639 research outputs found

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ‘Autonomic Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator

    Autonomic computing meets SCADA security

    Get PDF
    © 2017 IEEE. National assets such as transportation networks, large manufacturing, business and health facilities, power generation, and distribution networks are critical infrastructures. The cyber threats to these infrastructures have increasingly become more sophisticated, extensive and numerous. Cyber security conventional measures have proved useful in the past but increasing sophistication of attacks dictates the need for newer measures. The autonomic computing paradigm mimics the autonomic nervous system and is promising to meet the latest challenges in the cyber threat landscape. This paper provides a brief review of autonomic computing applications for SCADA systems and proposes architecture for cyber security

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    Multi-aspect rule-based AI: Methods, taxonomy, challenges and directions towards automation, intelligence and transparent cybersecurity modeling for critical infrastructures

    Get PDF
    Critical infrastructure (CI) typically refers to the essential physical and virtual systems, assets, and services that are vital for the functioning and well-being of a society, economy, or nation. However, the rapid proliferation and dynamism of today\u27s cyber threats in digital environments may disrupt CI functionalities, which would have a debilitating impact on public safety, economic stability, and national security. This has led to much interest in effective cybersecurity solutions regarding automation and intelligent decision-making, where AI-based modeling is potentially significant. In this paper, we take into account “Rule-based AI” rather than other black-box solutions since model transparency, i.e., human interpretation, explainability, and trustworthiness in decision-making, is an essential factor, particularly in cybersecurity application areas. This article provides an in-depth study on multi-aspect rule based AI modeling considering human interpretable decisions as well as security automation and intelligence for CI. We also provide a taxonomy of rule generation methods by taking into account not only knowledge-driven approaches based on human expertise but also data-driven approaches, i.e., extracting insights or useful knowledge from data, and their hybridization. This understanding can help security analysts and professionals comprehend how systems work, identify potential threats and anomalies, and make better decisions in various real-world application areas. We also cover how these techniques can address diverse cybersecurity concerns such as threat detection, mitigation, prediction, diagnosis for root cause findings, and so on in different CI sectors, such as energy, defence, transport, health, water, agriculture, etc. We conclude this paper with a list of identified issues and opportunities for future research, as well as their potential solution directions for how researchers and professionals might tackle future generation cybersecurity modeling in this emerging area of study

    The intelligent industry of the future: A survey on emerging trends, research challenges and opportunities in Industry 4.0

    Get PDF
    Strongly rooted in the Internet of Things and Cyber-Physical Systems-enabled manufacturing, disruptive paradigms like the Factory of the Future and Industry 4.0 envision knowledge-intensive industrial intelligent environments where smart personalized products are created through smart processes and procedures. The 4th industrial revolution will be based on Cyber-Physical Systems that will monitor, analyze and automate business processes, transforming production and logistic processes into smart factory environments where big data capabilities, cloud services and smart predictive decision support tools are used to increase productivity and efficiency. This survey provides insights into the latest developments in these domains, and identifies relevant research challenges and opportunities to shape the future of intelligent manufacturing environments.status: publishe

    Toward a sustainable cybersecurity ecosystem

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Cybersecurity issues constitute a key concern of today’s technology-based economies. Cybersecurity has become a core need for providing a sustainable and safe society to online users in cyberspace. Considering the rapid increase of technological implementations, it has turned into a global necessity in the attempt to adapt security countermeasures, whether direct or indirect, and prevent systems from cyberthreats. Identifying, characterizing, and classifying such threats and their sources is required for a sustainable cyber-ecosystem. This paper focuses on the cybersecurity of smart grids and the emerging trends such as using blockchain in the Internet of Things (IoT). The cybersecurity of emerging technologies such as smart cities is also discussed. In addition, associated solutions based on artificial intelligence and machine learning frameworks to prevent cyber-risks are also discussed. Our review will serve as a reference for policy-makers from the industry, government, and the cybersecurity research community

