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Autonomic Computing Architecture for SCADA 

Cyber Security  

 

1. INTRODUCTION 

Cognitive computing relates to intelligent computing platforms that are based on the disciplines of 

artificial intelligence, machine learning, and other innovative technologies. These technologies can be 

used to design systems that mimic the human brain to learn about their environment and can 

autonomously predict an impending anomalous situation.  IBM first used the term ‘Autonomic 

Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has 

been inspired by the human biological autonomic system. An autonomic system is self-healing, self-

regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be 

able to protect itself against both malicious attacks and unintended mistakes by the operator. 

Supervisory Control and Data Acquisition (SCADA) systems are used to monitor and control 

complex infrastructures of national importance such as transportation networks, power generation and 

manufacturing plants. SCADA systems can be visualised as a layered architecture, as shown in Figure 1. 

The field devices (sensors, etc.) at the lowest layer interact with the physical processes. At layer 2, the 

Programmable Logic Controllers (PLC), and Remote Terminal Units (RTUs) aggregate data values from 

the lower layer and communicate the commands and their responses through the communications 

network to the SCADA server and Human Machine Interface (HMI). The generation of commands at the 

top layer and collection of responses from the lowest layer results in the monitoring and control of the 

process. The applicability of SCADA systems has become widespread due to industrial automation, cost 

reduction and growth in global economies (Nazir et al., 2017). 

 

Fig. 1. Layered Architecture of a SCADA system. 

 

 Traditionally, SCADA systems were developed as closed systems with security being the overriding 

factor, and no Internet connectivity. However, to leverage efficiency and gain a competitive advantage, 
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the systems are increasingly becoming connected to the Internet and cloud technologies. SCADA system 

security vulnerabilities were first highlighted by the Stuxnet attack (Karnouskos, 2011). Subsequently, 

there has been an increase in the frequency and sophistication, of the attacks as evidenced by Constantin 

(2014). 

Isolation and obscurity as a mechanism for protection is no longer an option for critical infrastructures 

(Mahoney and Gandhi, 2011). At the same time systems are getting so complex that it is difficult to 

develop effective defence strategies, as there is a lack of understanding of the complex interactions 

between the many system entities (Khadraoui and Feltus, 2015). Digital forensics becomes difficult due 

to the increased numbers and complexity of the cases (Taveras, 2013). The systems complexity and 

interactions go beyond the capability of system developers and integrators as a result of interconnectivity 

(Kephart and Chess, 2003). Thus, increasingly there is a lack of understanding of the holistic system, 

which makes it very difficult to tune a system and to make decisions in case of changed requirements. 

This has led to a realization that conventional and inflexible techniques will not help. What is needed is a 

new way of looking at the problem of cyber security that is robust, manageable and self-realising with a 

minimum requirement to monitor systems to make decisions. What is proposed is an entirely new way of 

thinking about the problem where the system itself is intelligent and helps to maintain and extend its 

behaviour, with the use of autonomic computing (Kephart and Chess, 2003).  

The basic principles of autonomic computing are highly relevant for the protection of the increasingly 

complex SCADA system because: (i) the boundaries between physical and virtual systems have been 

blurred through virtualisation. It is possible to host a cluster of machines in a virtual environment; (ii) 

even with hardware there are sufficient advances in other domains with self-healing materials; (iii) 

advances in machine learning, artificial intelligence and the knowledge base need to be capitalised for 

protection; (iv) the systems are highly interconnected and the distributed nature of the systems pose an 

exponential complexity. 

There has been some research on autonomic computing applications to complex SCADA systems. 

The application of autonomic computing for smart grids has been discussed (Greer and Rodriguez-

Martinez, 2012) as a solution to manage system complexities. Key components of a self-protecting 

SCADA system have been proposed and a survey of techniques provided for the realisation of such 

systems (Chen Abdelwahed, 2014). Also, there are few dedicated research groups (Autonomic 

Computing Lab; Cloud and Autonomic Computing Centre; Fortes et al., 2014) focusing research on the 

applicability of autonomic computing to cyber security. JADE (JADE, 2009) provides a framework for 

building autonomic management systems.  A test bed was developed for modelling critical 

infrastructures for testing autonomic technologies (Autonomic Computing  Lab; Cox, 2011).  

However, there is a lack of progress in developing architectures to support applications before the full 

potential of autonomic computing for SCADA security can be realised.  We propose to use the 

autonomic computing paradigm features to SCADA system security, in particular focussing on self-

protecting SCADA systems. This paper incorporates autonomic computing paradigm elements to extend 

the SCADA architecture to safeguard against the emerging cyber security challenges and threats facing 

SCADA industrial applications.  

 In section 2 the relevant features of SCADA systems are described. Cognitive computing is discussed 

in section 3. Section 4 covers the autonomic computing paradigm. Section 5 proposes the architectural 

framework for SCADA cyber security and finally section 6 concludes the paper. 

