End =
true). Note that to model Interactive Scores we do
not use the star agent.

• Bang (!) executes a certain process every time unit
after its execution; for instance, !tell (C4 = 60).

• Sum (
∑

) is used to model non-deterministic choices;
for instance,

∑
i∈{48,52,55} when i ∈ PlayedP itches

do tell (pitch = i) chooses a note among those
played previously that belongs to the C major chord.

In ntcc, recursion can be defined (see [17]) with the
form q(x) =def Pq , where q is the process name and Pq

is restricted to call q at most once and such call must be
within the scope of a next. The reason of using next is that
ntcc does not allow recursion within a time unit.

The reader should not confuse a simple definition with a
recursive definition; for instance, Beforei,j =def tell(i ∈
Predecessorj) is a simple definition where the values of i
and j are replaced statically, like a macro in a programming
language. Instead, a recursive definition such as Clock(v)
=def tell(clock = v)‖next Clock(v +1) is like a function
in a programming language.

2.2 Ntccrt: A real-time capable interpreter for ntcc

In the current version of Ntccrt, we can write a ntccmodel
on either Lisp, Openmusic or C++. For a complete imple-
mentation of Interactive Scores, it will be necessary to pro-
duce automatically the corresponding ntcc model based
on a graphical interface similar to Virage.

To execute a ntcc model it is not necessary to develop
an interface because Ntccrt programs can be compiled into
stand-alone programs or as external objects (i.e., a binary
plugins) for Pd or Max (see fig. 2).

OpenMusic
interface

Ntccrt
compiler

Pure Data
external

Max/Msp
external

Common Lisp
interface

C++
interface Stand-alone

program

User

Programmer

Figure 2. Interfaces of Ntccrt.

We can use the message passing API provided by Pd
and Max to communicate any object with the Ntccrt ex-
ternal. We can also control all the available objects for
audio and video processing defined in those languages us-
ing Ntccrt. To synchronize those objects, Ntccrt provides
an important part of Gecode’s constraints [20].

Ntccrt uses Gecode as its constraint solving library. Ge-
code was carefully designed to support efficiently the Fi-
nite Domain (FD) constraint system. Ntccrt relies on prop-
agation of FD constraints.

3. CONDITIONAL BRANCHING TIMED IS

Points and intervals build up Interactive Scores (IS), thus a
score 3 (i.e., the specification of a scenario) is defined by a
tuple s = 〈P, I〉, where P is a set of points and I is a set
of intervals. A temporal object is just a type of interval.

3.1 Points

Intuitively, a point p is a predecessor of q if there is a rela-
tion p before q. Analogically, a point p is a successor of r
if there is a relation r before p.

A Point is defined by p = 〈bp, bs〉, where bp and bs

represent the behavior of the point. Behavior bp defines

3 We still use the term score for historical reasons.
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whether the point waits until all its predecessors transfer
the control to it –Wait for All (WA)– or it only waits for the
first of them –Wait for the First (WF)–. Behavior bs defines
whether the point transfers the control to all its successors
which conditions hold –No CHoice (NCH)– or it chooses
one of them –CHoice (CH)–.

Note that we do not include the set of dates of the point
in previous definition. Beurivé et al. argued in [2] that
the edition of a hierarchical representation of music using
a relative time model requires less variable updates than
using an absolute time model. We argue that it is also true
during the performance of Interactive Scores. Moreover,
in our model it is not easy to know the set of all possible
dates a priori because they depend on the choices that the
user makes during performance.

3.2 Intervals: TCRs and TOs

An interval p before q intuitively means that the system
waits a certain time to transfer the control from p to q if
the condition in the interval holds. In addition, it executes
a process throughout its duration. An interval also has a
nominal duration that may change during the performance.
The nominal duration is computed during the edition of
the scenario using constraint programming (see [15]. For-
mally, an interval is a tuple composed by

• a start point (p1)
• an end point (p2)
• a condition (c)
• a duration (d)
• an interpretation for the condition (b)
• a local constraint (l)
• a process (proc)
• parameters for the process (param)
• children (N)
• local variables (vars)

It is not practical to include all those elements explic-
itly; thus, we have identified two types of intervals. timed
conditional relations (TCRs) have a condition c and an in-
terpretation b, but they do not have children, their local
constraint is true, and their process is silence 4 . Tem-
poral objects (TOs) may have children, local variables and
a local constraint, but their condition is true, and their
interpretation is when (i.e., when the condition is true, it
transfers the control from p1 to p2).

To have a coherent score, we must define a TCR be-
tween the start point of each father and the start point of
at least one of its children. However, it is not required to
connect a child to the end point of its father. Furthermore,
in our model we may define multiple TCRs and TOs be-
tween two points. This does not introduce an incoherence
in the model because the behavior of those intervals (as
any interval) depends on the behavior of the points and the
parameters of the interval.

3.2.1 Timed Conditional Relations (TCRs)

A timed conditional relation (TCR) is defined by r = 〈p1,
p2, c, d, b〉, where p1 and p2 are the points involved in the

4 silence is a process that does nothing.

relation. The condition c determines whether the control
jumps from p1 to p2 (i.e., the control is transferred from p1

to p2). The interpretation of c is b. There are two possible
values for b: (i) when means that if c holds, the control
jumps to p2; and (ii) unless means that if c does not hold
or its value cannot be deduced from the environment (e.g.,
c = a > 0 and −∞ < a <∞), the control jumps to p2.

A duration is flexible if it can take any value, rigid if it
takes values between two fixed integers and semi-rigid if
it takes values greater than a fixed integer. In our model,
we always respect flexible durations. Our model is based
upon transferring the control from one point to another.
For that reason, it is not always possible to respect rigid
and semirigid durations; for instance, when a point waits
for an event or when it is followed by a choice.

3.2.2 Temporal objects (TOs)

A temporal object (TO) is defined by t = 〈ps, pe, l, d, proc,
param,N, vars〉 where ps is a point that starts a new in-
stance of t and pe ends such instance. A constraint l is
attached to t, it contains local information for t and its
children. The duration is d. A process which executes
throughout the duration of t is proc. The list of parameters
for the process is param. The set of TOs embedded in t is
N , which are called children of t. Finally, vars represents
the local variables defined for the TO that can be used by
t’s children, process and local constraint.

3.3 Example: A loop controlled by a condition

The following example (see fig. 3) describes a score with
a loop. During the execution, the system plays a silence of
one second. After the silence, it plays the sound B during
three seconds and simultaneously it turns on the lights D
for one second. After the sound B, it plays a silence of
one second, then it plays video C. If the variable finish
becomes true, it ends the scenario after playing the video
C; otherwise, it jumps back to the beginning of the first
silence after playing the video C.

To define the score of this scenario, we define a local
boolean variable finish in A, and we use it as the condi-
tion for some TCRs. Note that the silence between D and
C lasts one second in the score, but during execution it is
longer because of the behavior of the points.

The points have the following behavior. The end point
of C (ec) is enabled for choice, and the other points transfer
the control to all their successors. The start point of C (sc)
waits for all its predecessors to transfer the control to it,
and all the other points wait for the first predecessor that
transfers the control to them.

Formally, the points are defined

sa = ea = sb = eb = sd = ed = 〈{WF,NCH}〉
sc = 〈{WA, NCH}〉
ec = 〈{WF,CH}〉
P = {sa, ea, sb, eb, sc, ec, sd, ed}

As an example, ec Waits for the first predecessor (WF) and
makes a choice (CH).
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B

A

C

when
 finish

unless finish

∆B = 3
∆C = 2

d=1

d=0

d=0

d=1 D

d=1

d=1
∆D = 1

Figure 3. A score with a user-controlled loop.

The TOs are defined by

A = 〈sa, ea, d ∈ [0,∞), d, sil., ∅, {B, C,D}, {finish}〉
B = 〈sb, eb,true, 3, playSoundB, ∅, ∅, ∅〉
C = 〈sc, ec,true, 2, P layV ideoC, ∅, ∅, ∅〉
D = 〈sd, ed,true, 1, TurnOnLightsD, ∅, ∅, ∅〉
T = {A, B,C, D}

As an example, A is composed by points sa and ea, it has
a flexible duration, its process is silence, its children are B,
C and D and its local variable is finish.

In what follows we present the TCRs

TCR =
{〈sa, sb,true, 1, when〉, 〈sa, sd,true, 1, when〉,
〈eb, sc,true, 1, when〉, 〈ed, sc,true, 1, when〉,
〈ec, sa,¬finish, 0, when〉, 〈ec, ea, finish, 0, when〉}

As an example, the first one is a TCR between points sa

and sb, its condition is true, its interpretation is when
and its duration is one.

Finally, I is the set of intervals composed by the TOs
and the TCRs and S is the score.

I = T
⋃

TCR S = {P, I}

3.4 Limitations: Rigid durations and choice

In some cases (e.g., fig. 3), we can respect rigid durations
of TOs during performance. Unfortunately, there is not a
generic way to compute the value of a rigid duration in
a score with conditional branching. The problem is that
choices do not allow us to predict the duration of a TO’s
successor; therefore, it is not possible to determinate a pri-
ori the duration of all the TOs.

Figure 4 shows a scenario where we cannot respect rigid
durations. T2, T4 and T5 have fixed durations, but T1 can
take different values between ∆min and ∆max. Since there
is no way to predict whether T2 or T5 will be chosen after
the execution of T1, we cannot compute a coherent dura-
tion for T1 before the choice.

T1 T2

Choose either
T2 or T5T3

T4

T5

∆4

∆2

∆5

[∆min,∆max]

Figure 4. Limitation of rigid durations.

4. OUR NTCC MODEL OF IS

In this section we define our ntcc model. We define pro-
cesses for some combinations of the behaviors of a point.
The definition of an interval can be used for both timed
conditional relations and temporal objects. To represent
intervals we create a graph with the predecessors and suc-
cessors of each point using the variables Predec and Succ.
For simplicity, we do not include hierarchy, we only model
the interpretation when, we can only declare a single inter-
val between two points, and we can only execute a single
instance of an interval at the same time.

4.1 Points: Three combinations of behaviors

We only include three type of points: points that choose
among their successors (ChoicePoint), points that trans-
fer the control to all their successors (JumpToAllPoint),
and points that wait for all their predecessors to transfer
the control to them (WaitForAllPoint). The first two
types of points wait for the first predecessor that transfers
the control to them to be active.

Points are modeled using Finite Domain constraints; for
instance, to know if at least one point has transferred the
control to the point i, we ask to the store if the boolean
or (

∨
j∈P ) constraint applied to the relation Arrived(i, j)

can be deduced from the store (where P is the set of iden-
tifiers for each point).

When all the expected predecessors transfer the con-
trol to the point i, we say that the point is active (i.e.,
ActivePointsi holds). Analogaly, when a point i trans-
fers the control to a point j, we add the constraint
ControlTranferred(j, i).

In order to represent the choice between points a and
b, we use the variable finish in the Σ process. Note that
when c1 do P1 +when c2 do P2 is equivalent to

∑
i∈{1,2}

when ci do Pi, and whenever c do P is equivalent to
!when c do P .

ChoicePointi,a,b
def
=

whenever
∨

j∈P

Arrived(i, j) do (tell (ActivePointsi)

‖ when finish do tell (ControlTransferred(a, i))
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+when¬finish do tell (ControlTransferred(b, i)))

The following definition uses the agent
∏

to transfer
the control to all the successors of the point i. The agent∏

represents the parallel composition in a compact way.

ToAlli
def
=

tell (ActivePointsi)
‖
∏

j∈P when Succs(i, j) do
tell (ControlTransferred(j, i)))

Using the definition ToAlli, we define the two points
that transfer the control to all its successors.

JumpToAllPointi
def
=

whenever
∨

j∈P Arrived(i, j) do ToAlli

To wait for all the predecessors, we ask the store if the
constraint Arrived = Predec holds.

WaitForAllPointi
def
=

whenever ∀j, Arrived(i, j) = Predec(i, j) do ToAlli

4.2 Intervals: TCRs and TOs

Intervals are modeled by two recursive definitions. These
definitions model both TOs and TCRs because intervals
only change the value of an ActivePoints variable, thus
they only control the start and end of their processes.

Process I waits until at least one point transfers the con-
trol to its start point i, and at least one point has been cho-
sen by another point to transfer the control to its destination
j. When such conditions hold, it waits until the duration
of the interval is over 5 , then it transfers the control from
point i to j. It also adds a constraint on the corresponding
set of predecessors and successors.

Ii,j,d
def
= !(tell (Predec(j, i)) ‖ tell (Succ(i, j)))

‖whenever
∨

k∈P ControlTransferred(j, k)
∧

∨
k∈P Arrived(i, k) do(

nextd(tell(Arrived(j, i)) ‖PredecessorsWait(i, j)))

PredecessorsWait adds the constraint Arrived(j, i)
until the time unit after the point j becomes active. This
definition maintains the coherence of WaitForAll points.

PredecessorsWaiti,j
def
= unless ActivePointsj next

(PredecessorsWaiti,j‖ tell (Arrived(j, i)))

4.3 The example 3.3 on ntcc

The example presented on figure 3 can be easily modeled
in ntcc. User is a process representing a user that tells
to the store that finish is not true during the first n time
units, then it tells that finish is true. Note that an advan-
tage of ntcc is that the constraint i ≥ n can be easily
replaced by more complex ones; for instance, it can be re-
placed by i ≥ n ∧ c. Constraint c can be, for instance,
“there are only three active points at this moment in the

5 nextd is a process next nested d times (next(next(next...).

score” (i.e., |{x ∈ ActivePoints | x = 1}| = 3).

Usern(i)
def
= when i ≥ n do tell (finish)
‖unless i ≥ n next tell (¬finish)
‖next Usern(i + 1)

TCRs
def
= Isd,ed,1

‖Isa,sb,1‖Ied,sc,1‖Isb,eb,3‖Ieb,sc,1‖Isc,ec,2‖Iec,sa,0

‖Iec,ea,0‖Inull,sa,0‖Isa,sd,1‖ tell (Arrived(sa, start))

Points
def
= ChoicePointec,ea,sa‖WaitForAllPointsc

‖
∏

i∈{sa,ea,sb,eb,sd,ed} JumpToAllPointi

Systemn
def
= Usern(0)‖TCRs‖Points

5. IMPLEMENTATION IN NTCCRT AND PD

We implemented the previous example in Ntccrt and Pure
Data (Pd) (fig. 5). We replaced the User process with a
user input for the variable finish. We generated a Ntccrt
external (i.e., a binary plugin) for Pd with our ntccmodel.

The external has two inputs: one for the clock ticks and
one for the value of finish. The input for the clock ticks
can be connected to a metronome object to have a fixed
duration for every time unit during the performance. The
reader can find a discussion of executing time units with
fixed durations in [8].

The Ntccrt external outputs a boolean value for each
point, indicating whether it is active or not. Using such val-
ues, we can control the start and end of SoundB, V ideoC
and lightsD, which are processes defined in Pd.

Figure 5. Executing Example 3.3 in Pd.

5.1 Results: Performance and usability of Ntccrt

We built automatically Interactive Scores (IS) with a num-
ber of points 6 and relations in the order of 2n, with n from
two to ten (see fig. 6). We ran each score 100 times as a
stand-alone program. The duration of a time unit is deter-
mined by the time taken by Ntccrt to calculate the output,
not by an external clock. The tests were performed on an

6 The exact number of points is 3.2n − 2.
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iMac 2.6 GHz with 2 GB of RAM under Mac OS 10.5.7.
It was compiled with GCC 4.2 and liked to Gecode 3.2.2.

The authors of the Continuator [21] argue that a mul-
timedia interaction system with a response time less than
30 ms is able to interact in real-time with even a very fast
guitar jazz player. Therefore, our results (fig. 7) are ac-
ceptable for real-time interaction with a guitarist for up to
1000 points (around 500 TOs). We conjecture that a re-
sponse time of 20 ms is appropriate to interact with a very
fast percussionist. In that case, we can have up to 400 TOs.

5.1.1 Usability of Ntccrt

We found out intuitive to write ntcc models in Ntccrt, to
someone familiar with ntcc, because it provides a Lisp
interface with a syntax similar to ntcc; for instance,
PredecessorWait is written as

(defproc PredecessorsWait (i j)
(unlessp (v=? (ActivePoint i) j)
(||(call PredecessorsWait i j)
(tell= (ArrivedPoint j i) 1))))

It is slightly harder to write the same definition in C++

class predecessorsWait:public proc{
public:
AskBody* predecessorsWait::operator()(
Space* h, vector<int> intparameters,
vector<variable *> variableparameters)
{return unless(eq(ActivePoint[i][j]),
parallel(call(PredecessorWait,i,j),
tellEqual(ArrivedPoint[i][j],1)));}};

0 1 2 n n+1 n+2 n+3

Jump to all Point

Choice Point

Figure 6. A scalable-size score with 3.2n − 2 points.

6. CONCLUDING REMARKS

We developed a model for multimedia interaction with con-
ditional-branching and temporal relations based on points
and intervals. We implemented it using Ntccrt and Pure
Data (Pd). We conclude from performance results that our
prototype is compatible with real-time interaction for a rea-
sonable amount of points and relations. An existing imple-
mentation of Interactive Scores model is also capable of
real-time and it can easy respect rigid durations, but such
model does not support loops nor choice.
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Figure 7. Performance of the simulation fo the score in
Fig. 6.

For simplicity, in our prototype we do not include hier-
archy, we only model the interpretation when, we can only
declare a single interval between two points, we can pre-
serve rigid durations only in a few cases , and we can only
execute a single instance of an interval at the same time.

An advantage of ntcc with respect to previous mod-
els of Interactive Scores, Pd, Max and Petri Nets is repre-
senting declarative conditions by the means of constraints.
Complex conditions, in particular those with an unknown
number of parameters, are difficult to model in Max or Pd.
To model generic conditions in Max or Pd, we would have
to define each condition either in a new patch or in a pre-
defined library. In Petri nets, we would have to define a net
for each condition.

6.1 Future work

Ntccrt is not yet an interface for composers and designers
of multimedia scenarios. For them is much more intuitive
an interface such as Virage [6]. A graphical interface for
our model should provide the means to specify the score as
done in Example 3.3

Once we have the graphical interface, we plan to model
audio processes in ntcc and replace them in the imple-
mentation by Faust programs [22] which also have formal
semantics. Using Faust, we can gain efficiency and pre-
serve the formal properties of our model (see [23] for a
description of this idea).
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ABSTRACT 

We present D-Jogger, a music interface that makes use of 

body movement to dynamically select music and adapt its 

tempo to the user‟s pace. D-Jogger consists of several 

independent modules, such as a step detection algorithm 

and tempo-aware playlists, to achieve this goal. The re-

search done with D-Jogger has focused on entrainment: 

the synchronization of two rhythmical processes, in this 

case music and walking.  We present several ways of 

visualizing entrainment data, including synchronization 

plots and phase histograms.   

A pilot experiment was performed using D-Jogger 

with 33 participants. Preliminary data suggest that, when 

the music‟s tempo and the user‟s pace are close enough to 

each other, most users synchronize their walking to the 

music - taking a step with each beat.  A user survey indi-

cated that participants experience this effect as stimulat-

ing and motivating.  

Several other application domains for D-Jogger are 

possible: personal training devices for joggers, rehabilita-

tion therapy for Parkinson patients or simply as a nice-to-

have application for your mobile phone.  

1. INTRODUCTION AND RELATED 

WORK 

Entrainment is broadly defined as a phenomenon in 

which two or more independent rhythmic processes syn-

chronize with each other [2]. In a more constrained sense, 

it is the synchronization of a system with a variable fre-

quency to an external frequency. We see this process 

every day, for example when people dance to music, they 

perform rhythmical movements in sync with the beat – on 

the perceived pulse of the music.  

Another form of entrainment can happen when people 

are walking to music. Previous research has shown that 

people can synchronize their walking movements with 

music over a broad range of tempi and that this synchro-

nization is most optimal around 120 beats per minute 

(BPM) [13]. Moreover, in [11] it is speculated that this 

frequency of 2 Hz represents some form of central reson-

ance of human movement. 

 

This paper describes the framework of D-Jogger. The 

framework is used to create applications that make use of 

the body movement of the user; specifically walking 

tempo (steps per minute, SPM). D-Jogger matches the 

tempo of the music (beats per minute, BPM) with the 

walking tempo of the user, switching songs when appro-

priate. The main hypothesis is that users will synchronize 

with the music by aligning their steps to the beats – a 

form of entrainment.  

The idea of such a system is not novel in itself. Ya-

maha was the first to introduce BODiBeat
1
 (2007), fol-

lowed by Philips Activa
2
 (2010).  Both devices are fo-

cused on selecting music to optimize workout perfor-

mance, depending on the user‟s pace and heart rate.   

Several other systems have been proposed to do more 

or less the same thing: [7] and [5] use accelerometers to 

determine the user‟s pace, choosing a song from a pre-

processed BPM-tagged music library. [7] has the ability 

to slow down or speed up the music without transposing 

the pitch. These papers focus on the technical aspect of 

the systems. [1] hints at the impact of such a system on 

the user, but the topic is not elaborate. However, none of 

these applications have been designed or used for re-

search into entrainment, while this is the primary goal of 

D-Jogger.  

2. D-JOGGER 

D-Jogger is a framework employed to create a context-

sensitive music player, using the user‟s pace to dynami-

cally choose and adapt the music in real-time. The goal of 

D-Jogger is to be able to perform research into the phe-

nomenon of entrainment; therefore the system must be 

flexible and easily adaptable.   

 Given this prerequisite, we opted to use Max/MSP in 

designing the application. Max/MSP is a graphical pro-

gramming environment for real time audio processing 

that uses objects as basic building blocks, connectable via 

virtual wires. Objects developed for Max/MSP by third 

parties are called externals. D-Jogger consists of several 

externals, connectable in different ways to create a highly 

flexible framework for the rapid development of applica-

tions involving movement analysis and dynamic playlist 

generation. We give a short description of the available 

externals and their functioning; Figure 1 provides an 

overview. 

                                                           
1 http://www.yamaha.com/bodibeat/ 
2 http://www.consumer.philips.com/c/workout-monitors/176850/cat/us/ 

Copyright: © 2010 Moens et al. This is an open-access article distri-

buted under the terms of the Creative Commons Attribution License 

3.0 Unported, which permits unrestricted use, distribution, and repro-

duction in any medium, provided the original author and source are 

credited. 
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2.1. Sensor and Step Detection 

A digital signal processing (DSP) external is used to 

extract the user‟s pace from a 3-axis ADXL330 accele-

rometer signal. 

Accelerometer signals vary wildly depending on the 

gait pattern of the user, location of the sensor, the sensor 

specifications and the type of surface the user is walking 

on [8,9]. For example, soft grass, asphalt or treadmills 

result in different signals. Figure 2 illustrates the signal 

from different users walking on a treadmill with the sen-

sor attached to their left ankle. The signal is from the axis 

perpendicular to the ground, showing clearly the moment 

of impact of the left heel on the treadmill.  It is clear that 

both users‟ signals are periodic, but differ in other as-

pects. Several approaches are possible to determine step 

frequency, such as a Fourier transform or autocorrelation. 

A comparison of basic step detection algorithms for acce-

lerometers can be found in [12]. For our purposes, we 

opted to use an autocorrelation algorithm. 

The step detection algorithm consists of 4 phases: 

 We interpolate the signal at a sample rate of 200 Hz 

with a second-order polynomial function; 

 The resulting signal is filtered using a Finite Impulse 

Response (FIR) low pass filter of the 10th grade to 

reduce high frequency noise; 

 We apply autocorrelation to the last four seconds of 

data, which contain at least 2 periods of the step sig-

nal. We then look for frequencies in the range of 30 

to 125 SPM. Because the sensor is located on only 

one foot, the lower boundary of 30 SPM is equal to 

60 SPM when taking both feet into account.  

 The highest lag value is transformed to the SPM 

value. We take previous SPM values into account to 

reduce outlier effects, smoothing the results. 

The resulting algorithm works independently from the 

selected axis of the sensor; however results are more 

stable if an axis with a clear periodic signal is selected.  

 

2.2. BPM-Aware Playlist 

The playlist external is used to dynamically add or re-

move songs from the playlist. When adding a song, it is 

first processed using BeatRoot [3] to extract the tempo 

information of the song. This includes timestamps of the 

beats and the BPM value. Optional metadata includes 

user ratings and general statistics on the usage of the 

song, preventing frequent repetitions of the same music. 

2.3. Phase Vocoder 

We use an external to time-stretch the audio without 

changing the pitch. Several solutions exist for this pur-

pose [4].  ElasticX
3
 is a Max/MSP object that allows 

changing the playback speed and pitch independently. 

Quality of the resulting audio is very good when the 

speed remains between 90% and 110% of the original. 

While this component is not part of our framework itself, 

it is used intensively and thus listed here. 

2.4. Alignment algorithm 

A central component connects all available externals. The 

alignment algorithm acts as the „moderator‟ of the music: 

it decides whether the tempo of the current song should 

be adapted and whether a new song should be chosen.  

We present the Dynamic Song and Tempo (DSaT) algo-

rithm, but many other alignment algorithms are possible.   

                                                           
3 http://www.elasticmax.co.uk 

D-Jogger 

Sensor and DSP BPM-aware Playlist 

Accelerometer 

Interpolation 

Low pass filter 

Autocorrelation 

Smoothing 

Alignment algorithm 

Phase vocoder 

Audio output 

Audio file 

BPM analysis 

Annotated playlist item: 

File location 
BPM value 

 

Playlist 

SPM Song selection 
Audio file 

BPM 

Tempo adjustments Audio 

Tempo-matched audio 

Figure 1. Overview of D-Jogger components 

Figure 2. Acceleration signals of the left ankle 

of 2 subjects on a treadmill 
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DSaT consists of 2 phases: 

 Song Selection: DSaT starts by choosing a song with 

a BPM close to the SPM value.  If no suitable song is 

found, the SPM value is doubled and the search res-

tarted. This feature is used with very low SPM val-

ues (SPM < 90), because very few songs with a BPM 

less than 90 are available [6].   

 Dynamic Tempo: the required tempo adjustment for 

the song is calculated by dividing the SPM value by 

the BPM value. When this adjustment falls outside 

predetermined boundaries for more than 5 seconds, a 

new song is selected.  

3. REPRESENTATIONS OF ENTRAIN-

MENT 

D-Jogger is used for research investigating human en-

trainment to music. We present several ways to visualize 

this entrainment, each having unique advantages and 

disadvantages. The following examples are visualizations 

of the exact timestamps of beats and footsteps from the 

pilot experiment. We first provide explanations of our 

chosen methods of visual representation. Results of the 

pilot experiment will be discussed in the next chapter. 

3.1. BPM-SPM Plots 

We create a plot where the BPM and SPM values are 

plotted over time. While this shows very little informa-

tion about the entrainment itself, it is useful for validating 

the correct functioning of D-Jogger.  We introduce the 

following notation:   is the timestamp of the i
th

 beat in 

milliseconds,  is the timestamp of the j
th

 step in millise-

conds,  is the BPM value between  and  and 

 is the SPM value between  and  (analogue for 

SPM calculation).   

                            (1) 

Figure 3 (top) gives an example of such a plot.  Over 

a time span of 130 seconds, four different songs are 

played, as indicated by the red markers.  

3.2. Synchronization plots 

A synchronization plot shows the time between each step 

and the closest beat or . We note  as the beat 

before ,  is the beat after . The synchronization 

value, , is expressed in milliseconds: 0 means that 

the beat and the step occurred simultaneously; a positive 

value means the step occurred before the beat. A higher 

absolute value of  means a less optimal synchroni-

zation.   

     (2) 

When  equals or is close to 0, we speak of the 

footsteps and musical beats being in phase.  When the 

steps occur exactly midway between two sequential 

beats, we speak of them being in anti-phase. The anti-

phase time is inversely proportional to the BPM. For a 

visual representation, we plot anti-phase as well. The 

 value wraps between the positive and negative 

anti-phase.  

Figure 3 (bottom) gives an example of a synchroniza-

tion plot, representing the same data as the above BPM-

SPM plot. This representation is very well suited to pro-

vide an overview of the users‟ actions.  We can clearly 

see when the user is or is close to being in phase (e.g. 

between 5s and 20s in the graph). When the user speeds 

up it is clearly visible by the warping of the value 

(e.g. 20s to 30s). We can also see the inverse proportional 

relation of the anti-phase with the BPM value by 

comparing it with the top plot. 

A disadvantage of the synchronization plots is that 

they are hard to compare to one another.  This is due to 

the variables BPM and song changes.  Therefore, we 

introduce a normalized representation called phase plots. 

3.3. Phase plots 

Based on a similar approach to that described in [10], we 

transform  to the phase angle by dividing by the 

BPM timing: 

                         (3) 

In the visual representation, a circle is divided into 4 

circular sectors. Details about the different sectors can be 

found in Table 1. The radius represents time, with  

being the start of a song and the end of a song.  

Time is spaced linearly between  and .    