    The Terror Risk to Current Water Infrastructure Systems

    Get PDF
    Unquestionably, water maintains a critical role within society. It is precisely this role that makes it an attractive target for potential adversaries. As it currently stands, water infrastructures are significantly vulnerable to attacks; their risk however, is questionable. As such, this work will analyze the security of water infrastructure systems. It will discuss the systems involved in the treatment of water and waste water, and how various processes can be vulnerable to four main threats: biological, chemical, cyber and physical threats. Additionally, this work will challenge the conventional view of terrorism through the perspective of Critical Terrorism Studies as a means to discuss how non-traditional threats such as privatization and neoliberalization may also be seen as threats. Moreover, this work will also explore how each of these threats may be realized, and it will furthermore utilize case studies and professional interviews to achieve this. Attacks upon water infrastructure systems are not new. In fact, such attacks have been reported as far back as 500 BCE. What is new, however, is the evolving threat landscape. Given the convenience of the Internet, a single individual can research almost any topic to his or her desire, including vulnerabilities within critical infrastructure systems. To add to this, one does not have to search deep into the web to find information on how to inflict serious damage. Certainly, the twenty-first century has its prospects, but it certainly has its perils as well. This work will attempt to address vulnerabilities, and furthermore, what is at stake if nothing remains to be done

    A New SCADA Dataset for Intrusion Detection System Research

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems monitor and control industrial control systems in many industrials and economic sectors which are considered critical infrastructure. In the past, most SCADA systems were isolated from all other networks, but recently connections to corporate enterprise networks and the Internet have increased. Security concerns have risen from this new found connectivity. This thesis makes one primary contribution to researchers and industry. Two datasets have been introduced to support intrusion detection system research for SCADA systems. The datasets include network traffic captured on a gas pipeline SCADA system in Mississippi State University’s SCADA lab. IDS researchers lack a common framework to train and test proposed algorithms. This leads to an inability to properly compare IDS presented in literature and limits research progress. The datasets created for this thesis are available to be used to aid researchers in assessing the performance of SCADA IDS systems

    Leveraging Conventional Internet Routing Protocol Behavior to Defeat DDoS and Adverse Networking Conditions

    Get PDF
    The Internet is a cornerstone of modern society. Yet increasingly devastating attacks against the Internet threaten to undermine the Internet\u27s success at connecting the unconnected. Of all the adversarial campaigns waged against the Internet and the organizations that rely on it, distributed denial of service, or DDoS, tops the list of the most volatile attacks. In recent years, DDoS attacks have been responsible for large swaths of the Internet blacking out, while other attacks have completely overwhelmed key Internet services and websites. Core to the Internet\u27s functionality is the way in which traffic on the Internet gets from one destination to another. The set of rules, or protocol, that defines the way traffic travels the Internet is known as the Border Gateway Protocol, or BGP, the de facto routing protocol on the Internet. Advanced adversaries often target the most used portions of the Internet by flooding the routes benign traffic takes with malicious traffic designed to cause widespread traffic loss to targeted end users and regions. This dissertation focuses on examining the following thesis statement. Rather than seek to redefine the way the Internet works to combat advanced DDoS attacks, we can leverage conventional Internet routing behavior to mitigate modern distributed denial of service attacks. The research in this work breaks down into a single arc with three independent, but connected thrusts, which demonstrate that the aforementioned thesis is possible, practical, and useful. The first thrust demonstrates that this thesis is possible by building and evaluating Nyx, a system that can protect Internet networks from DDoS using BGP, without an Internet redesign and without cooperation from other networks. This work reveals that Nyx is effective in simulation for protecting Internet networks and end users from the impact of devastating DDoS. The second thrust examines the real-world practicality of Nyx, as well as other systems which rely on real-world BGP behavior. Through a comprehensive set of real-world Internet routing experiments, this second thrust confirms that Nyx works effectively in practice beyond simulation as well as revealing novel insights about the effectiveness of other Internet security defensive and offensive systems. We then follow these experiments by re-evaluating Nyx under the real-world routing constraints we discovered. The third thrust explores the usefulness of Nyx for mitigating DDoS against a crucial industry sector, power generation, by exposing the latent vulnerability of the U.S. power grid to DDoS and how a system such as Nyx can protect electric power utilities. This final thrust finds that the current set of exposed U.S. power facilities are widely vulnerable to DDoS that could induce blackouts, and that Nyx can be leveraged to reduce the impact of these targeted DDoS attacks
    corecore