2. SCADA SYSTEMS   

VULNERABILITIES AND THREATS LANDSCAPE 

SCADA systems were developed to be used as stand-alone systems which by their very nature made it 

difficult for an outside attacker to exploit the system. However, the many benefits associated with 

interconnecting the system to the Internet have transformed the SCADA systems into a highly 

interconnected system (Taveras, 2013; Nazir et al., 2017) accessible over the Internet (Fig 2). Therefore 

the protection offered by an unconnected SCADA system is not available anymore. The benefits are too 
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lucrative to be ignored by vendors and industry. Unfortunately it comes with an increased exposure to 

threats. The system interactions are complex, opening new threat entry points as there are many third 

party libraries and hardware assembled with components from around the world, with exploitable threats 

such as backdoors, often unknown to the SCADA system vendor. 

The systems developers design customized solutions to address a particular problem. The systems are 

fairly long term deployments as the controlled processes have large financial and industrial outlays. The 

criticality of maintaining the process means that the systems remain in continuous operation and have a 

range of redundancies incorporated to protect stalling the system for foreseeable problems. 

SCADA communications protocols such as Modbus, Distributed Network Protocol (DNP), IEC 870-5 

and T103 are described by GE Communications Protocol. Most SCADA communications protocols have 

no encryption as they were designed when the SCADA systems existed only as stand-alone systems, 

rendering protocol authentication unnecessary. The Modbus protocol is one of the most common 

protocols for SCADA systems that operate on simple request-response messaging (Al Baalbaki et al., 

2013). The diversity of the protocols and their inoperability also creates obstacles to design secure 

communications (Sheldon et al., 2004). There are many publicly available tools that can capture network 

traffic wirelessly. Also the wireless devices that feed data to the SCADA system provide easy entry 

points for the intruder into the system because the end devices do not have adequate protection, due to 

very low power requirements. 

SCADA application vendors design their software to be hosted on generic operating systems such as 

Windows and Linux variants for widespread deployments; however, this makes SCADA applications 

exposed to the same vulnerabilities as that of the operating system.  The long operational lifetime of 

SCADA software means that the host operating system may be beyond technical support. The features 

being added to the SCADA systems add further complexity and the systems become difficult to develop 

and maintain. Thus it becomes difficult to understand and restore systems to their operational state from 

a compromised state resulting from a cyber attack.   

 

 

 

Fig. 2. Multiple pathways and Internat Connectivity to a Production System. 
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 The cyber attack paradigms have progressed much beyond the simple attack methodologies such as 

man-in-the-middle (MITM) and Denial of Service (DOS) attacks (Chen and Abdelwahed, 2014), and are 

waged with increasing sophistication to hide detection. The traditional defence approaches are unable to 

cope with the latest attack methodologies where for example, the system parameters are altered, and are 

individually legitimate, but on the whole result in system collapse. Correct operation of the system needs 

not only the correct commands but commands that are consistent with the prevailing state of the system. 

It is possible for an attacker to inject a valid sequence of commands that gradually take the system to an 

unstable condition. The systems also operate under very tight timing constraints and can have undesired 

consequences in case of timing violation. Even the smallest intrusions on the critical infrastructure 

controls, can result in malfunctions which have devastating ripple effects on the system as a whole. The 

system is susceptible to attacks with minor effects, which can alter the system behaviour in a negative 

manner, leading to a ripple effect that compromises the whole system. The SCADA system entities are 

generally spread over a large geographical area, thus necessitating synchronisation of information at each 

location. 

 The threat landscape is rapidly evolving (Khadraoui and Feltus, 2015) and has gained momentum 

because the SCADA systems are now accessible over the Internet, and are no longer protected by 

obscurity as the communications protocols and characteristics are available to interested parties. 

Currently, both the state and non-state agents are trying to exploit the system’s vulnerabilities. Cox 

(2011) discusses in detail threat ontologies. 

In contrast to the attacks launched from outside, threats can also emanate from an innocent or 

deliberate mistake from an insider. Such attacks could cause more harm as they could be launched with 

some understanding about the system operation.  

 PROTECTION SCHEMES 

Some recent technology adoptions and improvements in the SCADA systems are promising to aid 

developing systems that can result in an autonomic SCADA system. System protection can be ensured 

through many techniques. The majority depend on the judgement of a human to provide safeguards for 

the system.  

 The latest trends and innovations, such as virtualisation, analytics and databases, and wireless 

communications, which must work together in close collaboration to achieve the system mission, have 

been applied to SCADA systems. The integrated framework can rightly be called systems of systems as 

the complexity has increased beyond simple control and monitoring tasks, the fundamental basis of 

SCADA. This complexity implies that developing and maintaining such systems are reaching the limits 

of human cognition (Kephart and Chess, 2003; Huebscher and McCann, 2008). 

System vendors have been cognisant of the prevailing cyber security environment and have added a 

number of features to the product offerings. These features include, for example multiplexing proxy, 

encryption and role based access to make the intruder’s task difficult. Most SCADA vendors allow 

integration with relational databases in addition to the built-in historical databases that have some 

advantages (SQL). Relational databases such as Oracle have their own integrated analytics and data 

mining services that can make it easier to uncover any anomalous activity. 