Using the same data as in the previous examples, we 

plot the third and forth song on a phase plot (Figure 4). In 

the figure we can see what we define as in phase and 

which steps fall within certain sectors. In the synchroni-

zation plot, walking appeared to be well synchronized to 

Figure 3. (top) BPM-SPM plot (bottom) Synchro-

nization plot 
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the beats of both songs. The phase plots reveal a different 

picture: the majority of the time, song 3 is not in phase, 

while the majority of song 4 is in phase. This is con-

firmed if we look at Table 1: the amount of time spent in 

a given sector is expressed in the last two columns.  We 

can say that the user synchronized better in the fourth 

song than in the third. Phase plots and tables make it 

easier to compare different sets of synchronization data 

both visually and numerically because of the BPM nor-

malization. 

Circular sector Angles Song 3 Song 4 

In-Phase 0°:39° & 320°:359° 20.31% 66.67% 

Anti-phase  140°:219° 7.81% 3.33% 

Rest  40°:139° & 220°:319° 71.86% 30.00% 

Table 1. Definition of circular sectors on phase 

plots and two examples of time spend in each sec-

tor for songs 3 and 4 

3.4. Phase histogram plots 

Next, we create a histogram of the phase angles. A phase 

histogram gives a global overview of the amount of time 

a user spends in a certain phase angle, giving an overview 

of the user‟s entrainment.  Figure 6 illustrates the phase 

histogram for all available data from the pilot experiment.  

The advantages of this representation are clear: indepen-

dent of the number of steps and easily comparable with 

different histograms, they give a clear overview of en-

trainment. These results can also be represented in a table 

for easier statistical analysis. 

4. PILOT EXPERIMENT 

4.1. Setup 

We designed a version of D-Jogger for demonstration 

purposes, using a 3-axis ADXL330 accelerometer at-

tached at the user‟s ankle and connected via Bluetooth.  

A graphical user interface (GUI) was placed in front of 

the user, showing the user‟s SPM history, music informa-

tion and the synchronization of BPM and SPM. The GUI 

did not include information about the entrainment itself.  

Music was chosen from a library containing 50 pop 

songs. The DSaT algorithm was used for music selection 

and real-time adaptation. If the necessary tempo adjust-

ment was outside the boundaries of ±10% for more than 5 

seconds, a new song was chosen with a BPM closer to the 

current SPM. These boundaries were also shown in the 

GUI. After using D-Jogger, participants were asked to 

complete a survey.  Figure 5 illustrates the experimental 

setup.  

4.2. Participants, experiment and survey 

A total of 33 participants experimented with the system at 

a public event in 2009. The participants were given a 

short introduction prior to the experiment, explaining the 

concept of time-stretching music to the users‟ pace. Par-

ticipants were not informed of the concept entrainment. 

After the introduction, the sensor was attached to their 

left ankle. Once on the treadmill, users were free to expe-

riment with D-Jogger, picking and changing their speed 

without time limitations. The treadmill control board 

featured speed presets (2, 4 … 20 km/h) and fine speed 

control (0.1 km/h). 

After the experiment, participants filled in a survey 

asking their personal jogging preferences and their expe-

rience with D-Jogger.  

4.3. Data and analysis 

A Zoom H4 stereo recorder was used to record the whole 

experiment. One channel recorded the audio as perceived 

by the user; the other channel recorded the footsteps 

using a microphone placed near the front of the treadmill.  

This was done to have a dataset independent of the D-

Jogger logs in order to verify the correct functioning of 

D-Jogger itself.  From the recordings we manually ex-

tracted the timestamps of beats and steps. A total of 15 

datasets were usable, giving a total of 3700 steps.  Vari-

ous parts of the recording were unusable because of un-

clear step recordings. 

Figure 4. Phase plots of songs 3 and 4 

 

Figure 5. Pilot setup of D-Jogger 
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4.4. Results 

We calculated the synchronization phase for 3700 steps. 

Figure 6 depicts the results in a phase histogram. This 

shows that the majority of steps (56.79 %) were in sync 

with the music. Because D-Jogger does not do phase 

synchronization, the user was responsible for the en-

trainment effect between the music and their gait pattern.  

17.37% steps were taken in anti-phase, the remaining 

25.85% of steps were neither in phase or in anti-phase 

and mostly occurred close to song changes.   

Our preliminary conclusions are that: 

 While using D-Jogger, the majority of subjects syn-

chronized to the beats, no matter what the users‟ 

pace.  

 If the music tempo is close enough to the user‟s pace, 

the user tends to synchronize his or her steps with the 

beats. 

 Users reported in the survey that they feel more mo-

tivated when in sync with the music. 

 

5. DISCUSSION 

The question arises as to whether a treadmill stimulates 

or hinders entrainment. One might say that the SPM of 

the user is dependent on the speed selected on the tread-

mill. While this is partially true, a user can speed up or 

slow down the SPM value significantly by adjusting the 

step length, as seen in several datasets. This enables the 

user to synchronize with the music on a treadmill.  How-

ever, we do not know to what extent the use of a tread-

mill influences the entrainment process. Future studies 

will include a comparison of uninhibited locomotion 

activity and locomotion activity on a treadmill. 

While this was as small study, some interesting results 

were procured. They do require confirmation by new 

experiments in more rigorous settings, but the pilot expe-

riment gives us hints about the expected results. The 

result of the survey, where users reported feeling more 

motivated when in sync with the music, is compelling but 

also subjective and requires further validation. 

Currently, the prototype of D-Jogger has only been 

tested using songs with a typical 4/4 time signature and 

constant beat. This is partly due to the limitations of the 

beat extraction, which works optimal with the simple and 

more popular Western songs. With the goal of D-Jogger 

in mind, we require songs with an unambiguous and clear 

rhythm, so in this early stage we do not see this as a prob-

lem. 

Another important remark is that when a new song is 

chosen, phase synchronization could be temporarily lost. 

Currently, a new song starts independently of the time 

when footsteps occur, so there is a high chance that the 

user will be out of sync with the music immediately fol-

lowing a song change. For this we intend to analyze the 

sensors for phase information of the steps so a song can 

be started in accordance with the step phase. 

6. FUTURE WORK 

The most limiting factor up until now has been the use of 

a stationary version of D-Jogger with a treadmill. A mo-

bile version will be implemented, using the internal acce-

lerometer of the mobile device. With the mobile version 

we can perform an experiment with unconstrained loco-

motion, yielding results closer to our typical real-life 

experience with walking to music.  

The mobile version will also feature a true multimod-

al interface: user control will be possible using simple 

gestures on a touch screen. This multimodal interface is 

ideal for use in training sessions because the user can 

select and rate music without interrupting the training.  

The D-Jogger framework can also be used in other 

applications.  We are currently looking into rehabilitation 

therapy for Parkinson patients using audio cues and a 

personal training device. 

7. CONCLUSIONS 

While there is still much to be done, D-Jogger shows 

great potential in both the current application and future 

possibilities involving entrainment research in body 

movement in relation to music.  

We proposed several options to visualize entrainment 

data. BPM-SPM plots show the evolution of tempo of 

both the music and the user in time, while the comple-

mentary synchronization plots show the evolution of 

entrainment in time. Both are very useful for visual in-

spection, while phase tables, plots and histograms are 

better suited for analytical purposes. They show the syn-

chronization data in a normalized way, allowing compari-

son of different datasets. 

We performed a pilot study using the D-Jogger.  The 

results show our hypothesis, that entrainment occurs 

when SPM is close to BPM, to be correct. However, 

further research is necessary using both the stationary and 

mobile version of D-Jogger to confirm the hypothesis. 

Figure 6. Results of the pilot experiment 
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ABSTRACT

Understanding the gap between a musical score and a real
performance of that score is still a challenging problem.
To tackle this broad problem, researchers focus on specific
instruments and/or musical styles. Hence, our research is
focused on the study of classical guitar and aims at de-
signing a system able to model the use of the expressive
resources of that instrument. Thus, one of the first goals
of our research is to provide a tool able to automatically
identify expressive resources in the context of real record-
ings. In this paper we present some preliminary results on
the identification of two classical guitar articulations from
a collection of chromatic exercises recorded by a profes-
sional guitarist. Specifically, our system combines several
state of the art analysis algorithms to distinguish among
two similar guitarists’ left hand articulations such as legato
and glissando. We report some experiments and analyze
the results achieved with our approach.

1. INTRODUCTION

An affective communication between listeners and perform-
ers can be achieved by the use of instruments’ expressive
resources [1, 2, 3]. Expressive resources play also an im-
portant role to clarify the musical structure of a piece [4, 5,
6]. Although each instrument provides a collection of spe-
cific expressive capabilities, its use may vary depending on
the musical genre or the performer.

Our research on musical expressivity is focused on the
study of classical guitar and aims at designing a system
able to model the use of the expressive resources of that
instrument. As a first stage of our research we are devel-
oping a tool able to automatically identify the use of guitar
articulations.

There are several studies on plucked instruments and
guitar synthesis such as on extraction of expressive param-
eters for synthesis [7, 8]. However, expressive articula-
tion analysis from real guitar recordings has not been fully
tackled. The analysis of a guitar performance is complex
because guitar is an instrument with a rich repertoire of
expressive articulations.

In guitar playing both hands are used: one hand is used
to press the strings in the fretboard (commonly the left

Copyright: c©2010 Tan H. Özaslan et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

hand) and the other to pluck the strings. Strings can be
plucked using a single plectrum called a flatpick or by di-
rectly using the tips of the fingers. The hand that presses
the frets is mainly determining the notes while the hand
that plucks the strings is mainly determining the note on-
sets and timbral properties. However, left hand is also in-
volved in the creation of a note onset and different expres-
sive articulations like legato, glissando, grace notes, or vi-
bratos [8].

In a previous research [10], we proposed a system able
to detect attack-based articulations and distinguish among
legato and grace notes. The goal of this paper is to ex-
tend the capabilities of the existing system to distinguish
among legato and glissando articulations. In both, legato
and glissando, left hand is involved in creation of the note
onset.

In the case of ascending legato, after plucking the string
with the right hand, one of the fingers of the left hand
(not already used for pressing one of the frets), presses a
fret causing another note onset. Descending legato is per-
formed by plucking the string with a left-hand finger that
was previously used to play a note (i.e. pressing a fret).

The case of glissando is similar but this time after pluck-
ing one of the strings with the right hand, the left hand fin-
ger that is pressing the string is slipped to another fret also
generating another note onset. Notice that we are not con-
sidering here grace notes that are played in a similar way
than glissando.

When playing legato or glissando on guitar, it is com-
mon for the performer to play more notes within a beat
than the stated timing enriching the music that is played.
A powerful legato and glissando can be differentiated be-
tween each other easily by ear. However, in a musical
phrase context where the legato and glissando are not iso-
lated, it is hard to differentiate among these two expressive
articulations.

The structure of the paper is as follows: Section 2 de-
scribes our methodology for legato and glissando deter-
mination and differentiation. Specifically, our approach
uses aperiodicity information to identify articulations, his-
tograms to compute the density of the peak locations, and
a symbolic aggregate approximation (SAX) representation
to characterize the articulation models. Next, Section 3
focuses on the experiments conducted to evaluate our sys-
tem. Last section, Section 4, summarizes current results
and proposes the next research steps.
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Figure 1: Main diagram of our model, which contains three sub models; Extraction, Model Builder and Preprocessing

2. SYSTEM ARCHITECTURE

In this paper we propose a new system able to identify two
expressive articulations: legato and glissando. To that pur-
pose we use a Region Extraction module that is part of a
previous development [10]. The regions identified by the
region extraction module are the inputs to the new com-
ponents: the Models Builder and the Detection component
(see Figure 1). In this section, first we briefly present the
region Extraction. Next, we describe our preliminary re-
search to select the appropriate descriptor to analyze the
behavior of legato and glissando. Finally, we explain the
new two components, Model Builder and Detection.

2.1 Extraction of Candidates

Guitar performers can apply different articulations by us-
ing both of their hands. However, the kind of articulations
that we are investigating (legato and glissando) are per-
formed by the left hand. Although they (legato and glis-
sando) can cause onsets, these onsets are not as powerful
in terms of energy and also have different characteristics
in terms of harmonicity, comparing to the plucking onsets
[11]. Therefore, we need an onset determination algorithm
suitable to differentiate between plucking onsets and left-
hand onsets.

The first task of the extraction module is to determine
the onsets caused by the plucking hand, i.e. right hand on-
sets. As right hand onsets are more percussive than left
hand onsets we use a measure appropriate to this feature.
HFC is a measure taken across a signal spectrum and can
be used to characterize the amount of high-frequency con-
tent (HFC) in the signal [12]. As Brossier [13] stated, High
Frequency Content (HFC) measure is effective with percu-
ssive onsets but less successful determining non-percussive
or legato phrases. Then, HFC is sensitive for abrupt onsets
but not enough sensitive to the changes of fundamental fre-
quency caused by the left hand.

Aubioonset library [14] gave us the opportunity to tune
the peak-picking and silence threshold. One of the key
stages of candidate extraction is to optimize peak-picking
and silence thresholds in a way that only the plucking hand
onsets are determined and the pitch changes due to legato

Figure 2: High Frequency Content onsets from the Region
Extraction module.

or glissando are not determined as onsets. In order to find
suitable parameters for this goal, before running our model,
we used a set of hand annotated recordings. Our set is a
concatenated audio file which contains 24 non-expressive
notes, 6 glissando and 6 legato notes. We hand annotated
the onsets of non-expressive, legato and glissando notes.
What we want to obtain from Aubioonset was the onsest of
the plucking hand. Since this annotated set contains the ex-
act places of onset that we want to obtain from Aubioonset,
this set can be considered as our ground truth. After test-
ing with different parameters, we achieved the best results
with the following values for algorithm parameters: 1 for
peak-picking threshold and −85db for silence threshold.

An example of the resulting onsets proposed by HFC is
shown in Figure 2. Specifically, in the exemplified record-
ing six notes are played following the pattern detailed in
experiments (see Figure 16) where only 5 of them are pluck-
ing onsets. In Figure 2 detected onsets are marked as ver-
tical lines. Between third and fourth detected onsets an
expressive articulation (legato) is present. Thus, HFC suc-
ceeds because it only determines the onsets caused by the
right hand.

The second task performed by the extraction module is
to analyze the sound fragment between two onsets. First,
each portion between two plucking onsets is analyzed indi-
vidually. Specifically, two points are determined: the end
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Figure 3: Example of detection of a candidate to an ex-
pressive articulation.

of the attack and the release start. From experimental mea-
sures, we determined attack finish position as 10ms after
the amplitude reaches its local maximum. We determined
the release start position as the final point where local am-
plitude is equal or greater than 3 percent of the local maxi-
mum. Only the fragment between these two points is con-
sidered for the further analysis because the noisiest part of
a signal is the attack part and the release part of a signal
contains unnecessary information for pitch detection (see
[15] for details).

We use additional algorithms with a lower threshold in
order to capture the changes in fundamental frequency in-
side the sound fragment. Specifically, complex domain al-
gorithm [16] is used to determine the peaks and Yin [17]
is used for the fundamental frequency estimation. Figure 3
shows fundamental frequency evolution between the cen-
tral region presented in Figure 2. The change of frequency
detected points out a possible candidate of expressive ar-
ticulation. More details can be found in [10].

2.2 Selecting a Descriptor

After extracting the regions candidates to contain expres-
sive articulations, the next step was to analyze them. Be-
cause different expressive articulations (legato vs glissando)
should present different characteristics in terms of changes
in amplitude, aperiodicity, or pitch[8], we focused the anal-
ysis on comparing these deviations.

We built representations of these three features (ampli-
tude, aperiodicity, and pitch). Representations helped us
to compare different data with different length and density.
As we stated above, we are mostly interested in changes:
changes in High Frequency Content, changes in fundamen-
tal frequency, changes in amplitude, etc. Therefore, we ex-
plored the peaks in the examined data because peaks are
the points where changes occur.

As an example, Figures 4 and 5 show, from top to bot-

Figure 4: Different features of a legato example. From top
the bottom, representations of amplitude, pitch and aperi-
odicty of the examined legato region.

Figure 5: Different features of a glissando example. From
top the bottom, representations of amplitude, pitch and
aperiodicty of the examined Glissando region.

tom, amplitude evolution, pitch evolution, and changes in
aperiodicity. As both Figures show, glissando and legato
examples, the changes in pitch are similar. However, the
changes in amplitude and aperiodicity present a character-
istic slope.

So, as a first step we concentrated on determining which
descriptor could be used. To make this decision, we built
models for both aperiodicty and amplitude by using a set
of training data. The details of this model construction will
be explained in Section 2.4. As a result, we obtained two
models (for amplitude and aperiodicity) for both legato and
glissando as is shown in Figure 6 and Figure 7. Analyzing
the results, amplitude is not a good candidate because the
models behave similarly. In contrast, aperiodicity models
present a different behavior. Therefore, we selected aperi-
odicity as the descriptor.

2.3 Preprocessing

Before analyzing and testing our recordings, we applied
two different preprocessing techniques to the data in order
to make them smoother and ready for comparison.

2.3.1 Smoothing

As expected, aperiodicity portion of the audio file that we
are examining includes noise. Our first concern was to
avoid this noise and obtain a nicer representation. In or-
der to do that first we applied a 50 step running median
smoothing. Running median smoothing is also known as
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Figure 6: Amplitude models of glissando and legato.

Figure 7: Aperiodicity models of glissando and legato.

median filtering. Median filtering is widely used in digi-
tal image processing because under certain conditions, it
preserves edges whilst removing noise. In our situation
since we are interested in the edges and in removing noise,
this approach fits our purposes. By smoothing, the peaks
locations of the aperiodicity curves become more easy to
extract. Figure 8 and Figure 9 exemplify the smoothing
process and show the results we pursued.

2.3.2 Envelope Approximation

After obtaining a smoother data, an envelope approxima-
tion algorithm was applied. The core idea of the envelope
approximation is to obtain a fixed length representation of
the data, specially considering the peaks and also avoiding
small deviations by connecting these peak approximations
linearly. The envelope approximation algorithm has three
parts: peak peaking, scaling of peak positions according to
a fixed length, and linearly connecting the peaks. After the
envelope approximation, all the data regions we are inves-
tigating had the same length, i.e. regions were compressed
or enlarged depending their initial size.

We collect all the peaks above a pre-determined thresh-
old. Next, we scale all these peak positions. For instance,
imagine that our data includes 10000 bins and we want to
scale this data to 1000. And lets say, our peak positions are
: 1460, 1465, 1470, 1500 and 1501. What our algorithm
does is to scale these peak locations dividing all peak lo-
cations by 10 (since we want to scale 10000 to 1000) and
round them. So they become 146, 146, 147, 150 and 150.
As seen, we have 2 peaks in 146 and 150. In order to fix

Figure 8: Aperiodicity .

Figure 9: Smoothed Aperiodicity.

this duplicity, we choose the ones with the highest peak.
After collecting and scaling peak positions, the peaks are
linearly connected. As shown in Figure 10, the obtained
graph is an approximation of the graph shown in Figure 9.
Linear approximation helps the system to avoid consecu-
tive small tips and dips.

In our case all the recordings were performed at 60bpm
and all the notes in the recordings are 8th notes. That is,
each note is half a second, and each legato or glissando
portion is 1 second. We recorded with a sampling rate of
44100, and we did our analysis by using a hop size of 32
bins, i.e. 44100/32 = 1378 bins. We knew that this was
our highest limit. For the sake of simplicity, we scaled our
x-axis to 1000 bins.

2.4 Building the Models

After applying the preprocessing techniques, we obtained
equal length aperiodicity representations of all our expres-
sive articulation portions. Next step was to construct mod-
els for both legato and glissando by using this data. In
this section we describe how we constructed the models
cited briefly in the Section 2.2 (and shown in Figure 6 and
Figure 7). The following steps were used to construct the
models: Histogram Calculation, Smoothing and Envelope
approximation (explained in Section 2.3), and finally, SAX
representation. In this section we present the Histogram
Calculation and the SAX representation techniques.
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Figure 10: Envelope approximation of a legato portion.

(a) Legato Histogram (b) Glisando Histogram

Figure 11: Peak histograms of our legato and glissando
training sets.

2.4.1 Histogram Calculation

Another method that we are using is histogram envelope
calculation. We use this technique to calculate the peak
density of a set of data. Specifically, a set of recordings
containing 36 legato and 36 glissando examples (recorded
by a professional classical guitarist) was used as training
set. First, for each legato and glissando example, we deter-
mined the peaks. Since we want to model the places where
condensed peaks occur, this time we use a threshold which
is 30 percent and collect the peaks which have amplitude
values above this threshold. Notice that the threshold is
different than the used in envelope approximation. Then,
we used histograms to compute the density of the peak lo-
cations. Figure 11 shows the resulting histograms.

After constructing the histograms, as shown in Figure 11,
we used our envelope approximation method to construct
the envelopes of legato and glissando histogram models
(see Figure 12).

2.4.2 SAX: Symbolic Aggregate Approximation

Although the histogram envelope approximations of legato
and glissando in Figure 12 are close to our purposes, they
still include noisy sections. Rather than these abrupt changes
(noises), we are interested in a more general representation
reflecting the changes more smoothly.

SAX (Symbolic Aggregate Approximation) [18], is a
symbolic representation used in time series analysis that
provides a dimensionality reduction while preserving the
properties of the curves. Moreover, SAX representation
makes the distance measurements easier. Then, we applied

(a) Legato Final Envelope (b) Glisando Final Envelope

Figure 12: Final envelope approximation of peak his-
tograms of legato and glissando training sets.

(a) Legato SAX Representation (b) Glisando SAX Representation

Figure 13: SAX representation of legato and glissando fi-
nal models.

the SAX representation to histogram envelope approxima-
tions.

As we mentioned in Section 2.3.2, we scaled the x-axis
to 1000. We made tests with step sizes of 10 and 5. As
we report in the Experiments section, an step size of 5
gave better results. We also tested with step sizes lower
than 5, but the performance clearly decreased. Since we
are using an step size of 5, each step becomes 100 bins
in length. After obtaining the SAX representation of each
expressive articulation, we used our distance calculation
algorithm which we are going to explain in the next sec-
tion.

2.5 Detection

After obtaining the Sax representation of our glissando and
legato models, we divided them into 2 regions, a first re-
gion between bins 400 and 600, and a second region be-
tween bins 600 and 800 (see Figure 14).

For the expressive articulation excerpt, we have the en-
velope approximation representation with the same length
of the SAX representation of final models. So, we can
compare the regions. For the final expressive articulation
models (see Figure 13) we took the value for each region
and compute the deviation (slope) between these two re-
gions. We make this computation for both legato and glis-
sando models separately.

We also compute the same deviation for each expres-
sive articulation envelope approximation (see Figure 15).
But this time, since we do not have SAX representation,
for each region we do not have single values. Therefore,
for each region we compute the local maxima and take the
deviation (slope) of these two local maxima. After obtain-
ing this value, we compare it with the numbers that we
obtained from both final models of legato and glissando. If
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(a) Legato (b) Glisando

Figure 14: Peak occurrence deviation.

Figure 15: Expressive articultion difference.

the deviation value is closer to the legato model, we anno-
tate this expressive articulation as a legato and vice versa.

3. EXPERIMENTS

The goal of the experiments was to test the accuracy of our
approach. Because legato and glissando can be played in
ascending or descending intervals, we were also interested
in studying the results considering these two movements.
Additionally, since in a guitar there are three nylon and
three metallic strings, we also studied the results on these
two sets of strings.

Borrowing from Carlevaro’s guitar exercises [19], we
recorded a collection of ascending and descending chro-
matic scales. Legato and glissando examples were recorded
by a professional classical guitar performer. The performer
was asked to play chromatic scales in three different re-
gions of the guitar fretboard. Specifically, we recorded
notes from the first 12 frets of the fretboard where each
recording concentrated in 4 specific frets. The basic exer-
cise from the first fretboard region is shown in Figure 16.
Each scale contains 24 ascending and 24 descending notes.
Each exercise contains 12 expressive articulations (the ones
connected with an arch). Since we repeated the exercise
at three different positions, we obtained 36 legato and 36
glissando examples.

We presented all the 72 examples to our system. Then,
our system proposed a possible expressive articulation as
described in Section 2. Results are reported in Table 1.

First, we may observe that a step size of 5 is the most ap-
propriate setting. This result corroborates that a higher res-
olution when discretizing is not required and demonstrates

Step Size
Recordings 5 10
Ascending Legato 100% 100%
Descending Legato 66.6% 72.2%
Ascending Glissando 83.3% 61.1%
Descending Glissando 77.7% 77.7%
Glissando Metallic Strings 77.7% 77.7%
Glissando Nylon Strings 83.3% 61.1%
Legato Metallic Strings 86.6% 80%
Legato Nylon Strings 73.3% 86.6%

Table 1: Performance of our model applied to test set

that the SAX representation provides a powerful technique
to summarize the information about changes.

The overall performance for legato identification is 83.5%.
Notice that ascending legato reaches a 100% of accuracy
whereas descending legato achieves a 66.6%. Regarding
glissando, there is no difference between ascending or de-
scending accuracy (83.3%,77.7%). Finally, analyzing the
results when considering the string type, the results show a
similar accuracy.

4. CONCLUSION

In this paper we presented some preliminary results on the
identification of two classical guitar articulations, legato
and glissando, from a collection of chromatic exercises
recorded by a professional guitarist. Our approach uses
aperiodicity information to identify the articulation and a
SAX representation to characterize the articulation mod-
els.

Reported results show that our system is able to differ-
entiate successfully among these two articulations. Our
next goal is to study the capabilities of our approach in
the context of a real performance. To avoid the analysis
on a polyphonic recording, we plan to use an hexaphonic
pickup.
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ABSTRACT

We present in this paper an original approach of the use
of tonality for composition and improvisation, developed
by the French flute player, composer and improviser Ma-
lik Mezzadri. The main concept is about finding a min-
imal group of notes which acts as a signature of a given
scale in the major-minor tonal system. We will first define
the notion of tonal signatures in the tonal system and ex-
pose its principles. Among the possible way to solve our
problem and find all the tonal signatures, we define some
constraints and we use a constraint solver implemented in
Open Music[1], a computer assisted music and composi-
tion environment. We provide some examples of origi-
nal compositions along with improvisation playing based
on the tonal signature concept. Malik Mezzadri’s music
counts already a rich discography with players from the
international jazz scene.

1. TONAL SIGNATURES

1.1 In the context of major-minor tonal system

Tonal signatures are subsets of notes singled out from the
tonal system. We consider the major-minor tonal system
as referred and characterized by the three following main
modes (Table 1 and Figure 1) :

Table 1. The main modes of major-minor tonal system
Modes Intervalic structure
Major [T, T,H] T [T, T,H]
minor [T,H, T ] T [T, T,H]

harmonic minor [T,H, T ] T [H,T&H,H]

In Table 1. the letter T represents a whole tone inter-
val, the letter H a half tone interval, and T&H represents
one and a half tone interval. The brackets indicate the con-
struction of the two diatonically disjoints tetrachords; they
are the fundamentals to build the heptatonic scales of the
major-minor tonal system. By transposing the three previ-
ous modes over the twelve chromatic tempered notes, we
built the whole set of scales of our considered tonal system.
We end up here with 36 scales.

Copyright: c©2010 Gilbert Nouno et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided
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Figure 1. The major, minor melodic and harmonic minor
modes of the tonal system (here given in C)

1.2 Definition

The notion of tonal signature starts with a simple idea.
In the context of western classical and improvised music,
the tonal system plays an important role. To a certain ex-
tent, from free jazz to main stream improvised music, and
towards experimental improvised music fields, it is often
possible to use extended scales that are still making ref-
erence to the notion of center or tonality. Depending on
the playing, on the speed and on the compositions, differ-
ent degrees of complexity give a more or less clear read-
ability, or intelligibility, of the tonal center, even if modi-
fied by fast modulation changes. Malik Mezzadri has been
looking for a minimal principle to deal with the readabil-
ity of this center, something that would act as a minimum
of information needed to understand the tonal center for
someone who does share this cultural and musical back-
ground. Shouldn’t a principle of minimalism also imply
simplicity? The Tonal Signatures embrace the idea that the
French flute player was initialy expressing and experiment-
ing intuitively with his musicians in his compositions, be-
fore formalizing it. We define the tonal signature concept
as the following :

Definition 1 : A tonal signature is the smallest set of notes
which belongs to one and only one transposition of a mode
of the major-minor tonal system.

Definition (1) makes this group of notes, by the condition
of unique existence, and if proved, an exclusive signature
of the considered transposed mode, a given scale, among
the whole thirty six possible scales. A tonal signature does
not contain enharmonic ambiguities, which means that the
set of sounds handled in one tonal signature is also unique
and specific of the mode and its own specific transposition.
We can reformulate definition (1) in a slightly more math-
ematical way :
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Definition 2 : A tonal signature of a scale S is a minimal
subset of notes within S that is not contained in any scale
S′ different from S.