The machine learning and data analytics techniques have revolutionised many application domains 

and have recently been introduced in SCADA applications software. Such native integration makes it 

easier for the SCADA developers to analyse the  systems operations and identify impending attacks 

(Kirsch et al., 2014; Carcano et al., 2011). Machine learning and other such techniques can effectively 

analyse a system to detect anomalous activities. Such unsupervised anomaly detection schemes are 

more appropriate and efficient compared to human analysts (Jiang and Yasakethu, 2013) and other 

signature based approaches (Chen Abdelwahed, 2014). The system can thus learn new approaches and 

provide defence against as yet unseen scenarios, as in the case of supervised learning approaches. The 

other techniques of interest could be based on agent based, artificial intelligence, and adaptive systems 

(Greer and Rodriguez-Martinez, 2012). The future of cyber security lies with exploiting such techniques 
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that can not only autonomously assess the threats to the system security, but also contain and mitigate 

the threat from spreading, resulting in more damage. The operator alert can notify the human operator to 

initiate disaster recovery operations. 

 Virtualisation techniques provide many benefits that can advantageously be applied to support the 

autonomic computing paradigm. Virtualisation enables easy containment of an attack, restoring and 

disaster recovery, change and optimisation of system resources, etc., in a truly elastic manner. 

A recent breakthrough in this direction is that of the Autonomic Computing paradigm. With 

Autonomic Computing, the ultimate control still rests with a human but the drudgery of data 

manipulation and threat assessment can be taken out of the loop. 

3. COGNITIVE INFORMATICS AND COMPUTING 

Cognitive Informatics is a broad and multidisciplinary field of cognition and information sciences that 

investigates the human information processing and its applicability for computing applications. A 

comprehensive review of the cognitive informatics framework is provided by Wang (2007a) and it also 

describes the applications from the fields of computing and software engineering. It uses Concept 

Algebra (CA), Real-Time System Algebra (RTPA) and System Algebra (SA) to formulate and represent 

knowledge using a formal notation. It can have diverse goals based on the application field but the 

overriding aim is to improve the human-machine interaction through better decision making. The hard 

problems in various engineering and scientific fields can be solved much easily if we knew the cognitive 

processes of the human brain (Wang, 2007a). For example, object recognition and classification problem 

in computer vision is hard for computers but comes naturally to humans, where a lot of progress has been 

made by mimicking the cognitive processes of the brain through Artificial Neural Networks (ANN). 

Similarly, the application of machine learning and agent based processing can help overcome the cyber 

threats facing the SCADA systems. 

 The theoretical framework for cognitive informatics and cognitive computing is presented by Wang et 

al. (2015) using a reductive model of the brain. It has been argued that the brain and natural intelligence 

can be explained through the reductive hierarchy at different levels. 

 The cognitive processes of formal inferences are described by Wang (2011b) cover both the applied 

and theoretical research processes using Real-Time Process Algebra (RTPA). It theorizes and 

demonstrates how the formal inferences in the human brain can be described using the cognitive 

processes of deduction, induction, abduction, and analogy. It provides a set of mathematical models and 

cognitive process for formal inference.  This formalization of models is also helpful to design the 

intelligent computers based on Cognitive Computing (CC).  

 Cognitive computing comprises of intelligent computing methodologies to build autonomous systems 

that mimic the inference mechanisms of the human brain (Wang, 2009). Thus a system can detect 

anomalies, events and entities in a system through pattern recognition and data mining. These pro-active 

and self-learning systems can provide an effective defence against cyber threats, as signature based 

approaches can only work against known threats, It is also very important for critical infrastructure cyber 

security systems that the threat is anticipated and predicted before it strikes, otherwise it could be 

difficult to contain the resulting damage.   

 The future developments in the field of cognitive informatics have been described by Wang et al. 

(2011a; 2011c). The advances in the field of cognitive informatics have led to the development of 

cognitive computing. Computing can be classified at four levels in computation intelligence: data, 

information, knowledge, and intelligence (Wang et al., 2011c; 2015). Data and information processing 

have been well studied but the same has not been the case for the higher levels of computational 

intelligence are yet to be studied. This will foster an era of an intelligent revolution that will meet the 

human needs of wisdom and intelligence. Highly intelligent systems will be accessible to ordinary people 

to solve everyday problems (Wang et al., 2015). The recent trend of “Cognitive processes of the brain, 

particularly the perceptive cognitive processes, are the fundamental means for describing autonomic 
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computing systems, such as robots, software agent systems, and distributed intelligent networks.” 

(Wang, 2007b).   

4. AUTONOMIC COMPUTING PARADIGM 

The roots of autonomic computing can be traced to the work by Norbett Wiener, John von Neumann, 

Alan Turing, and Claude E. Shannon on automata (Wang, 2007b). Autonomic computing leads to 

intelligent behaviours such as those driven through goals and inferences (Wang, 2007b). The theoretical 

and engineering foundations for autonomic computing together with a comprehensive set of theoretical 

foundations that is, cognitive informatics, behaviours, and intelligent science have been identified and 

the theorems for imperative and autonomic computing provide a solid foundation for the application of 

the field of autonomic computing to engineering applications (Wang, 2007b). 

 Autonomic Computing is one of the trans-disciplinary applications of Cognitive Informatics and an 

autonomic computing system using its intelligence can autonomously carry out its actions based on the 

set of events and goals (Wang, 2007a; 2007b). This contrasts with an imperative system whose 

behaviour is controlled by a stored program and is thus deterministic. The motivation for autonomic 

systems is to deal with the system complexity, which has reached an overwhelming proportion and is 

inspired by the human nervous system (Poslad, 2011). 

The increase in system complexity and applications heterogeneity has made it difficult to process the 

information. This has necessitated the use of paradigms inspired by biological systems such as autonomic 

computing (Parashar and Hariri, 2005) that have a goal to realise systems and applications which operate 

autonomously based on high level rules to meet the system mission.  It differs from Artificial Intelligence 

(AI) in that unlike those systems the ultimate decision may be taken by the human operator  

The basic idea of the Autonomic Computing paradigm is that the system should be intelligent to 

enable it to develop and maintain itself in an optimised state. The human body’s feedback and control 

mechanisms (Kephart and Chess, 2003; Parashar and Hariri, 2005) have formed the basis of general 

systems theory and holism for the development and management of computer based systems. The 

autonomic computing paradigm mimics the autonomic human nervous system. The ability to self-

manage SCADA system security threats by developing learning systems that recognise vulnerabilities 

will be hugely advantageous. The agents and software services will form a part of the systems, gathering 

data and monitoring systems continuously (Yang et al., 2005).  

Autonomic computing can result from the use of different technologies, however an autonomic 

system must demonstrate the following four main features: self-configuring; self-healing; self-

optimising; and self-protecting (Ganek and Corbi, 2003):  

1) Self-configuring: The system must be able to reconfigure its behaviour based on the changing 

system requirements. For example, to acquire more system resources, such as memory,  in case the 

system is overburdened. 

2) Self-healing: In response to detecting a compromised element in its configurtion, or lack of 

resources, an autonomic system can respond by repairing itself to a good state. Based on this assessment 

the system should be able to, for example, isolate the system components that have been compromised 

and continue operation with the remaining elements and at the same time attemping to restore the 

compromised system elements. 

3) Self-optimising: The system must be able to assess the current state of the system variables and be 

abe to tune them to result in an optimised tuned behaviour. This is crucial as in the case of complex 

systems there are thousands of system parameters that can affect the system performance. Knowing or 

applying them all for best results is beyond the grasp of the human mind, in a resonable amount of time. 

4) Self-protecting: The system should be aware of the normal system operation and be able to 

continuously monitor the current system state to determine when deviations occur. It can then take 

measures to contain the threat and to handle it  
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Autonomic computing facilitates identifying factors that relate to a specific state – homeostasis. The 

development of a knowledge network will help to identify what ‘homeostasis’ is and when there is an 

imbalance, to understand the structure of the network, the defences, the threats and the attacks.  The 

threats can be classified into two categories: 1) process-related: when valid credentials are used to make 

legitimate changes that can impact on industrial processes. These can also be due to an error in the input 

of incorrect values or an actual attack (Crawford, 2006) by, for example, disgruntled employees; and 2) 

system-related: which are exploited via software or configuration vulnerabilities. For example, flaws in 

communication protocols, which are low level (layers 1 and 2) attacks on the SCADA architecture 

(Pidikiti et al., 2013).  Developing a mechanism to mine logged data on process-related incidents is a 

potential solution to developing an autonomic computing approach for SCADA security. Identifying 

user activities and classifying the actions into signed-on or known user actions allows the analysis of 

threats as legitimate system commands by legitimate users, or by illegitimate users, to distinguish the 

threats into attacks or errors by developing a knowledge base (Hadžiosmanović et al., 2012).  

The autonomic computing system incorporated to monitor a SCADA system may generate false 

alarms and therefore it may be necessary, based on the application domain, for a human operator to 

make a final decision based on the evidence.   

 

5. ARCHITECTURAL FRAMEWORK  FOR SCADA SECURITY 

 

In this section we provide a brief overview of the architectures proposed in the research literature and 

propose a framework that can be used to design SCADA systems that have built-in layered protection 

against both known and unknown threats. 