Let us explain why the notion of minimality makes sense.
For a given scale S, a typical set T of S is any subset of
S that is not contained in any other scale different from S.
Obviously, any set T ′ such that T ⊂ T ′ ⊆ S is also typical.
So, it makes sense to look for minimal typical sets. Such
sets are what we call tonal signatures. The main questions
we now have are : How many tonal signatures do exist ?
How do we find them ? How can we use them for composi-
tion and improvisation ? Can we extend the tonal signature
concept with other musical modes ?

1.3 Finding tonal signatures

We use the computer assisted compositional environment
Open Music[1] to look for the solutions of the tonal sig-
nature problem. To elaborate the research of the minimal
typical subsets, we define some constraints (Figure 2) to
generate the subsets of notes among the 36 tonal scales de-
fined in §1.1 and to look for unique belonging property to
the reference scale (Figure 3). For example, if we consider
the scale of C major as the reference scale, we want to
find what are the smaller and typical subsets of notes that
only belong to C major. We used the Screamer 1 constraint
solver to express the constraints and find the solutions.

Figure 2. constraint definition in Open Music with
Screamer solver to find a tonal signature

We end up with seven tonal signatures (Table 2) with
their structures in semi-tones related to the given tonic. In
Table 2 and note examples are given for the C tonic.

We use the following convention for names : M for the
major mode, h for the harmonic minor mode and m for
the ascending melodic minor mode, followed by a figure
before the tonic letter to label the solution if more than
one.

The Screamer constraint solver builds its own search
tree and we don’t have too much control of how it looks

1 Screamer is an extension of Common Lisp that adds support for non-
deterministic programming. Screamer consists of two levels. The basic
nondeterministic level adds support for backtracking and undoable side
effects. On top of this nondeterministic substrate, Screamer provides a
comprehensive constraint programming language in which one can for-
mulate and solve mixed systems of numeric and symbolic constraints.

Figure 3. Constraint rule expressing unique belonging
property of a candidate signature in the set of scales

Table 2. the 7 tonal signature structures
Modes Structure C tonal signature name
Major 0, 4, 5, 7, 11 C,E, F,G,B MC

minor
0, 3, 5, 9, 11 C,Eb, F,A,B m1C
3, 5, 7, 9, 11 Eb, F,G,A,B m2C
2, 3, 9, 11 D,Eb,A,B m3C

harmonic min
0, 3, 8, 11 C,Eb,Ab,B h1C
0, 7, 8, 11 C,G,Ab,B h2C
2, 7, 8, 11 D,G,Ab,B h3C

for the solution. But as it gives us the solutions and be-
cause the set of scales and subsets is not too large, we can
cope with this. We are implementing a new version with
the Gecode 2 constraint solver as this library is now avail-
able in Open Music and also in the C language. This is in-
teresting as we can also use the solver motor in a real time
environment like Max5 3 to request solutions on demand
with nearly no time headroom. This option has also the
advantage to enable the use of other scales and constraints
as we will see later.

It is nonetheless possible to prove mathematically the
existence of the tonal signatures by considering the prob-
lem as an appropriate set covering model [2] which be-
longs to the class of integer linear programming problems.
Arbitrary set covering problems are NP-complete [3], but
[4] prove in this more general case that a fast and direct
algorithm solves the tonal signature problems.

2. A COMPOSITIONAL APPROACH

We now focus on the use of the tonal signatures. Tonal sig-
natures provide both material for composition and for im-
provisation. To stay with the same minimalistic approach
as their definition, we hardly ever use the tonal signatures
m1 and m2. m3 is a smaller signature so we privilege this
one and skip the larger ones. In this compositional con-
text we only use five tonal signatures : M,h1, h2, h3 and
m3, and we now notate the minor tonal signature m3 as m
(Table 3).

2 http://www.gecode.org/
3 www.cycling74.com
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Table 3. context of 5 minimal tonal signatures
Modes Structure C tonic name
Major 0, 4, 5, 7, 11 C,E, F,G,B MC
minor 2, 3, 9, 11 D,Eb,A,B mC

harmonic minor
0, 3, 8, 11 C,Eb,Ab,B h1C
0, 7, 8, 11 C,G,Ab,B h2C
2, 7, 8, 11 D,G,Ab,B h3C

2.1 Some musical implications

One of the first implication of the use of tonal signature is
the diminishment of the functional possibilities of the har-
monic material of the tonal system. The tonal system is
strongly rooted in the western culture, and we can under-
stand easily it without going through the abstract or philo-
sophical ideas of its evolution. A function from the tonal
system is a musical construction that is inclined to under-
line or undertake the reference system in which the music
takes place.

The favorite subject of tonal system is itself. The mu-
sic that grew up in this context organized itself in struc-
tures and tools as a tautology of its own views. The tonal
system is indeed almighty, and organizes the musical ma-
terials so as to maintain its supremacy. It is a fact in the
classical period that even the more subtile harmonic tran-
sitions are speaking by themselves of the tonality of the
composition. And so it is inside the western cultural mu-
sical background, people became soaked with tonality and
knew it intuitively, unconsciously : for a non musician, it is
often not difficult to organize a small melodic phrase that
makes reference to a tonal mode. It is not new that the tonal
system creates a hierarchical music where no subset of the
scale can pretend to the same rights as the whole reference
scale has.

With the tonal signatures, we nevertheless achieve the
building of subsets that do share the same functional pre-
rogatives as their ensemble of reference : being clearly
identifiable to their reference scale. The C major mode for
example, is nothing else than the C major mode within the
tonal system, whereas a singled out triad of C major would
not be evidence of the C major mode, as it could be evi-
dence of another mode. We need a combination of several
triads to recognize what is the C major mode. The MC
tonal signatures is enough to restore this information. In
fact, any tonal signature restores the identity of the mode it
belongs to. As it is now a minimal information, we might
nevertheless find ourself a bit lost or disturbed to the listen-
ing to some incomplete parts of a scale, even if they should
retain the whole information of the mode ! We might ex-
plain that by the fact that the tonal signatures retains, as de-
scribed in §1.2, the minimal and typical melodic structure
of a tonality, but implicitly is retains less of its harmonic
structure. We still have the minimal information to under-
stand the notes belonging to a mode, but we have less in-
formation to restore all the harmonic qualities of the same
mode among the whole tonal system.

2.2 Resolutions with tonal signatures

With the tonal signatures, we create a paradoxical situation
where we hold harmonic ambiguities, or rather non com-
plete harmony, together with unambiguous melodic infor-
mation. In this new situation, we are strangely in between
modality, from melodic consideration, and tonality, from
harmonic consideration. In this context, we propose two
ways to use the tonal signatures to compose musical forms
: one is an afferent or inward resolution, the other is an
efferent or outward resolution.

2.3 Afferent movements of the tonal signatures

We mean with afferent movements to use the tonal signa-
tures in their own particularity but retaining the link they
have with the tonal system. We can make a comparison
with the dodecaphonic serialism attitude : Arnold Shoen-
berg often used his musical material in afferent way, in-
serting it in forms and structures of the tonal system. Con-
versely, Anton Webern deduced forms and structures from
the musical materials and its inner rules, as if the form was
a consequence of the dodecaphonic series and its inner ar-
rangement. We note that the functional use of the tonal
signature inside the tonal system claims a kind of serial
existence : to achieve its function, a tonal signature must
be explicit and all of its note have to be used.

2.3.1 Common notes : sequence vs progression

The project and record [5] has been realized with the affer-
ent techniques use of the tonal signatures. The approach
was to use tonal melodies from the cultural repertoire and
to harmonize it only with tonal signatures. To achieve this,
we match the mode the parts of the melody makes refer-
ence to, and we proceed to the writing of the sequence of
tonal signatures. We insist on the term sequence and not
progression : progression is like chord changes and would
emphasize or point a tonality within the chain of the mu-
sical material, while the term of sequence implies to keep
the maximum of common notes in respect with the given
melody. Besides, to keep a musical touch and feeling of
the harmonization, choices are done intuitively so that the
foreign notes brought implicitly or per se with the tonal
signatures don’t disturb too much the melodic constraint.
The first musical tunes written with this system are ”Z”
in [6] and ”Vienne” in [6]. The former undertakes har-
monic realization of the tonal signatures, while the later
undertakes melodic realization; the original harmony is of
a classical tonal implementation.

2.3.2 Tritone resolution

Another possibility for afferent use of tonal signatures is
triton resolution. This time we can consider progressions,
as we deal with functional quality of the chaining tonal
signatures. We build progressions on the tritons resolution
inside a tonal signature towards the next one, so that they
also share, or not, the most possible common notes with
the tonal reference of this resolution. We have considered
the two easier resolutions with semi-tones. For example
(E#, B) ⇒ (F#, A#) , and (F,B) ⇒ (E,C). A com-
position where this principle is used is [hidden for blind
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reviewing] in the project [hidden for blind reviewing] [7].
Here is, from the (F,B) triton and its tonal en-harmonies,
the set of tonal signatures that contain its resolutions :

1. MF#, MC

2. m1C#, m2C#, m3G, m3Db

3. h1Bb, h1E, h2Bb, h2E, h2B, h2F, h3B, h3F

We got interested in applying tonal signatures to the triton
resolution because it is a subject of discussion since ages,
and as such is a subject of importance that cannot be ig-
nored.

2.4 Efferent mode of the tonal signatures

We develop here other ideas to use the tonal signatures.
The tonal signatures are coming from a tonal context, from
a deductive and conservative approach, which involves min-
imal means to retain functional data relative to the three
subsets of the tonal system. But the tonal signatures are
not so familiar to listen to. If we play an h2 tonal signa-
ture, even looping this information, it would still be diffi-
cult for an average listener to identify it with certainty to its
reference mode. We can nontheless make the most of this
remark! We can use this material in a efferent way, know-
ing that the information it holds would have few or maybe
no interferences with other information from another con-
text. Moreover, the tonal information of a tonal signature
would also be restored in a new context, in a more subtle
way which can stimulate a lot the cultural memory of the
listener.

2.4.1 Talea color

The choosen approach in this project is realized in ref-
erence to the Talea Color of the Ars Nova period. The
melodic material or color is rhythmically organized with a
given temporal cycle or talea.

In the first record of [6], the tonal signatures are used
as a polyphonic material without contrapuntal treatment,
but rather like monoliths. The score is built from a bass
line which acts as an attractor for the tonal signature, cho-
sen for its harmonic role or in respect to common notes.
We can build this way a polyphony of tonal signatures,
which makes a musical topology on top of which improvi-
sation can unfold. Rules for music ranges are added to con-
strain the scoring, and these combinations tends to make
the composition, as an example is given in (Figure 4), re-
semble a kind of cellular automata process .

2.5 Tonal signatures among Messiaen’s modes

The meeting with Olivier Messiaen’s modes of limited trans-
position is very stimulating. They are a main domain of
application with tonal signatures in the efferent mode. The
limited transposition modes of Messiaen, notated LTMM,
are a logical consequence of the tempered system, maybe
even more than the dodecaphonic system. We can see Mes-
siaen’s modes as a gradual chromatic development of the
tonal system. The LTMM are subsets of the chromatic
scale, and because of their inner symmetry, they remove

Figure 4. polyphony of tonal signatures within constraint
of tessitura given as a chord at the start of the stave

polarity of notes, as found in tonal system, and replace
it with polarity of axes. From the seven LTMM, we only
consider the third and the seventh mode (Figure 5), as they
contain all the others, considering all the transpositions. If
we look for tonal signatures in limited transposition modes
M3 and M7, we now find the same intervalic structured sig-
natures in one mode, i.e. at least one transposition of the
same signature is found in the modes (Table 4). From this
very singular observation, we can now consider the possi-
bility to go back to the idea of progressions, and not merely
sequences. We can reformulate the same idea : from the
tonal system context where we have tonal signatures with
notes, we arrive in the LTMM context to sign progressions
with tonal signatures, that we can call progression signa-
tures.

3. CONCLUSION AND FUTURE PERPSECTIVES

Mixing tonal signatures concept within context of Messi-
aen’s modes is opening some new material and intuitions
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for new compositions and improvisations. We can use the
tonal signatures also in more conventional forms, as Canons
or Counterpoints (Figure 6). We will remind that in Messi-
aen’s mode context, where there is by symmetric construc-
tion no more tonic function, the tonal signature concept
fits very well, because it does not make a classical hear
reference to one scale, as sometimes it also misses tonic or
triad. Then the real difficulty begins for the musicians, as
one needs to build reflex and a new musical thinking mind
with this musical material, to digest it, so as, from a new
compositional language it becomes also a natural language
to improvise and play with.
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 Figure 5. Limited transposition modes of Messiaen : CM3

and CM7

Table 4. Tonal signatures in Messiaen’s mode
LTMM Tonal signature inside LTMM
CM3 MEb MG MB m1Eb m1G m1B

m2Db m2EB m2F m2G m2A m2B
m3Db m3F m3A h3C h3E h3Ab
h1C h1Eb h1E h1G h1AB h1B
h2C h2Eb h2E h2G h2AB h2B

CM7
MDb MD MG MAb
m1C m1D m1EB m1F# m1Ab m1A
m2C m2D m2E m2F# m2Ab m2Bb
m3C m3Eb m3E m3F# m3A m3Bb
h1C h1Eb h1F1 h1A
h2C h2C# h2F# h2G
h3C h3C# h3E h3# h3G h3Bb
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éleonore avanceFigure 6. Four voices counterpoint, polyphony of tonal
signatures mixed within Messiaen modes’s context
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ABSTRACT 

Some old churches in Spain are presently used for con-
certs and other musical or leisure performances. The 
acoustical conditions of theses buildings are not optimal 
for these new uses. For this reason, it is necessary to 
modify its original structure in order to achieve better 
acoustical features. This paper describes the work done in 
order to improve the acoustics of a church in Vinaròs, it 
is presented the refurbishment of this space as a multiple-
use room, also to keep the old aesthetics it is proposed a 
reversible actuation. The proposal is virtually analyzed by 
using a ray tracing tool.   

1. I�TRODUCTIO� 

Acoustic rehabilitation of churches for a non-liturgical 
use is an open field in acoustics. Many resources and 
efforts have been invested to obtain the adequate public 
environment where anyone can listen to a specific kind of 
musical signal. In order to develop this sort of rehabilita-
tion projects several techniques can be used. Among 
them the most well-known techniques are: the method of 
the scale model for the acoustical modelling and acoustic 
simulation techniques by means of several numerical 
methods. Here, it is interesting to point out that the acous-
tic simulation is quite cheaper than other methods, for 
this reason nowadays they are widely spread. 
Old Churches are presently used as concert rooms, how-
ever the structure of these buildings is not optimal.  The 
modification of these churches for non-liturgical uses 
have made grown interest for rehabilitation of these ec-
clesiastical spaces, in order to adapt them as poly-
functional rooms devoted to cultural or leisure activities.  
In the Iberian Peninsula, most of the towns and cities 
have one or more churches, chapels, cathedrals, monas-
teries or convents, which have had modifications inside 
through the centuries and, therefore, have varied their 
acoustic conditions. Thus, when they are refitted for other 
uses, as for example musical auditoria, it would be inter-
esting to take into account this factors, in order to have 
similar final results as in the original case, since the 
acoustical conditions of the churches are deficient for 
new uses in most of the cases, due to architectural altera-
tions, changes in the furniture, or decoration, it has also 
influence the different position of musicians, performers 
and audience. 
 

In this rehabilitation proposal, the original structure of the 
church as a whole has been respected. Also, the aesthetic 
and artistic identity has been preserved, acting in a rever-
sal way and making adaptations for each one of the needs 
and uses of the room. From the point of view of conser-
vation and refurbishment of patrimonial goods, we have 
respected the original space, but with minimum changes. 
From the point of view of the current use, we have pro-
posed a set of reversible alterations in the environment 
which allow optimum acoustical conditions in this room 
for the uses planned. In this paper, a simulation with 
CATT Acoustics simulation package has been made, in 
order to predict the response of the acoustic refurbish-
ment proposals. 

2. HISTORY A�D CHARACTERISTICS 

Saint Augustine Church is part of the remains of the old 
Augustinian Fathers Monastery which dates from the 16th 
century. It is a baroque building that has a Latin cross 
shape with three side chapels at each band among the 
buttresses connected themselves. The stone cross has a 
dome upon the tambour and scallops and a presbytery 
roofed with groin vault, as well the side chapels of the 
nave, which are nowadays totally empty. The façade 
stands out by its symmetric composition. At both sides of 
the entrance two bell towers are risen with their own 
door, which frames the central wall crowned by a mold-
ing cross section and its façade of lintel access (Fig 1). 

 

Figure 1. Saint Augustine Church façade. 

The church was used as a stable for the Napoleon cavalry 
in 1808 and also it was deteriorated during the Spanish 
Civil War. The church was used temporarily to worship 
and it was definitively closed to the audience in 1975. In 
the 80’s (eighties), the old church was fitted out and re-Copyright: © 2010 Segura et al. This is an open-access article distrib-

uted under the terms of the Creative Commons Attribution License 3.0 

Unported, which permits unrestricted use, distribution, and reproduc-

tion in any medium, provided the original author and source are cred-

ited. 
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stored functionally as an auditorium, being nowadays the 
Wenceslao Aiguals de Izco Local Auditorium  
Saint Augustine church consists of a 400m2 surface, 
which has attached the chapel of Saint Victoria in which 
the Local Museum rooms are located. The plan church is 
29.3 meter long from the entrance door to the apse; it is 
around 16 meter wide counting the width of the side 
chapels, 13.2 meter high from the floor to the vault and 
23.1 meter high to the central part and the highest from 
the dome. Therefore the church volume is around 
4900m3. The stalls have a surface of 72m2 and consist of 
14 rows of 13 seats each one of them (Fig 2). 

 

Figure 2. Stalls and choir of the church. 

3. MODEL A�D SIMULATIO�: A PRE-
VIOUS STAGE 

3.1 Geometric model 
In order to model Saint Augustine Church in Vinaròs, a 
variation of the ray-tracing method has been used. This 
was a hybrid cone-tracing combined with an image-
source approach called randomized tail-corrected cone-
tracing algorithm (RTC-II). The geometric model was 
developed by using CATT Acoustics [3], in order to pre-
dict the acoustic behavior and to carry out a valid global 
proposal to its restoration and acoustic fitting-out.  

Ray tracing algorithms take into account that a wave gen-
erated by a source can be linked to a ray, cone or pyramid 
by means of the eikonal equation. The source statistically 
emits a series of rays with a specific energy which, on 
inciding with the surfaces of the walls which delimit the 
geometric model, lose energy with each reflection. In our 
case, both calculation programs used take into account 
specular and diffuse reflections. In the case of CATT, the 
diffuse reflections are calculated from the explicit pa-
rametrization of the absorption and scattering parameters 
of each surface. 
The modeling process of one court consisted in defining 
all surfaces in the same court, whatever its shape and 
dimensions, specifying the coordinates of its respective 
vertexes [4]. In the case of Saint Agustine Church of Vi-
naròs (as has already explained above), the coordinates 
have been calculated from the ground plan provided by 
the Culture Department of the Town Council of Vinaròs 
and from the measurements made with an ultrasound sen-
sor of the elevation levels necessary to develop the model 
in three dimensions that allows simulating of the acoustic 
behavior of the court and, in this way, can put in to carry 

out the proposal of adequate materials to the restoration 
and acoustic fitting-out of the church to can be used as an 
auditorium (Fig 3). 

 

Figure 3. Different views of the modeled church in 
CATT. (a) front view, (b)back view 

As each one of the surfaces the church consist of a certain 
material, it is necessary to provide the respective values 
of absorption coefficients of each one of them. As sur-
faces are smooth enough, their scattering coefficients are 
low, (about 10%) according to the Lambert law. Finally, 
to complete the model, it is necessary to specify the posi-
tion and characteristics of the sound sources in the build-
ing and the positions of the respective receivers. 

3.2 Calibration of the model 
In order to make a proper calibration of both models, 
measurements were made by using a MLSSA card, which 
uses the MLS technique to perform the acoustic assess-
ment of parameters in any room according to ISO 3382-
1:2007. Measurements were done in 16 positions. 
The MLS technique uses a pseudo-random binary se-
quence as excitation, whose self-correlation function cor-
responds to a Dirac delta (Rxx(t) ≈  δ(t)). The cross-
correlation of any signal with  δ(t) is the signal itself, 
which means that: 

Rxy(t) ≈  δ(t) * h(t) = ∫ h(τ)δ(t+τ) dτ = h(t) (1) 
Therefore, in a linear system, if we calculate the cross-
correlation between the MLS signal applied to the input 
and the signal recorded at the output, we can determine 
the impulse response of this system and thus calculate its 
transfer function by means of applying the FFT. 
The values obtained for RT30 in octave frequency bands 
were used to calibrate both acoustical simulation models. 
In this case, an error up to 10% in this reverberation pa-
rameter has been allowed, in order to keep the ‘just no-
ticeable differences’ (jnd’s) values in an adequate range 
for all the parameters. Figure 4 shows the spatial average 
values per frequency bands of RT30 for the tonal curve of 
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the room. The error bars show the difference between 
measurement and simulation. 
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Figure 4. Average tonal curve for T30 measurements, CATT 

for 16 positions 

Once the models are developed and calibrated, they are 
available for throwing a certain number of rays (with a 
number high enough to get valid results according to the 
volume of the room). These rays come from the sources 
modeled in the process. 
In our case, 20,000 rays were thrown, considering for 
CATT 2 seconds of truncation time. This choice pre-
sented a compromise formula obtaining the satisfactory 
results for a reasonable calculus time. After tracing the 
whole amount of rays and processing the information of 
the simulation, it is possible to obtain the impulse re-
sponse in a specific receiver [5], [6]. 
The original church is modeled, before intervening (stick-
ing absorbent panels in the vault, apse, etc). The surfaces 
are defined and are organized in groups, attributing the 
type of material they are made up of to each surface or 
group. Five materials have been considered mainly in the 
original church. The configuration of materials to model 
the original church has parquet floor for the stalls floor, 
which show a slight slope in order to get higher height.  
In the side chapels, the central round, the sides of the 
church and the front and back walls of the room, the ma-
terial used is plaster and vermiculite. In the vaults and 
dome, the chorus, the entrance door and the stage floor, 
common wood was used. For side corridors and for the 
ones which are between the stage and the first row of 
stalls carpet was used. The values of the respective ab-
sorption coefficients (α) have been taken from the bibli-
ography [7] for frequencies between 125 and 4000Hz in 
octave bands. 

3.3 Sound source 
The characteristics of the source have been defined as 
well as its position and orientation that could belong to a 
person’s mouth located in the centre of the stage, in the 
position (X;Y;Z) (19.2, 7.9, 2.3) with a certain power. To 
these effects and subsequent ones, it could be noticed that 
the origin of coordinates (0, 0, 0) chosen to model the 
court have been located at floor level at the left side of 
the entrance of the church seen from the stage. The 
acoustic characteristics of the source are: 

 Position:   X =   19.23  Y =    7.90  Z =    2.30 
Orientation:  Azimuth   =    0.00º 
 Rise  =    0.00º 
 Rotation  = 0.00º 
Limit angles: Azimuth: between 0.00º and 360.00º 
 Rise: between -90.00º and 90.00º 
Delay in the emission: 150 ms 
Acoustic parameters (to the six octave bands between 125 and 4000 
Hz) 
Frequency       125   250   500   1000   2000   4000 Hz 
Resonant level to 1m      70.0   73.0   76.0   79.0   82.0    85.0 dB 
Power                              73.1   76.1   79.1   82.1   85.1   88.1 dB 
Horizontal -3dB : 35.00º (to all octave bands) 
Vertical -3 dB:  45.00º (to all octave bands) 

Table 1. Sound source characteristics. 

Regarding to the number of receivers, 16 were considered 
regularly distributed in the stalls, three receivers in the 
first seat stall (a), in the seventh and thirteenth of the first 
row, in the fifth, ninth and fourteenth. Two detectors 
were positioned symmetrically on the stage at both sides 
of the source (Ed and Ei, right and left stage) and two 
detectors more in the choir, to both sides (Cd and Ci, 
right and left choir). Figure 5 shows the positions of each 
one of the 16 receivers considered, as well as the source 
position. 
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Figure 5. Average tonal curve for T30 measurements, ATT 

for 16 positions 

The number of the receivers used is big enough to charac-
terize the acoustic response of the church in detail and 
has been selected according to the ISO 3382-1:2007. It is 
also necessary to introduce data to the software (CATT), 
because of the propagation properties in the environment  
such as: relative humidity (50 %), room temperature (20 
°C) and air absorption (dB/100m). Finally, it is interest-
ing to emphasize that to build the model of the Saint 
Agustine Chuch, 530 different surfaces were considered. 

3.4 First calculations 
After the analysis of the results obtained from the predic-
tive running of the model of Saint Agustine Church in its 
original state, it should be pointed out that the church 
offers poor acoustic conditions for talking and for musi-
cal and multi-functional use.  
On one hand, the reverberation time ranges obtained are 
between 1.35 and 1.95 for CATT. The optimum rever-
beration time for a court whose volume is 4900m3 should 
range between 0.9 and 1.3s [4], [8], [9], [10], [11]. This 
reverberation time is produced by a high reflectivity and 
low diffusion on the walls and the plastered ceiling (and 
vermiculite). We also have to keep in mind possible fo-
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calizations, which can appear due to the dome, the vaults 
and the apse. All these focalizations result in a non-
constant distribution in the room, as in case of the pres-
sure levels and the definition and clarity indexes (D50 
and C80). 
In this way, the pressure levels off in the room after a 
typical distribution of decreasing in the receivers each 
time further away from the source. This is due to the de-
crease of intensity with the distance, in free field condi-
tions. For this reason, reflections should be reinforced in 
the last rows, creating a diffuse field, more uniform in the 
whole audience zone and the stage. It is observed that the 
pressure levels decrease up to 10 dB between the receiv-
ers located in the stage and located in the last rows. 
The values for the definition D50 index are included be-
tween 30% and 72% for CATT. These values adequate, 
but ideal values should be taken between 50% and 75% 
to assure good intelligibility. In this way, speech does not 
loose definition or clarity and it can be listened in a 
proper way in every place of the church [4]. Therefore, 
the values obtained at the stage receivers oscillate be-
tween 65% and 78% for CATT. These high values for 
D50 parameter are reasonable due to the proximity to the 
source. In the same way, analyzing the values of the clar-
ity index C80, we can conclude that the results are not the 
optimum ones. Although the values for the front rows can 
be considered as acceptable, the results for the back rows 
are totally unacceptable [4]. 
For Speech Transmission Index values (STI) and Rapid 
Speech Transmission Index (RASTI), the results obtained 
qualify the church acoustically in its original state as a 
weak or regular room. The values of the STI index were 
between 0.5 and 0.66 for CATT. These indexes are 
measured in normalized units between 0 and 1 and show 
the intelligibility in the church [8], [4], [9]. The results 
obtained show regular intelligibility to use the church as a 
room for speech. 

4. RECOMME�DATIO�S FOR REHA-
BILITATIO� 

The main aim exposed in the study of Saint Agustine 
Church in Vinaròs is to improve the acoustics of the 
room, although respecting the structure and aesthetics of 
the church as much as possible. Here it is important to 
point out that the church in its current state has already 
undergone a process of fitting-out. This is the main rea-
son for the existing slight slope in the stalls, as well as the 
use of parquet flooring, the carpet and the absorbent ma-
terial in the vault, the dome and the apse. The absorbent 
material was damaged in its function, as well as aestheti-
cally, due to humidity. In this work, this absorbent mate-
rial has not been considered in the modeling, but instead 
the church has been taken in its original state, without 
this absorbent material. The slope of the stalls, the par-
quet and the carpet of the floor have also been taken into 
account. Non-considering the absorbent material is due to 
aesthetic reasons, as the absorbent material panels break 
the aesthetics of the building. Therefore, in the global 
proposal of rehabilitation and acoustics fitting the preser-
vation of the original structure has been contemplated 

first working on it in a reversible way. This was made by 
implementing several objects which can be removed after 
the performances, if desired, giving a wide range of pos-
sibilities. 
After the study of the several proposals made in several 
churches [8], [12], [13], [14], [15], [16], [5], [6], [17] and 
the analysis of the different possibilities for Saint 
Agustine Church, our proposal consist of the following 
corrections in its model: 
• The sloping floor of the stalls is kept, but the floor 

material is changed into an ordinary/poor-quality 
wood floor; the lateral corridors and the front corri-
dor of the stalls are made of carpet; the floor of the 
chapels and the stage corridors are parquet; the walls 
of the chapels, apse, domes, vaults, walls and friezes 
are still made of plaster and vermiculite as in the 
original modeling; the balustrade of the choir and the 
access door to the church are made of wood. 