An autonomic system enables a SCADA system to optimise, configure and protect itself in case of 

changing the system state to a compromised one. The work to date for securing SCADA security focuses 

on discrete approaches. However, we propose an integrated approach that combines, the discrete 

knowledge based approaches with cognitive approaches. The memory layer of the Layered Reference 

Model of the Brain (LRMB) (layer 2), reflects the knowledge base that captures the short term, long term 

and transient memories. This can be utilised to capture process- and systems-related threats. Memory can 

be defined as a set of subconscious cognitive processes that retain the external or internal information 

about various SCADA security events. The subconscious knowledge base is inherited from the range of 

events and threats identified, and the conscious subsystem, however, is acquired and flexible, based on 

the autonomic computing paradigm (Wang et al., 2006a; Wang and Wang, 2006b).  

Some autonomic architectures have been proposed in the research literature. The IBM autonomic 

computing system comprises, monitoring, analysing, planning, executing and a knowledge base 

component (Ebbers et al., 2006) and was proposed for large-scale commercial systems. The architecture 

utilises Touchpoint Autonomic Managers that are self-configuring, self-healing, self-optimizing and self-

protecting.  

An introduction to autonomic computing together with the challenges and opportunities are presented 

in Parashar and Hariri (2005). An Ultrastable system is discussed with reference to living organisms and 

human nervous system. The authors highlight the challenges in designing the general purpose systems 

that can address the emerging needs and complexity of services and applications. They propose 

architecture for an autonomic element as a smallest functional unit and propose a manager for each 

autonomic element. 

Chen and Abdelwahed (2014) highlight the need for better security for the SCADA system and 

present an autonomic security model comprising of risk assessment, early warning and prevention, 

intrusion detection, and intrusion response. The signature based detection techniques can only be useful 

against known attacks whereas the anomaly based detection techniques have a high false alarm rate. 

Similarly demilitarised zones, access controls and firewalls do not provide adequate protection as with 
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time the attackers learn the vulnerabilities of the communication protocols and those of the operating 

system. 

A detailed survey of autonomic computing models and applications is provided by Huebscher and 

McCann(2008). An Autonomic Critical Infrastructure Protection (ACIP) system using anomaly detection 

and autonomic computing is proposed by Al-Baalbaaki and Al-Nashif (2013). The modular system has 

online monitoring, feature selection and correlation, multi-level behaviour analysis, visualisation, and 

adaptive learning. The evaluation of ACIP is described using Modbus traffic generator for the Modbus 

traces between a server and five different PLCs. The proposed system could detect and stop a variety of 

attacks on the Modbus protocol (Al-Baalbaaki and Al-Nashif, 2013).  

 It was shown that by incorporating knowledge of a physical model of the system it was possible to 

identify the attacks through changes in system behaviour (Cardenas et al., 2011). The detection of attacks 

was formulated as anomaly-based intrusion detection. The results show that the response algorithm keeps 

the system in a safe state during an attack. Automatic response mechanisms were proposed on system 

state estimation.  However, they caution that an automatic detection and response methodology might not 

be applicable for all processes in control systems.  

A methodology for designing a smart critical architecture that protects communications, controls and 

computations using moving target defence and autonomic computing is proposed by Hariri et al. and also 

develop a Resilient Smart Critical Infrastructure Testbed (RSCIT). A general autonomic computing 

environment (Autonomia) was developed for control and management of smart critical infrastructures.  

A survivable cyber-secure infrastructures (SCI) architecture is proposed by Sheldon et al. (2004) for a 

power grid and proposes a cognitive agent architecture combining agent-based and autonomic 

computing. Cognitive components are described as comprising of processes that are reactive, deliberate, 

or reflective. 

In contrast to the architectures above, our proposed architecture combines three features to provide a 

threat-resilient SCADA framework: (i) virtualisation of computing and networking resources (ii) 

hierarchy of autonomic managers (AMs) to identify threats at different scales (iii) protection against false 

alarms.  

Virtualisation refers to creating a virtual rather than physical version of computer hardware, storage 

and networks. The advantages are that the computing resources can be elastically assigned as required 

and it is much easier to monitor the virtual machines. In case of a cyber attack, a clean instance can be 

easily launched and the compromised machine can be isolated for forensics. Also, Disaster recovery and 

rollback can be performed easily.  We propose hosting the SCADA system on a virtual platform. The 

advantages are that it can provide high availability through protection against hardware and software 

failures. Thus creating a broad generalised structure based on virtualisation wherein appropriate 

technologies can be selected to best suit an application within the given framework. 

We propose the concept of hierarchical autonomic managers that can scale protection from a small to 

a wide area. A domain autonomic manager, 𝐴𝑀𝑑 performs real-time analysis of their limited domain 

(database, communications, etc.,) at a small scale. These domain-based analyses are then aggregated at 

the local system level, 𝐴𝑀𝑙 for identification of anomalies to counter the threats locally. This relieves the 

central autonomic manager, 𝐴𝑀𝑐 to take more holistic actions. Thus, a central autonomic manager can 

perform an analysis of system wide aggregated analysis  to counter system wide variations to identify 

possible threats. 

Thus, the inference of AM is based on the intelligent aggregation of the inferences of its lower level 

AM. 