• The setting of mobile curtains of gathered velvet is 
modeled, in front of the arches of the side chapels 
and covering the base of the dome, in such a way that 
it is not only used as an absorbent material but also it 
provokes a higher number of reflections on the audi-
ence zone, avoiding the fitting connection to the 
chapels. The focalization coming from the rays re-
flected in the dome and the delays or focalizations 
not desired, which increase the reverberation time 
punctually. 

• At the end of the stage four common wood panels are 
set out, making up an acoustic shell that is located in 
front of the apse. These panels can be provided with 
wheels in order to carry them. The panels (Figure 6) 
are around 7 meter high and around 1.74 meter wide, 
which remain in the centre (a) and 1.86 meter wide, 
which are outward oriented (b). With this measure-
ment, the reflections coming from the apse and its 
possible focalizations are mitigated. It also allows for 
the early reflections for the audience, as well as for 
the performers who can be listened to themselves 
better. 

• On the stage three sheets/plates of stained-glass are 
hang up with several slopes, making up another 
acoustic shell (Figure 6), so they do not hamper the 
vision, but the sound arrives before to the audience 
as the reflections are produced in full time and are di-
rected to the audience in a more direct way. 

• Moreover, in the modeling a fourth stained-glass 
sheet/plate is setup at the feet of the choir, under the 
balustrade at the access door. This plane has a slope 
which produces reflections of the sound rays on the 
stalls, fostering the first reflections in the last rows. 
The sheets have different dimensions: the three set-
tled on the stage are about 7 meter wide and 1.91 me-
ter (c), 3.10 meter (d) and 2.00 meter (e) deep; and 
the choir sheet/plate has the dimensions of 1.20 x 
6.40 meter (f). 
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Figure 6. Diagram with wood and stained-glass sheets. 

A change in the seats at the stalls is modeled that in the 
previous model for the acoustic fitting-out proposal was 
covered, including padding of half type, which is re-
placed with padding stall seats of bigger sound absorp-
tion. With this measurement, the acoustic absorption of 
the stalls is increased, where the reflections have been 
directed. This is the place where the audience is located. 
The number and rows of the stall seats remain as in the 
original state: 14 rows of 13 stall seats in each one of 
them. 
 
In Table 1, the absorption values (α) for the octave of 
frequency between 125 and 4000Hz of the materials con-
sidered in the acoustical rehabilitation have been taken 
from the bibliography [7]. Also the surface used for each 
considered material is shown.  
 

Table 2. Absorption coefficient in frequency bands for 
each material. 

The source and the receivers are previously considered, 
with their same names and characteristics. Once the 
church is modeled with the proposal of rehabilitation and 
the acoustic fitting-out proposal, we proceed to carry out 
the simulation of the room and to obtain the calculation 
of the acoustic parameters which characterizes the room. 
The simulation is made with a total amount of 20000 
rays, taking into account in each case and setting a trun-
cation time of 2 s in CATT. 

5. RESULTS 

The results obtained are shown below in a comparative 
way for the model simulated with CATT Acoustics [3] of 
Saint Agustine Church in Vinaròs in its original state and 
after applying the general proposal of restoration and 
acoustic fitting-out. Firstly, the calculated reverberation 

time is shown in three different ways (Sabine, Eyring and 
general or statistic), the level of the resonant pressure, the 
indexes of the D50 definition and C80 clarity, the STI 
and the RASTI parameters. 

5.1 Reverberation time 

The global reverberation time of the church is obtained in 
three different ways, taking into account the Sabine for-
mula, the Eyring formula and the statistic way.  

The statistic reverberation time before the restoration and 
acoustic fitting-out proposal is between the values 1.49 
and 1.88s. Therefore, the reverberation time of the origi-
nal church is high for the uses that we want. Moreover, 
the reverberation time at low frequencies is lower than 
the medium ones. In this case, a higher RT at low fre-
quencies is needed in order to improve the Bass Ratio 
(BR) in the room. Also the statistic reverberation time 
proposed takes values between 0.96 and 1.36s. Therefore, 
the reverberation time of the church once carried out the 
restoration and acoustic fitting-out proposal would be the 
adequate, as these values would be very near the intervals 
from 0.9 to 1.3s. The reverberation time in low frequen-
cies is also higher than the medium one, around 20% 
therefore this good fact contributes to give more acoustic 
warmth to the room. In the following figures 7 reverbera-
tion times are shown: 
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Figure 7. Reverberation Times for “Sant Agustí” before (a) 

and after (b) the proposal. 

In the three cases, the reverberation time improves after 
the application of the proposal for rehabilitation and 
acoustic fitting-out. Reducing and adapting better to the 
optimum reverberation time of the church implies that it 
would be between 0.9 and 1.3s. So, in this way, the re-
verberation times before the proposal are between the 

Absorption Coefficient  αααα 
Material 

Surface 
(m2) 125 250 500 1000 2000 4000 

Plaster 2898.04 0.120 0.100 0.070 0.090 0.070 0.040 

Ordinary wood 592.65 0.200 0.160 0.130 0.100 0.060 0.050 

Parquet floor 280.59 0.200 0.150 0.120 0.100 0.100 0.070 

Stained-glass 
sheets 

60.96 0.180 0.060 0.040 0.030 0.020 0.020 

Upholster stall 
seats 

73.43 0.360 0.430 0.470 0.440 0.490 0.490 

Carpet 356.80 0.130 0.060 0.130 0.200 0.460 0.700 

Gathering vel-
vet 

233.69 0.070 0.310 0.490 0.810 0.660 0.540 
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values 1.31 and 1.88s and after it between 0.80 and 1.36s 
which confirms the improvement. 

5.2 Pressure level (dB) 

The pressure level Lp (dB) also experiments an important 
improvement after the acoustic fitting-out proposal, so it 
changes to adopt a more uniform distribution. In the for-
mer case, the pressure field has a similar behavior as in 
the free field. After the proposal, the field changes to be 
more homogenous in all the room. Therefore, pressure 
changes to adopt a diffuse field condition. This is shown 
in the values obtained for the 16 receivers, which ranges 
between 71.7 dB and 61.5 dB before the proposal and 
between 77.0 dB and 69.0 dB after carrying out the pro-
posal, but also in the Sound Pressure Level distribution 
maps in Figure 9. 

 

Figure 8. General Pressure Level Distribution before (up) 

and after (down) the proposal  

5.3 Definition D50 (%) 
Regarding the definition index, the changes in the results 
obtained before and after the restoration and acoustic 
fitting-out proposal are also noticeable. They do not take 
values between 12% and 43%, but instead between 39% 
and 79 %, which provide the church with better speech 
intelligibility. A room with these features can take, in the 
ideal case, values between 50% and 75%, what is 
achieved in most of the receivers, except from those in 
the middle part of the stalls. Figure 10 shows the maps of 
definition index D50 distribution for the 1000Hz band. 

 

Figure 9. Definition Index D50 distribution before (up) and 

after (down) the proposal at 1000 Hz.  

In Figure 9, a clear improvement in D50 values is ob-
servable. Generally, the best results for this index in the 
proposal of rehabilitation are shown in the receivers situ-
ated in the central part of the stalls. In the distribution, it 
is possible to observe that for the 1000Hz band, the larg-
est part of the stalls present values that lower than 93%, 
while after the restoration and acoustic fitting-out pro-
posal are not lower than 96%. Therefore, the sound of a 
musical performance (orchestra o chamber group) should 
be clearer and purer, so that each instrument is clearly 
distinguished. In this way, a listener could be able to dis-
tinguish separately all the notes in a quick musical pas-
sage played by the orchestra.  

 

Figure 10. Definition Index D50 distribution before and after 

the proposal. 

In Figure 10, the values of the definition index are shown 
for every receiver and for the frequencies in octave bands 
from 125 Hz to 4000Hz. It can be observed that before 
the proposal D50 values are lower than the recommended 
range (40% to 60 %) [4], for every receiver and every 
frequency. This is not the case for the receivers located 
on the stage, although in the case of the simulation after 
the proposal the D50 values are even higher in most 
cases. 
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5.4 Clarity C80 (dB) 

The clarity index gives information about the improve-
ment produced after the restoration and acoustic fitting-
out in the general proposal. For a room like the Saint 
Agustine Church, the clarity parameter/limit would have 
ideal values from 3.1 and 9.1 dB. Before the proposal, the 
C80 index values in the 16 receivers are between -3 and 
+3 dB, whereas after the proposal the C80 values change 
to values between 0 and 9 dB, which produces an im-
provement in this parameter [4]. In Figure 12, the index 
C80 (dB) distribution is shown before and after the pro-
posal for the 1000 Hz band. 

 

Figure 11. Clarity index C80 Distribution before and after 

the proposal. 

Therefore, after applying the proposal in the church, 
melodies and harmonies (i.e. successive and simultaneous 
sounds) are perceived separately, allowing the separated 
audition of sounds produced by every musical instrument. 

5.5 Speech Transmission Index (STI) 

The STI index confirms a clear improvement in the val-
ues obtained after the restoration and acoustic fitting-out 
proposal. Before the proposal in the 16 receivers the val-
ues were between 0.45 and 0.61; then they take values 
between 0.57 and 0.76. That means that it goes from one 
poor acoustic qualification of the church to a good acous-
tic one. In Table II the values obtained for STI index in 
the 16 receivers can be seen, before and after the general 
proposal. 
The STI index takes a half value of 0.52 before the pro-
posal and after it is 0.65 which represents the clear im-
provement in the church intelligibility, increasing word 
clarity/definition, which is now a good acoustic room. 

5.6 Rapid Speech Transmission Index (RASTI) 
RASTI is devoted to explain the speech transmission for 
specific frequency bands. Figure 13 shows maps of the 
RASTI index distribution, before and after the restoration 
and acoustic fitting-out proposal. 
The RASTI index before the restoration and acoustic fit-
ting-out proposal does not exceed the 0.60 value in the 

stalls, while after the proposal the values range between 
0.60 and 0.70. This index goes from sorting the room as a 
weak or regular to sort as a good one acoustically. 

 

Figure 12. Clarity index C80 Distribution before and after 

the proposal. 

6. CO�CLUSIO�S 

The proposed corrective measures proposed to improve 
the acoustic quality of a room can be basically simplified 
in two: increasing the room absorption and diminishing 
the volume. In the global restoration and acoustic fitting-
out proposal of Saint Agustine Church both solutions 
have been used. 
On one hand, the church volume has been reduced, in 
order to diminish the reverberation time, using mobile 
curtains of velvet, which cover the dome and the arcades 
of the lateral chapels. Furthermore, establishing curved 
plates at the end of the stage, the apse area has also been 
eliminated. In this way, the room volume is diminished, 
but also shorter and early reflections are obtained in the 
audience. These reflections try to foster the reflections 
produced by the lateral walls and the set of sheets on the 
stage hanged from the dome or from its base. Also, re-
flections foster the acoustical quality of one room, pro-
ducing a major sensation of intimacy.  
Apart from this, the possible focalizations coming from 
the curved surfaces as the dome, the apse or the vaults of 
the chapels are avoided. They can be produced if the 
source is located near to r/2 (being r radius of the surfaces 
curvature).  
Since in general terms, the part of a room occupied by the 
performers (usually the stage) should have more reflec-
tive areas around it than the part of the audience, the loca-
tion of the wood plates and the stained-glass sheets which 
plan the sound towards the outside of the stage, but it also 
allows the performers to be listened to better. Therefore, 
a major intimacy sensation is provided to the church, in 
an acoustic and visual sense. 
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On the other hand, setting the velvet mobile curtains al-
lows increasing the absorption in the church, by means of 
the padded stalls. 
The proposal has been made in such a way that the ac-
tions performed in the church would not cause an irre-
versible impact on the original building. For this reason, 
it was always thought to respect the church structure and 
each solution has a reversible characteristic. This means 
that any element installed can be removed depending on 
the use.  
The different combinations of elements can be used, de-
pending on the musical style that is going to be per-
formed. Combining the different elements which can vary 
the acoustic features, they can accomplish the desired 
conditions for each concert, audition or conference. 
In this way, velvet curtains are movable, surfaces at the 
end of the stage can be supported by wheels and thus they 
can be moved comfortably and the stained-glass sheets 
can be removable. These sheets have been made of trans-
parent stained-glass, because in this way it is possible to 
see the church through them and they are not an obstacle 
in the visual field. As the stalls seats were already cov-
ered, the only thing to change is the upholstery into an-
other more absorbent. Finally, field measures should be 
taken to check the goodness of the proposal. Therefore 
this global restoration and acoustic fitting-out proposal 
could be verified with these measurements in order to 
validate the new model. 
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ABSTRACT

In this paper we present a system that learns rhythmic pat-
terns from drum audio recording and synthesizes music
variations from the learnt sequence. The procedure de-
scribed is completely unsupervised and embodies the tran-
scription of a percussion sequence into a fuzzy multilevel
representation. Moreover, a tempo estimation procedure
identifying the most regular subsequence is used to guaran-
tee that the metrical structure is preserved in the generated
sequence. The final synthesis is performed, recombining
the audio material derived from the sample itself. Some
examples of generations along with a descriptive evalua-
tion are provided.

1. INTRODUCTION

During the last two decades much effort has been devoted
to build computational architectures of musical sequence
learning [1, 2]. The result of this research in musical intel-
ligence has often inspired music psychology experiments.
One example is the Continuator [3] that has been used to
study childhood flow-experience [4]. Moreover, these sys-
tems naturally lead to the philosophical question about the
nature of ”style” in music. The problem has been attacked
from many perspectives but the debate among musicolo-
gists remains open. Mayer [5] arrives at the conclusion
that style is not only a complex concept originating from
the interplay of different description levels of a musical
piece, but also it is impossible to separate ”style” from the
social context in which the music has grown.

Many studies have been conducted for the analysis and
the generation of music sequences. In particular, in [3], a
MIDI-based system for real-time musical interaction was
developed, yielding good jazz style music generation.

The handling of memory is a core challenge in music
modeling [6]. Whereas the widely used bag-of-features
approach neglects any sequential relations between musi-
cal events, common n-gram based methods for the repre-
sentation of musical sequences usually set a maximal fixed
length of context. This leads to exponentially growing stor-
age needs to allow the model to account for more complex

Copyright: c©2010 Marco Marchini et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which
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structures. A solution to this dilemma is offered by the dif-
ferent length Markov model [7]. This model determines
the needed context length for each musical sequence indi-
vidually, therefore maximizing storage economy, without
the requirement of excessive storage.

Focusing on the question opened by machine listening
systems from an information theory point of view suggests
improvements to MIR techniques. In the bag-of-frames
approach the distance between two audio signals is inde-
pendent of the order of the notes. Since most of the musi-
cal content generally resides on the temporal organization
of the sound material, essential information about the mu-
sic is lost in the derived descriptors. In fact, the goal of
musical intelligence systems is to learn music excerpts in
a similar way as the brain does in the first auditory scene
analysis process [8]. Thus, these systems indirectly define
an operative notion of style.

From a statistical point of view, ”style” can be defined
as a source of symbols [9]. Equivalently, we can say that,
in this context, understanding the style means to find a way
to compress 1 the message [10]. Another approach is in the
framework of information dynamics (see [11]) in which
the analysis of music is related to music cognition. More-
over in [12, 13], causal systems are proposed to capture
the emergence of musical categories during the listening
process.

Employment of machine learning techniques in gener-
ating musical events is crucial to achieve flexibility with
respect to different musical contexts. In its architecture,
our system is inspired by cognitive principles. In addition,
it can be used as a validator for many of the results in music
analysis in the way that the quality of the synthesis reveals
if the analysis methods use to generate the synthesis have
been adequate.

First, we define the system design and the interaction
of its parts. Starting from low-level descriptors, we trans-
late them into a “fuzzy score representation”, where two
sounds can either be discretized yielding the same sym-
bol or yielding different symbols according to which level
of interpretation is chosen (Section 2). Then we perform
skeleton subsequence extraction and tempo detection to

1 This means to find a concise representation of the signal without
loosing information from the original (lossless data compression). In this
way we can store a message (a sequence of symbols) using less bits and
then rebuild the original signal by uncompressing its shorter version. The
complexity of the message turns out to be the key concept that deter-
mines the compression ratio (the ratio between the bits occupied by the
original message and the ones occupied by the compressed message). The
Lempel-Ziv algorithm is an example of such a compressor.
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align the score to a grid. At the end, we get a homogeneous
sequence in time on which we perform the prediction. For
the generation of new sequences we reorder the parts of the
score, respecting the statistical properties of the sequence
while at the same time maintaining the metrical structure
(Section 3). In Section 4, we give a descriptive evaluation
of the generated result.

2. UNSUPERVISED SOUND ANALYSIS

The system architecture consists of the following process-
ing stages (cf. Figure 1):

• Segmentation

• Symbolization

– Feature extraction

– Feature clustering

– Sequence structure analysis

– Temporal alignment

• Generation of audio

– Adaptive cluster level determination

We will now describe each step of the process in detail.

2.1 Segmentation

First, the audio input signal is analyzed by an onset detec-
tor that segments the audio file into a sequence of musical
events. Each event is characterized by its position in time
(onset) and an audio segment, the audio signal starting at
the onset position and ending at the following contiguous
onset. In the further processing, these events will serve two
purposes. On one side, the events are stored as an indexed
sequence of audio fragments which will be used for the re-
synthesis in the end. On the other side, these events will be
compared with each other to generate a reduced score-like
representation of the percussion patterns to base a tempo
analysis on (cf. Fig. 1 and Sec. 2.2).

We used the onset detector implemented in the MIR
toolbox [14] that is based only on the energy envelope,
which proves to be sufficient for our purpose of analyzing
percussion sounds.

2.2 Symbolization

We will employ segmentation and clustering in order to
transform the audio signal into a discrete sequence of sym-
bols (as shown in Fig. 3), thereby facilitating statistical
analysis. However, some considerations should be made.

As we are not restricting the problem to a monophonic
percussion sequence, non-trivial problems arise when one
wants to translate a sequence of events into a meaningful
symbolic sequence. One would like to decide whether or
not two sounds have been played by the same percussion
instrument (e.g. snare, bass drum, open hi hat. . . ) and,
more specifically, if two segments contain the same sound
in case of polyphony. With a similarity distance we can de-
rive a value representing the similarity between two sounds

but when two sounds are played simultaneously a different
sound may be created. Thus, a sequence could exist that
allows for multiple interpretations since the system is not
able to determine whether a segment contains one or more
sounds played synchronously. A way to avoid this prob-
lem directly and to still get a useful representation is to
use a fuzzy representation of the sequence. If we listen to
each segment very detailedly, every segment may sound
different. If we listen very coarsely, they may all sound the
same. Only listening with an intermediate level of refine-
ment yields a reasonable differentiation in which we recog-
nize the reoccurrence of particular percussive instruments
and on which we can perceive meaningful musical struc-
ture. Therefore, we propose to maintain different levels
of clustering refinement simultaneously and then select the
level on which we encounter the most regular non-trivial
patterns. In the sequel, we will pursue an implementation
of this idea and describe the process in more detail.

2.2.1 Feature Extraction

We have chosen to define the salient part of the event as the
first 200 ms after the onset position. This duration value
is a compromise between capturing enough information
about the attack for representing the sound reliably and still
avoiding irrelevant parts at the end of the segment which
may be due to pauses or interfering other instruments. In
the case that the segment is shorter than 200 ms, we use
the entire segment for the extraction of the feature vector.
Across the salient part of the event we calculate the Mel
Frequency Cepstral Coefficient (MFCC) vector frame-by-
frame. Over all MFCCs of the salient event part, we take
the weighted mean, weighted by the RMS energy of each
frame. The frame rate is 100 frame for second, the FFT
size is 512 samples and the window size 256.

2.2.2 Sound Clustering

At this processing stage, each event is characterized by a
13-dimensional vector (and the onset time). Events can
thus be seen as points in a 13-dimensional space in which
a topology is induced by the Euclidean distance.

We used the single linkage algorithm to discover event
clusters in this space (cf. [15] for details). This algorithm
recursively performs clustering in a bottom-up manner.
Points are grouped into clusters. Then clusters are merged
with additional points and clusters are merged with clus-
ters into super clusters. The distance between two clusters
is defined as the shortest distance between two points, each
in a different cluster, yielding a binary tree representation
of the point similarities (cf. Fig. 2). The leaf nodes corre-
spond to single events. Each node of the tree occurs at a
certain height, representing the distance between the two
child nodes. Figure 2 (top) shows an example of a cluster-
ing tree of the onset events of a sound sequence.

The height threshold controls the (number of) clusters.
Clusters are generated with inter-cluster distances higher
than the height threshold. Two thresholds lead to the same
cluster configuration if and only if their values are both
within the range delimited by the previous lower node
and the next upper node in the tree. It is therefore ev-
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Figure 1. General architecture of the system.

0 1 2 3
Time (s)

2 4 8 6 1 5 3 7

0.5

1

1.5

2

2.5

3

3.5

4

C
lu

st
er

 D
is

ta
nc

e

Threshold boundary

Figure 2. A tree representation of the similarity relation-
ship between events (top) of an audio percussion sequence
(bottom). The threshold value chosen here leads to a par-
ticular cluster configuration. Each cluster with more than
one instance is indicated by a colored subtree. The events
in the audio sequence are marked in the colors of the clus-
ters they belong to. The height of each node is the distance
(according to the single linkage criterion) between its two
child nodes. Each of the leaf nodes on the bottom of the
graph corresponds to an event.

ident that by changing the height threshold, we can get
as many different cluster configurations as the number of
events we have in the sequence. Each cluster configura-
tion leads to a different symbol alphabet size and therefore
to a different symbol sequence representing the original
audio file. We will refer to those sequences as represen-
tation levels or simply levels. These levels are implicitly
ordered. On the leaf level at the bottom of the tree we
find the lowest inter-cluster distances, corresponding to a
sequence with each event being encoded by a unique sym-
bol due to weak quantization. On the root level on top of
the tree we find the cluster configuration with the highest
inter-cluster distances, corresponding to a sequence with
all events denoted by the same symbol due to strong quan-
tization. Given a particular level, we will refer to the events

denoted by the same symbol as the instances of that sym-
bol. We do not consider the implicit inheritance relation-
ships between symbols of different levels.

Figure 3. A continuous audio signal (top) is discretized
via clustering yielding a sequence of symbols (bottom).
The numbers inside the colored triangles denote the clus-
ter index of the event, related to the type of sound, i.e. bass
drum, hi-hat, or snare.

2.3 Level Selection

Handling different representations of the same audio file
in parallel enables the system to make predictions based
on fine or coarse context structure, depending on the situa-
tion. As explained in the previous section, if the sequence
contains n events the number of total possible distinct lev-
els is n (see Fig. 4). As the number of events increases,
it is particularly costly to use all this levels together be-
cause the number of levels also increases linearly with the
number of onsets. Moreover, as it will be clearer later, this
representation will lead to over-fitted predictions of new
events.

This observation leads to the necessity to only select
a few levels that can be considered representative of the
sequence in terms of structural regularity.

Given a particular level, let us consider a symbol σ hav-
ing at least four instances but not more than 60% of the
total number of events and let us call such a symbol an
appropriate symbol. The instances of σ define a subse-
quence of all the events that is supposedly made of more
or less similar sounds according to the degree of refine-
ment of the level. Let us just consider the sequence of
onsets given by this subsequence. This sequence can be
seen as a set of points on a time line. We are interested to
quantify the degree of temporal regularity of those onsets.
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Figure 4. A sequence is displayed in a multi-level repre-
sentation. Each color represents a unique symbol, a non-
trivial cluster, whereas the singletons not belonging to a
non-trivial cluster are drawn in white. Note how the num-
ber of different colors increases from top to bottom, indi-
cating that the sounds are represented in greater refinement
by a larger number of clusters.

Firstly, we compute the histogram 2 of the time differences
(CIOIH) between all possible combinations of two onsets
(middle Fig. 5). What we obtain is a sort of harmonic se-
ries of peaks that are more or less prominent according to
the self-similarity of the sequence on different scales. Sec-
ondly, we compute the autocorrelation ac(t) (where t is the
time in seconds) of the CIOIH which, in case of a regular
sequence, has peaks at multiples of its tempo. Let tusp

be the positive time value corresponding to its upper side
peak. Given the sequence of m onsets x = (x1, . . . , xm)
we define the regularity of the sequence of onsets x to be:

Regularity(x) =
ac(tusp)

1
tusp

∫ tusp

0
ac(t)dt

log(m)

This definition was motivated by the observation that the
higher this value the more equally the onsets are spaced in
time. The logarithm of the number of onsets was multi-
plied by the ratio to give more importance to symbols with
more instances.

Then we extended, for each level, the regularity con-
cept to an overall regularity of the level. This simply cor-
responds to the mean of the regularities for all the appro-
priate symbols of the level. The regularity of the level is
defined to be zero in case there is no appropriate symbol.

After the regularity value has been computed for each
level, we yield the level where the maximum regularity is
reached. The resulting level will be referred so as the reg-
ular level.

We also decided to keep the levels where we have a
local maximum because they generally refer to the levels

2 We used a discretization of 100 ms for the onset bars.
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Figure 5. The procedure applied for computing the regu-
larity value of an onset sequence (top) is outlined. Middle:
the histogram of the complete IOI between onsets. Bot-
tom: the autocorrelation of the histogram is shown for a
subrange of IOI with relevant peaks marked.

where a partially regular interpretation of the sequence is
achieved. In the case where consecutive levels of a se-
quence share the same regularity only the higher one is
kept. Figure 6 shows the regularity of the sequence for
different levels.
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Figure 6. Sequence regularity for a range of cluster dis-
tance thresholds (x-axis). An ENST audio excerpt was
used for the analysis. The regularity reaches its maximum
value in a central position. Towards the right, regularity in-
creases and then remains constant. The selected peaks are
marked with red crosses implying a list of cluster distance
threshold values.

2.4 Beat detection

In order to predict future events without breaking the met-
rical structure we use a tempo detection method and intro-
duce a way to align onsets to a metrical grid.

Our starting point is the regular level that has been
found with the procedure explained in the previous subsec-
tion. On this level we select the appropriate symbol with
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the highest regularity value. The subsequence that carries
this symbol will be referred to as the skeleton subsequence
since it is like an anchor structure to which we relate our
metrical interpretation of the sequence.

2.4.1 Tempo Detection (Inter Beat Interval)

Once the skeleton subsequence is found, the inter beat in-
terval is estimated with the procedure explained in [16].
The tempo is detected considering the intervals between
all onset pairs of the sequence using a score voting crite-
rion. This method tends to give higher scores to the inter-
vals that have more instances and that share many integer
ratios with other intervals.

Then the skeleton subsequence onsets are parsed in or-
der to detect a possible alignment of the grid to the se-
quence. A tolerance of 6% the duration of the inter beat
interval is allowed for the alignment of an onset to the grid
position. We chose the interpretation that aligns the high-
est number of instances to grid. After discarding the onsets
that are not aligned we obtain a preliminary skeleton grid.
In Fig. 7 the procedure is visually explicated.

1 1 1 1

1 2

2

2

Figure 7. A skeleton sequence is represented in a time-
line. Below, some possible alignments of the sequences
are given based on the measure duration provided by the
Dixon method. Each phase interpretation catches some on-
sets (represented with its own graphical marker) and dis-
cards some others. The phase that allows to catch more
onsets (the filled red crosses) is selected and the remaining
onset are removed from the skeleton grid.

2.4.2 Creation of Skeleton Grid

The preliminary skeleton grid is a sequence of onsets
spaced in multiples of a constant time interval. But, as
shown in the case of Fig. 7, it can still have some gaps
(due to missing onsets). The missing onsets are, thus, de-
tected and, in a first attempt, the system tries to align the
missing onsets with one of the onsets of the entire event
sequence (not only from the onsets of a certain symbol). A
tolerance value of 6% determines whether there is no onset
to be aligned and, in this case, the system creates a grid bar
in the expected beat position.

At the end of this completion procedure, we obtain a
skeleton grid that will be considered to be a sequence of
beats or, more generally, a sequence of events sharing the
same metrical position (the same phase).

Because of the tolerance used for building such a grid
it could be noticed that sometimes the effective measure
duration could be slightly longer or slightly shorter. This
fulfills the idea that the grid should be elastic in the sense
that, up to a certain degree, it adapts to the timing of the
actual sequence.

The skeleton grid catches a part of the complete list of
onsets, but we would like to built a grid where most of the
onsets are aligned. Thereafter, starting from the skeleton
grid, the intermediate point between every two subsequent
beats is found and aligned with an onset (if it exists in a
tolerance region otherwise a place-holding onset is added).
The procedure is recursively repeated until at least 80% of
the onsets are aligned to a grid position or the number of
created onsets exceeds the number of total onsets.

In Fig. 8, an example is presented along with the result-
ing grid where the skeleton grid, its aligned, and the non-
aligned subdivisions are indicated by different line mark-
ers.

Note that, for the sake of simplicity, our approach as-
sumes that the metrical structure is binary. This causes the
sequence to be eventually split erroneously. However, we
will see in a ternary tempo example that this is not a lim-
iting factor for the generation because the statistical repre-
sentation somehow compensates for it even if less variable
generations are achieved. A more general approach could
be implemented with little modifications.