Inferences 𝐴𝑀𝑐 = ∑ 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠𝐴𝑀𝑙
𝑁
𝑖=1  

We argue that despite the current state-of-the-art in autonomic computing applications, such as, 

machine learning and neural networks applied to SCADA systems, the ultimate decision should lie with 

the human operator. This is due to the criticality of the SCADA applications that might jeopardise the 
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safety and health of people, or compromise national security and infrastructures in case of false alarms. 

This of course, will vary from one application to another and a human decision-maker could be in the 

loop at some or all layers of AMs. The hierarchy of autonomic managers abstracts the information as it 

proceeds from low to high levels (domain to global) and can recommend actions to make it easier for a 

human operator to make a decision. 

 The structure and execution cycle of an AM is shown in Fig 3. It plans based on the given goals and 

rules,  executes its plan which could be monitoring, comparison, infers the result of its execution to be an 

anomaly or a progression towards one, reports the inference to its higher AM. The knowledge base is 

analogous to the human nervous system storing structured and unstructured information used by the 

autonomic manager during its operation.   

 

 

 

Fig 3. Structure and execution cycle of an autonomic manager. 

 

 The autonomic manager, as shown in Fig 3, can be used at various security layers of the system. The 

hierarchy helps to place the inferences at appropriate levels and the intelligence can travel up to the 

highest layer, that is, the central AM.  

 A SCADA system can have a large geographical spread, exposing it to exploitation at many locations, 

therefore necessitating an autonomic manager at each location that can monitor the security in the local 

areas and coordinate the efforts through the central manager. A simplified SCADA system architecture is 

shown in Figure 4. At the heart of the system is a central autonomic manager, that can enforce the broad 

threat mitigation and containment policies in the managed system as defined by the system administrator. 

The knowledge base provides the various historical system models that are continuously modified to the 

current state and are analysed to check conformance. The local autonomic managers continually observe 

the system state and act promptly in case of identified security threats to the local system. 

Our proposed architecture provides a broad generalised structure based on virtualisation wherein 

appropriate technologies can be selected to best suit an application within the given framework. The 

identification of anomalies at an area level helps to counter the threats locally, relieving the central 

autonomic manager to take more holistic actions to counter system wide threats. 
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Fig 4. Proposed Architecture for an autonomic SCADA system. 

 

It is also pertinent to point out here that the autonomic manager itself can be the target of a cyber 

attack. Such exploitation can be avoided through redundant deployments of managers and an integrated 

approach as proposed.     

6. CONCLUSION 

The evolving cyber threat landscape dictates changes to cyber defence approaches for the protection of 

SCADA systems. Unlike the traditional defence approaches where the response is governed by tailoring 

and monitoring according to threats, the concept of autonomic computing provides an advantage, as the 

systems are self-protecting. Thus, the cognitive and autonomic computing paradigms are very promising 

to develop SCADA system cyber security architectures that facilitate proactive threat mitigation 

methodologies. The autonomous nature enables flexible and scalable solutions across a wide range of 

SCADA system architectures and applications.  

This paper provides an overview of the autonomic computing based architectures for SCADA security. 

We propose the concept of hierarchical autonomic managers that helps to extract, aggregate and refine 

intelligent inferences for ultimate decision making by a human operator. The proposed framework is 

generic and can be suitably applied across a range of real-world SCADA applications. 

 

ACKNOWLEDGMENT 

The research is sponsored by London South Bank University and Firstco Ltd., London, UK, through 

Innovate UK funding. 

 

 

 

 

 

REFERENCES 

Autonomic Computing Lab. http://acl.ece.arizona.edu/research.html [Accessed 20 August 2017]. 

http://acl.ece.arizona.edu/research.html


International Journal of Cognitive Informatics and Natural Intelligence 

 

 

Al Baalbaki, B., Al-Nashif, Y., Hariri, S. and Kelly, D., 2013, May. Autonomic critical infrastructure 

protection (acip) system. In Computer Systems and Applications (AICCSA), 2013 ACS International 

Conference on (pp. 1-4). IEEE. 

 

Carcano, A., Coletta, A., Guglielmi, M., Masera, M., Fovino, I.N. and Trombetta, A., 2011. A 

multidimensional critical state analysis for detecting intrusions in SCADA systems. IEEE 

Transactions on Industrial Informatics, 7(2), pp.179-186. 

 

Cárdenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang, C.Y. and Sastry, S., 2011, March. Attacks 

against process control systems: risk assessment, detection, and response. In Proceedings of the 6th 

ACM symposium on information, computer and communications security (pp. 355-366). ACM. 

 

Chen, Q. and Abdelwahed, S., 2014, April. Towards realizing self-protecting SCADA systems. 

In Proceedings of the 9th Annual Cyber and Information Security Research Conference (pp. 105-

108). ACM. 

 

Cloud and Autonomic Computing Centre: https://sites.google.com/nsfcac.org/home [Accessed 20 

August 2017]. 

 

Constantin L., 2014. “New Havex malware variants target industrial control system and SCADA users,” 

PC World, Jun 2014. 

 

Cox, D.P., 2011. The application of autonomic computing for the protection of industrial control 

systems. The University of Arizona. 

 

Crawford, M., 2006. Utility hack led to security overhaul. Computerworld, 2006, pp.1-2. 

 

Ebbers M., Byrne F., Adrados P. G., Martin R., and Veilleux J., 2006. Autonomic Computing (Chapter 

8) IBM Introduction to the New Mainframe: Large-Scale Commercial Computing. 

ftp://public.dhe.ibm.com/systems/z/z_coursematerials/lscc/Large_Scale_Commercial_Computing_S

tudent.pdf [Accessed 20 August 2017]. 

 

Fortes J., Parashar M., Hariri S., Banicescu I., 2014. Center for Cloud and Autonomic Computing 

(CAC). Compendium of Industry-Nominated NSF I/UCRC Technological Breakthroughs. 

 

Ganek, A.G. and Corbi, T.A., 2003. The dawning of the autonomic computing era. IBM systems 

Journal, 42(1), pp.5-18. 

 

GE, Communications Protocol, 

https://www.gegridsolutions.com/app/DownloadFile.aspx?prod=gesapm&type=8&file=7 [Accessed 

20 August 2017]. 

Greer, M. and Rodriguez-Martinez, M., 2012. Autonomic computing drives innovation of energy smart 

grids. Procedia Computer Science, 12, pp.314-319. 

 

https://sites.google.com/nsfcac.org/home
ftp://public.dhe.ibm.com/systems/z/z_coursematerials/lscc/Large_Scale_Commercial_Computing_Student.pdf
ftp://public.dhe.ibm.com/systems/z/z_coursematerials/lscc/Large_Scale_Commercial_Computing_Student.pdf
https://www.gegridsolutions.com/app/DownloadFile.aspx?prod=gesapm&type=8&file=7


International Journal of Cognitive Informatics and Natural Intelligence 

 

Hadžiosmanović, D., Bolzoni, D. and Hartel, P.H., 2012. A log mining approach for process monitoring 

in SCADA. International Journal of Information Security, pp.1-21. 

 

Hariri S., Pacheco J., Tunc C., and Al-Nashif Y. ( ). A Methodolgy for Designing Resilient and Smart 

Critical Infrastructures. http://ecedha.org/docs/default-source/source/designing-resilient-and-smart-

critical-infrastructures.pdf?sfvrsn=0 [Accessed 20 August 2017]. 

 

Huebscher, M.C. and McCann, J.A., 2008. A survey of autonomic computing—degrees, models, and 

applications. ACM Computing Surveys (CSUR), 40(3), p.7. 

 

JADE - A framework for developing autonomic administration software. from 

http://raweb.inria.fr/rapportsactivite/RA2009/sardes/uid40.html [Accessed 20 August 2017]. 

 

Jiang, J. and Yasakethu, L., 2013, October. Anomaly detection via one class svm for protection of scada 

systems. In Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2013 

International Conference on (pp. 82-88). IEEE. 

 

Karnouskos, S., 2011, November. Stuxnet worm impact on industrial cyber-physical system security. 

In IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society (pp. 4490-4494). 

IEEE. 

 

Kephart, J.O. and Chess, D.M., 2003. The vision of autonomic computing. Computer, 36(1), pp.41-50. 

 

Kirsch, J., Goose, S., Amir, Y., Wei, D. and Skare, P., 2014. Survivable SCADA via intrusion-tolerant 

replication. IEEE Transactions on Smart Grid, 5(1), pp.60-70. 

 

Khadraoui, D. and Feltus, C., 2015. Designing Security Policies for Complex SCADA Systems 

Protection. INFOCOMP 2015, p.66. 

 

Mahoney, W. and Gandhi, R.A., 2011. An integrated framework for control system simulation and 

regulatory compliance monitoring. International Journal of Critical Infrastructure Protection, 4(1), 

pp.41-53. 

 

Nazir, S., Patel, S. and Patel, D., 2017. Assessing and augmenting SCADA cyber security: A survey of 

techniques. Computers & Security, 70, pp.436-454. 

 

Parashar M. and Hariri S., 2005. Autonomic Computing: An Overview,” in Unconventional 

Programming Paradigms. Lecture Notes in Computer Science, vol 3566. Springer, Berlin, 

Heidelberg. 

Pidikiti, D.S., Kalluri, R., Kumar, R.S. and Bindhumadhava, B.S., 2013. SCADA communication 

protocols: vulnerabilities, attacks and possible mitigations. CSI transactions on ICT, 1(2), pp.135-

141. 

 

Poslad, S., 2011. Ubiquitous computing: smart devices, environments and interactions. John Wiley & 

Sons. 