The final grid is made of blocks of time of almost equal
duration that can contain none, one, or more onset events.
It is important that the sequence given to the statistical
model is almost homogeneous in time so that a certain
number of blocks corresponds to a defined time duration.

We used the following rules to assign a symbol to a
block (cf. Fig 8):

• blocks starting on an aligned onset are denoted by
the symbol of the aligned onset,

• blocks starting on a non-aligned grid position are de-
noted by the symbol of the previous block.

Finally, a phase value is assigned to each block de-
scribing the number of grid positions passed after the last
beat position (corresponding to the metrical position of the
block). For each representation level the new representa-
tion of the sequence will be the Cartesian product of the
instrument symbol and the phase.

3. STATISTICAL MODEL LEARNING

Now we statistically analyze the structure of the symbol
sequence obtained in the last section.

We employ variable length Markov chains (VLMC) for
the statistical analysis of the sequences. In [7, 17], a gen-
eral method for inferencing long sequences is described.
For faster computation, we use a simplified implementa-
tion as described in [3]. We construct a suffix tree for each
level based on the sequence of that level. Each node of
the tree represents a specific context that had occurred in
the past. In addition, each node carries a list of continu-
ation indices corresponding to block indices matching the
context.

For audio, a different approach has been applied in [18].
This method does not require an event-wise symbolic rep-
resentation since it employs the factor oracle algorithm.
VLMC has not been applied to audio before, because of
the absence of an event-wise symbolic representation we
presented above.
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Figure 8. The event sequence derived from a segmentation by onset detection is indicated by triangles. The vertical lines
show the division of the sequence into blocks of homogeneous tempo. The red solid lines represent the beat position (as
obtained by the skeleton subsequence). The other black lines (either dashed if aligned to a detected onset or dotted if no
close onset is found) represent the subdivisions of the measure into four blocks.

3.1 Generation Strategies

If we fix a particular level the continuation indices are
drawn according to a posterior probability distribution de-
termined by the longest context found. But which level
should be chosen? Depending on the sequence, it could be
better to do predictions based either on a coarse or a fine
level but it is not clear which one should be preferred. First,
we selected the lower level at which a context of at least l̂
existed (for a predetermined fixed l̂, usually l̂ equal 3 or 4).
This works quite good for many examples. But in some
cases a context of that length does not exist and the system
often reaches the higher level where too many symbols are
provided inducing too random generations. On the other
side, it occurs very often that the lower level is made of
singleton clusters that have only one instance. In this case,
a long context is found in the lower level but since a partic-
ular symbol sequence only occurs once in the whole orig-
inal segment the system replicates the audio in the same
order as the original. This behavior often leads to the exact
reproduction of the original until reaching its end and then
a jump at random to another block in the original sequence.

In order to increase recombination of blocks and still
provide good continuation we employ some heuristics tak-
ing into account multiple levels for the prediction. We set
p to be a recombination value between 0 and 1. We also
need to preprocess the block sequence to prevent arriving
at the end of the sequence without any musically mean-
ingful continuation. For this purpose, before learning the
sequence, we remove the last blocks until the remaining se-
quence ends with a context of at least length two. We make
use of the following heuristics to generate the continuation
in each step:

• Set a maximal context length l̂ and compute the list
of indices for each level using the appropriate suf-
fix tree. Store the achieved length of the context for
each level.

• Count the number of indices provided by each level.
Select only the levels that provide less than 75% the
total number of blocks.

• Among these level candidates, select only the ones
that have the longest context.

• Merge all the continuation indices across the se-
lected levels and remove the trivial continuation (the
next onset).

• In case there is no level providing such a context and
the current block is not the last, use the next block as
a continuation.

• Otherwise, decide randomly with probability p
whether to select the next block or rather to gen-
erate the actual continuation by selecting randomly
between the merged indices.

4. EVALUATION OF EXAMPLES

As a descriptive evaluation, we asked a professional per-
cussionist to judge several examples of continuations as if
they were performances of a student. Moreover, we asked
him to record two beat boxing excerpts trying to push the
system to the limits of complexity and to assess critically
the sequences that the system had generated from these
recordings. The examples are available on the web site
[19] along with some graphical animations explaining the
analysis process.

Let us briefly explain what can be seen in these anima-
tions. In each video, we see the original sound fragment
and the generation derived from it. Each video shows an
animated graphical representation where each block is rep-
resented by a triangle. The horizontal axis corresponds to
the time in seconds and the vertical axis to the cluster-
ing quantization resolution. In the beginning, the origi-
nal sound is played and the animation shows the discov-
ered block representation. At each moment, the currently
played block is represented by an increased colored trian-
gle and highlighted by a vertical dashed black line. The
other colored triangles highlight all the blocks from the
starting point of the measure to the current block. In the
second sequence, only the skeleton subsequence is played.
In the last sequence, the generation is shown. The col-
ored triangles represent the current block and the current
context. The size of the colored triangles decreases mono-
tonically from the current block backwards displaying the
past time window considered by the system. The colored
triangles are represented only on the levels selected by the
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generation strategy. The colors correspond to a symbol in
a one-to-one manner.

Four examples were taken from the ENST database (see
[20]), one from FreeSound.org and two examples were re-
corded with the percussionist. From the ENST database,
we have selected medium/high complexity examples that
we numbered according to our collection list. They are
Examples no. 15, 21, 28, and 31 corresponding to the fol-
lowing files of the ENST database:

053_phrase_afro_complex_slow_sticks
072_phrase_shuffle-blues_complex_slow_sticks
079_phrase_hard-rock_complex_medium_sticks
088_phrase_waltz_simple_medium_brushes

From FreeSound we have selected the popular “Amen
Break” loop, because of its common use and manipulations
during improvisation sets.

Starting from the latter, according to the percussionist,

�As the starting material is relatively rich
the continuation is very good considering the
length of the original. Especially interesting
is the small looping part in 0.58s. It is very
similar to what I would do as a percussionist�.

It is possible to note how the metrical structure is pre-
served in those examples due to the introduced tempo re-
strictions. Moreover, an important feature is that it creates
relatively original variations given the short length of the
learned examples. Example 28 is commented by the per-
cussionist in the following way:

�Very good. Meter is kept perfectly, and
the “drum fills” are provided in appropriate
times. A problem is that all fills are played
as they appear in the song, and not extended
or slightly more complex�.

For Example 31, the percussionist expressed surprise
for the realism of the generation and he referred to Exam-
ple 15, saying:

�The starting material is very good and
rich in this case, so the continuation is rich
too. Some fills are expanded and more com-
plex which is very good, although other se-
quences appear exactly as they did in the orig-
inal�.

Referring to the beatboxing examples, he pointed out
that the metrical structure is kept correctly but the beats do
not vary too much in terms of accent. Then, he added:

�Especially good is the looping of a sin-
gle beat at 1.20s of the first example, although
normally the looping shouldn’t be repeated
too much to maintain a phrase balance�.

Finally, as an overall consideration, he pointed out an
interesting application of the system:

�If these continuations are used as an ac-
companiment, they are excellent since they,
firstly, maintain a steady rhythm but at the

same time evolve and, secondly, they more or
less keep the time signature (i.e. strong beats
usually land on the strong part of the meter,
meters sound conceptually as distinct units)�.

However, he also mentioned several missing features in
comparison to a human percussionist solo.

From our point of view, it is worth mentioning that in
Examples 21 and 31 even if the tempo is ternary the gen-
eration still preserves the metrical structure. In this case,
three ternary beats constitute an event together, causing a
bad representation of the sequence (a sort of swing subdi-
vision). The statistical model is still able to select a good
block position each time.

The behavior of the system depends on the correct be-
havior of all its parts. In particular, see [16] for a sys-
tematic evaluation of the tempo detection. Nevertheless,
some examples show that even when the computed sym-
bolic representation of the audio does not respect directly
the underlying musical sequence (e.g. the ternary tempo)
the statistic model tends to generate sequences that do not
break the metric structure.

5. DISCUSSION

Our system effectively generates sequences respecting the
structure and the tempo of the original sound fragment for
medium to high complexity rhythmic patterns.

The descriptive evaluation of a professional percussion-
ist confirmed that the metrical structure is correctly man-
aged and that the statistical representation generates musi-
cally meaningful sequences. He noticed explicitly that the
drum fills (short musical passages which help to sustain
the listener’s attention during a break between the phrases)
were handled adequately by the system.

The critics by the percussionist were directed to the lack
of dynamics, agogics and musically meaningful long term
phrasing which we did not address in our approach.

Part of those feature could be achieved in the future by
extending the system to the analysis of non-binary meter.
To achieve musically sensible dynamics and agogics (ral-
lentando, accelerando, rubato. . . ) of the generated musi-
cal continuation for example by extrapolation [21] remains
a challenge for future work.
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ABSTRACT 
Finite Difference (FD) methods can be the basis for phys-
ics-based music instrument models that generate realistic 
audio output. However, such methods are compute-
intensive; large simulations cannot run in real time on 
current CPUs. Many current systems now include power-
ful Graphics Processing Units (GPUs), which are a good 
fit for FD methods. We describe an implementation of an 
FD-based simulation of a two-dimensional membrane 
that runs efficiently on mid-range GPUs; this will form a 
framework for constructing a variety of realistic software 
percussion instruments. For selected problem sizes, real-
time sound generation was demonstrated on a mid-range 
test system, with speedups of up to 2.9 over pure CPU 
execution.  

1 INTRODUCTION 
Powerful Graphics Processing Units (GPUs) are now 
common in the standard graphics cards of most desktop 
and laptop systems. While earlier GPUs are tailored for 
graphics processing, recent GPUs from companies such 
as Nvidia (http://www.nvidia.com) have adopted more 
flexible architectures to support general purpose comput-
ing. Software support for non-graphics computing on 
GPUs has also improved significantly in the last few 
years, with environments such as Nvidia's Compute Uni-
fied Device Architecture (CUDA) [8] and OpenCL [9]. 
As a result, there has been much development of general 
computing on GPUs; many of these projects are docu-
mented at http://gpgpu.org. 

We have been exploring the use of GPUs for real-time 
sound synthesis. An obvious question is whether GPU 
memory bandwidth can efficiently support real-time 
audio. Another question is whether the GPU architecture 
can reliably operate under the additional constraints of a 
real time application.  Focus should be on compute-
intensive and parallelizable synthesis algorithms, to lev-
erage GPU functionality. 

One scenario is to implement many copies of rela-
tively low-cost sound synthesis units on the GPU, mix the 
outputs down to a few channels, and transfer the mix to 
the CPU. This is useful for environments such as render-
ing auditory scenes with multiple sources. We have rather 
different research goals; our target application involves 

building a responsive instrument based on a compute-
intensive synthesis algorithm.  

We have implemented a finite difference-based simu-
lation for a two-dimensional membrane (see [1, 7]), 
which runs in real time on the GPU; the architecture of 
the GPU is particularly well suited for this type of algo-
rithm.  Finite difference methods are well known as an 
effective approach for sound synthesis; see for example 
[2, 7]. Such methods can be a framework for constructing 
a number of complex software percussion instruments;  
some simple sound samples can be found at 
http://userwww.sfsu.edu/~whsu/FDGPU. Finite differ-
ence-based sound synthesis for large or fine-grained 
membranes and plates is too expensive to run in real time 
on CPUs. Previous studies on audio processing using 
earlier generation GPUs and software have been mixed 
(see for example [14, 4]). Our results show that it is now 
feasible to implement such compute-intensive real-time 
sound synthesis algorithms on GPUs. In general it should 
be possible to realize many computationally expensive 
physics-based synthesis models as real-time instruments 
on portable systems. 

Our paper is organized as follows. Section 2 overviews 
related work on high-performance audio computing. In 
Section 3, we describe the finite difference synthesis al-
gorithm we worked with, and our implementation using 
CUDA. We present experimental results and measure-
ments in Section 4. Conclusions are drawn in Section 5. 

2 RELATED WORK 
The website http://gpgpu.org is a major clearinghouse for 
information on general purpose computing on GPUs. 
Relatively few audio-related projects are documented on 
the site. [14] implemented seven audio DSP algorithms 
on a GPU. [11] studied waveguide-based room acoustics 
simulations using GPUs. 

GPUs have been used in the real-time rendering of 
complex auditory scenes with multiple sources. In [3], 
the GPU is used primarily for computing particle colli-
sions to drive audio events. [15] uses the GPU for calcu-
lating modal synthesis-based audio for large numbers of 
sounding objects. [13] proposed a method for efficient 
filter implementation on GPUs, and applied it to synthe-
sis of large numbers of sound sources in virtual envi-
ronments. 

Copyright: © 2010 Sosnick and Hsu. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 
License 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 
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Faust [10] is a framework for parallelizing audio ap-
plications and plug-ins; it does not currently support 
GPU computing. 

Our target application is a real-time instrument based 
on a compute-intensive synthesis algorithm, such as a 
finite difference membrane model. Bilbao has studied 
extensively the use of finite differencing for sound syn-
thesis; see for example [2]. Since large models based on 
finite difference methods are too expensive for real-time 
performance on CPUs, work has been done for example 
on FPGA-based implementations [7]. Our approach lev-
erages GPUs that are already common on commodity 
systems, and does not require custom hardware. 

3 FINITE DIFFERENCE ALGORITHM 
We simulate a membrane using the finite difference (FD) 
method of approximation of the wave equation with dis-
sipation in two dimensions as derived by Adib [1]. A 
square membrane is modeled with a horizontal x-y grid 
of points. The continuous function u (x, y, t) is defined on 
the spatial x and y, and time t; u is the vertical displace-
ment at the point (x, y) at time t.  The wave equation with 
dissipation is given as: 
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where η is the viscosity coefficient. Expanding with the 
truncated second-order Taylor expansion: 
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where, since the grid is symmetric, ∆ l=∆x=∆y , and 
x= i∆x,  y=j∆y, and t=n∆ t  [7]. Solving for 
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where, from [5]: 
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such that v is velocity of the wave in the medium.  For 
our initial experiments, we treat η and ρ as constants, and 
used known stable values from Land [5].  

In a production system with a variable velocity pa-
rameter, it will important to test that the system satisfies 
the so-called Courant condition [1]: 

€ 

v ≤ Δx
Δt

 (5) 

 to assure system stability. 
We implemented u as three 2-D matrices of single-
precision (4-byte) floating point numbers so as to main-
tain compatibility with Nvidia devices of compute capa-

bility 1.2 or lower [8].  We use the leap-frog algorithm to 
calculate the values at 

€ 

ui ,j
n+1 given the values of 

€ 

ui ,j
n−1  and 

€ 

ui ,j
n  [1].  Boundary conditions are maintained at each 

iteration by testing the values of i and j and adjusting 

€ 

ui ,j
n  

appropriately.  A scalar gain value is used to either clamp 
the edge (boundary gain = 0) or allow motion dependent 
on the adjacent internal grid point times the boundary 
gain (boundary gain < 1) [5].  Corners are given no spe-
cial consideration.  To obtain different sounds, the values 
of n (grid size), η, ρ, and boundary gain are manipulated. 
For example, values of η=2x10-4,  ρ=0.5, n = 6, and a 
boundary gain of 0.75 produces a bell-like tone; values of 
η=2x10-4,  ρ=0.5, n = 16, and a boundary gain of 0 pro-
duces a drum like tone.  Further examples of this can be 
found at http://userwww.sfsu.edu/~whsu/FDGPU.  

To obtain audio output, the membrane must be excited 
in some fashion, roughly analogous to striking or pluck-
ing the membrane.  We use a simple Gaussian impulse to 
initialize/excite the membrane. 

€ 

ui ,j
n−1  is set to 0, and 

€ 

ui ,j
n  to 

a Gaussian impulse, as suggested in [2, 5]. To obtain 
audio output, a point on the membrane is chosen, and the 
value for 

€ 

ui ,j
n is sampled and scaled at each iteration.  For 

our experiment, the center point of the grid was chosen as 
the output point. 

We coded two implementations of (3), one serial and 
one parallel. As is typical in real-time synthesis applica-
tions, we run the simulation for several time steps and 
store the generated output samples in the audio output 
buffer. When the audio output buffer is full, it is handed 
off to the audio driver for playback. The serial implemen-
tation (Figure 1), is designed to run on the CPU as in [5, 
7].  The outermost loop accumulates output samples in 
the audio buffer. Then we loop over all the grid points to 
calculate the elements of the 

€ 

ui ,j
n+1 array.  Finally, we up-

date the 

€ 

ui ,j
n−1  and 

€ 

ui ,j
n  arrays, in preparation for the next 

time-step.  This serial implementation is clearly of O(n2) . 
 

For t=0 to t=output buffer size 
  For row = 1 to N 
    For col = 1 to N 
      Update 

€ 

urow ,col
n+1  

      If row, col is boundary 
        Recalculate boundary point 
      If row, col is sample point 
        Copy 

€ 

urow ,col
n+1  to output buffer 

    End for 
  End for 
  For row = 1 to N 
    For col = 1 to N 
      

€ 

urow ,col
n−1 = urow ,col

n  
      

€ 

urow ,col
n = urow ,col

n+1  
    End for 
  End for 
End for 
End 

Figure 1.  Serial implementation of finite difference 
membrane simulation. 
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Our parallel implementation of the finite difference 
simulation for the GPU (Figure 2) is written using 
Nvidia’s Compute Unified Device Architecture (CUDA) 
extension to C, which allows programmers to take advan-
tage of this architecture. Nvidia’s GPU hardware is a 
SIMT (single instruction multiple threads) architecture 
using scalable arrays of multithreaded streaming multi-
processors [8]. CUDA divides system hardware into host 
and device, where the host is the system (PC desktop or 
laptop) in which the Nvidia device (or GPU) resides, and 
the device is the Nvidia GPU on which the parallel pro-
gram, or kernel, executes.  The host system first prepares 
the device and then hands off execution of the kernels to 
the device.  Each kernel is executed on the device in a 
thread, and threads are combined into one, two, or three 
dimensional thread blocks.  In a kernel, a thread can ob-
tain its unique x, y, z position in the thread block, which 
is what we use to determine the thread’s position when 
calculating u.  All threads in a thread block execute si-
multaneously, but can be synchronized [8]. 

Memory between the host and device can be inde-
pendent or integrated with system memory, but in either 
case are addressed separately on the host and device.  On 
some systems page-locked host memory (called pinned 
memory) can be mapped to the device [8].  Pinned mem-
ory simplifies and reduces the overhead of asynchro-
nously transferring results from the device to the host.  

In our parallel implementation, each grid point update 
is mapped to a single thread.  A thread determines its 
position in the grid by finding its 2-D location in the 
thread block [8].  At each time-step, each thread calcu-
lates one update of the 

€ 

ui ,j
n+1 array. As with the serial im-

plementation, each thread checks to see if it is at a 
boundary; if so, it adjusts the current point. The thread 
that corresponds to the output point also collects data 
over multiple time-steps, and updates the output buffer.  
In order to maintain coherence over time, the threads are 
synchronized at the points illustrated in Figure 2.  
 
Calc. row and col from thread index 
For t=0 to t=buffer size 
  Update 

€ 

urow ,col
n+1  

  If row, col is boundary 
    Recalculate boundary point 
  Synchronize threads 
  If row, col is sample point 
    Save 

€ 

urow,col
n+1  in output buffer 

  Synchronize threads 
  

€ 

urow ,col
n−1 = urow ,col

n  
  

€ 

urow ,col
n = urow ,col

n+1  
  Synchronize threads 
End for 
End 

Figure 2.  Parallel implementation of finite difference 
membrane simulation. 

To execute each thread block, the host hands off exe-
cution to the device. The simulation runs for several time-
steps, and the output buffer is filled with the computation 
results, after which execution on the device stops. If  

pinned memory is not supported, the host copies the out-
put buffer to the audio output buffer; otherwise the host 
passes a pointer to the audio driver using the pinned 
memory as the audio output buffer.  The execution of the 
thread block is repeated for the duration of the output 
sound. 

We were especially interested in two boundary cases.  
First, if the output buffer size is small, there will be more 
calls to execute the grid calculation, creating significant 
setup overhead.  Second, if the grid size is too large, the 
time that it takes to calculate a grid may push latency past 
acceptable realtime parameters. 

4 EXPERIMENTAL METHOD 
4.1 System Configurations 

We tested our code on three systems. System 1 was a PC 
with a 2.5 GHz Intel Core 2 Quad running Ubuntu 9.10 
with a 2.6.31-20-generic kernel and an Nvidia GeForce 
GTX285. System 2 was a Mac Book Air with a 1.86 GHz 
Intel Core 2 Duo and 2 GB of 1067 MHz DDR 3 RAM 
running OS 10.5.8 and an integrated Nvidia GeForce 
9400M.  System 3 was a MacPro with dual 3 GHz Intel 
Quad-Core Xeon and 5 GB of 667 MHz DDR2 RAM 
running OS 10.5.8 and an Nvidia GeForce 8800 GT.   

These systems represent a good cross-section of 
available midrange cards.  The GTX285 is the most pow-
erful of the three, with 240 CUDA cores running at a 
Graphics clock of 1.48 GHz. The 8800 GT has 112 
CUDA cores running at a Graphics clock of 1.5 GHz. 
The 9400M is a low-end GPU used mostly in systems 
with restricted power consumption; it has 16 CUDA 
cores running at a Graphics clock of 0.80 GHz.  

The 9400M and GTX285 both support pinned mem-
ory, whereas the 8800GT does not.  The 9400M is inte-
grated into the motherboard, whereas the 8800GT and 
GTX285 both are PCI cards.  The 9400M’s memory is 
integrated into system memory, while the 8800GT and 
GTX285 memory is independent of system memory. 

4.2 Software Implementation Details 

Our parallel software implementation of the finite differ-
ence membrane simulation is written in C++ using Nvidia 
CUDA (The package is available for download at 
http://userwww.sfsu.edu/~whsu/FDGPU) We use Por-
tAudio (http://www.portaudio.com) in blocking I/O mode 
as our cross-platform audio interface. 

For both serial and parallel versions, the main loop of 
the simulation runs for a number of cycles and fills the 
audio output buffer. Data in the output buffer is then 
passed on to PortAudio for real-time output or to be 
stored in a file.  On systems with pinned memory, sam-
ples generated and stored in the audio output buffer are 
accessed directly through pinned memory. On systems 
without pinned memory, data in the output buffer is cop-
ied from the device to the host.  The PortAudio driver 
blocks until it has received data [12], thus allowing us to 
clearly test timing by seeing obvious buffer underrun 
conditions. 
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5 EXPERIMENTAL RESULTS 
On the three systems we outlined above, we tested the 
audio output quality for real-time performance, for grid 
sizes from 15 x 15 to 21 x 21, and audio buffer sizes from 
8 to 4096. We discovered that, as expected, the larger the 
output buffer or the larger the grid size, the better the 
GPU performed, relative to the CPU on the same system.  
The predominant problem was jitter [6] caused by buffer 
underruns.  On the GTX285 system, with the parallel 
implementation on the GPU, we experienced clean output 
across all grid sizes and audio buffer sizes. However, 
with the serial CPU code, there was jitter when the grid 
size was greater than 20 or the buffer size was at 4096 
samples or larger.  On the 8800GT system, we experi-
enced jitter for both parallel and serial versions, when the 
buffer size was less than 1024 samples and the grid size 
at 21 x 21.  On the 9400M system, we experienced jitter 
with both parallel and serial versions, when the buffer 
size was less than 1024 samples, or the grid size was 
greater than 17 x 17.  On all systems, responsiveness was 
difficult to evaluate objectively; to fill a buffer of 1024 
samples at 44100 Hz, would require approximately 23 
ms, which [6] identifies as the threshold for perception of 
latency. It appears that our parallel finite difference simu-
lation, running on the GTX285 system, can be the basis 
for a responsive software instrument.  

While it is difficult to compare performance on the 
three systems with different CPUs and GPUs, we set up 
some simple timing experiments to estimate the effi-
ciency of our parallel implementation. We simulated 
playing a sample for one second, and repeated this five 
times.  We used the built-in CUDA timers to measure the 
amount of time it took to calculate the samples and trans-
fer the samples from the device to the system, using 
pinned memory on systems where that is available, and 
asynchronous transfers for the system without pinned 
memory.  We made measurements for several audio out-
put buffer sizes, and several grid sizes. 
 

System 

Buffer  
Size 

(Samples) 

GPU  
Time  
(ms) 

Memory 
Transfer 

(ms) 

GPU  
Total 
(ms) 

CPU  
Time 
(ms) 

8 1626 0 1626 3060 
512 1062 0 1062 3032 GTX285 

4096 1067 0 1067 3102 
8 7251 0 7251 4052 

512 5674 0 5674 4088 9400M 
4096 2842 0 2842 4133 

8 2863 705 3568 2562 
512 2095 12 2106 2518 8800GT 

4096 2110 2 2112 2539 

Table 1.  Results for fixed 21 x 21 grid and varying out-
put buffer size. 

The results of the tests run on our three test systems, 
with a fixed grid size of 21 x 21 and varying buffer sizes, 
are summarized in Table 1. Buffer Size is the size of the 
output buffer in samples. GPU Time is the total execution 
time in milliseconds of the kernels on the GPU.  Memory 

Transfer is the total time in milliseconds to transfer the 
output buffer from the device to the host; a memory 
transfer value of 0 indicates that the device supported 
pinned memory.  CPU Time is the total execution time in 
milliseconds of the serial implementation on the CPU. 
All timings represent a total time over 5 runs of 1- second 
output each (i.e. total of 220500 samples). 
 

 

Figure 3.  Execution speed with a constant grid size of 21 
x 21 points, and varying output buffer sizes. 

As can be seen in Figure 3, performance on the CPU 
remains almost constant for all buffer sizes.  As the out-
put buffer size increases, generating the same number of 
output samples requires fewer kernel calls and memory 
transfers on the GPU; thus the overhead decreases.  For 
the GTX285 system, the performance of the parallel ver-
sion increased significantly when buffer size increased 
from 8 to 512, and stayed about constant for larger buffer 
sizes. The parallel implementation ran faster than the 
serial implementation, with speedups of 1.2 to 2.9.  The 
9400M system had the lowest performance of the three. 
The performance of the parallel implementation increased 
steadily with larger buffer sizes. For the 8800GT system 
(no pinned memory), as the buffer size increased, the  
 
 

System 

Grid 
Size 

(Points) 

GPU  
Time 
(ms) 

Memory 
Transfer 

(ms) 

GPU  
Total 
(ms) 

CPU  
Time 
(ms) 

15 x 15 924 0 924 1577 
18 x 18 984 0 984 2224 GTX285 
21 x 21 1067 0 1067 3102 
15 x 15 2222 0 2222 1984 
18 x 18 2957 0 2957 3040 9400M 
21 x 21 2842 0 2842 4133 

 15 x 15 1411 2 1413 1266 
18 x 18 1743 3 1746 1843 8800GT 
21 x 21 2110 2 2112 2539 

Table 2.  Results for a fixed buffer size of 4096 samples, 
and varying grid size. 
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overhead for memory transfers decreased as a percentage 
of total execution time.  The parallel code was faster than 
the serial code only with a buffer size of 512 or greater. 

Table 2 summarizes timing estimates with a fixed 
buffer size of 4096 samples, but with varying grid sizes 
of 15 x 15, 18 x 18, and 21 x 21. (We were unable to 
work with larger grid sizes because of GPU memory 
limitations for our current implementation.) 

 

 

 Figure 4.  Execution speed with a constant buffer size 
4096-samples, and varying grid sizes.  For the GTX285, 
k=0.755; for the 9400M k=1.0; for the 8800GT k=0.629.  

As with the previous test, the parallel implementation 
was faster than the serial on the GTX285 system for all 
tested grid sizes; it can be seen Figure 4 that timings for 
the CPU show an approximate O(n2) increase with grid 
size, while GPU timings increase significantly more 
slowly.  With all grid sizes, speedup improved with larger 
grid sizes. For the 9400M system and 8800GT system, 
the parallel version was faster for grid sizes 18 and 21, 
but the serial version was faster for a grid size of 15. 

6 CONCLUSIONS AND FUTURE WORK 
Our goal for this project was to explore the ability of cur-
rent mid-range GPU cards to support real-time compute-
intensive physics-based synthesis algorithms.  We have 
shown that it is possible to use GPUs to generate real-
time audio based on finite difference plate/membrane 
simulations, but that correct choice of output buffer size 
and simulation grid size are important. Our straightfor-
ward implementation of a parallel finite difference algo-
rithm runs efficiently on our first test system with a 
GTX285; our less powerful test systems will support 
adequate performance with selected buffer and simulation 
grid sizes. 

From the results with the 8800GT system, we have 
shown that memory bandwidth is not a major issue, at 
least for problems similar to our finite difference code. 
Newer models of GPU cards that support pinned memory 
largely avoid the overhead of copying results between the 
GPU and the host CPU. Larger simulation grid sizes can 
leverage the parallelism of multiple GPU cores, if the 
data sizes do not exceed the available GPU memory size. 

The output buffer size can be increased to reduce kernel 
call and memory transfer overhead, but at the cost of re-
sponsiveness.   

Future work will focus on creating a modular produc-
tion-quality synthesis package using the GPU and finite 
difference methods, for modeling a variety of percussion 
instruments.  Some limitations of the current implementa-
tion must be addressed.  Our current version supports 
only relatively small grid sizes.  We are working on dis-
tributing the parallel kernel across multiple thread blocks, 
and using texture memory, to allow for larger or denser 
grids.  Our code is written in the proprietary CUDA ex-
tension.  We are planning on rewriting the GPU software 
in the industry-standard OpenCL language [9] and testing 
it across heterogeneous compute platforms. 

7 REFERENCES 
[1] A. Adib:  “Study Notes on Numerical Solutions of 

the Wave Equation with the Finite Difference 
Method,”  arXiv:physics/0009068v2 [physics.comp-
ph].  4 October 2000.   Downloaded from 
http://arxiv.org/abs/physics/0009068v2 on April 15, 
2010. 

[2] S. Bilbao:  “A finite difference scheme for plate syn-
thesis,” Proceedings of the International Computer 
Music Conference, pp. 119-122, 2005. 

[3] K. van den Doel, D. Knott, D. Pai: "Interactive 
Simulation of Complex Audio-Visual Scenes," 
Presence: Teleoperators and Virtual Environments, 
Vol. 13, No. 1, pp. 99-111, 2004. 

[4] E. Gallo, N. Tsingos:  “Efficient 3D Audio Process-
ing on the GPU,”  Proceedings of the ACM Work-
shop on General Purpose Computing on Graphics 
Processors, August 2004. 

[5] B. Land:  “Finite difference drum/chime,"  From   
http://instruct1.cit.cornell.edu/courses/ece576/LABS
/f2009/lab4.html, 4/15/2010. 

[6] N. P. Lago, F. Kon:  “The Quest for Low Latency,” 
Proceedings of the International Computer Music 
Conference, pp. 33-36, 2004. 

[7] E. Motuk, R. Woods, S. Bilbao, J. McAllister:  "De-
sign Methodology for Real-Time FPGA-Based 
Sound Synthesis,"  IEEE Transactions on Signal 
Processing, Vol. 55, No. 12, pp. 5833 – 5845, 2007. 

[8] Nvidia CUDA Programming Guide, version 2.3.1.  
8/26/2009.  Downloaded 4/21/2010 from 
http://developer.download.nvidia.com/compute/cuda
/2_3/toolkit/docs/Nvidia_CUDA_Programming_Gui
de_2.3.pdf. 

[9] Nvidia OpenCL Programming Guide, version 2.3.  
8/27/2009.  Downloaded 4/21/2010 from 
http://www.nvidia.com/content/cudazone/download/
OpenCL/Nvidia_OpenCL_ProgrammingGuide.pdf 

[10] Y. Orlarey, D. Fober, S. Letz:  "Parallelization of 
Audio Applications with Faust," Proceedings of the 
SMC 2009 - 6th Sound and Music Computing Con-
ference, pp. 23-25, 2009. 

[11] N. Rober, U. Kaminski, M. Masuch:  "Ray Acous-
tics using Computer Graphics Technology,"  Pro-
ceedings of DAFx, 2007. 

489



[12] B. Roche:  Blocking Read/Write Functions.  From 
http://www.portaudio.com/trac/wiki/TutorialDir/Blo
ckingReadWrite, 4/21/2010. 

[13] F. Trebien, M. Oliveira:  “Realistic real-time sound 
re-synthesis and processing for interactive virtual 
worlds,”  The Visual Computer, Vol. 25, No. 5-7, 
2009. 
 

[14] S. Whalen:  "Audio and the Graphics Processing 
Unit,"  Technical Report, Downloaded 4/21/2010 
from http://www.node99.org/papers/gpuaudio.pdf. 

[15] Q. Zhang, L. Ye, Z. Pan,  "Physically-Based Sound 
Synthesis on GPUs," Entertainment Computing - 
ICEC 2005, Lecture Notes in Computer Science, 
Vol. 3711/2005. 

 
 

490



SHORT TERM PITCH MEMORY IN WESTERN vs. 
OTHER EQUAL TEMPERAMENT TUNING            

SYSTEMS 
Areti Andreopoulou  Morwaread Farbood 

Music and Audio Research Laboratory 
New York University, New York, USA 

aa1510@nyu.edu 

 Music and Audio Research Laboratory 
New York University, New York, USA 

mfarbood@nyu.edu 

ABSTRACT 
This study investigates the use of short-term memory for 
pitch recognition in a Western (12-tone) vs. a 10-tone 
equal temperament context. 10 subjects with at least one 
year of formal music and theory training participated in 
an experiment that consisted of two identical music lis-
tening tests (one per tuning system) in which they were 
trained to recall a reference tone and count the number of 
times it recurred in various short monophonic melodies. 
In the parts of the experiment where subjects used their 
short-term memory to execute one-to-one comparisons 
between the given reference tone and the melody tones, 
the results were equivalent for both tuning modes. On 
the other hand, when subjects tried to recall the reference 
tone directly from long-term memory, the results were 
noticeably better for the Western tuning context. 

1. INTRODUCTION 
A considerable amount of research has been done over 
the past decades regarding the way human brains proc-
ess, store and recall music pitch. It is clear, for example, 
that the way our brain responds to music is different 
from the way it handles visual reference. We are very 
good in treating colors in a discrete scale, easily distin-
guishing them, naming them, and recalling them from 
memory, while we seem to experience pitches in music 
as a continuum [9].  

The population can be divided into groups, according 
to pitch processing capability; those who have absolute 
pitch abilities, those who have relative and those who 
have both. Absolute pitch is defined as the ability to ei-
ther identify and name pitch classes of single tones, or to 
accurately reproduce a given pitch without any refer-
ence, while Relative Pitch describes the acquired ability 
by trained musicians to identify or produce musical in-
tervals [9]. Absolute pitch is a very rare skill, occurring 
in 1 out of 10,000 people and can be divided into two 
different skills: pitch memory, and pitch labeling [10].  

While pitch labeling is a unique characteristic of AP 
possessors, pitch memory is widespread among musi-
cally trained and untrained individuals. Schellenberg 
[12] has shown that adults will little musical training can 
distinguish the original versions of popular tunes from 

those pitch shifted by one or two semitones. Other ex-
periments have revealed that listeners can not only iden-
tify familiar tunes when played back at different pitch 
transpositions and tempi, but also accurately reproduce 
them from memory within a two semitone range and an 
8% deviation from the original tempo [9]. 

Extended research been done regarding characteris-
tics of people that demonstrate absolute pitch abilities. 
Several theories have been developed based on different 
factors such as ethnicity, inheritance, age at which indi-
viduals began studying music, etc. [7]. Pamela Heaton 
[8] proposed that autistic musical savants are superior in 
long-term-memory music tasks, because their cognitive 
style biases processing of information on local rather 
than on global features. 

 Diana Deutsch has, over the years, developed an ex-
tended study on pitch memory. Some of her very inter-
esting observations concern the variety of factors that 
can influence subjects’ pitch memory accuracy. She has 
suggested that recognition precision decreases inversely 
with temporal separation between the reference and the 
test tone, if longer than 6 seconds. Furthermore, the 
presence of distractor pitches between the two tones can 
also affect subjects’ performance. This variation can be 
considered a function of the pitch relationships and in-
tervals between the distractor tones [3, 4, 5]. 

 
In this study we are investigating the use of short-

term pitch memory in a 12-tone vs. a 10-tone equal tem-
perament tuning system. To our knowledge, there are no 
other studies that have attempted a cross-comparison of 
pitch memory in different tuning systems. Yet, we can 
use an approach similar to the one employed by Deutsch 
[3], in which two tones that are either the same or up to a 
whole tone apart are compared 

2. EXPERIMENT 

The experiment consisted of two separate sessions (one 
per tuning system). Subjects were asked to recall a refer-
ence tone and count the number of times it appeared in 
various short, monophonic melodies. 
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491



 

2.1 Participants 

Ten subjects (8 female and 2 male) between 23 and 39 
years old (mean 29.2) successfully completed both of the 
listening tests. Two of them claimed to have absolute 
pitch, and two others claimed to have the ability to rec-
ognize certain pitches more easily, even without a 
reference tone. All subjects reported having at least one 
year of formal musical training on an instrument (mini-
mum 1, maximum 24, mean 12.3 years) and at least one 
year of formal theory training (minimum 1, maximum 
20, mean 7.3 years). 

2.2 Stimuli 
Two sets of 46 short monophonic melodies 

(averaging five measures in length) were composed, one 
for each of the two listening tests. The stimuli were writ-
ten in various meters and tempi and had different tonal 
centers. The target tone could appear between one and 
five times in a single melody. The first set was com-
posed in 12-tone equal temperament (Western tuning) 
and the second in 10-tone equal temperament. All melo-
dies were rendered using MIDI piano sounds. 

 

2.3 Procedure 

The experiment consisted of two pitch-memory listening 
sessions. All 10 subjects successfully completed both of 
sessions in random order, and each session took part on 
separate days. The procedure and the task were identical 
for both sessions––the only difference was the set of 
stimuli used (either 10 or 12-tone equal temperament). 
The subjects were asked to identify and count the num-
ber of times a given reference tone was present in each 
of the short melodic examples they listened to. 

Each session consisted of three parts––intro, training, 
and testing––and lasted for approximately 45 minutes, 
with a 10-minute break after the training part. The stim-
uli were presented to the subjects on a Macintosh com-
puter via headphones, while the graphical interface was a 
stand-alone application programmed in Max 5.  

Before the beginning of the experiment, all subjects 
had to read a detailed description of the task and the pur-
pose of each part of the session. Subjects were then pre-
sented with 6 sample melodies in order to give them the 
opportunity to familiarize themselves with the interface 
and task, adjust the volume, and further clarify the test 
goals as needed. The training phase of the session con-
sisted of 70 melodies (35 different melodies each played 
twice in a random order), each one preceded by the same 
reference note. For the 12-tone test the reference note 
was always the middle D (293.66 Hz), while for the 10-
tone one the note was slightly higher in pitch (297.08 
Hz). Subjects had to indicate how many times the 
reference tone appeared in the melodies  by pressing the 
corresponding button. They were clearly advised to ig-
nore all octave equivalent tones. 

The training phase was followed by a short 10-minute 
break, during which subjects had the chance to rest and 
fill in a questionnaire regarding their music background 
and their experience with the test so far.  

The last part of the session was the testing phase. It 
consisted of 5 short melodies, presented in random order. 
This time, no reference tone was given before the begin-
ning of each melody. Subjects were asked, once again, to 
identify and count the number of times that the previous 
target tone was present in the melodies by recalling it 
from memory. Once again, the target tone appeared be-
tween 1 and 5 times in each example and subjects were 
expected to ignore any octave equivalencies. 

3. RESULTS 
3.1 12-tone equal temperament test 

As it can be seen in Figure 1 all subjects performed well 
above chance in both the training (minimum 27, maxi-
mum 70 correction responses, mean 49, [70%]) and the 
testing (minimum 1, maximum 5 correct responses, 
mean 3.7) phases of the 12-tone session.  

In the training part, two subjects had a perfect score 
(one of whom reported having absolute pitch) and two 
more had more than 60 correct responses (87% accu-
racy). Three more subjects were clustered around the 
mean, having a score between 44 and 51 correct answers 
(62.9% and 72.9%), while the rest had a scores varying 
from 27 to 31 (38.6% to 44.3%). 

In the testing phase, 4 out of the 10 subjects had a 
perfect score, managing to correctly recall from memory 
the right pitch all 5 times, while 2 other subjects made 
only a single error. The rest of the subjects scored below 
the mean. It is worth mentioning that one of the two sub-
jects who had reported having absolute pitch scored be-
low average in both the training and testing parts. 

 

Figure 1. Cross subject evaluation in the 12-tone equal 
temperament test. 
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3.2 10-tone equal temperament test 

The subjects’ performance in the training part of the 10-
tone session was nearly equivalent to that of the 12-tone 
session. The minimum score was 30 correct responses 
and the maximum 70 (mean 49.3,  [70.4%]). 

As we can see in Figure 2, the top four subjects had a 
score that ranged between 59 and 69 correct answers 

(84.3% and 98.6%). Two subject answered 69 out of the 
70 questions successfully, one of whom reported having 
absolute pitch. The next three subjects, clustered around 
the mean, had scores between 41 and 52 out of 70 cor-
rect answers (58.7% and 75.7%), while the bottom three 
ranged between 30 and 35 (42.9% and 50%). 

In the testing phase, on the other hand, we can see 
differences in the performance of the subjects. Once 
again 4 subjects had a full score of 5 out of 5, and an-
other had 4 out 5. Yet this time, more subjects scored 
below the average. As it can be seen in Figure 2, 2 sub-
jects had 2 correct answers and 3 managed to recall the 
correct reference tone from memory only once. One of 
the subjects who had reported having absolute pitch 
scored below average in both the training and testing 
parts of the session. 

3.3 Cross-test evaluation 

When we initially started conducting the experiment, we 
expected that the subjects’ performance in the 12-tone 
session would be considerably better than in the 10-tone 
session due to familiarity with the tonal context. Yet, it 
quickly became clear that,  at least in the training portion 
of each session, subjects performed equally well in both 
tuning systems. 

Figure 2. Cross-subject evaluation in the 10-tone equal 
temperament test. 

 

 
Figure 3. Average cross-session performance of all subjects. 

 
 
 
In Figure 3, we can see the average progress of all sub-
jects during both of the sessions, versus the perfect 
score. The horizontal axis corresponds to each new 
melody the subjects were being tested on during the 
training part, and the vertical one to the number of cor-
rect answers. Each time a subject gives a correct re-
sponse, the line increases in height; the dashed diagonal, 
corresponds to perfect score (70/70).  

Results show that for each session, the number or 
correct answers per subject is almost the same for both 
tuning modes in the training portion. A cross-session 
evaluation of the training part of the experiment for all 
subjects is summarized in Figure 4.  
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Figure 4. Cross-session performance per subject (Train-
ing). 

Figure 4 indicates that there is very little difference 
in performance between the two sessions across all sub-
jects, varying between 0 and 5 out of 70 answers. It may 
also be noted that while the majority of subjects (7 out of 
10) performed a little better or equally well in the 12-
tone equal temperament test, the biggest cross-session 
performance variation can be seen in subject 10, who 
actually performed better in the 10-tone equal tempera-
ment test mode.  

Figure 5. Cross-session performance per subject 
(testing phase). 

The picture is slightly different when we attempt a 
cross-session performance comparison of the testing 
phase for all subjects (Figure 5). Here the variations in 
performance are evident (between 0 and 3 out of 5, 0% / 
60%). Moreover, half of the subjects have less than 
50% accuracy in the 10-tone tuning mode, while that 
holds true for only two subjects in the 12-tone session. 
Finally, in 9 out of 10 cases, subjects performed with 
equal or greater accuracy in the Western tuning testing 
phase. 

4. DISCUSSION 
After the completion of the second session, subjects 
were asked to evaluate the perceived difficulty of the 
task so far. All but one subject stated that the 12-tone 
temperament test was equally difficult or easier than the 
10-tone one (Table 1). 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

12-
tone  

8 6 3 6 5 4 4 5 1 3 

10-
tone  

8 7 4 7 10 8 7 8 2 2 

Table 1. Evaluation of test difficulty by subjects. 

This reaction coincides with our initial hypothesis 
that subjects would perform better in the 12-tone session 
due to extended exposure to the tuning system and fa-
miliarity with the tonal environment. This is also 
supported by the overall performance of all subjects in 
the testing phase of each session, where they had to re-
call from memory the reference tone that they were 
trained to identify. Here, as we mentioned before, sub-
jects seemed to more successfully recall the 293.66 Hz 
reference tone, which corresponds to the middle D (D4), 
than the 297.08 Hz tone. 

The subjects’ results in the testing phase were also in 
agreement with the information we collected from them, 
regarding their exposure to non-Western music idioms. 
Only three subjects responded positively to this question. 
Yet, even among those three, only one of them per-
formed more accurately in 10-tone equal temperament 
session (Figure 5). 
On the contrary, as we have seen in Figure 4, the sub-
jects’ cross-session performance during the training 
phase resulted in a highly similar level of accuracy.  All 
subjects were successful in recalling the reference tone. 
This might be an indication that musically trained listen-
ers can ignore the tonal environment of a certain melody 
when they are relying on short-term memory to perform 
one-to-one pitch comparisons between a reference tone, 
presented immediately before each stimulus and the 
tones in the following melody. The testing phase, on the 
other hand, was always preceded by a 10-minute break 
and no reference tone was explicitly provided. Subjects 
were thus forced to rely on their long-term memory of 
the reference tone. It is therefore easy to imagine that the 
reference tone of the 12-tone test (D4), had a stronger 
encoding in the subjects’ brains due to extended and 
repeated exposure to the pitch itself through regular lis-
tening of Western music, than that of the 10-tone pitch 
that was slightly higher in frequency. 

It is also worth mentioning the subjects' consistency 
in the overall perceived difficulty of the experimental 
task in light of one specific subject's remark. This subject 
commented, “I find I recall pitch more purely in the mi-
crotonal/atonal test. The tonal test introduces interfer-
ence of relative pitch relationships between notes.” It 
appears that this subject found it easier to recognize the 
recalled target tone in a one-to-one direct comparison 

494



manner than to establish tonal relationships between the 
target tone and the key of each test melody. 

Three other subjects reported that they were able to 
develop relative tonal associations between the reference 
tones and the melodies in the 12-tone equal temperament 
tests, and felt more insecure in the 10-tone context where 
such associations were not an option. Finally, one of the 
two subjects who had reported having absolute pitch 
mentioned being surprised by the difficulty of the tests. 
The second one, who had a perfect score in both tests, 
wrote, “For the Western tuning test, I was able to just 
count how many times I would hear that D in the melo-
dies. For the second test on the other hand, I was just 
trying to listen for the target tone and ignore the rest of 
the notes. After some time, I had memorized it and 
needed the reference no more.” According to that com-
ment, this particular subject had approached pitch com-
parisons in an absolute rather than a relative manner, in 
both the Western and the 10-tone tuning modes. Such an 
approach is fully justified, since, in the case of Western 
tuning, an absolute perception of frequency is trivial, 
given the AP listener's learned labels for pitches, while 
in the 10-tone case, the absence of relative associations 
make direct comparisons a necessity. These comments 
imply that a fast and efficient encoding of the reference 
tone allowed the AP possessor to quickly precede in the 
10-tone case much in the same way as in the 12-tone 
case. It is likely that AP listeners have the ability to cre-
ate faster, clearer, and stronger mappings of different 
frequencies that would allow them to continue function-
ing in an absolute rather than a relative manner. How-
ever, this question still remains to be answered. 

 
As indicated by the results of this study, short-term 

pitch memory can function equally well for both 12-tone 
and 10-tone equal temperament systems. We would like 
to further investigate the point at which short-term mem-
ory and long-term memory interact or overlap in the case 
of pitch recall. Further work will include comparing ex-
treme equal-temperament cases, such as 6-tone equal 
temperament, 12-tone and 16-tone ones, or even unequal 
temperament scales. We are also interested in expanding 
the present research to subjects with no formal musical 
training in order to get an idea of the effect of musical 
training on subjects’ decision-making process in such 
experiments. 
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ABSTRACT

We propose an approach to audio-based data-driven mu-
sic visualization and an experimental design to study if
the music visualization can aid listeners in identifying the
structure of music. A three stage system is presented in-
cluding feature extraction, the generation of a recurrence
plot and the creation of an arc diagram to visualize the rep-
etitions within a piece. Then subjects are asked to cate-
gorize simple forms of classical music with and without
audio and visual cues provided. The accuracy and speed
are measured. The results show that the visualization can
reinforce the identification of musical forms.

1. INTRODUCTION

The detailed study of recorded music is a labor intensive
task. This is especially true of the analysis of large au-
dio collections. These collections are difficult to browse
given standard catalog and metadata descriptions of mu-
sic, which provide no information about the musical con-
tents of each recording. Music information retrieval (MIR)
research provides a solution to these issues through the de-
velopment of tools and algorithms that allow for efficient,
content-based search and navigation of large music cata-
logs. In this context, the generation of novel, data-driven
and intuitive representations of audio content is necessary
to aid the work of musicians and musicologists trying to
derive knowledge from these analyses.

Music visualizations have been extensively studied in
MIR as ways of helping listeners browse through audio
collections and attain a better understanding of their mu-
sic content [1]. Previous work has mostly concentrated
on collection-level visualizations, where tracks are orga-
nized according to their similarity or grouped into, e.g.,
genre or mood categories [2, 3, 4]. Relatively little atten-
tion has been paid to the visualization of within-track con-
tents beyond interactive displays based on low-level fea-
tures [5], or the plotting of feature sequences and inter-
mediate representations (such as self-similarity matrices or
other representations used in music structure analysis) that
are not necessarily intuitive or informative to non-expert
users [6, 4].

Copyright: c©2010 Ho-Hsiang Wu et al. This is an open-access article distributed
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the original author and source are credited.

In this paper we propose a data-driven approach to the
content-based visualization of music structure, based on
recurrence analysis of harmonic features. Like previous
work on music structure analysis [7, 8, 9], we exploit the
existence of patterns of repetition in music. However, we
do not assume the common view of music structure as a
high-level concatenation of blocks, and thus make no deci-
sions about segmentation boundaries. Instead, we adopt
the approach, pioneered in [10] with MIDI data, where
data recurrences are visualized by means of arc diagrams,
and high-level structure is in the eye of the beholder. The
proposed visualization approach is evaluated on its ability
to improve the accuracy and speed with which users iden-
tify simple forms in classical music.

The remainder of this paper is organized as follows: the
details of the visualization approach are described in sec-
tion 2; the evaluation methodology is discussed in section
3; the results and discussion of the subjective evaluation
are presented in section 4; while section 5 presents our
conclusions and plans for future work.

2. VISUALIZATION APPROACH

The proposed approach can be subdivided into three main
stages: first we extract low-level, harmonic features from
the audio signal; second, we project the feature sequence
into phase space and compute a recurrence plot from this
data; and finally, we generate an arc diagram characteriz-
ing the repetitions in the music data stream. The block
diagram of the system is shown in Figure 1.

Figure 1. Visualization approach
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2.1 Feature Extraction

In our analysis we use chroma features to represent har-
monic content in the music signal. Chroma features are
commonly obtained from short-term spectral analysis, e.g.
via the STFT. For each analysis frame, they represent the
signal’s energy across the 12 pitch classes of the chromatic
scale of western tonal music. The concatenation of these
12-dimensional chroma vectors across time is known as a
chromagram.

In our implementation, chroma features are computed
via the constant-Q transform [11], a spectral analysis tech-
nique in which frequency domain channels are logarithmi-
cally spaced, and are thus closely related to the frequency
resolution of the human hearing system. First the signal
is downsampled to fs = 5512.5Hz. Next, we compute
the STFT using a 1024 samples-long Hann window and
a hop size of 512. The spectrum is then multiplied by a
constant-Q kernel computed with a minimum frequency of
73.42 Hz, a resolution of 36 bins per octave and a 3-octave
span. The dimensionality of the chromagram, shown in
Figure 2(a), is reduced to 12 bins with a weighted sum
across each 3-bin pitch class neighborhood.

Figure 2. (a) Standard chromagram and (b) chromagram
after low-pass filtering, standardization and resampling.

Finally, the features are low-pass filtered, standardized
to zero mean and unit variance, and resampled to a resolu-
tion of 2 frames per second, as shown in Figure 2 (b).

2.2 Recurrence Plot

A recurrence plot (RP) is a method for analyzing nonlinear
dynamic systems [12]. It is visualized as a binary square
matrix, in which value ones correspond to pairs of times
(indicated by row and column indices) at which a state of
the dynamic system recurs. The RP is derived from the
so-called phase space, in which all possible states of a sys-
tem are represented as unique regions. We can consider a
chromagram as the output of a nonlinear dynamic system,
with each vector corresponding to a trajectory point in a
multi-dimensional space. Of course, chromagrams are not
produced by dynamic systems, but assuming so allows us
to create an intuitive representation able to fully character-
ize harmonic repetitions in music.

Let us assume a one-dimensional time series x(t), as il-
lustrated in Figure 3(a). We can reconstruct its phase space
trajectory using a process known as time-delay embedding.
In this process we choose an embedding dimensionm, and

Figure 3. (a) Time series (b) Phase space representation
(c) Recurrence plot.

a time delay τ , such that each time t in the series is now
represented by a vector obtained by concatenating the val-
ues x(t), x(t− τ), ..., x(t− (m− 1)τ). As can be seen in
Figure 3(b), for m = 2 and τ = 2, each of these vectors
describes a point in the m-dimensional phase space.

Time delay embedding can be also applied to multi-
dimensional time series, such as the chromagram C =
{ck,i}, where i = 1 . . . N , the length of the time series,
and k = 1 . . . 12, the dimensionality of the chroma vector:

~xc(i) = (c1,i, c1,i−τ , . . . , c1,i−(m−1)τ , . . .

c12,i, c12,i−τ , ..., c12,i−(m−1)τ )
(1)

We can compute the recurrence plot R for this trajec-
tory, such that R(i, j) = 1 if ~xc(i) and ~xc(j) are no farther
than a distance of ε from each other in the phase space, and
R(i, j) = 0 otherwise. This can be expressed as:

R(i, j) = H(ε− ‖ ~xc(i)− ~xc(j) ‖),
~xc(i) ∈ Rm, i, j = m, ..., N,

(2)
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where N is the number of frames in the original time series,
ε is a threshold value, ‖ · ‖ is a norm (e.g. Euclidean
norm), and H is the unit step function. Figure 3(c) shows
the resulting RP for the phase space in Figure 3(b).

Previous research into applying phase space and recur-
rence plots to music analysis includes the visualization of
expressive timing in piano performance [13] and the state-
of-the-art in cover song identification using a variant of RP
that can be computed on pairs of songs [14]. Notably, self-
similarity matrices, which are widely-used in MIR, are a
special case of RP known as distance plots [12], computed
using m = τ = 1.

Figure 4. Tangential motion.

Figure 4 serves to illustrate the effect of changing the
values of m and τ . The illustration shows a neighbor-
hood of the phase space containing 3 segments of a tra-
jectory: two running in parallel from left to right, and a
third one running perpendicular from top to bottom. At the
crossover point, when m = τ = 1, it can be seen how all
three sections of the trajectory are close enough to be con-
sidered recurrences of each other (resulting in values of 1
in the RP). An example RP with m = 1 is shown at the top
of Figure 5. However, as (m−1)τ increases, the size of the
neighborhood of points that need to be in close proximity
to generate a recurrence also increases, weeding out recur-
rences generated by tangential contact. The left column of
Figure 5 shows the changes in the RP as m increases. In
our visualization experiments, we have heuristically cho-
sen m = 25 and τ = 1 as appropriate embedding values.

In both Figure 4 and Figure 5, we can also observe that
due to the natural proximity between consecutive points
in the trajectory (including between each point to itself),
there is an important concentration of activations in the RP
along its main diagonal. These activations, however, carry
no information about recurrences in the data, and need to
be ignored for visualization purposes. A common solu-
tion to this problem is to exclude an area of arbitrary width
contiguous to the main diagonal by using a Theiler window
[15]. In our experiments, the Theiler window size is set to
10% of the length of the resampled feature sequence.

Finally, for visualization purposes, it is important to
ensure that RPs from different songs contain roughly the
same amount of information. In this paper we use recur-
rence rate (RR), one of several measures commonly used
to quantify the properties of RPs [12]. RR measures the
density of the plot as a percentage of its recurrences:

RR =
1

N2

N∑
i,j=1

R(i, j) (3)

In our implementation RR is used as a threshold on the

Figure 5. Recurrence plot (left column) and correspond-
ing arc diagram (right column) with different embedding
dimension m.

amount of information we would like to show in the vi-
sualization, such that the higher the rate, the denser (and
noisier) the plots become. Conversely, the lower the rate,
the sparser, and potentially uninformative, they are. After
informal experimentation,RR = 0.2 was chosen as a good
trade-off between both those extremes.

2.3 Arc Diagram

Arc diagrams have been extensively used to represent com-
plex patterns of data recurrence in fields such as biology
and physics [10, 16]. They consist of arcs connecting points
of repetition in the data stream. Thus, we can simply con-
vert the above recurrence plots into arc diagrams by repre-
senting Ri,j = 1 as an arched line connecting the ith and
jth frame of the data sequence. An example diagram can
be seen in Figure 6 (a), where the horizontal axis represents
discrete time, and R1,9 = R2,10 = R5,15 = 1.

Figure 6. (a) 1 to 1 connection arc diagram (b) Arc dia-
gram with grouping.