 

http://ecedha.org/docs/default-source/source/designing-resilient-and-smart-critical-infrastructures.pdf?sfvrsn=0
http://ecedha.org/docs/default-source/source/designing-resilient-and-smart-critical-infrastructures.pdf?sfvrsn=0
http://raweb.inria.fr/rapportsactivite/RA2008/sardes/uid32.html
http://raweb.inria.fr/rapportsactivite/RA2009/sardes/uid40.html


International Journal of Cognitive Informatics and Natural Intelligence 

 

Sheldon, F., Potok, T., Langston, M., Krings, A. and Oman, P., 2004, July. Autonomic approach to 

survivable cyber-secure infrastructures. In IEEE Int. Conf. on Web Services (ICWS 2004), 

California, USA. 

 

SQL The Next Big Thing in SCADA, White Paper, Inductive Automation, 2012. 

https://www.automation.com/pdf_articles/inductive_automation/WhitePaper_SQL_The_Next_Big_

Thing_in_SCADA.pdf [Accessed 20 August 2017]. 

Taveras, P., 2013. SCADA live forensics: real time data acquisition process to detect, prevent or 

evaluate critical situations. European Scientific Journal, ESJ, 9(21). 

 

Wang Y., Wang Y., Patel S.,and Patel D., 2006a. A layered reference model of the brain 

(LRMB),”. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and 

Reviews), 36(2), 124-133. 

Wang Y. and Wang Y., 2006b. Cognitive informatics models of the brain” IEEE Transactions on 

Systems, Man, and Cybernetics, Part C (Applications and Reviews), 36(2), 203-207. 

Wang Y., 2007a. The Theoretical Framework of Cognitive Informatics. Int’l J. of Cognitive Informatics 

and Natural Intelligence, 1(1), 1-27. 

Wang Y., 2007b. Towards Theoretical Foundations of Autonomic Computing. Int’l J. of Cognitive 

Informatics and Natural Intelligence, 1(3), 1-16. 

Wang Y., 2009. Cognitive Computing and machinable thought. In 2009 8th IEEE International 

Conference on Cognitive Informatics, Kowloon, Hong Kong, pp. 6-8. 

Wang Y., Widrow B., Zhang B., Kinser W., Sugawara K., Sun, F., Lu J., Lu J., Weise T., and Zhang D., 

2011a. Perspectives on the Field of Cognitive Informatics and its Future Development. Int’l J. of 

Cognitive Informatics and Natural Intelligence, 5(1), 1-17. 

Wang Y., 2011b. The Cognitive Processes of Formal Inferences. Int’l J. of Cognitive Informatics and 

Natural Intelligence, 1(4), 75-86. 

Wang Y., Berwick R. C., Haykin S., Pedrycz W., Kinser W., Baciu G., Zhang D., Bhavsar V. C., and 

Gavrilova M., 2011c. Cognitive Informatics and Cognitive Computing in Year 10 and Beyond. Int’l 

J. of Cognitive Informatics and Natural Intelligence, 5(4), 1-21. 

Wang Y., Rolls E. T., Howard N., Raskin V., Kinsner W., Murtagh F., Bhavsar V. C., Patel S., Patel D., 

and Shell D. F., 2015. Cognitive Informatics and Computational Intelligence: From Information 

Revolution to Intelligence Revolution, International Journal of Software Science and Computational 

Intelligence (IJSSCI), 7(2), 50-69. 

 

Yang L., Cao X.,  Gen X., and Zhang J., 2012. A Knowledge expression method of SCADA network 

attack and defence based on factor state space. Journal of Theoretical and Applied Information 

Technology, 46(2). 

 

 

 

https://www.automation.com/pdf_articles/inductive_automation/WhitePaper_SQL_The_Next_Big_Thing_in_SCADA.pdf
https://www.automation.com/pdf_articles/inductive_automation/WhitePaper_SQL_The_Next_Big_Thing_in_SCADA.pdf
http://dl.acm.org/author_page.cfm?id=81350590214&CFID=741097238&CFTOKEN=66186716
http://dl.acm.org/author_page.cfm?id=81100301598&CFID=741097238&CFTOKEN=66186716
http://dl.acm.org/author_page.cfm?id=81548016660&CFID=741097238&CFTOKEN=66186716
http://dl.acm.org/author_page.cfm?id=81100214612&CFID=741097238&CFTOKEN=66186716
http://dl.acm.org/author_page.cfm?id=81100456237&CFID=741097238&CFTOKEN=66186716
http://dl.acm.org/author_page.cfm?id=81503643104&CFID=741097238&CFTOKEN=66186716
http://dl.acm.org/author_page.cfm?id=81100454030&CFID=741097238&CFTOKEN=66186716
http://dl.acm.org/author_page.cfm?id=81100490051&CFID=741097238&CFTOKEN=66186716
http://dl.acm.org/author_page.cfm?id=81100490026&CFID=741097238&CFTOKEN=66186716
http://dl.acm.org/author_page.cfm?id=81430627952&CFID=741097238&CFTOKEN=66186716
https://www.igi-global.com/journal/international-journal-software-science-computational/1124
https://www.igi-global.com/journal/international-journal-software-science-computational/1124