To avoid too dense a visualization by repeatedly con-
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necting all single arcs, we group neighboring lines into
wider arcs. The details of the grouping method are de-
scribed in Algorithm 1. First we define each group Gs as
a vector of four values indexing the arc boundaries, such
that Gs(1) and Gs(2) are the left and right boundaries of
the leftmost part of the arc, while Gs(3) and Gs(4) are the
boundaries of the rightmost part of the arc. Next, we eval-
uate every point Ri,j = 1 in the RP, comparing i and j,
respectively, with the left and rightmost sets of boundaries
of each existing group. If i, j are contiguous to the bound-
aries of a given group, then they are added to it and the
group’s boundaries are updated. If i and j do not belong
to any existing group, then a new group is created with i
and j as the initial boundaries Gs(i, i, j, j). We repeat this
process for all points in the RP, until we obtain a final list
of groups to be used in the drawing of the arc diagram.

Algorithm 1 Arc diagram grouping method
Create a group list Gs(0, 0, 0, 0) with four entries
{Gs(1), Gs(2) leftmost and Gs(3), Gs(4) rightmost part
boundaries}

for i ≤ j and i, j = 1 to N do
if Ri,j = 1 then

for s = 1 to length(Gs) do
if Gs(3) ≤ j ≤ Gs(4) and 0 ≤ Gs(1)− i ≤ 1 then

Gs(1) = i
else if Gs(3) ≤ j ≤ Gs(4) and 0 ≤ i − Gs(2) ≤ 1
then

Gs(2) = i
else if Gs(1) ≤ i ≤ Gs(2) and 0 ≤ Gs(3) − j ≤ 1
then

Gs(3) = j
else if Gs(1) ≤ i ≤ Gs(2) and 0 ≤ j − Gs(4) ≤ 1
then

Gs(4) = j
else

create new group Gs(i, i, j, j)
end if

end for
end if

end for

In the creation of the arc diagram visualization, we have
borrowed several implementation strategies from [10]. For
example, we use translucent color in order to clearly depict
multiple layers of arcs, with color depths (saturation) used
to resolve arc overlap in the limited pixel space. Another
strategy is to show grouped arcs as a single, wider arc as
in Figure 6 (b), rather than as a collection of individual
arcs as in Figure 6 (a), where the perceived order of the
arc boundaries is reversed. The result of the process can be
observed on the right column of Figure 5, which shows a
number of examples of arc diagrams for varying values of
m. It can be seen how the choice of embedding parameter
affects the density and clarity of the visualization.

3. EXPERIMENTAL DESIGN

3.1 Task

We conduct a preliminary experiment to study if these vi-
sualizations can help convey information more intuitively
and efficiently than simply listening to the music. The task

is to identify musical forms as belonging to one of four
categories (strophic, binary, ternary and rondo), with and
without aid from audio/visual cues.

Four different combinations of visual and audio cues are
provided in the experiment in order to compare the influ-
ences of each of them on the perception of musical forms.
In the first category, both visualization and music are pro-
vided. In the second category, only music is provided with-
out any visual cue. In the third category, only visualization
is provided without any music playing. In the fourth cat-
egory, we provide both music and segmentation boundary
information obtained using the Echonest API [17].

In order to prevent confusing definitions arising from
listeners’ different interpretations and understandings of
musical form, the four categories to be identified are repre-
sented with capital letters indicating the segments which
comprise the structure. Strophic form is represented as
AA, AAA or AA’. Music in this form contains one main
theme which is repeated either with or without slight vari-
ations. Binary form is represented as AB or ABAB. Music
in this form consists of two main alternating themes, al-
ways ending with the second theme. Ternary form is repre-
sented as ABC or ABA’. Music in this form has three main
themes, or two main themes plus a re-statement of the first
theme with or without variations. Rondo form is repre-
sented as ABACA, ABACABA or ABACADAEA, where
we have a recurring main theme alternating with other dif-
ferent (usually contrasting) themes.

3.2 Methodology

First, the subjects are given descriptions of the task, the
explanations of musical forms and the experiment envi-
ronment. Example tests of each category of audio/visual
cue combination are then given to the subjects in order
to familiarize them with the system and the experimental
process. Next, the subjects are asked to go through forty
music pieces with combinations of different forms and vi-
sual/audio cues provided. A screen shot of the test envi-
ronment is shown in Figure 7. Subjects can click on any
location on the image they are interested in and listen to
the music starting from the corresponding location in the
audio track. They can listen to the same piece for as long
as they want until they make a decision, at which point they
click on one of the check boxes to select a form and move
on to the next test. The total length of time they spend on
each test is recorded as a measure of the speed of recogni-
tion.

The experimental system is implemented using Process-
ing [18]. Processing is a Java-based programming lan-
guage which provides programmers with quick graphical,
visualization and interaction prototyping environment. It
also provides certain control abilities for user interface de-
sign.

3.3 Subjects

Twenty people were invited to participate in this experi-
ment, ten males and ten females, all over the age of eigh-
teen. Ten of them are trained classical music players and
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Figure 7. Screen shot of test environment.

ten of them are not. All of them listen to music on a regular
basis.

3.4 Test Music

For each of the four forms described above, ten classical
music pieces are selected. Strophic form pieces are se-
lected from Lieder of the Classical era. For binary and
ternary forms, pieces are chosen from Schumann’s “Album
for the Young” and Bach’s “Notebook for Anna Magdalena
Bach”. Rondo form pieces are selected according to the
examples in the music theory book “The Analysis of Mu-
sical Form” [19]. These pieces are mostly from the works
of Beethoven and Mozart of the Classical era.

4. RESULTS AND DISCUSSION

The average accuracies and response times for all test are
depicted in Table 1. Results are categorized by modes of
audio/visual interaction, including a combination of music,
arc diagram visualizations and segmentation boundaries.

Vis/Mus Mus only Vis only Seg/Mus

Accuracy 57.5% 42.5% 37% 45%
Avg time 165s 265s 29s 198s

Table 1. Overall accuracy (%) and average time (seconds)
for each category.

The relatively-low levels of classification accuracy il-
lustrate the inherent difficulty of the task, with subjects
taking an average of 4 minutes and a half per track to
achieve 42.5% accuracy in listening-only tests. It is imme-
diately evident that the use of visual cues (both segmen-
tation boundaries and the arc diagram) improves accuracy
and speed. The addition of the proposed visualization is
most beneficial, improving accuracy by an average of 15%
and reducing analysis time by an average of 100 seconds,

significantly better than music-only and music plus seg-
mentation results.

However, visualization-only experiments resulted on worst
average accuracy and, unsurprisingly, fastest recognition
speed. This indicates that while the arc diagrams help to
draw attention to important information in the music sig-
nal, they are by themselves not enough to robustly convey
information about the musical structure. After tests, sub-
jects informally reported that their preference was to listen
to the whole piece before looking for details and finding
repetitions. In this context, visualizations helped to guide
navigation, but failed to succeed in replacing the music
recording as the main information channel.

PPPPPPPPRE
GT

Strophic Binary Ternary Rondo

Strophic 52% 14% 8% 17%
Binary 10% 54% 24% 8%
Ternary 11% 17% 56% 7%
Rondo 27% 15% 12% 68%

Table 2. Confusion matrix of the category with both visu-
alization and music.

Table 2 provides a closer look at recognition results us-
ing both audio and the proposed visualization. It shows the
confusion matrix, with rows representing ground truth val-
ues (GT) and columns the subjects’ results (RE). Most con-
fusions fall into one of two categories: strophic/rondo con-
fusions and binary/ternary confusions. The former, can be
partly attributed to the similarities between the correspond-
ing arc diagrams. Figure 8 shows diagrams for two pieces
in strophic (a) and rondo (b) form, respectively. It can be
seen how variations of the repeating theme in (a) result on
gaps in the visualization that can be easily confused with
the representation of an alternating theme, as in the case
of (b). This is also partially the result of the density con-
straints imposed on the diagram, i.e. by definition strophic
forms will tend to result in denser diagrams. However, the
constraints are necessary to avoid too-noisy or too-sparse
diagrams in other styles, and adaptation has proven elusive
without prior information about the music. Confusions be-
tween binary and ternary forms might be caused by the
nuanced and ambiguous difference between AB, ABA and
ABA’ structures. Thus, more ternary music is miscatego-
rized as binary than the opposite.

Figure 8. Visualization examples of (a) Strophic form and
(b) Rondo form.

500



5. CONCLUSIONS AND FUTURE WORK

This paper introduces an audio-based, data-driven visu-
alization of music structure, obtained through the use of
chroma features, recurrence plots and arc diagrams. Addi-
tionally, it presents a preliminary study exploring the abil-
ity of the proposed visualizations in helping complex tasks
such as music form recognition. Our results indicate that
these visualizations can reinforce the identification of mu-
sical structures, both reducing the time and increasing the
accuracy of the analysis. They provide an efficient way in
aiding listeners navigate through music. However, results
also indicate that the proposed visualizations are not yet
enough, on their own, to convey structural information to
users, making them good complements, but not alternative
representations, in the analysis of recorded music.

To address these issues, we are currently working on in-
corporating other musical attributes into the visualization.
Previous work has discussed the multi-dimensional nature
of musical structure, with important cues provided not only
by harmonic and melodic patterns (which the chroma fea-
tures attempt to characterize), but also by rhythmic and
textural characteristics. The data-driven nature of the pro-
cess means that we can easily compute these visualizations
from features such as MFCCs or so-called tempograms
[20], which are intended to represent those attributes. How-
ever, integrating multiple dimensions into an intuitive dia-
gram is far from trivial and we are actively investigating
different color-scheme and layering strategies to solve this
problem.

Additionally, we are planning to embrace the multi-scale
nature of music, allowing users to interactively navigate
across micro and macro readings of the data according to
their information needs, e.g. allowing users to zoom into
the structure of a song at the phrase-level, to visualize lo-
cal patterns of recurrence. A long-term goal is to integrate
multi-scale analysis at the collection, work and track level.
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ABSTRACT

In this study, we propose and compare two probabilistic
models for online pitch tracking: Hidden Markov Model
and Change Point Model. In our models each note has a
certain characteristic spectral shape which we call spec-
tral templates. Hence the system’s goal is to find the note
whose template is active given the audio data. The main
focus on this work is the trade off between latency and ac-
curacy of the pitch tracking system. We present the prob-
abilistic models and the inference schemes in detail. En-
couraging results are obtained from the experiments that
are done on low-pitched monophonic audio.

1. INTRODUCTION

Pitch tracking is one of the most studied topics in the com-
puter music field since it lies at the center of many ap-
plications. It is widely used in phonetics, speech coding,
music information retrieval, music transcription, and inter-
active musical performance systems. It is also used as a
pre-processing step in more comprehensive music analysis
applications such as chord recognition systems.

Many pitch tracking methods have been presented in
the literature. Klapuri proposed an algorithmic approach
for multipitch tracking in [1]. Kashino et al. presented ap-
plied graphical models for polyphonic pitch tracking [2].
Cemgil presented generative models for both monophonic
and polyphonic pitch tracking [3]. Orio et al. and Raphael
proposed Hidden Markov Model based pitch tracking meth-
ods in [4] and [5] respectively. On the other hand, using
nonnegative matrix factorization (NMF) methods become
popular at various audio processing applications. Different
types of NMF models were proposed and tested on poly-
phonic music analysis, [6], [7], [8].

In this study, we propose and compare two probabilistic
models for online pitch tracking. Our probabilistic models
are extensible to polyphonic pitch tracking by using facto-
rial models [9] but we mainly focus on monophonic pitch
tracking of low pitched instruments. The main concern of
the work is reducing the pitch detection latency without
compromising the detection quality. Here the term, latency

Copyright: c©2010 Umut Şimşekli et al. This is an open-access article distributed

under the terms of theCreative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

is defined as the time difference between the true note on-
set and the time that the pitch tracker has computed its es-
timate. In our point of view, a pitch tracking method might
have latency due to two reasons. The first reason is that the
method cannot estimate the note accurately because it has
not accumulated enough data yet. The second reason is the
computational burden. With the increase of the computa-
tional power, the latter can be eliminated by using more
powerful computers. Hence, in our work we will focus on
decreasing the latency by increasing the accuracy at note
onsets rather than trying to reduce the computational com-
plexity. We will test our models on recordings of two low
pitched instruments: tuba and bass guitar. This would be
challenging since estimating low pitches in shortest time is
a difficult problem.

The rest of the paper is organized as follows: in Section
2 and 3 we describe our approach and probabilistic models
in detail. We describe our inference scheme in Section 4.
The template learning procedure is described in Section 5.
In section 6, we present our results on monophonic pitch
tracking. Finally Section 7 concludes this paper.

2. APPROACH

In this study, we would like to infer a predefined set of
pitch labels from streaming audio data. Our approach to
this problem is model based. We will construct two prob-
abilistic generative models that relate a latent event label
to the actual audio recording, in this case audio is rep-
resented by the magnitude spectrum. We definexν,τ as
the magnitude spectrum of the audio data with frequency
index ν and time indexτ , whereτ ∈ {1, 2, ..., T } and
ν ∈ {1, 2, ..., F}.

For each time frameτ , we define an indicator variable
rτ on a discrete state spaceDr, which determines the label
we are interested in. In our caseDr consists of note labels
such as{C4, C#4, D4, D#4, ..., C6}. The indicator vari-
ablesrτ are hidden since we do not observe them directly.
For online processing, we are interested in the computa-
tion of the following posterior quantity, also known as the
filtering density1 :

p(rτ |x1:F,1:τ ).

Similarly, we can also compute the most likely label tra-

1 Note that we use MATLAB’s colon operator syntax in which(1 : F )
is equivalent to[1, 2, 3, ..., F ].
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rτ = i

vτ
i

ν

tν,i

τ

ν

xν,τ

Figure 1. The block diagram of the probabilistic models.
The indicator variables,rτ choose which template to be
used. The chosen template is multiplied by the volume
parametervτ in order to obtain the magnitude spectrum,
xν,τ .

jectory given all the observations

r∗
1:T = argmax

r1:T

p(r1:T |x1:F,1:T ).

This latter quantity requires that we accumulate all data
and process in a batch fashion. There are also other quan-
tities, called “fixed lag smoothers” that between those two
extremes. For example, at timeτ we can compute

p(rτ−L|x1:F,1:τ ),

whereL is a specified lag and it determines the trade off
between the accuracy and the latency. By accumulating a
few observations from the future, the detection at a specific
frame can be eventually improved by introducing a slight
latency. Hence we have to fine-tune this parameter in order
to have the optimum results.

3. MODELS

In our models, the main idea is that each event has a certain
characteristic spectral shape which is rendered by a spe-
cific volume. The spectral shapes that we denote asspec-
tral templatesare denoted bytν,i. Theν index is again the
frequency index and the indexi indicates the pitch labels.
Here,i takes values between 1 andI, whereI is the num-
ber of different spectral templates. The volume variables
vτ define the overall amplitude factor, by which the whole
template is multiplied. An overall sketch of the model is
given in Figure1.

3.1 The Hidden Markov Model

Hidden Markov Models have been widely studied in var-
ious types of applications such as audio processing, natu-
ral language processing, and bioinformatics. Like in many

note0 atk note1sus rel

Figure 2. The prior structure of the indicator variablerτ .
Hereatk, sus, andrel refers to the attack, sustain, and
release parts of a note respectively. The first black square
can be either the silence or a note release state. Similarly
the second black square can be either a silence or a note
attack state.

computer music applications, HMMs have also been used
in pitch tracking applications [4], [5].

We define the probabilistic model as follows:

r0 ∼ p(r0)

rτ |rτ−1 ∼ p(rτ |rτ−1)

vτ ∼ G(vτ ; av, bv)

xν,τ |vτ , rτ ∼

I
∏

i=1

PO(xν,τ ; tν,ivτ )
[rτ=i],

where the symbolsG andPO represent the Gamma and
the Poisson distributions respectively, where

G(v; a, b) = exp((a− 1) log v − bv − log Γ(a) + a log(b))

PO(x;λ) = exp(x log λ− λ− log Γ(x+ 1)).

Here we have Markovian prior on the indicator vari-
ables,rτ which meansrτ depends only onrτ−1. We use
three states to represent a note: one state for the attack part,
one for the sustain part, and one for the release part. We
also use a single state in order to represent silence. Figure2
shows the Markovian structure in more detail.

In some recent workon polyphonic pitch tracking, Pois-
son observation model was used in the Bayesian non-negative
matrix factorization models (NMF) [11]. Since our prob-
abilistic models are similar to NMF models, we choose
the Poisson distribution as the observation model. We also
choose Gamma prior onvτ to preserve conjugacy and make
use of the scaling property of Gamma distribution.

In this probabilistic model we can integrate out analyti-
cally the volume variables,vτ . It is easy to check that once
we do this, provided the templatestν,i are already known,
the model reduces to a standard Hidden Markov Model
(HMM) with a Compound Poisson observation model.

3.2 The Change Point Model

In addition to the HMM, in the change point model (CPM),
the volume parametervτ has a specific structure which de-
pends onvτ−1 (i.e. staying constant, monotonically in-
creasing or decreasing and etc.). But at certain unknown
times, it jumps to a new value independently fromvτ−1.
We call these times as“change points”and the occurrence
of a change point is determined by the relationship between
rτ andrτ−1. If rτ−1 jumps to a new value at timeτ , in
other words ifrτ is not equal torτ−1, then a change point
has occurred at timeτ .
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The formal definition of the generative model is given
below:

v0 ∼ G(v0; a0, b0)

r0 ∼ p(r0)

rτ |rτ−1 ∼ p(rτ |rτ−1)

vτ |vτ−1, rτ , rτ−1 ∼

{

δ(vτ − θ(rτ )vτ−1), rτ = rτ−1

G(vτ ; av, bv), rτ 6= rτ−1

xν,τ |vτ , rτ ∼

I
∏

i=1

PO(xν,τ ; tν,ivτ )
[rτ=i].

Here, δ(x) is the Kronecker delta function which is de-
fined byδ(x) = 1 whenx = 0, andδ(x) = 0 elsewhere.
The θ(rτ ) parameter determines the specific structure of
the volume variables. Our selection ofθ(rτ ) is as follows:

θ(rτ ) =











θ1, if rτ is attack,

θ2, if rτ is sustain,

θ3, if rτ is release.

θ(rτ ) gives flexibility to the CPM since we can adjust
it with respect to the instrument whose sound would be
processed (i.e. we can selectθ(rτ ) = 1 for woodwind
instruments by assuming the volume of a single note would
stay approximately constant). Figure3 visualizes example
templates and synthetic data which are generated from the
CPM.

4. INFERENCE

4.1 Inference on the Hidden Markov Model

As we mentioned in Section 3.1, we can integrate out an-
alytically the volume variables,vτ . Hence, given that the
tν,i are already known, the model reduces to a standard
Hidden Markov Model (HMM) with a Compound Poisson
observation model as shown below:

p(x1:F,1:τ |rτ = i)

=

∫

dvτ exp(

F
∑

ν=1

logPO(xν,τ ; vτ tν,i)

+ logG(vτ ; av, bv))

=
Γ(Xτ + av)

Γ(av)
F
∏

ν=1

Γ(xν,τ + 1)

bv
av

F
∏

ν=1

t
xν,τ

ν,i

(Ti + bv)Xτ+av
.

Since we have standard HMM from now on, the infer-
ence algorithm can be made to run very fast without any
approximation. We can run the well-known forward al-
gorithm in order to compute the filtering density or fixed
lag versions with a few backward steps for real-time ap-
plications. Also we can estimate the most probable state
sequence by running the Viterbi algorithm.

4.2 Inference on the Change Point Model

While making inference on the CPM, our task is finding
the posterior probability of the indicator variables,rτ and
volume variablesvτ . If the state space ofvτ , Dv was dis-
crete, then the CPM would reduce to an ordinary HMM on
Dr ×Dv. However whenDv is continuous, which is our
case, an exact forward backward algorithm cannot be im-
plemented in general. This is due to the fact that the pre-
diction densityp(rτ , vτ |x1:F,τ ) needs to be computed by
integrating overvτ−1 and summing overrτ−1. The sum-
mation overrτ−1 renders the prediction density a mixture
model where the number of mixture component grow ex-
ponentially withτ . In this section we will describe the im-
plementation of exact forward backward algorithm for the
CPM and the pruning technique that we use for real-time
applications.

The forward backward algorithm is a well known algo-
rithm for computing the marginals of formp(rτ , vτ |x1:F,τ ).
We define the following forward messages:

α0|0(r0, v0) = p(r0, v0)

ατ |τ−1(rτ , vτ ) = p(rτ , vτ , x1:F,1:τ−1)

ατ |τ (rτ , vτ ) = p(rτ , vτ , x1:F,1:τ ),

whereτ ∈ {1, 2, ..., T }. These messages can be com-
puted by the following recursion:

ατ |τ−1(rτ , vτ ) =
∑

rτ−1

∫

dvτ−1 p(rτ , vτ |rτ−1, vτ−1)

ατ−1|τ−1(rτ−1, vτ−1)

ατ |τ(rτ , vτ ) = p(x1:F,τ |rτ , vτ )ατ |τ−1(rτ , vτ ).

We also define the backward messages and recursions
similarly:

βT |T (rT , vT ) = p(x1:F,T |rT , vT )

βτ |τ+1(rτ , vτ ) = p(x1:F,τ+1:T |rτ , vτ )

=
∑

rτ+1

∫

dvτ+1 p(rτ+1, vτ+1|rτ , vτ )

βτ+1|τ+1(rτ+1, vτ+1)

βτ |τ(rτ , vτ ) = p(x1:F,τ :T |rτ , vτ )

= p(x1:F,τ |rτ , vτ )βτ |τ+1(rτ , vτ ),

whereτ ∈ {1, 2, ..., T−1}. Moreover, the posterior marginals
can simply be obtained by multiplying the forward and
backward messages:

p(rτ , vτ |x1:F,1:T ) ∝ p(x1:F,1:T , rτ , vτ )

= p(x1:F,1:τ−1, rτ , vτ )

p(x1:F,τ :T |rτ , vτ ,
(
(
(
((x1:F,1:τ−1)

= ατ |τ−1(rτ , vτ )βτ |τ (rτ , vτ ).

Due to the fact thatr is discrete andv is continuous
random variables, in the CPM, we have to storeα andβ
messages as mixtures of Gamma distributions. In order
to achieve ease of implementation, we can represent the
Gamma mixture

p(vτ |rτ = i, .) =

M
∑

m=1

exp(wm)G(vτ ; am, bm),
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Figure 3. Spectral templates and synthetic data generated from the CPM. It can be observed that the templates implicitly
capture the harmonic structure of the signals. The topmost right figure shows a realization of the indicator variablesrτ and
the second topmost figure shows a realization of the volume variablesvτ . Here we setθ1:3 = {1.10, 0.99, 1.00}. With this
parametrization, we force the volume variables to increase during the attack parts, slowly damp at the sustain parts and stay
constant during the release parts of the notes. Theθ parameters should be determined by taking the audio structure into
account (i.e.θ(rτ ) should be different for higher sustained sounds, percussive sounds, woodwinds, etc.).

as{(a1, b1, w1, i), (a2, b2, w2, i), ..., (aM , bM , wM , i)}. This
will be simplyM × 4 array of parameters.

4.2.1 Forward Pass

To start the forward recursion, we define

α0|0(r0, v0) = p(r0, v0)

= p(r0)p(v0)

=

I
∑

i

exp(li)G(v0; a0, b0),

where,li = log p(r0 = i). As we mentioned earlier, we
represent this message with the array representation of the
Gamma mixtures:

(ak
0|0, b

k
0|0, c

k
0|0, d

k
0|0) = (a0, b0, lk, k),

wherek = 1, 2, 3, ...,I denotes the index of the components
in the Gamma mixture.

In the forward procedure, we haveI Gamma potentials
at timeτ = 0. Since we are dealing with the CPM, at each
time frame, we would have two possibilities: there would
be a change point or not. Hence, atτ = 1, we would haveI
newly initialized Gamma potentials for the possibility of a
change point andI Gamma potentials which we copy from
the previous time frame,τ = 0, in order to handle the case
when a change point does not occur. Similarly, atτ = 2,
again we would haveI newly initialized Gamma potentials
to handle a change point and2I Gamma potentials which

we copy fromτ = 1. Note that we would have(τ + 1)I
Gamma potentials at time frameτ . Figure4 visualizes the
forward procedure.

Derivation of the prediction step at timeτ is as follows:

ατ |τ−1(vτ , rτ )

=
∑

rτ−1

∫

dvτ−1 p(vτ , rτ |vτ−1, rτ−1)

ατ−1|τ−1(vτ−1, rτ−1)

=
∑

rτ−1

∫

dvτ−1 p(vτ |rτ , vτ−1, rτ−1)p(rτ |rτ−1)

ατ−1|τ−1(vτ−1, rτ−1)

=
∑

rτ−1

∫

dvτ−1

(

[rτ 6= rτ−1]G(vτ ; av, bv)

+[rτ = rτ−1]δ(vτ − θ(rτ )vτ−1)
)

p(rτ |rτ−1)

ατ−1|τ−1(vτ−1, rτ−1).

The firstI potentials that handle the change point case
become

(akτ |τ−1
, bkτ |τ−1

, ckτ |τ−1
, dkτ |τ−1

) = (av, bv, c
′, k)

for k = 1, 2,...,I. Hereaij = p(rτ = i|rτ−1 = j) and

c′ = log









I
∑

j=1

j 6=k

aij

τI
∑

m=1

[dmτ−1|τ−1
= j] exp(cmτ−1|τ−1

)









.

505



b b b b b b

b

b

b

0 1 2 3 Tτ =

# of pot. : 3 6 9 12 3(T+1)

Figure 4. The forward procedure for the CPM where the
number of templates, I is 3. The empty circles repre-
sent the Gamma potentials that handle the occurrence of a
change point and the filled ones handle the other case. The
inheritance structure between the time frames are shown
with arrows.

We also haveτI Gamma potentials which are inherited
from the time frameτ − 1:

(akτ |τ−1
, bkτ |τ−1

, ckτ |τ−1
, dkτ |τ−1

)

= (ak−I
τ−1|τ−1

,
bk−I
τ−1|τ−1

θ(dk−I
τ−1|τ−1

)
, c′, dk−I

τ−1|τ−1
)

for k = I+1, I+2,...,(τ + 1)I, where

c′ =

(

I
∑

i=1

[dk−I
τ−1|τ−1

= i] log aii

)

+ ck−I
τ−1|τ−1

Once we compute the predictive distributions, we have
to update the Gamma potentials as we acquire the observa-
tions:

ατ |τ (vτ , rτ = i)

= p(x1:F,1:τ , vτ , rτ = i)

= ατ |τ−1(vτ , rτ = i)p(x1:F,τ |vτ , rτ = i)

=

(τ+1)I
∑

m=1

[dmτ |τ−1
= i]e(c

m
τ|τ−1

)G(vτ ; a
m
τ |τ−1

, bmτ |τ−1
)

F
∏

ν=1

I
∏

j=1

PO(xν,τ ; tν,jvτ )
[rτ=i].

Hence the update equation requires multiplication of Gamma
and Poisson potentials. A nice property is that the product
is also a Gamma potential, as derived in the Appendix. The
updated Gamma potentials are as follows:

(akτ |τ , b
k
τ |τ , c

k
τ |τ , d

k
τ |τ ) = (a′, b′, c′, d′)

for k = 1, 2,...,(τ + 1)I. Here

a′ = akτ |τ−1
+

F
∑

ν=1

xν,τ

b′ = bkτ |τ−1
+

I
∑

i=1

[dkτ |τ−1
= i]

F
∑

ν=1

tν,i

c′ = ckτ |τ−1
+

I
∑

i=1

[dkτ |τ−1
= i]g(akτ |τ−1

, bkτ |τ−1
, x, t)

d′ = dkτ |τ−1
.

4.2.2 Backward Pass

The backward pass is initialized as follows:

βT |T+1(vT , rT ) = 1

(âkT |T+1
, b̂kT |T+1

, ĉkT |T+1
, d̂kT |T+1

) = (1, 0, 0, k),

for k = 1, 2,...,I. Here the Gamma potential,(1, 0, 0, k) is
the improper Gamma distribution where

(a, b, c, k)× (1, 0, 0, k) = (a, b, c, k),

for anya, b, andc.
Similar to the forward pass, we derive the backward re-

cursion as follows:

βτ |τ+1(vτ , rτ )

=
∑

rτ+1

∫

dvτ+1 p(vτ+1, rτ+1|vτ , rτ )

βτ+1|τ+1(vτ+1, rτ+1)

=
∑

rτ+1

∫

dvτ+1 p(vτ+1|rτ+1, vτ , rτ )p(rτ+1|rτ )

βτ+1|τ+1(vτ+1, rτ+1)

=
∑

rτ+1

∫

dvτ+1 ([rτ+1 6= rτ ]G(vτ+1; av, bv)

+[rτ+1 = rτ ]δ(vτ+1 − θ(rτ )vτ ))

p(rτ+1|rτ )βτ+1|τ+1(vτ+1, rτ+1).

The backward recursions works very similar to the forward
recursions, where we haveI potentials at timeT . At time
T − 1, we would have2I Gamma potentials where the
first I potentials handle the case of a change point and the
remaningI potentials handle the opposite case which is the
same case in the forward pass. Note that, in the backward
pass we would haveτI Gamma potentials at time(T − τ)
as opposed to the forward pass.

4.2.3 The Pruning Procedure

One disadvantage of this model is that the need for the
computational power increases asτ increases and exact in-
ference becomes impossible after a couple of steps. In or-
der to eliminate this problem we developed a pruning tech-
nique for the CPM as an approximate inference scheme. In
the standard pruning algorithms, at timeτ , we would sort
the Gamma potentials with respect to their mixture coef-
ficients ckτ |τ , keep theN best potentials, and discard the
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rest of them. However, with this scheme, we may discard
the first, immaturepotentials in the mixture since they have
been recently inserted to the mixture.

In this study we propose a different pruning scheme for
the CPM. As opposed to the standard pruning methods,
we always keep the firstNkeep Gamma potentials with-
out taking into account their mixture coefficients, where
0 ≤ Nkeep << N . Then we apply the standard pruning
algorithm to the rest of the potentials, i.e. we select the
(N −Nkeep) best Gamma potentials.

5. TRAINING AND PARAMETER LEARNING

Since we have constructed our inference algorithms with
the assumption of the templatestν,i to be known, we have
to train the spectral templates at the beginning. In this
study we utilized the EM algorithm for this purpose. This
algorithm maximizes the log-likelihood iteratively as fol-
lows:

E-step:

q(v1:T , r1:T )
(n) = p(v1:T , r1:T |x1:F,1:T , t

(n−1)

1:F,1:I)

M-step:

t
(n)

1:F,1:I = argmax
t1:F,1:I

〈

B(n−1)

〉

q(v1:T ,r1:T )(n)

where

B(n) = p(v1:T , r1:T , x1:F,1:T |t
(n)

1:F,1:I).

The E-step can be computed via the methods which we
described in Section 3.1 and 3.2. The M-step for the mod-
els is computed as follows:

t
(n)

ν,i =

∑T

τ=1
〈[rτ = i]〉(n) xν,τ

∑T

τ=1
〈[rτ = i]vτ 〉

(n)
.

Intuitively, we can interpret this result as the weighted
average of the normalized audio spectra with respect tovτ .

6. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the probabilistic
models on pitch tracking, we have conducted several ex-
periments. As mentioned earlier, in this study we focus on
the monophonic pitch tracking of low-pitched instruments.

In our experiments we used the electric bass guitar and
tuba recordings of the RWC Musical Instrument Sound
Database. We first trained the templates offline, and then
we tested our models by utilizing the previously learned
templates. At the training step, we run the EM algorithm
for each note where we use short isolated recordings. On
the whole, we use 28 recordings for bass guitar (from E2
to G4) and 27 recordings for tuba (from F2 to G4). The
HMM’s training phase lasts approximately 30 seconds and
the CPM’s lasts approximately 2 minutes. At the testing
step, we rendered monophonic MIDI files to audio by us-
ing the RWC recordings. The total duration of the test files
are approximately 4 minutes. At the evaluation step, we

compared our estimates with the ground truth which is ob-
tained from the MIDI file. In both our models we used 46
ms. long frames at 44.1 kHz sampling rate.

In our point of view, the main trade-off of these pitch
tracking models is between the latency and the accuracy.
We can increase the accuracy by accumulating the data, in
other words increasing the latency. However after some
point the pitch tracking system would be useless due to the
high latency. Hence we tried to find the optimum latency
and accuracy by adjusting the “lag” parameter of the fixed-
lag viterbi path which is defined as:

r∗τ = argmax
rτ

p(r1:τ+L|x1:F,1:τ+L),

where L is the number of audio frames to be accumulated.
As evaluation metrics, we used the recall rate, the preci-

sion rate, the computational complexity and the note onset
latency. The recall rate, the precision rate and the compu-
tational complexity are defined as:

recall =
num. of correct notes

num. of true notes
,

precision =
num. of correct notes

num. of transcribed notes
,

complexity =
running time of the method

duration of the test file
,

and we define the note onset latency as the time difference
between the pitch tracker’s estimate and the ground truth,
without considering the label of the estimate. The evalua-
tion results are shown in Figure5.

We also compared the performance of our models with
the YIN algorithm [10]. We used theaubio implementa-
tion and tuned the onset threshold parameter. The results
are shown in Table1.

Rec. (%) Prec. (%) Lat (ms) Comp.

YIN 43.43 9.40 58.74 1.33
HMM 91.72 85.02 54.89 0.02
CPM 97.37 93.59 49.09 0.05

Table 1. The comparison of our models with the YIN algo-
rithm. Here,Rec, Prec, Lat andCompstand for the recall
rate, the precision rate, the latency and the computational
complexity respectively. The CPM performs better than
the others. Moreover, the HMM would also be advanta-
geous due to its cheaper computational needs.

7. DISCUSSIONS AND CONCLUSION

In this study we presented and compared two probabilistic
models for online pitch tracking. The main focus was on
the trade off between the latency and the accuracy of the
proposed pitch detection models.

Apart from the previous works that aimed to develop
instrument-independentpitch tracking systems, our approach
is based on modeling of a specific musical instrument’s
spectral structure. Our systems can be optimized for any
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(b) CPM performance.

Figure 5. The overall performance of the probabilistic
models on low-pitched audio. The dashed lines represent
the offline processing results. The total latency of the sys-
tem is the sum of the lag and the latency at the note onsets.

instrument with a quick training procedure. Besides, this
flexible template matching framework can also be used for
various types of applications such as acoustic event detec-
tion.

Despite testing our probabilistic models on monophonic
data, the models are extensible to more complicated sce-
narios such as polyphony. This kind of extensions require
more complex inference schemes, but fortunately there ex-
ists powerful state-of-the-art inference methods. More-
over, we can also combine the proposed models with dif-
ferent kinds of probabilistic models for deeper music anal-
ysis schemes like joint pitch-tempo tracking.

One limitation of the CPM is that it has the same damp-
ing coefficient (θ) for all frequency components in the spec-
trum. This assumption is limiting since each partial of a
note evolves differently over time. As a natural next step
of our work is to construct probabilistic models that have
frequency dependent damping coefficients.

8. APPENDIX

The update step of a single Gamma potential is derived as
follows:

log

(

exp(c)G(vτ ; a, b)

F
∏

ν=1

PO(xν,τ ; tν,ivτ )

)

= c+ log G(vτ ; a, b) +

F
∑

ν=1

logPO(xν,τ ; tν,ivτ )

= c+ (a− 1) log vτ − bvτ − log Γ(a) + a log(b)

+
F
∑

ν=1

(xν,τ log tν,ivτ − tν,ivτ − log Γ(xν,τ + 1))

= (a+Xτ − 1) log vτ − (b + Ti)vτ + c

− log Γ(a) + a log(b) +

F
∑

ν=1

xν,τ log tν,i

−

F
∑

ν=1

log Γ(xν,τ + 1)

= (a+Xτ − 1) log vτ − (b + Ti)vτ

− log Γ(a+Xτ ) + (a+Xτ ) log(b + Ti)

+c+ g(a, b, x, t)

= c′ + logG(vτ ; a
′, b′),

where

Xτ =

F
∑

ν=1

xν,τ

Ti =

F
∑

ν=1

tν,i

a′ = a+Xτ

b′ = b+ Ti

c′ = c+ g(a, b, x, t)

and

g(.) = log Γ(a+Xτ )− (a+Xτ ) log(b+ Ti)

− log Γ(a) + a log(b) +
F
∑

ν=1

xν,τ log tν,i

−

F
∑

ν=1

log Γ(xν,τ + 1)
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ABSTRACT

Existing methods for sound texture synthesis are often con-
cerned with the extension of a given recording, while keep-
ing its overall properties and avoiding artefacts. However,
they generally lack controllability of the resulting sound
texture. After a review and classification of existing ap-
proaches, we propose two methods of statistical modeling
of the audio descriptors of texture recordings using his-
tograms and Gaussian mixture models. The models can be
interpolated to steer the evolution of the sound texture be-
tween different target recordings (e.g. from light to heavy
rain). Target descriptor values are stochastically drawn
from the statistic models by inverse transform sampling to
control corpus-based concatenative synthesis for the final
sound generation, that can also be controlled interactively
by navigation through the descriptor space. To better cover
the target descriptor space, we expand the corpus by au-
tomatically generating variants of the source sounds with
transformations applied, and storing only the resulting de-
scriptors and the transformation parameters in the corpus.

1. INTRODUCTION

The synthesis of sound textures is an important application
for cinema, multimedia creation, games and installations.
Sound textures are generally understood as sound that is
composed of many micro-events, but whose features are
stable on a larger time-scale, such as rain, fire, wind, crowd
sounds. We must distinguish this from the notion of sound-
scape, which describes the sum of sounds that compose a
scene, each component of which could be a sound texture.

The many existing methods for sound texture synthe-
sis are very often concerned with the extension of a given
recording to play arbitrarily long, while keeping its overall
properties and avoiding artefacts like looping and audible
cut points. However, these methods lack controllability of
the resulting sound texture. Let’s pose an example, that we
will use throughout the article: A beginning rainfall, that
starts with just a few drops, then thickens, until becoming
heavy rain. Even if we have several recordings of the dif-
ferent qualities of rain at our disposal, the existing methods
couldn’t render the gradual evolution of the rain sound.

To achieve this, we propose a method of statistical mod-
eling of the audio descriptors of texture recordings, that

Copyright: c©2010 Diemo Schwarz et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

can then be used, varied, or interpolated with other mod-
els. Also the steering of the evolution of the generated
sound texture is possible, either by giving a target directly
in terms of audio descriptors, or deriving these from an
existing recording, that couldn’t be used directly, e.g. for
lack of sound quality or match with the rest of the sound
track. Our method is thus strongly based on corpus-based
concatenative synthesis (CBCS) [1, 2], which is a new con-
tribution to the field of sound texture synthesis. The use of
content-based descriptors is also vastly superior to the of-
ten scarce or non-existing meta-data.

CBCS makes it possible to create sound by selecting
snippets of a large database of pre-recorded audio (the cor-
pus) by navigating through a space where each snippet is
placed according to its sonic character in terms of audio
descriptors, which are characteristics extracted from the
source sounds such as pitch, loudness, and brilliance, or
higher level meta-data attributed to them. This allows one
to explore a corpus of sounds interactively or by compos-
ing paths in the space, and to create novel timbral evolu-
tions while keeping the fine details of the original sound.

2. RELATED WORK

We will first give an overview of the existing work in sound
texture synthesis. As a starting point, Strobl et al. [3] pro-
vide an attempt at a definition of sound texture, and an
overview of work until 2006. They divide methods into
two groups:

Methods from computer graphics Transfer of computer
graphics methods for visual texture synthesis applied to
sound synthesis [4, 5, 6].

Methods from computer music Synthesis methods from
computer music or speech synthesis applied to sound
texture synthesis [7, 8, 9, 10, 11].

A newer survey of tools in the larger field of sound de-
sign and composition by Misra and Cook [12] follows the
same classification as we propose in section 2.1 below. The
article makes a point that different classes of sound require
different tools (“A full toolbox means the whole world need
not look like a nail!”).

Filatriau and Arfib [13] review texture synthesis algo-
rithms from the point of view of gesture-controlled instru-
ments, which makes it worthwile to point out the different
usage contexts of sound textures:

There is a possible confusion in the literature about the
precise signification of the term sound texture that is de-
pendent on the intended usage. We can distinguish two
frequently occuring usages:
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Expressive free synthesis Here, the aim is to interactively
generate sound for music composition, performance, or
sound art, very often as an expressive digital musical
instrument (DMI, e.g. in [13] and [14]). Sound texture
is then often meant to distinguish the generated sound
material from tonal and percussive sound.

The methods employed for expressive texture gener-
ation can give rise to naturally sounding textures, as
noted by DiScipio [9], but no systematic research on
the usable parameter space has been done, and it is up
to the user (or player) to constrain herself to the natural
part.

Natural texture resynthesis tries to synthesise textures as
part of a larger soundscape. Often, a certain degree of
realism is striven for (like in photorealistic texture im-
age rendering), but for most applications, either sym-
bolic or impressionistic credible texture synthesis is ac-
tually sufficient, in that the textures convey the desired
ambience or information, e.g. in simulations for urban-
istic planning.

2.1 Classification of Synthesis Methods

It seems most appropriate to divide the different ap-
proaches to sound texture generation by the synthesis
methods (and analysis methods, if applicable) they employ.

Subtractive and additive synthesis, like noise filter-
ing [10, 11, 15] and additive sinusoidal synthesis
[16] are the “classic” synthesis methods for sound
textures, often based on specific modeling of the source
sounds. 1

Physical modeling can be applied to sound texture syn-
thesis, with the drawback that a model must be specif-
ically developed for each class of sounds to synthesise
(e.g. friction, rolling, machine noise) [5, 17], the lat-
ter adding an extraction of the impact impulse sound
and a perceptual evaluation of the realism of synthe-
sised rolling sounds.

Granular synthesis uses snippets of an original
recording, and possibly a statistical model of the
(re)composition of the grains [4, 6, 7, 8, 18, 19].

Corpus-based concatenative synthesis can be seen as a
content-based extension of granular synthesis [1, 2]. It
is a new approach for sound texture synthesis [20, 21,
22]. Notably, Picard [23] uses grain selection driven by
a physics engine.

Non-standard synthesis methods, such as fractal synthe-
sis or chaotic maps, are used most often for expressive
texture synthesis [9, 13, 14].

There are first attempts to model the higher-level
behaviour of whole soundscapes [24], and by using
graphs [25, 26].

1 One venerable attempt is Practical Synthetic Sound Design by Andy
Farnell at http://obiwannabe.co.uk/tutorials/html/tutorials main.html.

2.2 Analysis Methods for Sound Textures

Methods that analyse the properties of sound textures are
rare, some analyse statistical properties [4, 18, 27, 28],
some segment [29] and characterise the source sounds by
wavelets [7], and some use adaptive LPC segmentation
[30]. Only corpus-based concatenative synthesis methods
try to characterise the sonic contents of the source sounds
by audio descriptors [1, 2, 20, 21, 31].

3. DESCRIPTOR-BASED SOUND TEXTURE
SAMPLING

In order to reproduce a given target sound texture, either
with its own sound or by other recordings, we model it by
accumulating statistics of its audio descriptor distribution
over fixed segments (sizes between 2/3 and 1 second are
appropriate, depending on the source sounds).

The descriptors are calculated within the CATART sys-
tem [21] by a modular analysis framework [32]. The used
descriptors are: fundamental frequency, periodicity, loud-
ness, and a number of spectral descriptors: spectral cen-
troid, sharpness, flatness, high- and mid-frequency energy,
high-frequency content, first-order autocorrelation coeffi-
cient (expressing spectral tilt), and energy. Details on the
descriptors used can be found in [33] and [34]. For each
segment, the mean value and standard deviation of each
time-varying descriptor is stored in the corpus, although
for our example of short segments of static rain sound the
standard deviation is not informative.

We evaluated two different methods of statistical mod-
eling: histograms (section 3.1) and Gaussian mixture mod-
els (section 3.2).

3.1 Histograms

In the histogram method, the individual distributions of the
per-segment descriptor values for an input texture are esti-
mated using histograms.

Figure 1 shows the histograms for three classes of rain
for 6 descriptors. The corpus is comprised of 2666 units of
length 666 ms in 19 sound files of total length of 29.5 min-
utes from the SoundIdeas database, with 701 units for light
rain, 981 for medium rain, and 984 for heavy rain. For this
corpus, the descriptors are more or less mutually indepen-
dent, which means that the conceptually simple histogram
method gives acceptable results.

For the control of resynthesis, we use the method known
as inverse transform sampling, where these histograms are
interpreted as probability density functions (PDF), from
which we calculate the cumulative sum to obtain the CDF
(cumulative density function). We then draw random bin
indices accordingly by accessing the CDF by a uniformly
distributed random value, and draw a uniformly distributed
random descriptor value within the bin in order to gener-
ate a stream of target descriptor values that obeys the same
distribution as the target, in the limits of the discretisation
of the histogram.

The resulting distributions can be easily interpolated to
generate a smooth evolution from one texture to the next.
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Figure 1. Histograms of spectral centroid, loudness, spectral flatness for the three classes of light (green/clear grey),
medium (blue/dark grey), heavy (red/medium grey) rain over a corpus of 2666 segments.

These target descriptors then serve to control a CBCS
engine with a corpus of source sounds, as explained in sec-
tion 3.3.

3.2 Gaussian Mixture Models

In order to capture possible dependencies between the dis-
tributions of descriptor values, in this method, we model
them by Gaussian mixture models (GMMs).

Figure 2 shows the probability density of a two-element
mixture for our test corpus, and the interdependencies be-
tween two descriptors.

GMMs can be estimated efficiently by Expectation–
Maximization. The EM algorithm finds the parameters of
a mixture of m multivariate d-dimensional normal distri-
butions:

Pj(x|µj ,Σj) =
1

(2π)
d
2 det(Σj)

1
2
e−

1
2 (x−µj)

T Σ−1
j (x−µj)

(1)
where µj are the centres, and Σj the covariance matrix.
Each mixture component is chosen with a prior probability
of pj .

For the control of resynthesis, we first choose the com-
ponent j of the GMM according to the prior probabilities
pj , and then draw values from the component j by taking
advantage of the affine transformation property of normal
distributions as

Pj = µj + Aj erf(Z) (2)

with Z a uniformly distributed vector, erf the error func-
tion, i.e. the CDF of a Gaussian, and Aj being the lower
triangular matrix from the Cholesky decomposition of Σj ,
i.e. Σj = AT

j Aj .
GMM parameters can also be interpolated, however, the

building of the CDFs for resynthesis is computationally
more expensive because of the Cholesky decomposition
that needs to be recomputed each time the interpolation
changes. Also, care has to be taken to match the m GMM
components for the interpolation of µj and Σj . We chose
a greedy matching strategy by closeness of the centres.

3.3 Corpus-Based Concatenative Synthesis

The resynthesis of textures is driven by a vector x of tar-
get values for the d used audio descriptors, drawn from
the above distributions. Sounds that fulfill these target val-
ues are selected from a corpus of source sounds by corpus-
based concatenative synthesis, as explained in the follow-
ing.

The selection of the unit that best matches a given target
is performed by evaluating a weighted Euclidean distance
Ct that expresses the match between the target x and a
database unit un with

Ct(un, x) =
d∑

i=1

wt
i Ct

i (un, x) (3)

based on the normalized per-descriptor distances Ct
i for

descriptor i between target descriptor value x(i) and da-
tabase descriptor value ui(i), normalised by the standard
deviation σi of this descriptor over the corpus:

Ct
i (un, x) =

(
x(i) − un(i)

σi

)2

(4)

Either the unit with minimal distance Ct is selected, or one
is randomly chosen from the units within a radius r with
Ct < r2, or from the set of the k closest units to the target.

The weights wj were determined interactively for our
test corpus, with equal weights for the spectral descriptors,
and half weight for pitch and loudness.

Synthesis is performed by possibly transforming the
pitch, amplitude, or timbre of the selected units, and then
concatenating them with a short overlap, which is suffi-
cient to avoid artefacts for our texture sounds. One ad-
ditional transformation is the augmentation of the texture
density by triggering at a faster rate than given by the units’
length, thus layering several units.

Our synthesis engine (see section 4) works in real time,
which allows interactive control of the resulting textures.
Therefore, and also because we do not model the transi-
tions between units, the unit selection does not need to use
sequence-based matching with the Viterbi algorithm [33].

512



40 60 80

0.05

0.1

0.15

0.2

0.25

light rain

40 60 80

0.05

0.1

0.15

0.2

0.25

medium rain

40 60 80

0.05

0.1

0.15

0.2

0.25

heavy rain

Figure 2. Probability density contours projected on the NoteNumber/Periodicity plane of a Gaussian mixture model of
three classes of rain.

3.4 Corpus Expansion

One remaining problem that has not yet been addressed is
the possibility that the corpus might not cover the whole
range of interpolated and stochastically generated target
descriptors. With interactive navigation, we can avoid this
shortcoming by judicious tweaking of the playback param-
eters such as pitch, gain, and filters. In the retargetting
case, however, it is hard to derive the necessary transfor-
mations from the target values.

This problem could be solved by applying Feature Mod-
ulation Synthesis (FMS), with the existing research just
at its beginning [35]. FMS is concerned with finding the
precise sound transformation and its parameters to apply
to a given sound, in order to change its descriptor values
to match given target descriptors. The difficulty is here
that a transformation usually modifies several descriptors
at once, e.g. pitch shifting by resampling changes the pitch
and the spectral centroid. Recent approaches [36] there-
fore try to find transformation algorithms that only change
one descriptor at a time.

We can get around this problem using a data-driven
corpus-based approach, by automatically generating vari-
ants of each unit with a certain number and amount of
transformations applied, analysing their sound descriptors,
and storing only the descriptors and the transformation pa-
rameters. The resulting sounds can be easily regenerated
on playback.

We generate 5 steps of transpositions by resampling 1
half-tone around the original pitch, and 3 cutoff settings
of gentle low-pass and high-pass filters in order to enlarge
the timbral variety of the source corpus. The effects of this
expansion can be seen in figure 3: a much larger part of
the descriptor space between and around the original units
is covered by the corpus enlarged 45-fold.

Note that the augmentation of the corpus size does not
penalise the runtime of the unit selection much, since we
use an efficient kD-tree search algorithm [37] where each
doubling of the corpus only adds one more search step on
average.

Figure 3. Scatter plot of a texture corpus before (left) and
after expansion (right). The x/y/colour axes are spectral
centroid, loudness, periodicity.

4. APPLICATIONS AND RESULTS

Our prototype texture synthesiser is implemented in the
CATART system 2 [21] for MAX/MSP with the extension
libraries FTM&CO 3 [38] making it possible to navigate
through a two- or more-dimensional projection of the de-
scriptor space of a sound corpus in real-time, effectively
extending granular synthesis by content-based direct ac-
cess to specific sound characteristics.

The statistical modeling, interpolation, and generation
of probability distributions is conveniently handled by the
modules mnm.hist, mnm.gmmem, ftm.inter, mnm.pdf
from the MnM library [39] included in FTM&CO.

Figure 4 shows an example result using the density pa-
rameter, starting from 1 to 10-fold density, resulting in a
convincing, albeit quick progression from light rain to a
heavy shower. This effect is visible in the gradual whiten-
ing of the spectrum. This and other sound examples can be
heard on http://demos.concatenative.net.

A creative application of the principle we presented is
given in [31], where a musical score for an ensemble was
generated from an analysis of sound textures like melting
snow or glaciers.

2 http://imtr.ircam.fr/index.php/CataRT
3 http://ftm.ircam.fr
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Figure 4. Spectrogram of synthetically densifying rain.

5. CONCLUSION AND FUTURE WORK

The sound textures resulting from our descriptor-driven
texture synthesis approach using corpus-based concatenat-
ive synthesis stay natural whilst being highly controllable.
This goes beyond previous approaches that use an existing
recording that is extended in time.

We rely on relatively long segments that capture the fine
temporal structure of the sounds, and on crossfade and lay-
ering to smooth out timbral changes between units. For
less overlap, however, abrupt spectral changes can be no-
ticeable, which could be alleviated in two ways in future
work: First, we could take into account the timbral tran-
sitions in the selection, avoiding too large jumps in the
descriptor space. Second, we could apply the grain seg-
mentation approaches described in section 2.2 and work
with the unitary micro-events constituting the source tex-
tures (for instance, reconstitute rain by grains of water drop
length, cut out of the source sounds).

Code is being developed at the moment that adds a third
method of statistical modeling by kernel density estima-
tion. The resulting smoothed d-dimensional histogram cap-
tures the interdependencies of the descriptors, unlike the
separate histogram method in section 3.1, while allowing a
more detailed modeling of the descriptor distribution than
GMMs in section 3.2.

The brute-force method of corpus expansion (sec-
tion 3.4) could be easily optimised by applying a greedy
strategy that tries to fill only the “holes” in the descriptor
space between existing clusters of sounds. Starting from
random transformation parameters, if we hit a hole, we’d
explore neighbouring parameters until a desired density of
the space is reached.

Finally, the biggest restriction to our modeling approach
lies in the assumption of stationarity of the source textures.
This is appropriate for many interesting textures, but al-
ready rain with intermittent thunder sounds wouldn’t be
modeled correctly. Clearly, clustering and modeling of the
transitions between clusters using hidden Markov models
(HMMs) or semi-Markov models seems promising here.
This would base the graph approach introduced in [25] on
actual data, and could also model the larger-scale tempo-
rality of sound scapes as a sequence of textures.

6. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their pertinent comments. The work presented here is
partially funded by the Agence Nationale de la Recherche
within the project Topophonie, ANR-09-CORD-022.

7. REFERENCES

[1] D. Schwarz, “Concatenative sound synthesis: The
early years,” Journal of New Music Research, vol. 35,
pp. 3–22, Mar. 2006. Special Issue on Audio Mosaic-
ing.

[2] D. Schwarz, “Corpus-based concatenative synthesis,”
IEEE Signal Processing Magazine, vol. 24, pp. 92–
104, Mar. 2007. Special Section: Signal Processing for
Sound Synthesis.

[3] G. Strobl, G. Eckel, D. Rocchesso, and S. le Grazie,
“Sound texture modeling: A survey,” in Proceedings
of the Sound and Music Computing Conference, 2006.

[4] S. Dubnov, Z. Bar-Joseph, R. El-Yaniv, D. Lischinski,
and M. Werman, “Synthesis of audio sound textures
by learning and resampling of wavelet trees,” IEEE
Computer Graphics and Applications, vol. 22, no. 4,
pp. 38–48, 2002.

[5] J. O’Brien, C. Shen, and C. Gatchalian, “Synthesiz-
ing sounds from rigid-body simulations,” in Proceed-
ings of the 2002 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, pp. 175–181, ACM
New York, NY, USA, 2002.

[6] J. Parker and B. Behm, “Creating audio textures by ex-
ample: tiling and stitching,” Acoustics, Speech, and
Signal Processing, 2004. Proceedings. (ICASSP ’04).
IEEE International Conference on, vol. 4, pp. iv–317–
iv–320 vol.4, May 2004.

[7] R. Hoskinson and D. Pai, “Manipulation and resynthe-
sis with natural grains,” in Proceedings of the Interna-
tional Computer Music Conference (ICMC), (Havana,
Cuba), pp. 338–341, Sept. 2001.

[8] C. Bascou and L. Pottier, “GMU, A Flexible Granular
Synthesis Environment in Max/MSP,” in Proceedings
of the Sound and Music Computing Conference, Cite-
seer, 2005.

[9] A. Di Scipio, “Synthesis of environmental sound tex-
tures by iterated nonlinear functions,” in Digital Audio
Effects (DAFx), 1999.

[10] M. Athineos and D. Ellis, “Sound texture modelling
with linear prediction in both time and frequency do-
mains,” Acoustics, Speech, and Signal Processing,
2003. Proceedings. (ICASSP ’03). 2003 IEEE Interna-
tional Conference on, vol. 5, pp. V–648–51 vol.5, April
2003.

[11] X. Zhu and L. Wyse, “Sound texture modeling and
time-frequency LPC,” in Digital Audio Effects (DAFx),
vol. 4, 2004.

514



[12] A. Misra and P. Cook, “Toward synthesized environ-
ments: A survey of analysis and synthesis methods for
sound designers and composers,” in Proc. ICMC, 2009.

[13] J. Filatriau and D. Arfib, “Instrumental gestures and
sonic textures,” in Proceedings of the International
Conference on Sound and Music Computing (SMC),
2005.

[14] J. Filatriau, D. Arfib, and J. Couturier, “Using visual
textures for sonic textures production and control,” in
Digital Audio Effects (DAFx), 2006.

[15] M. Lagrange, B. Giordano, P. Depalle, and
S. McAdams, “Objective quality measurement of
the excitation of impact sounds in a source/filter
model,” Acoustical Society of America Journal,
vol. 123, p. 3746, 2008.

[16] S. Guidati and Head Acoustics GmbH, “Auralisation
and psychoacoustic evaluation of traffic noise scenar-
ios,” Journal of the Acoustical Society of America,
vol. 123, no. 5, p. 3027, 2008.

[17] E. Murphy, M. Lagrange, G. Scavone, P. Depalle, and
C. Guastavino, “Perceptual Evaluation of a Real-time
Synthesis Technique for Rolling Sounds,” in Confer-
ence on Enactive Interfaces, (Pisa, Italy), 2008.

[18] Z. El-Yaniv, D. Werman, and S. Dubnov, “Granular
Synthesis of Sound Textures using Statistical Learn-
ing,” in Proc. ICMC, 1999.
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